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Preface 

At the present time the theory of random equations is a very active area of 
mathematical research; and applications of the theory are of fundamental 
importance in the formulation and analysis of various classes of operator 
equations which arise in the physical, biological, social, engineering, and 
technological sciences. Of the several classes of random equations which have 
been studied, random integral equations (and random differential equations 
formulated as integral equations) have been studied rather extensively. 
This book is intended as an introductory survey of research on random integral 
equations and their applications. 

Research on random integral equations has, in the main, proceeded along 
two lines. There are the fundamental studies on random integral equations 
associated with Markov processes, these studies being initiated by It6 in 
1951 ; and there are the studies on classical linear and nonlinear integral equa- 
tions with random right-hand sides, random kernels, or defined on random 
domains, these studies being initiated by SpaEek in 1955. In this book we 
attempt to present a complete account of the basic results that have been 
obtained in both of the above rather broad areas of research. 

The material in this book is presented in seven chapters. In Chapters 1 and 
2 we present a survey of those basic concepts and theorems of probability 
theory in Banach spaces required for the formulation and study of random 
equations in Banach spaces. Chapter 3 is an introduction to the theory of 
random equations. In this chapter the material presented in Chapters I and 2 
are utilized to discuss the basic concepts and to formulate various methods 
of solving random equations. Chapters 1-3 are intended as an introduction 
to probabilistic functional analysis, and they can be read independently of 
the remaining chapters. In Chapter 4 linear Fredholm and Volterra integral 
equations with random right-hand sides and/or random kernels are con- 
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sidered. Chapter 5 is devoted to the formulation and analysis of eigenvalue 
problems for some random Fredholm equations. In Chapter 6 we consider 
random nonlinear integral equations, in particular Hammerstein and Volterra 
equations. Finally, in Chapter 7 we study It6 random integral equations. 

This book is intended primarily for probabilists, applied mathematicians, 
and mathematical scientists interested in probabilistic functional analysis 
and the theory of random equations and its applications. Readers are assumed 
to have some knowledge of probabilistic measure theory, the basic classes 
of stochastic processes, and the elements of functional analysis in Banach 
spaces. Since there are many excellent texts and reference works available 
which cover the background material needed, no effort has been made to 
make this volume self-contained. 



Acknowledgments 

This book could not have been written without direct and indirect assistance 
from a number of individuals and institutions. Firstly, I would like to express 
my gratitude to Joseph Kampt de Ftriet and the late Antonin Spakk for 
introducing me to the field of random equations, and for their guidance and 
encouragement. Secondly, I would like to thank Richard Bellman for inviting 
me to prepare a book on random equations for his series Mathematics in 
Science and Engineering. 

During the preparation of this book I received generous support from several 
institutions : Mathematics Research Center, The University of Wisconsin, 
Madison (U.S. Army Research Office Grant No. DA-31-124-ADO(D)-462), 
National Science Foundation (Grant No. GP-13741), and the Office of 
Research Administration, Wayne State University. 

Many colleagues, students and friends have provided me with constructive 
suggestions and criticism. In particular, I would like to acknowledge the help 
given me by D. Kannan, V. Mandrekar, A. Mukherjea, B. L. S. Prakasa Rao, 
and C .  P. Tsokos. 

Finally, I would like to express my thanks to Hing Lau Ng for typing the 
manuscript and providing invaluable editorial assistance, and to the members 
of the book production department of Academic Press for their wonderful 
cooperation in producing this book. 

xiii 



This page intentionally left blank



Mathematical equations play a central role in all branches of the applied 
mathematical sciences. In the formulation of an equation, or a system of 
equations, used to represent a given physical system or phenomenon, co- 
efficients and/or parameters are often introduced which have some definite 
physical interpretation. For example, in the theory of diffusion (or heat 
conduction) we have the diffusion coefficient, in the theory of wave propa- 
gation the propagation coefficient; and in the theory of elasticity the modulus 
of elasticity. In concrete examples of all of the cases mentioned, the magnitudes 
of the coefficients or parameters are experimentally determined. When solving 
the associated mathematical equations, and in subsequent calculations, it is 
usually the meun value of a set of experimental determinations that is used as 
the value of the coefficient or parameter. In some instances this may provide 
an adequate or reasonable description, but in many instances the variance 
may be sufficiently large to warrant consideration. Hence, when we talk 
about physical constants or parameters, etc., we are not, in many instances, 
talking about constants at all, but random variables whose values are deter- 
mined by some probability distribution or law. The same thing can be said 
about coefficients and nonhomogeneous terms (or forcing functions) of 
equations, which may be random variables or functions. 

As is well known, in classical physical theories the role of initial conditions 
is idealized. That is to say, the initial conditions are assumed to be known. In 
reality, however, initial conditions are known only within certain ranges of 
values. Hence a more realistic formulation of initial-value problems would 
involve treating the initial data as random. Similarly, boundary-value 
problems should be treated under the assumption that the boundary data are 
random. 

In a more general way, not only the initial or boundary conditions, but the 
operators describing the behavior of a system may not be known exactly. FOI 
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example, in the case of difference and differential operators the coefficients 
might not be known exactly, and are therefore assumed to be of a known form, 
or approximations are employed. In the case of integral equations the kernel 
often is not known exactly. In many studies, workers use in their formulation 
what might be called mean coefficients or kernels; hence the solutions of the 
differential or integral equations often give only the behavior of average, 
mean, or expected values of the physical quantities used to describe the state 
of a system. 

In view of the above, a more realistic formulation of the equations arising 
in applied mathematics would involve the study of random equations. A 
random operator equation of the form L(w)x = y ( t ,w)  is a family of operator 
equations depending on a parameter w which ranges over a probability 
measure space (Q,21, p). The probability measure p determines the probability 
of an event (i.e., a subset of Q), and therefore the probability of the corre- 
sponding equation of the family. The objective of the theory of random 
equations is the determination of the probability distribution (or law) of the 
random solution x(t,w), or functionals of the solution; and/or the determi- 
nation of various statistical properties of x(t ,w)  such as its expectation, 
variance, and higher moments. 

A random equation of the form considered above will arise, for example, in 
the representation of systems with random coefficients and forcing functions. 
However, it is necessary to consider within the framework of the theory of 
random equations the study of random solutions of deterministic equations 
which are generated by random initial and/or boundary conditions. In many 
instances problems of this type can be so transformed as to lead to a random 
integral equation. 

It is of interest to remark that the distinction between a deterministic and 
probabilistic approach to the study of mathematical equations lies mainly in 
the nature of the questions they try to answer, and in the interpretation of the 
results. The advantages of a probabilistic approach are that (1) it permits 
from the initial formulation a flexibility and, therefore, a greater generality 
than that offered by a deterministic approach, and (2) it permits the incor- 
poration of stochastic features in the equations, the inclusion of which may 
play an essential role in making the connection between mathematical 
equations and the real phenomena they attempt to describe. 

The theory of random equations is still in the formative stage; however, 
there is a very extensive literature dealing with four basic classes of random 
equations, namely: (1) random algebraic equations, (2) random difference 
equations, (3) random differential equations, and (4) random integral equa- 
tions. Other random equations can be considered (and indeed have been 
considered), for example, random differential-difference equations, random 
integrodifferential equations, and rather general random functional equations ; 
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however, for the purposes of this exposition we regard the above four classes 
as the basic classes of random equations. We present below a list of survey 
articles and books which deal with the basic classes of random equations and 
their applications. 

Random algebraic equations: Bharucha-Reid [4]. 
Random dizerence equations: Aoki [I 1, Astrom [3], Bharucha-Reid [5], 
and Jazwinski [9]. 
Random differential equations: Arnold [2] ,  Astrom [3], Bucy and 
Joseph [5a], Gihman and Skorohod [7], Jazwinski [9], Khasminskii 
[lo], Kushner [ 1 1 ,  lla], Saaty [13], Srinivasan and Vasudevan [15], 
Stratonovich [16], Wong [18], and Wonham [19]. 
Random integral equations; Dynkin [6], Gihman and Skorohod [7], 
It8 and McKean [S], McKean [12], Skorohod [14], and Tsokos and 
Padgett [17]. 

It is clear from the above list of references that random differential equations 
have been the subject of rather extensive research. This, however, should not 
be surprising; for deterministic (or classical) differential equations are utilized 
as models for a wide variety of phenomena considered in the applied math- 
ematical sciences and, consequently, play a dominant role in applied math- 
ematics. Integral equations also constitute an important class of operator 
equations; and in applied mathematics they occur in their own right as 
mathematical models, and also as alternative formulations of models that 
lead to differential equations. As in the deterministic case, random integral 
equations arise as primary models of physical phenomena, and also as 
alternative formulations of random differential equations. The books listed 
above as dealing with random integral equations are, with the exception of 
[17], concerned with random differential equations of It6 type which arise in 
the theory of Markov processes. However, in order to give a precise formu- 
lation of this class of random differential equations it is necessary to formulate 
these random'differential equations as random integral equations. In general, 
random integral equations provide a more appropriate formulation of 
random differential equations, for it is not necessary to introduce the notion 
of differentiability (in some sense) of random functions in order to give a 
mathematically correct formulation of the random differential equations. 

The modern theories of linear and nonlinear equations belong to the 
domain of functional analysis. Within this framework, the formulation of an 
equation is considered as a correspondence between elements of a suitable 
linear space; and then, utilizing properties of the transformation (linear or 
nonlinear) that defines the correspondence and the properties of the space, the 
problem is to obtain conditions for the solvability of the equation. 
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The same general procedure has been followed in the development of the 
theory of random equations. The systematic study of random equations 
employing the methods of functional analysis was initiated by the Prague 
school of probabilists under the direction of the late Antonin SpaEek. Their 
research was motivated by the importance of the role of random equations in 
the applied mathematical sciences, and as a concrete application of the 
results of research in probabilistic functional analysis. The formulation of a 
random equation from the functional analytic point of view considers the 
correspondence between elements of a given linear space as being defined by a 
deterministic or random transformation, and then, utilizing the properties of 
the transformations and the properties of the space on which the transfor- 
mation is defined, the problem is to obtain conditions under which there 
exists a random function with values in the linear space which satisfies the 
equation with probability one. 

As stated in the preface, the theory of random equations is still in its 
formative stage. However, even at the present time I do not think that its 
importance for applied mathematics can be denied; and I feel that within the 
not too distant future we will witness the development of a unified theory of 
random equations that will be based on, and utilize, the most modern concepts 
and tools of stochastic processes, functional analysis, and numerical analysjs. 
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CHAPTER 1 

Probability Theory in Banach Spaces: 
An Introductory Survey 

1.1 Introduction 

Let (Q,'u,p) be a probability measure space, and let (X, 23) be a measurable 
space, where X is a Banach space and b is the a-algebra of all Borel subsets of 
X. With reference to the notation and terminology used above, we recall the 
following definitions. The set Q is a nonempty abstract set, whose elements w 

are termed elementary euents. 'u is a a-algebra of subsets of 0; that is, 2l is a 
nonempty class of subsets of Q satisfying the following conditions: (i) Q E 2l, 
(ii) if A E 'u and B E  %, then A - B E  2[, and (iii) if A ,  E %, i =  1 ,  2, ..., then 
Uiz, Ai  ~'21. The elements of 'u are called events. p is aprobability measure on 
'u; that is, p is a set function, with domain 'u, which is nonnegative, countably 
additive, and such that p(A) E [0,1] for all A E 2l, with p(Q) = 1. We will 
assume throughout this book that p is a complete probability measure; that 
is p is such that the conditions A E 2l, p ( A )  = 0, and A.  C A imply A ,  E '21. 

In this chapter we present a survey of the basic concepts of probability 
theory in Banach spaces; hence we will be concerned with random variables 
defined on (Q,'u,p) with values in (X,23), where X is a Banach space and b is 
the a-algebra of Borel subsets of X. We remark that when X = R (the real line) 
.or I = R, (Euclidean n-space), the theory to be presented in this chapter yields 
the results of classical probability theory. 

Since the setting for the theory is a Banach space, Sect. 1.2 is devoted to 
some basic definitions and concepts from the theory of Banach spaces. In 
Sect. 1.3 we introduce the notion of a Banach space-valued random variable, 
and give a rather complete survey of the basic definitions, concepts, and 

7 
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theorems. Section 1.4 is concerned with Banach space-valued random 
functions; and in Sect. 1.5 we study probability measures on Banach spaces. 
The material in these two sections is of fundamental importance in the study 
of random equations in Banach spaces. Finally, in Sect. 1.6 we consider some 
limit theorems for Banach space-valued random variables. 

Since this chapter is intended as an introductory survey of results from the 
theory of probability in Banach spaces which are useful in the development of 
a theory of random equations, we do not prove the theorems that are stated. 
This chapter is fully referenced; hence the interested reader can refer to the 
original papers or books for proofs. 

1.2 Banach Spaces 

A .  Zntroduction 

This section is devoted to some basic definitions and concepts from the 
theory of Banach spaces. We also give a list of some concrete Banach spaces 
which will be encountered in this book. The results presented in this section 
are all standard, and can be found in any of the many text and reference books 
on the theory of Banach spaces. We refer, in particular, to the books of 
Dunford and Schwartz [23], Goffman and Pedrick [37], Hille and Phillips 
[46], Kolmogorov and Fomin [69], Lorch [79], Simmons [l 1 11, Taylor [I 161, 
and Zaanen [ 1301. 

B. Banach spaces, some examples 

A nonempty set X is a real (resp. complex) Banach space if 
(1) X is a linear space over the real numbers R (resp. the complex numbers C ) ;  
(2) X has a norm, that is, there is a real-valued function lixll defined on X such 
that (a) I/xil> 0 for all x E X, with ilxll= 0 if and only if x = 0 (the null element 
of X), (b) lltrxll= la1 llxll for any scalar a,  and all x E 3, and (c) Ilx f y l l i  llxll+ llyll 
for all x , y  E X; (3) X is a complete metric space with metric d ( x , y )  = (Ix - yII. 

A Banach space X is said to be separable if it has a countable subset that is 
everywhere dense. Separable Banach spaces constitute an important class of 
Banach spaces, and they are of particular importance in the development of 
probability theory in Banach spaces. 

We now list some concrete Banach spaces which will be encountered in 
this book. 

Definition 1.1. 

1. The spaces R and C,  the real numbers and the complex numbers, 
respectively, are the simplest of all Banach spaces. The norm of an element x 
in either R or C is, of course, defined by llxll = 1x1, the absolute value of x. 



1.2 Banach Spaces 9 

2. The space R, of all n-tuples x = (x1,x2,. . . ,x,) of real numbers is a real 
Banach space with respect to coordinatewise addition and scalar multipli- 
cation, and with the norm defined by ljxll = (x;=, I x ~ ( ~ ) ’ / ~ .  R, is, of course, 
Euclidean n-space. The space C, of all n-tuples z = (z,,z2,. . . ,z,) of complex 
numbers is a complex Banach space with respect to coordinatewise addition 
and scalar multiplication, and with the norm defined by llzll = (Cr=l Izi 1 2 ) ” 2 .  
C, is called n-dimensional unitary space. We remark that the injinite-dimen- 
sional Euclidean space R,, the set of all sequences x = {xi} of real numbers such 
that zzl Ixil2converges, isareal Banachspacewith norm llxll =(z.;O=I 1 ~ ~ 1 ~ ) ’ ’ ~ ;  
and C,, the injinite-dimensional unitary space, is a complex Banach space. 

3. For p real, 1 G p < co, we denote by 1; or l,(n) the space of all 
n-tuples x = (x, ,x2 , .  . . ,x,) of scalars. With norm jlxll = (1:1=, IxiIP)’Ip the 1; 
spaces are Banach spaces; and it is clear that the real and complex spaces 1: are 
the n-dimensional spaces R, and C,, respectively. 

The sequence spaces I,, 1 G p G 03. We denote by I, the space of all 
sequences x = {xi} of scalars such that x7=l Ixi1P < co, and with addition and 
scalar multiplication defined coordinatewise. For 1 G p < co, the norm of an 
element in I, is given by IlxIl, = (zT=,  xi^^)'^^; and with this norm the 1, 
spaces are Banach spaces. The space I,, which is the space of all bounded 
sequences of scalars, is a Banach space with norm llxl~, = sup 1x,J. (We 
remark that the real and complex spaces 1, are R ,  and C,, respectively.) 

The space of continuous function C [ a , b ] .  The space of  all bounded 
continuous scalar-valued functions ~ ( t ) ,  t E [a, b ] ,  -co G a < b G co, with the 
operations of addition and scalar multiplication as usually defined for 
scalar-valued functions, is a Banach space with norm defined by 

4. 

5 .  

This norm is usually referred to as the sup or uniform norm. The function 
space C[a,b] is a Banach space of great importance in analysis; and it plays 
an important role in the theory of stochastic processes and its applications. 

6. The Lebesgue spaces L,, 1 G p G 00. The function space 

L,(S, 3, m) = L,(S), 

defined for any real number p ,  1 ~p < co, and any positive measure space 
(S,s,rn),  consists of those scalar-valued measurable functions x(s) on S for 
which Js Ix(s)lpdm(s) is finite. The L, (1 ~p < co) spaces are Banach spaces 
with norm defined by 
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We remark that the elements of the L, spaces are not actually functions, but 
equivalence classes of functions ; that is, two functions belong to the same 
equivalence class if they differ only on a set of measure zero. The space L,(S) 
is defined for a positive measure space, and consists of all (equivalence classes 
of) essentially bounded, scalar-valued measurable functions x(s). L, is a 
Banach space with norm defined by Ilxll, = ess sup !x(s) l .  The Lebesgue 
spaces L,, especially L,, are of importance in the theory of random functions; 
hence they have a number of applications to problems associated with 
random equations. 

We remark that the space I ,  is just the space L,(S, 5 , m )  where S is the set of 
all integers, 5 is the collection of all subsets of S, and m(F) the number 
(finite or infinite) of elements of F E 5. 

The Orlicz spaces Lo. Let s = ~ ( r )  and r = $ ( s )  be nondecreasing 
functions, inverse to each other, and satisfying the conditions ~ ( 0 )  = 0, 
~ ( m )  = co and +(O) = 0, +(m) = co. For given ~ ( r )  and +(s), r , s  2 0, the 
convex functions @ ( r )  and Y(s) defined by the Lebesgue integrals 

7. 

are complementary in the sense of Young; that is, if the functions @(r)  and 
Y(s) are complementary in the sense of Young, then rs < @(r)  + Y ( s )  for 
arbitrary r 2 0, s 2 0, with equality if and only if at least one of the relations 
s = V ( r ) ,  r = #(s) is satisfied. Now, let D be a subset of R,, and let m denote 
Lebesgue measure on D. The Orlicz space Lo = L@(D,m) is defined as the 
collection of complex-valued measurable functions x(s) on D for which 

where the supremum is taken over all y such that 

Similarly, the Orlicz space Ly is defined as the collection of all complex- 
valued measurable functions x(s )  on D for which 

where the supremum is taken over all y such that 

For a fixed function @(r) ,  the Orlicz spaces La can be made into Banach 
spaces, with norm llxllo, if, as in the case of the L, spaces, we consider the 
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elements of Lo to be equivalence classes of functions. We remark that when 
the function @(r)  = krP, k > 0, 1 ~p < co, Lo contains the same functions as 
the L, (1 G p < m) spaces. 

The Orlicz spaces are an important class of Banach function spaces; and in 
recent years they have played an important role in the study of linear and 
nonlinear integral equations (cf. Krasnosel’skii and Rutickii [70] and Zaanan 
[130]), and have found many applications in analysis and probability. 

Hilbert space H.  A linear space H is called an inner-product space (or 
pre-Hilbert space) if there is defined for all pairs of elements x , y  E H a 
scalar-valued function on H x H ,  denoted by (x , y ) ,  and called the inner or 
scalar product of x and y ,  such that 

8. 

- 
(i) (4 Y )  = (v, X I ,  

(ii) (ax + 13y, 4 = 4x7 4 + PCY, 4, 
(iii) ( x ,  x )  2 0, 

with (x ,  x )  = 0 if and only if x = 0. The norm of an element x E His defined by 
Jlxll= ( X , X ) ~ / ~ .  If H is complete under the norm obtained from its inner 
product, then H i s  called a Hilbert space; and His  Banach space with norm as 
defined above. 

Of the Banach spaces listed above, the finite-dimensional spaces R,, C,, 
and 1; are Hilbert spaces with (x , y )  = I x l y i .  Also, 1, with (x , y )  = z7=l x I y I ,  
and L,(S) with (x , y )  = Js xjjdm are Hilbert spaces. A Hilbert space is a very 
special type of Banach space in that it possesses enough additional structure 
to permit us to determine if two elements of the space are orthogonal 
(perpendicular). For example, let Lz(f2) denote the Hilbert space of second- 
order real- (or complex-) valued random variables. Then, for x , y  E L2(Q), 
(x(w),y(w)) = b{x(w)y(w)}; and x and y are orthogonal if b { x ( w ) y z ) }  = 0. 
L2 spaces are of fundamental importance in the theory of square-integrable 
random functions and its applications. 

As we remarked earlier, separable Banach spaces form an important class 
of Banach spaces which play an important role in the development of prob- 
ability theory in Banach spaces and the theory of random equations. A 
fundamental result concerning separable Banach spaces is the following 
theorem of Banach and Mazur. 

THEOREM 1.1. 
isomorphic to a closed subspace of the Banach space C[O, I]. 

r f  3E is a separable Banach space, then 3E is isometrically 

In view of the Banach-Mazur theorem, probability theory in separable 
Banach spaces is applicable to problems concerning continuous random 
functions. 
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Of the Banach spaces listed in this section which will be of particular 
interest to us in this book, the following are separable: (1) lp(n); (2)  
I, (1 G p < m); (3) the real space C[a,b] is separable if [a,b] is a finite closed 
interval of the real line; (4) L,(S) (1 G p < m) is separable if the measure m is 
separable; (5) Lo is separable if the measure m is separable and there exists a 
constant M > 0 such that @(2r)  G M@(r),  r > 0 ;  (6) a Hilbert space H is 
separable if and only if H contains a maximal orthonormal system which is at  
most countable ; and a separable Hilbert space is isometrically isomorphic 
to I,. 

C. Linear functionals. The aa’joint space of a Banach space 

We now consider linear functionals on a Banach space X, and the adjoint 
space of 3. 

Definition 1.2. A functional f on a Banach space X is a function on X to the 
scalars. The value offfor  an element x E X is denoted by f(x). A functionalf 
is said to be linear if (i) f(xl + x2) = f(xl) + f(x2), x,,x2 E X ,  and (ii) 
f(ax) = af(x), x E X, a a scalar; and f is said to be bounded if there exists a real 
constant M > 0 such that I f(x)I G MlIxlI for all x E X. 

A basic result is the following: A linear functional is bounded ifand only if 
it is continuous. 

Definition 1.3. Let X* denote the set of all bounded linear functionals on a 
Banach space X. X* is a Banach space, and is called the adjoint (conjugate or 
dual) space of X. 

Since X* denotes the set of all bounded linear functionals on X, an element 
of X* is frequently denoted by x*. Hence x*(x) denotes the value of x* for an 
element x E X. 

The set of all bounded linear functionals on X* is called the second adjoint 
space of X;  and it is denoted by X**. A Banach space X is said to be reflexive 
if X = X**. 

We also need the following notion. A set XE c X* is said to be total on a set 
M c X if x E M and y E M together with x*(x) = x*(y)  for every x* E Xz 
imply x = y .  

D. Topologies and convergence concepts 

A number of topologies can be introduced in Banach spaces, and with each 
one there is associated a type of convergence. 
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Definition 1.4. The topology induced in a Banach space X by the metric 
d(x,y) = IIx - yll is called the metric, norm, or strong topology of X. 

Definition 1.5. A sequence {x,} of elements in a Banach space X converges 
strongly, or converges in thestrong topology to an element x iflim,+m~~x,- xII =O. 
x is called the strong limit of {x,}. 

In addition to the strong topology, another topology can be introduced in X 
called the weak topology. 

Definition 1.6. Let xo be a fixed element of a Banach space X, and consider 
the neighborhood S(x,) defined as follows: S(x,) = S(xo; x: , , . . , x*, ; E )  = 

{x: Ix(x*) - xt(xo)l < E, i = 1,2,. . . , n}, where x:, . . . ,x; E X* and E > 0. The 
topology defined by the neighborhoods S(x,), x,EX, is called the weak 
topology of x. 

Definition 1.7. A sequence {xn} of elements in a Banach space X converges 
weakly, or converges in the weak topology, to an element x if (i) the norms lIx,ll 
are uniformly bounded, that is, Ilx,ll G M ,  and (ii) limn+m x*(x,) = x*(x) for 
every x* E X*. 

A weak topology can also be introduced in the adjoint space X*, called the 
weak *-topology of X*; and we can consider weak convergence of functionals. 

Definition 1.8. Let x: be a fixed element of X*, and consider the neighbor- 

S(x:) = s(x:;x,,x,,. . . ,x,; c) = {x*: Ix*(xi) -x:(xi)I < E ,  i =  1,2,. . . ,n] ,  

where x,, x2 , . . . , x, E X and E > 0. The topology defined by the neighbor- 
hoods s(~:), xt ; E X*, is called the weak *-topology of X*. 

hood S(x ;) defined as follows : 

Definition 1.9. A sequence {x*,} of bounded linear functionals converges 
weakly, or converges in the weak *-topology, to the bounded linear functional 
x* if (i) the norms 11x,*11 are uniformly bounded, and (ii) limn+m xf(x) = x*(x)  
for every x E X. 

The following facts are useful: (1) Weak and strong convergence are 
equivalent in R,. (2) r f a  sequence {x,} of elements in a Banach space X converges 
strongly to an element x E X, then {x,} also converges weakly to x. (3)  A sequence 
{x,) of elements in a Hilbert space H converges weakly to an element x E X if 
1imn-m (x,,y) 4 (x, y) for  every Y E H. 
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1.3 Banach Space-Valued Random Variables 

A .  Introduction 

Classical probability theory is concerned primarily with real-valued 
random variables and random functions. The need to study random variables 
and random functions with values in general topological spaces was pointed 
out in 1947 by Frichet [30] (cf. also [31]); and in 1953 Mourier published her 
fundamental paper [84] which initiated the systematic study of random 
variables with values in a Banach space.? Another basic paper is that of 
Hang [44]. 
In this section we will consider five topics: (1) the various definitions of 

Banach space-valued random variables, (2) convergence concepts, (3) the 
collection of random variables with values in a separable Banach space, 
(4) integration of Banach space-valued random variables, and ( 5 )  Banach 
algebra-valued random variables. 

B. Definitions of Banach space-valued random variables 

In classical probability theory random variables are introduced as real- 
valued measurable functions defined on a probability measure space. 
Analogously, Banach space-valued random variables are Banach space- 
valued measurable functions; however for Banach space-valued functions a 
number of concepts of measurability can be introduced which lead to different 
definitions of a Banach space-valued random variable. 

Let (Q,'u,p) be a complete probability measure space, and let (X,!?3) be a 
measurable space where X is a Banach space and 23 is the o-algebra of all 
Borel subsets of X. 

Definition 1.10. A mapping x :  -+ X is said to be a random variable with 
values in 3E if the inverse image under the mapping x of every Borel set B 
belongs to 'u; that is, x- ' (B)  E 'u for all B E 23. 

Definition 1.10 is equivalent to stating that a random variable with values in 
X is a Banach space-valued Borel measurable function; and in the case where 3 
is the real line, the above definition coincides with the usual descriptive 
definition of a real-valued or ordinary random variable (cf. Lobve [77, 
p. 1501). 

We now introduce the notion of a strong random variable. 
t Earlier contributions to the development of probability theory in Banach spaces are the 

paper of Glivenko [36] on the law of large numbers in function spaces, and the paper of 
Kolmogorov [67] on the Fourier transform, or characteristic functional, of Banach space- 
valued random variables. 
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Definition 1.11. A mapping x: SZ --f X is said to be ajinitely valued random 
variable if it is constant on each of a finite number of disjoint sets A ,  E rU and 
equal to 0 on 52 - (Uy=, A J ,  and a simple random variable if it is finitely 
valued and p({w: llx(w)/l> 0)) < 03. x is said to be a countably valued random 
variable if it assumes at  most a countable set of values in X, assuming each 
value different from 0 on a set in rU. 

Definition 1.12. A mapping x: SZ --f X is a p-almost separably valued 
random variable if there exists a set A .  E 81 such that p(Ao)  = 0 and x(52 - A,)  
is separable. 

Finally, we have: 

Definition 1.13. A mapping x: 52 -+ X is said to be a strong (or Bochner) 
random variable if there exists a sequence {x,(w)} of countably valued random 
variables which converges to x(w) almost surely; that is, there exists a set 
A .  E %, with p(Ao) = 0 such that 

lim Ilx,(w) - x(w)ll= 0 for every w E 52 - Ao.  
n+m 

Since p(9) = 1, we can replace “countably valued” in Definition 1.13 by 
“simple.” 

Next we introduce the notion of a weak random variable. 

Definition 1.14. A mapping x: 52 --f X is said to be a weak (or Pettis) 
random variable if the functions x*(x(w)) are real-valued random variables for 
each x* E X*. 

Mourier [84] has used the term L-random element for a weak random variable. 
Definition 1.13 is a constructive definition of a Banach space-valued 

random variable, while Definitions 1.10 and 1.14 are descriptive definitions. 
We remark that general properties of Banach space-valued random variables 
are often easier to discover and theorems easier to prove when a descriptive 
definition is used. 

The concepts of weak and strong random variables are connected by the 
following result (cf. Hille and Phillips [46, p. 721). 

THEOREM 1.2. 
it is a weak random variable and p-almost separably-valued. 

A mapping x: 52 -+ X is a strong random variable ifand only if 

Another definition of a Banach space-valued random variable is based on 
the conceDt of measurability introduced by Price 1961. 
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Definition 1.15. A mapping x: fi + X is said to be a Price random variable 
if and only if for every xo E X and positive real number r, 

{ w :  IIx(w) - xoll < r }  E IU; 

that is, the inverse images of all spherical neighborhoods are measurable. 

We now restrict our attention to the important case where X is a separable 
Banach space. In this case, an important corolIary of Theorem 1.2 states that 
the concept of weak and strong random variable are equivalent (cf. Hille and 
Phillips [46, p. 731). Furthermore, the a-algebra generated by the class of all 
spherical neighborhoods of X is equal to the a-algebra 23 of all Bore1 subsets 
of X. Finally, every strong random variable is measurable in the sense of 
Definition 1.10. From the above we can conclude that when X is separable the 
four definitions of random variables with values in a Banach space are 
equivalent; hence we can talk about a Banach space-valued random variable, 
X-valued random variable, or random element in X without reference to an 
associated concept of measurability. 

Another consequence of assuming X to be separable concerns the measur- 
ability of the norm ilx(w)ll. A subset D of X* is said to be a determining set 
for X if 

/Ix[j = sup lx*(x) I for all x E X . 
X * E D  

We state the following result: Let X be an arbitrary Banach space. Zf(i) x(w) 
is a weak random variable, and (ii) there exists a denumerable determining set D 
for  X, then /lx(w)ii is a nonnegative real-valued random variable. We refer to 
Hille and Phillips [46, p. 721 for a proof of the above result. Now, it is known 
that if X is separable, then X possesses a denumerable determining set; hence 
when 3 is a separable Banach space llx(w)li, x E X ,  is  a nonnegative real- 
valued random variable. 

Before closing this subsection, we give the definition of a random variable 
with values in a Hilbert space; and then consider the notions of Gaussian 
random elements, equivalence, independence, and sequences of Banach 
space-valued random variables. 

Since a Hilbert space is a Banach space, all of the definitions given earlier 
can be used to define Hilbert space-valued random variables; however the 
following definition (which is equivalent to that of a weak random variable) is 
frequently employed. 

Definition 1.16. Let H be a Hilbert space with inner product (-, .). A 
mapping x: IR --f H is said to be a Hilbert space-valued random variable if 
(x(w),y) is a real- (or complex-) valued random variable for every y E H. 
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When H is a separable Hilbert space, the above definition is, of course, 
equivalent to the other definitions of Banach space-valued random variables. 

As is well known, normal or Gaussian random variables play a central role 
in classical probability theory. For random variables with values in a Banach 
space we have the following definition. 

Definition 1.17. A random variable x(w) with values in a Banach space X 
is said to be a Gaussian or normal random variable if x*(x(w)) is a scalar-valued 
Gaussian random variable for every x* E X*. 

Let x(w) and y(w) be X-valued random variables defined on the same 
probability space. 

Definition 1.18. x(w) and y(w) are said to be equivalent if for every B E 23 
the sets { w : x ( w )  E B }  and {w:y (w)  E B }  coincide with probability one; that is, 
p({w : x ( w )  E B }  A {w :y(w)  E B } )  = 0. If X is separable, equivalence means 
x(w) and y(w) are equal with probability one; that is, p({w :x (w)  # y(w)})  = 0. 

Sequences of Banach space-valued random variables are encountered in 
many problems in the theory of random equations. We give a few definitions 
which are the analogues of the classical definitions. Let {x,,(w)} be a sequence 
of X-valued random variables. 

Definition 1.19. (i) {x,,(w)) is a sequence of independent X-valued random 
variables if for every positive integer n and all sets B,  , B 2 , .  . . , B,, E B 

(ii) {x,,(w)} is a sequence of identically distributed X-valued random 
variables if for every B E B and for every pair of positive integers i,j 

p({w : x,(w) E B } )  = p({w : XJ(W)  E B } ) .  

(iii) {x,,(w)} is a stationary sequence of X-valued random variables if for 
every pair of positive integers n,j, and all sets B1 , B 2 , .  . . , B,, E B 

C. Convergence concepts 

In Sect. 1.2D we listed several modes of convergence for sequences of 
elements in a Banach space. We now consider the modes of convergence for 
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Banach space-valued random variables. Let x(w) and {x,(w)} be X-valued 
random variables. 

Definition 1.20. The sequence {x,,(w)} converges to x(w) in Q (i) almost 
uniformly if to every E > 0 there is a set A ,  E ‘ill with p(A,) < E and to every 
6 > 0 there is an integer n(E,6) such that llx,(w) - x(w)ll < 6 for w E 52 - A, 
and n > n(e,6); (ii) strongly almost surely if there exists a set A ,  E 2l (with 
p(A,) = 0) such that 

lim Ilx,,(w) - x(w)ll= 0 for every w E 52 - A , ;  
n-rm 

(iii) weakly almost surely if 

limx*(x,,(w)) = x*(w) for every x* E X* and every w E Q - A , ;  
n-m 

(iv) in measure if for every E > 0 the outer measure p* of 

{w tIxn(w) - x(w)Il> €1 + 0 

asn- too .  

D. The collection of random variables with values in a separable Banach space 

Let Y(Q,X) denote the collection of all random variables with values in a 
separable Banach space X. We now state several results which show that V is 
closed with respect to addition and scalar multiplication. Hence Y is a linear 
space. We also show that Y is closed under composition with Borel measurable 
functions, and that the weak limit of a sequence of elements of Y is in Y .  

THEOREM 1.3. If x, y E “Y, then x + y E Y .  

It is of interest to point out that Nedoma [90] has shown that if X is not 
separable, then the sum of two X-valued random variables may not be an 
X-valued random variable. To be more precise, Nedoma proved the following 
result: Let X be an arbitrary Banach space, the cardinal number of which is 
greater than that of the continuum. Then the sum of two X-valued random 
variables need not be an X-valued random variable. 

THEOREM 1.4. If x E Y and a is a real number, then ux E Y 

THEOREM 1.5. Let x be a random variable with values in an arbitrary Banach 
space (X,,Bl), and let y be a Borel measurable mapping of (3El,Bl) into an 
arbitrary Banach space (X2, B2). Then y(x(w)) is an X2-valued random variable. 
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If XI = X 2  = X and I is separable, the above result states that if x E -Ir and 
is a Bore1 measurable mapping of I into itself, then q(x)  E V .  
Finally, we state the following convergence theorem. 

THEOREM 1.6. 
converges weakly almost surely to the element x(w). Then x(w) E Y .  

Let (x,,(w)} be a sequence of random variables in -Ir which 

E. Integration of Banach space-valued random variables 

1. Introduction. Let x(w)  be a real-valued random variable defined on 
(Q,%,p). The expectation or mean of x(w)  is defined as the Lebesgue integral 
of x(w) over Q, if the integral exists; that is, 

We denote by L,(Q) the set of equivalence classes of real-valued random 
variables whose expectations exist. Hence x(w) E L,(Q) if d { x ( w ) }  < to; and 
we remark that the mapping x + S { x }  is a linear functional on the real 
Banach space Ll(Q). The expectations of the functions xk (k = 1,2,. ..) and 
(xIk (k > 0) are called the kth moments and kth absolute moments, respectively, 
of the random variable x(w). For every p E [l,  031, we denote by L,(sZ) the 
set of equivalence classes of real-valued random variables such that 
S{lx(w)Ip} < 03. L,(Q) is the set of all a s .  bounded real-valued random 
variables. Of particular interest is the second moment of x(w)  with respect to 
b{x(w)), which is called the variance ofx(w).  We have 

Var{x(w)> = S{(x(w> - s M w > > ) 2 >  

= S{x2(w)}  - (&{x(w)>)'.  

Random variables with finite variances are called second-order random 
Variables. Since b{ lx (w) [2}  < 03, second-order random variables are elements 

Now, let x(w) be a real-valued random variable defined on (Q,%,p), and 
let So be a a-subalgebra of %. The conditional expectation ofx(w) relative to 
'%, denoted by d{x(w)[2I0}, is defined by the equality 

of L,(Q). 

for every A E %,, where S{xl%,) is %,,-measurable. 
We refer to the books of Doob [20], Loeve [77], and Neveu [92] for detailed 

expositions of the expectation and conditional expectation of real-valued 
random variables and their properties. 
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In this subsection we consider the expectation and conditional expectation 
of Banach space-valued random variables. For real-valued random variables, 
the expectation was defined via the Lebesgue integral; hence in order to define 
in an analogous manner the expectation (and conditional expectation) of a 
Banach space-valued random variable we require generalizations of the 
Lebesgue integral for Banach space-valued measurable functions. The two 
generalizations we will consider are the Pettis and Bochner integrals, defined 
for weakly and strongly measurable functions, respectively. 

2. Expectation of Banach space-valued random variables. Let x(w) be an 
X-valued random variable defined on SZ. 

Definition 1.21. x(w) is said to be Pettis integrable if and only if there is an 
element mA E X corresponding to each A E 41 such that 

X * h A )  = (L)JA x*(x(w)) dP 

for all x* E X*, where the integral is assumed t,o exist in the sense of Lebesgue. 
The Pettis integral x(w) is defined as 

mA = (p)lA x(w) dP. 

It is clear from the above definition that an X-valued random variable which 
is Pettis integrable is a weak random variable, but not necessarily a strong 
random variable. Hence for weak random variable we can introduce the 
following definition. 

Definition 1.22. Let x(w) be a weak random variable. The expectation of 
x(w),  denoted by b,{x(w)}, is defined as the Pettis integral of x(w) over 52; 
that is 

The expectation of weak random variables is frequently referred to as the 
weak expectation or the Mourier expectation, since the above definition of the 
expectation was introduced by Mourier [84]. The Mourier expectation has 
been explicitly determined by Nasr [89] for random variables with values in a 
number of concrete Banach spaces, and by Bharucha-Reid [9] for Orlicz 
space-valued random variables. 

The following properties of the weak expectation are immediate conse- 
quences of Definition 1.22. 

1 .  b,{x(w)} is uniquely defined. 
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2. If €,{x,(w)} and €w{xz(w)} exist, then €,{x,(w) + x2(w)] exists and 

3. If x(w) = xo (a constant) a s . ,  then d,{x(w)} exists and €,{x(w)} = xo. 
4. If €,(x(w)} exists, then €,{crx(w)} exists and €,{ax(w)} = a€,{x(w)). 
5. If €{iix(w)ll} < ~0 (that is, Ilx(w)l[ E L,(sZ)), then €,(x(w)) exists and 

d,{x,(w> + x*(w)) = 8w{x,(w)> + €w{x2(w)>. 

1 IffwCX(W)> I I ff{llx(w)ll}. 

Another property of the Pettis integral, which is applicable in the study of 
random equations, is contained in the following result (cf. Hille and Phillips 
146, P. 781). 

THEOREM 1.7. Let L be a bounded linear operator on X to itself, and let x(w) 
be a weak random variable with values in X. I f€ , {x(w)}  exists and is equal to m, 
then Q,{L[x(w)]} exists and 

(PI{ L[x(w)l dcl = €,{L[x(w)l) = 
$2 

We next consider the definition of the expectation of Banach space-valued 
random variables via the Bochner integral. 

Dejinitiun 1.23. A simple random variable x(w) is said to be Bochner 
integrable if and only if Ilx(w)l\ E L,(B). By definition 

where x(w) = xi on A i  E 21, i = 1,2, . . . . 

We remark that the integral is well defined for all A E 'u, hence for 52 itself. 
This follows from the fact that the above series is absolutely convergent since 

m 

Therefore, 

for simple random variables. Also, since the series is absolutely convergent, 
we have 
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for every x* EX*.  It follows from the above that the Bochner and Pettis 
integrals of simple random variables coincide. 

Definition 1.24. x(w) is said to be Bochner integrable if and only if there 
exists a sequence of simple random variables {xn(w)} converging almost 
surely to x(w) and such that 

By definition 

for every A E ‘9I and A = Q. 

It is clear from the above definition that every Bochner integrable random 
variable is a strong random variable. Furthermore, it is easy to show that 
every Bochner integrable random variable is also Pettis integrable, and that 
the integrals have the same value. 

Definition 1.25. Let x(w) be a strong random variable. The expectation of 
x(w),  denoted by b,{x(w)},  is defined as the Bochner integral of x(w) over SZ; 
that is, 

as{x(w)> = (B)j-R x(w) dp. 

The above expectation is often referred to as the strong expectation; and, in 
view of the remark above, the existence of the strong expectation implies the 
existence of the weak expectation, and b,{x(w)> = b,{x(w)}. 

The class of random variables which have strong expectation can be 
characterized using the following result (cf. Hille and Phillips [46, p. SO]). 

THEOREM 1.8. 
x(w) be a strong random variable and that b{llx(w)ll} < a. 

A necessary and sufficient condition that bp,{x(w)} exists is that 

Let B1 = B,(Q, X) denote the class of all X-valued random variables which 
are Bochner integrable. It is clear that B I  is a complex linear space, and that 
the Bochner integral is a linear operator on B,.  Furthermore, B ,  is  a Banach 
space with norm 

1x31 = ( L ) k  Ilx(w)ll dp = Q{llx(w)ll> 

if we consider the elements to be equivalence classes of random variables, 
where equivalence is in the sense of Definition 1.18. We remark that when 
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X = R, Bl(Q, X) = L,(Q), the class of real-valued random variables for which 

Now, let B, = B,(R, X), I < p < a, denote the class of all X-valued random 
S{x(w)} < a. 

variables x(w) such that 

for some sequence {x,(w)} of simple random variables. The spaces B, are also 
Banach spaces, with norm 

[ X I ,  = ((L)jQ llx(w)ll,,)l’p = ( ~ ~ l l x ~ ~ ~ l l p ~ ~ l ’ p .  

Clearly, any x(w) E B, is a strong random variable and llx(w)i\ E L,(Q). The 
converse is also true. Finally, we define B, = B,(Q,X) to be the class of all 
strong random variables x(w) such that llx(w)ll E L,(Q). 

We now list some properties of the strong expectation. We refer to Hille 
and Phillips [46, Sect. 3.71 and Zaanen [131, Chap. 61 for details. 

1. &,{x(w)} is uniquely defined. 
2. I f  b,{x,(w)} and bS{x2(w))  exist, and a,,  a2 are constants, then 

b,{a,x,(w) + azx2(w)} exists; and 

b s b ,  xdw)  + a2 x2(w)J = a1 b,{x,(w)) + a2 a,{x,(w>>. 

3. I f  &,{x(w)} exists, then llS,{x(w)>ll G &{llx(w)ll). 
4. If {xn(w)} c B, converges almost surely to some limit random variable 

x(w)  and there exists a fixed nonnegative random variable y(w) E .&(a) such 
that llx,(w)ll G y(w)  for all n and w ,  then x(w) E B, and 

lim &,{x,(w)} = &‘s{x(w)}. 
v+m 

An analogue of Theorem 1.7 for Pettis integrals is the following result (cf. 
Hille and Phillips [46, p. 831). 

THEOREM 1.9. 
Q,{L[x(w)]) exist, then L[b,{x(w))l= b,(L[x(w)l). 

Let L be a closed linear operatort on X to itself. If&,{x(w>} and 

3. Higher moments of Banach space-valued random variables. We restrict 
our attention to separable Banach spaces, and define higher moments via the 
Bochner integral. 

Definition 1.26. Let x(w) E B , ,  and let k > 1 be a real number. The kth 
absolute moment of x(w) with respect to b{x(w)}, denoted by ~Y){X(W)}, is 

t Closed linear operators are defined in Sect. 2.2. 
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defined by the integral 

5, Ilx(w> - &+J)}llkdP 

if the integral exists. Hence&('){x(w)} exists if llx(w) - &{x(w)}ll E L,(Q). 

In view of the above, we can define the variance of a Banach space-valued 
random variable as follows: Var{x(w)} = &{i/x(w) - & { X ( ~ ) } I ] ~ } .  Hence, 
second-order Banach space-valued random variables are elements of B2(Q, X). 
For another definition of the variance we refer to Birnbaum [12]. 

4. Conditional expectation of Banach space-valued random variables. AS in 
the definition of the conditional expectation of real-valued random variables, 
let 910 denote a a-subalgebra of CU. 

Definition 1.27. A strong random variable S,{x~CU,}(w) is said to be the 
(strong) conditional expectation of a random variable x(w) E L,(O, X) relative 
to 210 if and only if it satisfies the following conditions:. 

€,{x~2Io}(w) is measurable with respect to !!Io and is an element of 

(B) JA &,{xl2tO}(w)dp = (B) JA x(w)dp  for every A E 910. 

i. 

ii. 
LdQ,X); 

In order to develop martingale theory in Banach spaces, the above definition 
was introduced by Chatterji [15], Driml and Hang [21], Moy [87], and 
Scalora [ 1091 ; various properties of the (strong) conditional expectation were 
studied by these authors. We remark that it is also possible to define the 
(weak) conditional expectation &',{xl CU,}(w) of Banach space-valued random 
variables; and a formal representation of the conditional expectation has been 
obtained by Brooks [13] when x(w) is Pettis integrable. 

We now list some properties of the (strong) conditional expectation: 

1. &,{xlCU0}(w) is unique in the sense of equality a.s. 
2. If x(w) = xo (a constant) on Q, then &s{x1910}(w) = xo a s .  
3. & s { ~ ~ = l  aixi1210}(w) = x:=, a1 €,(x,~CUo}(w) as . ,  where the a, are 

scalars. 
4. [&,{xl910)(w)l~ G &{llxllICUo} a.s. 
5. If L is a bounded linear operator on X to itself, then 

L[~ ,{x l~o>(w) l=  ~ s { L [ x l l ~ o ~ ( w )  
6. If xn(w) + x(w) strongly as.., and there is a nonnegative real-valued 

random variable y(w) E LI(Q) such that llx,(w)ll G y(w) as . ,  then 

lim €s{x,,JZIo} (w) = 8s{x1210} (w) a.s. 
n+w 
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We refer to Kappos [66, Chap. VIII] for another formulation of the con- 
ditional expectation of Banach space-valued random variables; and to 
Umegaki and Bharucha-Reid [ 1201 for a proof of the existence and uniqueness 
of the strong conditional expectation using tensor product methods. 

F. Banach algebra-valued random variables 

1. Introduction. In this section we consider random variables with values 
in a Banach algebra. The study of Banach algebra-valued random variables is 
of great importance in the theory of random equations since many of the 
Banach spices encountered are also algebras; and, as we shall see in Chaps. 
2 and 3, Banach algebras of operators are of fundamental importance in the 
study of random operators and solutions of random equations. 

Definition 1.28. A Banach algebra is a (complex) Banach space X which is 
also an algebra (that is, the operations of addition, scalar multiplication, and 
multiplication are defined for elements of X) in which the multiplicative 
structure is related to the norm by the inequality llxylj G llxll.llyll. We will 
assume that X has an identity (or unit) element e,  such that xe  = ex = x for all 
x E X, and llell = 1. 

It follows from the above multiplicative inequality that the operation of 
multiplication is jointly continuous in any Banach algebra; that is, if x, -+ x 
and y,, -+ y ,  then x, yn -+ xy.  

In Sect. 1.3D we showed that if x(w) and y(w) are random variables with 
values in a separable Banach space X, then crx ( a  a scalar) and x + y are 
Banach space-valued random variables. If X is also a Banach algebra, we 
must show that the product x(w)y(w) of two random variables with values in 
X is an X-valued random variable. Since X is separable, we will assume that 
x(w) and y(w) are strong random variables. Hence x(w) and y(w) can be 
approximated (in norm) by simple random variables x,(w) and y,(w). Hence 
x,(w)y,(w) is well defined. Since, in a Banach algebra, the operation of 
multiplication is continuous, we have x,(w)y,(w) + x(w)y(w); hence 
z(w) = x(w)y(w) is a well-defined X-valued random variable. 

Definition 1.29. A Banach algebra X is said to be commutative in case 
xy = y x  for all x, y E X. 

We will also need the following notion. 

Definition 1.30. An element x E X is said to be a regular dement (or 
invertible) if x has an inverse in X; that is if there exists an element x-' E X 
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such that x- 'x  = xx-I = e. Elements of X which are not regular are called 
singular. 

We remark that the regular elements form an open set in X, and the set of 
singular elements in X is closed and contains at least the null element 8. 

Examples of Banach algebras can be found in any of the standard texts 
devoted to the theory of Banach algebras: for example, Hille and Phillips [46, 
Chaps. IV and V ] ,  Loomis [78, Chaps. IV and V ] ,  Naimark [ 8 8 ] ,  and 
Rickart [105]. We list several examples of Banach algebras which will be 
encountered in this book. 

1. The Banach space X = C [ a , b ]  of all complex-valued continuous 
functions on [a, b]  with the uniform norm is a Banach algebra. 

2. The Banach space L,(S,g,m) of all essentially bounded complex- 
valued measurable functions on a measure space (S,g,m) with the essential 
uniform norm is a Banach algebra. 

Examples 1 and 2 are examples offunction algebras, and multiplication is 
defined in the pointwise fashion, with (xy)(s)  = x(s)y(s) .  

3. The set !i?(X) of all bounded linear operators on a Banach space X to 
itself is a Banach algebra. 

Example 3 is an example of an operator algebra, and multiplication is defined 
by composition, that is, L ,  L2[x]  = L ,  [L2 X I .  

An important class of Banach algebras is the class of so-called *-algebras. 

Definition 1.31. Let X be a Banach algebra. A mapping x -+ x* of X onto 
itself is called an involution provided the following conditions are satisfied : 
(i) (x*)* = x,  (ii) (a1 x ,  + a2x2)* = c1 x: + c2 x:, and (iii) (xy)* = y*x*. A 
Banach algebra with an involution is called a *-algebra. 

The element x* in a *-algebra is called the adjoint of x.  An element x is said 
to be self-adjoint if x = x*; and x is said to be normal if xx* = x*x. We remark 
that in a commutative *-algebra every element is normal; and for normal 
elements J/x2j/ = I / X ~ / ~ ,  and l/xll = /Ix*//. 

Of the examples of Banach algebras listed above, C{a,b] and L,(S,%,m) 
are *-algebras with the involution defined by x* = 2; and f?(H) is a *-algebra, 
where L* is the adjoint of L .  

Definition 1.32. A *-algebra is said to be a B*-algebra if Ilxx*ll = Ilxll*l/x*ll 
for all elements in the algebra. An H *-algebra is a *-algebra 9 which is also a 
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Hilbert space, and which has the property (xy ,  z )  = ( y, x* 2). It is also assumed 
that /lx*ll = llxll, and that x # 8 implies x * x  # 8. 

An important class of B*-algebras is the class of C*-algebras. A C*-algebra 
is a uniformly closed self-adjoint Banach subalgevra of bounded linear 
operators on a Hilbert space H .  For a C*-algebra the involution is defined via 
the inner product: ( L x , ~ )  = (x ,L*y);  and the involution operation L --f L* 
has the following properties: (i) L** =L,  (ii) (a lL ,  + a2L2)* = &,L: + &,L:, 
(iii) ( L ,  L2)* = LTL:, (iv) IIL*Lll= llL//2, and (v) ( I +  L*L)-’ E i ? (H) ,  where Zis 
the identity operator. Gel’fand and Naimark (cf. any standard reference) have 
slfown that every C*-algebra is isometrically isomorphic to an algebra of 
bounded linear operators on a suitable Hilbert space. Furthermore, it is 
known thaL if a C*-algebra is commutative, then it is isometrically isomorphic 
to the algebra of continuous complex-valued functions on a suitable compact 
Hausdorff space. 

In this section we consider B*-algebra-valued and H*-algebra-valued 
random variables. In Chap. 2 we will consider operator-valued random 
variables, and the spectral theory of random operators; and in Sect. 1.6 
we will consider some limit theorems for Banach algebra-valued random 
variables. 

2. Random variables with values in a commutative B*-algebra. Let ~ ( w )  be 
a random variable with values in a separable commutative B*-algebra X. 
Since X is separable, we know that &{x(w)} exists if Ilx(w)ll EL,(Q)  (cf. 
Mourier [84]). Following Theodorescu [ 1 171, we consider the second moment 
6(2){x(w)}  and study its properties. By definition, 6‘2){x(w)} = &{x2(w)} (if it 
exists) is the second moment of x(w). 

THEOREM 1.10. Let X be a separable commutative B*-algebra. ZfS{l/~l/~} < co, 
then 6{x2(w)} exists. 

Definition 1.33. Let x(w) and y(w) be two X-valued random variables. 
x(w) and y(w) are said to be uncorrelated if b{x(w)y(w)} = b{x(w)} b{y(w)}.  

We now list some properties of the second moment Sc2)(x(w)},  several of 
which are analogues of the properties of the weak expectation &‘,{x(w)}. 

1. Let a be a complex number, and suppose that &‘2’{x(w)} exists. Then 

2. Let x(w) = x,, as . ,  and let ( (w)  E L2(Q). Then b(2){((w)x(w)} exists, and 
Sc2){ax(w)} exists, and &(2){ax(w)} = a’ &(2){x(w)}. 

&‘ ‘2’{((w)x(w)} = S(2){((w)} xi. 
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3. Let x(w) andy(w) be uncorrelated. If&'2'{x(w)} and S(2){y(w)}  exist and 
a{x(w)} = b{y(w)} = 0, then S'2){x(w) + y(w)} exists and 

S(2){x(w) + y(w)} = S(2){x(w)} + S'*'{y(w)}. 

4. Since X is separable, llx(w)ll is a nonnegative real-valued random 
variable. Ifllx(w)ll E L2(Q andb(2){x(w)} exists, then ll&(z){x(w)}ll G S{llx(w)l12}. 
This result follows from properties of the Pettis integral. 

For other results on random variables with values in a separable com- 
mutative B*-algebra, we refer to the paper of Ha'inis [42]. 

In closing, we refer to a result of Srinivasan [I151 on Gaussian random 
variables with values in a separable commutative B*-algebra X. Let 
x1(w),x2(w),  . . . ,x,(w) be n independent observations on a Gaussian random 
variable with values in X. Then the function 

@n = (1  In) i ( X i b )  - ~ { x ( w ) > ) *  
i = I  

is a sufficient estimator of the variance of x(w). 

3. Random variables with values in an H*-algebra. Let $ be a separable 
H*-algebra. Since $ is a Hilbert space, a mapping x :  52 -+ $ is an $-valued 
random variable if (x(w),y) is a real-valued random variable for every y E $. 
Let B2(L?, $) denote the class of equivalent $-valued random variables such 
that jn Ilx(w)l12dp < 03. 

Following Ha'inis [41], we now state several results for random variables 
with values in the H*-algebra 5. 

1. 

2. 

3. 

If x(w) is an $-valued random variable, then (x(w))* is also. The proof 
follows from the relation (x*,y) = (x,y*). 

I f x ( w )  and y(w) are $-valued random variables, then x(w) + y(w) is also 
an $-valued random variable. 

r f x ( w )  is an $-valued random variable, and f is an element of $, then 
(x(w) is also an $-valued random variable. Since $ is an H *-algebra, we have 

I f  x(w) and y(w) are $-valued random variables, then their product 
x(w)y(w) is defined, and is also an $-valued random variable. The proof is 
based on the fact that if x(w) is an $-valued random variable, then Ilx(w)ll is  a 
nonnegative real-valued random variable, and that 

(5x(w),y) = (x(w), t*Y)  for every Y E $. 
4. 

4(x(w)Y(w), 4 = 4 M w ) ,  x*(w> 4 
= IMw)  + x*(w)zll + lIv(w) - x*(w)zll 

+ ilIy(w) + ix*(w)zj/ - illy(w) - ix*(w)zll. 
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Finally, we state the following result concerning the expectation of an 
$-valued random variable. 

5 .  If&‘{x(w)} exists, then &‘{x*(w)} exists and &‘{x*(w)} = (d{x(w)})*. For 

(v, &{x*(w)>) = W Y 7  x*(w>)> = &{(x(w>,y*)> 

= (&{X(W)),Y*) = ( Y ,  (&‘{x(w)H*). 

We refer to the paper of Hainis for other results on H*-algebra-valued 
random variables. 

1.4 Banach Space-Valued Random Functions 

A .  Introduction 

Let (X,B) be a measurable space where I is a Banach space and 8 is the 
a-algebra of Borel subsets of X; and let ( T , 2 )  be a measurable space where T 
is a subset of the extended real line R and 2 is the a-algebra of Borel subsets 
of T, that is, 2 = T n 3, where is the o-algebra of Borel subsets of 8. 

Definition 1.34. An X-valued random function on T is a mapping 
x(t,w) : T x Q -+ X such that for every t E T, x is an X-valued random variable. 
For every fixed w E 52, the function x defined on T is called a realization, 
trajectory, or sample function of x(t ,w).  

Definition 1.35. Let x(t, o) and y(t, w )  be two X-valued random functions 
defined on the same probability space and the same interval T. x(t,w) and 
y(t ,  w )  are said to be equivalent if x(t ,  w )  = y(t ,  w )  a.s. for every t E T. 

We now introduce the important notions of separability and measurability 
of X-valued random functions. 

Definition 1.36. An X-valued random function x ( t , o )  i s  said to be 
separable if there exists a countable set S c Tand an event Ao, with p(A0) = 0, 
such that for all events of the form { w : x ( t , o )  E F, t E I n T}, where F is a 
closed set in X and Z is an open interval, the symmetric difference 

iw :x(t, w )  E F, t E I n s} {w:X(t, E F, t E z n T )  c A ~ .  

The set S is called a separunt, or a set of separability, for x(t,w). 

Consider the product measure space (T x Q,2 18 21,A x p) and the 

Definition 1.37. A measurable mapping x(t, o) : (T x 52,2 I8 2l) -+ (X, b) 
measurable space (3,2323). 

is called a measurable I-valued random function. 
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We state the following analogue of Fubini’s theorem for Banach space- 
valued functions (cf. Hille and Phillips [46, p. 841). 

THEOREM 1.1 1. If x(t, w) is Bochner integrable on T x 52, then the functions 
y(w) = ( B )  JT x(t,w)dA and z ( t )  = (B) Jn x(t ,w)dp are defined almost every- 
where in J2 and T, respectively, and 

As a consequence of the above theorem, we have 

Finally, we introduce some concepts of continuity for %valued random 
functions. 

Definition 1.38. An X-valued random function x( t ,w)  is said to be (1) 
weakly continuous in probability at a point to E T if 

limp({w: Ix*(x(to,w) - xrt ,w))( > E}) = 0 
f+ro 

for every E > 0 and every x* E X*, (2)  strongly continuous in probability at a 
point to f T if 

l i m p ( ( w : J / ~ ( f O , w ) - ~ ( t , w ) / /  > €1) = O  

for every E > 0. x( t ,w)  is said to be weakly (resp. strongly) continuous in 
probability on T if it is weakly (resp. strongly) continuous in probability at 
every point of T. (3) An X-valued random function x(t,w) such that 
J]x(t,w)/l E L,(52) for every t E T is said to be continuous in mean of order p at 
to E T if 

f + f O  

lim [x(to, w) - x(t ,  w)], = 0 ;  
f-110 

and is continuous in mean of order p on T if the above holds at every to E T. 

Let Qr0 denote the complement of the set 

{w:x(to,w) = limx(t,w)), 
f + f o  

where the limit is taken in the weak (resp. strong) sense. 

Definition 1.39. A separable X-valued random function x(t ,  w )  is said to be 
weakly (resp. strongly) continuous a.s. at a point to E T if p(Qf0) = 0. x(t ,w) is 
said to be weakly (resp. strongly) continuous a.s. on T if it is weakly (resp. 
strongly) continuous a s .  at every point of T. 
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In the remaining subsections we define and discuss briefly some of the basic 
classes of random functions with values in a Banach space which are en- 
countered in the theory of random equations; namely, stationary random 
functions, Gaussian random functions, Markov processes, Wiener pro- 
cesses, and martingales. Some authors have defined Banach space-valued 
random functions in a weak sense; that is, a Banach space-valued random 
function x(t ,w)  is said to be of a given type if the scalar-valued process 
x*(x(t,w)) is of the same type for all x* E X*. In several cases, however, it is 
possible to give direct definitions of Banach space-valued random functions 
that belong to the basic classes of random functions. 

B. Stationary random functions 

Let x ( t , ~ )  be a real- (or complex-) valued random function on a parameter 
set T c  R with finite second moments, that is, &{lx(t ,w)(2}  < m for all t E T. 
x( t ,w)  is said to be stationary in the wide sense, or weakly stationary, if (i) its 
expectation &{x(t ,w)}  is a constant, not depending on - t (which we can take to 
be zero); and (ii) its covariance function &{x(s,w)x(t ,w)} = R(s,t) depends 
only on the difference s - t. Let &(Q) denote the Hilbert space of second- 
order real (or complex) random variables with inner product (x ,y )  = 8{xf}. 
Then we can also define a (wide-sense) stationary random function as a 
mapping x ( t )  : T 3 L,(Q) such that (i) above holds, and (ii) 

R(s, t )  = R(s - t )  = (x(s, w), ~ ( t ,  a)). 

Condition (ii) is equivalent to the following: There exists in the closed linear 
subspace H spanned by ~ ( t ) ,  t E T, in L,(Q), a group of unitary operators 
{ U ( t ) ,  t E T }  such that U ( t )  [x(s, w)] = x(s + t ,  w).  Hence, any wide-sense 
stationary random function can be represented as an H-valued function given 
by the relation x(t ,w) = U(t)[x(O,w)] .  For a detailed discussion of stationary 
random functions and their properties we refer to the books of CramCr and 
Leadbetter [16], Hida [45], Rozanov [106], and Yaglom [129]. 

Generalizations of the theory of real-valued stationary random functions 
have been considered by a number of probabilists. We refer, in particular, to 
the papers of Kallianpur and Mandrekar [57], Payen [94], and Vo-Khac [I281 
on Hilbert space-valued stationary random functions, Loynes [go] on 
stationary random functions with values in the class of so-called LVH-spaces; 
Vo-Khac [ 1271 on Banach space-valued stationary random functions; 
Hai’nis [42] and Theodorescu [117] on Banach algebra-valued stationary 
random functions; and Gel’fand and Vilenkin [33, Chap. 1111, Hida [45], 
It6 [49], and Urbanik [I211 on generalized stationary random functions. We 
will restrict our attention to Hilbert space-, Banach space-, and Banach 
algebra-valued stationary random functions. 
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Let H be a separable Hilbert space with inner product (.;), and with 
reference to Sect. 1.3E, let B,(SZ, H) denote the Banach space of H-valued 
random variables such that (B) Jn IIx(w)I12dp < m. It is easy to show that 
Bz(SZ, H)is a Hi1 bert space with inner product 

and norm [xIz = ( x , ~ ) ” ~ .  We remark that B,(SZ,H) is the tensor product 
Hilbert space LZ(Q) 0 H (cf. Umegaki and Bharucha-Reid [120]); hence a 
second-order H-valued random function x(t ,  w) can be defined as a mapping 
x ( t ) :  T + L 2 ( Q )  H. In this case the covariance function is defined by 
R(s , t )  = b{x(s ,w)x( t ,w)}  = (x(s ,w) ,x( t ,w));  and x( t ,w)  is said to be weakly 
stationary if R(s, t )  = R(s - t ) .  Since B,(SZ, H )  is a Hilbert space, the theory 
of stationary H-valued random functions can be developed in a manner 
analogous to the classical case. 

Vo-Khac [127] has introduced the notion of a stationary random function 
of orderp with values in a complex Banach space X. Let T be a locally compact 
abelian topological group, and let x( t ,w):  T x SZ + X be such that 
llx(t,w)ll EL,(D) for every t E T. We denote by 7hx the function t --f x(t  + h), 
and let S = { 7 h :  11 E TI. Let I/(Sx) denote the linear hull of Sx. 

Definition 1.40. A Banach space-valued random function x(t ,  w) is said to 
be a stationary random function of order p if (i) x(t, w) is continuous in mean of 
order p ,  (ii) for every y E V(Sx) ,  the set y[T] (the image of T under y )  is (a) 
relatively compact in the weak topology of B,(SZ,X) and (b) a subset of a 
sphere with center B (that is, b{lly(t,w)llp} is independent of 2). 

-We remark that the collection of stationary random functions defined above- 
is a subset of C(T,  B,(SZ, X)). 

It is of interest to consider the case where X = H (a Hilbert space) with 
inner product (. , .), and p = 2 (cf. [ 1281). Let x(t, w) and y(t ,  w) be two second- 
order H-valued random functions defined on T ;  and let A and B be elements 
of f ! (H) .  In this case a covariance tensor can be defined as 

R X Y ( S ,  t )  (4 B )  = (R&, t )  A ,  B )  
= b{(Ax(s,  01, BAf, w))} ,  

where ( u , v )  = v(u) denotes the duality between 2 ( H )  and 2 * ( H ) .  Using 
Hilbert space methods, Vo-Khac obtained the spectral representation of a 
second-order H-valued stationary random function (cf. also Paycn [94]). 

Let X be a separable commutative B*-algebra. As before, a second-order 
3-valued random function can be defined as a mapping x ( t ) :  T -+ Bz(Q, 3). A 
covariance function can be defined as follows : 

R(s, t )  = &{x(s, w )  x*(t, w)}, S, t E T, 
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where * denotes the operation of involution. Stationarity is defined in the 
usual manner. We note that if x(r, w )  is a second-order random function with 
values in a separable commutative B*-algebra with unit element, the the 
covariance R(s, t )  exists. For 

&{llx(s, w )  x*@, w)ll> = allx(s, w)ll lIx*(t, w)li> 

= d{llx(s, w)li IMt, w>ll> 

< (S{llX(S, w)l12> &{llx(t, w>l12)”2 < 03. 

C. Gaussian random functions 

A real-valued random function x( t ,w)  is said to be a Gaussian or normal 
random function if its finite-dimensional distributions are Gaussian; that is, 
if the characteristic functions of the joint distributions of the values 
x( t l ,w) , .  . . ,x(tn,w) of the random function are of the form 

where M f t )  = &{x(t,w)) and R(s, t )  = &{(x(s,w) - M(s))(x( t ,w)  - M(t ) ) } .  
For Banach space-valued random functions the following definition is often 
employed. 

Definition 1.41. A random function with values in a Banach space X is 
said to be Gaussian, or normal, if for every x* E X* all n-dimensional random 
vectors (x*(x(tl,  w)),  . . . ,x*(x(t,,w))) have a Gaussian distribution. 

In the next section, Sect. 1.5, Banach space-valued Gaussian random 
functions will be considered from a measure-theoretic viewpoint; that is 
Gaussian random functions will be defined via Gaussian measures on Banach 
spaces. 

D. Markov processes 

Let (52, %,p) be a probability measure space, let T c R, and let (X, b) be a 
measurable space where 3E is a separable Banach space and b is the o-algebra 
of Bore1 sets of X. Let x(t,w) be an X-valued random function. Further, let 
2t(t,,t2) denote the u-algebra of all subsets {w:x(t,w) E B } ,  t E [ t l , r 2 ]  n T, 
B E  23. A Banach space-valued Markov process can be defined using con- 
ditional probabilities as in the case of real-valued Markov processes.? 

t For detailed treatments of real-valued Markov processes we refer to the books of Doob 
[20], Dynkin [25], and Loeve [77]. 
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Definition 1.42. A random function x(t, w ) :  T x D --f X is said to be a 
Markov process or random function of Markov type if the conditional 
probabilities B { A  191c-m,s)} of events A E with respect to the a-algebra 
%(-m,s) satisfy for s < t the relation 

p { A  l%(-m.s)} = g { A  Ix(s, w ) }  

almost surely. More precisely, for any event A E 21(--p,t,) and B E 91(tI,m) and 
any t E [ t , ,  r*l, 

9~ n B 1x0, w)> = pv ix(t, w)> P{B IXO, w) i  

almost surely. 

A function P ( s , f , t , B ) ,  where s , t  E T (s < t ) ,  5 E X, B E  9, is called a 
transition function of a Banach space-valued Markov process if it is (1) a 
probability measure on 9 for fixed s,t E T and E E X, and (2) a measurable 
function o f f  E X for fixed s, t E T, B E b, such that 

P { s ,  4% w),  t ,  B }  = P'X(t, o) E B Ix(s, w))  

almost surely, and P(s, t ,s ,  B )  = 1 for ( E B, and 0 for [ $ B. Since (X,B) is 
separable, P(s, 5, t ,  B )  will exist if the probability measures 

vt(B) = p({w : X(t, w )  E B ) ) ,  

B E  b, are perfect.? For any s, t E T, B E 23 and almost all 5 E X (with respect 
to the corresponding measures Y,), the transition probabilities satisfy the 
Chapman-Kolmogorov equation 

P(s,  5, t ,  m = J; P(s, 6 7 7 ,  WY.1 A, 2, B ) ,  7 E [s, t I. 

Banach space-valued Markov processes have not been studied in any 
systematic manner; however, Hilbert space-valued Markov processes have 
been studied by a number of mathematicians in connection with solutions of 
random differential and integral equations in Hilbert spaces (cf. Baklan [4], 
Daletskii [ 171, Kandelaki [60], and papers referred to in Chap. 7). 

E. Wiener processes 

interval T = [a, b],-m G a < b G 03, such that 

&{x(t, w )  - x(s, w)}  = 0, 

A real-valued Gaussian process x(t, o) with independent increments on an 

Var{x(t, w )  - x(s, w ) }  = t - s, 

for any s, t E T, s G I ,  is called a real-valued Wiener process. As is well known, 
the Wiener process is the mathematical model for Brownian motion. The 

t See Sect. 1.6 for the definition of a perfect measure. 
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Wiener process x(t, w )  on T = [0, I] can be defined as a Gaussian process with 
expectation zero and correlation function R(s , t )  = min(s,t). In Sect. 1.5C we 
consider Wiener measure, the probability measure induced by a Wiener 
process. 

As in the case of Markov processes, Wiener processes in Banach spaces 
have not been studied in any systematic manner; however, Wiener processes 
in Hilbert spaces have been introduced in connection with the study of 
stochastic integrals (cf. Falb [26], Kandelaki [60], Kannan and Bharucha-Reid 
[64]) and random integral equations in Hilbert spaces (cf. Chap. 7). 

Definition 1.43. Let H be a Hilbert space with inner product (.;). An 
H-valued random function {w(t ,w) ,  t E [a,b]} is said to be a Wiener process in 
H if (i) b{w(t ,w)}  = 6' for all t E [a,b], (ii) the increments of w(t ,w)  over dis- 
joint intervals are independent, (iii) w(t,  w )  is almost surely continuous as a 
function of t ,  and (iv) 

b(]lw(t,  w )  - w(s, w)11*} = €{(w(t ,  w )  - w(s, w), w(t,  w )  - w(s, w))}  = It - s 1. 

F. Martingales 

Let (SZ,N,p) be a probability measure space, and let T be an interval of the 
extended line r of integers (discrete parameter case) or an interval of the 
extended line R (continuous parameter case). Let {a,, t E T }  be an increasing 
family of sub-a-algebras of 2l. A real-valued random function x(t ,  w),  which 
is adapted to the family {lux) (that is, x( t ,w)  is %,-measurable), is said to be a 
martingale if (i) b { ( x ( t , w ) l )  < to for every t E T and (ii) for every pair 
s, t E T (s i r), x(s, w )  = &{x(t, w )  [ as} almost surely. For detailed expositions 
of the theory of real-valued martingales we refer to the books of Doob [20], 
Meyer [83], and Neveu [92]. 

Utilizing the definition of the conditional expectation of a Banach space- 
valued random variable (Definition 1.27) it is possible to introduce the notion 
of a Banach space-valued martingale. Let x(t,w) be a random function with 
values in a separable Banach space X, and let the family of sub-a-algebras 
{at, t E T }  be as before. 

Definition 1.44. An X-valued random function x(t ,  w )  which is adapted to 
the family (au,} is said to be a Banach space-valued martingale if (i) 
g(llx(t,w)ll} < to for all r E T, and (ii) for every pair s,t  E T (s < t ) ,  
+,w) = &{x(t,w)l%,} almost surely. 

The theory of Banach space-valued martingales was initiated by Chatterji 
[14], Driml and Hang [21], Moy [87], and Scalora [109]. They extended the 
basic results for real-valued martingales to Banach space-valued martingales; 
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in particular, they were concerned with the formulation and study of 
martingale convergence theorems in Banach spaces. For some recent results 
we refer to Ip [47, 481, Kannan [62], Kunita [74], and Uhl [118]. Some 
convergence theorems for Banach space-valued martingales will be given in 
Sect. 1.6. 

1.5 Probability Measures on Banach Spaces 

A .  Introduction 

Let x(w) be a real-valued random variable defined on a probability measure 
space (0, 2l,p); and let B E 23, where 23 is the Bore1 algebra of R. Put 

v,(B) = p 0 x-'(B) = p({w : x(w) E B } ) .  

Then, v, defines the probability distribution, or simply the distribution, of the 
random variable x. It is easy to see that v, is a probability measure on 23 ; hence 
Y, is called the probability measure induced on 23 by p and x, and ( R ,  23, v,) is 
called the induced probability measure space. 

The distribution function F,(O of x is defined as follows : 

FX(5) = vx((-m , 5)) = p ( b J  : x(w> < 5>>, 5 E R.  

It  can be shown that Fx(5) is nondecreasing and continuous from the left on 
R ,  with F,(-m) = 0 and F,(+co) = 1. Conversely, every real function with the 
above properties is the distribution function of a real-valued random variable 
on some probability measure space. 

An important tool in the study of real-valued random variables and their 
probability measures (or distribution functions) is the characteristic function 
(or Fourier-Stieltjes transform) of v, (or F,). For any real-valued random 
variable x with probability measure v, (or distribution function F,) the 
characteristic function ?,(A), for all h E R,  is defined as follows : 

?,(A) = &{e*Ax(w) } = e'Ax(u)dp(w) 

Necessary and sufficient conditions that a complex-valued function ?(A) on R 
be the characteristic function of a probability measure v are given by the 
following result due to Bochner. 

THEOREM 1.12. 
definite and continuous at 0 with ~ ( 0 )  = 1. 

~ ( h )  is a characteristic function if and onZy if it is positiue 

All of the above notions can be extended to the case where the range of the 
random variable is R ,  R,, or R,. 
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We now consider the probability measure corresponding to, or associated 
with, a stochastic process. Let 3E = R ;  then, from Definition 1.34, a real- 
valued random function is a mapping x( t ,w) :  T x SZ + R such that for every 
t E T, x is a real-valued random variable. Let RT denote the space of all 
functions x ( t )  defined on T with values in R. Now, a mapping of s2 into RT, 
defining a stochastic process y ( t )  with values in R, takes %-measurable 
subsets of 52 into some u-algebra of subsets of RT. Since for every t E T the set 
{w:y( t ,w)  E B,B E b} E ?I, sets of the form r t ( B )  = ( x ( . ) : x ( t )  E B ) ,  t E T 
(that is, the one-dimensional cylinder sets), clearly belong to this o-algebra. 
Sets of the form n:=, Ttt  (B,) are called cylinder sets ouer { t , ,  t2 , .  . . , tn}. Let 
bT denote the minimal o-algebra of RT containing all cylinder sets. Under 
the mapping y ( . ,w) :  SZ + RT, the inverse image of a set in bT is clearly 
%-measurable; and this mapping defines a probability measure, say v, on bT. 
The measure v is called the probability measure corresponding to, or associated 
with, the stochastic process y(t,w). Frequently, the probability measure v is 
referred to as the stochastic process, since the probability measure space 
(RT,?BT,v) can be associated with this process; and the natural mapping 
y(t,x( .)) = x ( t )  gives the stochastic process corresponding to the probability 
measure v. 

In order to specify a stochastic process in the above measure-theoretic 
sense it is sufficient to know the values of the induced measure on the cylinder 
sets; that is, it is sufficient to know thejinite-dimensional distribution functions 

~ t ~ . t ~ , . . . . t . ( ~ 1 ,  ~ 2 7  * . * s Bn) = ( 1=1 h rt,(~L))* 

Now, the celebrated Kolmogorov consistency or extension theorem (cf., for 
example, Billingsley [lo, pp. 228-2301) asserts that to every system of finite- 
dimensional distribution function which satisfies certain consistency con- 
ditions there corresponds a stochastic process, that is a probability measure 
on (RT,BT).  

In this section we consider probability measures on Banach spaces. In the 
development of probability theory in Banach spaces it is clear that the study 
of probability measures on Banach spaces plays a fundamental role, since the 
proper measure-theoretic framework is required in order to discuss the 
distributions of Banach space-valued random variables, and to define 
Banach space-valued random functions. When the range of a random 
variable is a Banach space, we are obliged to work with either its probability 
distribution (or measure) or its Fourier-Stieltjes transform (or characteristic 
functional), since we can no longer define a distribution function as in the 
case of scalar-valued random variables. 

The remainder of this section is divided into four subsections. Section 1.5B 
is devoted to some basic definitions and concepts; and in Sect. 1.5C we con- 
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sider the construction of probability measures on some concrete Banach 
spaces. In Sect. 1.5D we consider the important case of Gaussian measures on 
Banach spaces: and in Sect. 1.5E we consider briefly the absolute continuity 
of probability measures on Banach spaces. 

The study of probability measures on Banach spaces belongs to the theory 
of probability measures on linear topological spaces (cf. Badrikian [3], 
Gel'fand and Vilenkin [33, Chap. IV], and Mourier [86]); however, in this 
book we do not need to consider spaces more general than Banach spaces. 

B. Basic definitions and concepts 

Let X be a separable Banach space, and let B be the Bore1 algebra of X .  
Since X is separable, B is generated by spheres. When we speak of a prob- 
ability measure on the Banach space X we mean, of course, a measure on the 
measurable space (X,B). A detailed exposition of the topics considered in this 
subsection can be found in Billingsley [lo] or Parthasarathy [93]. 

1. Regular and tight measures 

Definition 1.45. A probability measure v on a measurable space ('2),B), 
where '2) is a metric space, is said to be regular if for every B E B and E > 0 
there exist a closed set F and an open set G such that F E B c G and 
v(G - F )  < E .  

A fundamental result is the following: Every probability measure on (X, B) is 
regular. 

A smaller class of probability measures is the class of tight measures. The 
concept of tightness is important in the study of weak convergence of prob- 
ability measures and its applications (cf., de Acosta [19], Billingsley [lo], 
Parthasarathy [93]). 

Definition 1.46. A probability measure v on a measurable space (g,B), 
where '2) is a metric space, is said to be tight if for every E > 0 there exists a 
compact set K, G '2) such that v ( 9  - K,) < E .  

In view of the above definition, tight measures have the property of being 
determined by their values for compact sets. For separable Banach spaces we 
have the following result: Every probability measure on (X, B) is tight. 

Another concept of interest is that of a perfect measure. 

Definition 1.47. A measure v on (g,B), where 9 is a metric space, is said 
to be perfect if for any %-measurable real-valued function f and any set E on 
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the real line such thatf-’(E) E 23, there are Bore1 sets F, and F2 on the real line 
such that (i) Fl E E 5 F2 and (ii) v(f-’(F2 - F,)) = 0. If a probability measure 
v is perfect, then (2J,!B, v) is called a perfect measure space. 

We remark that (1) every probability measure space (X,%,v),  where X is a 
separable Banach space, is perfect; and (2) any mapping i,h = $(x) of X into 
an arbitrary space ‘2) induces on 9 a perfect measure 5 ;  that is P is the 
probability measure induced on the o-algebra of all sets E whose inverse 
images (4 E E }  E 23. 

2. The space of probability measures on a separable Banach space. Let 
M(X) denote the space of probability measures on (X,23); and let {v,} be a 
sequence in M(X).  Three notions of convergence can be defined for sequences 
in M(X), namely, uniform, strong, and weak. We will restrict our attention to 
weak convergence. 

Definition 1.48. A sequence {v,)  of probability measures is said to converge 
weakly to a probability measure v if 

for every bounded and continuous function f on X (that is, for every f E C(X)). 

We now introduce a metric in M(X). Let v I , v 2  E M ( X ) ;  and let F be an 

E = { x :  inf 11x - y/l < E } .  

Define e l  as the greatest lower bound of the E’S satisfying v2(F) < v , ( E )  + c, 

and e2 as the greatest lower bound of the e’s satisfying vl(F)  < v2(E)  + E. The 
Prohorov metric is defined by 

arbitrary closed set in X. Consider the open set 

Y E F  

P ( v , ,  v2) = max(El, c2). 

Prohorov [97] (cf. also, Billingsley [lo] and Parthasarathy 1931) has shown 
that ( M ( X ) , P )  is a complete, separable metric space; and that convergence in 
this metric space is equivalent to weak convergence. 

A necessary and sufficient condition for weak convergence is given by the 
following result. 

THEOREM 1.13. 
weakly to v i f  and only i f  

Let v, be a sequence of measures in M (X). Then v, converges 

limsup f d v ,  - f d v  = O  
n+m / s E  1.c s i 
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for every family E c C ( 3 )  which is equicontinuous for all x E X and uniformly 
bounded. 

3. Characteristic functionals. The concept of the characteristic function of 
a real-valued random variable was extended to Banach space-valued random 
variables by Kolmogorov [67]. Let X ( W )  be a random variable with values in 
an arbitrary Banach space X, and let x* be any real, bounded linear functional 
on X. 

Definition 1.49. The characteristic functional of X ( W )  (or v = v,  E M ( 3 ) )  is 
the function 

y(x*)  = &{exp[ix*(x(w)>l} = J’ exp[ix*(x)l dv(x). 
x 

defined for all real x* E X*.  

Some of the basic properties of characteristic functionals are given below. 

1. The characteristic functional determines uniquely a probability 
measure v on the minimal a-algebra 23, relative to which all linear functionals 
are measurable. When X is separable, 23, and 23 (the a-algebra of all Bore1 
sets of X) coincide. 

2.  y(x*) is a uniformly continuous function of x* in the strong topology 
of X*, and is a continuous function of x* in the weak topology of X*. 

3. Characteristic functionals are positive-definite; that is, for every 
positive integer n,  every n elements x : , x r , .  . . ,x,* E X*, and every n complex 
numbers A, ,h2,...,A, the quantity x j , k  y(x? - X i ) h j X k  is a nonnegative real 
number. 

4. y(8*) = 1, where 8* is the null element of X*. 
5. If yxl (x*)  and yx,(x*) are the characteristic functionals of two inde- 

pendent I-valued random variables x l ( o )  and x , ( ~ ) ,  respectively (where 
X is separable), then the characteristic functional of xl(w) + X, (W)  is 
PX] +&*> = yx,(x*)?x,(x*). 

6 .  If 8 { x }  and 8‘{11~11~} exist, then y(x*) admits the representation 

y(x*) = 1 + ix*(d{x}) - +S{ Ix*(x)12} + Ilx*l12h(x*), 

where h(x*) -+ 0 if IIx*ll +. 0. 
7. Let {vn} be a sequence of probability measures in M ( X )  with associated 

characteristic functionals y,,(x*). If {v,,} converges weakly to a probability 
measure v with characteristic functional y(x*),  then y,,(x*) -+ v(x*) for all 
x* E X*. 

For real-valued random variables, Bochner’s theorem (Theorem 1.12) 
asserts that the characteristic function is a positive-definite function, and 
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conversely, any positive-definite function y such that y(0) = 1 and is con- 
tinuous at 0 is the characteristic function of a real-valued random variable (or 
a probability measure v E M ( R ) ) .  If x(w) is a random variable with values in a 
Banach space X, properties (3) and (4) show that the characteristic functional 
of x is a positive-definite function with y(8*) = 1. However, for infinite- 
dimensional Banach spaces it is not true that any positive-definite function 
with y(8*) = 1 is the characteristic functional of an I-valued random variable 
(or a probability measure v E M(X)) .  

In the case where X is separable and reflexive, Mourier [84] has given a 
necessary and sufficient condition (referred to as “condition C”) for a positive- 
definite function y(x*) to be the characteristic functional of an X-valued 
random variable. “Condition C” is complicated and difficult to apply; 
however, Mourier has given the following sufficient condition which can be 
obtained from “condition C.” 

THEOREM 1.14. If  3E is a separable and reflexive Banach space, then y(x*) is a 
characteristic functional provided there exist three positive numbers k, M ,  and 
N,  and a sequence of X-valued random variables x,(w) with characteristic 
functionals yn(x*) such that (i) €(i l~,(w)l~~} G M and (ii) limn+m yn(x*) = y(x*) 
uniformly in x* for  all x* such that I/x*IJ G N .  I f x (w)  is the X-valued random 
variable whose characteristic functional is y(x*), then E{jjx(w)llk} G 3M. 

Getoor [34] has obtained the following result in the case where X is a 
reflexive Banach space, but not necessarily separable (cf. also, Badrikian [2]). 

THEOREM 1.15. Let X be a reflexive Banach space, and let y(x*) be a positive- 
dejinite function of X*. A necessary and suficient condition that y(x*)  be the 
characteristic functional of an X-valued random variable is that: (i) rp(8) = 1 
and y(x*) is continuous on allfinite-dimensional subspaces of X*. (ii) For every 
separable subspace X*, of X* and for  all E ,  h > 0 there exists a 6 = 6(Xz, E, A) such 
that for any finite collection {xr , . . . ,x:}  c X*, with l lx~ll < 6,  

JIc . * . j:c dFn(x:, tl;. . * 7 x:, 5.) 2 1 - A 

where F,(x?, El ; . . . , x:, t,,) = p({w: xr(x(0)) G ti, i = 1,. . . ,n>) .  

For other results on characteristic functionals and their properties we refer 
to Ahmad 111, Dudley [22], Grenander [38], LeCam [75], Mourier [84, 861, 
and Prohorov [97, 981. In the next section we will consider the characteristic 
functionals of probability measures on some concrete Banach spaces. 
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4. L-measures, Gaussian, and infinitely divisible measures. We now define 
three classes of probability measures on Banach spaces which are of theoreti- 
cal importance and wide applicability. 

Definition 1.50. A probability measure v on a Banach space X is said to be 
an L-measure if every bounded linear functional x* is v-measurable. 

Definition 1.51. A probability measure v, E M(X), induced by an X-valued 
random variable x, is said to be Gaussian if for every linear functional x* on 
X, x*(x) has a Gaussian distribution and there exists an element myx E X such 
that x*(rn,J = 8{x*(x)}. 

Definition 1.52. A probability measure v E M(X) is said to be infinitely 
divisibk if for every positive integer n 

v = v, * v, * . . .  * v,, 
u 

n times 

where v, is a probability measure on X and * denotes convolution 

C. Probability measures on some concrete Banach spaces 

1. Introduction. As in the classical case (cf. Sect. 1.5A), if x(w) is an 
X-valued random variable defined on (Q,2t,p), then x and p induce a prob- 
ability measure v, = p o x-I on (SE, 23). In the development of the theory of 
probability measures on Banach spaces, and in the study of solutions of 
random equations in Banach spaces, the construction of induced probability 
measures on concrete Banach spaces and the study of their properties is of 
fundamental importance. In this section we consider three main topics: 
probability measures on Banach spaces with Schauder bases, Wiener 
measure, and probability measures on Hilbert spaces. 

2. Probability measures on Banach spaces with Schauder bases. Let X 
be a real Banach space. X is said to have a Schauder basis if there exists a 
sequence? {en} c X such that for each eIement x E X there corresponds a 
unique sequence {v,} of real numbers with the property that the sequence {x,}, 
where x, = z:=, v ie i ,  converges strongly to x; that is, limn+m IIx - x,IIx = 0. 
Spaces with Schauder bases constitute an important class of Banach spaces, 
one reason being that every known example of a separable Banach space has 
a Schauder basis. Hence, in view of our earlier remarks concerning the role 
of separable Banach spaces in probability theory, spaces with Schauder bases 

t We will assume Ile.(lx = 1. 
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are important in the development of probability theory in Banach spaces. For 
detailed expositions of Banach spaces with Schauder bases we refer to the 
books of Day [18], Marti [81], and Singer [112]. 

In this subsection we first give KampC de FCriet’s method of constructing 
probability measures on Banach spaces with Schauder bases [58], and then 
give a theorem of Bochner type due to de Acosta [19] for characteristic 
functionals of probability measures on Banach spaces with Schauder bases. 

Let R, denote the space of all sequences of real numbers. If X has a 
Schauder basis, then, by definition, X is isomorphic to a subspace 
f c R, : x = AX, X = A-’ x, x E X, X E f .  Define a sequence {&> of functions 
as follows: n 

?k(7i3. . . V n )  = II~nl Ix = II 2 7, elllx . 
I = I  

The following properties of #,, are immediate : 

We define a function Fn,k as follows: 

Vn.k(77n+l  7 * . 3 7)n+k)  = 1/Xn+k - xnll 

= #n+k(O,  * . . 3 O, q n + l  Y * . * 9 y n + k ) *  

NOW, the sequence {x,) is strongly convergent if and only if 

inf sup / I x n + k  - x,/I = 0; 
n 0 1  k 3 l  

hence the space 2 c R, which is isomorphic to X can be defined as follows: 

3 = { (7.) = R ,  : inf sup v,,, k(Tn+I  . . . , %+k)  = 01. 
n > l  k21 

becomes a Banach space under the norm 
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where X = (7,); and we have 

Now, since f is isomorphic to X it possesses a basis {E,}, where E ,  = A-le, ,  
with lI~,lIg = Ile& = 1 ; and E ,  = {S,,}, where S i j  is the Kronecker delta. 

Let X* and X* be the duals of X and f, respectively. X* and f* are iso- 
morphic under the isomorphism x*(AX) = Z*(x), Z*(A- 'x )  = ,x*(x). Put 
e,*(x) = ~ , ( A - l x ) .  Hence it follows that the coordinates 7, are linear func- 
tionals on 2. We remark that the sequences {en} and {e:} are biorthogonal; 
that is, eT(ej) = S i j .  

Because 3 and f are isomorphic, the construction of a probability measure 
Y on X reduces to the construction of a probability measure i; on f. The 
construction of C can be carried out as follows. Let 

1 1 ~ 1 1 ~ / 1 1 ~ - 1 1 1  G IIXIIX G l l~ l lg.  

21 = (71) E R, 

2 2  = (71,772) E R,, 

2 n = ( 7 1 , . . . , 7 n ) E R n ;  
and, for every n, let C, be a probability measure on (R,,23,), where 23, is the 
o-algebra of all Bore1 sets of R,. Let the sequence { f i n }  satisfy the consistency 
conditions 

fin(&) = 1, cn+1(rn+l(Bn)) = vn(Bn), 

where r,,+l(B,) is a cylinder set in R,+I with base B, (E 23,) in R,; that is, 

r n + l ( B n )  = {2n+l :- fn  E Bn, --CO < 7n+1 < m}. 

Let 23, be the a-algebra of subsets of R, generated by the cylinder sets 
~ , ( ~ , ) = { ~ € R , : ~ , € ~ , ,  - ~ < 7 , + k < c O ,  k = 1 , 2 ,  ...}. 

Now, by Kolmogorov's extension theorem, there exists a unique probability 
measure C on R, such that 

We remark that the set f is &measurable. This follows from the continuity 
of the functions Y , , ~  on Rn+k, and the fact that f is defined by countable 
operations on the y,,k. 

Finally, let % be the restriction of 8, to g. For B E B, let H = A [ B ] ,  
B = A-'[H]; and define fi so that v ( H )  = P(B). Hence, through the isomor- 
phism between f and X, we obtain a measure space ( 3 , $ j , v )  = A($$,;) ,  
where $j is the u-algebra of subsets of 3 defined by H = A [B] .  

It is clear that 0 G v ( X )  = @) < 1. We now give conditions in order that 
v ( X )  = 1 ; that is, that (X,$ j ,v)  be a probability measure space. For a given 
X > 0, consider the cylinder set 

P(R,) = 1 ,  C(rm(B,,)) = fin(&). 

r n , k ( X ) z  { n : X n + k E F n , k ( h ) ,  - - a , < 7 n + k + j <  j =  1 , 2 , - - * }  
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with base 

Fn,k(h) = { g n + k : v n , j ( T n + l , .  . . 9 ?ln+J) < '1. 
I= 1 

We have 
f = n u n r n , k ( h )  and = inf sup inf v ( r , , k ( h ) ) .  

A i O n s l  k Z I  ,013 n 3 l  k 2 l  

Since f i ( r , # k ( A ) )  = i ; n + k ( F n , k ( A ) ) ,  we obtain the following result. 

THEOREM 1.16. The measure space (X,B,v) induced by the isomorphism A of 
(x$, F) is a probability measure space if and only if the sequence { f i n }  satisfies, 
in addition to the consistency conditions C(Rm) = 1 and Fn+l(rn+i(Bn)) = Cn(Bn), 
the condition 

inf sup inf C n + k ( F n , k ( h ) )  = 1. 

It is of interest to note that KampC de FCriet has shown that v is an L-measure 
(Definition 1.50) if and only if the ~ ~ ( 2 )  are &measurable. 

KampC de FCriet used the method outlined above to construct probability 
measures on separable Hilbert spaces, I ,  and L, (1 < p  < m), C[O, 13, and 
Co[O, I], where Co[O, 11 is the space of real functions in C[O, 1 1  which assume 
the value 0 at 0 and 1. Kannan and Bharucha-Reid [65] extended Kampt de 
FCriet's method to complex Banach spaces with Schauder bases, and utilized 
the results to construct probability measures on H, spaces (1 < p  < a), that 
is, the Hardy spaces of analytic functions). 

Since the method of KampC de FCriet gives us an effective method of 
constructing probability measures on separable Banach spaces, we remark 
that given a probability measure on a separable Banach space the Banach- 
Mazur theorem (Theorem 1.1) enables us to obtain a probability measure on 
a closed linear subspace of C[O, 11. To be more precise, consider the prob- 
ability measure space (X, 8, v), where X is a separable Banach space. Then, 
according to the Banach-Mazur theorem, X is isometrically isomorphic, or 
congruent, to a closed subspace, say c of C[O, 11. Let y denote the congruence 
from X onto c. It is clear that B = y- ' (c ) ,  where is the o-algebra of Bore1 
sets of c, and fi defined by i; = v o y-l is a probability measure on c, 

In Sect. 1.5B we stated some theorems of Bochner type on characteristic 
functionals due to Mourier and Getoor. We now state the following result, 
due to de Acosta, concerning characteristic functionals of probability 
measures on Banach spaces with bases. 

A>O n 2 l  k P l  

THEOREM 1.17. Let X be a Banach space with Schauder basis {e,}, and let X, 
denote the subspace of X generated by { e l , .  . . ,en}. Let be a complex-valued 
function dejined on X:, where XE is the linear subspace of X* spanned by the 
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coordinate functions {A} for the basis {e,}, which is positive-definite with 
rp(O*) = 1. I f  the restriction of v to every .finite-dimensional subspace of 3$ is 
continuous, then for  each n there exists a probability measure v, on (SE, 23) such 
that vn(Xn) = 1 and the characteristic functional of v, is cp(Z:=, x*(ei) fi). 

3. Probability measures on C[O,l]. The importance of the space of 
continuous functions in probability theory has been pointed out several 
times in this text; in particular, the study of probability measures on spaces of 
continuous functions is tantamount to the study of random functions with 
continuous trajectories. Also, the existence of a probability measure on the 
space of contimous functions enables us to study problems in analysis 
concerning continuous functions using probabilistic methods. 

Consider the measurable space (C,Q where C = C[O, 11 and (5 is the 
o-algebra of Bore1 sets of C. We first state the following result: 

THEOREM 1.18. The o-algebra (5 coincides with the minimal a-algebra of 
subsets of C with respect to which the projections vt : x + x ( t )  are measurable 
for all t E [0,1]. Let v 1  and v2 be twoprobability measures on C. Then, a necessary 
and suficient condition that v, = v2 is that v:l~'..*~n = v:l,'..*tn for all n and 
tl ,..., t, E [0,1], where vhl,...,t, (i= 1,2) areprobabilitymeasures on R,induced 
by v i  (i  = 1,2), respectively, through the projections 

vtl, ..., t,: x --f (4 tA 3.. Y x(t,)>. 

A fundamental problem is the characterization of random functions 
x(t,w), t E [0, I ]  whose associated probability measures are defined on 
C[O, 11. More precisely, let x(t,w), t E [0,1] be a random function and let 
Xtl*...*tn be its finite-dimensional distributions. Then, what additional con- 
dition must be satisfied in order that there exist a probability measure v on C 
suchthatX'1 r . .  ..tn = V t ~ .  . . . . f m  for all n and tl, . . . , t ,  E [0,1] ? If there exists such a 
v then, by Theorem 1.18, it is unique. The following result, due to Kolmogorov, 
gives a sufficient condition. 

THEOREM 1.19. Let x( t ,w) ,  t E [0,1] be a random function and let htl.....tn be 
theprobability distribution on (R,, 23,J of the random vector (x( t , ,  o), . . . , x(t,, w)). 
I f fhere are positive constants u, /3 and M such that 

b( jx ( t ,w)  - X ( S , w ) l a )  < M l t  -s l1+P 

for  all s, t E [0,1], then there exists a unique probability measure v on C such that 
hti, ..., tn = Vti , . . . p t n  for all n and t ,  ,. . . ,z, E [0,1]. 

We now consider Wiener measure on C[O, 11. Wiener measure is the prob- 
ability measure on C[O, 11 associated with the Wiener process or the Brownian 
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motion process. An application of Theorem 1.19 yields the following result 
on the existence of Wiener measure. 

THEOREM 1.20. 
Wiener measure, with the following properties : 

There exists a unique probability measure w on (C,  C), called 

i. w({x:x(O,w) = 0))  = 1; 
ii. if 0 Q t l  < t2 < -.- < t, G 1 ,  the C-valued random variables x(t,,w), 

111. if 0 G s G t G 1 ,  the C-valued random variable x(t ,  w )  - x(s,w) is 
X(tk,W) - X(tk-l,w), 1 i k G n,  are independent; 

Gaussian with expectation 0 and variance t - s. 

... 

We refer to the books of Billingsley [lo] and Parthasarathy [93] for detailed 
treatments of probability measures on C[O, 11; and we refer to books of Ita 
and McKean [SO], Kac [SS], KampC de FCriet [59], Nelson [91], and Rankin 
[ lol l  for other treatments of Wiener measure and related problems. 

4. Probability measures on Hiibert spaces. Consider the measurable space 
(H,B), where H i s  a real separable Hilbert space with inner product (., * )  and 
b is the 0-algebra of Bore1 sets of H .  Let x(w) be an H-valued random variable, 
and let v = v, be the probability measure on H induced by x. We denote by 
M ( H )  the space of all probability measures on H. We first define the charac- 
teristic functional of a probability measure on H, and then introduce the 
notions of the mean and covariance operator of a probability measure on H.  

The characteristic functional of a probability measure Definition 1.53. 
v E M ( H )  is defined for all y E H by 

V ( Y )  = jH exp NX, Y N  d v ~ .  

The basic properties of the characteristic functional are as follows: 

i. ~ ( y )  is uniformly continuous in the strong topology. 
ii. Let vI,v2 E M ( H )  with characteristic functionals rpl(y) and rp2(y), 

111. rpvI*y2(y) = y 1 ( y ) y 2 ( y )  for all y E H and vI,v2 E M ( H ) ,  where vI*v2 
respectively. If vl(y) = rp2(y) for ally E H ,  then V, = v2. 

denotes the convolution of v 1  and v2. 

... 

iv. Y4-Y) = F(Y>. 

Definition 1.54. The mean (or expectation) of a probability measure 
v E M ( H )  is an element m E H defined for all y E H by 

(4 Y )  = 1; (x, Y )  W X ) .  
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The mean of a measure in  M ( H )  need not exist; however, if JH llxlldv(x) < 03, 

then m = JH xdv(x)  exists and llm[j < JH llxlldv(x). 
We now consider a class of operators, introduced by Prohorov [97], which 

play a fundamental role in the study of probability theory in Hilbert spaces. 

Definition 1.55. Consider a probability measure u E M ( H )  with the 
property that J llxl12dv < 00. Then, the covariance operator S of v is defined by 
the equation 

Definition 1.56. A linear operator L on His  said to be an S-operator if it is 
a positive, self-adjoint operator with finite trace, that is, for some ortho- 
normal basis {ei} c H, z?l (Lei,ei) < ffi. S-operators are Hilbert-Schmidt 
operators,? and hence compact. The covariance operator defined above is an 
S-operator. 

The following remarks concerning S-operators are of interest: 

1 .  S-operators are the infinite-dimensional analogues of the central 
second-moment matrices associated with a distribution on R,. 

2. Since S-operators are Hilbert-Schmidt operators, they admit the 
following representation : S x  = > k  h,(x, ck) ck, where the h k  are the eigenvalues 
of S [with zk A; < a) and {ck) is a complete orthogonal system of functions. 
For other representations of S-operators, obtained using tensor product 
methods, we refer to Kannan and Bharucha-Reid [63]. 

Let v, and v2 be two probability measures in M ( H )  induced by random 
variables x I  and x2. I f  J IlxJ2dvi < ffi, i = 1,2, then S,,,,, = S., + Sv2. 

3. 

Let G denote the collection of all S-operators. The class of sets 
{ { x : ( S x , x )  < l}, S E G }  defines a system of neighborhoods at the origin for a 
topology, which is called the S-topology. 

We now state the following theorem concerning characteristic functionals 
and the S-topology. 

THEOREM 1.21. A function ~ ( y ) ,  y G H, is the characteristic functional of a 
probability measure v on H if and only if ( i )  y ( y )  is positive-definite in y ,  with 
F(e) = 1, and (ii) v( y )  is continuous at 0 in the S-topology. 

The above result is due to Sazonov [108]. We also have the following result of 
Prohorov [97]. 

t see Dunford and Schwartz [24, Chapter XI.61. 
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THEOREM 1.22. Let v( y )  be a positive-definite function on H with ~ ( 0 )  = 1. 
Then y ( y )  is the characteristic functional of a probability measure on H if and 
only i f for  every E > 0 there is a positive-definite, self-adjoint operator of trace 
class S, such that 1 - W(y( y ) )  G (S,  y ,  y )  + E .  

An important corollary of Theorem 1.22 is as follows : Let S be a positive- 
definite, self-adjoint operator on H.  The function ~ ( y )  = expi-+(Sy,y)) is the 
characteristic functional of a probability measure v on H,  with j llxl12dv < cv, if 
and only i f S  is an S-operator. S is the covariance operator of v. 

For other results we refer to Kolmogorov [68], Parthasarathy [93], and 
Prohorov and Sazonov [loo]. Of particular interest is the result of Kuelbs and 
Mandrekar [73], who generalized Bochner's theorem to 1, spaces. For the 
case H =  I*, their theory coincides with some results of Gross [39], and is 
related to the works referred to above. 

The important class of Gaussian (or normal) probability measures on 
Hilbert spaces will be considered in Sect. 1.5D. Other classes of probability 
measures on Hilbert spaces have been considered by several authors ; for 
examples, stable measures have been considered by Jajte [53], and infinitely 
divisible measures have been studied by Jajte [54], Prakasa Rao [95], and 
Varadhan [126] (cf. also Parthasarathy [93]). We refer also to the work of 
Daletskii [17] on probability measures on scales of Hilbert spaces, studied in 
connection with random integral equation of It6 type (cf. Sect. 7.3C). 

D. Gaussian probability measures on Banach spaces 

Gaussian (or normal) distribution play an important and fundamental role 
in classical probability and mathematical statistics ; hence it should come as 
no surprise that the notion of a Gaussian probability measure on a Banach 
space is of considerable interest in the development of probability theory in 
Banach spaces, and applications of this theory in many applied fields. We 
first consider Gaussian probability measures on separable Hilbert spaces, and 
then consider the case of separable Banach spaces. 

Let H be a real separable Hilbert space with inner product (.,-). The 
following theorem is due to Prohorov [97] (cf. also Varadhan [1261). 

THEOREM 1.23. 
characteristic functional ~ ( y )  is of the form 

A probability measure v on H is Gaussian if and only if its 

d Y )  = exP{i(xo,Y) - +(SY,Y)), 

where xo is a j x e d  element of H and S is an S-operator. 
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It is clear that x,, = m, the mean of v ;  and that S is the covariance operator of 
v. Hence a Gaussian measure on a Hilbert space is uniquely determined by its 
mean and covariance operator. 

If x(w) is an H-valued random variable, then we denote by v, the measure 
on H induced by x and p. Hence, we can refer to m, as the mean or expectation 
of x and S,  as the covariance operator of x. We now state several results which 
are of interest in applications. 

THEOREM 1.24. Let xI(w) and x2(w)  be two independent, Gaussian random 
variables with values in H, and let mi and Si, i = 1,2, denote their expectations 
and covariance operators, respectively. The sum x,(w) + x2(w) = y(w) is a 
Gaussian H-valued random variable with expectation my = ml + m2 and 
covariance operator Sy = S1 + S2. 

THEOREM 1.25. Zf (i) y(w) = xI(w) + x2(w),  where x , (w)  and x2(w) are 
independent H-valued random variables and (ii) y(w) is Gaussian, then x I ( w )  
and x2(w) are Gaussian. 

Two results of particular interest in the theory of random equations are the 
following (cf. Grenander [38]): 

THEOREM 1.26. Let x(w) be an H-valued Gaussian random variable with 
expectation m, and covariance operator S,, and let L E ! ~ ? ( H ) .  Then 
y(w) = L[x(w)]  is an H-valued Gaussian random variable with expectation 
my = L[m,] and covariance operator Sy = LS,L*. 

THEOREM 1.27. Let {v,,} be a sequence of Gaussian probability measures on H 
with means m, and covariance operators S,. I f  limn+m IJm,- mjl = O  and 
limn+m (S, ,x,x) = ( S X , ~ )  for  all x E H and S,, Q T ,  where T is some S-operator, 
then v,, converges weakly to a Gaussian measure v with mean m and covariance 
operator S. 

For other results concerning Gaussian measures on Hilbert spaces we refer 
to the papers of Birkhoff [l 11, Garsia et al. [32], Jajte [52], Prohorov and Fisz 
[99], Skorohod [113,114], and Vahanija [122-1251; in particular, Vahanija has 
shown that for the Hilbert space 12, the function 

for which I?l sii < is the characteristic functional of a unique Gaussian 
probability measure v on 12. (The mean of v is assumed to be 0.) Conversely, 
the characteristic functional of any Gaussian measure on l2 can be written in 
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the above form if the covariance matrix operator S = (sij) satisfies the con- 
dition stated above. Since lz is isometrically isomorphic to any separable 
Hilbert space, the above representation gives the general form of any 
characteristic functional of a Gaussian probability measure on an arbitrary 
separable Hilbert space H (where the xi are the coordinates of an element 
x E H with respect to an arbitrary basis). 

We now consider Gaussian probability measures on real separable Banach 
spaces. Let X be a real separable Banach space with norm l l . l lx ,  and let b, 
denote the o-algebra of Bore1 sets of X. Following Kuelbs [71], we will show 
that given a Gaussian probability measure u on X, then it is possible to extend 
v to a Gaussian probability measure on a certain separable Hilbert space. We 
first state the following result. 

LEMMA 1 . 1 .  There exists an inner product ( 1 ,  .)% on 3 such that the norm 
generated by ( *  , .)x is weaker than 1 1 .  l l x ,  and if B is the separable Hilbert space 
obtained by completing X with respect to the inner product norm, then BE c bR 
SO that 23, = X n bR. 

The next lemma follows immediately from the above result. 

LEMMA 1.2. If u is a Gaussian probability measure on (X, BE), and (B, a,) is 
dejned as in Lemma 1.1, then v(B) = v(B n X), B E 'BR, extends v to a Gaussian 
probability measure on (17, BR). 

In view of the above lemma any Gaussian probability measure defined on a 
real separable Banach space is also defined on the separable Hilbert space A; 
hence all of the results for Gaussian probability measures on separable 
Hilbert spaces are applicable. Let m and S denote the mean and covariance 
operators of u on A. Given S we can define another Hilbert space H as 
follows : 

2 
H = { x  E A : x  E span{€,, Q , .  . .}, 2 (x ,  Ei)z/hi < a}, 

i 

where the hi > 0 are the eigenvalues of S and the ei are the eigenfunctions of S. 
For x,y  E H,  the inner product of x and y is defined as 

(x, €Jii ( Y ,  6i)B 
(X9Y)" = 2 

I Xi 
We now state the following theorem which gives necessary and sufficient 

conditions that two Gaussian probability measures on a separable Banach 
space be equivalent. 
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THEOREM 1.28. 
equivalent to v2 i fand only i f ( i )  m,  - m2 E Hand  

If v ,  and v2 are Gaussian probability measures on X, then v I  is 

(4 (S2 X,Y)R  = (S1 x, SI Y ) H  - (KsI x, S I  Y ) H  

for all x ,  y E r?, where K is a symmetric Hilbert-Schmidt operator on H which 
does not have one as an eigenvalue. 

The above theorem can be applied to the study of the equivalence of Gaussian 
and Wiener probability measures (cf. Shepp [llo]), and to the study of 
Gaussian probability measures. on 1, spaces (cf. the papers of Vahanija). 

In closing this subsection we refer to the work of Kallianpur [56],  Sat0 
[107], and de Acosta [19]. Kallianpur has studied Gaussian probability 
measures on a separable Banach space X by considering a Hilbert space which 
acts as a reproducing kernel Hilbert space for the Gaussian probability 
measure on X. Sat0 has shown that any Gaussian probability measure on a 
separable or reflexive Banach space is an  abstract Wiener measure in  the sense 
of Gross (cf. Gross [40]), and can be extended to a Radon probability measure 
on the same space. de Acosta has constructed Gaussian probability measures 
on Banach spaces with a Schauder basis, and has obtained the representation 
of the characteristic functional of such measures. 

For some results on Gaussian random functions and Gaussian probability 
measures on Banach spaces we refer to Jain and Kallianpur [51], Kuelbs 
[72], and LePage "761. 

E. Absolute continuity of probability measures 

Consider the measurable space (X,23), where Xis  an arbitrary set and B is 
a o-algebra of subsets of X .  Let v I  and v2 be two measures on X .  The measure 
v2 is said to be absolutely continuous with respect to v I  (written v, 6 v I )  if 
vz (B)  = 0 for all B E 23 for which v , (B)  = 0. If v2 e v ,  and v ,  6 v2,  then v ,  and 
v 2  are said to be equivalent (written v,  - v2). The measure v2 is said to be 
singular with respect to  v ,  if there is a set 3 such that v,(B)=O and 
v 2 ( X -  B )  = 0. If v2 is singular with respect to v, ,  then v,  is singular with 
respect to v,; and in this case v I  and v2 are said to be orthogonal (written 

The well-known Radon-Nikodym theorem states that for finite measures, 
v2 < v ,  if and only if there exists a 23-measurable function p(x) such that for 
all B E B 

v2(B) = JB dvi(x). 

The function p(x) is called the Radon-Nikodym derivative, or density, of v 2  
with respect to v, .  p(x), which is written p(x) = [dv,/dv,](x), is uniquely 

V l  1 v2). 
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defined within equivalence with respect to v I .  We refer to Halmos [43, Chap. 
VI] for a discussion of absolute continuity and Radon-Nikodym derivatives. 

Let xl(t,W) and x,(I,w) be two stochastic processes with associated prob- 
ability measures v1 and v2, respectively. If v2 e v I ,  then it is possible to find 
sets B for which v2(B) = 1, provided, of course, such sets are known for v I .  
That is, the process x , (~ ,w)  will satisfy almost surely all those properties that 
the process x l ( t , w )  satisfies almost surely. In view of the above, the study of 
the absolute continuity of probability measures associated with stochastic 
processes is of great interest in the theory of random equations. For example, 
if x,( t ,w)  represents a (known) random input to a differential or integral 
equation the solution of which is x,(~,w),  it is of particular importance to 
determine conditions under which v2 e v , ,  for in this case the solution process 
x2(t ,  W )  will satisfy almost surely all those properties which the input process 
x l ( t ,  W )  satisfies almost surely. 

In this section we state a few results on the absolute continuity of prob- 
ability measures which we feel are of interest in the study of random equations. 
We refer to the fundamental paper of Gihman and Skorohod [35] for a detailed 
discussion of the densities of probability measures on function spaces, and 
for the proofs of the theorems stated in this section. 

We first consider the absolute continuity of Gaussian probability measures 
on Hilbert spaces. Let v1 and v2 be Gaussian probability measures on a 
separable Hilbert space H with means m, = m, = 0 and covariance operators 
SI and S,, respectively. The following result gives a simple necessary con- 
dition for the absolute continuity of v2 with respect to v l .  

THEOREM 1.29. Zf v 2  e v l ,  then there exists a positiue constant h such that 

A-1 < ( S ,  x,  x ) / ( S ,  x ,  x )  < A. 

Let i f i }  be an orthonormal sequence of eigenfunctions of SI, and {Ai} the 
corresponding sequence of eigenvalues. 

THEOREM 1.30. r f v 2  e vl, then there exist numbers a and Bij (with 2 /3& < w )  
such that 

and&, = ((I- LL*)f i ,  f j ) ,  whereL isa boundedoperatorsuch that Sf/’ = LS;”. 

We now state a theorem which gives necessary and sufficient conditions for 
the equivalence? of two Gaussian probability measures v, and v2 with means 
ml, m, and covariance operators S , ,  S2, respectively. 

t see also Theorem 1.28. 
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THEOREM 1.31. Two Gaussian probability measures v ,  and v2 on a Hilbert 
space are either equivalent or orthogonal. Let { f i }  denote the eigenfunctions of 
SI and {A,} the associated eigenvahies. Then, v I  - v 2  if and only if ‘(i) 
zTs1 (m2 - m,,fi)’h?‘ < a, and (ii) there exists a bounded operator L,  with 
bounded inverse, such that S:l2 = LS:l2 and Tr(Z - LL*)2 < CO. 

For detailed treatments of the Radon-Nikodym derivatives of Gaussian 
probability measures we refer to Rao and Varadarajan [I021 and Shepp 
[110]. In view of Kuelb’s result (Lemma 1.2), the above theorems can be 
utilized, with appropriate modifications, to study the absolute continuity of 
Gaussian probability measures on separable Banach spaces. 

Let v 1  be a probability measure on the measurable space (X,B), and let L 
denote a transformation of X onto itself. Put v 2 ( B )  = v,(L-’(B)) for all B E 23. 
A problem of fundamental importance in the theory of random equations is 
the determination of conditions under which v 2  < v I .  The first problem of this 
type was investigated by Cameron and Martin (cf. [35]), who calculated the 
density, with respect to Wiener measure w = v 1  on the space of continuous 
functions, of the probability measure v 2  induced by a measurable transfor- 
mation of a Wiener process. In recent years a number of results have been 
obtained for Gaussian probability measures on Hilbert spaces for certain 
classes of transformations (cf. Gihman and Skorohod [35], Baklan and 
SataSvili [ 5 , 6 ] ) ;  however, a considerable amount of research needs to be done 
for classes of transformations which rise in the study of random differential 
and integral equations. In Sect. 6.6 we consider a problem of this type for a 
nonlinear random integrodifferential equation. 

1.6 Limit Theorems 

A .  Introduction 

The study of probability theory in any type of algebraic or topological 
structure is not complete without an investigation of limit theorems, for as 
Gnedenko and Kolmogorov have remarked, “. . .the epistemological value of 
the theory of probability is revealed only be limit theorems.” In this section 
we consider some limit theorems for Banach space-valued random variables. 
Thus far limit theorems have not been employed extensively in the study of 
random equations; but it is clear that as the theory of random equations 
develops limit theorems will undoubtedly play a major role, especially in the 
study of approximate solutions of random equations. 

The remaining subsections of this section are devoted to strong laws of 
large numbers, central limit theorems, and martingale convergence theorems. 
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B. Strong laws of large numbers 

The well-known strong law of large numbers due to Kolmogorov can be 
stated as follows (cf. Lotve [77, p. 2391): Let {x,(w)} be a sequence of 
independent and identically distributed real-valued random variables. 
Put S,(w) = (l/n) ,7:=, x,(w). Then S, --+ y almost surely if and only if 
B{ Ix(w) I} < to ; and then y = &‘{x(w)}. 

The first strong law of large numbers for Banach space-valued random 
variables is due to Mourier [84]. 

THEOREM 1.32. Let 3 be a separable Banach space, and let {x,(w)) be a 
sequence of independent and identically distributed X-valued random variables 
such that S{llxll) < 00. Put S,(w) = ( l / n )  ,71=1 xi(w).  Thenlim,,, S,(w) = S{llxli} 
strongly almost surely. 

Other strong laws of Kolmogorov type have been obtained by Hang [44] 
for Banach space-valued random variables, and by Bharucha-Reid [9] for 
Orlicz space-valued random variables. In Banach spaces it is possible to 
formulate many versions of the strong law of large numbers. For example, 
Beck (cf. [71) considered a sequence {x,(w)} of independent Banach space- 
valued random variables with B{x,(w)} = 0, B{llx,(w)lI’} < M < 00, and 
showed that a strong law holds under the assumption that 3 is a uniformly 
convex Banach space; and Beck and Warren [8]  have proved a strong law for 
weakly orthogonalt sequences of Banach space-valued random variables. For 
other results we refer to Fortet and Mourier [29], Grenander [38, Sect. 6.41, 
Parthasarathy [93, pp. 208-2101, and RCvCsz [104, Chap. 91. 

C. Central limit theorems 

The classical central limit theorem in its most simple form can be stated as 
follows : Let {x,(w)} be a sequence of independent and indentically distributed 
real-valued random variables for  which u, = (Var{x,(w)})’/’ > 0 exist, 
n = 1,2,. . .. Put S,(w) = ,7LI xi(w) and &(w) = [S,(w) - ~{x,(w)>l/~, .  r f  
F,(() is the distribution function of &(w), then limn,m F,(() = @([) uniformly 
for 8 E (-00, co), where @(4) is the standard normal distribution. The well-known 
Lindeberg-Feller version of the central limit theorem can be stated as follows: 
Let {x,(w)} be a sequence of independent real-valued random variables for  which 
m, = b{x,(w)} and a,, = (Var{x,(w)})l/’ exist, n = 1,2,. . .. Put s, = (2:- I u:)”’, 
and let Fn([) be the distribution function of x,(w) - m,; andput 

n 

I =  I 
%(w) = 2 (Xi&) - mM,.  

‘f A sequence of X-valued random variables is said to be weakly orthogonal if, for all 
X* EX*, In x*(x , (~~) )x* (x , (w) )dp = 0 for all i + j .  
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Then lirn,,+,9{2,,(w) < (} = @(() ifand only i f  

for  every E > 0. 

random variables we refer to Loeve [77, Chap. VI]. 

initiated by Mourier [84]. We have 

For a detailed exposition of the central limit problem for real-valued 

The study of Banach space analogues of the central limit theorem was 

THEOREM 1.33. Let H be a separable Hilbert space, and let {x,,(w)> be a 
sequence of independent and identically distributed H-valued random variables. 
Suppose that S { ~ ~ X ~ ~ ~ }  < cc ; and let m and S denote the expectation and co- 
variance operator of x ( ~ ) ,  respectively. Put g , , ( ~ )  = n-'I2 zy=, (xi(w) - rn). 
Then the sequence {v,,(w)} of probability measures in M ( H )  associated with 
{X,,(W)} converges weakly to a Gaussian probability measure in M ( H )  with 
expectation zero and covariance operator S.  

Kandelaki and Sazonov [61] (cf. also Reinschke [103]) have proved a 
central limit theorem of Lindeberg-Feller type for H-valued random 
variables. 

The central limit theorem for a certain class of Banach spaces has been 
considered by Fortet and Mourier [29] (cf. also Mourier [SS]). A Banach space 
X is said to be a G-space if there is a constant K and a mapping $J : X --f X* such 
that (0 li$J(x)li = lixll, (ii) ($J(x),x> = IIxI12, (iii) Il$J(xd - $(x~)ll G Kllx, - T I / .  
A general characterization of G-spaces is not known; however, it is known 
that a wide class of uniformly convex spaces are G-spaces, including Hilbert 
spaces and all L, spaces ( p  >, 2). A central limit theorem for random variables 
with values in a Banach space X which is a G-space can be stated as follows: 

THEOREM 1.34. Let {x,(w)} be a sequence of independent and identically 
distributed I-valued random variables, where X is a reflexive G-space with 
basis. Let m = &{x}, and suppose & { 1 1 ~ 1 1 ~ }  < a. Then the sequence {v,(w)} of 
probability measures in M ( X )  associated with {.?,,(w)> (cf. Theorem 1.33) 
converges weakly to a Gaussian probability measure in M ( X ) .  

For other results on central limit theorems in Banach spaces we refer to 
Dudley [22a], LeCam [75a], and Strassen and Dudley [115a]. 

D. Martingale convergence theorems 

The classical (discrete) martingale convergence theorem, due to Doob (cf. 
120, Chap. VII]) can be stated as follows: Let {x,,) be a discrete parameter 
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martingale. Then b ( l x , ( w ) \ }  G & ( / X ~ ( W ) / )  < ..*. VIim,+, g‘(Ix,(w)I} = M < m, 

then x,(w) = 2(w) almost surely, and &‘(.f(w)} < M .  In particular, M < 00, i f  
the x,(w) are all real nonnegative random variables, or all real and nonpositive. 
Martingale convergence theorems have been utilized in many applications of 
martingale theory in analysis and other areas of probability theory; hence the 
investigation of convergence theorems for Banach space-valued martingales 
is of interest. 

In proving convergence theorems for Banach space-valued martingales,? 
Chatterji [14] and others observed that unless some additional conditions are 
imposed on the range space of the process, martingale convergence theorems 
of the classical (scalar) type could not be obtained. Counterexamples are 
given, for example, by Chatterji [14], and Driml and Hang [21]. 

We first state a convergence theorem due to Chatterji [14]. 

THEOREM 1.35. Let X be a reflexive Banach space, and let (x,(w),n > I} be an 
X-valued martingale such that (i) x,(w) E B,(Q, X), 1 < p < to, and (ii) 
[x,(w)], < a. Then there exists an Z(w) E B,(Q, X) such that 

lim [x,(w) - s?(w)], = 0 and x,(w) = E(s?(w)/%,}. 
n*m 

Scalora [I091 also assumed X to be reflexive; and Driml and Hang assumed 

For Hilbert space-valued martingales, we state the following result due to 
the weak compactness (almost surely) of a particular subset of 52. 

Scalora : 

THEOREM 1.36. Let {x,,(w),n 2 l} be a Hilbert space-valued martingale; and 
suppose that limn+w & ‘ ( ~ ~ x , ( w ) ~ ~ }  < to. Then, there exists a strong Hilbert space- 
valued random variable a(w) such that limn-tw x,(w) = Z(w) weakly almost surely. 

For other results concerning the convergence of Banach space-valued 
martingales we refer to Chatterji [14, 151, Driml and Hang [21], Ip [48], 
Kannan [62], Metivier [82], Scalora [109], and Uhl [119]. 
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CHAPTER 2 

Operator-Valued Random Variables 

2.1 Introduction 

In Chap. I we introduced the notion of a Banach space-valued random 
variable and presented an introductory survey of probability theory in 
Banach spaces. In this chapter we introduce the notion of a random operator 
and study the properties of such operators. As we will see, a random operator 
is a measurable mapping defined on a probability measure space with values 
in some collection of operators; that is, a random operator is an operator- 
valued random variable. If the collection of operators is the Banach algebra 
Q(X) of bounded linear operators on a Banach space X, then the results 
outlined in Chap. 1 are applicable. However, applications require the study 
of random variables with values in other collections of operators, for example 
the class of closed operators; hence the study of random operators does not 
in general reduce to the study of Banach space-valued random variables. 

The development of a theory of random operators is of importance in its 
own right as a generalization of deterministic operator theory; and just as 
operator theory is of fundamental importance in the study of deterministic 
operator equations based on the methods of functional analysis, a theory of 
random operators is required for the study of random operator equations. 

In Sect. 2.2 we consider some basic definitions, concepts and results from 
the theory of operators on Banach spaces. In Sect. 2.3 the notion of a random 
operator on a Banach space is introduced, and the basic properties of random 
operators are considered. Section 2.4 is devoted to some results from the 
developing spectral theory of random operators. In Sect. 2.5 we consider 
some classes of operator-valued random functions; and in Sect. 2.6 we study 
some limit theorems for random operators. 

64 
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2.2 Operators on Banach Spaces 

A .  Introduction 

Let X and 'I) be two Banach spaces of the same scalar type, that is, the 
scalar fields over which X and 'I) are defined are either both real or both 
complex. Let 3 be a subset of X. If to every element x E 2) there corresponds 
an element y E 'I) according to some rule y = Tx, then T is called an operator, 
transformation, or mapping on 2) with values in the range space 'I). 2) is called 
the domain of T? and we write 9 = 2)(T). The range of T is denoted by %(T). 
We will assume that 9 ( T )  is a linear subspace of X. In addition to the cor- 
respondence Tx = y ,  an operator is often denoted in several other ways, for 
example (i) T :  X + 'I), (ii) X % 9, (iii) T :  x --f y ,  x E X, y E 9. 

In this section we present a survey of some basic definitions and theorems 
from the theory of operators on Banach spaces which will be utilized in the 
study of random operators in this chapter and the study of random integral 
equations in subsequent chapters. The reader is referred to the following 
books for detailed expositions of operator theory: Dunford and Schwartz 
[17, 181, Hille and Phillips [28] ,  Kato [30], Taylor [49], and Zaanen [55 ] .  

B. Bounded linear operators: Some general properties 

Definition 2.1. 

T[al  x ,  + cc2 xz]  = aI Txl + a2 Tx, 

An operator T o n  a Banach space X is said to be linear if 
a1 , a2 scalars. for all x I  , x2 E X, 

Definition 2.2. An operator Ton  one Banach space to another is said to be 
bounded if it takes bounded sets into bounded sets. If T is a bounded linear 
operator, then 

IlTll = SUP IITxll, x E 903, 
II x ll s I 

is called the bound or norm of T. 

Definition 2.3. An operator T from 3E into 9 is continuous at xo if 

lim ((x, - x ~ ( ( ~  = 0 implies that lim [(Tx, - Txoll = 0. 

The relationship between continuity and boundedness of linear operators is 

n+m n 'CD 

given by the following result. 

THEOREM 2.1. A continuous linear operator Ton X into 'I) is bounded on 3. 

Let !2(X,'I)) denote the collection of all bounded linear operators on X into 
'I). Let T, TI  and T2 be elements of i?(X,'I)), and let a be a scalar. Addition and 
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scalar multiplication of elements of i?(X,g) are defined as follows: 
(i) (TI + TJ x = TI  x + T2 x,  where B(Tl + T2) = D( T I )  T1 b(T,), (ii) (aT) x = aTx. 
The null operator O on X to 9 is defined by Ox = 8; and the identity operator Z 
on X to 9 is such that Zx = x. Clearly, @ and I map X into itself. 

THEOREM 2.2. 
being given by 

i?(X,g) is a Banach space, the norm of an element T E L?(X,g) 

IF11 = SUP ilTxll, x E W). 
I I X I I < I  

C. Closed linear operators 

Bounded linear operators constitute an important class of operators on 
Banach spaces ; but many applications involve linear operators which are 
unbounded (or discontinuous). We now consider a class of linear operators 
which are called closed operators. Many linear operators encountered in 
analysis and applied mathematics are discontinuous (for example, ordinary 
and partial differential operators), but in concrete applications it is often 
possible to employ a set-up in which the operators are closed. 

Definition 2.4. Let X x '2) denote the product of the Banach spaces X and 
9). The graph of a linear operator T on X is a set of pairs of elements 
((x, Tx), x 6 %(TI} c X x g . 

Definition 2.5. A linear operator T on X into 9 is said to be closed if its 
graph is a closed subset of X x 9. 

In other words, T is closed if whenever x,+x ({x,,}c B(T)) and 
limn+m y,, = limn,m Tx,, = y ,  then x E B(T) and y = Tx. 

We now state a theorem, referred to as the closedgraph theorem, which has 
many applications. 

THEOREM 2.3. 
continuous i f  and only i f  its graph is closed. 

If T is a linear operator on X into 9, with D(T) = X, then T is 

Let &(X, '2)) denote the class of all closed linear operators on X into 9. Since 
every T E  i?(X,g) is closed, we have i?(X,y) c O(X,g). The closed graph 
theorem can also be stated as follows: If T E &(X,g) and D(T) = X, then 
T E i?(X,g). It is of interest to remark that a metric can be introduced in 
&(X,)?) so as to make it into a metric space (cf. Kato [30, Chap. IV]). 
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D. Some examples of operators 

The literature of analysis and applied mathematics is replete with examples 
of linear operators. In this subsection we give a few examples of linear 
operators. The probabilistic analogues of some of these operators will be 
considered in this and other chapters of this book. 

1. Let 3 = 9 = R,. In this case a linear operator A has a unique repre- 
sentatiop as an n x n matrix, 

Here the correspondence A x  = y has the form 
n 

I= 1 
y i =  2 a l j x i ,  i = 1 , 2  ,..., n, (2.2) 

for x = ( x l ,  x2 , .  . . ,xn),  y = (yI , y 2 , .  . . ,yn). The matrix operator A is bounded, 
and has norm 

IIAII = ( f a:jy’2. 
1. I -  1 

Finite-dimensional matrix operators also arise as transformations on the 1; 
spaces ; and infinite-dimensional matrix operators represent transformations 
on the I ,  spaces. 

2. Let 3 = 9 = C[O, I ] ,  and let C’[O,l] denote the subspace of C[O, 11 
consisting of all functions with continuous first derivatives. Define the linear 
dzfferential operator T :  C’[O, I ]  -+ C[O, 1 1  by T x ( t )  = x’(t), t E [0, I ] .  T is a 
closed operator; however it is unbounded (cf. Taylor [49, p. 1751). 

Let 3 = ‘I) = I,, and let x = {x,) E 1,. .A linear difference operator T o n  
1, to itself can be defined as follows: T[xn] = + 13x,-,, where a, /? are 
constants. 

3. 

4. Let 3 = VJ = C[a,b] .  The the linear integral operator T defined 

T[x(r )]  = I* K(t ,  s) x(s) ds (2.3) 
0 

maps C[a,b]  into itself provided the function K(t , s )  is continuous on 
[a,b] x [a,b]. The integral operator T is bounded; and if IK(t,s)l G M on 
[a,b] x [a,b], then IITIl G M(b  - a). 

Since this book is concerned with integral equations, many examples of 
linear and nonlinear integral operators will be given in subsequent chapters. 
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E. Inverse and adjoint operators 

Let X and '2) be two Banach spaces. 

Definition 2.6. An operator T E 2(X, '2)) is said to have an inverse, denoted 
by T-I, if for every y E '2) the "equation" Tx = y has a unique solution. 

Some useful results are summarized as 

THEOREM 2.4. (a)  If T E  2(X,'2)) has an inverse T- ' ,  then T-' E 2(9, X). 
(b)  I fT E C(X,'2)) has an inverse T-I, then T-' E C('2),X). 

Let T be a linear operator on X to '2) with D(T) dense in X, and let X* and 
'2)* denote the adjoint spaces of X and 9, respectively. 

Definition 2.7. The adjoint operator T* of T is defined as follows : a( T*) is 
the set of ally* E 2J* for which there exists an x* E X* such that y*(Tx) = x*(x) 
for all x E D(T). In this case we define T* y* = x*. 

THEOREM 2.5. Let T b e  a linear operator on X to '2) with D(T) dense in X. Then 
T* is a closed linear operator with D(T*) c '2)* and range X*. I f ,  in addition, 
T E f?(X,'2)), then T *  E 2(Yj*, X*) and IIT*ll = IITII. 

THEOREM 2.6. 
a(r) = X and 
if(T*)-' i s  bounded on X*. 

Let T be a linear operator with inverse T-' and such that 
= '2). Then (T*)-' = (T- ' )*;  and T-' is bounded ifand only 

F. Compact linear operators 

We now consider a class of linear operators, called compact (or completely 
continuous) operators, which are in many respects analogous to operators on 
finite-dimensional Banach spaces. Compact operators are of particular 
importance in the theory of integral equations. 

Definition 2.8. A linear operator Ton 3 into '2) is said to be compact if, for 
every bounded sequence {x,} in X, the sequence {Tx,} contains a subsequence 
converging to some limit in '2). 

Some useful facts about compact operators are presented in the following 
theorems. 

THEOREM 2.7. 
operator whose domain is a finite-dimensional Banach space is compact. 

(i) Every compact linear operator is bounded. (ii) Every linear 
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THEOREM 2.8. If T is a compact linear operator, then T* is also compact. 

THEOREM 2.9. I f  TI and T2 are compact linear operators, and a,  p are arbitrary 
complex numbers, then aTl + BT2 is compact. I f  T is compact and S E !L!(X,g), 
then ST and TS are compact. 

THEOREM 2.10. I f  {T,,} is a sequence of compact h e a r  operators and 
\IT,, - T/I = 0, then T is compact. 

G. The operator algebra 2 (3) 

In Sect. 2.2B we introduced the Banach space !L!(X,g) of all bounded linear 
operators on a Banach space X into a Banach space 9. We now consider the 
important case when X = 9. 

Definition 2.9. A bounded linear operator on a Banach space X to itself is 
called an endomorphism of X. 

For a given Banach space X we denote the set of all endomorphisms of X by 
2(X), rather than Q(X, 3). For endomorphisms the operation of multiplication 
is defined; that is, if T I ,  T2 E 2(3E), then (TI T2)x = TI T2x.  Hence multipli- 
cation is defined by composition. We also have /IT, T211 G llT,li-llT211; and 
[1I/1 = 1, where I is the identity operator. 

THEOREM 2.1 1. 
operator. 2(X) is noncommutative if the dimension of 3E is greater than one. 

Q(X) is a Banach algebra with unit element the identity 

Defniion 2.10. An operator T E P(X) with domain D(T)  is said to satisfy 
a Lipschitz condition if there is a constant k > 0 such that 

llTxl - Tx2ll G kllx, - x211 for all xI , x2 E B(T)  

(or, equivalently, d(Txl ,  Tx2) G k d ( x , ,  x2)). T is said to be a contraction 
operator i f k  < 1 .  

In Sect. 1.2D we considered the weak and strong topologies in Banach 
spaces and the associated concepts of convergence. We now consider some 
topologies in Q(X) and convergence in these topologies. 

Defnition2.11. The uniform operator topology in Q(X) is the metric 
topology in 2(X) induced by its norm ((TI1 = supllxil  IlTxll, T E  WE), x E X. 

Convergence of a sequence {T,,} to Tin 2(X) in the uniform operator topology 
is called uniform convergence, and is denoted by limn+m IIT,, - TI/ = 0. 
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Definition2.12. The strong operator topology in 2(X) is the topology 
defined by the set of neighborhoods 

N(T) = N(T,  Xo, 6 )  

= { S : S  E 2(X), IITx - SX/~ < E ,  x E Xo}, 

where Xo is an arbitrary finite subset of X, and E is an arbitrary positive 
number. 

Definition2.13. The weak operator topology in 2(X) is the topology 
defined by the set of neighborhoods 

N(T)  = N V ,  xo, X.,, E )  

=z { S : S  E 2(X), Ix*(Tx) - x*(SX)~ < E ,  x E Xo, X* E X*}, 

where Xo and X*, are arbitrary finite subsets of X and X* respectively, and E is 
an arbitrary positive number. 

The notions of weak and strong convergence in 2(X) are given by the 
following definitions. 

Defnition2.14. Let {T,,) be a sequence of operators in 13(X), and let 
T E f?(X). If limn+m l/T,,x - Txl/ = 0 for every x E X, then T,, is said to converge 
strongly to T, or converge in the strong operator topology of 2(X). 

Definition2.15. Let (T,) be a sequence of operators in 2(X), and let 
T E  2@). If limn+m Ix*(T,,x) - x*(Tx)) = 0 for every x E X, x* E X*, then T,, is 
said to converge weakly to T, or converge in the weak operator topology of  
Q(V. 

The following relations obtain between the modes of convergence in 2(X): 
uniform convergence implies strong convergence; and strong convergence 
implies weak convergence. 

H. Operators on Hilber? spaces 

In this subsection we consider various types of operators on Hilbert spaces. 
We first consider the matrix representation of an operator T E 2 ( H ) ,  where 
2 ( H )  is the algebra of bounded linear operators on a Hilbert space H .  

Let H be a separable Hilbert space, and let (TJ be a complete orthonormal 
sequence in H .  If T E 2 ( H ) ,  we define a finite or infinite matrix U = (ut,) by 

utj = (TV, 9 Ti). (2.4) 
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In (2.4), (.;) denotes the inner product in H. The elements ul j  are scalars; and 
U is finite if and only if H is finite-dimensional. U is the matrix representation 
of T E 2 ( H ) .  

THEOREM 2.12. 
2 ( H )  and the collection of all matrices U whose elements satisfy the condition 

ul j  = (Trpj ,rpl) defnes a one-to-one correspondence between 

I 12 2 

for M a positive constant (depending on U) and all sequences (a1} E 1,. 

Let T be a linear operator on H with B(T) dense in H. Consider the pairs 
{y , z}  of elements of H such that ( T x , ~ )  = (x , z )  for all x E B(T) .  Let Y denote 
the set of all first elements y in the pair (y ,z> satisfying the above relation; and 
let T* be the operator defined on B(T*) by T* y = z.  

Definition 2.16. The operator T* defined by ( T x , ~ )  = (x,T*y), for 
x E B(T), y E B(T*) is called the Hilbert space adjoint of T. 

Definition 2.17. Let T be a linear operator with B(T) dense in H. T is said 
to be self-adjoint if (i) B ( T )  = B(T*),  (ii) T x  = T * x  for all x E D(T). 

Definition2.18. An operator T on H is said to be symmetric if 
(Tx,  y )  = (x ,  Ty)  for all x ,  y E B(T) .  

Definition 2.19. If a bounded self-adjoint operator T on H is such that 
(Tx, x)  > 0 for all x E H ,  then T is called a positive operator. 

Let {rp,} be a complete orthonormal sequence in H. 

Definition2.20. A bounded linear operator T on H is said to be a 
Hilbert-Schmidt operator if the quantity llTl1 defined by 

The class of Hilbert-Schmidt operators will be denoted by GdH) .  Every 
Hilbert-Schmidt operator is compact. 

2.3 Random Operators 

A .  Introduction 

In this section we introduce various definitions of a random operator and 
consider some of the basic properties of random operators. Throughout this 
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section (a, %,p) will denote a complete probability measure space, X and 9J 
will be Banach spaces (not necessarily separable), and e(X,g) and 2(X) will 
denote the collections of bounded linear operators defined in Sect. 2.2. 

B. Definitions of a random operator 

As in the case of Banach space-valued random variables, there are a number 
of ways of defining a random operator; and all of these utilize, in one way or 
another, the notion of a Banach space-valued random variable. 

Definition 2.21. A mapping T ( w ) :  SZ x X + 'I) is said to be a random 
operator if {W : T ( w ) x  E B }  E 91 for all x E X, B E 8,. 

The above definition of a random operator is based on Def. 1.10, and simply 
says that T ( w )  is a random operator if T ( w ) x  = y(w), say, is a !&valued random 
variable for every x E X. 

Definition 2.22. A mapping T ( w ) :  SZ x X --f 'I) is said to be a weak random 
operator i f  y*(T(W)xj  is a real-valued random variable for all x E X, y* E 'I)*; 
that is, T ( w ) x  = y(w) is a weak ?_)-valued random variable for every x E X. 

Definition 2.23. A mapping T ( w ) :  x X -+ ?_) is said to be a strong 
random operator if T ( w ) x  is a strong 'I)-valued random variable for every 
x E X. 

The above definitions are based on the definitions of weak and strong random 
variables respectively (cf. Defs. 1.13 and 1.14); and, as in Sect. 1.3B, we can 
define a random operator utilizing the notion of Price measurability (Def. 
1.15). If 'I) is separable, then all of the notions of a random operator introduced 
above are equivalent. 

In many applications it is of interest to consider bounded linear random 
operators. In this connection we have 

Definition 2.24. A random operator T ( w )  on X is said to be (a) linear if 
T(w)  [ax ,  + ,f3x2] = a T ( w ) x l  + ,W(W)X, almost surely for al! x I  , x z  E X, a, ,fl 
scalars, and (b) bounded if there exists a nonnegative real-valued random 
variable M(w)  such that for all x 1  ,x2 E X, / J T ( w ) x ,  - T(w)x2\J  G M ( o ) J J x l  - x21) 
almost surely. 

We remark that if T ( w )  is linear, then (b) can be replaced by (b') 
IlT(w)xl\ < M ( w )  llxll almost surely. 

We now introduce some definitions of bounded linear random operators 
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utilizing the notion of an operator-valued function defined on a probability 
measure space. We refer to Dinculeanu [14, pp. 101-1061 and Hille and 
Phillips [28, pp. 74-75] for discussions of operator-valued measurable 
functions. 

Definition 2.25. A mapping T(w):  52 + Q(X, 9) is said to be a uniform 
random operator if there exists a sequence of countably-valued oerator-  
valued random variables? {T,,(w)} in f?(X,?)) converging almost surely to 
T(w)  in the uniform operator topology. 

We remark that the notion of a uniform random operator is equivalent to 
that of a strong random operator if we consider T(w) as a strong random 
variable with values in the Banach space Q(X,g). A weak random operator can 
also be defined as a weak f?(X,'1))-valued random variable. 

We now state a theorem due to Dunford [16] (cf. also Hille and Phillips 
[28, pp. 74-75]) which establishes the connection between the different notions 
of operator-valued functions. 

THEOREM 2.13. A necessary and suficient condition that T(w)  be (1) a strong 
random operator is that T(w)  be a weak random operator and that T(w)x be 
almost separably-valued$ in 9 for  every x E X;  ( 2 )  a uniform random operator 
is  that T ( w )  be a weak random operator and almost separably-valued in 
e(K9). 

Of special interest in applications is the case when X = 9, and X is a 
separable Banach space. 

Definition 2.26. A mapping T(w):  52 -+ Q(X) is said to be a random 
endomorphism of X if T ( w )  is an !i?(X)-valued random variable. 

Finally, we introduce the notion of a random contraction operator which is 
of fundamental importance in the study of random equations. 

Definition2.21. A random endomorphism T ( w )  an X is said to be a 
random contraction operator if there exists a mapping k (w) :  52 --f R such that 
k(w) < 1 almost surely and such that llT(w)x, - T(w)x211 G k(w)llxl - X Z I I  
almost surely (equivalently, d(Tx ,  , Tx,) G k (w)d (x ,  ,xz))  for all x ,  ,x2 E 3. If 
k(w) = k (a constant) for all w E Q, T(w)  is called a uniform random contraction 
operator. 

t Compare Def. 1.11. 
3 Compare Def. 1.12. 
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We close this subsection by remarking that all of the definitions of random 
operators introduced have been based, in one way or another, on the notion 
of a Banach space-valued random variable; and in the important case of 
bounded linear random operators the definitions were those of Banach 
space-valued random variables. In  view of the above, the results of Chap. 1 
can be applied to most of the random operators which we will encounter. In 
particular, we can study probability measures on the Banach space f?(X,g) 
and the Banach algebra !2(X). 

C. Examples of random operators 

some of which will be encountered in subsequent chapters of this book. 
In this subsection we list a few examples of concrete random operators, 

1. Random matrices. Let X = R,. An n x n random matrix M ( w )  is a 
matrix whose elements m i j ,  i ,j  = 1,2,. . . ,n, are random variables. That is 
M ( w )  = (mij(w)),  w E 9. A random matrix can also be defined as a mapping 
M :  9 + f?(Rn),  where !2(&) is the Banach algebra of n x n matrices. 

Random matrices constitute a very important class of random operators 
which are encountered in mathematical statistics (cf. Anderson [ 11) and 
physics (cf. Mehta [36]). Random matrices also arise in the study of systems of 
algebraic, difference, and differential equations with random coefficients. 

2. Random diflerence operators. Let X = I,. A random difference operator 
~ ( w )  on l2 to itself can be defined as follows: T(w)[xkI = ai(w)T'[Xk], 
where 7' denotes the translation operator T ~ [ x ~ ]  = x k + i ,  i = 0,1,. . . ,n. The 
coefficients ai(w) are assumed to be real-valued random variables. Random 
difference operators arise in the study of many discrete parameter stochastic 
processes which arise in engineering and time series analysis. They also occur 
in the study of approximate solutions of random differential equations. 

3. Random ordinary diflerential operators. Let X = C[a,b],  and let 
C'"'[a,b] denote the subspace of C[a,b] consisting of all functions whose first 
n derivatives are continuous. We can define a random differ..wtiai operator 
T(w) : 9 x Pn). [a, b] --+ C [a, b]  as follows : 

n 

T(w)  [ X ( f ) ]  = 2 ak(w)dk x /d tk ,  
k=O 

t E [a, b],  

where the coefficients ak(w) are real-valued random variables. In some appli- 
cations the coefficients are real-valued random functions ak(r,w), t E [a,b]. 
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4. Random partial differential operators. An example of a random partial 
differential operator is the random Helmholtz operator which occurs in the 
study of wave propagation in random media: 

( A  + 6 n2(r, w))  [$(r)l 

(cf. Frisch [20]). In the above n2(r,w) is the index of refraction, and is often 
assumed to be a real homogeneous and isotropic random function. Random 
partial differential operators also arise in the study of quantum-mechanical 
systems with random Hamiltonians, and diffusion or heat conduction 
problems with random parameters. 

5. Random integral operators. Since this book is devoted to random 
integral equations, we refer the reader to Chaps. 4-7 where many examples of 
random linear and nonlinear integral operators which are probabilistic 
analogues of some of the classical integral operators are considered. 

It is of interest to give an example of a random integral operator studied by 
Zadeh [56]. Consider the random linear integral operator 

~ ( w )  i f ] =  Jm ~ ( t ,  A, w )  eftA ~ F ( A ) ,  

where K(t,h,w), t E (-00, a), h E (-co, co), is a complex-valued weakly 
stationary random function, and F(X) is the Fourier-Stieltjes transform of 
f = f ( t ) .  We remark that when K(t,X,w) is a polynomial in h, the operator 
L(w) reduces to a random differential operator. Also, the random function 
K( t ,  A, w )  can be expressed in terms of L(w) by the relation 

K( t ,  A, w )  = e- i fAL ( w > I  e"' I. 

-m 

D. A composition theorem 

in the study of solutions of random equations. 
We now state and prove a theorem due to Hans [25] which will be utilized 

THEOREM 2.14. Let X be a separable Banach space and let 23 denote the 
a-algebra of Bore1 sets of X. Let T(w) be a random endomorphism of X;  and let 
~ ( w )  be an X-valued random variable. Put y(w) = T(w)x(w).  Then y(w) is an 
X-valued random variable. 

Proof. Since x(w) is an X-valued random variable, it can be approximated 
by a sequence of countably-valued X-valued random variables {x,(w)}. For 
every w E 52, put y,(w) = T(w)x,(w).  Then, for every B E b 

m 

I =  I 
{w :y,,(w) E B }  = U {w : T(w) 6 B }  n {w :x,(w) = 511. 
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Therefore, {yn(w) }  is a sequence of X-valued random variables. Since T(w)  is 
continuous, limn+a y,(w) = y(w) almost surely; and y(w)  is an X-valued 
random variable. The above theorem states that the class V@,X) of random 
variables with values in a separable Banach space X (cf. Sect. 1.3D) is closed 
under bounded linear random transformations. 

E. Inverse and adjoint random operators 

Let T(w) be a random operator with values in i!(X,g), where X and 'I, are 
separable. The inverse T- ' (w)  of T ( w )  from 9 x X + 9 is defined if and only 
if T ( w )  is one to one almost surely, which is the case if and only if T(w)x  = 0 
almost surely implies x = 6' almost surely. 

Definition 2.28. If T ( w )  is a random operator with values in P(X, g), then 
~ - ' ( w )  is the random operator with values in Q(9, X) which maps T ( w ) x  into 
x almost surely. Hence T- ' (w)T(w)x = x almost surely, x E ID(T(w)), and 
T(w)T- ' (w)y  = y almost surely, y E %(T(u)). T(w) is said to be invertible if 
T-'(w) exists. 

We now state a theorem due to Hang [26] on the inverse of a bounded linear 
random operator which is the probabilistic analogue of Theorem 2.4(a). We 
omit the proof since it is only concerned with establishing the measurability 
of the inverse operator. 

THEOREM 2.15. Let T ( w )  be an invertible random operator with values in 
f?(X,y), where X and 9 are separabfe. Then T- ' (w)  is a random operator with 
values in i?(?), X). 

For other results on the inverse of a random operator we refer to Hans [26] 
and SpaEek [48]. Nashed and Salehi [41a] have recently obtained results on 
the inverse of a separable random operator (cf. Sect. 2.3H) and on the 
measurability of the generalized inverse of a random bounded linear operator 
between two Hilbert spaces. In Sects. 2.4B and 3.3C we consider the inverse 
of operators of the form T ( w )  - &I. 

Let X and 9 be separable Banach spaces, and let X* and 'I,* denote the 
adjoint spaces of X and !?),respectively. 

Definition 2.29. Let T ( w )  E i!(X, '91). The adjoint operator T*(w) of T(w)  is 
defined as follows: T*(w) E Q(9*,X*) is the adjoint of T ( w )  if, for almost 
every w E Q, the equality x* = T*(w)y* is equivalent to the equality 
y*(T(w)x) = x*(x) for all x E 3. 

The fact that T*(w) is a random operator (that is, it is measurable) follows 
from the following result due to Hang [26]. 
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Let T(w) E Q(X,(2)). The following conditions are equivalent THEOREM 2.16. 
(i) the mapping T(w)  of X onto 2) is invertible for  almost all w E Q; 
(ii) %(T*(w)) = X*. Furthermore, if the above conditions are satisfied, then 
T*(w) is invertible, and (T*(w))-' = (T-'(w))*.  Moreover, if any qf the 
operators T(w),  T- ' (w) ,  T*(w),  (T-'(w))* is measurable, then all four 
operators are measurable. 

F. Random operators on Hilbert spaces 

Let H be a separable Hilbert space with inner product (.;), and let 2(H) 
denote the algebra of endomorphisms of H .  Random operators on H to H 
can, of course, be defined using the notions introduced in Sect. 2.3B; however, 
a definition can also be given in terms of the inner product. 

Definition 2.30. A mapping T ( w ) :  52 x H -+ H is said to be a random 
operator on H if the function (T(w)x ,y )  is a scalar-valued random variable for 
every x , y  E H. Obviously T(w) is a random operator if and only if T ( w ) x  is 
an H-valued random variable for every x E H .  

We now prove the following results (cf. de Araya [ 131). 

 THEOREM^.^^. I f  T ( w )  is a random endomorphism of H, then IIT(w)ll is a 
nonnegative real-valued random variable. 

Proof. Let x(w)  be an H-valued random variable, and let {cp, , cp2 , .  . .} 
denote an orthonormal basis for H .  Then (x(w),qn) is a scalar-valued random 
variable for each n ;  and ~lx(w)ii~ = I;-, l(x(~),cp,)1~ is a scalar-valued 
random variable. Now let S be a countable dense subset of the unit sphere in 
H. Then IIT(w)Ii = supxES liT(w)xll is a scalar-valued random variable. 

Definition 2.31. The Hilbert space aa'joint T*(w) of a random endomor- 
phism T ( w )  is defined, for almost all w E 12, by the relation 

( U w )  x, Y> = (x ,  T*(w)y) .  

Since T(w)  is a 2(H)-valued random variable, it follows that T*(w) is also an 
f?(H)-valued random variable. 

The class of Hilbert-Schmidt operators (Def. 2.20) forms a Banach algebra 
(without identity) under the Hilbert-Schmidt norm. The involution T -+ T* 
satisfies the identity (TS,  U )  = (S,  T *  U ) .  Hence the class of Hilbert-Schmidt 
operators G 2 ( H )  is an H*-algebra; and the results of Sect. 1.3F can be used 
to study random Hilbert-Schmidt operators as H*-algebra-valued random 
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variables. We refer to Kannan and Bharucha-Reid [29] for the definition of a 
stochastic integral which is a random variable with values in the class of 
Hilbert-Schmidt operators. 

Also, in view of Theorem 2.12, random endomorphisms of H admit a 
random matrix representation ; and these random matrix operators (especially 
their spectral properties) are of interest in many applied fields. 

For other results on random operators on Hilbert spaces we refer to the 
paper of Hainis [24]. 

G. Expectation and conditional expectation of random operators 

Let T(w)  be an i!(X,9)-valued random variable. Since T(w) is a Banach 
space-valued random variable the results of Sect. 1.3E are applicable, and we 
can consider the expectation and conditional expectation of random operators. 

In defining the expectation of a strong i!(X,Yj)-valued random variable, it is 
necessary to distinguish between the uniform and strong Bochner integrals 
used to define the expectation. If T(w)  is a uniform random operator and if 
&{ljT(w)ll} < a, then T(w) E B,(SZ, i!(X,y)) and the results for the strong 
expectation given in Sect. 1.3E apply directly. In this case the expectation of 
T(w)  is given by 

d{T(w)} = = (B)IQ T(w)  dp, (2.5) 

and U E 2(X, 9). The Bochner integral in (2.5) is the limit in the uniform 
operator topology of the approximating integrals (B) JQ T,,(w)dp. If, however, 
T ( w ) x  E Bl(SZ,9) for each x E X, then the earlier results simply assert that 

We now state two results concerning the strong expectation of random 
b{T(w)x}  = ux E 9. 

operators. We refer to Hille and Phillips [28, pp. 85-86] for the proofs. 

THEOREM 2.19. I fT(w)x  E B1(.Q,'2))for each x E X ,  then 

ux = b{ T(w) x} 

dejines a bounded linear operator on X to 9. 

We now prove a few results on the expectation of random endomorphisms 
on a Hilbert space (cf. Hainis [24]). 

THEOREM 2.20. 
its Hilbert space adjoint. Then (8{T(w)))* = b{T*(w)}. 

Let T ( w )  be a random endomorphism of H ,  and let T*(w) be 
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THEOREM 2.21. Let T(w) be a random endomorphism of H. If IiT(w)lI is a 
scalar-valued random variable, then ll&'{T(w)}ll G B{IIT(w)ll). 

Proo$ From the relation II~?{T(w)x}ll G &{llT(w)xll}, x E H ,  it follows that 

Hence li&{T(w>}ll a l v w ) l l } .  

It is of interest to remark that i t  is also possible to define the expectation of 
a random closed linear operator. We know that a metric can be introduced in 
O(X,g)  so as to make it into a metric space (cf. Sect. 2.2C). Also, a metric can 
be introduced in certain equivalence classes of closed linear operators which 
are infinitesimal generators of semigroups of operators (cf. Hille and Phillips 
[28, pp. 410-41 51). In these cases the definition of expectation due to Doss [I51 
can be used to define the expectation of a random closed linear operator. If 
( M , d )  is a metric space, then an M-valued random variable x(w) is said to 
have Doss expectation 8 E M if 

d(t9 Y> G a d ( x ( w ) ,  Y>> (2.6) 
for every y E M .  

Concerning the conditional expectation of random operators, it is, of 
course, necessary to distinguish between the conditional expectations based 
on the uniform and strong Bochner integrals. In the first case, let 
T(w)  E B,(Q, Q(X,g)). Then, a strong random operator b{T\%,}(w) is said 
to be the conditional expectation of T(w)  E B,(Q, Q(X,g)) relative to )u0 if and 
only if it satisfies the following conditions: (i) 8{Tl2lO}(w) is %,-measurable 
and is an element ofB,(Q, 2(X,9)), (ii)(B) JA b(T[%,,}(w)dp = (B) JA T(w)dp 
for every A E %,. 

If T(w)x E B,(Q,9) for each x E X, then b{Txl'u0}(w) is a strong 9-valued 
random variable, and Def. 1.27 can be used to define the conditional expec- 
tation of T(w)x .  We refer to Rao [44, 461 for a discussion of the conditional 
expectation of operator-valued random variables and its properties. The 
existence of the conditional expectation of operator-valued random variables 
enables us to define operator-valued martingales. These will be considered in 
Sect. 2.5. 
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H .  Separable random operators 

In this section we introduce the notion of a separable random operator, and 
consider certain properties of this class of random operators (cf. Mukherjea 
[38, 391, and Mukherjea and Bharucha-Reid [40]). Let X be a separable 
Banach space; and let 3 denote the countable class of all sets of the form 
{ x :  1Ix - x i ! /  G r } ,  {x: l/x - xill 2 r } ,  and their finite intersections, where 
(x i}dl  is dense in  X and r is a rational number. 

Definition 2.32. A random operator T ( w ) :  Q x  X + X is said to be 
separable if there exists a countable set S in X and a negligible set N E 41 such 
that 

{ w : T ( w ) x ~ K ,  X E F }  A ( w : T ( w ) x ~ K ,  x E F ( I S } c  N 

for every compact set K and every F E 8. 

It is clear that the above definition is simply that of a separable Banach 
space-valued ;andom function (cf. Def. 1.36); that is, with reference to the 
mapping T ( w ) x  = Tx(w), x plays the role of a parameter, and the parameter 
set is a Banach space. 

We now state a result which states that under certain conditions every 
random operator is equivalent to a separable random operator. 

THEOREM 2.22. Let X be a separable Banacli space, and let E be a compact 
subset of X. I f  T ( w ) :  Q x X + E is a random operator, then there exists a 
separable random operator F(w)  : Q x X + X such that 

p ( ( w  : T ( w )  x = F(w) x})  = 1 .  

A sufficient condition for separability is given by the following theorem. 

THEOREM 2.23. Let X be a separable Banacli space, and let T(w)  : !2 x X + X 
be a continuous random operator. Then T(w)  is separable. 

For a random endomorphism T ( w )  on a separable Hilbert space we showed 
(Thecrem 2.17) that I/T(w)lj is a real-valued random variable. The next 
theorem establishes the connection between separability of a random operator 
and the measurability of its norm. 

THEOREM 2.24. Let T ( w ) :  Q x X + E be a separable random operator, where 
E is a compact subset of a separable Banach space X. Then llT(w)lI is a non- 
negative real-valued random variable. 

Proofs of the above theorems, as well as other results on separable random 
operators, are given by Mukherjea and Bharucha-Reid [40]. For some recent 
results on separable random operators we refer to Nashed and Salehi [41a]. 
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2.4 Spectral Theory of Random Operators 

A .  Introduction 

Let L be a linear operator on a Banach space X to itself. Put L(h) = L - hl, 
where h is a complex number. Then L(h) is a well-defined linear operator on 
ID(L) = X. 

Definition 2.33. (i) The values of h for which L(h) has a bounded inverse 
(L-hZ)-I with domain dense in X form the resolvent set p(L) of L.  
R(h; L)  = ( L  - XI)-' is called the resolvent operafor associated with L. (ii) The 
values of h for which L(h) has an inverse whose domain is not dense in X form 
the residual spectrum Ra(L) of L. (iii) The values of h for which L(X) has an 
unbounded inverse whose domain is dense in X form the continuous spectrum 
Co(L) of L. (iv) The values of h for which no inverse exists form the point 
spectrum Po(L) of L.  

We state the following basic facts (cf. Hille and Phillips [28, Sect. 2.161, 
Taylor [49, Chap. 51: 

1. The four sets p(L), Ra(L), Co(L) and Pu(L) are mutually exclusive; and 
p(L) U Ra(L) U Ca(L) U Pa(L) = C (the complex plane). 

Ra(L) u Co(L) u Po(L) = a(L) 

is the spectrum of the operator L. 
2. p(L) is an open set, and a(L) is a closed set. p(L) is not empty when L is 

a bounded linear operator. If L is closed, then h E p(L) if and only if L-'(h) 
exists and %(R(h;L)) = X. In this case R(X;L) E f?(X). 

3. A, E Po(L) is called an eigenvalue of L ;  and if Lxo = hoxo, xo # 0, then 
xo is called an eigenfunction of L. 

4. If L is an endomorphism of X, then the following limit exists: 
llLnl~l'" = r(L). r(L)  is called the spectral radius of L.  The following 

inequality is always valid: r(L)  G IlLll. 

The spectral theory of linear operators, which is of great importance in 
applications of operator theory, is concerned with the study of the relations 
among the operators L, (L  - hZ)-', the sets p(L) and a(L), and other operators 
and linear subspaces of X which are related to the above. In this section we 
present some results on the spectral properties of random operators. The 
spectral theory of random operators is in its early stages of development, 
hence only a few general results are known. These results will be given in 
Sect. 2.4B. The spectral properties of random matrices have been studied 
extensively by statisticians and physicists. A survey of the spectral theory of 
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random matrices is given in Sect. 2.4C. For other results on the eigenvalues of 
random operators we refer to Chap. 5. 

B. Spectral analysis of random linear operators 

Let X be a separable Banach space, and let !i?(X) denote the algebra of 
endomorphisms of X. Let T(w) be a random endomorphism of X; that is, 
T ( w )  is a random variable with values in the measurable space (!i?(X), 23). If 
T ( w )  is a random endomorphism with D(T(w)) = X, then T(w) - hZ is also a 
random endomorphism, where Zdenotes a random operator which is equivalent 
to the identity operator. 

THEOREM 2.25. Let T(w) be a random endomorphism of X. Let 

p(T(w)) = { (A ,  w )  : (A, w )  E R x Q, (T(w)  - hZ)-' exists and is bounded} 

denote the resolvent set of T(w). Then for every h E R, {w : (h,w) E p( T(w))} E %. 

Proof. Let L be an endomorphism of X. It is known that the set 
Bh = { L : L  E !i?(X), h E p(L)} is open for every h E R.  Hence Bh E 23. The 
assertion of the theorem follows from the equality 

{w :(A, w )  E p(L(w>)> = {w : T(w) E Bh), 

which holds for every h E R.  

The above theorem, which is due to HanS [27], establishes the fact that the 
A-section of the resolvent set of a random endomorphism is %-measurable. 

It is well known that if L is an endomorphism of X, then all X such that 
[hi > I/LI( belong to p(L), and for these X the resolvent operator 
R(h;L)  = ( L  - hZ)-' admits the series representation 

the series converging in the uniform topology of L(X) (cf.Taylor [49, pp. 260- 
2611). We now prove a result, due to Bharucha-Reid [ 6 ]  (cf. also [5]) and 
Hans [27], which establishes the existence and measurability of the resolvent 
operator of T(w).  

THEOREM 2.26. Lei T ( w )  be a random endomorphism of I, and let T(w) - hZ 
be invertible for each w separately in the set SZo(h) = { w :  ( A (  > lIT(w)ll}. Then, 
the resolvent operator R(X; T(w))  exists for  all w E SZo(h) and is a random 
operator, measurable with respect to the a-algebra !&(A) fl 91. 
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Proof. For an arbitrary, but fixed, wo we can use the classical result which 
states that the resolvent operator R(h; T(w)) exists for an arbitrary A for which 
Ihl > IlUwo>lI, since 

R(A; T(w0)) = -( 1 /A) ( I  - T(w0) A V - 1  
m 

n=O 
= -(1 /A) 2 h - n  T"(wo), 

this series converging for llT(wo)k1Il < 1 (cf. Kolmogorov and Fomin [31, p. 
2361). Now let Qo(A) = {w : 1x1 > IlT(w)ll} c Q, where, by hypothesis, T(w)  - AZ 
is invertible separately for each w E Qo(h). Then R(X;T(w)) exists for all 

E SZo(h), and is measurable with respect to the reduced a-algebra (Qo(A) f l  a); 
hence R(h; T(w)) is a random endomorphism of X. 

We remark that for all w E Go, o(T(w)) is contained in a circle of radius 
jJT(w)jl with center at zero. Hence the radius of the circle enclosing the spectrum 
is a real-valued random variable. 

In Sect. 3.3C we give another theorem on the invertibility of T(w) - A, the 
proof of which is based on the contraction mapping theorem for random 
operators. 

The next result, due to Bharucha-Reid [6], is a probabilistic analogue of the 
classical result for the series representation (2.7) of a resolvent operator. 

THEOREM 2.27. Let To(w) denote the restriction of T ( w )  to the set Qo(Xo), A,, 
$xed. Then, for all A such that Ihl > IhoI belong to p(To(w)), and for these A the 
resolvent operator admits the series representation 

m 

n= I 
R(h;  T ~ ( w ) )  = - 2 A-" Ton-'(,) 

Proof. The existence of the resolvent operator for all X such that 
1x1 2 \ A o \ ,  and for all w E Qo(Ao), follows from Theorem 2.26, since for 
/ A \  2 \ A o \  we have Qo(h0) c Qo(A). The other assertion of the theorem follows 
from the classical result. 

Let (C,5) be a Borel space, where C is the complex plane and 5 is the 
a-algebra of all Borel sets of the complex plane. Consider the product 
measurable space (C x Q, 5 x a), where 5 x 21 is the minimal a-algebra 
containing all rectangles F x A ,  F E 5, A E 2l. We now state and prove two 
theorems due to Ryll-Nardzewski [47]. 

THEOREM 2.28. Let Z be a measurable subset of C x Q, and let Z,  and ZA 
denote the sets {A : (A,  W )  E Z }  and {w : (A,  w )  E Z } ,  respectively. Zfthe sets Z,  are 
countable for almost all w E Q, then ~ ( Z A )  = 0 for h E C with the exception of a 
countable number of A's, that is, the cardinality of the set {X:p(ZA) > 0}  G No. 



84 2 Operator- Valued Random Variables 

Proof. Suppose the set Q = (A:p(ZJ > 0) is uncountable. p(ZA), as a 
function of A, is %-measurable for every rectangle F x A ,  F E  8, A E CU. 
Consequently, p(ZJ is measurable for every Z E 5 x X. Therefore Q E 8. 
According to a theorem of Alekandrov and Hausdorff (cf. Kuratowski [32, 
p. 3551) the uncountable Bore1 set Q contains a subset homeomorphic to the 
Cantor set. For the Cantor set one can construct a o-finite measure v vanishing 
for all one-point subsets and positive for the whole set (cf. Munroe [41, 
pp. 193-1941). Hence v ( Q )  1 0 .  An application of Fubini’s theorem to the 
product measure v x p gives 

On the other hand, since v vanishes for all one-point subsets of C, we have 

(v x p)(Z) =Jv(ZW,dp = 0. 

This contradiction concludes the proof. 

The above theorem, which is of independent interest, will now be used to 
prove a theorem which gives sufficient conditions that the point spectrum of a 
random endomorphism be countable. 

THEOREM 2.29. If (i) T(w) is a weak random operator on a separable Banach 
space, and (ii) for almost all w E SZ the set of A’s for  which a bounded inverse of 
(T(w) - AZ) does not exist is countable, then the set of A’s for which a bounded 
inverse of T ( w )  - hI on any SZ-set of positive measure does not exist is also 
countable. 

Proof. We first remark that the separability of X implies that T(w)  is a 
strong random operator. Let 

Z = {(h,w): (A,w) E C x 52, a bounded inverse of (T(w)  - hZ) does not 
exist} 

=z1 u z2,  
where 

Z1 = { ( h , ~ ) :  @ , w )  E C x SZ, (T(w)  - hZ)-I exists but is not bounded} 
Z2 = {(h,w): (h,w) E C x 52, (T(w)  - AZ)-’ does not exist}. 

Let (x,) be a sequence dense in X. Then, we have 

21 = 6 6 G {(A, w )  : (A, w )  E c x Q, Il(T(w) - w x m  - &I1 < 1 /PI 
n-1 p-I m=l 
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Thus, Z ,  and 2, are measurable with respect to the product a-algebra 8 x '$I, 
which, in turn, implies the measurability of Z .  The assertion of the theorem 
now follows from condition (ii) and Theorem 2.28. 

As pointed out earlier, if T(w)  is an i?(X)-valued random variable with 
a(T(w))  = X, then T(w) - XI is also. Let v denote the probability measure on 
(2(X), 8). Since 2(X) is a Banach algebra on which we can define a probability 
measure, it is possible to utilize certain results from the theory of Banach 
algebras in order to formulate some measure-theoretic problems associated 
with resolvent operators of random operators (cf. Grenander [23, pp. 160- 
1611). 

X is said to be regular if x-l 
exists, and is said to be singular if x-' does not exist. Let % denote the set of 
regular elements of X. The regular elements form an open set in X; and the 
inverse x-' is a continuous function of x in % (cf. Hille and Phillips [28, 
p. 1181). 

Let T(w) be an 2(X)-valued random variable, and consider the random 
operator T(w) -h l .  Since % is an open set, % E 23, hence v(%) is the 
probability that T(w)  - hZ is regular, that is, invertible. If v(%) > 0, then 
we introduce the conditional probability of (T(w) - hZ)-I given that 

Let X be a Banach algebra. An element x 

T(w) - hZ€ 93: 

Y { ( T ( w )  - M ) - L  E BIT(w) - hl  E %} 

Y{(T(w)  - A])- '  E B, T(w) - h l  E %} 
- - 7 

B{T(w)  - hl  E %} 

where B E  23. Since (T(w) - hZ)-I is a continuous function of T(w), the set 
{(T(w) - XI)-' E B, T(w) - h l  E %} E 8. In view of the above, we can introduce 
the notion of the probability distribution of (T(w) - hZ)-'. 

Let H(h) = P{A E u(T(w))} = P{T(w) - hZ$ %}. Consider the set 
{T(w):(T(w) - hZ)-I does not exist} c i?(X), and let I ( A ;  T(w)) denote the 
indicator or characteristic function of the above set. Then H(h) =@{Z(h; T(w)));  
and for any constant a the set {(A, T(w)):Z(X;T(w)) <= a}  is an open set in 
c x i?(X), which implies that l(X; T(w))  is Bore1 measurable on C x i?(X). 

In closing this subsection, we remark that the spectral radius of a random 
endomorphism, that is, r (T (w) )  = limn+m IIT"(w)I1'/", is a well-defined real- 
valued random variable; and the inequality r(T(w))  < lIT(w)ll holds almost 
surely. Also, if T(w) is an i!(H)-valued random variable, where His  a separable 
Hilbert space, and T(w) = T*(w) a s ,  then r(T(w)) = llT(w)ll. 
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C. Spectral theory of random matrices 

If M is a endomorphism of a finite-dimensional Banach space X with 
D ( M )  = X, then M can be represented by an n x n matrix, say (mi j ) .  In this 
case M - AZ is also represented by a matrix, and a ( M )  is composed of those 
scalars h which are roots of the determinented equation 

IM-XII = O .  (2.8) 
Equation (2.8) is an algebraic polynomial of degree n in A. Therefore, if the 
scalar field is complex, u ( M )  contains at least one point, and it may contain at 
most n points. If, however, the scalar field is real, a ( M )  may be empty. 

Let M be an n x n random matrix; hence M ( w )  = (mi j (w) )  is an i?(R,,)- 
valued random variable, and M ( w )  - AZ is also. The spectrum of M ( w )  is 
composed of those scalar-valued random variables which are the roots of the 
random algebraic equation 

IM(w) - A l l  = 0 (2.9) 
(cf. Bharucha-Reid [7]); hence u ( M ( w ) )  will be a random subset of the 
complex plane. 

The spectral theory of random matrices has been developed primarily by 
workers in mathematical statistics and mathematical physics. In multivariate 
statistical analysis random matrices of estimated variances, covariances and 
correlation coefficients are studied (cf. Anderson [I]). The matrix elements 
have a Wishart or normal distribution; and the random eigenvalues 
A,(w), A&), . . . , A,(w), which are used in the statistical analysis, form an 
n-dimensional random vector. In some cases the joint probability distribution, 
or density, can be determined explicitly. 

In quantum mechanics the energy levels of a system are supposed to be 
described by the eigenvalues of a Hamiltonian operator H ,  which is a Hermitian 
(that is, linear symmetric) operator defined on an infinite-dimensional Hilbert 
space 9. Because physicists are primarily interested in the discrete part of the 
energy level schemes of various quantum mechanical systems, the Hilbert 
space sj is approximated by a finite-dimensional Hilbert space 43,. The 
selection of a basis in So permits H to be represented by a finite-dimensional 
matrix. Therefore, if the eigenvalue equation ( H  - A])$ = 0 can be solved, 
then the eigenvalues and eigenfunctions of the system can be determined. 

Because of the complex nature of the Hamiltonian, probabilistic hypotheses 
on H are introduced. Hence H i s  represented by a random matrix. We refer to 
Mehta [36] and Porter [43, pp. 2-87] for detailed discussions of the physical 
aspects of the representation of the Hamiltonian operator by a random 
matrix. 

We first consider the determination of the probability density of the eigen- 
values of an n x n real symmetric random matrix. The method, which is 
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based on Wishart distribution [ I ,  541 considers an n x n real symmetric 
matrix M whose elements are (i) statistically independent except for a sym- 
metry condition so that mij  and mrs are independent if ( i J ) # ( r , s )  and 
( i , j )  # ( s , r ) ,  m;i = m:j, and (ii) the m i j  are normally distributed with means 
zero and variances o:, = 1, u:j = + for i # j .  In this case the joint probability 
density of the n eigenvalues is given by 

(2.10) 

( K  a constant) in the region A, 2 A2 2 . . . > A,, and 0 otherwise. 
The determination of the asymptotic distribution of the eigenvalues of a 

random matrix is of great theoretical interest and of importance in many 
applied problems. Let us consider an n x n matrix M ,  = (mi j )n  whose 
elements are real-valued random variables. We assume that mij(w) = mji(w) 
almost surely for all i, j ,  but that the mij  are statistically independent for 
i>j. Also, we assume that the elements mij(w)  (for i > j )  have the same 
distribution function F, while the diagonal elements mii have the same 
distribution function G. Finally, we assume that 

€(rn:,(w)) = I x2 dF = u2 < co (i #, j ) .  

(2.11) 
and let A, ,, ,AZ,,,. . . ,A,,, denote the eigenvalues of Q,. If we denote the 
empirical distribution function of the eigenvalues by W,, then W, = n-' N,(x), 
where N,(x) is the number of eigenvalues less than x. The problem is to 
determine the asymptotic behavior of the sequence { W,} of random distri- 
bution functions. 

The basic result is due to Wigner [52, 531, who proved the following result. 

 THEOREM^.^^. I f  (i) j IxlkdFcm a n d j  lxlkdG<m f o r a l l k =  1,2, ..., and 
(ii) F and G are symmetric, then limn+m &(W,(x)} = W(x),  where W is an 
absolutely continuous distribution function with density 

(2.12) (2/r)(l  - x ~ ) ' / ~  for 1x1 G 1 
( 0  for 1x1 > 1. 

w(x) = 

Because of the form of iv(x), Theorem 2.30 is often referred to as Wigner's 
semi-circle law. Grenander [23, pp. 178-180, 209-2101 observed that, under 
the hypotheses of Theorem 2.30, W,(x) = W(x) in probability. Arnold 
12, 31 has proved the following result, which is both a weak (convergence in 
probability) and strong (convergence almost surely) generalization of Theorem 
2.30. For related results, see Olson and Uppuluri [41b]. 
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THEOREM 2.31. Let J x2dG < co, J x4dF < 0, and J xdF  = 0. Then ,for the 
distribution function W,, of the eigenvalues of the random matrix Qn, 
limn W,,(x) = W ( x )  in probability. If, moreover, J x4dC < co and J x6dF< co, 
then limn Wn(x)  = W ( x )  almost surely. 

It is o f  interest to note that Bohigas and Flores [8] have shown (numerically) 
that pronounced deviations from Wigner's semi-circle law are obtained if the 
two-body nature of the Hamiltonian is taken into account. In particular, they 
showed that the limiting density is approximately normal. 

The literature dealing with random matrices and their properties is very 
extensive (cf. Mehta [36], Porter [43]); and readers interested in studying the 
spectral properties of random linear operators on Banach spaces should, as 
the first step, acquaint themselves with the techniques used to investigate the 
statistical properties of the eigenvalues of random matrices. Some interesting 
problems which we have not considered here concern (1) the study of the 
correlations between eigenvalues of a random matrix (Dyson [19], Mehta 
[37]), (2) the distribution of the trace of a random matrix, and (3) inequalities 
for the expectation of the roots of a random matrix (Cacoullos and Olkin 
[12]). In Sect. 5.2 we consider an eigenvalue problem for a random Fredholm 
operator with degenerate kernel (cf. also Umegaki and Bharucha-Reid [51]), 
and in Sect. 5.3 we consider some eigenvalue problems for random Fredholm 
operators with symmetric kernels (cf. also Boyce [9]). 

2.5 Operator-Valued Random Functions 

A .  Introduction 

Consider the measurable space (2(X), !B) where 2(X) is the algebra of 
endomorphisms of a separable Banach space 3E and 23 is the o-algebra of 
Borel subsets of 2(X); and let (T, 2) be a measurable space where Tis a subset 
of the extended real line R and Z = T n 3, where '% is the u-algebra of Borel 
subsets of R. 

Definition 2.34. An 2(X)-valued random function on T is a mapping 
X(t ,w):  T x D + 2(X) such that for every t E T, Xis an 2(X)-valued random 
variable. 

In this section we will restrict our attention to random functions with values 
in the algebra of endomorphisms i?(X); and since 2(X) is a Banach space, all 
of the definitions of Banach space-valued random functions given in Sect. 1.4 
can be used to define the basic classes of 2(X>valued random functions. 
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Similarly, the notions of equivalence, separability, measurability, and con- 
vergence presented in Sect. 1.4 are applicable to f?(X)-valued random 
functions. 

In  the subsequent subsections we define and give some examples of some of 
the basic classes of random functions with values in f?(X). 

B. Stationary random functions 

Operator-valued stationary random functions have been studied by several 
mathematicians; we refer, in particular, to Loynes [33j, Mandrekar and 
Salehi [34], and Payen [42]. Let H I  and H2 be two separable Hilbert spaces, 
and let (G,+) be a locally compact Abelian group. 

Definition 2.35. X ( t ,  w )  : G x SZ + G 2 ( H , ,  H z )  is said to be an G 2 ( H I ,  H2)- 
valued weakly stationary random function if &{X*( t ,  w) X(s,w)}  is a function 
o f s - t  

If t -+ X ( t , w )  is a continuous mapping, then X ( t , w )  admits the integral 
representation (cf. [34, 421) 

w 7  w) = J B  ( 4  A> d E ( 4  m 7  w) ,  (2.13) 

where e is the character group of G, and E is a spectral measure on the 
o-algebra B of Bore1 sets of e whose values are projection operators on H2 
into H2.  Put ( ( A ,  w) = E ( A )  X(0 ,  w). Then 

( * ( A )  ( ( B )  = x*(o, w) E ( A  n B )  X(O,  w) = M ( A  n B). 

Since X(0 ,  w )  E G 2 ( H I ,  H2)  and E E 2 ( H l ,  H2) ,  ( ( A ,  w )  is G2(H, , H2)-valued. 
M is called the spectral measure of the random function. 

We refer to Mandrekar and Salehi [34] and Payen [42] for detailed dis- 
cussions of G2(H, , H2)-valued weakly stationary random functions. 

In Loynes [33] second-order stationary random functions with values in a 
so-called LVH-space.? Let sj be a LVH-space. An $-valued random variable 
is said to be a second-order random variable if 6{[x(w),x(w)]} is defined, 
where [. , a] denotes a vector inner product. Let sj be the space of r x s (complex) 
matrices, and define [A,B] = B*A, A , B  E sj, where B* denotes the Hermitian 
adjoint of B. Loynes has shown that sj is a LVH-space, and if {X,(w)} is a 
sequence of random r x s matrices and &' { X i ( w )  Xm+,} = R, depends only on 
n, then 

~ , ( w >  = Jb'" e i n A  d Y(A ,  w), 

where Y(A, w), for each A, is an r x s random matrix. 
t We refer to Loynes [33] for the definition of a LVH-space. 
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C. Markov processes 

Let 2 ( H )  be the algebra of endomorphisms of a separable Hilbert space H, 
and let G 2 ( H )  be the class of all Hilbert-Schmidt operators in 2 ( H ) .  Let 
X( t ,w) ,  t E T, be a G2(H)-valued random function. Associated with X ( t , w )  
are the following subspaces: M ( X ( t ,  w)) denotes the closed subspace gener- 
ated by X ( t , w )  over 2 ( H ) ;  and M ( t )  denotes the closed subspace generated 
by X(T,W), T G t ,  over 2(X). Mandrekar and Salehi [35] have introduced the 
following definition. 

Definition 2.36. An G,(H)-valued random function is said to be a wide- 
sense Markov process if for $9 < t 

( X ( t ,  w)lM(s)) = (Wt, W) lX(S>  w)),  (2.14) 

where ( X ( t , w ) I M )  denotes the projection of X ( t , w )  onto M .  

Let A(s, t )  = f - '(s ,s)T(t ,s) ,  where r is the covariance function defined by 
r ( s ,  t )  = X*( t ,  w )  X ( s ,  w ) ,  and F-' denotes the generalized inverse? of r. We 
denote by !Rsr the range of T(s , t ) .  The following useful theorem gives a 
necessary and sufficient condition that an G,(H)-valued random function be 
a wide-sense Markov process. 

THEOREM 2.32. Let X ( t , w )  be an G2(H)-valued random ,function such that 
gtS c !Rss with A(s ,  t )  = F(s,s)F(t ,s) .  Then X ( t , w )  is a wide-sense Markov 
process i fand only f A ( s ,  u)  = A(s,  t ) A ( t ,  u) ,  t E [s, u] .  

We refer to Mandrekar and Salehi [35] for a proof of the above theorem, and 
for other results concerning G,(H)-valued Markov processes and operator- 
valued random differential equations. 

D.  Wiener processes 

The following generalization of the classical Wiener process is due to 
Cabafia [lo]. Let B,(R, 2 ( H ) )  denote the collection of second-order 2(H) -  
valued random variables; that is, B2(Q, i ! (H) )  is the collection of all 2 ( H ) -  
valued random variables X ( w )  such that & ( ~ ~ X ( W ) / / ~ )  < m. 

Dejinition 2.37. A random function W(t ,  w ) :  [0, TI + H, (where T is 
finite or infinite) is said to be a Wiener process (or operator) if (i) the incre- 
ments of W(t,  w )  corresponding to disjoint intervals are independent; (ii) for 
every s,t E [0, T ) ,  s < f ,  [X(A)J-1/2( W(t ,w)  - W(s,w)), where A = (s,?) and X 

t If A IZ 2(E), then A-' is defined by P 9 ~ l ~ A ~ A - 1 P f l ~ A ~ ,  where %(A) and %(A) are the null 
space and range of A,  respectively. 
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is a finite measure on [O,T); (iii) for every x E H, W ( t , w ) x  is weakly 
continuous a s .  as a function of t .  

The operator-valued Wiener process defined above has been used by Cabaiia 
to define a stochastic integral of It8 type, this integral being required for the 
study of random differential and integral equations of It6 type in Hilbert 
spaces (cf. Sect. 7.3B). Cabaiia [ I l l  has given another definition of an 
operator-valued Wiener process. 

E. Martingales 

Let {Xn(w),  'LI,,,n 2 I}  be a sequence of strong 2(X)-valued random 
variables, where {21n,n > I} is an increasing family of sub-o-algebras of 91. 
The following definition is due to Rao [45, 461. 

Definition 2.38. A sequence {Xn(w),  a,, n 2 I} of strong i?(X)-valued 
random variables is said to be a strong operator-valued martingale i f  
€{X,,(w)I%,,,} = Xm(w), for m < n, strongly a.s. 

We remark that if 'LI, is an increasing sequence and X(w)  is a strong and 
Bochner integrable i?(X)-valued random variable, and if X,(w) = €{X(w)121n}, 
then {Xn(w),  'LI,,, n > 1) is a strong operator-valued martingale; and if X is 
separable, then {X,(w)} is a uniformly integrable martingale, that is ,  
{IIX,,(w)II, n 2 l} of real-valued random variables is uniformly integrable. If 3 
is not separable, then (IIX,(w)xII, n >, l} is uniformly integrable for each x E 3. 
A sufficient condition that a sequence of 2(X)-valued random variables be a 

martingale is given by the following theorem. 

THEOREM 2.33. Let (X, (w) ,  1 < n < no} (no finite or infinite) be a sequence of 
strong i?(X)-valued random variables such that {x*(X,(w)x), %,, 1 < n G no}, is 
a real-valued martingale for every x* E X  and XEX. Then {X,,(w),YI,,, 
1 < n < no} is a strong operator-valued martingale. If X is separable, then 
~ ~ ~ ~ , ( ~ ) ~ l ,  an, 1 < n < no} is a real-valued submartingale. 

Mandrekar and Salehi [35] have introduced the notion of a wide-sense 
G,(H)-valued martingale, and have used this notion in the study of %(H)- 
valued Markov processes. 

Definition 2.39. { X ( t ,  w),  t E T} ,  is said to be an G,(H)-valued wide-sense 
martingale if ( x ( t , ~ ) [ M ( s ) )  = X(s,w).  
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2.6 Limit Theorems 

A. Introduction 

In Sect. 1.6 we considered some limit theorems for Banach space-valued 
random variables. Since in a Banach space addition is the only algebraic 
operation, the theorems considered in Sect. 1.6 might be termed additive 
limit theorems. For operator-valued random variables, we can study two 
general classes of limit theorems. !i?(X, 9) is a Banach space, hence for !i?(x,g) 
random variables the additive limit theorems of Sect. 1.6 are applicable. 
However, 2(X) is also a Banach algebra; hence we can consider multiplicative 
limit theorems, as well as additive limit theorems, for Q(X)-valued random 
variables. 

The study of multiplicative limit theorems was initiated by Bellman [4] 
who considered the asymptotic behavior of the product 

where {X,(w)} is a stationary sequence of k x k random matrices. In particular, 
Bellman showed that if the Xi(w) are independent and have strictly positive 
elements, then, under certain conditions a weak multiplicative law of large 
numbers holds; that is, if t:"j'(w) denotes an element of T,(w), then 
limn+m (l/n) E{t($(w)} exists. The study of the asymptotic behavior of 
products of random matrices is of importance in the analysis of the limiting 
behavior of solutions of systems of differential and difference equations with 
random coefficients. 

We now state a theorem due to Furstenberg and Kesten [22] which is a 
strong multiplicative law of large numbers for products of random matrices. 

THEOREM 2.34. I f  {Xi(w)} is a stationary sequence of random matrices with 
values in 2(Rk),  then limn-rm (l /n)  d{logI(T,,(w)l(} = T exists (T not necessarily 
finite). u, in addition the Xi(w) are independent and identically distributed and 

lim sup (1 In) log llTn(w)ll s T 

Tn(w) = X d w )  xn- I(w) . . . XI (w) ,  (2.15) 

~{log+llxdw)ll}< a,? then 

n-tm 

almost surely. 

The above theorem is for random variables with values in the algebra of 
matrices !i?(&); however Grenander [23, Theorem 7.2.21 has shown that a 
theorem of the above type can be proved for a sequence of independent and 
identically distributed random variables with values in any separable Banach 
algebra. We refer to Furstenberg [21] for a detailed investigation of non- 
commuting products of independent and identically distributed rarLdom 
variables with values in an arbitrary group. 
t log+x = max(logx,O). 
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We now state and prove a multiplicative law of large numbers for random 
variables in a separable Banach algebra due to Grenander [23]. We state the 
theorem for !i?(R,)-valued random variables, since only when X = R, is !i?(X) 
a separable Banach algebra. 

THEOREM 2.35. Let { Xi(w) }  be a sequence of independent and identically 
distributed Q(R,)-valued random variables such that C5{~~Xl(w>i~} < a. Then 

converges strongly in probability to 7 = exp{ ${ X,(w)}} .  

Proof. Put 
n 

S:n)(w) = ( 1 in) 2 X,(w>, 
j =  I 

S:"'(w) = 2 xj (w)  X k ( w ) ,  
f < j < k c n  

etc. Then 
n 

T,(w) = I + 2 S y y w ) .  
1= I 

Now, by Theorem 1.32 (the additive strong law of large numbers for Banach 
space-valued random variables), S(,") + &{X,(w)} strongly. 9;) can be 
written as 

where 
1 k - l  

S:k'(w) = - 2 xi (w) .  
k - l  

i =  I 

However, 

where ilek(w)li --f 0. Hence 
S(,'"(W) = &{X,(W)}  + ek(w) as . ,  

Therefore 

where IlS,(w)lI -+ 0. In general, 
S(;)(w) = ~ ( G F ' { X , ( ~ ) } > *  + 6,(w) a.s., 
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Now 
I 

n 1 < j l < j 2 c  ... <jsn 

I I S ~ Y ~ ) I I  7 2 ilxj,(w)ii.IIxj,(w)il.. . IIxj,(w)i\, 

so that 

It follows from the above results that for any a > 0, p({w : ) I  T,(w) - T I /  > a})  + 0, 
where 

T = I +  &{X,(w))  + +(&{X,(w)>)’ + .  . . = exp{B{Xl(w)}) E 2(Rn). 

The next theorem which we state and prove is an additive strong law of 
large numbers for random variables with values in  2 ( H ) ,  where His a separable 
Hilbert space. This result is due to Hai’nis [24]. We first state the following 
result, also due to Hai’nis. 

{lIW?w)l I> G (a X h ) I  IHkh !. 

THEOREM 2.36. Let H be a separable Hilbert space, and let {Ti(w)}ieN be a 
sequence of mutually independent 2(H)-valued random variables with 
U = d{Ti(w)),  i E N.  If there is a constant M > 0 such that for i E Nand x E H, 
&{i[Ti(w)x[l> < M ,  then the sequence { Y,(w)>, where 

Is I 

converges strongly a.s. to a unique limit operator U. 

Let A = 2 Q H be the space of all square summable sequences in H ;  that is, 
E 8 if and only if 2 llxi112 < Q. For T E  2 ( H ) ,  the sequence Z = 

Tz = T[Xi] .  

 THEOREM^.^^. r f  the hypotheses of Theorem 3.36 are satisfied, and i f  
xy=l S{~lTk(w)xil12) < cafor every k E N ,  then thesequence of random operators 
Y,(w) converges strongly a.s. to a unique operator U. 

Proof. Let Q w >  = ( l / n )  & Ti(w). I f Z  = { X i } i E N  E 8, then 

~ { T k ( w ) z }  = {&{Tk(w)}Xi}iGV { u [ X i ] ) i e N  = 02, 

where 0 is an endomorphism of adefined by U E 2 ( H ) .  
From the relation 

8{~l~k(~)zl12} = 8 IITk(w)xi\12’ 
! i  I 

= 2 & ~ ~ T k ( w ~ x i ~ ~ z }  
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and Theorem 2.36, we conclude that there is a subset .no c l2 such that 
p(sZ-sZ,)=O, and for every w €0, and Z G R  the sequence 

Our last limit theorem is a martingale convergence theorem due to Rao 
[46]. Let X and ‘1) be Banach spaces, where 3 is arbitrary and ‘1) has the 
LRN-property. t 
THEOREM 2.38. Let X,,(w): !2 --f 2(X,’1)), and let {Xn(w),21n, n 2 I }  be a 
strong operator-valued martingale. If sup JQ j l  X,,(w)x!ledp = K, < co for  each 
x E 3, then there exists a strong Q(X,’Z))-valued random variable X,(W) such 
that X,,(w) -+ X J w )  strongly a.s. for  each x E X. u, moreover, X is separable 
and sup(K,: ljxj19 G 1) < m ,  then 11 X,(w) - X,(w)il s( l , l ) )  is measurable and 
tends to zero a.s. as n + 00, even though X,,(w) and X,(W) are necessarily 
uniJorm random operators. 

For other results on the convergence of operator-valued martingales, and 
their applications, we refer to Rao [46]. 

We close this section by remarking that Tutubalin [50] has proved some 
central limit theorems for products of random matrices. 

{II(R(w) - 0 ) z I I ) n e N  + 0. 

References 
1 .  Anderson, T. W., “Introduction to Multivariate Statistical Analysis.” Wiley, New York, 

1958. 
2. Arnold, L., On the asymptotic distribution,of the eigenvalues of random matrices. J. 

Math. Anal. Appl. 20 (1967), 262-268. 
3. Arnold, L., “Zur Asymptotischen Verteilung der Eigenwerte Zufalliger Matrizen.” 

Habilitationsschrift, Univ. Stuttgart, Stuttgart, 1969. 
4. Bellman, R., Limit theorems for non-commutative operations. 1. Duke Math. J .  21 

(1954), 491-500. 
5.  Bharucha-Reid, A. T., On random operator equations in Banach space. Bull. A c d .  

Polon. Sci. Ser. Sci. Math. Astronom. Phys. 7 (1959), 561-564. 
6. Bharucha-Reid, A. T., On random solutions of integral equations in Banach spaces. 

Trans. 2nd Prague Conf. on Information Theory, Statist. Decision Functions, and Random 
Processes (I959), pp. 2748, 1960. 

7. Bharucha-Reid, A. T., Random algebraic equations. In “Probabilistic Methods in 
Applied Mathematics” (A. T. Bharucha-Reid, ed.), Vol. 2, pp. 1-52. Academic Press, 
New York, 1970. 

8. Bohigas, O., and Flores, J., Two-body random Hamiltonian and level density. PhYS. 
Lett. B 34 (1971), 261-263. 

t A Banach space 2J is said to have the LRN (= Lebesgue-Radon-Nikodyn)-property 
relative to (Sr,cU,p) if each countably additive measure Y:  cU --z g, which vanishes on sets Of 
p measure zero, has an integral representation relative to p, that is, there exists a unique 
strong random variable y ( w ) :  Sr + 9 such that 

44 = (8)  S A  y ( w ) d p ,  A E u. 



96 2 Operator- Valued Random Variables 

9. Boyce, W. E., Random eigenvalue problems. In “Probabilistic Methods in Applied 
Mathematics” (A. T. Bharucha-Reid, ed.), Vol. 1, pp. 1-73. Academic Press, New York, 
1968. 

10. Cabaiia, E. M., Stochastic integration in separable Hilbert spaces. Publ. Inst. Mat. 
Estadist. Montevideo 4 (1966), 49-80. 

1 1 .  Cabaiia, E. M., On stochastic differentials in Hilbert spaces. Proc. Amer. Math. Sac. 20 

12. Cacoullos, T., and Olkin, I.,  On the bias of functions of characteristic roots of a random 

13. de Araya, J. A., A Radon-Nikodym theorem for vector and operator valued measures. 

14. Dinculeanu, N., “Vector Measures.” Pergamon, Oxford, 1967. 
15. Doss, S., Sur la moyenne d’un element aleatoire dans un espace distancie. Bull. Sci. 

16. Dunford, N., On one parameter groups of linear transformations. Ann. of Math. 39 

17. Dunford, N., and Schwartz, J. T., “Linear Operators. Part I :  General Theory.” Wiley 

18. Dunford, N., and Schwartz, J. T., “Linear Operators. Part 11: Spectral Theory.” Wiley 

19. Dyson, F. J., Correlations between eigenvalues of a random matrix. Comm. Math. Phys. 

20. Frisch, U., Wave propagation in random media. In “Probabilistic Methods in Applied 
Mathematics” (A. T. Bharucha-Reid, ed.), Vol. 1, pp. 75-198. Academic Press, New 
York, 1968. 

21. Furstenberg, H., Noncommuting random products. Trans. Amer. Math. Soc. 108 

22. Furstenberg, H., and Kesten, H., Products of random matrices. Ann. Math. Statist. 31 

23. Grenander, U., “Probabilities on Algebraic Structures.” Wiley, New York, 1963. 
24. Hainis, J., Random variables with values in Banach algebras and random transfor- 

mations in Hilbert spaces (Greek, French summary). Bull. Soc. Math. Grece (N. S.) 7 

25. HanS, O., Generalized random variables. Trans. 1st Prague ConJ on Information Theory, 
Statist. Decision Functions, and Random Processes (1956), pp. 61-103, 1957. 

26. HanS, O., Inverse and adjoint transforms of linear bounded random transforms. Trans. 
1st Prague Conf. on Information Theory, Statist. Decision Functions, and Random 
Processes (1956), pp. 127-133, 1957. 

27. HanS, O., Random operator equations. Proc. 4th Berkeley Symp. on Math. Statist. and 
Probability (1960), Vol. 11, p p .  185-202, 1961. 

28. Hille, E., and Phillips, R .  S., “Functional Analysis and Semi-Groups.” Amer. Math. 
SOC., Providence, Rhode Island, 1957. 

29. Kannan, D., and Bharucha-Reid, A. T., An operator-valued stochastic integral. Proc. 
Japan Acad. 47 (1971), 472476. 

30. Kato, T., “Perturbation Theory for Linear Operators.” Springer-Verlag, Berlin and 
New York, 1966. 

31. Kolmogorov, A. N., and Fomin, S. V., “Introductory Real Analysis,” rev. Engl. ed., 
translated from the Russian. Prentice-Hall, Englewood Cliffs, New Jersey, 1970. 

32. Kuratowski,K., “Topologie,”Vol. I. Panstwowe WydawnictwoNaukowe, Warsaw, 1958. 
33. Loynes, R .  M., On a generalization of second-order stationarity. Proc. London Math. 

(1969), 259-265. 

matrix. Biometrika 52 (1965), 87-94. 

PacifcJ. Math. 29 (1969), 1-10. 

Math. 73 (1949), 48-72. 

(1938), 569-573. 

(Interscience), New York, 1958. 

(Interscience), New York, 1963. 

19 (1970), 235-250. 

(1963), 377-428. 

(1960), 457469. 

(1966), 179-223. 

SOC., 15 (1969, 385-398. 



References 97 

34. Mandrekar, V., and Salehi, H., The square-integrability of operator-valued functions 
with respect to a non-negative operator-valued measure and the Kolmogorov iso- 
morphism theorem. Indiana Uniu. Math. J .  20 (1970), 545-563. 

35. Mandrekar, V., and Salehi, H., Operator-valued wide-sense Markov processes and 
solutions of infinite dimensional linear differential systems driven by white noise. Math. 
Systems Theory 4 (1970), 340-356. 

36. Mehta, M. L., “Random Matrices and the Statistical Theory of Energy Levels.” 
Academic Press, New York, 1967. 

37. Mehta, M. L., A note on correlations between eigenvalues of a random matrix. Cumm. 
Math. Phys. 20 (1971), 245-250. 

38. Mukherjea, A., Random transformations on Banach spaces. Ph.D. Dissertation, 
Wayne State Univ., Detroit, Michigan, 1966. 

39. Mukherjea, A., Transformations alkatoires separables: Theortme du point fixe aleatoire. 
C.  R .  Acad. Sci. Paris 263 (1966), 393-395. 

40. Mukherjea, A., and Bharucha-Reid, A. T., Separable random operators: I. Rev. 
Roumaine Math. Pures Appl. 14 (1969), 1553-1561. 

41. Munroe, M .  E., “Introduction to Measure and Integration.” Addison-Wesley, Reading. 
Massachusetts, 1953. 

41a. Nashed, M. Z., and Salehi, H., Measurability of generalized inverses of random 
linear operators. To be published. 

41b. Olson, W. H., and Uppuluri, V. R. R., Asymptotic distribution of eigenvalues of 
random matrices. Pruc. 6th Berkeley Symp. on Math. Statist. and Probability (1970), to 
be published. 

42. Payen, R., Fonctions aleatoires du second ordre a valeurs dans un espace de Hilbert. 
Ann. Inst. H. PuincarP Sect. B 3 (1967), 323-963. 

43. Porter, C .  E., “Statistical Theories of Spectra: Fluctuations.” Academic Press, New 
York, 1965. 

44. Rao, M. M., Abstract Lebesgue-Radon-Nikodym theorems. Ann. Mar. Pura Appl. 76 

45. Rao, M. M., Predictions non lineaires et martingales d’operateurs. C. R .  Acad. Sci 
Paris Ser. A 267 (1968), 122-124. 

46. Rao, M. M., Abstract nonlinear prediction and operator martingales. J. Multivariate 
Anal. 1 (1971), 129-157. 

47. Ryll-Nardzewski, C., An analogue of Fubini’s theorem and its application to random 
linear equations. Bull. Acad. Polun. Sci. Sir. Sci. Math. Astronum. Phys. 8 (1960), 
511-513. 

48. SpaEek, A., Sur I’inversion des transformations aleatoires presque sfirement lineaires. 
Acta Math. Acad:Sci. Hungar. 7 (1957), 355-358. 

49. Taylor, A. E., “Introduction to Functional Analysis.” Wiley, New York, 1958. 
50. Tutubalin, V. N., Limit theorems for a product of random matrices (Russian). Teor. 

51. Umegaki, H., and Bharucha-Reid, A. T., Banach space-valued random variables and 

52. Wigner, E. P., Characteristic vectors of bordered matrices with infinite dimensions. 

53. Wigner, E. P., On the distribution of the roots of certain symmetric matrices. Ann. of 

54. Wishart, J., The generalized product moment distribution in sampling from a normal 

55. Zaanen, A. C., “Linear Analysis.” North-Holland Publ., Amsterdam, 1953. 
56. Zadeh, L. A., On a class of stochastic operators. J .  Math. andPhys. 32 (1953), 48-53. 

(1 967), 107-1 32. 

Verojatnost. i Primenen. 10 (1965), 19-32. 

tensor products of Banach spaces. J. Math. Anal. Appl. 31 (1970), 49-67. 

Ann. ofMath. 62 (1955), 548-564. 

Math. 67 (1958), 325-326. 

multivariate population. Biumetrika 2OA (1928), 32-52. 



CHAPTER 3 

Random Equations: 
Basic Concepts and Methods 
of Solution 

3.1 Introduction 

Let 3E and '1, be two Banach spaces, and let T be an operator from 3E to 9. 
The development of deterministic operator theory (indeed, many branches of 
functional analysis) was motivated to a large extent by questions which arose 
in applied mathematics in connection with the formulation of methods for 
solving operator equations of the form 

TX = y .  (3.1) 
In Eq. (3.1), y is known, x is unknown, and Tis a linear or nonlinear operator 
on 3 to '1,. An element xo E 3E is said to be a solution of Eq. (3.1) if Txo = y ;  
and the set S = {xo  : Txo = y ,  x,, E X} is said to be the solutioiz set of Eq. (3.1). 
If S =  @ (the null set), then Eq. (3.1) does not possess a solution; and if 
S # 0,  Eq. (3.1) is said to be solvable. 

One of the major problems in the study of operator equations is to determine 
conditions under which the equation is solvable. Problems of this type are 
referred to as existence problems for operator equations; and the theorems 
which establish such conditions are known as existence theorems. Hence an 
existence theorem for a given operator equation tells us when the solution set 
of the equation is not empty. 

Of equal, if not greater importance in applications, is the problem of 
determining conditions such that an operator equation admits only one 

98 
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solution; that is, the solution set contains only one element. Problems of this 
type are called uniqueness problems; and the theorems that establish such 
conditions are known as uniqueness theorems. 

An important special case of Eq. (3.1) is the homogeneous equation 

TX = e. (3.2) 
In this case S is a subspace of X, called the solution space of Eq. (3.2). If Tis  a 
linear operator, then the method for solving Eq. (3.1) can be described as 
follows: (1) Find all solutions of Eq. (3.2), (2) find one solution of Eq. (3.1), 
and (3) add the solutions. 

A large number of problems in applied mathematics lead to operator 
equations of the form 

or 

where h is a scalar which can be real or complex. The problem of solving Eq. 
(3.3) is called the eigenvalue problem for the operator T. From Sect. 2.4A we 
know that the values of X for which Eq. (3.3) has nontrivial solutions are the 
eigenvahtes of T ;  and for each eigenvalue A,, the nonnull elements of 3E which 
satisfy the equation (T-  X,Z)x = 8 are called the eigenfuncfions of T belonging 

There are a large number of methods available for the solution of linear 
and nonlinear operator equations (cf. Rall [52], Saaty [54]). When the 
formulation of a problem in applied mathematics leads to an operator 
equation of the form (3.1) or (3.3), the method used to solve the equation 
depends to a great extent on the Banach spaces X and 9 (in particular, the 
space X in which the solution is required) and the kinds of information which 
the solution is required to provide. 

In this chapter we consider (1) the formulation of various types of random 
equations, and (2) methods of solving random equations. Section 3.2 is 
devoted to the formulation of random equations and the basic concepts 
associated with random equations. In Sect. 3.3 we consider methods for 
solving random equations. These methods are developed within the framework 
of probabilistic functional analysis. Finally, in Sect. 3.4 we consider some 
measure-theoretic and statistical problems associated with random equations 
and their solutions. 

( T -  hZ)x = y  (3.3) 

( T - X Z ) X = ~ ,  (3.4) 

to A,. 

3.2 Random Equations: Basic Concepts and Examples 

A .  Introduction 

We first consider the probabilistic analogues of Eqs. (3.1) and (3.3). It is 
clear that randomness can be introduced in the equations via the “known” 
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function y (often called the input, forcing function, or nonhomogeneous 
term), the operator T, or both. Hence from Eq. (3.1) we can obtain the 
following random equations : 

TX = ~ ( w )  (3.5) 

T(w) X = y (3.6) 

T(w) x = y(w). (3.7) 

In order for Eqs. (3.5) and (3.6) to be consistent, we must assume that in 
Eq. (3.5) the deterministic operator T is an operator-valued random variable 
which assumes a given value with probability one. Similarly, in Eq. (3.6), we 
assume that y is a Banach space-valued random variable (or function) which 
assumes a given value with probability one. 

As in the case of Eq. (3.1), we can obtain the following random equations 
from Eq. (3.3): 

( T - X Z ) x = y ( w )  (3.8) 

( T ( w ) - X Z ) x = y  (3.9) 
(T(w) - AZ)x=y(w). (3.10) 

We can refer to all of the above equations [that is, Eqs. (3.5)-(3.10)] as 
random equations; however we will use the term random operator equation 
when referring to equations of the form (3.6), (3.7), (3.9), and (3.10). 

Since w is an element of a measurable space (Q, '%) on which there is defined 
a complete probability measure p, it is clear that a random equation is 
actually a family of equations. This family of equations will have only one 
member in the case where p is Dirac measure; that is p((wo)) = 1 and 
p(Q - {coo}) = 0. In this case, of course, we are dealing with a deterministic 
equation. Hence we can state that the classical theory of deterministic equations 
is a special case of the theory of random equations. 

Examples of random equations are numerous. We now discuss briefly a few 
examples of random equations that arise in various applied fields. Consider 
matrix equations of the form 

A x = y  and ( A - X Z ) x = y ,  (3.11) 

where A = (a i j )  is an n x n matrix and x and y are n-vectors. If the matrix 
elements are subject to error, which is frequently the case in applied problems, 
then the aij can often be written in the form ai,(w) = ccij + ei,(w), where the 
elements a i j  are assumed to be known and the perturbing elements cij(w) are 
random variables. In this case Eqs. (3.11) lead to random equations of the 
form (3.6) and (3.9). In the analysis of systems of random linear equations it is 
of interest to consider the random eigenvalue equation 

(A(w)  - AZ) x = 0, (3.12) 



3.2 Basic Concepts and Examples 101 

which, as we know, has a nontrivial solution if and only if h satisfies the 
characteristic equation 

IA(w) - A l l  = 0. (3.13) 

The characteristic polynomial obtained from (3.13) will be a random 
algebraic polynomial of degree n, say Fn(w), and the solutions of the random 
algebraic equation F,(w) = 0 are the eigenvalues of A(w). Many problems in 
economics, linear programming, and physics lead to random matrix equations. 
We refer to Bharucha-Reid [I  1 1  for references to a number of studies. Systems 
of random linear equations are also encountered in the study of systems of 
random difference and differential equations. 

Let 7 denote the translation operator, that is, Tn[xk] = Xk+,,, n = 0,1,. . .. 
Consider the linear difference operator of order n 

n 

k=O 
L = 2 ak rk,  

where the coefficients ak are constants. Linear difference equations of the form 

Lxk = Yk(W), (3.14) 

where the input yk(w) is a random sequence, have been studied rather exten- 
sively in mathematical economics (cf. Koopmans [40]) and in connection 
with stationary time series (cf. Grenander and Rosenblatt 1281). 

Difference equations with random coefficients constitute an important class 
of random operator equations. While many random difference equations arise 
as mathematical models of concrete physical processes, most of those that 
have been studied are obtained as discrete-time analogues or approximate 
equations for differential equations with random coefficients. 

Consider the system of random differential equations 

dx(t)/dt = Ak(W)X(t), t 6 [tk-l , fk], k = 1, 2 , .  . .) (3.15) 

where x(t) is a real-valued n-vector and the Ak(w) are n x n random matrices 
not depending on t .  Equations of the form (3.15) arise in the study of systems 
of differential equations with coefficients that are random functions, but are 
piecewise constant with respect to r .  If the Ak(w) are bounded uniformly in k 
almost surely (that is, there exists a constant M < co such that for all k,  
I .L({W: llAk(w)il< M } )  = I), then, for every fixed k,  Ak(w) is an 2(R,)-valued 
random variable. 

Let x(t, , w )  = xo(w) = xo.  Then the solution of Eq. (3.15) in the interval 
[ t o ,  t l>  is 

x0,  w )  = exp{A dw) ( t  - to)> x0 . (3.16) 
Put 

'k(W) = eXP{Ak(w)(fk - fk-1)). (3.17) 
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Then it can be shown that for t E [tk-, tk], k = I ,2,.  . . 
x(tjW) z= eXP{Ak(W)(f- fk-l)}@k-l(W)'..@I(W)XO. (3.18) 

If we restrict our attention to the solution at time t = t, only, then (3.18) can 
be rewritten as 

x(tk 9 w )  = xk(w) = @k(w) @k-I(w) ' . @ I  xo. (3.19) 
Hence x~(w)  satisfies the following first-order random difference equation 

X,(w)=@k(W)Xk-1(W), k =  (3.20) 
It is of interest to note that random difference equations of this form lead to 

an interesting class of limit theorems. From (3.19) it is clear that the study of 
limk+m x,(w) leads to the study of the limiting behavior of the product of 
random matrices @k(o)@k-l(o)-.- dj, . We refer to Sect. 2.6 for a discussion 
of multiplicative limit theorems for Banach algebra-valued random variables, 
the investigation of which was motivated by equations of the form (3.20). 

Random difference equations of the general form 

(3.21) 

are used as models for discrete-time probabilistic dynamical systems. We refer 
to Astrom [4] and Jazwinski [34] for treatments of equations of the above 
form. 

For other results on random difference equations we refer to Grenander 
[27]; and we refer to Bharucha-Reid [I21 for a survey of random difference 
equations and their applications in physics, engineering, economics, biology, 
psychology, and other fields. 

The literature on random equations contains more studies on random 
differential equations and their applications than any other type of random 
equation. This is not at all surprising, for mathematical models formulated as 
deterministic differential equations have long played a fundamental role in 
virtually every branch of applied mathematics. And, as workers attempt to 
make their models more realistic and take into consideration the random 
nature of many of the processes and systems they study, it is only natural 
that models formulated as random differential equations play an increasingly 
important role. 

In engineering and physics a number of problems lead to random ordinary 
differential equations of so-called Langevin type. The original Langevin 
equation is of the form 

dv/dt = -0% + F(t, o), (3.22) 

and is, to the best of our knowledge, the first random differential equation 
studied. We refer to Sect. 7.1 where random differential equations of Langevin 
type and their formulation as random integral equations is discussed. 
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Another type of random ordinary differential equation which has been 
studied by a large number of mathematicians, physicists, and engineers is the 
probabilistic analogue of a linear differential equation of order n: 

n 

k=O 
L(w)[X(t)]  = 2 ak(f ,W)dkX/dtk=y(t ,w) ,  (3.23) 

where the coefficients ak(t,w) and the input or forcing function y(t,w) are 
random functions. It is generally assumed that y ( f ,  u) is independent of any of 
the coefficients, however the coefficients may be correlated with each other. 
We refer to Bharucha-Reid [lo] for references to some papers devoted to 
methods of solving Eq. (3.23) and to investigations of the stability properties 
of the solution; and we refer to Astrom [4, Chap. 31 for a discussion of random 
differential equations as models for physical processes and some brief historical 
comments about random differential equations. 

The study of random partial differential equations was initiated by KampC 
de Feriet (cf. [35]). In particular, he studied random solutions of the heat 
equation for an infinite rod when the initial temperature at the point x on the 
rod is a random function,f(x,w). Consider the random initial-value problem 

(3.24) 

The solution of (3.24) is 

where K( t , x )  = (4~t)- ' /~exp{-x~/4t}.  
The problem considered by KampC de Ftriet is a special case of the Cauchy 

problem (with random initial data) for partial differential equations. We refer 
to Birkhoff et al. [ 131 for a systematic study of statistically well-posed Cauchy 
problems. 

Gopalsamy and Bharucha-Reid [26] have studied the partial differential 
equation 

( a p t  + L) u = 1 4 ~ )  [ ( t ,  w), x E D ,  t > 0, 17 E L,(D) 

40, x ,  w )  = g(x, u), X E D ,  gEL2(D)  (3.26) 

u(t, X ,  OJ) = 0, X E ~ D ,  t > 0 .  

In the above D is a bounded open subset of R, (n finite), aD denotes the 
boundary of D ;  and L[u] = A[u] + ao(x)u, where 
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The solution of Eq. (3.26) is 

(3.27) 
J O  

where {T(r),  r > 0} is a strongly continuous semigroup of contraction 
operators.? The solution was investigated in the case where the driving 
function f ( r ,  w )  is a stochastic point process. 

Random partial differential equations arise in quantum mechanics when 
applications lead to a Schrodinger equation with random potential function. 
We refer to Bharucha-Reid [lo] for a brief discussion of some of these studies. 

Since this book is devoted to random integral equations, we refer the 
reader to Chaps. 4-7 where many examples of random integral equations 
are given. 

B. Solutions of random equations 

In Sect. 3.1 we defined the solution of a deterministic operator equation. 
For random equations we can introduce two notions of solution, namely a 
wide-sense solution and a random solution. Consider, for example, Eq. (3.7). 

Definition 3.1. Any mapping x ( w ) :  D -+ 3E which satisfies the equality 
T(w)x(w) = y(w) for every w E Do, where p(Do) = 1 is said to be a wide-sense 
solution of Eq. (3.7). 

If, in  addition, a wide-sense solution is measurable, then we introduce the 
following definition. 

Definition 3.2. Any X-valued random variable x(w) which satisfies the 

PL({W : T ( w )  x(w> = Y(W)>> = 1 (3.28) 

is said to be a random solution of Eq. (3.7). Random solutions have also been 
referred to as strict-sense solutions. 

condition 

We now give an example of a wide-sense solution which is not a random 
solution. Let 3E = R ,  and let E be a nonmeasurable subset of 5;! (that is, E $9). 
Let T ( w ) :  R --f R be a random operator defined for every w E and x E R as 
follows: T ( w ) x  = x2 - I .  In this case the real-valued random variable [ (w)  

such that ( ( w )  = 1 for every w E D is a random solution of the homogeneous 

t We refer to Sect. 7.3D for the definition of a semigroup of operators. 
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equation T ( w ) x  = 0. However, the real-valued random variable y(w) 
defined by 

is only a wide-sense solution of T ( w ) x  = 0. 
It is of interest to consider the following questions: ( I )  If a random equation 

has at least one wide-sense solution, does this imply the existence of a random 
solution of the same equation? (2) Is a unique wide-sense solution also a 
random solution? (3) if X and 2) are separable Banach spaces, then is the 
answer to (2) affirmative? The following example shows that the answer to all 
of the above questions is negative. Let SZ = R and let 41 be the a-algebra of 
all at most denumerable sets of real numbers. Let X = r) = R, and let 
23, = 8, = 23 (that is, the v-algebra of Bore1 subsets of R). Let 

0 for every w = x 

1 for every w # x. 
T(w) x = 

Then, the real-valued function ((0) defined by f (w)  = w for every w E SZ is the 
unique wide-sense solution of the equation T ( w ) x  = 0. However, &w) is not a 
random solution since { w : ( ( w )  < 0} $2[. 

In view of the above definitions we can introduce two types of solution sets, 
namely the set of wide-sense solutions and the set of random solutions. 
Throughout this book when we refer to a solution of a random equation we 
mean a random solution; hence the solution set S of the random equation 
T(w)x(w) = y(w) is defined as follows: 

S =  {x(w) :x(w)  E X ,  p( {w:T(w)x (w)  =y (w) } )  = l} (3.29) 

A random solution x(w) will be called unique if it is the only random variable 
for which (3.28) holds. If x,(w) and x2(w) are two solutions of a random 
equation, then we say there exists a unique solution if x, (w)  and x2(w) are 
equivalent. 

3.3 The Solution of Random Equations 

A .  Introduction 

The numerous methods (general or specific, analytic or numerical) that have 
been developed for solving deterministic operator equations have, in the 
main, been concerned with establishing the existence and uniqueness of 
solutions. Methods for solving random equations must not only establish 
existence and uniqueness, they must establish the measurability of the 
solutions. This is the essential difference between methods for solving 
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deterministic equations and random equations. Classical (that is, determin- 
istic) existence and uniqueness theorems serve as “models” for similar 
theorems for random operator equations; and the probabilistic version of a 
classical theorem is often obtained by using the classical result itself together 
with appropriate measure-theoretic hypotheses. 

In this section we consider some methods for solving random equations, in 
particular random operator equations. I n  Sect. 3.3B we consider some random 
fixed point theorems. These theorems, which are probabilistic analogues of 
some classical fixed point theorems, play a main role in the developing theory 
of random operator equations. Section 3.3C is concerned with the use of 
inversion theorems to obtain solutions of random equations. In Sect. 3.3D we 
consider a perturbation method which is applicable to a large number of 
random equations. Finally, in Sect. 3.3E, we refer to several other methods 
which have been used to solve random equations. 

B. Random fixed point theorems 

Let X be a Banach space, and let T be a linear or nonlinear operator mapping 
X into itself. 

Definition 3.3. Any element x E X such that 

TX = x 

is said to be ajixedpoint of T. 

(3.30) 

Let X = R ,  and consider the operator T [ x ]  = x2. Then i t  is clear that x = 0 
and x = 1 are fixed points of T. Now, let X = C[O, 11 and consider the operator 

T [ x ]  = x(0) + jb’x(E) dt .  

In this case any function x ( t )  of the form x ( t )  = ke‘, t E [0, I] ,  k a real constant, 
is a fixed point of T. 

Consider a concrete operator equation Tx = y in a given Banach space X. 
Then it is clear that finding a fixed point of T is equivalent to obtaining a 
solution of the operator equation. Hence fixed point theorems constitute a 
general class of existence theorems for linear and nonlinear operator equations. 
In general, fixed point theorems fall into two classes: (1) topologica1,fixed 
point theorems, and (2)  algebraic, or constructive, jixed point theorems. 
Theorems of topological type are strictly existence theorems ; that is, they 
establish conditions under which a fixed point exists but they do not provide 
a method for finding a fixed point (or solution) of the operator equation. On 
the other hand, theorems of algebraic type give a method for finding the fixed 
point which can be called an iteration or sucessive approximation procedure. 
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For detailed treatments of fixed point theorems and their applications we 
refer to the books of Anselone [3], Rall [52], and Saaty [54]. 

In this section we consider some probabilistic analogue of two well-known 
fixed point theorems. These fixed point theorems for random operators, 
called randomfixedpoint theorems, will be used in Chaps. 4 6 ,  and 7 to establish 
the existence and measurability, and in some cases the uniqueness, of solutions 
of random integral equations. 

The prototype of most algebraic fixed point theorems is the contraction 
mapping theorem or principle due to Banach [5]. This theorem can be con- 
sidered as a result of a geometric interpretation and abstract formulation of 
the classical method of successive approximations due to Picard. 

THEOREM 3.1. If T is a contraction operator with 1lTli G k < 1 mapping a 
complete metric space (X,d) into itself, then T has a unique$xedpoint (i.e., the 
equafion Tx = x has one and only one solution). The ,fixed point, say f ,  can be 
determined by the successive approximations 

x,+] = Tx,, n = 0,1,. . . , (3.31) 
(where xo is any arbitary element of X) which converge to f .  The error estimate 
is given by  

(3.32) 

When X is a Banach space the contraction mapping principle can be stated as 
follows : 

THEOREM 3.2. If  T is a contraction operator with IjTIl G k < 1 mapping a 
closed region E of a Banach space X into itself, then, in E, T has a unique f ixed 
point f ,  which is the limit of the successive approximations x,,~ = Tx,. The 
error estimate is given by  

115 - x,/I < k"(1 - k)-' I ~ x ,  - ~011,  XO E E. 

Consider the mapping T of R, into itself given by the system of linear 
equations 

n 

i = 1  

y i =  2 a i j x j + b i ,  i =  1,2 ,..., n. (3.33) 

Hence, for arbitrary x = (xI ,x2,. . . ,x,), (3.33) is a matrix operator equation 
of the form y = Tx, where Tx = Ax t 6. A = (a,,) and b = (6, , b2 , .  . . , b,). We 
wish to obtain a sufficient condition that T be a contraction operator on R,. 
For any two points E l ,  f 2  in R, we have 

d ( T [ i ,  Ttd = IIEi - T52ll = IlAEi - At2il 

= i l 4 4 1  - fdls IlAil 4 5 ,  , [ I ) .  
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Hence, in order that T be a contraction we must have /1A 1 1  < 1. Since in R, we 
can define several metrics, the conditions under which A is a contraction 
depends on the choice of the metric. If we take 

d(x , y )  = max (x i  - 
I s i S n  

then A is a contraction if Zj”=, laijl < 1 ,  i = 1,2,. . . ,n. If 

then the contraction condition is x;= laij[  < 1 , j  = I ,  2,. . . ,n. Finally, if 

then A is a contraction if x;=l C;=l a:j < 1 .  
A useful generalization of the contraction mapping principle is the following 

result due to Kolmogorov and Fomin [39, pp. 70-711 (cf. also, Chu and 
Diaz [ 181). 

THEOREM 3.3. If T is an operator mapping a complete metric space X into 
itself, and if T” is a contraction for some n (n is a positive integer), then T has a 
unique fixed point. 

The study of random fixed point theorems was initiated by SpaCek [59] and 
Hang [30]. Because of the wide applicability of Banach’s contraction mapping 
theorem in the study of deterministic operator equations, SpaEek and Hans 
directed their attention to probabilistic versions of Banach’s theorem, and 
applied their results to random linear Fredholm integral equations. The two 
theorems which we now state and prove are due to Hans, who was the first 
to carry out a systematic investigation of random fixed point theorems [31] 
(cf, also Hans [32]). 

THEOREM 3.4. 
where X is a separable Banach space. For every w E 52 and x E X, put 

Let T(w)  be a continuous random operator on a x X to X, 

T ~ ( ~ ) x  = T ( ~ ) x  

Tn+I(w) x = T(w) [T”(w) XI, n = 1,2,. . . . 
I f T ( w )  satisfies the condition 
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then there exists an X-valued random variable ( (w)  which is the unique ,fixed 
point of T(w);  that is, 

T(w)  f (w)  = ( (w)  a.s., (3.35) 

and ifrp(w) is another X-valued random variable which satisFes (3.35) then ( (w)  

and ~ ( w )  are equivalent. 

Proof. Let E denote the subset of J2 defined by the braces of (3.34) for 
which T ( w )  is continuous. Clearly E E 21 and, by hypothesis, p ( E )  = 1. Let the 
mapping [ ( w )  : SZ --f X be defined as follows : For every w E E, [ ( w )  equals the 
unique fixed point of T(w), and for every o E l2 - E, put ( (w)  = 8. Then (3.35) 
holds. 

To establish the measurability of the fixed point ( (w)  we proceed as follows. 
Let x0(w) be an arbitrary X-valued random variable. Put x,(w) = T(w)x0(w). It: 
follows from Theorem 2.14 that xI(w) is an X-valued random variable. Put. 
x,(w) = T(W)X,-~(W), n = 1,2, .  . . . Repeated application of Theorem 2.14 
establishes the fact that (x,,(w)} is a sequence of X-valued random variables; 
hence it follows from Theorem 1.6 that x,(w) converges almost surely to ( (w) ,  

and ( ( w )  is an X-valued random variable. 
The uniqueness of the fixed point follows from the uniqueness of ( (w)  for 

every w E E. 

We now utilize Theorem 3.4 to establish the following random contraction 
mapping theorem. 

THEOREM 3.5. Let T(w) be a continuous random operator on !2 x X to X, 
where X is a separable Banach space, and let k(w) be a real-valued random 
variable such that k(w) < 1 almost surely and 

IlT(w)xi - T(w) x z l l ~  kfw) 11x1 - x2II 

for every two elements x1 , x 2  E X. Then there exists an X-valued random variable 
e(w) which is the unique3xedpoint of T(w).  

Proof. Let 
E =  ( w : k ( w )  < l }  

F = {w : T(w) x is continuous in x) 
Gx, , X I  = (0: IIT(w) x1 - T ( w )  x2Il < Ww) 11x1 - x2lIl. 

Since X is separable, the intersections in the expression 

can be repIaced by intersections over a countable dense set of X. Therefore 
condition (3.34) of Theorem 3.4 is satisfied with n = 1 .  
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Random contraction mapping theorems are of fundamental importance in 
probabilistic functional analysis in that they can be used to establish the 
existence, uniqueness, and measurability of solutions of random operator 
equations. In this book these theorems are applied to random integral 
equations. In addition to their applicability in the study of random operator 
equations, random contraction mapping theorems can be utilized in the study 
of stochastic approximation procedures (cf. Gardner [23], Hans [31]); and 
have been used by Oza and Jury [49] to obtain an algorithm for the identifi- 
cation of a random linear discrete-time system described by a random 
difference equation. We refer to Grenander [27, p. 1641 and Sehgal [58] for 
other random contraction mapping theorems. For some continuous analogues 
of random contraction mapping theorems and their applications, we refer to 
Driml and Hans [20] and Hang and SpaEek [33]. 

Let T ( w )  be a random contraction operator, and let f ( w )  be its unique fixed 
point. f ( w )  is an X-valued random variable; hence if its Bochner integral 
exists we can define the expectation of the randomjxedpoint; that is, 

5 = 8 {Kw>> = (B)Jn E(w) dP. (3.36) 

Similarly, if T(w)  is a uniform random contraction operator, and if the 
Bochner integral of T(w)x  exists for all x E X, then we can define the expec- 
tation of T(w) ; 

T x  = a{ T(w)  x} = (B)! T(w)  x dp. (3.37) 
n 

Clearly is a contraction operator; hence it has a unique fixed point, say #. 
# is called thejxedpoint of the expectation of the random contraction operator 
T(w).  A question of great interest is the following: Is f = # ?  Consider the 
random operator T ( w )  defined for every w E SZ and x E by the formula 

T ( w )  [ X I  = clx + z(w), (3.38) 

where a < 1 and z(w) is an X-valued random variable whose expectation 
exists. In this case it is clear that f = y!~; however, in general f # #. 

We now consider a topological fixed point theorem, due to Schauder [57], 
and a probabilistic version of this theorem. 

THEOREM 3.6. Let T be a continuous operator which transforms a compact, 
closed, convex subsel E of a Banach space X into E. Then there exists at least 
one element f E E such that T f  = f .  

The following probabilistic version of Schauder’s fixed point theorem is due 
to Mukherjea [48] (cf. also Mukherjea [46,47]). 
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THEOREM 3.7.  Let (Q,P[,p) be an atomic probability measure space, and let E 
be a compact (or closed and bounded) convex subset of a separable Banach 
space 3. Let T ( w )  be a random compact operator mapping a x E into E.  Then, 
there exists an E-valued random variable ( ( w )  such that T ( w ) ( ( w )  = ( (w) .  

We need the following lemma, which we state without proof. 

LEMMA. 
ability measure space, then x (w)  is constant almost surely on every atom. 

r f  x(w) is an X-valued random variable dcjned on an atomic prob- 

Proof of Theorem. Let B, be the atoms of 91. If {xi}?=, is dense in E, then 
it follows from the above lemma that T(w)xi ,  for every i, is constant almost 
surely on every B,; so that for every n we can find a C, c B,, with p(B,  - C,) = 0 
and such that 

m 

n= 1 
T ( w )  xi = 2 xc,(w> T(w,) xi 

for every i, where w E U:=, C, and w, E C,. Let w’ and W” be any two points 
in C,, and let x be any element in E. We claim that T ( w , ) x  = T(w,)x .  If this 
relation did not obtain, then ; IT(w,)x  - T(w,)xll > k > 0. Since T ( w )  is 
continuous, we can find xi such that l ;T(wj)xi  - T(w,)x,’I < k/2, j = 1,2, 
which together with the fact that T(w,)xi  = T(w,)xi  yields a contradiction. 
Hence 

T ( w ) x  = 2 xC,(w)T(w,)x a s .  

for every x E E. We can now apply Schauder’s theorem to each of the operators 
T(w,); hence there exists at least one point F,, for each n such that 

fn(w)=(? for w 6 c,. 

m 

n= 1 

T(w,)P)n = P)n. Put 
for w E C, 

Then T(w)((w) = ( ( w )  almost surely. 

Theorem 3.6 is used in Sect. 6.5 to establish the existence and measurability 
of solutions of random nonlinear integral equations of Uryson type. 

It is of interest to state a topological fixed point theorem due to 
Krasnosel’skii [41] which yields the theorems of Banach and Schauder as 
special cases. 

THEOREM 3.8. Let E be a closed, bounded, convex subset of a Banach space x. 
Let S and T be operators on X to itself such that (i> Sx + Ty E E for  x , y  E E, 
(ii) S is a contraction operator with contraction constant k E (0, l),  (iii) T is 
compact. Then there exists at least one element 4 E E such that S( + T( = 6. 
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A random fixed point theorem of Krasnosel'skii type would be very useful in 
the theory of random operator equations.? 

C. Inversion theorems 

We first consider random equations of the form 

TX = y(t, W )  (3.39) 

(T  - h l )  x = y(t, W )  ; (3.40) 

that is, equations of the form (3.5) and (3.8) when the input is a random 
function. Random equations of the form (3.39) and (3.40) have been studied 
by a large number of workers; and clearly they are among the simplest types 
of random equations since the operators T and T -  XI are deterministic. 
Hence, inversion theorems for deterministic operators can be used to obtain 
conditions for the existence of a random solution. 

We first consider Eq. (3.39). If Tis  an endomorphism of a separable Banach 
space X, then the following result is an immediate consequence of the funda- 
mental theorem giving necessary and sufficient conditions for the existence of 
the inverse of an endomorphism of X (cf. Rall [52, Theorem 9.11). 

THEOREM 3.9. Consider the equation Tx  = y(t,w), where T E 2(X) and y(t ,w)  
is an X-valued random function. Then the random solution x(t, W )  exists if and 
only ifthere is an operator S E 2(X) such that ( i )  S-' exists and (ii) lIZ - STll< 1. 
We have 

x ( f ,  w )  = T-' y(t ,  w )  

m 

n-0 
= 2 ( I  - ST)" Sy(t ,  w), (3.41) 

where the sum converges in !2(X). The solution x(t,W) is an I-valued random 
function. 

Similarly, the existence of a random solution of Eq. (3.40) follows from a 
basic result on the existence of ( T -  hl)-I (cf. Sect. 2.4B, and Taylor [60, 
pp. 260-2611. 

t Prakasa Rao [Sla] has recently obtained a probabilistic analogue of Krasnosel'skii's 
theorem. 
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THEOREM 3.10. Consider the equation (T - hZ)x = y( t ,  w ) ,  where T E e(3) and 
y(t,w) is an X-valued random function. Then the random solution x ( t ,  w )  exists if 
Ihl > 11T11. Zn this case h E p(T), and 

x(t, U )  = ( T -  Xz)-'y(t, w )  

= R(X ; T )  y(t, w )  
m 

n= I 
=- 2 h-"T"-'y(t,w), (3.42) 

where the series converges in Q ( 3 E ) .  The solution x(t,w) is an X-valued random 
function. 

(3.43) 

(3.44) 
(3.45) 

(3.46) 

involve random operators; hence the inversion theorems for deterministic 
operators are not applicable, and we require probabilistic versions of the 
classical theorems in order to solve random operator equations of the above 
types. At the present time there are no known results which give necessary 
and sufficient conditions for the existence of the inverse of a random operator 
T(w) E f?(X); hence we will not consider equations of the form (3.43) and 
(3.45). However, results on the inversion of random operators of the form 
T(w) - Mare known (cf. Sect. 2.4B), and these results can be used to establish 
the existence of random solutions of Eqs. (3.44) and (3.46). 

We first give an inversion theorem due to Hang [32], the proof of which 
utilizes the random contraction mapping principle. 

THEOREM 3.11. Let T ( w )  be a random contraction operator on a separable 
Banach space X, and let k(w) be a real-valued random variable such that 
k(w) < 1 almost surely. Then for every real number A # 0 such that k(w) < 
almost surely there exists a random operator S(w)  which is the inverse of 
(T(w) - hl).  

Proof. Since X # 0, T ( w )  - h l  is invertible whenever the random operator 
( I / h ) T ( w )  - Z is invertible, and vice versa. However, for every 5' E 3, the 
random operator Tt(w) defined, for every w E SZ and x E X, by 

T f ( 0 )  x = ( 1  / A )  T(w)  x - 5' 
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is a random contraction operator. Therefore, by Theorem 3.5, there exists a 
unique random fixed point x&w) satisfying the relation 

x5 ( w )  = (1 /A) T ( w )  xc(w) - t 
almost surely. However the above statement is equivalent to the invertibility 
of the random operator (1 /A) T ( w )  - Z, and therefore the invertibility of 
(T(w)  - XZ). 

The applicability of the above theorem to equations of the form (3.44) and 
(3.46) is clear. 

We now state another result on the solution of random equations of the 
form (3.44) and (3.46). The main content of this theorem is due to Hans [32], 
the proof of which follows easily from the classical result. 

THEOREM 3.12. Consider tlie equation ( T ( w )  - XZ)x = y(t ,w) w'here 
T(w)  E Q(X) and y( t ,  w )  is an X-valued random function. Then ,for every real 
number X # 0 such that 

there exists a random endomorphism S ( w )  wliicli is the inverse of ( T ( w )  - XI);  
arid 

Therefore, the random solution x( t ,w)  is of the,form x ( t , w )  = S(w)y( t ,w) ,  and 
x( t ,  w )  is an 9-valued random function. 

Finally, we state a result which is an immediate consequence of Theorem 
2.26. 

THEOREM 3.13. Consider tlie equation (T(w)  - hZ)x = y(t ,w) where 
T ( w )  E S(X) and y( t ,w)  is an X-valued raridom,function. Then, for every h # 0, 
the resolvent operator R(h; T ( w ) )  exists for  every w t Q(h) = {w : / A /  > 'lT(w)il} 
and admits the representation 

m 

n= I 
R(h; T ( w ) )  = - 2 h-nT"-'(w). (3.47) 

Fiiially, the solution x( t ,w)  exists for every w E Qo(h) and is of the.form 

x( t ,  w )  = R(h;  T (w) )y ( t ,  w ) .  (3.48) 

The random solution x(t, w )  is an X-valued random function, and for every fixed t 
we have x( t ,w)  E Q,(A) n a. 
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D. A perturbation method and semigroups of operatorst 

A large number of random operator equations in applied mathematics are 
of the form 

dxldt = L(w) x 

= ( A  + B ( ~ ) ) x ,  (3.49) 

where x(t, w )  is for every fixed t a random variable with values in a separable 
Banach space X. The operator A is assumed to be a (deterministic) closed 
linear operator on X which is the infinitesimal generator of strongly continuous 
semigroup of contraction operatorst of class (C,), say 

S ( t )  = e d f ,  t > 0, (3.50) 

B(w)  is a random endomorphism of X with IlB(w)ll G M ,  and 

D(A + B(w))  = D(A) 

Phillips [S l ]  has proved the following result: Let A be the injinitesimal 
generator of a strongly continuous semigroup of operators { S ( t ) ,  t > 0}  on X. 
Let B E Q(X). Then there is a unique one-parameter semigroup of bounded linear 
operators { T ( t ) ,  t 0 )  on X, strongly continuous on [0, w ]  such that T(0)  = I 
and for x E D(A), T ( t ) x  is strongly continuous differentiable and 

a s .  

d T ( t )  Xjdt = ( A  + B )  T ( t )  X .  (3.51) 

The solution T ( t )  admits the representation 

(3.52) 

where 

To(t)  = S ( t )  and T,(t) = J ' S ( t  - T)BS,-,(T)dT. 

It follows from the above result that for almost all w E J2 the random closed 
linear operator L(w) = A + B(w) is the infinitesimal generator of a strongly 
continuous semigroup of random operators of class (C,), say T( t ,  w),  on I; and 
T(t ,  u) is given by the following perturbation formula: 

T( t ,  w )  = exp{(A + B(w))  t }  

=eXp{At) +lreXp{A(I- T))B(w)eXp{A7,)d7 
0 

+ jO2JO7' exP{W - 71)) B(w)exp{A(t - 72)) 

x B(w)eXp{A~2)d~,d~,  +.... (3.53) 

t See  Frisch [22]. 
$ We refer to Sect. 7.3D for the semigroup terminology used in this section 
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Since S ( t ) = e A t  is, for every fixed t ,  a contraction operator, we have 
IlS(t)ll = ~ ~ e A t ~ ~  < 1 ; hence from (3.53) we obtain the following estimate: 

= eMt. (3.54) 

Hence the perturbation expansion (3.53) converges uniformly in any bounded 
interval [O,a]; and it can be shown that the series (3.53) converges to a random 
operator T ( t , w )  which is the sofution operator of Eq. (3.49). Hence 

w )  = T(t, w) [X(O, w)l. (3.55) 

E. Some other methods for solving random eqrrations-f 

In this subsection we discuss briefly three methods which have been 
proposed for solving random equations, and have been applied to certain 
types of random equations. 

1. Direct integral method. Lions 1421 (cf. also Frisch [22, p. 1861) has 
proposed a method for solving random equations in Hilbert spaces that is 
based on the notion of the direct integral of Hilbert spaces. Consider, for 
example, a random equation of the form T(w)x  = y.  The general idea is to 
associate with every w E Q a separable Hilbert space H(w).  We denote by 9 
the direct or Hilbert integral of the H ( w )  (cf. Dixmier [19]); that is, 

(3.56) 

When all of the Hilbert spaces H ( w )  are the same, it is known that 
$ = B2(Q, H(w)) .  Suppose H ( w )  is, for every w ,  the Hilbert space L2[a,b] of 
functions x ( t ) .  In this case $ can be thought of as the space of all second-order 
random functions x( t ,  w). Lions has shown that random equations which are 
formulated in H(w) ,  for every w E Q, can be reformulated as deterministic 
equations in 6. The advantage of this reformulation is that it simplifies the 
problem of establishing the measurability of solutions. 

Ullrich [61] has developed 
a method for solving random equations which is a probabilistic analogue of 
the Mikusinski operational calculus (cf. Mikusinski [45]). This method has 
been applied to random ordinary and partial differential equations [26]; 
however, it should have wider applicability in the study of random equations. 

3. Approximation methods. In recent years an increasing number of 
papers have appeared which are devoted to the development of methods for 

t We refer to Nashed and Salehi [48a] who have studied best approximate solutions of 

2. The method of random Mikusiriski operators. 

random linear operator equations. 
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obtaining approximate solutions of linear and nonlinear operator equations 
(cf. Kantorovich and Krylov [36], Rall [52] ,  Saaty [54]). In particular, the 
literature on approximate solutions of differential and integral equations is 
very extensive. In the development of the theory of random operator equations 
it is clear that approximation methods will play an important role. Approxi- 
mation methods are required because of the difficulties encountered when one 
attempts to solve a random operator equation; and they are required for 
computational solutions of random operator equations. At the present time 
only a few rather general approximation methods have been developed for 
random operator equations, and most of these are concerned with finding 
statistical properties of the solution. These methods will be discussed in 
Sect. 3.4C. 

In this subsection we consider two well-known approximation methods, 
namely Galerkin's method and Newton's method, which may prove useful in 
obtaining approximate solutions of random operator equations. 

Galerkin's method can be described as follows: Let X be a Banach space 
with a Schauder basis {en}, and let X, c X2 c be a sequence of finite- 
dimensional subspaces of increasing dimension such that U,"l X,, is dense in 
X. Let P I ,  P 2 , .  . . be a sequence of linear projection operators with uniformly 
bounded norms. Let P, X = X,. Consider the operator equation 

T X  = X ,  (3.57) 

where T is a compact operator and assume that Eq. (3.57) has an isolated 
solution .$. Since X has a basis, every element x E X can be represented as a 
series x = x?!, Ti(x)ei ,  where the rli(x) are (continuous) coefficient func- 
tionals. It can be shown that the projection operator P,  defined by 

(3.58) 

have uniformly bounded norms. Hence the subspaces X, are generated by the 
first n basis elements (el , e 2 , .  . . ,en).  The solutions x ,  of the equations 

P,Tx = x (3.59) 

are called the Galerkin approximate solutions of Eq. (3.57); and we have 

Galerkin's method has been used extensively to obtain approximate 
solutions of differential and integral equations; however in applications to 
random operator equations a suitable choice of subspaces is difficult. A 
modification of Galerkin's method, called the method of moments (cf. 
Vorobyev [62]), is a formal method by which the equation to be solved 
determines the sequences of subspaces to be used. The iteration process given 
by the method of moments differs from the Galerkin process in that the first 

x,-+ 4. 
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step is not selecting a basis in X, but selecting a single element, say po E X. An 
infinite sequence of elements (p,} is generated from yo by the recurrence 
relation pn = TY, , -~ ,  n = 1,2,. . . . If the p, are linearly independent, then the 
y,,, like the en in Galerkin's method, can be used to define an increasing 
sequence of subspaces of 3. 

McCoy [44] has used the method of moments to obtain approximate 
solutions of some random differential equations. In particular, he showed 
that, under certain conditions, the iteration process obtained involves deter- 
ministic systems of linear algebraic equations. 

Newton's method is concerned with finding a solution x = f ,  say, of the 
equation 

TX = 8, (3.60) 
where T is an operator on a Banach space. Let xo denote an appropriately 
selected initial point. If (T'xo)-' exists, where T' is the derivative? of T, put 

X I  = x O  - (T 'x~) - '  T x ~ .  

If (T'xJ'  exists for n = 0, 1, . . . , the Newton sequence {x,} is defined by 
x,+,  = x , - ( T ' x , ) - ' T x , .  (3.61) 

The iterative process for construction of the sequence defined by (3.61) is 
called Newton's method for solving Eq. (3.60). 

Bharucha-Reid [9] has considered a probabilistic analogue of the Newton 
sequence defined by 

X,+~(W) = x,,(w)(T'(w)x,)-' T(w)x,(w),  n = 0, 1,. . . , (3.62) 

where the derivative of T(w)  is defined in the mean-square sense, and xo(w) is 
a suitable chosen X-valued random variable. Some results were obtained on 
the measurability and convergence of the iterative process {x,(w)} ; however 
much more research needs to be done on approximation methods of Newton 
type for solving random operator equations. 

3.4 Some Measure-Theoretic and Statistical Problems Associated with Random 
Equations 

A .  Introduction 

The main objectives of the theory of random equations might be stated as 
follows: (1) to establish the existence, uniqueness and measurability of 
solutions of various types and classes of random equations; (2) to determine 

t If an endomorphism L of X exists such that 

lim llT(xo + A x )  - Txo - LAxll = 0, 

then Tis said to be differentiable at xo, and L = T'xo is called the first derivative of Tat X O .  

IUAX II -0  
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(a) the probability distributions (or laws) of random solutions, and (b) the 
properties of functionals of random solutions ; (3) the determination of various 
statistical properties of a random solution, such as its expectation, variance, 
and higher moments. 

In Sect. 3.3B we presented some results on the existence, uniqueness and 
measurability of solutions of certain general types of random equations; and 
the results on probability measures on Banach spaces surveyed in Sect. 1.5 are 
of fundamental importance in the study of probability distributions of random 
solutions. In the second subsection of this section we consider some measure- 
theoretic problems associated with solutions of random equations; in 
particular, we consider some questions concerning the transformation of 
probability measures on function spaces. 

Although results on the existence, uniqueness, and measurability of 
solutions are of theoretical interest, and are required for the systematic 
development of the theory of random equations, we are obliged to recognize 
that in most applied problems it is not the solution that is of great importance 
but the statistical properties of the solution. In particular, it is of interest to 
establish the relationship between the statistical properties of the solution and 
the statistical properties of the random quantities (for example, initial or 
boundary data, coefficients, kernels, forcing functions) introduced into the 
equation. In the third subsection of this section we consider some methods for 
studying the statistical properties of the solutions of random equations. 

B. Measure-theoretic problems 

Consider a random equation of the form 

Lx( t )  = y (4  w) ; (3.63) 

that is, an operator equation with input a known random function y(t,w). I fL  
is invertible, then the solution x(t,w) is the random function obtained by the 
transformation of y( t ,  w) by L-' : 

x(t, W )  = L-I y(t ,  w). (3.64) 

The random function x( t ,w)  is frequently referred to as the solution or output 
process. 

Two measure-theoretic problems associated with Eq. (3.63), and its 
solution (3.64), can be stated as follows: Let v1  denote the probability measure 
associated with the known K-valued random function y(t,w), and let L be a 
known deterministic operator on X to itself. (1) Determine the probability 
measure v 2  associated with the solution process x(t ,w) .  (2) Determine 
conditions such that v2 is absolutely continuous with respect to v l .  The first 
problem is, of course, a fundamental one; namely, given y( t ,w)  and L, to 
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determine the probability measure u2 generated by the solution process 
x(f,u) on the minimal o-algebra containing all cylinder sets of all functions 
defined on the interval [a ,b] ,  say, with values in  the Banach space X. The 
absolute continuity of probability measures was considered in Sect. 1.5E. As 
pointed out in  that section, if v2 -e u I ,  then the solution process x(t,w) will 
satisfy aImost surely all of those properties which the input process y(t,w) 
satisfies almost surely. Hence the second problem is not only of theoretical 
interest, but is important in  many applications of random equations to 
concrete problems. 

We now survey some of the contributions to the solution of the first problem 
for various types of random equations. Most of the results that have been 
obtained are for concrete random equations; hence they are not general 
measure-theoretic results, but give the distribution function (or density 
function) of the random solution, or determine the class of random functions 
to which the solution process belongs. 

The simplest case to consider is that of an operator equation with random 
initial conditions. A standard method for problems of this type can be 
described as follows: Let f denote the density function of the random initial 
condition x(0,w). Then, the density function g of the random solution x ( t , W )  

is given by g = fJ, where J is the Jacobian of the transformation which maps 
x(0,u) to x(t,u). 

Consider the first-order differential equation 
dxldt = C ,  t E [0, a), (3.65) 

where c is a nonnegative constant. The solution of Eq. (3.65) is 

x ( r )  = x(0) + ct. (3.66) 

Let us now assume that the initial value is a random variable x(0, u) which is 
normally distributed with mean 0 and variance a2. Hence the density function 
of x(0, u) is 

f ( f )  = ( 2 ~ r - l ' ~  u - I  e~p{-(~/2a~},  ( t (-03, m).  (3.67) 

The distribution function of the random solution x(t,w) can be determined as 
follows: Using (3.66)and (3.67), we have 

G ( y )  = a { x ( t ,  W )  < y }  = P{x(O,  W) + ct < y )  

= ~ { x ( o ,  W )  < y - ct 1 = J'"' f( t> d t  

= 1- f ( h  - c t )  dh = j-1 g(h, t )  dh. 

-m 

Y 

m 

Hence the density function of x(f,w) is given by 
g(h, t )  = ( 2 ~ ) - ' ' ~  exp{-(A - c ~ ) ~ / W } ;  (3.68) 
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and we see that x(r,w) is a real-valued normal (or Gaussian) random fucction 
with mean ct and variance u2. 

As another example, consider the system of differential equations 

dxjdr = AX, (3.69) 
where x = (x, , x2, .  . . , x,) E R, and A = (a i j )  is the n x n coefficient matrix. 
Let us assume that the initial condition is a random vector x(0 ,w)  with known 
density function$ The solution of Eq. (3.69) is 

x(t, w )  = x(0, w )  eat. 

x(0, w )  = e-”’x(t, w )  

The inverse relation 
(3.70) 

enables us to compute the Jacobian 
J = exp{-Tr(A) t } .  

Hence givenf, we have g = J$ 

lead to solutions of the form 
A number of random initial-value problems for partial differential equations 

4 t ,  x, w )  = T(t)f(x, w ) ,  (3.71) 
where {T(t) ,  t > 0) is a semigroup of operators on some concrete Banach 
space X, andf(x,w) = u(O,x,w). KampC de FCriet [35], who was the first to  
study random initial-value problems for partial differential equations, 
showed that when the initial temperaturef(x, w )  is a weakly stationary random 
process, then the solution u(t,x,W), as a function of x, is also a weakly 
stationary random process. 

Frequently the solution of a random initial-value problem is of the form 

x(t, w )  = T(f0 9 t )  X(f0 7 w), X ( t 0  5 w )  E I, (3.72) 

where the linear operators T(s, t )  have the properties (almost surely) 

U t O  3 4 [T(T, t >  X(t0 > w>1 = T(t0 3 t )  x(to 5 w )  
(3.73) 

T(t ,  t >  xoo, w )  = x(t0 9 w) .  

In the study of stochastic dynamical systems it is often of interest to know if 
the solution process x(t,w) is a random function of Markov type. x(t,w) will 
be a Murkov process if, for any bounded, Bore1 measurable function y ,  

a d x ( t ,  w>>) = & { W d T ( 7 ,  t )  01 T(to,.) x(to 7 w> = 5>> (3.74) 

where T E ( to ,  t ) .  
We now consider random equations of the form 

TX = y( t ,  w).  (3.75) 
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This type of random equation has received a considerable amount of 
attention. Since T is deterministic, classical operator theory and methods of 
solving deterministic operators can be employed to solve equations of the 
form (3.75). Since, if T is invertible, the solution of Eq. (3.75) is of the form 

x(t ,  W )  = T-’ y ( t ,  u), (3.76) 

the solution process is obtained by a transformation of the input process 
v( t ,w) .  As is well known, an important problem in communication theory and 
control theory is the characterization of the response of systems to random 
inputs. 

Difference equations with random inputs (that is, T is the difference 
operator defined by 

n 

T [ X k ]  = 2 aiTi [xkl> 
i = O  

where ~ ~ [ x ~ ]  = xki i )  arise in mathematical economics, time series analysis, and 
in the study of discrete-time dynamical systems. If we assume that the input 
Yk(W) is a weakly stationary sequence of uncorrelated random variables with 
means 0 and variances d, then 

where z(X, w )  is a process with orthogonal increments. It is known (cf. Gihman 
and Skorohod [25, pp. 240-2411) that the solution sequence xk(w) is weakly 
stationary, and admits the representation 

xk(w) = jm eik’[y(ei~)>l-’ ciz(~, w>, (3.77) 
-n 

where y(s) = x”j0 ajsJ.  
Random ordinary and partial differential equations with random inputs 

arise in  biology, physics, and in many branches of engineering. As in the case 
considered above, since the differential operators are assumed to be deter- 
ministic, classical methods can be used to obtain the solution process. For 
example, consider the solution of Eq. (3.75), where T is a linear differential 
operator of order n with constant coefficients, when certain boundary 
conditions are imposed. Then the formal solution of Eq. (3.75) is of the form 

x(t, W )  = jab G ( t ,  7 )  w> d7, (3.78) 

where G(t ,  7) is the Green’s function of the differential boundary-value 
problem (cf. Sect. 4.1). We refer to Papoulis [50, Chap. 91 and Saaty [54, 
Chap. 81, where many concrete examples of ordinary differential equations 
with random inputs are considered. In Sect. 7.2 we consider the random 
differential equations of Langevin type which arise in  physics and engineering; 
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in particular, we study the It6 random integral equation formulation of 
Langevin type equations and the solution process generated by these equations. 

As an example of a partial differential equation driven by a random 
process, we refer to Eq. (3.26). In  [26] it was shown that the solution process 
(3.27) is approximately Gaussian when the random input is a Poisson process. 

The solution processes generated by linear integral equations with random 
inputs are studied in Sect. 4.2; hence they will not be discussed here. 

A problem of general interest in  many applications is to characterize those 
linear operators that preserve stationarity. Let y(t,w) be a weakly stationary 
random function, and consider the linear integral operator S defined by 

where the kernel K(t,  7) is real valued, Lebesgue measurable as a function of t ,  
and such that 

for all t. Franaszek [21] has proved the following result: A necessary and 
sufficient condition that the operator S defined by (3.79) transform weakly 
stationary random functions into weakly stationary random functions is that the 
kernel K ( ~ , T )  be of the form 

K ( ~ , T )  = ( 2 ~ ) - ~ j - ~  H(X)exp{i[f(X)t +g(X)]}e-'A'dh, 

where H(h), f(X), andg(h) are real-valued functions, with f ( h )  andg(h) odd, and 
H(X) even. 

We refer to Blanc-Lapierre et al. [14] for results related to the one stated 
above, and to Lugannani and Thomas [43] for a discussion of a class of 
random functions which are closed under linear transformations. 

m 

We now consider the case of random operator equations of the form 

x ( t )  = Y ( t ,  w). (3.80) 

Unfortunately, very little is known about the solution processes of equations 
of the above form. Some results, however, are known for random ordinary 
differential equations (cf. Samuels and Eringen [ 5 5 ] ) .  Consider the equation 

L(w)x(t)  = 2 ak(t, ~ ) d ' x / d t '  = y(t, w), (3.81) 

where the coefficients a,(t,w) and the input y(t,w) are random functions. It is 
assumed that y(t,w) is independent of the coefficients a,(t,w); however the 
coefficients may be correlated with each other. 

n 

k=O 
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The solution of Eq. (3.81) can be obtained using perturbation methods (cf. 

(3.82) 

where the f l k ( f , W )  are random functions with C$(,&(t,W)) = O .  Hence 
s{ak( f ,w>}  = o&(t). With the coefficients as defined by (3.82), a solution of 
Eq. (3.81) is sought of the form 

Bellman [6, pp. 2-41), Assume that the coefficients are of the form 

w, = C ( k ( f )  + E f l k ( f ,  w ) ,  

m 

x(?, w )  = 2 Ek xk(t, W ) .  (3.83) 

If we now substitute (3.83) in (3.81) and equate the coefficients of ck, we 
obtain the following pair of operator equations : 

k = O  

(3.84) 

where the linear differential operators M and N ( w )  denote the operator L(w) 
with the coefficients a,(?, w )  replaced by ak( t )  and &(t, w),  respectively. Hence 
M is a deterministic operator and N ( w )  is a random operator. The formal 
solution of (3.84) is 

xo(t, W )  = ci ti(?) + 1' GO, T ) Y ( T ,  w )  & 
0 

(3.85) i= I 

xk(?, W )  = -Jot G(t ,  T ) N ( w ) X k - i ( T ,  W ) d T ,  k = 1,2,. . . . 

In (3.85), { f i ( t ) }  is a set of fundamental solutions of the homogeneous deter- 
ministic equation M x  = 0, the ci are constants to be determined by the initial 
conditions, and G(t ,  T )  is the one-sided Green's function associated with M. 

We consider the case where the solution is terminated after two terms, and 
(i) the y(t ,w)  = y ( t )  (deterministic) and (ii) the P k ( t ,  w )  are independent 
Gaussian random functions. In  this case it is easy to show that the truncated 
solution x(t, w )  = xo(t,w) + <xl( t ,  w )  is a Gaussian process. If the input 
y( t ,w)  is assumed to be a Gaussian process, then it is clear that xo(t ,w)  is 
Gaussian ; however further assumptions are needed to characterize x , ( t ,  0). 

The above methods can be applied to difference equations with random 
coefficients and to some integral equations with random kernels; however the 
perturbation approach is only useful when E is so small that powers greater 
than some small number can be neglected. Hence other methods are required 
for the solution of equations of the form (3.80), and for the investigation of 
the solution process. 

We refer to Saaty [54, Chap. 81 for a survey of studies on differential 
equations with random coefficients. 

In the study of random equations in Hilbert spaces we frequently encounter 
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transformations of the form x(w)=Ly(w), where y(w) (the input) is an 
H-valued random variable and L E L3(H). Let us assume that y(w) is a Gaussian 
random variable, and let ml and S,  denote the mean and covariance operator, 
respectively, of the probability measure v, induced by ~ ( w ) .  It follows from 
Theorem 1.26 that x(w)  is an H-valued random variable; and if v 2  denotes the 
probability measure induced by x(w), then m, = Lm, and S2 = LS, L* are the 
mean and covariance operator of v 2 ,  respectively. We can, without loss of 
generality, assume m, = 0. Then, it follows from Theorem 1.29 that a necessary 
condition for the absolute continuity of v2 with respect to v, is that there 
exists a h > 0 such that h-' G (LS, L* 5,5) [ (S ,  5, ()I-' G A, ,$ E H. 

As pointed out in Sect. 1.5E, the paper of Gihman and Skorohod [24] gives 
a systematic account of studies on the absolute continuity of probability 
measures on function spaces. For a result on the absolute continuity of 
probability measures associated with the solutions of some random differential 
equations we refer to SataSvili [56]. In Sect. 6.6 we consider the absolute 
continuity of the solution measure of a random nonlinear integrodifferential 
equation with respect to the input measure. 

Virtually nothing is known about the probability measures associated with 
solutions of random operator equations of the form T ( w ) x  = y(t,w); hence 
this is an open area for research, and should lead to interesting theoretical 
results which have important applications. 

C. Statistical problems 

1. Introduction. Let x(t,W) denote the solution of a random equation in a 
separable Banach space X. Since x(t, w )  is an X-valued random function, for 
every fixed t the solution is an X-valued random variable. Hence, the 
expectation of x(t,W),  or the expected solution, is given by 

(3.86) 

provided the Bochner integral of x(t,w) exists for every fixed t .  It follows from 
Theorem 1.8 that the expected solution exists if and only if d{lIx(t,w)ll} < ~0 

for every fixed r .  Higher moments of the random solution can be defined as in 
Sect. 1.3E; in particular, the variance of the random solution is given by 

Var{x(t,w)> = d{ilx(t ,~) - m(t)l12>. (3.87) 

We now consider the formal expressions for the expected solutions of 

Tx(t) = y(t, w).  (3.88) 

various types of random equations. Consider the equation 
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Let us assume that T is linear, independent of t ,  and invertible. Put T-l = S .  
Then (cf. Theorem 2.4), T E 2(X) implies S E 2(X); and T E E(X) implies 
S E C(X). Therefore 

x(t ,  w )  = Sy(t, w).  (3.89) 
Now, ifB{y(t,w)j exists and &{Sy(t,w)j exists, then (cf. Theorem 1.9) 

m(t) = B{x(t, w)j = I ( S y ( f ,  w ) )  = Sb{y(t, w) } .  (3.90) 
Hence the expected solution of Eq. (3.88) is obtained by a linear transfor- 
mation of the expectation of the random input. We refer to Papoulis [50, 
Chaps. 9 and 101 for some applications of the above result to some random 
differential equations. 

We now consider the equation 

T ( w ) x ( t )  = A t ) ,  (3.91) 

where T(w) is an !2(X)-valued random variable. In this case, if T ( w )  is in- 
vertible, then the solution of Eq. (3.91) is of the form 

x(t7 w )  = S(w)y( t ) ,  (3.92) 

where S(W) = T-'(w).  Now, if S ( w ) y ( t )  E B,(Q, X) for every y E X, then it 
follows from Theorem 2. I9 that 

where U E 2(X). In (3.93) Q denotes the subset of Q for which S(w)  exists. 
Finally, we consider an equation of the form 

T ( w ) x ( t )  = At ,  w).  (3.94) 

w )  = S(w)y(t, w).  (3.95) 

The formal solution of Eq. (3.94) is 

It follows from Theorem 2.14 (the composition theorem) that x( t ,w)  is an 
X-valued random function. Now 

m(t )  = &{x(t, w ) }  = I5 S(w)y(t ,  w )  dp. (3.96) 

To the best of our knowledge, nothing is known about Bochner integrals of 
functions of the form S(w)y( t ,w) .  However, if S(w)  and y( t ,w)  are stochas- 
tically independent, and if their expectations exist, then we have 

m(t)  = W ( t , W ) >  = &{S(w)j d{Y(t, w)> (3.97) 
It is clear that the above results are applicable to random equations of the 

form 
(T - AZ) x ( t )  = A t ,  w ) ,  (T(w) - x ( t )  = y ( t ) ,  
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and 
(T(w) - h l )  X ( t )  = y(t ,  w).  

A problem of fundamental importance in the theory of random equations 
concerns the relationship between the expected solution of a random equation 
and the solution of the deterministic equation obtained by replacing the 
random quantities in the equation by their expected values. Consider the 
random operator equation 

T ( 4  x ( t )  = y ( t , 4 .  (3.98) 

Let F =  b{T(w)}  and j ( t )  = kP{y(t,w)}; and consider the deterministic 
operator equation 

The question can now be stated as follows: Is 

F q t )  = j ( t ) .  (3.99) 

b{x(t ,  w ) }  = 2(t)? (3.100) 

It is clear that in  general (3.100) will not obtain. When (3.100) does hold, we 
can conclude that the random solution simply takes into account the random 
fluctuations about the deterministic solution, which in view of (3.100) is 
identical with the expected solution. As an example of a random solution for 
which (3.100) holds, consider the differential equation dxjdt = c with a 
random initial condition x(0) = x(0,w).  Using (3.66), we have 

x(t ,  W )  = ~ ( 0 ,  W )  + ct. 

&{x(t,  w ) )  = b{x(O, W )  + cr) 

Let b{x(O, w ) }  = xo . Then 

= xg + ct.  

The solution of the differential equation with initial condition x(0) = xo, 
yields 

2(t)  = x0 + ct = &{x(t ,  w ) } .  

We close this subsection by remarking that it would be of interest to study 
the conditional expectation of random solutions, since some information is 
generally available about the random quantities that occur in random 
equations. 

In the remaining two subsections we consider two techniques for solving 
random equations and investigating their statistical properties. Keller [38] has 
classified various approximation methods for solving random operator 
equations into two types: (1) “honest,” and (2) “dishonest.” The first step in 
an honest method is to obtain a solution x( t ,w)  for each w E Q. Hence, in this 
procedure for obtaining a random solution, randomness plays no role; and 
the advantages of using a random equation as a model are not available. The 
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second step in an honest method is to compute the expected value of x(r,w), 
as well as higher moments, from the set of explicit solutions obtained in the 
first step. 

In a dishonest method the probabilistic nature of the equation is taken into 
consideration before the solution x( t ,w)  is obtained. As an example, if one is 
primarily interested in the expected solution &‘{x(t, w ) } ,  then the random 
equation may be “averaged” to yield an equation for the expectation of 
x(t, 6~). In most cases the “averaged equation” will involve terms of the form 
a{x2(t,w>>, d{cc(w)x(t,w)}, etc. The next step involves the “dishonest” 
procedure of making certain assumptions about the above expectations; for 
example, 

a{x’(t, w>> = (&’{x(t, w>H2, 

d M w )  x(t ,  w>> = &‘b(w)I W ( t ,  w>>, 

etc. Hence some unproved assumptions are made concerning the statistical 
properties of the random solution. Dishonest methods have one advantage 
over honest methods, namely they generally lead to a simpler problem which 
is solvable. Unfortunately, the solutions obtained using a dishonest method 
are at least suspect, and in many cases they are incorrect. Keller was primarily 
concerned with the solutions of random equations which arise in the study of 
wave propagation in random media; however, the two types of methods have 
been employed to study properties of other random equations, for example 
Boyce [I51 has employed honest and dishonest methods in the study of 
random eigenvalue problems. 

In the second subsection we consider a perturbation method for deter- 
mining the expected solutions of random operator equations. We refer to 
Adomian [l ,  21 for a discussion of other methods for investigating the statisti- 
cal properties of random solutions. A method of particular interest involves 
establishing a hierarchy of equations from which the statistical properties of 
the solution of a random equation can be obtained. Hierarchy methods have 
been used in the study of random differential equations (cf. Richardson [53]), 
and in the study of random eigenvalue problems for random differential 
equations (cf. Boyce [ 151 and Haines [29]). 

2. Perturbation methods. Consider the random linear operator equation 
T ( w ) x = y  (3.101) 

in a separable Banach space X. We assume, at present, that y = y ( t )  is a 
deterministic function. We now consider a perturbation method which leads 
to an equation for the expected solution of a random operator equation. In 
general, perturbation methods can be utilized to study Eq. (3.101) if we assume 
that the random variations in the operator T(w) are sufficiently small so 
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corrections to the deterministic solution are of low order. In case T ( w )  is a 
differential operator this would require small random variations in the 
coefficients, and if T ( w )  is an integral operator, random variations in the 
kernel would have to be small. 

We now assume that T ( w )  depends on a small parameter E ,  and that when 
E = 0 the random operator T(w, E )  reduces to a deterministic operator T. If we 
now expand T(w,  E )  in powers of E ,  we have 

T ( w ,  ct) = T + ETl (W)  + E 2  T,(w) + O(E3) (3.102) 

Hence T(w,cc) is the sum of a deterministic operator T and two random 
operators, T,(w) and T2(w), which represent random perturbations of T. 
Consider the case when E = 0. If the deterministic operator equation Tx = y is 
solvable (that is, T-' exists), then xo( t )  = T - ' y ( t ) .  Using (3.102), Eq. (3.101) 
is of the form 

[Ti- ET, (W)  + E2 T,(w) + O ( E 3 ) I X  = y( t ) .  (3.103) 
Hence 

x(t ,  W )  = xo(r) - T - ' [ E T ~ ( W )  + c2 T,(w)] x ( f ,  W )  + O(c3). (3.104) 

In order to solve Eq. (3.104) we use the method of iterations or sucessive 
substitutions? : 

x(t ,  w )  = xo(t)  + rx , ( t ,  w )  + E 2 X 2 ( f ,  w )  + a * * .  (3.105) 

Substitution of (3.105) in (3.104) yields 

x(r, W )  = X o ( t )  - ET-' T l ( W ) X O ( f )  + c2 T-'[TI(w) T-' T,(u) - T ~ ( w ) ]  xo(t) 

+ 0 ( ~ 3 ) .  (3.106) 

If we now apply the expectation operator to (3.106), we have 

&{x(r, u)} = xo(t)  - ET-' &{T,(w)}xo(t) 

+ c2 T-'[b(T,(w)T-' T ~ ( w ) }  - &{T2(w)}]x,(t) + O ( E ~ ) .  (3.107) 

To obtain an equation for the expected solution, we eliminate the deter- 
ministic solution xo( t )  from (3.107). It follows from (3.107) that 

xo(2) = &{x( t ,w)}  + ET-' &{T'(w)}xo(t)  + O(r2)  

= &{x( t ,w)}  + ET-I b{T,(w)}  &'{x(r, w ) }  + O ( E ~ ) .  (3.108) 

Substituting (3.108) in (3.107) we obtain 

kP{x(r,w)} = xo( t )  - ET-I &{T1(w)} b{x(r, w ) }  

+ E2 T-'[&{T,(w) T-' T,(w)}  - &(Tl(W)} T-' &{T,(w)} 

- &'{T,(w)>I B{x( t ,  w ) }  + O(E3). (3.109) 

t See Bellman [6, p. 471. 
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If we now multiply (3.109) by T, we obtain 

{T+ 4 T d w ) )  + .2[aTl(w)} &{Tl(W)} 

- &{Ti(w) T-’ Tl(w)} + S { T ~ ( W ) > ] )  &{x(t, w ) }  = y + O(c3). (3.1 10) 

If b(T,(w)} = b{T2(w)} = 0 (the null operator), then (3.1 10) becomes 

{T - c2 I{Tl(w) T-I Tl(w)}} b{x(t ,  w ) }  = y + O(2) .  (3.11 1) 

If we drop the term O(c3) from Eqs. (3. log), (3.110) or (3.1 I I), we obtain an 
explicit equation for B{x(t, w ) } .  

It is of interest to consider a dishonest approach which yields Eq. (3.11 I). 
Let us put T2(w) = 0 in Eq. (3.103), and then apply the expectation operator. 
We have 

Tb{x(t, w ) }  + E b { T I ( W ) X ( f ,  w ) }  + O(E3) = y ( t ) .  (3.1 12) 

We now assume a{T,(w)} = 0. In order to determine €(T, (w)x(r ,w)}  we first 
multiply (3.104) by T,(w),  and then apply the expectation operator. We have 

b{T l (w)x ( t ,w) }  = - E ~ { T I ( w ) T - ’  Tl(w)x(t ,w)}  + O(c3). (3.113) 

We now assume that 

6{TI(w) T-I Tl(W)x(t ,  w ) }  = B{T,(w) T-I T,(w)} b{x(t ,  w ) } .  (3.1 14) 

&{T,(w)x(t, w ) }  = -&{T,(W) T-’ Tl(w)}  b(x(r, w ) }  + O(e3). 

Hence (3.1 13) becomes 

If the above expression is substituted in (3.112) we obtain (3.1 11). Relation 
(3.1 14) is called the assumption of focal independence. 

The case when the input is a random function y(r,w) does not cause any 
difficulties. It is, however, necessary to assume that T(w) and y( t ,w)  are 
stochastically independent. For a discussion of this case we refer to 
Adomian [2]. 

Perturbation methods have been applied to a number of random equations 
in applied mathematics, especially in the study of wave propagation in 
random media (cf. for example, Chen [17], Chen and Soong [16], Karal and 
Keller [37], and Keller [38]). 
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CHAPTER 4 

Random Linear Integral Equations 

4.1 Introduction 

Let K ( x , y )  be a complex-valued function of two real variables, where 
x E [a,b],  y E [a ,b];  and, for example, let f ( x )  E L2[a,b] .  The transformation L 
defined by 

U f  (-91 = s” K(x,  Y ) f  ( Y )  & (4.1) 

is a linear integral operator on L 2 ,  since L [ f ,  + f i ]  = L [ f , ]  + L [ f i ]  and 
L[mf] = a L l f ] ;  and we say that the function K(x ,y ) ,  called the kernel of L,  
generates the integral operator L. Linear integral equations, that is, linear 
operator equations in which the operator is of the form (4. I),  are divided into 
two basic types: (1) Fredholm equations, which have a fixed domain of 
integration; and (2) Volterra equations, in which the upper limit of integration 
is variable. Further, if the unknown function appears under the integral sign 
only, the equation is called an integral equation of the first kind; and if the 
unknown function also appears outside the integral, we refer to the equation 
as an integral equation of the second kind. In view of the above classification 
the linear integral equations 

(4.3) 

134 
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are nonhomogeneous Fredholm equations of the $rst and second kind, 
respectively; and the linear integral equations 

j aXWx7 Y ) f ( Y )  dY = A x )  

jax w, Y ) f  ( Y )  dY - hf ( x )  = A x )  

(4.4) 

(4.5) 

are nonhomogeneous Volterra equations of theJirst and second kind, respectively. 
From the above classification of linear equations, Eqs. (4.2) and (4.4), and 
Eqs. (4.3) and (4.9, it is clear that a Volterra equation is a special case of a 
Fredholm equation with kernel 

Linear integral equations, which constitute a very important class of linear 
operator equations, are of fundamental importance in applied mathematics. 
In many applied problems they arise as mathematical formulations of 
physical processes ; in particular, linear integral equations frequently arise in 
physical problems as a result of the possibility of superimposing the effects 
due to several causes. Certain integral equations can be deduced from 
differential equations, and in these cases the integral equations are alternative 
formulations of problems whose initial mathematical formulation leads to 
differential equations. 

To illustrate the above we consider three examples which indicate the 
relationship between differential and integral equations. 

1. Consider the initial-value problem consisting of the second order 
differential equation 

d 2 x  dx 
- + a -  + bx = f ( t ) ,  
dt2  dt 

(4.7) 

together with the prescribed initial conditions 
x(0) = xo , x’(0) = 00. (4.8) 

In (4.7) a and b may be functions of t .  If we first rewrite Eq. (4.7) as 
d 2  x dx 

d t2  dt 
a -  - bx + f ( t ) ,  -=_ 

and integrate over the interval (0, t ) ,  we obtain, using (4.8), 

= -ax - jd (b  - a’) x dT +lof fdT + a(0) xo + 00 . 
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Integrating the above we obtain the relation 

x ( t )  = x0 - U ( T )  X ( T )  dT - [b(T) - U‘ (T ) ]  X ( T )  dT dT 

which can be written in the form 

x ( t )  = -/:{.(T) + ( t  - T )  [b(T) - u ’ ( T ) ] } ~ ( T ) ~ T  

”. 
f ‘ ( t - T ) f ( T ) d T +  [ U ( O ) x 0 + U o ] t + x o .  

J O  

The above can now be rewritten as 

g( t )  = jOr ( f  - T ) ~ ( T )  dT + [a@) xo + U O ]  f + xo . 

Hence we have shown that the initial value problem (4.7) and (4.8) admits an 
integral equation formulation (4.9) as a Volterra equation of the second kind. 

2. Consider the diferential boundary-value problem 

d 2  x /d t2  + AX = 0, ~ ( 0 )  = 0,  X(U)  = 0 (4.10) 

Proceeding as in the first example, integration over the interval (0, t )  gives the 
relation 

dxjdt = - A / * x ( T )  dT + ~’ (o ) ,  
0 

where x’(0) is unknown. Integrating again over (0, t )  and using the condition 
x(0) = 0, we obtain 

x ( t ) = - h  ( t  - ~ ) x ( ~ ) d ~ + x ’ ( o ) f .  (4.1 1) sd 
Imposing the second condition x(a) = 0, we have 

x’(0) = (h/a)  [:(a - T )  x(7) dT. 

Hence (4.1 1) can be rewritten as 

x ( t )  = -hj’(f - T)x(T)dT + t(h/u)j”’(U - T)x(T)dT 
0 0 

= ( h / a ) / : ~ ( a -  t ) x ( 7 ) d T + ( h / a ) l ’ t ( a -  T ) x ( T ) ~ T .  (4.12) 
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If we’now put 
(T /u) (u  - t )  for 7 < t 

for 7 > t ,  
K ( t ,  T )  = 

( ( t /a) (a - 7) 

Eq. (4.12) can be written as 

Hence, the integral equation formulation of the differential boundary-value 
problem (4.10) leads to a Fredholm equation of the second kind. 

Consider the ordinary linear differential operator of second order 3. 

(4.14) 

where p ( t )  2 0. We will consider functions x ( t )  which, at the ends of a given 
interval (a, b), satisfy the homogeneous boundary conditions 

and inside (a,b) are continuous and have a continuous first derivative. In 
order that L [ x ]  have a meaning, we impose the condition of uniqueness on the 
second derivative of x( t ) .  We also assume that the unique solution x ( t )  of the 
equation Lx = 0, which satisfies the boundary conditions (4.15), and such 
that x( t )  and x’( t )  are continuous, is the trivial solution x( t )  = 0. 

ax(a) + px’(a> = 0, yx(b) + 6x’(b) = 0 ;  (4.15) 

The Green’s function, or influence function, associated with the differential 
operator L and the boundary conditions is the function G(t, 7) with the 
following properties : 

(i) G(t, 7) is continuous for t ,7  E [a, b]  ; 
(ii) In each of the intervals [a, T ]  and (7 ,b ] ,  the derivatives aG/at and aG/aT 

are continuous; 
(iii) G(t, T) is continuous at t = T ;  

(iv) The derivative of G has a discontinuity of magnitude -lip(.) at t = 7; 

that is, -1 aG 21 =-; 1 

a7 r=,+ 1-7- P ( 7 )  

(v) For fixed 7, G(t, 7) satisfies the equation L[G] = 0 in each of the intervals 

(vi) As a function oft, G ( ~ , T )  satisfies the boundary conditions (4.15). 

In order to determine the Green’s function we construct integrals u( t )  and 
u ( t )  of L [ x ]  = 0 satisfying the Cauchy conditions 

[a, T )  and (7, bl ; 

u(a) = p, 
v(b) = 6, 

u’(a) = -a 
u’(b) = -y. 
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The integrals u( t )  and v( t )  are linearly independent; and from the theory of 
linear differential equations we have the identity 

p ( t )  [u(t )  d ( t )  - u’(t) ~ ( t ) ]  = c # 0. 

We can now define a function G(t, T )  by 

~ ( t )  D(T) /c ,  for t E [a, T ]  

47) o(t)/c, for t E [T, 61; 
G(t,  7) = (4.16) 

and it is not difficult to verify that the function defined by (4.16) satisfies the 
properties (i)-(vi) of a Green’s function. It follows from (4.16) that G(t,T) 
enjoys the following property: 

(vii) C(t,  7) = G(T, t ) ;  that is G(t, T )  is a symmetric function. 
We now state two results which are of fundamental importance in the 

reduction of differential equations of the form Lx = f(t) to Fredholm 
equations. 

THEOREM 4.1. 
If x ( t )  is a solution of the differential equation 

Let f ( t )  be a continuous function dejned on the interval [a,b]. 

L x  + f ( t )  = 0 (4.17) 

satisfying the boundary conditions (4.19, then x ( t )  can be written in the form 

x ( t )  = J b G ( t ,  .),f(T)dT. (4.18) 

THEOREM 4.2. 
with the boundary conditions (4.15). 

The function x ( t )  given by (4.18) satisfies Eq. (4.17) together 

Consider the differential equation 

L x  + Xh(t) x = 0, (4.19) 

together with the boundary conditions (4.15). It follows from the above 
results that the differential boundary-value problem consisting of Eq. (4.10) 
and boundary conditions (4.15) can be reduced, using the Green’s function, 
to the integral equation 

x ( t )  = A J ~ ~ ( ~ ) C ( ~ , ~ ) X ( ~ ) ~ T .  (4.20) 

Equation (4.20) is a homogeneous integral equation; nonsymmetric except in 
the case when h ( ~ )  is a constant. If we put 

0 

ho X(t) = y ( t )  and h(t)  h(T) G(t, T )  = K( t ,  T ) ,  
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then Eq. (4.20) can be rewritten as 

Y ( t >  = h f K ( t ,  r)Y(.)dT, (4.21) 

which is a homogeneous Fredholm equation of the second kind with 
symmetric kernel. 

The three examples given above stressed the integral equation formulation 
of certain types of differential equations which arise in many physical 
problems. From the point of view of analysis, there are several good reasons 
for utilizing the integral equation formulation : (1) the integral operator is 
usually bounded (and in many cases compact), whereas the differential 
operator is unbounded ; (2) the integral equation formulation provides a 
model which is suitabie for numerical analysis; and (3), as illustrated by 
Examples 2 and 3, the integral equation incorporates the boundary conditions 
imposed on a differential equation; hence every solution of the integral 
equation automatically satisfies these boundary conditions. 

There is a voluminous literature on linear integral equations and their 
applications. For expositions of the theory of linear integral equations and 
their applications, and for references to the literature, we refer to the books by 
Corduneanu [ 1 1 a], Courant and Hilbert [ 12, Chap. 111, Green [17], Hildebrand 
[21], Kanwal [25a], Mihlin [32], Pogorzelski [34], Riesz and Sz.-Nagy [35, 
Chap. IV], Saaty [36, Chap. 61, Stakgold [42, Chap. 31, Tricomi [44], Yosida 
[45], Zaanen [46, Part 1111. 

B. Random linear integral equations. General remarks 

Consider, for example, linear operator equations of the form 
Lf = g  (4.22a) 

(4.22b) (L  - w- = g, 

where L is the Fredholm operator 

(4.23) 

or the Volterra operator 

Probabilistic analogues 
follows: 

U f  ( 4 1  = y K(x9 Y ) f  (Y )  dY. (4.24) 

of Eqs. (4.22a) and (4.22b) can be obtained as 

1. The function g (right-hand side, free, forcing, or nonhomogeneous term) 
is a random function. In this case the integral equations are of the form 
Lf = g(x, w )  and ( L  - X I )  f = g(x,  w ) ;  and the stochastic properties of the 
solutions f(x,w) depend on the stochastic properties of g(x,w) since the 
operators are deterministic. 
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2. The integral operator L is a random operator. In this case the integral 
equations are of the form L ( w ) f =  g and (L(w) - XZ)f= g. We shall show that 
Fredholm (or Volterra) operators defined over a random domain Z, c [a,b] (or 
Z, = [a,w]),  or equivalently, the kernel K is a random kernel K(x ,y ,w) ,  are 
random operators; and the stochastic properties of the solutions f ( x ,  w )  

depend on the stochastic properties of the random operator L(w). 
The integral operator L is a random operator and g is a random function. 

In this case the integral equations are of the general form L ( w ) f =  g(x ,  w )  and 
(L(w) - XZ)f= g(x,  w ) .  Clearly the two previous cases are special cases of these 
general random integral equations. The probabilistic analysis of the solutions 
f(x,w) in this case is much more involved than the previous cases, since the 
stochastic properties of the solutions will depend on the stochastic properties 
of the random operator L(w) and the random forcing function. 

3. 

In addition to random integral equations that arise as direct probabilistic 
analogues of Fredholm and Volterra equations, random linear integral 
equations also arise as alternative formulations of random differential 
equations; in particular, as integral equation formulations of random initial- 
value and random boundary-value problems for differential equations. 

In Sect. 4.2 we study Fredholm and Volterra equations with random 
forcing functions; and in Sect. 4.3 we consider Fredholm and Volterra 
equations with random kernels. We do not consider Case 3 mentioned above 
since in this case very little is known about equations of this general type, 
except, of course, some general results concerning existence, uniqueness, and 
measurability, which follow from the theorems of Chap. 3. Finally, in Sect. 4.4 
we consider some random Fredholm and Volterra equations arising in applied 
fields. 

In Chap. 5 we study some eigenvalue problems for Fredholm equations; in 
particular, we consider (1) the integral equation formulation of a random 
differential boundary-value problem and (2) the eigenvalue problem for 
Fredholm equations with random degenerate kernels. 

4.2 Fredholm and Volterra Integral Equations with Random Forcing Functions 

A .  Introduction 

Consider the random linear integral equation 

f ( x ,  w )  - Lf(% w )  = g(x,  w) ,  (4.25) 
where L is a Fredholm (or Volterra) operator over [a,b] (a  and b finite), and 
g(x,w),  x E [a,b], is a second-order random function which is assumed to be 
continuous in mean square; that is, g(x,w) is such that 

(i) &(Ig(x,  w)I2> < rn for every x E [a, 61, 
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and 
(ii) l imb{)g(x+ h , w ) - g ( x , w ) / * )  = O  forevery X E  [a,b]. 

h-0 

Equation (4.25) is a deterministic linear operator equation with random 
forcing function; hence the solution of the equation defines a new random 
function f ( x , w ) ,  the stochastic properties of which will depend on the 
stochastic properties of g(x ,  w ) .  Since the Fredholm operator is deterministic, 
the solution of Eq. (4.25) can be obtained by well-known classical methods; 
in particular, under the assumption that the kernel is "small," the equation 
can be solved by iteration (cf. Yosida [45, pp. 115-1 181). In this section, the 
results of which are due to Anderson [2], we obtain the solution f ( x , w )  of 
Eq. (4.25), calculate the covariance function of f ( x ,  w ) ,  and investigate the 
continuity o f f ( x ,  w ) .  

B. Solution of the integral equation 

We now state and prove the following theorem. 

THEOREM 4.3. If (i) K(x,y) ,  x , y  E [a, b] ,  is a Fredholm kernel such that 
Ib - a1 max IK(x,y)I < 1 and (ii) g(x,w),  x E [a,b], w E Q, is a second-order 
random function which is continuous in mean square, then the random function 
f ( x ,  w )  deJned by 

f k  w )  = g(x, w )  - ib q x ,  y )g(y*  w )  dy, (4.26) 

x E [a, b] ,  w E 52, satisfies the Fredholm equation (4.25) on [a, b]  x 1;2. 

Proof. The reciprocal form of Eq. (4.25) is 

g(x,  w )  = f ( x ,  w )  - Iub w, y ) g ( y ,  w )  4 Y 7  

where I '(x,y),  the resolvent kernel of K(x ,y ) ,  is given by the Neumann series 

(4.27) 

m 

n= I 
f ( x ,  y )  = - 2 K y x ,  y).  (4.28) 

The iterated kernels K( ' ) ( x , y ) ,  K(2)(x,y) ,  . . . are defined as follows: 
K"'(x,y) = K ( x , y )  

K ( 2 ) ( x ,  y )  = s" K ( x ,  z) K(z ,  y )  dz, 
U 

and in general 

K(")(x,  y )  = jb K("-')(x,  z)  K ( z ,  y )  dz, 
a 
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n = 3,4, .... Under the assumption that the kernel is small [that is, 
(b  - a)max IK(x,y)I < 13 the Neumann series (4.28) converges uniformly, by 
comparison with a geometric series. 

Since g(x ,  w )  is a second-order random function, 

jabIg(x,w)1Zdx< a, (4.29) 

almost surely. Also, since the resolvent kernel r ( x , y )  is anL2-kernelt on [a, b],  

jab Ir(x,Y)IZ4Y < a, 

s.” n x ,  Y )  g(Y? w )  

f ( x ,  w )  = g(x ,  w )  - J b  n x ,  Y ) g ( Y ?  w )  4 

jab Ir(x,y)g(y,w)ldyEL,ta,bl 

for every x E [a,b].  Hence the integral 

exists on [a, b]  x Q. From the above we can conclude that 

is well defined on [a,b] x 9. 
We now show that 

for almost every w E Q. An application of Holder’s inequality yields 

Hence 

almost surely. 
Finally, we show that the random functionf(x, w )  defined by (4.26) satisfies 

the random Fredholm equation (4.25) on [a,b] x 9 almost surely. Consider 
the identity (cf. Yosida 145, p. 1171) 

K ( x ,  y )  + r ( x ,  y )  - J b  K ( x ,  2) r ( z ,  y )  dz = 0. (4.30) 
a 

i Afunction@(x,y)on [u,b] x [u,b]issaid to beanL,-kerne/if(i)Jt I @ ( ~ , y ) / ~ d x d y c :  33. 

(ii) for each x E [a ,b] ,  @ ( x , y )  is a measurable function of y such that Jt (@(x,y)( ’dy < m, and 
(iii) for each y E [u,b], @(x,y)  is a measurable function of x such that j: I@(x,y)l’dx < m. 

We refer to Tricomi [44] for a discussion of L,-kernels. 



4.2 Equations with Random Forcing Functions 143 

If we multiply (4.30) by g(y,w),  and then integrate over the interval [a,b], we 
obtain 

g ( y ,  w )  { K ( x ,  v) + w, Y )  - I."K(X, z )  r ( z ,  y )  d z )  dY = 0 ;  

which, upon rearrangement, yields 

J-abg(Yd4 K(X,Y)dY - ~ ( S b K ( x . z ) r ( z , Y ) g ( Y , w ) m ) d y  a a  == - p ( x 7 Y ) g ( Y > w ) d Y .  

f l r ( z , Y ) g ( Y 9 w ) l * d Y  E JMa9bl 

~IK(x,z)IdzJbblr(Z,y)g(Y,W)Idy < O3 

5." (Jab K ( x ,  z )  r ( Z ,  Y )  g (y ,  w )  dz )dY = Jbb ( K ( x ,  z )  p ( z ,  y )  g( y ,  w )  d+. 

p ( x , Z ) ( g ( z , w )  - ~ b r ( z , Y ) g ( Y , w ) d Y p z  = -[r(x ,Y)g(Y,w)dY.  

[Kc., z) f (z1 w )  dz = -Jb" r ( x ,  Y)g(Y,  w )  dr. 

(4.3 1)  

Since 

almost surely, and since IK(x,z)l E L2[a,b] for every x E [a,b],  we have 

almost surely. An application of Tonelli?s theorem? to the second term on the 
left-hand side of (4.31) yields 

(4.32) 

If we now change the variable of integration in the first term on the left-hand 
side of (4.31) from y to z and then use (4.32), we can rewrite (4.31) as 

Using the definition of f ( x , w ) ,  as given by (4.26), the above expression 
reduces to 

(4.33) 

Rewriting (4.33) as 

JbbKcx, z > f ( z ,  w )  dz = g(x ,  w )  - g(x,  w )  - r ( x ,  Y)g(Y* w )  dY, 

and using the definition of f ( x , w ) ,  we see that (4.33) is equivalent to the 
random Fredholm equation (4.25). 

The above result can be easily specialized to the case in which K ( x , y )  is a 
Volterra kernel. In this case Eq. (4.25) is of the form 

f(X9 w )  - [ K(X? Y ) f ( Y ,  w )  dY = g(x9 w )  ; (4.34) 

t We refer to Dunford and Schwartz [14, p. 1941 for a statement of Tonelli's theorem. 
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and the solution of the random Volterra equation is 

We now state, without proof, the following result. 

COROLLARY 4.1. I f K ( x , y )  is a Volterra kernel on [o, T ]  x [o, T ] ,  T > 0, and i f  
g(x,  w )  is a second-order random function on [0, m) which is continuous in mean 
square, then the random function f ( x , w )  defined by (4.35) on [0, a) x SZ satisjies 
the random Volterra equation (4.34) on [0, a) x Q. 

C. Covariance function of the solution 

Let 

RAXI 9 x2) = a { m l  ,w>,f(x2, w ) } ,  X I  9 x2 E [a, 61 (4.36) 
denote the couariancefunction of the solution f ( x , w )  of the random integral 
equation (4.25). To establish the existence of R f ( x l  ,x2) we have only to show 
that 8{l f(x,w)12} < co, for every x E [a,b]; that is, f ( x , w )  is a second-order 
random function. It follows from Holder’s inequality that 

and 

for every x E [a,b], since g(x,w) is continuous in mean square. Hence, it 
follows from (4.26) that b { l f ( x , ~ ) 1 ~ )  i co for every x E [a,b];  which estab- 
lishes the existence of the covariance function R f ( x , ,  xz). 

The calculation of R,(x, , x2)  is straightforward. From (4.36) and (4.26) we 
have 

&(XI  7x2) = 6 { ( g ( x l  , w )  - jabr(xI 3Y)g(1’ ,w)dY)(g(x2 ,~)  

- jab Q X 2  9 Y>g(Y* w )  du)) 



4.2 Equations with Random Forcing Functions 145 

A simple calculation yields the following representation of Rf (x l  ,xz) in 
terms of the covariance function R,(x, , x2)  of the input random function 

RAx,  7 x2) = H ( x ,  9 x2) - J b b T ( X I  , y )  H ( y ,  x2) 4. (4.38) 

Since g(x, w )  is continuous in mean square, its covariance function R,(x, , x2) 
is a symmetric nonnegative function continuous on [u,b] x [u,b]. Hence, by 
Mercer's theorem (see Loeve [31]), 

g(x, w )  : 

m ___ 
~ 2 )  = 2 A n  qn(xl) ~ n ( ~ 2 ) r  (4.39) 

where the series converges absolutely and uniformly on [a,b] x [u,b]. In 
(4.39) {pn(x)} is the sequence of normalized eigenfunctions of R,(xl ,xZ), and 
{A,} is the sequence of associated nonnegative eigenvalues; that is, for all 
integers m and n, 

n= 1 

An pn(x) = jab x )  p n w  d7, x E [a, 61 

f F m ( x )  9 ~ x 1  dx = 8 m . n  

where 8,,,,n is the Kronecker delta. 
Put 

tn (w)  = Lbg(x, w> pn(x) dx, n = 1 , ~  . . . . (4.40) 

The random variables (,(w) are well defined since JI I g(x, w)I2 dx < ~0 almost 
surely, and the eigenfunctions are continuous on [a, b]. The sequence 
{(,(w)},", , is orthonormal on Q; and for every x E [u, b] the series 

5 t n b )  vn(x) (4.41) 
n= 1 
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is a representation for g(x, w )  in the sense that 

where, as before, I‘(x,y) is the resolvent kernel of the Fredholm (or Volterra) 
kernel K(x ,y ) .  It  can be shown that f ( x , w ) ,  the solution of Eq. (4.25), admits 
the orthogonal representation 

m 

f (x, w )  = $ A,!’’ $,,(x), x E [a, b l ;  (4.44) 
n= I 

from which it follows that the covariance function R f ( x , , x 2 )  admits the 
orthogonal representation 

(4.45) 

D. Mean-square continuity of the solution 

We now show that the random function f ( x ,  w )  is continuous in mean square 
if the kernel K ( x , y )  of the integral operator is continuous. 

THEOREM 4.4 Let K ( x , y )  be a Fredholm kernel on [a ,b]  x [a ,b ] ,  and let 
I‘(x,y) denote the associated resoluent kernel, If K ( x , y )  is continuous on 
[a,b] x [a ,b] ,  then the solution f ( x , w )  of the integral equation (4.25) is 
continuous in mean square on [a, b ] .  

Proof. Let xo E [a ,b] .  It follows from (4.26) and an application of 
Minkowski’s inequality that 

( a f ( x , W )  - f (xo  ,w)12H1/2 

2 112 
= (8 ( 1  g(x, w )  - g(x0, w )  + 1 g(Y, w )  [ r ( x ,  Y )  - W O  7 Y)I2 dY 1 )) 

Now, let I,!J,,(x), n = 1,2,. . . , be the solutions of the (deterministic) integral 
equations 
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Since g(x ,  w )  is continuous in mean square, 

lim &{Ig(x, W )  - g ( x o ,  w) I2}  = 0; 
x+xo 

hence it is sufficient to show that 

Therefore, it remains to show that 

Let > 0. By hypothesis K ( x , y )  is continuous on [a,b] x [u,b]; hence its 
resolvent kernel r ( x , y )  is also continuous on [u,b] x [a ,b] .  Since r ( x , y )  is 
uniformly continuous on [a,b] x [a,b],  we can pick a 6 > 0 such that 

I r (X9  Y )  - w o  9 Y )  I ’ dY < € 

for Ix - xoI < S. This establishes (4.46). 

E. A concrete example: A Volterra integral equation with Wiener input 

In this subsection we consider as a concrete example of the type of integral 
equation studied in this section, a Volterra integral equation with input a 
Wiener process. Consider the integral equation (4.25) on [0,1] with kernel 

-I for x > y  

0 for x < y .  
(4.47) 

In this case Eq. (4.25) is of the form 

f ( x ,  w )  + [ f(y, a> dv = g(x ,  W ) .  (4.48) 

Since g ( y ,  W )  is continuous in mean square, 
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The resolvent kernel T(x,y) ,  which is easily calculated, is given by the 
Neumann series 

W [;-(x-y) for x > y  

for x <y.  
-2 K(")(x, y )  = q x ,  y )  = 
n= I 

It now follows from Theorem 4.3 (and Corollary 4.1) that the random 
functionf(x,w) on [0, I ]  which satisfies Eq. (4.48) is given by 

f ( x ,  w )  = g(x, w )  - IXe- 'x-y)g(y ,  w ) d y .  (4.49) 
0 

In order to calculate the covariance function Rf(x, ,x2) we use (4.37) and 
the fact that the covariance function R,(x, , x2) of the Wiener process g(x, w )  is 
R,(x, ,x2) = min(xl ,x2), xI ,x2 E [0,1]. From (4.37) and (4.49) we have 

X I  - Ji' ex~[-(xz - OI 5 d8 - X I  J"' ex~[-(x2 - 0 1  df 

x2 - JoX'exP[-(x2 - 4)11d5 

"I for x, <x2 
for xI > x z .  

(4.50) 

i H(x1 1 x2) = 

Substitution of the above expression for H(xl ,x2) in (4.38) yields 

Rf(xl ,x2) = +exp{-lxl- ~21)  - +exp{-(xl + ~211. 

4.3 Fredholm and Volterra Integral Equations with Random Kernels 

A .  Introduction 

Consider the random integral equation 
L ( w ) f -  v-= g, (4.5 1) 

where f and g are elements of a Banach space 55, and L(w) is a random Fredholm 
or Volterra operator on X; that is, for every f E X, L(w)f is a generalized 
random variable with values in ;X. Random integral operators arise when we 
consider integral operators with random kernels, or when the integrals are 
defined over random domains. We shall show, however, that in certain in- 
stances these two cases are equivalent; that is, we can consider an integral 
equation over a random domain as an integral equation with a random 
kernel, and vice versa. 

In this section we study integral equations with random kernels. Since in 
this case the stochastic properties of a solution depend on the stochastic 
properties of the random integral operator L(w), the problems of existence, 
uniqueness, and measurability of the solutions are a little more involved than 
in the case considered in the last section, that is, integral equations with 
random forcing functions. 
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In Sect. 4.3B we consider Fredholm integral equations with random 
degenerate kernels. As in the theory of deterministic integral equations, this 
class of random integral equations is one of the easiest to handle; however, 
they constitute an important class of random integral equations which are 
useful in many applied problems. Sections 4.3C and D are devoted to random 
Fredholm (and Volterra) equations in the space of continuous functions and 
in Orlicz spaces, respectively. In Sect. 4.3E we consider a class of random 
Volterra equations which arise in the study of ordinary differential equations 
with random coefficients. 

B. Fredholm equations with random degenerate kernels 

In this section we consider the Fredholm integral equation of second kind 

(4.52) 

in the case when the kernel K ( x , y )  is a random degenerate kernel. A Fredholm 
kernel K ( x , y )  is said to be degenerate? if it is of form 

(4.53) 

where {ai (x)} ;=,  and {/3i(y)};= are two independent sets of linearly indepen- 
dent L2(0, 1)-functions.$ In this case the Fredholm integral equation (4.52) is 
equivalent to a system of n linear algebraic equations in n unknowns. If we put 

(4.54) 

Eq. (4.52) with kernel (4.53) becomes 
n 

The t j  are unknown constants, since the function f ( x )  is unknown. From 
Eq. (4.55) we obtain 

(4.56) 

hence the problem reduces to the determination of the constants f j .  

obtain 
If we now multiply Eq. (4.55) by Pi(x),  i = 1,2,. . . ,n, and then integrate, we 

Degenerate kernels are frequently referred to as separable, or Pincherle-Goursat 

$ It is of interest to note that a degenerate kernel generates a bounded linear transformation 
kernels, and kernels offinite rank. 

L on L2(0, l), and since its range is finite dimensional, L is compact. 
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where 

(4.58) 
I 

ai 1 Jo a j ( x )  Bi(x) dx  

h = 1' Bdx)g(x)  dx.  (4.59) 
0 

Rewriting Eq. (4.57) in matrix form, we have 

( A  - hZ)t  = b, (4.60) 

where A = (ai j )  is an n x n matrix, and 5 and b are n-vectors. The system (4.57) 
is equivalent to Eq. (4.52). Hence, if ti is a solution of Eq. (4.57), the cor- 
responding solution of Eq. (4.52) is given by Eq. (4.56). 

Fredholm equations with degenerate kernels are of independent interest; 
however, they are often utilized to obtain approximate solutions of Fredholm 
equations in which the kernel can be approximated by a polynomial in x and 
y.  Also, the general case of a continuous Fredholm kernel can be reduced to 
the case of a degenerate kernel by utilizing the Weierstrass approximation 
theorem, which, we recall, states that a continuous function of two variables 
defined on a closed rectangle can be uniformly approximated by polynomials 
(cf. Petrovskii [33, p. 281). 

We refer to Courant and Hilbert [12, Chap. 1111, Kantorovich and Krylov 
[25, Chap. 111, Mihlin [32, Chap. I], Pogorzelski [34, Chap. TI], Stakgold [42, 
Chap. 31 and Tricomi [44, Chap. 111 for detailed discussions of Fredholm 
equations with degenerate kernels and their applications. 

Consider the random degenerate kernel 

In (4.61) {ai(x,w)};=l is a family of almost surely independent L2(0, 1)-random 
functions, and {/3i(y));= is a set of independent L,(O, 1)-determinate functions. 
Clearly, for every fixed x , y  E (0,l) the kernel K ( x , y , w )  is a measurable 
function of w .  Put 

f i = l / 3 i ( x ) f ( x ) d x .  i = 1 , 2  ,..., n. (4.62) 

Then, proceeding as in the deterministic case, the Fredholm equation 

lo1 K(x ,  y, W ) f ( Y )  & - hf(x) = g(x) (4.63) 
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with random degenerate kernel K(x,y,w) as given by (4.61) can be reduced to 
the following system of random linear algebraic equations : 

i: a l j ( w ) t j - X t i = b l ,  i =  1 , 2  ,..., n. (4.64) 
I =  I 

In (4.64) 

a, I (w)  = aj(x, w )  p i (x )  dx, i, j = 1,2, . . . , n (4.65) 
and 

b, = jo' BdX) g(x) dx, i =  1,2 ,..., n. (4.66) 

The integrals in (4.65) and (4.66) are well defined; and the Riemann integra- 
bility of / 3 i (~ I ) /3 i (~2)Rj (~ I  ,x2), where Rj(x, ,x2) is the covariance function of 
the orj(x,w)-process, i s  sufficient to ensure that the integral in (4.65) exists in 
mean square, and defines, for every pair i,j, a real-valued random variable 
ai j(w). 

Equation (4.64) can be rewritten as the random operator equation 

(A(w) - h l )  5 = b, (4.67) 
where A(w)  is an n x n random matrix with elements aij(w) defined by (4.65), 
and 5 and b are n-vectors. We remark that Eq. (4.67) can be interpreted as a 
random operator equation in the Euclidean space R, or the Hilbert space 
I2(n). In [6] the existence, uniqueness and measurability of the solution ( (w)  of 
Eq. (4.67) was established using the SpaEek-Hang probabilistic analogue of 
the Banach contraction mapping theorem (Theorem 3.5). However, an 
application of the result of Bharucha-Reid and HanS (Theorem 3.13) on the 
invertibility of linear random operators of the form L(w) - h l  enables US to 
state the following result for Eq. (4.67). 

THEOREM 4.5. Let h # 0 be a real number such that 

Then the random matrix A(w)  - h l  is invertible; and the solution 

of Eq. (4.67), equivalently the solution f(x,w) of Eq. (4.52), is (Q(h) fl %)- 
measurable. 

( ( w )  = (A(w)  - hZ)-' b 

We now show that a Fredholm equation with a random continuous kernel 
can be reduced to a Fredholm equation with degenerate kernel. Consider a 
random continuous Fredholm kernel K ( x , y ,  w ) ,  x,y E [a, b] ,  and assume that 
it can be written in the form 

K ( x ,  Y ,  4 = W x ,  Y )  + N x ,  Y ,  4, (4.68) 
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where the deterministic kernel M ( x , y )  satisfies the condition 
Ib - a1 max IM(x,yl  < 1 

[that is, M ( x , y )  is “small”] and N ( x , y , w )  is a random degenerate kerneI. 
Hence the kernel K ( x , y , w )  can be regarded as a random kernel which results 
from the perturbation of a “small” kernel by a random degenerate kernel. 
Hence the random Fredholm equation 

f - L(o)f  = g, (4.69) 

where L(w) denotes the Fredholm operator with kernel K(x ,y ,  w ) ,  can be 
written in the form 

f - L M f  = L N ( w ) f  + g* (4.70) 

In (4.70) we have put 

LM [fl = lob M ( x ,  y ) f ( y )  dy, L N ( W )  [ f  1 = lob N ( x 7  y9 w ) f  ( y )  &? 

where N(x ,y ,w)  is of the form (4.61). If we put 

f - L M f  = h, (4.71) 

.f(4 = - s.” r (x ,  Y )  h(y) 4, (4.72) 

where I‘(x,y)  is the resolvent kernel associated with M ( x , y )  (cf. (4.28)). 
Inserting (4.72) in (4.70), we obtain 

then (cf. Sect. 4.2B) 

= L N ( W )  Ih - [ r ( x ,  y )  j ( y )  d y ]  + g. (4.73) 

Put 
T(w) [ h l =  LN(w) [ rrc.9 Y ) ~ ( Y )  d y ]  9 

s(w) [hl = ( L N ( w )  - T(w))  [hl. 
and consider the random operator 

(4.74) 

Then, it is easily verified that the kernel, say R(x ,y ,  w) ,  of the random integral 
operator S(w)  is degenerate, and that the integral equations (4.70) and (4.73) 
are equivalent. 

In Chap. 5 we consider the asymptotic distribution of the eigenvalues of the 
Fredholm operators with random degenerate kernels (cf. Bharucha-Reid and 
Arnold [S]). Since the eigenvalues of the random Fredholm operator are the 
solutions of the random algebraic equation A(w)  - hZ= 0, we investigate the 
asymptotic distribution of the random eigenvalues of A(w). In the next section 
of this chapter we consider a Volterra equation with random degenerate 
kernel which arises in the study of ordinary differential equations with random 
coefficients. 
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C. Random Fredholm equations in the space of continuous functions 

Consider the Fredholm equation 

Jab K(x, v ) f  ( Y )  dY - v-(x> = g(x) (4.75) 

in C[a,b], the space of continuous functions defined on the interval [a,b]. 
With the norm l i f l i  = max,,[,,b, If(x)l, the space C[a,b] becomes a separable 
Banach space. Let L denote the Fredholm operator on C with kernel K(x,y); 
that is, 

In this section we consider the existence, uniqueness, and measurability of 
the solution of Eq. (4.75) when the kernel K is a random kernel K(x,y,w). The 
first problem we consider is that of the measurability of the Fredholm 
operator 

(4.77) 

With reference to the deterministic kernel K(x, y),  we assume that K(x,y) is 
bounded for every x,y E [a,b], and is continuous except possibly at points on 
a finite number of continuous curves y = yi(x), x E [a, b], i = 1,2,. . . , n. With 
the above assumpt!ons on K ( x , y ) ,  the Fredholm operator L is completely 
continuous on C (cf. Kolmogorov and Fomin [29, pp. 239-2431). We remark 
that kernels with the above properties are sometimes referred to as mildly 
discontinuous. As an example, a Volterra kernel on [O,b] x [O,b] which is 
continuous for y < x and vanishes for y 2 x is mildly discontinuous on 
[O,b] x [0, b]. In this case we can take n = 1 and yl(x) = x. 

Let A denote the space of all mildly discontinuous kernels K defined on 
[a, b] x [a, b],  and such that for every x E [a, b] ,  y E [a,b] and every sequence of 
real numbers b 2 S1 > S2 > ... > 6, --f 0, (i) K(x,O) = lim,,,K(x,6,) and 
(ii) K(x,y) = lim,,,K(x,y - S,), provided 6, < y in (ii). A, as the space of all 
bounded functions on [a,b] x [a,b] with the above properties, is clearly a 
linear space; and with the norm llKll= sup/K(x,y)), where the supremum is 
taken over x E [a, b] and y E [a,b], A becomes a separable normed linear space. 
Let 23(52) denote the o-algebra of subsets of R. We can now define a random 
kernel as a %-measurable mapping K of Q into S. 

The relationship between the measurability of the Fredholm operator with 
kernel K(x,y,w) and the measurability of its kernel is established by the 
following result: 

THEOREM 4.6. Let K be a mapping of Q into A, and let the transformation L(w) 
of IR x C into C be defined for every w E SZ and every f E C by (4.77). Then L(w) 

[ f (x) l=  J b  K(x, Y ,  w ) f  ( A  4. 
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is a completely continuous linear operator on C for every w E SZ. Moreover, the 
following statements are equivalent. 

(i) L ( u )  is a random operator on C ;  
(ii) (w : K(x ,  y ,  w) < 6) E 91 for every x ,y  E [a, b] ,  and every 6 E R ;  

(iii) K(x ,  y ,  w )  is a random kernel; 
(iv) L(w) is an operator-valued random variable. 

Proof. The complete continuity of L(w) for every w E s2 follows from the 
classical result (cf. Kolmogorov and Fomin [29, p. 241, Theorem 11).  Since 
statements (i)-(iv) are assertions of measurability, we will base the proof of 
their equivalence on the fact that a mapping x(w) of 52 into a separable Banach 
space 3E is a generalized random variable if and only if for every bounded linear 
functional x* belonging to a set which is total on X the mapping x*(x(w)) is a 
real-valued random variable. 

For every x ,  y E [a, b] ,  f E C,  and K E R, put 
gx,,(K) = K(X,Y) ,  (4.78) 

and 

h,,,(K) = K(x ,  Y ) f  ( Y )  dy. (4.79) 

Then it is clear that the sets {gx , , (K) :  x ,  y E [a, b]}  and {hx , f (K)  : x E [a, b ] , f ~  C }  
are total sets of bounded linear functionals on R. Further, if for every x E [a,b] 
and f E C we put 

rx ( f )  =f ( X I ,  (4.80) 

then the set {r,(f):  x E [a, b]}  is a total set of bounded linear functionals on C. 
Finally, let 

& =  ( L : L [ f I = I b K ( ~ , y ) f ( y ) d y ,  K E R  f E C ) .  

If, for every x E [a, b] and f E C, we put 

s x , m  = rx(L[f I ) ,  (4.81) 

then the set { S ~ , ~ ( L ) : X  E [ a , b ] , f ~  C }  is a total set of bounded linear functionals 
on E, . Since E, is a subspace of i!(C), the algebra of bounded linear operators 
on C, it is a normed linear space; and for every L E E, 

IILII = suPlI~[fIll = suPl/JbbK(X,Y).~(Y)dYI~ 

= SUP max(l[Kk Y)f(Y)dYli 

(4.82) 
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where sup is taken over {f: I l f I l =  l} and max over x E [a,b]. Hence the 
separability of R implies the separability of E o .  

The equivalence of (i)-(iv) now follows from (a) Theorem 1.2 (the applic- 
ability of which follows from the separability of the spaces C, R, and E, , and 
the fact that the sets of bounded linear functionals defined by (4.78)-(4.81) are 
total on K, C, and E,, respectively), (b) the fact that (Eo,  8 ( E o ) )  is a separable 
measurable space, where B(E,) = E, fl B(Q(C)), and (c) the fact that 

hx,,(K) = sx*,(L) = rx@[fl> = U f l  
for every x E [a,b], f E C, and every K E R and L E E,, where L(w) [ f ]  is 
defined by (4.77). 

We now turn to the problems of existence, uniqueness, and measurability 
of the solution of the random integral equation 

- h)f= g(w),  (4.83) 
where L(w) is the random Fredholm operator given by (4.77), and g(w) is a 
C [a, 61-valued random variable. To establish the existence, uniqueness, and 
measurability of the solution of Eq. (4.83) when g(w) is a given generalized 
random variable with values in C[a,b]  we can use fixed-point methods; and 
to consider the same problems when g(w) is an arbitrary generalized random 
variable with values in C[a,b] we can use results on the existence and measur- 
ability of the inverse of the random operator (L(w) - h l ) .  

As in Chap. 2, let p(L) denote the set of those pairs (w,h) E 9 x R for which 
the linear random operator (L(w) - h l )  has a linear bounded inverse; and 
recall that {w : (w, A) E p(L)} E 2l. 

We now state and prove a theorem which establishes a sufficient condition 
for the invertibility of (L(w) - h l ) .  

THEOREM 4.7. Let L(w) be the random Fredholm operator on C as given by 
(4.77), and let the real number h satisfy the inequality (b - a)llK(x,y,w)ll< 1x1 
with probability one. Then the linear random operator (L(w) - h l )  is invertible, 
that is, p({w : (w, A) E p(L)}) = 1 .  

Proof. From Theorem 3.12 we have that the inverse of (L(w) - h l )  exists 
for every X # 0 such that p({w:  lIL(w)ll< Ihl}) = 1 .  By hypothesis 

(b  - 4l /K(x ,Y ,w) / /  < 1x1 

llL(w>ll < (b - a)  IlK(X,Y, w>ll < I4 
almost surely; hence using (4.82) we have 

almost surely. 
In view of the above, it follows from Theorems 4.6 and 4.7 that the formal 
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solution of the random integral equation (4.83) with Fredholm kernel is 
given by 

Ax,  w) = (L(w) - w1 Mx,  w)1 

= W ( w ) ,  4 Mx,  w)l. (4.84) 

Since a Volterra operator is a special case of a Fredholm operator, Theorem 
4.6 is applicable to the Volterra operator 

(4.85) 

We now state and prove the analogue of Theorem 4.7 for integral equations 
with random Volterra kernels. 

THEOREM 4.8. Let L(w) denote a random Vofterra operator on C[a,  b ] ;  and let 
the kernel K ( x ,  y ,  w) satisfy the condition p({w : K ( x ,  y ,  w) = 0) )  = 1 for every 
a G x < y G b. Then for every real number h # 0 the linear random operator 
(L(w) - h l )  is invertible. 

Proof. As in the deterministic theory of Volterra equations of the second 
kind (cf. Yosida [45, Chap. 4]), estimates obtained using the iterated kernels 
K(").(x,  y ,  w) lead to the inequality 

llL"(w)il G /h(b -a) /"  IIK(x, yrw)lln/n!, (4.86) 

which holds almost surely and for every n = 1,2,. . . . Hence it follows from 
Theorem 3.12 that (L(w) - XZ) is invertible. 

D. Random Fredholm equations in Orlicz spaces 

Let D denote a bounded closed subset of an n-dimensional Euclidean 
space; and let K(x,y) ,  x , y  E D, be a continuous Fredholm kernel. In this 
section we consider the Fredholm integral equation 

(4.87) 

where Z, is for every w E SZ a subset of D. Hence the case we consider here is 
that of a Fredholm operator defined over a random domain: 

We will study Eq. (4.87) in the separable Orlicz space La(D,m), where m 
denotes the Lebesgue measure of D. However, it is known (cf. Krasnosel'skii 
and Rutickii [30, p. 1201) that, when D is a bounded closed subset of an 
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n-dimensional Euclidean space, L@(D, m) is isomorphic and isometric to the 
Orlicz space '93, of functions defined on [O,m], provided that in both cases 
the same convex function @ is employed. Hence we can restrict our attention 
to Eq. (4.87) in the one-dimensional case; that is, we will take D = [O,m], and 
I ,  c [O,m] for every w E SZ; and consider Eq. (4.87) in the space '93@. As 
pointed out in Sect. 1.2B, if we take @(u) = auP ( a  > 0,  1 ~p < m), then the 
Orlicz space &(D, m)  (equivalently, 92,) contains the same functions as the 
Lebesgue spaces L,(D) .  Hence the results we obtain in this section are valid 
for random Fredholm equations of the form (4.87) in the Lebesgue spaces L,.  
The results presented in this section are based on the papers of Bharucha-Reid 
[4, 51 and Hang [20]. 

In order to obtain results for Eq. (4.87) which are analogous to those 
obtained in Sect. 4.3C, it is advantageous to rewrite Eq. (4.87) as an integral 
equation with a random kernel. For every w E SZ, put 

R ( x ,  y ,  w )  = ~ ( x ,  y )  for x E [O, m],  y E I ,  

= O  for x E [0, m ] ,  y E [0, m]  - I , .  (4.89) 

Since K ( x ,  y )  is a continuous Fredholm kernel, the random kernel R(x, y,w) 
defined by (4.89) is a mapping of SZ into a, where denotes the space of all 
mildly discontinuous kernels a defined on [O,m] x [O,m], which also satisfy 
the conditions for the kernels K which belong to the space 53 introduced in 
Sect. 4.3C. We can now use Theorem 4.6 to state necessary and sufficient 
conditions for the measurability of the Fredholm operator defined by (4.88) 
with f E %R@. 

THEOREM 4.9. The mapping L(w) of SZ x '33@ into '93, dejined by (4.88) is for 
every deterministic kernel K(x,y)  E R a random operator i f  and only i f  
{w : y E 1,) E %for every y E [0, m].  

Proof. The assertion of the above theorem follows from Theorem 4.6 if in 
condition (ii) in the statement of that theorem we put K ( x ,  y ,  w )  = xrW(y)K(x ,  y )  
for every w E 0, x , y  E [ O , r n ] ,  where xr ,  denotes the indicator function of the 
set I, .  

It is of interest to note that in general nothing can be said about Z, when a 
particular kernel K E R is considered. As an example, consider the case when 
K ( x ,  y )  = 0 for all x, y E [O,m]. In this case the integral operator defined by 
(4.88) is equal to the null operator, and is, therefore, measurable regardless of 
the nature of I, .  Nevertheless, we can state the following result, the proof of 
which is an immediate consequence of Theorem 4.6. 
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THEOREM 4.10. If K E 9, then the mapping L(w) of D x 9JIQ into 9JlQ defined 
by (4.88) is a random operator i f  and only i f  x1,(y)K(x,y) is a real-valued 
random variable for  every x, y E [0, m]. 

We now consider the measurability of the Fredholm operator (4.88) when 
the set I ,  is of the form I ,  = [O,b(w)]. In this case we have the following 
result, the proof of which follows from Theorem 4.9. 

THEOREM 4.1 1. If I,,, = [0, b(w)] for every w E Q, then the mapping L(w) of 
D x !JNQ into 9J?Q defined by (4.82) is for every K E A a random operator i fand 
only if b(w) is a real-valued random variable. 

Let us now consider the measurability of L(w) in the case when I ,  is of the 
form I ,  = [a(w), b(w)]. In this case the measurability question is no longer 
unambiguous. We have the following result. 

THEOREM 4.12. I f  I,,, = [a(w),b(w)J for w E Q, then the mapping L(w) of 
.Q x '93, into 9&, dejined by (4.88) is for every K E R a random operator if and 
only i f a (w)  and b(w) are both real-valued random variables. 

Proof. The above result follows from Theorem 4.9 and the relation 

{w : b(w) > ro} = U {w : r E [a(w), b(w)]},  

which holds for every rational number ro provided the union is taken over all 
rational numbers r 2 ro . 

We now consider an example which points out the relationship between the 
structure of the a-algebra U and the measurability of a(w) and b(w). Suppose 
there exists a set F E U with p ( F )  > 0 such that F c {w :a(w) = b(w)}.  In this 
case, depending on the structure of U, a(w) and b(w) may not be random 
variables. Consider the probability measure space (Q,U, p), where SZ = R ,  U is 
the o-algebra of all at  most denumerable sets of real numbers and their 
complements, and p is a complete probability measure defined by p(A) = 0 if 
A is at most denumerable, and p(A) = 1 otherwise. Let I, = [a(w),b(w)] for 
every w E D, where a(w) = b(w) = w - [w/m]m for every w E G. Here we 
assume that [w/m] is defined by (w/m) - 1 <c [w/m] G (w/m). Then the indicator 
function xI,(y) is a real-valued random variable for every y E [O,m], but 

{u : 2a(w) < m} = {w : 2b(w) < m} 6 U. 

Having established the measurability of the Fredholm operator L(w), it 
follows from Theorem 2.15 that if for every real number h # 0 the set 
( w :  lIL(w)ll < ( A / )  E U, then the transformation L(w) - h l  is invertible for 
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every w E Q(h). Hence, if m(Z,)i~K(x,y)~i < Ihl almost surely (where m(1,) is 
the Lebesgue measure of the set Z,,,), then L(w) - hZ is invertible; and the 
solution of Eq. (4.87) is, for every g(x,w) E L@(D) ,  given by 

A x ,  w )  = W ( w ) ,  [dx,  w)l E M D ) ,  (4.90) 

andf(x, w )  is Q(X) n U-measurable. The reader is referred to Bharucha-Reid 
[5] for a discussion of other results on random Fredholm equations in Orlicz 
spaces. 

E. Integral equation formulation of a class of random diyerential equations 

1. Introduction. Consider the random operator equation 

L(w)f(x, w )  = g(x, U), (4.91) 

where L(w) is an ordinary differential operator of order n with random 
coefficients; that is, 

The study of ordinary differential equations of order n with random co- 
efficients was initiated by Samuels and Eringen [39] (cf. also Samuels [37,38]), 
who restricted their attention to equations with the following properties : 
(i) small randomly varying parameters, (ii) slowly varying coefficients, and 
(iii) only one random coefficient. Perturbation methods were utilized to 
obtain a formal solution of Eq. (4.91); and the methods developed were 
applied to an RLC circuit with random capacitance and to dynamical in- 
stability of an elastic bar subject to random time-dependent axial force. 
Caughey and Dienes [lo] also considered Eq. (4.91), with the forcing function 
and the lowest order coefficient being white-noise processes. A number of 
other authors have studied differential equations of first- and second-order 
with random coefficients. We refer to Bharucha-Reid [7] and Saaty [36, 
pp. 4194331 for a discussion of other studies and additional references. In 
Chap. 7 we consider, utilizing It6’s theory of random differential and integral 
equations, the first-order equation 

dx(t,w)/dt = a(t, W)X(f,W), (4.93) 

where a(t, w )  = cc + /3(t,w), with cc a constant and /3(t, w )  white noise. 

framework of the theory of random integral equations. 
In this section we consider, following Sibul [40], Eq. (4.91) within the 
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2. The random Volterra equation equivalent ro a differential equation of 
We assume that the random coefficients order n with random coeficients. 

ak(x, w )  are of the form 

ak(x, W )  = &k(X)  + Pk(x, W ) ,  k = 0, 1, . . . , (4.94) 
that is, the coefficients admit an additive decomposition into a deterministic 
function c?k(x) and a random function pk(x ,w) .  It follows from (4.94) that the 
random operator L(w) given by (4.92) admits the decomposition 

where 
U w )  [ f l  = A [ f l  + B(w)  [ f l ,  (4.95) 

A [ ~ I =  f: nk(x)dkf/dxk (4.96) 
k = O  

and 

Hence Eq. (4.91) is of the form 

( A  + B ( w ) ) f ( x ,  w )  = g(x ,  W). (4.98) 

Let us now assume that the deterministic differential operator A is invertible; 
that is, the Green’s function G(x ,y )  for A is known or can be constructed. In 
this case Eq. (4.98) is equivalent to the random integral equation 

f ( x ,  w )  f c G ( X ,  Y )  dJ’ f: f i k ( x ,  w )  d k f / d p  = l g ( Y ,  w )  G(x, Y )  dY. 
(4.99) k = O  

If we put 

p ( % Y ) d Y , w ) d Y  = g ( x , w )  (4.100) 

and 
n 

K(x ,  Y ,  w ,  = G(x, Y )  2 f i k ( X ,  w, dk/dxk, (4.101) 
k=O 

then Eq. (4.99) can be rewritten as 

f ( x ,  w )  ; l m, Y ,  W)f(Y, = ax7 w)- (4.102) 

Equation (4.102) is a Volterra equation of the second kind with random 
kernel K ( x , y ,  w )  and random forcing function g(x ,w) .  It is of interest to note 
that the random kernel K ( x , y , w )  is of the form G(x ,y )B(w) ;  hence it arises 
from the multiplicative perturbation of the Green’s function G(x ,y )  by the 
random differential operator B(w) defined by (4.97). 

The formal solution of Eq. (4.102) is of the form 



4.3 Equations with Random Kernels 161 

where, as in the deterministic case, the iterated kernels Ktk) (x , y ,  w )  are defined 
by the recurrence relation 

K'k'(X,y,w) = JOX K ( x ,  t, w ) K ' k - l ) ( t , y , w ) d t ,  (4.104) 

k = 2,3 ,. . . , and K ( ' )  (x ,y ,w)  = K ( x , y ,  w).  If the sum in (4.103) converges 
uniformly, the order of summation and integration can be interchanged. 
Therefore, assuming this to be the case, (4.103) can be rewritten as 

f ( x , w )  = g ( x , w )  + A j x (  0 k=O .f A k K ' k t ' ) ( ~ , y . w ) g ( y , w ) d l . ) .  (4.105) 

Let 

denote the resolvent kernel of K ( x , y , w ) .  Then the formal solution of 
Eq. (4.102) can be expressed in the form 

S(Xl w )  = a x ,  w )  + sox r ( x ,  y ,  w )  g ( y ,  w )  dy. (4.107) 

It follows from (4.95) that if B(w)  = 0 almost surely (that is, the coefficients 
are deterministic, and L(w) = A almost surely), then the random differential 
equation L(w)f=  g reduces to the deterministic differential equation Af = g, 
the solution of which is well known (cf. Coddington and Levinson [ l l ,  pp. 
87-88]). The determination of solutions of Eq. (4.102), requires, in concrete 
problems, that the convergence of the Neumann series (4.106) be established, 
and the resolvent kernel r ( x , y ,  w )  calculated. The latter, in particular, can 
present considerable difficulties. 

We now restrict our attention to the case when only the coefficient of 
lowest order, Po,  is a random function; hence &(x,w) = 0 almost surely, 
k = 1,2,. . . ,n. In this case the convergence of the Neumann series can be 
established, since sufficient conditions for the uniform convergence of the 
Neumann series are the hypotheses of Theorems 4.6 and 4.8. Hence the 
hypotheses of Theorem 4.6 require that (i) the kernel R(x,y,w) = G(x,y)fio(x,w) 
be a 21-measurable mapping of SZ into R, where R denotes the space of 
kernels defined on [O,m] x [O,m], say, with m > O ;  and (ii) the integral 
operator 

be a random operator on C[O,m]. The hypotheses of Theorem 4.8 simply 
state that the kernel be a Volterra kernel almost surely. Hence, under the 
above conditions the random integral operator defined by (4.108), is invertible, 
and the Neumann series converges uniformly. 
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As is well known, a differential equation of order n is equivalent to a 
system of n differential equations of first order. This representation leads to a 
vector integral equation of Volterra type, the solution of which is analogous to 
the scalar solution (4.107). We refer to Sibul [40] for a detailed discussion of 
the solution and its properties. 

To return to the solution of Eq. (4.102) in the general case, we now compute 
the mean and covariance function of the solutionf(x,w) given by (4.107). We 
now assume that the random coefficients Pk(x,w) and the forcing function 
g(x, w )  are independent ; hence the resolvent kernel r (x ,y ,  w )  and the function 
g(x,w) are independent. Under these assumptions we have 

where 

d{R(x,w)} = p W 6 { g ( y . w ) } d y .  (4.1 10) 

Hence, in this case the stochastic Green'sfunction is simply &{T(x,y, w ) }  (cf. 
Adomian [I]). 

Before calculating the covariance of f(x, w),  we recall that second-order 
random functions can be defined as those random functions having co- 
variances. Conversely, if a random function is of second order, its covariance 
exists and is finite. In this connection i t  is of interest to state conditions for 
which f(x, w )  is a second-order random function. Firstly, the coefficients 
&(x, w )  should be second-order random functions. Secondly, the forcing 
function g(x,w) should be in the class C", where C" denotes the class of 
functions (mean-square) continuously differentiable an infinite number of 
times. Since G(x,y) is ccntinuous, if g(x,w) E C" then g(x,w) E C". That 
g(x, w )  must be in C " is clear from the Neumann series for the resolvent kernel 
which occurs in (4.107). If the above conditions are satisfied the formal 
solution as given by (4.107) is meaningful, and f(x,w) is a second-order 
random function. 

The calculation of the covariance function off(x, w )  is straightforward. Let 

Rf(X1 9 x2) = E(f(x1 Y w)f(x2 9 w)> (4.111) 
and 

R&l 9 x2) = E{Z(x, 3 w)Z(x2 > a>>. (4.112) 
Hence we are assuming that f ( x , w )  and g(x, w )  are centered at their expec- 
tations. Then, from (4.107), we have 
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R,(XI,X2) =R,(xl,XZ)-" G ~ ~ ( x l , Y l , ~ ) ~ ~ g ( Y l , X z ) ~ Y l  

- j;2 &{r(x2 ,Y2*w) l  Rp(X1 9Y2)dYz 

f Jy' W ( X ,  , Y1 9 w )  m z  9 Y2 9 w ) )  RdYl 9 Y d  dYl dY2 * 
0 0  

(4.1 13) 

&(x, , x z )  can be calculated explicitly from (4.100). We have 

RAx: , X Z )  = ['1,"' G ( X I  , Y I )  G(x , ,  Y Z )  6 { g ( x l ,  w)g (xz ,  w ) )  dxl dxz 

=JoX'C,I' G(Xl ~YI~G(xz,Yz)Rg(x17x2)dxl dx2, (4.1 14) 

where Rg(xl , x 2 )  denotes the covariance function of the random forcing 
function g(x,w).  

It is clear from (4.11 3), that in the special case when the coefficients of the 
differential operator are deterministic, then the last three terms of (4.1 13) 
vanish; and Rf(x l  , x Z )  = R;(xl ,xz) .  

Finally, we compute the cross-correlation between the forcing function 
g(x, w )  and the solutionf(x, w). We have 

R,,(Xl 9 X Z )  = c s . { f ( X 1 7  w)g(xz 9 w)l 

= JOX' G(Xl 9 Y , )  R,(Yl 3 xz) &I 

3. A Volterra equation with random degenerate kernel. We now consider a 
special case of Eq. (4.91) (equivalently, Eq. (4.102)) which leads to a Volterra 
equation with random degenerate kernel. Consider the case in which the 
kernel K ( x , ~ , o ) ,  as given by (4.101) is of the form 

n 

k =  I 
K ( x ,  Y ,  = 2 u k ( x )  u k ( Y ,  w). (4.116) 

A representation of the above form will obtain, for example, if the Green's 
function G(x,y) of the deterministic differential operator A ,  as given by (4.96) 
is a sum of exponential function, and the only random coefficient is ,& (that is, 
Po # 0 almost surely). In this case 

(4.117) udx) = V& e x p h  x> 
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and 

where vk and yk are complex numbers. 

solving random Volterra equations we refer to Sibul [40]. 

vk(Y, w> /%(Y, w> exp{-yky}, (4.1 18) 

For a detailed discussion of the use of degenerate kernel techniques for 

4.4 Some Random Linear Integral Equations Which Arise in Applied Problems 

A .  Introduction 

In the first two subsections we consider some random Fredholm equations 
that arise in the study of wave propagation in random media and in connection 
with the numerical analysis of solutions of Fredholm equations of the first 
kind. Random Fredholm equations also arise in the theory of differential 
equations with random boundary conditions ; and Boyce and his students 
(cf. Boyce [9 ] )  have studied the random Fredholm equations which arise in 
connection with several concrete problems in random vibration theory. 
Eigenvalue problems for some random Fredholm equations are considered in 
Chap. 5. In the third subsection we consider a system of random Volterra 
integral equations which arise in hereditary mechanics. 

B. Wave propagation in random media 

The mathematical formulation of wave propagation in random media 
leads to linear partial differential equations whose coefficients are random 
functions of space and time; hence the mathematical theory of wave propa- 
gation in random media is a special case of the general theory of random 
differential equations. Mathematically, a wave motion is described by a 
function #(t ,x),  where x denotes the vector of space variables and t denotes 
time. The transmission medium, say M ,  is characterized by a function n(t,x) 
which enters the coefficients of the partial differential equation for #( t ,x ) .  In 
the formulation of problems for random media, a single nonhomogeneous 
medium M is replaced by a family or ensemble of media (M(w) ,  w ED], 
where SZ is a probability space. If for every fixed w E D the properties of the 
transmission medium are characterized by a function n(t, x, w )  (for example, 
the index of refraction) { M ( w ) }  is said to be a random medium if for every 
fixed x and t, n(t, x, w )  is a random variable. 

The introduction of random Fredholm equations in the study of wave 
propagation in random media is due to Hoffman [22-241; these equations 
arising as integral equations equivalent to Helmholtz equations with random 
coefficients. Our discussion in this section is based on Hoffman’s formulation 
(cf. also Frisch [15]). For authoritative expositions on random equations and 
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wave propagation in random media we refer to the articles of Frisch [ 151 and 
Keller [27, 281. 

For initial value problems or propagation in time-dependent media, the 
random wave propagation equation is of the form 

a$Pt  = ( A  + B(w))  *, (4.119) 

where the unknown function # (scalar or vector valued) is called the waue (or 
jield), A is a deterministic linear partial differential operator (usually with 
constant coefficients), and B(w)  is a linear partial differential operator with 
random coefficients. Without loss of generality, we can assume the co- 
efficients are centered random functions. Problems which involve the radiation 
of harmonic time-dependent waves in time-independent random media lead 
to the random differential equation 

( A  + B(w))  $ =j .  (4.120) 

In Eq. (4.120), the operators A and B(w)  are as defined earlier, but are time 
independent; andj,  called the source term, is a given deterministic function or 
distribution. 

We now restrict our attention to the formulation of the problem of radiation 
of scalar waves by a harmonic point-source in a lossless, homogeneous, 
isotropic, time-independent random medium { M ( w ) } .  In this case Eq. (4.120) 
is the random Helmholtz equation 

(4.121) 

In Eq. (4.121), ko > 0 is the free-space wave number, n(x,w) is the index of 
refraction, which we assume is a real-valued, homogeneous and isotropic 
random function of the form 

d$(x ,  w )  + ki  n2(x, w )  #(x,  w )  = 6(x). 

n2(x, w )  = 1 + p(x ,  w ) .  (4.122) 

The function p(x ,  w )  is assumed to be a centered homogeneous and isotropic 
random function; hence b{n2(x,  w ) }  = 1 .  Together with Eq. (4.121) we consider 
the Sommerfeld radiation condition 

(4.123) 

which asserts that the solution $ describes outwardly propagating waves. 

write Eq. (4.121) as 
We first consider Eq. (4.121) in the one-dimensional case. In this case we 

(4.124) d 2  $ 
- + ki( 1 + p ( x ,  w ) )  $ = 0. 
dx2 
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If p(x, w )  = 0 outside a finite interval [0, S], called the scattering region, we can 
assume a solution of the form 

(4.125) 
where t,hinc is a deterministic solution of the free-wave equation (that is, 
p = 0 almost surely), and i,hSc satisfies the radiation condition 

$ = +inc + $sc 3 

(4.126) 

The Green’s function associated with the free-space version of Eq. (4.124) is 
G0(x,y) = (1/2iko)exp{ikolx - y I } ;  (4.127) 

hence Eq. (4.124) is equivalent to the random Fredholm integral equation 

k: I” K(x, Y ,  w )  4 ( Y ,  w )  dY + $k w )  = (liin,(X> (4.128) 
0 

The random kernel K(x,y, w )  is of the form 

a x ,  Y ,  w )  = Go(x, u) A Y ,  w )  ; (4.129) 

hence the random kernel arises from a multiplicative perturbation of the 
free-space Green’s function by the random component of the index of 
refraction. 

No exact solution of Eq. (4.128) has been given; however special cases 
have been studied by Bazer [3] and Kay and Silverman [26]. In the general 
cases, the theorems of Sect. 3.3 can be used to establish conditions for the 
existence, uniqueness and measurability of the solution #(x, w).  We also 
remark that as in Sect. 4.3D we can replace the random kernel K(x,y,w) by a 
deterministic kernel, and consider the integral over a random scattering 
region [0, S(w)]. 

We now consider Eq. (4.121), together with (4.123) in the vector-valued 
case. In this case the free-space Green’s function is 

(4.130) 

hence the equivalent random Fredholm integral equation is of the form 

k; 1 K(x, Y ,  w )  #(Y,  w )  dy + +(x, w )  = Go@, O), (4.131) 

where K ( x , Y , ~ )  = GO(X,Y)~(Y,W). 
To solve Eq. (4.13 l), we first assume that the random medium is not homo- 

geneous; but that the randomness is restricted to a bounded domain D. 
Hence the random function p(x, w )  has compact support contained in D. Let 
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We now establish the convergence of the series I yn(x, w )  (cf. Frisch [15]). 

THEOREM 4.13. If lp(x,w)I < M almost surely, a suficient condition for the 
almost sure convergence of the series x;=l cpn(x,w) in L,(D) is +Mkid2 < 1, 
where d denotes the diameter? of D. 

Proof. An application of Minkowski's inequality yields 

I tqn+ I (x, w)112 < kg M I I JD ~ o ( x ,  Y> vn(Y,  w> ~ Y I I ~  

< k,2 M/Ivn(x, w ) l l ~  SUP 
X . Y ~  1 47r(xdy_ Y )  

Q k i  MIlv,(x, w)lI2 [ % dx 
0 47rx 

G +ki Md211~n(x, ~ ) / 1 2 .  

Since L2(D)  is complete, the almost sure convergence of the series 
follows from the convergence of the series 2;- I IIyn(x, w)l12. 

cpn(x, w )  

Theorem 4.13 establishes the validity of (4.132) as the solution of Eq. (4.131). 
Random integral equations have been utilized by Sibul [40] to study wave 

propagation in a randomly time and space varying medium. Consider the 
random wave equation 

v2 $(t ,  x, w )  - - - + a(t, x, w )  $0, x, 0) = g( t ,  x, w ) ,  
at2 a"' c2 1 (4.133) 

where the coefficient a(t ,x ,w)  and the source function g( t , x ,w)  are inde- 
pendent, wide-sense, centered, stationary random functions, the wide-sense 
stationarity restricted to the time variable t. Let 

W 

a(t, x, w )  = J' A ( T ,  X, 0)  e'rrdT (4.134) 
-m 

t The diameter d (D)  is the supremum of the distances p(x,y), x,y E D. 
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g ( t ,  x ,  w) = G([, x ,  w) eit' d[ ,  (4.135) 
.--a, 

where T,( E R .  And, under the assumption that the solution $ ( t , x , w )  is a 
wide-sense stationary random function, put 

+( t ,  x ,  w) = J m  Y(A, x ,  w) eiA1 d ~ .  (4.136) 

Sibul has shown that the spectral representation of the wave function $ ( t , x , w )  
satisfies a random Fredholm equation of the form 

-m 

y([, X, W) + L-' t2 f m  y(7, X, W) A ( [  - 7, X , W ) d T  = F ( 5 ,  x,W), (4.137) - -m 

where L-' is the inverse Helmholtz operator (for appropriate boundary 
conditions), and F ( e , x , w )  =L- ' [G([ ,x ,w)J .  The solution of Eq. (4.137) was 
obtained using both degenerate kernel approximation methods and the 
Neumann series expansion. 

C. Numerical solution of Fredholm equations of the jrs t  kind 

Consider the Fredholm integral equation of the first kind 

r" K ( x ,  Y ) f ( Y )  dY = g ( 4 3  
.a 

(4.138) 

where the kernel K ( x , y )  is a continuous function of x , y  E [a,b], and the 
known function g(x )  E L,[a,b], say. For a discussion of Fredholm equations 
of the first kind we refer to Pogorzelski [34, Chap. VI]. It  has been pointed out 
by several authors that in studies concerned with numerical solutions of 
Eq. (4.138), the equation should be written in the form 

(4.139) 

where ~ ( x )  is an error term. If we make the reasonable assumption that E ( X )  is 
a random function, then the right-hand side of Eq. (4.139) can be expressed as 

g(x> + E(X, w )  = g(x ,  w) ; (4.140) 

and Eq. (4.138) can be written as the random Fredholm equation of the first 
kind 

(4.141) 

Strand and Westwater 1431 have considered the problem of estimating the 
solutionf(x,w) from observations on g ( x , w )  at a prescribed set of points, say 
x = x , ( i =  1,2 )...) n). 
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Letf(x, w )  be a second-order random function with continuous realizations. 
Since the kernel K ( x , y )  is continuous, the integral in (4.141) is well defined. 
Consider a quadrature rule of the form 

(4.142) 

Application of (4.142) to (4.141) yields, as the quadrature approximation to 
the random Fredholm equation the (random) matrix equation 

Af(w)  = g(w) .  (4.143) 

In (4.143) A is the n x m matrix 

A = (aij) = ( X j  K(xi ,y j )> ,  

(where the hj  are the weights associated with the quadrature abscissas y,, 
f(w) is the m-vector ( f (y ,  ,w),f(yz , w ) ,  . . . ,f(y,,w)), and g(w)  is the n-vector 
(g(xl , w ) , g ( x z ,  w ) ,  . . . ,g (x ,  ,w)) .  Assume that (i) 6{ f (w) }  is known, and (ii) 
that the covariance matrix off(w), say R,, is known. Then &{g(w)}  = A € { f ( w ) } ,  
and the covariance matrix of g(w) ,  say R,,  is of the form R, = AR, A',  where 
A' denotes the transpose of A.  

It follows from (4.140) that in any practical situation observation made on a 
realization of g(x ,  w )  instead of g(x), where g(x )  is the vector of measurements 
subject to error. The following assumptions are made: 

(i) 

(ii) 

(iii) 
(iv) 

the components ei(w) ( i  = 1,2,. . . ,n) of the error vector are independent 
off(w), hence independent of g ( x ) ;  
the errors have a multivariate normal distribution with mean zero and 
known covariance matrix R,; 
the quadrature errors are negligible with respect to E ;  

the covariance matrices R, and R, are both nonsingular. 

Under the above assumptions, a solution of Eq. (4.141) is derived by Strand 
and Westwater [43], for a general set of basis vectors, which has the minimum 
expected mean-square error for a linear unbiased estimator. In particular, it is 
shown that this error is a monotone increasing function of the number of basis 
vectors; hence there is no computational advantage in using a basis with 
dimension less than m, the number of quadrature abscissas. 

D. Hereditary mechanics 

Distefano [13] has studied a pair of random Volterra integral equations 
which arise in the probabilistic analysis of the behavior of hereditary mechan- 
ical systems. In certain problems in the theory of hereditary systems the 
forcing term depends on the deviation of the system from a natural position 
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of equilibrium as well as on an external source of excitation. Consider the 
following example: Forces a and 7 are applied to two hinged bars, and the 
deflection of the bars is prevented by a viscoelastic spring reacting with an 
upward force S. Here 7 is the axial load, and a is the resulting downward 
force on the spring. The bars are deflected a certain amount w which is, in 
general, a nonlinear function of 7. The forces and deflection are functions of 
time t > 0; and w(t) ,  the displacement at time t > 0, is a functional of the force 
S(T)  exerted by the spring for T G t .  The hereditary effects of the system are 
reflected in the fact that S(T)  is a function of E ( T ) ,  T ( T ) ,  and W ( T )  for each T < t .  

A linearized version of the above problem leads to relations of the form 

S(l) = a(?)  + $ t ) W ( t )  (4.144) 
and 

w ( t )  = S ( t )  + J‘ K ( t ,  T )  S ( T )  d ~ .  (4.145) 
0 

From (4.144) and (4.145) we obtain the integral equation 

(1 - w ( t )  - jor K(t9 4 7 ( 4  W ( 4 d T  = d t ) ,  (4.146) 

where K ( f ,  T )  is the “memory function” for the hereditary phenomenon, and 

g o )  = B(t)  + j; K ( 4  .) B(7) dT. (4.147) 

In (4.147) B = a when we assume the condition of initial straightness of the 
bar. Eq. (4.146) can be replaced by the pair of Volterra integral equations 

u(t )  - Jot K ( t ,  44 = g ( t )  (4.148) 

o ( t )  - y(r) (4.1 49) K ( t ,  7 )  ~ ( 7 )  dT = w) ,  

when it is assumed that 0 < 7 ( t )  < 1 for all t E [0, to], and 

4 t )  = (1  - T ( t ) ) w ( t ) ,  00) = ~ ( t )  4 t ) .  

Then u( t )  + u ( t )  = w ( t )  and y ( t )  = u( t ) /u ( t ) .  
Let us now assume that the axial load 7 is a random function 7(t ,  w).  With 

this assumption, the functions q, h, u and u,  defined above, are also random 
functions; and Eqs. (4.148) and (4.149) become random Volterra equations of 
the form 

u(t, w )  - JOr T ( T ,  w )  K ( t ,  7 )  4 7 ,  w )  d~ = s(t, w )  (4.150) 
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u( t ,  w )  - v(t, W )  jot K ( t ,  T )  U ( T ,  w )  d~ = h(t, w) .  (4.151) 

Put 

and 

Then Eqs. (4.150) and (4.151) are clearly Volterra integral equations with 
random kernels of the form 

u(t, w )  - ji K , ( t ,  7,  w )  ~ ( 7 ,  w )  d7 = g(t, w )  (4.152) 

The results of Sect. 4.3C and the results of Tsokos, presented in Sect. 6.4, can 
be used to study the existence, uniqueness and measurability of the solutions 
u(t, w )  and u(t,  w )  of the above equations. Results of Tsokos on the stability of 
solutions of random Volterra equations are also applicable to the analysis of 
the asymptotic behavior of the solutions. Distefano [13] studied Eq. (4.150) 
using the method of truncated hierarchies, and Eq. (4.151) was studied using 
a method of successive approximations. 
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CHAPTER 5 

Eigenvalue Problems for Random 
Fredholm Integral Equations 

5.1 Introduction 

As shown in Chap. 3, eigenvalue problems for random operators lead to 
random operator equations of the form 

or 

In this chapter we consider some eigenvalue problems for random Fredholm 
operators which lead to equations of the form (5.1) and (5.2). Since a concrete 
eigenvalue problem requires the determination of the spectrum of a given 
operator, the results presented in this chapter can be considered as belonging 
to the spectral theory of random Fredholm operators. 

The eigenvalue problem for a Fredholm integral equation with random 
degenerate kernel is considered in Sect. 5.2; and we show that the eigenvalue 
problem in this case can be reduced to an eigenvalue problem for random 
matrices. This reduction enables us to investigate the asymptotic distribution 
of the eigenvalues of a Fredholm operator with random degenerate kernel. 
The results presented in this section are due to Bharucha-Reid and Arnold [2]. 
In Sect. 5.3 we study some eigenvalue problems for ordinary differential 
equations with random coefficients or random boundary conditions, and 
show that in certain cases the differential equation is cquivalent to a Fredholm 
integral equation with a random symmetric kernel. Kernel trace methods can 

z 74 
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then be used to estimate the random eigenvalues and their moments. The 
results of this section are due to Boyce and Goodwin (cf. Boyce [4]). 

It is of interest to remark that the random Fredholm equations considered 
in this chapter have almost surely symmetric kernels. The kernel of the 
equation considered in Sect. 5.2 is degenerate, hence it has a finite number of 
eigenvalues. The equation studied in Sect. 5.3 has a nondegenerate kernel. 
Therefore the operator has a countable number of eigenvalues. 

We close this introductory section by remarking that it should be possible 
to utilize certain results of Kagiwada el  al. [8], and Wing [15, 161 to study 
eigenvalue problems for random integral equations. 

5.2 Fredholm Integral Equations with Random Degenerate Kernels 

In Sect. 4.3B we studied the random Fredholm equation 

with degenerate kernel of the form 

and showed that Eq. (5.3) with kernel (5.4) is equivalent to a system of random 
linear algebraic equations of the form 

(A(w)  - h l )  8 = 6.  (5 .5 )  

In (5.5) A ( o )  is an n x n random matrix with elements 

cli j(w) = Ji aj(x,  w )  pi(x) dx, 

b, = [ &(x)g(x)dx,  

i, j = I ,  2, . . . , n ;  (5.4) 

and b and .$ are n-vectors with components 

i = 1,2 , .  . . ,n (5.7) 

In this section we utilize the fact that the eigenvalues X l , h 2 ,  ..., A, of a 
Fredholm operator with degenerate kernel are the roots of the associated 
algebraic equation [lo, p. 731. Hence in the probabilistic case the random 
eigenvalues hl(w),h2(w),  . . . ,X,(w) of the Fredholm operator with degenerate 
kernel (5.4) are the roots of the random algebraic equation A(w)  - hZ= 0; 
that is the eigenvalues of the random matrix A(w). 
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Consider the random kernel 

(5.9) 

(that is, (5.4) with m i  =pi), where the ai’s are almost surely independent 
L2[0, 1 ]-random functions having the same finite-dimensional probability 
distributions. For the sake of simplicity, we make the following assumptions: 

(i) mk(x) = 8{ la i (x ,w) lk }  > cn for all x E [O, 11, and 

(ii) [ mk(x)dx > m for every k = 1,2 , .  . . . 

Put 

and assume 

In the case being considered, the kernel (5.9) is almost surely symmetric and 
positive definite, since 

R(x, Y )  = &{ai(x, w )  ai(Y, w)l ;  (5.10) 

&{Cti(X, w ) }  = 0. 

for any continuous function h(x) .  Therefore the eigenvalues of a Fredholm 
operator with kernel (5.9) are real and, moreover, nonnegative random 
variables. We remark that the mean kernel (that is, the expectation of K )  

&, Y )  = & { ~ ( x ,  Y ,  w>> = n W ,  Y> (5.1 1) 
is also a symmetric and positive-definite kernel, but in general it is not 
degenerate. 

From (5.6) and (5.9) it follows that the elements aij (w)  of the random 
matrix A(w) are given by 

(5.12) 

Since aij (w)  = aji (w)  almost surely, the random matrix A(w) is symmetric. 
The diagonal elements aii (w)  are independent, have the same distribution, and 

(5.13) 

1 

0 
aij (w)  = j ai(x,  w )  a j (x ,  w )  dx. 

I 

0 
6{ai i (w)}  = 1 R(x, x) dx = Tr(R). 

The off-diagonal elements aij (w) ,  i # j ,  also have the same distribution 

and 
&{a, j (w)> = 0 (5.14) 

(5.15) &{a:j(w)) = Jb’Ji R*(X ,  y )  dx dv. 
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We remark that the only difference between the random matrices considered 
by Arnold [ l ]  and Wigner [13, 141 and the matrix A(w) with elements (5.12) is 
that in addition to the symmetry condition there are other relations among 
the matrix elements; hence they are not independent. This difference is not 
trivial, and completely changes the type of result that can be obtained 
concerning the asymptotic distribution of the random eigenvalues. However, 
the elements of A(w)  are independent if they are not in the same row or 
column. 

Define 

R , ( x , y )  = R(x,)'), Rk(x,y) = 1; R ( x , s )  Rk- l (x ,y )ds;  (5.16) 

and 

Tr(Rk) = f '  &(X, X) dx. (5.17) 
- 0  

Then, if the indices i, , i2,. . ., ik are all different 

A{ai, i,(w) ai2i3(w). . .ai,i,(w)) 

= J6' * * . J6: R ( x ,  , x2) R(x2, ~ 3 ) .  . . R(xk, x I )  dxl dxz . . . dxk 

= TI(&). (5.18) 

We now use the fact that for the eigenvalues A, ,A , ,  . . . ,A, of any n x n matrix 

- 
k-fold 

w =  ( W f j )  

n 

i = l  
2 A! = Tr( Wk) 

(5.19) 

for k = 1,2,. . . . Hence from (5.18) and (5.19) we have the asymptotic result 

(5.20) 

for all k = 1,2,. . . . 
Let N,(x,w) denote the number of eigenvalues of the random matrix A(w)  

(equivalently the random Fredholm integral operator L(w) with kernel (5.9)) 
which are less than x. Clearly N,(x,w) is a real-valued random variable for 
every fixed x. Since A(w) is positive, we have Nn(O,w) = 0 and Nn(m,w)  = n 
almost surely; hence o(A(w)), the spectrum of A ( w )  (equivalently, o(L(w)), 
the spectrum ofL(w)), is a finite set with not more than n points. Furthermore, 

xk dNn(x, w )  = 3 X:(w). 
i = I  

(5.21) 
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Relation (5.20) can now be rewritten as 

! i i  [ xk d(d(N,(nx, w ) ) )  = Tr(R,). (5.22) 

The convergence must be due to the fact that there are, on the average, very 
many small eigenvalues, but only a few large eigenvalues. 

As an example, consider the case when 

q ( x ,  w )  = Zi(W). (5.23) 

(5.24) 
In this case 

R(x, y)  = B{Z?(W)) = u2 ; 
and the eigenvalues of the random kernel (5.9) are 

h,(w) = X,(w) = ... = A n - , @ )  = 0 

n 

i = I  
hn(w) = 2 zf(w). 

From the strong law of large numbers it follows that 

(5.25) 

almost surely for every k = 1,2,. . . . 

5.3 Fredholm Integral Equations with Random Symmetric Kernels 

A .  Integral equation formulation of a class of boundary-value problems 

Consider the boundary-value problem of (1) the linear differential equation 
in L2 [a, b] 

( L  - h M ) f =  0, (5.27) 
where L and M are ordinary differential operators of order 2n and 2m, 
respectively, (n > m 2 0) and (2) 2n linear homogeneous boundary conditions 

B i ( f )  = 0, i = 1,2,. . . ,2n (5.28) 

at x = a and x = b. We can, for example, take L and A4 to be of the form 

k = O  
(5.29) 

where o&(x) and ,8k(x) are real-valued functions having at least k continuous 
derivatives in [a,b]. We also assume ak(x) > 0 on [a,b] and f l k ( X )  # 0 on [a,b]. 
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The eigenvalue problem for Eq. (5.27) is to determine values of the par- 
ameter h for which the solution of boundary-value problem (that is, Eq. (5.27) 
together with boundary conditions (5.28)) exists. In theory there is no 
difficulty, for the eigenvalues can be found as the roots of an algebraic 
(determinantal) equation obtained by substitution of the general solution of 
Eq. (5.27) into the boundary conditions (5.28). 

Differential boundary-value problems of the form (5.27), (5.28) admit an 
equivalent formulation as integral or integrodifferential equations by utilizing 
the Green’s function G(x,y) associated with the differential operator L 
subject to the boundary conditions (5.28) (cf. Courant and Hilbert [6, Chap. 
V, Sect. 141, Yosida [17, Chap. 21). For (5.27), (5.28), the equivalent integro- 
differential equation is 

f ( x )  = Jlp G(x, Y )  M f b )  &. (5.31) 

We now restrict our attention to an important special case of Eq. (5.27), 

[ f l  = Bo(x> s (5.32) 

equivalently Eq. (5.31), in which the operator M is given by 

If we now assume that p0(x) > 0 on [a,b] and put 

Eq. (5.31) becomes 
d x )  = [Bo(x>1”2f(x>, (5.33) 

(5.34) 

(5.35) 

d x )  = ib K(x3 Y )  d Y )  4, 
where 

K(X,Y)  = G(x, Y )  [Bo(x> B0(Y)11~2. 

Hence we see that the integral equation equivalent to the differential system 
(5.27), (5.28), with M given by (5.32), is a homogeneous Fredholm integral 
equation of the second kind.? If the operator L together with the boundary 
conditions (5.28) are self-adjoint, then the Green’s function G(x,y) is a 
symmetric function of its arguments; and, in turn, the kernel K ( x , y )  of the 
Fredholm operator is symmetric. Moreover, K ( x , y )  is a nondegenerate 
kernel; hence the Fredholm operator has a countable number of real eigen- 
values A, , h 2 , .  . . , and their sequence tends to infinity (cf. Pogorzelski [ l  1 ,  
Chap. V]). 

The eigenvalues A, of Eq. (5.31) are the same as those of Eq. (5.34); and 
since Eqs. (5.27) and (5.31) are equivalent, the eigenvalue problems for the 
ordinary differential equation with M given by (5.32) and the Fredholm 
integral equation (5.34) are equivalent. Furthermore, the eigenfunctions P)k 

t Equation (5.31) can also be reduced to a Fredholm integral equation in the general case 
(cf. Maass “91). 
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and f k  of the two problems are related by (5.33). We will assume, as usual, that 
the eigenfunctions are orthonormal. 

A standard procedure for approximating the eigenvalues of a Fredholm 
equation with symmetric kernel is the so-called kernel trace method (cf. 
Mihlin [lo, Chap. 111, Pogorzelski [I 1, Chap. V ] ,  Tricomi [12, Chap. 1111). 
The iterated kernels Kn(x,y)  generated by K ( x ,  y )  are defined recursively by 

K , ( x , y )  = K(x9.Y) 

KdX,  y )  = [ K ( x ,  t)  K ( f >  y )  d t  

Kn(x, y )  = j ~ ( x ,  t)  Kn- I (t, Y )  d t ,  n = 293, . . . (5.36) 

and admit the expansions 

, n = 1 , 2 ,  . . .  (5.37) Fk(X)P)k(y) 
Kn(x,y) = 2 

k=l 

all of which converge absolutely and uniformly both in x and in y .  If we now 
put x = y in (5.37), and then integrate over the interval [a,b] we obtain the 
trace relations 

$ A ; " = j b K n ( x , x ) d x ,  n =  1,2 , . . . .  (5.38) 

We remark that (5.37) and (5.38) are valid for n 2 2 as long as the kernel K is 
square integrable (that is, an &-kernel). If K is continuous and positive,? 
then (5.37) and (5.38) also hold for n = 1. If we restrict our attention to the 
eigenvalue A, ,  then from (5.38) we have 

k=l a 

m 

A;" = Kn(x, x )  dx - 2 A;". (5.39) 
k = 2  

If all eigenvalues are positive, which will be the case if the kernel is positive, 
we can obtain the following upper bound for A;* by dropping the series on 
the right-hand side of (5.39): 

A;" G jab K, (x ,x )dx,  n = 1,2,. . . . (5.40) 

B. Kernel trace estimates for the moments of random eigenvalues 

In this section we consider two random eigenvalue problems of the form 
(5.27), (5.28). These problems will be formulated as Fredholm integral 

t A symmetric kernel K(x,y),  x,y E [a,b] is said to be positive if for every function 
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equations with random symmetric kernels; and kernel trace methods employed 
to estimate the moments of the random eigenvalues. Hence the method 
employed is an “honest” method in the sense of Keller (cf. Sect. 3.4C); that 
is, the kernel trace relations (5.38) will be applied to the random eigenvalues 
as in the deterministic case, and then the statistical properties of the random 
eigenvalues investigated. 

1. A direrential equation with a random coeflcient. Consider a differential 
equation of the form (5.27) with boundary conditions (5.28); and assume 

1 .  
2. 

the operator L is deterministic, 
the operator M is of the form 

where j30(x,w) is a positive real-valued random function. 
[ f l  = Bo(x, W)f (5.41) 

If we now put 
d x ,  w )  = [Po(x, w>11’2f(x> (5.42) 

and proceed as in the deterministic case, we obtain a random Fredholm 
integral equation 

(5.43) 

(5.44) 

+? w )  = A f b  K(x ,  Y ,  w )  d Y ,  w> dY. 
.a 

In Eq. (5.43) the random kernel is of the form 

w, Y ,  w )  = G(x, Y> [Bo(x, 0) Bo(Y, w>1”2 ; 
where, as before, G(x,y)  is the Green’s function associated with the deter- 
ministic operator L and the boundary conditions (5.28). We now assume that 
L together with the boundary conditions are self-adjoint; hence G(x, y )  is 
symmetric, and K(x ,y ,w)  is almost surely symmetric. We remark that the 
existence, uniqueness and measurability of the solution of Eq. (5.43) can be 
established by the methods used in Sect. 4.3. 

Let us now assume that /30(x,w) is of the form 

B O k  w) = 1 + b(x, 4, (5.45) 
where b(x,w) is a positive real-valued random function with E{b(x,w)} = 0; 
hence 

b{Bo(x, w ) }  = 1 ’ (5.46) 

In this case the random differential equation is of the form 
Lf= V O b ,  w>f;  (5.47) 

and the deterministic differential equation obtained by replacing B0(x, w )  by 
its mean value is of the form 

LJ;= AX (5.48) 
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with boundary conditions (5.28). Equation (5.48) is, of course, equivalent to 
the deterministic integral equation 

(5.49) 

since, in this case it follows from (5.33) that @(x) =y(x) .  

kernel trace method yields the relations 
Returning to the random integral equation (5.43), an application of the 

P 

2 A;l(w) =[ K ( x , x , w ) d x = L G ( x , ~ ) [ l  + b ( x , w ) ] d ~ ,  

2 Ai2(w)  = 

(5.50) 
k= I 

m 

K l ( x ,  X, w )  dx 
k- I 

= j b j b  G(x,  E )  G(E, X) [ I  + b(x ,  w)l[1 + N E ,  w)l dxdl;, 
a 0  

(5.51) 

and so on for values of n > 2. From (5.50) and (5.51) we obtain the following 
kernel trace relations for the expected values of the random eigenvalues : 

' b  2 6 fh;'(w)) = 1 G(x, x )  dx (5.52) 
k =  I a 

m 
2 S{Ai2(w)}  =!:Jab GZ(.,l;)[l + G { b ( x , w ) b ( l ; , w ) j ] d x d f .  (5.53) 

If the series in (5.52) and (5.53) converge fast enough, so that the terms after 
the first can be neglected, these equations provide estimates for b{A;'(w) j and 
b{h;2(w)}. From these expressions an estimate for Var{A;'(w)} can be 
obtained. 

We refer to Boyce [4] for a discussion, in a special case, of the relationship 
between the eigenvalues of the random problem (5.43) and the mean problem 
(5.48). 

k=l 

2. A diferential equation with random boundary conditions. Consider the 
differential equation 

d 2 f  - + Af= 0,  
dx2 

(5.54) 

with boundary conditions 

f ( 0 )  = 0, f ' ( 1 )  + U(1) = 0. (5.55) 

Boundary-value problems of the above form arise, for example, in the study 
of the transverse vibrations of an elastic string or the longitudinal vibration 
of an elastic bar. The boundary conditions (5.55) can be interpreted as follows: 
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The string or  bar is fixed a t  x = 0; however, depending on  the value of the 
support coeficient ( (assumed to be nonnegative), the string or  bar is either 
free (( = 0) or  fixed (( > 0) a t  x = 1 .  

We now assume that the support coefficient ( is a nonnegative real-valued 
random variable; hence the differential equation (5.54) is deterministic, but 
the boundary conditions (5 .55 )  are random. Therefore the solution of Eq. 
(5.54) will be a random function with values in L2[0, 11. 

The above random boundary-value problem, which is a problem of Sturm- 
Liouville type, can be formulated as the Fredholm integral equation with 
random kernel 

In  Eq. (5.56) the random kernel is of the form 

where 

(5.57) 

(5.58) 

is the Green's function for the boundary-value problem with (=O. Put 
fo(w)  = ((w)/(I + ( (w) ) .  Then 0 < f0 (w)  < 1 almost surely, since ( (w)  > 0. 
Since the Green's function is known, it is possible in this case to  obtain 
concrete kernel trace estimates. Hence the first trace equation is 

1 

k -  I - 0  

m 

2 A,'(w) = [ K ( x ,  x, w )  dx = c (x - f 0 ( W )  x2) dx. 

Therefore 

(5 .59)  

Similarly 
m " I  2 Ai2(w) = J, K,(x ,  X, w )  dx = & - (o(w) + + f i ( w ) .  (5.60) 

k-l 

It follows from the maximum-minimum property of eigenvalues (cf. Courant 
and Hilbert [6, Chap. VI]) that 

A: < Ak(W) < A,**, (5.61) 

(5.62) 

In (5 .62)  A: denotes the kth eigenvalue of the boundary-value problem with 
( > 0, and  A:* denotes the kth eigenvalue of the boundary-value problem with 

where 
A: = (k - *)' T', A:* = k2 n-*. 
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6 = 0. From (5.59), (5.61), and (5.62) we obtain the following bounds for 

3 - +fo(w) - 3 (A:)-' < A;'(w) < f - +f0(w) - 3 (A;* ) - ' .  

A;'(w) : 

(5.63) 
k = 2  k = 2  

Since 

(5.63) can be rewritten as 

4 1  1 1  1 
- - - [o(w) < AV(w)  < - + - - - &(w).  
772 3 3 7T= 3 

(5.64) 

(5.64) gives explicit bounds on A;'(w) as functions of the random support 
coefficient [(w). The expectation operation applied to (5.64) yields the following 
bounds for &' {A; l (u ) }  : 

(5.65) 
4 1  1 1 1  

n2 3 3 772 3 
d{&(w)} < 6{A-'(w)} < - + - - -d{&(w)}. 

Similar calculations based on (5.60) give the following bounds for the second 
moment 8{A;2 (~ ) }  : 

Bounds for the higher moments &{A;"},  n = 3,4,. . . , can be obtained by using 
the trace relations based upon higher iterated kernels. 

We refer to the papers of Boyce [3, 41, Boyce and Goodwin [5 ] ,  and 
Goodwin and Boyce [7] for the treatment of other random differential 
equations utilizing random Fredholm equations, and for discussions of the 
application of other methods (asymptotic, hierarchy, iteration, perturbation, 
and variational) to random eigenvalue problems. 
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CHAPTER 6 

Random Nonlinear Integral Equations 

6.1 Introduction 

In Chaps. 4 and 5 we studied random linear integral equations, that is, 
random equations of integral type which were linear with respect to the 
unknown function. In this chapter we will consider random nonlinear integral 
equations. Following the terminology employed in the study of deterministic 
integral equations, we define a random nonlinear integral equation as a random 
integral equation that is not linear. 

Nonlinear integral equations are of great theoretical interest and are of 
importance in many branches of science, engineering, and technology. As in 
the case of linear integral equations, nonlinear integral equations arise as math- 
ematical models of concrete physical phenomena and as integral equation 
formulations of nonlinear differential equations. For example, initial-value 
problems can lead to nonlinear Volterra integral equations of the form 

x(t  ) = x(a) + Jbr f ( 7 ,  ~ ( 7 ) )  d7; (6.1) 

and boundary-value problems can lead to Hammerstein integral equations of 
the form 

Also, nonlinear Fredholm integral equations can be deduced, for example, 
from linear Fredholm integral equations with difference kernels, or Wiener- 
Hopf integral equations with finite ranges (cf. Anselone [2, pp. 299-3081). 

We refer to the books of Anselone [2], Krasnosel’skii [18], Pogorzelski [31], 
186 
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Saaty [32], and Tricomi [35] for expositions of the theory of nonlinear 
integral equations and their applications. 

In Sect. 6.2 we consider the integral equation formulation of some random 
nonlinear differential equations. The results of this section, which contains 
two main subsections, are due to Strand [33,34] and Cameron [8]. A nonlinear 
integral equation with random right-hand side is studied in Sect. 6.3. The 
results of this section are due to Buche [6a], based on a paper of BeneS [5]. 
Section 6.4, based on a paper of Tsokos [36], is concerned with integral 
equations of Volterra type with random kernels and random right-hand sides. 
Section 6.5 is devoted to random integral equations of Uryson type, which 
include random Hammerstein equations as an important special case. The 
results of this section are due to Bharucha-Reid [6] and Mukherjea [23, 241. A 
measure-theoretic problem associated with a nonlinear integral equation with 
random right-hand side is considered in Sect. 6.5. Finally, in Sect. 6.6 we present 
a brief discussion of some random integral equations arising in applied fields. 

Random nonlinear Fredholm integral equations are not considered in this 
chapter, since the methods employed to study the nonlinear random equations 
of Volterra and Hammerstein type can also be used to study nonlinear random 
Fredholm equations. We refer to the recent book of Tsokos and Padgett [37a] 
for a detailed study of rather general classes of random nonlinear Fredholm 
and Volterra equations. 

6.2 Integral Equation Formulation of Some Random Nonlinear Differential 
Equations 

A .  Introduction 

The probabilistic formulation of many problems in mathematical physics, 
as well as in other branches of science and engineering, leads to the following 
problem : Given an n-dimensional vector random function (field) f ( t ,x ,w) ,  find 
an n-dimensional random vector x(t, w )  which satisfies the system of n random 
differential equations 

and satisjies a given initial value x(0, w )  = xo or a random initial value 
x(0,w) = xo(w). If n = 3 and the functionfrepresents a random velocity field, 
the above problem is the correct mathematical formulation of the diffusion 
problem arising in the turbulent flow of a fluid (cf. KampC de FCriet [17]). 

As in the case of deterministic ordinary differential equations (cf. Yosida 
[39]), a random differential equation of the form (6.3) can also be written as a 
random nonlinear integral equation of Volterra type : 

dx(t, w)ldt = f ( 4  x( t ,  w), w ) ,  (6.3) 
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The differential equation formulation requires the differentiability (in some 
sense) of a random function, while the integral equation formulation requires, 
in the main, that the functionfbe integrable in some appropriate sense. 

In Sect. 6.2B we consider the integral equation formulation of random 
differential equations of the form (6.3). Three different problems for differential 
equations of the form (6.3) are considered, and in each case the integral 
equation formulation is employed. Section 6.2C is devoted to a brief summary 
of a result concerning a random nonlinear differential equation in the Banach 
space Co[O, 1 1 .  

B. Integral equation formulation of a class of random nonlinear diflerential 
equations 

Consider the differential equation 
dx(t, w)ldr =f ( t ,  x(t,  w ) ,  w) ,  4 1 0  , w )  = xo(w). (6.5) 

We first state three problems for equations of the form (6.5). Throughout T 
will denote the closed interval [a, b] or the semiopen interval [a, a). 

Problem 1. The sample function (SF), or realization, problem. Assume 
the function f: T x R, x Q + R, has the property that if x :  T + R, is 
absolutely continuous, then for almost all w E Q , f ( t ,  x(t, w ) ,  w )  is integrable on 
T. A function x :  T x Q + R, is said to solve the SF-problem 

if and only if for almost every w E Q, the following conditions are satisfied: 
x V ,  w )  = f ( t ,  x(t, w),  w ) ,  x(a, w )  = X O ( ~ )  

( 1 . 1 )  x(t, w )  is absolutely continuous on T. 
(1.2) x(a, w )  = xo(w). 

(1.3) x’(t ,w) = f ( t , x ( t , w ) , w )  for almost every t E T 

In order to formulate the next two problems we consider two Banach 
spaces of functions on Q and concepts of differentiability for functions with 
values in these spaces. Let L,(Q)=L,(Q,%,p), and let L”,Q) denote the 
direct product of L,,(Q) with itself n times. The norm of an element of L;(Q) is 
given by llxll = max(llxl 11, lIxzII,. . . , llx,ll). The Ld-derivative of a mapping 
x :  R + L”,Q) at t is an element x‘ E L;(Q) such that 

== x‘ x(t  + h) - x ( t )  lim 
h-0 h 

in the norm topology of L”,Q). If the above limit exists in the weak topology 
of LE(Q), x’ is called the W,-derivative of x at t .  The mapping x is said to 
be W,-pseudodiferentiable if for every continuous linear functional 
x* : L”,(sz) + R ,  x*(x(t)) is differentiable almost everywhere. 
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We also need to introduce mappings g: T x L $ 2 )  -+ L;(sZ) such that 
the domain of g(t,x) is permitted to vary with t .  When we write 
g: T x  D”,t) -+ L;((sz), we mean that the domain of g is the set 
{(t,x): t E T, x E D(;t))., where I);(.) maps T into subsets of L;(sZ). 

ProbIem 2. The L,-pvobIem. Let g: T x D”,(t) -+ L;(Q) and xo E B:(u) 
be given. A function x :  T + Li(s2) is said to solve the L,-problem if and only if 
the following conditions are satisfied : 

(2.1) x(t) E D;(t) for all t E T. 
(2.2) x(t) is strongly absolutely continuous. 

(2.4) g(t,x(t)) is Bochner integrable on T. 
(2.5) The L,-derivative of x exists for almost all t E T and satisfies 

(2.3) X(U) = XO . 

x’(t) = g( t ,  x(t)). 

Problem 3. The W,-problem. Let g : T  x D;(t)  + L”,Q) and xo E D;(a) 
be given. A function x :  T + L”,(sz) is said to solve the W,-problem if the 
following conditions are satisfied : 

(3.1) x(t) E D”,(t) for all t E T. 
(3.2) x(t) is absolutely continuous. 

(3.4) g(t,x(t)) is Bochner integrable on T. 
(3.5) The W,-pseudoderivative of x exists for almost all t E T and satisfies 

(3.3) x(u) = xo. 

x’(t? = g(t, x(t>). 

We now state and prove three theorems which establish the integral 
equation formulations for each of the above problems. 

THEOREM 6.1. 
ifand only iffor all t E T 

A function x(t, w) : T x L’2 + R, is a solution of the SF-problem 

x(t, w) = X O ( ~ )  $- lr f(7, x(7, w) ,  w)dT (6.6) 

with probability one. (The integral in (6.6) is, for every fixed w, the usual 
Lebesgue integral.) 

Proof. Since the sample functions are assumed to be absolutely continuous, 
for fixed w E Q, Eq. (6.6) is a well-known characterization of absolutely 
continuous functions (cf. Hewitt and Stromberg [15, Sect. IS]). 

THEOREM 6.2. 
and only iffor all t E T 

A function x(t): T --f L”,Q) is a solution of the L,-problem i f  
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X ( t )  = XO + Ir g(T, X ( T ) )  dT. 

(The integral in (6.7) is the Bochner integral.) 

(6.7) 

Proof. The sufficiency follows from the fact that if x ( t )  is weakly absolutely 
continuous, of strong bounded variation, and almost surely weakly dif- 
ferentiable with derivative x’( t ) ,  then x ( t )  is strongly differentiable, x ’ ( t )  is 
Bochner integrable, and x ( t )  = xo + 1; x’(T)dT (cf. Hille and Phillips [16, 
p. 88, Theorem 3.8.61); and the necessity follows from the fact that 
(i) x ( t ) :  T-tL;(SZ) is strongly absolutely continuous and (ii) x’ ( t )  exists 
almost surely if and only if x ( t )  is the Bochner integral of x’( t ) .  

THEOREM 6.3. 
problem if and only if for  all t E T 

A function x ( t ) :  T + L”,Q), p > I ,  is a solution of the Wp-  

X ( t )  = Xo f 6 g(T, X ( T ) )  dT. (6.8) 

(The integral in  (6%) is the Pettis integral.) 

Proof. The proof is based on results of Phillips [30, pp. 132-133, 137-1381 
and Strand [33]; from which it follows that x ( t )  = xo + J: x ’ ( T ) ~ T  if and only 
if (i) x’(r) is Pettis integrable and (ii) x ( t )  is absolutely continuous. 

The next theorems establish the relationships that obtain between the three 
problems and their integral equation formulations. The following notation 
will be employed: If x(w) is a random variable, then 2(w)  denotes the class of 
random variables equivalent to x(w). For example, if x(w):  SZ + R ,  then 
2(w)  E L,(Q) denotes its equivalence class. We will consider the Lp-problem 

x’( t )  = g( t ,  d t ) ) ,  x(a) = xo 3 (6.9) 
and the SF-problem 

~ Y ( w ,  Oldt =f ( t ,  v(t3 44, Y@, 4 = x0(4 (6.10) 

where g , f ,  and xo satisfy the assumptions made in the statements of the above 
problems. We also assume that if x(w) :  SZ -t R, has 2(w)  E D;(t) ,  then 

g( t ,  2) =&, x(t ,  w),  w).  (6.11) 

The following theorem expresses the relationship between the Lp-, and 
W,-problems. 

THEOREM 6.4. ( 1 )  I f x  is a solution of the L,-problem, then it is also a solution 
of the Wp-probIem. (2) I f  x is a solution of the W,-problem, then it is a solut!on 
of the L,-problem if and only i f g ( t , x ( t ) )  is Bochner integrable. 



6.2 Some Associated Random Nonlinear Diflerential Equarions 191 

Proof. The above theorem follows from the integral equation formulations 
of the two problems (Theorems 6.2 and 6.3), together with the fact that the 
Bochner integral is a special case of the Pettis integral. The necessity of the 
condition in part (2) of the theorem is condition (2.4) as in the statement of 
the L,-problem. The next theorem relates the W,- and SF-problems. The 
functions g andfare as in (6.9)-(6.11). 

THEOREM 6.5. Let y :  T x SZ --f R,, and define x ( t )  by x ( t )  = j ( t ,  w); and 
assume f ( t ,  y(t, w),  w )  is integrable with respect to the product measure on 
T x SZ. Then (1) i f x  solves the W,-problem, then y solves the SF-problem; and 
(2) ify solves the SF-problem and g(t ,x(t))  is Pettis integrable, then x solves the 
Wp-problem. 

Proof. We omit the proof since it is analogous to that of Theorem 6.4. 
However, we remark that the proof utilizes the following result: Let p > 1 .  If 
x( t ,w)  is Pettis integrable and also integrable with respect to the product 
measure on R x Q, then 

[ x( t ,  w )  dt = !” x( t ) dt, 

where the integral on the left is a Lebesgue integral (obtained by fixing w )  and 
the integral on the right is a Pettis integral. 

Finally, we state, without proof, the following result which establishes the 
relationship between the Lp- and SF-solutions. 

THEOREM 6.6. Assume the function g in the L,-problem (6.9) and the function f 
in the SF-problem (6.10) are relatedby (6.1 1). Then, (1) i f x ( t )  is a soZution of the 
L,-problem on T ,  it is also a solution ofthe SF-problem on T ;  and (2) i fy( t ,  w )  is 
a solution of the SF-problem, then x ( t )  = j ( t ,  w )  is a solution of the L,-problem 
(f and only i fg( t ,x( t ) )  is Bochner integrable. 

In the above theorem the statement that a solution of the L,-problem is a 
solution of the SF-problem means that for each t an element in the equivalence 
class x ( t )  EL;@) is chosen so that the statement is true. 

We now state and prove two theorems of Picard type which establish the 
existence and uniqueness of solutions of the SF- and L,-problems. These 
theorems are generalizations of the classical Picard theorem for deterministic 
ordinary differential equations (cf. Saaty [32, pp. 90-941, Yosida [39, Chap. I]). 
As in the classical case, these theorems establish the existence of a solution by 
successive approximation procedures; hence they establish the existence of a 
fixed point of an integral operator. For example, in the case of the SF-problem 
we introduce the transformation on R, 
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Y(t9 0) = T(w)  [x(t, w)l (6.12) 

T(w)  [ X I  = xo(w) + J1 f (7: x(7, w ) ,  w )  d7. (6.13) 

If f is a fixed point of the random transformation T ( w )  defined by (6.13) (that 
is, T ( w ) f  = f ) ,  then f is a solution of the SF-problem. 

The uniqueness in both problems is based on the following lemma: 

LEMMA 6.1. (A generalized Gronwall inequality.) Assume the functions 
K ( t ) ,  x ( t ) ,  y ( t ) ,  K(t)x( t )andx(t)y( t )are integrableon [a,b], andthatx(t)  > 0.u 

for almost every t ,  then for  almost every t E [a, b] 

~ ( t )  G K ( t )  + ~ ' K ( T ) x ( ~ ) ~ x P (  . a  i 'x(E)dE) d7. 

A proof of the above result in the special case of continuous K ( t ) ,  x ( t ) ,  and 
y ( t )  is given in Coppel [9, p. 191, and the same proof is applicable to the more 
general situation as stated in Lemma 6.1. 

In Theorems 6.7 and 6.8 the parameter set T = [a, b]  is a finite or infinite 
interval. 

THEOREM 6.7. The SF-problem has a unique solution x( t ,w)  if the following 
conditions are satisfied: 

There exists a jn i te  function k :  T x fz + R, integrable on T for almost all 
w E fz such that for f I  , t2 E R, the function f: T x R, x f2 + R, satisfies the 
Lipschitz condition 

I i f  ( 4  E l  9 w )  - f  ( 4  E z  > w>ll G KO, w )  1151 - E21i (6.14) 

i. 

for almost all w ; 

ii. i." Ilf(7, xo(w), w)il dT < M(w) < (6.15) 

for  almost all w E SZ. 

Proof. We define a sequence of random functions as follows: 

(6.16) 
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The existence of the integrals in the definition of x,(t, w ) ,  n = 1,2,. . . is an 
immediate consequence of the assumptions on the function f as indicated in 
the statement of the SF-problem. 

From (6.16), (6.14), and (6.15) we obtain 

IIXn+l(t, w )  - Xn(t, w)H G M ( w )  tK(t, w)l"/n!, 
where 

K ( t ,  w )  = k ( ~ ,  w)dT. 

It follows from the above that the sequence (x,(t, w ) }  converges uniformly on 
T for almost all w E Q to some random function x( t ,w) ;  and since the con- 
vergence is uniform, x(t ,  w )  has absolutely continuous sample functions. We 
also have 

< fiiz Jar K (7 ,  w )  l jXn(7 ,  w )  - X ( 7 ,  w)ll dT = 0, 

so x(t, w )  is the desired solution of the SF-problem. 
The uniqueness of the solution x( t ,  w )  follows from Lemma 6.1. 

We now consider the analogous result for the L,-problem. 

THEOREM 6.8. 
Lipschitz condition 

Suppose (i) the function g :  T x L;(Q) -+ Li(Q) satisfies the 

Ilg(t, 5,) - g(t ,  52)Il  G W )  115, - 5211 (6.17) 
for f1 , f 2  E L;(Q), where k ( t )  is integrable on T ;  and (ii) i f x :  T -+ L:(Q) is 
(norm) absolutely continuous, then g(t, x )  is Bochner integrable. Then there 
exists a unique function x ( t )  : T --f L;(Q) which is (norm) absolutely continuous 
and satisfies the L,-problem. 

Proof. We define a sequence of random functions as follows: 
xo( t )  = x(a) = xo 

Xl( t )  = xo + g(7 ,  xo(7)) d7 

and put 

(6.18) 

(6.19) 
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From (6.18), (6.17), (6.19), and (6.20) it follows that 

Ilxn+l(f) - xn(t)ll G M[K( t ) l " /n ! .  

The remainder of the existence proof is analogous to that of Theorem 6.7, and 
is, therefore, omitted. Similarly, we omit the proof of uniqueness, since it 
follows from Lemma 6.1. 

We close this subsection with an example which demonstrates the 
(unfortunately) limited applicability of Theorem 6.8. Consider the L,-problem 
for the random linear differential equation 

x ' ( t )  = A(w)x( t ) ,  x(0) = I ,  (6.21) 

where A(w) is a real-valued random variable. The use of Theorem 6.8 to 
establish existence of Eq. (6.21) requires the existence of a constant K such that 

llA(w)x(w)li < K/lx(w)lI (6.22) 

for all x E L,(Q). However, x(w)  satisfies (6.22) if and only if A(w)  is bounded; 
that is, if there exists an M such that IA(w)l < M for almost all w E SZ. The 
sufficiency of the boundedness condition is clear; for we have only to let 
K = M .  Now suppose A(w) is not bounded; put xn(w) = (A(w))", and define 

4 5 )  = J IAWICdp. (6.23) 

Then inequality (6.22) applied to x,,(w) takes the form 

I l ~ " + ' ( ~ > l l  < KIIAR(w)/l; 

or, using (6.23) 

m(p(n + 1)) < Km(pn), n = 1,2,. . . , 
for some constant K. Now suppose x(w) is not essentially bounded ; then for 
any M 

But then 

Hence there is no constant K such that (6.22) holds. 
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The above example shows that even for linear differential equations with 
random coefficients that have Gaussian or Poisson distributions we cannot 
expect a Lipschitz condition to be satisfied. 

C. A random nonlinear diyerential equation in the space of continuous functions 

Let Co[O,l] denote the space of functions continuous on the interval 
T = [0,1] and vanishing at 0. Consider the measure space (C, ,8, w), where 8 
is the o-algebra of Bore1 subsets of Co[O, I], and w is Wiener measure. 

Consider the random nonlinear differential equation 

dy(t, w)ldt = f  (I, A t ,  w )  + N t ,  w)), y(0, w )  = 0,  (6.24) 

where w(t,w) is a Wiener process and y ( t ,  w) is, for every fixed w E SZ, an 
element of Co[O, I]. The function f ( t , u ) :  T x R --f R is a real-valued con- 
tinuous function of t. Put x( t ,w)  = y ( ? , ~ )  + w(t,w); then Eq. (6.24) is 
equivalent to the random nonlinear Volterra equation 

~ ( t ,  w )  - 1; f (7, X(T, w ) )  d.r = w(?, w). (6.25) 

Cameron [8] considered the following problem: Find conditions on the 
function f ( t , w )  such that Eq. (6.24) has a solution y(t ,w) for almost all sample 
functions of w(t,w), that is, all sample functions of w(t,w) except those 
belonging to a set of Wiener measure zero. The following theorem establishes 
conditions on f ( t , u )  that are sufficient for the existence of an almost sure 
solution of Eq. (6.24). 

THEOREM 6.9. 
and f u  in the region {(t ,  u ) :  t E [0,1], u E R}. Put 

(i) Let f ( t ,u )  have continuous partial derivatives o f jks t  orderf, 

g(t ,  U )  = f ( f ,  O d t ,  u E R. 

(ii) Let the following order of growth conditions be satisfied: for  every t E T 
anduER 

a. f ( t ,  u) sgn u > - A ,  exp{Bu2} 

b. f,(t, u)  + 4g,(t, u )  < 2a2 u2 + A 2  

C. g( l ,u )  > +au2cot/3 - A , ,  u E R, 

where A ,  , A 2 ,  A , ,  a, ,6 and B are positive constants, a < ,6 < T and B < 1. Then 
Eq. (6.24) has a unique solution y(t ,  w )  E Co[O, 11 for  almost all w(t, w )  E Co[O, I]; 
equivalently, Eq. (6.25) has a solution x(t,w) E Co[O, I] for  almost all 
W, w) E COP, 11. 
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The importance of the above theorem is due to the fact that it can be 
utilized in cases where the classical (that is, deterministic) theorems are not 
applicable. Cameron [8] shows that there exists at least one w E Co for which 
Eq. (4.24) has no solution; hence Theorem 6.9 cannot be contained in any of 
the classical theorems. We also remark that forf(t, u)  = -u2 the conditions of 
Theorem 6.9 are not satisfied; and Woodward [38] has shown that for almost 
all w E Q, y(t ,  w )  does not exist. 

6.3 A Nonlinear Integral Equation with Random Right-Hand Side 

The study of certain nonlinear problems in circuit and control theory leads 
to an integral equation of the form 

x ( t ) -  K ( t - ~ l l C I ( x ( ~ ) , ~ ) d ~ = y ( f ) .  (6.26) 

In Eq. (6.26) the function #(x, t )  represents a time-variable nonlinear element. 
K ( t )  is an impulse response characteristic of a linear system, and the right- 
hand side y ( t )  is an input signal. BeneS [5] has studied Eq. (6.26) in the real 
Marcinkiewicz space M 2 .  The function space M2(-co, m) (cf. Marcinkiewicz 
[20]) is the class of all measurable, locally integrable, real-valued functions 
x( t ) ,  t E T =  (-a, Q) for which 

.-m 

(6.27) can be referred to as a weak “finite power” condition. Let Mo denote the 
subspace of functions of zero power, that is, those x(t) E M ,  with I ~ x I !  = 0; and 
consider the quotient space M2/M0 consisting of all cosets {x + M,,}, where 
x E M,. With the norm l!x11 = li{x + Mo}il the quotient space M z / M o  is a 
Banach space. There is a natural homomorphism A of M2 onto M 2 / M o  defined 
by A: x + {t: lit - xi1 = O), x E M 2 .  Operators mapping M ,  into itself can be 
extended to M z / M o  according to A ;  that is, if T :  M2 + M 2 ,  then T[Xx] = XTx 
for x E M 2 .  

Random solutions.of Eq. (6.26) in M2 are of interest in those cases in which 
the right-hand side, or input, is a random function y(t, w),  t E T, w E a. If the 
input has finite power and is stationary, then the averages 

will exist, and will be finite for almost all w E Q; hence almost all sample 
functions of y(t, w )  will belong to M 2 .  In these cases it is of interest to seek 
solutions x(t ,  w )  of Eq. (6.26) which also belongs to M 2 .  

Using the Banach contraction mapping theorem, BeneS proved the following 
existence and uniqueness theorem for Eq. (6.26): 
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THEOREM 6.10. Suppose (i) $(x, t )  satisfies the condition 

4x1 - x2) $(XI 9 t )  - $(x2 2 t )  P ( X l  - x2) (6.28) 

for all t ,  and all xI , x2 with x I  > x2 ,  and some constants M, p (P > 0), and 
(ii) K ( t )  is an L2-function such that 

s-m t2l ic( t ) (*dr < a, (6.29) 
m 

(6.30) 

Let y ( t )  be any function in M,.  Then there exists a solution x ( t )  E M 2  of 
Eq. (6.26), and Ax is unique in M 2 / M o ;  that is, the solution is unique to within 
a function belonging to Mo . 

We now consider Eq. (6.26) with input a random function y(t,w). In this 
case it is necessary to consider the space M 2  of all random functions x(t ,w) 
such that (1) x(t ,w) is a measurable random function, (2) x(t ,w) is locally 
integrable for every fixed w E Q, and (3) the weak finite power condition 

Ilx(w)ll = lim sup( 1 /2A)  J” /x(r, w ) I 2  dt < 00 (6.3 I ) 

is satisfied for almost all w E Q. As before, we denote by Mo the subspace of 
functions of zero power, that is, those x( t ,w)  with iix(w)ll = 0 almost surely. 

A+m - A  

Consider the random nonlinear integral equation 

where y(t ,w):  T x Q + M 2 ,  $(x(T,w)T): M 2  x T - t  M , ,  and K ( t ) :  T +  T 
satisfies (6.29). The following theorem, which establishes the existence and 
uniqueness of the random solution x( t ,  w )  of Eq. (6.32), extends Theorem 6.10 
to the case of random inputs. 

THEOREM 6.11. Suppose (i) $(x, t )  satisfies (6.28) with x l ( t ,  w )  E M2, 

x2(t ,w)  E M2 where x,(t ,w) 2 x,(t,w) almost surely, and (ii) ( K ( t ) )  is an 
L2-function satisfying (6.29) and (6.30). Let Y ( t ,  w )  be an arbitrary measurable 
random function in M 2  . Then there exists a random solution x( t ,  w )  E M2 of 
Eq. (6.32), and the solution is unique in M2/Mo.  

We state without proof two lemmas which will be used in the proof of 
Theorem 6.1 1. 

LEMMA 6.2. (Lemma 4 in BeneS [5 ] . )  Let R(p) = 3 { K ( t ) }  denote the Fourier 
transform q f K ( t ) .  If(i) K ( t )  E L 2 ,  (ii) (6.29) issatisfied, (iii) R(p) = l f o r  aNp ,  
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and (iv) A(p) = R ( p ) [ l  - I?(p)J-l, then H ( t )  = g - ' { H ( p ) }  E Lz and satisfies 
(6.29). 

LEMMA 6.3. (Lemma 5 in BeneS [5 ] . )  Let F ( t )  be a function such that 
(1 + t 2 )  (F(r)I2 E L ,  , and let P(p) = g{F( t ) } .  Then F ( t )  E L 1 .  r f  F"(p) # 1 .for 
aN p, and G(t)  = g-'{F(p) [ I  - F(p)- ' ] ) ,  then the operator I -  F" on M 2 / M o  
has a bounded inverse representable as 

( I  - F)-1 Ax = ( I  + G) Ax. 

Proof of Theorem 6.11. We first rewrite Eq. (6.32) in the form 

x(t, W )  = y(r, W )  + A x ( t ,  w).  

If we define Was the operator 
(6.33) 

and V as the linear operator 

V[x( t ,  w ) ]  = Jm K(r - 7) x(7, w )  dr, x(7, w )  E M ,  , (6.35) 

then it is clear that the operator A in Eq. (6.33) is of the form A = VW;  and 
that the existence and uniqueness of the solution of Eq. (6.33) can be established 
by finding a fixed point of the operator A = VW. It follows from (6.29) that V 
maps M2 into itself. In order that A be well defined W must map x(t,w) into 
the domain of V. It follows from (i) that y!~ is an almost surely continuous 
function of x(t, w ) ,  and that 

-m 

I$(Nt,w),f)l max{lccl IBI) Ix(r, w)l 

almost surely. Hence $(x(t, w) ,  t )  E M2 ; and A maps M2 into itself. We now 
show that A is a contraction operator on M , .  Since $(x, t )  and K ( t )  are 
deterministic functions, the operators W and V are deterministic; hence A is a 
deterministic operator, and the classical Banach contraction mapping theorem 
can be used to establish the existence of a fixed point of A .  

Using the definition of the operator V, Eq. (6.32) can be written as 

( I  - +(a + 8) u x ( t ,  w )  = y(t ,  w )  + J-m W - 7) "+, w ) ,  7) 

-.)(a + 8) x(7, w ) ]  d7. (6.36) 

It follows from (6.29) that K ( f )  E L1, and from (6.30) that +(a + p)F(p) # 1 
for all p ;  hence by Lemmas 6.2 and 6.3 the operator I -  $(m + 8) V has a 
bounded inverse on M 2 / M o  represented by the identity minus a convolution. 
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Hence we can rewrite (6.36) as 
x(t, w )  = ( I  - +(a + 8) v)-’ y(t, w )  

(6.37) 

where H(r)  is the L1-function with 

and the second equality defines the function y,(r,w) and operator S in an 
obvious way. 

From (i) it follows that 

I+(Xl , t )  - +(x2 9 t >  - +(a + B) (XI - X2)l 3@ - c o b 1  - x2) 

for almost all w E 0. Hence for any x l ( t ,  w )  E M 2  , x2(r,  w )  E M 2 ,  

for almost all w E 0. From (6.30) it follows that the constant on the right-hand 
side of (6.38) is less than one. Hence, rewriting Eq. (6.37) as 

(1 - S )  x(t, w )  = At, w ) ,  

il(1- S)(x, - x2)ll = IIS(x1 - x2>ll, 

and observing that 

it follows from the completeness of M 2 ,  and the fact that M 2 / M o  is a metric 
space, that the Banach contraction mapping theorem is applicable; and this 
establishes the existence and uniqueness of the random solution of Eq. (6.32). 

6.4 Nonlinear Integral Equations of Volterra Type with Random Kernels and 
Random Right-Hand Sides 

A .  Introduction 

Random linear integral equations of Volterra type were considered in 
Sects. 4.2 and 4.3, and in Sect. 6.2 we considered some nonlinear integral 
equations of Volterra type which arose as integral equation formulations of 
some random nonlinear differential equations. In this section, which is based 
on a paper of Tsokos [36], we study a rather general dass of nonlinear integral 
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equations of Volterra type with random kernels and random right-hand sides. 
The equation to be considered is of the form 

X ( t ,  w )  - j' K(t, 7, W ) f ( T ,  X(7, W ) ) d T  = Y ( t -  W), (6.39) 

where w E Q, c E Ri. We assume that the unknown function x(t, W) and tht  
known functiony(t, W) are functions of t E R+ with values inL2(Q) =L,(Q, 91, p). 
The functionf(t, x(t, w ) )  will, under appropriate conditions, also be a function 
of t E R+ with values in L2(Q). The random kernel K ( t ,  T, w )  is assumed to be 
a p-essentially bounded function for every t and T (0 s T s r < a), with values 
in L,(Q) for every fixed t and T. Hence the product K(t,T,w)f(f,x(t,W)) will 
be in L2(L'). We also assume that the mapping ( t ,  T )  --f K(t, T ,  w )  from the set 
( ( t , T ) : O  G T s t < a> into L,(Q) is continuous; that is, 

0 

p - esssuplK(t,,,T,,u) - K ( t , T , W ) I  + co a s .  
w 

as n + a whenever (tn, T ~ )  --f ( t ,  T )  as n +- a. 

Section 6.4B is devoted to the existence and uniqueness of a random 
solution x(t,W) of Eq. (6.39). In this section the notion of a pair of Banach 
spaces being admissible with respect to an operator is utilized.? In order to 
introduce this notion we need to define several spaces: ( 1 )  The space 
C, = C,(R+,L2(Q)) is defined as the space of all continuous functions from R+ 
into L,(L'), with the topology of uniform convergence on every interval 
[0, b],  b > 0. The space C, is a locally convex space, whose topology is defined 
by means of the family of seminorms 

n = 1,2,. . . . (2) The space C, = C,(R+,L,(Q)) is defined as the space of all 
continuous functions from R+ into L2(Q) such that 

(6.41) 

where M is a positive number and g(t), t E R+, is a positive continuous 
function. The norm in C, is defined by 

(6.42) 

(3) The space C = C(R+,L,(Q)) is defined as the space of all continuous and 
bounded functions on R+ with values inL,(Q). (4) Finally, let X = X(R+,L,(Q)) 

t The concept of admissibility was introduced in the theory of differential equation by 
Massera and Schaffer (cf. [21, Chap. 5]), and in the theory of integral equations by 
Corduneanu [lo, 111. 
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and 9 = 9(R+,L2(Q)) be a pair of Banach spaces of continuous functions 
from R+ into L,(Q) such that 3E,9 = C,;  and let L be a h e a r  operator from 
C, into itself. 

Definition 6.1. The pair of Banach spaces (X, 9) is said to be admissible 
with respect to the operator L : C,(R+, L,(Q)) 3 C,(R+, L2(Q)) if and only if 
L[X]  = 9. 

We now state a fundamental lemma which will be used in Sect. 6.4B. 

LEMMA 6.4. Let L be a continuous operator f rom C,(R+,L2(Q)) into itself. If 
( i )  3E and 9 are Banach spaces with topologies stronger than the topology of C,, 
and ( i i )  the pair (X,r)) is admissible with respect to L ,  then L is a continuous 
operator f rom 3E to 9. 

We refer to Corduneanu [lo]  for a proof of the above lemma, which 
involves showing that L is a closed operator, and then using the closed graph 
theorem. 

We remark that if L is a continuous operator it is also bounded; hence we 
can find a constant A4 > 0 such that 

lILx(t, w)!lg < Ml'x( t ,  W)iIx. (6.43) 

In Sect. 6.4C we consider a random nonlinear differential equation of 

dx( t ,w) /d t= A ( o ) x ( t , w ) + f ( r , x ( t , w ) ) ,  Z E  R+ (6.44) 

and show that it can be formulated as a random integral equation of the 
form (6.39). 

Tsokos [37] has also studied random nonlinear Volterra integral equations 
of convolution type 

the form 

X ( t ,  W )  - K ( t  - 7, W )  @(X(T ,  0))  dT = y( t ,  W ) ,  (6.45) 

which arise as integral equation formulations of certain random nonlinear 
differential systems. 

B. Existence and uniqueness 

We now consider the existence and uniqueness of a random solution of Eq. 
(6.39). A random function x ( t , w )  will be called a random solution of Eq. (6.39) 
if for every fixed t E R+, x ( t , w )  E L,(Q) and satisfies Eq. (6.39) with 
probability one. 
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We now state and prove the following existence and uniqueness theorem for 
Eq. (6.39). 

THEOREM 6.12. Assume 

i. X and 9 are Banach spaces of continuous functions from R+ into L2(52) 
with topologies stronger than the topology of C,(R+, L2(Q)), and the pair (X, 9)  
is admissible with respect to the random integral operator 

L(w) x( t ,  w )  = Jrd K(t, T ,  w )  X ( T ,  w )  dT, (6.46) 

where the random kernel K( t ,  r ,  w )  is continuous in the sense indicated earlier; 
ii. The mapping x( t ,w)  + f ( t , x ( t ,w) )  is an operator on the set 

s = {x(t ,  w ) : x ( t ,  w )  E 9, llx(t, w)llz, < P I ,  

l lf(t,  X I ( [ ,  w>> - . f( t ,  x20, w))x kllxdt, w> - x2(t, wllg Y 

for  some p > 0,  with values in X, satisfying the condition 

(6.47) 

for  x I  , x2 E S and k a positive constant. 
... 
111. y(t ,w) E 9. 
Then, there exists a unique random solution of Eq. (6.39) whenever (a) k < N-' 

and (b)  lly(t,w)lls + Nil f (f,O)llx s p(1 - k N ) ,  where N is the norm of L(w). 

Proof. We define a random operator W ( w )  from S into as follows : 

W(w> [x( t ,  011 = y( t ,  w )  + K(t ,  7 ,  W ) f ( T ,  4 7 ,  w))  dT. (6.48) 

We first show that under the hypothesis of the theorem W ( w )  is a contraction 
operator. Let x,( t ,w)  and x2(t ,w) be elements of S.  Then from (6.48) we have 

w ( w )   XI(^, w )  - X*(t, w)1 = 6 K(t,  7 ,  w )  [ f  ( t ,  X l ( 7 ,  W ) )  - f ( t ,  x2(7, w ) ) ]  h. 

(6.49) 
Since W(w)  [S] c 9, and 9 is a Banach space, we have 

W(w> M t ,  w )  - X2(4 0)l 9. 
It follows from assumptions (i) and (ii) that [ f ( t , x , ( t ,w) )  - , f( t ,x2(t ,w)] E X. 
Since, by Lemma 6.4, L(w) is a continuous operator from X into 9, there 
exists a constant N > 0 such that 

IIL(w> x(t, w>111, < Nl/x( t ,  w)llr ' 

I1 W w )  [x l ( t ,  w )  - x&, ~ ) l l ~  G Nll f ( t ,  xdt ,  w)> -.fk x,(t, w)>llx. 

From (6.49) we have 
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Applying the Lipschitz condition onf(t,x) as given by (ii), we have 

11 W(w1 [xl(t, w )  - x2( t ,  w)ll!g G kNlixl(t, w )  - x2(t,  w)llx. 

Using condition (a) (that is, k N  i l ) ,  the above inequality implies that W(W)  
is a contraction operator. 

We now show that W ( w )  [ S ]  c S.  For every x(t, w )  E S the operator W(w)  
is well defined. Hence, it follows from assumption (iii) and an application of 
Lemma 6.4 that we can write 

I 1  W ( w )  x(t, w)llv s llv(t, w)llg + Nllf(t, x(t, w)lix. (6.50) 

The norm off(t,x) in (6.48) can be written as 

Ilf(tl x(t, w))llx = Ilf(6 x(t, w))  -f( t ,  0 )  + f ( t ,  0)llx 

s l l f (6 x(t ,  4) -f(h O)llx + W, O)lix. 
Another application of the Lipschitz condition onf(t,x) yields 

Il.f(t, x(t, w))llx < kllx(t, w )  - 011, + IIf(4 0)IIx; 

which enables us to rewrite (6.50) as follows: 

I /  W(w)x(r, w>llg G liv(t, w)lig + kNl/x(t ,  wliig + Wft, 0) l i~ .  

Since x(t, w )  E S,  lIx(t, w)Ilg G p ;  therefore the above inequality becomes 

/ I  W(w1.44 w)Ilg G IlAt, w)llg + kNp  + Nllf(t, 0)llx. (6.51) 

Using condition (b), that is, ily(t,w)iig + Nllf(f,O)ilx G p(1 - k N ) ,  (6.51) 
becomes 

/ I  W(w)x(t ,  w)l/g < p(1 - k N )  + kNp  = p. 

Hence, by definition of the set S, W(w)x( t ,w)  E S for every x( t ,w)  E S, or 

Finally, since we have shown that W ( w )  is a contraction operator and 
W(w) [ S ]  c S,  it follows from the SpaEek-Hang fixed point theorem that the 
operator W ( w )  has a unique fixed point x( t ,w)  for every t E R'; that is 
W ( w ) x ( t , w )  = x(t ,w) .  Hence there exists a unique random solution 
x(r,w) E S c 3E of the random integral equation (6.39). 

Padgett and Tsokos [26] (cf. also [37a]) have studied a random infegral 
equafion of the mixed VoIterra-Fredholm type of the form 

W(w)  [ S ]  c s. 

x ( t ,  w )  = y ( t ,  w> + 16 K, ( t ,  7,  u ~ 7 ,  ~ ( 7 ,  w ) )  d7 

+ ~ ~ a K ~ ( f , 7 , W ) g ( T , X ( T , W ) ) ~ T ,  f >  0. (6.52) 

Using the theory of admissibility of Hilbert spaces and the fixed point theorems 
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of Banach, Schauder, and Krasnosel'skii (cf. Sect. 3.3B), the existence and 
uniqueness of a random solution of Eq. (6.52) was established. Their results 
generalize those of Anderson (Sect. 4.2), as well as those of Tsokos presented 
above. 

C. Integral equation formulation of a random nonlinear differential equation 

Consider the random nonlinear differential equation 

dx(t ,  w)/dr = A(w)  x(t ,  W )  + f ( t ,  x(t ,  w ) ) ,  t E R+, (6.53) 

where x( t ,w)  is an n-dimensional random vector, A(w) is an n x n random 
matrix, andf(t, x )  is an n-dimensional vector-valued function for t E R+, x E R.  
Equation (6.53) can be reduced to the random integral equation 

x(t ,  w )  - Jd exp{A(w)(t - T ) } ~ ( T , x ( T ,  w ) ) ~ T  = eA(w) fxo(w) .  (6.54) 

Put 

y( t ,  w )  = eA(w)rxO(w)  (6.55) 

and 

K(t ,  7, w )  = e A ( u ) ( r - T )  , O < T < t < c O ;  (6.56) 

We now assume that (1) the random matrix A(w) is p-stable, that is there 

p { w :  max ReX<-cc = I ,  

then Eq. (6.54) is of the form (6.39). 

exists an a > 0 such that 

1 A € U ( A ( W ) )  

where u(A(w)) denotes the spectrum of A ( w ) ;  and (2) f ( t ,  x) is a continuous 
function from Ri x R,  + R satisfying the Lipschitz condition 

I f ( t , x1>- f ( t , x z ) l  < + l  - 4 ,  
withf(t,O) = 0, and k sufficiently small. Under these conditions we will show 
that there exists a unique random solution x(t ,  w )  of Eq. (6.54). 

Consider the pair of Banach spaces (C,,  C,) with g ( t )  = e-Bt, where E (0, a). 
For x( t ,  w )  E C,, we define the following random integral operator: 

~ ( w )  x( t ,  w )  = K ( t ,  7 ,  w )  x(7, w )  dT. (6.57) 

From the definition of the norm in C, (cf. (6.42)), it follows, using (6.56) and 
(6.57), that 

~ l ~ ( w ) x ( t ,  ~ ) I I  < jot exp{Ai(w)(t - //x(T, ~ ) I I  dT. (6.58) 
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Now, it has been shown by Morozan [22] that there exists a subset E of D such 
that p ( E )  = 1 and 

llK(c, T ,  w)li = lleA(w)(t-7)iI , < Me-a(t-T), (6.59) 
for w E E, M > 0, and a as defined above. Applying (6.59) to (6.58) we obtain 

(6.60) 

< Ml/x(t, w)llc-(a - /3)-'(e-B' - e-a*), t E R'. (6.61) 

Since ,l3 E (0, a), the above inequality can be majorized to yield 

Hence 

Therefore, x(c, w )  E C, implies L(w) [C,] c C,; which, in turn, implies that the 
pair of Banach spaces (C,, C,) with g ( t )  = e-p' is admissible with respect to 
the random integral operator L(w). 

From the above, namely the form of y(c,w), the properties of the kernel 
K(t ,  T ,  w),  the Lipschitz condition on f(t, x), and the admissibility of the pair 
(C,, C,) with respect to L(w), it follows that the hypotheses of Theorem 6.11 
are satisfied; hence there exists a unique random solution x( t ,w)  of Eq. (6.54) 
(equivalently Eq. (6.53)), and ~ ( t ,  w )  is exponentially p-stable, that is, 

IIL(w) x(t ,  w)li < Milx(t, w>llc, (a  - P)-' 4. 

IILW x(t, w)iiC, G M ( a  - P)-'lix(t, w)ll., . 

D. Approximate solutions of Eq. (6.39) 

Padgett and Tsokos [29] have defined a sequence of successive approxi- 
mation, X n ( f , W ) ,  which converges to the unique random solution of Eq. (6.39) 
at each t > 0 with probability one and in mean square under the conditions 
of Theorem 6.12. The sequence is defined as follows, assuming that the 
distribution of y( t ,  w )  is known or that a value of y(t ,  w )  can be observed for 
each c > 0: 

(6.62) xdt, w )  = At, w )  

x,+,(t ,  4 = W(w> M t ,  w)1, n > 0, 

where W(w)  is defined by (6.48). 
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Padgett and Tsokos [28] utilize a stochastic approximation procedure due 
to Burkholder [7] to study approximate solutions of Eq. (6.39). In particular, 
conditions on the functions y(t, w),  K ( t ,  T ,  w), and f ( t , x )  are given for which 
the approximation procedure converges to a realization of the solution x(t, w )  
with probability one. We refer to Tsokos and Padgett [37a] for a detailed 
discussion of approximate solutions of random Volterra equations. 

6.5 Random Nonlinear Integral Equations of Uryson Type 

A .  Introduction 

In this section we consider a probabilistic analogue of the Uryson integral 

x C, ~ ( t ,  7 ,  x(T))  dm(T) - XU) = Y O ) .  (6.63) 

In Eq. (6.63) G is usually a closed and bounded subset of R, ,  the kernel 
K ( ~ , T , ( >  IS a continuous function of f , ~  E G and E E R ,  and m is Lebesgue 
measure on G. Equation (6.63), which is a very general type of nonlinear 
integral equation, has been studied in the space of continuous functions C(G), 
the Lebesgue spaces L,(G), and the Orlicz spaces L,(G), We refer to the 
books of Anselone [2], Krasnosel'skii [18], and Saaty [32] for authoritative 
discussions of the theory of Uryson integral equations, and for references to 
the relevant literature. 

A special case of Eq. (6.63) which has been the subject of extensive study is 
the Hammerstein integral equation 

equation 

(6.64) 

A random integral equation of Hammerstein type was considered in [6], this 
equation being associated with a probabilistic analogue of Duffing's vibration 
problem. As is well known, the forced vibrations of finite amplitude of a 
pendulum are governed by the nonlinear differential equation 

(6.65) 

where F ( I )  is a periodic driving function. If we consider Eq. (6.65) with the 
boundary conditions 

d o )  = p(1) = 0, (6.66) 

then the boundary value problem (6.65)-(6.66) is equivalent to the nonlinear 
integral equation 

y ( t )  = - 1' K( f ,  T )  [ F ( T )  - .'sin Y(T) ]  dr (6.67) 
- 0  
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(cf. Saaty [32, p. 2651, Tricomi [35, p. 2151). In Eq. (6.67) the kernel K ( ~ , T ) ,  
which is the Green’s function of the differential boundary-value problem, is 
of the form 

(6.68) 

If we now assume that the driving function is a random function F(t,w),  then 
Eq. (6.65) becomes 

(6.69) p( t ,  w )  = -1 K ( t ,  T )  [F(T,  w )  - CY’ sin p ( ~ ,  w ) ]  dT. 
I 

If we put 
I 

G(t, w )  = J’, K(r,  T )  F ( T ,  w ) ~ T ,  and #(r ,  w )  = p(t, w )  + G(t, w) ,  

then Eq. (6.67) becomes the homogeneous random Hammerstein equation 

#( t ,  w) + j-; K ( f ,  T ) f ( T ,  # ( T ,  w ) )  dT = 0,  

where 
f ( t ,  f ,  w )  = CY’ sin([ - G(t, w)) .  

With appropriate assumptions on the random function P(t, w )  the integral 
defining G(t, w )  is well defined, and G(t, w )  is a random function. 

In [6] the existence, uniqueness, and measurability of the random solution 
of the random Uryson equation was established using the SpaEek-Hang 
analogue of the Banach contraction mapping theorem. The Uryson integral 
operator was defined over a random domain; but, as we have shown in the 
case of Fredholm equations, this case is equivalent to a Uryson operator with 
a random kernel. 

In Sect. 6.5B we state and prove an existence theorem for a random solution 
of a Uryson equation using Mukherjea’s fixed point theorem (Theorem 3.7). 

(6.70) 

B. An existence theorem 

Consider the random Uryson equation 

where I(w) = [a(w),b(w)] c [0, I]; that is I (w)  is a subset of the interval [0, I], 
the endpoints a(w) and b(w) being real-valued random variables with 
0 < a(w) < b(w) < 1 almost surely. We now state and prove the following 
existence theorem. 

THEOREM 6.13. If  (a) (Q, ‘3, p) is atomic, (6) the kernel K( t ,  7,[, w),  where 
t ,  T E [O, 11, t E (-co, w), is such that (i) for every t, K is a measurable mapping 
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from Q into 8, a separable Banach space of bounded functions on [0,1] x [0,1] 
with the sup norm, (ii) for each w E Q, K is continuous with respect to 5 
uniformly in t and T ,  (iii) for every triple ( t ,  5, w),  K is a measurable function of 
7,  (iv) y(t,w) is an element of C[O, 11 for every w E Q, (v) 

for each w and each t, and (vi) 

then there exists a random solution x(t,W) of Eq. (6.70) in C[O, I]. 

Proof. Let A be the closure (in the sup norm) of the space of all functions 
of the form 

c xcr,  s , (T)  h(t9 4, 
where (i) the summation is taken over a finite set, (ii) r and s are rational 
points i n  [0,1], and (iii) h(r, T )  E 5. Then R is a separable Banach space under 
the sup norm. 

NOW, if x,(T)  is a sequence of step functions such that 

m((7: I x , , ( T )  - x ( T ) ~  < l/n}) > 1 - l / n ,  

where m is Lebesgue measure on the line and the x,,(T) are of the form 

(where Tin and sin are rational numbers), then K(t,T,X,(T),W) E 9. Let a,(w) 
and b,(w) be simple functions such that a,(w) and b,,(w) converges uniformly 
to a(w) and b(w), respectively, and 0 G a,(w) G a(w) < b(w) G b,(w) G 1 for 
every w .  Then 

XCa,(w), b , ( o ~ ) I ( ~ )  K(t ,  T ,  x n ( T ) ,  w, 

is a A-valued random variable, since for every t , ~  E [0,1] it is a real-valued 
random variable. Therefore, its integral with respect to T (being a bounded 
linear functional on R for every fixed t E [0,1]) is a real-valued random 
variable; and passing to the limit we have 
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Then (6.71) defines a real-valued random variable for every fixed t E [0,1]. It 
now follows from the assumptions on the kernel K and a theorem of 
Ladyzhenskii (cf. [18, p. 341) that for every fixed w the operator T(w) defined 
by (6.72) is a completely continuous operator on C, [0,1]. Since (6.72) defines 
a real-valued random variable for every t E [0,1], T(w) [x ( t ) ]  is a C[O,l]- 
valued random variable; and it follows from Definition 2.21 that T(w )is a 
random integral operator on C, [0,1] into C [0, I]. The statement of the theorem 
now follows from Theorem 3.7. 

6.6 A Measure-Theoretic Problem Associated with a Nonlinear 
Integrodifferential Equation with Random Right-Hand Side 

Consider a random equation of the form 

Tf ( x ,  w )  = g(x ,  w )  (6.73) 

where the right-hand side g ( x , w )  is a random function with values in a 
separable Hilbert space 9. Let p be a probability measure on the measurable 
space (9, 23), where 23 is the o-algebra of Borel sets of J3. That is, 

p ( B )  = 9 { g  E B } ,  B E  23. (6.74) 

Now let T be a deterministic nonlinear operator which transforms a Borel set 
B in a one-to-one manner into a Borel set TB. In this way we can define 
another measure v on (5,23) by putting 

v (B)  = p(TB) = 9 { f €  B }  (6.75) 

As pointed out in Sect. 1.5E, if the measure v corresponding to the solution 
processf(x,w) is absolutely continuous with respect to the measure p corre- 
sponding to the input process g(x ,  w),  thenf(x, w )  will satisfy almost surely all 
those properties that the input process satisfies almost surely. 

In this section we consider the case when T is a nonlinear operator of the 
form T = Z + S, and state a theorem due to Baklan and SataSvili [4] which 
gives sufficient conditions on T i n  order that the measures p and v be abso- 
lutely continuous with respect to one another. As a concrete example, a 
nonlinear integrodifferential equation with random right-hand side is 
considered; and the density of the solution measure v with respect to the input 
measure p is calculated. 

Let R denote the correlation operator associated with the random function 
g(x ,  w).  We now assume that the nonlinear operator T is of the form T = Z + S 
and satisfies the following conditions: 

i. There exists a bounded and continuous operator S* such that 
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SZ = RS*z. (6.76) 

The operator S* at each point z E R[!ij] has a uniformly variational 

For each z E R[$] the determinant 

for all z E R[sj]. 

derivative U*(z). 
ii. 

iii. 
I 

D(z) = 1 + 2 45,)j?, [Tr(l/’(~))]”‘“~’ # 0, (6.77) 
k= I 

where 
U(Z) = RU*(z) (6.78) 

is a variational derivative operator of S .  In (6.77), Tr denotes trace, 

is a permutation of the numbers 1,2,. . . , k ;  I j (uk) denotes the number of 
cycles of lengthj in the permutation u,, and 

1 when 5, is even 
when 5 k  is odd. E ( 5 k )  = (-1 

We state the following theorem. 

THEOREM 6.14. Consider the nonlinear operator equation Tf (x, w )  = g(x,w) 
in a separable Hilbert space sj, where g(x,w) is a Gaussian random function 
with values in 5. Let p denote the probability measure associated with g(x, w), 

and let v denote the probability measure associated with the solution process 
f (x ,w) .  If the operator T is such that conditions (i)-(iii) are satisfied, then p and 
v are absolutely continuous with respect to one another, and 

dv 
- [s l  = D(g)exp{-+(Sg, S*g)  - (g, S*g)I. (6.79) 

As a concrete application of Theorem 6.14, we now consider a boundary- 
value problem for a nonlinear integrodifferential equation with random 
right-hand side. Let M be a bounded region in Euclidean space R ,  with a 
sufficiently regular boundary r; and let L!(M) denote the Hilbert space of 
functions which are square-integrable on M and vanish on the boundary r. 
Consider the boundary-value problem 

dP 
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In (6.80) A is a Laplacian operator, K :  M + M ,  h :  M x L: --f L: are arbitrary 
functions, and w denotes Wiener measure on M .  

By the solution of the random equation (6.80) we mean the random function 
f ( x ,  w )  which satisfies the random integrodifferential equation 

where G(x,y)  is the Green’s function of the Laplacian operator d, and 

g(x ,  w )  = JM (3x7 Y )  W Y ) .  (6.82) 

Since C(x ,y )  is a deterministic function, the integral in (6.82) is well defined, 
and g(x ,w)  is a Gaussian random function with values in L:(M). It is clear 
that Eq. (6.8 1) is of the form ( I  + S ) f ( x ,  w )  = g(x ,  w ) .  

In [3, pp. 25, 261 it was shown that the correlation operator R of g(x ,w)  is 

S*f = R - ’ S f =  h ~ M A K ( x , y ) h ( y , f ( y , w ) ) d y .  (6.83) 

therefore from (6.76) and (6.81) 

If we now assume that there exists constants C ,  and C, such that 

then it can be verified that conditions (i)-(iii) of Theorem 6.14 are satisfied; 
and the density of the probability measure v (solution process) with respect to 
the probability measure p (input process) is of the form 

6.7 Some Random Nonlinear Integral Equations Which Arise in Applied 
Problems 

A.  Introduction 

In the following four subsections we consider briefly four random non- 
linear integral equations which arise in the study of certain concrete problems 



212 6 Random Nonlinear Integral Equations 

in telephone traffic theory, the statistical theory of turbulence, wave 
propagation in random media, and control- theory. 

B. A random nonlinear integral equation in telephone trafic theory: The Fortet 
equation 

Consider a telephone exchange with m (m finite) available trunks or 
channels; and assume that the calls arrive at  the exchange at times t , ;  and 
denote by G(t)  the distribution of arrival times. Let the random function 
x ( r , W )  denote the total number of conversations held at time t > 0 ,  with 
x(0,w) = 0; and let 

1 if x ( t , w )  < m 

0 if x ( t , w )  2 m. 

If V ( [ )  is any function such that 

1 for t = O , l ,  ..., m - 1  

0 for t a m ,  

(6.85) 

(6.86) 

(6.87) 

In order to determine x(t,w), Fortet [I21 (cf. also Saaty [32, pp. 409, 4101) 
introduced the random nonlinear integral equation 

x(r, w) = lof y(T, w) K ( t ,  7,  w) QW~), (6.88) 

which, using (6.87), can be rewritten as 

x(t, w) = Ji V(X(T,  w)) K ( t ,  T ,  w ) d G ( ~ ) .  (6.89) 

In Eq. (6.89) K ( t , T , W )  is a random kernel which assumes only the values 0 or 
1, and whose first and second moments exist. If G(r) is a Poisson distribution, 
then the integral in Eq. (6.89) exists in the mean-square sense. We will refer to 
Eq. (6.89) as the Fortet integral equation. 

We now use Picard’s method to establish the existence of a solution to the 
Fortet equation. Let 

(6.90) 

Hence V ( ( )  as defined by (6.90) satisfies the Lipschitz condition 

I - W 2 ) l  I t 1  - t 2 1  (6.91) 
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(6.92) 

X.(t, w )  = Jt V(x,- I(T, w ) )  K ( t ,  7,  w )  dG(7). 

We have x o ( f , w )  > x( t ,w)  for every t ;  and we note that, since V ( f )  is a non- 
decreasing function, x,(t,w) G x( t ,w)  if n is odd and x,(t,w) > x(t,w) if n is 
even. 

0 

If we put 

d,(t, w )  = I X A t ,  w )  - x,-,(t, w )  I , (6.93) 

with do(t,w) s 1, and use (6.93) we obtain 

d,+,(t, w )  s [ dfl(f7 w )  W ,  7,  w )  ~ G ( T ) .  (6.94) 

Since K( t ,  T ,  W )  s 1 ,  iteration of (6.94) yields 

d,,(t, w )  < G"(t ) /n! ,  n = 1,2,. . . . 
Hence, it follows that the sequence {x, ,(f ,w)} defined by (6.92) converges 
uniformly in t on every finite interval for almost all w E Q to the random 
function x ( f ,  w ) ;  and since the convergence is uniform, x(t, W )  has absolutely 
continuous sample functions. 

Padgett and Tsokos [25] have established the existence and uniqueness of a 
solution of Eq. (6.89) inL,(Q) using the results presented in Sect. 6.4; and have 
indicated the applicability of Eq. (6.89) in queueing theory. 

C. A random integral equation in turbulence theory 

The motion of a tagged point in a continuous fluid in turbulent motion 
leads to a random nonlinear integral equation of the form 

r ( U ,  2, W )  = U + [' U(r(a, 7, W ) ,  7,  W )  dT. (6.95) 

In Eq. (6.95) r ( t , a , w )  is the position at time t of a material point located at a 
at t = 0. and u(t ,x ,w)  is the Eulerian velocity field, specified in laboratory 
coordinates. The problem of interest in the statistical theory of turbulence is 

-0 

for any &, ,e2 E R.  We can define a sequence of random functions {x,,(~,w)} as 
foIlows: 
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to determine the statistical properties of the random function r ( t , a , w )  when 
the statistical properties of the random kernel u(r,  T ,  W )  representing the 
velocity field are known. 

Put a = 0, and consider the random integral equation 

(6.96) 

For the motion of a tagged material point in a fluid (with r(a,O,w) = a  = 0) 
we can put 

(6.97) 

In order to study Eq. (6.96), Lumley [I91 considered the following discrete 
analogue : 

rn(ti , Q) = 5 srk (p(r(7, W ) ,  ti, 7, W )  d7 
k - l  t k  I 

n 

(6.98) 

where t ,  E ( t , - ,  , f i t l ) ,  i = 1.2,. . . ,n and d k  = tl, - t ,  
(i = I , 2 , .  . . ,n ) ,  and 

Put r , ( t i ,w)  = X?)(W) 

n 

f '" ' (xY) ,xy) ,  . . . >x:)) = x ~ ' ( w )  - 2 T ( X ~ ) ( W ) ,  t i ,  t k ,  ~ ) d , .  (6.99) 
k =  1 

The system (6.99) is a set of n random vector functions (each having three 
components) of n random vector arguments (each having three components); 
and 

(6.100) 
is a system of random algebraic equations which constitute a finite-dimen- 
sional approximation to Eq. (6.96). Lumley did not consider the convergence 
of r ,  + r ;  but using a n-dimensional generalization of the Rice-Kac theorem 
for the probability density of the zeros of a random function, derived a 
formula for the joint probability density of the x$")(w) which satisfy the 
system of random algebraic equations (6.100). 

Padgett and Tsokos [26] have established the existence and uniqueness of 
the solution of Eq. (6.96) in L,(Q), 1 G p < co, using the methods of Sect. 6.4. 

f f " ( ~ ~ ' ( w ) ,  x$")(w), . . . , X?)(W)) = 0, i = 1,2,. . . , n, 

D. A set of coupled random integral equations associated with nonlinear wave 
motion 

In Sect. 4.4B we showed that the Helmholtz equation for linear wave 
propagation in a random medium leads to a random Fredholm integral 
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equation. In the case of nonlinear wave motion with random initial conditions 
in a deterministic medium Hasselmann [I41 (cf. also Frisch [13, pp. 151-1521) 
obtained a set of coupled random nonlinear integral equations for the 
amplitudes of the different wave modes. Let u,(r,k) denote the amplitude of 
thej th  wave mode with wave vector k ,  f , ( k ) ,  the dispersion equation for the 
j t h  wave mode, and the C,kl coupling coefficients (which are centered random 
functions); then the set of integral equations derived by Hasselmann is of 
the form 

a 
at 
- a,@, k ,  W )  = i t j (k )u j ( f ,  k ,  W )  

n 

2 Cjkl(k,k ' ,k")ak(t ,k ' ,w)U,( t ,k",W)d'  k ' d 3  k", 
k , I = l  

(6.101) 

for j = 1,2,. . . ,n. Under appropriate assumptions for the initial values 
a,(O, k,  u), Hasselmann calculated the mean energy densities using a diagram 
technique. 

E. A random nonlinear integral equation in control theory 

equations in the Lebesgue spaces L,, p 2 1 : 
Ahmed [ I ]  has studied the following class of random nonlinear integral 

(6.102) x = hT(w) x + y ,  

where 

T(w)  [x(t)l= $ 1 . . . J' Kn(t, 71 , . . . y  7 n  9 0) f I  ~ ( 7 1 ,  W )  d7l ' ' ' d7n 9 
i- 1 - n= 1 

I x . . . x l  

and I= [to,T].  Equations of the above form arise in the study of certain 
problems in optimal control theory. Using fixed point methods, Ahmed 
established the existence and uniqueness of a random solution of Eq. (6.102). 
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CHAPTER 7 

It6 Random Integral Equations 

7.1 Introduction 

The random integral equations studied in Chaps. 4, 5, and 6 were all 
probabilistic analogues of various types of well-known linear and nonlinear 
integral equations. In this chapter we consider an important class of random 
integral equations which were first introduced by It6 in his fundamental 
memoir on random differential equations [36]. The importance of these 
equations is due to the fact that (1) a large class of Markov processes in R, can 
be represented as solutions of such equations, (2) they serve as models for 
physical processes and stochastic control systems, and (3) they are utilized in 
the probabilistic study of partial differential equations. 

The integral equation referred to as the It6 random integral equation is of 
the form 

where x( t ,w)  E R ,  the functions a(t ,x) and b( t ,x )  satisfy certain conditions to 
be stated later, and w(t ,w)  is a Wiener process. Equation (7.1) is the integral 
equation formulation of the It6 random differential equation 

dx(t, w )  = a(t, x) dt + b(t, x) dw(t, w )  (7.2) 

with initial data x( to ,  w )  = xo(w). Equation (7.2) can also be interpreted as a 
nonlinear transformation of a Wiener process; that is, the Wiener process 
w(t, w), f 2 0, is transformed into ~ ( t ,  w),  t >, to ,  such that x(to , w )  = xo(w) and 
(7.2) obtains. In (7.2), dx(t, w )  denotes the infinitesimal increment in x during 
the interval [ t ,  t + d t ] ,  and dw(t, w )  denotes the corresponding increment in w.  

218 
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We mention two special cases of Eq. (7.2). (1) If b = 0 in Eq. (7.2), it is 
natural to interpret the equation as the first-order deterministic differential 
equation 

In this case the solution will be a random function if Eq. (7.3) is considered 
together with a random initial condition, that is, x(to) = xo is a random 
variable. (2) If (i) b is a function of t ,  but is independent of x ,  and (ii) a = 0, 
then we have 

dxjdt = a(?, x ) .  (7.3) 

x(t, w )  = x0(w) + s‘ b(7) dw(7, w) .  (7.4) 
10 

We remark that in this case the solution process x(t ,w) is essentially the 
Wiener process with a change of variable in the time parameter. In fact, a 
Wiener process may be considered as the solution process of an It8 random 
integral equation with a = 0 and b = 1. 

In physics and engineering a number of problems lead to random differential 
equations of so-called Langevin type. In physics these equations are encoun- 
tered in the study of Bownian motion. Consider the Brownian motion of a 
particle of mass m immersed in a fluid. Let x ( t )  denote the position of the 
particle at  time t, and let v( t )  denote its velocity. The medium surrounding the 
particle can be considered as acting on the particle in two ways. Firstly, the 
medium offers resistance to the motion of the particle, this resistance being in 
the form of a frictional force equal to pv(t) ,  where p is the (mean) dynamic 
frictional coefficient. Secondly, the fluctuations in the number of collisions of 
molecules of the fluid with the particle appear as a random force F(t) .  Hence 
the equation of motion of the particle is of the form 

mdvldt = -pv( t )+ F( t ) .  (7.5) 

Equation (7.5) is referred to as Langevin’s equation, since it was first derived 
by Langevin in a fundamental paper [53] on the theory of Brownian motion. 
The proper probabilistic analogue of Eq. (7.5) is 

dv(t, W )  = -av(t, W )  + dF(t,  w) ,  (7 * 6) 
since we do not expect u ( t )  to be differentiable. In Eq. (7.6), a = fl/m > 0 and 
r n - l  is considered as a constant factor of dF(t,w). The random integral 
equation equivalent to Eq. (7.6) is 

~ ( t ,  w )  = ~ ( 0 ,  w )  - f l lr  ~ ( 7 ,  w )  d7 + F(t ,  w ) .  (7.7) 

The first rigorous mathematical treatment of the Langevin equation is due to 
Doob [18]. For detailed discussions of the Langevin equation and related 
topics in the theory of Brownian motion we refer to Chandrasekhar [14], 
Middleton [60, Chap. lo], and Papoulis [64, Chap. 151. 



220 7 It5 Random Integral Eqeations 

A generalized Langevin equation of the form 

dujdt = - j' y ( f  - 7) u(7)  dT + F(1, w )  (7.8) 

has been considered by several physicists. In Eq. (7.8) y ( t )  represents a 
retarded effect of the (time-dependent) frictional force, and F ( t ,  W )  is the 
random force which is not correlated with the initial velocity. We refer to 
Kannan and Bharucha-Reid [43a] for the formulation of Eq. (7.8) as a 
random integral equation and an analysis of the solution process. 

In engineering, a large class of dynamic systems studied in control theory 
lead to ordinary differential equations of the form 

10 

dxldt = f  ( 4  XI, f [ l o  9 @J), (7.9) 
where x ( t )  E R, .  Since many dynamic systems are subject to random 
perturbations, a probabilistic generalization of Eq. (7.9) is the formal random 
differential equation 

dxldr = f ( t ,  x )  + @(r, x)y( t ,  w),  (7.10) 

where @(t ,x )  is an n x m matrix-valued function o f t  and x ,  and y(t,w) is a 
m-dimensional Gaussian white noise process. Random equations of the form 
(7. lo), which are referred to in the engineering literature as Langevin equations, 
were first proposed as a model for a randomly disturbed dynamic system by 
Pontryagin et al. [65]. The introduction of Langevin equations in stochastic 
control theory is due to Barrett [5], Chuang and Kazda [15], and Khazan [48]. 
A precise version of Eq. (7.10) is given by the It6 random differential equation 

dx(t, W )  = f ( t ,  X )  dt + @(t, X )  dw(t, w) ,  (7.11) 
where w ( t , o )  is a Wiener process in R,; and Eq. (7.1 1) is interpreted as the 
It6 random integral equation 

x ( f , w )  =Xo(w)  + S ' f ( ~ , X ( T , w ) ) d r  + @(T,X(T,w))dW(T,w). (7.12) 

For an interesting discussion of the relation between the Langevin and It6 
equations we refer to Wonham [78]. 

The purpose of this chapter is to give an introductory account of the theory 
of It6 random integral equations, and to give a brief survey of certain 
applications of this theory. In Sect. 7.2 we present the basic theory of It6 
random integral equations, restricting our attention to the one-dimensional 
case; that is, we will study solutions of It6 random integral equations in R. 
Section 7.3 is devoted to It6 random integral equations in Hilbert spaces, 
these equations arising as the integral equation formulation of certain random 
differential equations in Hilbert spaces. Finally, in Sect. 7.4, we present a 
brief summary of some additional studies on It6 random integral equations 
and their applications. 

10 L 
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It6 equations are of great importance in control theory and in the theory of 
partial differential equations ; however, we will not include a survey of these 
applications in this book. The reader interested in It6 equations in control 
theory is referred to the books of Bucy and Joseph [l l] ,  Jazwinski [39], and 
Kushner [52, 52a], and the articles of Fleming [23], Wong and Zakai [76], and 
Wonham [78]. Readers interested in the probabilistic approach to partial 
differential equations based on I t6  equations are referred to the book of 
Dynkin [21], and the papers of Daletskii [16], Fleming [22], Freidlin [24-281, 
Khasminskii [44-471, and Tanaka [71]. 

7.2 Ita Random Integral Equations: Basic Theory 

A .  Introduction 

Consider the It6 random integral equation 

x(t, a) = xo(w) + J‘ a(7, ci7 + [‘ b(T, x) dw(7, w), (7.13) 

where a(r,x) and b( t , x )  are assumed to be known, and w(r,w) is a Wiener 
process. The second integral can not be interpreted as an ordinary Stieltjes 
integral, since the integrator function is a Wiener process; and, as is well 
known, the realizations of a Wiener process are, with probability one, of 
unbounded variation. Hence in order to study solutions of Eq. (7.13) the 
first thing that must be done is to define the “stochastic” integral in Eq. (7.13). 
In Sect. 7.2B we define the It6 stochastic integral and discuss its relationship 
to several other stochastic integrals. Once the It6 stochastic integral has been 
defined, the It6 random integral equation is well defined and meaningful, and 
the question of the existence and uniqueness of solutions of Eq. (7.13) can be 
investigated. Section 7.2C is devoted to the existence and uniqueness of 
solutions of It6 random integral equations. Finally, in Sect. 7.2D, we consider 
the class of Markov processes (referred to as It6 processes) which is determined 
by solutions of It6 random integral equations. 

The reader interested in more detailed and/or sophisticated treatments of 
It6 random integral equations is referred to the books of Doob [19], Dynkin 
[21], Gihman and Skorohod [31], It6 and McKean [37], McKean [56], and 
Skorohod [67]. 

‘0 - ‘0 

B. The It6 stochastic integral 

The well-known Wiener inregraf is an integral of the form 

C J(r 1 dui(t, w ) ,  (7.14) 
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wheref(t) is a given deterministic function o f t ,  and w(t,w) is a Wiener process 
in R defined on [a ,b] .  Hence the Wiener integral is a stochastic integral with 
respect to a Wiener process (equivalently, Wiener measure). We refer to Kac 
[40, Chap. IV], McKean [56, Chap. 21, Nelson [63, Chap. 71, Skorohod [67, 
Chap. 21, and Saaty [66, pp. 405-4071 for discussions of the Wiener integral 
and its properties. 

In order to study the nonlinear It6 random equations it is necessary to  
generalize the Wiener integral by assuming that the integrand f i s  a random 
functionf(t, w).  The generalization of the Wiener integral which is considered 
in this section is called the It6 integral, since this integral was defined, and its 
basic properties established, by It8 [36]. 

Let {w(t,w), t >, 0} be a Wiener process in  R, and let {f(t,w), t 2 0} be a 
real-valued random function. In many applications the dependence off on w 
can be described as n0nanticipatiz:e; that is, the random function f(t, w )  will 
depend, a t  most, on present and past values of W(T,OJ) ,  T si t ,  but not on 
values of W ( T , W )  for 7 > t .  T o  characterize this type of dependence, we 
introduce a family {kf, t > 0 )  of o-algebras of subsets of l2 with the following 
properties : 

i. 
ii. for every t, ~ ' ( t , w )  is 5,-measurable; 
iii. for t, > t2 2 t ,  the increments w(t, , w )  - w ( t 2 , ~ )  are independent (in 

iv. for each fixed t ,  the random variab!ef(t,w) is 3,-measurnble. 

We now assume thatf(t,w) is a measurable random function, and that 

51, = st,, for f ,  < r2; 

the probabilistic sense) of % t ;  

(7.15) 

where T < co ; and we denote by M2(5,) the class of functions satisfying (7.15). 
Hence M,(%,) is the class of functions f(t, w )  which are square-integrable 
almost surely as functions o f t  on the interval [O,T]. 

We now proceed t o  define the Ztb stochastic integral 

r" f ( t :  w )  du.(t, w )  (7.16) 

for f e  M 2  and 0 < LI < b < Q. As in the case of nonstochastic integrals, we 
first define (7.16) f o r f a  step o r  simple function; and then use a completeness 
argument to  obtain the It6 stochastic integral for ally€ M 2  as the limit of an 
approximating sequence. Hence we must first show that everyfE M2 can be 
approximated in an  appropriate sense. 

The functionf=f(t,w) is said to be a step or simple function if there exists a 
partition of [a,b], say a = ro < r I  < ... < t, = b, such thatf(t,w) = f ( t i , w )  for 
t E [ti,  t i+l) ,  i = 1,2,. . . ,n .  We remark that the points t i  are independent of w .  

.a 
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We now prove the following lemma. 

LEMMA 7.1. 
such that 

For every f E M2 there exist a sequence of step functionsf, E M2 

/L(pLhi [ \ f ( t , W )  -f,,(t,w)jZdt = 0 ] )  = I .  

Proof. If f ( t , w )  is continuous almost surely, then the assertion of the 
lemma is obvious; since we can put 

( b - a ) ,  k = 0 , I  , . . . ,  n.  
k ( k  + 1 )  

f,(t, w )  = f ( k / n ,  W )  for - ( b  - a )  G t - a < - 

If we now takef(t, w )  to be measurable and bounded (by a constant depending 
on w, say M ( u ) ) ,  then there is a sequence g,, of continuous functions, cor- 
respondingly bounded, such that g n + f  almost surely for almost all t. 
Consequently. 

n n 

Finally, an arbitrary f E M 2  can be approximated in mean-square by 
bounded measurable functions in M 2 .  Hence, the step functions are dense in 
M2 , in the sense of L,-convergence. 

We now define the It6 stochastic integral for step functions in M z  as 
follows : 

(7.17) p ( t . W ) d x l ( l , w )  = 2 f ( t , ,W) [M ' ( t , , ,  , w ) - -  M ' ( t L , W ) ] .  
k -0  

The It6 stochastic integral defined by (7.17) has the following properties: 

1. Iffi(t,W) andfi(t,w) are step functions in M 2 ,  then 

[afli(t.w) + pf2(t,w)ldw(r,w) = a c  f , ( r , ~ ~ ) d ~ ~ ( t , W )  + BJ"f2 ( r ,W)dw( t ,w) .  

(7. i 8) 

2. Iffis a step fvnction in M2 and a{ i f ( t ,  w)l(  g,} < rn for t E [a, b ] ,  then 

Q [ S" f ( t .  w )  dW(t, (0) j ] = 0 
(7.19) 

a 

almost surely. 
3. Iffis  a step function in M2 and E{lf(t,~)/~1 g.} < co almost surely for 

t E [a,bl 

(7.20) 

almost surely. 
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4. I f f  is a step function in M,,  then for every N > 0 and y > 0, 

Now suppose that ( i )h  is a sequence of step functions in M2, (ii)fE M , ,  
and ( 5 )  

in probability. The existence of such a sequence of step functions is guaranteed 
by Lemma 7.1. Then, we have 

in probability; that is, for every E > 0, 

= € 1 6 2 .  

Since E > 0 was arbitrary, for every 6 > 0 

iim sup p (1 w : I jab An([, w )  dw(t, w )  - fn(t, w )  dw(t, w )  > s 
m.n+m II I H = O .  

It follows from the above that the sequence of random variables 
j:,fn(t, w)dw(t,w) converges in probability to a limit. The limit random 
variable is independent of the choice of the sequence of step functions in M 2  
for which (7.22) holds. (We remark that if there are two sequences,f, andfi  
such that (7.22) obtains, then a single sequence can be formed by combining 
the two sequences, and, with probability one, the two sequences have the 
same limit). Finally, we define 

J b b f ( f .  w)dw(r, w )  = lim I b  f n ( r ,  W ) d w ( t ,  w )  (in probability). (7.23) 

This limit is the It6 stochastic integral of the function f ( t , o )  E M , ;  and, as 
usual, this limit is uniquely defined except for its values on a negligible set 
NCSZ. 

n+m LI 
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The definite integral defined by (7.23) is a linear functional of , f ( t ,w)  on 
M 2 .  Furthermore, for c E (a, b), 

We remark that property (4), given by (7.21), is valid for all functions 
f ( t , w )  E M 2 .  This can be verified by a limit process, using an approximating 
sequence of step functions in M 2 .  We now state some additional properties of 
the It6 integral. 

5. If f ( t , w )  E M 2 ,  fn ( t ,w)  E M,, and J: Ifn(t,w) -f(t,w)12dt --f 0 in 
probability, then 

(7.25) 

in probability. 

such that 
6 .  (Generalization of properties (2) and (3)). If the function f ( t , w )  is 

p{l f(f?w)I213Jdf a 

almost surely, then 

&(~ubf . ( f .w)dH. ( f ,W)I~ . )  = o (7.26) 

almost surely, and 

8 1 ( la* f(  t ,  w )  ~ t ,  w )r I 3. 1 = 1 8 1 1 f( t , w )  1 2 1 %u 1 dt (7.27) 

almost surely. 
For applications of the It6 stochastic integral in the formulation of random 

integral equations we need to consider the integral as a function of the upper 
limit. Since for each t the integral 

g(tt w )  = f(T, w )  dw(7, w )  (7.28) 

is uniquely determined except for its values on a negligible set N c Q, we can 
assume that g(t,w) is a separable random function, It can also be shown that 
g(t,w) is continuous. 

It is also possible to define the It6 stochastic integral for random functions 
with values in R,. Let w , ( t ,  w ) ,  w2( t ,  w ) ,  . . . , w,(t, W )  be n mutually independent 
real-valued Wiener processes; and assume that (i) each process wi( t ,  w ) ,  
i = 1,2,. . . , n  is g,-measurable for every t ,  and st, c g,,, for t ,  < t 2 ,  and (ii) 
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each h > 0 the processes w,(t  + h, w )  - w,(t ,  W )  i = 1,2,. . . , n,  are all indepen- 
dent of g t .  Then we can define the It6 integral 

/ab f ( 1 ,  w )  dwi(t, w )  (7.29) 

for every i = 1,2,. . . , n and every &-valued functionf(t, W )  whose component 
functionsf,(t, w )  E M 2 .  

We now mention briefly some other studies on the It6 stochastic integral. 
Kallianpur and Striebel [41] have proved some theorems of Fubini type for 
It6 integrals; and have used these results in the study of certain random 
differential equations which arise in the study of estimation problems for 
continuous parameter stochastic processes. 

The It6 stochastic integral was generalized by Doob (cf. Doob [19, 
pp. 4364511, Skorohod [67, Chap. 21, and Saaty [66, pp. 4134161) by con- 
sidering the integrator function to be a martingale process { z ( t ,W) ,  t E T }  with 
respect to the family of a-algebras 3t. The resulting integral is referred to as 
the ZtG-Doob stochastic integral. We refer to the above references for a precise 
definition of the It6-Doob integral and discussions of its properties. 

Within the framework of integration theory, the definitions of the integrals 
of It6 and It6-Doob are completely self-consistent, and there is no reason for 
stochastic integrals to  have any connection with ordinary (classical) integrals. 
For example, Doob (cf. Doob [19, p. 4441) has shown that ifx(r,w) is a Wiener 
process with unit variance, then 

lb x(7, w )  dx(7, w )  = +[XZ(b, w )  - x2(a, w ) ]  - f(b - a) .  (7.30) 

However, if we consider the evaluation of the analogous ordinary integral we 
obtain 

(7.31) 

This example shows that the stochastic integral calculus based on an It8 type 
integral cannot be entirely compatible with the classical integral calculus 
based on an ordinary integral. 

In recent years an increasing number of applied mathematicians have been 
employing probabilistic methods; and many studies involve models formu- 
lated as It6 random differential and integral equations. Many workers have 
expressed concern over the fact that the theory of It6 random equations is 
self-consistent, and is not an extension of the classical theory of ordinary 
differential equations and integral equations. 

Stratonovich [68; 69, Chap. 21 was one of the first mathematicians to 
consider the formulation of a stochastic calculus which would be compatible 
with the ordinary calculus. Let @(t,x) denote a function defined on [a,b], 
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which is continuous in t ,  with continuous derivative a@(t, x)/ax, and 
satisfying the conditions 

jab &{@(T, x) a(7, x)> d7 < rn 

6 g{l@(T, x>l2 b(7, x)) d7 < a. 

In particular, Stratonovich considered functions of the form @ ( t , ~ )  = 

F(t,x(t, w ) )  and @(t,,) = F(t ,y ( t ,  w)) ,  where y(t ,  w),  r E [a,b] is a diffusion 
process related to x(t, W )  through a random differential equation. 

Consider the partition of [a ,b] ,  a = t ,  < < t ,  = b;  and put 
d = max(ti+, - t i ) .  

Using the above notation, the It6 stochastic integral can be defined as follows: 

x [x(t,, I 7 W )  - x(ti 7 ~ ) l .  (7.32) 

The Stratonovich stochastic integral, which is a symmetrized integral, can be 
defined as follows : 

( s ) i b @ ( T ,  x(7, W ) )  dX(7, W )  

Stratonovich has shown that the relationship between the two stochastic 
integrals is given by the following formula: 

(S,! @(T,  4 7 ,  W ) )  M T ,  

with probability one. For further discussion of the connection between the It8 
and Stratonovich stochastic integrals, and their use in the study of random 
differential equations, we refer to Jazwinski [39, Chap. 41, Stratonovich [69, 
Chap. 21, and Wonham [78].  

Wong and Zakai [74, 75, 771 (cf. also, Jazwinski [39, Chap. 41) have 
considered the relationship between limits of sequences of Riemann-Stieltjes 
integrals and the corresponding It6 stochastic integrals. Their research was 
motivated by the fact that in many applied problems one is often interested in 



228 7 It5 Random Integral Equations 

the limit of a sequence of Riemann-Stieltjes integrals which resembles an It6 
integral, but with a sequence of smooth approximations {x,(t, w ) }  replacing 
the Wiener process x(t,w). They showed, for example, that if the x, ( t ,w)  have 
piecewise continuous derivatives, then 

f X " ( T ,  w )  dX"(T, w )  = f[x,2(b, w )  - &(a, w ) ]  + +[XZ(b,  w )  - x q a ,  w ) ] ,  

which differs from (7.30) by a correction term equal to f ( b  - a). 
Consider the sum 

n- I 

i =  I 
2 f ( T i  9 W )  [z(fi+l 9 w )  - z(ti 9 W)I. (7.35) 

It is known that the limit of (7.35) in the usual Riemann sense which is 
obtained when T~ = ti differs from the limit obtained when T~ = ( t i  + zi+,)/2, 
so that if Ti E [ t i , t i + l ]  the limit fails to exist (cf. [19, p. 4441). This observation 
led McShane [57, 58, 58a] to introduce the notion of a belated partition and 
define a belated stochastic integral. A belated partition d of the interval 
[a,b] is an ordered (2n + 1)-tuple of real numbers ( n  an arbitrary positive 
integer), say(tl , t 2 , .  . . , tn+ l  , T ~  , T ~ , .  . .,T,), such that a = t ,  < t 2  < ..* < tn+l  = b, 
and such that for i = 1,2,. . . ,n, T~ E D (where D is a set of real numbers with 
[a,b] c 0) and T~ < t i .  The mesh of d, written rn(d), is defined to be 
max(titl - T ~ ) ,  i = 1,2,. . . , n .  Corresponding to d, form the sum 

n 

1 = 1  

S(d) = S(d Z )  = ,I f ( ~ i  7 W )  [z(t iJ I 9 w )  - z([i 3 w)l. (7.36) 

We remark that d is belated in the sense that each T~ is associated with an 
interval [ t i ,  t i t l ]  of times later than T ~ .  We now define the belated or McShane 
stochastic integral as follows: If there exists a random variable M ( w )  with 
& M 2 )  < co such that 

(7.37) 

then M ( w )  is the belated or McShane stochastic integral of f(t,w), t E D, 
w E SZ, with respect to z(t ,w) over [a,b]. We remark that M ( w )  is not unique; 
that is, if M ( w )  satisfies (7.37), then so does every A(w) that is equivalent to 
M(w) .  Any one of these versions of the McShane integral is denoted by 

Mi" f(.?U)dZ(T, W ) .  (7.38) 

The McShane integral exists under hypotheses which, compared with those 
for the It6 integral, are stronger with regard to continuity properties but 
weaker with regard to the probabilistic properties of the integrator process. 
When the hypotheses for the existence of both integrals are satisfied, the 
McShane and It6 integrals agree. 

Hrn 
mtd)+O 
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C. Existence and uniqueness of solutions of Zt6 random integral equations 

In this subsection we consider the problem of the existence and uniqueness 
of solutions of the It6 random integral equation 

which is, as we already know, the equivalent integral equation formulation of 
the It6 random differential equation 

dx(t, W )  = a(t, x(t, w))  dt + b(t, ~ ( t ,  w ) )  dw(t, w ) .  (7.40) 

Equation (7.39) is to be solved under the initial condition x(to,w) = xo(w); 
and we assume that the random variable xo(w) is given, and is independent of 
the Wiener process {w(t ,  w), t E [ to,  TI}. 

In order for the integrals in Eq. (7.39), equivalently, the differentials in Eq. 
(7.40), to be well defined it is necessary to introduce an appropriate family of 
a-algebras gI. Let 5, denote the a-algebras of subsets of SZ generated by the 
initial condition xo(w) and the increments W ( T ,  w )  - w(to,  w )  for T E [ to,  t ] ;  
that is, 5, is the minimal a-algebra with respect to which xo(w) and 
W ( T ,  w )  - w(to,  w), for T E [ t o ,  t ] ,  are measurable. 

Definition. A random function {x(r,w), t E [to,T]}  is a solution of Eq. 
(7.39) if (i) x(t,w) is SI-measurable, (ii) the integrals in Eq. (7.39) exist, and 
(iii) Eq. (7.39) holds for each t E [ to,  TI almost surely. 

In this subsection we will be concerned with only continuous solutions of 
the It6 integral equation. We remark that (7.21) of Sect. 7.2B implies that for 
equivalent random functionsf,(t, w )  andf,(t, w), 

s,’ . f i (T,  w )  d”(7, w )  = lr fZ(T, w )  ~ H . ( T ,  w )  

almost surely. This follows from that fact that if ~ , ( T , w )  =f2(7 ,w)  almost 
surely for every 7, then 

0 0 

It follows from the above that if {Z(r,w)} is a random function equivalent to a 
solution {x(t,w)} of Eq. (7.39), then {Z(t ,w)}  is also a solution of Eq. (7.39). 
Now, the right-hand side of Eq. (7.39) is equivalent to the left-hand side, and 
is continuous almost surely. Hence for every solution of the It6 integral, 
equation there exists an equivalent continuous solution. 
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We now state and prove the following existence and uniqueness theorem for 
solutions of It6 random integral equations. 

THEOREM 7.1. 
t E [ to ,  TI, x E R, satisfying the following conditions for some constant K: 

Let the functions a(t ,x)  and b(t ,x) be Bore1 measurable for 

a.  (uniform Lipschitz condition) For all x ,  y E R, 

I a ( t , x ) - a ( ~ ~ ) l  + Ib( t ,x)-W,y) j  ~ K l x - y l ,  

b. (growth condition) For ail x ,  

la(t,x)12 + (b(t,x)I2 G K2(1 + (x12). 

Then, there exists a solution of Eq. (7.39), and it is unique in the following sense: 
If x , ( t ,o )  and x2(t ,w) are two continuous solutions (for ajixed initial condition 
xo(w)) of Eq. (7.39), then 

Proof. We first prove the uniqueness of a continuous solution. Let 
x,(t ,w) and x2(r,w) be two continuous solutions of Eq. (7.39). We define a 
random variable XN(t, w) as follows : 

From condition (a) we have 

X d T 7  w) [la(T, Xi(T, w)) - a(T, X 2 ( 7 ,  w))l + 16(7, X!(T, w)) - 6 ( T ,  X * ( T ,  w))I] 

< KXN(T,  w) I x ~ ( T ,  w) - x ~ ( T ,  w)l < 2KN. 

Applying the above result to (7.41) we observe that the squares of the integrals 
on the right-hand side of (7.41) have expectations. Hence using the inequality 
(X + y)2  < 2(x2 + y2) ,  Cauchy’s inequality, and (7.20) we obtain the inequality 
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Using condition (a), we have 

for some constant M .  In order to show that x , ( t ,w)  and xz ( t ,w)  are equivalent, 
we first use Gronwall's lemma in the following form: Z f q ( t ) ,  t E [t , , ,T],  is a 
nonnegative integrable function which satis$es the inequafity 

". 
v(t ) G c I ' - I0 0% + f ( t  1, 

where ( ( t )  is an integrab1e)mction and C is a nonnegative constant, then 

p(f) G CL exp{C(r - T ) > t ( T ) d 7  + ( ( t ) .  

elxdt, w )  b , ( 4  w )  - XAt, w)12> = 0; 

0 

Put q(t)  = &{XN(f,W)[xl(t,W) - X ~ ( ~ , O ) ] ~ }  and ( ( t )  = 0. Then 

that is, 

p({w:x1( t9  w )  # xz(t, w ) } )  < p w :  sup Ix , ( t ,  w)I > "1) (1 1 

+ p w:sup Ix,(t, w)l > N ] ) .  (1 f 
(7.43) 

Now, the measures on the right-hand side of (7.43) approach zero, since the 
random functions x,( t ,  w )  and x2(tr w )  are continuous (and hence bounded) 
almost surely. Hence x , ( t ,  w )  and x2( t ,w)  are equivalent random functions. 
Finally, since both random functions are continuous almost surely, we have 

p({w:syp I x , ( t , w )  -xz(t ,w) l  > 01) =o. 

This completes the proof of uniqueness of the solution of the It6 integral 
equation (7.39). 
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We now consider the existence of a solution of Eq. (7.39). We first introduce 
the Banach space X of measurable random functions ( ( t , w )  which are 3,- 
measurable for every t ,  and satisfy the condition 

For ( E X, we introduce the norm 

We assume that the initial condition t 0 ( w )  satisfies the condition 

We define an operator T o n  X, which we will call the It6 integral operator, 
& { l f 0 ( 4 1 2 >  < =I. 

as follows: 

Both integrals in (7.44) exist by condition (b); and the 5,-measurability of 
T [ f ]  follows from the B,-measurability of ( ( t ,  w).  

Since ( x  + y + z)' G 3(x2 + y2  + z2), an application of condition (b) yields 
the following inequality : 

d{/T[t(t ,w)]/2} < 38{\(0(w)12} t 3(T- to )A(J t :K2(1  + I ~ ( T , u ) ~ ~ ) ~ T ]  

+ 311 t"iK(1 t 1( (7 ,w)12 )d~)  

G 36{1(o (~ ) l ' )  + 3 K 2 ( T -  to)' + (3K2 + 6K211ti12)(T-- t o )  

= 38rlt0(w)12) + L ,  + LzlitIi', 

where we have put L,  = 3K2(T - ro)(To - to + 1) and L2 = 6K2(T - to). 

Hence T [ ( ]  E X ;  that is, the It6 operator maps X into itself. Furthermore, 
from (7.20) we obtain 

G{IT[f , ( t ,  w )  - 5 2 ( t r  w)1I2) 

G 2(T- &{[a(7, ( ~ ( 7 ,  w ) )  - a(T, f z ( T ,  w))]'dT} 
t U  

f 2(${ . if fo [b(7, (t(7, w ) )  - b(7, f 2 ( 7 7  w))ldW(T, w)])' 

G LO I: 8{\&(7, 0) - f d ~ ,  w)I2 d7) 
0 

G L,(t - t o )  I151 - t2112? (7.45) 

where L o = 2 K 2 ( T - t o +  I ) .  The above shows that the It6 operator is 
continuous. 
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We now show that the It6 operator T is a contraction operator on X, hence 
there exists a fixed point of T which is a solution of the It6 integral equation. 
Iteration of the inequality (7.45) yields 

Therefore, for every E X, 

Now, from the convergence of the series Z:nm_, llT"(T-Z)[Il and the fact that 
X is complete, it follows that limnam T " [ [ ]  exists in X. Let 

x( t ,  w )  = lim T"[t( t ,  w) ] .  
n+m 

Since Tis a continuous operator, T[T"[t(t ,  w ) ] ]  + T[x( t ,  w ) ] .  But 

lirn T[T"[&r, w ) ] ]  = lim Tn+' [I(?, w ) ]  = x(t ,  w). 
n+m n-rm 

Therefore 1[T[x(t,w)] - x(t ,w)i[  = 0; and T [ x ( t , w ) ]  = x(t,w) almost surely for 
every t E [to,  TI. Hence x(t, w )  is a fixed point of the It6 operator which is a 
solution of the It6 random integral equation (7.39). 

We now establish the existence of a solution in the general case. Let 

and let the random function XN(t,w) denote the solution of Eq. (7.39) for the 
initial value xN(to ,  w).  We will show that limN+m x N ( t ,  w )  = x(t ,  w )  (in 
probability), where x( t ,w)  is a solution of Eq. (7.39). 

Let N' > N ,  and let 

1 if Ixo(w)l s N 

0 otherwise. 
h(w) = 

Then (xN( to ,  w )  - xN,( to ,  w))h(w) = 0. Clearly h(w) is S,,,-measurable. It now 
follows from the inequality 
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I x N ( t ,  w ,  - xN’(t, w)I2 h(w) 
2 

< 2( JtI [a(T, XN(T7 W)) - a(T, x N ’ ( T ,  w))l d7) 
2 

+ 2( [b(T? x N ( 7 3  - b(7, xNr(7, w)>l dW(7, w ) )  9 

from condition (a), and previous estimates of the integrals, that for some 
constant H 

8 { l x ~ ( t ,  W) - xN,(t ,  w)I2 h(w)} < H i t  8{1x~(T, W )  - x ~ , ( 7 ,  W ) I 2  h(w)} dT. - 10 

Consequently 

b { l x N ( t ,  - xN,(t, # ) I 2  h(w)) = 0, 

so that 

: I x N ( t ,  w, - x N ’ ( t ,  w > I  ’ O))  < I x O ( w ) I  ’ N ) ) .  

It follows from the last inequality that limN+m x,(t,w) = x( t ,w) ;  and since the 
limit is uniform in t ,  we have 

lim 5,’ [x,(T, w )  - x(7, w)I2 d~ = 0 (in probability). 
N - r m  ,, 

Utilizing condition (a) we obtain 

[ x N ( T ,  w )  - X(T ,  w)I2 dT ; ) l i2  

Hence, we can pass to the limit (in probability) on the right-hand side of the 
It6 integral equation for x,(t,w). Therefore, x(t,W) is a solution of the It6 
random integral equation (7.39). This completes the proof of the theorem. 

For other results on the existence and uniqueness of solutions of It6 random 
integral equations we refer to Dynkin [21, Chap. 111, Gihman [30], Gihman 
and Skorohod [31, Chap. 81, Girsanov [32], Krylov [50], Maruyama [59], 
and Skorohod [67, Chap. 31. In particular, in [67], existence and uniqueness 
was established for the case where a ( t , X )  and b(t ,x)  are continuous functions 
of their arguments, but satisfy less restrictive conditions than those of Theorem 
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7.1 ; and Krylov [50] considered existence and uniqueness of the solution in 
R, (n > 1) of the equation 

x(t, w )  = x ( t 0 ,  w )  + i,' ~ ( 7 ,  X )  dT +Jr: ~ ( r ,  x )  dw(.r, w )  (7.46) 

under the following conditions : 

1. The random n-vector A ( t , x )  and the random n x n matrix B ( t , x )  are 
Bore1 measurable; and 

2. there exist constants y > 0 and M < cc such that (a) I A ( t , x ) (  < M for 
allx E R, and (b)ylAI2 G (BA,A) G y-'IA12 for all x E R and A = (A ,  , A 2 , .  . . ,A,). 
In Eq. (7.46) w( t ,w)  is an n-dimensional Wiener process. 

Girsanov [33] (cf. also McKean [56, pp. 78-80]) has given an example of 
nonuniqueness of the solution of an It6 random integral equation. He 
considered the equation 

X ( r ,  W )  = X o ( w )  + 1 I X ( T ,  w)IoL dw(7, w ) ;  (7.47) 

and showed that Eq. (7.47) has a unique solution for a 2 5, but for a E (O,+) 
there exists many solutions. 

Stroock and Varadhan [70] have recently studied the existence and unique- 
ness of solutions of It6 random integral equations; in particular, they con- 
sidered a new general type of uniqueness theorem in which uniqueness is 
considered in the sense of the probability distributions. 

It6 and Nisio [38] have studied the existence of stationary solutions of It6 
random integral equations. A solution x(t, w )  is said to be a stationary solution 
if the probability distribution of the joint process 

( X ( t , W ) , W ( f , W ) )  = ( x ( t , w ) , t E ( - - , m ) ,  w(t2,w)-ww(t1 ,w ) , - -co<t ,< tz<cQ)  

is invariant under the shift transformation. Clearly a stationary solution is a 
strictly stationary random function. 

D. Zt6 processes 

1. Introduction. In this section we consider the class of Markov processes, 
called It6 processes, determined by solutions of It6 random integral equations. 
This section contains two subsections, the first of which is devoted to a proof 
of the theorem that the solution process (x( t ,w) ,  t E [ to,  TI) determined by 
the solution of Eq. (7.39) is a Markov process. In the second subsection we 
present a brief discussion of the operator-theoretic formulation of It8 
processes. For a detailed discussion of It6 processes and related topics we 
refer to Dynkin [21]. 
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2. The solution process of the It6 random integral equation. We recall that 
a random function { x ( t ,  w ) ,  t E [ to ,  TI}  with state space ( R ,  23) is said to be a 
Markov process if 

i. for all t , < t 2 < . . . < t n < t  (where t , t i E [ t o , T ] , i = 1 , 2  ,..., n) and 
Bore1 sets B c R ,  

P{x(t, w )  E B Ix(t, 5 w ) ,  . . . , x(tn 9 w ) }  = p { x ( t ,  w )  E B Ix(tn, w ) }  

with probability one; and 
ii. the transition function 

P(s ,  X, t ,  B )  = P{x( t ,  w )  E B Ix ( s ,  w )  = X} 

defined for to G s G t G T, x E R ,  and B E 23, is a 23-measurable function of x 
for every fixed s, t ,  B ;  and for fixed s, t ,  and x is a probability measure on 23. 

We now state and prove the following basic theorem. 

THEOREM 7.2. Let the functions a(t,x) and b(t ,x) satisfy the hypotheses of 
Theorem 7.1 ; and let {X~,~(S, w), s E [t, TI}, where t > to ,  5' E R, be the solution 
process determined by the equation 

xt,&S, w )  = 5 + l a ( 7 ,  xf .&7, w ) )  d7 + i]'b(T, xf.c(T, w ) )  d 4 7 ) .  (7.48) 

Then the solution process {x( t ,  w ) ,  t E [to,  TI}  determined by the It8 random 
integral equation (7.39) is  a Markov process with transition,function 

p( t ,  5 7  s, B )  = = w x ( s ,  w )  E B lx(t, w )  = 51 
= Y ( X , , ~ ( S ,  W) E B } ,  B E 23. (7.49) 

Proof. Throughout this proof 8, denotes the a-algebra introduced in 
Sect. 7.2A. Since (1) the solution x(t ,w) is &-measurable, and (2) X ~ , ~ ( S , W )  is 
completely determined by the differences w(s, w )  - w(t, w )  for s E [t, TI 
(independently of St), it is clear that X,,~(S, w )  is independent of x( t ,  w )  and of 
the events in 5, .  It follows from the basic existence and uniqueness theorem 
(Theorem 7.1) that x(s, w ) ,  s E [t ,  TI is the unique solution of the It6 random 
integral equation 

x(s,w) = x ( t , w )  + - 2  r ' a ( 7 , x ( ~ , ~ ) ) d T + S : b ( ~ , X ( ~ , w ) ) d w ( s , ~ ) .  (7.50) 

Now, the process { X ~ , ~ ( ~ ) ( S ,  w ) ,  s E [t ,  TI} is also a solution of Eq. (7.50); hence 

x(s, w )  = X Z , X ( t , W ) ( S ,  w )  (7.51) 
almost surely. 

We now show that 

P{x(s, w> E B Ix(t, w>> = 9 { X ( S ,  w> E B I521. (7.52) 
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In order to establish (7.52) it is sufficient to show that for any bounded, 
%,-measurable function 9, and any bounded continuous function g(x)  

&{,(x(s, w ) ) )  = 8 { 9 8 { g ( x ( s ,  w ) )  IX(t? w)>.  (7.53) 

Put @(( ,w)  = g(x,,*(s,w)).  The function @(f ,w)  is clearly a measurable 
function of the pair ( ( , w ) ;  and @((,w) is also a bounded and continuous 
function of ( for almost all w .  We can, therefore, write @((, w )  as the pointwise 
almost sure limit of bounded functions of the form 

i: @ i ( o  hi(w), (7.54) 
i =  1 

where the @ J ( )  are deterministic functions and the hi(w) are independent of 
%*. Then 

= c(  2' T@i(X(t, w ) )  
i = l  

and 

Since functions of the form (7.54) are dense, it follows that for any function 
@((,w) depending on the differences w(s,w) - w(t,w),  s > t ,  

&{@(x(t, w ) ,  w>I 5,> = 4 @ ( x ( t ,  w ) ,  w>lx(t, U)) 

= 8{@(5, a)> I ,$=xu ,W) . 
Since @((, w )  = g(x ,  ,&s, CC))), we have @(x( f ,  w),  w )  = g(x(s,  w)) ,  and (using 

(7.5 1)) 
%dx(s, w>>l5t> = u(x(t, w)), 

P'(x(s, w )  E B I % t >  = Pr,xct.w)(S, B ) ,  

P,&, B )  = %x,,*(s, w )  E Bl. 

where u(5) = E{g(x,,*(s,w))).  Hence 

where 

This completes the proof of the theorem. 

3. Operator-theoretie formulation of It6 processes. Consider the measur- 
able state space (X,23), where X is an arbitrary set and 23 is a a-algebra of 
subsets of X .  A function P ( t , x ,  B ) ,  t E [0, a), x E X ,  B E 23, is said to be a 
transition function if the following conditions are satisfied : 
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a. 
b. 

For fixed t and x, P ( t , x ,  B )  is a probability measure on 23. 
For fixed t and B, P ( t , x , B )  is a %-measurable function of x .  

c. P ( t , x , X )  < 1. 
d. P(O,x,  X -  {x}) = 0. 

e. P O I +  t z  , x, B )  = s, P ( t ,  , x, d t )  p(r2 ,  6, B ) ,  r I  , t2 2 0. 

Let X denote the Banach space of all bounded measurable functions 
f ( x ) ,  x E X ,  with norm / j  f 1 1  = supxEx I f(x)I ; and let P ( t , x , B )  be a transition 
function on ( X ,  23). We can define an operator on 3E as follows : 

T ( t )  [ f  (x)l = p( t ,  x, d6)f  (0, f E ; (7.55) 

hence (7.55) defines an integral operator on X with a transition function as its 
kernel. It follows from properties (c) and (e) of a transition function that 
(7 .55)  defines an operator-valued function T ( t ) :  [0, m) -+ 2 ( X )  such that 
{T( t ) ,  t 2 0)  is a contraction semigroup of operators on X;  that is, 

T ( t ,  + tz)  = T(r1)T(t2),  T(0) = Z, and ;!T(t)[l G 1. 

The injiniiesimalgenerator of the semigroup { T ( t ) ,  t 2 0} is defined by 

T(h)  - I 
.If = limAhf, Ah = - 

h+O h '  
(7 .56)  

whenever the limit (in the strong sense) exists. The domain of A ,  written D(A), 
is the set of all f E X for which this limit exists. It is clear that A is a linear 
operator. 

A contraction semigroup {T( t ) ,  t 2 0 }  on X is said to be a Markoo semigroup 
(or semigroup representation of a Markooprocess) if (i).f > 0 implies T ( t ) f  >, 0 
for all t E [0, a), and (ii) for all x E X and t E (0, m), sup, sf I T ( t )  f Q 1, f E X. 

We now introduce an important class of Markov semigroups. Let ( X ,  K,%) 
be a topological measurable state space; that is, ( X ,  K) is a topological space 
and 23 is, as above, a o-algebra of subsets of X ,  such that the sets {x: f ( x )  > 0} 
(wheref is a continuous, %-measurable function) generates 23 and form a base 
of ( X .  K). The semigroup {T( t ) .  t 2 0} defined by (7.55) is said to be a Feller 
semigroup if T ( t )  maps the space C(X,K,%) into itself. 

The above definitions and concepts are all that are required for the present 
section, For expositions of the semigroup theory of Markov processes we 
refer to Dynkin 1211 and Loeve [55 ,  Chap. XII]. 

We have shown (Theorem 7.2) that the solution process {x( t ,  w ) ,  t E [0, TI} 
of the It6 random integral equation 

x( t ,  w )  = 6 + I' a(T, x(7, w)) d7 + b ( r ,  x(7, w)) dw(7, w) (7.57) 
0 I;: 
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is a Markov process with transition function 

P(t ,  6, B) = P{x(t, w )  E Blx(0, w) = E } ,  
which we will call an It6 process. 

Following Doob [20], we now present a brief survey of the operator- 
theoretic formulation of It6 processes in the one-dimensional case. For the 
n-dimensional case we refer to Dynkin [21]. 

Let the state space E = I ,  where I is an interval. We will assume that (i) the 
coefficients a(t,x) and b(t,x) are functiws of x alone, and are Baire functions 
on I ,  (ii) b(x)  > 0, x E I ,  and (iii) to every compact subset I ,  of I there is 
associated a constant K such that la(x)l < K ,  lb(x)l : K, la(x2) - a(x,)l 
Klx2 - XI 1, Ib(xd - b(x,)l Q K 1x2 - xI 1, for x1 ,x2 E I , .  

Let {x(l, w ) ,  r E [0, m)} be the It6 process generated by the solution of  Eq. 
(7.57) on I ;  and let C(-m, m) denote the Banach space of functions defined 
and continuous on (-m, m), with norm 

] i f  1 = sup I f(x)l e-lxl  < z. (7.58) 

We define an operator T ( t )  on C(-rn,oc) as follows: 
X 

= &{ f(X*(f, w ) ) )  

= G(f’(x(t, w ) )  Ix(0, w )  == t}. (7.59) 

T ( t )  as defined by (7.59) is a linear operator, bounded on every compact 
t-set; and {T(t) ,  t E [0, a)} is a semigroup of operators on C(-m, m). Doob has 
shown that 

IIT(t) If(x)lll G Mllfll elXi, 

where M is a constant which depends on t and K.  
We now show that the It6 process is a Feller process; that is we will show 

that T ( t ) [ f ]  is continuous, from which it will follow that T( t )  maps C into 
itself. We first use the fact that xE,( t ,  w )  + xf2(t, w )  in probability as f 1  + t2 
for all t ;  hencef(xg,(t,w)) +f(x t2( t ,w))  in probability also. To establish the 
continuity of T ( t ) [ f ]  it follows from (7.59) that we must show that 

W(X<,(t, W))) -+ W(xg,(t, WN>. 

&{f2(xE(t, w))} G i l f i l ’  &{e21xc(t.w)l) G i l f i i 2  X?e21e1, 

where X? is a constant independent of 5; hence we have shown that T ( t )  maps 
Cinto itself. It can also be shown that if C, is the subclass of C whose functions 

But 
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are absolutely continuous, with sup, If'(x)l e-l"l < co, then T ( t )  maps C, into 
C,, and for fc  C, ,  T ( t )  [ f ]  is a strongly continuous function o f t  on [0, m). 

We now compute the infinitesimal generator A of { T ( t ) ,  r E [0, m)}, and 
show that A coincides with the differential operator 

(7.60) 

on a subspace of C. Let C2(-co,co) denote the space of functionsfwith two 
continuous derivatives and such that outside of some finite interval f has a 
third continuous derivative with sup, e-ix'lf'3)(x)l < co. C2 is a linear, but 
not closed, subspace of C. Let fc  C2, and let E be a positive number. Then 

- , f (x ) ]  P(h,  x, dy). 

Now, since coefficients a(x) and b(x) are bounded, and the It6 process is 
continuous, the second term on the right (for a fixed x) tends to zero as h -+ 0. 
The first term on the right can be written as 

= L [ f ]  + O(h1'2) + E L ? ,  

where I@ is a constant which depends on x. Since E can be chosen arbitrarily 
small, it follows that 

(7.61) 

Hence, the infinitesimal generator A of the semigroup {T( t ) ,  t E [0, a)} is 
defined on C2 and coincides with L there. For a more detailed discussion we 
refer to Doob [20]. 

7.3 It8 Random Integral Equations in Hilbert Spaces 

A .  Introduction 

In this section we consider It6 random integral equations in Hilbert spaces. 
The study of the random integral equations equivalent to It6 random dif- 
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ferential equations in Hilbert spaces requires (1) the basic concepts of 
probabilistic functional analysis in Hilbert spaces presented in Chaps. 1 and 
2, and (2) the definition of the It6 stochastic integral for Hilbert space-valued 
integrands. 

A number of mathematicians have considered stochastic integrals required 
for the study of random integral equations of It6 type in Hilbert spaces. 
Baklan [2, 31,Cabafia [12], Daletskii [16], Falb (cf. Kalman et al. [42]), and 
Mortensen [61] have studied stochastic integrals with Hilbert space-valued 
integrands. In [16,61] the integrator function is a real-valued Wiener process; 
and in [16,42] the integrator function is a Hilbert space-valued Wiener process, 
but in [42] the integrand is an operator-valued function. Kunita [51] has 
defined stochastic integrals with Hilbert space-valued or operator-valued 
integrands, and the integrator function is a Hilbert space-valued martingale. 
Vahaniya and Kandelaki [71a] have considered stochastic integrals with 
operator-valued integrands and whose integrator processes are Hilbert 
space-valued. Using tensor product methods, Kannan and Bharucha-Reid [43] 
have defined a stochastic integral with a second order Hilbert space-valued 
random function as the integrand and a Hilbert space-valued Wiener process 
as the integrator function. The Kannan-Bharucha-Reid integral is operator 
valued. 

This section is divided into two subsections. In Sect. 7.3B we consider, 
following Cabafia [12], It6 random integral equations in separable Hilbert 
spaces; and in Sect. 7.3C we consider, following Daletskii [16], It6 random 
integral equations in scales of Hilbert spaces. 

B. It6 random integral equations in separable Hilbert spaces 

Let H and $j be separable Hilbert spaces with inner products (.;) and 
( * , a ) ,  respectively; and let 17 = L2(sZ, H )  and 5 = L2(sZ, 6) be the Hilbert 
spaces of second-order random variables with values in Hand $j, respectively. 
We denote by [.I1 the norm of an element in either A or 5. Consider the 
measurable space (0,2), where 0 = [0, T )  (T might be +a,) and 2 is the 
o-algebra of Bore1 sets of 0;  and let v be a finite measure on 2 which is 
absolutely continuous with respect to Lebesgue measure. 

Let x ( t , w ) :  0 + 5 ;  that is x( t ,w)  is an $%valued random function. We 
define 

I!~xI/( = ess sup [xL. 
fEO 

Now, let Lm(g) be the Banach space of random functions x(f,w) such that 
jllxI/I < a,; and let C ( 5 )  cL,,($) be the space of continuous random 
functions. 
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In this section we consider the existence and uniqueness of a solution of the 

X ( t ,  w )  = X o ( w )  + lo' a(7, X(T, w ) ) d v ( ~ )  + 1; b(7, X(T, w ) )  dW(7, w ) ,  (7.62) 

which is the integral equation formulation of the It6 random differential 
equation 

dx(t, w )  = a(r, x(r,  w) )  dv( t )  + b(t, x(t,  w) )  dW(t ,  w )  (7.63) 

with initial condition x(0,w) = xo(w). In Eqs. (7.62) and (7.63), W(t,w) is a 
Wiener operator, which was defined, and its properties discussed, in Sect. 
2.5. Hence, W(t,w) is a mapping of 0 into L2(Q,!2(H,S))-the space of 
second-order random operators on H to 5. In order that Eq. (7.62) be 
meaningful, we must first define the stochastic integral of an 5-valued random 
function with respect to a Wiener operator. 

A random function x(t,w) E 5 will be said to haveproperty (P) with respect 
to a Wiener operator W if when given 7,  t ,  and t 2  with 7 < t ,  s t 2 ,  x(7 ,w)  and 
W(t,, w )  - W(t , , w )  are independent. Now, let I and I' denote subintervals of 
0. We will write I' G I to indicate that no point in I' is greater than any point 
in I .  Let 5; be the set of finite sums of terms of the form W ( I , w ) x  such that 
(a) x E fi and (b) x,. x has property (P) with respect to W for each I' G I .  

Now, let X be the Hilbert space of equivalence classes of random functions 
x(t,w):O + fi such that 

It6 random integral equation in 5 

with norm 

Given x E 3, let the mapping rpo(x): 5; -+ C be defined by 

where 
n 

i =  I 
t == 2 W ( l i , w ) f i  7 

and the terms in the above sum have properties (a) and (b) given above. 
Finally, let $(x) be the unique element in 5, (the closure of 5;) such that 

(t? $(X))B = (rpo(x))(t> (7.64) 

E 5;. The mapping $: x -+ $(x) has domain X and range a subset of 
is linear and bounded. 

for all 
g,,,; and it can be shown that 
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The Cabaiia stochastic integral can now be defined as follows? : Let x( t ,  w )  be 
a random function in X, and let W(t ,w)  be a Wiener operator. Then the 
stochastic integral of x with respect to W is defined as 

(7.65) 

where $ is defined by (7.64). For a detailed discussion of the above integral 
and its properties we refer to Cabaiia [12]. 

We now state and prove the following existence and uniqueness theorem. 

THEOREM 7.3. 
satisfy the following conditions: 

Let the functions a(t ,x):  0 x 5 -+ 5 and b(t ,x):  0 x 5 -+ I? 

a. for  any measurable function x :  0 --f 6, a(t,x) and b(t ,x) are measurable; 
b. there exists a constant M such that for  almost all t E 0 and every 5 E 6 

[a(t, 0 1 2  M2(1 + ( [512121 

"4x112 M2(1 + ([51d2>; 

[a(4 t 2 )  - a@, 51112 G L"!2 - 5112  

" t ,  5 2 )  - b(t, 51112 < u 5 2  - 5112 .  

c. there exists a constant L such that for  almost all t E 0 and 5, ,t2 E 5 

Then, there exists a unique continuous random function x( t ,w) :  0 --f 6 which 
satisfies Eq. (7.62) for  all t E 0, with xa(o) = xo . 

Proof. We define an operator Ton  C ( 6 )  as follows: 

T [ x ]  = xa + lor a(7, X ( T ,  w ) )  dv(T) + jar b(7, x(7, w ) )  dW(7,  w).  (7.66) 

We will show that under the conditions of the theorem that T [ C ]  c C and 
some power of T is a contraction. Hence the theorem will follow from the 
Banach contraction mapping theorem. 

Condition (a) implies that 

Illa(t, x>1112 = ess sup ([a(4X)12)2 

G M'( I + sup([a(t, x ) 1 2 ~ )  
tEe 

tee 

(7.67) 

(7.68) 
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where the norm on the left-hand side of (7.68) is taken in L,(R). 

fore (7.67) and (7.68) imply that a(t ,x)  E Lm(5) and b(t ,x)  E Lm(fi). 
Now, x(t ,w)  is continuous on the compact set 0; hence 1 1 1  x 1 1 1  < co. There- 

To establish the continuity of T, we note that 

([s,: a(7, X(T, W ) ) d V ( T ) ] J 2  < V ( ( t l  , t r ) )  J r 2  ([a(., X ) ] z ) ' d v ( T )  
1 1  

G v 2 ( ( t l  , t2))lIia(t, x)I'12 

and, using the fact that the norm of the Cabaiia integral is less than or equal 
to one, we have 

G V ( ( t l  , t z ) )  MZ(l  + li ~ 1 1 1 ~ ) .  

The continuity of T follows from the above calculations and the assumption 
that v is absolutely continuous with respect to Lebesgue measure. 

We now show that T" is a contraction operator for some n. Let x l ,  x2 E C ( 5 ) ;  
and put 

dk(t) = rk [x2 ]  - T k [ x l ]  

d a k ( t )  = a(t, Tk[X21)  - a(t, T k [ X 1 l )  

dbk(t) = b(f ,  Tk[x2] )  - b(t, T k [ X 1 ] ) .  

Condition (b) implies that 

[dak(t)]z < L[dk(t)]2 and [ d b k ( t ) ] 2  < L [ d k ( t ) 1 2  

for almost all t .  In the above, the norms [ddk(t)]2 and [ d k ( t ) ] 2  are taken in 5 
and the norm [ O l ~ , ( t ) ] ~  is taken in l?. Therefore, 

( [ d k ( t ) 1 2 )  =([I: daA-l(T)dv(T) +Jbi d b k - l ( T ) d W ( T , w ) ] J  
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The iterated integral on the right-hand side of the above inequality equals 

(k ! ) - l [ jo r  d " ( 4  = ( k ! ) - l  v"(O,t)), 

since v is absolutely continuous with respect to Lebesgue measure. Therefore 

Illd,(t) Ill < (k!)-'  [Kv(@)l IIIdo(t)Ill'. 
Now, given CL, with CL E (0, l),  we can pick n so large that (n!)-'[Kv(@)Y < C L ~ .  

Hence 

Ill Tn[x21 - T"[xil Ill = Ill An Ill < Ill do Ill = CL 111 x2 - X I  111 . 

Therefore, T" is a contraction; and the Banach contraction mapping theorem 
implies the existence of a unique solution x(t, U )  of Eq. (7.62) in the space C(5) .  

C. It6 random integral equations in scales of Hilbert spaces 

Let H be a Hilbert space with inner product (.;), and let G2 denote the 
class of Hilbert-Schmidt operators on H. Let T be an unbounded, self- 
adjoint, positive-definite operator on H satisfying the condition IIT-lII < 1. 
The domain Ha of T" (CL > 0)  is dense in H ,  and is a complete Hilbert space 
under the norm Ilxll, = /JTaxJj, x E Ha, I t  is also possible to introduce in H 
another norm, namely lIxl/-, = /(T-OLxII, CL > 0 ;  and then consider the space 
H-, obtained from H by completion with respect to the norm jl.jj-,. The 
operator T-" is bounded with respect to the norm lI.l/-,; hence, after closure, 
it can be defined on the whole of H-,  , The domain of (the closure of T-") 
is H ,  and the inverse operator Fa (which is the closure in H-,  of Ta) maps H 
to H - ,  . The spaces Ha and H-, are conjugate to one another in the sense of 
inner products. 

The value of the functional y E H-, at x E Ha is given by the formula 
y(x) = (Tax,  F'-"y). Since F-"y = T-"y E H a ,  y E H ,  we have 

(7.70) Y ( X )  = (Tax ,  F-"y) = (x, T" T-"y) = (x,JJ). 

If we now put k = 1,2,. . . in (7.69), and put K = 2(v(@) + 1)L2, we obtain 
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We are now able to define a scale of Hilbert spaces. A one-parameter 
family of Hilbert spaces {H,, u E (-a, a)), with Ho = H ,  is said to be a scale 
of Hilbert spaces if (i) H ,  c H g ,  ---a, < /3 < a < a, and Ilxgll G (/x,l/,  x E H,; 
and (ii) H-,  = H,* . Scales of Hilbert spaces occupy a central position among 
scales of Banach spaces, and are of importance in the theory of partial.dif- 
ferential equations (cf. Krein and Petunin 1491). The study of It6 random 
integral equations in scales of Hilbert spaces leads to more general results 
than those obtained by other workers who have restricted their attention to 
It6 equations in a single Hilbert space, rather than consider a system of 
Hilbert spaces. 

In this subsection we consider the It6 random integral equation 

X(?,W) == xo(W) + a(T,X(T,W))dT + B ( T , X ( T , W ) ) d W ( 7 , W ) ,  (7.71) r : 1: 
which is the integral equation formulation of the It6 random differential 
equation 

dx(t,w) = a( t ,x ( t ,w))d t  + B ( t , x ( t , ~ ) ) d w ( t , w )  (7.72) 
with initial condition x ( t o , w )  = x0(w). In Eq. (7.71) a(t,x) E H, ,  B( t , x )  is an 
operator-valued function, and w(t ,w)  is a Wiener process with values in H-l. 

Let K, denote the class of operator-valued functions satisfying the following 
conditions : 

1 .  B ( f , w ) € 2 ( f - - , , H z ) ;  

2. B ( f ,  w )  is %:,-measurable; 

For an operator-valued function B(t ,  w )  E K, . the integral of B(1,w) with 
respect to an H-,-valued Wiener process, that is, 

has been defined by Daletskii as follows : 

(Z(B),Y) = Z(B*(t, W > Y ) ,  (7.74) 

for any y E H-=.  We remark that this definition is correct, since B * y  E H if 
B E K , .  The Daletskii stochastic integral (7.73) has the following properties: 

i. B { f ( B ( t ,  w ) ) }  = 0 ;  

i i .  6{ l l f (B(r ,  w ) )  I:} G j' g{U2(Ta B ( T ,  w))}dT.  

Having defined the Daletskii stochastic integral, Eq. (7.71) is well defined; 
and we can now consider the problem of the existence and uniqueness of the 

10 
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solution of Eq. (7.71). We first introduce some spaces of functions which will 
be referred to in the statement of the existence and uniqueness theorem. 

Let X: denote the space of Ha-valued functions which are %,-measurable. 
Under the norm 

3Eh is a Banach space. Let Ca(Ha) denote the space of continuous functions 
defined on Ha with range H a ;  and let Co,a(Ha) denote the space of continuous 
operator-valued functions defined on H, with range 2(H,  Ha). We also need 
the following definition: A Banach space-valued function t ( t ,x ) ,  t E [ to ,T] ,  
x E Ha is said to have property (L) if (i) 114(t,x)ll G C, + C211xIIa, and (ii) 
11f(t,x1) - t(t,x2)ll G C21/xI - x2/1 (xl ,x2 E Ha), where C,  and C, are constants. 

THEOREM 7.4. Consider the operator 

s[X(r,w)] = y ( f )  + j t  a(T,X(T,w))dT -t B ( T , x ( T , w ) ) ~ w ( T , w ) .  (7.75) 

(a) Let y ( t )  E X t m ,  and let the functions a(t,x) and T a B ( f , x )  have property 
(L) in the spaces Ha and G 2 ( H ) ,  respectively. Then the operator S de$ned by 
(7.75) is a continuous operator on Xi"'; and for some n, S" is a contraction 
operator on X: . 

(b) Let y ( t )  E X i ,  andlet the functionsa(t,x) E Ca(Ha)andB( t ,x )  E CO,,(H,) 
have property (L). Then the It6 random integral equation 

f0  1: 

x(r, w) = y ( f )  + jf a(T, X ( T ,  w)) dT + B(T,  X ( T ,  w)) d W ( 7 ,  w), (7.76) 

where V ( t )  = xo is a continuous function independent of w(t,w), has a unique 
continuous solution which is 3,-measurablei for every t E [ t o ,  TI. 

10 0 

Proof. (a) We first remark that the function S[x( t ,w)]  is g,-measurable. 
To show that S[X3 c X i ,  we consider the following estimate: 

€{llSx(t, w) - y(t)lI~"} G C3 d{lla(T, x(7, w)lt:"'d~ I:, 
+ C, j' g { u % ( ~ a  ~ ( 7 ,  x(T, w ) ) )  dT 

t0 

where we have put C3 = (2 (T-  and C4 = (2(T- to))"-'(m(2m - 1))"'; 

t The o-algebra gt  is taken to be generated by the random variables W(T, w). T E [ t o ,  t ]  and 
dT,U), 7 E  [to,T]- 
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and a2(A) denotes the Hilbert-Schmidt norm of A E 6,. Hence it follows that 
if x E 3E2,", then Sx E Xirn. 

To establish continuity, we consider the following estimate, which is 
analogous to the estimate obtained above. We have, using property (L),  

lllSx2 - SXI/112m = sup &{IlSX,(f,W) - Sx,(t,w)Il:", 
rs[ro.Ti 

G CI"(C, + CJIlX2~f, wf - x,(t, w)ll12"(T- to) .  

The above estimate implies the continuity of S.  
To prove that S" is a contraction operator on X i  for some n, we must show 

that 

I I l S " ~ 2 - S " ~ i l l l  < K l I I ~ 2 - ~ 1 1 1 1 ,  K <  1. 

Using the definition of the norm in X i ,  taking the expectation of the last 
estimate obtained above, we obtain 

b{iIS2 x2(t, w )  - S2 x,(t, m)lIi} 

G ~ ( T -  t o +  I)C: ~ { I I s x ~ ( T , w ) -  SX1(7,W)li2}dT 

G ( 2 ~ -  to + 1)c:)2Sr (T - t0)d7111x2 - ~ 1 1 1 1 2  

=)(2(T-  to + l ) C : ) 2 ( t -  ro)2/11x2 -x,111~. 

It: 

f0 

It is clear that we can pick an n large enough such that 

(n!)- ' (2(T-  to)(T- to + l)C4)n< 1; 

hence S" is a contraction for some n > 1. 
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(b) Since S" is a contraction, the Banach contraction mapping theorem 
asserts the existence of a unique element X E X ;  such that S " x = x .  But 
S"Sx = S"+'x ;  hence Sx = x. However, the last equation implies that 
S"x = x ;  hence we can conclude that x = x ( t , w )  E 3; is the unique solution 
of Eq. (7.76). Since, by hypothesis, a( t ,x )  E Ca(Ha), B k x )  E C0,,(Ha), and 
y ( t )  is a continuous, the continuity of x( t ,w)  follows from the continuity of 
the right-hand side of Eq. (7.76). 

7.4 Some Additional Studies on It6 Equations and Their Applications 

A .  Introduction 

In this section we present a brief survey of some studies on It6 random 
equations and their applications. We will restrict our attention to (1) some 
concrete It6 random integral equations, and (2) recent studies which extend 
or generalize the basic theory of It6 random integral equations. 

B. Some concrete It6 random integral equations 

In this subsection we consider three It6 random integral equations which 
have been considered in connection with certain applied problems. 

1. Astrom [l]  has considered the It6 random differential equation 
dx(t, w )  = x(2, w )  dw,(t, w )  + d W Z ( f ,  w),  (7.77) 

where w,(t,w) and w2(t,w) are Wiener processes with 
&(Awl}  = -m, h, 

& ( A  w2} = m2 h, 

Var(dw,} = 2a1 h 
Var(A w2} = 2a2 h 

Cov(dw, ,dw2}  = 2a,2h7 

where d w i  = wi(t + h) - w,(t), i = 1,2; and m, > 0, m2 2 0, a, 2 0, a, 2 0, and 

dx(t, W )  = [-x(t, W )  m,  + mz] dt + x(t ,  w)dG,(t, W )  + d&(t, w),  (7.78) 

where @,(t, w )  and G2(r, w )  are Wiener processes whose increments have 
expectations zero and Cov(diC, ,A\?,) = Cov(dwl ,dw2). The It6 random 
integral equation equivalent to (7.78) is 

< a, a2.  Equation (7.77) can be rewritten as 

x(t, w )  = exp(--ml(t - t o > }  x(to w> + (m2/ml) (1 - exp{-m,(l- to))) 

exp{-m,(r - T ) }  X(T,  w )  d G 1 ( ~ ,  w )  
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Consider the space L2(sZ), and let x: [to, TI --f L2(sZ). The norm offis given by 
I Ix(t ,  w)li = max (&{ x2( t ,  w ) } ) ~ ' ~ .  

ts l to .Tl  

As an operator equation in L2(sZ), Eq. (7.79) is of the form 

x(t ,  w )  = Lx(t, w )  + v(t, w). (7.80) 
where 

and the operator L on L2(sZ) is defined as 

~ ( w )  [XI = ib exp{-ml(t - T ) }  x(T ,  w ) d ~ ~ ( T ,  w )  

lILxl12 < l l x l 1 2 ( ~ l / ~ l ) ( ~  - exp{-2m,(t - t o ) ) ) .  

A routine calculation yields 

Forx(t,w) = 1, llL!l = [ ( a , / m l ) ( l  - exp{-2m1(t - to)})]"2 almost surely; hence 
by choosing h sufficiently small we can satisfy the condition lILil< 1. If the 
above condition is satisfied, the solution of Eq. (7.80), equivalently Eq. (7.79), 
is given by the Neumann series 

m 

n= I 
x(t, w )  = y ( t ,  w )  + 2 L"y(t ,  w ) .  (7.81) 

2. Beutler [8] has studied the vector random integral equation 

x ( t , w )  = J b o t A ( ~ ) ~ ( ~ , w ) d 7 + J b f E ( ~ ) d J ' ( ~ , ~ ) ,  t E [O,m), (7.82) 

where A ( t )  and B ( t )  are n x n matrix-valued functions and y(t, w )  is a second- 
order homogeneous (temporally and spatially) vector process with orthogonal 
increments, and has ihown that under certain conditions the solution process 
is a multivariate wide-sense Markov process. 

Equation (7.82) is studied in a Hilbert space H ,  which can be obtained as 
follows: Let x(t ,w)  be a vector random function with components 
x , ( f , w , .  . . ,x,(t ,w),  each of which is a complex-valued second-order random 
function. x(t,w) can be regarded as a matrix with elements x1 j ( t ,w)  = xj(t,w), 
and x j j ( t ,w)=O,  i =  2 ,..., n, j =  I ,..., n. Let x*(t ,w)  denote the complex 
conjugate transpose of x(t, w) .  Consider the pre-Hilbert space of all elements 
of the form A(t)x(t,w) with inner product 

(A(s )x ( s ,w) ,B( t )x ( t ,  w ) )  = Tr[A(s)(Ws, w>x*(t ,  w>>B*(t)l. 
Completion of the above pre-HiIbert space yields the Hilbert space H.  
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We now assume the following: 

i. 

ii. 

111. 

y(t,w) with y(0,w) =0, is a vector random function, each of whose 
components is a process with orthogonal increments; 

JA llB(~)11*d~ < w (hence the second integral on the right-hand side of 
Eq. (7.82) is a stochastic integral); 

the elements ai j ( t )  of A ( t )  are measurable and llA(t)ll is locally 
integrable (hence the first integral on the right-hand side of Eq. (7.82) can be 
defined as a Bochner integral). 

Under the above assumptions, Beutler has shown that the unique solution of 
Eq. (7.82) is of the form 

... 

(7.83) 

where K ( ~ , T )  = ( ( t ) ( - ' ( 7 ) ,  and f ( t )  is the solution of the matrix differential 
equation f ' ( t )  = A ( t ) f ,  ((0) = I .  If H is the Hilbert space generated by the 
process y( t ,  w), then x(t, w )  E H for every t E [0, w). 

3. Nagai [62] has studied the random integral equation 

x(r ,w)  = xo(w) + a X ( T , W ) ~ T  + q ( 7 , w ) d ~  

t E [O, TI, 

/Or ib 
+ pJ0' 47, w) W T ,  w ) ,  (7.84) 

under the following assumptions : 

i. w(t ,w)  is a real-valued Wiener process; 
ii. xo(w) has finite first and second moments; 
iii. (a)v(t,w)isameasurablefunction ofthepair(t,w); (b)b(ly(t,w)l} < 

and b{lq(t,w)12} < co for all t E [O,T], and (c) v( t ,w)  is continuous in mean- 
square. 

iv. for any fixed r,T, ( t  > 0, T G T) ,  the vector random variable 
(xo(w), q(t ,  w))  is independent of W(T,  w ) ;  

v. a and fl are real constants. 

Under the above assumptions, the unique solution of Eq. (7.84) admits the 
representation 

m 

k = O  
x( t ,  w )  = e-"' 2 Pk Qr(t, w),  

where 

(7.85) 
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Nagai also studied the asymptotic behavior of the covariance function of the 
solution process { x ( t , ~ ) ,  t E [0, TI) and the stability of the solution process. 

C. The Bogoliubov-Mitropolskii method of averaging for It6 random integral 
equations 

VrkoE [72] has applied the Bogoliubov-Mitropolskii method of averaging? 
to It6 random integral equations. In particular, the integral equation 

x(f, W )  = Xo(W) + E ’ U ( 7 ,  X(7, W))dT + € I ”  b(7, X ( T ,  W)) d ( X ( E 7 ,  W)/E”*) 

(7.86) 

is studied, where E > 0, lu(r,x2) - a(t,x,)l + /b( t ,x , )  - b( t ,x l ) l  G Klx2 - xI1 
(independently of t ) ,  and w(t,w) is a real Wiener process. Under the assump- 
tion that (i) there exists a function n(x) such that 

J O  JO‘ 

uniformly in x; and (ii) there exists a function 6(x) such that 

limJo* 1 b ( ~ , x ) - b ( x ) 1 * d 7 = 0 ,  
5 + m  

then, if Z(r,w) is the solution of the “averaged” It6 random integral equation 

a(f, w )  = Xo(w) + u(a(7, w ) )  d7 + b ( z ( ~ ,  w ) )  ~ w ( T ,  w ) ,  (7.87) ib- 
VrkoC proved that for every h > 0 there exists an c0 such that 

for E E (0, eo]. 

integral equations we refer to VrkoC [72, 731. 
For applications of this method in the stability theory of It6 random 

D. Second-order Zt6 processes and the associated random integral equations 

The It6 random differential equation (7.2) is a first-order differential 
equation; and the solution process of either Eq. (7.2) or (7.1) can be referred 
to as a first-order It6 process. Although first-order It6 processes are of 
fundamental importance in many theoretical and applied areas, the systematic 
study of It6 processes of higher order is required in order to have a rigorous 
theory of differential equations of order n driven by Wiener processes. In 

We refer to Bogoliubov and Mitropolskii [9]. 
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particular, the simple harmonic oscillator driven by a Wiener process leads to 
the following random differential equation of second order: 

dx'(t, W )  + ~ c L x ' ( ~ ,  W )  + ,8x(t, W )  = dw(t, w),  (7.88) 

where x'(t,  w) is the derivative of the x(t ,  w)-process which describes the 
position of the particle. An equation of the above type leads to an It6 random 
differential equation of second order of the form 

dx'(t, W )  = a(t, x ,  x')dt + b(t, X, x') dw(t, w) .  (7.89) 

The study of second-order It6 equations was initiated by Borchers [lo]; and 
Goldstein [34] has studied Eq. (7.89) and the equivalent It6 random integral 
equation 

x(r, w )  = x(0, w )  + / ' x ' ( T ,  w )  d7 

x' ( t ,  w )  = x'(0, w )  + J' a(7, x(T, w ) ,  x'(T,  w ) )  dT 

0 

(7.90) 
0 

+ id M T ,  x(7, w) ,  x'(7, w ) )  M T ,  w )  

Equation (7.90) can be rewritten as the vector random integral equation 

j j ( t ,w)  = . i j ( o , W )  + l ~ ( T , . i j ( T , w ) ) d T  + jo'B(.,jj(T,w))dli.(T,w), (7.91) 

where 

I n  the above wo(t,w) is a (dummy) Wiener process, independent of w(t,w) and 
the initial condition j ( 0 , w ) .  Equation (7.90) has been studied under the 
following conditions: 

i. a(t,x),  b(t ,x):  [0, a) x R2 --f R are Baire functions. 
ii. For each T > 0 there is a constant K ( T )  such that for t E [O,T] and 

X , Y  E R2 

la(t, x ) ]  < K ( T )  (1 f I x ) ~ ) ~ ' ~ ,  
0 s b( t , x )  < K ( T ) ( l  + 1x]2)1'2, 

Ia(t,X)--(t,Y)l S J W ) I X - Y l ,  

Ib(t,x)-b(t,Y)l < K ( T ) l x - v l .  
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... 
111. For every fixed t, y(t,w) and y‘(t,w) are square-integrable random 

variables which are independent of all the increments dw of the Wiener 
process w(t,  w). 

Borchers has shown that if the above conditions are satisfied, then (1) there 
exists a unique solution J(t,W), t E [0, a) of Eq. (7.91), (2) j ( t ,w )  is a vector 
Markov process, and (3) with probability one, y(t,w) and y ’ ( r , W )  are con- 
tinuous on [0, a). Furthermore, y ’ ( ? , ~ )  is the mean-square derivative (or the 
strong derivative in L2(s2)) of y( t ,  w). 

Goldstein has given a detailed analysis of the behavior of the realizations 
of second-order It6 processes, and has developed the semigroup theory of 
second-order It6 processes which is the analogue of the operator-theoretic 
formulation of first-order It6 processes due to Doob [20]. 

E. Random operational integral equations 

Bensoussan [6, 71 has introduced a class of random integral equations 
which generalize the It6 equations. These equations are referred to as random 
operational integral equations, where the term “operational” is used in the 
sense of Lions [54]. Let Hand  Sj be two separable Hilbert spaces with Sj C H 
(which means inclusion with continuous injection), and 5 is dense in H. Let 
Jj’ denote the dual of Sj, and if H is identified with its dual, then Sj c H c 9’. 
Let { A ( ? ) ,  t E [O,T]} denote a family of operators A ( t ) :  5 + Sj’ satisfying the 
following conditions: (i) iiA(t)llec5,5., Q M ,  (ii) the mapping t + ( A ( t ) f ,  , f &  
is measurable for all f ,  , f 2  E 5, and (iii) ( A ( t ) f , &  + X I f 1 ’  > aIlf11~ for all 
4 E Sj, where A, a > 0. 

Lety(t,w) be a H-valued random function, withy(t,w) E C([O, T],L,(Q,H)). 
It is assumed that y(t,w) has orthogonal increments; that is, 

&’{(y(t, 9 W )  - ~ ( 1 2  w), B(y(tj  3 W )  - 9 w)))H) = 0 

for all B E Q ( H )  and t ,  Q t3  G t ,  G t ,  E [0, TI. Finally, consider the random 
variable x0(o) E L,(SZ, H )  which satisfies the condition 

b { ( B x O ( w ) ?  y ( t ,  W, - y(O, W))H) = 

for all B E f?(H) and all t E [0, TI;  and letf(t) be a deterministic function with 
f(t) E L2([0,Tl, HI.  

The random operational integral equation considered is of the form 

X(t,W) + JborA(T)x(r,w)dT = xo(w) + Joff(T)dT + y ( t , ~ )  - y(o,w) ,  (7.92) 

which is the integral equation formulation of the random operational 

dx dY 
- + A(2)x = xo + f +  -, 
dt dt 

differential equation 
(7.93) 
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where the derivative is taken in the sense of distributions with values in 
L2(Q, $‘I. 

Bensoussan has shown that there exists a unique solution x ( t , ~ )  of Eq. 
(7.92), with x( t ,w)  E CdO, TI, L2(Qn,B’)) n L A O ,  TI, LdQ,HN n &(to, TI, 
L,(Q,B)), and for all r E [O,T], Eq. (7.92) is satisfied with probability one. 
Furthermore, the solution process x( t ,w)  E C([O, TI, &(Q, H ) )  is continuous 
in probability in H. 

F. Generalized Ztd integrals and Zt6 equations 

Dawson [17] has defined a stochastic integral with integrator function a 
generalized random function with independent values in the sense of Gel’fand 
and Vilenkin 129, Chap. 1111. This extension of the It8 integral permits the 
formulation and study of generalized random equations of It8 type, the 
solutions of which are &-valued generalized random functions. Dawson’s 
results are of great interest in the development of the theory of random 
equations, and should be of importance in applied fields which utilize It6 
equations as models of physical processes. 
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