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Preface

Chihayaburu Mighty they are
Kami no igaki ni The gods within this sacred shrine-
Hau kuzu mo Yet even the vines
Aki ni wa aezu Creeping in the precincts could not hold
Utsuroinikeri Against the autumn’s tingeing of

their leaves.
– Ki no Tsurayaki (Kokinshu, V : 262).

This little book is intended for graduate students and the non-expert
in Iwasawa theory. Its aim is to present in full detail the simplest proof
of the important theorem on cyclotomic fields, which is often called
“the main conjecture”. We have thought it worthwhile to write such a
book, not only because this theorem is arguably the deepest and most
beautiful known result about the arithmetic of cyclotomic fields, but
also because it is the simplest example of a vast array of subsequent,
unproven “main conjectures” in modern arithmetic geometry involv-
ing the arithmetic behaviour of motives over p-adic Lie extensions of
number fields (see [CFKSV]). These main conjectures are concerned
with what one might loosely call the exact formulae of number theory
which conjecturally link the special values of zeta and L-functions to
purely arithmetic expressions (the most celebrated example being the
conjecture of Birch and Swinnerton-Dyer for elliptic curves).

The first complete proof of the cyclotomic main conjecture was given
by Mazur-Wiles, but it should not be forgotten that Iwasawa himself
not only discovered the main conjecture but proved an important the-
orem which implies it in all known numerical cases. In this book, we
follow this approach to the main conjecture via Iwasawa’s theorem, and
complete its proof by the ingenious arguments using Euler systems, due
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to Kolyvagin, Rubin and Thaine. Not only does this treatment have the
advantage of using less machinery, but it also gives for example, a very
simple proof of the existence of the p-adic analogue of the Riemann
zeta function.

If one looks at the past evolution of algebraic number theory, there
has been a tendency to discover that the ideas which initially seem
special to cyclotomic fields do, in the end, turn out to have very general
counterparts. To quote Iwasawa [Iw1]:

“The theory of cyclotomic fields is in a unique position in algebraic
number theory. On the one hand, it has provided us with a typical exam-
ple of algebraic number fields from which we have been able to develop
the theory of algebraic number fields in general; and on the other hand,
it has also revealed to us many beautiful properties of the cyclotomic
fields which are proper to these fields and which give us deep insights
into important arithmetic results in elementary number theory.”

Already, it is known that the ideas discussed in this book work in some
measure for elliptic curves over certain abelian p-adic Lie extensions,
both for curves with complex multiplication ([CW2], [Ru], [Y]) and
without complex multiplication ([Ka2], [SU]). It does not seem unrea-
sonable to hope that this may turn out to be true in much greater
generality, perhaps even in the direction of the non-abelian main con-
jecture made in [CFKSV].

Finally, we thank Karl Rubin for his very helpful comments on the
manuscript.
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Notation

General Notations
The symbols Z, Q, R and C will denote the ring of integers, and

the fields of rational numbers, real numbers and complex numbers,
respectively. For a prime number p, we write Qp for the completion of
Q with respect to the p-adic valuation, normalized so that |p|p = p−1,
and Cp for the completion of some fixed algebraic closure of Qp. As
usual, Zp will denote the ring of p-adic integers in Qp.

If L/F is a Galois extension of fields, we write Gal(L/F ) for the
Galois group of L over F .

If m is an integer ≥ 1, µm will denote the group of m-th roots of
unity lying in some fixed algebraic closure of Q or Qp.

If R is a ring, R× will denote the multiplicative group of units of R.
If ∆ is a group, and R is a commutative ring, we write R[∆] for the
group ring of ∆ with coefficients in R.
Specific Notations

It may help the reader to bear in mind the following notational
convention. In general, we shall use script capital Latin symbols (e.g.
F , K, U , · · · ) to denote objects associated with the field which is gen-
erated over Q by all p-power roots of unity, while plain capital Latin
symbols (e.g. F, K, U, · · · ) will denote the analogous objects attached
to the corresponding maximal real subfield.

We now list some of the most commonly used symbols in the text.
Let n be either an integer ≥ 0 or ∞.

Fn = Q(µpn+1), Fn = Q(µpn+1)+

Kn = Qp(µpn+1), Kn = Qp(µpn+1)+

G = Gal(F∞/Q), G = Gal(F∞/Q)
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Ln = maximal abelian p − extension of Fn unramified everywhere
Ln = maximal abelian p − extension of Fn unramified everywhere
Mn = maximal abelian p − extension of Fn unramified outside p
Mn = maximal abelian p − extension of Fn unramified outside p

X∞ = Gal(M∞/F∞), X∞ = Gal(M∞/F∞)
Y∞ = Gal(L∞/F∞), Y∞ = Gal(L∞/F∞).

For integers n with 0 ≤ n < ∞, we define

Un = group of units of Kn

Un = group of units of Kn

Dn = group of cyclotomic units of Fn

Vn = group of units of Fn

Cn = closure of Dn in Un

En = closure of Vn in Un.

In the following definitions, the projective limits are taken with respect
to the norm maps:-

U∞ = lim
←−

Un

U∞ = lim
←−

Un

C∞ = lim
←−

Cn

E∞ = lim
←−

En.

Finally, a superscript 1 on any of these objects indicates that it has
been formed with the subgroup consisting of those elements which are
congruent to 1 modulo the unique prime ideal above p.
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Cyclotomic Fields

1.1 Introduction

Let p be an odd prime number. We owe to Kummer the remarkable
discovery that there is a connexion between the arithmetic of the field
generated over Q by the p-th roots of unity and the values of the Rie-
mann zeta function at the odd negative integers. This arose out of his
work on Fermat’s last theorem. Almost a hundred years later, Iwasawa
made the equally major discovery that the p-adic analogue of the Rie-
mann zeta function is deeply intertwined with the arithmetic of the field
generated over Q by all p-power roots of unity. The main conjecture,
which is now a theorem (first completely proved by Mazur and Wiles
[MW]), is the natural final outcome of these ideas. This main conjec-
ture is the deepest result we know about the arithmetic of cyclotomic
fields. In this first chapter, we explain more fully this background, and
also give the precise statement of the main conjecture towards the end
of the chapter. However, all proofs will be postponed until the later
chapters.

Let µp denote the group of p-th roots of unity, and put

F = Q(µp), � = Gal(F/Q). (1.1)

Now � acts on µp, and thus gives an injective homomorphism

θ : � ↪→ Aut(µp) = (Z/pZ)× (1.2)

In fact, θ is an isomorphism by the irreducibility of the p-th cyclotomic
polynomial. Thus the powers θn for n = 1, . . . , p − 1 give all the char-
acters of � with values in Fp. Let C denote the ideal class group of
F . We stress that C becomes impossible to compute numerically by
naive methods once p is at all large. However, as is explained below,
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we owe to Kummer the discovery of a miraculous connexion between
the p-primary subgroup of C and the values

ζζζ(s) for s = −1,−3,−5, . . . , (1.3)

where ζζζ(s) is the classical complex Riemann zeta function. We recall
that ζζζ(s) is defined by the Euler product

ζζζ(s) = Π
l

(1 − l−s)−1 (1.4)

for complex s with real part greater than 1, and has an analytic con-
tinuation over the whole complex plane, apart from a simple pole at
s = 1. It has been known since Euler that the values (1.3) are rational
numbers. In fact,

ζζζ(−n) = −Bn+1/(n + 1) (n = 1, 3, 5, · · · ) (1.5)

where the Bernoulli numbers Bn are defined by the expansion

t/(et − 1) =
∞
Σ

n=0
Bntn/n!. (1.6)

One computes easily from these equations that

ζζζ(−1) = − 1
12

, ζζζ(−3) =
1

120
, ζζζ(−5) = − 1

252
, · · · .

Definition 1.1.1. We say that the prime number p is irregular if p
divides the order of C.

The first few irregular primes are p = 37, 59, 67, 101, 103, · · · . It would
be very difficult numerically to test whether a prime number p is irregu-
lar if we did not have the following remarkable criterion for irregularity
due to Kummer.

Theorem 1.1.2. The prime p is irregular if and only if p divides the
numerator of at least one of ζζζ(−1), ζζζ(−3), · · · , ζζζ(4 − p).

For example, we have

ζζζ(−11) =
691

32760
, ζζζ(−15) =

3617
8160

,

and thus, thanks to Kummer’s theorem, we conclude that both 691 and
3617 are irregular primes. The irregularity of 37 follows from the fact
that

ζζζ(−31) =
37 × 208360028141

16320
.
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We point out that the numerators and denominators of these zeta values
tend to grow very rapidly. For example, the numerator of ζζζ(−179) has
199 digits. However, fortunately Kummer’s theorem basically reduces
the problem of deciding whether a prime p is irregular to a question of
arithmetic modulo p, and is numerically very powerful. Indeed, using
computational techniques derived from Kummer’s theorem, all irregu-
lar primes up to 12,000,000 have been determined [BCEMS]. One finds
that, up to this limit, the percentage of regular primes is approximately
60.61 percent, which fits remarkably well with the distribution which
would occur if the numerators of the zeta values occurring in Theorem
1.1.2 were random modulo p (see the discussion after Theorem 5.17 in
[Wa]).

This mysterious link given in Theorem 1.1.2 between two totally
different mathematical objects, namely the ideal class group of F on the
one hand, and the special values of the Riemann zeta function on the
other, is unquestionably one of the great discoveries in number theory,
whose generalization to other arithmetic situations is a major theme of
modern arithmetic geometry.

We end this introduction by recalling the following remarkable con-
gruences, which were first discovered by Kummer as part of his proof
of Theorem 1.1.2, and which provide the first evidence for the existence
of the p-adic analogue of ζζζ(s).

Theorem 1.1.3. Let n and m be odd positive integers such that n ≡
m �≡ −1 mod (p− 1). Then the rational numbers ζζζ(−n) and ζζζ(−m) are
p-integral, and

ζζζ(−n) ≡ ζζζ(−m) mod p.

1.2 Herbrand-Ribet Theorem

The beginning of the deeper understanding of Kummer’s criterion for
irregularity comes from considering the action of the Galois group � on
C. After some work in this direction by both Kummer and Stickelberger,
Herbrand considered the following specific refinement of Kummer’s cri-
terion. Let V = C/Cp, which is a finite dimensional vector space over
the field Fp, on which the Galois group � acts in a natural fashion. This
action is semi-simple, because the order of � is prime to p. It is there-
fore natural to ask which of the characters θn, where n = 1, . . . , p − 1,
occur in V, and what is their multiplicity when they do occur? The
theorem below, first established by Herbrand in one direction [He], and
by Ribet [Ri] in the other, is today one of the important consequences
of the main conjecture for the field F .
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Theorem 1.2.1. Assume that n is an odd integer with 3 ≤ n ≤ p − 2.
Then θn occurs in V = C/Cp if and only if p divides the numerator of
ζζζ(n + 1 − p).

Note that Theorem 1.2.1 says nothing about the occurrence in V of θn

for even integers n. In fact, no prime number p has ever been found for
which an even power of θ does occur in V, and Vandiver’s conjecture
asserts that no such p exists. As we shall explain later, the main con-
jecture itself would be an easy consequence of a theorem of Iwasawa if
Vandiver’s conjecture were true. However, as far as we know, the main
conjecture itself implies nothing in the direction of Vandiver’s conjec-
ture. Thus it is perhaps fair to say that Vandiver’s conjecture seems
inaccessible in our present state of knowledge, although it has been
verified for all p less than 12,000,000 in [BCEMS].

Here are some numerical examples of Theorem 1.2.1. For the irreg-
ular primes p = 37, 59, 67, 101, 103, 131, 149, V has dimension 1 over
Fp. For the next irregular prime, namely p = 157, V has dimension 2
over Fp, with two distinct powers of θ occurring in it. A much more
exotic example is given by p = 12613. In this example, V has dimension
4 over Fp, and 4 distinct powers of θ occur, namely

θn, with n ≡ 2077, 3213, 12111, 12305 mod 12612. (1.7)

In fact, the decomposition of V into eigenspaces for the action of � is
completely determined for all p less than 12,000,000 in [BCEMS]. For
such p, the characters which occur always have multiplicity 1, and the
largest dimension of V is 7.

1.3 The Cyclotomic Tower

Iwasawa’s great insight was that one could go much further in explain-
ing the above links by undertaking a seemingly more complicated study
of the infinite tower of fields generated over Q by all p-power roots of
unity. Although on the face of it, this will lead us to more elaborate
and inaccessible arithmetic objects, the great benefit is that these ob-
jects are endowed with a natural action of the Galois group of the
field generated over Q by all p-power roots of unity, which in the end
can explain more easily and completely their relationship to the p-adic
analogue of ζζζ(s).

Let n be a natural number, and write µpn+1 (respectively, µp∞) for
the group of all pn+1-th (resp. all p-power) roots of unity in some fixed
algebraic closure of Q. We define
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Fn = Q(µpn+1), F∞ = Q(µp∞), (1.8)

and let
Fn = Q(µpn+1)+, F∞ = Q(µp∞)+ (1.9)

be their respective maximal totally real subfields (i.e. the fixed fields of
the element induced by complex conjugation in their respective Galois
groups over Q). We write

G = Gal(F∞/Q), G = Gal(F∞/Q) (1.10)

for the corresponding Galois groups over Q. The action of G on µp∞

defines an injection

χ : G −→Z
×
p = Aut(µp∞) (1.11)

which is an isomorphism by the irreducibility of the cyclotomic equa-
tion. In particular, both G and G are abelian. Let L∞ (resp. L∞) be
the maximal abelian p-extension of F∞ (resp. F∞) which is unramified
everywhere. Note that, since p is always assumed to be odd, there is
never any ramification of the primes at infinity in a p-extension. Put

Y∞ = Gal(L∞/F∞), Y∞ = Gal(L∞/F∞). (1.12)

Since Y∞ (resp. Y∞) is abelian, the Galois group G (resp. G) acts on
it by inner automorphisms as follows. If σ is an element of G (resp.
G), pick any lifting σ̃ to the Galois group of L∞ (resp. L∞) over Q,
and define σ.y = σ̃yσ̃−1 for y in Y∞ (resp. Y∞). We remark that this
is a very typical example of such a Galois action occurring in Iwasawa
theory, and below we shall encounter another example of this kind.

The Iwasawa algebras of G and G (see Appendix) are defined by

Λ(G) = lim
←−

Zp[G/H], Λ(G) = lim
←−

Zp[G/H],

where H (resp. H) runs over the open subgroups of G (resp. G). Since
Y∞ (resp. Y∞) is by construction a compact Zp-module, the G-action
(resp. G-action) on it extends by continuity and linearity to an action of
the whole Iwasawa algebra Λ(G) (resp. Λ(G)) (see Appendix). Standard
arguments in Iwasawa theory show that Y∞ (resp. Y∞) is a finitely
generated torsion module over Λ(G) (resp. Λ(G)).

We digress briefly here to point out that the two Iwasawa modules
Y∞ and Y∞ have a very different nature arithmetically. In fact, Y∞ = 0
if Vandiver’s conjecture is true for p (and hence, in particular, for all
p < 12, 000, 000). However, Y∞ has positive Zp-rank precisely when
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the prime p is irregular. In addition, an important theorem of Ferrero-
Washington [Fe-W] shows that both Y∞ and Y∞ are always finitely
generated Zp-modules. Let J = {1, ι} be the subgroup of G fixing F∞.
Since p is odd, there is a decomposition

Y∞ = Y+
∞ ⊕ Y−

∞ (1.13)

as Λ(G)-modules, where the complex conjugation ι acts on the first di-
rect summand by +1 and on the second by −1. In fact, it is easily seen
that the natural surjection from Y∞ onto Y∞ induces an isomorphism
from Y+

∞ onto Y∞. Even after taking this decomposition, the discrep-
ancies between these two modules continue. For example, it is known
that Y−

∞ is a free finitely generated Zp-module. On the other hand, it is
an important unsolved problem about the tower of fields F∞, whether
or not Y∞ has any non-zero finite submodule which is stable under the
action of G. In fact, as we shall see in Chapters 4 and 6, the maximal
finite G-submodule of Y∞ plays an important role in the completion of
the proof of the main conjecture using Euler systems. One of the beau-
ties of the main conjecture is that it can be proven for all p, irrespective
of knowing the answers to these finer questions.

1.4 The Main Conjecture

The main conjecture could in fact be stated in terms of the Λ(G)-module
Y−
∞ of the previous section. However, because of the method of proof

that we shall follow, it is more natural to work with an equivalent
version in terms of a different Iwasawa module. For this reason, we
consider larger abelian extensions of the fields F∞ and F∞. Let M∞
(resp. M∞) be the maximal abelian p-extension of F∞ (resp. F∞) which
is unramified outside the unique prime above p in F∞ (resp. F∞). We
write

X∞ = Gal(M∞/F∞), X∞ = Gal(M∞/F∞). (1.14)

In an entirely similar manner to that described earlier, G (resp. G)
acts on X∞ (resp. X∞) via inner automorphisms, making it a module
over Λ(G) (resp. over Λ(G)). While both these modules are finitely
generated over the respective Iwasawa algebras, the module X∞ is not
Λ(G)-torsion whereas X∞ is Λ(G)-torsion by the following important
theorem due to Iwasawa [Iw4].

Theorem 1.4.1. The module X∞ is a finitely generated torsion Λ(G)-
module.
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Before stating the Main Conjecture, whose formulation requires
some results from the structure theory of Λ(G)-modules, it is perhaps
interesting to again digress and note (although neither fact is needed
for the version given below), that the theorem of Ferrero-Washington
[Fe-W] implies that X∞ is a finitely generated Zp-module, and that a
theorem of Iwasawa [Iw4] implies that X∞ has no non-zero Zp-torsion
(see Proposition 4.7.2). Thus X∞ is a free finitely generated Zp-module,
on which the group G, which is topologically generated by one element,
is acting continuously. One could then take the characteristic polyno-
mial of some topological generator of G acting on X∞ as a generator of
the characteristic ideal of X∞. However, we shall work without assum-
ing these stronger results, and simply recall that the structure theory
of finitely generated torsion Λ(G)-modules (see Appendix) implies that
for each such module N , there is an exact sequence of Λ(G)-modules

0−→
r⊕

i=1

Λ(G)
Λ(G)fi

−→ N −→D−→ 0,

where fi (i = 1, · · · , r) is a non-zero divisor, and D is finite. Then the
characteristic ideal of N , which we denote by chG(N), is defined to be
the ideal of Λ(G) generated by the product f1 . . . fr.

It is at first utterly surprising that, as we now explain, there is a
generator of chG(X∞) which is intimately related to the Riemann zeta
function. We owe to Kubota-Leopoldt [KL] the first proof that a p-
adic analogue of ζζζ(s) exists. Iwasawa then discovered [Iw3] that this
p-adic analogue, which we denote by ζζζp, has a natural interpretation in
terms of the Iwasawa algebra Λ(G). As will be shown in Chapter 3, the
elements of Λ(G) can be viewed as Zp-valued measures on the Galois
group G. To take account of the fact that ζζζp has, like the Riemann zeta
function, a simple pole, one defines a pseudo-measure on G to be any
element µ of the ring of fractions of Λ(G) such that (g − 1)µ belongs
to Λ(G) for all g in G (see § 3.2). The integral

∫

G
ν dµ

of any non-trivial continuous homomorphism ν : G−→Z
×
p against a

pseudo-measure µ is then well-defined.

Theorem 1.4.2. There exists a unique pseudo-measure ζζζp on G such
that ∫

G
χ(g)kdζζζp = (1 − pk−1)ζζζ(1 − k)

for all even integers k ≥ 2.
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As hinted at above, ζζζp has a simple pole at the trivial character, with
residue 1 − p−1, in the following sense. Write κ for the composition of
the cyclotomic character χ with the natural projection from Z

×
p to the

multiplicative group 1 + pZp. It is clear that κ factors through G, and
that it makes sense to raise it to any power in Zp. Then it can be shown
that, if s is an element of Zp distinct from 1, we have an expansion of
the form

∫

G
κ1−sdζζζp = (1 − p−1)(s − 1)−1 + a0 + a1(s − 1) + · · · ,

where a0, a1, · · · are elements of Zp. This is closely related to the clas-
sical von-Staudt-Clausen theorem on Bernoulli numbers.

Let I(G) denote the kernel of the augmentation homomorphism
from Λ(G) to Zp. As ζζζp is a pseudo-measure, I(G)ζζζp is an ideal of
Λ(G).

Theorem 1.4.3. (Main Conjecture) We have

chG(X∞) = I(G)ζζζp.

The first complete proof was given by Mazur-Wiles [MW] using the
arithmetic of modular curves. A second proof, based on the general-
ization of Ribet’s proof of Theorem 1.2.1, was given by Wiles [W].
The goal of this book is to give what is probably the simplest proof
of this theorem, which proceeds along the following lines. We first es-
tablish Iwasawa’s theorem (see the next section) for a Λ(G)-module
closely related to X∞, and then use arguments from Euler systems due
to Kolyvagin, Rubin and Thaine [Ko], [Ru3], [Th], to show that the
discrepancy between these two modules does not alter their character-
istic ideals. In fact, this discrepancy is zero for all known numerical
examples, including all p < 12, 000, 000.

1.5 Iwasawa’s Theorem

The genesis of the main conjecture is Iwasawa’s paper [Iw2], and his
important theorem below arises from combining the results of this pa-
per with his construction of ζζζp in [Iw3]. For each n ≥ 0, consider now
the local field

Kn = Qp(µpn+1)+. (1.15)
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We write U1
n for the group of units of Kn, which are ≡ 1 mod pn, where

pn is the maximal ideal of the ring of integers of Kn. Let Dn be the
group of cyclotomic units of Fn. Thus Dn is generated by all Galois
conjugates of

± ζ
−e/2
n − ζ

e/2
n

ζ
−1/2
n − ζ

1/2
n

where ζn denotes a primitive pn+1-th root of unity, and e is a primitive
root modulo p such that ep−1 �≡ 1 mod p2. We define D1

n to be the
subgroup of all elements of Dn which are ≡ 1 mod pn. Finally, let

C1
n = D

1
n

be the closure of D1
n in U1

n with respect to the pn-adic topology. Define

U1
∞ = lim

←−
U1

n, C1
∞ = lim

←−
C1

n, (1.16)

where the projective limits are taken with respect to the norm maps.
Of course, the group G acts continuously on both these Zp-modules,
endowing them with an action of Λ(G). Iwasawa’s theorem is the
following:-

Theorem 1.5.1. The Λ(G)-module U1
∞/C1

∞ is canonically isomorphic
to Λ(G)/I(G) ·ζζζp, where ζζζp is the p-adic zeta function, and I(G) is the
augmentation ideal.

We shall give a very elementary proof of this theorem, different from
Iwasawa’s (see Theorem 4.4.1), which does not even use local class
field theory. This proof was discovered by Wiles and one of us [CW2]
when studying the analogous theorem for elliptic curves with complex
multiplication. However, we follow Coleman’s beautiful proof [Co] of the
existence of the interpolating power series lying behind this approach,
rather than using the ad hoc method of [CW2].

The comparison between the Galois group X∞ and the module
U1
∞/C1

∞ is provided by class field theory. Let V 1
n be the group of units

of the ring of integers of Fn which are ≡ 1 mod pn, and define

E1
n = V

1
n, E1

∞ = lim
←−

E1
n (1.17)

where the closure in U1
n is again taken with respect to the p-adic topol-

ogy and the projective limit is taken with respect to the norm maps.
As we explain in more detail in § 4.5, the Artin map of global class field
theory gives a canonical Λ(G)-isomorphism
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Gal(M∞/L∞) � U1
∞/E1

∞.

Thus we have the four term exact sequence of Λ(G)-modules

0−→E1
∞/C1

∞−→U1
∞/C1

∞−→X∞−→Y∞−→ 0, (1.18)

all of which are finitely generated torsion modules. But the character-
istic ideal is multiplicative in exact sequences (see Appendix). Hence,
granted Iwasawa’s theorem, we have the following result.

Proposition 1.5.2. The main conjecture is true if and only if
chG(Y∞) = chG(E1

∞/C1
∞).

Of course, this last proposition does not involve the p-adic zeta function
ζζζp, and is only of real interest when combined with Iwasawa’s theorem
via the exact sequence (1.18). The proof of Proposition 1.5.2 using
Euler systems is given in Chapters 4 and 5, and broadly follows Rubin’s
generalization of the method discovered by Kolyvagin and Thaine. It is
striking that this proof largely uses ideas already known to Kummer,
combined with global class field theory.

We end this chapter by making some brief remarks about appli-
cations of the main conjecture. However, we omit detailed proofs in
this book because these applications are dealt with rather fully in the
literature, and also because some of them involve higher K-theory.

We first explain why Kummer’s criterion for irregularity is a conse-
quence of the main conjecture. Using an important result of Iwasawa
(see Proposition 4.7.2), which asserts that X∞ has no non-zero finite
Λ(G)-submodule, it follows easily from the main conjecture and the
structure theory of finitely generated torsion Λ(G)-modules (see
Appendix), that

I(G)ζζζp = Λ(G) (1.19)

if and only if

X∞ = 0. (1.20)

However, we claim that (1.19) is equivalent to the assertion that all of
the values

ζζζ(−1), ζζζ(−3), · · · , ζζζ(4 − p) (1.21)

are p-adic units. Indeed, as is explained in the Appendix (see (A2)), for
any finitely generated torsion Λ(G)-module M , we have a decomposition
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M =
⊕

i mod p−1
2

M (i),

where M (i) denotes the submodule of M on which G(F0/Q) acts via
θ2i. As was mentioned earlier (see the discussion after Theorem 1.4.2),
ζζζp has a simple pole with residue 1− p−1 at the trivial character, from
which it follows easily that

(I(G)ζζζp)(0) = Λ(G)(0).

On the other hand, taking i to be any of 1, · · · , (p−3)/2, and combining
Theorem 1.4.2 with Lemma 3.6.2, we see that

(I(G)ζζζp)(i) = Λ(G)(i)

if and only if p does not divide the numerator of ζζζ(1−2i). In particular,
it follows that (1.19) is valid if and only if all the values in (1.21) are
p-adic units.

Next, we must relate (1.20) to the ideal class group of the field
F0 = Q(µp). For each n ≥ 0, let An denote the p-primary part of the
ideal class group of Fn and define

A∞ = lim
−→

An,

where the inductive limit is taken with respect to the natural maps
coming from the inclusion of fields. As always, we write A−

∞ for the
submodule of A∞ on which complex conjugation acts by −1. To relate
X∞ to A−

∞, we invoke the following isomorphism coming from multi-
plicative Kummer theory (see, for example, [C1]). There is a canonical
G-isomorphism

A−
∞ = Hom(X∞, µp∞). (1.22)

Moreover, it is known that the natural map from A−
n to A−

∞ is injective
and induces an isomorphism

A−
n � (A−

∞)Γn

for all n ≥ 0, where Γn = Gal(F∞/Fn) [Iw1]. But, for any discrete
p-primary Γ0-module N , NΓ0 = 0 if and only if N = 0. In view of these
remarks, we see that

A−
0 �= 0 if and only if X∞ �= 0. (1.23)

To complete the proof of Kummer’s criterion given in Theorem 1.2.1,
one has to prove the stronger statement that A0 �= 0 if and only if
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X∞ �= 0. One direction is proved by (1.23). Conversely, assume that
A+

0 �= 0, or equivalently that p divides the class number of F0. Thus,
writing L0 for the p-Hilbert class field of F0, we have L0 �= F0, and
so L0F∞ �= F∞ because F∞/F0 is totally ramified at the unique prime
above p. But clearly, L0F∞ is contained in M∞, and so X∞ �= 0 as
required. A slight refinement of this argument, in which one considers
eigenspaces for the action of the subgroup � of G of order p−1 on these
modules, enables one to prove the Herbrand-Ribet Theorem 1.2.1.

Finally, the applications to K-theory arise from the fact that the
higher K-groups of the rings of integers of finite extensions of Q con-
tained in F∞ can be related to the module A−

∞ twisted by positive
powers of the cyclotomic character χ of G.



2

Local Units

2.1 Introduction

The aim of this chapter will be to study various aspects of the local
units at the prime above p of the cyclotomic tower F∞ = Q(µp∞), with
a view to preparing the ground for the proof of Iwasawa’s theorem
(Theorem 4.4.1) in Chapter 4. In fact, these local results are interest-
ing in their own right, and have connexions with the theory of Fontaine
and the K-theory of group rings, see for example [F], [O], [BM]. Our
basic tool will be the construction of canonical interpolation series for
norm compatible systems of elements in the tower F∞. These interpo-
lation series were discovered in the course of the work [CW] by Wiles
and one of us, the original proof there being rather ad hoc. Almost
immediately, Coleman [Co] found a beautiful conceptual proof, which
is valid for arbitrary Lubin-Tate groups. We will give Coleman’s proof
for the formal multiplicative group in this chapter. We will also discuss
the p-adic logarithmic derivatives of these norm compatible systems,
which are also defined in [CW] but have their antecedents in the work
of Kummer and Takagi (see [H] for a brief account), and which are
important for the construction of the p-adic zeta function.

Let n be a natural number, and define Kn = Qp(µpn+1), where we
recall that µpn+1 denotes the group of pn+1-th roots of unity. Write Un

for the multiplicative group of units of the ring of integers of Kn. We
fix for the rest of this chapter a generator ζn of µpn+1 , with the property
that ζp

n+1 = ζn for all n ≥ 0, and put

πn = ζn − 1.

Thus (ζn) is a generator of the free Zp-module of rank 1 defined by

Tp(µ) = lim
←−

µpn+1 ,
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where the transition maps are given by raising to the p-th power. More-
over, πn is a local parameter for Kn. Given any z in Un, there is therefore
a power series f(T ) in the ring R = Zp[[T ]] of formal power series in
the variable T with coefficients in Zp such that f(πn) = z. From the
very early days of the theory of cyclotomic fields, mathematicians tried
to exploit this fact to define a derivative of z by differentiating the
formal power series f(T ) with respect to T . The problem is that f(T )
is in no way uniquely determined by z, and one only obtains a weak
notion of the derivative because of this lack of uniqueness. It was real-
ized in [CW] that this difficulty could be overcome by considering all
n simultaneously.

Denote the norm map from the multiplicative group of Kn to Km

by Nn,m when n ≥ m; plainly Nn,n−1 maps Un into Un−1.

Definition 2.1.1. We define U∞ = lim
←−

Un, where the projective limit
is taken with respect to the norm maps.

The goal of this chapter is to prove the following theorem.

Theorem 2.1.2. For each u = (un) in U∞, there exists a unique fu(T )
in R such that fu(πn) = un for all n ≥ 0.

The following classical example originally suggested the above gen-
eral theorem. Let a and b be non-zero integers which are relatively
prime to p, and define

u = (un), where un =
ζ
−a/2
n − ζ

a/2
n

ζ
−b/2
n − ζ

b/2
n

.

It is an easy classical exercise to see that un is a unit in Fn such that
Nn,m(un) = um for all n ≥ m. Moreover, the power series

wk(T ) =
(1 + T )−k/2 − (1 + T )k/2

T

is a unit in R whenever (k, p) = 1. Hence the power series

fu(T ) = wa(T )/wb(T )

belongs to R, and satisfies fu(πn) = un, proving in this special case the
existence of the power series as in the above theorem.

In fact, the uniqueness of the power series fu(T ) in Theorem 2.1.2
is immediate from the Weierstrass preparation theorem [Bou, Chapter
VII], which we now recall. A polynomial g(T ) in Zp[T ] is defined to be
distinguished if it is monic and all its lower coefficients belong to pZp.
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Theorem 2.1.3. Each f(T ) in R can be written uniquely in the form
f(T ) = pmg(T )w(T ), where m is a non-negative integer, g(T ) is a
distinguished polynomial, and w(T ) is a unit in R.

Note that a power series f(T ) in R converges on the maximal ideal of
the ring of integers of the algebraic closure of Qp. As a unit in R clearly
has no zeroes, it follows from the Weierstrass preparation theorem that
each power series in R has only a finite number of zeroes in the maximal
ideal of the ring of integers of the algebraic closure of Qp.

2.2 Norm and Trace Operators

In his proof of Theorem 2.1.2, Coleman introduced some interesting
new operators on the ring R, which we now explain. We remark that
these operators have subsequently been vastly generalized in Fontaine’s
theory of (ϕ, Γ)-modules [F]. From now on, the ring R is endowed
with the topology defined by the powers of the maximal ideal m= (p, T ).

Definition 2.2.1. For f in R, we define ϕ(f)(T ) = f((1 + T )p − 1).

Clearly ϕ is a Zp-algebra endomorphism of R.

Lemma 2.2.2. The map ϕ is injective.

Proof. We need only remark that if h(T ) = anTn + · · · with an �= 0,
then ϕ(h)(T ) = pnanTn + · · · , which is clearly non-zero. 	


We note that if ξ belongs to µp and f(T ) =
∑∞

n=0 anTn, it is easily
seen that f(ξ(1 + T ) − 1) =

∑∞
n=0 an(ξ(1 + T ) − 1)n converges to an

element of O[[T ]], where O is the ring of integers of Qp(µp). Recall that
R× is the group of units of R.

Proposition 2.2.3. There exist unique continuous maps

N : R−→R, ψ : R−→R

such that
(ϕ ◦ N)(f)(T ) =

∏

ξ∈µp

f(ξ(1 + T ) − 1), (2.1)

(ϕ ◦ ψ)(f)(T ) =
1
p
·
∑

ξ∈µp

f(ξ(1 + T ) − 1). (2.2)

Moreover, ψ is a Zp-module homomorphism, ψ ◦ ϕ = 1R, and N

preserves products. In particular, N maps R× to itself.
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In fact, the uniqueness of N and ψ is plain from the injectivity of
ϕ. To prove the existence, we shall need the following lemma.

Lemma 2.2.4. The image of ϕ consists of all power series h(T ) in R
satisfying

h(ξ(1 + T ) − 1) = h(T ) for all ξ in µp. (2.3)

Proof. It is clear that every power series in ϕ(R) satisfies (2.3). Con-
versely, let h(T ) be any element of R satisfying (2.3). Since h(ξ − 1)−
h(0) = 0 for all ξ in µp, the Weierstrass preparation theorem shows
that

h(T ) − h(0) = ϕ(T )h1(T )

for some h1(T ) in R. Let n be any integer ≥ 1. Assume that we have
already found a0, · · · , an−1 in Zp such that

h(T ) =
n−1∑

i=0

aiϕ(T )i + ϕ(T )nhn(T ) (2.4)

with hn(T ) in R. Clearly, we again have that hn(ξ(1+T )−1) = hn(T ),
whence, applying the earlier observation with h(T ) replaced by hn(T ),
it follows that assertion (2.4) also holds for n + 1. By induction, the
proof of the lemma is complete. 	


Let us first use this lemma to prove the existence of the operator
N. Given f in R, define h(T ) =

∏
ξ∈µp

f(ξ(1 + T )− 1), which is clearly
also in R. Clearly h(T ) = h(ξ(1 + T )− 1) for all ξ in µp, and so by the
above lemma h(T ) = ϕ(g(T )) for some g(T ) in R. Thus we can take
N(f) = g. The existence of the operator ψ is a little more complicated
because of the factor 1/p. We define

r(T ) =
∑

ξ∈µp

f(ξ(1 + T ) − 1).

It is clear that r(T ) belongs to R, and we must show that

r(T ) = p · s(T )

for some s(T ) in R. Let p0 be the maximal ideal of the ring of integers
of Qp(µp). Since for each ξ in µp, we have

ξ(1 + T ) − 1 ≡ T mod p0R,

it follows that r(T ) must indeed belong to pR, as claimed above. Again,
it is then clear that s(ξ(1 + T ) − 1) = s(T ) for all ξ in µp and so
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s(T ) = ϕ(q(T )) for some q(T ) in R. We can therefore define ψ(f) = q.
It is clear that ψ ◦ ϕ = 1R. The final assertions of the proposition are
then clear and hence the proof of the proposition is complete. 	


Lemma 2.2.5. We have N(T ) = T . For all integers n ≥ 1, we have

ψ

(
ϕ(T )n ·

(
1 + T

T

))
= Tn ·

(
1 + T

T

)
.

Proof. The first assertion is clear from the injectivity of ϕ and the
identity

ϕ(T ) =
∏

ξ∈µp

(ξ(1 + T ) − 1).

Taking the logarithmic derivative with respect to T of both sides of this
identity, and then multiplying both sides by (1 + T )ϕ(T )n, we obtain
the new identity

ϕ

(
Tn ·

(
1 + T

T

))
=

1
p

∑

ξ∈µp

h(ξ(1 + T ) − 1),

where
h(T ) =

1 + T

T
· ϕ(T )n.

Since ϕ is injective, the second assertion of the lemma is now clear from
Proposition 2.2.3. 	


2.3 Interpolating Power Series

The aim of this section is to give Coleman’s proof of Theorem 2.1.2. The
essential idea is to look for units f in R with N(f) = f . Indeed, if f is in
R×, then it is plain that f(πn) belongs to Un for all n ≥ 0. In addition,
as N(f) = f , these values are norm compatible, for the following reason.
The minimal equation of ζn over Kn−1 is Xp − ζn−1 = 0, and thus

Nn,n−1 f(ζn − 1) =
∏

ξ∈µp

f(ξζn − 1). (2.5)

On the other hand, the equation N(f) = f can be rewritten, by virtue
of (2.1) as

ϕ(f)(T ) =
∏

ξ∈µp

f(ξ(1 + T ) − 1).

Since, by definition, ϕ(f)(πn) = f(πn−1), it follows from the above
displayed formula that the right hand side of (2.5) is indeed equal to
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f(πn−1). We now turn to the harder part of the proof, which is to show
that all elements of U∞ are obtained in this manner.

The natural way to find fixed points of the operator N acting on the
group R× of units of R is to show that, for any unit f in R, the limit
of the sequence of Nk(f) always exists in R as k tends to infinity. This
will be shown now via a sequence of lemmas.

Lemma 2.3.1. Assume f is in R and let k ≥ 0 be an integer. If
ϕ(f)(T ) ≡ 1 mod pkR, then f(T ) ≡ 1 mod pkR.

Proof. Write

f(T ) − 1 =

( ∞∑

n=0

anTn

)
pm

where not all of the an are divisible by p and m ≥ 0 is an integer. Let
r be the smallest integer such that p � ar. We have

ϕ(f)(T ) − 1 = pmh(T ), where h(T ) =
∞∑

n=0

anϕ(T )n.

Now ϕ(T ) ≡ T p mod pR, and so we have

h(T ) ≡ arT
pr + · · ·mod pR.

Hence, as p � ar, h(T ) is not in pR, and so our hypothesis implies that
m ≥ k. 	


Lemma 2.3.2. Assume f ∈ R×. Then N(f) ≡ f mod pR. If we
assume further that f ≡ 1 mod pmR for some integer m ≥ 1, then
N(f) ≡ 1 mod pm+1R.

Proof. Let p0 be the maximal ideal of the ring of integers of Qp(µp).
Suppose that f ≡ 1 mod pkR, for some integer k ≥ 0. In other words,
if f(T ) =

∑∞
n=0 anTn, we have a0 ≡ 1 mod pk and an ≡ 0 mod pk

for n ≥ 1. Since for each ξ in µp, we have

ξ(1 + T ) − 1 ≡ T mod p0R,

it follows that

f(ξ(1 + T ) − 1) ≡ f(T ) mod p0p
kR.
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Thus

ϕ(N(f)) =
∏

ξ∈µp

f(ξ(1 + T ) − 1) ≡ f(T )p mod pk+1R. (2.6)

Assume first that k ≥ 1. Then plainly, f(T )p ≡ 1 mod pk+1R and the
assertion of the lemma follows from Lemma 2.3.1. If k = 0, we note
that

f(T )p ≡ f(T p) ≡ ϕ(f)(T ) mod pR.

Thus again the conclusion of the lemma follows from Lemma 2.3.1. 	

Corollary 2.3.3. Assume f is in R×, and let k2 ≥ k1 ≥ 0. Then
Nk2(f) ≡ Nk1(f) mod pk1+1R.

Proof. To establish the Corollary, note that Nk2−k1(f)/f ≡ 1 mod pR
by Lemma 2.3.2. Applying Nk1 to both sides, the corollary follows from
the second assertion of the same lemma. 	

Corollary 2.3.4. If f is any element of R×, then g = lim

k−→∞
Nk(f)

exists in R× and N(g) = g.

Proof. The ring R is complete in the topology defined by the powers
of the maximal ideal m = (p, T ), whence the assertion is clear from the
previous corollary. 	


Now we can at last prove Theorem 2.1.2. Let u be any element of
U∞. For each n ≥ 0, choose fn in R× such that fn(πn) = un, and
consider the sequence {gn} in R where gn(T ) = Nnf2n(T ). Since R is
compact with respect to its topology, this sequence has at least one
limit point which we denote by h(T ). The following lemma shows that
h(T ) satisfies h(πn) = un for all n ≥ 0, whence h(T ) can be taken to
be fu(T ), thereby completing the proof of Theorem 2.1.2.

Lemma 2.3.5. For all n ≥ 0, and all m ≥ n, we have
gm(πn) ≡ un mod pm+1. In particular, lim

m−→∞
gm(πn) = un.

Proof. Since un−1 = Nn,n−1(un), we conclude that un−1 = (Nfn)(πn−1).
Repeating this k times for 1 ≤ k ≤ n, we find

un−k = Nn,n−k(fn(πn)) = (Nkfn)(πn−k).

Suppose now that m ≥ n. We obtain

un = (N2m−nf2m)(πn).
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But by Corollary 2.3.3, we have

N2m−nf2m ≡ Nmf2m mod pm+1R.

Evaluating both sides of this congruence at πn, we therefore conclude
that un ≡ gm(πn) mod pm+1R. 	


We end this section by introducing an action of G = Gal(K∞/Qp)
where K∞ = Qp(µp∞), on the ring R. Recall that

χ : G −→Z
×
p

is the cyclotomic character defined by σ(ζ) = ζχ(σ) for all σ ∈ G and ζ
in µp∞ . For σ in G, define

(σf)(T ) = f((1 + T )χ(σ) − 1) (f ∈ R). (2.7)

This gives a group action of G on the ring R which maps R× to itself.
Further, it is clear that ϕ(σf) = σ(ϕf) for all σ in G and f in R, and
that this action of G commutes with the operator N and ψ.

Definition 2.3.6. We define W to be the set of all elements f in R×

such that N(f) = f.

The following corollary is immediate from our proof of Theorem
2.1.2.

Corollary 2.3.7. The map u 
→ fu(T ) defines a G-isomorphism from
U∞ onto W .

2.4 The Logarithmic Derivative

The aim of this section is to study some delicate properties of logarith-
mic differentiation, which relates the multiplicative unit group R× to
the additive group of R.

Lemma 2.4.1. We have (1 − ϕ)R = TR.

Proof. The inclusion of (1−ϕ)R in TR is plain. Conversely, if h is any
element of TR, let us show that it lies in (1 − ϕ)R. For each n ≥ 0,
we define ωn(T ) = (1 + T )pn − 1. As this is a distinguished polynomial
of degree pn, the division lemma part of the Weierstrass preparation
theorem [Bou] shows that we can write

h = hn + ωnrn,
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where hn is a polynomial in Zp[T ] of degree less than pn, and rn is an
element of R. Define

ln =
n−1∑

i=0

ϕi(hn−i).

Clearly, we have
ln+1 − ϕ(ln) = hn+1.

Since hn+1 converges to h in R, it suffices to show that ln converges
to some l in R, because then we would have h = (1 − ϕ)l. Now, for
k = 1, · · · , n, we have

ϕn−k(h) = ϕn−k(hk) + ωnϕn−k(rk).

Adding these equations for k = 1, · · · , n, we obtain the identity

n∑

i=0

ϕi(h) = ln + ωnsn,

for some sn in R. As h is in TR, it is clear that the sum on the left
hand side converges, as n tends to infinity. This completes the proof of
the lemma. 	


Definition 2.4.2. We define the following subsets of R:-

Rψ=1 = {f ∈ R : ψ(f) = f}; Rψ=0 = {f ∈ R : ψ(f) = 0}.

Lemma 2.4.3. There exists an exact sequence

0−→Zp −→Rψ=1 θ−→ Rψ=0 −→Zp −→ 0, (2.8)

where θ(f) = (1 − ϕ)(f), and where the map on the left is the natural
inclusion, while the map on the right is evaluation at T = 0.

Proof. Note first that θ maps Rψ=1 to Rψ=0 because ψ ◦ ϕ is the
identity map on R. It is also clear that the image of Zp is contained in
the kernel of θ, and that the image of θ is contained in the kernel of
the map on the right. Also, the map on the right is surjective, since, for
example, 1 + T belongs to Rψ=0 (as follows easily, for example, from
Proposition 2.2.3). By Lemma 2.4.1, the ideal TR is the image of θ.
Hence we need only show exactness at Rψ=1, and, as remarked earlier,
Zp lies in the kernel of θ. If f(T ) is not in Zp, it will be of the form

f(T ) = b0 + brT
r + · · · , where br �= 0.
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But then
ϕ(f(T )) = b0 + prbrT

r + · · · ,

and so clearly ϕ(f) �= f , and the proof of the lemma is complete. 	


Recall that W denotes the subset of R× consisting of all units f such
that N(f) = f . We now discuss the relationship between W and the
subset Rψ=1 of the additive group of R. Denote the formal derivative
with respect to T of any f(T ) in R by f ′(T ).

Definition 2.4.4. For f in R×, define

∆(f) = (1 + T )
f ′(T )
f(T )

.

It is clear that ∆ is a group homomorphism from R× to the additive
group of R.

Lemma 2.4.5. We have ∆(W ) ⊂ Rψ=1. Further, the kernel of ∆ on
W is the group µp−1 of the (p − 1)-th roots of unity.

Proof. Let f be in W . Recalling that ϕ(f)(T ) = f((1 + T )p − 1) and
applying ∆ to the equation

ϕ(f) =
∏

ξ∈µp

f(ξ(1 + T ) − 1),

we obtain immediately that ψ(∆(f)) = ∆(f). The final assertion of the
lemma is obvious. 	


In fact, the following stronger result is true, but its proof is subtle
and non-trivial.

Theorem 2.4.6. We have ∆(W ) = Rψ=1.

The strategy of the proof is to use reduction modulo p. Let

Ω = R/pR = Fp[[T ]], (2.9)

and let x 
→ x̃ be the reduction map. If Y is any subset of R, then we
denote by Ỹ its image in Ω under the reduction map.

Lemma 2.4.7. If ∆̃(W ) = R̃ψ=1, then ∆(W ) = Rψ=1.
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Proof. Assume that the reductions of ∆(W ) and Rψ=1 do coincide, and

take any g in Rψ=1. Hence there exists h1 in W such that ∆̃(h1) = g̃.
This implies that ∆(h1) − g = pg2 for some g2 in R, and again we
have that ψ(g2) = g2. Repeating this argument, we conclude that there
exists h2 in W such that ∆(h2) − g2 = pg3, with g3 in W . Note that
since ∆(a) = 0 for all a in Z

×
p , it can be assumed, by multiplying by an

appropriate (p − 1)-th root of unity, that h1, h2, · · ·, all have constant
term which is congruent to 1 modulo p. But clearly,

∆
(

h1

hp
2

)
= g − p2g3,

and, continuing in this manner, we get a sequence of elements h1, h1/
hp

2, · · · . of W which converges to h in W with ∆(h) = g. 	


Lemma 2.4.8. We have W̃ = Ω×.

Proof. If x is any element of Ω×, we can find f in R× such that f̃ = x.
But by Corollary 2.3.4, g = lim

k−→∞
Nk(f) exists in R×, and N(g) = g.

On the other hand, by Corollary 2.3.3, Nk(f) ≡ f mod pR for all
k ≥ 1, and hence g̃ = f̃ , thereby proving the lemma. 	


The delicate part of the proof of Theorem 2.4.6 is to determine
R̃ψ=1. To this end, consider the map

∂ : Ω×−→Ω

defined by ∂(g) = T · g′(T )/g(T ).

Lemma 2.4.9. We have R̃ψ=1 =
(

1+T
T

)
∂(Ω×).

Let us first remark that Theorem 2.4.6 plainly follows from the above
three lemmas on noting that for f in R×, we have ∆̃(f) = (1+T )/T ·∂f̃ .

We begin the proof of Lemma 2.4.9. We first need the following
result:-

Lemma 2.4.10. We have ∂(Ω×) = Φ, where Φ = {f =
∑∞

n=1 anTn :
an = anp} for all n ≥ 1.

Let Θ be the subset of Ω consisting of all series of the form f =∑∞
n=1 anTn with an = 0 for all n with (n, p) = 1.
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Corollary 2.4.11. We have TΩ = ∂(Ω×) + Θ.

To deduce the corollary, take any power series g =
∑∞

n=1 bnTn in
TΩ, and define

h =
∞∑

m=1
(m,p)=1

bm

∞∑

k=0

Tmpk

.

It is plain that g − h belongs to Θ, and by the above lemma, h is in Φ.

Proof of Lemma 2.4.10. Let us first note that every element f(T ) in
Ω× can be written as a convergent infinite product

f(T ) = a
∞∏

n=1

(1 − anTn)

where a is non-zero, and all an are in Fp. Recall that this is proven by
the usual inductive argument as follows. We can assume that a = 1,
and that f(T ) is of the form

f(T ) = 1 + crT
r + · · · .

Then one sees that

f(T )(1 + crT
r)−1 = 1 + dr+1T

r+1 + · · · ,

for some dr+1 in Fp, and we continue in this manner. In view of this
infinite product expansion, to prove that ∂(Ω×) is contained in Φ, it
suffices to show that ∂(1 − akT

k) is contained in Φ for all k ≥ 1. But
this is easily seen to be true from the explicit formula

∂(1 − akT
k) = −k

∞∑

m=1

am
k Tmk.

Conversely, suppose that h =
∑∞

n=1 dnTn is any element of Φ. We
claim that, for each integer m ≥ 1, there exist elements e1, · · · , em−1

in Fp such that

hm = h − ∂(1 − e1T ) − · · · − ∂(1 − em−1T
m−1)

belongs to TmΩ. We prove this by induction, it being trivially true for
m = 1. Assume it is true for m, and write

hm = dmTm + · · · .
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If dm = 0, we simply take em = 0. Suppose now that dm �= 0. As hm

belongs to Φ (because h does), it follows that necessarily (m, p) = 1.
Thus we can solve in Fp the linear equation

mem = −dm.

Since
∂(1 − emTm) = dmTm + · · · ,

our inductive hypothesis for m + 1 has been proven. Hence, defining

g =
∞∏

n=1

(1 − enTn),

we have ∂(g) = h. This completes the proof of Lemma 2.4.10. 	


Proof of Lemma 2.4.9. As ∆(W ) ⊂ Rψ=1, it follows from Lemma 2.4.8

that ((1 + T )/T ) · ∂(Ω×) is contained in R̃ψ=1. Conversely, take any f
in Rψ=1 and let

g = f̃ , s =
(

T

T + 1

)
g.

Thus we must show that s belongs to ∂(Ω×). Now s belongs to TΩ,
and so by the above Corollary, we have

s = ∂(w) + h

where w is in Ω× and h =
∑∞

m=1 dmTmp is in Θ. Rewrite this equation as

g =
(

T + 1
T

)
∂(w) + k

where
k =

∞∑

m=1

dm

(
T + 1

T

)
Tmp.

Since ψ is Zp-linear, it induces a map ψ̃ : Ω−→Ω. Now ψ̃ fixes g

by hypothesis and ψ̃ fixes ((T + 1)/T ) ∂(w) by Lemma 2.4.8. Hence by
the above equation ψ̃(k) = k. On the other hand, for all n ≥ 1,

ϕ̃(T )n = T pn.

Therefore Lemma 2.2.5 shows that

ψ̃

(
T pn

(
1 + T

T

))
= Tn

(
1 + T

T

)
.
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Since ψ̃(k) = k, it follows that h =
∑∞

m=1 dmTm. But, if h is non-zero,
this clearly contradicts the fact that h lies in Θ. Indeed, if dm is non-
zero for some integer ≥1, then, writing m = prm′, where r ≥ 0, and
m′ is primes to p, it follows that dm′ = dm is also non-zero, which is
impossible because h lies in Θ. Hence h = 0, and thus the proof of the
lemma, and so also Theorem 2.4.6, is complete. 	


2.5 An Exact Sequence

Our goal in this section is to study a canonical map, which was first
introduced in [CW2], but which has its origin in Leopoldt’s theory of
the Γ-transform [L]. This canonical map will be the key to proving
Iwasawa’s theorem.

We define straightaway the canonical map in question.

Lemma 2.5.1. For all f in R×, the series

L(f) :=
1
p

log
(

f(T )p

ϕ(f)(T )

)
(2.10)

lies in R. If f lies in W , then L(f) lies in Rψ=0. The map
L : W −→Rψ=0 thus defined is a G-homomorphism with G acting
on W and on Rψ=0 by (2.7).

Proof. For any f in R×, we clearly have

ϕ(f) ≡ f(T )p mod pR.

Hence, writing g(T ) = f(T )p

ϕ(f)(T ) , it follows that

g(T ) = 1 + ph(T )

for some h(T ) in R. Now pn−1/n lies in Zp for all n = 1, · · · , and thus

log(g(T )) =
∞∑

n=1

(−1)n−1pnh(T )n

n

converges to an element of pR, proving that L(f) lies in R. It is clear
that L is a G-homomorphism.

We now show that L(f) lies in Rψ=0 when f is in W . Since every
element of R can be written as a product of an element in µp−1 and a
power series whose constant term is congruent to 1 modulo p, we may
clearly assume that the constant term of f is congruent to 1 modulo p.
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Hence the series log(f(T )) is a well-defined element of Qp[[T ]]. Since
f is in W , we have the equation

ϕ(f(T )) =
∏

ξ∈µp

f(ξ(1 + T ) − 1).

Taking logarithms of both sides of this equation we deduce that

log ϕ(f)(T ) =
∑

ξ∈µp

log f(ξ(1 + T ) − 1).

Hence we obtain that
∑

ξ∈µp

L(f)(ξ(1 + T ) − 1) = 0,

which shows by (2.2) that L(f) does indeed belong to Rψ=0. This
completes the proof of the lemma. 	


Let A be the subset of R× defined by

A = {ξ(1 + T )a : ξ ∈ µp−1, a ∈ Zp}.

Let D be the differential operator on R given by D(f) = (1 + T )f ′(T ).

Theorem 2.5.2. There is a canonical exact sequence of G-modules

0−→A−→W
L−→ Rψ=0 α−→ Zp −→ 0 (2.11)

where α is given by α(f) = (Df)(0).

Proof. It is clear that A ⊂ ker(L). To prove the converse, let us note
that if f(T ) is an element of R with f(0) ≡ 1 mod p and log f(T ) = 0,
then f(T ) = 1. Indeed, we can write f(T ) = bg(T ) with b ≡ 1 mod p
and g(T ) of the form

g(T ) = 1 + crT
r + · · ·

where r ≥ 1 and cr �= 0. Hence

log g(T ) = crT
r + · · · .

But log f(T ) = 0 gives

0 = log b + log g(T ),

whence it is easily seen that b = 1 and log g(T ) = 0, which contradicts
our hypothesis that cr �= 0.
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Suppose now that f(T ) is any element of ker L. Multiplying it by
a suitable element of µp−1, we may suppose that f(0) ≡ 1 mod p, and
thus the same is true for h(T ) = f(T )p/ϕ(f(T )). But then, the above
remark shows that L(f) = 0 yields h(T ) = 1. By Corollary 2.3.7, there
exists a unique u = (un) in U∞ such that f = fu and hence we have

fu((1 + T )p − 1) = fu(T )p.

This implies that up
n = un−1 for all n ≥ 1 and that fu(0) is in µp−1.

But then fu(0) = 1 since fu ≡ 1 mod p and so (un) ∈ Tp(µ). Thus
there exists a in Zp such that u = (ζn)a, whence f(T ) = (1+T )a. This
proves that ker(L) = A.

It is clear that α ◦ L = 0, and the surjectivity of α follows from
noting that ψ(1+T ) = 0 and that α(1+T ) = 1. Hence it only remains
to prove that ker(α) ⊂ Im(L), which is the delicate part of the proof
of the theorem. We have the commutative diagram

W
L−−−−→ Rψ=0

∆

⏐⏐�
⏐⏐�D

Rψ=1 θ−−−−→ Rψ=0,

recalling that θ(f) = (1 − ϕ)(f).
Note that D is clearly injective on Rψ=0. Suppose f is any element

of Rψ=0 with α(f) = 0. Define g = Df so that g is in TR by the
definition of α. Then Lemma 2.4.1 shows that there exists h in Rψ=1

with θ(h) = g. We now invoke the key fact that ∆ is surjective (cf.
Theorem 2.4.6), to conclude that there exists w in W with ∆(w) = h.
By construction and the commutativity of the diagram, we have

g = D(f) = DL(w).

Hence f = L(w) by the injectivity of D. Thus f belongs to the image
of L and the proof of the theorem is complete. 	


2.6 The Higher Logarithmic Derivative Maps

In this section, we use Theorem 2.1.2 to define the higher logarithmic
derivatives of elements of U∞. We study these maps and show by a
mysterious, but elementary, calculation going back to Kummer, that
the values of the Riemann zeta function at the odd negative integers
arise as the higher logarithmic derivatives of cyclotomic units.
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Definition 2.6.1. For each integer k ≥ 1, define the logarithmic deriv-
ative homomorphism δk : U∞−→Zp by

δk(u) =
(

Dk−1
(

(1 + T )f ′u(T )
fu(T )

))

T=0

(2.12)

where u is any element of U∞, fu(T ) is the associated power series in
Theorem 2.1.2, and the subscript T = 0 means evaluation at 0.

We remark that δk takes values in Zp because fu is a unit in R. Also,
recall that the Galois group G of K∞ acts on U∞ in the natural fashion,
and on R by (2.7).

Lemma 2.6.2. For all k ≥ 1, the map δk is a group homomorphism
satisfying

δk(σ(u)) = χ(σ)kδk(u)

for all u in U∞, and all σ in G.

Proof. The first assertion is plain, and the second follows from the
observation that

fσ(u)(T ) = fu((1 + T )χ(σ) − 1),

and the following elementary identity

Dk(g((1 + T )a − 1)) = ak(Dkg)((1 + T )a − 1), (2.13)

for all k ≥ 0, a in Zp, and g in R. 	

We now carry out the crucial calculation of δk on cyclotomic units,

stressing that it is via this calculation that the values of the Riemann-
zeta function at the odd negative integers appear first in our approach
to the main conjecture. Let a and b be integers which are prime to p
and define c(a, b) = (cn(a, b)) by

cn(a, b) =
ζ
−a/2
n − ζ

a/2
n

ζ
−b/2
n − ζ

b/2
n

. (2.14)

We have already remarked that c(a, b) belong to U∞. Let ζζζ(s) denote
the complex Riemann zeta function.

Proposition 2.6.3. We have
(i) δk(c(a, b)) = 0 for k = 1, 3, 5 · · · ,
(ii) δk(c(a, b)) = (bk − ak)ζζζ(1 − k) for k = 2, 4, 6, · · · .
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Proof. Put

f(T ) =
(1 + T )−a/2 − (1 + T )a/2

(1 + T )−b/2 − (1 + T )b/2

so that f(πn) = cn(a, b) for all n ≥ 0. We make the change of variable
T = ez − 1 so that D = d

dz . Hence we have

δk(c(a, b)) =

((
d
dz

)k−1

g(z)

)

z=0

where
g(z) =

d
dz

log f(ez − 1).

But

2g(z) = b

(
1

e−bz − 1
− 1

ebz − 1

)
− a

(
1

e−az − 1
− 1

eaz − 1

)

By definition, we have

1
et − 1

=
∞∑

n=0

Bn

n!
· tn−1,

where Bn is the n-th Bernoulli number. Hence, as Bm = 0 when m is
odd with m > 1, we obtain easily that

g(z) =
∞∑

k=2
k even

Bkz
k−1

k!
(ak − bk).

But now the proposition follows from the well-known fact that

ζζζ(1 − k) = −Bk

k
(k = 2, 4, 6 · · · ).

This completes the proof of the proposition. 	

We end this chapter by proving a result about the image of the δk

for k = 1, · · · , p − 1, which is closely related to the original proof of
Theorem 2.1.2 given in [CW]. We refer the reader to Theorem 3.6.1
of the next chapter for a determination of the image of the δk for all
k ≥ 1, which curiously does not seem easy to prove by the methods
given here.

Theorem 2.6.4. For k = 1, · · · , p − 1, we have δk(U∞) = Zp.
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Proof. Since, by the first lemma in this section, the image of δk is an
ideal in Zp, it suffices to prove that there exists u in U∞ such that
δk(u) is a unit in Z

×
p for k = 1, · · · , p− 1. We can clearly view D as an

operator on Ω, and thus we must find a u in U∞ such that

Dk−1(∆̃fu(T ))

has non-zero constant term for k = 1, · · · , p − 1. By the proof of The-
orem 2.4.6 (see Lemmas 2.4.8, 2.4.9, 2.4.10), there exists u in U∞ such
that

˜∆(fu(T )) = (1 + T )α1(T ), where α1(T ) =
∞∑

m=0

T pm−1.

We proceed to show that this u has the desired properties. Clearly, the
series (1+T )α1(T ) has a non-zero constant term, proving the assertion
for k = 1. For k > 1, define

αk(T ) =
∞∑

m=1

T pm−k.

Recalling that these series lie in Ω, one verifies immediately that

α′
k(T ) = −kαk+1(T ) (k = 1, · · · , p − 1).

It follows that

D((1 + T )kαk(T )) = k((1 + T )kαk(T ) − (1 + T )k+1αk+1(T )),

whence a simple inductive argument shows that

Dk−1((1 + T )α1(T )) = (1 + T )α1(T ) +
k∑

j=2

cj(1 + T )jαj(T )

for k = 1, · · · , p − 1, where the cj are elements of Fp. The proof now
follows on noting that αj(0) = 0 for j = 2, · · · , p − 1. 	




3

Iwasawa Algebras and p-adic Measures

3.1 Introduction

In this chapter, we interpret the results on power series proven in
the previous chapter in terms of p-adic measures on the Galois group
G = Gal(Q(µp∞)/Q). We remark that the language of p-adic measures
was first introduced in the paper [MSD]. A key tool in our reinter-
pretation will be Mahler’s well known theorem on continuous p-adic
functions on Zp. This leads us to an entirely equivalent reformulation
of the canonical map L appearing in Theorem 2.5.2, and also the exact
sequence there. As a consequence, we shall obtain in the next chap-
ter both a simple construction of the p-adic analogue of the complex
Riemann zeta function, and a proof of Iwasawa’s Theorem 4.4.1.

The Iwasawa algebra of both G and the additive group of Zp will
play a fundamental role in all that follows, and we briefly recall their
definition now. More generally, let G be any profinite abelian group,
and let TG be the set of open subgroups of G. We define the Iwasawa
algebra Λ(G) by

lim
←−

Zp[G/H]

where H runs over TG, and Zp[G/H] denotes the ordinary group ring
over Zp. It is a compact topological Zp-algebra, the topology being the
natural one on the projective limit coming from the p-adic topology on
the group rings of the finite quotients of G.

3.2 p-adic Measures

As above, let G be any profinite abelian group. We now sketch the
proof that the elements of the Iwasawa algebra Λ(G) define integral
p-adic measures on G.
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Let Cp be the completion of the algebraic closure of the field of
p-adic numbers Qp, and write | |p for its p-adic valuation. Let C(G, Cp)
be the Cp-algebra of all continuous functions from G to Cp. As usual,
we can define a norm on C(G, Cp) by

‖f‖ = sup
g∈G

|f(g)|p,

and this makes C(G, Cp) into a Cp-Banach space. We recall that a
function f in C(G, Cp) is defined to be locally constant if there exists
an open subgroup H of G such that f is constant modulo H, i.e. gives a
function from G/H to Cp. Write Step(G) for the sub-algebra of locally
constant functions, which is easily seen to be everywhere dense.

We now explain how to integrate any continuous Cp-valued function
on G against an element λ of Λ(G). We begin with locally constant
functions. Suppose that f in Step(G) is locally constant modulo the
subgroup H of G. Write λH for the image of λ in Zp[G/H], say

λH =
∑

x∈G/H

cH(x)x, (3.1)

where the cH(x) lie in Zp. We then define
∫

G

fdλ =
∑

x∈G/H

cH(x)f(x).

One sees easily that this is independent of the choice of H. Since the
cH(x) lie in Zp, we have

∣∣∣∣
∫

G

fdλ

∣∣∣∣
p
≤ ‖f‖. (3.2)

We further note that, if εx denotes the characteristic function of the
coset x in G/H, then we have

∫

G

εxdλ = cH(x). (3.3)

Let f be any continuous Cp-valued function f on G. We can choose
a sequence {fn} in Step(G) which converges to f . It is plain from(3.2)
that the sequence of integrals {

∫
G fndλ} is a Cauchy sequence, and

hence converges in Cp. We can therefore define the integral as
∫

G

fdλ = lim
n−→∞

∫

G

fndλ.
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Writing Mλ(f) =
∫
G fdλ, we get a linear functional on C(G, Cp) satis-

fying
|Mλ(f)|p ≤ ‖f‖. (3.4)

It is clear from (3.3) that if Mλ1 = Mλ2 , then λ1 = λ2. Finally, Mλ(f)
belongs to Qp when f takes values in Qp. Conversely, we note that
every linear functional L on C(G, Cp) satisfying |L(f)|p ≤ ‖f‖ for all
continuous f and L(f) belongs to Qp when f takes values in Qp, must
be of the form L = Mλ for a unique λ in Λ(G). Indeed, the element λ
can be obtained as follows. For each open subgroup H of G, and each
coset x of G/H, we put cH(x) = L(εx) where εx is the characteristic
function of x, and then define λH by the formula (3.1). These elements
λH are clearly compatible and so give an element in ΛG,

The following remarks whose proofs we omit are also useful. If λ = g
in G, then dg is the Dirac measure given by

∫

G

fdg = f(g).

Secondly, the product in Λ(G) corresponds to the convolution ∗ of
measures which we recall is defined by

∫

G

f(x)d(λ1 ∗ λ2)(x) =
∫

G

(∫

G

f(x + y)dλ1(x)
)

dλ2(y).

Thirdly, if ν : G−→C
×
p is a continuous group homomorphism. then

one sees easily that we can extend ν to a continuous algebra homomor-
phism,

ν : Λ(G)−→Cp

by the formula ν(λ) =
∫
G νdλ.

Finally, to take account of the fact that the p-adic analogue of the
complex Riemann zeta function also has a pole, we now introduce the
notion of a p-adic pseudo-measure on G [Se]. Let Q(G) be the total
ring of fractions of Λ(G), i.e. the set of all quotients α/β with α, β in
Λ(G) and β a non-zero divisor. We say that an element λ of Q(G) is a
pseudo-measure on G if (g−1)λ is in Λ(G) for all g in G. Suppose that
λ is a pseudo-measure on G and let ν be a homomorphism from G to
C
×
p which is not identically one. We can then define

∫

G

νdλ =
∫
G νd((g − 1)λ)

ν(g) − 1
,

where g is any element of G with ν(g) �= 1. This is independent of the
choice of g because, as remarked earlier ν extends to a ring homomor-
phism from Λ(G) to Cp.
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3.3 The Mahler Transform

The key tool for relating the ring R = Zp[[T ]] of formal power series
studied in the previous chapter, to the Iwasawa algebra of the Galois
group G = Gal(K∞/Qp) is provided by the following remarkable theo-
rem of Mahler [M], whose proof we omit. As usual we define

(x
n

)
to be

1 if n = 0, and
(

x

n

)
=

x(x − 1) · · · (x − n + 1)
n!

(n ≥ 1).

Theorem 3.3.1. Let f : Zp −→Cp be any continuous function. Then
f can be written uniquely in the form

f(x) =
∞∑

n=0

an

(
x

n

)
, (3.5)

where an ∈ Cp tends to zero as n−→∞.

Note that the coefficients an are given by an = (�nf)(0) where �f(x) =
f(x + 1) − f(x). Since

∣∣(x
n

)∣∣
p
≤ 1 for all x in Zp, it follows that ‖f‖ =

sup |an|p. If λ is any element of Λ(Zp), it follows from (3.4) that

cn(λ) =
∫

Zp

(
x

n

)
dλ (n ≥ 0) (3.6)

lies in Zp. This leads to the following definition.

Definition 3.3.2. We define the Mahler transform M : Λ(Zp)−→R by

M(λ) =
∞∑

n=0

cn(λ)Tn,

where cn(λ) is given by (3.6) for λ in Λ(Zp).

Theorem 3.3.3. The Mahler transform is an isomorphism of Zp-
algebras.

Proof. It is clear from Theorem 3.3.1 that M is injective, and is a
Zp-module homomorphism. To see that it is bijective, we construct
an inverse Υ : R−→Λ(Zp) as follows. Let g(T ) =

∑∞
n=0 cnTn be any

element of R. We can then define a linear functional L on C(Zp, Cp) by

L(f) =
∞∑

n=0

ancn,
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where f has Mahler expansion as in (3.5) above. Of course, the series
on the right converges because an tends to zero as n−→∞. Since the
cn lie in Zp, it is clear that |L(f)|p ≤ ‖f‖ for all f . Hence there exists λ
in Λ(Zp) such that L = Mλ, and we define Υ(g(T )) = λ. It is plain that
Υ is an inverse of M. In fact, it can also be shown that M preserves
products, although we omit the proof here. 	


Lemma 3.3.4. We have M(1Zp
) = 1 + T , and thus M : Λ(Zp)−→R

is the unique isomorphism of topological Zp-algebras which sends the
topological generator 1Zp

of Zp to (1 + T ).

Proof. Take λ = 1Zp
. By definition,

M(λ) =
∞∑

n=0

cn(λ)Tn,

where

cn(λ) =
∫

Zp

(
x

n

)
dλ =

(
1
n

)

whence the first assertion is clear. For the second assertion, we note
that it is well-known (see for example, [Se1]), that for each choice of a
topological generator γ of Zp, there is a unique topological isomorphism
of Zp-algebras, which maps γ to (1 + T ). 	


Lemma 3.3.5. For all g in R, and all integers k ≥ 0, we have the
integral

∫

Zp

xkd(Υ(g(T ))) = (Dkg(T ))T=0

where D = (1 + T ) d
dT .

Proof. For fixed g(T ) =
∑∞

n=0 cnTn in R, consider the linear functional
L on C(Zp, Cp) defined by

L(f) =
∫

Zp

xf(x)dΥ(g(T )).

Clearly, we have |L(f)|p ≤ ‖f‖, and so L = Mλ for some λ in Λ(Zp),
whence we obtain

∫

Zp

xf(x)dΥ(g(T )) =
∫

Zp

f(x)dλ. (3.7)
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We first claim that
M(λ) = Dg(T ). (3.8)

To prove this, we note that

Dg(T ) =
∞∑

n=0

(ncn + (n + 1)cn+1)Tn.

On the other hand, by definition, M(λ) =
∑∞

n=0 enTn, where

en =
∫

Zp

x

(
x

n

)
dΥ(g(T )).

But we have the identity

x

(
x

n

)
= (n + 1)

(
x

n + 1

)
+ n

(
x

n

)
(n ≥ 0),

whence we get en = ncn + (n + 1)cn+1 for all n ≥ 0, thereby proving
(3.8). But, for all h(T ) in R, we have

∫

Zp

dΥ(h(T )) = h(0).

So the assertion of the lemma is equivalent to
∫

Zp

xkdΥ(g(T )) =
∫

Zp

dΥ(Dkg( T )) (k ≥ 0).

By an induction argument, we have
∫

Zp

dΥ(Dkg(T )) =
∫

Zp

xk−1d(Υ(Dg(T ))).

It is now plain by (3.8) and (3.7) that this is equal to
∫

Zp

xkdΥ(g(T ))

and the proof of the lemma is complete. 	


3.4 Restriction of Measures

As the multiplicative group Z
×
p is not a subgroup of the additive group

Zp, it is intuitively surprising that we can nevertheless canonically iden-
tify Λ(Z×

p ) with a subset of Λ(Zp). The aim of this section is to explain
this identification and its interpretation in terms of power series.
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Let ε be the characteristic function of Z
×
p in Zp. It is continuous

because Z
×
p is open and closed in Zp. Given λ in Λ(Zp), we can define

a functional L on C(Zp, Cp) by

L(f) =
∫

Zp

fε dλ,

and clearly |L(f)|p ≤ ‖f‖. Hence L = M#(λ) for a unique #(λ) in
Λ(Zp). In order to interpret this operation in terms of power series, we
define the operator S : R−→R by

S(g(T )) = g(T ) − 1
p

∑

ξ∈µp

g(ξ(1 + T ) − 1)).

We recall that the operator ψ : R−→R is defined in Proposition
2.2.3 of Chapter 2.

Lemma 3.4.1. For all λ in Λ(Zp), we have S(M(λ)) = M(#(λ)). In
particular, #(λ) = λ if and only if S(M(λ)) = M(λ), or equivalently
if and only if M(λ) belongs to Rψ=0.

Proof. For each n ≥ 0, let

prn : Λ(Zp)−→Zp[Zp/pn
Zp]

be the natural map. Suppose

prn(λ) =
pn−1∑

k=0

en(k)(k + pn
Zp) (3.9)

with the en(k) in Zp. Thus, by (3.3),

en(k) =
∫

Zp

εk+pnZp
dλ,

where εk+pnZp
denotes the characteristic function of the subset k+pn

Zp

of Zp. It is then clear that #(λ) is the unique element of Λ(Zp) defined
by

prn(#(λ)) =
pn−1∑

k=0
(k,p)=1

en(k)(k + pn
Zp) (n ≥ 1).

Recall that the Weierstrass preparation theorem shows that

Zp[T ]/ωnZp[T ] � R/ωnR,



40 3 Iwasawa Algebras and p-adic Measures

where ωn(T ) = (1 + T )pn − 1. Hence, as R = lim
←−

R/ωnR, we obtain
natural maps

pr′n : R−→Zp[T ]/ωnZp[T ].
Since M(1Zp

) = 1 + T , it follows that

pr′n(M(λ)) =
pn−1∑

k=0

en(k)(1 + T )k mod ωnZp[T ]

and that

pr′n(M(#λ)) =
pn−1∑

k=0
(k,p)=1

en(k)(1 + T )k mod ωnZp[T ]

for all n ≥ 0. But

S

⎛

⎝
pn−1∑

k=0

en(k)(1 + T )k

⎞

⎠ =
pn−1∑

k=0
(k,p)=1

en(k)(1 + T )k (n ≥ 1),

whence it is plain that S(M(λ) = M(#(λ)). The final assertion is clear
from (2.2) and this completes the proof. 	


We can define a natural inclusion

i : Λ(Z×
p )−→Λ(Zp)

by the formula ∫

Zp

fd(i(η)) =
∫

Z
×
p

f |
Z

×
p
dη,

where f runs over all continuous Cp-valued functions on Zp, and f |
Z

×
p

denotes the restriction to Z
×
p .

Lemma 3.4.2. We have i(Λ(Z×
p )) = {λ ∈ Λ(Zp) : #(λ) = λ}. In

particular, we have M(i(Λ(Z×
p )) = Rψ=0.

Proof. It is clear that the image of i is contained in the set on the
right. Conversely, if we have a λ in Λ(Zp) with #(λ) = λ, we obtain an
element η in Λ(Z×

p ) by specifying that
∫

Z
×
p

hdη =
∫

Zp

h̃dλ,

where h is any continuous Cp-valued function on Z
×
p , and h̃ denotes its

extension by zero to Zp. Clearly i(η) = λ because #(λ) = λ, and the
proof is complete. 	


In what follows, we suppress the map i and identify Λ(Z×
p ) with the

subset of Λ(Zp) consisting of all elements λ with #(λ) = λ.
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3.5 The Fundamental Exact Sequence

Our goal now is to combine the above interpretation of Λ(Z×
p ) with

Theorem 2.5.2 of Chapter 2, to obtain the fundamental exact sequence
needed for the proof of Iwasawa’s theorem.

We consider the action of G on Λ(Zp) defined by

g · (aZp
) = (χ(g) · a)Zp

(a ∈ Zp),

where we write aZp
to stress that we are viewing a as an element of the

group Zp in the Iwasawa algebra Λ(Zp). By linearity and continuity, this
extends to an action of G on Λ(Zp), and Λ(Z×

p ) is then a G-submodule.
Moreover, since M(1Zp

) = 1 + T , it is clear that M is a G-isomorphism
from Λ(Zp) to R when R is endowed with the G-action given by (2.7).
Finally, we note that there is a canonical G-isomorphism

χ̃ : Λ(G) � Λ(Z×
p ) (3.10)

induced by the isomorphism χ : G � Z
×
p given by the cyclotomic

character. Let
M̃ : Λ(G) � Rψ=0

be the G-isomorphism defined by M̃ = M ◦ χ̃. Recall that U∞ denotes
the projective limit of the local units with respect to the norm maps
in the cyclotomic tower, endowed with its natural action of G. Define

L̃ : U∞−→Λ(G)

by
L̃(u) = M̃−1(L(fu)),

where fu denotes the Coleman power series of u and L is given by
(2.10). It is a G-homomorphism, and clearly

L(fu) =
∞∑

n=0

Tn
∫

G

(
χ(g)
n

)
dL̃(u).

The following theorem was first proven in [Co2] (see also [Sa], and
[O] for closely related sequences).

Theorem 3.5.1. We have an exact sequence of G-modules

0−→µp−1 × Tp(µ)−→U∞
L̃−→ Λ(G)

β−→ Tp(µ)−→ 0, (3.11)

where the kernel on the left is the natural inclusion, and the map β on
the right is given by β(λ) = (ζn)

∫
G

χdλ.
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Proof. This is none other than a reinterpretation of the exact sequence
(2.11) of Theorem 2.5.2. Specifically, by construction, we have the com-
mutative diagram

U∞
L̃−−−−→ Λ(G)

⏐⏐�
⏐⏐�M̃

W
L−−−−→ Rψ=0

where the left vertical arrow is the G-isomorphism u 
→ fu(T ), and as
noted above, M̃ is also a G-isomorphism. If x is any element of µp−1, and
a is any element of Zp, then u = (xζa

n) is in U∞, and u(T ) = x(1+T )a.
Finally the maps α and β are compared by using Lemma 3.3.5 and the
isomorphism (3.10). This completes the proof. 	


We recall the logarithmic derivative homomorphims δk defined by
(2.12).

Proposition 3.5.2. For all k ≥ 1, and all u in U∞, we have
∫

G
χ(g)kdL̃(u) = (1 − pk−1)δk(u). (3.12)

Proof. We first note that, for any λ in Λ(G), the isomorphism χ̃ given
by (3.10) gives ∫

G
χ(g)kdλ =

∫

Z
×
p

xkd(χ̃(λ)).

Also, via our identification of Λ(Z×
p ) with a subset of Λ(Zp), the integral

above on the right has the same value if we integrate over the whole
of Zp. Now take λ = L̃(u), so that, by definition, we have χ̃(L̃(u)) =
Υ(L(fu)), where we recall that

L(fu)(T ) =
1
p

log
(

fu(T )p

ϕ(f)(T )

)
.

Thus, by Lemma 3.3.5, the integral on the left of (3.12) is equal to
(
Dk−1(hu(T ) − ϕ(hu)(T ))

)

T=0
,

where

hu(T ) = (1 + T )
f ′u(T )
fu(T )

.

Using (2.13), it follows that this expression is equal to the right
hand side of (3.12), and the proof of the proposition is complete. 	
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3.6 Image of δk

As an interesting digression, we now determine the image of all the
logarithmic derivative homomorphisms δk using the fundamental ex-
act sequence (3.11), and (3.12). We recall that Theorem 2.6.4 of the
previous chapter determines the image of δk for k = 1, · · · , p − 1.

Proposition 3.6.1. Let k≥1 be any integer. If k=1 or k �≡1 mod (p−1),
then δk(U∞) = Zp. If k is greater than 1 and k ≡ 1 mod (p − 1),
then δk(U∞) = pm

Zp, where m = 1 + ordp(k − 1).

To prove this proposition, we need an algebraic description of Λ(G)
as p − 1 copies of the ring R. We stress that this second description is
of a totally different nature to that given in sections 3.4 and 3.5, which
is based on Mahler’s theorem.

We have

G = � × Γ (3.13)

where � is the cyclic group of order p − 1, and Γ is isomorphic to
Zp. Write χ� for the restriction of χ to �, so that the characters of
� are given by the χi

� for i running over a complete set of residues
modulo p − 1. Fix a topological generator γ of Γ. Let A denote the
group ring Zp[�]. It is easily seen that Λ(G) can be identified with
the Iwasawa algebra of Γ over A and hence that there is a unique
topological isomorphism

Λ(G) � A[[T ]]

which is the identity on A and maps γ to 1 + T . On the other hand,
we have a canonical isomorphism

A[[T ]] �
⊕

i mod (p−1)

R

defined by mapping a power series f =
∑∞

n=0 anTn in A[[T ]] to the
tuple ( ∞∑

n=0

χi
�(an)Tn

)

i

.

The composition of these two isomorphisms yields an isomorphism

ϑ : Λ(G) ∼−→
⊕

i mod (p−1)

R

and we write ϑ(λ)i for the components of ϑ(λ).
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Lemma 3.6.2. For all λ in Λ(G) and all integers k ≥ 1, we have
∫

G
χ(g)kdλ = ϑ(λ)i(χ(γ)k − 1),

where i = k mod (p − 1).

Corollary 3.6.3. ϑ(Im(L̃)) is the subset of
⊕

i mod (p−1)
R which consists

of all tuples (αi) where αi runs over R when i �≡ 1 mod (p − 1), and
α1 runs over ((1 + T ) − χ(γ))R.

Proof. The corollary follows immediately since the lemma shows that
∫

χ(g)dλ = 0

if and only if ϑ(λ)1(T ) vanishes at T = χ(γ) − 1. 	

We remark that it is in no way clear arithmetically how one con-

structs a unit u in U∞ such that, for example

ϑ(L̃(u))i = 1 for i �≡ 1 mod (p − 1), and ϑ(L̃(u))1 = 1 + T − χ(γ).

However the above corollary shows that such u must exist.

Proof of Lemma 3.6.2. We recall that

χk(λ) =
∫

G
χk(g)dλ.

On the other hand, writing λ =
∑∞

n=0 anTn, with an ∈ Zp[�], it is
clear by linearity and continuity that

χk(λ) =
∞∑

n=0

χk(an)(χ(γ)k − 1)n = ϑ(λ)i(χ(γ)k − 1).

	

Proof of Proposition 3.6.1. We combine Lemma 3.6.2 and Proposition
3.5.2. Also, we must assume that k > 1, since (3.12) tells us nothing
about the image of δ1 (but the image of δ1 is determined by Theorem
2.6.4 of the previous chapter). Noting (1 − pk−1) is a p-adic unit since
k > 1, it follows that the image of δk is equal to the subset of Zp given
by

J =

{
{h(χ(γ) − 1) : h ∈ R} if k �≡ 1 mod (p − 1)
{(χ(γ)k − χ(γ)) · h(χ(γ) − 1) : h ∈ R} if k ≡ 1 mod (p − 1).
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When k �≡ 1 mod (p − 1), it is clear that J = Zp. On the other hand,
χ(γ) = 1 + pw, with w in Z

×
p , so it is plain that J = pm

Zp when k ≡ 1
mod (p − 1), where m = ordp(k − 1) + 1. This completes the proof. 	


We end this chapter by remarking that a weak form of Proposition
3.6.1 can be used to give an alternative proof of Theorem 2.1.2 and the
exact sequence 3.11 (see [Sa] and the original paper [CW]).



4

Cyclotomic Units and Iwasawa’s Theorem

4.1 Introduction

In this chapter, we use the fundamental exact sequence (3.11) of the
previous chapter to prove both the existence of the p-adic analogue of
the Riemann-zeta function, and Iwasawa’s theorem. We remark that,
even though Iwasawa did not explicitly use the language of p-adic mea-
sures on Galois groups, he was the first person to prove that the p-adic
analogue of ζζζ(s) could be expressed in terms of what amounts to p-
adic integrals on the Galois group of the field generated over Q by
all p-power roots of unity. However, he used p-adic measures coming
from the classical Stickelberger theorem rather than those here arising
from cyclotomic units [Iw3]. We also remark that Iwasawa’s original
ingenious and difficult proof in [Iw2] of Theorem 4.4.1 is very different
from the one given here. Our approach via the exact sequence (3.11)
has the advantage of establishing all of these results simultaneously. We
then discuss the relationship of Iwasawa’s theorem to the main conjec-
ture and end the chapter by proving some rather delicate facts about
unit groups and ideal class groups of finite extensions of Q contained
in F∞. Our method of proof is the classical one in Iwasawa theory
of deriving assertions at finite levels from the corresponding ones for
F∞. These final results are needed to complete the proof of the main
conjecture via Euler systems in Chapter 6.

4.2 p-adic Zeta Function

We first establish the existence of the p-adic analogue of the Riemann
zeta function. Recall that F∞ = Q(µp∞) and that F∞ = F+

∞ is its
maximal real subfield. Let
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G = Gal(F∞/Q), G = Gal(F∞/Q).

We shall often need the following elementary lemma, which enables us
to identify Λ(G) with a sub-algebra of Λ(G). Let

J = {1, ι} = Gal(F∞/F∞).

If M is any Zp[J ]-module, then since p is odd, there is the decomposi-
tion

M = M+ ⊕ M−, where M+ =
1 + ι

2
M, M− =

1 − ι

2
M.

In particular, we have

Λ(G) = Λ(G)+ ⊕ Λ(G)−. (4.1)

Lemma 4.2.1. The restriction to Λ(G)+ of the natural surjection from
Λ(G) onto Λ(G) induces an isomorphism

Λ(G)+ � Λ(G). (4.2)

Proof. Recall that

Fn = Q(µpn+1), Fn = Q(µpn+1)+, (4.3)

and write Gn = Gal(Fn/Q), Gn = Gal(Fn/Q). Let

πn : Zp[Gn]−→Zp[Gn]

denote the natural surjection. We claim that πn induces an isomorphism
from Zp[Gn]+ onto Zp[Gn]. Indeed, it is clear that πn is surjective, and
that it maps Zp[Gn]− to zero. To complete the proof, we note that the
Zp-rank of Zp[Gn]+ is equal to ((p − 1)/2)pn, because

Zp[Gn]+ =
⊕

i even
i mod p−1

Zp[Gn](i)

where the sum on the right is taken over the eigenspaces for the even
powers modulo (p − 1) of the character giving the action of G0 on µp.
The assertion of the lemma now follows on passing to the projective
limit. 	


From now on, we shall identify Λ(G) with the subalgebra Λ(G)+ of
Λ(G).
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Lemma 4.2.2. Assume that λ is any element of Λ(G) such that
χk(λ) = 0 for all k > 0. Then λ = 0. The analogous assertion is
also valid for pseudo-measures on G.

Proof. Recall from section 3.5 the isomorphism

M̃ : Λ(G) � Rψ=0

arising from Mahler’s theorem. Hence

M̃(λ) = g(T ),

where

g(T ) =
∞∑

n=0

Tn
∫

G

(
χ(g)
n

)
dλ.

But when n > 0, the binomial coefficient
(x
n

)
is a polynomial in x with

constant term equal to zero. Hence by the hypothesis of the lemma, we
have ∫

G

(
χ(g)
n

)
dλ = 0 (n > 0).

Thus g(T ) is a constant and therefore must be identically zero since it
belongs to Rψ=0. This completes the proof of the lemma for elements
of Λ(G).

A consequence is that if λ is any element of Λ(G) such that χk(λ) �= 0
for all integers k > 0, then λ is not a zero divisor. Indeed, if λ′ · λ = 0,
then since χk is a ring homomorphism of Λ(G), it follows that χk(λ′) = 0
for all k > 0, whence λ′ = 0.

Suppose now that ξ is a pseudo-measure on G with χk(ξ) = 0 for
all k > 0. For each u ∈ Z

×
p , let σu denote the unique element of G with

χ(σu) = u. Now choose u = 1 + p. Then

χk(σu − 1) = (1 + p)k − 1 �= 0

for all k > 0, so that σu − 1 is not a zero divisor in Λ(G) by the remark
above. But the hypothesis χk(ξ) = 0 implies that

χk((σu − 1)ξ) = 0

for all k > 0. As σu − 1 is not a zero divisor, the remark at the end of
the previous paragraph shows that ξ = 0. 	




50 4 Cyclotomic Units and Iwasawa’s Theorem

Let Q(G) be the total ring of quotients of Λ(G). Parallel to (4.1), we
have a decomposition

Q(G) = Q(G)+ ⊕ Q(G)−

and it is then easy to see that one can identify pseudo-measures on G
with pesudo-measures on G which lie in Q(G)+.

Corollary 4.2.3. Let λ be an element of Λ(G). If
∫
G χkdλ = 0 for

k = 1, 3, 5, · · · , then λ ∈ Λ(G)+, and if
∫
G χkdλ = 0 for k = 2, 4, 6, · · · ,

then λ ∈ Λ(G)−. The analogous assertion holds for pseudo-measures
on G.

Proof. Assume λ is in Λ(G), and let λ = λ+ + λ− be its decomposition
as in (4.1). Since χ(ι) = −1, it is then clear that χk(1 + ι) = 0 for all
odd integers k, and χk(1− ι) = 0 for all even integers k. The assertion
is then clear from the preceding lemma. A similar argument holds for
pseudo-measures. 	


The following proposition is the crucial one in proving the existence
of the p-adic zeta function.

Proposition 4.2.4. There exists a unique pseudo-measure ζ̃ζζp on G
such that

∫

G
χ(g)kdζ̃ζζp =

{
(1 − pk−1)ζζζ(1 − k) if k = 2, 4, · · ·
0 if k = 1, 3, · · · .

(4.4)

Proof. The uniqueness is clear from the preceding lemmas, and the sub-
tle part of the proof is the existence. Let a and b be integers which are
prime to p and such that b �= ±a. As before, define c(a, b) = {cn(a, b)}
where

cn(a, b) =
ζ
−a/2
n − ζ

a/2
n

ζ
−b/2
n − ζ

b/2
n

.

As remarked earlier, c(a, b) is in U∞. Define λ(a, b) in Λ(G) by

λ(a, b) = L̃(c(a, b)). (4.5)

By Propositions 2.6.3 and 3.5.2, we have

∫

G
χkdλ(a, b) =

{
(bk − ak)(1 − pk−1)ζζζ(1 − k) if k = 2, 4, · · ·
0 if k = 1, 3, · · · .

(4.6)

Define the following element in Λ(G)
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θ(a, b) = σb − σa, (4.7)

where, as before, σu denotes the unique element of G with χ(σu) = u
for each u in Z

×
p . Thus, for each integer k > 0, we have

χk(θ(a, b)) = bk − ak �= 0

because b �= ±a. Hence θ(a, b) is not a zero divisor in Λ(G), and so

ζ̃ζζp =
λ(a, b)
θ(a, b)

lies in Q(G). We claim that ζ̃ζζp is independent of the pair (a, b). Indeed,
if (a′, b′) is a second choice, then it is clear from (4.6) that

χk(θ(a′, b′)λ(a, b)) = χk(θ(a, b)λ(a′, b′))

for all integers k > 0, whence it follows from Lemma 4.2.2 that

θ(a′, b′)λ(a, b) = θ(a, b)λ(a′, b′).

This establishes the independence. To show that ζ̃ζζp is a pseudo-
measure, we use Lemma 4.2.5 below. We take a = e, b = 1, where
e is a primitive root modulo p with ep−1 �≡ 1 mod p2. By Lemma 4.2.5,
the augmentation ideal I(G) of Λ(G) is generated by θ(e, 1). But if σ is
any element of G, then σ − 1 belongs to I(G) and so σ − 1 = θ(e, 1)λ
for some λ in Λ(G). Therefore it is clear that (σ− 1)ζ̃ζζp belongs to Λ(G)
as required. This completes the proof of the proposition. 	


Lemma 4.2.5. Let e be a primitive root modulo p such that ep−1 �≡ 1
mod p2. Let I(G) be the augmentation ideal of Λ(G). Then

I(G) = (σe − 1)Λ(G) = Λ(G)θ(e, 1).

Proof. All is clear on noting that σe is a topological generator of G, and
if K is any finite cyclic group, then the augmentation ideal of Zp[K] is
(τ − 1)Zp[K] where τ is any generator of K. 	


The following theorem is an immediate consequence of (4.4) and
Corollary 4.2.3.

Theorem 4.2.6. There exists a unique pseudo-measure ζζζp on G such
that ∫

G
χ(g)kdζζζp = (1 − pk−1)ζζζ(1 − k) (4.8)

for all even integers k ≥ 2. 	
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The pseudo-measure ζζζp occurring in this theorem is of course our de-
sired p-adic analogue of the complex Riemann zeta function.

4.3 Cyclotomic Units

In this section, we recall the classical definition of the cyclotomic units
for the fields Fn and Fn, and several basic results about them. For
detailed proofs of these assertions, see [Iw2] and [Si]. As always, we let
πn = ζn − 1.

Definition 4.3.1. For each n ≥ 0, we define Dn to be the intersection
of the group of global units of Fn with the subgroup of F×

n generated
by the σ(πn) where σ runs over the elements of Gal(Fn/Q). We also
define Dn = Dn ∩ Fn.

In fact, it is well known and easily seen that Dn is generated by all
the Galois conjugates of ±cn(e, 1), where we recall that

cn(e, 1) =
ζ
−e/2
n − ζ

e/2
n

ζ
−1/2
n − ζ

1/2
n

,

and the integer e is a primitive root modulo p and ep−1 �≡ 1 mod p2.
Although it will not be needed for the proof of Iwasawa’s theorem given
in the next section, we recall the classical result that Dn has finite index
in the group of all units of Fn, and that this index is equal to the class
number of Fn.

Recall that we have the local fields

Kn = Qp(µpn+1), Kn = Qp(µpn+1)+.

If A is any subset of these fields, then A will denote its closure in the
p-adic topology.

Definition 4.3.2. We define Cn = Dn and Cn = Dn.

Recall that Un denotes the group of units of Kn and denote by pn

the maximal ideal of the ring of integers of Kn. Similarly, denote by Un

the group of units of Kn.

Definition 4.3.3. We denote by U1
n the subgroup {x∈Un :x≡1 mod pn}.

More generally, if Z is any subgroup of Un, we write Z1 = Z ∩ U1
n.
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Note that the index of Z1 in Z always divides p− 1, because Z1 is the
kernel of the reduction map from Z into F

×
p . In particular, this index

is prime to p. Also, note that U1
n and U1

n are now Zp-modules, whereas
this is plainly not true for Un and Un themselves.

We shall be particularly interested in the groups U1
n and C1

n and
their projective limits

U1
∞ = lim

←−
U1

n, C1
∞ = lim

←−
C1

n, (4.9)

taken with respect to the norm maps. Since U1
n and C1

n are compact
Zp-modules, so are U1

∞ and C1
∞. Moreover, they are endowed with

a natural continuous action of G = Gal(F∞/Q). Hence they become
modules over the Iwasawa algebra Λ(G). As before, let e be a fixed
primitive root modulo p such that ep−1 �≡ 1 mod p2.

Lemma 4.3.4. We have C1
∞ = Λ(G)b where b = (bn) is given by

bn = ucn(e, 1) (n ≥ 0),

and u is the unique (p− 1)-th root of unity in Qp such that eu ≡ 1 mod p.

Proof. Since up = u, it is clear that b = (bn) belongs to U∞. Moreover,
we claim that bn ≡ 1 mod pn for all n ≥ 0. Indeed, if fc(T ) is the
Coleman power series of c = (cn(e, 1)), then fc(0) = e. Hence cn(e, 1) ≡
e mod pn and our assertion is clear. Also, we must show that bn lies in
the closure of D1

n. But this is clear because bp−1
n certainly does lie in D1

n,
and p− 1 is a p-adic unit. Now put b = Λ(G)b and let hn : C1

∞−→C1
n

be the natural projection. To show that b = C1
∞, it suffices to prove

that
hn(b) = C1

n for all n ≥ 0.

But hn(b) is clearly the Zp-submodule generated by the σ(bn) for all σ
in Gal(Fn/Q). The assertion now follows easily from the fact that the
±σ(cn(e, 1)) generate Dn as a Z-module. This completes the proof. 	


4.4 Iwasawa’s Theorem

As stressed already in Chapter 1, the following theorem of Iwasawa
is of great importance both because historically its proof led to the
discovery of the Main Conjecture, and it remains today a crucial step
in the proof of the Main Conjecture by our methods. Recall that ζζζp is
the p-adic zeta function whose existence is given by Theorem 4.2.6.
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Theorem 4.4.1. The Λ(G)-module U1
∞/C1

∞ is canonically isomorphic
to Λ(G)/I(G)·ζζζp where ζζζp is the p-adic zeta function, and I(G) denotes
the augmentation ideal of Λ(G).

Proof. We note that, since the norm map from Kn to Kn−1 induces the
identity map on the residue fields, we have

U∞ = µp−1 × U1
∞, U∞ = µp−1 × U1

∞.

Hence (3.11) can be rewritten as an exact sequence

0−→Tp(µ)−→U1
∞

L1

−→ Λ(G)−→Tp(µ)−→ 0,

with L1 being the restriction of L̃ to U1
∞. As p is odd, the above sequence

remains exact after taking invariants under J = {1, ι}. Since Tp(µ)J =
0, there is a canonical Λ(G)-isomorphism

L1 : U1
∞ � Λ(G). (4.10)

But by Lemma 4.3.4, we have

C1
∞ = Λ(G).b,

so that
L1(C1

∞) = Λ(G)L1(b).

But the proof of Proposition 4.2.4 shows that L1(b) = ζζζpθ
+(e, 1) where

θ+(e, 1) denotes the image of θ(e, 1) in Λ(G). However, the analogue
of Lemma 4.2.5 for G shows that Λ(G)θ+(e, 1) = I(G). This completes
the proof of the theorem. 	


4.5 Relation to the Main Conjecture

The Λ(G)-module U1
∞/C1

∞ is of interest largely because it is closely
related to another Λ(G)-module of greater intrinsic arithmetic impor-
tance. We now introduce this second module, which is denoted by X∞.
In fact, as is explained below, these two modules coincide in all known
numerical examples, but it remains unknown whether this is true for
all primes p. We also remark that in our proof of Iwasawa’s theorem,
we have made no use of local or global class field theory. However, the
description of X∞ below rests crucially on global class field theory.

Recall that F∞ = Q(µp∞)+, and define M∞ to be the maximal
abelian p-extension of F∞, which is unramified outside of the unique
prime above p. Put



4.5 Relation to the Main Conjecture 55

X∞ = Gal(M∞/F∞). (4.11)

As always in Iwasawa theory (see Appendix), there is a natural con-
tinuous action of G on X∞ as follows. By maximality, F∞ is clearly
Galois over Q. Given any g in G, and any x in X∞, we define

g.x = g̃xg̃−1,

where g̃ denotes any lifting of g to the Galois group of M∞ over Q.
As X∞ is a compact Zp-module, this action extends by linearity and
continuity to an action of the whole Iwasawa algebra Λ(G) on X∞.
Similarly, we define L∞ to be the maximal abelian p-extension of F∞,
which is everywhere unramified, and put

Y∞ = Gal(L∞/F∞). (4.12)

Again it is clear that L∞ is Galois over Q, and then Y∞ has a con-
tinuous action of G in an entirely similar manner to the above, and
becomes a Λ(G)-module. To relate these modules to U1

∞/C1
∞, we need

the following description of Gal(M∞/L∞), obtained by using the full
force of class field theory.

Definition 4.5.1. We define Vn to be the group of global units of Fn,
and let En = Vn.

As before, let E1
n = En ∩ U1

n and put

E1
∞ = lim

←−
E1

n, (4.13)

the projective limit being taken with respect to the norm maps as
before.

Theorem 4.5.2. We have an exact sequence of Λ(G)-modules

0−→E1
∞−→U1

∞−→ Gal(M∞/L∞)−→ 0.

Proof. For each n ≥ 0, let Mn (resp. Ln) denote the maximal abelian
p-extension of Fn which is unramified outside p (resp. unramified every-
where). A standard exercise in the fundamental theorem of global class
field theory (see [Wa, Chapter 13, §13.1, Corollary 13.6]) shows that
the Artin map induces a Gn-isomorphism

U1
n/E1

n � Gal(Mn/Ln). (4.14)

Since
M∞ =

⋃

n≥0

Mn, L∞ =
⋃

n≥0

Ln,
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we obtain the exact sequence of the theorem by passing to the projective
limit over n in (4.14), and noting that lim

←−
is an exact functor here

because all are finitely generated Zp-modules. 	

In view of Theorem 4.5.2, we obtain the following four term exact

sequence of Λ(G)-modules

0−→E1
∞/C1

∞−→U1
∞/C1

∞−→X∞−→Y∞−→ 0, (4.15)

which we shall henceforth call the fundamental exact sequence.
Iwasawa’s theorem (Theorem 4.4.1) gives a precise analytic descrip-

tiom of the Λ(G)-module U1
∞/C1

∞ in terms of the p-adic zeta function,
while the modules E1

∞/C1
∞ and Y∞ occuring in (4.15) measure the dis-

crepancy between U1
∞/C1

∞ and X∞. In fact, the following proposition,
first observed by Iwasawa, shows that the two middle terms in (4.15)
are isomorphic whenever the class number of F0 = Q(µp)+ is prime to
p, which covers all known numerical examples.

Proposition 4.5.3. Assume that the class number of F0 = Q(µp)+ is
prime to p. Then

E1
∞/C1

∞ = Y∞ = 0.

Proof. Put Γn = Gal(F∞/Fn). and let Γ = Γ0. Since there is a unique
prime of F∞ above p and this prime is totally ramified, it is a well
known general fact in Iwasawa theory (see Appendix and [Wa, Chapter
13, Proposition 13.22]) that

(Y∞)Γn
� Gal(Ln/Fn) (4.16)

for all n ≥ 0; here if W is any Γ-module, (W )Γn
will denote its Γn-

coinvariants, and as above Ln denotes the p-Hilbert class field of Fn.
Hence our hypothesis that L0 = F0 implies that (Y∞)Γ0 = 0 and hence
Y∞ = 0 by Nakayama’s lemma. We then conclude from (4.16) that the
class number of Fn is prime to p for all n ≥ 0. To complete the proof,
we now show that E1

n = C1
n for all n ≥ 0. Indeed, since the classical

class number formula asserts that the index of Dn in Vn is the class
number of Fn, we have an exact sequence

0−→D1
n −→V 1

n −→Wn −→ 0,

where Wn is a finite group whose order is prime to p since the class
number of Fn is prime to p. Thus the natural map from D1

n ⊗ Zp

to V 1
n ⊗ Zp is an isomorphism. It now follows from the commutative

diagram
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D1
n ⊗ Zp −−−−→ V 1

n ⊗ Zp
⏐⏐�

⏐⏐�

C1
n −−−−→ E1

n

in which the vertical arrows are clearly surjective, that the inclusion of
C1

n in E1
n is in fact an equality for all n ≥ 0. Hence E1

∞ = C1
∞ and the

proof is complete. 	


Corollary 4.5.4. Assume that the class number of F0 = Q(µp)+ is
prime to p. Then

X∞ � Λ(G)/I(G)ζζζp.

In particular, the main conjecture is true.

We refer the reader to the Appendix for a brief discussion of the
general facts about finitely generated modules over Λ(G) which will be
used in the remainder of this chapter. In particular, we recall that a
finitely generated Λ(G)-module is said to be torsion if it is annihilated
by an element of Λ(G), which is not a divisor of zero.

Proposition 4.5.5. All Λ(G)-modules appearing in the fundamental
exact sequence (4.15) are finitely generated and torsion.

Proof. The finite generation of these modules is easy. Indeed, it is clear
from Theorem 4.4.1 that U1

∞/C1
∞ is finitely generated, and even cyclic

as a Λ(G)-module, whence it is plain that E1
∞/C1

∞ is also finitely gen-
erated. The finite generation of both X∞ and Y∞ over Λ(G) are also
special cases of very general results in Iwasawa theory (see [Wa, Chap-
ter 13]).

The proof that these modules are torsion lies deeper. For the module
U1
∞/C1

∞, this amounts, thanks to Iwasawa’s theorem, to showing that
ζζζpθ

+(e, 1) is not a zero divisor in Λ(G) (see the proof of Theorem
4.4.1). But this follows from the remark about non-zero divisors made
in the proof of Lemma 4.2.2, and the fact that ζζζ(1 − k) is non-zero
for all even integers k ≥ 2. For the remaining modules, we note that
it is a well known general fact in Iwasawa theory (see [Wa, Chapter
13, Theorem 13.31]) that the analogue of X∞ for the cyclotomic Zp-
extension of any totally real field is a torsion module over the Iwasawa
algebra of the Galois group of the Zp-extension. However, in our case,
this assertion follows easily from the fact that U1

∞/C1
∞ is torsion and

that Y∞ is torsion. The latter assertion follows from (4.16), and the
well known fact that the finiteness of the Γ0-invariants of a compact
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Γ0-module implies that it is torsion over the Iwasawa algebra of Γ0.
This completes the proof. 	


We can now state the main conjecture (we recall that it is actually
a theorem, whose proof will be completed in the later chapters). If N is
any finitely generated torsion Λ(G)-module, the structure theory (see
Appendix) shows that we have an exact sequence of Λ(G)-modules

0−→
r⊕

i=1

Λ(G)
Λ(G)fi

−→ N −→Q−→ 0,

where fi (i = 1, · · · , r) is a non-zero divisor, and Q is finite. Then the
G-characteristic ideal of N , which we denote by chG(N), is defined to
be the ideal of Λ(G) generated by the product f1 · · · fr.

Theorem 4.5.6. (Main Conjecture) We have

chG(X∞) = I(G)ζζζp.

The completion of the proof of the Main Conjecture will occupy
the next two chapters. However, in view of Iwasawa’s theorem, and the
multiplicativity of the characteristic ideal in exact sequences (see the
Appendix), we deduce the following proposition immediately from
the exact sequence (4.15).

Proposition 4.5.7. The main conjecture is true if and only if
chG(Y∞) = chG(E1

∞/C1
∞).

We stress that this last proposition is of theoretical interest rather
than practical importance, because in view of Proposition 4.5.3, it
amounts to the trivial assertion that Λ(G) = Λ(G) in all known nu-
merical cases.

4.6 Another Property of Cyclotomic Units

The aim of this section is to establish a further important property of
the module U1

∞/C1
∞. This will help us to prove some additional results

about the global units of the fields Fn which will be needed in the
arguments involving Euler systems in Chapter 6.

Henceforth, we shall use a deep result about the fields Fn, (n ≥ 0),
which is due to Brumer [Br] and which is a special case of Leopoldt’s
conjecture. We remind the reader that Leopoldt’s conjecture is un-
known for arbitrary finite extensions of Q.
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Theorem 4.6.1. Let n be an integer ≥ 0, and let Mn denote the max-
imal abelian p-extension of Fn which is unramified outside p. Then Mn

is a finite extension of F∞.

We remark that the isomorphism (4.14) easily shows that the Galois
group Gal(Mn/F∞) is finite if and only if the Zp-rank of E1

n is
[Fn : Q] − 1, where as in Definition 4.5.1, E1

n denotes the closure in
U1

n of the global units of Fn which are ≡ 1 mod pn. This latter assertion
is the more familiar form of Leopoldt’s conjecture. In addition, it can
be shown (see the appendix of [C1]) that the order of Gal(Mn/F∞) is
given by a simple analytic formula which is essentially the inverse of
the p-adic valuation of the residue at s = 1 of the p-adic zeta function
of Fn. However, as we shall not use this formula in the rest of the proof,
we do not enter into further details here.

Definition 4.6.2. For each m ≥ 0, we define

N∞(U1
m) =

⋂

n≥m

Nn,m(U1
n), N∞(K×

m) =
⋂

n≥m

Nn,m(K×
n )

to be the subgroups of universal norms respectively of U1
m and K×

m.

It is an easy exercise from local class field theory (see for example,
[Iw2, Proposition 9]) that N∞(U1

m) is the submodule of U1
m consisting

of all elements whose norm to Qp is equal to 1. Clearly, the natural
projection from U1

∞ to U1
n induces a surjection

αn,U : (U1
∞)Γn

−→N∞(U1
n), (4.17)

where, as earlier, Γn = Gal(K∞/Kn). Further, since every element of
C1

n is a universal norm, the natural projection from C1
∞ on C1

n induces
a surjection

αn,C : (C1
∞)Γn

−→C1
n, (4.18)

Theorem 4.6.3. For all integers n ≥ 0, we have (i)
(
U1
∞/C1

∞
)Γn = 0,

(ii)
(
U1
∞/C1

∞
)
Γn

= N∞(U1
n)/C1

n, and (iii) The natural map

(C1
∞)Γn

−→ (U1
∞)Γn

maps Ker(αn,C) isomorphically to Ker(αn,U ), both being isomorphic to
Zp with the trivial action of G.

Proof. The proof, which is essentially due to Iwasawa [Iw2, Proposition
11], hinges on the following elementary observation. Let Φ∞ denote the
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maximal abelian p-extension of K∞, and Φn the maximal abelian p-
extension of Kn. Again, G acts on Gal(Φ∞/K∞) in the usual manner by
inner automorphisms (see the analogous discussion for the global case in
the previous section). Since Φn is plainly the maximal abelian extension
of Kn contained in Φ∞, we have (see Lemma 3 of the Appendix)

(Gal(Φ∞ / K∞))Γn
= Gal(Φn/K∞). (4.19)

We can interpret this equation via local class field theory as follows. If
W is an abelian group, recall that its p-adic completion Ŵ is defined
by

Ŵ = lim
←−

W/pmW

where the projective limit is taken with respect to the natural maps.
Consider the p-adic completion K̂×

n of K×
n , and define

Z∞ = lim
←−

K̂×
n ,

where this projective limit is taken with respect to the homomorphisms
induced by the norm maps. We can also consider the p-adic completion

̂N∞(K×
n ) of N∞(K×

n ). Then the Artin map of local class field theory
gives canonical Λ(G)-isomorphisms

Z∞ � Gal(Φ∞/K∞), ̂N∞(K×
n ) � Gal(Φn/K∞).

Thus (4.19) shows that the projection from Z∞ to ̂N∞(K×
n ) induces a

natural isomorphism

(Z∞)Γn
= ̂N∞(K×

n ). (4.20)

Put τn = γpn − 1, where γ is any fixed topological generator of Γ0.
Then (4.20) is equivalent to the assertion that the kernel of the natural
surjection

prn,Z : Z∞−→ ̂N∞(K×
n ) (4.21)

is precisely τnZ∞. Let Wn be the subgroup of F×
n which is generated by

all conjugates of ±vn where vn = ζ
−1/2
n −ζ

1/2
n . Clearly, Wn is contained

in N∞(K×
n ), and since vn is a local parameter of Kn, the order valuation

at pn gives an exact sequence of G-modules

0−→Dn −→Wn −→Z−→ 0,
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where Dn is as in Definition 4.3.1. Passing to the p-adic completion,
and recalling that the index of D1

n in Dn is prime to p, we obtain the
exact sequence of G-modules

0−→D1
n ⊗ Zp −→ Ŵn −→Zp −→ 0. (4.22)

Similarly, we have an exact sequence of G-modules

0−→N∞(U1
n)−→ ̂N∞(K×

n )−→Zp −→ 0. (4.23)

As Leopoldt’s conjecture is valid for Fn, we can identify D1
n⊗Zp with its

image C1
n inside N∞(U1

n). Hence the natural map from Ŵn to ̂N∞(K×
n )

is injective, and it follows from the exact sequences (4.22) and (4.23)
that

̂N∞(K×
n )/Ŵn = N∞(U1

n)/C1
n, Z∞/W∞ = U1

∞/C1
∞, (4.24)

where we have written W∞ = lim
←−

Ŵn, the projective limit being taken
with respect to the norm maps.

Since the natural projection from W∞ to Ŵn is plainly surjective,
it follows from (4.20) that the kernel of the surjection

Z∞
prn,Z−−−−→ ̂N∞(K×

n )−→ ̂N∞(K×
n )/Ŵn

is precisely W∞τnZ∞. As

Z∞/W∞τnZ∞ = (Z∞/W∞)Γn
,

assertion (ii) of Theorem 4.6.3 follows from the above remark and
(4.24). But U1

∞/C1
∞ is a torsion Λ(G)-module by Theorem 4.4.1 and

the fact that θ+(e, 1)ζζζp is not a zero divisor in Λ(G). Moreover, (ii)
implies that (

U1
∞/C1

∞
)
Γn

is finite because the validity of Leopoldt’s conjecture shows that N∞(U1
n)

and C1
n have the same Zp-rank (of course we are using here the fact

that Dn has finite index in Vn by the analytic class number formula).
Hence, by a basic property of torsion Λ(G)-modules (see Appendix),
we conclude that (

U1
∞/C1

∞
)Γn

is finite. But Iwasawa’s theorem shows that U1
∞/C1

∞ is an elementary
Λ(G)-module, and so it has no non-zero finite Λ(G)-submodules (see
Appendix), whence assertion (i) follows.
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To establish assertion (iii), we note that, thanks to the validity of (i)
and (ii), we have the following commutative diagram with exact rows,
where the right vertical arrow is an isomorphism:

0 −−−−→ (C1
∞)Γn

−−−−→ (U1
∞)Γn

−−−−→ (U1
∞/C1

∞)Γn
−−−−→ 0

αn,C

⏐⏐� αn,U

⏐⏐� �
⏐⏐�

0 −−−−→ C1
n −−−−→ N∞(U1

n) −−−−→ N∞(U1
n)/C1

n −−−−→ 0.

This immediately proves that the inclusion map in the top row induces
an equality

Ker(αn,U ) = Ker(αn,C).

On the other hand, applying the snake lemma to the following commu-
tative diagram with exact rows

0 −−−−→ U1
∞ −−−−→ Z∞ −−−−→ Zp −−−−→ 0

×τn

⏐⏐� ×τn

⏐⏐� ×τn

⏐⏐�

0 −−−−→ U1
∞ −−−−→ Z∞ −−−−→ Zp −−−−→ 0,

we obtain an exact sequence

Zp −→ (U1
∞)Γn

−→ (Z∞)Γn
−→Zp −→ 0. (4.25)

where it is understood that the action of G on both copies of Zp in this
sequence is the trivial action. Using (4.20) and (4.23), it is clear that
we can rewrite this as the exact sequence

Zp −→ (U1
∞)Γn

αn,U−→ N∞(U1
n)−→ 0.

Hence the proof of (iii) will be complete provided we can show that
the map on the left is injective. But, since clearly (Λ(G))Γn

is a free
Zp-module of rank (p − 1)pn/2, it follows from (4.10) that (U1

∞)Γn
is

also a free Zp-module of rank (p − 1)pn/2. On the other hand, as we
have remarked earlier, local class field theory shows that N∞(U1

n) has
Zp-rank (p − 1)pn/2 − 1. Hence the map on the left above has to be
injective, and the proof of Theorem 4.6.3 is now complete. 	


4.7 Global Units

The aim of this section and the next one is to establish results for the
finite extensions Fn of Q which will be needed in Chapter 6 to carry
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out the proof of Proposition 4.5.7 using Euler systems. We begin with
the results for global units, which are more delicate to prove than the
ones for ideal class groups, and our proofs will mainly be inspired by
those in Iwasawa’s celebrated paper [Iw2].

Recall the canonical isomorphism (4.10)

L1 : U1
∞ � Λ(G)

derived from the exact sequence (3.11). It is essentially clear from the
definition of the cyclotomic units (see Lemma 4.3.4) that C1

∞ is cyclic
over Λ(G). It is a remarkable fact, whose proof requires deeper results
about the arithmetic of F∞, that the same is true for the module E1

∞
defined by (4.13).

Theorem 4.7.1. The ideal L1(E1
∞) is principal in Λ(G).

To establish this theorem and a related one at finite levels, we shall use
without proof, the following result due to Iwasawa (see [Iw4, Theorem
18]). In fact, it is valid for the analogue of X∞ over the cyclotomic
Zp-extension of an arbitrary finite extension of Q.

Proposition 4.7.2. X∞ has no non-zero finite Λ(Γ0)-submodule, where
Γ0 = Gal(F∞/F0).

We can now prove Theorem 4.7.1. SinceL1 is a Λ(G)-homomorphism,
it suffices to show that E1

∞ is isomorphic to Λ(G). Since E1
∞ is a sub-

module of a module isomorphic to Λ(G), its torsion submodule is clearly
zero. Further, as U1

∞/E1
∞ is Λ(G)-torsion (see for example, Proposition

4.5.5), and U1
∞ is isomorphic to Λ(G), it is clear that E1

∞ has well-
defined Λ(G)-rank equal to 1 (see Appendix). Hence by Theorem 1 of
the Appendix, there is an exact sequence of Λ(G)-modules

0−→E1
∞−→Λ(G)−→Q−→ 0

where Q is finite. Thus we must show that Q = 0. But since Γ0 =
Gal(F∞/F0) is pro-p, and Q is finite, it suffices by Nakayama’s lemma,
to prove that

QΓ0 = 0. (4.26)

Taking Γ0-invariants of the above exact sequence, we see immediately
that QΓ0 must be the Zp-torsion submodule of (E1

∞)Γ0 , since Λ(G)Γ0
=

Zp[Gal(F0/Q)] is a free Zp-module. On the other hand, we have the
exact sequence

0−→E1
∞−→U1

∞−→ Gal(M∞/L∞)−→ 0
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given by Theorem 4.5.2. Taking Γ0-invariants of this sequence, we ob-
tain the exact sequence

0−→ Gal(M∞/L∞)Γ0 −→ (E1
∞)Γ0 −→ (U1

∞)Γ0 ,

and again the group on the right is isomorphic to Zp[Gal(F0/Q)] since
U1
∞ is isomorphic to Λ(G). Thus (E1

∞)Γ0 will be a free Zp-module,
thereby proving (4.26), provided we can show that

Gal(M∞/L∞)Γ0 = 0. (4.27)

To prove this, it suffices to show that

XΓ0
∞ = 0, (4.28)

Thus, since X∞ has no non-zero finite Λ(Γ0)-submodule by Proposition
4.7.2, to establish (4.28), we only need show that XΓ0∞ is finite. But, as
X∞ is a torsion Λ(Γ0)-module, XΓ0∞ is finite if and only if (X∞)Γ0 is
finite (see Appendix). For any n ≥ 0, recall that Mn denotes the max-
imal abelian p-extension of Fn which is unramified outside p. Clearly,
Mn is the maximal abelian p-extension of Fn contained in M∞, whence
it follows easily that (see Lemma 3 of the Appendix) that

(X∞)Γn
= Gal(Mn/F∞). (4.29)

Taking n = 0, we see that the validity of Leopoldt’s conjecture
for F0 shows that (X∞)Γ0 is finite. This completes the proof of the
theorem. 	


To see what Theorem 4.7.1 implies for the fields Fn, we must intro-
duce the corresponding universal norm subgroups.
Definition 4.7.3. We define

N∞(Vm) =
⋂

n≥m

Nn,m(Vn), N∞(E1
m) =

⋂

n≥m

Nn,m(E1
n).

It is clear that N∞(E1
m) = N∞(V 1

m). The following result is essentially
due to Iwasawa [Iw2, Proposition 8], although our method of proof is
different.

Theorem 4.7.4. For each n ≥ 0, let Rn = Zp[Gal(Fn/Q)]. Then there
is an Rn-isomorphism

N∞(E1
n) � Rn/jn,

where jn is isomorphic to Zp with the trivial action of Gal(Fn/Q).

Proof. We note first that by Theorem 4.7.1, E1
∞ is isomorphic to Λ(G).

Hence (E1
∞)Γn

is isomorphic to Rn. Let

αn,E : (E1
∞)Γn

−→N∞(E1
n)
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be the surjection arising from the natural projection of E1
∞ on E1

n.
Thus, we must show that the kernel of αn,E is isomorphic to Zp with
the trivial action of G. We have the commutative diagram in which
the horizontal maps in the top row are induced from the inclusions
C1
∞ ⊂ E1

∞ ⊂ U1
∞:

(C1
∞)Γn

−−−−→ (E1
∞)Γn

−−−−→ (U1
∞)Γn

αn,C

⏐⏐� αn,E

⏐⏐� αn,U

⏐⏐�

C1
n −−−−→ N∞(E1

n) −−−−→ N∞(U1
n).

By (iii) of Theorem 4.6.3, the composition of the two horizontal arrows
in the top row is injective and induces an isomorphism from Ker(αn,C)
to Ker(αn,U ), both being isomorphic to Zp with the trivial action. But
Leopoldt’s conjecture also implies that

(U1
∞/E1

∞)Γn = 0

(cf. the proof of Theorem 4.7.1). Hence the top horizontal map on the
right in the above diagram is also injective. It follows therefore that the
kernels of all three vertical arrows are isomorphic under the induced
maps and equal to Zp with Gal(Fn/Q) acting trivially. This completes
the proof of the theorem. 	

Proposition 4.7.5. For all n ≥ 0, we have an Rn-isomorphism

(
E1

∞/C1
∞
)

Γn

� N∞(E1
n) / C1

n. (4.30)

Proof. Note first that (E1
∞/C1

∞)Γn = 0 by (i) of Theorem 4.6.3. Hence,
we have the following commutative diagram with exact rows

0 −−−−→ (C1
∞)Γn

−−−−→ (E1
∞)Γn

−−−−→ (E1
∞/C1

∞)Γn
−−−−→ 0

αn,C

⏐⏐� αn,E

⏐⏐�
⏐⏐�

0 −−−−→ C1
n −−−−→ N∞(E1

n) −−−−→ N∞(E1
n)/C1

n −−−−→ 0
(4.31)

where we recall that αn,C and αn,E are surjective. But it was shown at
the end of the proof of Theorem 4.7.4 that the kernels of the first two
vertical arrows coincide. Hence the last vertical arrow is an isomorphism
and the proof of the proposition is complete. 	

Theorem 4.7.6. For all n ≥ 0, we have an Rn-isomorphism

Y Γn
∞ � E1

n/N∞(E1
n),
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where we recall that Y∞ = Gal(L∞/F∞). In particular, the group on
the right is finite and of order independent of n when n is sufficiently
large.

Proof. We first note that, since Gal(M∞/L∞)Γn = 0 by the validity
of Leopoldt’s conjecture, we have the commutative diagram of Rn-
modules where the rows are exact,

0 −−−−→ (E1
∞)Γn

−−−−→ (U1
∞)Γn

−−−−→ Gal(M∞/L∞)Γn
−−−−→ 0

αn,E

⏐⏐� αn,U

⏐⏐�
⏐⏐�

0 −−−−→ N∞(E1
n) −−−−→ N∞(U1

n) −−−−→ N∞(U1
n)/N∞(E1

n) −−−−→ 0.
(4.32)

The first two vertical arrows are surjective, and have equal kernels
by the argument at the end of the proof of Theorem 4.7.4. Hence we
conclude that we have an Rn-isomorphism

Gal(M∞/L∞)Γn
� N∞(U1

n)/N∞(E1
n). (4.33)

On the other hand, taking Γn-homology of the exact sequence

0−→ Gal(M∞/L∞)−→X∞−→Y∞−→ 0,

and recalling that XΓn∞ = 0, we obtain the exact sequence of Rn-
modules

0−→Y Γn
∞ −→ Gal(M∞/L∞)Γn

−→ (X∞)Γn
−→ (Y∞)Γn

−→ 0. (4.34)

As (see (4.29))

Gal(Mn/F∞) = (X∞)Γn
, Gal(LnF∞/F∞) = (Y∞)Γn

, (4.35)

it follows that we have the exact sequence

0−→Y Γn
∞ −→ Gal(M∞/L∞)Γn

−→ Gal(Mn/LnF∞)−→ 0. (4.36)

But the Artin map of global class field theory gives an Rn-isomorphism

Gal(Mn/LnF∞) � N∞(U1
n)/E1

n. (4.37)

Combining (4.33), (4.36), and (4.37), we conclude that

Y Γn
∞ � E1

n/N∞(E1
n),

as required. But Y Γn∞ is finite because (Y∞)Γn
= Gal(Ln/Fn) is finite.

Hence Y Γn∞ is contained in the maximal finite Λ(Γ0)-submodule of Y∞
for all n, and it is, in fact equal to this module when n is sufficiently
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large. Indeed, any finite Λ(Γ0)-module is annihilated by a sufficiently
large power of the maximal ideal of Λ(Γ0). This completes the proof of
the theorem. 	


Theorem 4.7.1 shows that L1(E1
∞) = αΛ(G) for some α in Λ(G).

Since E1
∞ contains C1

∞, Theorem 4.4.1 proves that α must be a divisor
of ζζζpθ

+(e, 1), say
αβ = ζζζpθ

+(e, 1),

with β in Λ(G). But we have already remarked that ζζζpθ
+(e, 1) is not a

divisor of zero in Λ(G), whence the same is true for both α and β. We
then clearly have a canonical isomorphism of Λ(G)-modules

T : E1
∞/C1

∞ � Λ(G)/βΛ(G). (4.38)

We write prn : Λ(G)−→Rn for the natural surjection.

Theorem 4.7.7. For all n ≥ 0, we have an Rn-isomorphism

Tn : N∞(E1
n)/C1

n � Rn/ prn(β)Rn

where β is the element occuring in (4.38).

Proof. Indeed, the isomorphism in (4.38) clearly induces an isomor-
phism of Rn-modules

(
E1

∞/C1
∞
)

Γn

� (Λ(G)/βΛ(G))Γn
. (4.39)

Since (Λ(G))Γn
= Rn, we have the exact sequence

Rn
× prn(β)−→ Rn −→ (Λ(G)/βΛ(G))Γn

−→ 0, (4.40)

and hence
(Λ(G)/βΛ(G) )Γn

= Rn/ prn(β)Rn,

thereby completing the proof of the theorem, granted Proposition 4.7.5.
Even though we shall not use it in the subsequent arguments, it may

be worth pointing out a curious consequence of Proposition 4.7.5 and
Theorem 4.7.6. Let An denote the p-primary subgroup of the ideal class
group of Fn. Combining the classical analytic class number formula
with the validity of Leopoldt’s conjecture for the field Fn, we have

#(An) = #(E1
n/C1

n) (n = 0, 1, · · · ).

Then we claim that #(An) is bounded as n −→ ∞ if and only if
N∞(E1

0) = C1
0 . To prove this, put P = E1

∞/C1
∞. Assume first that

N∞(E1
0) = C1

0 , whence by Proposition 4.7.5, (P )Γ0 = 0, and so
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P = 0 by Nakayama’s lemma. Thus, again applying Proposition 4.7.5, it
follows that N∞(E1

n) = C1
n for all n ≥ 0. We then conclude from the

analytic class number formula above and Theorem 4.7.6 that #(An) is
bounded as n −→ ∞. Conversely, assume that the cardinality of An is
bounded as n −→ ∞. By the analytic class number formula and Propo-
sition 4.7.5, it follows that #((P )Γn

) is bounded as n −→ ∞, whence
we see easily from the structure theory that P must be finite. But
P is a Λ(G)-submodule of U1

∞/C1
∞, and, as remarked earlier, Theorem

4.4.1 shows that U1
∞/C1

∞ has no non-zero finite Λ(G)-submodule. Hence
P = 0, and so by Proposition 4.7.5, we have N∞(E1

0) = C1
0 , as required.

Finally, we point out that Greenberg [Gr] has indeed conjectured that
#(An) is bounded as n −→ ∞. More generally, he makes the same con-
jecture for the cyclotomic Zp-extension of any totally real number field.

4.8 Ideal Class Groups

We end this chapter by establishing a rather weak result about the
structure of the p-primary subgroup of the ideal class group of Fm

as a module over the group ring Rm = Zp[Gal(Fm/Q)]. The method
of proof is to use the structure theory for finitely generated torsion
Λ(G)-modules (see Appendix), and to deduce the result for Fm from
this. Thus, as an inevitable consequence of the structure theory, there
is a certain unknown finite Λ(G)-module appearing in the final result,
which complicates the argument somewhat. However, it is interesting
to note (see Theorem 4.8.2) that the same finite module occurs in the
study of the quotient E1

n/N∞(E1
n).

Recall that L∞ denotes the maximal abelian p-extension of F∞
which is everywhere unramified, and that Y∞ = Gal(L∞/F∞), endowed
with its natural structure as a Λ(G)-module. As explained in the proof
of Proposition 4.5.5, Y∞ is a finitely generated torsion Λ(G)-module,
and hence the structure theory (see Appendix) tells us that there is an
exact sequence

0−→
h⊕

i=1

Λ(G)
Λ(G)fi

−→ Y∞−→Q−→ 0, (4.41)

with Q an unknown finite Λ(G)-module. Write Am for the p-primary
subgroup of the ideal class group of Fm. Let ann(Q) be the annihilator
ideal of Q in Λ(G).

Theorem 4.8.1. For all sufficiently large m, there is an increasing
filtration {Fili(Am) : i = 0, · · · , h} of Am by Rm-submodules with
Fil0(Am) = 0 and satisfying:-
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(i) For i = 1, · · · , h, we have an exact sequence of Rm-modules

0−→Qi,m −→Rm / prm(fi)Rm −→ Fili(Am) / Fili−1(Am)−→ 0
(4.42)

where Qi,m is a finite Rm-module which is annihilated by ann(Q);
(ii) Am/ Filh(Am) is a finite Rm-module which is annihilated by ann(Q).

Before beginning the proof, we note the following general algebraic facts
about the category of all finitely generated torsion Λ(G)-modules. We
refer the reader the Appendix for a more detailed discussion. Firstly,
every finitely generated torsion Λ(G)-module has a maximal finite
Λ(G)-submodule. Secondly, any elementary Λ(G)-module has no non-
zero finite Λ(G)-submodule. Finally, given any finite Λ(G)-module B,
the groups Γm acts trivially on B for all sufficiently large m.

Turning to the proof of the theorem, we let

W =
h⊕

i=1

Λ(G)
Λ(G)fi

,

be the elementary module appearing in the exact sequence (4.41). Let
m ≥ 0 be any integer. Taking Γm-homology of the exact sequence
(4.41), we obtain the long exact sequence

0−→WΓm −→Y∞
Γm −→QΓm −→WΓm

κm−→ (Y∞)Γm
−→QΓm

−→ 0,
(4.43)

where κm is the natural map. But by (4.16) and class field theory, we
have

(Y∞)Γm
= Gal(Lm/Fm) = Am.

Hence in particular, (Y∞)Γm
is finite. This in turn implies that (Y∞)Γm

is finite (see Appendix). Thus WΓm is a finite Λ(G)-submodule of the
elementary module W , and so WΓm = 0 by the remarks in the previ-
ous paragraph. Moreover, there exists an integer m0 such that for all
m≥m0, we have QΓm = Q and Y∞

Γm = Q′ where Q′ is the maximal
finite Λ(G)-submodule of Y∞. We assume from now on that m ≥ m0.
But clearly (compare with (4.40)),

WΓm
=

h⊕

i=1

Rm

prm(fi)Rm
. (4.44)

Thus the sequence (4.43) can be rewritten as the exact sequence

0−→Q′′−→
h⊕

i=1

Rm

prm(fi)Rm

κm−→Am −→Q−→ 0,
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where Q′′ = Q/Q′. For i = 1, · · · , h we define Fili(Am) to be the image
in Am of the restriction of κm to the submodule of WΓm

defined by

Wi,m :=
i⊕

k=1

Rm

prm(fk)Rm
.

Also, writing
Q′′

i,m := Q′′ ∩ Wi,m,

we then clearly have the exact sequence

0−→Q′′
i,m −→Wi,m −→ Fili(Am)−→ 0

for i=1, · · · , h.ThetheoremnowfollowsondefiningFil0(Am)=0,Qi,m =
Q′′

i,m/Q′′
i−1,m for i = 1, · · · , h and noting that Am/ Filh(Am) = Q. 	


Theorem 4.8.2. For all m ≥ 0, the module E1
m/N∞(E1

m) is annihi-
lated by ann(Q) where Q is the finite module appearing in the exact
sequence (4.41).

Proof. This is immediate from the exact sequence (4.43), on recalling
Theorem 4.7.6 and the fact that WΓm = 0. This completes the proof. 	


Finally, we note the following well-known lemma, which will also be
used in the Euler system proof of Chapter 6.

Lemma 4.8.3. For all m ≥ 0, we have

AGal(Fm/Q)
m = 0.

Proof. Let �′ = Gal(F0/Q) so that �′ is a cyclic group of order
(p − 1)/2. Then we can identify Gal(Fm/Q) with the direct product
of �′ and the Galois group Gal(Pm/Q), where Pm is the m-th layer of
the cyclotomic Zp-extension of Q. Since the degree of Fm/Pm is prime
to p, we see that the natural map induces an isomorphism

Bm � A�′

m ,

where Bm denotes the p-primary subgroup of the ideal class group of
Pm. But, as is well-known Bm = 0 for all m ≥ 0. To prove this last
assertion, let L′

∞ denote the maximal unramified abelian p-extension of

P∞ =
⋃

n≥0

Pn.

Then, as Pm/Q is totally ramified at p, we have

Gal(L′
∞/P∞)Γm

= Bm,

where Γm = Gal(P∞/Pm). But clearly B0 = 0 and so L′
∞ = P∞ by

Nakayama’s lemma. Hence Bm = 0 for all m as asserted. This completes
the proof of the lemma. 	




5

Euler Systems

5.1 Introduction

The aim of this chapter is to axiomatically define and study Euler
systems for the tower F∞. This remarkable new method was discovered
simultaneously and independently by Kolyvagin [Ko] and Thaine [Th],
and thus, in comparison with most of the other basic tools used in
the arithmetic of cyclotomic fields, is relatively recent. The notion of
a general Euler system grew out of this work and has been extensively
studied in, for example, [Ru2], [PR], [Ka]. We do not enter into a general
discussion of Euler systems here, but work with the simplest notion
needed for the proof of the main conjecture. In the final part of the
chapter, we first establish the Factorization Theorem which goes back
to Kolyvagin and Thaine, and then a variant of the Cebotarev Theorem
due to Rubin. We stress that the Factorization Theorem is intuitively
very surprising for the following reason. Fix an integer m ≥ 0 and
the field Fm = Q(µpm+1)+. By an ingenious use of Kummer theory, it
establishes relations in the ideal class group of Fm by employing units
(cyclotomic, or more generally the values of abstract Euler systems),
which lie in tamely ramified cyclotomic extensions of Fm. It will then
be shown in Chapter 6 that these new relations, when combined with
Rubin’s Cebotarev Theorem, enable one to prove that

chG(Y∞) divides chG(E1
∞/C1

∞),

whence it is easy to complete the proof of the main conjecture.
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5.2 Euler Systems

For motivation, we begin by introducing what is in fact, the only known
concrete example of the abstract definition of an Euler system to be
given at the end of this section.

Let r ≥ 2 be an integer and let a1, · · · , ar be non-zero integers and
n1, · · · , nr be integers with

∑r
j=1 nj = 0.

Definition 5.2.1. We define

α(T ) =
r∏

j=1

(T−aj/2 − T aj/2)nj .

The alert reader will notice that this is just an avatar of the rational
function studied in the earlier chapters, and which gives the Coleman
power series of cyclotomic units. Formally, it should be viewed here as
a rational function in the variable T 1/2.

Definition 5.2.2. Let S denote the finite set of primes consisting of
2 and all prime divisors of a1, · · · , ar. We define the group

WS = {ζ ∈ Q̄ : ζm = 1 for some integer m ≥ 1 with (m, S) = 1}.

In other words, the group WS is the direct sum of all the µq∞ with q
running over all primes not in S. Since 2 belongs to S, WS is uniquely
divisible by 2, i.e. every ζ in WS has a unique square root lying in WS ,
which we denote by ζ1/2. Using α(T ), one can define a map

φα : WS −→ Q̄
× (5.1)

by

φα(ζ) = α(ζ) for ζ �= 1, φα(1) =
r∏

j=1

a
nj

j .

Note that every cyclotomic unit of Fn is of the form α(ζn) for a primitive
pn+1-th root of unity ζ, and a function α as above with the integers
a1, · · · , ar prime to p. Hence we can view every cyclotomic unit of Fn

as giving rise to an Euler system.

Lemma 5.2.3. For all ζ in WS, the following assertions hold:-

(i) We have φα(ζ−1)=φα(ζ) and φα(ζσ)=φα(ζ)σ for all σ∈Gal(Q̄/Q);
(ii) If q is a prime not in S, we have
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∏

ρ∈µq

φα(ρζ) = φα(ζq);

(iii) If q is a prime not in S, then, provided ζ has order prime to q, we
have the congruence

φα(ρζ) ≡ φα(ζ) mod q

for all ρ in µq and all primes q lying over q.

Proof. The first part of assertion (i) is clear and the rest follows on
noting that by the uniqueness of square roots in WS , we have for all
σ in Gal(Q̄/Q),

σ(ζ1/2) = (σ(ζ))1/2.

The proof of (ii) breaks up into two cases. Suppose first that ζ belongs
to µq. Then we must show that

∏

ρ∈µq

ρ�=1

φα(ρ) = 1.

But since the product of all elements in a cyclic group of odd order is
equal to the identity, we have

∏

ρ∈µq

ρ�=1

φα(ρ) =
r∏

j=1

⎛

⎜⎜⎝
∏

ρ∈µq

ρ�=1

(1 − ρaj )

⎞

⎟⎟⎠

nj

.

But, as (q, aj) = 1 for j = 1, · · · r, we see that the right hand side of
this last equation is equal to

∏r

j=1
qnj = 1 since

∑r

j=1
nj = 0. Suppose

next that ζ does not belong to µq. Again, using the above remark on
cyclic groups of odd order, we see that

∏

ρ∈µq

φα(ζρ) =
r∏

j=1

∏

ρ∈µq

(ζ−aj/2 − ρajζaj/2)nj .

But the right hand side of this expression is clearly equal to φα(ζq)
completing the proof of (ii).
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To establish (iii), first assume that ζ = 1. Since α(1) = φα(1), and
α(T ) is a power series in T − 1 with coefficients in Zq, it is plain that
φα(ρ) ≡ φα(1) mod q. Suppose now that ζ �= 1 has order prime to q.
Then we have an expansion of the form

φα(ζT ) =
∞∑

n=0

cn(T − 1)n, (5.2)

where the cn belong to Zq[ζ] for all n ≥ 0. To prove this, we simply
note that

(ζT )−aj/2 − (ζT )aj/2 =
∞∑

n=0

dn(T − 1)n

where the dn, (n ≥ 0) lie in Zq[ζ] and d0 = ζ−aj/2(1 − ζaj ). But d0 is
a unit in the ring Zq[ζ] because ζaj is a root of unity of order prime
to q, and distinct from 1. Thus the above power series is a unit in the
ring of formal power series in T − 1 with coefficients in Zq[ζ] and (5.2)
follows. To finish the proof of (iii), we simply note that the expansion
(5.2) converges for T = ρ in µq, and shows that φα(ζρ)−φα(ζ) belongs
to the proper ideal generated by (ρ− 1) in Zq[ζ, ρ]. This completes the
proof of (iii). 	


In fact, we could continue with the proof of the main conjecture
using only the functions φα given in (5.1) in terms of α(T ). However,
the subsequent arguments will only use the properties (i)-(iii) of Lemma
5.2.3 and we therefore axiomatise the situation by making the following
definition. Let S be any finite set of prime numbers containing the prime
2. As earlier, take WS to be the set of all roots of unity in Q̄

× whose
order is prime to S.

Definition 5.2.4. An Euler system is a map φ : WS −→ Q̄
× such that

the following axioms hold, where ζ denotes any element of WS:-
E1. We have φ(ζ−1) = φ(ζ) and φ(ζσ) = φ(ζ)σ for all σ ∈ Gal(Q̄/Q);
E2. If q is a prime not in S, we have

∏

ρ∈µq

φ(ρζ) = φ(ζq);

E3. If q is a prime not in S, then, provided ζ has order prime to q, we
have the congruence

φ(ρζ) ≡ φ(ζ) mod q

for all ρ in µq and all primes q dividing q.

We now study some basic properties of these Euler systems.
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We shall need the following notation. For each odd integer m ≥ 1,
we put

Hm = Q(µm), Hm = Q(µm)+. (5.3)

For finite field extensions L1/L2, we write N
L1/L2

for the norm map
from L1 to L2. If q is a prime with (q,m) = 1, we shall write Frq for
the Frobenius element of Gal(Hm/Q) and its restriction to Hm; i.e. Frq

is the field automorphism which acts on µm by ζ 
→ ζq.
For the rest of this chapter, φ will denote an arbitrary Euler system

as defined above. Note that if m is any integer prime to S, axiom E1
shows that φ(ζ) belongs to Hm for ζ ∈ µm.

Lemma 5.2.5. Let m ≥ 1 be any integer prime to S, and let q be a
prime number which does not divide m and which does not lie in S.
Then for all ζ in µm and all ρ �= 1 in µq, we have

N
Hmq/Hm

φ(ρζ) =
φ(ζ)Frq

φ(ζ)
. (5.4)

Proof. We first note that m > 2 since m is prime to S. Hence
Gal(Hmq/Hm) is isomorphic to Gal(Hmq/Hm), and both are of order
q−1 since (m, q) = 1. In particular, these Galois groups act transitively
on µq \ {1}. Thus by Axiom E1,

N
Hmq/Hm

(φ(ρζ)) =
∏

η∈µq

η �=1

φ(ηζ).

But, by axiom E2, the right hand side is equal to φ(ζq)/φ(ζ). As

φ(ζ)Frq = φ(ζFrq) = φ(ζq),

the proof of the lemma is complete. 	


Lemma 5.2.6. Let m ≥ 1 be any integer prime to S Suppose that q
is a prime number which does not divide m and does not lie in S. Let
n be any integer ≥ 1. Then, for all ζ in µm, and all primitive qn+1-th
roots of unity η, we have

N Hmqn+1
/Hmqn

φ(ηζ) = φ(ηqζFrq).

Proof. Since n ≥ 1, the group Gal(Hmqn+1/Hmqn) is again isomorphic
to Gal(Hmqn+1/Hmqn), and both are of order q. Hence the orbit of η



76 5 Euler Systems

under the action of these Galois groups consists of the set ηρ such that
ρ is in µq. Hence

N Hmqn+1
/Hmqn

φ(ηζ) =
∏

ρ∈µq

φ(ηρζ) = φ(ηqζq) = φ(ηqζFrq)

by axiom E2 and this completes the proof. 	

For each n ≥ 0, let ηn denote a primitive qn+1-th root of unity with

ηq
n = ηn−1 for all n ≥ 1. We immediately obtain the following corollary.

Corollary 5.2.7. Under the same hypotheses as Lemma 5.2.6, define
vn = φ(ηn−1τn−1), where τn = Frq

−n(ζ). Then

N Hmqn+1
/Hmqn

(vn+1) = vn (n = 1, 2, · · · ). 	


5.3 Values of Euler Systems

The following theorem seems to suggest that Euler systems are not
useful for studying ideal class groups for cyclotomic fields. Nevertheless,
as we shall see later, an ingenious idea due to Kolyvagin and Thaine
shows that this judgment is too hasty.

Theorem 5.3.1. For any Euler system φ : WS −→ Q̄
×, the value φ(η)

is a unit in Q(η)+ for all η �= 1 in WS.

We start with the following well known lemma. Let Q
cyc be the

unique Galois extension of Q with Galois group isomorphic to Zq, which
is contained in the field Q(µq∞). If L is an arbitrary finite extension
of Q, we define the cyclotomic Zq-extension Lcyc of L to be the com-
positum LQ

cyc. For each n ≥ 0, write Ln for the unique extension of L
contained in Lcyc which is cyclic of degree qn over L.

Lemma 5.3.2. Let q be any prime number, and let L be any finite
extension of Q. Let z in L× be a norm from Ln for all n ≥ 0. Then
ordr(z) = 0 for all finite primes r of L which do not lie over q.

Proof. By the theory of cyclotomic fields, there are only finitely many
primes of Q

cyc lying above each rational prime, and it follows easily that
the same is then true for Lcyc. Moreover. the only primes which ramify
in the extension Lcyc/L are the primes dividing q. Let r be a prime
of L which does not divide q, and fix a compatible system of primes
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rn of Ln above r. Since r is unramified in Lcyc and its decomposition
group has finite index in the Galois group of Lcyc over L, it follows
that fn = [kn : k] → ∞ as n → ∞, where kn and k are the respective
residue fields of rn and r. But we have NLn/L

(rn) = rfn . Thus the fact
that z is a norm from Ln for every n implies that ordr(z) is divisible
by fn for all n ≥ 1, and so it follows that ordr(z) = 0. This completes
the proof. 	


We can now prove the above theorem. Let t be the exact order of
η, so that t �= 1. Take q to be any prime dividing t, say t = t1q

m+1,
where m ≥ 0 and t1 is prime to q. Clearly there exists a ζ in µt1 and a
primitive qm+1-th root of unity ρm such that

η = ρm · Frq
−m(ζ).

But by Corollary 5.2.7, φ(η) is a norm from Ht1qn+1 for all n ≥ m.
Applying the above lemma with L = Ht1qn+1 , we conclude that any
prime occurring in the factorization of φ(η) must divide q. Clearly if
there is a second prime dividing t, we can carry out the same argument
with this other prime and thereby deduce that no prime can occur in
the factorization of φ(η), and so φ(η) is a unit. Thus we are left with
the case in which t1 = 1 and t = qm+1. Now by Lemma 5.2.6. the norm
from Hqm+1 to Hq of φ(η) is φ(ρ0), where ρ0 = ρqm

m . Since the unique
prime above q is totally ramified in this extension, φ(η) is a unit if and
only if φ(ρ0) is a unit. But in fact φ(ρ0) is a unit because, by axiom
E2, we have

NHq/Q
(φ(ρ0))2 =

∏

ζ∈µq

ζ �=ρ
−1
0

φ(ρ0ζ) = 1.

This completes the proof of the theorem. 	


5.4 The Factorization Theorem

In this section, we discuss the ingenious idea of Kolyvagin and Thaine
for using Euler systems to obtain relations in ideal class groups. The
key to this is the Factorization Theorem, which is only discussed in the
generality required for the proof of the main conjecture, rather than
for an arbitrary abelian extension of Q. With this in mind, we fix for
the rest of this section the following data:-
(i) An odd prime number p
(ii) The field F = Fm = Q(µpm+1)+ for some integer m ≥ 0
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(iii) An integer t = pa for some integer a ≥ m + 1
(iv) A finite set S of prime numbers such that always 2 ∈ S and p �∈ S.
We shall also adopt the following notation. For each integer r ≥ 1, we
write

Jr = F (µr)+ = Q(µpm+1 , µr)+ and ∆r = Gal(Jr/F ). (5.5)

We write I for the free abelian group on the non-zero prime ideals of
F written additively, and for each rational prime q, we write Iq for the
free abelian group on the primes of F dividing q. Thus I = ⊕

q
Iq. We

define ZS to be the set of all square free positive integers which are
prime to both S and p. In addition, we write Z1

S for the subset of ZS

consisting of all integers n in ZS such that n = q1 . . . qk in ZS such that
qi is a prime number with qi ≡ 1 mod t, for i = 1, · · · k.

Lemma 5.4.1. For all integers n ≥ 1, the natural map

F×/F×t −→ (J×
n /J×t

n )∆n (5.6)

is an isomorphism.

Proof. By Kummer theory, the kernel and the cokernel of the map in
(5.6) are H1(∆n, µt(Jn)) and H2(∆n, µt(Jn)), where µt(Jn) = µt ∩ Jn.
But µt(Jn) = 1 since Jn is totally real and t is odd. 	


Lemma 5.4.2. Assume n ∈ ZS. Then, for each prime q dividing n, we
have

Jq ∩ Jn/q = F, Jn = JqJn/q.

Moreover, each prime of F dividing q has ramification index equal to
q − 1 in Jn.

As an immediate corollary, we have the following:-

Corollary 5.4.3. Assume n ∈ ZS is given by n = q1 . . . qk, where the
qi are distinct primes. Then

∆n � ∆q1 × . . . × ∆qk
.

We now prove the lemma. Put k = pm+1 · n/q so that (k, q) = 1. By
the theory of cyclotomic fields, each prime of F above q is unramified
in Jn/q, and totally ramified in Jq. Hence Jq ∩ Jn/q = F . Also, we have
that the compositum JqJn/q must have degree q − 1 over Jn/q. But
[Jn : Jn/q] = q − 1 and so JqJn/q = Jn. This completes the proof of the
lemma. 	
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We now explain how we can operate on the values of Euler systems
by canonical elements of the group rings Z[∆r] to ensure that their
images in J×

r /J×t

r are fixed by ∆r = Gal(Jr/F ). By Lemma 5.4.1,
this will then be the key to constructing elements in F×/F×t

with
interesting factorizations. Let q be a prime number in ZS . Recall that
∆q = G(Jq/F ) is a cyclic group of order q − 1. We now fix for the rest
of this section a generator τq of ∆q, and define the elements

N (q) =
∑

σ∈∆q

σ, D(q) =
q−2∑

k=0

kτk
q , (5.7)

of the integral group ring Z[∆q], noting that D(q) depends on the choice
of τq. The proof of the following lemma is an evident calculation.

Lemma 5.4.4. For each prime q in ZS, we have

(τq − 1)D(q) = q − 1 −N (q). 	


If n = q1 . . . qk is a prime factorisation of n in ZS , we identify ∆qi

with the subgroup of ∆n given by Gal(Hn/Hn/qi
). We then define the

product

D(n) = D(q1) . . .D(qk)

which we view as an element of ∆n. Now let

φ : WS −→ Q̄
× (5.8)

be an arbitrary Euler system. If z is in H×
n and λ is any element of

Z[∆n], zλ will denote z acted on by λ.

Proposition 5.4.5. Let ρ be a primitive pm+1-th root of unity. For
each n in Z1

S, let ξn be a primitive n-th root of unity. Then the class of
φ(ρξn)D(n) in J×

n /J×t

n is fixed by ∆n.

Proof. To lighten notation we define

κn,q = D(n)(τq − 1),

where q denotes any prime in Z1
S . The proof of the proposition is by

induction on the number k of prime factors of n, all of which are auto-
matically distinct from p. Assume first that n = q where q is a prime
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with q ≡1 mod t. As a result of this latter congruence and Lemma 5.4.4,
we have

φ(ρξq)κq,q = φ(ρξq)−N (q) modJ×t

q .

But, as q is prime to S and p, Lemma 5.2.5 shows that

φ(ρξq)N (q) = φ(ρ)Frq−1.

However, Frq = 1 because t = pa where a ≥ m + 1. This proves the
propostion when k = 1.

Now assume that k > 1, and take n = q1 . . . qk. We suppose the
proposition is true for all elements of Z1

S with less than k prime factors.
We can plainly write ξn = ξq1 . . . ξqk

, where ξqi
is some primitive qi-th

root of unity. As τq1 , · · · , τqk
generate ∆n, it suffices to prove that

φ(ρξn)κn,qi ∈ J×t

n , (5.9)

for all prime factors qi of n. Put

Di(n) =
k∏

j=1
j �=i

D(qj).

By Lemma 5.4.4, and since qi ≡1 mod t, we have

φ(ρξn)κn,qi =
(
φ(ρξn)Di(n)

)qi−1−N (qi)
= φ(ρξn)−Di(n)N (qi) mod J×t

n .

(5.10)
But applying Lemma 5.2.5 to the extension Jn/Jn/qi

, we have

φ(ρξn)N (qi) = φ(ρξn/ξqi
)Frqi

−1.

Substituting this equality in the right hand side of (5.10), and using our
inductive hypothesis, we conclude that (5.9) is valid for i = 1, · · · , k.
This completes the proof of the proposition. 	


The next lemma depends crucially on the fact that the primes above
q are tamely ramified in the extension Jq/F . Note that the map l′q of
the lemma below depends on the choice of the generator τq of ∆q.

Lemma 5.4.6. Assume that q is a prime in Z1
S . There is a natural

homomorphism
l′q : (OF /qOF )× −→ Iq/tIq, (5.11)

which commutes with the action of Gal(F/Q) and whose kernel is pre-
cisely the group of t-th powers in (OF /qOF )×.
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Proof. Since q ∈ Z1
S , we have q ≡ 1 mod t. Further, as we have assumed

that t = pa with a ≥ m + 1, it follows that q splits completely in F .
Hence Iq is a free Z[Gal(F/Q)]-module of rank 1. Now the extension
Jq/F has degree q−1, and each prime of F above q is totally and tamely
ramified in this extension. Hence if q denotes a prime of F above q, the
residue field of both q and the unique prime of Jq lying above q is Fq.
Let πq denote some local parameter at the unique prime of Jq above
q. Since q is totally and tamely ramified in Jq, elementary ramification
theory shows that the map

σ 
→ πq/σ(πq)

denotes an isomorphism from ∆q to F
×
q which does not depend on the

choice of the local parameter πq. Thus our fixed generator τq of ∆q

maps under this isomorphism to a primitive root modulo q, which we
denote by γq = π

1−τq

q . We can now define the map l′q. If α is an element
of OF with (α, q) = 1, we have

α mod q = γ
aq(α)
q , where aq(α) ∈ Z/(q − 1)Z.

We can then define

l′q(α mod qOF ) =
∑

q|q
(aq(α) mod t)q.

The right hand side makes sense since q ≡ 1 mod t by hypothesis. One
checks immediately that l′q has all the desired properties. 	


We introduce the following notation. If x belongs to F×/F×t

, we
write

(x) =
∑

r

ordr(x)r mod tI (5.12)

where r runs over all finite primes of F , and

(x)q =
∑

q|q
ordq(x)q mod tIq. (5.13)

Definition 5.4.7. We define the subgroup Sq of F×/F×t

by

Sq = {x ∈ F×/F×t

: (x)q = 0}.

Suppose that q is a prime such that q ≡1 mod t. We get a well-defined
homomorphism

jq : Sq −→ B/Bt, where B = (OF /qOF )×. (5.14)
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by defining jq(x) to be the class in B of any integral representative of
x which has order valuation zero at all primes of F dividing q. Thus
finally we define the map

lq : Sq −→ Iq/tIq (5.15)

to be the composite l′q ◦ jq.
We now give one of the crucial definitions associated with Euler sys-

tems. From now on, fix a primitive pm+1-th root of unity ρ. We shall
suppress reference to ρ in the notation when there is no danger of con-
fusion. In the definition that follows, we are using of course Proposition
5.4.5. Recall that Z1

S is the set of all positive integers n which are prime
to S and of the form n = q1 . . . qk such that the qi are distinct prime
numbers with qi ≡ 1 mod t for i = 1, · · · , k.

Definition 5.4.8. Let φ be an Euler system as in (5.2.4). For each n in
Z1

S, and each primitive n-th root of unity ξn, we define Rφ(ξn) to be the
unique element of F×/F×t

such that its image under the isomorphism
(5.6) is φ(ρξn)D(n) mod J×t

n .

Note that, because φ(ρξn)D(n) is a unit in Jn, the ideal it generates is
trivial. However, because there is ramification in the extension Jn/F ,
this does not imply that the ideal of Rφ(ξn) in I/It is zero. The next
theorem, whose proof for the first time makes use of Axiom E3 for
Euler systems, determines this ideal. Recall that if x ∈ F×/F×t

and q
is any prime number, then (x)q given by (5.13) is its associated ideal
in Iq/tIq.

Theorem 5.4.9. Let φ be any Euler system as in (5.2.4). Let n =
q1 . . . qk be any element of Z1

S, where the qi are prime numbers. Let ξn

be a primitive n-th root of unity and let ξqi
be the component of ξn in the

group µqi
of qi-th roots of unity. If q is any prime number distinct from

q1, · · · , qk, then the ideal (Rφ(ξn))q = 0. If q = qi for some i = 1, · · · , k,
then we have

(Rφ(ξn))qi
= lqi

(
Rφ(

ξn

ξqi

)

)
, (5.16)

where lqi
is the homomorphism given by (5.15).

Proof. Since ρ �= 1, Theorem 5.3.1 implies that φ(ρξn)D(n) is a unit
in Jn. If q is a prime distinct from q1, · · · , qr, then each prime of F
above q is unramified in the extension Jn/F , and hence (Rφ(ξn))q = 0.
Assume therefore that q = qi is one of the prime divisors of n. Then q
is unramified in the extension Jn/q/Q and we let Frq be the Frobenius
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element of q in Gal(Jn/q/Q). Since q ≡ 1 mod t and t ≥ m + 1, Frq

belongs in fact to Gal(Jn/q/F ). Let z be any representative of Rφ(ξn)
in F×. Thus there exists β in J×

n such that

z =
φ(ρξn)D(n)

βt
∈ F×. (5.17)

To compute the q-part of the ideal of z, we write q for any prime of F
above q, and choose some prime q′ of Jn lying above q. Since q′/q has
ramification index q − 1, and φ(ρξn) is a unit, it follows that

(Rφ(ξn))q =

⎛

⎝
∑

q|q

t

1 − q
cq′ .q

⎞

⎠mod tIq, (5.18)

where cq′ = ordq′(β). Let πq denote a fixed local parameter at the
unique prime of Jq above q. Thus πq is a local parameter also at q′

since Jn/Jq is unramified at the primes above q. Hence we can write

β = π
cq′
q αq,

where αq is a unit at q′. Recall that τq is our fixed generator of
Gal(Jn/Jn/q). Since q′ is totally ramified in the extension Jn/Jn/q, we
have

α
1−τq

q ≡ 1 mod q′.

Put γq = π
1−τq

q . Thus we obtain

β1−τq ≡ γ
cq′
q mod q′. (5.19)

Hence cq′ can be computed modulo q−1 as the q-component of l′q(β
1−τq)

and this last expression can be determined as follows. Applying (1−τq)
to (5.17), and noting the basic identity

(1 − τq)D(n) = (N (q) + 1 − q)D(n/q),

which follows from Lemma 5.4.4, we obtain

β(1−τq)t = φ(ρξn)(N (q)+1−q)D(n/q). (5.20)

But by Lemma 5.2.5,

φ(ρξn)N (q) = φ(ρξn/ξq)Frq−1. (5.21)
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On the other hand, we also know that there exists βq in Jn/q such that

zq =
φ(ρξn/ξq)D(n/q)

βt
q

∈ F×,

and is prime to q. Thus zq is a representative of Rφ(ξn/ξq). Applying
Frq − 1 to this element and recalling that Frq fixes F , we obtain

φ(ρξn/ξq)D(n/q)(Frq−1) = βt(Frq−1)
q . (5.22)

Hence substituting (5.22) and (5.21) into (5.20), it follows that

βt(Frq−1)
q = βt(1−τq)φ(ρξn)(q−1)D(n/q).

By the unqiueness of t-th roots in Jn, we conclude that

βFrq−1
q = β1−τqφ(ρξn)

q−1
t

D(n/q). (5.23)

But by Axiom E3, we have that

φ(ρξn) ≡ φ(ρξn/ξq) mod q′.

Recalling that Frq acts on the residue field of Jn/q at a prime above q
by raising to the q-th power, we conclude that

β1−τq ≡
(

βt
q

φ(ρξn/ξq)D(n/q)

) q−1
t

≡ z
1−q

t
q mod q′.

Combining this congruence with (5.19), it follows that cq′ is the
q-component of

l′q(β
1−τq) = l′q

(
z

1−q

t
q

)
=
(

1 − q

t

)
l′q(zq) =

(
1 − q

t

)
lq(Rφ(ξn/ξq)).

The assertion of the theorem is now clear from (5.18). 	


5.5 An Application of the Cebotarev Theorem

In this section, we follow Rubin [Ru3] and use the classical Cebotarev
density theorem to establish a result which will play a central role in
the inductive arguments with Euler systems given in the next chapter.
We use the same fixed data, namely (i)-(iv), as in the previous section.
In particular, we recall that F = Q(µpm+1)+, and we define

A = p-primary subgroup of the ideal class group of F . (5.24)

We also put
Π = Gal(F/Q). (5.25)
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Theorem 5.5.1. Assume that we are given a class c in A, a finite
Π-submodule W of F×/F×t

, and a Π-homomorphism

η : W −→ (Z/tZ)[Π].

Then there exist infinitely many primes q of F , say with q lying above
the rational prime q, such that (i) q is in c, (ii) q ≡ 1 mod t, (iii) q is
not in S, (iv) W ⊂ Sq, and (v) there exists u ∈ (Z/tZ)× such that

lq(w) = uη(w) q for all w ∈ W, (5.26)

where lq is the homomorphism defined in (5.15).

Proof. Let L be the p-Hilbert class field of F , and put F = F (µt). Then
Gal(L/F ) is isomorphic to A as a Π-module by class field theory. In
particular, we can view c as an element of the Galois group Gal(L/F ).
Since L/F is unramified, and F/F is totally ramified at the unique
prime above p, we have

F ∩ L = F. (5.27)
We next observe that

H1(Gal(F/F ), µt) = 0. (5.28)

Indeed, as F is a real field, H0(Gal(F/F ), µt) = 0, and so the Tate
cohomology group Ĥ0(Gal(F/F ), µt) = 0. But now (5.28) follows as
Gal(F/F ) is cyclic, and the Herbrand quotient of its action on µt is 1.
It follows from (5.28) that the natural map

F×/F×t −→F×/F×t

is injective, and we identify W with its image in the group on the right.
We may therefore define

H = F(w1/t : w ∈ W ).

We claim that
H ∩ L = F. (5.29)

Indeed, by Kummer theory, we have

Gal(H/F) � Hom(W, µt) (5.30)

as Π-modules. Since the complex conjugation in Π acts trivially on
Wand on µt by −1, it follows that complex conjugation acts by −1 on
Gal(H/F). On the other hand,

Gal(LF/F) = Gal(L/F ) = A
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because F/F is totally ramified, and so complex conjugation acts like
+1 on Gal(LF/F) since A is a subgroup of the ideal class group of the
real field F . As p is odd, it follows that

H ∩ LF = F .

Combining this last fact with (5.27), we conclude that (5.29) is valid.
Fix a primitive t-th root of unity ζt and define the Z/tZ-linear map

ι : (Z/tZ)[Π]−→µt

by ι(e) = ζt where e is the identity element of Π and ι(g) = 1 for all
elements g of Π with g �= e. Thus ι ◦ η is a homomorphism from W
to µt, and we define γ to be the corresponding element of Gal(H/F)
under the isomorphism (5.30). Thus, by the definition of the Kummer
isomorphism, we have

ι ◦ η(w) = γ(wt)/w1/t for all w ∈ W. (5.31)

In view of (5.29), we have

Gal(HL/F ) = Gal(L/F ) × Gal(H/F ).

Hence there is a unique element σ in Gal(HL/F ) which corresponds to
the pair (c, γ). By the Cebotarev density theorem, there exists infinitely
many primes q of F , which are of degree 1 and unramified in F/Q such
that q is unramified in HL and σ belongs to the conjugacy class of
the Frobenius elements of q for the extension HL/F . Writing q for the
rational prime below q, we now verify that q satisfies all the assertions
of the theorem, provided q is sufficently large. Assertions (i), (iii), and
(iv) are clear because S and W are finite by hypothesis. Assertion
(ii) follows because the restriction of σ to F is the identity and the
Frobenius element of q for the extension F/Q acts on µt by raising to
the q-th power. To prove (v), we consider the homomprhisms

fi : W −→Z/tZ (i = 1, 2)

defined by

f1(w) = ordq(lq(w)), f2(w) = ordq(η(w)q).

We claim that
Ker(f1) = Ker(f2). (5.32)

Clearly w in W belongs to Ker(f1) if and only if w is a t-th power
modulo q. On the other hand, by the definition of the homomorphism
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ι, it is plain that w belongs to Ker(f2) if and only if ι◦η(w) = 1, which
is equivalent to the assertion that σ fixes every t-th root of w. But, as
σ is a Frobenius element for q, this is precisely the assertion that w is
a t-th power modulo q. Thus (5.32) holds, and so

W/ Ker(f1) = W/ Ker(f2)

is isomorphic to the same cyclic subgroup of Z/tZ via the homo-
morphisms induced by f1 and f2, whence these two induced maps
differ by multiplication by an element u in (Z/tZ)×. Therefore we
have f1(w) = uf2(w) for all w in W . Since lq and η are both Π-
homomorphisms, it follows that

w 
→ lq(w) − uη(w)q

gives a Π-homomorphism from W into Iq, whose image is contained in
the subgroup of elements of Iq whose q-component is zero. But the only
Π-submodule of this latter subgroup is 0, and hence lq(w) = uη(w)q,
which is assertion (v). This completes the proof of the theorem. 	


We end by remarking that it is at first sight surprising that the
above theorem holds for all Π-homomorphisms η including the zero
map since the homomorphism lq is never zero on the whole of Sq. But
there is no contradiction since assertion (v) holds only on the subgroup
W of Sq.
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Main Conjecture

6.1 Introduction

The aim of this chapter is to complete the proof of the main conjecture
using Euler systems. We broadly follow Rubin [Ru3], who showed how
one could overcome considerable technical difficulties to use the ideas
of Kolyvagin and Thaine to prove that

chG(Y∞) divides chG(E1
∞/C1

∞)

in the fundamental exact sequence (4.15) of Chapter 4. Unlike the ar-
guments of the earlier chapters which make essential use of the whole
tower F∞, the Euler system argument takes place at a fixed finite ex-
tension F of Q in F∞. The inductive argument then proceeds by a
suitable choice of a sequence of degree one primes in F , and perhaps
can be thought intuitively as some form of horizontal Iwasawa theory.
This inductive argument is rather delicate to explain and we have based
our exposition on that given in [C] for the analogous proof for elliptic
curves with complex multiplication. To start the induction, it seems
to be essential to know a precise statement about the Galois module
structure of the universal norms in the unit groups of finite extensions
F/Q in F∞, which goes back to Iwasawa (see for example, [Iw2, Propo-
sition 8]). We end the chapter by presenting a well known counting
argument based on the classical analytic class number formula which
then shows that the above two characteristic ideals must coincide.

6.2 The Inductive Argument

As in the latter part of the previous chapter, we fix for the rest of this
section the field



90 6 Main Conjecture

F = Fm = Q(µpm+1)+

for some integer m ≥ 0. We write A = Am for the p-primary subgroup
of the ideal class group of F and let

Π = Gal(F/Q), R = Rm = Zp[Π].

Recall the exact sequence (4.41),

0−→
h⊕

i=1

Λ(G)
Λ(G)fi

−→ Y∞−→Q−→ 0,

and also the isomorphism (4.38)

T : E1
∞/C1

∞ � Λ(G)/βΛ(G),

where as always G = Gal(F∞/Q). Fix any annihilator δ in Λ(G) of the
finite module Q above, but with the additional property that R/ pr(δ)R
is finite; here, if x is any element of Λ(G), pr(x) denotes its image in R
under the natural map. In addition, as remarked after Theorem 4.7.7,
R/ pr(β)R is finite. Let s be any fixed power of p which annihilates
both R/ pr(δ)R and R/ pr(β)R. We then define

t = #(A)#(Q)pmsh+1 (6.1)

where h is the integer occurring in the exact sequence (4.41). We now
define

R = (Z/tZ)[Π].

If x is any element of Λ(G), we write x� for its image in R under
the natural surjection from Λ(G) onto R. Finally, we fix a topological
generator γ of G. The goal of this section is to prove by induction the
following divisibility assertion in R.

Theorem 6.2.1. For i = 1, · · · , h, the product

f�
1 . . . f�

i divides ((γ − 1)βδi+1)� (6.2)

in R.

Before beginning the proof of the theorem, we explain how the Euler
system used in it arises. Continuing to drop the subscript m when it
does not lead to confusion, we put

N∞(V ) = N∞(Vm), N∞(E1) = N∞(E1
m), D = Dm,
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reminding the reader that Dm denotes the group of cyclotomic units of
the field F . Recall that by Theorem 4.7.4, there is an isomorphism of
R-modules

N∞(E1) � R/j (6.3)

where j = Zp with the trivial action of Π. We stress that this isomor-
phism is fundamental for the inductive argument to be used in the
proof of Theorem 6.2.1. Since the module on the left has no p-torsion,
because F is totally real, we conclude that

N∞(V ) / N∞(V )t = N∞(E1) / N∞(E1)t � R/n, (6.4)

where n = Z/tZ with the trivial action of Π. On the other hand, we
recall that Theorem 4.7.7 gives an exact sequence of R-modules

0−→C1 −→N∞(E)1 −→R/ pr(β)R−→ 0.

Tensoring this sequence with Z/tZ and noting that the index of D1

(resp. N∞(V )1) in D (resp. in N∞(V )), is prime to p, we obtain the
exact sequence

D/Dt −→N∞(V )/N∞(V )t j−→R/β�R−→ 0 (6.5)

where j is the induced map (of course, the map on the left need not be
injective). We also have the exact sequence

0−→Θ−→N∞(V )/N∞(V )t −→F×/F×t

, (6.6)

for some finite group Θ, which is induced by the inclusion of N∞(V ) in
F×. Since the natural map

V/V t −→F×/F×t

is clearly injective, it follows from the exact sequence

0−→N∞(V )−→V −→V/N∞(V )−→ 0

that
Θ = (V/N∞(V ))t = (V 1/N∞(V 1))t,

where, for any abelian group M , Mt denotes the kernel of multiplication
by t on M . Hence it follows that Θ is annihilated by any element of R

which kills V 1/N∞(V )1. Therefore, by Theorem 4.8.2, Θ is annihilated
by the element δ�, where δ is our fixed non-zero annihilator of Q.

If x is an element of F×, we write x̃ for its image in F×/F×t

.
If, in addition, x belongs to N∞(V ), we let [x] denote its image in
N∞(V )/N∞(V )t. We must be careful to distinguish between the two
because the map on the right in (6.6) is not injective. By virtue of the
isomorphism (6.4) above, we can then make the following definition.
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Definition 6.2.2. Let ε be any element of N∞(V ) such that [ε] is
mapped to the coset of 1 + n under the isomorphism (6.4).

Lemma 6.2.3. There exist integers a1, · · · , ar prime to p and integers
n1, · · · , nr with

∑r
i=1 ni = 0, such that

β�[ε] = [α(ρ)]

where

α(T ) =
r∏

j=1

(T−aj/2 − T aj/2)nj ,

and ρ is a primitive pm+1-th root of unity.

Proof. Note that α(ρ) is in D1 and also recall that any element in D1

is of this form. By the exact sequence (6.5), the lemma is then clear
since β�j([ε]) = 0. 	


To simplify notation, we write φ = φα (see (5.1)) for the Euler
system corresponding to α(T ) in the above lemma. In addition, if x
is any element of R, we also write x� for its image under the natural
surjection from R onto R.

Lemma 6.2.4. Let λ be any element of R such that λα̃(ρ) = 1 in
F×/F×t

, where α(ρ) is the cyclotomic unit appearing in the previous
lemma. Then we have (γ� − 1)δ�β�λ� = 0 in R.

Proof. In view of the exact sequence (6.6), the hypothesis implies that

λ[α(ρ)] ∈ Θ.

Hence, as δ� annihilates Θ, we have

δ�λ[α(ρ)] = 1.

By Lemma 6.2.3, it follows that

β�δ�λ[ε] = 1.

By definition, [ε] maps to the coset of 1 + n under the isomorphism
(6.4). Thus

β�δ�λ ∈ n

and so (γ� − 1)β�δ�λ = 0 because Π acts trivially on n. This completes
the proof of the lemma. 	
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We now begin the proof of Theorem 6.2.1 and first establish it for
i = 1. Let S be the set consisting of the prime 2 and all prime divisors
of a1, · · · , ar where the ai are as in Lemma 6.2.3. Define

W0 = Rν0, where ν0 = Rφ(1) ∈ F×/F×t

, (6.7)

where Rφ is as in Definition 5.4.8; thus Rφ(1) = α̃(ρ). Put

y0 = pr((γ − 1)βδ) ∈ R. (6.8)

In view of Lemma 6.2.4, we can define a Π-homomorphism

η0 : W0 −→R

by η0(λν0) = λy�
0. As above, A = Am is the p-primary subgroup of

the ideal class group of F . Choose c1 to be any R-generator of Fil1(A)
in the filtration of A given in Theorem 4.8.1. We now apply Theorem
5.5.1 with this choice of data. We conclude that there exists a prime
q1 of F of degree 1, say with q1 dividing q1, such that (i) q1 ∈ c1,
(ii) q1 ≡ 1 mod t, (iii) q1 �∈ S, (iv) W0 ⊂ Sq1 , and (v) there exists
u0 ∈ (Z/tZ)× such that

lq1(ν0) = u0η0(ν0)q1 = u0y
�
0q1. (6.9)

On the other hand, applying Theorem 5.4.9 with n = q1, we obtain

lq1(ν0) = (ν1)q1 = (ν1), where ν1 = Rφ(ξ1) ∈ F×/F×t

,

with ξ1 a primitive q1-th root of unity. Thus we have

u0y
�
0q1 = (ν1) in I/tI (6.10)

whence
y0c1 = 0 in A (6.11)

because tA = 0. Note that we can immediately deduce the assertion
of Theorem 6.2.1 for i = 1 from this last equation. Indeed, as pr(δ)
anihilates Q, it also annihilates Q1 = Q1,m (see Theorem 4.8.1), and
so it follows from (6.11) and the exact sequence (4.42) for i = 1, that
pr(δ)y0 annihilates R/f1R, whence

(δy0)� ∈ f�
1 R. (6.12)

We now give in full detail the general inductive proof of Theorem
6.2.1. Let us fix classes c1, · · · , ch in A such that cj belongs to Filj(A)
and the quotient Filj(A)/Filj−1(A) is generated over R by the image
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of cj , which we shall denote by c̃j for j = 1, · · · , h. Suppose now that
i is any integer with 1 ≤ i < h. We assume by induction that we have
already found degree one primes q1, · · · , qi of F lying above distinct
rational primes q1, · · · , qi respectively, which do not lie in S, and which
have the following properties. Writing

νj = Rφ(ξq1 . . . ξqj
) in F×/F×t

,

in the notation of Theorem 5.4.9, we then have :-
(i) qj is in cj for j = 1, · · · , i
(ii) qj ≡ 1 mod t for j = 1, · · · , i
(iii) There exist elementsyj−1 inR such that there is anR-homomorphism

ηj−1 : Wj−1 := Rνj−1 −→R

with ηj−1(νj−1) = y�
j−1 for j = 1, · · · , i

(iv) There exist uj−1 ∈ (Z/tZ)× such that

(νj)qj
= lqj

(νj−1) = uj−1y
�
j−1qj , for j = 1, · · · , i

(v) δ�uj−1y
�
j−1 = f�

j y�
j for j = 1, · · · , i − 1.

We first note that assertions (i) to (v) imply the validity of Theorem
6.2.1 for i. Indeed, the equations (v) for j = 1, · · · , i − 1 show that

(δ�)jy�
0 ∈ f�

1 . . . f�
j y�

j R. (6.13)

On the other hand, assertions (i) and (iv) for j = i imply that

yi−1c̃i = 0 in Fili(A)/Fili−1(A).

Hence, using as before the exact sequence (4.42) for i, we conclude that

pr(δ)yi−1 ∈ fiR. (6.14)

Combining (6.13) and (6.14) for j = i−1, it is clear that the conclusion
of Theorem 6.2.1 is valid for i.

We now proceed to show that the above assertions (i) to (v) hold
for i + 1. By the remarks above, this will establish Theorem 6.2.1 by
induction. Our first step is to prove assertion (iii). Since the argument
is rather delicate, we isolate the first step in the proof as a separate
lemma.

Lemma 6.2.5. Assume that the assertions (i) to (v) hold for an integer
i with 1 ≤ i < h. Let λ be any element in R with λνi = 1 in F×/F×t

.
Then λ.A = 0.



6.2 The Inductive Argument 95

Proof. By virtue of the equation

lqi
(νi−1) = (νi)qi

= ui−1y
�
i−1qi,

and our assumption that λνi = 1, we have

λ�y�
i−1 = 0 (6.15)

On the other hand, the equations in (v) for j = 1, · · · , i − 1 and the
fact that y0 = pr((γ − 1)βδ) show that y�

i−1 divides (δi(γ − 1)β)� in R.
But, by the definition of s, we have pr(δi(γ−1)β) divides pr(γ−1)si+1

in R. Moreover, by the definition of t, we see that si+1 divides t/#(A).
Thus, by (6.15), we have

(t/#(A))λ pr(γ − 1)∈ tR.

This implies that
λ pr(γ − 1) ⊂ #(A).R,

whence λ pr(γ−1)A = 0. But pr(γ−1) is an automorphism of A, since
AG = 0 (see Lemma 4.8.3), and so we have proved the lemma. 	


If x is any element of F×, we write (x) for its ideal in I, and define
{x}qj

∈ R by
(x)qj

= {x}qj
qj ;

here (x)qj
denotes the qj-component of the ideal (x). We now explain

how to find a suitable yi in R such that (iv) holds for j = i + 1. Pick a
representative bi in F× of νi. By Theorem 5.4.9, the ideal (bi) can be
written as

(bi) =
i∑

j=1

{bi}qj
qj + tbi

where bi is prime to q1, · · · , qi. Since the class of qj is cj , (1 ≤ j ≤ i),
this equation shows that the class of bi belongs to A. Hence, as tA = 0,
we obtain

i∑

j=1

{bi}qj
cj = 0.

In particular, recalling that c̃i denotes the image of ci in Fili(A)/
Fili+1(A), it follows from (i) of our inductive hypothesis that

{bi}qi
c̃i = 0. (6.16)
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Since pr(δ) annihilates the module Qi,m, it follows from the exact se-
quence (4.42) that pr(δ){bi}qi

belongs to pr(fi)R, say

pr(δ){bi}qi
= pr(fi)yi, (yi ∈ R). (6.17)

We fix any such yi and proceed to prove that

λ�y�
i = 0 in R (6.18)

for all λ in R such that λνi = 1 in F×/F×t

. Fixing such a λ, it is clear
that there exists di in F× such that

λbi = dt
i. (6.19)

We can write the ideal (di) in the form

(di) =
i∑

j=1

{di}qj
qj + di, (6.20)

where di is prime to q1, · · · , qi. It follows immediately from (6.19) that

λ{bi}qj
= t{di}qj

(1 ≤ j ≤ i), di = λbi. (6.21)

Noting that the class of bi belongs to A, the lemma above then shows
that di must be principal because di = λbi. Thus we obtain

i∑

j=1

{di}qj
cj = 0, (6.22)

and an entirely similar argument to the above then shows that there
exists zi in R such that

pr(δ){di}qi
= pr(fi)zi. (6.23)

As λ{bi}qi
= t{di}qi

, we conclude from (6.17) and (6.23) that

pr(fi)zit = pr(fi)λyi. (6.24)

But multiplication by pr(fi) is injective on R because R/ pr(fi)R is
finite, and hence

zit = λyi in R,

which clearly establishes (6.18). Thus the R-homomorphism

ηi : Wi := Rνi −→R
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given by ηi(λνi) = λ�y�
i is well-defined, and this establishes assertion

(iii) for i + 1. Note also that assertion (v) for j = i follows from the
validity of (iv) for j = i, together with the fact that

(νi)qi
= {bi}�

qi
qi.

We now apply Theorem 5.5.1 to this homomorphism ηi and the class
ci+1. We conclude that there exists a degree one prime qi+1 of F lying
above a rational prime qi+1 distinct from q1, · · · , qi and the elements of
S such that qi+1 ∈ ci+1, qi+1 ≡ 1 mod t, and

lqi+1(νi) = uiy
�
i qi+1

for some uiin (Z/tZ)�. By Theorem 5.4.9, we also have

(νi+1)qi+1 = lqi+1(νi)

and thus we have proven (iv) for j = i + 1. This completes the
proof of the induction and hence assertions (i) to (v) hold for i =
1, · · · , h where we recall that h is the number of direct summands
appearing in the exact sequence (4.41). In particular, this establishes
Theorem 6.2.1. 	


Corollary 6.2.6. chG(Y∞) divides chG(E1
∞/C1

∞).

Proof. We first claim that

f1 . . . fh divides (γ − 1)βδh+1 in Λ(G). (6.25)

Indeed, we have

Λ(G) = lim
←−

m

(Z/pm
Z)[Gal(Fm/Q)].

Since t is a multiple of pm+1, Theorem 6.2.1 for i = h shows that the
divisiblity assertion analogous to (6.25) holds in all of the group rings

(Z/pm+1
Z)[Gal(Fm/Q)]

for all m ≥ 0, whence it clearly holds in Λ(G) by a simple compactness
argument.

The following argument shows that we can remove the power of δ in
the assertion (6.25) above, where we recall that δ is any element of Λ(G)
which annihilates Q and has the additional property that Rm/pr(δ)Rm

is finite for all m ≥ 0. We recall that Λ(G) is a direct product of
(p−1)/2 copies of the unique factorization domain Zp[[T ]] and note that
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it therefore makes sense to define two elements of Λ(G) to be relatively
prime if each of their (p− 1)/2 components are relatively prime. Since
the module Q appearing in (4.41) is finite, it is easy to see that we can
find two relatively prime elements δ1 and δ2 which annihilate Q and
have the property that Rm/pr(δ1)Rm and Rm/pr(δ2)Rm are both finite
for all m ≥ 0. Indeed, Q will be annihilated by the ideal of Λ(G) given
by taking the k-th power of the maximal ideal of Zp[[T ]] in each of the
(p − 1)/2 components for all sufficiently large positive integers k. One
could then choose, for example, δ1 and δ2 to be the elements of Λ(G),
with pk and T k + pk, respectively, in each component. Thus it follows
from (6.25) that

f1 . . . fh divides (γ − 1)β

in Λ(G). However, we have already remarked that (Y∞)Γ0 is finite (see
(4.16)), whence it follows that the product f1 . . . fh is relatively prime
to γ − 1. Thus we conclude that

f1 . . . fh divides β

in Λ(G) and the proof of the corollary is complete. 	


6.3 Proof of the Main Conjecture

We can finally prove

Theorem 6.3.1. We have chG(Y∞) = chG(E1
∞/C1

∞).

As explained in section 4.5 (see Proposition 4.5.7), this theorem, to-
gether with Iwasawa’s theorem (Theorem 4.4.1) establishes the main
conjecture at last.

We prove the theorem by invoking the classical analytic class num-
ber formula (see [H1, §11] or [Si]) for the field F0. Indeed, recalling that
A0 denotes the p-primary subgroup of the ideal class group, V0 denotes
the group of units, and D0 the group of cyclotomic units of F0, the
analytic class number formula asserts that

#A0 = #((V0 / D0)(p)),

where (V0 / D0)(p) denotes the p-primary subgroup of V0 / D0. But,
since Leopoldt’s conjecture is valid for F0, we have

(V0 / D0)(p) = E1
0 / C1

0 ,
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so that we can rewrite the class number formula as

#(A0) = #(E1
0 / C1

0 ). (6.26)

By (4.16) and global class field theory, we have

#((Y∞)Γ0) = #(A0). (6.27)

On the other hand, Proposition 4.7.5 shows that

#(E1
∞ / C1

∞)Γ0 = #(N∞(E1
0)/C1

0 ). (6.28)

It follows from (6.26) and these last two formulae that

#((Y∞)Γ0)/#(E1
∞/C1

∞)Γ0 = #(E1
0/N∞(E1

0)). (6.29)

But by Theorem 4.7.6, we have

#
(
E1

0/N∞(E1
0)
)

= #(Y∞)Γ0 .

Recalling that (
E1

∞/C1
∞
)Γ0 = 0

by (i) of Theorem 4.6.3, we have therefore shown that Y∞ and E1
∞/C1

∞
have finite Γ0-Euler characteristics (see Appendix), and

χ(Γ, Y∞) = χ(Γ, E1
∞/C1

∞).

However, it is easily seen from Corollary 6.2.6 that chΓ(Y∞) divides
chΓ(E1

∞/C1
∞). Hence by Corollary 2 of the Appendix, we conclude that

we have
chΓ(Y∞) = chΓ(E1

∞/C1
∞),

whence again using Corollary 6.2.6, it follows that

chG(Y∞) = chG(E1
∞/C1

∞),

and this completes the proof of the main conjecture. 	
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Appendix

In the first part of this Appendix, we summarize for the convenience of
the reader, the basic algebraic facts about modules over the Iwasawa
algebras occurring in this book. In the latter parts, we recall several
elementary lemmas from Iwasawa theory which are used in Chapters 4
and 6.

A.1. Structure Theory

We recall that the Iwasawa algebra Λ(G) of any profinite group G is
defined by

Λ(G) = lim
←−

Zp[G/H]

where H runs over all open normal subgroups of G, and the inverse
limit is taken with respect to the evident maps. It is endowed with the
topology coming from the p-adic topology on the group rings of the
finite quotients of G. Modules over this Iwasawa algebra arise naturally
in the following fashion. Let M be any compact Zp-module on which
G-acts continuously on the left. Then

M = lim
←−

MH, (A1)

where MH denotes the largest quotient of M on which H acts trivially.
This is most easily seen by passing to the Pontrjagin dual of M , which
we denote by MD and is defined to be the group of all continuous
homomorphisms of M into the discrete module Qp/Zp. We then note
that

MD =
⋃

(MD)H,
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because MD is a discrete G-module, and the previous assertion follows
because (MD)H is dual to MH, and Pontrjagin duality changes induc-
tive limits to projective limits. The left action of Λ(G) on M is evident
from (A1).

The classical structure theory from commutative algebra (see [Bou,
Chapter VII]), is usually only given for modules over the Iwasawa al-
gebra of a group G which is isomorphic to Zp, or more generally Z

d
p

for some integer d ≥ 1. However, we shall be concerned with the case
when G is either the Galois group over Q of the field generated by all
p-power roots of unity, or its maximal real subfield, and it avoids un-
necessary notational complexities to formulate the structure theory for
such groups. Henceforth, we assume that p is an odd prime number, and
G is a group of the form π ×Γ, where π is a quotient of F

×
p = (Z/pZ)×

of order k, and Γ is topologically isomorphic to the additive group of
Zp. We write

θ = ω(p−1)/k

where ω : F
×
p −→Z

×
p is a Teichmüller character, i.e. ω(a) ≡ amod p.

Thus the homomorphisms from π to Z
×
p are given precisely by the θi,

where i runs over any complete set of residues modulo k. Hence, if M
is any Λ(G)-module, it will have the canonical decomposition

M =
⊕

i mod k

M (i), (A2)

where
M (i) = eθiM, eθi =

1
k

∑

δ∈π

θ−i(δ)δ,

is the Zp-submodule of M on which π acts via θi. As the elements
of π and Γ commute, each M (i) is a Λ(Γ)-module. Applying this to
Λ(G) itself, it is clear that Λ(G)(i) is always a ring, and the next lemma
describes it explicitly.

Lemma 1 Let i be any integer modulo k. Then Λ(G)(i) is isomorphic
to the ring Λ(Γ), endowed with the action of π via θi.

Proof. By definition, we have

Λ(G) = lim
←−

Zp[π × Γ/Γn],

where Γn is the unique closed subgroup of Γ of index pn. Since Zp[π ×
Γ/Γn] = Zp[π][Γ/Γn], we conclude that

Λ(G)(i) = lim
←−

Zp[π][Γ/Γn](i) = lim
←−

Zp[Γ/Γn],
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where it is understood that π acts on the group Zp[Γ/Γn] via θi. But

lim
←−

Zp[Γ/Γn] = Λ(Γ),

and so the proof of the lemma is complete. 	

As a consequence of this lemma, we can essentially reduce many

questions about a Λ(G)-module M to the analogous questions for the
Λ(Γ)-modules M (i) for 1 ≤ i ≤ k − 1, to which we can then apply
the classical results of [Bou, Chapter VII]. For example, the module M
will be finitely generated over Λ(G) if and only if each M (i) is finitely
generated over Λ(Γ). Also, defining the module M to be Λ(G)-torsion
if every element of M is annihilated by a non-zero divisor in Λ(G), it
is clear that M is Λ(G)-torsion if and only if each M (i) is Λ(Γ)-torsion,
or equivalently M itself is Λ(Γ)-torsion.

Let M be a finitely generated Λ(G)-module. We shall say that M has
a well-defined Λ(G)-rank equal to r, if there is a Λ(G)-homomorphism
from M to Λ(G)r with Λ(G)-torsion kernel and cokernel. An equivalent
definition is that each M (i), (1 ≤ i ≤ k), should have Λ(Γ)-rank equal
to r.

Theorem 1. Let M be a finitely generated Λ(G)-module. Assume (i)
M has a well-defined Λ(G)-rank equal to r, and (ii) the Λ(G)-torsion
submodule of M is zero. Then we have an exact sequence of Λ(G)-
modules

0−→M −→Λ(G)r −→Q−→ 0,

where Q is a Λ(G)-module of finite cardinality.

Proof. By assumptions (i) and (ii), we conclude from [Bou, Chapter VII]
that we have an exact sequence of Λ(G)-modules

0−→M (i) −→Λ(Γ)r −→Qi −→ 0

for all integers i modulo k. Note that r is independent of i by assump-
tion (i). Define the G-module Q by

Q =
⊕

i mod k

Qi

with the given action of Γ on each summand, and with π acting on
Qi via the character θi. Since by Lemma 1, we have the analogous
decomposition

Λ(G)r =
⊕

i mod k

Λ(Γ)r

the assertion of the theorem is plain. 	
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Theorem 2. Let M be a finitely generated torsion Λ(G)-module. Then
there exists an exact sequence of Λ(G)-modules

0−→
r⊕

j=1

Λ(G)/Λ(G)fj −→M −→Q−→ 0.

where f1, · · · , fr are non-zero divisors in Λ(G), and Q is Λ(G)-module
of finite cardinality.

Proof. For each integer i mod k [Bou, Chapter VII] shows that we have
an exact sequence of Λ(Γ)-modules

0−→
r⊕

j=1

Λ(Γ)/fj,iΛ(Γ)−→M (i) −→Qi −→ 0,

where f1,i, · · · , fr,i are non-zero elements of Λ(Γ), and Qi is a finite
Λ(Γ)-module. Note that we can assume that r is independent of i simply
by choosing some of the fj,i’s to be one. Recalling that (cf. Lemma 1)

Λ(G) =
⊕

i mod k

Λ(G)(i), with Λ(G)(i) = Λ(Γ), (A3)

we define
fj =

∑

i mod k

fj,i, (j = 1, · · · , r).

Again taking
Q =

⊕

i mod k

Qi

with the given action of Γ on each summand, and with π acting on Qi

via the character θi, the assertion of the theorem follows. 	

Let M be a finitely generated torsion Λ(G)-module. In view of

Theorem 2, we may define the characteristic ideal chG(M) by

chG(M) = f1 . . . fmΛ(G).

The uniqueness results in the structure theory (cf. [Bou, Chapter VII])
show that the ideal chG(M) depends only on M , and not on the
particular exact sequence in Theorem 2.

Proposition 1. Let

0−→M1 −→M2 −→M3 −→ 0

be an exact sequence of finitely generated torsion Λ(G)-modules. Then
we have

chG(M2) = chG(M1) chG(M3).
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Proof. It is proven in [Bou, Chapter VII] that the corresponding Λ(Γ)-
characteristic ideals are multiplicative along exact sequences. Hence, as
for each integer i mod k, we have an exact sequence of Λ(Γ)-modules

0−→M
(i)
1 −→M

(i)
2 −→M

(i)
3 −→ 0,

the assertion of the propostion follows. 	


Lemma 2. Let M be a finitely generated torsion Λ(G)-module, and sup-
pose that chG(M) = fMΛ(G). Then, viewing M as a Λ(Γ)-module via
restriction of scalars, we have

chΓ(M) = fM,1 . . . fM,kΛ(Γ),

where the fM,i are the components of fM in the decomposition (A3).

Proof. This is immediate from the decomposition (A2) and the fact
that fM,i is a generator of the Λ(Γ)-characteristic ideal of M (i) for
i = 1, · · ·, k. 	


Finally, a Λ(G)-module of the form

N =
r⊕

j=1

Λ(G)/Λ(G)fj

where f1, · · · , fr are non-zero divisors in Λ(G) is called an elementary
Λ(G)-module. A basic property of such elementary modules is that they
have no non-zero finite Λ(G)-submodules. We omit the proof of this last
assertion, simply noting that it follows easily on applying the Weier-
strass preparation theorem to the Λ(Γ)-components of the elementary
module.

A.2. Γ-Euler Characteristics

As in the previous section, let Γ be isomorphic to the additive group of
Zp, and let Γn denote the unique open subgroup of Γ of index pn. The
augmentation homomorphism from Λ(Γ) to Zp induces an isomorphism
Λ(Γ)Γ � Zp. If g is any element of Λ(Γ), we write g(0) for its image
under this isomorphism.

Let M be a finitely generated torsion Λ(Γ)-module, and consider
the homology groups Hi(Γ, M) for i ≥ 0. Since Γ has p-homological
dimension 1, we have
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H0(Γ, M) = (M)Γ, H1(Γ, M) = MΓ, Hi(Γ, M) = 0 (i ≥ 2). (A4)

We say that M has finite Γ-Euler characteristic if the Hi(Γ, M) (i=0, 1)
are finite and, when they are finite, we define

χ(Γ, M) = #(H0(Γ, M))/#(H1(Γ, M)).

Also, we write gM for any element of Λ(Γ) such that

chΓ(M) = gMΛ(Γ).

Proposition 2. Let M be finitely generated torsion Λ(Γ)-module. Then
the following assertions are equivalent:- (i) H0(Γ, M) is finite, (ii)
H1(Γ, M) is finite and (iii) gM (0) �= 0. When these assertions hold,
χ(Γ, M) is finite, and

χ(Γ, M) = |gM (0)|−1
p . (A5)

Proof. By the structure theory of finitely generated Λ(Γ)-modules, we
have an exact sequence of Λ(Γ)-modules

0−→
m⊕

j=1

Λ(Γ)/Λ(Γ)gj −→M −→Q−→ 0, (A6)

where Q is finite, and g1, · · · , gm are non-zero elements of Λ(Γ). Multi-
plying g1 by a suitable unit, we can assume that gM = g1 . . . gm. Taking
the long exact homology sequence of (A6), it is clear that it suffices to
prove assertions (i), (ii) and (iii) are equivalent for each of the modules
Ri = Λ(Γ)/giΛ(Γ). But the short exact sequence

0−→Λ(Γ)
×gi−−−−→ Λ(Γ)−→Ri −→ 0,

gives the long exact homology sequence

0−→H1(Γ, Ri)−→Zp
×gi(0)−−−−→ Zp −→H0(Γ, Ri)−→ 0.

It is now clear from this sequence that H0(Γ, Ri) is finite if and only
if H1(Γ, Ri) is finite, and that both are equivalent to gi(0) �= 0. This
proves the equivalence of assertions (i), (ii) and (iii). Moreover, writ-

ing R =
m⊕

i=1

Ri, it follows immediately from this exact sequence that

if gM (0) �= 0, then χ(Γ, R) is finite, and χ(Γ, R) = |gM (0)|−1
p . But

χ(Γ, Q) = 1 because Q is finite. Hence by the multiplicativity of the
Euler characteristic along short exact sequences, we conclude from (A6)
that χ(Γ, M) = χ(Γ, R) provided gM (0) �= 0. This completes the proof
of the proposition. 	
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Corollary 1. Let M be a finitely generated torsion Λ(Γ)-module, and
let Γn be the unique subgroup of Γ of index pn. Then for each integer
n ≥ 0, (M)Γn

is finite if and only if MΓn is finite.

Proof. Since Γn has index pn in Γ, the ring Λ(Γ) is a free Λ(Γn)-module
of rank pn. In particular M is also a finitely generated Λ(Γn)-module.
Recalling that both Λ(Γ) and Λ(Γn) are integral domains, it is also clear
that M has Λ(Γn)-rank zero because it has Λ(Γ)-rank zero. Hence the
assertion follows on applying the above proposition with Γ replaced
by Γn. 	


Corollary 2. Let M1 and M2 be two finitely generated torsion Λ(Γ)-
modules such that (i) chΓ(M1) ⊃ chΓ(M2), and (ii) M1 and M2

have finite Γ-Euler characteristics, with χ(Γ, M1) = χ(Γ, M2). Then
chΓ(M1) = chΓ(M2).

Proof. Let gMi
(i = 1, 2) be a generator of chΓ(Mi). Then by (i), we

have gM2 = gM1h for some h in Λ(Γ). But it follows from (ii) and the
last assertion of the above proposition that h(0) is a unit in Zp. Hence
h does not belong to the unique maximal ideal of the local ring Λ(Γ),
and therefore h is a unit in Λ(Γ). This completes the proof. 	


A.3. Galois Groups and Iwasawa Theory

To help the reader, we briefly delve into the beginnings of Iwasawa
theory, and explain in a little more detail the action of the Galois
group of a Zp-extension on certain natural Iwasawa modules, which is
used repeatedly in Chapter 4 and at the end of Chapter 6. Let F be a
field, and let F∞ be a Zp-extension of F , i.e. a Galois extension of F
whose Galois group is topologically isomorphic to the additive group
of Zp. We write Γ = Gal(F∞/F ) and, for each n ≥ 0, we let Γn denote
the unique open subgroup of Γ of index pn. As usual, Fn will denote
the fixed field of Γn, so that

F∞ =
⋃

n≥0

Fn.

Suppose now that we are given a Galois extension M∞ of F such that
(i) M∞ contains F∞, (ii) Gal(M∞/F∞) is pro-p, and (iii) Gal(M∞/F∞)
is abelian. Let

X = Gal(M∞/F∞).
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Lemma 3. Under the above hypotheses, there is a natural action of
Γ on X, which extends to an action of the whole Iwasawa algebra.
Moreover, if Mn denotes the maximal abelian extension of Fn contained
in F∞, we have

Gal(M∞/Mn) = ωnX, (n ≥ 0)

where ωn = γpn − 1, with γ any fixed topological generator of Γ.

Proof. For each σ in Γ, let σ̃ be a lifting of σ to Gal(M∞/F ). For
x in X, we then define

σ.x = σ̃xσ̃−1.

The right hand side clearly only depends on σ because X is assumed
to be abelian. One sees easily that this is an action of Γ, and that it is
continuous when X is endowed with the profinite topology. Since X is a
compact Zp-module, the remark made at the beginning of §A.1. shows
that this action extends to an action of the whole Iwasawa algebra.
To prove the final assertion of the lemma, put γn = γpn

and let hn in
Gal(M∞/Fn) be a fixed lifting of γn. Since Gal(F∞/Fn) is topologically
generated by γn, it is clear that every element of Gal(M∞/Fn) is of
the form ha

nx with a in Zp and x in X. Since Mn is the maximal
abelian extension of Fn contained in F∞, the group Gal(M∞/Mn) is
the closure of the commutator subgroup of Gal(M∞/Fn), which we
denote by Hn. We claim that

Hn = ωnX.

This follows because a simple commutator calculation shows that

[ha1
n x1 , ha2

n x2] = γa2
n (γa1

n − 1)x2 − γa1
n (γa2

n − 1)x1,

for all a1, a2 in Zp, and x1, x2 in X. This completes the proof of the
lemma. 	


In the applications given in Chapter 4, the field F is the real subfield
of Q(µp) and F∞ is the real subfield of Q(µp∞). The field M∞ is either
the maximal abelian p-extension of F∞ which is unramified outside p
(denoted by M∞) or the maximal abelian p-extension of F∞ which is
unramified everywhere (denoted by L∞). Writing Mn, (respectively Ln)
for the maximal abelian p-extension of Fn which is unramified outside
of p (resp. which is unramified everywhere), it is clear that Mn = Mn

if M∞ = M∞. However, to prove that
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Mn = LnF∞ if M∞ = L∞,

requires some additional arguments which are based on the fact that for
our special Zp-extension F∞/F of Chapter 4, there is a unique prime
of F above p which is totally ramified in F∞. We omit the details,
referring the reader to [Wa, §13.4].
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Astérisque 295 (2004), 117–290.

[Ko] V. Kolyvagin, Euler systems, in The Grothendieck Festschrift, Vol. II,
Progr. Math. 87, Birkhuser Boston, Boston, MA (1990), 435–483.

[KL] T. Kubota, H. Leopoldt, Eine p-adische theorie der Zetawerte. I.
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Inst. Fourier 48 (1998), 1231–1307.

[Ri] K.A. Ribet, A modular construction of unramified p-extensions of Q(µp),
Invent. Math. 34 (1976), 151–162.

[Ru] K. Rubin, The “main conjectures” of Iwasawa theory for imaginary
quadratic fields, Invent. Math. 103 (1991), 25–68.

[Ru2] K. Rubin, Euler systems, Annals of Math. Studies 147, Princeton
University Press, Princeton, NJ, (2000).

[Ru3] S. Lang, Cyclotomic fields I and II, Combined second edition, with an
appendix by Karl Rubin, Graduate Texts in Mathematics, 121, (1990).

[Sa] A. Saikia, A simple proof of a lemma of Coleman, Math. Proc. Cambridge
Philos. Soc. 130 (2001), 209–220.

[Se] J.-P. Serre, Sur le résidu de la fonction zêta p-adique d’un corps de
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