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Aimed at graduate students and professionals in economics, the book gives the
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of auctions with endogenous entry, in which bidder profits must be respected
to encourage participation. It shows how seemingly different auction designs
can lead to nearly identical outcomes if the participating bidders are the
same — a finding that focuses attention on (1) attracting bidders and (2) mini-
mizing the cost of running the auction and bidding in it. It shows how new auc-
tion designs can accommodate complicated procurement settings and sales
with many interrelated goods.
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Preface

This book synthesizes the insights I have found from my teaching,
research, and consulting about auction design. For me, the three have
long been intertwined. I wrote my Ph.D. thesis about auction theory
under the guidance of Robert Wilson, who was then already advising
bidders abouthowtobid and governments abouthowto design auctions.
Fifteen years later, Wilson and I together made proposals that became
the basis for the design of the Federal Communications Commission
(FCC) spectrum auctions — the most influential new auction design of
the twentieth century. The FCC design was copied with variations for
spectrum sales on six continents. In the intervening years, I had often
taught about auction theory, though not yet as the practical subject that
it was to become.

Work on this book began in spring of 1995, when I delivered the
Churchill lectures at Cambridge University. Those lectures emphasized
the history and design of the spectrum auctions run by the FCC begin-
ning in 1994, as well as the bidders’ experiences in the auctions. Wilson
and I had only a few weeks in which to form our design and make rec-
ommendations, and my “Churchill project” was to complete the analysis
of those recommendations by identifying the kinds of environments in
which our new design was likely to be effective. Events caused the project
to be delayed, but the project received a boost and a twist when I de-
livered lectures about auction theory in courses at Stanford in 1996 and
2000, in Jerusalem in 1997, and at Harvard and MIT in 2001 and 2002.

In my 1978 dissertation, I had written that there were seven main re-
sults of auction theory. Two decades later, there are many more and
many views about what is most important and how best to synthe-
size this exceptionally beautiful theory. What is distinctive about my

Xi
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synthesis here and what makes it both more encompassing and more
practical than earlier attempts is that it is rooted both in traditional de-
mand theory and in real-world experiences.! I unify auction theory with
demand theory partly by using familiar techniques and concepts: the
envelope theorem, comparative statics methods, and demand theory
concepts like substitutes and complements.

My perspectives on auction theory differ in emphasis and method
from those of several recent contributors. In chapter 1, describe how one
can use the stylized results of auction theory in practical design. Chap-
ter 2 presents my distinctive treatment of the Vickrey auction, which
explains how the striking theoretical advantages of the auction are offset
by equally striking disadvantages, which too often go unremarked.

Chapters 3 and 4 develop the classical results of auction theory using
the tools of ordinary demand theory: the envelope theorem and the
comparative statics techniques. This is in sharp contrast to graduate
microeconomics textbooks that emphasize the distinctive “revelation
principle” as the basic tool of mechanism design theory (Mas Colell,
Whinston, and Green (1995)) — a tool that has no analog in or relevance
for demand theory.

In chapter 5, I revisit the models of auctions with interdependent
values and correlated information to recast them in the same terms.
These new treatments show that parts of auction theory thathad seemed
difficult can be treated simply by using the same methods.

My experience in auction consulting teaches that clever new designs
are only very occasionally among the main keys to an auction’s success.
Much more often, the keys are to keep the costs of bidding low, encourage
the right bidders to participate, ensure the integrity of the process, and
take care that the winning bidder is someone who will pay or deliver
as promised. Chapter 6 emphasizes those considerations. It particularly
emphasizes the consequences of free entry and theinstruments available
to the designer to encourage entry of the right kinds.

Chapters 7 and 8 deal with an area of auction design in which schol-
arly input can add enormous value. This is in the area of multi-unit

! In the years after the first FCC auctions, I contributed to spectrum auction designs in the
United States, Germany, Australia, and Canada, electricity auction designs in New Jersey
and Texas, asset sales in the United States and Mexico, and internet procurement auctions.
My suggestions were also the principal basis of the FCC’s design for auction #31 — its first
package or “combinatorial” auction design.
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auctions. Such auctions have been used for radio spectrum, electri-
cal power, Treasury bills, and other applications. The design problems
for these auctions include not just the usual ones about getting incen-
tives and allocations right, but also limiting the complexity so that costs
incurred by bidders are not too high and the reliability of the system
is maintained. Unlike auctions for a single object, in which efficiency
and revenue objectives are usually at least roughly aligned, multi-item
auctions can involve radical trade-offs between these two objectives.
Chapter 8, especially, highlights such trade-offs and explains how the
new Ausubel-Milgrom design tries to reach a practical compromise.

I owe debts to many people not only for their help in preparing this
book, but for helping me to reach this point in my understanding of auc-
tions. Robert Wilson introduced me to auction theory in graduate school,
directed my Ph.D. research, and joined me in the work of creating the
FCCauction for our joint client, Pacific Bell. Thave dedicated this book to
him. The folks at Pacific Bell, particularly James Tuthill, had the patience
and courage to support my applied research and to help me advocate it to
the FCC. Evan Kwerel and the FCC team repeatedly showed the courage
tobeinnovators, trying out radical new ideas. The colleagues with whom
I have consulted on auction designs — Larry Ausubel, Peter Cramton, Pre-
ston McAfee, John McMillan, Charles Plott, and again Robert Wilson —
inspired me with their ideas, enthusiasm, and inspiration.

Many people have directly supported my efforts in writing this book.
I am especially grateful to five students and colleagues who read the en-
tire manuscript and made helpful suggestions. Professor Valter Sorana’s
detailed and very thoughtful comments are reflected throughout the
book. My research assistant, Hui Li, often sat next to me at my computer,
insisting that certain passages or arguments needed further detail and
prodding me to make the text, as she would say, “easy enough for me.”
The Harvard graduate students Parag Pathak and Siva Anantham and the
Stanford graduate student Paul Riskind all read the entire manuscript
and made hundreds of suggestions. The undergraduate Dan Kinnamon
read and commented on parts of the manuscript and provided research
assistance for the buy-price model of chapter 6. I also had invaluable
discussions about particular parts of the subject matter with many
colleagues, including Susan Athey, Larry Ausubel, Jeremy Bulow, Peter
Cramton, Paul Klemperer, Evan Kwerel, Benny Moldovanu, Noam Nisan,
Motty Perry, Leo Rezende, John Roberts, Al Roth, David Salant, Ilya Segal,
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Padmanhabhan Srinagesh, Steve Tadelis, Bob Wilson, Lixin Ye, and
Charles Zheng.

The period since I began this work was an especially difficult one for
me personally and for my family, and I thank them, too. Without the
love and support of my wife, Eva Meyersson Milgrom, and my children,
Joshua and Elana, I could not have finished this book.



Foreword

Paul Milgrom has had an enormous influence on the most important re-
cent application of auction theory for the same reason you will want to
read this book - clarity of thought and expression. In August 1993, Pres-
ident Clinton signed legislation granting the Federal Communications
Commission the authority to auction spectrum licenses and requiring it
to begin the first auction within a year. With no prior auction experience
and atight deadline, the normal bureaucratic behavior would have been
to adopt a “tried and true” auction design. In 1993, however, there was
no tried and true method appropriate for the circumstances — multiple
licenses with potentially highly interdependent values. I had been ad-
vocating the use of auctions to select FCC licensees since 1983, when I
joined the staff of the FCC’s Office of Plans and Policy. When auction
legislation finally passed, I was given the task of developing an auction
design.

One of the first auction design issues the FCC considered was whether
to use an ascending bid mechanism or a single round sealed bid. The
federal government generally used sealed-bid auctions, especially for
high-valued rights such as offshore oil and gas leases. FCC staff felt rea-
sonably confident that we could implement a sealed-bid auction — keep
thebidssecure, open the bids, and select the high bids. There were doubts
whether we could do anything more complex. In the end, the FCC chose
an ascending bid mechanism, largely because we believed that provid-
ing bidders with more information would likely increase efficiency and,
as shown by Milgrom and Weber (1982a), mitigate the winner’s curse.

The initial design the FCC proposed in September 1993 was a hybrid
of an ascending bid and a first-price sealed-bid auction. It was intended
to address the contentious policy issue of the appropriate geographic

XV
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scope of the licenses for broadband personal communications services
(PCS). Some companies argued that the FCC should issue nationwide
licenses. Other companies, especially incumbent cellular providers that
were barred from holding both a cellular and a PCS license in the same
geographic area, argued for regional licenses. For each of two nation-
wide spectrum blocks, the FCC proposed conducting a single round
sealed-bid auction for all 51 licenses as a group, followed by a series of
open outcry auctions for the same licenses individually. The sealed bids
would be opened at the conclusion of the open outcry auctions, and the
spectrum awarded to the highest sealed bid only if it exceeded the sum
of bids on the individual licenses.

The initial FCC proposal also discussed the possibility of a simul-
taneous auction mechanism. Had AirTouch, a large cellular operator,
not advocated this approach, it might not have been mentioned in the
FCC'’s September Notice of Proposed Rule Making. In a meeting with
me, AirTouch pointed out that in my 1985 FCC working paper written
with Lex Felker I had suggested a simplified system of simultaneous bid-
ding where parties simultaneously placed independent bids on several
licenses.

In 19851 had no idea how to run such a simultaneous auction, and in
1993 I was very skeptical of the possibility of anyone developing and the
FCCimplementing a workable simultaneous auction within the one year
provided by the legislation; but Paul Milgrom and Bob Wilson (working
for Pacific Bell) and Preston McAfee (working for AirTouch) completely
changed my thinking. Both the Milgrom-Wilson and the McAfee propos-
als were mindful of the limits on the complexity of any proposal that the
FCC could or would implement. Both proposed simultaneous ascending
bid auctions with discrete bidding rounds. This approach promised to
provide much of the operational simplicity of sealed-bid auctions with
the economic efficiency of an ascending auction.

The 1993 legislation required that the FCC develop auction rules
within 7 months and begin auctions within another 4 months. The FCC
could have met the legislative mandate by beginning a sealed-bid auc-
tion or an oral outcry auction. So why was it so important to begin a
simultaneous auction within the legislative deadline? It was my view
that whatever method was used in the first FCC auction, if it appeared
successful, would become the default method for all future auctions,
including broadband PCS. So I spent considerable effort looking for a
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set of licenses for our first auction that the FCC could successfully auc-
tion using the simultaneous multiple round design. I proposed to senior
FCC staff that we auction 10 narrowband PCS licenses. This was a small
enough number that we could successfully implement a simultaneous
auction, and the licenses were valuable enough that a success would be
considered important, but not so valuable that a failure would impose
an unacceptably large loss.

The closing rule was one of the major design issues for a simultaneous
auction. McAfee proposed a market-by-market closing rule with adjust-
ments in bid increments to foster markets closing at approximately the
same time. In contrast, Milgrom and Wilson proposed a simultaneous
closing rule whereby the auction closes on all licenses only after a round
has passed with no bidding on any license. Until then, bidding remains
open on all licenses. McAfee proposed the market-by-market closing
rule because of its operational simplicity. The FCC could surely run a
number of separate ascending bid auctions in parallel. Milgrom argued
however, that market-by-market closing could potentially foreclose ef-
ficient backup strategies. (For example, you might be the high bidder on
a license for several rounds while a license that is a substitute for you
closed. If you were then outbid on your license, you would not have the
opportunity to place a bid on the substitute.) Milgrom’s argument pre-
vailed, and the FCC adopted a simultaneous closing rule, but not before
addressing a closely related issue.

Would an auction with the simultaneous closing rule proposed by
Milgrom and Wilson ever end? This was the worst case scenario that
troubled me when I first met Paul Milgrom. He had come to the FCC to
explain their auction design. The simultaneous multiple round auction
with a simultaneous closing rule struck me as the most elegant solution I
had seen for auctioning multiple licenses that could be both substitutes
and complements. But might bidders each have an incentive to hold
back while observing the bids made by others? If so, how could the FCC
be sure that the auction would close in a timely fashion? I asked Milgrom
this question. He clearly had thought about the problem and responded
that with no loss of efficiency, bidders could be required to be active on
at least one license in every round. Any serious bidder must either have
a high bid or place an acceptable new bid. With only 20 days between
Comments and the deadline for Reply Comments, Milgrom and Wilson
developed this insight into the activity rule that the FCC has used in all
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its simultaneous multiple round auctions. The Milgrom-Wilson activity
rule was an elegant, novel solution to a difficult practical auction design
issue. Itimposed a cost on holding back by tying a bidder’s level of eligi-
bility in future rounds to its activity level in the current round. If a bidder
is not active on a minimum percentage of the quantity of spectrum for
which it is eligible to bid, it suffers a permanent loss of eligibility. This
discourages bidders from holding back, whether to “hide in the grass”
or to collusively divide up the market.

The activity rule was critical to the FCC adopting the Milgrom-Wilson
auction design. The FCC could not tolerate the risk that the auction
would drag on indefinitely with little bidding. The activity rule, with the
ability to increase the activity requirement during the action, provided
the FCCwith amechanism to promote areasonable auction pace without
subjecting bidders to the risk of an unanticipated close when they still
wished to make additional bids. Without this feature the broadband PCS
auction might have ended after only 12 rounds with revenue at 12% of
the actual total. Because of less than anticipated initial eligibility in the
auction, the initial level of the activity requirement put little pressure on
bidders to make new bids once there were bids on mostlicenses. Bidding
almost ended after 10 rounds but dramatically increased after the FCC
raised the activity requirement in round 12.

The elegance and the coherence of the proposal were not sufficient
to make it an easy sell at the FCC. Many staff had little taste for taking
the chance on an auction design that had never been used and seemed
far more complex than any auction they had heard of. Chairman Reed
Hundt’s legal advisor, Diane Cornell, argued that the mechanism, espe-
cially the activity rule, was much too difficult for bidders to understand.
I promised her that we would develop bidding software that would au-
tomatically calculate activity requirements and make it easy for bidders
to participate. At the time, no such software existed, but fortunately we
were able to develop user friendly interfaces in time for the first auction.
A more serious concern was that the auction might be an operational
fiasco. If that happened, the argument that the design had theoretical
beauty would not carry much weight in a congressional oversight hear-
ing. My boss was quite frank when he told me that he did not want the
FCCto be a “beta test site” for new auction designs.

Why did the FCC adopt the basic Milgrom-Wilson auction design
despite these concerns? First, it was good policy. It seemed to provide
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bidders sufficient information and flexibility to pursue backup strate-
gies to promote a reasonably efficient assignment of licenses, without
so much complexity that the FCC could not successfully implement it
and bidders could not understand it. Just having a good idea, though, is
not enough. Good ideas need good advocates if they are to be adopted.
No advocate was more persuasive than Paul Milgrom. He was so per-
suasive because of his vision, clarity and economy of expression, ability
to understand and address FCC needs, integrity, and passion for getting
things right. He was able to translate his theoretical vision into coherent
practical proposals and explain in plain English how all the pieces fit to-
gether. He took the time to learn relevant institutional facts and to listen.
He was willing and able to modify his proposals to address FCC con-
cerns about auction length and destructive strategic behavior. He never
used hard sell or oversold his results, and thus he engendered the trust of
FCC staff. He was always responsive to the frenetic time pressures under
which the FCC often operates — willing to talk about auction rules while
he was on vacation, take desperate calls late at night, and visit the FCC
on very short notice during that first year it was developing its auction
design.

As persuasive as Milgrom was, the FCC might not have been willing
to risk adopting such a novel auction design without additional outside
supporters. One was John McMillan, whom the FCC hired as a consultant
to provide independent analysis of alternative auction designs. His re-
port to the FCC (a revised version published in the journal of Economic
Perspectives in 1994) provided strong support for the Milgrom-Wilson
design. And his calm manner and articulate explanations were reassur-
ing to FCC staff that we were going in the right direction.

Another ally was Preston McAfee, who helped solidify support for the
Milgrom-Wilson design when he said that he preferred it to the simpler
simultaneous design he had developed at a time when he underesti-
mated the FCC’s ability to implement anything but the simplest auction
design. More important was his suggestion to modify the Milgrom—
Wilson proposal to permit bid withdrawals subject to a penalty. In a
conference organized by Barry Nalebuff in January 1994 to help the FCC
sort out alternative auction designs, McAfee proposed a simple way to
reduce the exposure risk faced by bidders for licenses with strong com-
plementarities. To discourage strategic insincere bidding, the Milgrom-—
Wilson design had not allowed for any bid withdrawals. However, when
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a collection of licenses is worth more than the sum of the licenses indi-
vidually, bidders face the risk of paying too much for part of a package
of licenses when the rest of the package is won by other bidders. The
National Telecommunications and Information Administration (NTIA),
whose role includes advising the White House on telecommunications
policy, had proposed combinatorial auction mechanism to address this
concern. The design, based on the work of Banks, Ledyard, and Porter
(1989) and developed in a NTIA staff paper by Mark Bykowsky and Robert
Cull, seemed far too complex for the FCC to implement in the time avail-
able. As an alternative, McAfee proposed permitting bid withdrawals
subject to a payment equal to the difference between the withdrawn bid
and the subsequent high bid.

Though the FCC did not adopt the NTIA proposal, the fact that the
NTIA proposed a simultaneous auction design was helpful in building
support for the Milgrom-Wilson design. It made that mechanism look
like a reasonable middle ground between sequential ascending bid auc-
tions and simultaneous ascending auctions with package bidding. In
addition to their written comments, in January 1994, the NTIA jointly
sponsored with Caltech a PCS auction design conference that brought
FCC staff together with academic experimentalists as well as game theo-
rists. Proposed and organized by Mark Bykowsky and John Ledyard, the
conference provided additional support for the use of a simultaneous
auction mechanism. The demonstration by David Porter of the combi-
natorial auction mechanism proposed by NTIA helped show the feasi-
bility of some form of electronic simultaneous auction. Perhaps most
important was a presentation by Charles Plott of experimental evidence
on the relative performance of sequential, simultaneous, and combina-
torial auction designs. This research sponsored by PacTel at Paul Mil-
grom’s suggestion, offered experimental evidence that when there were
strong synergies among items, simultaneous auctions were better than
sequential auctions, and combinatorial bidding was even better. Based
on both the theory and experimental evidence, Ledyard persuasively
argued that though it would be nice if the FCC implemented the combi-
natorial mechanism he had helped design, the FCC could achieve most
of the benefits with a simpler simultaneous design along the lines pro-
posed by Milgrom and Wilson.

Part of the explanation for the successful collaboration between out-
side economists and the FCC in designing spectrum auctions was that
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the initial responsibility for a design was given to the FCC’s Office of
Plans and Policy (OPP), which has a tradition of applying economics to
public policy and tends to be far more open to new approaches than the
operating bureaus. The OPP had been advocating the use of auctions for
more than 10 years prior to the passage of the auction legislation, and
was a logical home for a small team drawn from throughout the agency.

One of the pillars of that team was Karen Wrege, an auction project
manager, whom the FCC recruited from the Resolution Trust Corpora-
tion. In 1993, it was not enough to convince FCC Chairman Reed Hundt
that simultaneous multiple round auction was the best auction design.
He had to be convinced that the FCC could implement it with the year
mandated by Congress. Karen was able to visualize how the auction
might work, convince Don Gips on Hundt’s staff that it could work, and —
as part of a remarkable FCC team — make it work. Jerry Vaughan led
the team with indomitable courage through many harrowing moments,
such as a complete system failure the night before the start of FCC auc-
tion #3. The team was too large for me to mention here all who de-
serve credit, but some who deserve particular mention for making the
Milgrom-Wilson auction design proposal a reality are the lawyers Kent
Nakamura, Jonathan Cohen, and Jackie Chorney, the information tech-
nology specialist John Giuli, the contracting officer Mark Oakey, and the
economist Greg Rosston.

Much credit for implementing the FCC auctions goes to the contrac-
tors and consultants. Most of the programming for the electronic auction
system was performed by outside contractors. After the first auction, the
FCC hired a second economic theorist, Peter Cramton, to provide advice
on refining the auction design and to develop a tool to help bidders and
the FCC track the progress of the auction. We also contracted with a team
of experimental economists from Caltech: Charlie Plott, John Ledyard,
and Dave Porter. Without the help of Plott and Antonio Rangel, a first
year graduate student, the contractor for the FCC'’s first auction might
not have succeeded in translating the FCC auction rules into software
code. Caltech also tested the software used in the first and second FCC
narrowband PCS auctions. As part of their “torture testing” they paid
experiment participants a bonus for any error they could find in the
software. Caltech also developed a clever method for manually checking
all the calculations during the first FCC auction. Run by Rangel in parallel
with the electronic auction system, this also provided a manual backup
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that could have been put into service if the electronic system had failed.
Fortunately it did not.

The first FCC simultaneous multiple round auction began on July 25,
1994 in the Blue Room of the Omni Shoreham Hotel in Washington, DC.
Bidding was conducted electronically on site. Despite the testing of the
software, there was some trepidation about whether itwould work. There
was particular concern about the software for stage II of the activity rule.
The chiefprogrammer for the contractor that developed the software and
would run it during the auction said, in essence, “I am completely con-
fident that the software will work properly in stage II, but do not try it.”
We never found out, because the auction closed successfully in stage I.
Every round, the FCC decided on how to set the bid increments on each
license. We had a committee of three consultants to advise us: John
McMillan, a theorist; Charlie Plott, an experimentalist; and Bill Steven-
son, an auctioneer. We had five days to complete the auction before we
would be kicked out of the ballroom so it could be used for a wedding.
There was vigorous discussion about how large to make the bid incre-
ments, how long to make the rounds, and whether to deploy stage II of
the activity rule. As it turned out, with few licenses, vigorous compe-
tition, and bidders on site, the auction closed after 47 rounds and five
days, in time for the wedding in the Blue Room.

Perhaps the biggest hero of the story of putting auction theory to
work is FCC Chairman Reed Hundt. He defied the traditional tendency
of government bureaucracies to do the safe thing even if it is not the
best thing. He always wanted to know: “What does economic theory tell
us?” He always tried to put into practice his favorite motto, “Do the right
thing.” But without economic theorists like Paul Milgrom, he would not
have known what that was.

Evan Kwerel
January 2003
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CHAPTER ONE

Getting to Work

The era of putting auction theory to work began in 1993-1994, with the
design and operation of the radio spectrum auctions in the United States.
Although the economic theory of auctions had its beginnings in the
1960s, early research had little influence on practice. Since 1994, auction
theorists have designed spectrum sales for countries on six continents,
electric power auctions in the United States and Europe, CO, abatement
auctions, timber auctions, and various asset auctions. By 1996, auction
theory had become so influential that its founder, William Vickrey, was
awarded a Nobel Prize in economic science. In 2000, the US National Sci-
ence Foundation’s fiftieth anniversary celebration featured the success
of the US spectrum auctions to justify its support for fundamental re-
search in subjects like game theory. By the end of 2001, just seven years
after the first of the large modern auctions, the theorists’ designs had
powered worldwide sales totaling more than $100 billion. The early US
spectrum auctions had evolved into a world standard, with their major
features expressed in all the new designs.

It would be hard to exaggerate how unlikely these developments
seemed in 1993. Then, as now, the status of game theory within eco-
nomics was a hotly debated topic. Auction theory, which generated
its main predictions by treating auctions as games, had inherited the
controversy. At the 1985 World Congress of the Econometric Society,
a debate erupted between researchers studying bargaining, who were
skeptical that game theory could explain much about bargaining or be
useful for improving bargaining protocols, and those investigating in
auctions and industrial organization, who believed that game theory
was illuminating their studies. Although game theory gained increasing
prominence throughout the 1980s and had begun to influence the

1
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leading graduate textbooks by the early 1990s, there was no consensus
about its relevance in 1994, when the Federal Communications Com-
mission conducted the first of the new spectrum auctions.

The traditional foundations of game theoryincorporate stark assump-
tions about the rationality of the players and the accuracy of their ex-
pectations, which are hard to reconcile with reality. Yet, based on both
field data and laboratory data, the contributions of auction theory are
hard to dispute. The qualitative predictions of auction theory have been
strikingly successful in explaining patterns of bidding for oil and gas!
and have fared well in other empirical studies as well. Economic labora-
tory tests of auction theory have uncovered many violations of the most
detailed theories, but several key tendencies predicted by the theory
find significant experimental support.? Taken as a whole, these findings
indicate that although existing theories need refinement, they capture
important features of actual bidding. For real-world auction designers,
the lesson is that theory can be helpful, but it needs to be supplemented
by experiments to test the applicability of key propositions and by prac-
tical judgments, seasoned by experience.

Whatever the doubts in the academy about the imperfections of game
theory, the dramatic case histories of the new auctions seized public
attention. An article in 1995 in the New York Times hailed one of the
first US spectrum auctions? as “The Greatest Auction Ever.”* The British
spectrum auction of 2000, which raised about $34 billion, earned one of
its academic designers® a commendation from the Queen and the title
“Commander of the British Empire.” In the same period, game theorists
were plying their trade on another important application as well. The
National Resident Matching Program, by which 20,000 US physicians are
matched annually to hospital residency programs, implemented a new
design in 1998 with the help of the economist-game theorist Alvin Roth.
By the mid-nineties, thirty-five years of theoretical economic research
about fine details of market design was suddenly bearing very practical
fruits.

I See Hendricks, Porter, and Wilson (1994).

2 See Kagel (1995).

3 The design was based on suggestions by Preston McAfee, Paul Milgrom, and Robert Wilson.

4 William Safire, “The Greatest Auction Ever,” New York Times, March 16, 1995, page A17,
commenting on FCC auction #4.

5 The principal designers were Professors Ken Binmore and Paul Klemperer. They give their
account of the auction in Binmore and Klemperer (2002). It was Binmore whom the Queen
of England honored with a title.
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1.1 Politics Sets the Stage

To most telecommunications industry commentators, the main signif-
icance of the US spectrum auctions was that a market mechanism was
used atall. Spectrumrights (licenses) in the United States and many other
countries had long been assigned in comparative hearings, in which
regulators compared proposals to decide which applicant would put the
spectrum to its best use. The process was hardly objective: it involved
lawyers and lobbyists arguing that their plans and clients were most de-
serving of a valuable but free government license.® With its formal proce-
dures and appeals, a comparative hearing could take years to complete.
By 1982, the need to allocate many licenses for cellular telephones in
the US market had overwhelmed the regulatory apparatus, so Congress
agreed to allow licenses to be assigned randomly among applicants by
lottery.

The lottery sped up the license approval process, but it created a new
set of problems. Lottery winners were free to resell their licenses, encour-
aging thousands of new applicants to apply for licenses and randomly
rewarding many with prizes worth many millions of dollars. Lottery win-
ners were often simple speculators with no experience in the telephone
industry and no intention of operating a telephone business. Economic
resources were wasted on a grand scale, both in processing hundreds
of thousands of applications and in the consequent need for real wire-
less operators to negotiate and buy licenses from these speculators. The
lotteries of small licenses contributed to the geographic fragmentation
of the cellular industry, delaying the introduction of nationwide mobile
telephone services in the United States.

A better process was needed, and in 1993, Congress authorized auc-
tions as the answer. The question of how an auction market for radio
spectrum should be designed was left to the Federal Communications
Commission (FCC).

1.2 Designing for Multiple Goals

Congress did provide some instructions to the FCC governing the new
spectrum auctions. One was that the first auctions were to be begun
by July 1994. A second called for the auctions to promote wide partici-
pation in the new industry. The FCC initially responded to the second

6 The process was once characterized by an FCC Commissioner as “the FCC’s equivalent of
the Medieval trial by ordeal” (as quoted by Kwerel and Felker (1985)).
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mandate by introducing bidding credits and favorable financing terms
for small businesses and woman- and minority-controlled businesses, to
reduce the cost of any licenses acquired by those businesses. The statute
also specified that the auction process should promote “efficient and in-
tensive use” of the radio spectrum, in contrast with the fragmented use
promoted by the lottery system. The meaning of the word “efficient” was
initially subject to debate, but it was eventually read in economic terms
to mean, in the words of Vice President Albert Gore, “putting licenses
into the hands of those who value them the most.””

There is a powerful tradition in economics claiming that individuals
and firms, left to their own devices and operating in a sound legal frame-
work, tend to implement efficient allocations. The argument is that when
resources are allocated inefficiently, it is possible for the parties to get
together to make everyone better off. So, following their mutual inter-
ests, the parties will tend to eliminate inefficiencies whenever they can.
This traditional argument has its greatest force when the parties can
all see what is required and have no trouble negotiating how to divide
the gains created by the agreement. For radio spectrum, with thousands
of licenses and hundreds of participants involved, computing just one
efficient allocation can be an inhumanly hard problem, and getting par-
ticipants to reveal the information about their values necessary to do that
computation is probably impossible. Compared to the development of
a universal standard (GSM) for mobile telephones in Europe, the more
fragmented system that emerged in the United States highlights that
the lottery system did not lead to efficient spectrum allocations. With
so many parties and interests involved, the market took many years to
recover from the initial fragmentation of spectrum ownership. During
those years, investments were delayed and consumer services degraded.
Gettingthe allocation right the first time does matter. Achieving that with
an auction system called for a different and innovative approach.

The FCC, which the law had charged with designing and running
the spectrum auctions, had no previous auction experience. Within the
FCC, the design task was assigned to a group led by Dr. Evan Kwerel, an
economist and long-time advocate of using auctions to allocate spec-
trum licenses.®

7 Quoted from Vice President Gore's speech at the beginning of FCC auction #4.
8 Kwerel's initial advocacy is explained in Kwerel and Felker (1985).
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Like any other important FCC decision, the auction design decision
would need to be based on an adequate public record — a requirement
that would force the FCC to go through a long series of steps. It would
need to write and issue a proposed rule, allow a period for Comments
and another for Reply Comments, meet with interested parties to dis-
cuss and clarify the points of disagreement, resolve those disagreements,
issue a ruling, consider appeals, and finally run the auction. Steps like
these often stifle innovation, but that is not what happened on this oc-
casion. With no political guidance about what kind of auction to use, no
in-house experts lobbying to do things their way, and no telecom with
an historically fixed position about how an auction should be run,
Dr. Kwerel had unusual freedom to evaluate a wide range of alter-
natives.

Kwerel drafted anotice that proposed acomplexauctionrule. Industry
participants, stunned by the novel proposal and with little experience or
expertise of their own, sought the advice of academic consultants. These
consultants generated a flood of suggestions, and the FCC hired its own
academic expert, John McMillan, to help them evaluate the proposed
designs. In the end, Kwerel favored a kind of simultaneous ascending
auction, based in large part on a proposal by Robert Wilson and me
and a similar proposal by Preston McAfee. The Milgrom-Wilson-McAfee
rules called for a simultaneous multiple round ascending auction.® This
is an auction for multiple items in which bidding occurs in a series of
rounds. In each round, bidders make sealed bids for as many spectrum
licenses as they wish to buy. At the end of each round the standing high
bid for each license is posted along with the minimum bids for the next
round, which are computed by adding a pre-determined bid increment,
such as 5% or 10%, to the standing high bids. These standing high bids
remain in place until superseded or withdrawn.!? An activity rulelimited
abidder’s ability to increase its activity late in the auction, thus providing
anincentive to bid actively earlyin the auction. For example, abidder that

9 The principal difference was that the Milgrom-Wilson design proposed the now standard
features that bidding on all licenses would remain open until the end of the auction, with
progress ensured by Milgrom’s activity rule. McAfee’s design had no activity rule, and en-
sured the progress of the auction by closing bidding on each license separately after a period
with no new bids on that license.

10 A bidder that withdraws its bid pays a penalty equal to the difference, if positive, between
the eventual sale price for the license and the amount of its withdrawn bid. If the eventual
price exceeds its bid, then no penalty is payable.
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has been actively bidding for ten licenses may not, late in the auction,
begin bidding for eleven licenses.

The theory of simultaneous ascending auctions is best developed for
the case when the licenses being sold are substitutes. During the course
of the auction, as prices rise, bidders who are outbid can switch their
demands to bid for cheaper licenses, allowing effective arbitrage among
substitute licenses. One of the clearest empirical characteristics of these
auctions is that licenses that are close substitutes sell for prices that are
also close — a property that is not shared by most older auction designs.

The initial reception to Kwerel’s recommendation was skeptical. The
proposed auction was unexpectedly complicated, and FCC Chairman
Reed Hundt sought the advice of other FCC staff. He asked the economics
staff: If you could pick any design you want, would this be it? He asked
those who would have to run it: Can this really work? Even in the short
time available to set it up? With the endorsement of his staff, Chairman
Hundt decided to take the risk of adopting a new auction design.

1.2.1 Substitutes and Complements

Auctions are processes for allocating goods among bidders, so the chal-
lenge of auction design can only be understood by studying the demands
of the participants. In the initial PCS auction, there were three groups
of potential bidders. The first group included long-distance companies
with no existing wireless businesses. These companies, including MCI
and Sprint, were making plans to enter the wireless business on a na-
tional scale. Each wished to acquire alicense or licenses that would cover
the entire United States, allowing it to make its service ubiquitous and to
combine wireless with its own long distance service to offer an attractive
and profitable package to consumers.

A second group comprised the existing wireless companies, including
AT&T, some regional Bell operating companies, and others. The compa-
nies in this group already owned or controlled licenses that enabled
them to offer services to parts of the country. Their objectives in the
auction were to acquire licenses that filled in the varying gaps in their
existing coverage and to expand to new regions or perhaps the entire na-
tion. These companies posed a regulatory challenge for the FCC, which
wanted to allow them to meet their legitimate business needs with-
out gaining control of enough of the spectrum to manipulate market
prices. To avoid this outcome, the FCC imposed limits on the amount of
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spectrum that any company could control in any geographic area. These
existing wireless operators would be ineligible to bid for a nationwide
PCS license of the sort that had typically been awarded in European
countries. From MCI’s perspective, this meant that a nationwide license
might be bought cheaply at auction, so it lobbied the FCC to structure
the new licenses in this way.

The last group consisted mainly of new entrants without wireless
businesses. Some of these companies, like Pacific Bell in California,
were quite large. These companies typically sought licenses or pack-
ages covering large regional markets, but not licenses covering the entire
nation.

One of the first lessons to take from this description is that the auc-
tion game begins long before the auction itself. The scope and terms of
spectrum licenses can be even more important than the auction rules
for determining the allocation, because a license can directly serve the
needs of some potential bidders while being useless to others. For the
actual PCS auctions, a license provided its owner the right to transmit
and receive radio signals suitable for mobile telephone service in a par-
ticular band of radio frequencies and in a particular geographic area.
These license specifications constrained the possible spectrum alloca-
tions. For example, suppose three separate licenses covering areas A, B,
and C were put up for sale. If one bidder wanted a license covering A
and half of B while the other wanted a license covering C and the other
half of B, the license specifications would prevent each bidder from ac-
quiring its optimal allocation. One task of the auction designer was to
promote the best (most “efficient”) possible allocation, subject to such
constraints.

Achieving efficiency involves various subtle complications. A certain
license may be valuable to one bidder because it helps exclude entry
and increase monopoly power, but be valuable to another because the
buyer will use it to create valuable services. In comparing the efficiency
of allocations, only the second kind of value counts, but bidders do not
respect that difference when placing their bids. The value of a license
to a bidder may depend not only on the license itself, but also on the
identities of other licensees and the technologies they use. For exam-
ple, the licensee identities can affect their “roaming arrangements” —
which allow their customers to use another company’s services when
they roam to the other company’s license area. A third complication is
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that the bidders may need to pool information even to determine their
own likely profits from various arrangements, for example because the
bidders have different information about the available technology or
forecasted demand.

But the fundamental barrier to efficiency that was most debated
among the FCC auction designers concerned the packaging problem.
The value of a license to a bidder is not fixed; it generally depends on
the other licenses the bidder receives. For example, a bidder might be
willing to pay much more per license for a package of, say, five or six
licenses than for smaller or larger packages.!! Until such a bidder knows
all of the licenses it will have, it cannot say how much any particular
license is worth.

Consider a situation with just two licenses. If acquiring one license
makes a bidder willing to pay less for the second, then the licenses are
substitutes. If acquiring one makes the bidder willing to pay more for
the second, then the licenses are complements. With more than two li-
censes, there are other important possibilities, and these add consid-
erable complexity to the real auction problem. For example, if there
are three licenses — say A, B, and C - and a certain bidder anticipates
needing exactly two of them to establish its business, then A and B are
complements if the bidder has not acquired C, but they are substitutes if
the bidder has already acquired C. Nevertheless, most economic discus-
sions of the auction design are organized by emphasizing the two pure
cases.

Recent auctions devised by economic theorists differ from their pre-
decessors in the ways they deal with the problems of substitutes and
complements. Our later analyses will show that some of the new designs
deal effectively with cases in which the items to be traded are substi-
tutes, but that all auctions perform significantly worse when licenses
might either be substitutes or complements. The impaired performance
may take various forms including a loss of efficiency of the outcomes,
uncompetitively low revenues to the seller, vulnerability to collusion,
complexity for the bidders, and long times to completion.

I An instance of this sort arose in the Netherlands spectrum auction in 1998, where most of
the licenses were for small amounts of bandwidth. New entrants were expected to need five
or six such licenses to achieve efficient scale and make entry worthwhile.
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To illustrate how value interdependencies affect proper auction de-
sign, we turn to a case study in which the matter received too little
attention.

1.2.2 New Zealand’s Rights Auction

New Zealand conducted its first auctions of rights to use radio spectrum
in 1990. Some of the rights took the traditional form of license rights
to use the spectrum to provide a specific service, such as the right to
broadcast television signals using those frequencies. Others consisted
of management rights according to which the buyer may decide how to
use the spectrum, choosing, for example, television broadcasts, wireless
telephones, paging, or some other service. In theory, when management
rights are sold, private interests have an incentive to allocate spectrum
to its most profitable uses, but the problem of coordinating uses among
licensees can also become more complex.

Acting on the advice of a consulting firm — NERA - the New Zealand
government adopted a second-price sealed-bid auction for its first four
auction sales. As originally described by Vickrey (1961), the rules of the
second-price auction are these: Each bidder submits a sealed bid. Then,
the license is awarded to the highest bidder for a price equal to the
second highest bid, or the reservation price if only one qualifying bid is
made. The auction gets its name from the fact that the second highest
bid determines the price.

The idea of a second-price sealed-bid auction strikes many people as
strange when first they hear about it, but on closer analysis, the auction
is not strange at all. In fact, it implements a version of the ascending
(English) auction'? similar to the one used at Amazon.'

In an ascending auction, if a bidder has a firm opinion about what the
item is worth, then he can plan in advance how high to bid — an amount
that we may call the bidder’s reservation value. At sites like eBay and

12 The most common form of an ascending (English) auction is one in which the auctioneer
cries out increasing bids and the bidders drop out when they are no longer willing to pay
above the current price. The auction ends when there is just one remaining bidder. As the
winning bidder is required to pay the current high price, it is optimal for each bidder to stay
in the auction only until the current price is equal to his valuation (“reservation value”) of
the item and not thereafter.

eBay also runs a similar auction, but its fixed ending time involves additional gaming issues
as described by Roth and Ockenfels (2000).

1

@
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Amazon, the bidder can instruct a proxy bidder to carry out a reservation
value strategy. The proxy keeps beating the current highest bid on the
bidder’s behalf so long as that bid is less than the specified reservation
value. If everyone bids that way, then the outcome will be that compe-
tition ends when the price rises to the second highest reservation value,
or thereabouts (with differences due to the minimum bid increment). If
everyone adopts such a reservation value strategy, then the ascending
auction is almost the same as a second-price auction.

Strategic considerations in a second-price auction are easy: each bid-
der should set his reservation value to what the object is worth to him. If
it happens that the highest bid among the other bidders is greater than
this value, then he cannot do better than to bid his reservation value,
because there is no bid he could make that would win the auction prof-
itably. If, instead, it happens that the highest competing bid is less than
his value, then setting his reservation value in this way wins and fixes
the price at what the competitor bid, which is the best outcome that any
bid could achieve. Thus, regardless of the bids made by others, setting a
reservation value equal to the bidder’s actual value always earns at least
as much as any other bid.

The second-price sealed-bid auction has two advantages over most
other designs. First, it duplicates the outcome of an ascending bid auc-
tion with small bid increments, but without requiring the bidders to be
assembled together or to hire agents to represent them in their absence.
Second, it presents each bidder with a simple strategic bidding prob-
lem: each merely has to determine his reservation value and bid it. This
also means that there is no need for any bidder to make estimates of the
number of other bidders or their values, for those have no bearing on a
rational bidder’s optimal bid.

The second-price auction has a simple extension to sales of multiple
identical items, and it, too, can be motivated by considering a particular
ascending auction. For example, suppose there is such an auction rule
withsevenidentical items for sale, to be awarded to the seven highestbid-
dersin an ascending outcry auction. Again, bidders might sensibly adopt
reservation value strategies, bidding just enough to be among the top
seven bidders and dropping out when the required bid finally exceeds the
bidder’s value. An analysis much like the preceding one then leads to the
conclusion that the items will be awarded to the seven bidders with
the highest values for prices approximately equal to the eighth highest
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value. To duplicate that with a sealed-bid auction, the rule must award
items at a uniform price equal to the highest rejected bid. In such an auc-
tion, the right advice to bidders is simple: “Bid the highest price you are
willing to pay.” A similar uniform-price rule has sometimes been used
in the sale of U.S. Treasury bills.'*

In New Zealand, the government was selling essentially identical li-
censes to deliver television signals. On the advice of its consultants, it did
not adopt this highest-rejected-bid rule, but chose instead to conduct
simultaneous second-price sealed tender auctions for each license. New
Zealand’s second-price rules would work well in one case only: when the
values of the items were independent — neither substitutes nor comple-
ments. In the actual New Zealand auction, it would have been difficult
to give bidders good advice. Should a bidder bid for only one license?
If so, which one? If everyone else plans to bid for just one license and
picks randomly, perhaps there will be some license that attracts no bids.
Bidding a small amount for every license might then be a good strategy.
On the other hand, if many spread around small bids like that, then bid-
ding a moderate amount for a single license would have a high chance
of success. With licenses that are substitutes or complements, indepen-
dentauctions inevitably involve guesswork by the bidders that interferes
with an efficient allocation.

The actual outcome of the first New Zealand auction is shown in
Table 1. Notice that one bidder, Sky Network TV, consistently bid and paid
much more for its licenses than other bidders. The Totalisator Agency
Board, which bid NZ$401,000 for each of sixlicenses, acquired just one li-
cense at a price of NZ$100,000, while BCL, which bid NZ$255,000 for just
one license, paid NZ$200,000 for it. Without knowing the exact values
of various numbers of licenses to the bidders, it is impossible to be cer-
tain that the resulting license assignment is inefficient, but the outcome
certainly confirms that the bidders could not guess one another’s behav-
ior. If Sky Network, BCL, or United Christian had been able to guess the
pattern of prices, they would have changed the licenses on which they
had bid. The bid data shows little connection between the demands
expressed by the bidders, the numbers of licenses they acquired, and
the prices they eventually paid, suggesting that the outcome was
inefficient.

14 The Treasury rule sets a uniform price equal to the lowest accepted bid.
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Table 1. Winning Bidders on Nationwide UHF Lots: 8 MHz License
Rights

Lot  Winning Bidder High Bid (NZ$) Second Bid (NZ$)
1 Sky Network TV 2,371,000 401,000
2 Sky Network TV 2,273,000 401,000
3 Sky Network TV 2,273,000 401,000
4 BCL 255,124 200,000
5 Sky Network TV 1,121,000 401,000
6 Totalisator Agency Board 401,000 100,000
7 United Christian Broadcast 685,200 401,000

Source: Hazlett (1998).

A second problem was even more embarrassing to New Zealand’s
government officials.!® McMillan (1994) described it as follows: “In one
extreme case, a firm that bid NZ$100,000 paid the second-highest bid
of NZ$6. In another the high bid was NZ$7 million and the second
bid was NZ$5,000.” Total revenue, which consultants had projected
to be NZ$250 million, was actually just NZ$36 million. The second-
price rules allowed public observers to get a good estimate of the win-
ning bidders’ profits, some of which were many times higher than the
price. To avoid further embarrassment, the government shifted from the
second-price sealed-bid format to a more standard first-price sealed-
bid format, in which the highest bidder pays the amount of its own
bid. As we will see later in this book, that did not guarantee higher
prices. It did, however, conceal the bidders’ profits from a curious
public.

The change in auction format still failed to address the most serious
auction design problems. Unlinked auctions with several licenses for
sale that may be substitutes or complements force a choice between the
risks of acquiring too many licenses and of acquiring too few, leaving a
guessing game for bidders and a big role for luck. Allocations are unnec-
essarily random, causing licenses to be too rarely assigned to the bidders
who value them the most.

15 For a detailed account, see Mueller (1993).
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1.2.3 Better Auction Designs

In the New Zealand case, alternative auction designs could have per-
formed much better. For example, the government could have mimicked
the design of the Dutch flower auctions. The winner at the first round
would be allowed to take as many lots as it wished at the winning price.
Once that was done, the right to choose next could be sold in the next
auction round, and so on. No bidder would be forced to guess about
which licenses to bid on with such an auction. Each bidder could be sure
that, if it wins at all, it will win the number of lots or licenses anticipated
by its business plan at the bid price it chose.

There are other designs, as well, that limit the guesswork that bidders
face. A common one in US on-line auctions allows bidders to specify
both a price and a desired quantity. The highest bidders (or, in case of
ties, those who bid earliest) get their orders filled in full, with only the
last winning bidder running the risk of having to settle for a partial order.
As with the Dutch design, efficiency is enhanced because bidders do not
have to ponder over which licenses to bid on, and such rules reduce
the exposure risk that a bidder may wind up acquiring licenses at a loss,
because it buys too few to build an efficiently scaled system.

1.2.4 The FCC Design and Its Progeny
In the circumstances of the FCC'’s big PCS auction, it was obvious that
some licenses would be substitutes. For example, there would be two
licenses available to provide PCS service to the San Francisco area. Be-
cause the two licenses had nearly identical technical characteristics and
because, for antitrust reasons, no bidder would be allowed to acquire
both, these licenses were necessarily substitutes. The argument that
some licenses were complements was also made occasionally, but the
force of the argument was reduced by the large geographic scope of the
licenses.'6

As in the New Zealand case, the main design issue was to minimize
guesswork, allowing bidders to choose among substitute licenses based

16 Dr. Mark Bykowsky of the National Telecommunications and Information Administration
(NTIA) was a forceful advocate of the view that licenses could be complements and pro-
posed a complex package auction design to accommodate the possibility. His case that
complementarity was important is more convincing for the later auctions in which smaller
licenses were sold. Nonetheless, the short time available to run the first auction led to a
near-consensus that the package auction proposal involved too many unspecified details
and unresolved uncertainties for it to be evaluated and adopted immediately.
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on their relative prices. When substitute goods are sold in sequence,
either by sealed bids or in an ascending auction, a firm bidding for the
firstitem must guess what price it will have to paylaterifit waits tobuy the
second, third, or fourth item instead. Incorrect guesses can allow bidders
with relatively low values to win the first items, leading to an inefficient
allocation. With this problem in mind, the final rules provided that the
licenses would be sold all at once, in a single open ascending auction,
during which bidders could place bids on any of the licenses and track
bids on all the licenses. The openness of the process would eliminate the
guesswork, allowing bidders to switch among substitute licenses, and
promote equal prices for licenses that are perfect substitutes.

In order for the auction to work in this idealized way, bidding on all
licenses would need to remain open until no new bids were received
for any license, but that raised a new issue. In a worst case scenario,
the auction might drag on interminably as each bidder bid on just one
license at a time, even when it was actually interested in eventually
buying, say, 100 licenses. To mitigate this risk, the FCC adopted my
activity rule. The general application of an activity rule involves two key
concepts: eligibility and activity. A bidder’s activity in any round is the
quantity of licenses on which it has either placed new bids in the round
or had the high bid at the beginning of the round. In the example cited
earlier, the quantity is just the number of licenses on which a bid is
placed, but other quantity measures, including the total bandwidth of
the licenses bid or the bandwidth multiplied by the population covered,
have also been used. The rule specifies that a bidder’s total activity
in a round can never exceed its eligibility. A bidder’s initial eligibility,
applicable to the first round of the auction, is established by filing an
application and paying a deposit before the bidding begins. Its eligibility
in each later round depends on its recent bidding activity. One simple
form of the rule specifies that a bidder’s eligibility in any round after
the first is equal to its activity in the preceding round. Thus, bidders
that are not active early in the auction lose eligibility to place bids later
in the auction. This rule speeds the auction and helps bidders to make
reliable inferences about the remaining demand at the current prices.

The FCC rules have evolved since the original 1994 design, but larger
changes have been made to adapt the simultaneous ascending auction
to otherapplications. One common variation arises when there are many
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units of each kind of item, such as auctions involving the sale of electricity
contracts. In these auctions, for each item, each bidder bids its quantity
demanded at the current price indicated on a clock visible to all bidders.
The clock starts at a low price and keeps raising the price at any point
at which the current total demand of all bidders exceeds the supply of
that item. When demand equals supply on all items, the auction ends.
A series of such clocks record the current prices for the various goods,
and the rate of movement in these clocks determines the progress of the
auction. A similar clock auction was used in March 2002 by the British
government to buy 4 million metric tons of CO, emission reductions
proposed by British businesses.

Clock auctions share several key characteristics with their FCC an-
cestor. Bidding on all items takes place simultaneously, so bidders can
respond to changing relative prices. Prices rise monotonically, ensuring
that the auction progresses in an orderly and predictable way. All bids
are serious and represent real commitments. There is an activity rule
that prevents a buyer from increasing its overall demand on all items as
prices increase. Finally, bidding ends simultaneously on all the lots, so
that opportunities for substitution do not disappear during the auction
until all final prices are set.

New variations based on the same principles continue to be created
to solve a wide range of economic problems. Electricité de France (EDF)
used a particularly interesting one in 2001 in a sale of electrical power
contracts. The sale involved power contracts of different lengths, rang-
ing from three months to two years, but all beginning at the same time —
January 2002 for the first sale. Because different buyers wanted different
mixes of contractlengths and because all contracts covered the first quar-
ter of 2002, EDF regarded the different kinds of contracts as substitutes.

Lawrence Ausubel and Peter Cramton developed the auction design.
The firststep was to assist EDFin developing a standard for “scoring” bids
on contracts of different lengths. Bids expressed a price per megawatt
per month that the buyer would pay for the right to acquire power. For
the initial auction, EDF specified that the price for a three month con-
tract for base-load power would always be €2139 higher than the corre-
sponding price for a six month contract. Similarly, price differences were
specified between the three-month contract and contracts lasting ten,
twelve, twenty-four or thirty-six months. During the auction itself, the
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price clocks were controlled to maintain these price relationships, for ex-
ample, the price of a three-month contract was at all times €2139 higher
than the price of a six-month contract. Prices for contracts of all lengths
continued to rise until the total remaining demand exhausted the to-
tal power available for the initial three-month period.!” Such an auction
creates competition among bidders for contracts of different lengths, in-
creasing both efficiency and sales revenue compared to more traditional
auction designs. Recently, the EDF auction has been further modified to
include a “supply curve,” so that total quantity of power sold depends
on the price level.

1.3 Comparing Seller Revenues

The question most frequently asked of auction designers is: What kind of
auction leads to the highest prices for the seller? The answer, of course,
depends on the particular circumstances, but even the thrust of the an-
swer surprises many people: There is no systematic advantage of either
sealed bid over open bid auctions, or the reverse.

Aparticular formal statement of this conclusion is known as the payoff
equivalence theorem. It holds that for an important class of auctions and
environments, the average revenues and the average payoffs of bidders
are exactly the same for every auction in the class. To illustrate the logic of
theidea, suppose you are selling an item thatis worth $10 to bidder A and
$15 to bidder B. If you sell the item using an ascending bid auction with
both bidders in attendance, then bidder A will stop bidding at a price
close to $10 and B will acquire the item for that price. If you use sealed
bids instead and sell the item to the highest bidder, then the outcome
will depend on what the bidders know when they bid. If they know all
the values, then in theory B will bid just enough to ensure that it wins —
around $10 or $10.01 — and A will likely bid close to $10. If they behave
that way, the price will be just the same as in the ascending auction.

The argument in this simple form was first made by Joseph Bertrand
(1883). Nearly a century later, William Vickrey observed, that a similar
conclusion holds on average for a much wider class of auction rules
and in a more realistic set of situations than the one described here. For

17 For example, in the sale of power beginning January 2002, when the total demand exceeded
the power available for the first quarter of 2002, the auction ended. Any remaining unsold
power for, say, the second quarter of 2002 was then included in subsequent sales.
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forecasting average revenue, it is irrelevant which auction is used, within
a certain class of standard auction designs.

Experienced auctioneers often contest this irrelevance conclusion.
Those who advocate ascending auctions argue that they generate more
excitement and more competition than sealed bids. After all, they claim,
no bidder is willing to bid close to its value unless pushed to do so by
the open competition of the ascending auction design. Those who favor
sealed bids counter by arguing that ascending auctions never result in
more being paid than is absolutely necessary to win the auction; there
is no money “left on the table.” Sealed bids frequently result in lots of
money left on the table. For instance, in the December 1997 auction for
licenses to provide wireless telephone services in Brazil, an international
consortium including Bellsouth and Splice do Brazil bid $2.45 billion in
that auction to win the license covering the Sao Paulo concession. This
bid was about 60% higher than the second highest bid, so 40%, or about
$1 billion, was left on the table.!8

Similar arguments among practitioners arise quite frequently, some-
times with variations. In the United States, the staff of the Treasury De-
partment have periodically argued the relative merits of two alternative
auction schemes for selling bills. In one scheme, each bidder pays the
amount of its own bid for each bill it buys; in the other, all bidders pay the
same market-clearing price, identified by the lowest accepted bid. Advo-
cates of thefirst (“each paysitsownbid”) scheme say that the government
will get more money from the auction, because winning bidders are by
definition people who have bid more than the lowest acceptable bid.
Advocates of the second (“uniform price”) scheme counter that bidders
who know they must pay their own bid when they win will naturally bid
less, reducing the market-clearing price and leading to lower revenues.

Informal arguments like these show that the matter is subtle, but they
do not settle the issue. A formal analysis based on the payoffequivalence
theorem discussed in chapter 3 helps to cut through the confusion. Under
certain idealized conditions, if the allocation oflots among bidders is the
same for two different designs, then the average payoffs to all parties,
including the average prices obtained by the seller, must also be exactly

18 Although the 60% overbid may be atypical, the ordinary amounts of money left on the table
are still impressive. For example, in the Brazilian band A privatization, the median overbid
was 27%. That is, for half the licenses, the winning bidders bid at least 27% more than the
second highest bid.
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the same. One cannot conduct a meaningful analysis of average prices
alone, without also studying how the designs affect the distribution of
the lots among the winning bidders.

The practical uses of the payoff equivalence theorem are similar in
kind to the uses of the Modigliani-Miller theorems in financial eco-
nomics, the Coase theorem in contract theory, and the monetary neu-
trality theorems in macroeconomics. All of these theorems assert that
under idealized conditions, particular effects cannot follow from iden-
tified causes.!® For example, according to the Modigliani-Miller theo-
rems, if decisions about debt-equity ratios and dividend policies merely
slice up the total returns to a firm’s owners without affecting the firm’s
operations, then those decisions cannot affect the firm’s total market
value. Today, financial economists explain financial decisions by focus-
ing on how financial decisions might affect a firm’s operations — its taxes,
bankruptcy costs, and managerial incentives. Similarly, according to the
Coase theorem, if there were no costs or barriers to transacting, then the
default ownership of an asset established by the legal system could not
affect value. Today, economic theorists explain features of organization
in terms of costs and barriers to transacting, including incomplete in-
formation and incomplete contracts. The payoff equivalence theorem is
similar: the payment terms of an auction do not affect the seller’s total
revenue unless they are associated with a change in the allocation of
the goods. Today, analysts focus more attention on how assumptions of
the theorem are violated and the consequences of those violations or,
for government regulators, about the implied trade-offs between their
allocation and revenue objectives.

The planning for a sale of electrical power in Texas in 2002 illustrates
how the payoff equivalence theorem has been applied in practice. Ac-
cording to the planned auction design, the auctioneer would gradually
raise the prices for any products with excess demand and would ac-
cept quantity demands from the bidders, in much the fashion that Leon
Walras once described. The auctioneer would not tell the bidders the

19" According to the Modigliani-Miller theorems, under its idealized frictionless-markets con-
ditions, a firm’s financial structure and dividend policy cannot affect its market value. Ac-
cording to the Coase theorem, under other idealized conditions, the initial allocation of
ownership rights cannot alter the efficiency of the final allocation. Monetary neutrality the-
orems hold that under yet other idealized conditions, monetary policy cannot change real
outcomes in an economy. The payoff equivalence theorem holds that under its idealized
conditions, changing payment rules cannot affect the participants’ final payoffs.
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quantities demanded by others. The rules called for the auctioneer to
stop raising the price for a product when its total demand falls to the
level of available supply. Texas ratepayers benefit from the revenues of
this power sale, and the ratepayers’ advocate argued that the auctioneer
should continue to raise prices until demand is actually less than supply,
and should then roll back the price by one increment. The idea was to
sell power for the highest market clearing price, rather than the lowest
one. This rule was problematic for a variety of reasons relating to the
details of the auction, and the design team cited the payoff equivalence
theorem to argue that there was little reason to expect that the proposed
change would lead to higher prices on average, because bidders would
bid differently if the payment rules were changed. A bidder that knows
it may acquire power at a lower price if it withdraws demand early will
be more inclined to do so than a bidder that knows it cannot cause a
price rollback. The net effect on revenues is hard to predict, because it
depends on how the proposed new rule changes the allocation. Even-
tually, the ratepayer advocate agreed not to oppose the auction design.

1.4 The Academic Critics

Economists who are putting auction theory to work encounter a dazzling
array of issues, from ideological to theoretical to practical. Recognizing
the complexity of the problems and the short times available to solve
them, the engineering work for auctions sometimes entails guesses and
judgments that cannot be fully grounded in a complete economic analy-
sis. Auction designers generate ideas using theory, test those ideas when
they can, and implement them with awareness of their limitations, sup-
plementing the economic analysis with worst case analyses and other
similar exercises.

The idea that economic theorists can add value through this mixture
of auction theory and practical judgment has come under attack from
some members of the economics profession. Some of the more frequent
attacks, and my responses to them, are expressed below.

1.4.1 Resale and the Coase Theorem

One of the most frequent and misguided criticisms of modern auction
design comes in the form of the remarkable claim that the auction design
does not matter at all. After all, say the critics, once the licenses are
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issued, parties will naturally buy, sell, and swap them to correct any
inefficiencies in the initial allocation. Regardless of how license rights
are distributed initially, the final allocation of rights will take care of
itself. Some critics have gone even farther, arguing on this basis that the
only proper objective of the government is to raise as much money as
possible in the sale, because it should not and cannot control the final
allocation.

Tojustify this argument, the critics relied on the Coase theorem, which
holds that if there are no costs to transacting after the auction, then
the initial allocation of property rights cannot affect the final alloca-
tion, which will necessarily be efficient. Coase reasoned that so long
as the allocation remains inefficient, the parties will continually find it
in their interests to buy, sell, and swap as necessary to eliminate the
inefficiency.?’

The “zero transaction cost” assumption on which the Coasian argu-
mentisbased, however, is not one that Coase ever advocated as a descrip-
tion of reality. Rather, it was advanced as part of a thought experiment
to emphasize the importance of understanding actual transaction costs.
Assuming that actual transactions costs are zero when they are not can
lead to serious errors in one’s conclusions. The history of the US wire-
less telephone service offers direct evidence that the fragmented and
inefficient initial distribution of rights was not quickly correctable by
market transactions. Despite demands from consumers for nationwide
networks and the demonstrated successes of similarly wide networks in
Europe, such networks were slow to develop in the United States.

As I argued during the deliberations at the FCC, the conclusion that
initial allocations do matter follows by juxtaposing two well-known
propositions from economic theory.?! The first is that, as explained in
chapter 2, auction mechanisms exist that achieve efficient license allo-
cations for any number of available licenses, provided the government

20 The Coase theorem includes a variety of assumptions that may fail in this application,
such as the assumption that the parties’ values reflect social value, not market power; the
assumption that the parties have unlimited budgets, so spending on spectrum rights does
not impair the ability to invest in infrastructure; and the assumption that rights have no
externalities, that is, that bidders do not care about which competitors get license rights.
The importance of the last assumption is analyzed by Jehiel and Moldovanu (1999).

The theory described here applies to private values models, in which a bidder’s maximum
willingness to pay for any good or package of goods is independent of what other bidders
know about that good.

2
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uses the auction from the start. With just one good for sale, the English
auction is such a mechanism. The generalized Vickrey auction, which
works even in the case of multiple goods, is introduced in chapter 2.
The second proposition is that, even in the simplest case with just a
single license for sale, there exists no mechanism that will reliably un-
tangle an initial misallocation. Intuitively, in any two-sided negotiation
between a buyer and seller, the seller has an incentive to exaggerate its
value and the buyer has an incentive to pretend its value is lower. These
misrepresentations can delay or scuttle atrade. According to afamous re-
sultin mechanism design theory — the Myerson-Satterthwaite theorem —
there is no way to design a bargaining protocol that avoids this problem:
delays or failures are inevitable in private bargaining if the good starts
out in the wrong hands.

1.4.2 Mechanism Design Theory

A second line of criticism emerges from a part of game theory called
mechanism design theory. A mechanism is essentially a set of rules to
govern the interactions of the parties. For example, it may specify the
rules of an auction. Are there to be sealed or ascending bids? If sealed
bids, how will the winner and price be determined? And so on.

Once the rules of the mechanism and the designer’s objective have all
been specified, the designer applies some criterion, or solution concept,
to predict the outcome and then evaluates the outcome according to the
objective. In the theory’s purest and most elegant form, the aim is to
identify the mechanism that maximizes the performance according to
the specified objective. For example, one might try to find the auction
that maximizes the expected selling price or the expected efficiency of the
outcome. We will treat parts of this theory at length later in this book.

Mechanism design theory poses this challenge to practical auction
designers: how can you incorporate the use of theory without, at the
same time, applying the mechanism design approach? If you believe the
theory accurately describes the behavior of players, you should use it to
optimize the mechanism performance.

There is a longstanding joke about the arbitrage theory in financial
economics that applies equally to mechanism design theory. Two people
are walking along a street when one spots a $100 bill on the ground. “Pick
itup,” says one. “Why bother?” replies the other. “If it were real, someone
would have picked it up already!”
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Like arbitrage theory, the equilibrium analysis of game theory is an
abstraction based on a sensible idea. Just as arbitrage theory implies that
people do not leave real $100 bills lying on the street, equilibrium theory
says that players in a game do not overlook ways to increase their payoffs.
Both theories are useful idealizations — not reasons to leave $100 bills ly-
ing on the ground. Theories like these, based on ubiquitious awareness
and thoroughly rational calculations, are obviously inexact models of
real behavior, and one should be especially careful about applying them
to choices that are complex and subtle, even when the players are so-
phisticated and experienced. In real auctions, where some players are
unsophisticated, inexperienced, or lacking the time and other resources
to support effective decision-making, equilibrium theory is still less
reliable.

Despite their drawbacks, equilibrium models can be very valuable to
real-world mechanism designers. Just as a mechanical engineer whose
mathematical model assumes a frictionless surface treats those calcula-
tions as inexact, an economic designer whose model assumes that the
players adopt equilibrium strategies can treat the predictions as approx-
imations. Just as the real-world mechanical engineer pays attention to
factors that increase friction and builds in redundancy and safety mar-
gins, the real-world mechanism designer pays attention to timing and
bidder interfaces to make rational decisions easier, and plans to accom-
modate worst case scenarios, in case bidders make mistakes or simply
behave contrary to expectations.

In the present state of the art, academic mechanism design theory
relies on stark and exaggerated assumptions to reach theoretical con-
clusions that can sometimes be fragile. Among these are the assump-
tions (i) that bidders’ beliefs are well formed and describable in terms of
probabilities, (ii) that any differences in bidder beliefs reflect differences
in their information, (iii) that bidders not only maximize, but also cling
confidently to the belief that all other bidders maximize as well. These
assumptions are extreme, and they are typically compounded in practice
by the use of additional simplifying assumptions. Mechanisms that are
optimized to perform well when the assumptions are exactly true may
still fail miserably in the much more frequent cases when the assump-
tions are untrue. Useful real-life mechanisms need to be robust. Those
that are too fragile should be discarded, whereas a robust mechanism
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can sometimes be confidently adopted even if, in the corresponding
mechanism design model, it is not provably optimal.??

Besides the very demanding behavioral assumptions that charac-
terize the theoretical mechanism design approach, the existing formal
models of mechanism design theory capture and analyze only a small
subset of the issues that a real auctioneer faces. Some of the important
issues that are usually omitted from mechanism design models are listed
below. Although none of these are incompatible with mechanism design
theory in principle, accounting for all in a single optimization model is
far beyond the reach of present practice.

e What to sell? If a farmer dies, should the entire farm be sold as a unit?
Or should some fields be sold to neighbors? The house and barn as
a holiday and weekend home? How should the FCC cut up the radio
spectrum? Should power suppliers be required to bundle regulation
services, or should they be priced separately?

* To whom and when? Marketing a sale is often the biggest factor in
its success. Bidders may need to study the opportunity and line up
partners, financing, regulatory approvals, and so on. Conditions may
change: financing may be more easily available at one time than an-
other; uncertainties about technology or demand may become partly
resolved; etc. Bidders may actively try to discourage others from bid-
ding, hoping to get a better price.?®> Auctioneers may seek to screen
bidders to encourage participation by those who are most qualified,
or may subsidize some participants to increase competition.

* How? For example, if the deal is complicated and needs to be indi-
vidually tailored for each bidder, a seller might prefer to engage in a
sequence of negotiations to economize on costs. If an auction is to be
used, the right kind can depend, as we have already seen, on whether
the items are substitutes or complements.

22 The view expressed here is a variation of the Wilson doctrine, which holds that practical
mechanisms should be simple and designed without assuming that the designer has very
precise knowledge about the economic environment in which the mechanism will operate.
Here, we further emphasize that even given a very complete description of the economic
environment, the behavior of bidders cannot be regarded as perfectly predictable.

On the eve of the FCC PCS spectrum auction #4, the author made a television appearance
on behalf of Pacific Bell telephone, announcing a commitment to win the Los Angeles
telephone license, and successfully discouraging most potential competitors from even
trying to bid for that license.

23
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e Interactions? Decisions about what to sell, to whom, when, and how
are notindependent ones. What to sell depends on what buyers want,
which depends on who is bidding, which may depend on how and
when the auction is conducted.

* Mergers and Collusion? The European spectrum auctions of 2000,
with their very high stakes, provided some interesting examples of
before-the-auction actions to reduce competition. In Switzerland,
last minute mergers among potential bidders resulted in only four
bidders showing up for four spectrum licenses. The auction was post-
poned, but the licenses were eventually sold for prices close to the
government-set minimum. Similar problems of valuable spectrum
attracting few bidders and resulting in prices near the minimum oc-
curred in Germany, Italy, and Israel.

* Resale? Most of the theory of mechanism design starts with a given set
of bidders that keep whatever they buy. The possibility of resale not
only affects auction strategy, it may also attract speculators that buy
with the intention of reselling. Should the seller encourage specula-
tors, because additional bidders create more competition in the auc-
tion? Or should the seller discourage them, because value captured
by speculators must come from someone else’s payoff — possibly the
seller’s?

The mechanism design purist’s view, which holds that the only consis-
tent approach is to develop theoretically “optimal” mechanisms, is not
useful in practice. Even if we could incorporate all the features described
above, our models of human behavior are not nearly accurate enough for
use in optimization. Behavior is neither perfectly stable over time, nor
the same across individuals, nor completely predictable for any single
individual. Useful analyses must be cognizant of these realities.

Despite these limitations, a large portion of this book focuses on
mechanism design and related analyses. The theory is especially use-
ful in practice for identifying issues and effects. Among the decisions
that the theory can illuminate are ones about information policy (what
information to reveal to bidders), how to structure split awards (in which
a buyer running a procurement auction splits its business between two
or more suppliers), how to create scoring rules (in which bids are eval-
uated on dimensions besides price), and when and how to implement
handicapping (in which the auctioneer treats bids unequally in order
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to encourage more effective competition, for example, promote small
businesses or those run by women and minorities). The mechanism de-
sign approach also helps answer important questions about when to
use auctions at all. Purchasing managers sometimes pose this question
by asking whether particular goods and services are “auctionable,” that
is, whether the most effective procurement process is to run a formal
bidding process.

1.4.3 Theory and Experiment

In sharp contrast to mechanism design purists, some economic experi-
menters raise an opposite objection: why should any attention be paid
to auction theory at all, now that we have the capability to test alterna-
tive auction designs in experimental economics laboratories? Theories
sometimes fail badly. The rest of the time, they explain only some of the
data. So why rely on theory at all?

The possibility of experimental tests has, indeed, fundamentally
shifted the way auctions can be designed. In the FCC auction design,
successful tests conducted by Charles Plott in his laboratory at Caltech
helped convince the FCC to adopt the theoretically motivated Milgrom—
Wilson design. Working software demonstrating the design was another
important element.?* Yet, the experiments to date have been very far
from replicating the actual circumstances of high-value auctions.

In practice, it is unlikely that anyone will ever test a range of actual
proposals in a completely realistic setting. The amounts at stake in ex-
periments are necessarily much smaller, and the preparation time for
bidders will normally be much less. Because experimental settings differ
so much from the auctions they simulate, the role of theoryis indispens-
able. Theory guides the design of experiments, suggests which parts
of any experimental results might be generalized, and illuminates the
economic principles at work, enabling further predictions and improve-
ments upon the original design.

24 Working software demonstrating the feasibility of the new design was another important
element. Implementation issues also played a huge role in the debate. The very possibility
of running the computer implemented simultaneous auction raised the hackles of critics
in 1994. To rebut the critics, my assistant, Zoran Crnja, programmed a flawless small-scale
version of the software in a set of linked Excel spreadsheets. His software convinced the
FCC that a reliable system could be created using our proposed rules even in the short time
available.
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The philosopher Alfred North Whitehead, when asked whether theory
or facts was more important, answered famously: “theory about facts.”
Indeed, theories that are incompatible with facts are useless, but there
can be no experimental designs and, indeed, no reporting of experimen-
tal results without a conceptualization of the issues. Theory will always
play a key role in answering engineering questions, including questions
about auction design.

1.4.4 Practical Concerns

The final criticism is that, in the real world, the whole mechanism design
approach is irrelevant for several reasons. First, the auction rules them-
selves are subject to bargaining: there is no single mechanism designer.
Second, the rules are rarely even a first-tier concern in setting up and
running a complex auction. Several other issues are more important.

One such issue is marketing: an auction cannot succeed without par-
ticipants. This interacts with the first observation: bidders may simply
refuse to participate in designs that they consider strange or unfair.?®
This very observation, however, emphasizes that good design can be an
affirmative way to attract more and better participants.

There are many examples of auctions and other competitions that get
poor results because the rules are rigged to favor particular bidders and
so discourage others from participating. One is the earlier description
of MCI'’s attempts to rig the US spectrum auctions in its favor by making
the “lot” a single national license. When different bidders want different
kinds of lots, a package auction design, such as the ones often used in
bankruptcy sales, may enable wider participation.

Another exampleis the initial public offering (IPO) of sharesin ayoung
company. In the past, the investment banks that organize the IPOs have
often reserved shares in “hot” offerings for the bank’s biggest and best
customers, and that discourages small investors from participating. Try-
ing to buck this trend, the investment bank WR Hambrecht has intro-
duced its Open IPO product, which is a uniform price auction in which
large and small investors are all subject to the same auction rules. The
company tries actively to attract small investors to increase demand for

%5 My own experience designing a procurement auction system for Perfect Commerce, Inc.,
revealed the seriousness of this concern. Sellers do often refuse to participate in auctions
that are not structured to their liking.
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shares and create an alternative to the existing auction system, although
its success will also depend on attracting larger investors, too, and com-
panies willing to experiment with a new system.

A second important practical issue concerns the propertyrights being
allocated. For example, if auctions are to be used to allocate takeoff and
landing rights at a congested airport, then the rights themselves need
to be carefully defined. What is to happen to a plane that is delayed for
mechanical reasons and cannot depart in its assigned slot? What are the
airline’s rights if weather delays decrease the capacity of the airport? No
sophisticated auction rule can lead to a good outcome unless these prac-
ticalissues are resolved, and an auction system that fails to coordinate all
the resources needed by the airlines - takeoff slots, landing slots, rights
through en route choke points, gate access, and so on — cannot succeed
regardless of how well rights are defined. Real problems require com-
prehensive solutions, and the auction rules are a partial solution whose
importance varies across applications.

Another important practical detail for electronic auctions is the in-
terface used by bidders. The original FCC auction software made it easy
for bidders to make mistakes. On several occasions, bidders made what
came to be called “fat finger bids.” For example, when trying to bid
$1,000,000, a bidder might accidentally enter a bid of $10,000,000 — an
error encouraged by the fact that the early interfaces could not accept
commas in the bid field.

The FCC'’s solution for this problem, however, was one that consid-
ered more than the ease of bidding. Under the FCC'’s initial rules, bid-
ders found it easy to communicate messages, including threats, with
their bids in the auction. Suppose, for example, that bidder A wished
to discourage competitor B from bidding on a particular license, say
#147, in a particular auction. If B bid on that license, A might retaliate
by raising the price of another license on which B had the current high
bid of, say, $9,000,000 by bidding $10,000,147, where the last three digits
send a none-too-subtle message about its motivations. Such bids were
frequently observed in some of the early FCC auctions.

Both the “fat finger” and the signaling problems were solved when
the FCC changed the auction interface to require that a bidder select its
bid from a short dropdown menu on its bidding screen. All bids on the
menu used round numbers, being the minimum bid plus one or more
increments. This system eliminated typos involving one or more extra
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digits and simultaneously made it much harder for bidders to encode
messages in their bids.

Some critics respond to such anecdotes with the claim that although
they do show that rules matter, they mainly show the dangers in elec-
tronic auctions or auctions using novel rules. However, even familiar,
low-tech auctions can perform badly on account of problematic rules.
In 1998, the Cook County, Illinois, tax collector conducted a traditional
oral outcry auction to sell the right to collect certain 1996 property taxes
that were two years overdue. In that 1996 fax sale auction, a bid specified
the penalty rate that the winning bidder could charge in addition to the
taxes due, as compensation for its collection services. The auction was
conducted in an ordinary meeting room, with the auctioneer sitting in
the front. The auctioneer would read a property number, and the bidding
instantly began, with the bidders shouting penalty amounts. The max-
imum opening bid was 18%, and successively lower bids were shouted
until a winning low bidder was determined.

The trouble occurred when several bidders simultaneously opened
with bids of the maximum amount. Under the Cook County rules for
that year, in the event of such a tie, the auctioneer was to assign the
properties to winning bidders essentially at random. A bidder tied with,
say, five others at 18% then faced a simple choice. He could bid less than
18%, having roughly a one in six chance to win the auction at a much
lower rate than 18%. Or he could sit quietly and enjoy a one in six chance
to win at a rate of 18%. Most bidders chose to sit quietly, and about 80%
of the properties sold at the maximum rate of 18%.

How can we be sure it was the faulty rules, rather than collusion among
(morethan adozen) bidders, thataccounted for this outcome? A few days
after the auction began, the county auctioneer announced a change in
the rules. In the future, a tie bid at 18% would result in withdrawal of
the property from the auction. After the change, penalty rates quickly
collapsed to alower level, providing some initial evidence that the treat-
ment of ties does matter. Immediately after the rule change, some bid-
ders sought a court order to restrain the auctioneer from changing its
rules during the auction. The court agreed and issued the order. After
the order was issued and the original rules restored, the winning bids
quickly returned to 18%.

Understanding auction theory is helpful for more than just avoiding
obviously bad designs. Well-designed auctions that link the allocation



1.4 The Academic Critics 29

of related resources can perform much better than traditional auction
sales. In the New Zealand case described earlier, if the novel second-price
auction rules had been replaced with more traditional pay-as-bid rules,
any simultaneous sealed-bid auction would still be prone to misalloca-
tion, because bidders would still need to guess about which TV licenses
to bid on. Computational experiments suggest that 25-50% of the value
might have been lost simply because the allocation was so poorly coordi-
nated. In similar circumstances, the current world standard for spectrum
auctions, the simultaneous ascending auction, can theoretically lead to
a more efficient outcome and higher revenues as well.

The simultaneous ascending auction has limitations too, which can
be particularly important when the items for sale are ones that different
bidders prefer to package in different ways, or when there are compli-
cated constraints on the collection of acceptable offers. In such cases, a
package auction design can both attract a wider set of bidders and vastly
increase the likelihood that the right packages emerge from the auction.
The design of these auctions is, however, subject to many pitfalls, to
which we return in part II of this book.

There are many more examples of the importance of the detailed
auction rules. One is from a Mexican sealed-bid auction for a road con-
struction contract, in which the bidders were asked to submit a total bid
and to divide the total bid into three sub-parts in case part of the project
was delayed or canceled. Although each bidder was required to specify
four numbers (a price for each part and a total price), the project was to
be awarded based only on the total price. The winning bidder submitted
abid in which the “total” was less than the sum of the prices for the three
parts. As matters transpired, the sum of the three was low enough to win,
and the winner claimed that he had simply made an “arithmetic mistake”
and that the price must, of course, be the sum of the three component
parts. It seems more likely that this device was used to place two bids,
allowing the bidder to withdraw the lower bid if the higher one was a
winner. That could be a useful option in a competitive setting, but even
more so if the bidders were colluding, because the low “total price” bid
would prevent a deviator from cheating on the agreement and placing a
lower than expected bid. Indeed, if the auctioneer intended to facilitate
collusion in the bidding, this was quite an effective design!

Another example of how the details matter is drawn from the German
experience in a 1999 spectrum auction. In that auction, Mannesmann
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and T-Mobil managed to divide the market between themselves without
engaging in intense price competition. With ten licenses for sale and a
10% price increment, Mannesmann opened the bidding by jumping to
prices of DM20 million for five licenses and DM18.18 million for the other
five, effectively suggesting to T-Mobil that the ten licenses be divided
five-and-five at a price of DM20 million. In the event, T-Mobil bid DM20
million for the five lower-priced licenses and that ended the auction. The
facts that equal division was possible and that the bidder could make
such jump bids are design elements that contributed to this outcome.
The risk was predictable. Indeed, the danger that such rules posed had
been previously been pointed out in a 1997 report commissioned by the
US spectrum authorities.?

In the US electricity markets, ill-considered market rules frequently
contributed to high prices by making it too easy for power suppliers to
manipulate the system. In afamous example, energy traders at the Enron
Corporation manipulated the California power market by scheduling
transmissions on congested links that were far in excess of those Enron
had actually planned. That led the California Power Exchange to try to
mitigate the expected congestion by paying the company to reduce its
transmissions, resulting in massive profits for the company. Only after
repeated failures did these designs evolve to produce more reasonable
results, yet all of these defects could have been anticipated by a simple
game theoretic analysis of the market designs.

The most careful statistical evidence of the importance of design
comes not from auction markets per se but from the closely related
matching markets, such as the ones by which most new US doctors are
matched to hospital residency programs. Roth (1991) provides evidence
that a particular characteristic of the matching rules — whether the rules
lead to a stable match - is an important determinant of whether or-
ganized markets succeed in attracting participants over a long period
of years. A match is stable if no medical student strictly prefers to be
matched to another program rather than the one he is currently matched
with while that other program simultaneously strictly prefers that med-
ical student to one of those with whom it is matched. The analogous
criterion for auctions is that no group of participants should be able
to do better by rejecting the auction outcome and making a side deal of

26 See Cramton, McMillan, Milgrom, Miller, Mitchell, Vincent, and Wilson (1997).
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their own. Auctions that do not have this theoretical property are likely to
run into trouble in practice, as some participants try to void the auction
outcome to reach a better deal among themselves.

Successful auction programs need to be well designed in all impor-
tant respects, of which auction rules are one. Applying the perspective of
auction theory can be valuable in many ways. It can enable an auction-
eer to avoid mistakes like those that marred the 1993 spectrum auction
in New Zealand, the 1996 tax auction in Cook County, the California
electrical power markets and the 1999 German spectrum auction. It can
help the auctioneer to pursue multiple objectives, like promoting mi-
nority participation, encouraging alternative suppliers, and enhancing
competition among bidders with diverse advantages. Finally, rules can
be designed to accommodate complicated preferences and constraints
for the bidders and the auctioneer. We will see some examples of this
later in this book.

1.5 Plan for This Book

This book integrates two projects, which are presented in the two main
parts. The first part gives a review of traditional auction theory and is
based on courses that I have given over a period of years at Stanford,
Jerusalem, Harvard, and MIT. Traditional auction theory is based largely
on the theory of mechanism design and the chapter organization fol-
lows certain principles of that theory. Much of the analysis is focused on
auctions in which each buyer wants only a single object — a condition
called singleton demand.

My treatment of the material differs from other treatments in two
ways. First, it emphasizes practical applications where possible and
makes an effort to include the issues that are most important in prac-
tice. Second, the treatment reflects my view that incentive theory is not
best viewed as some entirely new part of economics; it is best viewed as
an evolutionary development of traditional demand theory. Rather than
treating it from its own specialized perspective that obfuscates connec-
tions with older theories, I use general perspectives and techniques that
not only unify the theories but also prove their worth by reducing the
lengthy and difficult proofs of incentive theory to shorter, more intuitive
ones.

The second part of the book differs from the first in its questions
and methods. The questions mainly concern the design of auctions
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for environments in which there are multiple heterogeneous goods.
These environments are fundamentally more complex than ones with
singleton demand. One reason is that the number of possible allocations
is exponentially larger, which leads to serious issues about the practical
feasibility of auction algorithms and bidder strategies. For example, in an
auction with five bidders and one item, there are only five theoretically
possible allocations of the item, and each bidder bids over just a single
item. However, in an auction with five bidders and five items, there are
5° = 3125 theoretically possible allocations. A second way in which
singleton demand is special is that it eliminates much of the tension
between promoting efficient allocations and ensuring competitive rev-
enues for the seller. In the general case of part I, where multiple hetero-
geneous goods are sold with complementarities among the items, that
tension can be severe. For example, the Vickrey auction, noted for its
ability to promote efficient outcomes, can lead to zero or low revenues
in relevant examples. A third difference concerns the problem of value
discovery. With singleton demand, bidders have only one allocation to
evaluate, but in the general case the exponentially larger number of al-
locations can force a bidder to reduce its valuation activities, which can
limit both efficiency and price competition.

Because the Vickrey mechanism plays a significant role in both
parts of the theory, we begin by studying this mechanism in the next
chapter.

Auction theory has grown into a huge area of research, and this book
reports on only those parts of the theoretical research that are relatively
settled and that, in my opinion, have promise to be helpful to auction
designers. With these criteria in mind, I have given only light coverage
to some of the elegant formal treatments of how auctions perform when
there are very many bidders®’ as well as much of the recently develop-
ing literature about one or more of these topics: auctions with inter-
dependent valuations, collusion among bidders, corrupt auctioneers,
purchases for resale, and information processing during auctions. Read-
ers who wish to follow the frontiers of auction theory are encouraged to
read about these subjects in the new auction literature.

27 This research begins with Wilson (1977) and includes Milgrom (1979) and the especially
beautiful results by Pesendorfer and Swinkels (1997, 2000) and Swinkels (2001).
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PART ONE

THE MECHANISM DESIGN APPROACH

The five chapters of Part I apply mechanism design theory and related
methods to problems of auction design. We begin with informal de-
scriptions of the main concepts of mechanism design theory. Although
these descriptions correspond closely to the formal ones, they conceal
technical details that are occasionally important, so the mathematical
development is indispensable for a full understanding of the theory.

Mechanism design theory distinguishes sharply between the appara-
tus under the control of the designer, which we call a mechanism, and
the world of things that are beyond the designer’s control, which we
call the environment. A mechanism consists of rules that govern what
the participants are permitted to do and how these permitted actions
determine outcomes. An environment comprises three lists: a list of the
participants or potential participants, another of the possible outcomes,
and another of the participants’ possible types—thatis, their capabilities,
preferences, information, and beliefs.

In a political mechanism model, the participants could be legislators,
and an outcome the set of bills that are enacted. Or the participants could
be voters, and the outcome a set of elected officials. The mechanism an-
alyst might investigate how a particular legislative process affects the
likelihood of stalemate or how the electoral system distorts choices by
politicians concerned with reelection. In economic mechanism models,
the participants could be workers, or the members of a family, or depart-
mental managers. The analystwould model how mechanisms determine
job assignments, the distribution of household chores or the family bud-
get, or the levels of funding of departments within a firm. Indeed, the
most commonly studied mechanisms in economics are resource alloca-
tion mechanisms in which the outcome is an allocation of resources.

35
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Mechanism theory evaluates alternative designs based on their com-
parative performance. Formally, performance is the function that maps
environments into outcomes. The function “When it rains, we distribute
umbrellas; when the sun shines, we distribute bathing suits” gives better
performance than the opposite distribution pattern.

The goal of mechanism design analysis is to determine what perfor-
mance is possible and how mechanisms can best be designed to achieve
the designer’s goals. Mechanism design addresses three common ques-
tions: Is it possible to achieve a certain kind of performance, for instance
a map that picks an efficient allocation for every possible environment
in some class?! What is the complete set of performance functions that
are implementable by some mechanism? What mechanism optimizes
performance (according to the mechanism designer’s performance
criterion)?

Mechanism design theory is outcome-oriented. A central assumption
of the theory is that people care only about outcomes, not how they are
achieved. In the real world, processes sometimes succeed or fail based
onwhether they are perceived as fair, simple, or open—attributes that are
hard to evaluate in a formal model. Setting aside these considerations
facilitates a formal but partial analysis. Once that analysis is complete,
the omitted issues and criteria can be examined.

Two categories of problems plague mechanism designers. Informa-
tion problems are the first category. Consider the problem of an airline
regulator trying to respond to bad weather around a major airport that
requires delaying or canceling some flights. Which flights? The regulator
might ask the airlines to cooperate by identifying which flights can be
canceled with only moderate disruptions to passengers and the sched-
ule, but then airlines that honestly identify those flights will bear most of
the cost of cancellations. Canceling flights could even make passenger
service problems worse. For example, when flights on large planes are
canceled or delayed, some wealthy passengers may hire private jets that
use the same runway capacity to serve fewer customers. In this exam-
ple, the regulator might be able to alleviate the information problems by

1 In applying the theory, one needs to be cautious about the definition of “efficiency” used
in the theory. These formulations focus only on the payoffs to participants in N. If some
outcome has value to a participant because it allows him to extract rents through the ap-
plication of monopoly power, then the identified allocations are generally not efficient in
the economist’s usual sense of Pareto optimality.



The Mechanism Design Approach 37

paying any airline that voluntarily sacrifices a runway slot and charging
a fee to an unscheduled airline seeking an extra slot. In practice, cash
compensation may not be allowed. What can be achieved then? What
additional performance is possible if cash payments are possible?

Problems caused by inadequate information can be found through-
out the economy. An architect who requires use of materials of a certain
quality may not know that the builder has actually used a less costly and
less durable substitute. Black marketeers who conceal their transactions
or people who misreport income may thwart a government’s tax system.
A business manager may find a system of performance-related pay frus-
trated by inaccurate or intentionally distorted performance measures.

The second kind of problem facing mechanism designers is a com-
mitment problem, in which participants do not trust the designer to keep
his promises. For example, suppose the workers in a certain factory are
paid a certain amount, called a piece rate, for each unit they produce.
The manager of a factory promises not to change a piece rate, regardless
of how much workers earn. Suppose the workers believe the manager
and increase their output, but it turns out that some workers’ piece rates
are much too high relative to others, allowing them to earn much higher
incomes. The manager’s superiors and the workers whose piece rates
are relatively low are likely to pressure the manager to reduce the higher
rates and increase the lower ones. Anticipating such a reaction, the fac-
tory workers in the easy jobs may try to make their jobs look hard by
limiting their production to avoid a reduction in their piece rates. In this
example, the manager’s inability to commit not to change rates reduces
the factory output.

Both kinds of problems play a role in mechanism design theory and
in its application to the economic theory of contracts. We will focus on
information problems, however, because these are the most relevant
ones for auction theory. They arise for the simple reason that bidders
know more about their values than the auctioneer.

An auctionisamechanismto allocate resources amonga group of bid-
ders. An auction model includes three major parts: a description of the
potential bidders (and sometimes the seller or sellers), the set of possi-
ble resource allocations (describing the number of goods of each type,
whether the goods are divisible, and whether there are legal or other
restrictions on how the goods may be allocated), and the values of the
various resource allocations to each participant.
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Values may be determined in subtle ways. For example, when a bottle
of fine wine is sold at auction, the winning bidder’s payoff may depend
on how much she likes the particular wine, likes the prestige of winning
the bottle, or likes keeping the bottle away from a certain competing
collector. Losers, too, may care about the outcome, for example because
they expect that if a certain friend wins the bottle, he will serve it at an
upcoming wine tasting party. The mechanism designer’s problem is to
choose therules of the auction —whatbids are allowed, how the resources
are allocated, and how prices are determined - to achieve some objective,
such as maximizing the seller’s proceeds.

Three important early contributions to mechanism design deserve
special mention. The next chapter reviews the first of these contribu-
tions, William Vickrey’s design of auctions that allocate resources effi-
ciently in a wide range of circumstances.

The second important contribution was the Vickrey—Mirrlees design
of an optimal income tax and welfare system given a utilitarian objective.
Vickrey built the basic model, which gave structure to the question.
The model incorporated the ideas that individual utility depends on
income and leisure, that different people have different opportunities
to generate income by sacrificing leisure, that the taxing authority can
only observe total income, and that the tax system affects labor supply.
The problem was to create a tax-and-transfer system to maximize the
total utility of everyone in society. The utilitarian optimal solution
would tax those with high earning ability and pay transfers to those
with low earning ability, but would be limited by the incentive problem
that entails. James Mirrlees later revisited and solved the optimization
problem implied by Vickrey’s formulation. Subsequent researchers
have often mimicked Mirrlees’ methods. For their contributions to the
theories of efficient auctions and optimal taxation, Vickrey and Mirrlees
shared the 1996 Nobel Prize in economic science.

The third important contribution was the Clarke-Groves analysis of
the optimal provision of public goods. For example, a condominium
association may need to decide whether to improve its common areas,
perhaps by installing a faster elevator in the building, renovating the
exterior, or building a children’s playground. Improvements are costly
and mustbe funded out of association funds and by an assessmentlevied
on the association members. In these circumstances, the association
board may want to know how much various improvements are worth to
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itsmembers. Depending on exactly how the information is used and how
costsare shared, association members mightbe inclined to misstate their
preferences. Clarke and Groves analyzed how to arrange affairs to make
truthful reporting consistent with individual interests. Their methods
and conclusions are quite similar to Vickrey’s; we treat the two together
in chapter 2.

Intheyears thatfollowed, mechanism design techniques were applied
to problems in the public sector, e.g. the optimal state regulation of pub-
lic utilities to maximize consumer welfare, and the private sector, e.g.
the optimal design of contracts to maximize the welfare of the contract-
ing parties. Roger Myerson’s work on designing auctions to maximize
revenue was the first to apply mechanism design to auction theory.?

Formalities of the Mechanism Design Model®
The model we shall study has two parts: an environment and a mecha-
nism. In the simplest case, an environmentis a triple (N, ©, ©). The first
element of the triple, N = {1, ..., n}, is the list of participants (or poten-
tial participants) in the mechanism. When it is convenient to include
the mechanism designer among the participants, we may instead write
N =1{0, ..., n}. The second element, €, is the set of possible outcomes
over which the participants and the mechanism designer have prefer-
ences. The third element is the most abstract one: ® = ©! x ... x @V
is the set of type profilest = (¢', ..., t"), which includes a type for each
participant. Participant i’s fype (') indexes the participant’s information,
beliefs, and preferences. For example, we may say that bidder 1 is of type
A if the item for sale is worth $100 to that bidder and the bidder believes
that the item is worth $150 to bidder 2, and of type B if the item is worth
$200 to the bidder and the bidder believes it is worth $175 to bidder 2.
The set of types lists all the possibilities that the modeler considers.

The type profile and the outcome combine to determine individual
payoffs: ' : @ x ® — R. Thus, 1/ (£,7) denotes the payoff or utility that
participant i gets when the outcome is & € Q and the type profile is7.

In much of economic theory, a player’s payoff depends only on the
outcome and his own type, but the general formulation allows a broader
dependence than that. An example in which payoffs depend on others’

2 See Myerson (1981).
3 The first general mechanism design model was formulated by Hurwicz (1973).
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types comes from George Akerlof, who shared the 2001 Nobel Prize in
economic science. In his famous lemons model of the market for used
cars,* there are two kinds of participants: buyers and sellers. A seller’s
type describes the car’s condition, which only the seller knows. A buyer’s
utility depends on both the buyer’s tastes and the car’s condition. Market
models in which some participant has quality information that affects
other participants’ payoffs are called adverse selection models. The name
reflects the idea that the selection of cars being sold in this model is not a
random cross section of all cars but instead is overweighted by cars that
are in bad condition, because owners of bad cars are more eager to sell
them.

Although the treatment of adverse selection in auction models has
a long history,® the largest part of auction theory sets adverse selection
aside to focus on the private-values case, in which each participant’s
utilitydepends onlyonits own type: 1/ (£,7) = 1 (£, t*). Inthis case, others’
information cannot influence a participant’s ranking of the outcomes in
Q. Except where specifically noted, all the models in this book deal with
the private-values case.

Most mechanism models assume that participants are uncertain
about what other participants know. In Bayesian models, the condi-
tional probability distribution 7i{|t) describes a participant’s beliefs,
which depend on the participant’s own type. Throughout most of this
book, we employ the Harsanyi doctrine that the beliefs are derived from
a common prior distribution 7.6 Although this doctrine is restrictive and
rules out certain interesting and realistic phenomena, it does have one
important advantage. It rules out betting pathologies, which are mod-
els in which participants can make themselves much better off simply
by betting against one another based on the differences in their be-
liefs.” The Harsanyi doctrine is popular in mechanism design models,

4 Akerlof (1970).

There were auction models with adverse selection even before the pioneering work of

Akerlof (1970). See Ortega-Reichert (1968) and Wilson (1969).

6 Harsanyi (1967-1968).

7 Legend has it that the betting pathology was first discovered in the coffee room of the
Stanford University economics department, when Professors Joseph Stiglitz and Robert
Wilson disagreed about whether a certain uncomfortable seat cushion was stuffed with foam
or feathers. They agreed to bet $10 on the issue and to cut open the cushion, with the loser to
pay for a new cushion. Alas, the department administrator stopped them before they could
execute their agreement. The pathology is that this agreement, from which both participants
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because it eliminates such bets and focuses attention on other aspects
of the design problem.

Itis sometimes convenient to write a type profileas = (¢, t %), where
¢! lists the types of the participants other than i. A (strategic form) mech-
anism is a pair (S, ) where S = S! x --- x SV is the set of possible strat-
egy profiles (S/ is the set of possible strategies of a typical player j) and
o : S — Q maps strategy profiles to outcomes.®

For each mechanism and each realization f of the type vector, we
can define a corresponding strategic form game. The game (N, S, U(-|7))
is a triple consisting of a set of players, a set of strategy profiles, and
a payoff function U mapping strategy profiles into payoffs. The argu-
ments of the payoff function are strategies, but these matter to the
players only insofar as they determine the outcomes that the partici-
pants care about: U(c!,...,0"f) = ti(w(o?, ..., o™),I). If the players
are Bayesians, adding the beliefs as described above completes the de-
scription of a Bayesian game.

Given a mechanism (S, w), if the game theoretic solution concept
forecasts that a particular strategy profile o = (c(}), ..., ") will
be played, then one can use that forecast to predict and evaluate
the performance of the mechanism. The forecasted outcome will be
EF) = wlo' (Y, ..., o"(#™). The function &(-) mapping type profiles to
outcomes is the performance function corresponding to the mechanism
(S, w). Many game theoretic solution concepts are not single-valued; for
example, many games have multiple Nash equilibria. There are several
ways to accommodate multiple equilibria, but for part I we focus on

expected to benefit, required the destruction of real resources. It would have been possible
to buy a new cushion without destroying the old one first, but that would not have allowed
the professors to benefit from the bet. When the Harsanyi doctrine does not hold and
parties with the same information nevertheless have different beliefs, side bets like that
between Wilson and Stiglitz are quite generally beneficial. According to the no trade theorem
(Milgrom and Stokey (1982)), the Harsanyi doctrine precludes mutually beneficial side bets,
so adopting the doctrine focuses the analysis on other, more economically plausible aspects
of the mechanism design problem. This resolution is unsatisfying, however, because it is
contradicted by evidence about human beliefs. Moreover, we will see later that even with
the Harsanyi doctrine, side bets still arise in optimal mechanisms when the participants’
types are statistically correlated (Cremer and McLean (1985)).

This is a strategic form description of the mechanism. One can also describe a mechanism
in extensive form, by completely describing the succession of possible moves (the game
tree), the information available to each player when she moves (the information sets), and
the outcome that follows each possible sequence of moves. The difference between the two
descriptions is potentially significant when one applies an extensive form solution concept,
such as sequential equilibrium or perfect equilibrium.

8
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the following one. When a game has multiple solutions, we define the
augmented mechanism (S, o, o) to be the mechanism plus a selected
solution. The idea is that the solution o represents a recommendation
made by the mechanism designer to the participants. If the recommen-
dation is consistent with a solution concept that adequately captures
the participants’ incentives, then no participant will have any incentive
to deviate from the recommendation, and o is therefore a reasonable
prediction of how the participants will behave.

When o is a solution according to some solution concept, we say that
the mechanism (S, w) or the augmented mechanism (S, w, o) implements
the performance & = woo. In other words, the equilibrium outcome
of the mechanism is &, which is obtained from the outcome function
o when each participant plays according to o;. Sometimes, we attach
the name of the solution concept, saying that a mechanism imple-
ments in dominant strategies or Bayes—Nash implements the particular
performance.

The Chapters of Part |
We develop the mechanism design approach to auction theory in a series
of steps. In chapter 2, we review the Vickrey analysis of auctions and the
related Clarke-Groves analysis of public decisions. The Vickrey—Clarke—
Groves (VCG) design establishes a useful benchmark with which subse-
quent analyses of resource allocation mechanisms must be compared.

Chapter 3 introduces the envelope theorem and some of its most
important consequences, including Holmstrom’s lemma and Myerson’s
lemma, which areincentive theory analogs of the famous demand theory
lemmas of Hotelling and Shepard. Using the envelope theorem allows
short proofs of many famous results and reveals their close relationship.
Among these are the Green-Laffont-Holmstrom theorem that the VCG
mechanisms are the only efficient dominant strategy mechanisms, the
Myerson-Satterthwaite theorem about the inescapable inefficiencies of
bargainingwithincomplete information, the Jehiel-Moldovanu theorem
aboutthe impossibility ofimplementing efficient outcomes with adverse
selection, the celebrated payoff and revenue equivalence theorems, the
Myerson-Riley—-Samuelson optimal auctions theorem, and the McAfee-
McMillan weak-cartels theorem.

Chapter 4 introduces the single crossing properties, the constraint sim-
plification theorem, and the ranking lemma. Together, these facilitate
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analyses of standard auction designs, the characterization of imple-
mentable performance functions, the ranking of standard auctions in
various different environments, and a fuller development of optimal
auction theory.

The models explored in chapters 2—4 are simplified by the assump-
tions that bidders know their own values and know nothing about oth-
ers’ values. In chapter 5, we explore models in which these assumptions
no longer hold, including models in which bidders or the seller invest
in additional information and conceal or reveal it. A seller can bene-
fit in several ways by revealing valuation information. The information
can avoid inefficiencies caused by mistaken evaluations, reduce the risk
premia that bidders deduct in valuing uncertain assets, and decrease the
information rents that bidders earn. All of these changes can increase
expected revenues.

Chapter 6 sets a larger context for auctions by treating entry deci-
sions and post-auction performance. These larger considerations are
extremely important in practice: an auction can hardly be considered
optimal if no bidders choose to participate or if the winner defaults on
his obligations. They also shift the focus of auction design in several im-
portant ways. First, when participation is costly, unless enough profit is
left for the bidders, they will not choose to participate, damaging both ef-
ficiency and revenues. Maximizing efficiency can involve pre-screening
of potential bidders, so that only the most qualified incur the cost of
learning their types and preparing bids. Pre-screening and other devices
can also help ensure that the selected bidder is able to perform. When
bidders differ in their qualifications, evaluatingbids becomes more com-
plicated aswell, as the seller balances whether to accepta higher bid from
a weak buyer who may default or a lower bid from a qualified buyer.
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CHAPTER TWO

Vickrey-Clarke-Groves Mechanisms

This chapter describes the important contributions of Vickrey, Clarke,
and Groves (VCG) to the theory of mechanism design. Vickrey (1961)
analyzed a situation in which bidders compete to buy or sell a collection
ofgoods. Later, Clarke (1971) and Groves (1973) studied the public choice
problem, in which agents decide whether to undertake a public project —
e.g. construction of a bridge or highway — whose cost must be borne by
the agents. This latter analysis formally includes any choice from a finite
set. In particular, it includes the Vickrey analysis for the case of discrete
assets. Welimitattention in this chapter to the case of finite choice sets, to
bypass technical issues associated with infinite choice sets, particularly
issues associated with the existence of a best choice.

The VCG analysis has become an important standard. It is the work by
which nearly all other mechanism design work is judged and in terms of
which its contribution is assessed. As we will see in later chapters, there
are deep and surprising connections between the VCG theory and many
other parts of auction theory.

2.1 Formulation
We begin the theoretical development in this section by introducing
notation and defining direct mechanisms and VCG mechanisms.

Thus, let N = {0, ..., n} denote the set of participants, with partici-
pant 0 being the mechanism operator. Let X denote the set of possible
decisions with typical element x. For chapters 2-5, we assume that the
set of participants is exogenously given and omit any analysis of the
incentives to participate. An outcome is a pair (x, p) describing a deci-
sion x and a vector of positive or negative payments p = (p°, p!, ..., p")
by the participants. For example, in a first-price sealed-bid auction, the

45
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decision x is a vector where x' = 1 if agent i gets the object and 0 other-
wise. The associated vector of payments is p, where p’ = b’ = —p° if i
bids b’ and wins, and in that case, p/ = 0 for the other bidders.

For most of our analysis, we also assume that each participant i values
outcomes according to # ((x, p),f) = vi(x, t) — p, that s, i’s payoff cor-
responding to outcome (x, p)isi’s value of the decision x, which depends
only on i’'s own type #, minus the payment that i must make. This quasi-
linear specification of the utility function plays an indispensable role in
the formal analysis of this chapter. The assumption of quasi-linearity
implies that bidders are able to make any cash transfers described by the
mechanism, that there exists a cash transfer that exactly compensates
any individual for any possible change in outcomes, and that redistribut-
ing wealth among the participants would not change this compensatory
transfer. These assumptions represent better modeling approximations
for some situations than for others. For example, if the bidders are firms
with ample liquidity, the assumptions might be a very good approxi-
mation of reality, but if they are consumers with significant credit con-
straints that apply to the transactions, then the assumptions might be
an unacceptably bad fit.

Recall that “performance” means the function that maps environ-
ments into outcomes. Given our assumptions about the two-part de-
scription of outcomes, the performance of any mechanism can be also
described in two parts. The decision performance maps types into deci-
sions x, whereas the transfer performance maps types into payments or
transfers. When the decision x allocates goods, we sometimes also call x
the allocation performance.

The VCG analysis sometimes attempts to achieve efficient perfor-
mance subject to the constraint that transfers add up to zero. Given the
assumptions described above, a decision x is efficient if it maximizes the
total value ), _y vi(x, t). For example, in an auction of a single good,
the final allocation is efficient if it awards the good to the bidder who
values it the most. In the models studied here, by construction, net pay-
ments always add up to zero, because the seller (or mechanism designer)
receives any sums that the buyers (or bidders) pay.

In some publicly run auctions, the design objective is efficiency as
defined above, although revenues (the total transfer to the mechanism
designer) may also be an important goal. In private-sector auctions, rev-
enues are always an important goal and often the only one.
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Sometimes, the designer wants to run an auction inwhich p° = 0, that
is, in which there is never any net transfer to the auction designer. These
balanced-budget mechanisms are useful, for example, in regulatory con-
texts where the regulator is not authorized to contribute or collect money
from the regulated parties. They also arise in the theory of the firm, where
the mechanism operator is similarly restricted. As we will see later, there
is often a tension in mechanism design between achieving efficient out-
comes and ensuring a balanced budget.

The VCG mechanisms are incentive-compatible direct mechanisms.
Thismeansthat (1) S= © and that (2) the strategy profile (¢ () = ');cnis
an equilibrium. In words, the first condition means that each participant
is required to report a possible type to the mechanism operator. We will
sometimes speak of direct mechanisms as being pairs (x, p), leaving
the strategy set implicit. The second condition, incentive compatibility,
means that reporting one’s type truthfully is an equilibrium according
to whatever solution concept we have chosen. For VCG mechanisms, we
focus on dominant-strategy implementation, so the relevant solution
concept is that each participant plays a dominant strategy.

One appeal of incentive-compatible direct mechanisms is that they
spare participants the need for elaborate strategic calculations: truthful
reporting serves each participant’s individual interest. Choosing domi-
nant strategies as the solution concept, an incentive-compatible direct
mechanism is one for which truthful reporting leads to as high a payoff
as any other strategy for all possible types of opponents and all possi-
ble actions that these opponents may take. For example, as discussed in
chapter 1, it is always optimal for a bidder in a second-price sealed-bid
auction for a single good to bid his valuation. Moreover, this truthful
bidding strategy is the only strategy that is always optimal, so it is a dom-
inant strategy. Thus, the second-price auction is a dominant-strategy
incentive-compatible direct mechanism.

The operator of a VCG mechanism uses the reported types to compute
the maximum total value V(X, N,f) and a corresponding total-value-
maximizing decision £(X, N, ) as follows:

V(X, N,f) = maxz v (x, 1), 2.1)
xeX £
JeN
5 7 iyt
(X, N,f) e argr}clea}(xz vl (x, ). 2.2)

jeN
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One might think that such a direct approach would be doomed to
failure, because each participant seems to have an incentive to misrep-
resent his preferences to influence the decision in his favor. However,
the participants’ incentives depend not only on the decision but also
on the cash transfer, which is the clever and surprising part of the VCG
mechanism.

The VCG mechanism eliminates incentives for misreporting by im-
posing on each participant the cost of any distortion he causes. The VCG
payment for participant i is set so that i’s report cannot affect the total
payoff to the set of other parties, N — i. Notice that 0 € N — i, that is, the
set includes the mechanism designer whose payoff is the mechanism’s
net receipts.

With this principle in mind, let us derive a formula for the VCG pay-
ments. To capture the effect of i’s report on the outcome, we introduce a
hypothetical null report, which corresponds to bidder i reporting that
he is indifferent among the possible decisions and cares only about
transfers. When i makes the null report, the VCG mechanism optimally
chooses the decision (X, N — i, t7%). The resulting total value of the de-
cision for the set of participants N — i would be V(X, N — i, t~1), and the
mechanism designer might also collect a payment /(%) from partici-
pant i. Thus, if i makes a null report, the total payoff to the participants
inset N —iis

VX, N—i,t )+ Kt

The VCG mechanism is constructed so that this same amount is the
total payoff to those participants regardless of i’s report. Thus, suppose
that when the reported type profile is £, i’s payment is p/(X, N,f) +
F(t71), so that p'(X, N,f) is i’s additional payment over what i would
pay if he made the null report. The decision £(X, N, ) generally de-
pends on i’s report, and the total payoff to members of N — i is then
> jensi VIR(X, N,T), t)) + P/ (X, N,T) + I (t"). We equate this total value
with the corresponding total value when i makes the null report:

POCND+HE)+ Y vl @O N.D, 1)
JjeN—i

=Rt H+ VX, N—it7. (2.3)
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Using (2.1), we solve for the extra payment as follows:

PX NG =VIX,N-it7) = Y v&X ND). 1)
jeN—i
= Y W@ N—i ), 1)
JjeN—I
- > V@EX N, ). (2.4)
jeN—i

According to (2.4), if participant i’s report leads to a change in the
decision %, then i’s extra payment f)i(X, N,f)is specified to compensate
the members of N — i for the total losses they suffer on that account.

We now introduce some definitions:

Definition

1. A Vickrey—Clarke-Groves (VCG) mechanism (©, (X, p+ h)) is a direct
mechanism in which % satisfies (2.2), p satisfies (2.4) (for all N, X, £,
and i € N), and payments are determined by 7 (X, N,f) + H (t7).

2. A participant is pivotal if £(X, N,f) # £(X, N — i, t7%).

3. The pivot mechanism is the VCG mechanism in which /' = 0 for all
i€ N.

In words, a participant is pivotal if consideration of his report
changes the decision, compared to excluding the participant or at-
tributing the null report to him. According to (2.4), if participant i is
not pivotal, then foi(X, N,f) = 0. In the pivot mechanism, the only par-
ticipants who make or receive non-zero payments are ones who are
pivotal.

Vickrey first introduced the pivot mechanism in a model where the
decision x allocated a fixed quantity of a single divisible good. In the
auction context, a bidder is not pivotal if he acquires a zero quantity. So
the pivot mechanism in the Vickrey model is an auction in which losing
bidders neither make nor receive payments.

2.2 Always Optimal and Weakly Dominant Strategies

In this section, we verify that the VCG rules do indeed ensure that it is
always optimal for the participants to report truthfully, regardless of the
reports made by others. We also demonstrate that reporting truthfully
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is often a dominant strategy, that is, it is the only strategy that is always
optimal.

There are circumstances in which reporting truthfully, although al-
ways optimal for the VCG mechanism, is not a dominant strategy. For
example, suppose that two parties are considering sharing the rental of
a boat, which costs $200. One party values the rental either at $300 or
at $0, and his reported value is restricted to lie in the set {$0, $300}.
The other party’s value is some amount between $0 and $150, and his
report is restricted to lie in the interval [$0, $150]. In this example, the
pivot mechanism prescribes that the boat is rented if and only if the first
party’s value is $300, and in that case the first party pays $200. The sec-
ond party always pays $0, and his report does not affect the outcome.
Consequently, any report by the second party is always optimal, and any
report of $200 or more by the first party is always optimal when his value
is at least $200.

The preceding example is constructed so participants can sometimes
predict that certain reports will be irrelevant. In less contrived examples,
one expects that truthful reporting will be a dominant strategy.

We formalize these claims using the following definitions. Truthful
reporting is an always optimal strategy if condition (i) below holds, and
itis a dominant stmtegy1 if, in addition, condition (ii) holds:

(i) forall £, ¢ € argmax{v(®(X, N, ¥, 1), ') — p/(X, N, F', t 1)}
[L
(ii) if # # ¢/, then for some 7}, ¥ ¢ argn%ax{v"()%(X, N, fi 0, ) —
P N EL ).

To rule out contrived examples like the boat rental example, we will
use the following condition:

Allreports are potentially pivotal: Foralli e Nand#, ¥ € ©/, there
exists ' € © ' such that 3,y v/ ((X, N, ', t79), /) < V(X, N,T).

This condition asserts that for any false report 7’ by bidder i, there
is some type profile t~ of the other participants such that the false

1 A strategy for a player in a normal form game is dominant if (1) it is a best reply to ev-
ery opposing strategy profile and (2) there is no other strategy with the same property.
The definition in the text specializes this definition to the direct revelation games we are
studying.
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report leads the mechanism to choose a suboptimal outcome. When
this condition holds, no participant can be sure that a false report is
harmless.

Theorem 2.1. In any VCG mechanism, truthful reporting is an always
optimal strategy. If all reports are potentially pivotal, then truthful re-
porting is a dominant strategy.

Proof. To show that truthful reporting is always optimal, fix the pro-
file 7 of actual types. When bidder i reports type f’, the decision cho-
sen is (X, N, i, r%). So, given the formula for i’s payment, his pay-
off is TI!(F!|f) = v!(R(X, N, F%, t79), #) — p/(X, N, F', t7%) — hi(t™!). Using
(2.4), the gain that i enjoys from the deviation is therefore

' (F7) — (1)
= &RX, N, F, 7, ) — P(X, N EL ) — R )
— W &RX, N,D), 1) — PF(X, N,E) — Bl ()]
=D ey VG N D ) =Y 1w RX N, )
= Z]_GNUJ'@(X, N, E, ¢, ) — V(X, N,f) <0.

This proves that truthful reporting is always optimal.
By the assumption that all reports are potentially pivotal, forall 7 # ¢,
there exists 1~/ such that

i (F5) — ' (¢)F)
_ s Fi iy iy _ 2
= ZjeNv (R(X, N, £, 79, t)) — V(X, N,f) < 0.

Hence, by definition, truthful reporting is a dominant strategy. |

The formal proof implements the following simple intuitive argu-
ment. The VCG payments are defined so that i’s report cannot affect the
total payoff of the other participants. If i reports truthfully, the mech-
anism maximizes the total actual payoff. If i reports falsely in any way
that changes the decision, then the change in total payoff must be neg-
ative and must be equal to the change in i’s own payoff. So reporting
truthfully is optimal. Moreover, if every false report is sometimes pivotal,
then it is sometimes suboptimal, so it is dominated by reporting truth-
fully.
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The most widely known example of a pivot mechanism is the second-
price auction. In the private-values auction model, a bidder’s value for
any decision depends only on the goods the bidder acquires, and not
on the goods acquired by the other bidders: v (x, #) = vi(x!, ), where
x' = 1if the bidder acquires the good and x’ = 0 otherwise. The value of
not acquiring the good is normalized to zero: v/ (0, ') = 0. Let us simply
write v’ for vi(1, ).

Since losing bidders are not pivotal (because their presence does not
affect the allocation), they pay zero in the pivot mechanism. According
to (2.4), the price a winning bidder pays in this mechanism is equal to
the difference between two numbers. The first number is the maximum
total value to the other participants, including the seller, when i does not
participate in the auction, which is max;; v/. The second number is the
total value to the other bidders when i wins, which is zero. Thus, when
bidder i wins, he pays max;.; v/, which is equal to the second highest
bid. For this reason, the pivot mechanism for the one good case is called
the second-price auction.

Vickrey originally introduced the second-price auction as a model of
ascending auctions, such as those now commonly used at internet auc-
tion sites. To develop the connection, we take special notice of the fact
that auction sites like eBay and Amazon Auction encourage bidders to
use a proxy bidder facility. The bidder tells the proxy a maximum price
that it is willing to pay - its maximum bid. The proxy keeps this infor-
mation secret and bids on the bidder’s behalf in the ascending auction.
Wheneveritdoesnothave the high bid, itraises the bid by one increment,
provided that does not exceed the specified maximum bid. If every bid-
der were to use a proxy, then the result would be that the bidder who has
specified the highest maximum price acquires the item and pays a price
(approximately) equal to the second highest such price. If we replace the
phrase “maximum price” with “bid price,” then this is precisely the same
rule that describes the outcome of a Vickrey auction for a single good. In
the language of game theory, the English auction with proxy bidders and
the second-price auction are strategically equivalent: there is a one-to-
one mapping between the strategy sets such that corresponding strategy
profiles lead to identical outcomes.?

2 This theoretical account fairly describes Amazon Auction, but the rules are slightly different
at eBay. eBay uses a fixed ending time after which no more bids are accepted. The ordering
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We will henceforth use the term Vickrey auction to refer to the pivot
mechanism in auction environments. By inspection of (2.4), the price
paid by any participant i # 0 is equal to the loss imposed on other par-
ticipants by adjusting the decision to account for i’s values. This price is
always non-negative. In contrast, prices paid in the more general VCG
mechanism can be negative if 4’ is sometimes negative. The possibil-
ity of negative payments to some participants raises a question about
whether the sum of the payments to participants i # 0 is positive, neg-
ative, or zero.

2.3 Balancing the Budget

In public goods applications, the designer may want to ensure that the
total payments to and from the participants excluding the mechanism
operator add up to zero. This is called balancing the budget. If the mech-
anism designer is a public authority, this means that the authority runs
neither a surplus nor a deficit on this project. In such cases, the mecha-
nism designer typically has no independent value for the decision, so we
formulate the model with N = {1, ..., n}, excluding the designer from
the set of participants.

Definition. A direct mechanism (x, p) satisfies budget balance if for all
finite ® and allf € ©, the sum of all transfers is zero:

ZieN p'(X,N,f) =0.

Summing the required payments reveals that the possibility of bud-
get balance implies a restriction on the maximum value function, as
follows:

0=Y p'X.NO=) (X NDO+h )

ieN ieN
=> (VX N—i, )+ K@)
ieN

and timing of bid submissions can berelevantin an eBay auction. Indeed, “sniping” (waiting
until the last few seconds to bid) is a common and viable strategy at eBay, but is almost
totally absent at Amazon Auction, where an auction cannot end until there have been no
new bids for ten minutes. See Ockenfels and Roth (2002).
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=30 ) W@EEX, N, 1)

ieN jeN—i
=Y (VX N—i,r )+ @)
ieN
=Y (V(X. N.f) — v'(R(X, N.7))
ieN
=(n-1) (Z fla™ - vix, N,f)) : (2.5)
ieN
where
i VIX,N—i,t7)+ R
fiy = X LD+ R 2.6)

n—1

So a necessary condition for budget balance is that there exist functions
f# such that for all7,

VX, N =) fla. 2.7)
ieN
Holmstrom (1977) has observed that the same condition is actually nec-

essary and sufficient for the existence of a budget-balancing VCG mech-
anism.

Theorem 2.2. There exists a VCG mechanism that satisfies budget bal-
ance if and only if there exist functions f? such that (2.7) holds for all
r.

Proof. Thenecessityof (2.7) was established above. For sufficiency, given
the functions f?, take W' (t™%) = (n— 1) fi(t~)) — V(X, N — i, t~!) and ob-
serve that this implies (2.6) and hence (2.5). [ |

To establish that the form (2.7) is restrictive, we use a simple two-
player auction example with N = {1, 2}, a formulation that excludes the
mechanism designer from the set of participants. Thereis asingle good to
be allocated, whose values to participants 1 and 2 are v! € {1,3}andv?
{2, 4}, respectively. There exists no way to represent max(v!, v?) as a sum
f1(v? + f2(v'), so there can be no VCG mechanism in this setting that
satisfiesbudgetbalance. To verify that directly, we tabulate the payments:
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Participants’ VCG Payments for the Four Value Profiles

1,2 (3, 4) (1, 4) (3,2)
Participant 1 h'(2) h'(4) h'(4) 2+h'(2)
Participant 2 1 + h2(1) 3+ h2(3) 1+ h2(1) h2(3)
Total T+h'Q) +m2(1) 3+h'&+hm3) 1+h @& +h20) 2+h'Q2) +H3)

Notice that, for any choice of h' and h?, the sum of the total payments
in the first two columns minus the corresponding sum in the last two
columns is 1. Consequently, there is no choice of ! and h? such that all
the column totals are zero: no balanced-budget VCG mechanism exists.

Theorem 2.2 still allows that there are some environments in which
the VCG mechanism does always balance the budget. An important class
ofthese are the ones in which the mechanism designer is treated as a par-
ticipant who has just one possible type. In that case, the maximum value
depends only on 0 and so satisfies (2.7); indeed, V(X, N,7) = 0t
for allf. A VCG mechanism that works in this case specifies the pivot
mechanism payments for all participants except participant 0 and bal-
ances the budget by having participant 0 receive the net proceeds of the
mechanism. In situations where the mechanism designer is a regulator,
a committee, or another entity with decision authority, the designer is
frequently not allowed to receive or make payments from or to those over
whom it has authority. Such restrictions might be imposed, for example,
to prevent corruption in the system. In such cases, the budget-balance
condition arises naturally and imposes restrictions on what can be im-
plemented.

2.4 Uniqueness

Can another mechanism besides the VCG mechanism implement effi-
cient decisions with dominant strategies? The answer depends on ad-
ditional assumptions about the environment. For example, if there is a
buyer whose value lies in the set {0, 10} and a seller whose cost of sup-
plying a good is 5, then the following direct mechanism implements an
efficient outcome in dominant strategies. In the mechanism, each party
mustreport a value from its set of possible types. The seller has no choice
but to report a cost of 5. If the buyer reports a value of 10, trade occurs
at a price of 8; otherwise, there is no trade and no transfers occur. By
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inspection, it is a dominant strategy for both sides to report truthfully,
and the outcome is always efficient. A VCG mechanism that makes no
transfers when there is no trade is a pivot mechanism, and the pivot
mechanism in this case sets a price of 5. It follows that the suggested
mechanism is not a VCG mechanism.

The preceding example relied on the discrete nature of the type space.
According to the next theorem, when the type space is smoothly con-
nected, only the VCG mechanisms can implement efficient outcomes in
dominant strategies.

Theorem 2.3. Suppose that for each i, ® = [0, 1] (or simply that ©' is
smoothlypath connected®) and thatfor each decision outcome x, vi(x, t)
is differentiable in its second argument. Then any efficient, incentive-
compatible direct mechanism is a VCG mechanism. |

The version of theorem 2.3 stated here was first proved by Holmstrom
(1979), generalizing earlier work by Green and Laffont (1977), who had
employed more restrictive assumptions about the type space. We post-
pone the proof to the next chapter, which contains several other closely
related analyses.

2.5 Disadvantages of the Vickrey Auction
Despite its attractive features, the Vickrey auction has important disad-
vantages that make it unsuitable for most applications. In this section,
we illustrate these disadvantages. We give a more detailed analysis of
certain of the disadvantages in chapter 8, where the Vickrey design is
pitted against certain leading alternatives.

The disadvantages of the Vickrey auction are divided into three
kinds: practical disadvantages, monotonicity problems, and merger-
investment disadvantages.

2.5.1 Practical Disadvantages

In this subsection, we discuss certain practical difficulties of implement-
ing a Vickrey auction on account of factors that are omitted from the
formal model.

3 Aset @ is smoothly path connected if for every two points 6, 8’ € © there is a differentiable
function f: [0, 1] — © such that f(0) =6 and f(1) =0'.
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One such problem is that a Vickrey auction can severely tax bidders’
computational abilities. For example, consider a Vickrey auction to sell
twenty spectrum licenses. In principle, each bidder must submit bids on
every combination of licenses he might win, but there are more than one
million such combinations. If the bidders must incur even a small cost
to determine a value for each distinct combination of licenses, then the
cost of running the Vickrey auction makes it impracticable. For some
applications, this cost is not too onerous. For example, if the licenses
are sufficiently similar, then a bidder might simply specify a value for
each different number of licenses, or might adjust that for differences in
the licenses. At least for the general case, allowing bids on all packages
imposes costs that are too high for a realistic design.

A second practical problem is that real bidders often face serious bud-
get limitations, which the Vickrey design does not take into account. In
the presence of such constraints, a bidder in a Vickrey auction may have
no always optimal strategy. For example, consider an auction with two
identical goods and a bidder with values of 20 for one unit of a good
and 40 for the package, but with a total budget of 10. This bidder has
no always optimal strategy in the Vickrey auction. If there are credit re-
strictions or large penalties for default, then bids exceeding the bidder’s
budget can be ignored. If bidder 1’s sole competitor bids 10 for one unit
and 19 for two, his best reply is to bid 10 for one unit (and 10 for two
units as well). However, if the competitor bids 9 for one unit only, then
the best reply is to bid 0 for one unit and 10 for two units.

A third practical problem is that the Vickrey design may force the
winning bidder to reveal too much information. A bidder might fear that
its value information could be leaked, disadvantaging it in subsequent
negotiations with the auctioneer or other buyers or suppliers (Rothkopf,
Teisberg, and Kahn (1990)).

2.5.2 Monotonicity Problems

A different set of disadvantages of the Vickrey auction arises from the
fact that payments are determined by a non-monotonic function of the
bidders’ values. We illustrate the problems that raises with a series of ex-
amples, borrowed from Ausubel and Milgrom (2002). A formal analysis
that identifies the set of auction environments in which these disadvan-
tages are relevant is presented in chapter 8, as part of a comparison of
the advantages of several multi-object auction designs.
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Here, we provide a series of examples illustrating the monotonicity
problems that the Vickrey auction can suffer. In the Vickrey auction,
(1) adding bidders can reduce equilibrium revenues, (2) revenues can be
zero even when competition is ample, (3) even losing bidders can have
profitable joint deviations in which they increase their bids in concert
to win items while creating lower prices for themselves, and (4) bidders
can profitably use shill bidders, intentionally increasing competition in
order to generate lower prices.

Consider a Vickrey auction of two identical spectrum licenses. Bidders
1 and 2 are new entrants, which each need two licenses to establish a
business of economic scale. Bidder 1 is willing to pay up to $1 billion for
the pair of licenses, and bidder 2 is willing to pay up to $900 million. If
these are the only bidders in the auction, then the auction is effectively
a second-price auction for the pair of licenses. Bidder 1 will acquire the
two licenses for a price of $900 million.

Now, suppose instead that there are two additional bidders. Bidders
3 and 4 are both incumbent wireless operators. Each seeks just a single
additional license to expand the capacity of its network. Suppose each
incumbent is willing to pay up to $1 billion for a single license. If the
Vickrey auction is used and all bidders play their dominant strategies,
then the two incumbents will acquire the licenses. Because the licenses
are given to those who value them the most, this outcome is efficient
and results in a total value of $2 billion.

One might expect that increasing the number of bidders and their
maximum total value for the pair of licenses would increase the seller’s
revenue, but that is not the case: the total price paid by the winning
bidders is zero. To see why, let us compute the price paid by bidder 3.
According to (2.4), this price is the opportunity cost to the other bidders
of the license that bidder 3 wins. More specifically, it is the maximum
value of the two licenses to the other three bidders, which is $1 billion,
minus the maximum value of a single license to those bidders, which is
also $1 billion. The difference of zero is bidder 3’s price and bidder 4’s
price is determined in the same way.

Notice that the declining revenue problem vanishes if the first two
bidders regard the licenses as substitutes. For example, suppose that
instead of bidding only $1 billion for two licenses, bidder 1 is also willing
to pay $500 million for one license, and similarly bidder 2 is willing to pay
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$450 million for one license. Then bidders 3 and 4 must each pay $500
million for a license, and the seller’s revenue climbs from $900 million
to $1 billion.

The next two variations exploit the feature of the Vickrey auction that,
when goods are not substitutes, prices may decrease as the bids increase
or the set of bidders expands.

First, we modify the preceding example. As before, bidders 1 and 2
each want only a pair of licenses and are willing to pay $1 billion or
$900 million for the pair, respectively. In the modified example, however,
each of the incumbents, bidders 3 and 4, has a value of $400 million
for a single license. If the incumbents play their dominant strategies,
they win no licenses and earn payoffs of zero. If, however, they act in
concert, both raising their bids to $1 billion for a single license, then the
prices are determined just as above, and the situation is the one we have
already examined: bidders 3 and 4 win the two licenses for a total price
of zero. Thus, the Vickrey auction provides opportunities and incentives
for collusion among the low-value, losing bidders.

Next, we consider another variation. In this one, there are only three
bidders, with the first two described just as above. In this variation, the
third bidder is also a new entrant and also has value only for the pair of
licenses, butits value is lower than that of the first two bidders. Itis willing
to pay just $800 million for the pair of licenses, compared to $900 million
and $1 billion for the other two bidders. Still, the third bidder can win the
licenses profitably by entering the auction with two identities, as bidders
3 and 4, and having 3 and 4 each bid $1 billion for a single license. The
result, just as before, is that bidders 3 and 4 win, each acquiring a single
license for a price of zero. Thus, by combining the tactics of shill bidding
and loser collusion, a bidder in the Vickrey auction whose values are too
low to be assigned any licenses at the efficient allocation can profitably
win both licenses and force the seller to accept a zero price.

Standard auctions do not suffer the monotonicity problems plaguing
the Vickrey auction. For example, if the seller simply takes sealed bids
and awards licenses to the highest bidders at prices equal to the winning
bids, then none of the monotonicity problems occur: Adding bids and
bidders cannot reduce prices; introducing shill bids cannot reduce any-
one’s price, and losers cannot become winners except by paying higher
prices.
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These monotonicity problems are significant practical defects. In sec-
tion 2.5.3 below, we reexamine these examples to see whether they are
in some sense exceptional, that is, whether they are unlikely to arise in
practice. We find that, to the contrary, monotonicity problems can only
be ruled out in cases where goods are likely to be substitutes, which is a
small subset of the possible cases.?

2.5.3 The Merger—-Investment Disadvantage
The Vickrey auction also suffers another important disadvantage, dis-
tinct from those described above. This one arises even when the auction-
eer’s objective is efficiency rather than revenue, and when shill bidding
and collusion are impossible. The problem is that the Vickrey design can
distort the bidders’ investment and merger incentives ex ante (before the
auction),’® leading to inefficiency.®

To illustrate, we return to the first example of the previous section, in
which bidders 1 and 2 value only the pair of licenses and have values of
$1 billion and $900 million, respectively. Suppose that, before the auc-
tion, bidders 3 and 4 could merge and, by coordinating, increase the
total value of the licenses by 25% from $2 billion to $2.5 billion. Even
though such a merger would increase the maximum total value, the par-
ties would not profit by merging. Recall that the unmerged firms paid
a total of zero and enjoyed net profits of $2 billion. The merged firm,
however, would pay $1 billion in a Vickrey auction, leaving it a net profit
of just $1.5 billion.

In this example, the Vickrey auction discourages a merger by reducing
the joint profits of the merging parties. Thus, even by the standard of
efficiency, the Vickrey mechanism can have significant disadvantages.

In an unpublished result, Daniel Lehmann has shown that with more than two items, the
restriction that items must be substitutes fails generically. That is, treating the valuation
functions as a vector, for any valuation vwhere goods are substitutes, almost every valuation
in any neighborhood of v fails to satisfy the substitutes condition.

Several authors have developed analyses based on the observation that there are no such
distortions for single item auctions. With the set of bidders fixed, because any bidder’s
profit is equal to his contribution to social surplus, the bidder has correct incentives for
any investments that affect only his own values. The same applies to bidders’ decisions
about how much information to acquire about their own values (Bergemann and Valimaki
(2002)).

Economists typically emphasize market power issues when analyzing mergers, and those
issues are excluded entirely from this analysis. As discussed earlier, the term “efficiency” as
used in mechanism design theory is narrower than the economic idea of Pareto optimality,
because here it takes into account only the interests of the mechanism participants.
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In analyzing merger incentives, as in studying collusion and shill bid-
ding, whether the assets being auctioned are substitutes proves impor-
tant. In the Vickrey auction, if the bidders regard the goods as substitutes,
then winners generally can reduce their prices by merging. Thus, Vickrey
auctions tend to favor mergers when goods are substitutes. For example,
suppose that there are four bidders for three items. Each of the first three
bidders has a value of 2 for a single item and the fourth bidder has a
value of 1. The Vickrey outcome is that the three high-value bidders ac-
quire single items for a price of 1. If the first two bidders merge, the
allocation of goods is the same: the merged bidder gets two units and
bidder 3 gets one unit. Bidder 3’s price is unchanged — it pays a price of
1 for its unit — but the merged bidder pays a total of 1 for its fwo units, so
its average price is % per unit. This price reduction is typical for the case
when goods are substitutes.

If the government is to auction assets to an industry in which it
wishes to promote competition or encourage entry, e.g. electrical power
generation, itmay properly viewwith suspicion rules that promote merg-
ers and favor larger bidders.

As our examples have shown, however, Vickrey auctions do not al-
ways promote mergers. In our telecommunications auction example,
we found that merged firms may pay relatively high prices and may even
find it profitable to use shills to divide demand between two smaller bid-
ders. If shills are impossible, then the Vickrey auction may discourage
profitable and welfare-enhancing mergers. Taken together, the various
examples establish that Vickrey auctions can be too favorable to mergers
or too discouraging.

2.6 Conclusion
The Vickrey—Clarke-Groves theory providesimportantinsightsinto what
mechanism design can achieve. In the class of environments with quasi-
linear preferences, the VCG mechanisms provide every participant with
a dominant strategy, which is to reveal his type truthfully. When bidders
do report honestly, the decision selected is the total-value-maximizing
one. Moreover, the VCG mechanisms are the only mechanisms that ex-
hibit these two properties without restrictions on the possible set of
values.

Offsetting these advantages of the VCG mechanisms are certain prob-
lems. Using the VCG mechanism to decide how much of a public good
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to produce may prevent balancing the budget. Budget balance presents
no obstacle to using the VCG mechanism to conduct an auction, how-
ever, for the auctioneer is quite happy to pocket any surplus that the
mechanism generates.

Besides the budget balance problem, the Vickrey auction suffers a
variety of other drawbacks. Some of these are practical, associated with
the complexity of the auction, its inability to accommodate budget con-
straints, and the information it demands from the bidders. Another set
of drawbacks are the monotonicity problems, which include the possibil-
ity that increased competition can lead to reduced seller revenues, that
revenues can be very low or zero even when competition is substantial,
that losing bidders may have profitable ways to collude, and that a single
bidder can sometimes benefit by pretending to be several independent
bidders. The third set of drawbacks concern distortions in merger and
related investment decisions.

We return to the monotonicity problems in chapter 8, where we will
find that they are potentially present in a wide range of environments.
They are reliably absent only if all bidders regard all the goods being
sold as substitutes. In chapter 8, we will identify an alternative mecha-
nism that matches the advantages of the Vickrey design when goods are
substitutes but avoids some of the disadvantages.

In the chapters between, the VCG mechanism plays a very different
role-as abenchmark for assessing the performance of alternative mech-
anisms.
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CHAPTER THREE

The Envelope Theorem and
Payoff Equivalence

Mechanisms are defined very generally and can take a wide variety of
forms. The sheer size and variety of the set of mechanisms would seem
to make it intractable for use in an economic analysis. Yet such uses are
now routine, largely following the pattern set in the early analyses by
Myerson (1981) and Holmstrom (1979).

Myerson had posed the following question: which mechanism should
a seller use to sell a single indivisible good to maximize his expected
revenue, if he can choose among all possible augmented mecha-
nisms? To answer this question, known as the optimal auction problem,
Myerson derived a lemma establishing that a certain payoff formula
holdsfor all feasible augmented mechanisms at Bayes—Nash equilibrium
and bounds the expected revenues associated with any mechanism. He
demonstrated that standard auction designs with a well-chosen reserve
price sometimes achieve the bound.!

Holmstrom asked whether any mechanisms besides the Vickrey—
Clarke-Groves mechanisms could implement efficient decisions in
dominant strategies. He, too, derived alemma establishing that a certain
payoff formula holds for all feasible mechanisms at a dominant strategy
solution. He then demonstrated that only the VCG payment scheme pre-
scribes payments consistent with that formula.

The two payoff formulas, which we will sometimes call Myerson’s
lemma and Holmstrom's lemma, are closely analogous to Hotelling’s

! Myerson derived the formulas using the so-called revelation principle, which holds that
any performance that can be Bayes—Nash implemented using any mechanism can also
be Bayes—-Nash implemented using an incentive-compatible direct revelation mechanism.
This extra conclusion, however, has no independent significance for the study of auctions.
As we shall see, it is the payoff formula of Myerson’s lemma that lies at the heart of auction
theory and its various extensions.

64
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lemma and Shepard’s lemma from demand theory. All four lemmas are
derived from the envelope theorem. Each can be stated as either a re-
striction on a derivative or as a restriction on an integral.

Myerson’s treatment of the optimal auction problem made secondary
use of a single crossing condition that arises naturally in the auction
problem, but that is not needed to derive many of the main results of
the theory. This chapter explores the implications of the envelope theo-
rem and its related lemmas for a variety of incentive problems, without
relying on single crossing. The next chapter explores the additional con-
clusions that can be derived when the assumption of single crossing is
added.

3.1 Hotelling’s Lemma

To emphasize the close connection between incentive theory and or-
dinary demand theory, we begin our analysis by reviewing Hotelling'’s
lemma.? This lemma relates the supply behavior of a price-taking firm
to its maximum profits.

Let X denote the firm’s set of feasible choices, and let 7w (p) =
maxycx p- X denote the firm’s maximum profits as a function of the mar-
ket price vector p € RL. In its usual textbook form, Hotelling’s lemma
asserts that if 7 is differentiable at p, then the firm’s net supply for prod-
uct j satisfies x7(p) = /9 p;.2 So, if the firm makes its choices to max-
imize profits, then one can recover its choices from knowledge of the
maximum profit function x.

One can also reverse this relationship and write the formula as ex-
pressing the firm'’s profits in terms of its supply choices. For, suppose
the firm produces good 1 and buys the other goods as inputs. Using the
fundamental theorem of calculus, if = is differentiable,

P1
7(p) = =0, p_1) +/ 1(8, p-1) ds
0

P1
=7m(0, p_1) +/ Xi(s, p_1) ds. (3.1)
0

2 In general, incentive problems are quite close to various problems that arise in traditional
demand theory and the theory of the firm. Other examples are emphasized by Bulow and
Roberts (1989) and Klemperer (2002), who underline the connections between auction
theory and monopoly pricing theory.

3 For example, see Mas Colell, Whinston, and Green (1995), Simon and Blume (1994), or
Varian (1992).
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Price

! Producer Surplus

Quantity

Figure 1. The shaded area between a firm’s supply curve and the vertical is the
firms’s producer surplus.

Graphically, this corresponds to the familiar statement that the producer
surplus is the area between the supply curve and the vertical axis, as
shown in Figure 1.

Combining both forms of the statement, we have the following:

Hotelling’s lemma. If 7 is absolutely continuous, then = (p) = 7 (0, p_1)
+ fop ' X (s, p-1) ds. If 7 is differentiable at p, then for each product j,
xj(p) = 9 /dp;.

Note well that the first conclusion of Hotelling’s lemma relies only on
the assumption that r is absolutely continuous. It does not require that
the production setbe convexor that x{ be differentiable or continuous, or
even that it exist everywhere. A sufficient condition for = to be absolutely
continuous is given immediately below.

3.2 The Envelope Theorem in Integral Form

Results similar to Hotelling’s lemma play a central role in mechanism
design analysis. In graduate economics texts, the envelope theorem is
traditionally reported in differentiable form and often relies on assump-
tions about the convexity or topological structure of the choice set X.
Such assumptions are not satisfactory for applications to the theory of
mechanism design, because a participant’s choice problem maynothave
the necessary structure. For example, the participant may have to choose
a message to send to the mechanism operator from a set of messages X
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that lacks a “nice” structure. Moreover, even if the structure of X is not
a problem, the maximum value function V may not be differentiable
everywhere. For our applications, what is needed is a theorem that ver-
ifies a formula like (3.1) without restrictive assumptions on the choice
set.

We derive such a formula by studying a family of maximization prob-
lems, parameterized by ¢ € [0, 1], by studying the related functions, as
follows:

V(t) = sup ul(x, 1), (3.2)
xeX

X*(1) = {x € X|ulx, 1) = V()}, (3.3)

x*() € X*( for all £ such that X*(¢) # @. (3.4)

The function V is the value function. It is also sometimes called the
“envelope function” because ofits graphical representation. If, foreach x,
one plots the function u(x, ) : [0, 1] — R, then V is the upper envelope
of these functions.

The function X*(¢) is the set of optimal solutions for problem (3.2).
For some values of the parameter, this set may be empty. Any function
x*: [0, 1] — X satisfying (3.4) is a selection from X*. Envelope theorems
establish a relation between the value function V and any selection x*
from X*. The integral form envelope theorem reported here is due to
Milgrom and Segal (2002).

Theorem 3.1 (Integral form envelope theorem). Suppose that u(x, -) :
[0, 1] — R has the properties that

1. there exists a real-valued function u, (x, £) such that for all x € X and
every [a, bl C [0, 1], u(x, b) — u(x, a) = ff U (x, s) ds, and

2. there exists an integrable function b:[0,1] - R, (that is,
fol b(s) ds < oo) such that |y (x, £)| < b(f) for all x € X and almost all
telo,1].

Further suppose that that X*(f) = argmax,cx u(x, t) # ¢ for almost all
t € [0, 1]. Then for any selection x*(¢) from X*(¢),

13
V() = ulx*(@), ) = u(x*(0), 0) +/ U (x*(s), ) ds. (3.5)
0
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Proof. First, we show that V is absolutely continuous. Let

t
B(?) :/ b(s) ds.
0

Forany?,t” € [0, 1] with ¢ < ¢/,

V") - V)| <

IA

s

sup |u(x, t) — u(x, t')|
xeX

o
/ u(x, 1) dt
p

sup
xeX

o
/ sup |up(x, 1)| dt
t/

xeX
t//
b(t)dt = B(t") — B(?).

t

Notice that, by construction, B is absolutely continuous. Fix any ¢ >
0. Since b is integrable, there is some positive number M such that
/{lb(t)\>1\4] |b(t)| dt < e/2. Let § < ¢/2M, select any non-overlapping in-
tervals [a;, b;], and let x7 € X*(b;) and X; € X*(a). If V(b)) — V(a) >
0, then |V(b;) — V(a)| = ulx}, b)) — w(X;, @) < w(x}, by) — u(x}, ;). Simi-
larly, if V(b) — V(@) <0, then |V(by) — V()| = —u(x}, by) + u(Xi, @) <
—u(X;, b;) + u(x;, a;). Consequently, if Zle |b; — a;| < 68, then

k
S IVB) - V@) =Y lulxf, b) — (%, @)l
i=1

< > max (lux}, b) — u(x}, a)|, [u(Xi, b) — u(X;, a;)|)

h,' bi

= Zmax(l/ up (7, 1) dt], I/ U (X;, 1) dtl)
b,' hi

< Zmax </a | (x}, 1)| dt, /c; [t (X;, t)|dt>

k
<e/2+ MY |b — al

i=1

< €.
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This establishes that Vis absolutely continuous, and hence differentiable
almost everywhere. Let ¢ be a point of differentiability. Because V(f) =
u(x*(2), 1) and V(¢') > u(x*(1), t), it follows that

V) - V(@) _ w0, 1) — ulx* (@), 1)

3.6
|t — - |t — 1 (8.6)

Because V is differentiable at ¢, letting ¢ | ¢ leads to V'(£) > wp(x*(1), 1),
and letting ¢’ 1 tleads to V'(f) < up(x*(¢), t). Hence, V'(t) = u (x*(1), £) at
every point of differentiability of V. Equation (3.5) then follows from the
fundamental theorem of calculus. |

The integral form envelope theorem applies to problems in which
the objective function f(x, ) is parameterized but the set of feasible
strategies X is not. In mechanism design problems, if the agent’s action
istoreportinformation, then every type t chooses from the same feasible
set. In that case, if an augmented mechanism design specifies a set of
strategies S and an outcome function x : S — €, then the participant
is effectively choosing an outcome from the feasible set X = x(S) C @
to maximize his own payoff — a problem to which we can apply the
theorem. Equation (3.5) then restricts the performance functions x that
can be implemented on a [0,1]-type space.

The second condition of the integral form envelope theorem about
the integrable bounding function b is indispensable.*

3.3 Quasi-linear Payoffs

In this section, we specialize our analysis to the most extensively an-
alyzed set of mechanism design models - those in which participants
have quasi-linear preferences. The various subsections explore the im-
plications that can be derived using these models by applying Holm-
strom’s lemma and Myerson’s lemma, which are the special forms of the
envelope theorem for this class of mechanism design models.

4 Here is an example to show that the conclusion of the theorem is not guaranteed if the
bounding condition is dropped. Let X = (0, 1] and f(x, t) = g(t/x), where g is any continu-
ously differentiable, single-peaked function with a maximum value of g(1). In this example,
forallt € (0, 1], X*(¢) = {t} and V(f) = g(1). For t = 0, however, X*(#) = (0, 1] and the value
is V(0) = g(0) < g(1), so the function V is not absolutely continuous, contrary to the con-
clusion of the theorem.

To see that the bounding condition fails in this example, define B = sup,_, sg’'(s). Then,
the relevant bound is b(f) = sup,( 1) & (¢/%)/x = (sup;., sg'(s))/t = B/t, where we obtain
the bound by substituting s = ¢/x. The bound b(t) = B/t is not integrable.
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Throughout this section, an outcome is a pair w = (x, p), where x is
a decision from some finite set X = {xi,...,xx} and p= (p, ..., pV)
is a vector of cash payments from the participants to the mechanism
operator, and any participant’s payoff is given by

u'(x, ptth =vix, th — pt. (3.7

In particular, each participant cares about his own cash payment, but
not about payments made by other participants. To describe the full
performance function in this context, it is convenient simply some-
times to omit the outcome function and write w(f) = (x(f), p(f)) in-
stead of w(co(F)) = (x(o(F)), plo(f))). We will use these two notations
interchangeably.

The outcome function w = (x, p) in this setup comprises allocation
and payment functions x: S' x --- x S¥ — X and p: S' x --- x SV —
RN.Ifwe suppose that w isimplemented by some always optimal strategy
for participant i, then the strategy is optimal when the others are playing
equilibrium strategies corresponding with their true types. Suppose that
U, has the integrable bound b required by the envelope theorem. Then,
when agent i has type 7, its maximal value is

Vi(g, ™) = max U (w(o?, o7 1Y), 1). (3.8)

For economy of notation, we sometimes describe outcomes in 0-1
vector form, as follows. We identify each possible outcome x; €
{x1,..., Xk} by a canonical basis vector z; € RX with a 1 as its kth co-
ordinate and all other coordinates zero, so the outcome set can be de-
scribed by the 0-1 vectors Z = {z, ..., zx}. We then describe the deci-
sion performance function of the augmented mechanism as a function
of the types by z(#), where z: ® — Z. We represent the scalar-valued
function vi(-, #¥) by the vector vi (), where the kth component is vi(#) =
v (g, 1) = zi - v/ (). Also, just as we sometimes write x(f) = x(o (f)), we
may also write z(f) = z(o (f)).

3.3.1 Holmstrom’s Lemma

In this section we use the just-developed notation to obtain Holmstrom’s
lemma, which is a formula for the values and payments associated with
any dominant strategy mechanism.
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Holmstrom’s lemma. Suppose that vi() is continuously differentiable,
and let V'’ be participant i’s full information maximum value, as defined
by (3.8). Then

. . . . v dv
Vie, ) = V0, —|—/ (z(s, - —U> ds. (3.9)
0 ds
In particular, if V' is differentiable at 7, then L Vi(r, 1) = z(r, t7) -
dv'(t)/dr. Participant i’s payments must satisfy
i

plr, 7)) = =Vi0, 7)) + z(z, t77) - vi(r) —/ z(s, t-l')~°fi—’;ds. (3.10)
0

Proof. Applying the envelope theorem to (3.8) using the quasi-linear
payoffs of (3.7),

Vite, ) = V0,17 = / Uy (w(o'(s), oI (t71), 5) ds
0
:/rz(s, rl‘).ﬂds. (3.11)
0 ds

Rearranging terms yields (3.9). Taking the derivative with respect
to 7 yields 2 Vi(r, t7%) = z(r, %) - dv’(r)/dv. Substituting Vi(z, 1) =
Z(r, t71) - vi(r) — pi(r, t77) into (3.9) and rearranging terms again leads
to (3.10). |

3.3.2 The Green-Laffont-Holmstrom Theorem

In the study of dominant strategy mechanisms, one of the central
questions is how to characterize the complete set of mechanisms that
(1) satisfy the relevant incentive constraints and (2) implement efficient
decision performance. In chapter 2, we found that the VCG mechanisms
have both of these properties. Are there any others?

The Green-Laffont-Holmstrom theorem shows that, provided the set
of preferences satisfies a certain connectedness property, the VCG mech-
anisms are the only dominant strategy incentive-compatible mecha-
nisms to implement efficient outcomes. The connectedness condition
is implicitly included in the statement of Holmstrom’s lemma through
the assumption that the valuation function v’ is differentiable. As we have
seen, equation (3.10) necessarily holds for any mechanism that imple-
ments z using dominant strategies. That leads to the next theorem.
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Theorem 3.2. Suppose that for each i, ® is smoothly path connected®
and that vi() is continuously differentiable. Then any direct mechanism
such that

(i) the decision outcome rule is the efficient rule £ and
(i) truthful reporting is an always optimal reply, that is, ¢ € arg
max(v' (x(f%, r79), ) — p'(F', 7)),
tl

is a VCG mechanism. (That is, given the pivot mechanism payments p?,
there exist functions / such that for allZ, p'¢) = K (%) + p'().) In par-
ticular, the Vickrey auction (pivot mechanism) is the unique such mech-
anism in which bidders who acquire no goods (losing bidders) pay zero.

Proof. Fixany two distinct points ¢/, 7’ € ®',andletz’ : [0, 1] — ©'bea
differentiable function satisfying 7(0) = # and t/(1) = .. Let V¥(0, t %)
be the payoff to player i of type ¢ in the pivot mechanism. Let (1) Z(s, t %)
express the VCG outcome £(z(s), %) in 0-1 vector form, (2) p(s, ") be
the payment rule of the pivot mechanism when the types are (ti(s), 79,
and (3) 9(s) = v(z’(s)). Then, according to Holmstrom’s lemma,

dp !

ds

1
ﬁi(l,t_i)=—Vi(O,t_i)+2(1,t_i)-ﬁi(l)—/ 2(s,t7) - ds.
0

(3.12)

Given any other dominant strategy mechanism that implements the
efficient decision £ with value function V, define K (%) = Vi(0, ) —
Vi(0, ). Applying Holmstrom’s lemma again,

)

1
P Y = VI, ) + 201 ) - (D) —/ 2. ) P s
0 ds
=RHEH+pia, . (3.13)

Because ' was arbitrary and K’ (t~%) does not depend on 7, this
payoff formula applies to all types. Hence, it is a VCG formula. Because
W () = V0, t%) — Vi(0, t%) is bidder i’s payment in the mechanism
when i loses, there is a unique VCG mechanism with /(t~/) = 0, and the
Vickrey auction is such a mechanism. [ ]

5 This means that for any two distinct points ti, fi € ©, there exists a differentiable function
7i: 10, 1] — O satisfying t/(0) = ¢? and /(1) = f*. The function 7/ is the path connecting
tito f'.
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The use of the envelope theorem in this proofis typical, so it is worth-
while to build intuition by restating the argument in words. Holmstrom’s
formula (3.10) is the technical part. It establishes a necessary condition
for how a bidder’s cash payments can vary with his type, given the rule z
specifying decision outcomes. Together, the decision outcome and the
payoff of the lowest type fix a unique payment rule. For the Vickrey auc-
tion, the lowest type is a bidder that always loses the auction and has
a payoff of zero. Generally, the VCG mechanism corresponding to the
function his the unique mechanism with properties (i) and (ii) in which
alosing bidder i pays the amount /(7).

Expressing the participant’s maximal payoff as the integral of the par-
tial derivative of the payoff function has long been an important step
in optimal mechanism design problems. Mirrlees (1971), Holmstrom
(1979), Laffont and Maskin (1980), Myerson (1981), Riley and Samuelson
(1981), Fudenbergand Tirole (1991), and Williams (1999) all derived inte-
gral conditions in particular models by restricting attention to piecewise
continuously differentiable choice rules or even narrower classes. How-
ever, it may be optimal to implement a choice rule that is not piecewise
continuously differentiable. One example is the class of trading prob-
lems with linear utility described in chapter 6.5 of Myerson (1991). The
integral form envelope theorem gives us the necessary tool for dealing
with the full range of possibilities.

We next see that very much the same argument can be applied in the
context of Bayesian equilibrium. As in the dominant strategies appli-
cation, the formula sharply limits the payment rules that can apply at
equilibrium.

3.3.3 Myerson’s Lemma®

In practice, many designers, regulators, and observers of auctions have
falsely high expectations about how changes in the rules can affect prices
and payoffs. Many believe auction procedures can affect expected sell-
ing prices and bidders’ payoffs without affecting the way the goods are
allocated.

6 Most expositions of incentive theory treat payoff equivalence and revenue equivalence as
asingle result, but that seems to me a mistake. That treatment not only obfuscates the close
connections between incentive theory and demand theory, it also impedes applications to
models with risk averse decision makers or in which outcomes are inefficient. The approach
taken here makes it straightforward to treat these additional developments.
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According to current economic theory, an auction designer’s ability
to manipulate prices and payoffs without changing allocations is much
more limited. Here, we examine what the auction design can do when
bidders play Bayes—Nash equilibrium strategies, bidding optimally given
their beliefs about others’ types and strategies.

Definition. A strategy profile o is a Bayes—Nash equilibrium of the mech-
anism I’ = (S, w) in environment (2, N, [0, 1]V, u, ) if for all £#,7

oi(th e argmelsti[ui(a)(éi,o_i(t_i)),f)lfi]
- argrpasxf U (@, o~ @), 1) dr' t|1). (3.14)
aleSt

In most of this chapter, we study a standard independent private
values model. This entails the assumptions that

(i) the types are ® = [0, 1],
(ii) payoffs are quasi-linear, as described above, and bidders are risk
neutral,
(iii) values are private (v'(x,f) = vi(x, t)),
(iv) types are statistically independent, and
(v) the conditions of the integral form envelope theorem (theorem
3.1) are satisfied.

With these assumptions, expected payoffs can be written as follows:
E'ld (6, o7 (7)), D)t ]
= E'2(6", 07 ™)) v (t) - p'E oI (). (3.15)

Let Vi(t') denote the maximum expected payoff of player i of type ¢
in the game. Then

Vi) = max E'[z(6', o 7' t7)) -0 () — p'(E o7 (). (3.16)
In close analogy to Holmstrom'’s lemma, we have the following:
Theorem 3.3 (Myerson’s lemma; payoff equivalence theorem). Con-

sider a standard independent private values model, and suppose
that o is a Bayes—Nash equilibrium of the game corresponding to

7 In this expression E! refers to an expectation computed with respect to the beliefs of
player i.
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(Q, N, S, w, [0,1]V, v, 7) with full performance (x, p). Then the expected
payoffs satisfy

i

Vi(r) = Vi(0)+/r Ellz()|t! =] - d—”ds. (3.17)
0 ds

In particular, if V' is differentiable at 7, then ;2 V() = E'[z(f)[t' = 1] -
dv'(t)/dr. Expected payments must satisfy

E'lp'(D|t' =11 = =V'(0) + E'[z(D)|t' = 7] - v'(z)

—/Z Ei[z(f)lti:r]-ﬂds. (3.18)
0 dS

Proof. Equation (3.17) follows directly from (3.16) and the envelope
theorem. The derivative form of the theorem follows by differentiat-
ing (3.17) with respect to t. At equilibrium, a player’s expected payoff
is Vi(r) = Elz(D)|t" = 7] - vi(r) — E[p'(f)|t! = t]. Substituting that into
(3.17) and rearranging yields (3.18). |

If we compare two different auction mechanisms in which the lowest
types of bidders always lose and pay zero, then Vi(0) = 0 for both. If the
outcome function zis also the same for both, then according to the theo-
rem, bidders’ expected payoffs and payments are also the same. Provided
our model of strategic bidders is right, this conclusion contradicts intu-
itive claims that one can change bidder payoffs by manipulating rules
without reducing efficiency.

3.3.4 Revenue Equivalence Theorems
The (risk neutral) payoff equivalence theorem applies to bidder payoffs,
but it also has immediate implications for the seller’s expected revenues.
The original theorem of this sort is Myerson’s revenue equivalence the-
orem, which applies to auctions of a single good. We begin with a recent
extension reported by Williams (1999).

As above, (£, p) denotes the VCG pivot mechanism.

Theorem 3.4. Consider a standard independent private values model,
and suppose that o is a Bayes—Nash equilibrium of the game correspond-
ingto (2, N, S, », [0, 11V, v, 7) with full performance (£, p). Then the ex-
pected payment to the mechanism operator is the same as for the VCG
mechanism (£, p+ h), where K (t7%) = E*[p'(0, t7)].
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Proof. Because the always optimal equilibrium of the VCG mechanism
isalso a Bayes—Nash equilibrium, Myerson’slemma applies toit, with p =
p+ h and Vi(0) = 0. So the expected total revenue is E[Y ;. y p'(D)] =
E[Y Ny Elp D1t = E[Y;cy EIP(DIt] = E[Y_;cn PIE)]. u

The famous revenue equivalence theorem of auction theory is a spe-
cial case:

Corollary. Consider a standard independent private values model with
a single indivisible good for sale and in which losers’ payoffs are zero.
Suppose that o is a Bayes—Nash equilibrium of the corresponding game
(Q, N, S, w, 0,11V, v, 7). Suppose the full performance is (%, p). Let vV,
v@, ... denote the order statistics of the bidder valuations for the sin-
gle good, from highest to smallest. Then the total expected payment by
participants in the mechanism is E[v®].

Proof. Observe that v® is the sales revenue associated with the Vickrey
mechanism in this environment, and apply theorem 3.4. [ ]

The preceding version of the revenue equivalence theorem is the best-
known theorem in auction theory. The history of the theorem begins with
Vickrey, who computed equilibria for four different auction mechanisms
and made the then surprising discovery that the expected revenues
were exactly the same in each of them. Simultaneous contributions by
Myerson (1981) and by Riley and Samuelson (1981) implicitly established
the reason in terms of the envelope and payoff equivalence theorems,
as described above.

Various extensions of the standard revenue equivalence theorem are
possible by adapting the same argument to more general models. The
following one is a version that applies to the interdependent values
model of Milgrom and Weber (1982), provided the types are statistically
independent.

Theorem 3.5. Consider a standard independent private values model
with a single indivisible good for sale in which losers’ payoffs are zero
and the private values condition is replaced by the condition that each
bidder i’s value for the good satisfies v’ = v(t?, /), where v is contin-
uously differentiable. Suppose that o is a Bayes—-Nash equilibrium of
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the corresponding game (2, N, S, w, [0, 11V, v, 7). If the bidder with the
highest type always wins the auction, then the expected payoff of each
bidderiis E| fot l v1 (s, 1) ds] and the seller’s expected revenue is

ti
E[v@®, rM]-N-E [/ i (s, 79 ds:| .
0

Proof. Thebidder’s payoffs are the ones determined in the now-familiar
way from the envelope theorem formula. The total expected payoff is
Elv@V, t=W)], so the seller’s expected payoff is the total minus the sum
of the bidders’ expected payoffs. |

Oneimportant use of the revenue equivalence theoremsis as abench-
mark for analyzing cases when the assumptions of the theorems do not
hold. In the next chapter, we will see how budget constraints, risk aver-
sion, endogenous quantities, and correlation of types all lead to sys-
tematic predictions comparing expected revenues from different kinds
of auctions, even ones with the same decision performance. Of course,
mechanisms with different decision performance will also have differ-
ent levels of expected revenue. This is potentially important because
standard auctions in asymmetric environments generally have different
decision performance.

3.3.5 The Myerson-Satterthwaite Theorem

Another famousearlyproblem ofmechanism designtheoryisdesigning
efficient exchange between a buyer and a seller when both have uncer-
tain types. These situations are often known as the bilateral monopoly
or bilateral trade problem. Earlier developments in transaction cost eco-
nomics and bargaining theory had treated it as an axiom that exchange
will take place whenever that is necessary for efficiency. This efficiency
axiom is explicit in the derivations of the Nash bargaining solution, the
Kalai-Smorodinsky solution, and the Shapley value, as well as in many
treatments of the so-called Coase theorem.

Doubts about the efficiency axiom are based partly in concerns about
bargaining with incomplete information. After all, a seller is naturally
inclined to exaggerate the cost of his good, and a buyer is inclined to
pretend that her value is low. Should we not expect these exaggera-
tions to lead sometimes to missed trading opportunities? Is the problem
of exaggeration in bargaining a fundamental one? Or can a bargaining
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mechanism or protocol be designed that eliminates the incentive to ex-
aggerate? How would it work?

To evaluate the answers, we use a simple model with a single
indivisible good for sale. There is one potential buyer and one poten-
tial seller with values b = v”(?) and s = v*(#*), respectively. With quasi-
linear preferences, there are gains from trade precisely when b > s. Let
pP(1) and p*(t) denote the payments made by the buyer and seller at
equilibrium of some mechanism when the type profile is t. We assume
that v” and v* are smooth and bounded, so that the envelope theorem
applies.

Let us start with the observation that this environment is a special
case where we can apply the VCG mechanism. In particular, the pivot
mechanism (the VCG mechanism in which h* = h? = 0) might seem a
plausible candidate to solve the problem. It specifies that trade should
take place and transfers should be made only when the reported values
satisfy b > s. When trade takes place, the seller receives a payment of b
while the buyer pays s. With payments determined in this way, the buyer
and seller both find it always optimal to report their values truthfully,
regardless of what the other reports. When they do report truthfully,
the efficient allocation decision is implemented with always optimal
strategies, but there is a budget deficit because whenever trade takes
placewehave b > s.In chapter 2, we observed that, in general, there isno
VCG mechanism that always exactly balances the budget. Is this a serious
problem? Is there any mechanism that can both implement efficient
outcomes and achieve budget balance at a Bayes—Nash equilibrium?

The Myerson-Satterthwaite theorem shows that, under certain con-
ditions, there exists no mechanism for which the decision performance
function always maximizes the total value. The theorem employs the
solution concept of Bayes—Nash equilibrium.

Theorem 3.6. Suppose that, in addition to the assumptions of theo-
rem 3.3, the participants and the designer have identical prior beliefs:
! =... =7V = 7. Further suppose that the types are statistically in-
dependent, and v? and v* are continuously differentiable. Consider any
trading mechanism and Bayes-Nash equilibrium at which (i) trade oc-
curs at equilibrium exactly when b > s, (ii) sellers of type 1 and buyers
of type 0 never trade, and (iii) no payments are made when no trade oc-

curs. Then the mechanism incurs an expected payment deficit equal to
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the expected gain from trade, that is, the total expected payments satisfy
E[pP(t) + pF(0)] = —E[max(0, b — s)].8

Proof. The Vickrey mechanism is a mechanism that satisfies the con-
ditions of the theorem. It specifies that trade occurs when b > s, and
that when trade occurs the seller receives a price of b and the buyer
pays a price of s. For every (b, s) realization, each player enjoys a pay-
off of (b — s)* = max(0, b — s) - the entire gain from trade. Any other
mechanism with the same decision performance results in the same to-
tal expected gains E[(b — s)"] from trade and, by the payoff equivalence
theorem, has the same total expected payoff of 2E[(b — s) "] for the buyer
and seller. The expected deficit — E[ p?(r) + p*(1)]is the excess of the total
expected payoff over the total expected surplus: E[(b — s)™]. [ |

3.3.5.1 Application: Auctions Versus Lotteries

Despite callsby Coase (1959) and others for the Federal Communications
Commission (FCC) to allocate spectrum frequencies by auction, the US
Congress did not give the FCC the authority to assign wireless operating
rights by auction until 1993. Prior to 1993, Congress had granted the FCC
the power to assign rights to the spectrum by lottery. Although allocating
spectrum by lottery eliminated the long bureaucratic procedures and
delays of the previous system of comparative hearings, it introduced
various inefficiencies of its own.’

In the debates surrounding the initial spectrum auctions, some ob-
servers suggested that lotteries can be turned into an efficient mecha-
nism by allowing winners to re-sell their rights to others who value the
rights more. Citing the Coase theorem, they argued that once transfer-
able licenses are in the hands of private parties, the parties themselves
will negotiate to a jointly profit-maximizing ownership configuration.
Therefore, they concluded, the form of the initial auction does not mat-
ter for efficiency.

8 Notice that no assumptions are made here about the distributions of types. In their original
treatment, Myerson and Satterthwaite imposed the weaker condition that trade occurs
exactlywhen (i) b > sand (ii) band sare both in the supports of their respective distributions,
and found that efficient trade without deficits could sometimes be achieved when supports
are disjoint. For example, if the buyer’s value is distributed on [%, 1], the seller’s cost on [0,
11, and each is restricted to reporting a type in the corresponding interval, then the VCG
mechanism that always sets a price of % implements efficient trade with zero deficit.

¥ Some of these were described in chapter 1.
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Theoretical arguments can influence the FCC staff's recommenda-
tions to the Commission, which in turn help shape policy. Economists
advocating auctions to the FCC staff countered the proponents of lotter-
ies with an argument combining the Myerson-Satterthwaite and Vickrey
theorems. If a single license is awarded at random by lottery to one of
two symmetric applications, then the Myerson-Satterthwaite theorem
implies that no feasible bargaining protocol can guarantee an efficient
result. But the Vickrey theorem shows that an auction mechanism ex-
ists that guarantees an efficient result. Therefore, the initial allocation
mechanism can affect the efficiency of the final allocation: auction de-
sign does matter. The FCC staff was influenced by this argument and was
led to pay careful attention to the expected efficiency of the allocations
created by the auctions.

3.3.6 The Jehiel-Moldovanu Impossibility Theorems

Jehiel and Moldovanu (2001) apply payoff equivalence to demonstrate
limits on mechanisms’ ability to implement efficient allocations when
participants do not have private values. Without the private-values as-
sumption, a bidder might know something that, if revealed, could affect
another bidder’s choices.

An example to illustrate the general possibilities is the classic used-
car model of adverse selection, in which the owner of a used car has
private information about the condition of the car. The seller’s infor-
mation could certainly affect the buyer’s decision about whether to buy
at some specified price. Partly for that reason, a seller may try to con-
vince the buyer that his motive for selling the car is not that the car is in
bad condition. For example, the seller’s advertisement might include a
phrase like “Moving, must sell.”

For an auction-related example, suppose there is a certain piece
of land for sale just outside of a city. Participant 1 is a developer
planning to build a shopping center on the land to attract urban
customers. Participant 2 is a mining company interested in a possi-
ble mineral deposit beneath the surface. The value of the land as a
shopping center also depends on whether nearby properties will be
used for noisy or dirty mining operations — something about which
the mining company knows more than the developer. Given that the
value of the land to the developer depends on information held by
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the mining company, is there any mechanism that allocates the land
efficiently?!?

One might think of many ways to try to achieve efficient allocation, for
example by providing a cash bonus to the mining company depending
on what information it acknowledges about the value to the developer.
However, the spirit of the Jehiel-Moldovanu theorem is that, unless the
mining company'’s information can be independently verified, there is
no way that it can be used to implement efficient decisions.

Intuitively, the logic of the theorem is simple. Suppose some agent j
has observed a signal s that does not bear on his own values but is rel-
evant to determining the efficient allocation. Because the signal s does
not affect either what j can report or j’s preferences over allocations,
it cannot affect his maximal payoff. As shown below, that implies that
the signal cannot affect j’s allocation. To illustrate, suppose that when s
is higher, the efficient allocation always assigns less of certain valuable
goods to j. Then, by the payoff formula of the envelope theorem, j’s
payoff must be lower when s is higher, which contradicts the conclusion
that his maximal payoff cannot depend on s. Therefore, it is impossible
to implement the efficient allocation. The formal account develops this
sort of contradiction thoroughly for both ex post Nash equilibrium mod-
els and Bayesian equilibrium models, without any special assumption
about how s affects the efficient allocation.

We begin with the interdependent values model in which there is a
single item for sale. To allow the possibility that each bidder may have
information that is relevant to each other bidder, we represent each bid-
der’s type by an N-vector t' = (1, ..., tj), where ¢! represents any infor-
mation that bidder i may have about how valuable the item will be to
bidder j. We take the components of the type profilef to be jointly dis-
tributed according to a atomless distribution on [0, 1]V*V, Bidders’ types
are assumed to be statistically independent. For analytical simplicity, we
specify that the full information value of the item to bidder i is # + v’ (£7).

The first issue is to determine whether there is some clever payment
scheme that results in efficient allocation performance in ex post equi-
librium. This means that each player i’s strategy should depend only

10 Ttisquite commonin auctions of business assets such as spectrum licenses that competitors’
plans affect the value of a license or that losers are not indifferent about the identity of the
auction winner.
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on his own type t/, but the strategy profile (o (¢?));cn should be a Nash
equilibrium for every realization of the type profileZ. The advantage of
such a solution concept is discussed in chapter 5.

Thus, suppose that there is some allocation performance z that is
implemented in ex post equilibrium, where Z\(f) is the probability that
the item is assigned to bidder i, and p’(f) is the corresponding payment.
Then eachbidderis playingabestreply to all the other bidders’ strategies,
given 7. Using the integral form envelope theorem applied to the one-
dimensional parameter £, the equilibrium payoff achieved by bidder i
when the type vector is? is

Vie', ) = max {26, 0 ') ( + ' (57)) — p'@6 o ()}

;
b

=V (O,X,f’i)+/ 2ol (s, 1)), 07 ) ds.  (3.19)
0

Regard these expressions as functions of ¢/ with ¢t~/ held fixed. Be-
cause the right-hand expression on the first line of (3.19) does not
depend on £ ;» the expression on the second line must be a func-
tion of ¢ alone. Hence, the integrand satisfies Z/ (o' (s, 1), 0~/ (t7)) =
Z'(ci(s, 0), 0~ (t7")) almost everywhere. To summarize:

Theorem 3.7. In the interdependent values model with a single good
for sale, suppose 2/ (t) depends non-trivially on til-. Then, there exists no
mechanism that implements the allocation performance Z at an ex post
equilibrium.

In particular, the theorem implies there exists no mechanism that
generally implements the efficient allocation performance in dominant
strategies. It does not imply that i’s information #; cannot affect the
decision at all. For example, if bidder 1 knows the values to bidders 2 and
3, then thatinformation can be used in deciding how to allocate the good
between bidders 2 and 3, but it cannot affect the allocation to bidder 1.

The preceding theorem deals with ex post equilibrium strategies.
Jehiel and Moldovanu asked a related question: Does there exist an aug-
mented mechanism that allocates efficiently when the solution concept
is Bayes-Nash equilibrium?!!

! In their original treatment, Jehiel and Moldovanu treat the case of many goods. Although
the notation is more involved, that case can be treated by methods similar to the ones used
here.
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Theorem 3.8. Let z(#) be an allocation performance function, and sup-
pose that the function E(¢?) = E[Z(f)|t'] depends non-trivially on # ;.1?
Then, no mechanism exists that implements z at any Bayes-Nash equi-
librium.

Proof. Suppose that some augmented mechanism (S, €2, o) is specified
such thato isa Bayes—Nash equilibrium of the associated Bayesian game.
Let the outcome function 2 consist of a decision outcome function zand
a payment function p. The corresponding equilibrium payoff value for
an individual i is

Vi) =maxE[Z6, 0D (4 + ' (7)) = p'6", 0" NIL']
= max {E[2' (6", o (NI + E[Z(6", 0 (™D (1)
—pi@6l o i)}, (3.20)

where the last step uses the statistical independence of the types. Hence,
Vi(t’) = Vi(#, 0) is actually a function of # alone. Using that and the
integral form envelope theorem,

f

Vi(#,0) - V'(0,0) = / E[Z(c'(s,0), 0" ()] ds
0

=Vi(d t,)-Vvi(01,)
- f E[Z(" (s.1}). 0~ ()] ds. (3.21)
0

Because these functions of # are equal everywhere, the integrands must
be equal almost everywhere:

E[z' (o' (s.£,), 07 (t™))] = Elz'(0°(5,0), ot ))]  ae. (3.22)
This contradicts the hypothesis that E(t) = E[Z (0] depends non-

trivially on £ . [

These two theorems establish some important limits on what mech-
anisms can achieve.

12 For example, if the functions v’ are all increasing, then the efficient decision function 2/ (#)
is nonincreasing in ¢’ ;. To this we add the non-degeneracy condition that that function is
not constant.
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3.3.7 Myerson and Riley—-Samuelson

Revenue-Maximizing Auctions

In this subsection, we return to the optimal auction question posed by
Myerson (1981), discussed in the introduction to this chapter. A similar
theory of revenue-maximizing auctions was also developed indepen-
dently at about the same time by Riley and Samuelson (1981), but it
was limited to the case of bidders with symmetrically distributed values.
Myerson’s original proof relied on the revelation principle to limit at-
tention to direct incentive-compatible mechanisms, but we simplify his
analysis here by using the integral form envelope theorem.

Consider an auction for a single good whose value to individual i
is v’(¢%). Each v’ : [0, 1] — R, is a strictly increasing, continuously dif-
ferentiable function, and the types are independently and uniformly
distributed. Note that these assumptions do not imply that the values
vi(t?) are identically distributed: the value distributions are given by the
functions (v’)~!, which can be any strictly increasing, smooth, bounded
distribution.'3

Definitions

1. An augmented mechanism (S, w, o) is voluntary if for every player i
and type ¢/, the maximal expected utility satisfies Vi(t/) > 0 (where
the utility of non-participation has been normalized to zero).

2. The expected revenue from the augmented mechanism (S, w, o) is

N
RS, w,0) =E {Z pie'@h, ..., oN(tN))] .
i=1

3. Theaugmented mechanism (S, w, o) is expected-revenue-maximizing
if for any other voluntary augmented mechanism S, @, 6),

R(S,®,6) < R(S,w, o).

For the next theorem, it is convenient to write x’ = 1 in case individual
i is awarded the item and x’ = 0 otherwise.

Theorem 3.9. Consider a standard independent private values model
with a single good for sale. For each i, define m!(s?) = vi(s’) — (1 — s%)

13 One can also dispense with the upper bound by taking the type spaces to be [0, 1).
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dvi/ds’ (the marginal revenue as a function of price), and suppose that
m' is an increasing function.'* Further suppose that v (0) = - - - = v™(0).
Then an augmented mechanism is a revenue-maximizing mechanism if
it satisfies Vi(0) = 0 and has the following decision performance func-
tion:

1 if m(¢?) > max(0, max;; m/(t)),

X () =
0 otherwise. (3.23)

Furthermore, at least one such mechanism exists.
Proof. Given any decision performance x, the probability that bidder i

receives the good whenits typeist’is E[x(f)|t!]. Hence, by the envelope
theorem, bidder 1’s maximal payoff when its type is t' = 7 satisfies

T 1
Vi - vio = [ B e =5 G
0 ds!

T 1 1 1
:/ / / %xl(sl,...,sN)dsz---dsNdsl.
o Jo 0

So bidder 1’s ex ante expected payoff must satisfy

(3.24)

E[V'hH) — V)

/// /dsl (s',... sYyds? . dsVds'de
=/ / / drd—zlxl(sl,...,sN)dsl~~~dsN

0 0 Jst

1 1 ’ dvl
:f / (1—sl)wxl(sl,...,sN)dsl---dsN

0 0

1 1
:f / w'shH — msxst, ..., sMdst - dsY, (3.25)
0 0

where the second equality follows from the first by changing the order
of integration. A similar expression holds for the other bidders.

14 This corresponds to the common condition in monopoly pricing theory that the marginal
revenue is a decreasing function of the quantity offered for sale. An equivalent formulation
that is common in the literature specifies the marginal revenue condition in terms of the
distribution of values, F’ = (v')~!. The condition then becomes that v’ — (1 — Fi(v)))/f (v}
is increasing in v’.
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For any realized type profile 7, the total ex ante payoff to all bidders
plus therevenue to the seller is x(f) - v(f), so the seller’s expected revenue
must be

R(S, w,0) = E[x(¥) - v(D)] — ZE (Vi(eh)]

1 1
:/ / in(sl,...,sN)vi(si)dsl---dsN
0 0 i=1
N

- > EIVI(@)]

i=1

1 1 N . L
:/ Zx’(sl,...,sN)m’(s’)dsl---dsN
0 0 =

—ZW@
/ / max (0, maxm i(st )) (3.26)

Theinequality follows because x' (1) is the probability the good is assigned
to bidder i and hence satisfies x‘(f) > 0 and Zfil X < 1.

This proves that the specified performance, if feasible, gives an up-
per bound on the revenue. For feasibility, we display a mechanism that
achieves that bound. It is the direct mechanism with decision perfor-
mance (3.23) and these payment functions:

pl(f) = pit™)))
vl ((m?)~!(max (0, mgxmj(tf)))) if x'(1) =1,
] 1

0 otherwise. (3.27)

It is immediate that Vi(0) = 0 (type 0 never wins and never makes or
receives a payment).

Finally, observe that for all types, truthful reporting is an always op-
timal strategy. Since m' is increasing, for any report i may make, he can
acquire the good only by paying a price p’(t~/), because the allocation
rule specifies that i acquires the item precisely when vi (%) — pi(r~%) > 0.
Thus, by reasoning analogous to the second price-auction analysis, bid-
ding truthfully is always optimal. |



3.3 Quasi-linear Payoffs 87

An interesting corollary of this theorem is that certain standard
auctions with reservation prices can sometimes be expected-revenue-
maximizing auctions. Indeed, suppose that we add to the assumptions
of the theorem the extra assumption that v! = ... = v = v, so that
m! = ... = m" = m. Suppose that the seller sets a minimum price, or
reserve in a second-price auction. If any bid exceeds the reserve, then
the price is equal to the larger of the reserve or the second highest bid.
If the seller sets a reserve of r* = v(t*), where t* solves m(t*) = 0, then
the Vickrey auction with reserve r * achieves the decision performance
specified in the theorem: bidder i wins if and only ifits type is highest and
m(t?) > 0. Moreover, type 0 bidders always lose: V/(0) = 0. So the Vickrey
auction with reserve 7 * is an expected-revenue-maximizing auction in
this class of symmetric environments.

3.3.8 The McAfee-McMillan Weak-Cartels Theorem
McAfee and McMillan (1992) were among the first to study the theory
of bidding rings, which are groups of bidders that make collusive agree-
ments about how to divide the items for sale in an auction.!® Ring mem-
bers might try to agree before the auction which of them will be the
winner, with the understanding that other bidders will make no bids or
lowbidsin the auction. In that way, the winner may be able to get the item
for a low price, possibly even at the reserve, enhancing its own profit.

Rings face a series of problems if they are to operate effectively. One
is to enforce agreements, which might be done in a series of auctions by
threatening to retaliate against those who violate the ring rules. A second
problem is to prevent new bidders from entering when the prices in a
series of auctions seem low. A third is how to divide the spoils. This can be
a serious problem in that, as McAfee and McMillan state, most of the US
Department of Justice’s bid-rigging convictions begin when one of the
cartel members turns in other members because he is unhappy with his
share of the profits. To avoid leaving incriminating records, cartels often
avoid making cash payments among their members, and that restriction
limits what the cartel members can achieve.

We call a ring that cannot make cash payments among its members a
weak ring. One might think that the members of the ring could hold dis-
cussions and tailor their dealings to take advantage of their information,

15 See Graham and Marshall (1987) for a detailed description of ring operations.
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allocating the goods most often to those with the highest values. What
complicates the problem is that, with no side payments to use to divvy up
the profits, bidders will have little incentive to reveal their information
even to fellow ring members. McAfee and McMillan show that, under a
certain condition, a weak cartel cannot extract any useful information
from its members: it can do no better than to randomize the allocation
among its members.

In our treatment of the McAfee-McMillan model, we assume that the
seller sets a reserve price of r and that participants express interest if
and only if their values are at least r. Types are statistically independent
and uniformly distributed on [0, 1], and i’s value is given by vi(¢?), where
v!(0) = --- = v™(0) = r.Given the augmented mechanism devised by the
ring, let x’(¢?) denote the probability that bidder i of type ¢’ acquires
the item, and let X = E[x'(¢%)]. The corresponding random allocation
is the allocation that assigns the item to individual i with probability
& regardless of the vector of types. This random allocation is certainly
feasible, for the original mechanism is so. Because a player of type zero
has no way to earn a positive profit, Vi)=-.-=VN©O0) =o0.

As Vickrey first observed, xi()is necessarily nondecreasing. If it were
otherwise, then a bidder could “rectify” the relationship between its
bids and types, leaving its expected payments unchanged but increasing
E[xi (r1)vi(£1)].16

Theorem 3.10. Consider a standard independent private-values model
for a single good, and suppose that (1 —t’) dvi/dt’ is a decreasing
function. Then any mechanism by which the weak ring allocates the
asset among its members that differs non-trivially from a random
allocation is ex ante dominated for all bidders by its corresponding
random allocation.

Proof. Let Vi(¢') and Vi(r’) denote the expected payoff of type i from
the proposed mechanism and the corresponding random allocation,
respectively. Then the ex ante utility from the proposed mechanism is

E[Vith] :/ V’(r)dt_f / —x i(s)ds dr
0

16 This argument and related ones will be developed more fully in the next chapter.
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1 1 i 1 i
=/ / drd—vxi(s) ds :/ (1 —s)d—vxi(s) ds
0 s dS 0 ds

1 i 1
</ (l—s)d—vds/ x(s) ds
0 ds 0
1 i
:/ a —s)d—”fc"ds =...= E[VitD)]. (3.28)
0 ds

The second equality follows from the envelope theorem. After reversing
the order of integration, the strict inequality follows from a majorization
theorem (stating that the expected value of the product of an increasing
function and a decreasing function of the same variable is less than the
product of the expectations).!” Then reversing the initial series of steps
establishes that the right-hand side of the inequality is the expected
payoff from the corresponding random allocation. |

Given the assumption that v’ isincreasing and that types are uniformly
distributed on [0, 1], the inverse function vi(-)~! is the distribution of
bidder values, which we may also write as F’ with density f*. The condi-
tion that (1 — %) dv'/dt' is decreasing is thus equivalent to the condition
that (1 — Fi(v))/ f i(v) is decreasing. Accordingly, the condition is some-
times called the “increasing hazard rate” condition. As we have seen, a
similar condition arises in the analysis of expected-revenue-maximizing
auctions.

The McAfee-McMillan theorem expresses a clear limit on what a weak
ring can accomplish. Without cash payments, the ring can do no better
than to randomize the right to bid among its members and let one of
them win at the reserve price.!® To create greater profits by allocating
the item more efficiently, the ring would need to require a member who
claims a high value to pay more than the reserve price. In a weak ring,
that extra payment would go to the seller. Hence, subject to the stated

17 This is equivalent to the theorem that the covariance of an increasing function of a random
variable with a decreasing function of the same random variable is negative.

Athey, Bagwell, and Sanchirico (2003) amplify this conclusion using a repeated game model
inwhich thebidders observe the price, but not the identity of the winner, after the auction. In
their model, like the one in the text, the ring would like to promote the efficient outcome by
arranging for the ring member with the highest value to win the auction. However, the ring’s
inability to identify the winner makes the ring weak despite the repeated game, so (subject
to a condition on the distribution of values) the ring can do no better than to randomize the
allocation among its members. This conclusion changes if the winning bidder’s identity is
revealed after each auction; see Athey and Bagwell (2001).

18
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assumption about the distribution of values, this leaves the ring worse
off than with a simple randomization.

3.3.9 Sequential Auctions and Weber’s Martingale Theorem!?

In this section, we investigate the pattern of prices that emerges when
several identical items are sold one at a time, in sequence, and each
bidder can buy only one item. We find that if the prices are announced
after each sale, then the sequence of prices forms a martingale. This
means that the expectation of the n+ 1% price given the prior prices
is equal to the nth price. This property of sequential auctions is espe-
cially interesting in that empirical tests suggest that actual prices in art
and wine auctions contradict this prediction: they follow a declining
pattern.?’

To formulate the problem, suppose that there are kidentical items for
sale and N bidders, and each bidder is limited to receiving just one item.
The items are to be sold in a sequence of auctions using a rule in which
the highest bidder wins and only the winner pays. Let the auction rules
be such that, given any information I, that may become available after
n items have been sold, there is a symmetric, increasing equilibrium
bid function B, (:|I,) that applies to the bidding for item n+ 1. Then,
at equilibrium, the highest type bidder wins the first item, the second
highest wins the second item, and so on.

Let p, denote the price paid for the nth item, 1V, ..., ™ denote the
order statistics in decreasing order from among the bidder types, and I,
denote null information.

Theorem 3.11. At any equilibrium g = {8,}~_, of any auction game sat-
isfying the conditions described above, the sequence of prices and infor-
mation (p,, I,)*_, satisfies E[py|I,-1] = E[v(#*D)|L,_,]. If the auctions
are first-price or second-price auctions and I, is the sequence of past
prices {p1, ..., pu}, then (p,, I)%_, is a martingale.

Proof. We focus on bidder 1 and suppose he has not yet won an item
when the first m— 1 items have been sold. We apply Myerson’s lemma

19 The analysis of sequential auctions originates with Weber (1983) and Milgrom and Weber
(2000). Some additional results about the martingale property are reported in the original
sources.

20 See Ashenfelter (1989) and Ashenfelter and Graddy (2002).
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to the game starting with the sale of item m, which has the same deci-
sion outcome as the Vickrey auction. Consequently, the expected total
payments by bidder 1 given the information I,,,_; must also be the same:

k
E {Z pnl{tl_ﬂ,,),uml} = E[vt®™ ) Lo g g0y | I | - (3.29)
n=m
For m= k, bidder 1 wins at thatroundif ! = t® and then E[py|[;_1] =
E[v(t*+V)|I;_,]. By symmetry, the identity of the winning bidder for the
nthitem is independent of the price p,, so
E[pulip—ooyl Im-1] = E(Lip_goy | Ipa11 E[ pnl In-1]

1
=—F I,
Nil_-m [pn| 1l

and similarly

E[U(t(k+1))1{t(Wl)>tlzt(k)}|I _1] = E[l{ﬂm—l)>tlzt(kl}|l _1]E [U(t(kJrU)um_l]

k+1—m
= ———E [v"D)| I,
Ntl-m [U( )|m1]7
so equation (3.29) becomes
1 k k+1—m
_— E Iy = ——— E[v@*1,,4]. 3.30
N+1—mn;1 Palln1) = 17—, E D] (3.30)

Using (3.30), we may conclude that E[py|L,_ 1] = E[v*D)|1,_1]
for all m<n<k For otherwise, there is some 7 that is the
largest value of n for which the equality fails. Then using (3.30)
with m= 7, Elpalli-1] = Elv®D)|I;1], so for m< 7, Elpalln1] =
E[E[Pi|li-1) ] = E[E(® D) | I 1] Ia] = E[w(e® V)| L,1], which
is a contradiction.

If the auction is a second-price auction (respectively, first-
price auction), then by inverting the bid functions, the informa-
tion I, is (19, ..., 1"V (respectively, (@, ..., ")), so E [pu|ln1] =
Elv(%)| I, 1] = pm_1, by Myerson’s lemma. [

3.3.10 Matthews’ Theorem: Risk Averse Payoff Equivalence

In the models studied above, bidder payoffs are the expected value re-
ceived minus the expected amount paid. This specification incorporates
two kinds of assumptions about bidder preferences. The first is that there
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are no wealth effects on choices under uncertainty: changing a bidder’s
wealth by taxing him or giving him a transfer before presenting him with
a risky choice would not alter his most preferred choice. In particular,
wealth transfers do not affect bidding decisions. The second is that each
bidder is risk-neutral with respect to gambles involving money.

Matthews (1983) studied auctions with risk averse buyers whose pref-
erences exhibit no wealth effects. As in the risk neutral case, the key to
a simple analysis is to use the envelope theorem to obtain a simple re-
striction on the bidders’ payoffs. In this case, we find that the bidder’s
expected utilities cannot vary among auction designs in a certain class,
that is, the bidders are indifferent among the designs.

To simplify the analysis, we normalize the utility payoff of a los-
ing bidder to be zero and denote bidder i’s constant coefficient of ab-
solute risk aversion by r’. When i wins, his utility payoff is 1 — exp
[—ri@i@) — pHl =1—-0')Hui(p), where v (t7) = exp[—ri(v'(t?))] and
U (ph) = explrip’].

Theorem3.12. Consideran auction gameinwhich bidder payoffs display
constant absolute risk aversion, as specified above. Suppose that o is a
Bayes—Nash equilibrium of a game with full performance (x, p) in which
abidder of type 0 always loses and losing bidders always pay zero. Define
X'(t) = E[x'(t, t")]. Then, the equilibrium expected utility of bidder i of
type tis

1
i(s)

t
Vi) = X' - ') <X" 0) + / dX"(s)) : (3.31)
0
In particular, two auction games with the same decision performance
function x specify the same expected utility V’(¢) for each type of each
bidder.

Proof. Given the strategies of the other bidders, when bid-
der i of type t plays strategy (“bids”) b, his expected utility
is w1 =EX®D )1 —-d0Ou(pb t7))]20 Define (1) =
E[x'(t, t)u (p(t, t7))]. Then the bidder’s equilibrium expected
utility is Vi(¢) = E[x (¢, 7)1 — o' (@) (p(t, t79)))] = X' (1) — D' ()¢’ (2). To
establish (3.31), we will show that ¢() = X*(0) + fot [1/9%(s)] dX'(s).

21 Tt is in this expression that we utilize the assumption that losing bidders always pay zero
and so have a normalized utility of zero.
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By the envelope theorem and using the boundary condition V#(0) =
0, we obtain a second expression for the expected utility: Vi(r) =
max, (b, ) = fot 12 (ci(s), s) ds = — 0[ ¥ (s)¢!(s) ds. Equating the two
expressions leads to X'(t?) — 0/(r})ei(t}) = — fot @) (s)¢’(s) ds. Differ-
entiating with respect to ti: dX'(t?) — d'(t))de'(t') = 0, or dy'(t’) =
dXi(¢t%)/v'(¢%). By assumption, p(0, 1) =0 and #(0) =1, so ¢'(0) =
X1(0) and ¢ (¢1) = X7(0) + [ [1/5(s)] dX'(s). [

Several things about this analysis merit comment. First, although the
result asserts that the expected payoffs are the same for different bidders
in a class of auctions, it does not follow that the expected payoffs are the
same for the seller. In the risk neutral case, the seller’s expected revenue
is equal to the expected total surplus minus the bidders’ expected pay-
offs, but here that identity no longer applies. In fact, we will see in the
next chapter that bidder risk aversion in this model creates a revenue
advantage for the first-price auction over the second-price or ascending
auction.

Second, the risk averse payoff equivalence result is more limited than
the corresponding risk neutral version, because it applies only when los-
ing bidders always pay zero. For example, the theorem typically applies
to the expected payoffs in standard first- and second-price auctions, but
it does not apply to lotteries and all-pay auctions, in which even losing
bidders may pay something.

Finally, we emphasize again our view that this use of constant absolute
risk aversion is merely an analytic technique, similar to ones that have
been used to good effectelsewhere in auction theoryand principal-agent
theory.?? This technique does not prejudge the importance of wealth
effects, any more than calculating a pure substitution effect in consumer

22 For example, Milgrom and Weber (1982) use constant absolute risk aversion to study the
effects of revealing statistical information on auction prices. One effect is that such informa-
tion tends to reduce risk on average. Abstracting from wealth effects, that always increases
the average price that a bidder is willing to pay. For any smooth utility specification with-
out constant absolute risk aversion, there always exist examples of gambles and statistical
information such that the wealth effect of the revealing information works against, and is
larger than, the risk reduction effect.

Similarly, Holmstrom and Milgrom (1987) introduce a principal-agent model with con-
stant absolute risk aversion to abstract from the effect that an agent’s past compensation
may have on his current risk averseness. The optimality of linear compensation contracts
such as commissions for sales agents or piece rates for factory workers hinges on a set of
assumptions including that one.
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theory prejudges the importance of income effects in that theory. Wealth
effects can be studied separately, and the relative importance of the two
effects will naturally vary across different applications.

3.4 Conclusion

This chapter organizes some of the major results of mechanism de-
sign theory using the envelope theorem and the related lemmas of
Holmstrom and Myerson.

To emphasize the close connection between demand theory and in-
centive theory, we begin by presenting Hotelling’s lemmain its two forms.
Its integral form, which is the important one for our purposes, asserts
that producer surplus is equal to a certain integral representing the area
between the supply curve and the vertical axis.

The same kind of formula can be derived for the more abstract choice
spaces of mechanism design theory, but this requires first introducing
an extended envelope theorem. The theorem implies Hotelling’s lemma
when the parameter used is the price at which goods can be sold. It
implies Holmstrom’s lemma when the parameter is the mechanism par-
ticipant’s fype and the participant maximizes his payoff knowing the
opposing type profile /. It implies Myerson’s lemma when the param-
eter is the mechanism participant’s type and the participant maximizes
his expected payoff, not knowing the opposing type profile .

Holmstrom’s lemma leads to the Green—Laffont-Holmstrom theorem,
which holds that if the set of possible values is smoothly connected,
then all augmented mechanisms that implement efficient outcomes in
dominant strategies are VCG mechanismes.

Mpyerson’s lemma leads to the famous revenue equivalence theorem,
which holds that if the set of possible values is smoothly connected,
then all augmented mechanisms that implement efficient outcomes in
Bayes—Nash strategies lead to the same expected revenues as the Vickrey
auction.

The remaining theorems of the chapter explore the restrictions on
mechanism performance that the preceding results imply. We derive
the Myerson-Satterthwaite theorem by examining the payoffs that bar-
gainers must achieve if efficient bargaining outcomes are to be realized.
Those payoffs add up to twice the surplus available for distribution.
Accordingly, we conclude that efficient bargaining outcomes cannot
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generally be implemented (unless a donor is available to cover the cash
shortfall).

Mpyerson’s optimal auction theorem identifies the auction design that
maximizes the seller’s expected revenue in a class of environments. The
analysis works by expressing the seller’s expected revenue as the expected
total surplus minus the bidders’ total expected profits, using Myerson’s
lemma to obtain an expression for the latter. Maximizing the revenue ex-
pression identifies the decision performance associated with the highest
possible expected revenue.

The Jehiel-Moldovanu theorem evaluates the possibility of imple-
menting efficient performance in a different set of environments. Using
the envelope theorem, we find that to implement efficient performance,
each bidder’s maximum profit function must depend on any unique
information that bidder has about the value of the allocation to other
bidders. By direct inspection, we find that the maximum payoff function
cannot have that property, and the contradiction implies that imple-
menting the efficient outcome must be impossible.

The McAfee-McMillan weak-cartels theorem examines what mem-
bers of a cartel can achieve for themselves when the members are
unable to make cash transfers among themselves. By the envelope
formula, there is an exact correspondence between the allocation per-
formance that the cartel implements and the payoffs that the members
achieve. Examination of the payoff formula leads to a simple answer
when a certain increasing hazard rate condition is satisfied. Then, the
random mechanisms, in which the item is allocated to cartel members
according to some pre-specified probabilities, form a Pareto-dominating
class: any other mechanism leads to expected payoffs that are weakly
lower for every bidder than the expected payoffs of some random
mechanism.

Weber's martingale theorem examines a sequence of auctions when
bidders want to acquire just one unit. By Myerson’s lemma, at the start of
each auction, the expected price for each item must be the expectation
of the Vickrey price, given the bidders’ information. This leads to the
conclusion that the sequence of prices must form a martingale.

Matthews’ risk averse payoff equivalence theorem establishes the in-
difference of bidders among a class of auctions in which losing bid-
ders always pay zero, when the bidders exhibit constant absolute
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risk aversion. The theorem is proved by using the envelope theorem to
derive a formula for bidder payoffs that is independent of the payment
rule used in the auction. The revenue equivalence theorem does not
apply to this model, which establishes that results about bidder-payoff
equivalence are distinct from revenue equivalence results.
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CHAPTER FOUR

Bidding Equilibrium and Revenue
Differences

This chapter has two main purposes. The firstis a technical one: showing
how to identify candidate equilibrium strategies in a variety of auction
forms and to verify whether the candidate strategies actually form an
equilibrium. This part of the analysis uses various single crossing con-
ditions extensively. Researchers have analyzed several different single
crossing conditions; in this chapter we describe and relate these condi-
tions and highlight their significance.

The second purpose is to investigate the comparative performance
of different auctions when some of the assumptions of chapter 3 do
not hold. For example, we show that in a standard symmetric single-
good auction model, although expected revenues are the same for the
first- and second-price auctions, revenues are riskier in the second-price
auction. Consequently, a risk averse seller prefers a first-price auction.
In the same model, introducing bidder risk aversion prevents applica-
tion of the revenue equivalence theorem and leads to higher average
prices in the first-price auction than in the second-price auction. Hence,
bidder risk aversion also makes sellers favor the first-price auction
design. In a procurement auction in which competitive bids deter-
mine prices but the buyer afterwards determines quantities, we show
that first-price auctions yield lower prices than second-price auctions
and that both bidders and buyers may favor the first-price design. On
the other hand, introducing a certain type of positive statistical de-
pendence (affiliation) among the buyers’ types leads to the conclu-
sion that prices are higher, on average, in a second-price or ascending
auction.

This chapter has four main sections. The first explains and analyzes
the single crossing conditions that are central to the entire chapter. The

98
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second uses these conditions to derive and verify equilibrium in different
types of auctions. The third develops the most commonly used method
for comparing revenues in auction models that depart from the standard
model. The final section studies revenue-maximizing auctionsin the one
good case.

4.1 The Single Crossing Conditions
Thissection defines several kinds of single crossing conditions and shows
the relationships among them.

The term “single crossing condition” can cause confusion because
different authors use it to mean different things. In the three most com-
monly used definitions, the domain of the function is either R, R2, or R3,
but the range is always R.

The most basic definition applies to one-dimensional domains.
Let the domain be any set X C RU{—o0,+00}. Then the function
f: X —> RU{—o00, 400} satisfies the single crossing condition if for all
t>1t, f(t)>0= f() >0and f(¢) = 0= f(r) > 0;itsatisfies the strict
single crossing condition ifforallt > ¢, f(¢') > 0 = f(¢) > 0. Intuitively,
the strict single crossing condition holds when the function crosses zero
only once, and only from below. The ordinary single crossing condition is
similar, but it allows the possibility that the function intersects the x-axis
along an entire interval, rather than just at a single point. Thus, non-
decreasing functions and increasing' functions satisfy the ordinary and
strict single crossing conditions, respectively. Figure 1 illustrates three
other functions that satisfy strict single crossing.

In this book, we use the one-dimensional property only as a build-
ing block for the higher dimensional conditions. Higher dimensional
versions of the property are useful for the exercise known as sensitivity
analysis or comparative statics analysis.

We begin with the simplest kind of comparative statics analysis on a
choice problem where the decision maker chooses a real variable x and
the parameter is a real variable t. The objective is a function g(x, t) map-
ping a subset of R? to R. We shall say that g satisfies the single crossing
differences condition or the strict single crossing differences condition if,
foranyx’ > x, thefunctiondefinedby f (1) = g(x', 1) — g(x, ) satisfies the

! “Increasing” means the same thing as “strictly increasing,” that is, x > y = f(x) > f(y).If
the domain of f is only partially ordered, then x > y means that x > yand x # y.
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7R

Figure 1. These three functions all satisfy the strict single crossing condition.

corresponding one-dimensional single crossing condition. Thus, g satis-
fies single crossing differences iffor all t > ' we have g(x', ') — g(x, ') >
0=g,1)—gxt)>0and gx',t)—gx,t)>0=gx', 1) — glx, 1) >
0. Figure 2 illustrates these relationships for x’ > x.

The following invariance property reveals some of the structure of
the single crossing difference conditions. For any increasing function
h:R — R, the function g(x, t) has the (ordinary or strict) single cross-
ing difference property if and only if h(g(x, 1)) has the same property.
This fact suggests several ways to verify the property. For example, if
g(x, 1) is differentiable, then if either one of the following two condi-
tions holds for all (x, £), the single crossing differences property holds
as well:

02g(x, 1) -
axor

92logg(x, 1) -
axor -

) 0 or (i) glx,? >0 and 0.

g(x,t)

Figure 2. The function g satisfies single crossing differences because, for x' > x, the
difference function f has the one-dimensional single crossing property.
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Condition (i) implies single crossing differences because it implies that
forany x > x’, the difference g(x, t) — g(x', t) = [ ; & (s, 1) ds (where g, =
dg/dx) is nondecreasing in ¢ and so crosses zero only once and only
from below. To show that condition (ii) also guarantees single crossing
differences, just set h(x) = log x.

Conditions (i) and (ii) are both commonly used in auction theory. If x is
the probability thatabidder winsanitem, b(x) iswhat the bidder mustbid
to win with probability x, and ¢is his value for the item, then the bidder’s
expected payoffis g(x, ) = xt — xb(x), which satisfies condition (i). If the
bidder is not risk neutral, condition (i) does not apply, but condition (ii)
does apply to a reformulated version of the bidder’s problem in which
x is the amount bid and p(x) is the probability of winning. Then, the
expected payoff is g(x, £) = p(x)u(t — x). Without loss of generality, we
may limit attention to bids for which u(t — x) > 0. On that domain, if
the function z — log u(2) is concave, then g(x, f) satisfies the second of
the conditions listed above.

Note that although the sufficient conditions cited are symmetricin the
two arguments (x, ), the single crossing differences conditions are not.
For example, the condition that g is strictly monotonic (either increasing
or decreasing) in x implies single crossing differences, but the condition
that g is strictly monotonic in ¢ does not.

A slightly stronger version of the single crossing differences condition
will help us conduct our analysis using integrals and derivatives. We use
subscripts here to denote partial derivatives, letting g (x, t) = 9g/dx and
&(x, 1) = 3g/at. A function g satisfies the smooth single crossing differ-
ences condition if it satisfies the single crossing difference condition and,
in addition, has the property that for all x € R, if g; (x, ) = 0, then for all
3 > O0onehasg;(x, t+8) > 0and g (x, t — §) < 0. The single crossing dif-
ferences condition implies that for ¢ > 0, if g(x + ¢, ) — g(x, t) = 0, then
for all § > 0 one has g(x+¢6,t+68) —gx,t+8) >0>glx+e,t—8) —
g(x, t — §8). The smooth single crossing differences condition strength-
ens the ordinary condition by requiring that the preceding inequality
hold even when ¢ is infinitesimal.

4.1.1 The Monotonic Selection Theorem

The next three theorems summarize important, general consequences
of the single crossing differences conditions. The first is a theorem from
Milgrom and Shannon (1994). Following our earlier practice, we limit
the parameter space to [0, 1].
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Theorem 4.1 (Monotonic selection).? The function g: R x [0,1] — R
satisfies the strict single crossing differences condition if and only if for
everyﬁnite3 set X C R, everyoptimalselection x*(¢, X) € argmax,cx g(x, 1)
is nondecreasing in .

Proof. We first show that if g satisfies the strict single crossing differ-
ences condition, then every optimal selection is nondecreasing. Let x
be a selection from arg max,.x g(x, 1); let £y < #; and take x* (o, X) = x
and x; = x*(;, X). Optimality implies that g(x, ty) — g(x1, to) > 0 and
g(xo, 1) — g(x1, 1) < 0. These two inequalities and strict single crossing
differences imply that x; > x¢. Hence, the condition implies that the se-
lection x* is nondecreasing in ¢.

Next, we show that if g does not satisfy the strict single crossing
differences condition, then there is some optimal selection that is not
nondecreasing. Suppose that the strict single crossing differences con-
dition does not hold. Then there is some ty; < 5 and xy > x; such
that that g(xo, to) — g(x1, to) > 0and g(xo, 1) — g(x1, f1) < 0. Because the
statement of the theorem must hold for every finite set X, consider
X = {x0, x1}, andlet x*(t, X) = x¢ > x; = x*(#, X). Then the optimal se-
lection x*(-, X) is decreasing. [ |

As we have seen, single crossing conditions sometimes hold in auc-
tion models. In a typical application, ¢ will be the bidder’s type and x
will be some other variable, such as the probability of winning or the
amount bid. The single crossing condition then implies that the proba-
bility of winning, or the bid itself, must be a nondecreasing function of
the bidder’s type.

4.1.2 The Sufficiency Theorem

The sufficiency theorem connects single crossingideas withideas used in
the envelope theorem to provide a useful tool for the analysis of equilibria
in auctions.

2 There is also a version of the monotonic selection theorem establishing the equivalence
between the weak single crossing condition and the existence of some monotonic selection.
See Milgrom and Shannon (1994).

3 We limit attention to finite sets to ensure that the maximum exists so that the selection is
well defined.
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The envelope theorem and the monotonic selection theorem im-
ply that, under certain conditions, if X(f) € x*(f) = arg max,cx g(x, 1),
then (1) g(x(1), t) satisfies the envelope integral formula and (2) x is
a nondecreasing function. The next theorem turns this around. Un-
der a different set of assumptions, conditions (1) and (2) imply that
X(f) € X*(f) = argmax,cx g(x, 1).

One of these assumptions is a regularity condition. Recall that any
nondecreasing function X can be discontinuous only at its jumps. So, %
canbeexpressedasx = X; + X¢:thesumofajumpfunctionanda contin-
uous function. We denote the jump function by %; (1) = > _,.; .-, A (s) +
Y ies.s<t M+ (8), where J is the set of jump points and A_(s) and A, (s) are
the sizes of the left- and right-hand jumps at s, and we denote the con-
tinuous function by X¢.

Any nondecreasing function ¥ is differentiable almost everywhere. It
will be convenient below to let X' (¢) denote the derivative where it exists
and to set X' (f) = 0 elsewhere. The regularity condition for the next theo-
rem is that the continuous part of X is absolutely continuous. Therefore,
for all t and £, xc(t) — xc(f) = fft X'(s) ds. Although the regularity con-
dition excludes functions like the Cantor function that are continuous
but not absolutely continuous, it covers all of the functions that we will
encounter below.

Theorem 4.2 (Sufficiency). Suppose that g(x, ) is continuously differ-
entiable and has the smooth single crossing differences property. Let
X :10, 1] — Rhave range X, and suppose that X = X; + X¢, where X; is a
jump function and % is absolutely continuous. If

(1) x(» is nondecreasing and
(2) the envelope formula holds: gx(®, 1) — g&x0), 0) =
fy &(x(s), ) ds,

then X(¢) is a selection from X*(f) = arg max,x g(x, ©).

Proof. Because Xisnondecreasing, for all #we have limm)'c(f ) =X (1) >
() = X_(8) = limyy, X(f). Recall that J is the set of jump points of X, and
considers € J.By(2), g(x(1), t) is continuous, so g(x(s), s) = g(x.(s), s) =
g(k_(s),s). By single crossing, for all £ >s we have g(x_(s),?) <
g(k(s), 1) < g(k.(s), 1), and for all £ < s we have g(x_(s), t) > g(x(s), t) >
8(x4(s), B).
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If s ¢ J, then X is continuous at s. Hence, by condition (2) of the
theorem, % g(x(s), s) = g2(X(s), s). Applying the chain rule, % g(x(s), s) =
S(X(s), s) + g1 (X(s), s)X'(s). So either g (X(s),s) =0 or X'(s) = 0 (which
includes, by convention, the possibility that X is not differentiable at s).
In the former case, by smooth single crossing differences, for all ¢ > s
we have g; (X(s), £) > 0, and for all £ < s we have g; (X(s), ) < 0. Because
X'(s) > 0, it follows that for ¢ > s we have g (X(s), ) X' (s) > g1 (X(s), $)X'(s),
and for ¢ < s the reverse inequality holds.

So, fort > i,

g(x(0), 1) — g(x(#), 1)
t
= / UEE). DX () ds+ Y (gE.(s). 1) — g(E_(5), D)
2

se],f<s<t

+ (g, N — g&_(1), ) + (g&; (D), ) — g(&(D), 1)
t
> / QUES), DX ds+ Y (8Fi(5),9) — gE_(5), )
t

se],f<s<t

+ (g(xX(@®), D) — g(x_(0), 1) + (x4 (1), D) — g(x(£), H)) =0, (4.1)

where the inequality holds for each term of the integrand and summand.
Similarly, for ¢ < #,

gx(@), n —gx®m,n=---
f
< / 81(X(s), $)X'(s) ds
t
+ ) (8E4(s).8) — gE_(5), )

sej, t<s<t
+ (x4 (0, 1) — g(x(®), 1) + (g(x(£), §) — g(x_(£), 1))
=0.

Hence, g(x(f), 1) < g(x(1), t) for all ¢, f. [ ]

Necessity of Smooth Single Crossing Differences
This sub-subsection establishes that we can generally dispense with the
extra assumption of smooth single crossing differences only when the
choice set is discrete.

In the proof of theorem 4.2, we analyze the jump and continuous parts
of  separately. The jump part corresponds to the sums in (4.1), and the
continuous part corresponds to the integrals. The analysis of the jumps
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requires only the ordinary single crossing differences condition. There-
fore, the conclusion of the theorem applies to discrete choice sets under
this assumption, regardless of whether the objective function satisfies
smooth single crossing differences.

We use an example to establish that the ordinary single crossing
differences condition is not sufficient when the choice set is [0, 1].
Let g:[0,1]> - R be given by g(x, 1 = (x — 3. Because g is in-
creasing in x, it satisfies strict single crossing differences. Con-
sider the function Xx(¢#) =¢, which is increasing and continuously
differentiable. Observe that g(x(?), f) satisfies the envelope formula,
because g(x(t), ©) = 0 = g (X(?), t). Moreover, because max g(x, ) = (1 —
0% >0 for t <1, it follows that %(s) ¢ X*(¢). So weakening the as-
sumption of theorem 4.2 to strict single crossing would invalidate the
theorem.

According to theorem 4.2, the fact that X(f) ¢ X*(f) must imply that
some condition of the theorem fails, so the function g must not satisfy
smooth single crossing. For completeness, we verify that, as follows: for
f<t,gx®), ) =30—-1)?>0=g&xQ®),0D.

4.1.3 The Constraint Simplification Theorem

In mechanism design, we sometimes want to identify as completely as
possible the set of performance functions that can be implemented. If
the payoff function satisfies the strict single crossing differences con-
dition and the integrable bound condition, then the monotonic selec-
tion theorem and envelope theorem establish that conditions (1) and
(2) above —monotonicity and the envelope formula — are necessary con-
ditions for optimality. According to the sufficiency theorem, a different
set of assumptions implies that they are sufficient. In models where all
of the relevant assumptions hold, conditions (1) and (2) are necessary
and sufficient for optimality. This fact characterizes the set of feasible
performance functions.

Theorem 4.3 (Constraint simplification). Suppose that the function
g:R x [0, 1] — R is continuously differentiable and satisfies the strict
and smooth single crossing differences properties. Further suppose that
there is an integrable function b(f) such that sup, |g:(x, £)| < b(f). Let
X : 10, 1] - R have range X, and suppose that X = X; + X¢, where X; is a
jump function and X¢ is absolutely continuous. Then x(t) is a selection
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from x*(f) = arg max,.x g(x, t) if and only if the following two additional
conditions are satisfied:

(3)x(:) is nondecreasing;
(4)the envelope formula holds: g(x(1), £) — g(¥(0), 0) =
fot 2 (X(s), ) ds.

The constraint simplification theorem has been a workhorse of opti-
mal mechanism design, because it characterizes the performance func-
tions X(#) a mechanism can implement when the participants act opti-
mally, in their own interests. We will see such applications later in the
chapter.

4%.1.4 The Mirrlees-Spence Representation Theorem
There is along tradition in consumer theory of evaluating the change in
a rational consumer’s choice from a budget set as his preferences shift.
For example, if the consumer’s indifference curve becomes steeper, then
he will generally elect to consume more of the good on the horizontal
axis (Figure 3). Given a parameterized utility function U(x, y, ¢) for a two-
dimensional goods space, indifference curves are steeper with increases
in t when their slope dy/dx = — Ui (x, y, t)/ Uz (x, y, ) is increasing in .
Precisely the same mathematical condition arose again in the cele-
brated optimal taxation and signaling analyses by James Mirrlees (1971)

Good 2 Z Old indifference curve

1
1
i
H|
1

1

New indifference curve

Good 1
Figure 3. In the traditional consumer theory, where the consumer has convex pref-
erences and faces a straight line budget set, a steeper indifference curve leads to
more consumption of the first good.
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Old indifference curve

Good 2

Good 1

Figure 4. Even with the non-convex choice set, a steeper indifference curve still
leads to more consumption of the first good.

and A. Michael Spence (1973). The main analytical difference between
the Mirrlees and Spence models and their predecessors is that the choice
set is not limited to a budget set — a line segment — but can take more
general shapes, as shown above. Even so, a steeper indifference curve
still induces greater consumption of the good on the horizontal axis
(Figure 4).

This mathematical condition — that the indifference curve through
any point becomes steeper with increases in ¢ — implies that two in-
difference curves corresponding to different types can cross only once.
Indeed, if an indifference curve for type ¢ > t were to cross the ¢'-curve
twice, then there would have to be one crossing from above and one
crossing from below, violating the assumption that the ¢-curve is steeper
than the ¢'-curve at any point of crossing. This property that indifference
curves cross once is the reason that the Mirrlees—Spence condition is
often called a “single crossing condition.”

In simple bidding models, choice occurs in a one-dimensional
space: the bidder chooses a bid. However, the bid determines a two-
dimensional outcome — a price and allocation of the good. This fact
creates a close connection between the single crossing conditions for
one- and two-dimensional choice problems. The next result summa-
rizes this connection.?

* For additional development of the relationship between single crossing conditions and the
Mirrlees-Spence condition, see Milgrom and Shannon (1994), Edlin and Shannon (1998a,
1998b).
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Theorem 4.4 (Mirrlees-Spence Representation). Suppose that

() h: R3®—R is a twice continuously differentiable function with
h, # 0 and |h; | bounded, and

(ii) forevery (x, X, y, ) € R?, there exists y’ € Rsuch that h(x', y', 1) =
h(x, y, ).

Then the following are equivalent:

(1) h satisfies the Mirrlees—Spence condition, that is, for all x, y € R,
h(x,y, 0)/|h(x, y, )] is nondecreasing in t.

(2)For every continuously differentiable function f, the function g/ :
R? — Rdefined by g/ (x, 1) = h(x, f(x), t) satisfies the smooth single
crossing differences condition.

Proof. To show (2) = (1), fix &, j, f € R. Set f(2) = J + a(z — %), where
a=—-m{, 7 0/, 7, ). Then, glf(fc, ) =h +ah, =0. So smooth
single crossing implies that

a N
0§§dMMH

5 o (%, 3.0
5 I:hz(x» ¥ 0 (a + hgTj/,t)):L—f

oo o0 h(x, y,1)
[0 (4 i 50) +9),
which implies that h satisfies the Mirrlees—-Spence condition.

To show (1)=(2), we first show that (1) implies gf has single crossing
differences. Let f: R — R be an arbitrary function. Suppose X > X, y =
f(%), and h(x, y, ©) > h(x, ¥, ©). We must show that for any ¢ > f we have
W, 9.1 > h(X, 7, 0.

Suppose not. Because h is continuous in t, there exists f € [f, f)
such that h(x, 7, ) = (X, 7, f). Let {(x(s), y(s))|s € [f, ]} satisfy x(s) =
X+ A(s — Dwherer = (X — X)/(f— ©) > 0, and for all s define y(s) so that
h(x(s), y(s), ©) = h(X, ¥, ). By assumption, such a function y(s) exists. Be-
cause x'(s) = A and h is differentiable with h, # 0, it follows that y(s) is
differentiable and

dy L, adx
hy (x(s), y(s), ﬂ% = —Ihy (x(s), y(9), t)%,
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or

dy _ dx hy(x(s), y(s), 1)
ds — ds hy(x(s), y(s),f)’

Because h, # 0and h, is continuous, this function has a fixed sign, which
we maydenotebyo = I (X, 7, 1)/ |2 (X, 7, | = +£1. Then, because x(f) =
X and x(f) = %,

h(x, 3,1 - h(x, 3, 1)

Py
_ /t S he(s), y19), s

i dx dy
/f _hl(x(s), y(s), t)% + hy(x(s), y(s), t)%] ds

~

hy (x(s), y(s), ©) +Ud_3/] Ny (e(s). y(s), D] ds

/tm ds

~

T, MGG y6s). D | dy
: T (x(s), y(s), D) +°ds] ), y6), Dl ds

0. (4.2)

v

Inasmuch as dx/ds > 0, the inequality in (4.2) follows from (1) (because
the integrand is everywhere larger with functions evaluated at t). The
final equality follows because, by construction, the integrand is every-
where zero.

We now show g/ has the smooth single crossing differences property.
Suppose that f is differentiable and dh(x, f(x), t)/dx = 0. Suppose h, >
0 everywhere and consider any . Then dh(x, f(x), f)/dx = h (x, f(x),
f)+ h(x, f(x), ) f'(x), which has the same sign as h(x, f(x), f)/
h(x, f(x), ) + f'(x), which is greater or less than h(x, f(x), 1)/ h
(x, f(x), ©) + f'(x) = 0asfis greater orless than . Accordingly, g/ has the
smooth single crossing property when h, > 0, and a similar argument
holds when h, < 0. |

Condition (ii) of the theorem asserts that the second good is suffi-
ciently important that it can be used to compensate for any change in
quantity of the first good. This condition is satisfies in all existing auction
models and in any model where ordinal preferences are quasi-linear. For
quasi-linear models, the Mirrlees—Spence condition takes a particularly
simple form.
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Theorem 4.5. The function h(x, y, t) = y + g(x, t) satisfies the Mirrlees—
Spence condition if and only if dg(x, f)/dx is increasing in .

The condition that dg(x, t)/dx is increasing in ¢ is a differentiable ver-
sion of the condition known as increasing differences or isotone differ-
ences. The function g has increasing differences when for all x” > x and
t' >t

gx',t) —gx, t') > gx', 1) — glx, 0. (4.3)

This condition is stronger than single crossing differences in that the lat-
terrequires only thattheleft-hand side of (4.3) mustbe positive whenever
theright-hand side is. The increasing differences condition is useful both
in our analysis and in comparative statics generally.

4.2 Deriving and Verifying Equilibrium Strategies

In this section, we use the preceding theorems to derive the equilibrium
strategies for a class of auctions in which the highest bidder wins.® In
the first few games that we study, a bidder who bids b gets an expected
payoff of

X' ('t — p'b), (4.4)

where vi(#) is i’s value and X?(b) and p'(b) are, respectively, the bidder’s
probability of winning and the expected payment when he makes a bid
of b. If v’ is differentiable and 8¢(¢') is the bid that maximizes (4.4), then
we may define x' () = X'(8(¢')). Suppressing the bidder superscript i,
the envelope integral formula implies that the payoff of a bidder of type
t satisfies

t
V() = V(0) +/ v'(5)x(s) ds. (4.5)
0

We may assume without loss of generality that v(-) is nondecreas-
ing,® which implies that the payoff (4.4) has single crossing differences.
If v(-) is increasing, then the payoff has the strict single crossing dif-
ferences property, so the bidder’s probability of winning is necessar-
ily nondecreasing in his type. If a bidder can win only by making the

5> Klemperer (2002) suggests a similar procedure for deriving equilibria in certain games
related to auction games.

6 If v were not nondecreasing, we could re-label the types to make it so.
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highest bid, then by the monotonic selection theorem, any bidder’s
optimal bid function must be nondecreasing.

The first few examples all employ the auction model that has been
most intensively studied and most often incorporated into other analy-
ses—the symmetric, risk neutral independent private values model, which
we will sometimes call the benchmark or standard model. In this model,
there are N bidders, indexed by 7, and a single item for sale.” The types
are assumed to be statistically independent and identically distributed
according to some continuous density. A bidder who acquires nothing
but pays a price p has payoff — p; a bidder of type t who acquires the
good enjoys a payoff of v(f) — p. Bidders are risk neutral.

The above formulation is redundant. We can specify a completely
general model by setting v(f) = ¢ and eliminating v from the model. Al-
ternatively, withoutloss of generality, we can specify that each type is uni-
formly distributed on [0, 1] and impose any increasing distribution F of
bidder values by setting v = F~1(¢). The first approach is more common
in the literature. The second approach using distributional strategies has
two advantages: (1) it easily generates predictions about bid distribu-
tions for use in empirical work, and (2) it unifies analysis of models with
discrete or continuous value distributions.? In this chapter, we maintain
flexibility by allowing the types to have any distribution F on [0, 1] with a
corresponding density f, and each bidder’s value to be any differentiable,
nondecreasing function of the bidder’s type.

4.2.1 The Second-Price Auction with a Reserve Price
A useful standard with which to compare other auctions in this section
is a variation of Vickrey’s second-price auction in which the seller sets a
minimum acceptable bid, or reserve price, of r. The auction then deter-
mines the allocation just as if the seller had bid . If no other bid exceeds
r, theitem remains with the seller; otherwise, the highest bidder acquires
the item for a price equal to the second highest actual bid, or for the price
of r if it exceeds the second highest bid.

As in chapter 2, bidders in this model have dominant strategies: each
bidder always finds it best to bid his value for the item. If #V and t® de-
note the highest and second highest types, then the dominant strategy

7 The following analysis generalizes to cases with multiple items for sale provided that each
bidder is limited to winning at most a single item.
8 For more about this approach, see Milgrom and Weber (1985).
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leads to a price of max[v(zt®), r] if v(t V) > r, and otherwise to no sale.
These strategies constitute a Bayes—Nash equilibrium for any distribu-
tion of types.

In the Vickrey auction, neither the seller’s nor the bidders’ equilibrium
payoffs depend on the tie-breaking rule. Nevertheless, because ties are
possibleif v is not strictly increasing, it will prove convenient to compute
payoffsinthe event ofties asifthe winner were the bidder with the highest

type.

%4.2.2 The Sealed Tender, or First-Price, Auction

Following Vickrey’s introduction of the second-price sealed-bid auction,
it became common for economists to refer to standard sealed-bid auc-
tions as “first-price” auctions. These are simply sealed-bid auctions in
which the highest bid wins and the highest bidder pays a price equal to
his bid. Alternatively, if the bidders are sellers, a standard sealed-bid auc-
tion is one in which the low bidder wins and receives the corresponding
price.? For simplicity, we assume that if two or more bidders make the
same highest bid, then the item is awarded to one of the high bidder at
random. In addition, we introduce a reserve r so that no award is made
unless some bid exceeds r.

We look for a symmetric equilibrium in this auction, that is, a strat-
egy B:1(0,1] — {0} U (r,00) such that the symmetric strategy profile
(B, ...,B) is a Nash equilibrium. A bidder who does not meet the re-
serve price is said to bid zero. Let us assume that there is some 7 € (0, 1)
such that v(f) = r, that is, the reserve is more than some possible types
would be willing to pay but less than others would be willing to pay.

A preliminary analysis sharply limits the set of potential equilibrium
strategies.10 Observe, first, that it is a dominant strategy for a bidder
with value v(f) < r to bid 0. For bidders with v(#) > r, it is a dominated
strategy to bid less than r or more than v(f). Moreover, there are no
symmetricequilibriain which players make dominated bids with positive
probability. For example, if there were an interval of types with v(#) < r

9 Mathematically, these two cases are indistinguishable. A bid to sell can be modeled as
an exchange at a negative price. In that case, the “high bid” is the one closest to zero, so
the same theory applies. In some actual auctions of packages of contract obligations, it is
unclear whether the package has positive or negative value, so any practical distinction
between buying and selling blurs as well.

10 Griesmer, Levitan, and Shubik (1967) pioneered preliminary analysis of this sort, restricting
the range of functions that can be equilibrium bidding functions.
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that bid r or more, then the event that every bidder’s type lies in that
interval would have positive probability. But then, types in this interval
would have negative expected payoffs (negative payoffs in the identified
event and zero payoffs in the complementary event). Negative expected
payoffs are inconsistent with equilibrium, for every bidder can earn zero
simply by bidding zero.

In a symmetric equilibrium, higher bids necessarily entail a strictly
higher probability of winning. If v is increasing, then the payoff function
satisfies the strict single crossing differences property, so the monotonic
selection theorem implies that any symmetric equilibrium strategy g is
nondecreasing.

More strongly, any symmetric equilibrium bid function g must be
strictly increasing on the subdomain of types for which v(#) > r. If it
were not, then the auction would end in a tie with probability ¢ > 0,
with several bidders bidding the same amount b > r and each strictly
preferring to win at price b. In that case, a bidder planning to bid b could
increase his expected payoff by bidding slightly more, say b’ > b. This
change would increase his probability of winning by ¢ at a cost of at
most b’ — b, which can be chosen to be arbitrarily small, proving that
the original candidate strategy is not an equilibrium.

With an increasing symmetric equilibrium strategy, the bidder with
the highest type wins, provided his value for the good exceeds r. Con-
sequently, the decision performance of this auction is the same as that
of the Vickrey auction with a reserve price r. Because both auctions also
produce an equilibrium payoff of zero to a bidder of type 0, Myerson’s
lemma implies that the expected payoffs of all types must be identical in
the two auctions. Thus, the only possible symmetric equilibrium strat-
egy is the one that makes the expected payments in the two auctions the
same for all types ¢ > 7. We analyze the case of bidder 1 of type t' =t > f,
introducing the notation T = max(#?, .. ., tV). If all bidders adopt the in-
creasing equilibrium strategy, 8, then bidder 1’s expected payment must
satisfy

BOFN' (1) = Elmax(r, v(T)1i7-y]

t
:r-FN‘l(f)+/ v(s) dFN"1(s)

t

t
= v(E)FN-Y(F) + / v($)(N — 1) f(s) FN=2(s) ds. (4.6)
f
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In the first line of (4.6), the expression on the left-hand side is the ex-
pected payment by bidder 1 in the first-price auction: it pays g(#) when
itwins and 0 otherwise, and it winswhen the N — 1 types #2, ..., ¥ areall
less than bidder 1’s realized type, which occurs with probability FV=1(z).
The expression on the right-hand side is the corresponding expected
payment in a Vickrey auction: the bidder in such an auction wins when
T < t and pays max(r, v(T)).

Provided that v is increasing, equation (4.6) identifies the unique can-
didate for the equilibrium strategy. By Theorem 4.6, the strategy is a
symmetric equilibrium strategy.

Theorem 4.6. In the benchmark model (with symmetric, risk neutral
bidders with independent private values), the strategy given by () = 0
for t < f and otherwise by

B(1) = Elmax(r, v(D)|T < 1
FNfl £ t FN—Z
(”+(N—1)f o L)
t

FN-1(p) ds

=v(f) ———

) FN-1(p
is a symmetric equilibrium strategy. If v is increasing, it is the unique
symmetric equilibrium strategy.

Remarks. This theorem applies whether values are discretely or contin-
uously distributed. Suppose bidders have values of 5 or 10, each with
probability 3. To model this case, let v be any smooth, nondecreasing
function with v(f) =5fort € (3, 1) and v(r) = 10for t € (3, 1) and let Fbe
the uniform distribution on (3, 1) U (3, 1). One can model any discrete
distribution of values in a similar manner. These constructions meet
the requirements that F have a corresponding density f and that v be
nondecreasing and differentiable.

When vis not strictly increasing, the distribution of values may have
an atom. Despite the possibility of an atom in the distribution of values,
the distribution of bids is still atomless and still has a density. Effectively,
B then describes a mixed strategy, incorporating instructions for how a
bidder should randomize. Iffor types tand ¢/, v(f) = v(t’), thenthebidder
is indifferent between bidding B(¢) and bidding 8(¢') in each case, so the
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best replies and equilibrium are not unique. But when the distribution
of values has an atom, distinct equilibrium bidding strategies differ only
in the ways they resolve bidders’ indifferences.

Proof of Theorem 4.6. By construction of the equilibrium strategies, the
corresponding payoffs satisfy the envelope condition, and we have al-
ready observed that weak single crossing always applies. Because the
identified strategyis nondecreasing, the sufficiency theorem implies that
no bidder of any type has a better reply among bids in the range of the
bid function. Next, we consider bids outside that range.

Because the strategy implied by (4.6) is continuous and increasing on
t > £, the range of the bid function is the interval [r, 8(1)]. By definition,
the only permissible bid lower than r is 0, so the only permissible bids
possibly outside the range of the bid function are bids of zero or b > B(1).
The first of these is never a profitable deviation, because it earns a payoff
of zero. Any bid b > (1) wins with probability one, given that all bidders
play their equilibrium strategy, and generates a payoffofv(f) — b < v(¢) —
B(1), so it is less profitable than bidding 8(1). Hence, 8(¢) is a best reply
on the whole set of permitted bids.

If v is increasing, then our previous arguments, together with the
monotonic selection theorem, imply that the equilibrium 8 must be
increasing. Then the envelope condition, which is necessary for opti-
mality, can be written in the form (4.6), so any symmetric equilibrium
strategy must coincide with the one we have identified. |

The proof consists of two parts, both of which are indispensable. One
partverifies that there is no profitable deviation in the range of the equi-
librium bid function . The other verifies that bids outside the range of
B cannot lead to higher expected payoffs than bids in the range. To see
why this latter step is essential, consider the strategy according to which
every type of every bidder bids 10. This is a monotonic strategy, and the
corresponding payoffs satisfy the envelope condition. Each type of each
bidder is maximizing its profits over bids in the range of the bid function,
because that range is a singleton. Yet, this is not an equilibrium, because
some bidder types would do better to bid more than 10 and others would
do better to bid less.
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Next we turn to a question about the empirical implications of auction
theory. Laffont, Ossard, and Vuong (1995) investigated the consistency of
empirical distributions of bids with equilibrium bidding behavior. Given
data about the distribution of bids, when can we find a distribution of
values (or, equivalently, a function v) that would produce equilibrium
bidding consistent with the observed outcome? For this analysis, it is
convenient to use the distributional strategy formulation, taking F to be
the uniform distribution on [0, 1].

Theorem4.7. A distribution of bids G with corresponding density G’ > 0
is consistent with the equilibrium in the benchmark model with r = 0
for some increasing value function v and a uniform distribution of types
ifand only if b+ g,‘(lz)) is an increasing function of b for b > 0. In that
case, the value function that is consistent with G is

o t .
A o ¥ e

Proof. Differentiating the equilibrium strategy equation (4.6) with re-
spect to t, we obtain

BOFN ) + (N=DBOFN21) f() = v(O(N— DEN2(0) f(0).

Using the assumption that types are uniformly distributed on [0, 1], we
obtain

B O+ (N- DN 2 = v(@)(N — 1)tV 2,

or

_ B0
T N-1

v(2) + B(1).

Substituting t = G(b) and b = B(¢) leads to

1 GO

v(G(b) = N_1G® +b.

4.7)
Because v and G are increasing functions, the right-hand side must nec-
essarily be increasing as well.

Conversely, suppose the right-hand side expression in (4.7) is increas-
ing in b. Then one can use (4.7) to calculate
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1 t 1
)= (T
v(?) N—lG/(G—l(t))+G (0,
which is increasing in ¢ because v(G(b)) is increasing. To recover (4.6),

we simply reverse the steps. Substituting ¢ = G(b) and b = B(¢), we have

1 t
N-1G@Em
1 ’
=N_ 103 0+ B,
where we obtain the second equality by differentiating the expression t =
G(B(1)) withrespecttot: 1 = G'(b)S'(¢). It follows that g is the equilibrium
bid function corresponding to v when r = 0.!! [ |

v(t) = B

Laffont, Ossard, and Vuong (1995) used the inversion technique above
to estimate the distribution of values that is consistent with bids in an
oral auction of eggplants in a marketplace in southern France. Much of
the structural econometric literature on auctions proceeds in a similar
manner. See Laffont (1997) for a survey of this work.

4.2.3 The War of Attrition Auction

The war of attrition auction was initially developed as a model of com-
petition between two animals of the same species for food or a mate.
The same model has also been used to analyze economic phenomena,
such as exit in oligopoly (Fudenberg and Tirole (1986)) and disputes over
government budgets (Alesina and Drazen (1991)). See also Milgrom and
Weber (1985) and Bulow and Klemperer (1999).

In the biological version of the model, two hungry animals fight over
food until one of them gives up and retreats. The battle is costly to
both, because it demands energy and imposes a risk of injury. A strat-
egy for each animal specifies how long to fight before giving up, which
we may call the animal’s bid, b. The animal that makes the higher bid,
max(b,, b,), wins. The fight lasts until time min(b;, b,), when one animal
quits. Both animals pay min(b, b,), which is the cost of time spent in
battle.

Animals differ in how hungry they are, thatis, in how much they value
winning the contest, so each chooses a bid depending on its type. If

11 One can extend Theorem 4.6 to cover cases in which r > 0 and cases in which both v(-) and

1 G i ictlv i i
b+ §7 G are nondecreasing, rather than strictly increasing.
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each animal optimizes against the strategies played by the others in the
population, then the population strategy will be a function g : [0, 1] - R
that is a symmetric equilibrium of the game.

In view of the interpretations, we set the reserve price in the all-pay
auction game to zero. Then, arguing as for the first-price auction, the
equilibrium strategy 8 must be an increasing function of the bidder type.
A bidder of the lowest type must expect always to lose, so he must bid
zero at any equilibrium, for otherwise he could benefit by deviating and
changing his bid to zero. Hence, by Myerson’s lemma for the case N = 2,
any pure strategy equilibrium must equate a bidder’s expected payment
in the both-pay auction with his expected payment in a Vickrey auction
with no reserve price:

t t
/ Bwa(s) f(s)ds + (1 — F(2) Bwa(®) 2/ v(s) f(s) ds. (4.8)
0 0

The left-hand side is the bidder’s total expected payment in a both-pay
auction, which is the sum of his expected payment when he wins and
his expected payment when he loses. The right-hand side is his expected
paymentinaVickreyauctionwith zeroreserveand N = 2. Differentiating
both sides of (4.8) with respect to ¢ yields

(1 = F(@) Biya (0 = v(0) f(D).

Equation (4.8) always implies that Swa (0) = 0, so the unique solution is

t
puat0 = [ o0 L0 s @9)

By inspection, fwa is nondecreasing. By construction, if all bidders
use this strategy, then their payoffs satisfy the envelope formula. Hence,
the sufficiency theorem applies: no bidder can benefit by deviating to
another bid in the range of Swa. Itis easy to see that no bidder can strictly
increase its payoff by bidding outside that range, so Theorem 4.8 follows.

Theorem 4.8. In the benchmark model, the unique symmetric pure strat-
egy equilibrium of the war of attrition auction game is the strategy de-
fined by (4.9).

The preceding reasoning illustrates the use of the sufficiency the-
orem for verifying equilibrium bidding strategies. Given a proposed
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equilibrium strategy, one first verifies that it satisfies the envelope equa-
tion, which often holds by construction of the strategy. If 8 (¢) isincreasing
and there is no better bid outside the range of 5(¢), then the sufficiency
theorem implies that §(z) is a best reply for each bidder and therefore an
equilibrium strategy.

4.2.4 The All-Pay Auction

Another auction design in which losers pay is the all-pay auction, which
is sometimes used to model bribery. The party offering the highest bribe
receives a contract or some other valuable consideration. Although only
the highest bidder receives the prize, every bidder pays an amount equal
to his own bid. One can again use Myerson’s lemma to establish that
with N players, the only possible equilibrium strategy equates the bid
(which is also the bidder’s expected payment) with a bidder’s expected
paymentin the Vickrey auction with zero reserve. The candidate strategy
is therefore

t
Bap(t) = / v(s) (N — 1) FN=1(s) f(s) ds. (4.10)
0

The left-hand side is the payment by the briber of type ¢, whereas the
right-hand side is the corresponding expected payment made in a Vick-
rey auction with N players.

Theorem 4.9. In the benchmark model, the unique symmetric pure strat-
egy equilibrium of the all-pay first-price auction game is the strategy
defined by (4.10).

The proof of Theorem 4.9 uses the sufficiency theorem and resembles
others in this chapter.

4.3 Revenue Comparisons in the Benchmark Model

In this section, we present five variations of the benchmark auction
model in which expected revenues differ systematically and predictably
among the standard auction formats. The conditions that invalidate the
revenue equivalence theorem in the five variations are (1) bidding costs,
(2) riskaversion, (3) budget constraints, (4) post-auction choices of quan-
tity by the auctioneer, and (5) correlation among bidder types. To simplify
notation, we assume except where noted that types are independently



120 Bidding Equilibrium and Revenue Differences

and uniformly distributed and that values v(¢) are a smooth, increasing
function of the type.

We study bidding costs and risk aversion in the same section because
they occur in models where payoff equivalence for bidders may obtain
even though the revenue equivalence theorem does not hold. Bidding
costs are modeled as the costs of participating in an auction while the
auction is running, so shorter auctions lead to lower costs. What is in-
teresting in the bidding cost model is that the length of the auction is
endogenous. For example, bidders may make jump bids to bring the
auction to an early completion.

Risk aversion, as we saw in the last chapter, does not necessarily
invalidate payoff equivalence, but it increases bids in first-price auc-
tions. The reason is that risk averse bidders trade lower profits for
a greater likelihood of winning by increasing their bids. This effect,
whichisabsentin second-price auctions, increases revenue in first-price
auctions.

Budget constraints also induce variation in auctions’ performance.
The constraints are more damaging in second-price auctions than in
first-price auctions, because the equilibrium bids are higher in (uncon-
strained) second price auctions.

In some procurement auctions, bidders submit price bids to a buyer,
who takes the best bid and then determines what quantity to buy. This
quantity decision systematically affects the comparison among auc-
tions. If the buyer tends to buy a larger quantity at lower prices, then
the bidder in a first-price auction bids less than he otherwise would,
because the larger quantity he sells partly offsets his reduced markup.
There is no similar effect in the second-price auction, so prices tend to
be lower in the first-price auction.

Positive correlation among bidder types is yet another source of sys-
tematic variation, operating through what Milgrom and Weber (1982)
called the linkage principle. Surprisingly, a bidder with a high type can-
not avoid paying a higher average price in a second-price auction by
bidding as if his type were lower. Because the second highest bid is pos-
itively correlated with his own type, the expected price he pays for any
given bid is an increasing function of his type. This direct linkage of the
price to the bidder’s type raises the prices that higher types pay and re-
duces their profits in the second-price auction, but not in the first-price
auction. Because this linkage effect does not affect the efficiency of the
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outcome, itraises the average revenue in the second-price auction above
that in the first-price auction.

In a later chapter, we illustrate other applications of this principle. We
will find, for example, that if the seller has verifiable private information
correlated with the bidder’s information, then revealing it links the bids
to the information revealed, which can also increase prices.'?

4.3.1 Payoff Equivalence without Revenue Equivalence

Risk Averse Sellers

In the symmetric independent private-values model, although the ex-
pected payoffs are the same for the first- and second-price auctions, the
variability of payoffs differs. In a first-price auction, losers always earn
zero and a bidder of type t who wins receives payoff v(¢) — b. In contrast,
in a second-price auction, a bidder of type ¢ who is informed that he has
won still faces additional uncertainty: he still does not know what price
he will pay.

Two propositions below explore the consequences of the additional
risk associated with second-price auctions. We find, first, that the extra
risk facing a winning bidder in a second-price auction induces more
randomness in the seller’s payoff as well. So, if the bidders are risk neutral
but the seller is risk averse, then the seller should prefer the first-price
auction. Theorem 4.10 below formalizes this intuition.

Let tV and t® denote the first and second order statistics
among (', ..., tN). Then the seller’s realized equilibrium revenue is
Brp ()1, ¢wy=p in the first-price auction and max(r, v(t?))1, )=, in
the second-price auction.

Theorem 4.10. In the benchmark model, for any strictly concave utility
function function U,

E[U(Bre (1) 1peoyzn)] = E[U(max (r,v (t%)) 1, @)=n) ]

That is, the seller’s expected utility is higher in the first-price auction
than in the second-price auction.

12 When revealing information affects the allocation of the good(s), then doing so need not
benefit the auctioneer. See Perry and Reny (1999) for an example.
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Proof. Without loss of generality, we may normalize so that U(0) = 0.
Then

E[U(max(r, v(t®)) 1 yqo=n] = E[E[U(max (r, v(¢))) Luun=n|£V]]

E[E[U(max (r, v(t®))) 11"V ]11p0)2n ]

< E[U[E(max (r, v(£*))11V) |11y qwy=r ]
= E[U(,BFP (t(l))) 1(1,(,;(1))2,»}].

The first step uses the law of iterated expectations; the second follows be-

cause the indicator function is measurable with respect to tD; the third

uses Jensen'’s inequality!'3; and the last follows from our earlier charac-

terization of the equilibrium bidding strategy (namely, when v(#'V) > r,
Brp(s) = E[max(r, v(t®)) | 1 = s]). u

=)

The heart of the proof is the observation that, given 1), the price in
the second-price auction is a random variable with mean Bep (t1). Con-
sequently, the seller’s revenues in a second-price auction have the same
mean and greater “riskiness” than in a first-price auction. Accordingly a
risk averse seller prefers the first-price auction in the benchmark model.

Risk Averse Bidders

In chapter 3, we found (using a particular symmetric model) that when
bidders have constant absolute risk aversion, the first- and second-price
auctions generate the same expected payoffs. Conditional on his type
(but not on the amounts of the other bids), a winning bidder in a second-
price auction faces a price risk. If the bidder is risk averse, his expected
utilityis thereforeless than his value minus the expected price. The payoff
equivalence theorem therefore implies that the average price must be
less in the second-price auction than in the first-price auction.

This conclusion also holds in models more general than the bench-
mark. Abidder’srisk aversion does not change her dominant strategyin a
second-price auction, but it increases her equilibrium bid in a first-price
auction. Bidders’ risk aversion increases bids in a first-price auction,
because raising one’s bid slightly in a first-price auction is analogous
to buying partial insurance: it reduces the probability of a zero payoff
and increases the probability of winning, although with a lower profit

13 Recall that Jensen’s inequality states that for any convex function f, E [f(x)] > f (E[x]).
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margin. Risk averse bidders value fairly priced insurance, so they bid
more than they would if they were risk neutral.

To compare revenues when bidders are risk averse, we must first char-
acterize the equilibrium bidding strategy Y, used by an expected-utility-
maximizing bidder in the first-price auction. Once again, the constraint
simplification theorem is crucial. Throughout our analysis, we make the
normalization that U(0) = 0. Then, if the greatest opposing bid has dis-
tribution H, a bidder of type t who bids b receives an expected payoff
of

I1(b) = Uw(®) — b H(D). (4.11)

A bidder of type ¢ can plainly restrict attention to bids b < v(f) and
can equivalently maximize the logarithm of his objective function:
InTI(b) = In (U(v(f) — b)) + In H(b). Because v is increasing, if In U(-) is
concave, then Theorem 4.5 implies that In T1(b) satisfies single crossing
differences. Then, the bidder’s best reply strategy 8 to any competing
strategies must be a nondecreasing function. By arguments like those in
section 4.2.2, the equilibrium bid function must actually be increasing.
If the bid function is differentiable and the bids satisfy the first-order
optimality conditions, then the envelope condition is necessarily satis-
fied.!* So an increasing function satisfying the first-order conditions is
indeed an equilibrium.

Theorem4.11.'% Supposeln U(-) is concave and differentiable and define
¢ byv(r*) = r.Then the unique symmetric equilibrium strategy %, of the
first-price auction is the solution to the following differential equation
with boundary condition B, (%) = r:

N-1 U (v - Y®)
BL@ U - LO)

(4.12)

Proof. The bidder’s problem is to maximize

InTI(h) = In (U() — b)) + In HD).

14 To see this, suppose that fi(b(r), 1) = 0 and that b is differentiable. Then d% fb@®,n =
Hb@), D (@) + f2(b(0), 1) = f2(b(0), 1), and the integral formula follows by the fundamental
theorem of calculus.

15 Charles Holt, Jr., first proved this result.
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The first-order condition is

U'(v(®) — b) 1 dH(D)

" U0 -b T HB b 0.

Suppressing the super- and subscripts of Y, and using H(b) =
(B~1(1)N~1, we have

1 dH(b) N-1
Hb) db ~ 80’

SO

Uww-b N-1_
U —b B

By inspection, because U, U’ > 0 for positive arguments, the solution
to (4.12) has a non-negative derivative BY,(¢) everywhere, so the func-
tion BY, is increasing. Because we obtained the solution from the first-
order condition, the corresponding expected payoffs satisfy the envelope
formula. Hence, by the constraint simplification theorem, the solution
function BY, is a best reply to itself. [ |

The next theorem asserts that in a first-price auction, the equilibrium
bid function is higher when bidders are risk averse than when they are
risk-neutral. Intuitively, this is a plausible conclusion, because when fac-
ing the same distribution of opposing bids, a risk averse bidder always
bids more than a risk neutral bidder, and in fact the more risk averse
the bidder, the higher the optimal bid. Still, the proof is not immediate,
because there are equilibrium effects. Once one bidder adjusts his bids
to account for risk aversion, the other bidders’ problems change, and all
effects need to be traced through to equilibrium. There is a simple tech-
nique that we will use repeatedly to show that certain rankings of bids,
payoffs or distributions that we find out-of-equilibrium are preserved in
equilibrium. To highlight our method, we give the basic tool a name: the
ranking lemma.

Ranking lemma. Suppose f:R — R is a continuously differentiable
function such that f(#) > 0. If () forallt > t, f(#) < 0= f'(t) >0, then
(i) forall ¢ > ¢, f(#) > 0. Similarly, if (') forallt > ¢, f() = 0= f'(f) > 0,
then (ii’) forall t > ¢, f(f) > 0.
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Proof. Suppose to the contrary that (i) holds, but for some ¢ > t we have
f(®) < 0. Let = sup{s € [t, t]| f(s) = 0}. Then, for all s € (£, 7], f(s) <O
and f(#) = 0. By the mean value theorem, there exists f € (, t] such that
f'(£) = f(t)/(t— D < 0, contrary to condition (ii) of the lemma. So no
such ¢ exists. The second conclusion is proved similarly. |

Armed with this lemma, we show that, at equilibrium in a first-price
auction, risk averse bidders bid more than risk neutral bidders.

Theorem 4.12. Let Brp be the symmetric equilibrium strategy in a first-
price auction with reserve r for risk neutral bidders, and let ﬂgp be the
symmetric equilibrium strategy with a differentiable, strictly concave
utility function U. Then for all types t > ¢*, Bpp(f) < ﬂlﬁfp(t).

Proof. Theboundary conditionis Bpp(t*) = ﬂgp(t*). Becauseforall t > t*
we have

N-1 U (v®—BH®)

NG CGEYEAG)

and
N-1_ 1
PBrp®  v(1) — Brp ()’

it follows that
Bip (1) N-1 /31%(1?) U (v(t) - ﬂé{a(t))
= = 7 (4.13)
v(t) — Brp (1) t U (v(®) — B (D)

Because U is strictly concave and U(0) = 0, it follows for x > 0 that
xU'(x) < U(x). Combining that inequality with x = v(f) — ﬂléfp(t) and us-
ing (4.13) and BY, () > 0, we have

U (v(t) — B (D) - B (@
U@ —B%®) v - %0

B Ly
0@ — Bentn) e

Hence, for all £ > 0, Brp(t) > B% (1) = Brp(t) < Bio(t), and applying the
ranking lemma to the function B, (f) — Bep(t), we conclude that Bep(f) <
B (@) forall ¢ > . -
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Jump Bids in Auctions with Costly Bidding

We next study a model in which each bidder’s cost of participating in an
auction includes the cost of his time. This model is a simplified version of
one presented by Avery (1998), who argues that time costs are plausibly
important in many kinds of ascending auctions.

To allow for time costs, we expand our description of the outcome
of an auction to include the identity of the winner, the price, and the
amount of time that each bidder is active. Although the second-price and
ascending auctions are strategically equivalent in models where only the
winner’s identity and the price matter, they are not strategically equiv-
alent here, because the payoffs differ: the ascending auction requires
bidders to spend a positive amount of time bidding, whereas the second-
price auction has zero duration.

Suppose the auctioneer raises the bids continuously in time. Bidders
can drop out of the auction at any time, but that decision is irreversible.
Suppose that bidders receive no information about others’ bids before
the end of the auction. Then one can describe a strategy by a number, or
bid, designating the highest price at which the bidder will remain active.
As in the second-price auction, the highest bid determines the winner,
and the second highest bid determines the price. We select units so that
prices rise by one money unit per unit of time. Bidders incur a cost of ¢
per unit of time while they are active.

The point of our model will be to explore the tactic of jump bidding
to intimidate other bidders. A bidder may open with a high bid to make
competitors think: “That guyis determined to bid high. There is no point
wasting valuable time participating in this auction, for I'll likely lose. I'll
drop out now.”

In the equilibrium studied below a high opening bid of B will indeed
intimidate certain bidders who would otherwise have bid more than B.
Moreover, in equilibrium, bidders who make jump bids benefit both by
shortening the auction and, sometimes, by getting a lower price. Jump
bidding increases a bidder’s payoff in relation to its payoff if it does not
jump, but it doesn’t follow that allowing jump bidding benefits bidders
at the expense of the seller. We will find that, to the contrary, the seller
benefits on average from the jump bids - obtaining higher expected equi-
librium revenues.

Payoff equivalence provides valuable intuition about the effect of
jump bidding on revenues. In this model, the highest type bidder still
wins. So, applying the envelope theorem, the level of bidding costs ¢
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does not affect the equilibrium expected profits of any type of bidder,
regardless of whether there is jump bidding. In equilibrium, the jumps
reduce the average duration of the auction, so the total expected sur-
plus is higher. Because the seller’s revenue is equal to that total surplus
minus bidder profits, it is the seller who benefits on average from jump
bidding.

Consider a bidder of type t who chooses a strategy (or “bid”) b that
wins with probability p(b), results in expected participation time of 7 (b)
as an active bidder, and generates an expected payment of r (b). Note
well that the “bid” in this formula is not a number, but a plan for bidding
in the auction. Then, the auction yields an expected profit of v(#) p(b) —
ct(b) — (D), so if the optimal strategy is b*, then the envelope formula
asserts that V(1) — V(0) = fot pb* (s))v'(s) ds. In this formula, expected
profits depend in the usual way on the probability of winning, but they
do not depend on the time cost c. If the highest type bidder always wins,
then the envelope formula prescribes that the equilibrium profits are
independent of the bidding costs ¢ and the same as in a second-price
auction (for which time costs are zero). This observation enables us to
guess the equilibrium strategy.

We first analyze an ascending auction in which jump bidding is not
permitted. Suppose the game has a strictly increasing symmetric equi-
librium bid function 8.. Then, by direct calculation, the expected payoff
of a bidder of type t must be

t
Vi) = vtV —¢ </ Be(s) ds™ 1 4 B.()(1 — tNl))
0
t
—/ Be(s) ds™ 1. (4.14)
0

This formula expresses the bidder’s maximal payoff as the expected value
received minus the time costsincurred (whether the bidder wins orloses)
and minus the expected payments made. As argued above, this payoff
must be the same as the expected payoff in a second-price auction with-
out any time cost, which is

t t
1405 =/ v (s)sVlds = vtV ! —/ v(s) dsNV L. (4.15)
0 0

Equating the right-hand sides of (4.14) and (4.15) and differentiat-
ing with respect to t leads to the differential equation v(f) — B.(f) =
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2N — (NN BL(r). We solve this differential equation to identify
the equilibrium.

Theorem 4.13. Suppose that 0 < v(0) and 0 < v'(0). In the symmetric as-
cending auction model with no jump bidding allowed and a zero reserve
price, there is a symmetric equilibrium strategy satisfying

v(f) — Be() N2
1 — -1

B:(0)=0 and B.(H=(N-1) (4.16)

Proof. Because p is increasing in b, the expected payoff function
v(f) p(b) — ct(b) — = (b) has increasing differences as a function of (b, ?).
The solution has 8.(¢) > 0, so the proposed strategy is increasing. By
construction, the solution satisfies the first-order condition, and so it
satisfies the envelope formula. Hence, by the sufficiency theorem, there
are no profitable deviations from this strategy to bids in the range of g.
No bids below the range of the equilibrium strategy are possible, and
bids above the range lead to the same payoff as 8.(1). [ |

Equation (4.16) implies that if v(0) > 0, then B.(f) < v(¢) forall ¢ < 1.
Without time costs, bidders would bid up to v(#). So, at equilibrium,
bidders bid uniformly less in the ascending auction with time costs than
in the corresponding auction without them. Consequently, revenues are
uniformly lower than in the sealed-bid second-price auction. Although
we used the payoff equivalence relationship to guess the equilibrium
strategy, the revenue equivalence theorem does not apply.

Accordingto (4.16), .(0) = 0,and if N > 2 then B,(0) = 0 aswell, even
though v(0) > 0. Thus, low type bidders bid much less than their values.
This contrasts sharply with the equilibrium bidding strategies for the
benchmark case with ¢ = 0, for in that case even low type bidders bid
all the way up to their values. Intuitively, when ¢ > 0 and N > 2, bidders
with very low types find the probability of winning to be so small that
any substantially positive bid earns negative expected profits. As costs
go from zero to something positive, the equilibrium strategies change
discontinuously.

If bidders can make jump bids, the equilibrium analysis changes. In
addition to intimidating other bidders, bidders can avoid some time
costs by jump bidding. Against these advantages, bidders must weigh
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the disadvantage that a jump bid can jump over the maximum price
anyone else would have been willing to pay, leading the bidder to pay
too much for the item.

What might an equilibrium with jump biddinglooklike? In our simple
model, we allow bidders at the opening of the auction to jump to some
specified number B. The auctioneer tells everyone when someone has
jumped to B, but provides no further information.

Under these assumptions, each bidder must make four decisions.
First, will this bidder jump at the opening bid? Second, if the bidder
does jump, how high (b;) should he continue to bid after the jump be-
fore dropping out? Third, if nobody jumps, how high (&) should the
bidder continue before dropping out? Fourth, if the bidder does not
jump but the auctioneer announces that someone has jumped, how
high (b;) should he continue before dropping out? A bidder’s plans
for situations that will not arise under its planned strategy are irrele-
vant. So, limiting attention to reduced strategies, we may specify that if
the bidder plans not to jump, then b; = 0, and otherwise b, = bs = 0.
Let us say that a bid for any given type in this game is the triple
b= (b, b, bs), and a strategy is a triple 8 = (81, B2, 3) mapping types
into bids.

The symmetric equilibrium strategy is characterized in Theorem 4.14
below. We derive it here using the envelope formula and an analysis of
boundary conditions. We look for a symmetric equilibrium in which (i)
bidders jump exactly when their types exceed some cutoff f and (ii) the
winner is always the bidder with the highest type.

We begin by examining equilibrium bidding for ¢ < f. At equilibrium,
bidder payoffs for types in this range must satisfy the following equation:

t
Vi) = vtV ¢ < f Bo(s) dsN 1 + Bo () (BN — rN—l))
0

t
—/ Ba(s) dsNL. (4.17)
0

Equation (4.17) is similar to (4.14). The difference reflects the fact that
in a model with jump bidding, if some bidder has a type greater than
f, then that bidder jumps at the outset of the auction and bidders with
types less than f drop out and do avoid any bidding costs.

We can characterize the bidding strategy for types ¢ < f by equating
the envelope expression for V() in (4.15) with the expression in (4.17)
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and differentiating with respect to ¢. This leads to a differential equation,
which we report as (4.19) in the theorem.

For bidders with ¢ > £, we use a similar method. The relevant payoff
formula is

t
Vi) = vtV —¢ ( / (B1(s) — BydsN ' + (B1() — B) (1 — rN—l))
t
t
—BfN-! —/ Bi(s) dsN1. (4.18)
f

The first term in (4.18) is the value of the item when the bidder wins. The
second is the time cost incurred. After a jump to B, bidders incur time
costs to the extent they bid above B. The last two terms correspond to
cash payments. The winning bidder after a jump pays B if nobody else
jumps, and otherwise pays the second highest bid.

We can characterize the bidding strategy for types ¢ > f by equating
expressions (4.15) and (4.18) and differentiating with respect to ¢. This
again leads to the differential equation, which we report as (4.20) in the
theorem below.

Thelast piece is to determine the smallest type fthat jumps. Atequilib-
rium, if bidders jump exactly when their types are above f, then a bidder
of type f who does not jump expects to win when no competitor jumps,
and his expected payment is the amount expressed on the right-hand
side of (4.21). Thus, condition (4.21) requires that any bidder’s expected
payment be exactly the same whether he bids up to 8, (f) without jump-
ing or jumps but drops out immediately in case someone else jumps as
well.

Theorem 4.14. In the symmetric ascending auction model with jump
bidding to B allowed and a zero reserve price, there is a symmetric equi-
librium strategy . At this equilibrium, there is a type f such that all
types t < { refrain from jumping, and they drop out if anyone else jumps
(B1(8) = B3(t) = 0). At equilibrium, B, (f) satisfies

v(f) — Ba(t) N2

B2(0)=0 and A1) =(N-1) T (4.19)
Types t > fdo jump (hence B (f) = B3(f) = 0), and B, satisfies
_ N-2
pf)=B and pin=N-pn B PO I (4.20)

1— V-1
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The type { satisfies

i
BNl =1+ c)f Bo(s) dsNL. (4.21)
0
At equilibrium,

B2(f) = v(f) > B. (4.22)
Remarks. Jump bidding successfully intimidates bidders in the identi-
fied equilibrium; that is, competitors who do not jump themselves all
drop out immediately after a jump. According to (4.22), the intimidated
bidder types include ones that, but for the jump, would have been pre-
pared to bid strictly more than B.

Proof. By construction, the strategies satisfy the envelope derivative for-
mula for all types except possibly £, and by (4.21) the payoff function is
continuous at £. Hence, the envelope integral formula holds everywhere.
Also by construction, higher types win with higher probabilities, and the
payoffs satisfy the increasing differences property. So, by the sufficiency
theorem, there is no profitable deviation within the range of the equi-
librium strategy. By inspection, there is also no profitable deviation for
any type outside the range of the proposed strategy, so the strategy is an
equilibrium strategy.
Forall 7 € [0, f], we have

/ ﬁz(s) ds
—2

-1
mln[v(t) ﬁz(t)]/ st

B2(f) — Ba(F)

v

c

N-1
= min [v(8) — B2(1)] - co.
Cc telf,

Thisimplies that for all 7, the minimum term is zero. Hence, by continuity,
v(f) — po(f) = 0.

By the envelope formula, the expected profit of type f is positive, so
B < v(f). [ ]

Theorem 4.15. In the equilibrium with jump bidding determined by
(4.19)-(4.21), every type of every bidder earns the same profit as in the
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equilibrium without jump bidding determined by (4.16), and bidders
with types less than # incur lower time costs in the auction with jump
bidding.

Proof. By Myerson’slemma, because V(0) = 0 in both auctions and the
decision performance is the same, the expected payoff of each bidder
type is identical for the two auctions.

For t < f, comparing (4.16) and (4.19), either B,(f) > B.(t) or B, (t) >
B.(t). Because 8.(0) = ,(0) = 0, applying the rankinglemma to the func-
tion By (f) — B:(f), it follows that B,(f) > B.(¢) for all types t € (0, f]. Be-
cause the sum of expected payments and time costs of the bidders is
the same in the two auctions but the bidders expect to pay more in the
auction with jump bidding when ¢ < £, their expected time costs must
be less in that auction than in the auction without jump bidding. |

Curiously, although bidders with types greater than f may save signif-
icant amounts of time by jump bidding, no general theorem proves that,
in equilibrium, they always save time in this way.

%4.3.2 Budget Constraints
Following Che and Gale (1998), we modify the benchmark model by as-
suming that each bidder has a limited budget and can never pay more
than a fixed sum B. To simplify the exposition, we assume that v is
strictly increasing and that there exist types # and 7z such that v(%) =r
and v(tg) = B. This change hardly affects our analysis of bidding in the
Vickrey auction. Bidders still have a dominant strategy, which is to bid
min(B, v(f)) —the lesser of the actual value and the available budget. The
argument is similar to the one for a model without budget constraints.
We previously argued that in a first-price auction, ties cannot occur
at equilibrium between bidders with values above r, because each bid-
der would have an incentive to increase his bid very slightly. In that
way, he would incur an arbitrarily small cost while discretely increas-
ing his chances of winning profitably, and such a possible deviation is
inconsistent with Nash equilibrium. The same argument still holds for
prices below the budget limit B. However, ties can occur at B, because
increases in bids above B are infeasible. We infer that the symmetric
equilibrium bid function, if one exists, must be strictly increasing on the
domain of types for which v(f) > r up to the lowest type tr that bids B.
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Applying the envelope formula as before, we conclude that the equi-
librium payoffs for types less than ¢z must coincide with their payoffs in
the unconstrained first-price auction, so the bid functions must coin-
cide as well. Because all higher types will bid B, such a bid must occur
with positive probability. Therefore, the equilibrium bid function must
jump at the argument #z; otherwise any bidder with a slightly lower type
than ¢z would bid B instead, because doing so wins the auction with a
discretely higher probability but incurs only a slightly higher cost.

We can identify the lowest type ¢ that bids B by equating its expected
profit from bidding B to that specified by the envelope formula. As pre-
viously noted, there is no loss of generality in assuming that F is the
uniform distribution on [0, 1], so F¥~1(s) = s¥~1. We maintain that as-
sumption in these calculations:

173
/ sV (s)ds = (v(tr) — B) P(tg), (4.23)
t
where
N-1
P(p) =Y CIN-1, 05" *a — )k + . (4.24)
k=0

The left-hand side of (4.23) is the bidder’s expected profit according
to the envelope theorem. The right-hand side is the expected profit from
bidding B, obtained by multiplying the winner’s profit v(¢z) — B by the
probability of winning P(¢r), as given by (4.24).

To derive (4.24), note first that when the bidder ties with k other bid-
ders, he wins with probability (1 + k)~'. Hence, the probability P(tr)
is equal to the sum over k of the probability of a tie involving k other
bidders at bid B times (1 + k)~!. In expression (4.24) C(N, k) denotes
N/ (k/(N - k).

Theorem 4.16. There is at most a single solution ¢z to (4.23). When a solu-
tion exists, it corresponds to the unique budget-constrained symmetric
equilibrium of the auction, which is given by

Bep() ift <tp,

P =) p if > tp.

(4.25)
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Proof. Observe that the derivative of the left-hand side of (4.23) with
respect to fz is t,iv —1v/(tr), and that of the right-hand side is P(¢r)v'(tr) +
(v(tg) — B) P'(tg). The first term of the derivative of the right-hand side
is larger than the derivative of the left-hand side,'® and the second term
of the derivative of the right-hand side is positive. Hence, viewing the
left- and right-hand sides of (4.23) as functions of tz, the slope of the
left-hand side is always less than that of the right-hand side. So there is
atmost one solution to (4.23). By the arguments in the text preceding the
theorem, if a symmetric equilibrium strategy exists, it must satisfy (4.25).

By the constraint simplification theorem, no type can strictly profit
by deviating to any bid in the range of 8rg. The only feasible bids not in
thatrange are the bids b € (Bpp(tr), B). Given the equilibrium hypothesis
that the other players adopt the strategy Bgg, bidding Brp (f7) wins against
precisely the same type vectors as any such bid band reduces the bidder’s
price conditional on winning, so no such bid can be a strict improve-
ment. Hence, the strategy Brp is a symmetric equilibrium strategy. H

The theorem covers the case in which a solution to (4.23) exists. It
can fail to exist in two ways. One possibility is that the left-hand side of
(4.23) is larger than the right-hand side for all values of #. In that case,
one can identify the equilibrium by setting tr = 1 in (4.25): the budget
constraint does not bind. The second possibility is that left-hand side is
smaller than the right for all values of #z. In that case, one can identify
the equilibrium by setting #= = 01in (4.25): all bids are B, and the auction
allocation is entirely random.

The next theorem compares the effects of the budget constraint on
the performance of the two kinds of auctions.

Theorem4.17. The expected revenue from the first-price auction with re-
serve r and budget constraint B is greater than that of the corresponding
Vickrey auction. The first-price auction yields the same decision perfor-
mance and expected revenue as a Vickrey auction with reserve r and
budget v(#r) > B.

Proof. By the preceding theorem, the first-price auction with budget
constraint B and where # is the lowest type that bids B generates the

16 P(ty) is a sum of positive terms, including the term £ .
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following allocation performance: (i) no award if the highest type has
v(tV) < r, (ii) type 1V wins if 1V < #r and v(tV) > r, (iii) arandom award
among bidders of types greater than ¢ if ' > #z. This performance
is precisely the same as in the Vickrey auction with budget constraint
v(tr) > v(tg) = B. Therefore, Myerson’s lemma implies that the two auc-
tions have the same expected payments. The allocation performance
differs from that of the Vickrey auction with budget constraint B, where
the lowest type to bid Bis t5 < r. Clearly, a Vickrey auction with a lower
budget constraint produces lower expected revenue. |

The intuition behind the proofis that the likelihood of high payments
varies among auction designs, so the designs vary in how much budgets
constrain bidders. The highest payment made by any type in the first-
price auction isless than that in the second-price auction, because high-
value bidders always pay less than their values in a first-price auction.
This suggests that budget constraints are less likely to bind in a first-price
auction. The theorem proves a stronger statement — that the first-price
auction duplicates the allocation of a second-price auction with a higher
budget limit. Therefore, in particular, it generates more revenue than a
second-price auction with the same budget limit.

4.3.3 Endogenous Quantities

When buyers conduct auctions, the quantities they buy often depend on
the price they pay. For example, consider a large company trying to pro-
cure hotel rooms for its traveling management team in a particular city.
Each hotel offers a price per room to the large company in a competitive
auction. Once the company receives the bids, individual travelers decide
how frequently to travel and whether to use the company travel service
to reserve rooms. Thus, the number of hotel-room-nights sold will de-
pend both on the winning bidder and on the winning bid. Hansen (1988)
has shown that this endogenous quantity choice has effects on bidding
incentives similar to those of risk aversion. That is, endogeneity of the
quantity traded reduces bids in a first-price auction without changing
incentives in the second-price auction.

To facilitate comparisons with earlier results, we continue to assume
that bidders are buyers, but now we assume that buyers have a per unit
value v(f) and are happy to buy multiple units, while the seller supplies
a number of units, S(p), that increases with its price p. Clearly, in this
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case, the incentives in a second-price auction are just the same as when
S=1.

Arguments that by now are familiar imply that in analyzing the first-
price auction we canrestrictattention to strictlyincreasing bid functions.
The equilibrium bidding function g = £S5 must solve

(1) € argmax(v(7) — b (B YN S(b), (4.26)

where v(f) — b is the “profit” margin on each unit, (87'(b))V~! is the
probability of winning, and S(b) is the supply function stipulating the
quantity supplied by the seller given bid b.

Theorem 4.18. Suppose Sisincreasing and differentiable, log S(b) is con-
cave, and v'(0) > 0. Define t* by v(t*) = r. Then, the unique symmetric
equilibrium strategy g = Bf; of the first price auction with endogenous
supply function S solves the following differential equation with bound-
ary condition (") =r:

N-1 1 _S(BW)
B v —-p@  SBO)’

(4.27)

Proof. Taking the logarithm of the objective (4.26) and then evaluat-
ing the first-order optimality condition at b = B(¢) leads to (4.27). Using
(4.27), B(t*) = r, and the concavity of log S(b), the bid function B(¢) is
nondecreasing.!” By the usual argument, 8(#) is the unique candidate
for a symmetric equilibrium. Furthermore, by construction, the equi-
librium bid satisfies the first-order conditions and hence the envelope
integral formula. By the constraint simplification theorem, g is a sym-
metric equilibrium strategy. |

17 By inspection, g’(*) = 0. We show that there can be no interval (¢, f) c [¢*, 1] such
that g/(f) = 0 and for all ¢ € (¢, ), B/'(t) < 0. If there were such an interval, then B'(f) =
f_; B"(s)ds < 0 for all £ € (¢, f). Then, setting S = log S, differentiating both sides of (4.27)
and multiplying by —1, we would have

(N-DB@O+8"(®) VO -0

5 = 4 r S// ).
(B (1)) w0 8@y T O B

Because §'(f) < 0 and S is concave, the right-hand side of this equation is positive. For the
left-hand-side to be also positive, we must have g”(¢) > 0forall ¢ € (¢, §), which contradicts
B'(0) = [ B"(s)ds < 0.
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Theorem 4.19. Suppose S is increasing and differentiable, log S(b) is
concave, and v'(0) > 0. Define ¢* by v(¢*) = r. Let Bpp and ﬁES be the
equilibrium bid functions in a first-price auction with reserve r for ex-
ogenous supply (§" = 0) and endogenous supply S;q > 0 respectively.
Then, for all types t > t*, Brp(t) < ;351? (). In other words, bidders bid
more when supply is responsive to the price.

Proof. By (4.27),if Bep (1) > BES (1) then Bip (1) < BES (7). Given the bound-
ary condition Bpp(t*) = ,ng(t*), the conclusion follows from the ranking
lemma, applied to the function ﬂr]_ag‘ () — Bep(D). [ |

In this model, because equilibrium for the second-price auction does
not depend on the supply function, the expected price for the second-
price auction is Bgp(f) when the winner’s type is . Hence, with endoge-
nous supply, first-price auctions lead to higher average prices.

4.3.4 Correlated Types
When real bidders participate in an auction, they sometimes use their
ownvalues asinitial estimates of other bidders’ values. For this procedure
to make sense, types must enjoy a positive statistical association rather
than being independent as we have previously assumed. Here, we treat
the model of correlated types introduced by Milgrom and Weber (1982).
When types are correlated, the problem of choosing an expected-
profit-maximizing bid (ignoring ties) becomes

max W'(¢) — b)Fg(b|t), (4.28)

in which Fjy is the conditional probability distribution of the highest
opposing bid given the bidder’s type.

The bidder’s problem in this model differs from that of other models
in that the probability that a bid b wins depends jointly on the bid and
the bidder’s type rather than on the bid alone. We may limit attention to
bids b < v(#'), as higher bids would be unprofitable. Taking logarithms,
the problem becomes

max (In('(#) — b) + In Fp(b|t)]. (4.29)

If v' is increasing, the first term satisfies the condition of increasing
differences and therefore smooth single crossing differences. If the bid



138 Bidding Equilibrium and Revenue Differences

induces a positive value of Fg and if the second term also has increasing
differences, then the entire objective has the strict single crossing differ-
ences property.

In a symmetric two-bidder model, if there is a symmetric, increas-
ing equilibrium strategy g, then In Fp(8(¢/)|t') = In F(¢/|f), where the
unsubscripted F denotes the joint distribution of the bidders’ types. It
follows by a routine calculation that if In F(#/|') has increasing differ-
ences, then so does In Fg(b|t}).

Theorem 4.20. In the two-bidder symmetric model with dependent
types, suppose that In F (#/|¢') is continuously differentiable and has in-
creasing differences and v'(0) > 0. Then the unique symmetric increas-
ing equilibrium bid function Bgp satisfies frp(0) = v(0) and

1 fun 1

— . 4.30
Brod FD) — o(0) — Bro® (4.30)

Proof. The bidder’s optimization problem is

qgmwm—m+me”MML

which yields the first-order condition

B s LR
vo—b ' Femn a’ D=0

and therefore (4.30), because 81 (b) = t. As Brp(?) satisfies the first-order
optimality condition, it must satisfy the envelope condition. Both f(|¢)
and F(t|t) are positive by assumption, and at any solution to (4.30) we
have v () — Brp(f) > Oforallz > 0.Then, byinspection of (4.30), B (1) > 0
fort > 0.Hence, by the constraint simplification theorem, Brp is abest re-
ply, and therefore a Nash equilibrium. Note, trivially, that no bids outside
therange of Brp(f) can pay more for any types than some bid in the range.

Moreover, every Nash equilibrium bidding strategy must, for the usual
reasons (see Section 4.2.2), be continuous, increasing, and differentiable,
so it must satisfy (4.30) by the definition of best response and 8(0) = v(0).
The bid function is unique, for no ties are allowed and no other boundary
conditions are possible. [ |

Next, we compare the expected profits and revenues for the first- and
second-price auctions. The key to our analysis is that the expected price
paid by the winning bidder in the second-price auction increases in the
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bidder’s type, even holding his bid fixed. This happens in our model
because of the assumed positive correlation between bidder types.!®
Because there is no such effect in the first-price auction, bidder profits
increase faster as a function of type in that auction, generating different
payoffs in the two auctions.

We begin by proving that a bidder’s expected payment in the second-
price auction increases in his type, even holding his bid fixed.

Lemma. Suppose In F has increasing differences. Then (1) F(s|f) is
nonincreasing in its second argument and (2) the function p(s|t) =
E[v(t)|t/ < s, t' = 1] is nondecreasing in its second argument.

Proof. Because In F has increasing differences, for any ¢ > f we have
—InF(s|f) =InFQ1|f) —InF(s|f) <In F(1|t) — In F(s|t) = — In F(s|?).
Hence, F(s|t) < F(s|f). Because s is arbitrary, the distribution F(-|f) first-
order stochastically dominates F(-|f), that is, for all s, F(s|f) < F(s|f),
which proves (1). Therefore, because v is increasing, p is increasing in
its second argument. [ |

Theorem 4.21. In the two-bidder symmetric model with dependent
types, suppose thatIn F /|t is continuously differentiable and has in-
creasing differences, that is, 3%1n F (x| ¥)/dx dy > 0. Then the expected
payoff for each type of bidder is less in a second-price auction than in
the first-price auction.

Proof. A bidder’s expected payoff in the second-price auction when it
bids v(s) is (v(#) — p(s|t)) F(s|?), which is its value v(f) minus the price
it expects to pay p(s|t), conditional on bidding v(s) when its type is ¢,
times the conditional probability F(s|t) that the opposing type is less
than s. Let us imagine that the bidder optimizes by choosing s, and
set Vsp(f) = max; (v(t) — p(s|t) F(s|?); this is the bidder’s equilibrium
payoff. The maximum occurs at s = . Therefore, by the envelope the-
orem, Vg, (1) = (v'(1) — p(£10) F (¢]1) + (v(£) — p(e]0) F2(¢]). Substituting
p(t|t) = v(t)— Vsp(t)/F(t|t) leads to

Vsp (1)
D

Vip(®) = (v'(0) — Pa(t1) F(tD) + — - Fa(t]D). (4.31)

18 More precisely, types must be positively correlated conditional on lying in any product set.
This affiliation condition is explored and exploited in chapter 5.
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Arguing similarly for the first-price auction using Vgp(t) =
max; (v(f) — B(s)) F(s|t) leads to

Vep(8)

Vip() = vOF @) + s

F(t1). (4.32)

Also, Vgp(0) = Vsp(0) = 0. Note that F,(¢|t) < 0, by the lemma. Hence,
from (4.31) and (4.32), at every point ¢, if Vep(#) < Vsp(?) then V(1) =
Vép (). It then follows from the ranking lemma applied to Vep(#) — Vsp (1)
that Vep(#) > Vsp(f) forall £ > 0. [ ]

When there are more than two bidders, a similar analysis is possible. In
that analysis, we replace the requirement thatIn F (¢/|t)) have increasing
differences with a similar condition on the joint cumulative distribution
F of i’s type and the highest type among the N — 1 other bidders. See
chapter 5 for a more complete development.

4.4 Expected-Revenue-Maximizing Auctions

Among the most famous results in auction theory is the Myerson’s the-
orem about auctions that maximize the seller’s expected revenues. Al-
though the original analyses assumed bidders’ types were their valua-
tions, we can present the results more intuitively using the distributional
strategies discussed in section 4.2.

We assume that each bidder’s type ¢ is uniformly distributed on [0, 1]
and that the value of an item to bidder i is an increasing, differentiable
function vi(#). Using formula (4.5), bidder i’s ex ante expected payoff
from the auction is therefore

1 t
A ) d . .
E[VI(e)] = VI(0) + / f @ its)xi(s) ds dt
o Jo ds
] 1 pl d . .
= V'(0) —i—/ / dt—v'(s)x'(s) ds
0 s ds
. 1 d . .
= V'(0) + / (1 = s)—v'(s)x'(s) ds. (4.33)
0 ds
Before formulating the seller’s problem, we first consider the constraints,
that is, what decision performance is feasible in this setting. We then

derive a formula for the seller’s payoff and conveniently express it in
terms of mechanism performance. To determine what performance
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we can implement, we revert to mechanism design notation similar to
that in chapter 2, writing i’s payoff function as u?, the performance func-
tion (combining allocations and transfers) as z, and the type space as ©’
instead of [0, 1].

Definition. The performance function z is (Bayesian) incentive-
compatible if and only if for all /’ € ©F,

Elu (z(¢, t77), )|£'] = E[W (z(F, £, £)|£].

The definition states that a performance function is incentive-
compatible if, when participant i’s type s ¢, the participant never strictly
prefers that the mechanism choose an outcome as if i’s type were actu-
ally #'. The significance of incentive compatibility lies in the revelation
principle.

Revelation Principle for Bayes—Nash Equilibrium. The Bayes—-Nash
equilibrium o of an augmented mechanism (S, w, o) achieves perfor-
mance zif and only if the performance function is incentive-compatible.

Proof. 1f zis not incentive-compatible, then for some %, £,

Elu' (@' (1Y), 07 @), t)|t'] = Elu'(z(¢', 1), £)[t]
< Elu'(z(f%, t79), tH|t"] = Eu' (w6 (fY), o7 (t71), t)|t1],

so the player of type t’ strictly prefers to deviate from o(t') to o(f),
contradicting the assumption that o is a Bayes—Nash equilibrium. In
otherwords, given the players’ true types, performance zcan be achieved
if and only if the performance function is incentive-compatible so all
players report their types truthfully.

Conversely, if z is incentive-compatible, then, by inspection, the
strategies o’ (t') = t' constitute a Bayes-Nash equilibrium of the direct
mechanism. |

We now formulate the seller’s revenue maximization problem. Notice
first that the total ex ante joint payoff to buyer i and the seller from sales
to buyer i is

1
TV = / vixi( dt, (4.34)
0
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so the seller’s expected revenue from such sales is
Elp'th) =TV — E[V'(t")]

o . 1 dvi
:/ v’(t)x’(t)dt—V’(O)—/ (1—-8)——x'(s)ds
0 0 ds

: Lr dv’ .
=-V0) + / (vl(s) —(1- S)—> x'(s)ds. (4.35)
0 ds

The seller’s problem is therefore
N L.
maxE (3, p')]

subject to
(PC) Vi(th) >0 foralli ¢!,
(IC) VIEHE[x (¢!, )|t - p(th) (4.36)

> o't Elx (¢!, )|t — p'(F)) foralli, ¢!,

where (PC) designates the (voluntary) participation constraint and (IC)
the incentive constraint. The participation constraint requires that the
bidder always do at least as well by participating in the mechanism as
by refusing to do so. The incentive constraint requires the mechanism
to be incentive-compatible.

The problem (4.36) can be simplified in several ways. First, using the
constraint simplification theorem, the incentive-constraint can be re-
placed by

xi nondecreasingfori =1, ..., N,
(IC) Vi) = v/ (0x' () — p'() = VI(0) + [ v"(s)x (s) ds
fori=1,...,N,te[0,1],
where the second expression is from the envelope theorem. We may
rewrite bidder i’s expected payment as

i

. . . td . .
p') = v (H)x'(¢) —/ —vx’(s) ds — V(0).
0 ds
Second, because the envelope formula implies that V' is nondecreasing,
the participation constraint reduces to
(PC) Vi) >0 fori=1,...,N.

Bulow and Roberts (1989) have suggested an analogy between the
optimal auction problem and the standard monopoly pricing problem.
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v(t)

MR()=0 I

0 1

Figure 5. The valuation function v plays a role in the theory of revenue-maximizing
auctions similar to that of the inverse demand function in monopoly theory. Notice
that the quantity shown on the horizontal axis is 1 — t.

If one sets the price so as to sell a unit to the bidder if its type is ¢ or
greater, then the probability of a sale will be 1 — ¢. This probability is the
expected quantity sold, so the function P(1 — ) = v/(z) is interpretable
as the inverse demand function. Selling an expected quantity of 1 — ¢ at
price v(f) generates expected total revenues of TR (f) = v'(£)(1 — 1) (see
Figure 5). The corresponding marginal revenue is

A1 —nv'(®)  dd—-'@®) dv’
di—-n _ ar =v0=0=0"g
(4.37)

MR (£) =

The optimal auction maximizes expected profits by selling to buyers
whose types ¢ satisfy MR(#) > 0. The expression (1 — ?) dvi/drt is the in-
verse hazard rate associated with the distribution F’. To see this recall
that the inverse hazard rate is 1/h'(t) = (1 — F?)/f, and because v’ =
(FH~1, we know that Fi(v}) = t, so [dF!(v})/dvi]dv/dt’ = 1. Therefore,

vt _ 1 or (1 tl»)dvi _ 1-Fi
dri. — fv’ i~ fi

Using equation (4.37) to define MR{, we may rewrite (4.35) more com-
pactly and intuitively as

1
E[p'(th] = -Vi(0) +/ MR (s)x i (s?) ds’. (4.38)
0
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The two uses are related by'®

xl’(t")=/.../xi(rf,t—i)dt—". (4.39)
Because the x(-) are probabilities, they must satisfy x (¢!, ..., V) > 0
and YN | xi(f) < 1 for all type vectorsf = (¢!, ..., tV). The seller’s total

expected revenue, in terms of the allocation performance function x, is

N ) N 1 L o ) ) )
—ZV’(())+ Z/ MR’(s’)/~~~/x’(s’,s*’)ds*’ds’
i=1 i=1 70
N .
==Y V(0
i=1
N . . . . .
+ // (ZMR‘(S’M’(S’,S’)) ds'...dsV. (4.40)
i=1

Using (4.40), we can rewrite the problem of maximizing expected rev-
enues as

N N
H)}al_;X—ZVi(O)—F // (ZMRi(si)xi(si,s_i)> ds' - dsV,
' i=1 i=1

(i) [ xi(t!,s7) ds~"is nondecreasing in # fori = 1,..., N,
pi(t) = vi(Ox (1) — VI(0) — fot v (s)xi(s)ds forall i, €0, 1],

(PCH) Vi(O)>0 for i=1,..., N,

xisi, s >0fori=1,...,N, (s, s7%) [0, 1]V,

SN xi(st, s7) < 1for (st,s79) € [0, 1]V,

N . .
> Elpi()]
i=1

(Prob) {

(4.41)

The first condition of (IC') follows from the fact that x’(-) is nondecreas-
ing, and the (Prob) constraints reflect the facts that x is a probability and
that the seller owns only one unit.

4.4.1 Myerson’s Theorem

As for other monopoly pricing problems, the solution here is easiest
to characterize when the marginal revenue functions are decreasing in
quantities (here denoted by 1 — s?). With this assumption (which implies

19 The notation x' does double duty here, for a function of either the real variable t or the
vector variablef .
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that each MR’ function is increasing in the bidder’s type), verifying the
solution to (4.41) is straightforward.

Theorem 4.22. If each of the functions MR’ is increasing, then an optimal
solution to (4.41) is given by

1if MR/ (#/) = max{0, MR' (), ..., MRV (M)}

X @) = fori=1,...,N, fel0,1]",
0 otherwise,
Vi(0) =0,
t
pl(t) = Vixi (0 —/ v (s)xi(s)ds for i=1,...,N,tel0,1].
0
(4.42)

The corresponding maximal revenue is

E[max{0, MR!(t"), ..., MRN(M)}].

Remark. In the event of a tie for the highest MR/, the allocation rule may
randomize among the tie bids.

Proof. Consider the relaxed problem in which we omit the constraint
that x(-) is nondecreasing. The proposed solution described by (4.42)
maximizes the integrand in the objective in problem (4.41) subject only
to the constraints (PC) and (Prob) for each realization of types. Con-
sequently, it maximizes expected revenue if the proposed solution is
feasible. To check feasibility, we only need to check that (IC’) is satisfied.

The expected payment condition (which is the integral form envelope
condition in this problem) is implied by the assumption imposed on the
value function. The monotonicity condition holds because the assump-
tion (in the statement of the theorem) that MR/ () is increasing implies
that x/(¢, /) is nondecreasing in . [ |

Examples

According to the theorem, the expected-revenue-maximizing auction
is any auction that allocates the good according to (4.42) and charges
the corresponding expected price, with each V(0) = 0. Two groups of
examples illustrate the application of the theorem.
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The first group consists of symmetric examples in which v’ = v for all
i. Define t* to be the solution to MR(#*) = 0, or if MR is everywhere pos-
itive, let * = 0. In the symmetric case, the Vickrey auction with reserve
r* = v(t*) allocates the good to the bidder with the highest type when-
ever his value exceeds r*. Given the assumption that MR is increasing,
this performance is precisely what the first equation of (4.42) requires.
Because V(0) = V(¢*) = 0 for the Vickrey auction with this reserve, we
conclude that the auction maximizes the seller’s expected revenue over
all possible mechanisms.

The Vickrey auction, however, is not the only expected-revenue-
maximizing auction. In the first-price auction with reserve r*, the lowest
type to participate is again #*. Again, V(0) = V(¢*) = 0, and a bidder wins
ifand only ifhis type is highest and exceeds ¢*. Hence, the first-price auc-
tion with reserve r* is another expected-revenue-maximizing auction.

There are still more expected-revenue-maximizing auctions. In the
first- and second-price all-pay auctions, if the reserve is set to (£*)V =17,
then a bidder makes a positive bid if and only if his type exceeds ¢* and
wins when that condition holds and, in addition, his type is highest.
Again, V(0) = V(¢*) = 0, so these auctions, too, are expected-revenue-
maximizing auctions in the benchmark model.

Our second group of examples uses an asymmetric model to explore
thedifferences between allocations that maximize revenues and the ones
that are most efficient. Toward that end, suppose that types are equal
to values (v(f) = t) but the distribution of types differ among bidders.
Let {F, (1)} denote a family of value distributions on an interval [«, ]
with corresponding densities { f, ()}. Let us assume that In(1 — F, (7))
is a submodular function of z, y or, equivalently, that f,(2)/(1 — F, ()
is decreasing in y. This is a strong condition that implies the weaker
condition that an increase in y shifts the distribution of values in terms
of first-order stochastic dominance.2° By the theorem, if two compet-
ing bidders with different values of y report the same value, then the
optimal auction awards the item to the bidder with the lower value of
y. This identifies a particular sense in which the optimal auction favors
the “weaker” bidder.

20 For y’ < y, submodularity implies that for all ¢ € («, 8), In(1 — F(#]y)) = In(1 — F(t]y)) —
In(1 — F(v|y)) <In(1 — F(t]y")) —In(1 — F(v|y")) = In(1 — F(¢|y"), soF(t|ly) < F(tly").
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For a more specific example, suppose that G is a distribution func-
tion with density g and such that In(1 — G) is concave or, equivalently,
(1 — G(1)/g(?) is increasing. Letting F, (f) = G(f — y), we obtain a fam-
ily of distributions that satisfies our assumptions. This family includes
the commonly studied case of uniform distributions. In all these cases,
the allocation in the revenue-maximizing auction is biased relative to the
efficient allocation by favoring bidders with lower values of y.

Bulowand Roberts used the marginal revenue conceptto highlight the
connection between the theory of expected-revenue-maximizing auc-
tions and the theory of monopoly pricing. The simplest case arises when
N = 1. In that case, we may drop the superscripts identifying the bidder
and fix V(0) = 0 and again let the bidder’s type be uniformly distributed
on [0, 1]. The monopolist’s problem is to determine a price that maxi-
mizes its total expected revenue. To sell a total expected quantity 1 — s,
it must set a price of v(s), for if v is increasing, all types greater than s
will buy one unit, and all lower types will buy nothing. We again limit
attention to the case in which the monopolist’s marginal revenue de-
clines continuously in total expected sales 1 — s, that is, in which the
function MR(s) is continuous and increasing. In that case, the expected-
revenue-maximizing policy is to set the price equal tor* = v(¢*), where ¢*
is determined as before by MR(¢*) = 0. Such a price yields the following
allocation performance:

1 ifMR() >0,
= - 4.43
x(@) 0 otherwise. ( )

By inspection, this solution is a special case of the solution in Theorem
4.22.

Next, let us take account of all N bidders. Imagine that a seller has
to decide to which of N separated markets to allocate a marginal unit
that has just become available. The type vector f=(,..., tN)describes
current conditions in the markets. The seller maximizes his expected
total revenue by allocating that unit to the market in which marginal
revenue is highest and by withholding the unit altogether if the highest
marginal revenue is negative. That is precisely the rule prescribed by
(4.42).
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4&.4.2 Bulow-Klemperer Theorem

A result of Jeremy Bulow and Paul Klemperer offers another illustration
of the power of the theory of optimal auctions. Bulow and Klemperer
(1996) compared the gains from setting a reserve price optimally against
the gains to adding one more bidder to the auction. For simplicity, we
assume that v(0) = 0. This assumption would seem to make it especially
important to set a suitable reserve price, for otherwise the auction rev-
enue could be very low. In a second-price auction, the revenue could be
close to zero even if some bidder were willing to pay a high price.

The formal analysis, however, delivers a subtly different conclusion.

Theorem4.23. The expected revenue from an auction with NV + 1 bidders
and no reserve is at least as high as the revenue from the correspond-
ing auction with N bidders using the revenue-maximizing reserve price
v(MR™(0)).

Proof. Theorem 4.22. gives the revenue in the second case. In the
first case, the expected revenue is E[max{MR!(¢), ..., MRN*1(#N+1)}].
The definition of MR’ implies that E[MR!(f)] = fol MRi(s) ds =
—(1 — Hv(n|_, = 0.Jensen’sinequality implies that for any random vari-
able z and constant A, we have E[max(A, z)] > max(A, E[z]). Taking
z = MRM* (#N+1) we have

EJauction revenue, N 4+ 1 bidders and no reserve]
= E[max{MR!(¢}), ..., MRV (¢V*+1)}]
= E[E[max{MR'(¢"), ..., MRV (™ e, .., M)
> Elmax{MR!(¢"), ..., MRV ("), 0}]

= E[auction revenue, N bidders and optimal reserve], (4.44)

which proves the theorem. |

4%4.4.3 The Irregular Case

So far, we have limited attention to the case where MR/ is increasing.
The problem in the general case is that the performance function x’
prescribed by the theorem will fail to be nondecreasing when MR' is not
nondecreasing, so the incentive compatibility constraint in (4.41) will
not be satisfied.
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In monopoly pricing, the corresponding problem is that the marginal
revenue function may be increasing over some intervals. In that case, the
total revenue function TR will not be concave, so for a given expected
quantity, arandomized output sometimes leads to higher total expected
revenues than a deterministic output. For example, by randomizing % — %
between quantities g and ¢/, the seller can earn a total expected revenue
of 3TR(9) + 3TR(¢'). As a function of expected output, the seller’s maxi-
mum total revenue is the concave hull of the total revenue function, that
is, the smallest concave function TR(q) that satisfies TR(g) > TR(g) for
all q.

The auction problem has an analogous structure. Define TR (¢) =
ftl MR/ (s) ds; this is the total expected revenue enjoyed by the seller if it

sets the price v(f) and sells with probability 1 — ¢. Let TR’ be the concave
hull of TR/; this is the revenue the seller can achieve by randomizing
its price. Let MR = —dﬁl(t) /dt be the corresponding marginal rev-
enue function. Then the expected-revenue-maximizing allocation rule
assigns the item to the bidder with the highest marginal revenue MR’ ),
provided thatis positive. In the event of a tie, it randomizes the allocation:

NI if MR’ (#) # max(0, MR (1), ..., MR (tV),
1/N otherwise,
(4.45)

where N = #{i : MR () = max(0, MR (1), ..., WN(tN))} is the number
of tying bidders. In contrast to the allocation performance specified in
the theorem, the function x’ is guaranteed to be nondecreasing every-
where. The reason is that MR’ is nondecreasing everywhere, because TR
is concave. We omit the formal proofs.

4.5 Auctions with Weak and Strong Bidders?!

The analyses of the preceding sections are mostly limited to cases in
which the bidders’ values are symmetrically distributed. The first issue
for asymmetric auctions is how to characterize equilibrium. We focus
on the case of two bidders with types uniformly distributed on [0,1], in-
creasing and differentiable value functions v! and v? with the reserve
r in the range of both, and strategies 8! and 2. In such a model, one

21 For simplicity, the theory in this section is developed for auctions with just two bidders, but
the theory can be extended to auctions with two categories of bidders, weak and strong.
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necessary condition for equilibrium is that the bid functions be con-
tinuous and increasing. Another is that bidders with value r bid r, that
is, L ((H 1) = B2((v*)~1(r)) = r. A third is that the range of the bid
functions are the same, so 81(1) = g2(1).

It is convenient to introduce the matching function m as follows:

m() = (8471 (81 (). (4.46)

This function identifies for each type of bidder 1 the corresponding type
of bidder 2 that makes the same bid. Using that notation, the problem
facingbidder 1 of type tatequilibrium is to choose abid bor, equivalently,
atype s and its corresponding bid b = 2 (s), to maximize s(v! () — B2(s)).
The first-order condition must be satisfied at equilibrium when s = m(f)
or, equivalently, when ¢ = m1(s). Using the latter, the condition is:

0= (m(s)) — B(s) = s(8%)'(5) (4.47)
and the corresponding first-order condition for bidder 2 leads to:

0 = v’ (m(0) — B (1) — t(BY) (). (4.48)

We may apply the familiar arguments to conclude that any increasing
solution of the first-order conditions identifies best-replies for both bid-
ders, when bidders are restricted to bids in the range of the equilibrium
bid function. It is clear that bidders of value less than r cannot increase
their profits by making qualified bids. For bidders with values greater
than r, if the ranges of the two bid functions coincide and include the
reserve r, then any bid outside the range of the bid functions, that is,
any bid less than r or greater than b = g'(1) = 82(1), is by inspection less
profitable than a bid of r or b, respectively. Hence, any solution satisfying
the identified necessary conditions is an equilibrium.

Theorem 4.24. (Maskin and Riley (2000a)).2? There exists a unique in-
creasing solution to the differential equation system (4.46)-(4.48) satis-
fying g1 ((v1)~1(r)) = B2((v?)~1(r)) = rand B (1) = (1). This solution is
an equilibrium of the asymmetric first-price auction.

22 Maskin and Riley prove this theorem by proving the existence of a solution to the system of
differential equation satisfying the stated boundary conditions.
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A basic result about equilibrium is that if one player’s values are dis-
tributed higher than the other’s in the sense of first-order stochastic
dominance, then that player’s bids are distributed higher in the same
sense. Since the value functions v! and v? are also inverse distribution
functions for the values, then strict stochastic dominance condition is
the condition that for all £ € (0, 1), v'(8) > v2(p).

Theorem 4.25. Suppose that for all 7 € (0, 1), v' () > v?(¢). Then, for all
t € (0, 1), the equilibrium strategies have g () > B2(1).

Proof. Atanypointwhere (1) = 82(t), wehave m(t) = t = m~1(1).So, by
(4.47)-(4.48), (BY' (1) < (B%)'(1). Also, (1) = p2(1). It follows by the rank-
ing lemma applied to the function f(1 — 1) = g () — p2(¢) that (1) >
B2(¢) forall t € (0, 1). |

In the remainder of this section, we are primarily concerned with
auctions in which one bidder is “stronger” than the others. We explore
the intuitive idea that when a bidder is stronger, its competitors bid more
aggressively. For this exploration, it is most convenient to identify types
with values and therefore to fix bid functions so that bids are a function
of value.

To see how the strength of a bidder affects its competitor’s bids, con-
sider bidder 1’s problem when its value is v. Suppose bidder 2’s values
are drawn from some distribution in the family { F(¢|s)}, where s will pa-
rameterize the bidder’s strength. For any continuous increasing strategy
B that bidder 2 may adopt that specifies bids as a function of its value,
bidder 1 chooses a bid bin the range of 8 to maximize (v — b) F(8~1(b)|s)
or, equivalently, to maximize In(v — b) + In F(8~1(b)|s). The solution to
this problem is nondecreasing in s for every increasing function g if and
only ifIn F(¢|s) is supermodular. The sufficiency of supermodularity fol-
lows from the monotonicity theorem; necessity follows from a theorem
of Milgrom (1994). Below, we shall say that s parameterizes strength if
In F(t|s) is supermodular.

The condition thatIn F(t|s) is supermodular is related to, but different
from, the condition that In(1 — F(¢|s)) is submodular, which we used in
studying revenue-maximizing auctions. The second condition implied
that the revenue-maximizing auction favored the bidder with low values
of s whenever both have the same value. We have already shown that the
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second conditionimplies that F (¢|s) isdecreasingin s; asimilar argument
implies that the first condition implies that as well.

Intuitively, the preceding conclusion that a bidder bids more when
its competitor is stronger suggests that, at equilibrium, a weaker bidder
would be inclined to bid more than a stronger bidder with the same val-
ues. However, the conclusion is not immediate, because the argument
supporting that conclusion is not an equilibrium argument. At equilib-
rium, both bidders’ strategies will depend upon both bidders’ strengths.
The next theorem shows that the expected ranking of strategies does
indeed hold at equilibrium.

Theorem 4.26 (Maskin and Riley (2000b)). Consider an auction with
two bidders whose values are drawn from distributions { F (¢|s)} on [v, 7]
with corresponding densities { f(¢|s)}, where In F(¢|s) is supermodular
and where the bidder strengths are s = 0 and s = 1, respectively. Let S
be the equilibrium strategies, mapping values to bids. Then, the strong
bidder bids less for each possible value than does the weak bidder: for
allt e (v, 9), B1(8) < Bo(D).

Proof. At equilibrium, the range of the equilibrium bidding functions
must be the same, so By(v) = 81(v). For any value v at which gy(v) =
B1(v) < v, the first-order conditions for the optimal bids are:

3 fwloy
0=—-14 (—10) Fo[0) /B ()
f(vll) (4.49)
=—-14@—pBo) FolD) /B ().

Since f(v|0)/F(v|0) < f(v|1)/F(v|1) and v — Bo(v) = v — B1(v), it fol-
lows that g;(v) > B;(v). Hence, applying the ranking lemma to the
function h(v — 1) = By () — B1(¥), it follows that for all £ € (v, v), B1(f) <
Bo(2). ]

Combining the last two results, we see that a stronger bidder has a
higher equilibrium distribution of bids, but that its strategy calls for it to
bid less than the weaker bidder for any particular realization of its value.
As aresult of the bidders’ strategies, the strong bidder sometimes loses
the auction even when it has the higher value. Indeed, a strong bidder
with value v is the high bidder in a first-price auction if and only if the
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weak bidder has value less than m(v) = g, 1(8,(v)) < v. In contrast, in a
second-price auction, the strong bidder wins when its value is highest,
and that happens strictly more often. Applying the envelope formula,
that comparison of frequencies leads to the following result.

Theorem 4.27 (Maskin and Riley (2000b)). The equilibrium expected
profit of a strong bidder with any value v is higher in the second-price
auction than in the first-price auction. Reversely, the equilibrium ex-
pected profit of a weak bidder with any value v is higher in the first-price
auction than in the second-price auction.

Proof. For a strong bidder with value v, by the envelope theorem,
expected profits are [’ F(m(r)|0)dr in the first-price auction and
fvv F(r|0) dr in the secorfd-price auction. Since m(r) < r, the second in-
tegral is larger.

For aweak bidder with value v, by the envelope theorem, the expected
profits are fvv F(m ' (n|1) dr for the first-price auction and fvv F(r|1)dr
for the secc;nd-price auction. Since mi1(r) > r, the first fntegral is
larger. |

What general conclusions might we draw from the preceding analysis
about when the first-price auction leads to higher revenues on average
than the second-price auction? Vickrey’s original analysis of auctions
includes examples to establish that no completely general ranking on the
basis of expected revenues is possible. He gave examples of asymmetric
auction models in which the average revenue from the first-price auction
is sometimes greater and sometimes less than the average revenue from
the second-price auction.

Despite Vickrey’s examples, the preceding results and numerical sim-
ulations suggest that in asymmetric auction models with one strong
bidder, the first-price auction may often lead to higher average rev-
enues than the second-price auction. Intuitively, the reason is that such
an auction introduces the right kind of “bias.”?® At equilibrium, since
m(t) < t,theweakbidder wins more often atequilibriumin the first-price
auction than in second-price auction. A similar bias in favor of weaker
bidders was found in revenue maximizing auctions, provided that
In(1 — F(t|s)) is submodular.

2 See Maskin and Riley (2000b) for examples and sufficient conditions for this result.
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4.6 Conclusion

This chapter introduced the various single crossing conditions, includ-
ing the Milgrom-Shannon single-crossing differences condition, the
smooth single crossing differences condition, and the Mirrlees—Spence
condition, and their various implications, especially the constraint sim-
plification theorem. These provide a compact way to verify equilibrium
in a large set of auction models and set the stage for the celebrated opti-
mal auction theory. We used these methods to identify and verify equi-
librium strategies in sealed-bid auctions with reserve prices, the war of
attrition and the all-pay auction.

The next group of analyses looked beyond the payoff and revenue
equivalence results to analyze situations in which auction revenues can
be compared. The main tool for this comparison is the ranking lemma,
which provides a method for showing that certain direct effects on bid-
ding are preserved in the equilibrium analysis. We used this method to
establish that bidders increase their equilibrium bids in the first-price
auction as they become more risk averse, that bidders bid lower in a
first-price procurement auctions (but not in second-price procurement
auctions) when the quantity purchased by the bid-taker is a decreasing
function of the price, and that correlation among bidder types raises
equilibrium revenues from the second-price auction compared to the
first-price auction.

In addition to these studies, we investigated the effects of budget con-
straints and studied how bidding costs can contribute to jump bidding.
We also developed the famous “optimal auctions” analysis, which iden-
tifies the auctions that maximize the seller’s revenue. One conclusion of
that theory is that, under certain conditions, revenue-maximizing auc-
tions discriminate against “strong” bidders whose values are expected to
be high.

A final section is devoted to the study of auctions in which there is
competition between a weak bidder, with a low distribution of values,
and a strong bidder, with a higher distribution of values. The character-
ization of weak and strong bidders in this theory differs from that of the
revenue-maximizing auctions theory. The ranking lemma allows us to
compare the equilibrium bids of the weak and strong bidders. Among
the main findings are that at the equilibrium of the first-price auction,
strongbidders bid higher than weak bidders in terms of their distribution
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ofbids, but that they bid less than weak bidders for any particular realiza-
tion of the bidder’s value. This is qualitatively similar to the bias required
byrevenue-maximizing auctions, and often these auctionslead to higher
revenues than do second-price auctions.

The next two chapters develop more lessons of traditional auction
theory for evaluating some common auction practices.
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CHAPTER FIVE

Interdependence of Types and Values

Most of the models in chapters 2—4 are independent private-values mod-
els. Values are privateif each player’s value for any outcome depends only
on his own type, and independent if types are statistically independent.
The only exceptions so far are the Jehiel-Moldovanu model of chapter 3,
which discards the private-values assumption, and the correlated-
types example of chapter 4, which relaxes the independence assump-
tion.

Relaxing the private-values and independence assumptions raises a
host of new issues. When bidders do not know their own values, the
connection between bids and values is naturally weaker and the bidder
with the highest value may win less often. Bidders’ ignorance of their
values leads us to study what information bidders are likely to acquire,
whether they will share this information or keep it secret, and whether
the auctioneer canimprove the outcome by gathering and disseminating
information on its own. The independence assumption is an essential
premise of Myerson’s lemma and the revenue equivalence theorems.
Relaxing this assumption forces us to reevaluate the most basic results
of auction theory.

In this chapter, we study issues raised by the two possible kinds of
interdependence. Section 5.1 investigates the kinds of simplifying as-
sumptions that are “reasonable” and “useful” in auction models. Sec-
tion 5.2 explores the consequences of statistically interdependent types
in an optimal auction model. Section 5.3 studies the empirically success-
ful drainage tract model, which treats bidding for oil on tracts adjacent to
a previously developed tract. Section 5.4 introduces a model that relaxes
both the private-values and statistical independence assumptions.

157
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5.1 Which Models and Assumptions are “Useful”?

Students sometimes ask their teachers whether a particular assumption
is “reasonable” in a particular auction model. The answer is to be found
only by restating the question: what is a useful assumption?

Real auctions occur in many different situations. There is no reason
to expect that any single set of tractable simplifying assumptions will de-
scribe all the situations well — or will even describe any of them well. The
test of the suitability of assumptions is whether they are simple enough
to make the analysis tractable while still capturing enough essential fea-
tures of the situation to be useful for the intended purpose, which may
be to make quantitative predictions or to lend qualitative insights into
some issue.

Model builders can sometimes profit by using theoretical analyses
to evaluate simplifying assumptions, exploring consequences of the as-
sumptions within the model, or developing implications of the same as-
sumptions in a wider model. In this section, we use theory in these ways
to investigate some common assumptions used in auction models.

5.1.1 Payoffs Depend Only on Bids and Types

In the preceding chapters and throughout mechanism design theory, itis
usually assumed that a participant’s payoff depends only on the outcome
xand the vector 7 of participants’ types [u/ (x, )], but that does not always
describe the reality accurately. For example, consider an auction for the
right to extract minerals from a certain piece of property, when no one
can determine in advance the quantity of minerals in the ground or the
cost of extraction. The winning bidder’s ultimate payoff will depend on
the resolution of these uncertainties. Given this situation, some theorists
have written the bidder’s payoff as a function of the outcome x and some
vector y of random variables, o (x, y), where y may include both the type
profile and unobserved variables.

What are the consequences of these alternative formulations? We
show in this subsection that for the limited purpose of characterizing
equilibrium bidding strategies as functions of the bidders’ types, one
can assume without loss of generality that payoffs depend only on
the auction outcome and bidder types. For suppose that the actual
payoffs o (x, y) depend on the outcome and a vector y of observed and
unobserved quantities. Then the expected payoff to any strategy profile
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in this model is exactly the same as in a model with the payoffs given by
w (x,t) = E[0/(x, y)[f].

To verify this claim, observe that the expected payoff to bidder j in
the original game, given strategy profile o and j’s type, is

Ell (x(a @), p)|t'] = E[E[ (x(o ©)), Y)IF1|2']
= E[/ (x(c ©)).1)|t/].

Theleft-hand sideis the expected payoffin the game with payofffunction
i/, and the right-hand side is the expected payoff in a game with payoff
function u/. Because the two expected payoffs are identical, the equi-
librium behavior is identical as well. One might say that the vector y of
random variables can always be “integrated out” from the original payoff
function to leave a payoff function that depends only on the type profile.

The significance of this finding is that, when types are exogenous, the
equilibrium strategies depend only on the information in the reduced
form payoff v/ (x, 7). Still, when we want our model to relate equilibrium
payoffs to bidders’ information, it can be helpful to work with a more
detailed payoff function. For example, suppose that we wish to investi-
gate whether the degree of uncertainty about the volume of recoverable
hydrocarbons increases profits in an auction of oil leases. Even though
bidder information is unobservable so the equilibrium theory cannot
be directly tested, if there are usable instruments for the degree of un-
certainty and if profits are observable, then the more detailed model
can generate testable predictions. Similarly, one may be able to test how
improvements in bidders’ ability to estimate recoverable oil affect the
bidders’ strategies, profits, and entry decisions as well as the auction
revenues and the efficiency of the auction outcome.

If bidders choose what information to collect or if the seller chooses
what information to disseminate, then the types are not exogenous and
equilibrium analysis may require more than areduced form model. Equi-
librium analysis requires that the model include all potentially observ-
able information. A model with potentially unobserved information al-
lows us to analyze bidders’ choices about what information to gather
and the seller’s choice about what information to disseminate.

5.1.2 Types Are One-Dimensional and Values Are Private
Here, we evaluate the twin assumptions that a bidder’s type is one-
dimensional — a real number — and that bidders have private values.
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If bidders have private values, then no bidder has information that an-
other bidder might find useful for estimating his value. One might ask:
Is that reasonable? Would bidders not want to learn something about
one another’s values? To answer these questions, we need to distinguish
different kinds of information that a bidder may acquire.

We adopt a model similar to that of the Jehiel-Moldovanu theorem in
chapter 3, with a single item for sale. Bidder j’s information is a vector
ti = (¢,...,t}), in which only the component #/ is directly relevant to
bidder i’s payoff. We allow that i’s payoff when he wins the item may
depend on information of the other bidders; itis v’ (¢}, ..., £¥) minus the
amount he pays. We also assume for now that the types are statistically
independent across bidders, and we denote other bidders’ strategies by
o ~J. From statistical independence, it follows that the probability that j
wins with any given bid b is independent of j’s type, so

E[v) (D)1 wing |t/ = /] = Pr{bwins}E[v/ (r], ;) |t/ = 7]

= Pr{bwins}E[v/(t]. £;7)] = f(b.7]).

Given the mechanism, bidder j’s expected payoff when he bids bwith
type t/ is

f(b. t]) — ElPayment(b, o~/ ()] = f(b. t]) — g(b). (5.1)

It follows that j’s expected-payoff-maximizing bid given his type ¢/ de-
pends only on t’ and not on t] so the value for j of the information t]
is zero.

This conclusion is significant if we suppose that there is some posi-
tive cost to collecting and evaluating the information t] In that case,
because bidder j’s value of that information is zero, he will not col-
lect it at equilibrium. On one hand, this conclusion extends the Jehiel-
Moldovanu result, which says that even if such information were avail-
able for free, the auctioneer could not take advantage of it. We add here
that, subject to our assumption that gathering information is costly,
the bidder would not bother to gather such information in the first
place.

This argument establishes that, under the other specified assump-
tions, bidder types are endogenously one-dimensional, and that dimen-
sion includes only the information that is directly relevant to bidder j’s
own payoff.
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Even if bidders only gather one-dimensional information about their
own values, that still does not establish the appropriateness of the
private-values assumption. For example, suppose there are just two
bidders and the bidders’ types, t' = (¢, £}) and * = (£, £3), are inde-
pendent. Further suppose that bidder 1 observes only the one com-
ponent, ¢, of its type that affects its value, and similarly that bidder 2
observes only #7. What can we say about bidder 1's expected value con-
ditional on the observed components of the type profile, that is, about
oLt £) = Elv'(4, )14, 12 Does it follow that 9! (¢}, £2) depends only
on its first argument?

The answer is no, because #* may be correlated with #. For example,
suppose bidder 2 is assessing his value for an oil field. That value will
depend on variables particular to bidder 2, but it will depend mostly on
the volume of hydrocarbons in the field, which also affects the value of
the field to bidder 1. For this reason, #Z and # will tend to be high or low
together. Consequently, a high value of # will be significant to bidder 1,
because it suggests bidder 1’s value is also high. 9! may therefore increase
in both arguments if #* and £ are correlated.

Notice that even the conclusion that types are effectively one-
dimensional rests upon the assumption that different players’ types are
statistically independent. Without that assumption, a bidder’s observa-
tions could affect not only its values but also its beliefs about others’
values, about their beliefs, and so on, ad infinitum. Such beliefs cannot
generally be summarized by a one-dimensional type, and bidders could
have an incentive to learn about one another’s types in order to forecast
the competing bids.

5.1.3 Types Are Statistically Independent

Statistical independence is a special, knife-edge assumption, whose role
intheanalysisofauctionshaslongbeen questioned. Inauctions of assets,
bidders often estimate the net revenue the asset can generate, which
is sensitive to demand and technology. To the extent that bidders are
estimating the same underlying variables, their estimates will often be
positively correlated.

To illustrate this tendency, consider an auction for oil-drilling rights
in which each bidder’s type is her estimate of the amount of oil in the
ground. Suppose that the actual value of the oil is a non-degenerate ran-
dom variable y with mean . and that bidder j’s estimate is #/ = y + &/,
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where ¢!, ¢2, and y are mutually independent. Then Cov(t!, 1?) =
Var(y) > 0. So independent errors induce positively correlated types.

This source of correlation is especially important in some of the most
empirically successful auction models, which use the polar opposite
of the private-values assumption — the common value assumption.' In
auctions for oil and gas drilling rights (and other mineral rights), the
value of the rights to the bidders depends mainly on how much oil and
gas is in the ground and how easily it can be extracted. Common value
models assume that this is the only kind of information bidders have.
Most often, the models assume that the good has exactly the same value
toeachbidder. Under thisassumption, because the allocation of the good
has no impact on efficiency, analyses of efficiency focus on the resources
used by the auctioneer and bidders in the auction. Most published ana-
lyses of common value auctions focus on the revenues associated with
alternative auction procedures.

5.2 Statistical Dependence and

Revenue-Maximizing Auctions

Statistical dependence among types in the optimal auction model fun-
damentally changes the solution to the optimal auction problem. In-
deed, the solution changes discontinuously when we move from statisti-
cally dependent to statistically independent types. Cremer and McLean
(1985) showed that with even a small amount of statistical dependence,
an expected-revenue-maximizing auction for the seller always produces
efficient outcomes and always reduces all bidders’ profits to zero, so that
the seller’s expected revenue equals the value of the item to the bidder
who values it most.

We review Cremer and McLean’s analysis in more detail below. First,
however, let us recall why the seller in a model with independent types
cannot reduce bidders’ profits to zero while still selling the item with a
positive probability. We saw in chapter 3 thatin theindependent private-
values model, each bidder’s expected profit is completely determined by
the function x/(¢/), which specifies the probability that a bidder of type
t/ wins the good. Applying the envelope theorem, the bidder’s expected
payoff is V/(z) = V/(0) + [y x/(s)[dv/(s)/ds] ds. In the auction designs
we have studied, it is always true that Vi(0) = 0, but the portion of the

1 Wilson (1967), Ortega-Reichert (1968), and Wilson (1969) analyzed the first common value
models.
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bidder’s profits due to the second term of the sum — sometimes called
an information rent - is positive if the good is sold at all, and values are
an increasing function of the bidder’s type.

The key to constructing a revenue-maximizing auction with statistical
dependence among types is to link a first-price auction with certain
side bets. Suppose that the rules require a bidder who bids b for the
item in the first-price auction to enter a bet that depends on b. The
bet is designed to have an expected payoff of zero to the bidder if the
bidder’s value is b, and otherwise to have an expected payoff that is
quite negative. These side bets lead bidders to bid truthfully, leave the
bidders with expected profits of zero, and allow the auction to assign
the item to the bidder with the highest value for a price equal to that
value.

The side bets are easiest to construct when the number of types is
finite; we limit attention here to this case.? Suppose that there are N
bidders and the possible types of bidder j are the elements of a finite set
{1,..., M/}. The private value of the good to bidder j is v/(¢/), where v/
is invertible.

Let P/ (¢+~/|#/) denote the conditional probability function for bidder j.
The values of the function can be tabulated in a matrix P/ with M/ rows
(indexed by t/ and denoted by Pi(t))) and % it ]M’ columns (indexed by
t‘f), with the k-l element of the matrix given by Pkl = pJ (t‘f =71 j|ﬂ =
rk) where 7/ is the kth possible type of bidder j, and z; ’ is the Ith pos-
sible type profile for the remaining bidders. For example, suppose there
are three bidders and the sets of possible types are {1, ..., 4}, {1, ..., 8},
and {1,...,5}. Then P? is an 8 x 20 matrix. The key assumption is the
following one, which states that no type’s beliefs can be expressed as a
convex combination of the beliefs of other types.

(A) Non-degenerate Statistical Dependence. For each bidder j, the ma-
trix P/ described above has full row rank.

Consider a modified first-price auction in which: (1) bidder j is per-
mitted to bid only amounts in the set {v/(1), ..., v/(M/)}; (2) the usual
rules of a first-price auction determine the winner and payment; and
(3) if bidder j bids v/ (¢/) and the opposing bidders bid amounts v/ (+~/),
then the seller pays bidder j the amount B/(¢/, t~/). We call such an
auction the first-price auction with side bets B.

2 McAfee and Reny (1982) extend the result to certain models with infinite type spaces.
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Theorem 5.2.1. Suppose that the distribution of types satisfies assump-
tion (A) (non-degenerate statistical dependence). Then there exists a sys-
tem of side bets B such that the first-price auction with side bets B has
these properties:

1. itis incentive-compatible,

2. ityields zero expected profit for each type of each bidder, and

3. conditional on the realized type profile 7, the expected revenues are
equal to max(v' ('), ..., vV (V).

Proof. As aresult of non-degenerate statistical dependence, each belief
Pi(t/)lies outside the convex hull Conv{ P/ (#/)|#/ # t/}. By the separating
hyperplane theorem,? there exists a vector 1/ (¢/) with x;.; M’ elements
such that for all # # ¢/ one has W/ (/) - (P/(#/) — PJ(#/)) > 0. Moreover,
because each belief vector is a probability vector, we can choose W ()
so that b/ (/) - PJ(t/) = 0and W/ (/) - PI(#/) < —1forall ¢/ # I .2

Let B = max;, v/(t/) and B/ (/) = Bh/(t/). By the construction of the
mechanism, the expected profit of a bidder j of type ¢/ who bids v/ (¢/)
is zero (that is, he pays his value when he wins and makes additional
payments that, by construction, have expected value zero). However,
the expected profit of a bidder j of type #/ who bids v/ (/) (#/ # /) is
bounded above by

v — v () + P - BY(#) = vI (D) — vi(#) + PI) - B- W (#)
v/ () — i) - B <0.

A

We obtain the equality by substituting for BJ (£); the first inequality uses
PI(t)) - W(#/) < —1, and the second inequality uses B = max; ,; v/ (t/) >
v/ (t7). Note that v/(#/) — v/(#/) is the bidder’s profit from the auction
when the bidder is of type #/ and reports type # and wins, and — P/ (#/) -
Bi(#)) is the expected loss from the side bet. Since all non-truthful bids
make losses, we have established incentive compatibility.

Because all bidders bid their values, the bidder with the highest value
receives the item for a price equal to that value, and the expected value
of the side bets is zero. Thus claim (3) about expected revenue holds. B

3 See, for example, Royden (1968).

4 Suppose h/ satisfies h/ (/) - PJ(t/) = a # 0.LetA(t/) = o — maxy h/ (/) - P/ (#/) > 0.Thenlet
(W (t1)); = (W (t)); — ] /A(t)) for all i. Hence, i/ (/) - PI(t)) = (« — ) /A(t)) = Oand W/ (¢/) -
Pi(#l) < —a(t))/A(t]) = =1 for ¥/ # ¢/,
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Theorem 5.2.1 is provocative; itis an extreme implication of the theory
of optimal auctions. The proofrelies on condition (A), which asserts that
no type’s beliefs are a probability mixture of the beliefs of other types.
In that case, we can find bets that break even for only one type and that
lead to huge expected losses for all other types of the same bidder. By
bundling the bet with a bid, incentives for truthful bidding are ensured.

The theorem describes nothing that is found in practice and reminds
us of how important it is to check the practical reasonableness of so-
lutions suggested by a model before implementing any practical policy
based on the model. The theorem also suggests a long list of questions
a careful designer should ask about any mechanism. We consider some
of these below.

Is the mechanism of Theorem 5.2.1 unrealistically sensitive to the
theorem’s assumptions about the distribution of types? In the present
model, solutions require increasingly large side bets as the beliefs of
different types become close. However, when beliefs do not depend on
the types — i.e. when types are independent - the revenue-maximizing
mechanismdoesnotusesidebets at all. The sensitivity of the conclusions
to the assumptions is disturbing.

Does the mechanism designer have the information necessary to im-
plement amechanism like that of Theorem 5.2.12 This question relates to
the first one. The sensitivity of the solution to the designer’s assumptions
means that the designer needs very accurate information to get good re-
sults. Robert Wilson (1987), in what has come to be known as the “Wilson
doctrine,” has argued that useful auction designs must be independent
of the fine details of unknowable bidder valuations and beliefs.

Does the model capture the situation in a way that is useful for making
predictions, or does it simplify reality excessively for reasons of tractabil-
ity? The Cremer-McLean mechanism exploits bidders’ beliefs to induce
truthful bidding. Neeman (2001) argues that the model is unrealistic in
assuming that one can infer a bidder’s value from his beliefs about other
bidders’ types. If we drop that assumption and formulate a model where
beliefs and values can vary separately, then Cremer and McLean’s conclu-
sion must change. To see why, suppose a bidder has a two-dimensional
type (41, ) inwhich his value is v(#) and his probability of winning with a
bid of bis p(b|t,). Then his payoffis V(#, ) = max, v(f) p(b|tz) — X(b|t),
where X(b|t,) is his expected payment when he bids b. If his opti-
mal bid in any mechanism is 8(#, %), then, by the envelope theorem,
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AV, )/ot = v'(H) p(B(t, &)|). This implies that a bidder’s expected
profits are increasing in £ on the domain of types that sometimes win
at auction, so bidder profits cannot always be zero. Nevertheless, the
optimal mechanism still generally involves side bets that allow the seller
to exploit the correlation between values and beliefs.

Could the mechanism designer really implement this mechanism if
he wanted? Risk averse bidders would certainly be deterred by this mech-
anism, because the side bets impose costly risks on the bidders and the
expected profits are zero. More generally, in real auctions, bidders fre-
quently refuse to participate if the proposed mechanism seems strange
or unfair. Many might apply those adjectives to a mechanism that links
bids to side bets. Precedent and familiarity often limit the set of practi-
cally feasible designs.

5.3 Wilson’s Drainage Tract Model

Wilson (1969) developed the drainage tract model to describe bidding
in the first-price auctions for rights to extract oil from tracts on the US
outer continental shelf. A drainage tract is a tract adjacent to one already
being developed by some oil company — the neighbor — whose activities
give it particularly good information about the geology of the drainage
tract. For example, the neighbor may have found bountiful oil near the
boundary that separates its tract from the drainage tract, or it may have
found only dry holes without recoverable oil. To model the neighbor’s
superiorinformation, Wilson assumed that the neighbor knows the value
V. In this model, the competitor’s value is also V, but the competitor has
only public information to use in estimating that value.

The drainage tract model has subsequently received plentiful atten-
tion from both theoretical and empirical researchers. In a series of sub-
sections, we will characterize the equilibrium of the model, the expected
profits enjoyed by the neighbor and the corresponding revenues for the
seller, and how those profits and revenues are affected by research by
the neighbor and non-neighbor and by whether the seller collects and
reveals information. We will also study second-tier effects, concerning
whether a neighbor or non-neighbor who gathers information wants its
competitors to know that. Among our findings is that the neighbor wants
it to be known that it is well informed, because the better informed it
is believed to be, the more timidly its competitors are inclined to bid.
Reversely, the poorly informed non-neighbors prefer that the neighbor
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believe they are poorly informed, because it will bid less aggressively
under those circumstances.

It is convenient to assume that the neighbor - bidder 1 — observes a
type !, and that the value of the lease is V = v(#!) to all bidders, where v is
nondecreasing. The non-neighbors have uninformative types 2, .. ., ¢V,
which can serve only to guide the randomization of bids. By the mono-
tonic selection theorem, we lose no generality in assuming that all bid-
ders use nondecreasing bid functions 7 : [0, 1) — R,.

5.3.1 Equilibrium®
We first state the equilibrium for the case of two bidders. The model is
one of a first-price auction.

Theorem 5.3.1. Suppose that v is continuously differentiable, is non-
decreasing, and has positive right-hand derivative at zero. Then the
two-bidder drainage tract auction model has a unique Nash equilib-
rium. At equilibrium, the neighbor and non-neighbor bidders both bid
B(s) = % fos v(r) dr. The non-neighbor receives an expected profit of zero,
conditional on winning: E[v(")|8(#)) < x] — x = 0 for all x in the range
of B.

Remark. The equilibrium strategy prescribes that each bidder of type s
bid E[v(t!)|¢! < s]. Although the setting is very different from the two-
person independent private-values model, the equilibrium bid func-
tions in the two models are identical. At equilibrium in the drainage tract
model, the non-neighbor randomizes: Its type bears no relation to the
value of the tract or his rival’s type, but it uses it to select a bid randomly.
To provide the neighbor with appropriate incentives, the non-neighbor
must randomize in a way that reproduces the bid distribution it would
have generated in the two-person independent private-values model,
in which its value is v(#%) instead of v(#!). The non-neighbor is willing
to randomize because, given the bidding strategy of the neighbor, all
bids in the range of the bid function have the same expected payoff of
zero. The neighbor is willing to play the same equilibrium strategy as in

5 The equilibrium characterizations in this subsection are based primarily on Engelbrecht-
Wiggans, Milgrom, and Weber (1983) and the extensions developed by Hendricks, Porter,
and Wilson (1994). Weverbergh (1979) was the first to identify a Nash equilibrium in a
version of the drainage tract model.
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the independent private-values model because, given the strategy of the
non-neighbor, it faces the same decision problem in both games.

Proof. We begin by verifying that the proposed strategies constitute an
equilibrium. The payoff maximization problem for bidder 1 is

max (u(s) — ) (x).

The first-order condition is 0 = —~1(x) + (v(s) — x) d%ﬂ‘l(x). Recall
that by the inverse function theorem d% ,B‘l(x)|x:,q(s) =1/8/(s). Also, if
B is an equilibrium strategy, then x = g(s) maximizes bidder 1’s pay-
off. Substituting x = B(s), s = 71 (x), £B71(X)|x—p») = 1/8'(s) into the
first-order condition leads to 0 = —sB'(s) + v(s) — B(s). We can rewrite
this equation as % [sB(s)] = v(s). Integrating both sides, we obtain B(s) =
L v ar.

By construction, B(s) satisfies the first-order condition for all s, so
it must satisfy the envelope formula. Because v(s) — B(s) > 0, we see
from the first-order condition that g is also increasing.® Bidder 1 has no
more profitable bid outside the range of 8: bidding (1) dominates any
bid higher than (1), and any bid lower than 8(0) does no better than
bidding 8(0). By the constraint simplification theorem, if bidder 2 plays
the strategy 8, then bidder 1’s best reply is to play S.

When bidder 2’s type is s, his expected payoff from making any bid
B(s) in the range of g is

/ (w() — B(s)) dr = s(E()]1 < 5] — B(s)) = 0.
0

By inspection, bidder 2 cannot earn a higher expected payoff by bid-
ding outside the range of 8, so the prescribed bid of 8(s) is a best reply.
Therefore, the proposed strategies constitute an equilibrium.

Note that the preceding equation also establishes the last statement
of the theorem: for x in the range of 8, say x = B(s),

Elw)|B(Y) < x] —x = E[v(t)|t' < s] — B(s) =0.

Next, we show that the equilibrium is unique. We begin with the famil-
iar arguments of chapter 4, which impose necessary conditions for any
equilibrium. First, the range of the bid functions 8! and ? must be the
same and must be a convex set, for otherwise some type could profitably

6 This conclusion also uses our assumption that v/, (0) > 0.
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reduce its bid without reducing its probability of winning. Second, be-
cause bidder 2 randomizes, the bids in the support of the randomization
must have equal expected profits. Third, bidder 2’s lowest equilibrium
bid 8% (0) never wins, so bidder 2 must earn a zero expected profit from all
his bids, and we must have !(0) = ?(0) = v(0). Fourth, player 1 makes
only profitable bids: g'(s) < v(s). Fifth, bidder 2’s bid distribution must
be atomless, except possibly at v(0), for otherwise bidder 1 could profit
byincreasinghis bid slightly when the bid falls just below the atom. Given
the identical ranges of the bid function, bidder 1’s bid distribution must
be atomless everywhere, for otherwise 2 would have a strictly profitable
bid. Last, bidder 1’s strategy must be nondecreasing, and, because it is
atomless, it must be strictly increasing.

If bidder 1 uses the increasing strategy 8! = g and bidder 2 bids x,
then bidder 2 wins when B(#!) < x and earns a payoff of v(¢!) — x, so his
expected payoff from a bid of x > 8(0) is

A1)
/(; (w(s) —x)ds = 0.
Substituting x = B(r), bidder 1’s equilibrium strategy must satisfy
/(;r (w(s) = p(r) ds = 0.
Therefore,

ﬁ(r)=1/ o(s) ds.
rJo

The preceding argument establishes that bidder 1 has a unique equilib-
rium strategy ! = B.

Now suppose that player 2 bids according to the increasing strat-
egy B2. Then its bid distribution F is the inverse, that is, F(8%(s)) = s.
Then, when bidder 1’s type is s, bidder 1's payoff maximization
problem is max, (v(s) — x) F(x). The first-order condition for bidder
1’s problem evaluated at his equilibrium bid x = g(s) is —F(x) +
W 1x) — x) f(x) = 0. We rewrite this equation as a differential equa-
tion: d% In F(x) = 1/(w(8~'(x)) — x). The rewritten equation is valid for
x > v(0) = B(0), because v(s) > B(s) fors > 0.

Because the supports of the bid distributions for the two bidders are
identical, they must make the same highest bid: g?(1) = g!(1). Recalling
that g% = F~!, we have 1 = F(8%(1)) = F(8'(1)). Thus, the differen-
tial equation d% InF(x) =1/ '(x)) —x) and boundary condition
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1 = F(B8'(1)) completely determine F, so bidder 2’s equilibrium strat-
egy is also unique. [ |

The equilibrium has a feature that is common in game theoretic mod-
els but nevertheless puzzling: bidder 2 is indifferent among his various
bids, and his strategy fixes probabilities to make bidder 1’s optimization
problem have the prescribed solution. The puzzle is how such a pattern
of behavior might arise in reality, i.e., how the bidders might learn to bid
in this fashion. This puzzle is beyond the scope of this book, so we leave
to others the problem of explaining how this “equilibrium” could arise
over time.

When there is one neighbor, but multiple non-neighbors participate
in the auction, then there are many equilibria, but all are closely related
to the equilibrium identified in theorem 5.3.1.

Theorem 5.3.2. Suppose there are one neighbor (j = 1) and N — 1 non-
neighbors (j = 2, ..., N), where N > 2. Suppose the value function v is
continuously differentiable with v'(0) > 0. Let 8! = g denote an increas-
ing strategy for the neighbor, and (82, ..., V) denote increasing strate-
gies for the non-neighbors. Let F/ = (8/)~!, j=1,..., N, denote the
corresponding bid distributions (with F = F!). Then the strategy pro-
file (B, B2, ..., BN) constitutes a Nash equilibriumif (s) = E[v(t")|f! < s]
and for all x in the range of 8 we have F(x) = F2(x)--- FN(x). Each non-
neighbor’s expected profit is zero conditional on his equilibrium bid and
the event that his bid wins.

Proof. Note that when a non-neighbor, say bidder 2, wins with a bid of
x, its expected profit is E[v(t")|8/(t/) < x, j # 2] —x = E[v(")|p' (") <
x] —x = 0. The first equality follows because types are independent;
the second follows from theorem 5.3.1. Therefore, the prescribed strate-
gies for the non-neighbors are best replies to the strategies of the other
bidders.

When t' =s, the neighbor solves max, (v(s) — x) F?(x)--- FN(x) =
max, (v(s) — x) F(x). This payoff function is identical to the one stud-
ied in theorem 5.3.1, so bidding S (s) is a best reply for bidder 1 of type s.
Hence, the strategies form a Nash equilibrium. [ |

Theorem 5.3.2 derives two more surprising conclusions from the
model, namely, that the neighbor’s bidding behavior is independent
of the number of opposing bidders and that its expected payoff is
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similarly independent. Because the non-neighbors are indifferent about
their bids, any bid distribution with the same support as the neighbor’s
bid distribution is a best reply. The condition that the non-neighbors’
bids all earn zero expected profit determines the neighbor’s bids, and
the condition that the neighbor’s strategy is a best reply determines the
distribution of the non-neighbors’ maximum bid.

Hendricks, Porter, and Wilson (1994) tested the conclusions of the
model about bidding and profits using data on oil leases on drainage
tracts on the outer continental shelf. They found fewer relatively low bids
among non-neighbors than the model predicted, but were otherwise
unable to reject even the most striking of the model’s predictions. They
estimated that non-neighbors earned zero profits and that neighbors
earned positive profits. The bid distribution of the neighbor and the bid
distribution of the highest bid among the non-neighbors are the same,
and they do not vary with the number of non-neighbors. The diagram
in Figure 1, drawn from their paper, plots the bid distributions.

As the plot shows, high non-neighbor bids were comparatively scarce
in the range between about $60,000 and $1 million, but matched the
bid distribution of the high neighbor bid in the higher range of bids. To
account for this pattern of bidding, the authors suggested modifying the
preceding model by allowing the seller to set arandom reserve price that

1.2+

Fury
308
©
o)
o
a
© 0.6
s High Non-neighbor Bid
X -
§ 0.4 High Neighbor Bid
s | LF R
0.2

0
0 0.06 025 1.0 40 16.0 64.0
Bids ($Millions)
All bids are represented in 1972 dollars.
Figure 1. Distribution of bids.



172 Interdependence of Types and Values

may be correlated with the value. Because we introduce the methods
required to analyze correlated bids later in the book, we restrict atten-
tion here to a variation of their model in which the reserve price is not
correlated with the value.

Theorem 5.3.3. Suppose there are one neighbor (j = 1) and N — 1 non-
neighbors (j = 2, ..., N), where N > 2. Suppose the value function v is
continuously differentiable and v'(0) > 0. Let G denote the distribution
of the random reserve price r set by the seller, and assume that G is
continuously differentiable. Let (s) = E[v(t!)|t! < s]. Assume that there
is some reserve price r such that:

1.Vx<r,dInGx)/dInx > dIng~1(x)/d Inx, and
2.Vx>r Gx) > B (x).

Given aprofile of increasing strategies (8, . .., V), let F/ = (/)" ! bethe
corresponding bid distributions. Then (8 1. ..., M) isaNash equilibrium
if the following two conditions hold:

200 N4y _ Gx) forx <r,
Gx)F?(x)--- FN(x) = {ﬁl(x) forx = r (5.2)
and
1, |argmax.., (v(s) — x) G(x) fors < B71(r),
pe= {ﬁ(S) for s > (). 63

Each non-neighbor’s expected profit is zero, conditional on its equilib-
rium bid and the event that its bid wins.

Proof. By construction 8! is nondecreasing in s.” Using our previous
analysis, for s > B~1(r), B'(s) = B(s) solves the maximization problem
maXys, (v(s) — x) B~ 1(x) and hence satisfies the corresponding first-order
condition. By construction, B1(s) satisfies the first-order condition for
the problem max,, (v(s) — x)G(x) fors < B~1(r). Itis clear that there are
no bids outside the range of g! that generate higher expected payoffs.
Hence, by the constraint simplification theorem, Blisabest reply for the
neighbor (bidder 1).

7 By inspection, B! is increasing on the domain where s < ! (r) and on the domain where
s> B~1(r), and B! is continuous at s = S~ (r).
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Consider the family of maximization problems max,, In (v(s) — x) +
H(x, 1), where H(x, A) = AIn G(x) + (1 — A) In 71 (x). By the assumption
thatdln G(x)/dInx > dInb~'(x)/dIn x, H(x, A) is supermodular.® From
theorem 5.3.2, we know that B(s) solves the problem for A = 0, and by
construction we know that g!(s) solves it for A = 1. Because H(x, 1) is
supermodular and hence has single-crossing differences, the mono-
tonic selection theorem implies that g'(s) > B(s). It follows that if a
non-neighbor bids any amount x < r, then his expected profit, condi-
tional on winning, is E[v(t")|x > ' (t")] — x < E[v(tY)|x > B(t")] —x =0,
where the equality follows from theorem 5.3.2. So, for a non-neighbor,
any bid less than r earns a non-positive payoff. By construction, bids
above r in the range of 8 lead to zero profits, by theorem 5.3.2. Any
bid x > B(1) = E[v(¢!)] always wins but earns negative expected prof-
its (E[v(f")] — x < 0), and any bid x < g(0) always loses. So each non-
neighbor’s strategy is a best reply as well. |

At any equilibrium, introducing a reserve cannot reduce the neigh-
bor’s bid. If the probability that the seller’s reserve is greater than some
number x is low, then the equilibrium is supported by having the non-
neighbors bid above thatlevel sufficiently often to make the probabilities
match those of theorem 5.3.2. That is consistent with equilibrium for the
non-neighbors, because they are indifferent about their bids. It is also
consistent with equilibrium for the neighbor, because his problem is
the same as in the preceding analysis. If the probability that the seller’s
reserve exceeds some number x is high, then the neighbor’s bids are ad-
justed to be a best reply to those bids, and the non-neighbors do not
place bids in that range.

5.3.2 Profits and Revenues®

The theorems presented thus far in this section conclude that non-
neighbors always earn zero profits, but what of the neighbor? Here we
derive a formula for the neighbor’s profits when there is no reserve price
or, more generally, when G(x) > ™! (x) for all x, i.e. when the seller’s re-
serve does not crowd out non-neighbor bids at any level. In such cases,

8 Observe that d H/dA = In[G(x)/B~! (x)]. Condition (1) of the theorem holds that this expres-
sion increases in x, so H(x, A) is supermodular.
9 The results of the next three sections are due to Milgrom and Weber (1982b).
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the probability that a neighbor of type s wins is just s, so by the envelope
theorem, the maximum expected profit of a neighbor of type ¢ is

t t
() = V(0) +/ sv'(s) ds =/ sv'(s) ds. (5.4)

0 0
The corresponding ex ante expected profit of the neighbor is therefore

1 1 ot 1 1
/ (5 dt = / / sv'(s) ds dt=/ / dtsv'(s) ds
0 o Jo 0o Js

1
:/ (1 — s)sv'(s) ds. (5.5)
0

In the applications to follow, it will be important to keep track of the
information on which bids are based. In the next theorem, we use the
subscript V to mean that the neighbor observes the value or value esti-
mate V. Later, we will replace that subscript with whatever information
the neighbor is supposed to have observed.

Theorem 5.3.4. Suppose that v is nondecreasing and continuously dif-
ferentiable, and define Hy(x) = Pr{v(¢!) < x}.1° Then, conditional on
v(#) = w, the neighbor’s expected profit is

M) = [ Hy(@ da 5.6)
0
the neighbor’s ex ante expected profit is
Ty = f Hy(2)(1 — Hy(2)) dz, (6.7
0

and the seller’s expected revenue is E[v(t') — wy].

Proof. Perform the change of variables z = v(s) and s = Hy(z) wher-
ever v/'(s) > 0. Then, using (5.4) with v(f) = w, we have Iy (w) = I1(f) =
fysv'(s)ds = [ Hy(z) dz. Similarly,

ﬁ,’v:/ Hv(w) de(U)) = / / HV(y) ddev(U))
0 0 0

=/ / de(w)Hv(y)dy=/ (1 — Hv(y))Hv(y) dy.
0 y 0

10 If y is invertible, then H, is the inverse of v.
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Theorem 5.3.4 puts the profit and revenue expressions into a form
that is handy for further analysis.

5.3.3 Bidder Information Policy

Information is valuable for decision making when it makes better de-
cisions possible. In classical decision theory, the value of information
cannot be negative. Relevant information allows more accurate deci-
sions, and irrelevant information can just be ignored.

In game theoretic models, a similar claim holds when the information
gathering process is unobserved: the decision maker can simply use the
information to make better decisions. But information in games can also
have a second effect: it can alter the way others behave, even if they do
not learn the information. For example, in the drainage tract model, the
(uninformed) non-neighbor’s strategy depends on what the (informed)
neighbor knows. In general games, information can either help or harm
the informed party. These effects create incentives for the party to reveal
or conceal the extent of its information.

In this subsection, we explore how each bidder’s information affects
others’ bids by asking the following questions. Does improving the neigh-
bor’s information make the non-neighbor bid more timidly or more ag-
gressively? If the neighbor acquires additional information, would it pre-
fer that the non-neighbors know it has acquired it? Or would it prefer to
conceal its access to the extra information? If the non-neighbor gains
access to information, would it prefer to reveal or conceal that access?

We begin by evaluating the value of information to the neighbor. Sup-
pose that the full information value of the tractis V and that the neighbor
observes a random variable X that provides information relevant to V.
If the neighbor could also observe a random variable Y that provides
additional information about V, would it prefer to observe Y even if the
non-neighbors were aware of its observing Y? If it observed Y, would
it want the non-neighbors to be aware it had obtained this additional
information? Are these incentives uniform, or do the answers to the pre-
ceding questions depend on the realizations of X and Y?

As we have seen, the neighbor’s profits do not depend on the number
of non-neighbors, so we simplify the discussion by focusing on the case
of just two bidders. We begin by studying the neighbor’s profits in two
auction games, distinguished by whether the neighbor observes (and
is believed to have observed) just X or both X and Y. Let Vx = E[V|X]
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and Vxy = E[V]|X, Y], and let Hx and Hyy be the respective distributions
of these two random variables. Let Fx and Fxy be the equilibrium bid
distributions for the non-neighbor in the two games, and let

Mx(w) = m;ix(w —x)Fx(x) and Txy(w)= mXaX(w — X) Fxy(x)

(5.8)

be the neighbor’s expected profit in the events that Vx = w or Vxy = w,
respectively. With these definitions, we can state the main result:

Theorem 5.3.5. For every possible realization of X and Y, one has
Mx(w) < Mxy(w). (That is, the neighbor’s expected payoff is higher if
the non-neighbor believes it has observed both X and Y.)

Proof. Inview of theorem 5.3.4 (particularly (5.6)), we have
Hx(w) = / Hx(Z) dz and ny(w) = / ny(Z) dz. (59)
0 0

By the law of iterated expectations, E[Vxy|X] = E[E[V|X, Y]|X] =
E[V|X] = Vx. So Vxy is a mean-preserving spread of Vx, and hence, for
every number w, [;° Hx(2) dz < [,’ Hxy(2) dz. [ ]

The neighbor’s expected profit, given its value estimate, depends on
how the non-neighbor bids, which depends, in turn, on what the non-
neighbor believes. According to theorem 5.3.5, the non-neighbor bids
“more timidly” when it believes the neighbor is better informed; that is,
the maximum expected profit that the neighbor can earn is uniformly
higher in that case.

One way to proceed would be to create amodel in which itis uncertain
whether the neighbor observes just X or both X and Y. If the neighbor
can either make unverifiable announcements or offer proof it has ob-
served Y, whatinformation will it provide in equilibrium? In equilibrium,
the neighbor will offer proof whenever it observes both variables; it will
never conceal its information gathering. The non-neighbor will base its
strategy on proven statements but will ignore the neighbor’s unproven
announcements, which might include false claims about the informa-
tion the neighbor has observed. The analysis would follow in the path of
Grossman (1981) and Milgrom (1981a).
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Rather than developing that model, we focus on the stark contrast be-
tween the neighbor’s and non-neighbor’s incentives to reveal or conceal
information gathering capabilities. Suppose it is common knowledge
that the neighbor observes X and Y and everyone anticipates that the
non-neighbor will observe nothing. Suppose that, contrary to expecta-
tion, the non-neighbor manages to observe Y. Would it, like the neighbor,
wish to publicize that fact? Or, if it could, would it prefer to convince the
neighbor by its silence that it has not observed anything?

If the non-neighbor reveals publicly that it has observed Y, then the
only private information in the model will be the neighbor’s observation
X. We have already seen that, in such cases, the non-neighbor earns an
expected profit of zero. In contrast, if the neighbor believes that the non-
neighbor is uninformed, the non-neighbor’s expected profits are gen-
erally positive. Given those beliefs and any realization of X and Y, the
neighbor never bids more than E[V].!! Hence, whenever E[V|Y] > E[V],
the non-neighbor can earn an expected profit of E[V|Y] — E[V] > 0
simply by bidding E[V]. Consequently, the non-neighbor’s optimal dis-
closure policy is strikingly different from the neighbor’s:

Theorem 5.3.6. Suppose it is common knowledge that the neighbor ob-
serves X and Y. Then, for every realization of Y, if the non-neighbor
learns Y, his expected profit is at least as high if the neighbor believes it
has notlearned Y.

We observed above that we could embed the neighbor’s decision to
reveal its acquisition of information in a larger game in which it only
observes Y with some probability, and obviously we could do the same
for the non-neighbor. Theorem 5.3.6 suggests that there is no equilibrium
ofthe larger game in which the non-neighbor always reveals the fact that
ithas observed Y.

5.3.4 Seller Information Policy

The seller cares as much as the bidders about who knows what, be-
cause the distribution of information can affect the expected sale price
or the efficiency of the allocation (although the second effect is obvi-
ously absent from common value models like the drainage tract model).

' The neighbor bids E[Vxy|Vyxy < w], so he never bids more than E[Vyy|Vyy < oo] =
E[Vxy] = E[V].
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In managing leases of oil rights on federal lands, the US Department of
the Interior requires the company developing a tract to make periodic
reports, which the Department uses in determining royalty payments.
Before drainage tract auctions, the government could reveal some of
the information in those reports to other bidders. The government also
could itself conduct research, such as seismic studies, to reveal infor-
mation about the value of various government-owned properties. In
this section, we investigate the effects of policies like these on seller
revenues.

We first model the policy of revealing bidder-generated information.
Suppose the neighbor observes the pair (X, Y) and reports Y to the gov-
ernment (the seller). If the seller does not make Y public, then, in analogy
to (5.7), the neighbor’s ex ante expected payoff is

XYy = / Hxy(2)(1 — Hxy(2) dz,
0
where Hxy(z) = Pr{Vxy < z}. If the seller publicly announces Y, the non-

neighbor’s beliefs about the neighbor’s estimate are Hxy (z|Y) = Pr{Vxy <
z|Y}. The neighbor’s expected profit conditional on Y is therefore

2(¥) = / Hyy (1Y) (1 — Hyy(2lY)) dz.
0

Theorem 5.3.7. When the seller makes the bidder’s report Y public, the
neighbor’s expected profit falls:

E[n(V)] < xy, (5.10)

and the seller’s expected revenue rises.
Proof. When the seller discloses Y, the neighbor’s expected payoff is
Elr(V)] = E [ [ thertan a - ) dz]
= /000 E [Hxy(2|Y) (1 — Hxy(2]Y))] dz
< [ Bt @10 - E tHeyemn dz

= / ny(Z) (1 - HXY(Z)) dz = XY,
0
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where the inequality follows from Jensen’s inequality and the last step
holds by the law of iterated expectations, because

Hxy(2) = E[l{vyy<g] = E[E[l{vy,<5|Y]] = E[Hxy(2|Y)].

Because the non-neighbor’s expected profit is zero in both cases, the
seller’s expected revenue rises from E[V] — 7xy to E[V] — E[x(Y)]. N

Now we examine the seller’s decision to generate its own informa-
tion. Intuitively, this kind of information can have two effects. First, as
when the seller reveals the neighbor’s information, the seller’s disclo-
sure tells the non-neighbor something about the value of the drainage
tract and thus makes the neighbor’s information less private. Intuition
suggests, and the following analysis confirms, that this effect always re-
duces the neighbor’s expected profit and increases the seller’s expected
revenue. However, there is a second effect, which can either increase
or decrease the bidder’s expected profits, depending on whether the
seller’s information is a substitute or a complement to the neighbor’s
information for the purpose of estimating the value of the drainage
tract.

We now formalize these two effects. Suppose that the neighbor ob-
serves X and the seller observes Y, where both are real-valued ran-
dom variables. Denote the respective conditional expectations by v(x) =
E[V|X = x] and d(x, y) = E[V|X = x, Y = y]. Assume that both v and
are continuously differentiable and increasing in x, with v/(x) > 0 and
01(x, ) = 390(x, y)/dx > 0. Let Gx be the distribution function for X.
Then, using expression (5.5) and substituting s = Gx(x) and so v(s) =
v(x), we obtain the neighbor’s ex ante expected profit when Y is not
revealed:

1 00
/ s(1 —98)v'(s)ds = / Gx(x)(1 — Gx(x)v'(x) dx.
0 0

Similarly, when Y is revealed, the neighbor’s ex ante expected profit
is

E [/ (1 — Gx(xIV)Gx (XY (x, V) dx] .
0
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So the change in the neighbor’s expected profit when the seller reveals
Yis

A=E [/ (I - Gx V) Gx(x|Y) D1 (x, Y)dx}
0

—/ (1 — Gx(x))Gx(x)?V'(x) dx. (5.11)
0
Our objective is to analyze this change A.

Theorem 5.3.8. The change in the neighbor’s expected profits when the
seller reveals its own private information Y is A and the change in the
seller’s expected revenue is —A, where A = P + W,

P = / {EI(1 = Gx(xI)Gx(x|V)] — (1 = Gx(x)Gx(0)}V'(x) dx,
0
(5.12)

and

W= E{/ (1 — Gx (x| V) Gx(x|Y)[D1(x, Y) — 0'(x)] dx }. (5.13)

0

Forall XandY, P <O0.

Proof. Compute A = P + Wby adding (5.12) and (5.13) to get (5.11). As
the non-neighbor’s expected profit is zero, the seller’s expected rev-
enue is the expected value of the tract minus the neighbor’s ex-
pected revenue, so the change in the seller’s expected revenue is —A.
Using E[(1 — Gx(x|Y)Gx(x|Y)] < (1 — E[Gx(x|VDE[Gx(x|V)] = (1 -
Gx(x))Gx(x) (byJensen’sinequality and the law of iterated expectations),
multiply both sides by v'(x) > 0, and integrate to establish that P < 0.l

Theorem 5.3.8 decomposes the total effect on revenue of the seller’s
announcement into the sum of two terms. The publicity effect P shows
how the neighbor’s expected profit would change if the information Y
contributed nothing to the neighbor’s value estimate, thatis, if v = 0. In
that case, the only effect of revealing Y would be to give the non-neighbor
some information about the neighbor’s estimate. The theorem’s asser-
tion that P < 0 emphasizes that this effect always reduces the neighbor’s
expected profit.

The weighting effect W depends on the difference v;(x, Y) — v'(x),
which shows how the observation of Y amplifies or reduces the impact
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of the observation X on the neighbor’s estimate of the value. If the
term 0;(x, Y) — ¥'(x) is everywhere negative, then W < 0; we call this
the case of informational substitutes. To illustrate this case, suppose that
v(x, y) = by + byx + byy with by, b, > 0. Then v(x) = 0(x, E[Y|X = x]) =
by + bxx + byE[Y|X = x]. So, if E[Y|X = x] is increasing, then 7, (x, Y) —
v/(x) < 0. When the observations are informational substitutes, reveal-
ing Y further reduces the neighbor’s profits.

Corollary 5.3.1. If X and Y are informational substitutes, then A < 0.!2

The weighting effect is zero when the seller’s information is poorer
than the neighbor’s, that is, when Y = X + ¢ for some error term ¢ that
is independent of the other random variables in the model. In that case,
learning Y has no effect on the neighbor’s estimate.

Itisalso possible that X and Y areinformational complements (W > 0),
thatis, that revealing Y increases the usefulness of the neighbor’s private
information X. For example, suppose that X = V + ¢x, where ¢x is an
independent error term, and suppose v(x) = a + bx. Naturally, b < 1.
Suppose that Y = ¢x. Then, revealing information results in 9(x, y) =
x — ¥, so revealing Y increases the weight assigned to X in estimating V.
In this case, W > 0: the weighting effect benefits the neighbor when the
information Y is revealed. Moreover, in this specification, X and Y are
independent, so Gx(x) = Gx(x|Y) and hence P = 0. In this example, the
seller does strictly worse by revealing its information Y.

5.4 Correlated Types and Interdependent Values

Several of the results in this section use the notion of affiliation, which
Milgrom and Weber (1982a) introduced into the auction literature. Affil-
iation captures the idea that higher values of one variable make higher
values of the others more likely. We begin this section by presenting im-
portant results about affiliation we will use. In the subsections to follow,
we study two models of ascending auctions that differ in how much
bidders can infer from earlier bids, characterizing the equilibrium in
each case. We study the efficiency and revenues of these ascending auc-
tions and compare them with first-price auctions. We also study how

12 Milgrom and Weber (1982b) show that a sufficient condition for X and Y to be informational
substitutes is that (X, Y, V) is affiliated. Section 5.4 defines affiliation and explores some of
its consequences.
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the seller’s policy about revealing or concealing information affects the
auction outcomes.

5.4.1 Affiliation
The definition of affiliation uses concepts from lattice theory. Recall
that given two points x, y € RN, we write x > y to mean that x; >

Y,-..,XN > YN, and x > y to mean that x > y and x # y. The meet
is defined by x A y = (min(xi, 1), ..., min(xy, yn)), and the join by
XV y = (max(xy, y1), ..., max(xy, yn)). A function f:RN — RM is iso-

toneif x > y = f(x) > f(y). A particularly important condition for this
chapter is affiliation, which we now define.

Definition. Suppose the random variables X1, ..., Xy havejoint density
f.13 Then the random variables are affiliated if and only if f(x) f(y) <
fxAy fxvy)Vx,ye RN

To see how the definition captures our intuitive description of affili-
ation, let N = 2, and consider x; > y; and x; < y». Then we can rewrite
the affiliation condition, which is f(x1, %) f(1, y2) < f(x1, o) f(n1, %2),
as f(x1, %)/ fn, %) < f(x1,¥2)/f(n, 2). Dividing both the numera-
tor and denominator on the left-hand side by the marginal density
f2(x2) and on the right-hand side by f,(3») leads to f(x1|x2)/f(n|x) <
f(x11¥2)/fOnlye). Thus, the original condition is equivalent to the in-
tuitive statement that a higher value of X, makes higher values of X;
relatively more likely.

Notice that (lettinglog 0 = —o0) the affiliation inequality is equivalent
to the statement that the logarithm of the joint density function f is
supermodular:

log f(x) +log f(y) <log f(x A y) +1og f(xV y).

We say that a function f satisfying the above condition exhibits log-
supermodularity and call the corresponding inequality the affiliation
inequality. When the random variables X,..., Xy are statistically

13 Milgrom and Weber (1982a) give a general definition that applies even when the random
variables have no densities. They establish that it is equivalent to the definition above
for random variables that do have a joint density. Athey (2001) analyzes the existence of
monotonic equilibrium using log-supermodularity and related conditions. See also Athey
(2002).
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independent, they are trivially affiliated; the affiliation inequality holds
with equality.

The observation that affiliation is log-supermodular reminds us that
order-preserving transformations of the underlying variables do not af-
fect the property. This fact is important for our theory, because when
bidders’ strategies 8’ : [0, 1) — R are increasing, the vector of bids is an
order-preserving transformation of the unobserved vector of types.

To illustrate the principle in the context of auctions, let f; and f; de-
note the joint densities of the bidders’ types and bids respectively. For
convenience, assume for now that these densities exist and are posi-
tive and that the equilibrium bid function is differentiable. Fix two type
profiles 7 and 7 and corresponding bid profiles b = (8! ("), ..., pN (V)
and b= (B'(F1), ..., pN(FN)), which we write compactly as b = A(f) and
b= p(7)." Because bidder strategies are increasing in type, the cu-
mulative density of types must equal the cumulative density of bids:
F,(f) = Fy(b) = Fy(B(f)). One derives the relation between the corre-
sponding densities by differentiating N times, as follows. First, 3 F,/dt* =
(Fp/0bY) - BY (tY);next, 02 F;/at' 9t = (32 F,/0b"ab?) - BV (¢') - B2 (*);and
so on, until we reach the following:

fu@) = fuB)p" (@) --- pN (@Y,
f@) = fodp" Y- N EY,

fiGvE) = flbvhp G viE). - pN ENVEY),

fEAT) = f,bAD)BY ELATY) - BN (EN AEN). (5.14)
Foreachi, theset{f’, '} = ({' AT, T v}, sop/ (E))- B/ (E)) = B/ (' A
i) . g/ (f' v ). Hence, combining the four equations of (5.14) and sim-
plifying, we obtain

[EAD f(EvE)  fulbv b) fy(b A D)

OO /DB
Affiliation is the requirement that the ratios in the preceding equation
exceed one, so the bids are affiliated if and only if the types are affiliated.

The next several results facilitate application of the theory of affiliated

random variables to auctions. The first states that affiliation of every pair
of variables in a set implies affiliation of the set and that, if the density

14 Here, as above, we read the notation to respect the structure of the game, in which each
bidder’s bid depends just on his own type. Thus, b/ = g/(#/) and b/ = g/ (#).
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function is smooth, one can check affiliation using a simple derivative
formula.

Theorem 5.4.1. The function f is log-supermodular if and only if for
every i # j, X_;j, X; > X;, and x; > £j, one has

Fa, X, x247) f(Ri, x5, x47) < fQ, x5, x247) f(Ri, X, X45).

If f is positive and twice continuously differentiable, then f is log-
supermodular if and only if 92 log(f(x))/dx;0x; = 0.

One can restate both parts of this theorem simply as theorems about
supermodular functions. Proofs can be found in Topkis (1978) or Topkis
(1998).

Theorem 5.4.2. If f: ]Ri — R is log-supermodular, then g(xi, x;) =
fs" (s, x2) ds is log-supermodular.

Proof. Let x; > %; and x, > X,. Then

REACE N
g1 %) _ Jo' f(s, %) ds _qy dn G
g(x1, x%2) fojc‘ f(s, x0) ds % (s, x2)
o [f(&1,x)
1 f(s, x2)
S 14 dm f(ﬁl,Asz) _ g(iq,{@).
I f(s, %2) gs 8 %)
O f(R1, %2)
The inequality follows because f(s, x_1)/ f(%1, x_1) is increasing in x_;
for s > %, and decreasing in x_, for s < £;. [ |

Theorem 5.4.3. If f(x;, x) is a log-supermodular probability density on
RZ, then

(1) the conditional density f(x;|x.) is log-supermodular,

(2) the conditional cumulative distribution function F(x;|x;) is log-
supermodular, and

(3) the conditional cumulative distribution function F (x;|x») is non-
increasing in x;.
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Proof. To show (1), note that the conditional density is f(x1|x) =
fx1, x2)/f2(x2), so In f(x1]x2) =1In f(x1, %) — In fo(xz). It follows that
f(x1]x2) is log-supermodular if (and only if) f(xi1, %) is log-super-
modular.

To show (2), note that F(xi|x2) = [;" f(s|x2) ds, and apply theorem
5.4.2.

To show (3), fix x; and let x, > %. By (2), F(x1|%2)/F(x|x2) >
limy_, o F(x|X2)/F(x|x2) = 1,80 F(x1]%2) > F(x1]|%2). |

Notice that according to part (3), affiliation implies that certain con-
ditional distributions are ordered by first-order stochastic dominance.
The following result demonstrates another important property of affili-
ation: if a set of variables is affiliated, then any subset of the variables is
also affiliated.

Theorem5.4.4. If f(xi, ..., x,) isalog-supermodular probability density,
then g(x1, ..., x,-1) = [ f(x1,..., X,_1, 5) ds is also a log-supermodular
probability density.

Proof. 1t is trivial that g is a probability density, and the log-
supermodularity result is trivial for the case n = 2. Accordingly, sup-
pose that n > 3. It suffices to prove the result for any pair of variables
x;,xj where 1 < i, j <n—1, so we focus on the case i =1, j = 2. Fix
y=(%,...,%X,-1) (yisnullif n = 3) and let x; > %; and x, > %,. Because
f(s|%1, %2, ) = f(R1, R2, ¥, 8)/ [ (&1, X2, y, 1) dt, it follows that

g1, %,y [ fG, x,y, 8)ds
g1, %2, y) [ f(&1, X2, y,8)ds
[ fG1Lx,y,9)

) fQR1 %2, y.9)
[, x2, y,8)

) [, X, p.8)

_ [ fa %y,

) [, X, p.8)

[ ey, 90ds gla, X2, )

[ fla, ke, y,)ds T gl %2, )

f(s|%1, X2, ) ds
f(s|%1, X2, y) ds

f(s|xi, X2, y) ds

The first inequality follows because, by log-supermodularity, the in-
tegrand is everywhere larger. Two observations imply the second
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inequality. First, by part (3) of theorem 5.4.3, the distribution
F(s|x1, X2, y) < F(s|%1, X2, y) for all s. The conditional distribution given
X1, X2, y is thus higher in the sense of first-order stochastic dom-
inance than the conditional distribution given 21, %, y.!> Second,
the ratio f(x1, x2, ¥, )/ f(x1, X2, y, s) is nondecreasing in s (by log-
supermodularity of f). The inequality then follows from the definition
of first-order stochastic dominance. [ |

Theorem 5.4.5. Suppose the random variables X1, ..., Xy are affiliated.
Then, for every bounded isotone function g:RN — R, the function
h(x) = E[g(X,, ..., Xn)| X1 = x] is isotone.

Proof. Thetheoremisobviousincase N = 1.For N = 2,letx; > %;.Then
h(%)) = E[g(%1, X2)1 X1 = %1] < E[gx1, Xo)|Xh = 1] < Elglx, Xo)| Xy =
x1] = h(x;). The first inequality follows from the isotonicity of g.
Stochastic dominance implies the second; observe that g(x;, ) : R — R
isnondecreasingand (bytheorem5.4.3, part (3)) that F(x;|x1) < F(x|%;).

Next, consider N > 3, and suppose the theorem holds for all m <
N —1. Let g(x,y) = Elg(Xy, ..., Xn)|X1 = x, Xo = y|. Holding X; = x,
the right-hand side integrates a function of N — 1 variables, namely,
glx,): RN-1 5 R. So, by the inductive hypothesis, § is nondecreasing
in y. By a similar argument, it is also nondecreasing in x. Hence, g is
isotone.

So h(x) = E[g(Xy, ..., XnI|X; = x] = E[E[g(X, ..., XN)| X1, Xo]1 Xy
= x] = E[g(X,, X2)| X1 = x]. Applying the inductive hypothesis again es-
tablishes that this last expression is nondecreasing in x. [ |

Theorem 5.4.6 (Milgrom and Weber). Suppose that the random vari-
ables (Xj, X», ..., Xy, Y) have a joint density f that is symmetric in the
components of X. Then (Xi, Xy, ..., Xy, Y) is affiliated if and only if
(X, ... XN Y) s affiliated.

Proof. The density of (XY, ..., XM V) is N!f(x, ¥)1z,~..-xy), for there
are N! ways to arrange the components of X, and the indicator yields
the value of the density only when these components are ordered. This
density satisfies the affiliation inequality if and only if f does. |

15 For the definition of first-order stochastic dominance, see, for example, definition 6.D.1 in
Mas Colell, Whinston, and Green (1995). That reference also includes the characterization
of stochastic dominance used here.
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5.4.2 The Milgrom-Weber Ascending Auction Models

Ascending auctions follow a variety of formats. Oral outcry versions are
the most commonly used. In these auctions, bidders call out bids until
the auctioneer determines that bidding has stopped, and she then sells
the lot or item at the highest bid price. In auctions for fish or livestock,
a system of hand signals is often used to convey bids. The auctioneer
can also control the progression of prices called out. For example, in the
so-called Japanese auctions, the auctioneer raises the price until only
one bidder is still willing to bid.

Vickrey introduced the second-price auction as a model of the
English ascending auction. His now familiar idea was that each bidder’s
optimal strategy would be to bid until the bidding reaches his own prede-
termined reservation price, at which point the bidder would withdraw.
The winning bidder would then be the one with the highest reservation
price, and the winning bid would be approximately the second highest
reservation price.

Vickrey’s model omits the possibility that bidders learn something
during the course of the auction that might cause them to change their
reservation prices. If bidders can learn during the auction, then we need
to pay close attention to auction rules influencing what bidders observe
during the bidding process. For example, suppose that the auctioneer
continuously raises the required bid and each bidder makes only one
decision: when to quit bidding. We can think of the bidder as bidding
by holding down a button and quitting by releasing the button (alterna-
tively, quitting by pressing a button). Quitting in this way is assumed to
be irreversible. In the version of this model that provides the least infor-
mation to bidders, the auction mechanism provides no feedback to the
bidder about the number of active bidders or their identities during this
process. In this model, one can describe any pure strategy with a sin-
gle reservation price,'% so the Vickrey model incorporates any learning

16 This reasoning is slightly informal, conflating strategies with reduced strategies. A strategy in
agame specifies what a player does at every information set where he must act. So, formally,
a bidder’s strategy in this game must specify what he would do if he were still active when
the required bid rose to x, even if the strategy also specifies that the bidder will withdraw
when the required bid is x — 1. The actual outcomes in the auction game described here are
completely determined by the lowest bid at which each bidder drops out, and two strategies
that have the same lowest bid always lead to the same outcome. In game theory, a reduced
strategy is a class of equivalent strategies in which each element always leads to the same
outcome. So, in this auction game, it is the reduced strategy that specifies only the lowest
price at which the bidder will drop out.
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opportunities that bidders may have. That is, the ascending auction
without feedback about active bidders is strategically equivalent to the
Vickrey second-price auction model. We say that an ascending auction
mechanism that offers bidders no information about the numbers or
identities of active bidders provides minimal information in the class of
ascending auction mechanisms.

In real English auctions, bidders usually observe additional informa-
tion. We discuss one model of such a situation below, in which bidders
observe the number of other bidders who are still active at every moment
during the auction. We limit attention, however, to button auction mod-
els, in which a bidder’s only decision is when to withdraw irreversibly
from the bidding.!” This model, due to Milgrom and Weber (1982a), is
the first model of a button auction as well as the first model with general
interdependent values and correlated types.

Throughout many of the models analyzed below, the winner’s curseis
a key feature. The winner’s curse is a form of adverse selection. A bidder
who wins in competition against well-informed bidders must be cog-
nizant that the others’ unwillingness to bid higher is unfavorable infor-
mation about the value of the item. In the drainage tract model, we cal-
culated the non-neighbor’s profits in just that way: a non-neighbor wins
with a bid of b exactly when the neighbor bids less than b, which is infor-
mative about the neighbor’s estimate of the value. When more than one
bidder has relevant information, each bidder needs to be aware of the in-
formation content of others’ bids when making his own bidding decision.

There can also be an important loser’s cursein multi-object auctions.'®

5.4.2.1 The (Second-Price) Button Auction with

Minimal Information

Assume the payoff to each bidder is the value received minus the amount
paid. For losing bidders, the value received is zero. The winning bidder,
i, receives value v’ = vi (¢, 1, t~7), where 1° is a variable that may not be
observed by the bidders, such as the seller’s information. We assume that
v’ is nondecreasing.

17 In doing so, we omit models in which bidders may “jump” to communicate information
to other bidders. Jump bidding involves significantly (and asynchronously) increasing the
current high bid. See Avery (1998).

18 The loser’s curse was first introduced by Pesendorfer and Swinkels (1997). The possibility
of aloser’s curse has important implications for bidders’ incentives to gather information.
A first attempt to study those is found in Hernando-Veciana (2003).
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We begin with the symmetric case, which imposes three restrictions.
First, all bidders have the same valuation function v, so v = v(#, 0, ).
Second, the valuation function is symmetric in the other players’ types,
that is, v! = v(e', 20, t71) = v(e!, £, 1V, ..., £ N7V, where ¢, ..., fN-D
denote the order statistics (in order from highest to lowest) of 2, ..., V.
Third, the distribution of types is symmetric in the same way as the
valuation function.

Consider the button auction with minimal information, which we
have seen is strategically equivalent to the second-price auction model.
Define d(r, s) = E[v!|t! = r, V) = s]. If the types are affiliated and sym-
metrically distributed, then by theorems 5.4.5 and 5.4.6, the function o
is isotone, that is, nondecreasing in each argument. For comparing the
following results, it will be convenient to treat ¢ as primitive and assume
that it is isotone and strictly so in its first argument.

Theorem 5.4.7 (Milgrom (1981b)). Suppose that the function v isisotone
and increasing in its first argument. Then the strategy B(s) = (s, s) is a
symmetric equilibrium strategy of the second-price auction. The equi-
librium has the property that if any bidder learned the highest opposing
type and this type’s bid, the bidder could not gain by changing his bid.

Proof. Suppose players other than bidder 1 play the symmetric equi-
librium strategy. After learning 1 and the corresponding bid g (V) =
(¢, tV), bidder 1's problem is max(H (¢!, tV) — d(tW, (V)1 gy. If
' > Y thenanybid b > g(:V) maximizes the bidder’s payoff, including
thebid g(#").If ! < ¢V, then any bid b < 8(:) maximizes the objective,
including the bid 8 (#"). Because B(t') is a best reply conditional on every
realization of t, it is an unconditional best reply. [ |

An equilibrium in which the players can never gain by changing their
strategies even if they learn the other players’ types and actions is called
an ex post equilibrium. According to theorem 5.4.7, the identified equi-
librium of the second-price auction is an ex post equilibrium if there are
just two bidders. Recent papers on auction theory have given renewed
emphasis to ex post equilibria.

Ex post equilibria in ascending auctions have two attractive features.
First, each bidder’s ex post equilibrium strategy depends only on the
bidder’s own type, so the bidder can implement the strategy with that
information alone. Second, each strategy is a best reply to the strategy



190 Interdependence of Types and Values

of the other players even when the bidder knows all types and bids. The
strategy is a best reply for any intermediate information structure, so
it remains a best reply for a wide range of assumptions about bidders’
knowledge.

In an ex post equilibrium, no player has any incentive to expend effort
gathering information about other players’ types or actions, because his
optimal action does not depend on that information. Therefore, by theo-
rem5.4.7, bidders in a second-price auction have no incentive to expend
effort gathering such information. In contrast, bidders do generally have
such an incentive in first-price auctions; in particular, they could use in-
formation about others’ bids to good advantage in choosing their own
bids. Consequently, the second-price auction can reduce some kinds
of bidder costs. The costs of participating in an auction are a serious
concern for practical auction design, so this advantage is significant.

Several variations of the model used for theorem 5.4.7 have also proved
tractable. We consider next a pure common value model with two play-
ers. There are a multitude of ex post equilibria in this case.

Theorem 5.4.8 (Milgrom (1981b)). Consider a two-player version of
the preceding model in which v is symmetric, that is, v! = v(#!, ) =
v(#?, t') = v2. Then for every increasing, continuous function f: R — R,
the strategy profile 81 (s) = v(s, f~1(s)) and B2(s) = v(f(s), s) is an ex post
equilibrium.

Proof. Consider bidder 1’s ex post problem. After learning ¢! as well as
> and the corresponding bid g2(¢?), bidder 1 solves max;(v(t!, ?)—
B2 () 1pop22y. So (') is a best reply for all ¢ if g!(¢) > p*(1?) &
v(t, 12) > B2(t?).

By construction, if ' = f(#?), then B(t') = v(!, f~1 (") = v(f(£?),
) = B2(¢?). Because v is increasing, B'(r') > p2(?) & t' > f(¢?). By
construction, ' > f(#?) & p2(1?) = v(f(?), ) < v(t', ?), so B (') >
B2(?) & B2(t?) < v(f', ?), as required.

An analogous argument shows bidder 2’s strategy is also a best
reply. |

Theorem 5.4.8 allows for some extreme equilibria in which the seller’s
revenues can be very low. For example, let us apply the theorem using the
function f(s) = s* where « is a large positive number. Recalling that the
type spaces are [0, 1], when bidder 2’s type is s € (0, 1), his equilibrium
bid is g2(s) = v(s%, s) ~ v(0, s). Bidder 1’s equilibrium bid when s € (0, 1)
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is B1(s) = v(s, s/%) ~ v(s, 1). Using these approximations, bidder 2’s bids
are all less than v(0, 1), and bidder 1’s bids are all larger than the same
amount. Consequently, bidder 1 wins nearly all the time and pays a price
of approximately v(0, ). Extending the example, suppose that v(r, s) =
rs. Then the price will always be approximately v(0, 2) = 0. Of course, if
this equilibrium were anticipated, bidder 2 might be so discouraged that
he would not enter at all, particularly if the entry costs were significant.
Are such extreme equilibria plausible? Klemperer (1998) has argued
that in situations with “almost common values,” extreme equilibria like
these may be the only “reasonable” equilibria. Klemperer illustrates his
point with the wallet game, in which two bidders each bid for the sum
of the (privately known) contents of the bidders’ wallets. Here, the value
function v(r, s) = r + s is symmetric and isotone, so according to theo-
rem 5.4.8, there are many equilibria corresponding to different values
of f.What happens when one player has an advantage, even an arbitrar-
ily small one, over the other? The next theorem shows that extreme equi-
libria are commonplace and the disadvantaged bidder has no chance of
winning in any equilibrium in undominated, continuous strategies.

Theorem 5.4.9. Suppose that bidder values are given by v! (¢!, #?) and
v2(#?, t'), where each function is continuous, isotone, and strictly in-
creasing in its first argument. Suppose that for every possible realization
of t* and 2, v' (!, *) > v2(#%, t'). Then the following bid functions yield
an ex post equilibrium in undominated, increasing, continuous strate-
gies: g1 (') = v!(#', 1) and B2(?) = v2(#2, 0). In this equilibrium, bidder 1
always wins. Moreover, in any Nash equilibrium in undominated, con-
tinuous strategies, bidder 1 wins with probability one.

Proof. First, we verify that the proposed strategies form an ex
post equilibrium. Because v!' and v? are isotone, for all ' and
2 we have gl(t!) = vl (!, 1) > v (!, 2) > V2, t1) = v2(?, 0) = B2(#?).
Because B'(t') > g2(?), bidder 1 always wins. Bidder 1 solves
max(v! (£, ) — B%(t%))1p- g2(2), and, by inspection, any bid that always
wins is optimal. Bidder 2 solves max;,(v?(#2, ') — B'(t1))1p- g1 (), and, by
inspection, any bid that always loses is optimal. So the proposed strate-
gies are mutual best replies and hence form an equilibrium.

At any Nash equilibrium in undominated strategies, bidder 2 of type
2 = 0 bids no more than v?(0, 1), and bidder 1 of type #! =1 bids no
less than v!(1, 0) > v2(0, 1). So there is no equilibrium in undominated
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strategies at which bidder 2 always wins. Hence, if bidder 2 wins with
positive probability, then because the bid functions are continuous, there
exists an open interval of bids that is in the range of both bid functions.
Let b be a bid in that interval, and suppose ¢! and #? are types such that
b= Bt = p2(¢?). If v (¢}, 2) > b, then this cannot be an equilibrium
outcome, because bidder 1 would benefit by increasing his bid slightly,
winning more often when winning is profitable. Similarly, if v! (£, £2) < b,
then bidder 1 would do better to reduce this bid. So, at equilibrium for
anybidinthatinterval, itmustbe true thatb = v! (¢, #*) and similarly that
b = v%(#, t'). That contradicts our hypothesis that v! (¢, £?) > v?(#?, t!)
for all type pairs. Hence, all types of bidder 2 win with probability zero
and all types of bidder 1 win with probability one. [ |

According to theorem 5.4.9, a small asymmetry can make a huge dif-
ference in the equilibrium strategies and revenues in the pure common
value auction. To illustrate the logic of this conclusion, consider a vari-
ant of the wallet game in which one participant receives an extra dollar
whenever he wins. Suppose the wallets are known to contain between
$0and $100. Then, according to the theorem, the advantaged bidder bids
the amount in his own wallet plus $101 in a second-price auction, while
the other bidder timidly bids just the contents of his own wallet. The
reason that there is no equilibrium at which bidder 2 ever wins is this:
Suppose that at some other equilibrium, there is some price p at which
bidder 2 wins if bidder 1’s value is low enough, say less than $15. Then,
bidder 2 should bid up to p exactly when his wallet contains at least
p — 15. But then, if bidder 1’s wallet contains v € (14, 15) and he bids up
to pand wins at that price, the value to him is no less than the amount in
his own wallet, plus $1, plus the amount in bidder 2’s wallet, which is at
least p — 15, so his total net winnings are (v+ 1+ p—15) — p> 0, and
the original strategies could not be an equilibrium.

In this example, the average winning bid is just the average amount
in the timid bidder’s wallet. As the theorem suggests, there are other
plausible equilibria in this case, but they differ little from the equilibrium
just described. For example, the timid bidder may bid $1 more than the
contents of his wallet. Still, in equilibrium, the advantaged bidder always
wins and the average price does not exceed the average content of the
loser’s wallet plus $1. The winning bidder’s profit is high, and the seller’s
revenue is correspondingly low.
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Bulow, Huang, and Klemperer (1999) used a common value model
to study takeover battles, treating these contests as auctions. They show
that when abidder has a small toehold in a takeover battle, owning some
shares of the target’s stock before the battle begins, then equilibrium the-
ory predicts that the bidder can win the takeover battle at an alarmingly
low price. This application reinforces the lesson that a common value
environment greatly magnifies small asymmetries. '

So far, we have emphasized revenue comparisons in button auctions,
but traditional economic theory often focuses on efficiency. Maskin
(1992) investigated the existence of efficient equilibrium in an asym-
metric version of the two-player button auction above. Again, we treat
vl (¢!, ?) and v2(#, r') as primitive functions. The following condition
proves important.

Definition. Values display (strict) single crossing interpersonal differ-
ences (SCID) forbidderiifforall j # iandall 7, the quantity AY (£ |t) =
vi(e, ) —vi(t/, ', 1) - regarded as a function of # — has the (strict)
single crossing property. That is, SCID holds if (' > %, AU (F/|t)) > 0) =
AUt > 0and AV (Fi|t7)) > 0 = AY(#|t7?) > 0;and strict SCID holds
if(d >, AUFE ) > 0) = AUE ) > 0.

In words, the SCID property means that if i’s value exceeds j’s value
for some profile of types, then increasing i’s type cannot reverse that
relationship. Intuitively, if such a reversal were possible, it would mean
that j’s value was more sensitive to i’s information than was i’s own
value.

The SCID condition ensures a kind of alignment between a bidder’s
incentives and the efficiency criterion. In general, a higher type for bidder
J suggests he has a higher value and so is willing to pay more to win.
When SCID holds, a higher type for j also suggests bidder j is more likely
the efficient winner. According to theorem 5.10 below, this alignment is
sufficient for the ascending auction to have an ex post equilibrium with
efficient outcomes. According to theorem 5.4.11, a refinement of the
SCID condition is also necessary.

Theorem 5.4.10 (Maskin). Suppose that each vl is continuous and in-
creasing, that v!(0, 0) = v%(0, 0), and that players are labeled to satisfy

19 Bulow and Klemperer (2002) report additional results in the same vein.
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vl(1, 1) > v2(1, 1). If the values display strict SCID for both bidders, then
there is an increasing function f such that the strategies (B, B?) consti-
tute an ex post equilibrium of the second-price auction game, where
BL(s) = vl(s, f71(s)) and B2(s) = v2(s, f(s)). Furthermore, equilibrium
outcomes are efficient.

Proof. Suppose ¢ € (0, 1). By strict SCID for bidder 2, because v!(1, 1) —
v2(1,1) >0, it follows that vl(1, %) — v?(f3, 1) > 0. Also, because
v1(0, 0) — v%(0, 0) = 0, strict SCID for bidder 2 implies that 0 > v'(0, *) —
v2(£2, 0). Hence, by continuity of the values, there exists a type ' =
f(#?) such that v!(f(#2), £?) = v?(?, f(¢?)). By strict SCID for bidder 1,
the f(#%) that satisfies this equation is unique. By strict SCID for both
bidders, f(-) is increasing.

Suppose that the bidders adopt the strategies gl(s) = v!(s, f1(s))
and B2(s) = v2(s, f(s)). By construction, both strategies are increasing.
After bidder 1 learns bidder 2’s type ? and bid 8%(#?), bidder 1’s problem
becomes

mé’:lx(vl(tl, 2) =2, () - Ly prey.

Because B! (t) = g2(>) & ' = f(¢?) and both the bid functions and
f are increasing, it follows that (') > p2(#?) & t' > f(#*). Thus, if
bidders play according to these strategies, then 1 wins exactly when
' > f(#?), that is, when v! (¢!, ) > v?>(#?, t'). Thus, the outcome when
bidders use these strategies is always efficient.

Next, t* > f(1?) < vi(t, f71(Y)) vl (f(1?), 2) = v (2, f(?)). Hence,
LY > BE(t?) < v (e, fH(EY) > vA(E, f(1D) = BA(EA).

The inequality v!(¢!, f~1(¢})) > B%(t?) determines when a bid b >
B2(1?) is ex post optimal for bidder 1. The conclusion that the inequal-
ity holds if and only if B! (') > B2(#*) means that bidder 1 is playing an
ex post best reply. A similar analysis applies to bidder 2, verifying that the
strategies form an ex post equilibrium. [ |

The next theorem states a partial converse of the efficiency result in
Theorem 5.4.10: we cannot achieve efficient outcomes without at least
the weak form of SCID.

Theorem 5.4.11 (Maskin). Suppose that v! is continuous and increas-
ing and there exist types such that SCID for bidder 1 is violated, that is,
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3r! > ! and #% such that v} (1, £2) — v2(, 1) > 0 > vi(£!, 12) — v2(2, ).
Then there is no ex post equilibrium at which outcomes are always
efficient.

Proof. Because v! is increasing, by the monotonic selection theorem the
bid must be increasing in type, so bidder 1 must be weakly more likely
to acquire the item when his type is ' than when his type is ! when 2’s
typeis 2. In particular, 1 must sometimes acquire the item when the type
profile is (#!, ). However, this outcome is inconsistent with efficiency,
because 0 > vl (t!, 2) — v2(£3, t1). [ |

5.4.2.2 The Button Auction with Maximal Information

The symmetric model studied above assumes bidders receive minimal
information about the numbers and identities of active bidders. In this
model, bidders either know nothing about others’ bids or cannot draw
inferences from them. We now model the opposite extreme. Suppose
all bidders learn whenever any bidder drops out. Moreover, the bidders
use this information to make inferences about the dropout’s type. Of
course, with just two bidders, the button auctions with minimal and
maximal information are equivalent, because in neither auction does
any bidder learn another’s dropout price before the end of the auction.
With more than two bidders, however, we can conceive of the auction as
taking place in two stages. During the first stage, N — 2 bidders drop out
and their decisions provide information to the last two active bidders.
When the kth bidder drops out at price pi, each remaining bidder figures
that the dropout’s type is the (N — k)th highest among his competitors,
estimates that type to be some number V-9 updates his estimates,
and continues accordingly. When only two bidders remain, those two
effectively bid in a second-price auction.

In the formal analysis below, we use 1 to denote the nth highest type
among the competitors of some bidder.

Because we assume the game to be symmetric, it is convenient to
treat bidder 1 as the typical bidder and focus on his bidding problem.
A (reduced) strategy for this game specifies whether bidder 1 drops out
when the price reaches some level, given the observed history up to that
time. Let B,(s, p1, ..., pn) describe the lowest price at which the bidder
of type s will drop out when nbidders have already dropped out at prices

P <--- < py.Clearly, Bu(s, p1, ..., Pn) = Pn-
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To facilitate study of variations in bidder information, let v be a
primitive value function whose arguments include the type profile
and the seller’s information t°, and let o(¢!, ..., ) = E[v(t}, °, £, .. .,
M|t ..., V] be the reduced-form value function when the seller re-
veals no information about her type.

Theorem 5.4.12. Suppose that v is continuous, isotone, and strictly in-
creasing in its first argument. Then the following strategy, defined in-
ductively, is a symmetric ex post equilibrium strategy of the ascending
auction:

Bo(s) = v(s,...,s),
X 5.15
Bu(S, pro..o p) = 0(s, ..., s, ENV L FNED) (5.15)
where {9 solves
P = ,Bk—l(f(N_k), PrL--.s Pi1)
= (ENR R N N (5.16)

and NP = 0if pr < ©(0, ..., 0).

Proof. Because v is continuous and strictly increasing in its first argu-
ment, Bk(-, p1, ..., pi) is continuous and increasing as well. Hence, there
is a unique solution V-9 to pr = B, (N, p1, ..., p_1) on the rele-
vant domain. By construction, if the bidders besides bidder 1 adopt the
equilibrium strategy, then when bidder 1 wins, regardless of his strat-
egy, he pays o(#V, 1V, 1@, ..., #N=D) to acquire the good. This price is
less than bidder I’svalue (¢!, tV, @, ..., {N=D) preciselywhen ¢! > ¢,
Also, because the symmetric equilibrium bid function is increasing, bid-
der 1 wins using the function only when ' > V). Hence, the ex post
best-reply property is satisfied. [ ]

Each of the component strategies g, reflects a sort of myopic bidding
behavior. The bidder asks himself: “If everyone else were to drop outright
now, before I have a chance to react, would I be happy to be declared the
winner?” He remains active in the auction just as long as the answer to
that question is yes.

To understand the equilibrium strategies better, suppose no bidder
has yet dropped out (n = 0). Suppose the price reaches the level gy(f)
when bidder 1’s type is ¢!. Bidder 1 infers from the bidding that the
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others’ types are all at least 7. If bidders 2, ..., n were to quit instantly,
then bidder 1 could infer that their types were exactly 7. In that case,
bidder 1 would want to acquire the item at price By(f) exactly when
o(t!, ..., F) = Bo(f) =v(f, f,..., 1), which holds when ' > .

The analysis is similar when k > 0 bidders have dropped out. If all play
the equilibrium bidding strategy, then one can invert the bid function
to determine the types of the early dropouts. At equilibrium, the re-
maining bidders incorporate that information into their values and the
auction proceeds as an N — kbidder auction. The formula for the strat-
egy in (5.15) then takes the same form as when no bidders had dropped
out; each bidder assesses what her value would be if every other bidder
dropped outimmediately at the current price. The only difference is that
bidder 1’s conjectures about the first k bidders no longer change as the
bid increases.

Bikchandani, Haile and Riley (2002) have pointed out other equilibria
in this auction with different strategies but the same outcome. With at
least N > 3 bidders, one alternative equilibrium g specifies that the first
N — 2 bidders drop out at bids a fraction @ € (0, 1) of the bids at which
they dropped out under strategy 8, and the last two bidders bid as before:

Bo(s) =av(s,...,s),

Bu(s )= ab(s,...,s, {0 fND) - forn< N—1,
n\Ss P1s---5 Pn) = 1')(5,...,8,i'(N_n),...,f(N_l)) forn=N-—1,

with the inferences #¥ adjusted accordingly. It is routine to verify that
this strategy combination is an ex post equilibrium, because dropout
levels besides the last one have no effect of the outcome of the auction.

The multiplicity of equilibria indicates the weak incentives losing bid-
ders have to use any particular bidding strategy. Those weak incentives
may make inferences about the losing bids unreliable and suggest that
this model may not capture the essence of the real-world inference prob-
lem, where signaling and jump bidding may play a prominent role. As in
our discussion of the Cremer—-McLean theory, this multiplicity objection
reminds us that the real-world applicability of equilibrium models can-
not be taken for granted, and that considerations omitted by the logic of
equilibrium can be important in practice.

In the symmetric equilibrium above, the highest type always wins the
auction. When does the highest type also have the highest value? We can
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derive an analog to SCID for this model by observing that if ! = > =
s’, then v! = v2 = (s, s, t 12). Thus, a suitable version of SCID must
imply that increasing bidder 1’s type makes his value higher than bidder
2’s value: for s > s/, we have v(s, ', t12) > v(s', s, t'2). This inequality
implies that the highest type in the model has a higher value than any
other bidder, so we have the following:

Theorem 5.4.13. Suppose that v has the property that for s > s’ one has
v(s, s, t7'2) > o(s', s, t'2). Then, in the equilibrium of theorem 5.4.12,
the outcome is efficient.

5.4.2.3 Some Revenue Comparisons

We next examine the effect of auction design on revenue in ascending
auctions. Does the theory predict any systematic differences between
the button auctions with minimal and maximal information? How does
revealing seller information influence expected revenues?

For the remainder of this chapter, it will be important to keep track
of the difference between the primitive form of the value function and
its various reduced forms. We denote value estimates based on all infor-
mation by v(#/, t~/, 1°). The expected value given the bidders’ types but
nottheseller'sinformationiso(#, t~%) = E[v(¢!, t/, °)|#, t~*]. Finally, the
expected value given just bidder 1’s type and the highest opposing type
is o(¢', tW) = E[o(e', £ |, tV] = E[w(e, t71, 9]¢, tV]. We also write
B, tV 0 = Eu(et, 171, 92, 1D, 1],

Theorem 5.4.14. Suppose v(t',..., ") is increasing and types are
affiliated, and consider the equilibria identified in theorem 5.4.12.
Then

o(e®, V) < E[p®, ¢V, 1@, .. (N1 D] (5.17)

That is, the price paid by each type of bidder 1 when he wins in the
second-price auction is no higher than the conditional expected price
he pays given his type ¢! and the highest opposing type ! in the button
auction with maximal information.

Proof. The price paid by winning bidder 1 of type s in the second-price
auction when the second highest type is r is o (r, r). But
o(r,r) = E[o(r,r @, ..., (" V)i =tV =7]
< E[o(r,r @, .. ")t =5, 1 =7],
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by theorems 5.4.6 and 5.4.5, because the density of types is affiliated and
visisotone. Theright-hand side is the expected revenue in the ascending
auction with maximal information. |

The theorem implies that every type of every bidder expects to pay a
higher price on average in the button auction with maximal information
than in the auction with minimal information. By (5.17) and the law of it-
erated expectations, E[d(tV, tV)|t'] < E[o(tV, (Y, 1@, ..., tN-D|], so
the expected price with maximal information is higher.

We now consider how a seller’s decision to reveal information affects
the efficiency and revenues of an auction. The two effects can have op-
posite signs. For example, suppose that there are two bidders with values
1 and 3, but only the seller knows which bidder has which value. If the
seller reveals that information, then a second-price auction between the
two parties will lead to the bidder with the higher value winning and
paying a price of 1. If the seller does not reveal that information and
positions are ex ante symmetric, then each bidder will bid as if his value
were 2. The seller’s revenue will be 2 and, on average, the value to the
winner will be 2 as well.

To focus on other effects, we abstract from such possibilities, turn-
ing to a symmetric model in which the seller’s information is irrele-
vant to efficient allocation. For example, the seller may have informa-
tion about the distribution from which types are drawn — information
that, given the bidders’ realized types, does not bear on any bidder’s
value.

Theorem 5.4.15. Suppose v(t!, ..., tV, 1) is increasing and the types are
affiliated. Then, in both forms of the ascending auction, a policy of always
revealing ° cannotreduce the expected price paid by any type of winning
bidder.?° That is, for s > r,

onr) < Ep(r, O = 5,1V =71] (5.18)
and
o(r,r, 1@, VD)
< E[u(r,r t?, . (VD 0) i = 5,60 =1 1@ N,
(5.19)

20 When bidders are risk averse, revealing information may reduce the risk premium assessed
by bidders and therefore increase their bids. Milgrom and Weber (1982a) analyze this effect.
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Proof. For the auction with minimal information, we argue as follows:
or,r) = E[or, r, Ot =1, 1V =]
< E[f)(r, rO) |t =51V =r].

The inequality follows from theorems 5.4.5 and 5.4.6, using s > r.
The argument is similar for the auction with maximal information:

o(r,r, 1@, D)
=E[(rrn @, . VY Ot =Y =@, VY]
<E[(rrnt® NV Ot =5 Y =1 0@, Y,

The inequality again follows from theorems 5.4.5 and 5.4.6, using
s>r. ]

To use a term we introduced in discussing the drainage tract model,
the preceding theorem identifies a weighting effect. Observe that in the
maximum information model, if v does not depend on 1, then the price
effect of revealing that information is zero. In contrast, in the first-price
version of the drainage tract model, revealing information could also
have the publicity effect of making the bidders’ types more predictable,
thereby encouraging more intense competition from the losing bidders.
No such effect appears in the auctions above.

5.4.3 First-Price Auctions
Next, we turn to another very common auction form: the standard
sealed-bid auction, also known as the first-price auction. As in the pre-
ceding section, the types r = (1%, t*, ..., V) are affiliated and have a den-
sity f(°, ¢, ..., V) that is symmetric in the bidder types, but not nec-
essarily in the seller type. We denote by f(#V|¢') the conditional density
of the order statistic V) and by F(t|¢') the corresponding cumulative
distribution function.

Again, we focus our attention on bidder 1’s optimization problem.
Given a type t! = s, bidder 1 chooses a bid x to solve

max E (3 (s, ) = )1 ppaylt' = s]
=max E [E [(0(s. £71) = 1)L peony |2, (V] 11" = 5]

=max E [E[((s, t1) = 0" 10 ] Lo gy 12 = 5]
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=max E [((s. 1) = )1z gy |t = 5]

B (%)
:max/ (0(s, t) — x) f(z|s) dr.
* Jo

The first equality follows from the law of iterated expectations; the sec-
ond, from the fact that the indicatoris a function of #V; and the remaining
ones, from the definitions.

Theorem 5.4.16. The following is a symmetric equilibrium strategy for
the first-price auction:

B(s) = 0(0,0) +/ d(a, a)dL(als),
0

where L(a|s) = exp (— Iqjli; dz) . (5.20)

Proof. Define U(x,y,s) = foy (0(s, t) — x) f(z|s) dr. Using numbered
subscripts of U to denote partial derivatives with respect to the first
and second arguments, we have U, (x, y, s) = —F(y|s) and Uz (x, y, ) =
(s, y) — x) f(yls).

By theorem 5.4.3, F(y|s) is log-supermodular, so

32

7537 log F(y|s) =
% gg’,'lg > 0. Hence, U(x, y, s) satisfies the Mirrlees-Spence condition on
X < 0(s, y), because

Ui(x,y,s) —F(y|s)

Ua(x, y,8)| (s, ) —x) - f(yls)
is nondecreasing in s (because it is negative and its absolute value is
decreasing). Therefore, by theorem 4.4, the objective has single crossing
differences. Hence, we may use the constraint simplification theorem
to establish that the proposed strategy is optimal for a bidder. We must
show that bis increasing and solves the first-order condition (and hence
the envelope condition).

Using (5.20), one can verify that g satisfies the differential equation

f(sls)
F(s|s)

B'(s) = [0(s,5) — B(s)] -

(5.21)

Because 8(0) = (0, 0) and ? is isotone and strictly increasing in its first
argument, it follows that the solution of the differential equation (5.21)
must satisfy 0 (s, s) > B(s), so 8'(s) > 0 and the bid function is increasing.
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Suppose the bidders besides bidder 1 use the strategy g specified
in (5.20). Because 8 is increasing, then for all s, 8(s) is a best reply for
1 if it solves max, U(x, B~1(x), s). The bid then satisfies the first-order
condition at x = 8(s) if

0=U,(B(5),s,8) + Ua(B(s),s,8)/B'(s)
= —F(s|s) + (0(s, s) — B(s)) f(s]s)/B'(s).

Because § satisfies the differential equation (5.21), it satisfies the equiv-
alent expression (5.22).

Thus, the bid is increasing and satisfies the envelope formula. By the
constraint simplification theorem, bidder 1 has no better reply in the
range of the bid function and satisfying the constraint x < (s, y). By
inspection, anybid x thatviolates the constraintleads to alower expected
payoff than the bid x = (s, y), and any bid above or below the range of
the bid function produces a lower expected payoff than B(0) or 3(1),
respectively. Hence, 8 is a best reply for bidder 1. [ |

(5.22)

The derivation of the equilibrium strategy is quite straightforward.
Starting from the description of the game and assuming that there is a
symmetric, increasing equilibrium, one can derive the first-order condi-
tion (5.22) and restate it as the differential equation (5.21). The boundary
condition for this equation comes from the zero-profit condition for the
lowest type of bidder, who must be just indifferent about winning at his
optimal bid. Thus, 8(0) = 9(0, 0). Solving the differential equation with
that boundary condition leads to (5.20).

The next theorem restates the result of chapter 4 holding that the
second-price auction generates more revenue for each type of winning
bidder than the first-price auction.

Theorem 5.4.17. For each type of bidder, the conditional expected price
in the second-price auction, given that the type wins, is higher than
the corresponding bid in the first-price auction; that is, for all s € [0, 1),
Elo(s, t)]tV < s] > B(s).

Proof. In this proof, we denote the equilibrium strategy in the first-price
auctionby 87, andwelet 85(s, t) = E[p(tV, 1) =5, 1V < 1]. (Observe
that 83(s, t) is the price that bidder 1 of type s expects to pay if he bids as
if his type were ¢ and his bid wins.) We must show that F(s) < BS(s, $).
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Suppose bidder 1 of type s bids as if he were of type ¢, and let
o(s, ) = E[0(s, tD)|t! = 5, tV < 1]. Then the bidder’s maximum value in
the first-price auction is V¥ (s) = max, (v(s, t) — B (¢)) F(t]s). Similarly,
for the second-price auction, V5(s) = max, (i(s, 1) — B5(s, 1)) F(ts). At
equilibrium, a bidder of type s optimally bids as his own type ¢ =,
so VF(s) = (0(s, s) — BF(s))F(s|s) and VS(s) = (¥(s, s) — BS(s, $))F(s]s).
Hence, VT (s) > V5(s) ifand only if gF (s) < B5(s, ).

By the envelope theorem, V' (s) = F,(s|s)((s, s) — BF(s)) + F(s|s)D;
(s,8) and VS(s) = Fa(sls)(@(s, s) — B5(s, 8)) + F(s|s)Di(s, s) — F(s]$)B}
(s, s). Using theorem 5.4.3, part (3), F»>(s|s) < 0. So, if there is any s > 0
atwhich V¥ (s) < V5(s), then B (s) > B5(s, s) and hence V¥ (s) > V5 (s).
However, we have already established that, at equilibrium, V¥ (0) =
V5(0), so applying the ranking lemma to the function V¥ (s) — V5(s),
we conclude that VF(S) > V5(S) and hence BF(s) < 85(s,s) every-
where. |

The last theorem in this section establishes that revealing informa-
tion increases expected prices in the first-price auction, just as we have
already established for the second-price auction. As in the drainage tract
model, and unlike in our model of the second-price auction, there are
again two effects at work: a publicity effect and a weighting effect. Both
effects tend to reduce the winning bidder’s profits.

Theorem 5.4.18. For each type of bidder, the conditional expected pay-
ment in the first-price auction when the seller reveals °, given that the
type wins, is higher than the bid made by the same type when the seller
reveals nothing: E[B(s, )|tV < s] > B(s).

Proof. To emphasize the unity of ideas, we present this proof using vir-
tually the same words as the proof of 5.4.17 and only slightly vary the
notation.

Let B(s, ©) = E[B(t, ©°)|t* = s, 1V < 1]. (Observe that B(s, 1) is the price
that bidder 1 of type s expects to pay if he always bids as if his type were
t and his bid wins.) We must show that 8(s) < B(s, ).

Suppose bidder 1 of type s bids as if he were of type ¢, and let
o(s, 1) = E[0(s, tD)|t! =5, 1V < 1]. Then the bidder’s maximum value
in the auction in which the seller reveals no information must satisfy
VN(s) = max, (U(s, £) — BD) F(t]s). Similarly, when the seller reveals his
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information, the bidder’s maximum value is V!(s) = max; (s, ) —
B(s,1))F(t|s). In equilibrium, a bidder of type s optimally bids
as his own type r=s, so VN(s) = (i(s, s) — B(s))F(s|s) and Vi(s) =
(s, s) — B(s, s))F(s|s). Hence, VN(s) > V/(s) ifand onlyif 8(s) < B(s, s).

By the envelope theorem, VN (s) = Fa(s|s)(@(s, §) — B(s)) +
F(s|s)ti(s,s) and VI'(s) = Fo(s|s)(@(s, s) — B(s, s)) + F(s|s)1(s, s) —
F(s|s)Bi(s, s). Using theorem 5.4.3, part (3), F»(s|s) < 0. So, if there
is any s > 0 at which V¥(s) < V(s), then B(s) > B(s,s) and hence
VN'(s) = V! (s). However, we have already established that, in equilib-
rium, VN(0) = V1(0), so applying the ranking lemma to the function
VN(s) — VI(s), we conclude that for all s, VN(s) > VI(s) and hence
B(s) < B(s, s). [ ]

5.5 Conclusion

In this chapter, we have relaxed the assumptions of previous chapters
that types are statistically independent and that abidder’s value depends
only on his own type. These changes raise many new questions and high-
light important qualifications to the conclusions of the simpler models.

This chapter first investigated what kinds of information bidders
might gather when information is costly and types are independent.
We found that information about other bidders’ values, as opposed to
information about what they know, is of no value to a bidder in choosing
his optimal bid. When types are independent and evaluations are costly,
that analysis offers a rationale for assuming that bidder types are one-
dimensional. We showed, however, that this argument loses force when
bidder values may be interdependent.

Next, we studied the drainage tract model, which has been empiri-
cally successful in organizing facts about bidding for offshore oil in cer-
tain circumstances. The equilibrium in these models has the surprising
(and empirically verified) property that the distribution of bids for the
better-informed bidder (the neighbor) should be just the same as for the
worse-informed bidder (the non-neighbor). The model also generates
results about revenues and profits. Neighbor profits are positive and in-
creasing in the quality of the neighbor’s information. Moreover, they are
also increasing in the non-neighbor’s perception of the quality of the
neighbor’s information, so bidders have an incentive to convince others
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that they are well informed. The perceived quality of the neighbor’s in-
formation may matter, because well-informed bidders exacerbate the
winner’s curse suffered by non-neighbors, so that, in equilibrium, the
non-neighbors bid more timidly, allowing the neighbor higher profits.

The seller can reduce the value of bidders’ private information by
gathering and disseminating information. Such a policy can help in two
ways. To the extent the seller’s information makes the neighbor’s infor-
mation less private, this publicity effect reduces the neighbor’s profit to
the seller’s benefit. In addition, revealing information changes the weight
bidders place on the neighbor’s information in estimating value. When
the seller’s information is a substitute for the neighbor’s information, this
weighting effect reinforces the publicity effect and further increases the
seller’srevenue. However, itis also logically possible that the seller’s infor-
mation complements the neighbor’s information so that the weighting
effect is negative. It is even possible that this effect is large enough to
overwhelm the publicity effect, lowering seller revenues.

After the drainage tract model, we turned attention to symmetric
models with correlated types and interdependent values. We found
that the two models of the ascending auction then have ex post
equilibria - equilibria in which no bidder would want to change his
bid after learning the others’ bids and types. Such equilibria discourage
bidders from gathering information about others’ types, for those do
not affect the optimal bid. This feature of the ascending auction helps
economize on transaction costs.

We also investigated the efficiency of ex post equilibrium outcomes
in a model of any asymmetric ascending auction. The equilibrium is
efficient if a certain interpersonal single crossing condition holds that
aligns the bidder’s incentives with those of the auctioneer.

We also investigated the impact on revenue of the seller’s disclosures
of his information. Generally, the seller’s disclosures reduce bidders’
equilibrium profits and increase equilibrium revenues in the ascending
auction models through a weighting effect. Revealing information also
reduces bidders’ equilibrium profits and increases equilibrium revenues
in the first-price auction through a publicity effect, which the literature
has previously called the “linkage principle.” Theory also predicts that
because of a publicity effect, ascending auctions will generate greater
revenue than the first-price sealed-bid auction.
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Auctions in Context

Chapters 2-5 focus on strategies played in the auction and their conse-
quences for economic performance. The auction itself, however, is just
one part of a transaction, the success of which depends even more on
what happens before and after the auction. Understanding the transac-
tion as awhole requires one to ask who participates and what guarantees
quality, delivery, and payment. One must also ask why participants use
an auction at all rather than another method of transacting.

To illustrate the challenges of designing procedures for trade, we now
discuss two idealized transactions — the sale of an asset and the choice
of a supplier.

When an owner sells assets, he must consider what to sell and who
might want to buy the assets. If the asset is a commodity frequently
traded at an auction site — for example, a major brand of laptop com-
puter sold online at eBay — then the simplest approach may be to list
the item for sale at that site. A public auction of this sort reduces the
seller’s costs of marketing, because the auctioneer supplies most of the
required marketing, and maintains a physical or online catalog to help
buyers find products they want. The auctioneer’s reputation for selling
this type of asset helps attract buyers. The availability of similar prod-
ucts at the auction site makes it hard for the seller to get a higher price
by conducting his own private auction.

For specialized assets, however, the situation is quite different. Spe-
cialized assets are ones with few close substitutes, and few poten-
tial bidders are likely to value them highly. To obtain a high price,
the seller must identify and attract the most likely purchasers, so
independent marketing to seek out such bidders can be especially
valuable.

208
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Inpractice, auctions for valuable yet highly specialized assets often fail
because of insufficient interest by bidders. The European auctions for ra-
dio spectrum for use with third-generation mobile telephones presents
several useful case studies;! sale prices per capita for the spectrum li-
censes varied enormously across these auctions. In 2000, after auctions
in England and Germany had generated tens of billions of euros for gov-
ernment treasuries, the Swiss sold licenses at close to the reserve price
after only four bidders showed up to bid for the four available licenses. In
per capita terms, the difference in prices was about 30 to 1. Though the
Swiss example is an extreme one, it is not atypical. Spectrum auctions
with few participants and low sale prices have also occurred in Austria,
Israel, and Italy.

A combination of factors likely contributed to the disappointing out-
come of the Swiss auction. The rules created an all-or-nothing contest,
so that only participants who expected to win a large license would be
willing even to participate. Buyers are naturally reluctant to begin an
expensive, time-consuming evaluation of an asset when they believe
they are unlikely to win at a favorable price. High spectrum prices in
Germany and England likely dissuaded some bidders from participating
in the Swiss auction and encouraged some to merge to reduce competi-
tion in the auction. Despite these problems, the Swiss authorities could
have achieved a higher price if they had wished. The auction rules could
have provided that if few bidders entered the auction, the government
would sell the spectrum in the form of three licenses, rather than four,
to create meaningful competition.

Events like the Swiss spectrum auction of2000 highlight the important
roles of planning and marketing for asset auctions. The seller or seller’s
agentneeds to approach theright buyers, make sure that there isdemand
for the assets, package the assets appropriately, and convince buyers to
participate. A seller who neglects these considerations may encounter
low participation by bidders and low revenue.?

Marketing performs valuable economic functions by providing in-
formation to buyers and adapting the terms of sale to their needs. To

! See Klemperer (2002).

2 Paul Klemperer, who helped design the British spectrum auction, has advocated the use
of an “Anglo-Dutch” auction explicitly designed to have some inefficiency to encourage
participation by bidders who do not expect to have the highest values for the items being
offered.
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illustrate the second function, consider the sale of a factory by auction.
The potential buyers and seller may decide together what commitments
to make to existing workers or what contractual commitments to transfer
with the factory. Potential buyers may have differentregulatory concerns.
For example, if one buyer is a major supplier in Europe, it may need
European Commission approval to make the purchase, while another
buyer requires no such approval. Sellers must anticipate and accommo-
date such concerns to attract a sufficient number of high-value buyers
to the auction.

An auction’s timing can also significantly influence its attractiveness
to bidders. For example, in the United States, the most lucrative spec-
trum auction took place under a shadow of litigation. After Nextwave
defaulted on obligations to pay for spectrum licenses won at an earlier
auction, the FCC ordered Nextwave to return the licenses. The FCC then
scheduled another auction for these same licenses. That auction ap-
peared to have raised $17 billion for the Treasury,® until the bankruptcy
judge in the Nextwave case ordered the FCC to delay reassigning the li-
censes. This action left the licenses in limbo; neither the bidders nor the
FCC knew whether the new buyers of Nextwave’s licenses would even-
tually receive them. These uncertainties cast a shadow over all future
spectrum auctions, as potential buyers were unsure about what licenses
they could keep and what sums they were obligated to pay.

Inatypicalauctionforacompanyoralarge factory, sellers give bidders
access to a data room containing confidential details about the asset.
Bidders’ access to confidential information provides another reason to
select participants in the auction carefully. Otherwise, some participants
with little serious interest in buying the factory might pose as bidders to
acquire information they could use to compete more effectively with the
seller in product or labor markets. The investment bankers who manage
these sales usually restrict access to the information and, for additional
security, may prohibit bidders without a bona fide business plan from
viewing the confidential information in the data room.

Whereas the seller markets his assets to encourage competition, bid-
ders sometimes adopt countervailing strategies. One such countervail-
ing strategy arose in a 1994 US spectrum auction,* in which a single
license covering all of southern California was among those offered.

3 The auction described is FCC auction #35.
4 This was auction #4, for the A and B blocks of PCS spectrum.
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California’s regional telephone company, Pacific Bell, publicly commit-
ted to winning thislicense® and began an investment program to demon-
strate that commitment. The investments included large expenditures
to buy or lease cell sites, which are physical locations in each geographic
unit, or cell, of the cellular phone system where equipment is placed to
transmit and receive radio signals.

These actions persuaded other companies hopingto operate in south-
ern California of Pacific Bell's commitment to win the license. To en-
sure their own access to the southern California market, they acquired
spectrum outside the auction, swapping spectrum and buying spectrum
rights from smaller cellular operators. The FCCrules limited the amount
of spectrum companies could control in any market, so bidders who ac-
quired spectrum outside the auction became ineligible to bid on the
southern California area license. Consequently, Pacific Bell faced only
one, marginal competitor for the valuable southern California license
and acquired the license for a bargain price.

Sellers who are wary of possibilities like this can sometimes adopt
their own counter-strategies. A striking example is the 1989 sale of LIN
Communications, which was faced with a hostile takeover bid from Mc-
Caw Cellular. LIN’s management wanted a friendlier bidder, or at least
some other bidder, but realized none would be forthcoming against Mc-
Caw, because the costs of bidding are so high and the chances of success
so low. To attract BellSouth to participate, LIN promised to pay its ex-
penses ($15 million) plus a consolation fee in case it lost the bidding
($54 million). The competition forced McCaw to raise its offer from
$110 per share (about $5.36 billion) to a range between $124-138 per
share, roughly a $1 billion increase. LIN’s increased price added about
$100 million to the value of LIN’s executives’ stock options, eliminating
the resistance by LIN’s executives.

Like asset sales, procurement auctions range from the straightfor-
ward to the very complex. Although price alone is the basis of choice
for a few standardized items, most large business purchases weigh price

5 Theauthor, then a consultant to Pacific Bell, appeared on the CNN nightly news the evening
before the auction affirming that competitors would learn “just how determined we are” at
Pacific Bell to win the license. In the event, McCaw Cellular, whose owner was a personal
rival of the Pacific Bell CEO, decided not to allow Pacific Bell to win the license too cheaply.
McCaw became Pacific Bell's only real competitor for the southern Californialicense, forcing
the price hundreds of millions of dollars higher than it might otherwise have been. Even
so, the eventual price paid per unit of population was low compared to the prices in other
market areas containing such a large urban center.
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along with a variety of other attributes. These include product attributes
such as quality and style of the product or service and delivery arrange-
ments, contract attributes such as the length of the contract and terms of
payment, and supplier attributes such as reliability, capacity, and com-
patibility of order-processing and tracking systems.

Procurement decisions based on price alone may endanger other im-
portant attributes such as quality and service. Buyers mitigate this risk in
anumber of ways. In the United States, where law requires governments
to make procurement decisions according to objective criteria, the pur-
chasing agency develops detailed non-price specifications and rejects
all bids or contracts that do not comply with the exact specifications.
Although this practice may appear fair, it sometimes forces suppliers to
adapt their goods for government use, adding fixed costs, reducing scale
economies, and increasing prices.

In the private sector, buyers often develop lists of qualified suppliers
and leave suppliers on the list only so long as their performance is sat-
isfactory in all respects. Buyers can use this pre-qualification process to
favor suppliers they believe to have greater capacity to meet the buy-
ers’ future needs — for example, those expected to improve the quality of
their products and services, to reduce future prices, to expand capacity
if needed, to customize inputs, and so on.®

If auctions are used at all in a purchase of complex goods, they are
typically just one part of a larger process. A major purchase might start
with a request for information (RFI) that asks potential suppliers to in-
dicate their ability to provide the goods or services in question and sug-
gest specifications for the goods or services. A request for proposals (RFP)
meeting the buyer’s specifications might follow the RFI. A proposal might
specify products and services, payments, and how to handle contingen-
cies. Sometimes a request for quotes (RFQ) follows or replaces the RFP.
The RFQ asks suppliers to name a firm price for a particular package or
initiates an auction among the suppliers.

Additional negotiations may follow receipt of the bids or proposals.
Particularly if the final proposals differ in several dimensions, the buyer

6 The discussion in the text treats the buyer as a single entity that can set standards, make
forecasts, and evaluate alternatives in a coherent way. Complications arise when the buyeris
afirm having several units with independent budget authority. These units typically need to
purchase collectively to take advantage of the firm’s size in negotiating alow price. Managers
must agree on the timing of purchases as well as standards and minimum quantities to be
purchased from selected suppliers. If each department’s commitment reduces prices for
all, free rider problems can interfere with efficient buying arrangements.
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may simply use the auction outcome as a starting point from which to
bargain. Experienced sellers build some margin into their bids in an-
ticipation of the negotiations. This multistage process can be so costly
relative to any anticipated profit margin for the winner that some sellers
will decline to participate.

In this chapter, we will treat auctions as mechanisms having precise
rules to determine the best bid so no negotiations need follow the con-
clusion of the auction. Although more research is needed to understand
interactions between the bidding and bargaining stages, understanding
auctions in simple settings is an important precursor to the analysis of
more complicated settings.

To distinguish auctions from negotiations, we define auctions to in-
clude mechanisms that allow explicit and objective comparison of two or
more competing offers that are open at the same time. We define bargain-
ing to include mechanisms in which offers are short-lived and evaluated
one at a time. This dichotomy leaves out situations in which multiple
offers are available but the comparisons are not objective. Economists
have not extensively studied mechanisms of this sort, so itis not yet clear
whether it is most helpful to classify them as auctions or negotiations.

Bargaining anticipated to occur after the parties sign a contract may
influence transactional design as strongly as the bargaining that pre-
cedes the contract. Bargaining may occur during performance of the
contract when parties want changes to accommodate events the con-
tract did not anticipate. If the parties expect extensive revision of what-
ever contract they sign, then they could benefit from using a cost-plus
contract, that is, a contract in which the buyer pays the supplier its ac-
tual accounting cost plus a mark-up. Cost-plus contracts make it easier
to negotiate changes, because they fix in advance the compensation for
any agreed changes. However, cost-plus contracts make auctions less
useful, because the initial bids play a smaller role in determining the
eventual cost to the buyer. On the other hand, fixed price contracts,
which establish a firm price for the contract and provide for negotia-
tions to determine the price for any changes, are especially useful when
the parties expect few changes.

According to Bajari and Tadelis (2001), these generalities characterize
the actual pattern of contracting in the US construction industry. They
observe that the party purchasing construction services can reduce the
need for changes with thorough planning. Prolonged planning, however,
delays completion of the project. When speed is essential or substantial
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changes are unavoidable, buyers eschew auctions in favor of finding a
reliable builder and using a cost-plus contract.

The main focus on this chapter is bidder participation decisions and
how those interact with auction design. Most of the existing theory about
auctions with entry uses a symmetric model in which there are no ex
ante differences among potential bidders. The theory for that case is
well developed, and this chapter discusses it in considerable detail.

In both asset sales and procurement contexts, businesspeople are
often concerned about whether and how to run auctions when some
bidders are more qualified than others. Should the auctioneer encour-
age participation by less qualified bidders in order to increase compe-
tition in the auction? Can it be worthwhile to favor new suppliers to
increase competition, even if those new suppliers are expected to sup-
ply poorer quality? The theory of auctions with asymmetric potential
bidders is much less developed than the theory of symmetric auctions,
so we explore it in less detail, using a series of examples.

6.1 The Profit and Surplus Contribution of an Entrant

We begin by studying a set of models with endogenous entry. Entry is
endogenous when bidders themselves decide whether to participate in
a particular auction. Will bidders, acting in their own interests, decide
efficiently? Or are they likely to be too reluctant or too eager, relative to
the efficient standard?

In our model, the entrant to the auction directly bears the costs of
entry, so the question boils down to what share of the benefits of en-
try accrue to the individual entrant. Increased entry clearly affects the
payoffs of the other participants: it benefits the seller by raising the sale
price, and it harms other bidders both by raising the prices that they
pay when they win and by reducing their chance of winning. What is the
net effect of these apparent externalities? One might guess that if it is
positive, there will be too little entry; if negative, too much.

Our analysis begins with two results. First, in certain private-values
models, we find, surprisingly, that the net external effect of entry is zero:
an entrant’s expected profit in a second-price auction precisely equals
his expected incremental contribution to total surplus. In these models,
the marginal bidder’s entry decision is just what a social planner would
want it to be.
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The second resultis that, in symmetric models, the total value enjoyed
by the bidders and the auctioneer is a concave function of the number
of bidders or, more precisely (inasmuch as the number of bidders must
be an integer), that the expected contribution to welfare of the last en-
trant in a second-price auction declines in the number of entrants. This
concavity finding will have several important uses below.

To prove the first result, suppose a potential bidder is considering en-
try into a second-price auction. Suppose that entry costs the bidder an
amount ¢, that the highest value among the nother bidders is x, and that
abidder enters with value y. If y < x, the bidder will lose the auction and
make anetloss of c. If y > x, he will win the auction and enjoy net earn-
ings of y — x — c. In general, the bidder’s net profit will be (y — x)* — ¢,
where the notation z" means max(0, z). Notice that regardless of whether
the bidder wins or loses, his payoff exactly equals his incremental con-
tribution to total surplus. This result is our first theorem.

Theorem 6.1. Suppose entry costs are ¢, the maximum value among
existing bidders is x, and the last entrant’s value is y. Then, if the entrant
decides to enter a second-price auction, its net profit and its incremental
contribution to total surplus both equal (y — x)* — c.

Theorem 6.1 establishes that in a second-price auction, the marginal
bidder’s entry decision aligns perfectly with the objective of maximizing
social surplus. If the bidder knows x, y, and c at the time of entry, then he
finds entry profitable if and only if his entry increases the total surplus.
Even if the bidder does not know some of the relevant information and
bases his entry decision on expected profits, the conclusion is similar: he
enters if and only if his entry increases the expected total surplus.

The theorem shows that changing the entry decision of a single po-
tential bidder cannot increase the surplus, but it does not establish that
entrydecisions are efficient. For example, consider an asymmetric model
with a single good for sale and two buyers with values 8 and 10. Suppose
the cost of entry is 5. If the first buyer enters but the second does not,
neither buyer can do better by changing his decision unilaterally. In that
event, the total surplus will be 3, which is less than the maximum total
surplus of 5 that could be achieved if the entry decisions were reversed
and only the second bidder entered.

The preceding example indicates the value of examining the ef-
ficiency of entry decisions in more detail. Thus, suppose there are
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many potential bidders who have values of v!, v?, ...and who decide
in sequence whether to enter a second-price auction. If the first n
potential bidders have already entered the auction, then the highest
value among them is max(v!, ..., v").” Consider the entry decision of
the n+ 1st potential entrant. Let I(n, y, v) = (y — max(vl, ..., vt —¢;
this is the entrant’s contribution to surplus and net profit from entry
when v = y- By inspection, the difference I(n, y,v) — I(n+ 1, y,v) =
(y — max(v!,...,v")* — (y — max(v!,...,v"*!)* is always non-
negative, and is positive exactly when v*! > y > max(v!,...,v".
Thus, the entrant’s contribution is (weakly) declining in n, and his
conditional expected contribution E[I(n, y, v)], given any realization
v™! = y, is a nonincreasing function of n and is strictly decreasing if
Pr{v’*! > y > max(v', ..., v™} > 0.

These preliminary conclusions are particularly handy for analyzing
symmetric models or models in which the order of potential entry is
determined in advance, for example, by the auctioneer. In both cases,
E[I(n, y,v)] is a nonincreasing function of n.

6.2 Symmetric Models with Costly Entry

Let us apply the preceding insights to our benchmark model: the sym-
metric independent private-values model with a single good for sale. In
that model, Pr{v*! > v"*2 > max(v!,..., v} = [(n+ 1Dn+2)]"' > 028
Because this probability is strictly positive, the expected profit of an en-
trant is strictly decreasing in n, the number of bidders who have already
entered the auction.

Inreal auctions, as in the models studied in this chapter, participation
is costly. For example, before bidding for an asset, each bidder needs to
study it carefully and plan howhe would use itin his business. Identifying
the bidder’s value for the asset is the first step in preparing a bid. In our
models, the bidder decides whether to participate and incur this cost
before knowing his value.

There are three groups of models in this chapter. In the first group,
the seller designs the rules of bidding but exercises no direct control
over who enters the auction. The interesting issues in this case arise

7 By convention, the maximum value and maximum type are taken to be zero when n = 0.

8 Bysymmetry, the probability that v**! is the largest value among the n + 2 valuesis 1/(n + 2).
Conditional on that fact, again by symmetry, the probability that v"*? is the largest of the
remaining values is 1/(n + 1). Multiplying these ratios gives the expression in the text.
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when entry costs are moderate. If the entry cost is low enough that all
potential bidders will find it profitable to participate, then the analysis
merges into the analysis of the preceding chapters with a fixed number
of bidders, N. If the entry costs are so high that no bidder can profitably
participate, the analysis is trivial. When entry costs are moderate, the
equilibrium will, with positive probability, involve entry by some, but
not all, potential bidders.

We begin by studying a symmetric model in which each bidder’s de-
cision about whether to enter is randomized. A bidder who randomizes
at equilibrium must be indifferent between entering and not entering.
Accordingly, entrants must earn zero expected profits, so the entire net
surplus created by the auction accrues to the seller. This observation has
important consequences for auction design; for example, it implies that
an auction maximizes the seller’s payoff if and only if it maximizes total
net surplus. In expectation, the seller bears the burden of all participa-
tion costs incurred by bidders, so the seller takes full account of those
costs in designing the optimal auction.

In a second group of models, the seller exercises tighter control over
entry. The seller can economize on participation costs by coordinating
entry into the auction. We will find that screening bidders results in less
waste, a more predictable number of bidders, and higher average rev-
enues for the seller than a process with unrestricted bidder entry. This
conclusion is particularly striking in the symmetric model, because it
holds even when the screening process cannot select among bidders
according to any actual differences between them. Even so, limiting bid-
der entry can increase the seller’s expected revenues. In other models,
screening can identify the bidders who are most likely to have high val-
ues, producing still greater improvements in performance. We assess
how much sellers can increase revenue with a procedure in which bid-
ders share information with the seller before the auction about the extent
of their interest in the asset being sold.

A third kind of model pits an auction mechanism against a negotia-
tion mechanism or a hybrid of the two. For our purposes, the distinction
between auctions and negotiations is that auctions involve a simultane-
ous comparison of offers whereas negotiations take place sequentially.
The advantage of auctions lies in their use of explicit competition to
determine prices. In our model, the advantage of negotiations is that
they economize on participation costs although, in practice, a more
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important advantage is the ability to tailor the deal to the particular
buyer and seller. Bargaining achieves economies in our model because
it sometimes allows a sale to one of the first entrants, if that entrant’s
value is sufficiently high, rendering unnecessary the costs of additional
entry.

Hybrid mechanisms that combine the advantages of auctions and bar-
gaining are important in practice. In this chapter, we analyze a simple
one - auctions with a buy price. In these auctions, the seller announces
that if any buyer offers a certain price, then the auction will end im-
mediately and the seller will transact with that buyer at that price. This
hybrid mechanism combines some of the advantages of auctions (if no
bidder is willing to offer the buy price) and bargaining (if some bidder
accepts the buy price). We present a symmetric auction model in which
the seller always prefers to use a buy price rather than use a simple
auction.

6.2.1 Symmetric Bidders and Uncoordinated Entry

This section presents a model first studied by Levin and Smith (1994).
There are N potential bidders, each with no initial information. Bidder i
incurs a cost ¢ > 0 to enter and learn his type #. In a symmetric equilib-
rium, each bidder randomizes, entering with probability p. If a bidder
enters, he bids according to a function g that depends on the rules of the
auction. We use the distributional strategy formulation in which bidder
i’s value is v(t)), where v is increasing9 and differentiable, and in which
types are distributed independently and uniformly on [0, 1].

6.2.1.1 Equilibrium in Entry and Bidding Decisions
First suppose the auction is a first-price auction with reserve price r. Let
p be the type with value equal to the reserve: r = v(p). We will consider
both the possibility that the bidder learns the number of entrants, n,
before he bids, and the alternative sealed-bid auction in which the seller
conceals the number of bidders who participate.

Chapter 4 characterizes the symmetric equilibrium strategy (-, n)
for the case when everyone knows the number of bidders, n. When the

9 All the results reported here extend to the case where v is merely nondecreasing, provided
we appropriately resolve ties and indifferences. Chapter 3 describes the relevant method.
Here, we take v to be increasing in order to limit the amount of text devoted to indifferences
and ties.
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bidder learns his type ¢ but has not yet learned n, he bids differently.
First, the bidder makes a bid exceeding the reserve r only if his value is at
least r (thatis, if # > p).Inthatevent, he expects to outbid any particular
potential bidder if that bidder does not enter (which occurs with proba-
bility 1— p) or enters but has a lower type (which occurs with probability
pt'). Dropping superscripts, the total probability that an entrant of type
t > p bids more than any other particular bidder is 1 — p+ pt, so the
probability that he is the highest bidder in an auction with N — 1 other
potential biddersis x(£) = (1 — p+ pt)V~!. Using the envelope theorem,
the bidder’s expected net profit when he first learns his type is

t
V(t; p, N, p) = —c+/ (1-pa- NN/ (s) ds. (6.1)
]

This value is decreasing in pand N.
It is convenient to define

V(p, N, p) = E[V(; p, N, p)]. (6.2)

As discussed above, we focus on the case of moderate participation
costs. This condition rules out the two extreme cases in which either
V(, N, p) >0, meaning that entry is always profitable even if all bidders
choose to participate, or V(0, N, p) < 0, so that entry is unprofitable re-
gardless of the entry decisions of the other bidders.

Our analysis focuses on the remaining case in which abidder’s optimal
entry decision depends on what the other bidders do. Define

f(n) = max(¢', ..., . (6.3)

Let n(p) be a random variable that has the binomial distribution with
parameters N and p.

Theorem 6.2 Suppose that the entry cost cis moderate, as defined above.
Then there is a unique solution p = p*(N, p) to V( p, N, p) =0, and the
solution lies in (0, 1). Further suppose that the auction used is a first-
price auction with reserve r = v(p) and that the auctioneer reveals the
number of entrants before bids are placed. Then there is a unique sym-
metric equilibrium of the model. In equilibrium, each bidder enters with
probability p*(N, p), and an entrant uses the following bid function,
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conditional on its type ¢ and the number of bidders, n:

ift <p,
t = 6.4
Pl 1 0) =1 b ax(r w(En — D)|in—1) <t otherwise. 6-4)
Writing n* for n(p* (N, p)), the seller’s ex ante expected revenue is
Rex(N, p) = E[Brx(E(n*), i, p)] (6.5)

— E@0) Ljgey=p) — 1)

Remark. The subscript FK on the bid and revenue functions indi-
cates that the model involves a first-price auction and that each bid-
der knows how many bidders are present when he decides how much
to bid. The first expression for Rpx(NN, p) above is the expected win-
ning bid. The second is the expected net surplus, that is, the ex-
pected value of the item to the entrant with the highest value (pro-
vided that value exceeds the reserve) minus the total expected entry
costs.

Proof. Bidding proceeds as it would without the explicit model of entry,
so formula (6.4) follows from the analyses of chapter 4.

In the entry stage, any mixed strategy solution entails a probability of
entry thatsolves V( p, N, p) = 0. (Ifinstead V( p. N, p) > 0,anyindividual
bidder could gain by switchingto the strategy of entering with probability
one. Similarly, if V( p. N, p) < 0, then any individual bidder could gain by
switching to the strategy of entering with probability zero.) Conversely,
ifall bidders randomize in this way, then bidders are indifferent between
entering and not, so each bidder finds randomizing between the two to
be a best reply.

Because costs are moderate, V(0, N, p) > 0and V(1. N, p) < 0. Then,
because V is continuous and decreasing in p, there is a unique solution
p*(N, p) to V(p, N, p) = 0.

The first line of (6.5) is merely the definition of expected rev-
enue. The second line follows the observation that for every real-
ization of #*, the net payoff to the bidder with the highest type is
((Em) — Bex(E(n*), 1*, p)) 13>,y — €. The net payoffs of the n* —1
other bidders are all —c, and the seller’s payoffis B (f(1*), n*, p) Lty py-
Hence, the total net payoff is the argument of the expectation in the
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second line of (6.5). Because the bidders’ expected net payoffs are all
zero in equilibrium, the expected seller payoff equals the total net pay-
off. [ |

Theorem 6.2 describes equilibrium when all bidders know how many
rivals participate. We now examine the case where the seller can conceal
the total number of bidders. In this case, bidders perceive the num-
ber of bidders to be random. Nonetheless, we can still write a bidder’s
expected payoff as u(x, 1) = v(f)x(b) — P(b), where x(b) = Pr{bid b wins}
and P(b) = bx(b) is the bidder’s expected payment. By inspection, u(x,
7) has the single crossing differences (SCD) property, so, as argued in
chapter 3, any symmetric equilibrium bidding strategy of the first-price
auction must be increasing. Consequently, for any probability p of en-
try, the probability that a bidder of type ¢ > p outbids any particular rival
is 1 — p+ pt, the sum of the probability that the other bidder does not
enter and the probability that he enters but has a type less than ¢. So the
probability that a bidder of type t wins is x(f) = (1 — p+ pn)¥~'. Apply-
ing the envelope theorem, because this formula is the same as when the
bidder observes n, the expected payoff and expected payment must be
the same as well. These observations establish the following result.

Theorem 6.3. Suppose that the entry cost ¢ is moderate, as defined
above. Then there is a unique solution p = p*(N, p) to V( p. N, p)=0,
and the solution lies in (0, 1). Further suppose that the auction used is a
first-price auction with reserve r = v(p) and that the auctioneer conceals
the number of entrants before bids are placed. Then there is a unique
symmetric equilibrium of the model. In equilibrium, each bidder enters
with probability p* (N, p), and an entrant uses the following bid function,
conditional on its type t:

ift <p,

E [Brk(t, n*, p)]  otherwise. 6.6)

Ben(t, p) =
Writing n* for n(p*(N, p)), the seller’s ex ante expected revenue is
Ren(N, p) = Rex(N, p).

Remark. The subscript FNindicates that the model involves a first-price
auction and that no bidder knows how many other bidders have entered
when he chooses his bid.
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The first two theorems analyze first-price auctions. Ifinstead the seller
uses a second-price auction, then the dominant bidding strategy does
not depend on the number of competitors, so the analysis does not
depend on whether the seller announces the number of entrants.

Theorem 6.4. Supposethat the entry cost cis moderate, as defined above.
Then the second-price auction with reserve r = v(p) has a unique, sym-
metric equilibrium. At equilibrium, each bidder enters with probability
p*(N, p); an entrant bids zero if v(¢) < r and otherwise bids Bs(t, p) =
v(?). The seller’s ex ante expected revenue is Rs(N, p) = Rpx(N, p).

In summary, the payoff and revenue equivalence results developed
in the preceding chapters assuming exogenous entry also hold when
entry is endogenous and bidders randomize entry decisions. Because
expected payoffs are the same across auctions, incentives to enter and
therefore entry decisions are also the same.

6.2.1.2 Setting the Reserve Price

In the benchmark symmetric model with a fixed number of bidders 7, if
the seller sets a reserve price of r, then the expected proceeds of the sale
are E [max (r, v(t?)) 1,40y ] = Pr{v(t™) > r}E [max(r, v(t®))v(tV) >
r], where, as usual, 1V and t® are the highest and second highest types.
The formula expresses the trade-off involved in setting the reserve in the
benchmark model: increasing the reserve reduces the probability that
any transaction takes place, but raises the average price conditional on
any transaction occurring. The optimal reserve in the benchmark model
attracts participation by all types whose marginal revenue is positive.
That is, r* = v(#*), where t* solves 0 = MR(#*) and where MR(#) = v(f) —
(1 =0v'(®.

When entry is endogenous, the analysis changes drastically. The key
observation for understanding reserve prices in a symmetric model with
moderate entry costs is that the bidders’ expected profits are zero. The
reason is that bidders in the equilibria described above randomize their
entry decisions, so they must be indifferent between entering and not
entering, and not entering entails a payoff of zero.

Because bidders earn zero equilibrium payoff regardless of the re-
serve, the seller cannot squeeze buyer profits by raising the reserve.
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Increasing the reserve above the seller’s actual value blocks efficient
trades and discourages efficient entry, reducing the total payoff to be
shared. Because the seller captures the entire expected net payoff in this
case, he can never gain by raising the reserve above his own value. Thus,
the reserve price that maximizes expected revenue is the seller’s value,
which is zero in our model.

Because we have assumed that the minimum possible bidder value
v(0) is non-negative, any reserve price in the interval [0, v(0)] yields the
same equilibrium bids and entry decisions, and hence the same expected
revenue. Consequently, the theorems below identify an optimal auction
rather than the unique optimal auction.

Theorem 6.5. Suppose that the entry cost cis moderate, as defined above.
Then the reserve price r = v(0) maximizes expected revenue in each of
the three auctions studied above:

0, p*(N, 0)) € arg r{)lellgxE[v(f(n(p)))l{ﬂn(p))zp} —cn(p)]
subjectto p= p*(N, p). (6.7)

Proof. Because the conclusion about expected revenues does not de-
pend on the seller’s value, we may assume without loss of generality
that the seller’s value is zero. With that assumption, the objective in (6.7)
equals the total expected surplus generated by the auction. Because the
entrants have expected total profits of zero in equilibrium, the objective
equals the seller’s expected revenues.

Consider the relaxed problem in which we replace the constraint
p = p*(N, p) with the less restrictive constraint p e [0, 1]. We solve this
problem in two steps. First, we fix p and maximize revenue with respect
to p, showing that the optimum occurs at p = 0. We use this solution
to characterize the maximal profits G(p) in the relaxed problem. Then,
we choose p to maximize G(p), showing that the maximum occurs at
p = p*(N, 0). Finally, we observe that this solution of the relaxed prob-
lem s feasible for the original problem, so itis an optimum of the original
problem.

The first step is simple. By inspection of (6.7), for all fixed values of
p, p = 0 maximizes expected revenue. Substituting p = 0 into (6.7), we
denote the resulting objective by G(p) = E[v(f(n(p))) — cn(p)].
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Next, we evaluate the derivative of G:

1, 1d_ .
NG (p) = Nadp Efv(t(n(p))) — cn(p)]

1 N
= ZE[v(t(n)) —cn (n ) pra— ph"
N N-1
= ZE[v(t(n)) —cn ( 0 1) - phtr

= ~1
=Y E[(i(m) — cmi ( ) Pl - ph

m=0
=« N-1 N-m-1
=2 El(@m+1) —v@m) —cl | = ) p"a—p
m=0
= V(p, N,0). (6.8)

The second equality follows from the facts that the distribution of n(p)
is a binomial with parameters N and p and that, when n = 0, the value
of the expectation is zero (because, by the convention adopted above,
v(£(0)) = 0). The third equality uses the product rule for derivatives, and
the fourth combines the sums using the substitution n = m+ 1. By in-
spection, the next to last expression is the bidder’s expected contribution
to surplus upon entry when the other N — 1 bidders enter with probabil-
ity p. By Theorem 6.1, for any entry decisions by the first N — 1 bidders,
anyrealization of the values, and any entry costs, bidder N’s contribution
to surplusin asecond-price auction equals his realized profit upon entry.
The next to last line of (6.8) thus equals V( p. N, 0), bidder N’s expected
profit from entry.

As previously shown, V( p, N, 0) is continuous and decreasing in p.
Because costs are moderate, the range of the function includes both
positive and negative values. Therefore, there is a unique solution p =
p*(N,0) to V( p, N, 0) = 0. Also, because V( p, N, 0) is decreasing in p,
G'(p) = NV(p, N, 0)is decreasingin p. Hence, G is concave and achieves
its maximum where its derivative is zero, which occurs at p = p* (I, 0).

Because the optimal solution to the relaxed problem is feasible in the
original problem (6.7), it solves the original problem as well. [ ]

Theorem 6.5 asserts that in the auctions studied above, the optimal
reserve does not exclude any valuable trade. In the model, that means
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the seller chooses a reserve of v(0) or less. In general, the optimal reserve
excludes only inefficient trades, so the optimal reserve is equal to the
seller’s value of the good. Any higher reserve reduces the expected total
surplus and the seller’s expected total value. It does so by blocking some
efficient trades and by reducing entry below its efficient level.

Itis crucially important for the preceding analysis that the seller com-
mits to the reserve before the bidders make their entry decisions. If po-
tential bidders do not know the reserve, then changing it cannot affect
their entry decisions. The seller will then be tempted to set a positive
reserve and even to set the ex post optimal reserve r* = v(¢*), where
MR(#*) = 0. If the bidders anticipate such behavior, the equilibrium
probability of entry will fall, to the seller’s net disadvantage.

The seller may also want to choose a reserve above her valuation if she
uses anon-publicauction, in which onlyinvited bidders may participate.
We discuss this rationale for limiting trade next.

6.2.2 Coordinating Entry among Symmetric Competitors

Why would a profit-maximizing seller ever want to limit participation in
an auction? In the model of the previous section, independent, uncoor-
dinated entry decisions by potential bidders induced a random number
ofbidders to enter. The entry probability was optimal, but only given the
constraint that all bidders must make independent entry decisions. In
the unconstrained problem, the expected total surplus is maximized by
some deterministic number of bidders, and the seller can maximize her
revenues by inviting exactly that number of bidders to the auction. This
is strictly better than randomizing, because the net surplus is a strictly
concave function of the number of bidders.

The next theorem formalizes this argument. To state the theorem,
we adopt the notation |z| = sup{m e Z|m < z}; this is the integer part
of z. We also define [z] = inf{m € Z|m > z} = | z| + 1; this is the smallest
integer greater than z. Let H(n) = E[v(f(n))] — nc denote the expected
net revenue from the auction when exactly nbidders participate and the
reserve price is no more than v(0).

Theorem 6.6. Let 7i be the random number of bidders in some auc-
tion, and suppose that the support of 7i includes at least three points.
Suppose bidders are symmetric and have independent private values.
Assume the entry cost ¢ is moderate. Then there is an auction with
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a deterministic number of bidders and a greater expected net sur-
plus, involving approximately the same expected number of bidders:
E[H(M)] < max(H(LE[7A]]), H(TE[A]T).

Proof. As we have seen, if the seller’s value is zero, then for any positive
integer n, H(n) is the expected surplus from the auction, so H(n+ 1) —
H(n) is the expected contribution of the marginal entrant: H(n+ 1) —
H(n) = E[I(n,v"', v)] = E[I(n, vV, v)]. By the analysis at the beginning
of section 6.1, the last expression is decreasing in 7. Because the support
of 71 includes at least three points, H is not linear over the support of
7i. To extend the domain of H to R, let H(x) = (x — [x)) H([x]) + ([x] —
x)H(|x]); this linear interpolation is a concave function.

Let g = E[7i] — | E[7]] be the fractional part of E[7]. By Jensen’s in-
equality,

E[H(R)] < H(E[n])
=qgH(E[AT) + (1 —q)H(LE[A]])
< max(H(LE[A]), H(E[A]). (6.9)

The first inequality is strict, because H is concave and not linear on the
support of 7. The equality simply uses the linear interpolation above.
The final inequality follows because g < [0, 1]. ]

Theorem 6.6 suggests a reason why the seller might want to control
entry into his auction. It asserts that even if pre-qualification of bidders
identifies a purely random selection of bidders rather than identifying
ones likely to have high values, a pre-qualification process could still
be worthwhile simply as a tool to reduce randomness in the number of
entrants.

When the number of entrants is deterministic, the zero-expected-
profit condition of the random entry model does not apply. One might
wonder whether a reserve is useful in such a context. The next result,
due to McAfee and McMillan (1987), shows that if it is also possible to
charge an entry fee, then an auction with a positive reserve price never
maximizes expected revenue.

Theorem 6.7. Inthe symmetric independent private-values model with
moderate entry cost ¢, suppose the seller can choose the number 7 of
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entrants, the reserve r, and an entry fee e for use with a second-price
auction, subject to the (participation) constraint that each bidder’s ex-
pected net profit must be non-negative. Then the seller can maximize
expected revenue by choosing n = max{m| E [v(f(m)) — v(f(m— 1))] > c},
r =v(0), and e = E[v(f(n) — v(f(n— 1))] —c.

Proof. Suppose the seller’s value is zero. For any given number 7 of en-
trants and a reserve price v(p), the expected total surplus is H,(n) =
Ev(f(n) Li;m~p)] — nc. By inspection, setting p = 0, which is the same as
setting the reserve to r = v(0), maximizes total surplus.

As argued earlier, an entrant’s incremental contribution to surplus,
H,(n) — H,(n— 1), declines with increasing n. Hence, total surplus is
maximized by the largest integer n such that H,(n) — H,(n+ 1) > 0 or,
equivalently, the largest n such that E[v(f(n) — v(f(n— 1))] — ¢ > 0.

As the entrant’s expected profits must be non-negative, the seller’s
maximum expected revenue cannot exceed the maximum expected total
surplus. With the specified entry fee, the expected net profit of each
bidder is zero, and the seller’s expected revenue is then equal to the
maximized expected net surplus. |

6.2.2.1 Pre-qualifying Bidders

The practice of pre-qualifying bidders puzzles some observers. It would
seem that limited competition can only harm the seller and reduce effi-
ciency, so why would a seller wish to do that?

There are several possible answers. The one explored in the preceding
section is thatinvitingjustafew bidders can motivate each to participate,
reducing the randomness in participation and increasing the efficiency
ofthe outcome. A second answer is that pre-qualification before a bidder
gets access to the data room can improve the security of confidential
business information. A third is that that even when participation is
not random, it is possible that the bidders who choose to participate are
ones with relatively low values and that their participation deters higher-
value bidders. We illustrated that possibility by example earlier in this
chapter.

In this sub-subsection, we delve into the last of these answers. We
model pre-qualification for the sale of a valuable asset by adding a pre-
liminary reporting stage to the benchmark model. In actuality, a poten-
tial buyer’s report may be as complicated as a business plan establishing
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the bidder’s genuine interest in the asset, or it may be a preliminary bid
or indication of interest that estimates how much the bidder might bid
if he were invited to participate in the actual auction. The auctioneer
or investment banker who receives the report serves as confidential in-
termediary and uses the reports along with other information to choose
which bidders to invite. In a billion dollar asset sale, the auctioneer might
invite five to ten bidders to make binding bids, basing his choice on the
indicative bids, bidder financial statements, and other information.

Advocates of the two-stage process say that, in practice, bidders are
highly motivated to make their indicative bids honestly. They claim that
bidders have no motive to exaggerate their interest, because, given the
substantial cost of bidding, they do not want to be invited to make a
bid if their chances of winning are slight. Bidders also have no motive
to understate their interest, because they want to avoid being excluded
when their actual values are high.!?

Ye (2002) has subjected these claims about incentives to formal analy-
sis.Inhismodel, there are Npotential bidders, each with arough estimate
of his own value. These initial values are distributed independently and
identically. A bidder can acquire more information to refine his estimate
by incurring cost c¢. This models the possibilities that the bidder might
gather information about the condition of the asset, which affects the
values of all bidders similarly, or about how the bidder could best use the
asset. The model treats a situation in which the auctioneer asks bidders
to make preliminary bids based on their rough estimates. These bids are
non-binding and do not affect the transaction price, but, Ye assumes, the
seller invites the n highest bidders from the first round to make binding
bids in a second round. The invited bidders then incur a cost ¢ before
preparing a final, binding bid.

Does this procedure screen bidders effectively, selecting those with
the highest value estimates to bid in the second round auction? If so, then
there must exist an increasing equilibrium bid function g that maps the
bidders’ initial types into their indicative bids, so that the highest bidders
have the highest value estimates. Ye finds that, to the contrary, there
cannot be any strictly increasing bidding equilibrium, so the bidders

10 In addition, the bidders value their relationships with investment bankers and want to avoid
acquiring a reputation for dishonesty or unfair dealing. We do not analyze that incentive
here.
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selected by this procedure will not generally be those with the highest
values.

Ye’s conclusion does not imply that there are no gains to the two-stage
procedure. The characterization of optimal procedures in the environ-
ment that Ye analyzes is a currently unsolved problem.

We present a simplified version of Ye’s model, in which we assume that
the potential bidders’ information at the first stage is perfect, so bidders
acquire no new information if invited to the second round. One might
imagine bidders incur cost ¢ to verify the information underlying their
indicative bids before making a firm offer.

Each bidder makes an indicative bid, and the seller invites the highest
nbidders to make final bids in a second-price auction. To focus analysis
on the indicative bidding problem, we assume that bidders play their
dominant strategies at the second stage, so the payoffs in the second
stage are the Vickrey payoffs minus the entry cost c. Let I denote the nth
highest bid in the indicative bidding stage among bidder i’s competitors,
andlet 7' = max{#/|j # i, b/ > b'}; I’ is the type of the competitor i must
beat to win the final auction. Then bidder i’s payoff is

0 ifb <V,
', b, t)y=1{ -c ifty > P andt <,
—c+ v(f) — v(f)) otherwise. (6.10)

In words, i’s payoff is zero if he is not among the highest nbidders in the
indicative stage; itis —c if he is among the highest nbidders but loses the
final auction; and it is —c + v(#}) — v(F?) if he is selected to make a bid
and wins the final auction.

Theorem 6.8. The reduced form indicative bidding game hasno increas-
ing, symmetric equilibrium strategy.

Proof. Let 8 : [0, 1] — R be any increasing function representing an in-
dicative bidding strategy adopted by all potential bidders. We show that
B is not an equilibrium strategy by demonstrating a profitable devia-
tion. Indeed, we claim that any bidder i of any type £ € (0,1) canearna
higher expected payoff by reducing his bid to g(s) < 8(#') for any s sat-
isfying 0 < v(£)) — v(s) < c. The increase in i’s payoff on account of the
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proposed deviation is

M (Bs), b, ) — M (B, I, 1)

0 if () <P or B(s) > D'.
=1{c ifg(t) > b > B(s)and ¢! < F.
c—v(#) +v(F) otherwise. 6.11)

According to the first line of (6.11), the deviant bid has no effect on i’s
payoff if neither bids results in an invitation or if both do. According to
the second line, it increases the deviant’s payoff by ¢ > 0 if the higher bid
wouldresultin entry and losing the auction but the lower bid would result
in no entry. Finally, if the higher bid would result in entry and winning
the auction, but the lower bid would resultin no entry, then f£>F>s,s0
itincreases the deviant’s payoffby ¢ — v(t') + v(f) > ¢ — v(#) + v(s) > 0.

Because all the lines in (6.11) are non-negative and some are positive,
B(s) has a higher expected payoff than B(t), so strategy § is not a best
reply to itself. |

Although the proof applies only to the particular model of indicative
bidding specified here, the conclusion of the theorem holds in a much
wider class of models.

6.2.2.2 Auctions, Negotiations, and Posted Prices

When participation costs are high and bidder values do not vary widely,
an auction with multiple participants may incur unnecessary costs. One
might expect that the seller could save on costs by negotiating with a
single buyer and capture part of that saving in the form of a higher price.
Iftheinitial negotiation failed, the seller could still approach other buyers
and negotiate with them. Alternatively, the seller might just post a price
and wait for a buyer to appear who is willing to pay that price. Before
comparing auctions, negotiations, and posted prices, it is helpful first to
review some results of the theory of sequential search.

Consider the following model of search by a single agent, which might
represent a buyer’s search for a valuable good, a seller’s search for a high-
price buyer, and so on. The searcher anticipates encountering a series
of alternatives. He incurs costs of ¢ to examine each item and receives a
take-it-or-leave-it offer each time he does so. Once he accepts an offer,
his search ends, and his payoff is the value of the item minus the total
search costs incurred.
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Suppose the searcher can examine a potentially infinite number of
items and, after examining the ith item, can take the item and enjoy a
value v(#') or reject it irretrievably and continue to search. Let R be the
searcher’s payoff from an optimal search strategy. Because the problem
is stationary, after any rejection, the searcher’s maximal payoff from con-
tinuing to search is R. The optimal strategy is therefore to accept the item
if v(f') > R and otherwise to continue to search. Also because the prob-
lem is stationary, Bellman’s equation takes a particularly simple form:
R = E[max(R, v(¢%))] — c. Itis not difficult to show that there is a unique
R that solves this equation and that it represents the value of the search
problem.

If we imagine that there is a seller searching for a buyer, we obtain a
model that is analogous to the preceding one, but with the costs, which
are the buyers’ costs of evaluating the good, incurred by the buyers. More
precisely, suppose that each buyer must incur a cost of c to determine his
value for the good. The seller then designs a selling mechanism subject
to the constraint that each buyer’s expected profit upon entering and
evaluating the good must be non-negative. The following result, adapted
from Riley and Zeckhauser (1983), establishes that the resulting problem
is very much like the optimal search problem.

Theorem 6.9. The seller maximizes expected revenue in the model de-
scribed above by a posted price mechanism, in which the seller in-
vites buyers one at a time to buy or not at a fixed price R that solves
R = E[max(R, v(£))] — c. At equilibrium, each buyer enters successively.
Bidder i accepts the offer if and only if v(#) > R. Each buyer’s expected
profit is zero, and the seller’s expected revenue is R.

Proof. We begin by studying the performance of the proposed posted
price mechanism. Assume first that each buyer enters and buys exactly
when its value exceeds R. Then the sequence of buyers’ purchase deci-
sions is the same as the searcher’s sequence of decisions in the corre-
sponding search problem, so the expected total surplus of R is also the
same. By inspection, the seller’s expected total revenue is R. Because the
problem is stationary, it follows that each buyer’s expected payoff must
be zero. Hence, entering is a best reply for each buyer, so the specified
behavior is consistent with equilibrium.
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Because each buyer must earn a non-negative expected profit at equi-
librium, the seller’s expected payoffin any equilibrium is bounded above
by R. Because the proposed mechanism achieves that bound, it is an
expected-revenue-maximizing mechanism. |

6.2.2.3 Buy Prices

Advertisements for used cars in newspapers and on bulletin boards
sometimes include a line like “Will sell for $12,000 or best offer.” Such
a statement indicates that the seller is ready to negotiate, but wants to
collect several offers before deciding if the best offer is less than $12,000.
Interpreting such a sale as an auction, the $12,000 offer that would end
the bidding is sometimes called a buy price. A similar device is found at
some on-line electronic auctions, where the seller may post a price at
which a bidder can “buy now!”

Theuse ofabuy price creates a sellingmechanism that mixes the char-
acteristics of an auction with those of serial negotiations. We showed that
in our model of serial negotiations, the seller’s optimal strategy is to spec-
ify a buy price and never accept any lower bid. This conclusion depends
on three important assumptions: (1) the seller knows the distribution of
bidders; (2) the stream of potential buyers is infinite; and (3) the seller
does not care how long it takes to complete the sale.

Changingany of these three assumptions would make the model non-
stationary, which might lead the seller to hold offers that are below his
buy price and eventually accept the best such offer — that is, to run an
auction. In this section, we approach the question from the opposite
angle, asking why a seller would ever want to hold an auction without a
buy price.

Bidding costs lie at the heart of the analysis. On one hand, there may
be cost economies in bringing all buyers together at one time. For exam-
ple, amajor auction of similar goods allows the auctioneer to bring many
interested buyers and sellers together at once. The costs of participation
are mostly fixed; a buyer waiting to bid on his most preferred item may
be able to evaluate and bid on substitutes at negligible incremental cost.
Such a cost structure would obviate the advantages of serial negotiation.
On the other hand, if the goods being sold are costly to evaluate — one
mustdrive theused car or study the condition of the asset—then either se-
rial negotiations or the use of a buy price might economize on such costs.

To model the latter possibility, suppose that there are N periods, N
potential bidders, and a moderate entry cost c. Our model is a symmetric
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one in which the seller is allowed to specify a buy price b. In each pe-
riod, a potential bidder arrives without knowing his place in the queue.
He considers every possible position in the queue equally likely. If the
auction is in progress when a new bidder arrives, the bidder can choose
to incur the cost ¢ to learn his type. He may then pay the buy price b
to acquire the item and end the auction, or he may instead place a bid
less than b. If no bidder takes the buy price, then a second-price auction
determines the outcome.

By the monotonic selection theorem of chapter 4, when bidders opti-
mize, each bidder’s probability of acquiring the item is a nondecreasing
function of his value and type. Because paying the buy price wins with
strictly higher probability than bidding less, it follows that types of bid-
ders exceeding some threshold type #(b) find it optimal to pay the buy
price. Accordingly, bidders with types less than #(b) win precisely when
all competing types are lower. Because the valuation function v is contin-
uous, if f(b) € (0, 1), a bidder of that type will be just indifferent between
taking the buy price or bidding some lower amount. We use this obser-
vation below to derive a formula to compute ().

Suppose that our model has a symmetric equilibrium. Recall that for
any integer n, type f(n — 1) = max(¢!, ..., " !) is the highest type among
the first n — 1 bidders. If bidder nis of type f and takes the buy price, then
he wins when #(n — 1) < fand earns v(f) — b. Given our assumption that
the bidder’s position in the queue is equally likely to be any element of
{1,..., N}, if the bidder plans to take the buy price, then his expected
profitis (v(f) — b))% 2]:1 Pr{f(n— 1) < f}. If, instead, the bidder plans
not to take the buy price, then he will acquire the good exactly when all
other types are less than 7. Because the bidder of type f = #(b) must be
indifferent between the two options, f must solve

1N
E[w(@) —v(E(N = D) Ljv-n<p] = @) — b))N ;Pr{f(n— <1t}
(6.12)

Turning the problem around, any f € (0, 1) corresponds to some buy
price. Indeed, solving (6.12) for b, the buy price that implements f is

v(F) YN Pr{f(n—1) < ) — NE[(w(F) — vE(N — D) Ln_1<7)]

b(f) =
® SN Prif(n—1) < )

(6.13)
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We represent the situation in which the seller sets no buy price by the
choice b > E[v(f(N — 1))] or, equivalently, f = 1. According to the next
theorem, in this model it is always optimal to set < 1.

Theorem 6.10. Assume the entry cost cis moderate and the seller sets the
reserve r and the buy price b. Then any auction that maximizes expected
revenue has (i) p = 0 (so thatr < v(0)) and (ii) b < E[v(f(N — 1))] (so that
f<1).

Proof. With moderate costs, it is optimal to set the parameters so that
bidders enter with positive probability and randomize their entry deci-
sions. In that case, the bidders’ expected profits are zero and the expected
revenue equals the expected total surplus.

The proof of theorem 6.5 establishes that at the optimum, p = 0. In
view of (6.13), we can use the buy price to select any £, so the problem
reduces to choosing 7 to maximize total surplus.

Consider any selection of # satisfying v(1) > v(f) > v(1) — c and com-
pare it to the choice = 1. The resulting allocation differs for these two
choices if and only if some entering bidder other than the last has a type
exceeding f. In all such cases, the lower buy price saves entry costs of at
least c and reduces the value of the allocation by at most v(1) — v(f) < c,
so the total surplus in every realization is at least as high. Hence, f < 1
rather than f = 1 is optimal. |

6.3 Asymmetric Models: Devices to Promote Competition
In major asset sales and large procurements, it is typically very costly
to prepare bids. When the likely winner of the auction is not in much
doubt, the prospect of incurring unrecoverable costs can depress entry.
Spectrum auctions in Germany, Italy, Israel, and Switzerland have all
suffered from insufficient entry. Concerns about low participation also
help explain second-supplier policies in business procurement: to ne-
gotiate lower prices, businesses must avoid excessive dependence on
any single supplier, so they encourage multiple suppliers to bid in their
procurement auctions.

In this section, we show how a seller can structure an auction to en-
courage entry, increase competition, and promote higher prices. The
same considerations apply to procurement auctions as well. The ideas
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presented here resemble ones in the industrial organization literature
about price discrimination — a group of practices that often increases
revenues and sometimes also increases efficiency.

We present several related tactics for increasing participation. The
first tactic is the use of bidding credits and set-asides, as studied by Ayres
and Cramton (1996). In the United States, the FCC endeavored to pro-
mote the interests of small businesses and minority-owned companies
using two techniques. It (1) set aside some licenses for which only the fa-
vored businesses could bid and (2) allowed favored bidders who outbid
non-favored bidders to pay only a fraction of their winning bids. In vari-
ous auctions, these fractions ranged from 65% to 85%. Another tactic to
encourage entry is to allow losing bidders to earn some profits when the
number of bidders is small. One auction design that uses this tactic is the
so-called premium auction, in which the highest losing bidder receives
a premium proportional to the excess of his bid over the next highest
bid.!! With a small number of bidders, this procedure encourages both
entry and aggressive bidding by bidders with relatively low values. An-
other example is the Anglo-Dutch design proposed by Klemperer (1998),
in which an ascending auction eliminates all but two bidders, who then
compete with sealed bids. This design may allow alow-value bidder areal
chance to win. We present each of these ideas using a simple example.

6.3.1 Example of Set-asides
Suppose there are two licenses for sale and no bidder is eligible to win
more than one license. Two large bidders have the highest values for the
licenses; their values are distributed uniformly on (v, v). In addition, two
smaller bidders have values distributed uniformly on (0, v). All values
are independently distributed, and there is an entry cost of ¢ > 0. The
auction rules dictate that the highest two bids win licenses and winning
bidders pay the third highest bid. (These are simple rules designed to
approximate the outcome of rules similar to those of the FCC.) In this
situation, if the two large bidders enter, they are certain to win items.
When bidders decide whether to enter, they anticipate all entrants will
play their dominant strategies in the subsequent auction. If ¢ is not too
large, then the entry game has a unique Nash equilibrium in which only
the two large bidders enter. As aresult, the auction price for each license

11 See Goeree and Offerman (2002).
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is the reserve, which we take to be zero. This simple model describes an
auction with disastrously insufficient competition.

Can set-asides help? In the same model, suppose that the seller sets
aside one of the licenses so only small bidders can bid for it. Consider
a baseline situation in which one large bidder and one small bidder
have already committed to enter the auction. If there are no additional
entrants, the expected total surplus from the set-aside license is the ex-
pected value Jv of the small bidder. If a second small bidder enters, then
the expected value of the set-aside license is % v = fogx .2x-v?dx. So
the expected addition to surplus from entry by a second small bidder is
5U— v =g

Similar calculations apply to the large bidders. Entry by a second large
bidder adds %(1—) — v) to the expected surplus. Recall that these marginal
contributions are also the entrants’ expected profits from the auction.

Suppose first that 6¢ < min(v, v — v). This assumption implies that
even after one large and one small bidder commit to enter the auction,
costs are still low enough for a second large bidder and a second small
bidder to enter profitably as well. If all bidders enter, the outcome is
the same as if a separate auction were conducted for each license. The
expected price in the auction for small bidders is the corresponding
expected total surplus minus the expected total profits of the two bid-
ders: 2v — 2 v = 1v. Similarly, the expected price in the auction for
thelarge biddersisv + %(D — v). So the total expected price from the two
combined auctions is v + %1’). This is much higher than the revenues of
the unified auction.

Set-asides in this example are really a form of price discrimination.
A price-discriminating monopolist often finds it profitable to withhold
some supply from a high-value market to increase the price there, while
supplying a low-value market. The set-aside licenses correspond to
goods offered only in the low-value market. Both setting aside licenses
and price discrimination require that the seller be able to restrict resale.
Otherwise, large bidders might refrain from competing in the auction,
hoping instead to acquire a license cheaply from a smaller bidder after
the auction.

Using set-asides in an auction with entry costs differs from classic
price discrimination in one important respect. In our example, entry
costs amplify the risk that revenues may be very low because too few
bidders participate. For that reason, a seller can sometimes gain much
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more by setting aside a license than can a monopolist by dividing a
market and setting different prices for each segment.

6.3.2 Example of Bidding Credits

Another device by which the auctioneer can encourage entry by smaller
bidders is bidding credits. For example, suppose that the seller does not
use set-asides in the preceding model, but that a small bidder must pay
only a fraction of his bid if he wins. For example, if the fraction is v/7,
then a small bidder with value v can profitably outbid a large bidder with
any possible value. Again, if ¢ is small, this rule increases entry by smaller
bidders and helps the auctioneer get a higher price.

Promotingentry, however, isnot the onlyreason to use bidding credits.
Credits can sometimes increase prices even when entry costs are zero,
as the following example demonstrates.

Suppose there are only two bidders and their values are distributed
uniformly and independently on (0, 1) and (0, «), respectively, where
a < 1. Then the total expected value of the two bidders is 3 (1 + ). The
expectation of the highest value is

“ X 1 “« 1 1 1
/ x.—dx+/ x dx+/ Vrdy == — —a® + =d’. (6.14)
o« 5 0 2 6 3
The three terms on the left-hand side of (6.12) correspond to the three
cases, respectively, when (1) the first bidder’s value is highest and is less
than «, (2) the first bidder’s value is greater than «, and (3) the second
bidder’s value is highest. Because the total expectation of the highest and
second highest values is %(1 + «), the expectation of the second highest
value must be a(3 + o — 1?). This is the seller’s expected revenue in
the absence of bidding credits. It converges to zero as « goes to zero.

If the seller offers a bidding credit so that bidder 2 needs to pay only a
fraction « of his winning bid, then the winning bid in the auction is just
the same as in an auction with two bidders whose values are distributed
uniformlyon (0, 1). Hence, the expectation of the second highest “value,”
and therefore of the winning bid, is % Half the time, the winning bidder
is not entitled to credits, so the seller receives revenue of %, but half the
time a favored bidder wins and the seller gets only %a. So the expected
revenue is é(l + o). Because expected revenue is bounded away from
zero for all positive «, it follows that for small enough «, the expected
revenues are higher when the seller uses a bidding credit.
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6.3.3 Example of Lot Structure and Consolation Prizes

Another way to encourage entry is to ensure that even bidders without
the highest value benefit from participating in the auction.'? In pro-
curement settings, split-award auctions sometimes serve this purpose:
providing for more than one winner promotes entry into the auction by
more than one bidder. In many of the FCC spectrum auctions, the large
numbers oflicenses offered have encouraged many small- and medium-
size bidders to participate. This increased participation can drive up the
prices of all licenses, even those that would not, by themselves, have
attracted the participation of the additional bidders.

Splitting items to encourage entry can also be a risky strategy. With
a fixed number of bidders, splitting items can often reduce competition
and prices by encouraging the bidders to accommodate each other.!?
The following example illustrates this point.

Suppose two bidders compete for two identical items. Each bidder is
willing to pay 10 for one item and 15 for two. The seller conducts a simul-
taneous ascending auction, which we model as a sealed-bid auction in
which the highest rejected bid sets the price. If the seller offers the two
items as a single lot and resale is impossible, then in equilibrium both
bidders will bid 15 and the price will be 15. If instead the seller offers the
items individually and the bidders bid their actual values, then the price
foreachitemwill be 5, producing total revenue of 10. If bidders are strate-
gic, the outcome could be even worse. In the situation described, each
bidder would find it in his separate interest to demand one unit at prices
less than ten and zero units at higher prices. The prescribed strategies
constitute a subgame perfect equilibrium and induce an equilibrium
price of zero.'

Thus, splitting lots can reduce revenues sharply when the set of par-
ticipants is fixed, but in other circumstances the same tactic can benefit
the seller by attracting entry. For example, consider a spectrum auction
in which three units of spectrum are available. Suppose one large bidder
has a value of v per unit for each unit of spectrum, and three smaller bid-
ders each wish to acquire one unit of spectrum. Suppose that the small

bidders’ possible values are ;9, 39, or 3%, for the first unit acquired,

12 A related point, about the role of consolation prizes in encouraging entry into monopolized
markets, is developed by Gilbert and Klemperer (2002).

13 Anton and Yao (1992) make a similar point about procurement auctions.

4 See chapter 7 for additional analysis of this class of multi-unit models.



6.3 Asymmetric Models: Devices to Promote Competition 239

and zero for any additional units. For simplicity, we assume that exactly
one small bidder has each of these three values, but that a bidder can
only learn which of the three positions he occupies by incurring a small
positive entry cost: 0 < ¢ < 11—2

In this situation, if the auctioneer sells the three units of spectrum as a
single lot or license, then the small bidders will not bid. If a small bidder
enters, he incurs the entry cost but cannot win any licenses.

If the seller sells the three units as separate licenses, however, a differ-
ent outcome arises. Suppose the seller conducts a simultaneous ascend-
ing auction, which we again model as a highest-rejected-bid auction in
which the highest rejected bid sets the price. It is a dominant strategy for
the three small bidders to bid their values in such an auction. Given the
specified values, any best reply for the large bidder involves winning two
licenses and biddingless than %D for the third license, in which event the
price is %{) per unit of spectrum. Given our assumption that ¢ < éf), it
pays each small bidder to enter. Selling licenses individually rather than
in a single lot increases the seller’s total revenue from zero to 34.

v.

6.3.4 Premium Auctions
Another tactic to attract entry and encourage aggressive bidding is to
offer a subsidy to the highest losing bidder that increases with his bid.
For example, one kind of premium auction is an ascending auction in
which the highest losing bidder receives a fraction, such as 50%, of the
difference between his bid and the next highest bid below his. In such an
auction, a strategy for each bidder is a single number indicating the level
at which to stop bidding. To avoid technical complications, we resolve
any ties in favor of the bidder with the higher value and otherwise break
ties at random. Roughly, this assumption presumes that in the event of
ties, the bidder with the lower value stops bidding an instant earlier than
the higher value bidder.!®

We analyze premium auctions by first studying bidding with a fixed
number of bidders and then studying the entry decisions that precede
the bidding. For the first step, we use a simple model with complete
information, a single indivisible good for sale, and two or three bidders.
We assume that the auction is an ascending auction and that resale is
impossible.

15 For justification of this procedure, see Simon and Zame (1990).
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Suppose there is a single high-value bidder with value 1 and a single
low-value bidder with value v < 1. Then there is a unique pure strategy
equilibrium that does not depend on v. In equilibrium, both bidders bid
% and the high-value bidder wins at that price. The high-value bidder
earns a profit of 3, equal to his value minus the price he pays, while the
low-value bidder earns the premium of half the price, which is also %
Therefore, the seller’s net revenue is just 1. In this equilibrium, the low-
value bidder pays no attention to his own value and bids just to capture
the premium.

Next, we add a second low-value bidder. There is again a unique pure
strategy equilibrium. In equilibrium, all three bidders bid 1 and the high
value bidder wins at that price. The seller pays no premium, because
the second and third highest bids are identical. In this case, the seller’s
revenue is 1 and all bidders earn zero profits.

Finally, suppose that there is a small positive entry cost c. We look
for an equilibrium that is symmetric in the entry decisions of the low-
value bidders, that is, one in which both low-value bidders enter with the
same probability p and in which the high-value bidder always enters.!®
We suppress the entry cost of the high-value bidder, for the high-value
bidder always enters in equilibrium.

By inspection, no equilibrium with a positive entry cost entails p = 1,
and, with small enough entry costs, none entails p = 0. With0 < p < 1,
the low-value bidder must be indifferent between (1) entering and earn-
ing—c+(1— p)% and (2) not entering and earning zero. Consequently,
the equilibrium probability of entry must be p = max(0, 1 — 3¢), and the
two low-value bidders must earn zero expected profits.

At this equilibrium, the high-value bidder earns positive profits if ei-
ther low-value entrant fails to enter, so his expected profit (excluding
his entry cost) is (1 — p)?-1+2p(1 — p)-3. For ¢ < 1, this profit equals
¢(2 + 3¢). The seller’s expected revenue is the expected total surplus
1 — 2 pcminus the expected profits of the bidders. For ¢ < 1, the expected
revenue is (1 — ¢)(1 — 3¢).

According to this model, if entry costs are small and there are enough
potential bidders, then a premium auction can encourage entry and
aggressive bidding, enabling the seller to extract nearly the full value of
the items sold.

16 There can also be an equilibrium in this model in which only the low-value bidders enter.
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The analysis above is preliminary and omits some significant features
of reality. First, if the seller really has the power to choose any selling
mechanism, then with complete information he might just fix a price
and make a take-it-or-leave-it offer to the high-value bidder. The sim-
ple model above does not adequately address the balance of bargaining
power between seller and buyers.!” Second, if costless bargaining is pos-
sible after the auction, then the high-value bidder would be unlikely to
accept such a small profit in the auction. He might do much better to
bid low in the auction and then bargain with the low-value auction win-
ner. Third, uncertainty about values would discourage low-value bidders
from bidding much above their own values, thereby attenuating the pre-
mium auction’s ability to raise prices. Until all of these complications are
addressed, the case for premium auctions remains uncertain.

6.3.5 Dutch vs. English Auctions and the Anglo-Dutch Design
Researchers frequently compare Dutch and English auctions, or first-
price and second-price auctions. The English and second-price auctions
claim efficiency as an advantage, but that efficiency can sometimes cost
sellers a great deal of revenue.

Suppose two bidders bid for a single item. The high-value bidder is
known to have value v for the item. The other bidder’s value is distributed
on (0, ). In an English auction, if both bidders enter, then the low-value
bidder is sure to lose. So, if there is an entry cost, this bidder never enters
in equilibrium. In any pure strategy equilibrium, the price is zero and
the auction fails for lack of participation. It is even possible that there is
a pure strategy equilibrium in which only the low-value bidder enters,
so the English auction need not always be efficient.

Next, consider the Dutch auction, and suppose that the large bidder is
certain to enter. In any equilibrium, the large bidder has equilibrium ex-
pected profitr > 0, so he never bids more than v — 7. Consequently, the
second bidder earns positive expected profits in equilibrium whenever
his value exceeds v — . Thus, in equilibrium the Dutch auction always
has some inefficient outcomes, in which bidders without the highest

17 Bargaining power may be the most important feature of the auction. If a seller cannot
commit to keep an item but can commit to sell if the conditions of the auction are met, and
if resale cannot be restricted, then auctions are often the most effective means of sale. See
Milgrom (1986).
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value acquire the item. Consequently, if entry costs are small enough, it
pays for the low-value bidder to enter.

If the seller conceals the number of bidders and sets a zero reserve,
then even for high entry costs, the low-value bidder enters with positive
probability in any equilibrium. The proofis by contradiction. If the low-
value bidder never entered, then the high-value bidder would always
bid zero. But then, so long as the mean low value was larger than c, entry
would be profitable — a contradiction. Thus, the Dutch or sealed-bid de-
sign can encourage entry, particularly when the number of participants
is kept secret.

To capture advantages of both the English and Dutch auction designs,
Klemperer (1998) has advocated a hybrid auction: the Anglo-Dutch de-
sign. For an auction of several identical items, the Anglo phase of Klem-
perer’s design involves raising the price of the items gradually until the
number of remaining bidders is equal to the number of items plus one.
After the Anglo phase follows a Dutch phase, in which the bidders who
survive the Anglo phase make sealed bids for the items, subject to the
constraint that no bid can be less than the current price.

A formal model of the Anglo-Dutch design follows. Bidders for n
items in the Anglo-Dutch auction place bids in two rounds. After the
first round, the seller identifies the n+ 1 highest bidders (whom we call
survivors) and announces the n+ 2nd highest bid. That bid becomes
the minimum allowed bid r in a second auction in which the n+ 1
survivors participate. The survivor who bids highest wins and pays his
bid.

It is evident that if each bidder can acquire only one item, then it is
a dominant strategy for bidders in this auction to bid their values at the
first round. This feature limits the inefficiency of the auction, for the
n items will be assigned to bidders whose values are among the n+ 1
highest values. Nonetheless, low-value bidders need not lose all hope
of winning. When n = 1, for example, a low-value bidder may enter in
hopes of winning the second round auction.

The main advantage of the Anglo-Dutch design may be its ability to
attract entry. The examples above confirm that such an auction design
can encourage bidder participation. They also illustrate how sensitive
auction design must be to details of the environment. The same choices
that can help a seller in some situations by attracting entry can hurt him
in others by reducing competition among the bidders who are there.
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6.4 After the Bidding Ends

For both buyers and sellers, planning for an auction also involves antic-
ipating what will happen after the bids are collected. Several important
considerations complicate the process of completing the transaction. In
asset auctions, one common task is to evaluate the barriers to closing
the sale. Large asset transactions often require approvals by some in-
terested parties, including stockholders, bankers, regulators, employees
and their unions, and so on. The seller may choose the winning bidder
partly on the basis of his ability to close the deal.

Buyers in procurement settings care about more than just the terms
of the winning bid. A supplier’s other attributes, such as its ability to
expand capacity, upgrade its product, adapt to changes, and so on may
also create value after the auction.

Bidders, too, may be concerned about what happens after the auction.
InEurope, incumbentwireless telephone companies may have been par-
ticularly eager to keep assets out of the hands of new entrants, whose
presence in the retail wireless services market would intensify retail com-
petition. A seller interested in maximizing revenues in such a setting
can sometimes take advantage of such a buyer’s preferences, inducing a
buyer to pay both for its use of the asset and for the opportunity to keep
it out of the hands of a feared competitor (Jehiel, Moldovanu, and Stac-
chetti (1996)). On the other hand, governments interested in fostering
retail competition for the benefit of consumers have an opposinginterest
inlimiting the ability ofincumbents to block entry by hoarding spectrum.

6.4.1 Bankruptcy and Non-performance!®
One critical concern for sellers is whether the winning bidder will be able
to perform under its contract. Although therisk of non-performance may
seem most severe in service contracts, it can also be important in asset
sales when the seller extends credit, allowing bidders to pay over time.
In such cases, pre-qualifying the bidders to ensure they can perform can
be critical to the success of the auction.

US spectrum auctions illustrate the consequences of offering gen-
erous credit without ensuring bidders’ ability to pay. The FCC offered
special terms to encourage small businesses to purchase spectrum

18 The model in this section is a simplified version of the one introduced by Zheng (2001). See
Board (2002) for additional development of this sort of model.
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licenses. The FCC offered reduced down payments and financing at very
low interest rates over a period of ten years, and restricted the sales of
some licenses so that only small businesses could bid.

The FCC defined small businesses by asset ownership and sales. So,
by their very definition, small businesses were not creditworthy for pur-
chasing billions of dollars of spectrum licenses, particularly at the high
prices that prevailed during the 1990s technology boom. It is therefore
hardly a surprise that several bidders defaulted. The most spectacular
default was by Nextwave, which went into bankruptcy holding rights to
some $10 billion worth of spectrum licenses. A tension between spec-
trum policy and bankruptcylaw resulted in a struggle for control of these
licenses. While the legal disputes dragged on for years, the spectrum lay
dormant, wasting a large part of its economic value.

The possibility of default or non-performance can have perverse af-
fects on the bidding in the auction itself. To illustrate the possibilities,
suppose that, at the time of the auction, a bidder believes the item for
sale has expected value v, but that payment is deferred and certain un-
certainties about the value (for example, about technology, demand, or
competitors’ plans) will be resolved before payment is due. Suppose the
bidder enjoyslimited liability and owns assets worth B.If the bidder wins
the auction at price p, then, after the auction, the bidder will learn the
actual value v + &, where & has ex ante mean zero. The bidder may then
default and forfeit his assets, suffering a loss of B, or he may complete
the purchase, enjoying a payoff v + & — p.

Theorem 6.11. Suppose that the support of £ is all of R. Then the bid-
der has a dominant strategy p(B, v) in the second-price auction. The
strategy pis nondecreasing in v and nonincreasing in B. For any given
distribution of competing bids, the bidder’s maximal expected profit is
nonincreasing in B.

Proof. After learning £, the winning bidder receives a payoff of
max(—B, v + & — p). Before learning &, the winner expects a payoff of
7(p, B,v) = E[max(—B, v+ & — p)]. If the bidder bids b and the highest
opposing bid is pwith distribution F, then the bidder’s expected profit
is

b
#(b, v, B) =/ 7(p. v, B) dF(p). (6.15)
0
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By inspection, r is decreasing in p, so 7 is concave in b. By inspection of
(6.15), b = 0 maximizes 7 if 7 (0, B, v) < 0. In that case, we set p(B, v) =
0. If 7 (0, B, v) > 0, then the optimal b solves 7 (b, B, v) = 0. A unique
solution exists, because 7 (p, B, v) is decreasing and continuous in pand
is negative for psufficiently large. In that case, we set p(B, v) equal to the
unique solution.

By construction, p(B, v) does not depend on F, so it is an always
optimalstrategy, and the constructionitselfimplies thatno other strategy
is ever optimal if F has full support. Hence, p(B, v) isa dominant strategy.

Because 7 (p, B, v) isincreasingin v and decreasingin pand B, p(B, v)
is nondecreasing in v and nonincreasing in B. Because 7 (p, B, v) is de-
creasingin B, 7 (b, B, v) is nonincreasingin B. (The monotonicity is strict
unless F(b) = 0.) |

According to theorem 6.11, a bidder with a smaller budget is both
more likely to enter the auction and, upon entering, more likely to place
the winning bid. In this sense, the auction rules amplify the problem of
default by tending to choose as a winning bidder someone who has an
unusually high likelihood of default.

Itis not immediately clear how the auctioneer should respond to this
problem. If there are many bidders with small budgets but few with
large budgets, then qualifying only the bidders with large budgets can
undulyreduce competitionin the auction. Addressing this problem more
specifically requires addressing larger questions about how to design an
auction when the seller has more information than just the prices bid.

6.4.2 Scoring Rules vs. Price-Only Bids

We now analyze the problem of evaluating multidimensional bids that
differ in more than price. Sellers often rank each bid with a score; the
winning bid is the one with the highest score. The process of scoring is
itself costly and may involve not only evaluation of the bid and bidder
but also some negotiation between the bidder and the seller to tailor the
bid to create value for both sides.

Researchers have not extensively studied scoring rules. Che (1993)
and Rezende (2002) have shown that in an auction with an exogenous
set of bidders, sellers can sometimes benefit by biasing the scoring rules
to increase competition in the auction. This tactic works in much the
same way as bidding credits: both can increase the competitiveness of
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weaker bidders, forcing strong bidders to offer more attractive terms.
The same authors also find that the seller fares best when he reveals to
the bidders any scoring information that he plans to use. We refer the
reader to these papers for more about this interesting, but not yet fully
explored, topic.

This section focuses on scoring and entry. For consistency, we con-
tinue to focus on auctions run by sellers. In the auction, each bidder i
submits a bid that involves a price b and also some non-price attributes.
The seller assigns a value to the non-price attributes and determines the
winning bidder as if bidder i had bid &/ + &'. We assume that the ¢"’s are
non-degenerate, independent, identically distributed random variables
with mean zero, and independent of the bidder types.

Suppose there are N potential bidders, whose types are independently
and uniformly distributed on (0, 1). Bidder i’s value is v(#), where the
function v is increasing and differentiable.

Suppose the seller conducts an English ascending auction using
scores, rather than prices, to determine the winner. If bidder i wins
with a bid score of b, the price he actually pays is b — &, so his profit
is v(#') + &' — b. With this expression in mind, we define bidder i’s full
valuetobe v(t)) + ¢i; thisis the total value accruing to the bidder and the
seller when bidder i wins the auction.

Let F be the distribution of v(#) + ¢/, and suppose it is smooth
and strictly increasing, with w = F~!. Notice that the expected maxi-
mum value among n bidders is E[max(v(t}) +e!,..., v(t") +&")] =
nfol s"lw(s)ds with scoring, and E[max(v(t),...,v()] =
n [, s"'v(s) ds without scoring.

Theorem 6.12. For all n > 1, fol w(s)s™lds > fol v(s)s™ 1 ds. Thus, the
expected maximum value among 7 bidders is higher with scoring than
without scoring.

Proof. The expected maximum values satisfy:

nf, s"'w(s)ds = E[max(v(f') +¢', ..., v(t") + "]
> Elmax(u(t'), ..., v(™)] = nf) s" 'v(s) ds.

The inequality follows because the max operator is convex and its ar-
guments in the first line are a mean-preserving spread of those in the
second line. |
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Theorem 6.13. Given nexisting bidders, the expected marginal contribu-
tion of an additional entrant without scoring is fol (1 — §)s™'(s) ds. With
scoring, the corresponding expression is fol (1 — s)s"w'(s) ds.

Proof. Without scoring, the expected value from the auction with n
bidders is the expected maximum value among the bidders, which is
fol v(s) ds”. Integrating by parts, this is also equal to v(1) — fol s™/(s) ds.
With n+ 1 bidders, the corresponding value is v(1) — fol s/ (s) ds. The
expected marginal contribution is the difference of these two, which is
fol (1 — s)s™v'(s) ds. One can derive the second expression similarly. B

The use of scoring causes a mean-preserving spread in bidder valua-
tions, so it is intuitive that the maximum total value is higher on average
with scoring. Theorem 6.12 confirms this intuition. In addition, if scor-
ing leads to a fatter right-hand tail of the distribution in the sense that
f1 Q=95 (s)ds < [} (1 —s)s"'w/(s) ds, then it increases the prof-
itability of entry, encouraging more.

The idea that scoring can increase bidders’ profits without reduc-
ing the auctioneer’s value has been one of the main appeals of multidi-
mensional bidding in procurement. Bidders (sellers) dislike bidding in
price-only auctions in which their special advantages and characteris-
tics receive no weight. By encouraging a more complete comparison of
the attributes of suppliers and products, scoring may increase bidders’
expected profits and encourage participation by more bidders, serving
the interests of all parties.

The theory does not give unqualified support to this intuitive argu-
ment. The conditions under which scoring benefits bidders and auc-
tioneers alike remain an open question.

6.5 Conclusion

Comparing this chapter with the preceding ones highlights several key
facts. First, many of the mostimportant practical issues in auction design
concern the interaction of the design and entry decisions.

In the first class of models we studied, with a large number of sym-
metric potential bidders and moderate entry costs, we found that the
conflict between efficiency and revenues disappears. Unlike traditional
studies of optimal (revenue-maximizing) auctions with a fixed number
of bidders, in which we found it is optimal to set a high reserve that
discourages some efficient exchange, that policy is never optimal in the
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symmetric model with moderate entry costs. We found that the seller can
profit by managing the entry process, sometimes excluding bidders to
reduce randomness in the process, to protect business secrets, or to en-
courage entry by the potential buyers with the highest values. Two-stage
designs that select bidders on the basis of initial indications of interest
have some appeal, but their formal analysis shows that they are unlikely
to succeed in selecting the most qualified bidders.

One way to economize on bidders’ costs of participation is to bargain
with a sequence of agents, rather than run an auction. We showed that
if the seller can set a take-it-or-leave-it price, then the optimal auction
has the same value to the seller as the related optimal search problem.
Seeing buyers in sequence then has the same advantages as sequential
search has over searching a batch of items at a time.

Another device that can economize on entry costs is the buy price
in an ascending auction. When the auctioneer imposes a buy price, the
auction ends if any bidder makes an early bid at the specified level. That
early ending saves later bidders from incurring evaluation costs, and
those savings ultimately accrue to the seller. In the benchmark model,
the seller can always benefit by setting a suitable buy price.

Models with entry and asymmetric bidders have received much less
attention than symmetric models, despite the great influence of asym-
metries among bidders on entry. A variety of tactics can encourage entry
into auctions despite bidders’ asymmetries. We have shown that setting
aside assets or using bidding credits can encourage entry and ultimately
increase the seller’s revenues. Sellers’ packaging of assets can also affect
competition in an auction and potential buyers’ decisions to enter the
bidding. Variations in auction rules can also affect participation. Pre-
mium auctions and the Anglo-Dutch auction are two designs that can
sometimes increase participation. Premium auctions, however, can also
yield very low revenues when the set of potential bidders is limited.

It can be important to select bidders who can perform after the auc-
tion, paying or delivering as promised. We found that weak firms with
limited collateral may be more eager than others to make high bids, ex-
pecting to default if the asset turns out to have low value. We also found
that scoring bids based on all the bid’s attributes tends to increase the
total value of the allocation chosen by the auction.

The models of this chapter lead to a variety of findings, showing that
the same practices that attract entry and benefit the seller in some
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environments can lead to poor performance in other environments
where the number of bidders is exogenously limited. In practice, the
design of an effective auction requires a detailed knowledge of the par-
ticular circumstances in which the auction is to be run.
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PART TWO

MULTI-UNIT AUCTIONS

Chapters 3-6 study auctions in which just one kind of item is for sale and
eachbidder can buyatmostasingle item. When items are heterogeneous
or bidders demand multiple units, new questions arise.

First, even when each bidder wants to buy only one item, if the items
are not identical, the mechanism needs to solve the matching prob-
lem: who gets which items? One can study the matching problem with
a fixed set of bidders to learn how efficiently auctions assign items to
bidders and how much revenue they generate. In principle, one could
combine these results with analysis of entry to determine who partici-
pates in the auction and what kinds of pre-auction investments bidders
might make. So far, the auction literature contains little analysis of these
questions.

Second, when bidders demand multiple units, market power becomes
important. Bidders in auctions, like participants in other kinds of mar-
kets, can often reduce the prices they pay by buying fewer units than they
would want at the final prices. Reducing demand in this manner can be
profitable for a single large bidder even if all the other bidders want
to buy only a single unit. When several large bidders each seek to buy
multiple units, it is also possible that the larger bidders will coordinate
strategies, for example by agreeing to reduce demand in concert. The
likelihood of bidder cartels and rings' depends largely on the setting —
the identities of the bidders and the relationships among them - but it
can also depend on auction design. When the risk of cartels is significant,

! Rings are organizations of bidders that choose a single member to bid on behalf of all. After
the public auction, the ring holds a private auction to allocate the good and divide the
profits among its members. See Graham and Marshall (1987).
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minimizing opportunities for collusion becomes a primary objective of
auction design.?

Third, the conception of auctions as mechanisms for finding compet-
itive prices, plausible when each bidder wants just one good, becomes
problematic when bidders want multiple units. If goods are not substi-
tutes, market clearing prices generally do not exist,® forcing us to con-
ceive of auctions broadly as mechanisms for resource allocation rather
than narrowly as mechanisms for price discovery.

This broad view of auctions has led some to recommend wide use
of the Vickrey auction. However, in chapter 2 we observed that the per-
formance of Vickrey auctions, too, could depend on whether goods are
substitutes. When goods are substitutes, Vickrey auction outcomes are
core allocations, shill bidding is unprofitable, losing bidders have no
profitable joint deviations, and bidders’ profits are decreasing (and the
seller’s revenues increasing) in the size of the set of bidders. All of these
conclusions fail when the set of possible valuations includes valuations
for which goods are not substitutes. Designing auctions to work well
when goods are not substitutes is a subject that has only recently at-
tracted serious attention.* Chapter 8 presents some of the relevant
theory.

Fourth, many auction applications involve complicated constraints
on the auctioneer. For example, suppose a firm offers its production ca-
pacity to produce a set of products. To maximize profits, it will need to
take account of its possibly complex operating constraints in deciding
which bids to accept. Similarly, an industrial buyer may evaluate sup-
pliers according to multiple criteria, including price, quality, capacity,
and delivery schedules. Allowing accurately for such details imposes a
burden that has so far proved too heavy for practical auction designs.

Finally, auctions in settings as complex as the ones above pose se-
rious challenges to theories that assume optimal bidding. Planning for

2 Several authors have emphasized the roles of both competition in the auction and com-
petition among the winners when the auction affects the market structure. See Dana and
Spier (1994), Milgrom (1997), and Klemperer (2002).

3 If bidder valuations are a subset of all valuations for which all goods are substitutes, then a
competitive equilibrium price vector exists. However, if the set includes any other valuation,
then there are preference profiles drawn from the set such that no competitive equilibrium
price vector exists. See Milgrom (2000) and Gul and Stacchetti (1999).

4 Recent design contributions include Parkes and Ungar (2000) and Ausubel and Milgrom
(2002).
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such auctions is complicated, and experience suggests that many real
bidders — even ones with substantial resources to spend on planning —
are daunted by the complexity and adopt simple and often sub-optimal
strategies. In practice, auction designers place a tremendous value on
the simplicity of an auction’s design. Their priorities always include en-
suring that the mechanics of bidding are easy, that simple strategies are
effective for bidders, and that outcomes are acceptable when bidders use
simple strategies. Simplicity helps attract participants into the auction,
and in practice, hardly anything matters more.

The theory of Part II, which analyzes the problems of multi-object
auctions discussed above, is less developed than that of Part I. Chapter 7
examines multi-item auctions in which bids consist either of prices for
individual items or of quantities to be supplied or demanded at prices
specified by an auctioneer. The chapter emphasizes auctions that en-
courage arbitrage, so that similar items tend to sell for similar prices.
Several widely used auctions are in this class. Chapter 7 studies simulta-
neous ascending auctions used for spectrum sales, clock auctions used
for power sales, and various sealed-bid auctions used for securities sales.

Chapter 8 investigates auctions in which participants may place ei-
ther bids for packages of several items or contingent bids. For example,
contracts for London bus services are determined by package bidding,
in which bus companies quote prices to serve various individual routes
and also specify package discounts that apply if they win particular com-
binations of routes.® The auctioneer accepts the combination of bids
yielding the lowest total price. Similar auctions have been used for in-
dustrial procurement.® In addition, there have been proposals to use the
related device of contingent bids in spectrum auctions. For example, a
bidder in a spectrum auction might bid for licenses to serve the cities of
Buffalo and Syracuse in the state of New York with the proviso that it will
withdraw the bids if it does not also win a license to serve New York City.
The auctioneer would accept the combination of bids that produced the
highest total price.

Package bidding and contingent bidding are closely related. In the
spectrum auction example, if package bids were allowed, the bidder
could achieve the same outcome as with contingent bids. Instead of

5 For a detailed description, see Cantillon and Pesendorfer (2002).
6 Hohner, Rich, Ng, Reid, Davenport, Kalagnanam, Lee, and An (2001).
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bidding for New York City and placing contingent bids for Buffalo and
Syracuse, abidder could accomplish the same thing by placing four bids:
one for the NYClicense, a second for the package of the NYC and Buffalo
licenses, a third for the package of the NYC and Syracuse licenses, and a
fourth for the package of all three licenses.

Auctions with package bids or contingent bids are sometimes dubbed
combinatorial auctions, because running the auction can involve solv-
ing a combinatorial optimization problem. It is difficult to compute so-
lutions to these problems — one possible reason why such auctions have
only recently attracted attention. There are other reasons, too, includ-
ing the complexity of the bidder interface required for a combinatorial
auction. We return briefly to these issues in chapter 8.
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CHAPTER SEVEN

Uniform Price Auctions

The resurgence of interest in auction theory owes much to recent large-
scale auctions using designs suggested by economic theorists. From the
spectrum auctions of 1994 onward, virtually all of these auctions have
been uniform priceauctions,inwhich auctionrules either mandate equal
prices foridentical goods or encourage some sort of arbitrage, generating
approximately uniform prices.

Many traditional auction designs fail to promote the law of one price,
according to which identical goods have identical prices. One example
is the first spectrum auction — Sotheby’s 1981 auction of rights to use
seven functionally identical transponders on a single RCA communica-
tions satellite. Sotheby’s sold these rights using a sequence of seven auc-
tions that produced seven different prices. The first transponder sold for
$14.4 million, and the prices of the second through sixth transponders
successively declined. The sixth transponder sold for the lowest price,
$10.7 million, and the seventh sold for $11.2 million. When an auctioneer
sells several identical lots, bidders always have to guess about the prices
of future lots, so some price variation is inevitable.

A striking aspect of the RCA transponder auction is the way prices
declined from one item to the next. Ashenfelter (1989) has found that
a similar pattern is common in auctions of wine and art, and this ob-
servation is now known as the declining price anomaly.! Many have at-
tempted to explain this anomaly. One possible explanation is that this
pattern arises from a kind of selection bias akin to a winner’s curse. At
the RCA auction, bidders for the first transponders had to guess about

! Subsequent research reaffirms that this phenomenon is widespread. See Ashenfelter and
Graddy (2002) and the references therein.
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the prices that the later ones would fetch. Even if each individual bidder
estimates future prices without bias, the winner of the first transponder
will tend to be a bidder whose estimate of future prices is high and who
is surprised to see lower prices in later sales.? Other explanations run the
gamut from psychological models of individual behavior to equilibrium
models of the kind studied in this book, in which fully rational actors act
on perfect forecasts of competitors’ strategies.

Many bidders dislike price variation of the sort described above in
sales of homogeneous items. In spectrum auctions like the RCA auction,
companies’ officers bid on their behalf. The highest bidders are uncom-
fortable having to explain to their superiors or shareholders why others
paid less for an identical transponder or license. Even individual bid-
ders may care more about “paying too much” than about the chance of
getting a bargain. An advantage of uniform price auctions is that they
insulate bidders and their bosses from price risk of this form.

Uniform price auctions have become more popular because they
avoid the pricerisk that corporate bidders dislike and reduce the transac-
tion costs of bidding repeatedly for identical goods. Uniform price auc-
tions include uniform price sealed-bid auctions and various ascending
auctions that either enforce uniformity by rule or promote it by encour-
aging arbitrage.

We begin by analyzing uniform price sealed-bid auctions and then
turn to simultaneous ascending auctions.

2 The winner’s curse in auction theory traditionally refers to the selection bias that arises
because a bidder tends to win more often when his value estimate is too high than when
it is too low. If we regard the value of the first transponder as a value net of opportunity
cost, then the explanation offered here is a variant of the winner’s curse. In the equilibrium
analyses of the previous chapters, rational bidders allow for the effect of the selection bias
by adjusting their bids downward.

In practice, learning about the ordinary winner’s curse is probably slow, because the data
needed to recognize it, which include data about realized values, are difficult to obtain and
sometimes unavailable for years after the sale has closed. Part of what makes the declining
price anomaly so striking is that data about declining prices are instantly and publicly
available, yet bidders still do not adjust to them.

There is extensive evidence that even experienced bidders in laboratory experiments do
notadjust their bids as equilibrium theory suggests to allow for the winner’s curse (Kagel and
Levin (2002)), despite the quick availability of performance data to experimental subjects.
To the extent that bidders in real art and wine auctions have similar difficulty adapting to
declining prices, the evidence would be consistent with the explanation of the declining
price anomaly offered here.
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7.1 Uniform Price Sealed-Bid Auctions

The simplest kind of uniform price auctions are sealed-bid auctions. In
this section, we show that when each bidder has demand for multiple
units, these auctions inevitably create incentives for bidders to reduce
demand to avoid driving up prices and that there exist Nash equilibria
of these auctions with very low prices.

In a uniform price auction, a bid is an order to purchase quantity gq
at any price up to p. A bidder may make several such price-quantity
bids. The auctioneer then organizes the bids to create a demand curve,
determining for each price p the total quantity demanded at that price.
The auctioneer sets the price so that the quantity demanded equals the
available supply.

In general, there may be a range of prices at which the quantity de-
manded is equal to the available supply. For example, if there are N
goods for sale and a distinct price is bid for each unit, then supply equals
demand at any price between the Nth highest bid (the lowest accepted
bid) and N + 1sthighest bid (the highest rejected bid). For concreteness,
we focus on auctions in which the N + 1st highest bid (the highest re-
jected bid) sets the price. Our major conclusions extend qualitatively to
all auctions with market clearing prices in this range.

In analyzing the uniform price auction with sealed bids, we assume
the bidders have declining marginal values for the goods they acquire.
That is, a bidder’s value is highest for the first unit, and the same or
lower for each successive unit. (Little is known about how this auction
performs in general when this value assumption is not satisfied.)

We begin by observing that any bidder whose value for each item
after the first is zero has a dominant strategy in the auction. If the value
of the first item is v, then the dominant strategy is to place just one bid
for a quantity of 1 at a price of v. The argument is much the same as
in the standard analysis of the Vickrey auction: a bid in this situation
can never affect the price the bidder pays, so the bidder is effectively a
price taker and maximizes his payoff by specifying a demand function
that corresponds to his actual demand. If every bidder has demand for
just a single item (and can only bid for a single unit), then the highest-
rejected-bid auction would be a Vickrey auction. The equilibrium price
would then equal the opportunity cost of the item, which is its value to
the highest rejected bidder.
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7.1.1 Demand Reduction

When a bidder wants to buy more than one unit and when the units
have declining marginal values, a bidder generally has an incentive to
reduce his demand, that is, to bid less than his value for some units. The
example below illustrates how strong this incentive can be.

Suppose there are two bidders and two units for sale. Bidder 1 de-
mands only a single unit, and his value, v(¢!) = ¢!, is uniformly dis-
tributed on (0, 1). As we have seen, bidder 1’s dominant strategy is to bid
an amount equal to his value. Bidder 2 has demand for two units. The
first unit is worth v; and the second is worth v,, where 1 > v; > v, > 0.
With two units for sale, bidder 2 is assured of winning one if he places a
positive bid. If he bids x > 0 for the second unit, then he wins two units
if ! < x and one unit if #! > x, so his expected payoff is

E[(Ul + vy — 2t1)1{t1<x} + (Ul — x)l{tl>x}]
X
= / (v +v2—28)ds+ W —x)A—x)=v; —x(1 —v2). (7.1)
0

This expression is maximized at x = 0, that is, the optimal bid is zero.*
Thus, the second bidder always finds it optimal to bid as if he had
demand for only one unit, regardless of his actual values.

Although the example is extreme, the logic of this incentive is familiar
to students of economics, because it is almost identical to the textbook
logic explaining a monopsonist’s withholding of demand. In a classic
monopsony, when the buyer demands a quantity g, he understands that
his total expenditure will be TE(q) = qP(q). His marginal expenditure
is the derivative of total expenditure, TE' () = P(g) + gP'(q). It is the
additional expenditure per unit resulting from the last unit purchased.
If, as we normally expect, P’ is positive, then TE'(g) > P(g). Buying a
larger quantity requires not only paying the price for those units, but

3 Weborrow this example and the general conclusions about demand reduction from Ausubel
and Cramton (2002). Engelbrecht-Wiggans and Kahn (1998) analyze the conditions under
which prices of zero occur. Weber (1997) discusses demand reduction in the FCC spectrum
auctions.

A similar effect arises in procurement sales, when bidders offer prices at which they will
supply the auctioneer. When a bidder becomes confident that he controls the marginal
unit, extreme prices are likely. Experience in the California electricity markets in 2000 and
2001 confirms the extreme vulnerability of uniform price auctions in practice when one
supplier can cause a shortage by withholding supply.

4
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also paying a higher price for the first g units — the inframarginal units.
The increase in the price of inframarginal units when the buyer increases
his purchases accounts for the second term of the marginal expenditure
formula.

The fact that marginal expenditure exceeds price makes it opti-
mal for a buyer to reduce his demand below what it would be if
prices did not change with the quantity purchased. If V(g) denotes the
value of acquiring g units, then the buyer’s objective is to maximize
V(q) — TE(qg). If the functions are differentiable, then the derivative is
V'(g) — TE'(q) = V'(g) — P(q) — qP'(q). At the quantity g > 0 at which
price equals marginal value, the derivative is —qP’'(q) < 0, provided P’
is positive.

Figure 1 shows this argument in its familiar graphical form. The profit-
maximizing quantity g* is the one at which the marginal value of the unit
equals the marginal expenditure needed to acquire it. As we have argued,
the marginal expenditure function lies above the supply function, so g*
is less than the quantity g at which the marginal value of an additional
item is equal to its price. The profit-maximizing choice involves demand
reduction.

Demand reduction is not a problem peculiar to the sealed-bid form:
asimilar effect plagues any market mechanism in which identical goods
sell for identical prices. In auction models, expected quantity assumes
the role played by quantity in classic monopsony theory. For simplicity,
we describe the bids not as price-quantity pairs but as individual price
bids for each unit demanded. This description entails no loss of gener-
ality, because a bid for g units at price p is functionally equivalent to gq
separate bids for one unit at price p.
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Theincentive to reduce demand arises because the bids for the second
and subsequent units in the highest-rejected-bid auction affect both the
expected quantity the bidder acquires and the expected price he pays for
each unit he buys, if one of these subsequent bids does not win. Raising
the bid for the second unit from p to p’increases the quantity demanded
for prices in that range from one unit to two units. If the distribution of
opposing bids has a positive derivative on this range (analogous to the
positive slope of the supply function in classic monopsony), then the
marginal expected expenditure function lies above the corresponding
supply function, just as in the Figure 1.

To restate the argument algebraically, suppose some bidder has po-
tential demand for two of the N units offered in an auction. Suppose the
first unit is worth v; to the bidder and the second is worth v, < v;. Let
XN-1and X" denote the N — 1st and Nth order statistics from among
the opposing bids. Then the bidder’s expected profit from bidding v; for
one unit and b < v; for the second unit is

m(b) = El(v1 4 v2 — 2X"" D)1y
+(v1 — max(b, XM) "1 xv-1.p]. (7.2)

The two terms inside the expectation reflect the possibilities that the
second bid b is a winning bid and that it is not. When the bid wins,
the buyer acquires two units at a price of X¥~! each. When it does not
win, then if b is higher than X", the bidder acquires one unit at price b;
otherwise, provided v; > X", he acquires one unit at price X".

If the joint distribution of (XN~!, XN) has a positive density on the
whole set {X" < XN~} then the derivative of the profit function simpli-
fiesto ' (vy) = — Pr{X™~! > v, > XV} < 0. Intuitively, increasing the bid
in a neighborhood of v, causes the price to increase when XV-! > v, >
XN and all other effects of the bid increase are of second order.

As in classic monopsony, the ability to reduce the price paid for infra-
marginal units by reducing marginal bids creates an incentive to reduce
demand. In this case, we are evaluating the bid for the second unit, and
the first unit is the inframarginal unit. It follows that the optimal bid for
the second unit is less than v,.

Because bidders have incentives to bid full value for the first unit but
reduce demand for subsequent units, they use different mark-ups for
different items. The equilibrium outcome can therefore be inefficient.
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The following proposition summarizes these properties. In the propo-
sition, each bidder draws values for two items.

Theorem 7.1. Consider a sale with N bidders and k items, where 2 <
k < N. Suppose that each bidder may buy two items and that the value
of the first item is always at least as high as the value of the second item:

v] > vg . In the highest-rejected-bid auction, any strategy for bidder j

in which j bids less than v{ for the first unit is weakly dominated by a
strategy in which j bids v{ for the first unit. Moreover, if the bidders’
values for the two items are distributed according to any positive joint
density on {v € [0, 2]*MN| (V) v{ > vg}, then

* there is no equilibrium at which bidders all bid full value for both
items, and

* there is no equilibrium in undominated strategies in which the out-
comes always maximize total value.

Proof. All claims besides the last one about efficiency follow directly
from the discussion preceding the theorem. To prove the last claim, con-
sider any equilibrium in undominated strategies. Because not all bidders
bid full value for both items, there is some value profile at which bidder
1 has values v] > v} for the two items and bids b < vj for the second
item. With positive probability, the other bidders have values satisfy-
ingb < min{v!, ..., v5}, v} > max{v/|j =k, ..., N},andv} > max{v]|j =
2,...,N}.

Because the bidders are assumed to use undominated strategies, the
first inequality assures that the bid bis not a winner, so bidder 1 acquires
at most one item. The next two inequalities assures that the value v, is
among the highest k values, so that total value maximization requires
that bidder 1 acquire two items. When all these inequalities hold, the
outcome of the auction fails to maximize total value. By assumption, the
probability that this set of inequalities holds is positive. |

One can intuitively understand demand reduction either

(A) as reducing the total number of units demanded at or above any
price or, equivalently,
(B) as reducing the price bid for each unit after the first.
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From perspective (A), the preceding analysis looks very much like the
traditional theory of monopsony: the incentive to reduce the quantity
demanded depends on the number of units being purchased and the
price elasticity of expected supply at that price. Perspective (B) suggests
that the expected gain to reducing a price bid increases with the number
of inframarginal units and the probability that the price will become the
market clearing price.

With respect to two-sided markets in which buyers bid to purchase
and sellers offer to sell, theory supports the idea that thick markets elim-
inate incentives to withhold trade. Perspective (A) suggests that when
there are many buyers and sellers whose supplies and demands are
small relative to the market, it is a nearly dominant strategy to report
those demands and supplies accurately and eschew any attempt to in-
fluence prices.® Perspective (B) indicates that if all parties’ supplies and
demands are small portions of the market volume, then all consider it
unlikely that their marginal bid will set the price, so the incentive to dis-
tort supply or demand is small.® In two-sided markets, at least, theory
predicts large numbers will eliminate demand reduction and its associ-
ated inefficiencies.

7.1.2 Low-Price Equilibria

Theoretical results for one-sided markets are less favorable to the propo-
sition that large markets reduce withholding of demand than their coun-
terparts for two-sided markets. Simple examples demonstrate that even
when all bidders are small relative to the market, there can be Nash
equilibria of uniform price auctions in which prices remain far below
the competitive price.

A variety of examples establish this possibility. The simplest assumes
that goods are discrete. Suppose there are N bidders each of whom
wants k > 1 items and is willing to pay up to $1 for each item. Suppose
that there are exactly N objects for sale and that the highest-rejected-
bid rule applies. Then there is a symmetric equilibrium in which each
bidder bids $1 for the first item and $0 for each additional item. (With
more than N objects for sale, similar equilibria support any allocation
in which each bidder gets at least one item.)

5 For example, see Postlewaite and Roberts (1976).
6 See Swinkels (2001).
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Similar results arise in examples with infinitely divisible goods. Such
examples might model the sale of electrical power or of Treasury bills,
for which any indivisibilities are likely unimportant. Suppose there is
one unit of a divisible good for sale and that each bidder has a value
of V(q) = g — ¢* to acquire g < 1 units of the good. The bidder’s inverse
demand functionisthen P(q) = 1 — 2g. With N bidders, ifallreport their
demands truthfully, the market clearing price will be P =1 —2/N and
each bidder will acquire 1/ N units. The market clearing price converges
to 1 as the number of bidders grows large.

The corresponding auction game admits many symmetric equilib-
ria involving severe demand reduction. Thus, suppose that each bidder
bids according to the demand schedule p(q) = a — bgq. This means that
the bidder offers to pay the amount p(q) for the gth unit or, equiva-
lently, to buy g(p) = (a — p)/b units at any price p < a. Suppose the
N — 1 other bidders play this strategy, and consider the Nth bidder’s
choice of bids. If the last bidder acquires g units in the auction, then
the other bidders will each acquire (1 — q)/(IN — 1) units, so the price
will necessarily be a — b(1 — q)/(IN — 1), and the last bidder’s profit will
be V(g) — qla— b(1 — q)/(N — 1)). In a symmetric equilibrium, g = 1/N
will maximize the bidder’s profit. Hence, in equilibrium, g = 1/ N neces-
sarily satisfies the bidder’s first-order condition:

d
0= — g -4 —qla—bd —q)/(N—1)]
aq |, n
—1- % ax A S P (7.3)
N N-1 N(N-1) N NN-D "
Solving (7.3) for a yields
2 N-2

The restriction (7.4) allows a continuum of equilibria. In each equilib-
rium, the price is p=a— b/N, so a = p+ b/N. Substituting this value
into (7.4) yields

b= (1 —p- %) N(N-—1). (7.5)
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Using (7.5) and (7.4), one can construct symmetric equilibria with
a wide range of prices. For example, to find an equilibrium with price
p =0, we substitute p=0into (7.5) tofind b= (N— 1)(N—2)and a =
b/N = (N — 1)(N — 2)/N. This describes a symmetric zero-price equi-
librium closely analogous to the zero-price equilibrium in the preceding
discrete example. This continuous example demonstrates that the prob-
lem of low-price equilibrium is not an artifact of the particular numbers
of goods and players. There are low-price equilibria regardless of the
number of bidders N.

The significance of these low-price equilibria is uncertain. In the zero-
price equilibrium, the bidders have many best replies to the other bid-
ders’ equilibrium strategies. Perhaps this fact means that the modelis not
detailed enough toreflectbidders’ actual incentives. Thatsuspicion finds
further supportin the observation that in a discrete model of roughly the
same setting, an undominated strategy entails never bidding more than
one’s actual value and bidding full value for the first unit. The equi-
librium above lacks both properties. However, changing the zero-price
equilibrium strategy p(q) = a — bg to p(q) = min(V(q), a — bg) gener-
ates another zero-price equilibrium strategy and has the properties of
the undominated strategies in the corresponding discrete game.

Some research explores the robustness of the low-price equilibria to
uncertainty. Wilson (1979) introduced a version of the model with com-
mon value uncertainty. In that model, bidders have unique best replies
to their competitors’ strategies, but there is still a multiplicity of equi-
libria, some of which involve prices only a fraction of the value of the
goods being sold. Back and Zender (1993) showed that this model has
low-price equilibria that earn approximately the reserve price for any
arbitrarily low reserve the seller may set.

Later in this chapter, we present a more effective way to identify a
unique equilibrium. We model a uniform price ascending auction and
employbackward induction arguments to ensure that bidders planto op-
timize at all possible prices. We will find that, in those models, low prices
are not only possible; the unique equilibrium consistent with backward
induction often entails a low price.

Uniform price sealed-bid auctions are important in practice, both for
selling relatively homogeneous goods (such as Treasury bills) and buying
such goods (electrical power). The issue of extreme price equilibria is
plainly of great practical importance, so the topic discussed here is an
important one for continuing study.
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7.2 Simultaneous Ascending Auctions

Besides the sealed-bid auctions, other important kinds of uniform price
auction include the simultaneous ascending auction introduced by the
Federal Communications Commission (FCC) in 1994 and its clock auc-
tion variants. The main difference between these is that in the FCC de-
sign the bidders call the prices, whereas in a clock auction the auction-
eer calls the prices (and posts them on a digital or analog clock). Un-
like the sequence of ascending auctions that Sotheby’s used for the RCA
transponder sale described earlier, the simultaneous ascending auction
facilitates arbitrage among similar items by allowing bidders to compare
prices of different items and to shift their bids to those that are relatively
cheap.

Our principal findings are several. First, if goods are substitutes and
bidders are non-strategic, then the outcome of the auction is approxi-
mately a competitive equilibrium, with the approximation limited only
by the size of the bid increment. Despite the discreteness of the goods,
a competitive equilibrium exists. Next, like the uniform price sealed-
bid auction, these auctions have equilibria with very low prices. Finally,
using a model with elastic supply, we find that the lowest equilibrium
prices are the Cournot prices. This suggests a reinterpretation of the ear-
lier low-price equilibria as Cournot equilibria of games with inelastic
supply.

Table 1illustrates the uniformity of prices in asimultaneous ascending
auction, using data from the first FCC spectrum auction. Each license in
the auction packaged rights to use two kinds of spectrum. Notice that,
within each group of licenses, prices were approximately uniform.

Moreover, the prices suggest that the auction priced the two kinds
of spectrum consistently across groups of licenses. For engineering rea-
sons, the individual licenses in the auction covered two different parts
of the spectrum. The FCC reserved one part for transmitting relatively
powerful signals from high-powered transmitters at fixed locations to
be received by mobile, handheld devices. It reserved the other part for
transmitting relatively weak signals from the low-powered mobile de-
vices back to the fixed stations. The two numbers characterizing each
license in the table indicate the bandwidth of the license in the two parts
of the radio spectrum. If the bidders valued the bandwidth of the first
type of spectrum at about $740,000 per kilohertz and the second type at
about $860,000 per kilohertz, these values would produce market prices
of $80 million for the first type of license, $47.75 million for the second
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Table 1. Winning bids in FCC Auction #1.
License Name License Bandwidths (kHz) Winning Bid

N-1 50-50 $80,000,000
N-2 50-50 80,000,000
N-3 50-50 80,000,000
N-4 50-50 80,000,000
N-5 50-50 80,000,000
N-6 50-12.5 47,001,001
N-7 50-12.5 47,505,673
N-8 50-12.5 47,500,000
N-10 50-0 37,000,000
N-11 50-0 38,000,000
Total $617,006,674

type, and $37 million for the third type, which are quite close to the ac-
tual prices. The $38 million winning bid for license N-11, which occurred
when a participant made a jump bid early in the auction, appears to be
a small jump beyond the market clearing price.

We now discuss the rules of FCC auction #1 that encouraged such
effective arbitrage and consistent pricing.

Bids are placed in a series of rounds. Each bid commits the bidder to
pay the stated price to buy a spectrum license. At the end of each round
n, the auctioneer determines a standing high bid for each license, which
is the larger of the standing high bid from the previous round and the
highest new bid for that license. Until some firm bids for a license, the
standing high bidder is the seller; afterwards, it is the bidder that placed
the standing high bid. (If two or more bidders make the same high bid
during a round, the tie may be broken in favor of the bidder that bid first,
or it may be broken at random.)

At the end of round #, the auctioneer determines a minimum bid
for round n+ 1 by adding an increment to the standing high bid. In-
crements may vary during the auction. For example, increments in the
early rounds may be about 15% of the standing high bid, and those in the
late rounds may be about 5%. In the early FCC auctions, bidders could
make any bid exceeding the minimum bid. However, because bidders
sometimes used the less significant digits of the bids to communicate
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information,” the rules were changed so that bidders had to choose bids
from a menu constructed from the standing high bid by adding from 1
to 9 bid increments.

The auction closing ruleis especially important: the auction ends only
after a round in which there are no new bids on any license. Until then,
bidders can bid on anylicense. This ending rule is important for enabling
arbitrage among substitutes, because abidder may become interested in
bidding on one license only after the price of another, substitute license
has risen sufficiently.

The FCC’s activity rule prevents bidders from waiting until late in the
auction to begin bidding seriously. In its simplest form, the activity rule
simply provides that activity can never increase from round to round: a
bidder that places eligible bids for n units at round ¢ cannot place bids
for more than n units at any subsequent round ¢’ > ¢.2

Another feature of most of the FCC auctions has been that, at the end
of each round, the bidders and the public learn the identity of and the
bids made by all bidders during the just-completed round.

The FCC’srules bearimportant similarities to some older designs. One
of these is the famous Walrasian tatonnement, which has been used to
study price adjustments in multi-good systems. In that design, an auc-
tioneer calls the prices and adjusts each price up or down over time
according to whether the net demand at current prices for the item is
positive (demand exceeds supply) or negative (supply exceeds demand).
Prices in the tatonnement continue to adjust by some rule until supply
and demand exactly balance. No actual trades take place at the interme-
diate prices of this Walrasian auction process; trade takes place only at
final market clearing prices. The Walrasian design differs from the FCC
design in several respects. In the Walrasian tatonnement, the auction-
eer calls the prices, bids can be freely withdrawn whenever any price

7 Table 1 hints at this use of the low digits; note, for example, the winning bid of $47,505,673.
In the DEF auction, US West made several bids terminating in the digits 378 on licenses
where McLeod Wireless had been standing high bidder. These bids appear to have been
retaliation for McLeod’s bids in license area 378, covering Rochester, Minnesota. One might
therefore understand US West’s use of trailing digits as an attempt to intimidate McLeod.
See Cramton and Schwartz (2001).

The FCChasused several versions of the activity rule. In some, bidders have more freedom to
delay adding bids early in the auction. For example, there may be an initial stage consisting
of several rounds, at the end of which a bidder can increase its activity by 25%. There can
also be waivers that allow a bidder to be inactive in a particular round in order to take time
for planning.

®
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changes, prices can both rise and fall, and the process is not guaranteed
to end in any finite amount of time.

Another similar design that influenced the FCC rules is the silent auc-
tion, commonly used in charity sales. In these auctions, the auctioneer
sets out the items for sale (or descriptions of them) on a series of tables.
Next to each item is a piece of paper on which a bidder can write his bid
along with hisname or identifying number. As bidders wander the room,
they can raise the bid on any item they wish. The auction typically ends
at a fixed hour, often just before a meal is served.

Silent auctions are simultaneous ascending auctions in much the
same sense as the FCC auctions. Goods are for sale simultaneously, and
prices can only rise. However, the fixed ending time distinguishes the
silent auction from the FCC design.

Careful observers of silent auctions often see the following scene.
As the fixed ending hour approaches, some bidder approaches a table.
He lifts the pencil and slowly writes his name and bid as the bell rings
announcing the end of the auction. Often, this is the only bid the bidder
ever makes for this item. He plans to keep the price low and place a bid
only when nobody has time left to respond.

The practice of bidding low at the last possible moment — known
as sniping in on-line auctions — does not do much damage at charity
auctions, because most bidders are feeling charitable. They are happy to
pay high prices to acquire what they want, knowing that the higher the
prices, the more they have contributed to charity.

Bidders at FCC auctions have decidedly different motives from donors
at a charity auction, so the FCC auction rules aim to eliminate some of
the strategic bidding possible at a silent auction. A pair of distinctive
rules eliminates sniping. These are the closing rule, which always allows
the bidder an opportunity to respond to late bids, and the activity rule,
which prevents bidders from suddenly raising demands near the end of
the auction. These rules also help ensure that bidders receive an orderly
flow of information during the course of the bidding, so they can plan
their bids more effectively.

7.2.1 The Simultaneous Ascending Auction and

the Walrasian Tatonnement

We analyze the simultaneous ascending auction in two parts. In the
first part, we assume bidders adopt certain simple strategies and iden-
tify the resulting outcomes. This part of the analysis, like the traditional
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analysis of the Walrasian tatonnement, focuses on the convergence of
prices and quantities to a competitive equilibrium. We analyze con-
vergence to competitive equilibrium both for the FCC’s simultaneous
ascending auction, in which bidders call their own bids, and for a
clock auction, in which the auctioneer sets prices to which the bidders
respond.

The second part concerns strategic analysis, and it builds upon the
first part. We return to the Nash equilibrium analysis in section 7.2.3.

We begin by asking when competitive, market clearing prices exist.
Traditional theories of competitive equilibrium assume that preferences
are convex and that the goods are divisible, but the model we study
here does not satisfy those conditions. Might there be other general
conditions under which one can guarantee that competitive equilib-
rium prices exist? If such prices do exist, is it possible that they will
emerge from a monotonic process like the simultaneous ascending auc-
tion, in which the standing high bids can never decrease from round
to round? The answers to these questions require a careful, formal
analysis.

Let N denote the set of bidders, and L = {1, ..., L} the set of goods
for sale, with typical subset S. Equivalently, we may describe any subset
Sof Lbyavector xof 0'sand 1's, with x; = 1 < [ € S.If bidder j acquires
the allocation x and pays m for it, his payoff is v/ (x) — m. The demand
correspondence for j is Di( p) = arg max; (v (x) — p- x}. We assume that
there is free disposal, that is, x < x’ implies that v/ (x) < v/(x).

Generally, as prices change and demands change with them, there
will be some prices at which bidders are just indifferent between two
different sets of goods. To make our definition of substitutes similar to
the usual one, we limit attention to price vectors p for which the demand
set DJ(p) is single-valued, that is, for which the optimization problem
max, {v/(x) — p- x} has a unique solution.

Definition.® Goods are substitutes for bidder j if on the price domain
where D/ is single-valued, for any good [, increasing the prices of the

9 Recent authors, beginning with Kelso and Crawford (1982), offer an equivalent definition
and call the corresponding condition “gross substitutes.” In standard economic termi-
nology, “gross substitutes” and “gross complements” conditions are conditions based on
Marshallian (“uncompensated”) demand, as distinguished from the substitutes and com-
plements conditions based on Hicksian (“compensated”) demand. In models with quasi-
linear utility such as the ones studied in the text, there is no difference between Hicksian
and Marshallian demand.
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other goods does not reduce demand for good [:
(pu=pipi=pl = D/ =D/p.

We assume that the prices that can emerge during the auction in-
clude only ones at which demand is single-valued. Because the de-
mand is single-valued for almost all price vectors, this is not a significant
restriction.

As new bids occur, the standing high bids and the standing high bid-
ders change. We slightly simplify actual FCC procedures. Let p be the
vector of standing high bids after some round. Then we will suppose
that the vector of minimum bids for the next round is (1 + ¢) p for some
e > 0, that is, the minimum bid is the standing high bid plus some fixed
percentage.'® We assume that the auction opens with some positive vec-
tor of standing high bids p; we treat the seller as the initial standing high
bidderfor each good. Thus, the vector of initial minimum bids is p(1 + ¢).

Duringasimultaneous ascending auction, the gap between the stand-
ing high bid and the minimum bid for the next round implies that differ-
ent bidders have different opportunities. The standing high bidder with
a bid of b on some good could, in principle, acquire the good for a price
of bif no more bids are made, but any other bidder would have to pay a
minimum price of at least b(1 + ¢) to acquire the same good, regardless
of how the others bid.

We will use these minimum prices—which vary by bidder-to organize
our analysis, so we need to introduce corresponding notation.

Notation and Definitions

1. S/ is the set of goods on which j is the current standing high bidder.

2. pl = (psi, (1 + &) p._si) is the vector of personalized prices for bidder
j-

3. jbids straightforwardlyif for every possible realization of the auction,
the following conditions hold: (1) S/ ¢ D/(p/), (2) j makes new bids
in each round on the set of goods §/ = D/(p/) — §/, and (3) j’s new
bid for any good k € 8/ is the minimum bid price, p,’C

Intuitively, p/ is the vector of minimum prices atwhich j could acquire
thevarious goodsunder therules of the auction. These prices varyamong

10 The actual rules for setting the bid increment can be more complicated and can vary from
round to round. The rule adopted here simplifies our notation.
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bidders, because the standing high bidder on any good could possibly
acquire it at a price lower than is available to any other bidder.

In general, under the rules of the simultaneous ascending auction, it
may not be possible for a bidder to bid straightforwardly, because the
condition (1) may not hold. In the Walrasian tatonnement, condition
(1) poses no problem because a bidder can withdraw bids, but in the
simultaneous ascending auction the bidder is committed to his standing
high bids. The next theorem identifies exactly how restrictive condition
(1) is.

Theorem 7.2. Straightforward bidding is a feasible strategy for bidder j
for all initial prices p, all increments ¢, and all feasible price paths if and
only if goods are substitutes for bidder j.

Proof. The auction does not restrict the vector x on which bidder j can
bid in thefirstround, so straightforward biddingis feasible for thatround.
Suppose that straightforward bidding is possible through nrounds and
that j’s personalized prices after that round are p/. Straightforward bid-
ding requires that j bid p/ for the items described by vector D/ (p/). In
round n+ 1, j’s personalized prices are p’ pf and j is the standing
high bidder on those goods I for which p/ = p/.

If goods are substitutes, D] (P > D] (p!), so straightforward bidding
calls for j to make the required bid on goods for which he is the stand-
ing high bidder. Hence, the strategy satisfies the bidding constraints
imposed by the auction, and is therefore a feasible strategy.

Conversely, if goods are not substitutes for bidder j, then there ex-
ist two goods k and ! and price vectors p and p such that p_r = p_g,
P/pe=1+¢e>1,and 0= Dlj(ﬁj) < Dlj(pf) = 1. With an initial vector
of minimum bids p = pand increment factor ¢, suppose j bids straight-
forwardly at the first round. Then D,j (p/) = 1; jdemands good [ and may
become the standing high bidder for it, while another bidder may bid
for good k and become standing high bidder on that good. In that case,
j’s demand in the second round has Dlj (p) = 0, so condition (1) of the
definition of straightforward bidding is violated. |

The impossibility of bidding straightforwardly when goods are not
substitutes is very problematic for an auction design. It means that even
asmall bidderwho expectstobeunable to exert much influence on prices
cannot just respond to prices, because past bids may restrict future ones
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made at different (higher) prices. This difficulty can drastically increase
the costs of bidding.

Onthe otherhand, when goods are substitutes for all bidders, straight-
forward bidding is not only feasible, it also produces outcomes similar
to competitive equilibrium outcomes. The next theorem shows that the
simultaneous ascending auction generates prices and allocations that
are competitive equilibrium allocations for an economy with nearly the
same bidder values. In particular, the auction outcome maximizes the
total value over all possible allocations to within a single bid increment.

Theorem 7.3. Assume the goods are substitutes for all bidders and that
all bidders bid straightforwardly. Then the auction ends with no new
bids after a finite number of rounds. Let (p, X) be the final standing high
bids and assignment of goods. Then (p, X) is a competitive equilibrium
for an economy with valuation functions 9/ (x) = v/(x) —ep- (x — X/)*
for each bidder j. The final assignment maximizes total value to within
a single bid increment:

mfovj(xj) < Zvj(fcj) —1—82 pj.
J J

J

Proof. Consider bidder j after round n. Because goods are substitutes
and j bids straightforwardly, if j’s personalized prices at the end of round
nare p/ and if j is the standing high bidder on goods z/, then j demands
z/ when prices for those goods are fixed and the prices of the other goods
rise to high levels. It follows that j would earn a non-negative profit if the
auction ended after any round n. Because that statement holds for all
bidders, the maximum total value of the goods is an upper bound for the
total price of all goods after any round of the auction. Because the bid
increments have positive lower bounds, the auction ends after a finite
number of rounds.

Bidder j’s final personalized price for any good k satisfies p,’C =
Pl +¢e(1 — xi)). So, when we modify bidder j’s valuation as in
the statement of the theorem, j's demand at the final price vec-
tor p solves max,(6/(x) — p- x) = max,(v/(x) —ep- (x — XNt — p-x) =
max, (v’ (x) — pf - x). Comparing the first and last expressions, we have
Di(p)) = DI(p.

By the closing rule, we infer that j made no new bids in the final
round. So, because j bids straightforwardly, X/ € D/(p/). By the previous
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paragraph, this implies % e Di( p) for all j, so (p, X) is a competitive
equilibrium with the modified valuations.

To show the auction maximizes total value to within one bid incre-
ment, observe that

N N
max Y v/ (¢/) = max Y0/ () + ¢ p- (6] — %))
j=1 j=1

N
maxZ[f)j(xj) +ep-x']

IA

I |/\
=z 1= .
= "Mz:
= w
=
™M+
< ™
~[~
<

The first equality follows from the definition of the modified valuations;
the first inequality from the restriction that all prices are non-negative;
and the following inequality from the fact any feasible allocation assigns
each good at most once. In the fourth step, we use the facts (i) that
(p, %) is a competitive equilibrium for the modified valuations, (ii) that
competitive equilibria are efficient, and (iii) that when payoffs are quasi-
linear, efficient allocations maximize total value. Finally, the last equality
follows the definition of $/(-), which coincides with v/ (-) when evaluated
at x/. |

In practice, the most relevant bid increment for assessing outcomes
in the FCC auctions is the increment that applies when bidders are last
eligible to make new bids, which is normally near the end of the auction.
We might therefore expect the auction’s outcomes to approximate com-
petitive equilibria very closely when bid increments near the end of the
auction are very small. The Milgrom-Wilson rules originally adopted in
the United States by the FCC followed this intuition in reducing mini-
mum bid increments in the final stages of the auction.!!

1 The FCC later changed this rule to reduce transaction costs: smaller increments late in the
auction produced large numbers of costly rounds with relatively little bidding activity.



274 Uniform Price Auctions

The next theorem asserts that if every bidder regards the goods as
substitutes, then a competitive equilibrium must exist in this model, de-
spite the indivisibility of the goods. In addition, the theorem asserts that
if the bid increments are small, the auction allocation is a competitive
equilibrium allocation. Milgrom (2000) derived these results.'?

Theorem 7.4. Suppose that for every bidder the goods are substitutes
and that all goods have strictly positive marginal values. Then the econ-
omy with modified valuations as in Theorem 7.3 has a competitive equi-
librium, and for initial prices p and bid increments ¢ > 0 sufficiently
small, the final assignment (¢, p) is the assignment for some competitive
equilibrium.

Proof. We fix p low enough that each good attracts some bids at the first
round. The auction must therefore allocate every good to some bidder.
With p fixed, we may suppress the corresponding argument of x.

Consider a sequence of positive numbers {¢,} — 0, and define
(X(en), Plen)) to be the corresponding sequence of auction outcomes,
and v, = (ﬁ,’;) jentobethe corresponding sequence of modified valuation
functions. Because there are only finitely many possible assighments of
goods, there must exist some assignment X that occurs infinitely often
along the sequence.

Because each equilibrium price is non-negative and bounded above
by the maximum value of the complete package of all goods, the price
vectors all lie in a compact set. Hence, there exists a subsequence rn(k)
alongwhich X(e,) =X and p(s,g) converges to some price vector p . By
theorem 7.3, for every k, X = (&) € D(Plenw)|dn). By construction,
because ¢, — 0, we have 9,4 — v. Because the demand correspon-
dence D has a closed graph in prices and values, we have X € D (p|v),
that is, (X, p) is a competitive equilibrium. ]

12 Kelso and Crawford (1982) introduced a closely related model of labor markets in which
firms make a sequence of wage offers to workers analogous to the sequence of bids in a
simultaneous ascending auction. The Kelso-Crawford auction has the same ending rule
as the simultaneous ascending auction and similarly limits bid withdrawals. The main
differences between the models are two. First, the Kelso-Crawford model is more general
in allowing workers to evaluate offers by considering both the identity of the firm and the
wage it offers. Second, it requires only that a firm’s bid to a worker beat its own best previous
bid to the same worker, rather than the best bid from any firm to that worker.
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Theorems 7.2, 7.3, and 7.4 all assume that goods are substitutes. We
have noted that spectrum licenses are an important class of assets sold
by ascending auction. In practice, whether spectrum licenses are substi-
tutes or complements may often depend on how the licenses are defined.
When licenses are large, as in many of the US spectrum auctions, assem-
bling multiple licenses may not produce significant economies of scale
and scope, and the licenses may be approximate substitutes. However,
when licenses are so small that a bidder must combine several to achieve
economies of scale or scope, the licenses are not likely substitutes.

How serious is failure of the assumption that goods are substitutes?
Canwe extend theorems 7.2, 7.3, and 7.4 to abroader set of valuations, for
which goods need not be substitutes? Theorem 7.2 demonstrated that it
is not generally possible to bid straightforwardly when the goods are not
substitutes. According to the next theorem, due to Milgrom (2000), we
cannot even guarantee the existence of competitive equilibrium when
the substitutes condition fails.

Theorem 7.5. Suppose that the set of possible individual valuation func-
tions includes all the ones for which goods are substitutes and also in-
cludes at least one other valuation function. Then, if there are at least
three bidders, there is a profile of possible individual valuations such
that no competitive equilibrium exists.'3

A two-license, two-bidder example, summarized in Table 2, provides
intuition for this theorem. The table shows the value to each of two bid-
ders of licenses A and B singly and of the package AB. If ¢ > 0, then the
two licenses are not substitutes for bidder 1, for at prices up to a + 0.5¢
and b+ 0.5¢ + ¢, the bidder would want to buy both licenses if ¢ < 0
but neither if ¢ > 0, so demand for license A falls with an increase in
the price of license B. If there is one bidder for whom licenses are not
substitutes, then we can find valuations such that licenses will be substi-
tutes for another bidder (here, bidder 2) but no competitive equilibrium
exists.

13 Gul and Stacchetti (1999) prove a related theorem. They assume that the set of possible
valuations includes all those in which bidders demand only a single item and that the
number of bidders is at least as large as the number of goods plus one. They conclude that
if the set of possible valuations includes one for which goods are not substitutes, then there
is a profile of possible individual valuations such that no competitive equilibrium exists.
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Table 2.
Value
Bidder A B AB
1 a b a+b+c
2 a+06c b+06c a+b

If ¢ > 0, then the second bidder does find the two goods to be
substitutes.

Suppose there is a competitive equilibrium in this example. Then
the equilibrium allocation must be efficient, so bidder 1 must acquire
bothlicenses. Asbidder 2 does not demand any licenses, the equilibrium
prices must satisfy p4 > a + 0.6c and pg > b + 0.6¢c. However, these con-
ditions imply that p4 + ps > a+ b+ 1.2¢, so bidder 1 does not wish to
buy, either. Hence, no competitive equilibrium prices exist.

The third bidder required by the theorem allows us to reduce any
auction with multiple items to an equivalent auction with just two items.

Proof of Theorem 7.5. We first outline the proof. We choose a bidder
(bidder 1) for whom goods 1 and 2 are not substitutes and then introduce
two other bidders with identical linear valuations for goods. We fix their
values to ensure that the equilibrium prices of goods other than 1 and
2 are p_1». With those prices fixed, we define the indirect value function
of bidder 1 conditional on whether 1 acquires good 1, good 2, both, or
neither. We then introduce a fourth bidder who values only goods 1 and
2 to create a non-existence problem like that of the example preceding
this theorem. Finally, we observe that removing one of the bidders with
identical valuations does not change the conclusion.

Suppose bidder j has a valuation function v/ such that goods are
not substitutes. Then there exist a price vector (p_k, Px), a number ¢ €
R,, and a pair of goods, say goods 1 and 2, such that D{(p_l, p) =
Di(p_1, py) =1and D!(p_., pr + &) = Di(p_1, 1 + &) = 0. We may take
j=1

Introduce bidders 2 and 3, with identical linear valuations for
bundles x: 9(x) = (0,0, p_12) - (X1, X2, X_12). Define ¥(x;, x;) = maxy ,,
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v (X1, X2, X_12) — p_12 - X_12.Leta = 9(1, 0) — ©(0, 0),b = ©(0, 1) — ©(0, 0),
and ¢ = 9(0,0) + 9(1, 1) — 9(1,0) — 9(0, 1). Bidder 1’'s demand pattern
implies that ¢ > 0.

Bidder 4 values only goods 1 and 2. Just as in Table 2, he will pay up
to a + 0.6¢ for license 1, up to b+ 0.6¢ for license 2, and up to a + b for
the pair.

By construction, in any competitive equilibrium, the prices of goods
besides 1 and 2 must be at least p_;,. If any competitive equilibrium
has higher prices for those goods, then reducing those prices to p_i
preserves a demand of 1 for each unit, so there is also an equilibrium
with prices of p_;, for goods other than 1 and 2. Hence, we may limit
attention to such equilibria.

The next part of the proof exactly follows the example. A competitive
equilibrium allocation must maximize total value, so it must assign goods
1 and 2 to bidder 1. Because the fourth bidder acquires no licenses, the
pricesofgoods 1 and 2 mustbeatleasta + 0.6cand b + 0.6¢, respectively,
butsuch prices are inconsistent with bidder 1’s purchasing goods 1 and 2.

Finally, remove bidder 3, and suppose that, contrary to the statement
of the theorem, this economy has some competitive equilibrium (p, X).
For any item m+# 1, 2, if bidder 1 acquires item m, then bidder 2 does
not, so Py, > pm. If bidder 1 does not acquire the item, then bidder 2
does, so p,;, < pmand there is another equilibrium with p,,, = p,,. Hence,
((Prs P2, P—12 V p-12), X) is a competitive equilibrium with three bidders,
and if we reintroduce bidder 3, we may take his demands at those prices
to be zero. So the preceding prices and allocation also form a competi-
tive equilibrium of the economy with the four bidders identified above,
contrary to our finding that no such equilibrium exists. |

The non-existence of competitive equilibrium relates to the exposure
problem faced by participants in a simultaneous ascending auction. A
bidder who starts out by bidding straightforwardly according to his de-
mand schedule exposes himself to the possibility of bidding off his de-
mand schedule in later rounds, winning a collection of goods he does
not want at the prices he has bid because complementary goods have
become too expensive.

In the example in Table 2, if bidder 2 plays an undominated strategy,
then he will not quit until the prices of the two items reach their reserva-
tion levels. At those prices, bidder 1 loses money. So, if bidder 1 suspects
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bidder 2 will bid in this fashion, he will not bid aggressively for the two
items, and the outcome of the auction will be inefficient.

One puzzle raised by the preceding analysis is that some spectrum
auctions involving complementary licenses appear to have functioned
well. In the US regional narrowband auction in 1994, several bidders
successfully assembled collections of regional paging licenses in single
spectrum bands to create the package needed for a nationwide paging
service. In Mexico, the 1997 sale of licenses to manage point-to-point
microwave transmissions in various geographic areas exhibited a similar
pattern. What appears to be special about these auctions is that licenses
that were complementary for bidders planning nationwide paging or
microwave transmission networks were not substitutes for any other
bidders.

The theorems identify a problem in situations in which licenses that
are complements for one bidder are substitutes for another. The Nether-
lands DCS-1800 auction, which took place in February 1998, illustrates
the practical importance of this possibility. In that auction, eighteen lots
were offered for sale. Two of the lots were designed to be large enough
that a new entrant could use them to establish a new wireless telephone
business. The remaining sixteen lots were too small to be valuable singly
to new entrants, but could be used to expand the systems of incumbent
wireless operators. Alternatively, a new entrant who acquired perhaps
four or six small licenses could combine them to support entry at an effi-
cient scale. The smaller licenses would therefore likely be complements
for the new entrants, but substitutes for the incumbents. The preceding
theorems identify exactly this pattern as problematic.

According to theorem 7.2, the new entrants were certain to find bid-
ding for the smaller licenses difficult. Bidding straightforwardly in every
round is infeasible under the auction rules. One might hope to use com-
petitive prices to predict bidding, but, according to theorem 7.5, com-
petitive, market clearing prices may not exist. As our numerical example
demonstrates, even bidders who are certain that they have the highest
values might wisely refrain from bidding aggressively under these cir-
cumstances, because there may be no way to win profitably.

The outcome of the Netherlands auction seems to confirm these con-
cerns. The final prices per unit of bandwidth for the two large lots
were more than twice as high as for any of the sixteen smaller lots.
The entrants, willing to pay high prices for large chunks of spectrum,
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appear to have been unwilling torisklosses assembling smaller chunks of
spectrum.'4

We return in the next chapter to the problem of bidding for comple-
ments.

7.2.2 Clock Auctions

The FCC’s implementation of the simultaneous ascending auction has
worked reasonably well for spectrum licenses, in which each item sold
is arguably unique. One of its main practical disadvantages has been the
length of the resulting auctions. In practice, allocations for almost all
goods change little after the half-way point of the auction; the second
half merely refines the allocation of a few smaller licenses.

To see why the auction runs so slowly and how one might speed it
up, consider a simple example. Suppose n+ 1 bidders compete to buy
nidentical objects; a bidder can acquire only a single object. Suppose
that prices start at zero, that each bidder bids straightforwardly, that the
minimum new bid for any objectis the standing high bid plus 1, and that
each bidder has a value v > 1 for any one object. In the first round of the
auction and up to n — 1 subsequent rounds, all new bids will be at a price
of 1 for some object that has not yet received a bid. In each round after
this initial stage, n of the bidders will be standing high bidders on some
item and will place no new bid, while the remaining bidder will raise the
price of some item by 1. Total auction revenue will therefore rise by 1
per round. Hence, the auction will take between njv — 1] 4+ 1 and n|v]|
rounds.!®

One reason the standard simultaneous ascending auction is so slow
is that it fails to take advantage of the homogeneity of the items. For sales
of commodities like securities or electrical power, this defect is decisive.
Two alternatives to the simultaneous auction design address this defect.
The simplest is a kind of sealed-bid auction such as the highest-rejected-
bid auction described earlier. If bidders behave straightforwardly, this
auction generates a competitive price when there is just one kind of
good for sale. Even with straightforward bidding, such an auction is not
suitable when there are several imperfectly substitutable goods to be
sold.

14 Some of the price difference may also be attributed to other differences in the spectrum
offered in the different kinds of license.
15 The notation |v] denotes the largest integer less than or equal to v.
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The second alternative is the clock auction, in which the auctioneer
posts prices for each kind of good on a digital clock. Intuitively, the clock
auction is simple: in each round, the auctioneer increases prices by one
increment for goods for which demand exceeds supply. Clock auctions
embody many of the same principles as the simultaneous ascending
auction, and the design can accommodate both heterogeneous items
requiring individual prices and homogeneous items requiring a single
price.

Though the clockauctionis simple in principle, implementing it poses
practical challenges. Because the auctioneer increases bids in discrete
increments, prices can overshoot, requiring subtle adjustments to the
auction design. For example, in the simple case described above, what
should the rules specify if ten units of a good are offered but demand
drops from eleven to nine in some round when the price increases?

As discussed below, one theoretical solution to this problem is for the
auctioneer to get more information from bidders than just point esti-
mates of their demands at prevailing prices. The auctioneer can use the
additional information to decide to whom to assign goods as changing
prices change the signs of excess demands. To date, actual clock auc-
tions have also asked bidders for additional information beyond their
demands at current prices.

The 2002 New Jersey power purchase, in which electrical utilities
bought power for their customers, illustrates some of the difficulties
of implementing a clock auction. Suppose bidders demand four kinds
of power products, labeled A through D. Suppose that, in some round,
products A and B are oversubscribed (demand exceeds supply at the cur-
rent prices) and products C and D are undersubscribed (demand is less
than supply). Suppose the auctioneer increases prices for products A
and B and that after the change, products A and B become undersub-
scribed and products C and D become oversubscribed. How should the
rules respond to this scenario? New Jersey’s auction rules asked bidders
switching from bidding on A or B to bidding on C or D to attribute their
new bids on C and D to switches from A and B. A complex set of rules
sometimes disallowed switches to avoid creating an undersubscribed
product. The rules also provided that if a bidder’s switch from A to B
were disallowed and the bidder were eventually to win product A, then
the bidder’s price for A would be no higher than the highest price at
which he had voluntarily bid.
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Electricité de France (EDF) used a related but distinct clock auction
design for its power sales in 2002 and 2003.'® The EDF sales take place
every three months. The products sold are supply contracts of differ-
ent durations, ranging from 3 months to 36 months. In principle, these
multiple durations could create the same kinds of complexities as those
caused by multiple products in the New Jersey auction. In practice, those
complexities were avoided by the way the sale was structured.

Before each auction, EDF determines the total capacity it wishes
to offer, based primarily on the capacity it has available over the first
three months of the contract period. Using the prices in other European
markets, it determines differences A, and requires that the price per
megawatt-hour for a contract of n months must be A; more than the
price of the basic three-month contract. The A’s define a scoring rule
that allows EDF to run the auction as if it were selling a single homoge-
neous product, namely, capacity in the first three-month period of the
contracts.

The EDF auction uses electronic bidding agents to speed the bidding
while mimicking what would happen in a clock auction, with continu-
ouslyincreasing prices. The actual auction proceeds in a series of rounds.
The rules specify a planned price increase § for each round. Within the
round, only the electronic agents bid, specifying quantities demanded
at each price. Prices on each kind of contract increase continuously dur-
ing the round. The round ends when either (1) prices on contracts of
every duration have increased by §, or (2) total demand decreases be-
low total supply. When the second condition occurs, the auction ends.
EDF chooses a § large enough that the auction will end within about five
rounds.

The electronic rounds are essentially instantaneous. Between rounds,
there is a long enough pause for bidders instruct their agents how to
bid during the next round. The auctioneer provides a form for entering
these instructions. Each human bidder gives his agent an initial vector
of quantity demands for the round, which (except in the first round)
must equal his final demands from the preceding round. In addition,
the human bidder may specify any finite number of changes in demand
during the round. A typical instruction to an agent to change the bidder’s

16 The EDF products were call “virtual power plants” because the buyers had contractual
access to the capacity of the plant but EDF continued to operate the physical power plants.
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demand specifies that 40% of the way through the round, when all prices
have increased by 0.45, the electronic agent is to reduce its demand
for product 1 by 100 units and increase its demand for product 2 by
50 units. In general, an instruction specifies a percentage and a list of
demand changes, subject to the restriction that the total number of units
demanded cannot increase as prices rise.

When the auction ends, EDF is committed to a certain supply capacity
for the first three months and some lower capacity for each subsequent
month. Because EDF’suncommitted capacityis approximately constant,
this plan is always technically feasible. The outcome typically leaves
uncommitted capacity available for the next auction, which takes place
three months later.

EDF conductsits sales as if it faced only one constraint, the availability
of capacity in the first three-month period, and the result is a drastically
simplified design. The reality of multiple constraints is accommodated
by running a series of auctions over time. This sort of design was not
feasible for the New Jersey situation, in which multiple kinds of product
constraints all applied over the same period and allneeded to be resolved
together. New Jersey needed an auction that could solve a multi-product
matching problem, not merely the problem of setting total overall de-
mand equal to total overall supply.

Demange, Gale, and Sotomayor (1986) devised a theoretically sound
way to run clock auctions for situations similar to New Jersey’s, but
their analysis assumes that each buyer wants just a single item. Gul and
Stacchetti (2000) have extended that analysis to the general case of de-
mands for goods that are substitutes for each bidder.

Discrete goods create practical and theoretical problems for clock
auctions, because at critical moments during the auction, prices leave
bidders exactly indifferent between different bundles of products. To
raise prices on the products that are overdemanded, one needs a defi-
nition of excess demand when bidders are indifferent among some allo-
cations.

The theoretically correct way to identify overdemanded goods re-
quires that each bidder report the whole set of bundles among which
he is indifferent at current prices. To explain the Gul-Stacchetti proce-
dure, we begin by thinking about the simple case in which there are
no indifferences. In this case, each bidder demands a particular bun-
dle of products, so one can identify the collection of products for which
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demand strictly exceeds supply. That set of goods is a maximally overde-
manded set, that is, a set that maximizes the difference between demand
and supply. By construction, it is also the smallest such set. In the general
case, when indifferences are possible, the auctioneer again mustidentify
the smallest maximally overdemanded set. If this set has positive excess
demand, then the auctioneer must increase the prices of exactly this set
of goods.

To identify the smallest maximally overdemanded set, we introduce
the following notation. For each set of products B and price vector
p, let #D(B, p) denote the number of products demanded from set
B. If at least one bidder has more than one payoff-maximizing allo-
cation, then let #D(B, p) be the minimum total number of products
demanded from set B at any profile of optimal choices for the bid-
ders. Let #S(A) denote the total number of units supplied of all prod-
ucts in set A. Then a set B is maximally overdemanded at price vector
pif#D(B, p) — #S(B) = max, (#D(A, p) — #S(A)). A smallest maximally
overdemanded set is any maximally overdemanded set B such that no
subset is maximally overdemanded.

To illustrate the calculation of a maximally overdemanded set, sup-
pose there are two products and just one bidder, and that the bidder isin-
differentbetween the bundles (4, 3) and (3,4).Inthatcase, #D({1}, p) = 3,
#D({2}, p) = 3, and #D({1, 2}, p) = 7. If the seller has three units of each
product available for sale, then the individual products are not overde-
manded, because the minimum number of units demanded of each in-
dividual product does not exceed the supply. In this example, however,
the set {1, 2} is overdemanded, because the minimum total number of
units demanded from that set is 7, which exceeds the available supply.

The clock auction proceeds by raising the prices on both goods in
tandem until the demand set changes. For example, it may happen that
as the prices increase, the buyer reaches a point at which, in addition
to the bundles (4, 3) and (3, 4), the bundle (3, 3) becomes an optimal
choice. At that point, the clock auction will end, with demand equal to
supply for each product.

Gul and Stacchetti (2000) study a model of a clock auction, assuming
that valuations are integers and that prices increase by a single unit
in each round. They apply matroid theory to prove that if goods are
substitutes and all bidders report their demands truthfully, then there
exists an allocation at the final prices that exactly clears the market.
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In other words, if goods are substitutes, prices from the just-described
procedure converge to a competitive equilibrium price vector.

From one perspective, this result is intuitive: the clock auction seems
to generate prices similar to those of the FCC simultaneous ascending
auction with straightforward bidding, and we have already seen how
the FCC auction design yields competitive outcomes when goods are
substitutes. Research to date, however, is merely suggestive and has not
yet unified the two approaches.

7.2.3 Strategic Incentives in Uniform Price Auctions

Next, wereturn to the issue of incentives for strategic behavior in uniform
price auctions. Our earlier analysis focused on sealed-bid auctions and
revealed equilibria with prices well below the goods’ marginal values.
Particularly in continuous models, we showed that such equilibria are
commonregardless of the number of bidders. We obtained similar results
for discrete models with many goods and many bidders.

In each case, we used a full information model, and the equilibrium
we identified allowed each bidder an infinite set of best replies. More-
over, one of the models produced a continuum of Nash equilibria - a
conclusion that hardly inspires confidence in the model’s predictions.
One might wonder whether more detailed modeling of the environment,
adding uncertainty or dynamics or both, could identify the most plau-
sible equilibria. Earlier, we discussed some attempts to add uncertainty
to the model and the mixed results they produced. In this section, we
create a dynamic model of a clock auction and demonstrate its strategic
equivalence to a certain sealed-bid auction. Then, we use weak dom-
inance and a concept based on backward induction to try to rule out
some of the extreme equilibria found in our previous analyses.

7.2.3.1 The Basic Clock Auction Model
We model a clock auction with N bidders in which NS units of a perfectly
divisible good are offered for sale. A bidder j who acquires g units at
price pearns a payoff of V/(g) — pq. Suppose that V/ is continuous and
strictly concave, and let c?f (p) = argmaxyer, (Vix) — px) be the associ-
ated demand function.

The clock starts at some reserve price r and increases in small in-
crements from round to round. Each bidder announces the quan-
tity he demands at the current price, and the activity rule prohibits
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increasing this quantity from round to round. The auction ends as soon
as the total quantity demanded by all bidders is less than or equal to
the quantity supplied, which is NS units. To ensure that the game is
well defined, assume that the auction will terminate for certain if the
auction reaches a pre-specified very high price. When the auction ter-
minates, the transaction price is set at the current price showing on
the clock, and each bidder receives the quantity he demanded at that
price.

To minimize the possibility that bidders might support collusive equi-
libria by retaliating against one another for deviations, assume that the
only information the bidders receive during the auction is the current
price. With this assumption, the current price summarizes all public in-
formation at any time during the auction, so (reduced) pure strategies
specify bids that depend only on the current price.!” If the set of pos-
sible prices is the set of all non-negative numbers, then a strategy is
a nonincreasing function g : R, — [0, NS] mapping possible prices to
quantities.

This model highlights the close connections between the clock auc-
tion and the sealed-bid uniform price auction. When we model the clock
auction as above, both have the same strategy space and payoff mapping.
The only differences are that (1) the clock auction allows a dynamic anal-
ysis using backward induction and (2) we have so far used a discrete price
space in the clock auction and a continuous price space in the sealed-
bid auction. Let us now remove that latter difference, so that prices are
continuous in both cases. Also, for technical reasons, we restrict atten-
tion to continuous strategies.

First, we identify and eliminate some weakly dominated strategies.

17 Recall that a reduced strategy is an equivalence class of pure strategies that always induce
the same outcome. Our analyses of the Dutch auction and the ascending auction in earlier
chapters also used reduced strategies.

In the present case, because bidders know the history of their own past bids in addition
to the current price, a pure strategy is formally a map from the current price and the bidder’s
own past quantities into a current quantity demand. Notice, however, that given any pure
strategy Q and any price p, one can identify a unique quantity a bidder will demand if the
price reaches p. Thus pure strategy Q implies a map ¢ from prices to quantities. Any two
strategies that induce the same map g necessarily generate the same outcomes, so such
strategies are equivalent. The nonincreasing function g( p) that maps prices to bid quantities
characterizes the equivalence class, so we call this the reduced strategy and use it for our
analysis. In the text, we usually call g a “strategy,” omitting the adjective “reduced.”
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Theorem 7.6 Suppose there are N > 2 bidders. Let g(p) be any strategy
for the clock auction game, and let G(p) = min(q(p), §(p)). If g # g, then
g weakly dominates g.

Proof. Suppose q # G.Because N > 2, there exist strategies for the other
bidder(s) such that g and § lead to different prices at the outcome of
the auction. So it suffices to prove that whenever the outcomes cor-
responding to the two strategies differ, § always earns strictly more
than g.

For any opposing strategy profile, suppose the outcomes (p, g(p))
and (p, g(p)) that result from playing g and § are unequal. Then because
g < q at every price, we have p < p. By the definition of g, the outcome
(p, 4(p)) is weakly more profitable for a bidder than (p, g(p)). Because p
is not a market clearing price for the demand function g, it follows that
(p, G(p)) = (P, 4(P)). Also, a bidder prefers (p, §(p)) to (p, G(p)), because
both are price-taking demands and the latter entails a higher price. So a
bidder prefers (p, G(p)) to (p, g(p)). [ |

Next, we illustrate the use of backward induction using a simple sym-
metricmodel. In this model, each bidder has the same strictly increasing,
concave, continuously differentiable valuation function V(g) with cor-
responding demand function 4.

Theorem 7.7. For any reserve price r and any number N of bidders, the
strategy g(p) = min(S, §(p)) isasymmetric Nash equilibrium of the clock
auction game.

Proof. If each bidder adopts the specified strategy, then no bidder de-
mands more than S, so the bidding stops immediately at the reserve
price r, and each bidder acquires min(S, §(r)) units at price r. By inspec-
tion, among all deviations that lead the deviator to acquire a quantity
less than S, none earns a higher payoff than the equilibrium strategy,
because none produces a lower price than r.

So, if there is any profitable deviation, it must enable the deviator to
acquire g > S at some price p > r. Using Theorem 7.6, we may assume
without loss of generality that § < §(p). The preceding two inequalities
imply that at price p, the N — 1 bidders who do not deviate each acquire
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min(S, §(p)) = S. Hence, the total quantity purchased is G+ (N —1)S >
NS, demonstrating the market cannot clear. |

Notice that, if §(r) > S, then the value to a bidder from playing the
equilibrium strategy is V(S) — rS, which is decreasing in r. If §(r) < S,
then the corresponding value is V(§(r)) — rg(r), which is again decreas-
inginr. Because this value is everywhere decreasing in r, it follows that it
is always in a bidder’s interest to act to stop the auction immediately. One
can formalize this argument to give an alternative proof of Theorem 7.7.

The theorem identifies an equilibrium consistent with backward in-
duction. After any history of bidding, the bidders effectively find them-
selves in a new game starting at the current price. The theorem asserts
that the proposed strategy, restricted to the new game, is a symmetric
Nash equilibrium of that game. This backward induction property is
similar, but not identical, to the defining property of subgame perfect
equilibrium.'8

Notice that the equilibrium strategy identified by the theorem de-
pends on the per capita supply S but not on the number of bidders, N.
Thus, the theory predicts that a proportionate increase in the number of
bidders and the total supply does not necessarily increase the effective
competition in the auction. We also discover something about the selec-
tion of equilibrium: weak dominance and backward induction alone do
not eliminate equilibria with very low prices.

7.2.3.2 The Alternating-Move Clock Auction

Ausubel and Schwartz (1999) explore the idea that backward induction
may actually select an equilibrium with alow price as the unique equilib-
rium. To eliminate the multiplicity of equilibria found in other models,
Ausubel and Schwartz add two novel assumptions. First, bidders bid in
sequence, so moves are not simultaneous as in other models. Second,
eachbidder observes the previous bids before choosing his own quantity.
These changes convert the auction into an extensive form game with per-
fect information. It is a standard result of game theory that, generically,

18 Tn a game of perfect recall such as this one, a subgame starts only at a node where no bidder
has private information. Bidders in the model treated here are privately informed about
their own past quantity choices, so what is called a “new game” in the text is not a subgame
according to the standard definition.
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finite games with perfect information have unique equilibria consistent
with backward induction.'® Although we cannot apply this result directly
to auctions, we will see below that a certain model of a clock auction with
alternating moves has a unique equilibrium.?°

In our model, two bidders have increasing, strictly concave, and
continuously differentiable valuation functions V!(g) and V?(g), with
V1(0) = V2(0) = 0. There is one divisible good for sale. The auction has
areserve price of r.

The state of the auction is a pair (p, g), where p represents the cur-
rent price on the clock and g represents the number of units currently
demanded by all bidders except the current bidder. The initial state of
the auctionis p=randg > 1.

At any round 7 > 1, only one bidder moves.

If nis odd, bidder 1 observes the state variable (p, g) and chooses a
quantity ;. If q1 + g < 1, then the auction ends at price p, bidder 1 gets
quantity g, and bidder 2 gets the quantity g. In this case, we say that 1
accepts the state. If 1 does not accept the state, then the round advances.
The state variable for the next round becomes (p + 1, q1). Intuitively, 1 is
the standing high bidder at quantity ¢; and price p+ 1.

If nis even, an analogous process occurs, butitis bidder 2 who moves.
Bidder 2 observes the state variable (p, g) and chooses a quantity g. If
g+ g2 <1 (2 accepts), the auction ends at price p, and bidders 1 and 2
get g and ¢, units, respectively. Otherwise, the auction proceeds to the
next round with state (p+ 1, o).

We will see shortly that there is a unique equilibrium of this game
consistent with backward induction. For now, let us temporarily assume
uniqueness and characterize the equilibrium strategies. Given the state
(p, @), j can accept and earn a payoff of

a/(p,q) = max (V/(x) — px). (7.6)
x€[0,1—q]

19 This means that if there are N players and K terminal nodes in the extensive form and if
we regard the payoffs as an element in RVK, then the set of payoffs for which the game has
more than one equilibrium has Lesbesgue measure zero. This fact suggests that failure of
uniqueness requires either a rare coincidence or some reason why the terminal nodes have
special structure. Auction games have the latter property: several paths through the auction
can lead to identical prices and allocations and hence identical payoffs.

The model developed in the text differs slightly from the original Ausubel-Schwartz model.
They modeled a simultaneous ascending auction in which prices of different units could
vary, whereas the text models a clock auction with a uniform price.

2

S
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Alternatively, he can reject and make a bid that is acceptable to bidder i:
B/(p) = max (V/(x) — (p+ Dx)

x€[0,1]

subjectto o'(p+1,x) > Bi(p+1). (7.7)
Calculating o' and o? is straightforward. To calculate g' and
B2, observe that if the price p is high enough, then 0 < B/ (p) <
maXye(o,1] (Vi(x) — ( p+ 1)x) = 0. So one can construct the two functions
iteratively, starting with high prices.

Theorem 7.8. The alternating clock auction game described above has
a unique equilibrium. At equilibrium, given the state (p, q), the active
bidder j acceptsifa’(p, q) > B/ (p). Otherwise, the active bidder j makes
a bid leading to a state that the other bidder will accept. The bid solves
(7.7), and j’s payoff is max(a/ (p, q), B/ (p)).

Proof. We prove uniqueness by induction. By assumption, there is some
price at which the optimal demands are zero; for any sufficiently high
price, the active bidder always accepts and the auction ends. The active
bidder j’s payoffis then max(a/(p, q), B/ (p)). We proceed by mathemat-
ical induction.

Let pbe a price for which the theorem predicts a unique equilibrium.
At price p— 1, the active bidder j has three options. His first option is
to accept, earning the payoff o/ (p — 1, ). His second option is to make
an acceptable offer. By the inductive hypothesis, the other bidder will
acceptsuch an offer in the next round, so j will earn payoff 8/ (p — 1) and,
by (7.7), the other bidder will earn o’ (p, g) = p*(p). His third option is to
make an unacceptable offer. In that case, by the inductive hypothesis, the
other bidder’s payoff is again g?(p). The total payoff in the continuation
game must be lower in this case than if j makes an acceptable offer,
because the price increases in the continuation game. Hence, j’s payoff
in this case is less if he makes an unacceptable offer.

Hence, j's maximal payoff at p— 1 is max(a/(p—1,q), 8/ (p—1)).
Hence, the equilibrium characterization applies to any price. |

Corollary7.9. The final price in the unique equilibrium of the alternating
clock auction consistent with backward inductionis p=ror p=r + 1.
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Proof. According to theorem 7.8, in the first round, bidder 1 either ac-
cepts or makes a bid leading to a state that 2 accepts. In the first case,
the price is p = r. In the second, the priceis p=r + 1. |

Thus, the clock auction with alternating bids does restrict the set of
equilibria, but not to competitive equilibria. As in bargaining models
with alternating offers, a bidder who can foresee he will ultimately win
just x units has an incentive to end the auction early, obtaining those
units at a low price. The winning bidders therefore bid just enough to
win all the items.

7.2.3.3 Strategic Incentives with Elastic Supply?!

So far, we have restricted attention to models in which the quantity sup-
pliedis fixed and tried to rule outlow-price equilibria by studying auction
designs in detail. Fixed supplies are an important feature of some real
environments. For example, in the California electric power markets of
1999-2000, consumers of power paid a regulated price and an auction
market determined supply to meet the fixed demand. Would much be
gained if both sides of the market could bid?

In this section, we modify the basic model of a clock auction to accom-
modate supply that varies with price according to an increasing inverse
supply function P(q). Otherwise, the rules of the auction parallel those
of the basic clock auction. A (reduced) strategy for bidder i in the game
starting with reserve r is a continuous, nonincreasing function g’ (p|r).
The auction ends as soon as there is excess supply, that is, it ends at
the lowest price p > r for which p > P(ZjeN qf(p|r)). When the market
clears at price p, bidder j’s payoffis V(q’/(p)) — pq’ (p). Recall that 4(p)
is the competitive demand of a bidder with valuation V.

For purposes of illustration, we assume a symmetric linear-quadratic
model, scaling the supply according to the number of bidders N. Thus,
let P(q) = a+ b(q/N) be the inverse supply function and suppose the
bidder value functions are V(q) = aq — 384*. Let g} denote the sym-
metric Cournot quantity, and let NS(p) be the total supply, so that

21 The analysis in this section draws on Klemperer and Meyer (1989) and McAdams (2002).
Klemperer and Meyer’s analysis characterizes equilibrium in a model in which supply is
both uncertain and elastic. They find no equilibria similar to the zero price equilibria. The
McAdams analysis observes that very low price equilibria can be eliminated by modifying
the rules of the auction in ways that resemble increasing the elasticity of supply.
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S(p) = (p—a)/b= P~'(p)/N is the per-bidder supply function corre-
sponding to P.

Theorem 7.10. Define g(p, r) = min(4(p), max(qy, S(r))). Then, the the
strategy q(p, r) is asymmetric Nash equilibrium of the symmetriclinear—
quadratic®? clock auction with reserve price r. Moreover, there is no
symmetric equilibrium in which the price is less than the Cournot

price py.

Proof. One can extend Theorem 7.6 to this model, so we may limit at-
tention to deviations satisfying g(p, r) < §(p) and such that the price
never exceeds the competitive price p*. (The outcome in the case where
r > p*isuninteresting and immediate.) On the remaining set of possible
prices [r, p*], because the non-deviators play the equilibrium strategy,
their quantities satisfy g(p, r) = max(qy;, S(r)) < 4(r).

To show that deviations are unprofitable, we consider two cases. First
suppose S(r) < gy. Then a bidder who deviates to win quantity g earns
V(g) — qP((g + (N — 1)gx)/N), his Cournot profit. So no deviation can
lead to more than the Cournot profits, which are the equilibrium profits
in this case. Hence, there exists no profitable deviation.

Next, suppose S(r) > gx. Then, a bidder who deviates to win quan-
tityg > S(r)earns V(q) — qP((q + (N — 1)S(r))/N). Because the Cournot
best reply curve slopes downward, if ¢ were unconstrained in this bid-
der’s objective, the bidder would optimally deviate to a quantity g’ < gy
By concavity, profits decreasein g’ onthe domaing’ > S(r) > gy, so there
can be no profitable deviation to a higher quantity than specified by the
proposed strategy. Hence, the best reply is some quantity § < S(r) < 4(r)
at which the auction ends immediately at price r. So the best reply
maximizes V(q) — rq. Because §(r) = argmax,(V(q) —rq) = S(r), and
because the objective is concave, the constrained optimum is at S(r).
Therefore, the proposed strategy is a best reply to itself, and so a sym-
metric equilibrium strategy.

Suppose, contrary to the theorem, that there is some equilibrium with
prices below the Cournot price. Then there is some reserve pricer < pj

22 In the proof of the theorem, we use the linearity to ensure that the bidders’ optimization
problems are concave and that the Cournot best reply function slopes downwards. The
conclusion of the theorem remains true for any supply and value specifications that share
these properties.
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and some equilibrium such that the market clears immediately, and each
bidder acquires his share S(r) of the total quantity NS(r). Because r < pj,
and supply increases with price, S(r) < g5. Because the quantity S(r) is
not a Cournot quantity and because the Cournot best reply function
slopes downward, the best reply in the Cournot game to the quantities
S(r) is some q’ > gy, which results in a price p’ > r.

Let us verify that a deviator who demands g’ at all prices in the auction
increases his payoff by doing so. Indeed, if the other bidders continue
to demand S(r), then the deviator earns V(q') — p'q’ > V(S(r)) — rS(r),
justasinthe Cournotmodel. The only alternative is that the other bidders
reduce their quantity demands, and in that case the bidder gets the same
quantity g’ at a price p” < p’, so the deviation pays V(q') — p"q’ >
Vigh—-p'q'. u

A comparison of theorems 7.7 and 7.10 highlights several things. First,
the equilibrium strategies are similar in the two theorems. Each bidder
starts by demanding a quantity g, at the reserve price that is less than
his competitive quantity §(r) and maintains that quantity demand until
the price rises so high that §(p) < qo. In theorem 7.7, the quantity is
qo = S, whereas in theorem 7.10 it is gy = max (g5, S(r)). In both cases,
demand reduction occurs. Second, if the reserve price is less than the
Cournot price, then the initially demanded quantities in the identified
equilibrium are the Cournot quantities. Finally, there is no equilibrium
with prices below the Cournot price.

We conclude that the lowest equilibrium price in the model with up-
ward sloping supply is the Cournot price. Using the linear—quadratic
specification, the Cournot price and quantity are

AL P
i b N “ . a—a
PN= N and qy= — 1\ (7.8)
iy )+1 b(1+ =
(b * N) * pt ( * N)
For comparison, the competitive price and quantity are
B
—a+uo
* b a—a
p B o and ¢ B1D (7.9)
b
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In both the competitive and Cournot cases, the equilibrium price
is a weighted average of the supply and demand intercepts, a and «.
The relative weight on the higher intercept a is 8/b in a competitive
equilibrium, anditis 8/b + 1/Ninthe N-bidder Cournot model. Thus, in
the familiar fashion for Cournot models, the equilibrium price converges
to competitive prices as the number of bidders grows.

This analysis clarifies the reasons for the low-price equilibria in the
models of the preceding sections: the zero-price equilibria are Cournot
equilibria. This result underlines the importance of making supply elas-
ticto promote competitive auction outcomes. The combination of elastic
supply and multiple bidders is especially effective for obtaining auction
prices that are near the competitive market price.

7.3 Conclusion

This chapter has focused on auctions that promote uniform pricing. We
studied three kinds of auctions. The first were sealed-bid auctions in
which the price equates supply and demand. Such auctions have been
used to sell Treasury bills in the United States and elsewhere, and also for
certain power sales. The second were simultaneous ascending auctions,
such as those used by the FCC. The third were clock auctions, which have
been used for power sales and for the UK auction of emissions permits.

The three designs are closely related in theory. When a single divisible
good is to be sold, the reduced normal form of a certain clock auction is
identical to the normal form of the sealed-bid auction. We showed that
clockauctions are equivalent to accelerated versions of the simultaneous
ascending auction.

If goods are indivisible and unique but are nevertheless substitutes
for the bidders, then a competitive equilibrium exists. That is, there exist
prices at which the demand for each kind of good is equal to its unit
supply. Conversely, if the set of possible bidder valuations includes any
for which goods are not substitutes, then there is a profile of individual
valuations such that no competitive equilibrium exists.

One can analyze two ascending auction designs with multiple kinds
of goods as tatonnement processes. In this analysis, we set aside consid-
erations of the bidders’ incentives and assumed that all bid straightfor-
wardly, according to their actual demands. We found that goods need
to be substitutes for straightforward bidding even to be possible. More-
over, if goods are substitutes, then, despite the monotonicity restrictions
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imposed by the ascending auction process, straightforward bidding
leads to approximately competitive outcomes, with the maximum ap-
proximation error proportional to the bid increments.

Practical concerns often dictate the choice of auction design. With a
single homogeneous good, the sealed-bid form is quick and simple to
administer. The simultaneous ascending auction and the clock auction
better suitsales of multiple kinds ofgoods, because they allow the auction
to determine relative prices. When there are a few homogeneous classes,
each with many goods, the clock auction design can run much faster
than the standard simultaneous ascending auction design, and it leads,
with straightforward bidding, to the same near-competitive outcomes.
However, to work effectively, clock auctions require more information
than just a single bidder demand vector at each price vector. As of this
writing, practical bidder interfaces to acquire the needed information
have yet to be devised.

A key concern with all the auction designs discussed in this chapter
is the possibility of extreme equilibrium prices. We found very general
incentives for bidders (buyers) to reduce demand to keep prices low. In
all three auction designs, in a variety of simple models, there are Nash
equilibria in which prices are at or near the seller’s reserve, even if that
reserve is much lower than the competitive price. In the simplest mod-
els, these low-price equilibria rely on incompletely motivated choices
by bidders, but attempts to eliminate the low-price equilibria by en-
riching the models in various ways have met limited success. Adding
uncertainty sometimes (but not always) eliminates the most extreme
equilibria. Eliminating weakly dominated strategies and attending to
the dynamic structure of the auction both fail to eliminate the extremely
low-price equilibria. The alternating-bid model of the clock auction gen-
erates the surprising conclusion that the unique equilibrium consistent
with backward induction produces very low prices.

The most unfavorable results — those with prices far below the corre-
sponding competitive prices — apply when the supply of goods for sale is
fixed. In a model with positive supply elasticity, we found that the worst
auction outcomes resemble the results of Cournot competition among
buyers. With fixed supply, Cournot outcomes can entail very low prices.
The analysis highlights the combined effectiveness for raising revenue
of making supply elastic and ensuring that auction participants are nu-
merous.
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Package Auctions and
Combinatorial Bidding

In chapter 7, we found that multi-object auctions that promote uniform
prices raise new problems not found in single item auctions. One is
that if the bidders do not regard the goods as substitutes, then mar-
ket clearing prices can fail to exist. When goods are not substitutes,
the conception of auctions as mechanisms to identify market clearing
prices is fundamentally misguided. A second problem is that even when
goods are substitutes, if the auction identifies uniform prices for each
kind of good, there are generally incentives for bidders to bid for fewer
units than they really want (demand reduction). That behavior can pro-
duce both inefficient outcomes and low revenue. So, even in those cases
where the search for market clearing prices is not logically doomed to
fail, mechanisms that might find market clearing prices when bidders
are naive may still perform poorly when bidders are sophisticated and
strategic.

In this chapter, we explore another set of problems. When the auc-
tioneer sells one indivisible good of fixed characteristics, she faces no
question about how to package the goods offered for sale. If the charac-
teristics of the good vary or if multiple buyers can divide it, we encounter
that complex decision.

This decision can be complicated even in mundane sales, such as
the sale of a farm estate after the death of a farmer. Although the whole
estate could be sold as a single entity, it could also be divided into smaller
pieces for sale to individual bidders with varying demands. For example,
afarm auctioneer might sell the house and barn as one package, hoping
to attract city dwellers seeking a weekend home. Another package might
be the main field, which could attract bids from neighbors with nearby
farms. Some of the farm equipment might be sold separately in a larger
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auction market, and an environmentally sensitive habitat near a forest
or river might be sold to a nature conservancy.

Similar packaging decisions occur in spectrum auctions as well.
Before the first US spectrum auctions, after regulators chose the portion
of the spectrum to be used for PCS telephone service, a debate followed
about how to divide that spectrum into licenses. Should the licenses
cover the entire nation as European national licenses do? Or, should li-
censes be regional? Or should the government sell some of each? Should
the spectrumbandwidth ofthelicensesbe 10 MHz, or 20 MHz, or 30 MHz?
The various spectrum users advocated a wide range of options, lobbying
the FCC for licenses that fitted well with their own technologies, existing
assets, and business plans, and poorly with their competitors’ plans.

In Australia, which held its spectrum auctions soon after the US auc-
tions, regulators considered whether the packaging decision could be
“left to the market” by specifying postage-stamp-size licenses - tiny in
both geographical coverage and bandwidth. That way, some argued, pri-
vate spectrum users could put together any collections of licenses they
liked. This finely divided spectrum could then be sold, it was proposed,
using a simultaneous ascending auction.

Chapter 7 provides a foundation for the arguments I raised against the
Australian proposal. Because of the fixed costs in establishing a wireless
service, any small number of postage-stamp-size licenses would be use-
less by themselves, having a zero standalone value. A large collection of
such licenses, however, might support a very profitable business. Such a
pattern of values implies complementarities among the licenses, with all
the problems complementarities entail: competitive equilibrium prices
may not exist, and the exposure problem may vastly complicate bidding
in the simultaneous ascending auction.

Inchapters 6 and 7, we saw thatwhen bidders varyin the packages they
want to buy, the packaging decision involves trade-offs. Selling items in-
dividually when some bidders find some items complementary creates
an exposure problem that can depress bidding. Selling items in large
packages, however, can make it hard for small bidders to participate.
Either way, if the chosen packages attract only a few bidders and partic-
ipation in the auction is costly, then few bids may be submitted and the
auction may produce low prices.

Solving the packaging problem is not always difficult. Dutch flower
auctions solve the problem by allowing winning bidders to take as many
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lots as they wish at the winning price. This design allows competition
among bidders who seek to buy one lot or many and encourages partic-
ipation by a diverse set of bidders.

Packaging problems arise in procurement auctions as well as asset
sales. A buyer may conduct a narrow procurement, buying different
items in a series of auctions, or he may buy a comprehensive package
in a single auction from a bidder who provides a discount for a high-
value purchase. Either choice may exclude some bidders, leading to less
competition and, presumably, higher prices for the buyer.

This chapter focuses on a set of auction designs that let the bidders
choose the packages for themselves. These package auction or combina-
torial auction designs have received only limited use in the past, partly
because the auctions can quickly become complicated as the number
of objects sold grows. With many bids for overlapping packages, just de-
termining the identity of the winning bidder - the winner determination
problem —is a hard computational problem that has become a hot topic
in computer science. The very difficulty of the auctioneer’s problem,
however, makes it hard for bidders in a large package auction to forecast
the consequences of their bids and hard to check that the seller ran the
auction honestly.

Smaller package auctions are easier to run and have long been used
for bankruptcy sales. Cassady (1967) reports examples from the mid-
twentieth century in which some bidders bid on individual assets of
the bankrupt business while others bid on the entirety of the assets. An
entirety bid would typically take the form of a sealed bid before the indi-
vidual assets were sold, whereas the individual assets might be sold by
ascending auctions. The auctioneer would compare the sum of the win-
ning bids for the individual items with the best entirety bid and choose
the winning bid(s) to maximize the total revenue. Similar auctions are
still common in bankruptcy sales.

Recently, several designs have been implemented that allow bidders
much greater flexibility to name the packages on which they bid. The
London Transportation Authority procures bus services from private
operators in a sealed-bid auction that allows bids on all combinations
of routes, and 46% of winning bids involve combinations.! That auc-
tion is relatively small and bids are processed manually. Between 1997

I Cantillon and Pesendorfer (2003).
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and 1999, the Chilean government phased in a combinatorial auc-
tion for firms that supply meals to schoolchildren in various regions
of the country. Proposed variations in the design weight both the bid
amount and the supplier quality and include constraints to ensure that
there are multiple suppliers in each region and that no firm obtains
too dominant a share of the business. According to a recent study,
costs have fallen by 22% since the adoption of this program.? Sim-
ilarly, in 2002, IBM and Mars, Inc. collaborated on a combinatorial
procurement auction to supply Mars’ candy factories.®> The IBM-Mars
team designed two kinds of auctions. One was relatively simple for
bidders and allowed them to offer volume discounts in conjunction
with their bids. A second allowed suppliers to offer packages. In ad-
dition, the design allowed the buyer to impose constraints, for exam-
ple to avoid allocating any one supplier too large a portion of the total
procurement.

The ascending auction planned for Federal Communications Com-
mission (FCC) Auction #31, which was supposed to sell spectrum li-
censes in the 700 MHz band, was designed to permit bids for any of the
4095 possible packages of the twelve licenses on offer. This is probably
the most ambitious package auction designed for actual use. The FCC
tested an early version of this design using laboratory experiments. The
package design required a long training session for the bidders and took
more rounds to run than the traditional FCC design. However, the ex-
perimenters report that the package design also led to more efficient
outcomes, at least with complementarities among licenses.*

Another package design is one I tailored for the sale of the generat-
ing portfolio of Portland General Electric (PGE), an Oregon utility with
contracts and interests in generating facilities in several states. The util-
ity sought to divest its entire generating portfolio in order to free itself
from regulation as a power generator. Complicating the situation was the
fact that the contracts included long-term supply contracts with various
California cities, which demanded the right to bid for their own individ-
ual contracts if the generating portfolio were to be sold. These cities had

2 Epstein, Henriquez, Catalan, Weintraub, and Martinez (2002) and Weintraub (2003).

3 Hohner, Rich, Ng, Reed, Davenport, Kalagnanam, Lee, and An (2002).

4 Cybernomics (2000) summarizes the results. I report this claim with some skepticism, be-
cause Cybernomics has not fulfilled requests by the FCC, the author, and others to see raw
data from these experiments.
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considerable political clout and might have blocked a procedure that
did not allow bidding on individual assets. PGE was equally insistent
that all bids must cover the entire portfolio, because a sale of individual
assets and contracts could leave some assets unsold, leaving it subject
to continued regulation.

To accommodate this situation, I proposed an auction to take place
in two stages. At the first stage, commercial bidders would make prelim-
inary bids for the entire portfolio, and cities would bid for the particular
contracts that they would name.® The investment banker running the
auction would invite those that made the highest preliminary bids for
the whole portfolio and those that made qualified bids for the individ-
ual contracts to participate at the second stage. All those that qualified
would be invited to sign a confidentiality agreement and gain access to
a data room where they could find detailed information about the assets
and contracts offered at the auction. After areasonable period for review
of the data, the second-stage auction would be conducted. The cities
would again be eligible to bid on their individual contracts, and the in-
vited commercial bidders could again bid for the entire portfolio. What
was novel in this design, however, is that the commercial bidders would
alsoname decrementsto apply to therelevantindividual contracts. These
decrements would be applied to reduce the commercial bidder’s price
in case it was an auction winner but some individual contracts were
awarded to one or more other bidders. For example, if the winning bid
for the portfolio specified a decrement of $1 million for contract A and if
the highest individual bid for contract A were $2 million, then contract
Awould be awarded to the bidder that had made the $2 million bid, and
the portfolio bidder would pay its bid minus $1 million.

Given all the bids at the second stage, the seller would then select the
allocation that maximized the total revenue. The allocation would award
the portfolio to a single commercial bidder, possibly with some of the
individual contracts removed and awarded to the cities. This package
auction design is simple to implement and promotes competition both
among the commercial bidders seeking to acquire the PGE portfolio and
between those bidders and the cities bidding for individual contracts.
It enables competition for the individual contracts on the equal basis
required by the cities and ensures that any auction sale would meet
PGE’s requirement that the entire portfolio must be sold.

5 See chapter 6 for an analysis of preliminary bids and indicative bidding.
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The granddaddy of applied package auction designs is the early pro-
posal for acombinatorial auction sale of paired airport take-off and land-
ingslots suggested by Rassenti, Bulfin, and Smith (1982). The authors also
tested their proposalin an economiclaboratory experiment, demonstra-
ting that a package design could perform better than individual slot sales.

The IBM-Mars design confronts an important practical problem: how
to incorporate policy constraints into an auction design. In procure-
ment auctions, bidders may want to ensure that preferred suppliers
or minority-owned firms receive a certain fraction of contracts, or that
sources of supply are geographically dispersed to avoid disruptions, or
that the suppliers have sufficient capacity to expand production, and so
on. These complex constraints make deciding which set of bids to accept
more complicated than just finding the highest or lowest prices.

The most novel aspects of some new auction designs are the ways
they handle complex constraints. For example, Brewer and Plott (1996)
designed an auction to allocate use of a single north—south railroad track
in northern Sweden. The main constraint for their problem was that
the trains must be scheduled to avoid crashes. In their auction design,
a bid expresses a price the bidder will pay for a right to use the track
under specific conditions, say, the right to a northbound departure at
10:00 A.M. using a train traveling at 50 km/h. Although such bids are
simple in form, selecting the bids that maximize the total price requires
the use of sophisticated optimization routines.

Brewer and Plott designed a simple ascending auction mechanism in
which the auctioneer at each round selects the jointly feasible collection
of bids that maximizes the seller’s revenue. In their laboratory experi-
ments testing the design, they found the design realized over 97% of the
potential scheduling efficiencies.

Since the pioneering package auction experiment by Rassenti, Bulfin,
and Smith (1982), several other experiments have also been influential.
Banks, Ledyard, and Porter (1989) explored two kinds of iterative package
auctions, in which bidders submit bids in a series of rounds and can raise
their bids from round to round. In both versions, the winning bidders are
those who submit the highest total package bid. In one version, prices
follow the Vickrey pricing rule; in the other, each winning bidder pays his
own bid. Experimental subjects bid in these ascending package auctions
or participated in alternative procedures representing administrative
processes and markets. The ascending package auctions outperformed
the alternatives, on average realizing 80% of the available efficiencies.



302 Package Auctions and Combinatorial Bidding

In the run-up to the FCC’s first spectrum auctions, Charles Plott ran a
small set of experiments that confirm the superiority of the simultaneous
ascending auction to simpler sequential designs. Later experiments by
Ledyard, Porter, and Rangel (1997) confirmed the theoretical prediction
that the FCC design degrades in the presence of complementarities,
helping to spur interest in package auction designs at the FCC.

The three package auctions discussed in this chapter all permit bid-
ders to place a different bid on each package without restricting rela-
tionships among the bids. As we shall see, this flexibility facilitates mak-
ing a tractable analysis. However, such auctions require more bids and
are more computationally complex than auctions with more restrictive
package structures,® and they may impose a greater cognitive burden on
the bidders.”

8.1 Vickrey Auctions and the Monotonicity Problems?®

In chapter 2, we analyzed the advantages of Vickrey auctions and illus-
trated their disadvantages in simple package bidding environments. In
this section, we explore the monotonicity problems of the Vickrey auc-
tion in greater detail. We show that these problems do not appear if
goods are substitutes for all bidders, but that they are hard to rule out in
other cases. If there is any bidder for whom it is not true that all goods
are substitutes, then there exist additive valuations for the other bidders
that create problematic examples similar to the ones of chapter 2, with
low revenues, shill bidders, loser collusion, and so forth.

Before we can formally characterize the scope of the Vickrey auction’s
monotonicity problems, we need to state more precisely what we mean
by “low revenues.” Our example showed that it is possible for the Vickrey
auction to yield zero revenues for valuable licenses, but would like to say
revenues can be “too low” even under less extreme conditions.

Here, we will use the theory of the core to assess the adequacy of
Vickrey payoffs (revenue for the seller, profit for the bidders). Associated

6 Rothkopf, Pekec, and Harstad (1998) study designs that are simplified for ease of computa-
tion and for transparency. Lehmann, O’Callaghan, and Shoham (2002) study how to design
auctions that perform well when the seller optimizes imperfectly.

7 Parkes, Ungar, and Foster (1999) and Parkes and Ungar (2000) analyze the burdens of al-
ternative package auction designs on the bidders. Nisan (2000) studies bidder interfaces,
examining which bidding languages allow bidders to express all possible valuations and yet
provide compact expressions for particular kinds of (presumably) common valuations.

8 The theorems in this section are all drawn from Ausubel and Milgrom (2002).



8.1 Vickrey Auctions and the Monotonicity Problems 303

with the outcome of any game is a payoff vector, or imputation. An out-
come is a core outcome, and the corresponding payoff vector is a core
imputation, if (1) the outcome is feasible and (2) no coalition can iden-
tify an alternative feasible outcome thatits own members can implement
and that strictly increases all coalition members’ payoffs. If some coali-
tion can identify such an alternative, then that coalition is said to block
the proposed outcome and imputation.

The outcome of a second-price auction for a single good is always a
core outcome. Also, it is well known that competitive equilibrium out-
comes are always core outcomes, so an outcome outside the core can
be labeled uncompetitive. By definition, core outcomes eliminate any
incentive for any coalition to renege once the results of the auction are
announced. This property can be quite important in practice, because
execution of trades is a common problem in real-world transactions.
Finally, because the seller is always a part of any blocking coalition in
this model, the core implies a potentially interesting revenue standard,
which we discuss below.

To characterize core outcomes for the Vickrey auction, we first define
the game in coalitional form associated with the auction. That game is
(N, w), where N is the set of players in the game and w is the coalitional
value function. In our setting, for any coalition of players S C N, the
coalitional value function is®

MaXyex {Zles vl(x’)} if0es,

WS =1, if0¢s.

(8.1)

If the seller is not a member of coalition S, then the value of the coali-
tioniszero, because the buyers in the model have nothing to trade among
themselves. Otherwise, the value is the maximum value the coalition can
obtain by trading with the seller.

Let 7! = v!(x}) — p'be the profit of agent  from any proposed transac-
tion and set of transfers. Then the set of core payoffs is defined as follows:

an:w(N),(VSCN)w(S)§an ) 8.2)

Core(N, w) = {n
leN leS

9 We limit attention here to transferable-utility games, so the payoff profiles that are feasible
for a coalition are determined entirely by w(S) — the total value available for sharing among
the members of the coalition S.
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If some payoff vector x is not in the core, then there is some coalition
S for which the total payoff w(S) is higher than the members’ total
payoffs in 7. So there is some way to share the total that makes all
members of S strictly better off.

To see how the core functions as a revenue standard, let us repeat our
earlier low-price example. In that example, there were two items for sale.
Bidders 1 and 2 had values of $1 billion and $900 million, respectively,
for the package of two items, while bidders 3 and 4 each had values of
$1 billion for a single item. Neither bidder 1 nor bidder 2 valued a single
license alone, and neither bidder 3 nor bidder 4 valued a second license.
In this example, the allocation is in the core if and only if bidders 3 and 4
acquire the items, neither pays more than $1 billion, and the seller’s total
revenue is at least $1 billion. The Vickrey auction does allocate the items
to bidders 3 and 4, but at a price of zero; thus, the Vickrey allocation
falls outside the core. This example verifies that the core does imply a
minimum revenue standard and that the Vickrey auction sometimes fails
that standard.

What is the precise relationship between the Vickrey outcome and
the core? Are there situations in which we can reliably predict that the
Vickrey outcome will lie in the core? Are there others in which we can
predict that the Vickrey outcome will not lie in the core, because the
seller’s revenues are too low? Can we characterize the economic condi-
tions under which the Vickrey outcome is most likely to fall outside the
core?

A few cases contribute intuition. The Vickrey auction for a sin-
gle good assigns the good to the bidder with the highest value for a
price equal to the second highest value. No losing bidder has a value
greater than that Vickrey price, so none can profitably offer to pay
the seller more. Hence, the outcome in the one-good case lies in the
core.

The same conclusion holds when each bidder’s value for a package of
goods is additive, meaning that the bidder’s package value is the sum of
the values of the individual goods in the package. In this case, a Vickrey
auction for many goods operates effectively as a collection of second-
price auctions. Each bidder in the Vickrey auction acquires an item when
his value is the highest, and his total price is the sum of the second-
highest values of all goods he buys.

We now extend this intuition with a series of theorems.
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8.1.1 Bidders’ Vickrey Payoffs Bound Their Core Payoffs

Our examples have shown that it is possible for revenues in a Vickrey
auction to be lower than the seller’s payoff at any core outcome. In the
models we are studying, one can say more: each bidder’s Vickrey payoffis
equal to his highest payoff at any point in the core. To state this formally,
let 7!, denote participant i’s payoff in a Vickrey auction.

Theorem 8.1. For each bidder i, the Vickrey payoff is
7l = w(N) — w(N — i) = max{z'|7 € Core(N, w)}.
In addition, 7% = w(N) — ¥ ey o TH-

Proof. Recall from chapter 2 that the pivot mechanism payment for-
mula (suppressing the arguments of the functions p and %) is p' =
VX, N—1) = 3 jen-i v/(®), where % is the decision that maximizes
the total payoff. Applying this formula, a bidder’s Vickrey profit is
V(&) = p' =Y e/ () = VX, N= 1) = V(X, N) - V(X, N — i). By def-
inition, w(N) = V(X, N)and w(N — i) = V(X, N — i), so the first equality
is established.

By definition, for any = € Core(N,w), 3.y ;7 > w(N—1i) and
Yjen®! =wN). So 7' =3yl =Y v i w! <wN) —w(N-1) =
7l By inspection, the payoff profile = given by ni=rn!, 0=
w(N —1i), and 7/ =0 for other bidders j is a core payoff profile,
so max{r|r € Core(N, w)} > i, Combining these proves that 7}, =
max{ri|wr € Core(N, w)}.

Because the Vickrey outcome is efficient, the total payoff to all par-
ticipants must be w(N), so the seller’s payoff must be n8 =w(N) —

I
D leN—0 TV u

8.1.2 Vickrey Auctions and the Entry Puzzle

Next we study the most basic monotonicity problem of the Vickrey auc-
tion, which is that increased competition among bidders does not gen-
erally reduce bidder payoffs and increase seller revenues. That is, entry
can harm the seller and benefit at least some existing bidders. To state
this idea formally, let 7y (S) be the Vickrey payoffs when only members
of coalition S participate in the auction. We also introduce the following
two definitions.
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Definitions

1. A Vickrey auction displays payoff monotonicity if (1) 7, (S — j) >
mi(S) forall S,andi,j € S—0,and (2) (S — j) < 7%(9).

2. The coalitional value function is bidder-submodular if for any coali-
tions S and T that include the seller,!°

w(S) +w() =>wlSUT) +w(lSNT). (8.3)

According to the first definition, payoff monotonicity means that
adding bidders can only reduce the other bidders’ payoffs and increase
the seller’s payoffs. The second of these two conditions is implied by the
first,'! so we omit it from the proofs below.

Theorem 8.2. The Vickrey auction satisfies payoff monotonicity for the
coalitional game (N, w) if and only if w is bidder-submodular.

Proof. The payoff monotonicity inequalities can be rewritten as
w(S— ) —wS—i—j)>wS) —wS—i. (8.4)

If the coalitional value function is bidder-submodular, then applying
(8.3) to the coalitions S — i and coalition S — j yields (8.4). So bidder
submodularity implies payoff monotonicity. To show the converse, let
S C §” be coalitions that include the seller. Observe that repeated ap-
plications of (8.4) imply that for any j ¢ S’,

w(§ U{jH —w(S) = w(S"U{jh—w(§). (8.5)

Then, for arbitrary Sand T, let T — S = {i\, .. ., in}. We have

Ms

wlUT) —w(S) = w(SU iy, ..., ;) —wSU{i,...,ij-1})

j=1

Ms

=

(SN T U, ....0})

~.
I
—

—w(SNTU{,...,ij-1})
=w(T) —w(SNT).

10 Generally, submodularity is a property of functions defined on lattices. In the present ap-
plication, the relevant lattice is the set of coalitions partially ordered by set inclusion.

I Formally, given the inequalities (1) in the deﬁnition of payoff monotonicity, 7o(S—j)
=w(S= )~ Yieso, Ty (S=) = w(S= ) + W) ~w(S = ) =mY (] = Xjes o 1S = )
<w(S) = Yes_o (S = 7Y(S). So the lnequahty (2)is redundant
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The equalities follow from summing the telescoping sequences,
and the inequality follows by applying (8.5) to each term of the
sum. We conclude that payoff monotonicity implies bidder submodul-
arity. |

8.1.3 When Are Vickrey Outcomes in the Core?

Next, letusimagine the possibility that only some of the potential bidders
will actually participate in the auction. We may then ask: Under what
conditions on the coalitional value function w is the Vickrey outcome
guaranteed to be a core outcome?

Theorem 8.3. The coalitional value function w is bidder-submodular
if and only if for every coalition S with 0 € S C N, one has ny(S) €
Core(S, w).

Proof. Suppose the coalitional value function w is bidder-submodular,
and let S C S be coalitions that include the seller. Number the bidders
sothat § ={0,1,...,k} and S=1{0,1,...,n} with 1 < k < n. By bidder
submodularity, for1 < < n,w(S) —w(S -0 > w({0,...,1}) —w({0, ...,
l—1}),s0

n

Y g TS =w(® = D 7S
I=k+1

=w(S) = Y (S —w(S—D
I=k+1

> w(S) — Z [w(0,....1}) —w(o0,..., I —1}]

I=k+1
= w(S) — [w(S) — w(S)]

= w(9).

Hence, S is not a blocking coalition. Because S’ was an arbitrary coali-
tion including the seller, there is no blocking coalition. Because the
Vickrey outcome is efficient, ), n‘l,(S) = w(S). It follows that 7y(S) €
Core(S, w).

Conversely, suppose w is not bidder-submodular. Then by theorem
8.2, there exists a coalition S and bidders i, j € S such that w(S—
N—wS—i—j) <w(S) —wS—10. But then Y ;. ; ;7{(S) =w(S) —
=l =w(S) = W(S) —w(S— D) — W) —w(S— ) <wS—i-j).
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Because the core requires that } ;g ;_; 7h(8) > w(S —i — j), we have
7wy (S) ¢ Core(N, w). [ |

8.1.4 Substitute Goods and Core Outcomes

The previous sections have based the analysis on the coalitional value
function w and highlighted the role of a condition on w, namely, that w is
bidder-submodular. In most economic problems, it is goods valuations
that are primitive and the coalitional value function is derived as in (8.1).
In this section, we establish that the desired condition on coalitional
valuesis closelyrelated to the condition that the bidders regard the goods
as substitutes.

To state the main result precisely, let Vdenote the set of possible bidder
values of the M goods offered for sale in the auction. Let V.49 denote the
set of all additive value functions for goods such that all the individual
goods’ values are non-negative.

Theorem 8.4. Suppose that V,qq C V. Then (i) the coalition value func-
tion w corresponding to every profile of goods valuations drawn from V
is bidder-submodular if and only if (ii) at every valuation in V, all goods
are substitutes.

Remarks. With just two goods, the substitutes condition is equivalent
to the condition that the goods valuations are submodular. With more
than two goods, however, the substitutes condition is more restrictive.
Itimplies that goods valuations are submodular,'? but submodularity of
goods valuations does not imply that the goods are substitutes.!?

12 Tf y is not submodular, then there exists x € {0, 1}, some « > 0, and some mand m’ such
thatv(1, 1, X_pm) — v(0, 1, X_ppym) > @ > v(1, 0, X_py 1) — v(0, 0, X_ ), Where the firstand
second arguments of v correspond to x,, and x,,, respectively. Set prices as follows: let
pm=a;andforn#m m', x, = 0= p, = oo,and x, = 1 = p, = 0. These prices determine
the demands for the goods besides m and m' to be x_,,,,». Then one can verify that if
Pm = 00, the demand for good m is zero (because the marginal value is less than the price:
v(1,0, Xx_ppm) — v(0,0, X_m ) <) and if p, = 0, the demand for good m is 1 (because
the marginal value is greater than the price: v(1, 1, X_; ) — v(0, 1, X_pp ) > «). This con-
tradicts the definition of substitutes.

For example, suppose there are three goods, with v(x;, X2, x3) = X1 + X2 + X3 — X1 X2 —
Xpx3, for xe{0,1}%. This valuation is submodular, as one can check by verify-
ing that 9%v/dx;9x; <0 for all i# j. Bidder demand is determined by solving
maxy,eqo,1; (v (X1, X2, X3) — an:l PmXm).Ifgoods pricessatisfy p € (0, 1)%, thenbidder demand
is (1,0, DifA—p) <A —p)+0—p),and (0,1,0if 1 —p) >0 —p)+1—p).In
particular, an increase in the price p; can lead to reduction in demand for good 3, contrary
to the definition of substitutes.
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To prove that the coalition value function is bidder-submodular, we
need the strong condition that goods are substitutes rather than the
weaker condition that valuations are submodular. In the proof, we show
how to use any failure of the condition that goods are substitutes (which
we sometimes call the substitutes condition) to construct an example in
which w is not bidder-submodular.

In outline, the proof proceeds as follows. First, we obtain a dual char-
acterization of the substitutes condition that applies even though goods
are indivisible. According to this characterization, goods are substitutes
if and only if the corresponding indirect utility function is submodular.
Using this characterization, we show that if goods are substitutes for
every member of a coalition, then they are also substitutes in the coali-
tional value function, and that the opportunity cost to a coalition S of
giving away any good or package of goods z increases as the coalition
adds members. If a new member joins the coalition and the coalition
gives him package z, the incremental value of the new member, which is
the new member’s value of package z minus the coalition’s opportunity
costof that package, decreases in the coalition’s size. Maximizing the new
member’s incremental value over zpreserves the property that the mem-
ber’sincremental value decreases in the size of the coalition, so the coali-
tional value function is bidder-submodular.

Proof. We may assume withoutloss of generality thateach bidder distin-
guishes all the goods, so for any bidder / and good m, we have x, € {0, 1}.
Given bidder I’s valuation v', the indirect utility function and its associ-
ated demand are defined by

u'(p) = max(v'(2) - p- 2.
x(p) e argmzax(vl(z) —p-2).

As the maximum of a finite number of linear functions, u! is contin-

uous and convex. The envelope theorem (see chapter 3) further implies
that at every point where demand is uniquely defined, the partial deriva-
tive is given by du'(p)/dpm = —x.,(p), where x(p), the mth component
of xX( p), is the quantity bidder / demands of the mth good at price vector
p. By definition, the substitutes condition is satisfied if and only if x/ ( p)
is nondecreasing in p; for all j # m, or, equivalently, aul( p)/3pm is non-
increasing in p; for all j # m. Therefore, goods are substitutes for / if and
only if ul( p) is submodular.
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Let S be a coalition that includes the seller. Coalition S’s value
for a package z is v5(2) = maxyex(y Y s v'(x), where X(z) = {x > 0]
e NX <z (Vj,m x}, € {0, 1}}. The corresponding coalition indirect
utility function is

' (p) = max{v(2) — p-2} = Y _uU(p). (8.6)
z leS
As the function u5( p) is the sum of continuous, convex, submodular
functions, it too is continuous, convex, and submodular. Also, for any z
and p,

w(p) =15 —-p-z (8.7)

Let B be a large number that exceeds the incremental value of
any good to any coalition. By inequality (8.7), for all z, v5(2) <
min e g{t’(p) + p- z}. Define p = p(2) by pin = 0ifz,, = 1and p,, = B
otherwise. Then u5(p(2)) = v5(2) — p(2) - z. Therefore, v5(2) = 1’ (p(2) +
p(2) - z > min o g{u’(p) + p- z}. Combining the two preceding in-
equalities yields the duality equation:

S(,) — ; S .z}, 8.8
v°(2) ,,GI[I(},I};IJM{M (p+p-z (8.8)

(This equation, which is familiar when goods are divisible, is thus proved
to apply even though the goods are indivisible.)

The objective in (8.8) is continuous, convex, and submodular in p.
Also, because each u!( p) is antitone (weakly decreasing), the function
uS( p) has antitone differencesin (p, S). The pricesin (8.8) are constrained
to lie in a compact interval, so the constraint set is a sublattice of RV,
Hence, by the Topkis monotonicity theorem,!* the set of minimizers
has a maximum element p(S|z), which is an isotone (weakly increasing)
function of S.

If z,, = 0, then, by inspection of (8.8), pu(S|2) = B.

Because u°(p(S|z)) = v5(2) — p(S|2) - zand u®(p) = max,{vS(2) — p- 2},
we have z € argmaxzf{vs(z’) — p(S|z) - z'}. Suppose z,,, = 1. Fore > 0, set
p! = p(S|z) + €1, where 1,,isavector witha 1in the mth coordinate and
zeros elsewhere. Because p(S|z) is the maximum element among the set
of minimizers, the demand for good m at price vector p, is zero. By con-
struction, the demand for good j for which z; = 0 is zero at price vector

4 See Topkis (1978) or Topkis (1998).
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p/, because p,; = B. By the substitutes condition, increasing the price
from p(S|2) to p, leaves the demand for the goods besides m undimin-
ished. Hence, forall positive e, wehave z— 1,, € arg max, {v3(z') — p/ - z'}.
By Berge’s theorem of the maximum,'® the same must hold when ¢ =
0:z— 1,, € argmax, (v5(z') — p(S|2) - z'). Therefore, v5(z — 1,) — p(S|2) -
(z— 1) =v5(2) — p(S|2) - 2, 50 pu(S|z) = v3(2) — v3(z — 1,).
Summarizing the main conclusion of the last two paragraphs:

ifz,, = 0,

v3(2) —vS(z—1,) ifz,=1. ®.9)

Pm(S|2) =

For any packages of goods z’' <z, let A= {mjz,,=1}=(1,...,n}.
Then the opportunity cost to the coalition S of forgoing goods z’
is v5(2) —v3(z—2) =Y py W= YT 1) —vSz= X 1) =Y,
pm(S|z — 271:_11 1;). Because each summand is isotone in S, the function
v8(2) — v3(z — Z') isisotone in S.

Because w(S)=v5(z), we have w(SU {I}) —w(S) = max, {v!(z)) +
v5(z—z') — v3(2)}. Because the maximand in this expression is nonin-
creasing in S, the maximum is nonincreasing in S as well. We conclude
that w is bidder-submodular.

Next, suppose there is some valuation v! € V for which the substi-
tutes condition fails. Then there exist goods m and n, a price vector
(Pm» p—m), and an ¢ > 0 such that (i) the buyer has unique demands
(for all the goods) at price vector (py, p-m), and x}l( Pm» P-m) = 1, and
(ii) the buyer has unique demands (for all the goods) at price vector
(Pm+ €, p-m),and x}l( Pm+ €, p-m) = 0. As utility is quasi-linear, we infer
that 1 = x1(Pm, p-m) # X:(Pm+ &, p-m) = 0. By continuity, there exists
Pm € (Pm, Pm+ €) such that at price vector p = (pm, p-m) the buyer’s de-
mand set contains a package including both goods, n and m, and one
excluding both goods.

Thus, failure of the substitutes condition implies that there exist two
goods, mand #, and a price vector, p, with p,, p, > 0, and with these
two properties: (1) for all p,, € [0, py), there is a unique maximizer x’ of
v (%) — (Pmy, p—m) - X, and it satisfies x,, = x,, = 1; (2) for all Py, € (Pm, B),
there is a unique maximizer x”, and it satisfies x;, = x,,, = 0.

We use these prices to create bidder valuations that contradict bidder
submodularity, as follows. Let p,, > py, and suppose that bidders 2, 3,

15 See Royden (1968).



312 Package Auctions and Combinatorial Bidding

and 4 have these valuations: v*(x) = ). . Pk v3(X) = PoXon+ PuXns
and v*(x) = pmxy. Because x' is optimal for buyer 1 at the price vec-
tor p above, and because x;, = x;, = 1, there exists an optimal alloca-
tion for the coalition {0, 1, 2, 3} that assigns no goods to buyer 3 and
that is therefore feasible for the coalition {0, 1, 2}, so w(0123) = w(012).
Because x” is the unique optimum for buyer 1 at the price vector
(p—m» Pm), the optimal allocation for the coalition {0, 1, 2, 3, 4}, which
gives good n to bidder 3, is different from any optimal allocation
for {0, 1, 2, 4}, so w(01234) > w(0124). Therefore, w(01234) + w(012) >
w(0123) + w(0124). This proves that w is not bidder-submodular. |

8.1.5 Substitute Goods and Vickrey Outcomes

The last result of this section combines and extends the preceding the-
orems. It shows that when the substitutes condition is satisfied, the
Vickrey auction is immune to the various monotonicity problems iden-
tified in the earlier examples. However, when the substitutes condition
is not satisfied, then one can always construct preference profiles that
induce monotonicity problems.

Theorem 8.5. Suppose that the goods are unique and that bidder val-
uations are drawn from a set V such that V,q4 C V. Then the following
statements are equivalent:

(1) For every valuation in V, the individual items are substitutes.

(2) For every profile of valuations drawn from V, the Vickrey outcome
is in the core.

(3) For every profile of valuations drawn from V, the Vickrey outcome
exhibits payoff monotonicity.

(4) For every profile of valuations drawn from V, losing bidders in the
Vickrey auction have no profitable joint deviation.

(5) For every profile of valuations drawn from V, no bidder can gain
by using shill bidders.'®

Proof. Theorems 8.2-8.4 establish the equivalences of conditions
(1)-(3).

16 Yokoo, Sakurai, and Matsubara (2000) show that if the coalition value function is bidder-
submodular, then there exists no shill bidding strategy that allows a bidder to win its equi-
librium allocation at a lower price than its Vickrey price. The theorem reported here uses a
stronger assumption (namely, that goods are substitutes) and reaches a stronger conclusion:
participants have no profitable joint deviation of any kind.
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To show (1)=(4), let v5(z) be as defined in (8.8); it is the value that
the coalition S gets from the goods bundle z. As observed in the proof of
Theorem 8.4, the dual profit function 5 associated with v® isa submodu-
lar function, so v is a substitutes valuation. In particular, v® is submod-
ular. Let X denote the total bundle of goods offered for sale, and X(x)
the corresponding set of feasible allocations. Suppose a coalition S of
losing bidders deviates, reporting values (#");cs and 7' = v forl € N— 8.
Suppose the Vickrey goods allocation after the deviation is (£!);cx. The
Vickrey price paid by bidder [ to acquire its bundle is then given by

pl = ,EEX% ( Z 5 (x)) + Z vj(xj)>

jes—1 JjeN-S
jesS—1 JjeN-S§
It follows that
STy J(xd
Pz max (Zv e+ v(x)>
x/=xIfor jeS jes=t JEN=$
_<Z dE+ Y v"(x"f))
jes—1 jeN-§
=  max v () | - vl (&)
XeX(X—=3 5 %) (je;S ) je%zs
= NS (9Z - Z -f]) — oS ("Z - Zf]>
jes—I Jjes
> NS (@) — vV Sk — &)
_ vN—l ()Z') _ UN_I()Z _ xl). (811)

The inequality in the first line of (8.11) follows from the extra constraints
on the optimization. The third line follows by the definition of v=5 and
because (%));cn is the Vickrey allocation (in particular, () 1en—s maxi-
mizes the payoff to the coalition N — Sgiven the total resources allocated
to that coalition). The inequality on the fourth line follows because vN=5
is submodular. The last equation holds because the coalition S (which
includes bidder /) is a coalition of losing bidders in the Vickrey auction
using the actual valuations v.
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Comparing the first and last members, we see that (8.11) establishes
that the Vickrey price paid by a losing bidder / who deviates jointly with
the coalition S — [ and wins the bundle x' is higher than the price bidder [
must pay to win the same bundle x! without the other deviations. Be-
cause no individual bidder has a profitable deviation from his dominant
strategy, no coalition of losing bidders has a profitable deviation.

For (1) = (5), we denote the coalition of shillsby S = {1, ..., n}. Then,
given the shills’ reports {3/ }j—1» let X denote the corresponding Vickrey
auction allocation. The total price paid by the shills is

-8 5) 3

I=1 jes—1 jes

n -1 l
Z |:UN_S (x — fo) — VS (x - Zf])}
=1 j=1 j=1
= oV S(x) — NS (x — if’) .
j=1

v

The first inequality follows from (8.11), and the second from submodu-
larity of vN~5. The sum telescopes to the last term, which is the Vickrey
price the bidder would need to pay to acquire the same allocation with-
out shill bidders. Hence, shill bidding is unprofitable.

To prove the converses, suppose that the set V includes values for
which goods are not substitutes. Say that the goods for which the substi-
tutes condition fails are goods 1 and 2. Then there is some price vector p
at which demand is single-valued and such that increasing the price of
good 1 from p, to p; + ¢ reduces the demand for good 2.

As in the proof of Theorem 8.4, we utilize the following indirect value
function for bidder 1: 3! (x;, x2) = maxv'(x) — > me1.2 Pm¥m. As above, if
goods 1 and 2 fail the substitutes condition for the original valuation v?,
then they also fail for the indirect valuation v, which allows us to focus
on just the allocation of the two goods 1 and 2, if we can arrange for the
prices of the other goods to be as prescribed by p. We accomplish that
by introducing two bidders with linear valuations v(x) = } ;. » PeXk.

Using the indirect valuation v, let the value of each good i € {1, 2} be
v;, and let the combined value be v. If the goods are not substitutes, then
o =0 — (v; + v2) > 0. Call the bidder with these values bidder A.

To analyze joint deviations by losing bidders, we introduce two addi-
tional bidders B; and B,. Bidder B; values good i at v; + ¢; > v;, where
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1 + &2 < a.Thesebiddersbothlose at equilibrium and earn zero payoffs.
However, the joint deviation in which each bidder i bids v; + « makes
each bidder i a winner at the respective prices v;, earning a profit of ¢;.
So, if the goods are not substitutes, then losing bidders have a profitable
joint deviation.

To analyze shill bidding, we introduce a single bidder B that values
each good i at v; + ¢; > v;, where ¢ + ¢, < «. Bidder B values the pair
at v; + vz + &1 + &2. Bidding honestly, this bidder earns a profit of zero.
By bidding using two shills B, and B, and adopting the strategies of the
previous paragraph, the two shills both win, and the total price is v; + vy,
earning a profit of &; + &, > 0. So, if the goods are not substitutes, then
bidder B has a profitable deviation using shill bidders. [ |

Auctions in which bidders bid for packages of items are more com-
plicated than simple auctions for separate items. Package auctions are
most attractive when they can help bidders to avoid the problem of win-
ning some assets without acquiring needed complementary assets, that
is, when the substitutes condition may fail. In exactly these conditions,
however, the preceding analysis indicates that the Vickrey auction has
serious and possibly fatal defects as a practical mechanism.

8.2 Bernheim-Whinston First-Price Package Auctions

The simplest package auction design is the first-price design, in which
bidders submit package bids and the seller selects the feasible combi-
nation of bids that maximizes the total price. Each bidder then pays the
amount it has bid for the goods it acquires or, in a procurement auction,
receives the amount it has bid in return for the promised performance.
The IBM-Mars auction and the London bus auctions were procurement
auctions that used the first-price design.

When implementing a package auction, it is important to design sim-
ple bidding procedures to keep the bidders’ problems (and perhaps also
the auctioneer’s problem) manageable. For example, in the two auctions
cited above, which are both procurement auctions, bidders bid individu-
ally for each item and, in addition, specified discounts for certain pack-
agesor quantities. Structuring thebidder interfaces canlimit the comple-
xity of bidding and the complexity of the winner determination problem.

Our analysis of first-price package auctions is developed in a series
of subsections below. The first formulates the auction and illustrates
the multiple equilibrium problem; the second describes profit-target
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strategies and the reasons to focus on equilibria using those strategies;
and the third shows that the equilibrium payoffs of those equilibria
coincide with the bidder-optimal frontier of the core of the associated
coalitional game.

8.2.1 Formulation

The relevant theory for this auction has been worked out only for the full
information case, so our model dispenses with bidder types. We assume
that there is a set X of feasible allocations or, more generally, decisions
x = (x', ..., xN) that the seller can make. The part of the allocation or
decision relating to bidder i is the component x, and the set of possible
decisions relating to i is X’ = {x’|x € X}.

The first-price auction proceeds as follows. Each bidder i makes a set
of non-negative sealed bids {8/ (x)}xicxi. The seller then maximizes the
objective Zﬁi 1 BH(x) + v°(x), which is the sum of the bids plus the seller’s
value for the allocation. Each bidder pays the amount of his own winning
bid. Hence, if the seller chooses x, bidder i’s payoff is v (x’) — g (x?). Let
I1/(B8) denote i’s payoff corresponding to bid profile 8.

This model is general enough to encompass a wide variety of applica-
tions. For an FCC spectrum auction, X is the set of allocations in which
each license is assigned to at most one buyer. In the train scheduling
problem, X is the set of schedules for which the trains do not crash. In
a public goods problem, we can specify that forall x € X, x' = --- = x¥,
so that everyone must get the same allocation. We are most interested
in applying the model to auctions with voluntary participation, so we
henceforth assume that for each bidder i, there is an outcome in which
i does not participate, which we denote by . We normalize so that
v (@) = 0 for all i. In addition, we assume throughout this chapter that
the seller has free disposal, as defined below.

Definition. The seller has free disposal if for all x € X one has (x~%, @)
e Xand v2(x) < 9(x%, 0).

Bernheim and Whinston (1986) developed a theory of first-price pack-
age auctions with complete information. The assumption of full infor-
mation is disturbing, but the theory nevertheless identifies some impor-
tant strategic aspects of the auction.

Before beginning the analysis, we make an important observation
about our modeling of ties, that is, bid profiles for which the seller’s ob-
jective, Zf\i 1 Bi(x") + v°(x), has multiple optima. If the auction requires
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that bids be made in discrete units like dollars, then ties can be bro-
ken according to any criterion or even at random without creating any
technical difficulties. However, to obtain exact characterizations of equi-
librium, it is convenient to model bids as non-negative real numbers.
Treating bids as real numbers raises problems with the existence of best
replies, because it implies that there is no bid that is “just” higher than
the highest opposing bid. The problem is the same as in the familiar
Bertrand model of sellers competing to sell a single item to a buyer.
Say the sellers’ costs are 7 and 10, respectively. If bid units are discrete,
say whole numbers, then there is a pure strategy equilibrium in which
the low-cost seller offers to sell at a price of 10 and the other seller at
a price of 11. In equilibrium, the winning bidder bids just less than the
loser. This equilibrium has no exact analog in the continuous model. In
that model, it is a convenient but imprecise shortcut to say that there
is an equilibrium in which both sellers offer to sell at a price of 10 and
the low-cost seller wins the competition because he bids infinitesimally
less.

In this chapter, we adopt a similar shortcut based on a similar jus-
tification, but in auction models where the bidders are buyers and the
highest bids win. In the analyses to follow, when we say that a bid bis a
best reply and a winning bid, we mean thatforalle > 0, b+ ¢ isan e-best
reply and a winning bid and that payments are to be determined as if the
bid b were winning. With this understanding, each bidder always has a
best reply to rivals’ bids. To avoid distraction from economic issues, we
make no further comment about this understanding of best replies in
the proofs and discussions below.!”

We begin our analysis of the model of first-price package auctions with
the observation that, generally, such auctions have many Nash equilibria.
To illustrate, consider an auction with two identical items for sale. Sup-
pose that bidders 1 and 2 each want only a single unit of the good, which
they value at 10, while bidders 3 and 4 have no value for a single unit, but
will pay up to 16 for the pair. In one set of Nash equilibria, bidders 3 and
4 both bid 16 for the pair, while bidders 1 and 2 each make bids less than
10 that add up to 16. For convenience, we resolve this tie in favor of the
bidders with the higher total value. Then, in these equilibria, bidders 1
and 2 win at a total price of 16 and earn total profits of 4, but some Nash

17 Reny (1999) provides a full formal analysis of this problem.
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equilibrium supports any division of the total with non-negative profits
for both bidders. The outcome in each of these equilibria is efficient.

In addition to the preceding equilibria, there are other equilibria in
the same example with inefficient outcomes. In these equilibria, bidders
3and4bid 16, butbidders 1 and 2 bid less than 6. The outcome is that bid-
der 3 or 4 wins. Bernheim and Whinston judged these equilibria to be in-
tuitively less plausible, because bidders 1 and 2 fail to make serious bids.

8.2.2 Profit-Target Strategies
To isolate the equilibria they considered most plausible, they focused on
profit-target strategies, which are defined as follows.

Definition.!® The strategy g’ is the n!-profit-target strategy if for all x,
Bi(x") = max(0, vi(x)) — 7).

Profit-target strategies have two kinds of appeal. First, they are sim-
ple. Given the bidder’s value, the strategy is characterized by one single
number, 7’ - the profit the bidder requires from any winning bid. The
bidder fixes his bids on each package by subtracting 7/ from his package
value. Second, regardless of the strategies played by the other bidders,
each bidder’s best reply set will always include a profit-target strategy.

Theorem 8.6. In a first-price package auction, for any bidder i and any
bids B~ by the other bidders, let 7/ = maxz IT°(8, 7). Then the 7’-
profit-target strategy is a best reply for bidder i in this auction.

Proof. Let B! be a best reply, and let the corresponding decision by the
auctioneer be £. Then 7! = vi(£)) — g (#). Let B’ denote the 7/-profit-
target strategy. Then g/ (£/) = g (£%).

By the seller’s selection rule, for any x # £ we have Zfi LB +
V() < YN A& 4 v0(%). Then if 37(x') = 0 we have g/ (x) < g(x), so
Z#iﬂj(xj) + i) +00(x) < Dz BI (%)) + Bi (&) + v°(%). Hence, the
auctioneer does not choose x when i bids 8'. The auctioneer’s choice
Zwhen i bids B! therefore satisfies 8 (&) > 0, so Bi(¥') = max(0, v} (&) —
7') =v'(X') — 7' Hence, I (B, ) = v'(X) — B(&') = ' = ' (B, BY).

|

18 Bernheim and Whinston (1986) call these “truthful” strategies, and Ausubel and Milgrom
(2002) call the corresponding proxy auction strategies “semi-sincere” strategies. The term
“profit-target strategies,” adopted here, seems more descriptive: the bidder makes the bids
that, if they win, achieve the profit target.
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The preceding theorem assumes that opposing bidders adopt pure
strategies. If the opposing bidders adopt mixed strategies or if the bidder
is uncertain about what pure strategies they may be adopting, then the
best reply set does not generally include any profit-target strategy.

Theorem 8.6 indicates the difficulty of enforcing collusive behavior in
equilibrium in the first-price package auction. It holds that, unlike in uni-
form price auctions, no bidder ever has any incentive to reduce her de-
mand in the first-price package auction. For suppose that at some agreed
strategy profile, bidder i wins the allocation x?, paying some positive
price. If a bidder uses a profit-target strategy and we increase his alloca-
tionby X! — x!, he will increase his bid by g/ () — 8 (x") = vi(x}) — vi(x).
Thus, the bidder offers to pay the seller his full marginal value for ad-
ditional units. Profit-target strategies therefore involve no demand re-
duction at all. The fact that some profit-target strategy is always in the
best reply set means that no pure strategy profile can deter a bidder from
bidding aggressively for additional units. So there is no way to enforce a
collusive bidding agreement using strategies in the auction itself.

8.2.3 Equilibrium and the Core
That consequence of Theorem 8.6 hints that the outcome of an equilib-
rium in profit-target strategies may resemble competitive equilibria; this
intuition turns out to be correct. To characterize equilibrium in a first-
price package auction, we compare equilibrium payoffs in the auction
with points in the core of an associated coalitional form game.

We defined the coalitional value function and the core in (8.1) and
(8.2). We may rewrite the latter as

vy 7l = w(S)}

Core(N, w) = {n e RV
jes

ﬂineRN

Y wi< w(N)}. (8.12)
jeN

A payoff vector 7 € RY is in the core if it is unblocked and feasible.
The first set in the intersection in (8.12) expresses the restriction that
the payoff vector  is unblocked: no coalition can earn more on its own
than it does from the payoff vector =. The second set expresses the fea-
sibility condition that the total promised payoff does not exceed what is
available: }_ ;. 7! < w(N). Because the reverse inequality is contained



320 Package Auctions and Combinatorial Bidding

in the first set of inequalities, one may equivalently write the feasibility
constraint as )~ ;. 7/ = w(N) to recover the form used in (8.2).

One may regard the core imputations in this context as competitive
prices for the participants’ services and resources. For imagine that there
are several brokers who may hire the players. A broker who hires the
coalition S can create a business of value w(S). Suppose brokers bid for
individual players in a perfectly competitive market, and let 7’ be the
price for the services of player i. For markets to clear, the brokers’ maxi-
mum profits must be zero. This means that the prices must be such that
for every coalition S, w(S) — ) jes 7/ < 0. Because the efficient outcome
entails forming the coalition N, the zero profit condition also implies
> je an = w(N). Thus, the condition that = is a competitive equilib-
rium price vector for the services and resources of the participants is the
same as the condition = € Core(N, w).

A particular portion of the core is especially interesting for our
analysis.

Definition. A payoff vector = € RY is bidder-optimal if = € Core(N, w)
andthereexistsnon’ € Core(N, w)withn’ , > 7n_o. Thesetofsuch points
is called the bidder-optimal frontier of the core.

Recall our notation for vector inequalities, @ > 8 < [« > B, «a # B].
Using this notation, a payoff vector is in the bidder Pareto frontier if
there is no other payoff vector in Core(N, w) that is Pareto-preferred. The
emphasis on the Pareto frontier of the core is reminiscent of a similar em-
phasis in matching theory, but we do not develop that connection here. !

With these definitions, we can state our main theorem characterizing
equilibrium in the first-price package auction.

Theorem8.7. Suppose thatr isbidder-optimal. Then the corresponding
ni-profit-target strategies constitute a Nash equilibrium of the first-price
package auction. Conversely, if 7 € R is an equilibrium payoff vector
and the corresponding 7 -profit-target strategies constitute a Nash equi-
librium of the first-price package auction, then = is bidder-optimal.

Proof. To demonstrate the first assertion, suppose that x is bidder-
optimal. We must show that the corresponding profit-target strategies
constitute an equilibrium.

19 See Ausubel and Milgrom (2002).
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We will show that no player i has a profitable deviation to any profit-
target strategy. Then by theorem 8.6, no player has a profitable deviation
of any kind.

Suppose some alternative profit-target strategy for i earns a payoff
7' + 8, forsome § > 0. Then the strategy must be the 7’ + §-profit-target
strategy.

Since 7 is bidder-optimal, 7 € Core(N,w) and (7°—§, 7%+,
n7179) ¢ Core(N, w). So there exists some coalition Ssuchthat ) ; g7/ >
w(S) > ) jes ! — 81joes) + 81jies). It follows that 0 € S and i ¢ S. The
maximum value of the seller’s objective if he excludes bids from bid-
der i is therefore

J(x] 0
(xg(ll??f@}{ Z Bl (x)) + v (x)}

jeN-0

J(xd 0
> {xejr(lliag(_@{ Z B/ x)) +v (x)}

jeS—0

T (xeX|x—S=0}

>  max {Z(vj(xj)—nf)+v°(x)}

jeS—0

=w(S) — Z 2
jesS—0
>a0-5
:maxivo(x)+ > ﬁf(xf)}—a
* jeN-0

0 Ixhy§ —3s. 8.13

Z{er)I(}J%);(Z)}{U (x)+j§;0ﬁ (x )} (8.13)

The first line of (8.13) holds because the second optimization is more
constrained, the second because g/(x/) = max (0, v/(x/) — =/), and the
third by definition of w(S). The strict inequality on the fourth line follows
by selection of the coalition S, and the fifth line holds by definition of 7°.
Finally, the last inequality follows because the last optimization is more
constrained than the preceding one.

Comparingthe firstand last membersin (8.13) indicates that, after the
deviation, the seller does strictly better by excluding bidder i than by ac-
cepting one of i’s bids. Hence, the deviation results in the bidder becom-
ingalosing bidder. So there exists no profitable deviation for anybidder i.
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To show the converse, suppose that the wi-profit-target strategies
constitute an equilibrium with payoff vector n. First, we show that
7 € Core(N, w). Because x is the payoff vector for these strategies, it
is feasible. Hence, if 7 ¢ Core(N, w), then there exists some coalition S
such that Zjes 7/ < w(S). Then

n°=1}3€%{x{v°(x)+ > ﬂf(x)}

jeN—-0

v

0 i
pomax { W+ Y B (x)}

jeS—0

v

max {v"(x) + ) 0w- nf)}
{xeX|x—S$=0} jes2o
=w(S) — Z nd > 7",
jeS—0
which is a contradiction. So = € Core(N, w).

Next, suppose that = is an equilibrium payoff vector and = €
Core (NN, w), but  is not bidder-optimal. Then there is some i and some
8§ > Osuchthat# = (z° — 28, 7' + 28, 7710) € Core(N, w).

Suppose bidder i deviates to the =’ + §-profit-target strategy, which
we denote below by . If  is an equilibrium payoff vector, then there is
a corresponding feasible allocation X. So

rnax: D B+ A + vo(x)}

X
€4 jeNZi-o

> > BIEN+FE) +0°®)

jeN—-i—0
= > WE)-r)-s+°®
jeN-0

=70 —85>7%-2§

> max | w(S) — 2

{Sli¢ S} { jg—:o

> max { max vf(xf) — b2
{Sli¢ S} { xeX {]Xe; ]_;0

= max max { Z (! (x9) —nj)} +v°(x)

xeX {S|i¢S} jes<o



8.2 Bernheim-Whinston First-Price Package Auctions 323

= max{ Z max(0, v/ (x/) — nd) + vo(x)}

X
Y4 jeN=i-o0

= max Ty + 000} .
nay {]_d;_oﬂ () + 0 )}
The firstline follows from maximization, the second from the definitions
of the bid functions, and the third from the definition of X. The fourth
line holds because (7° — 25, 7! + 28, #719) € Core(IN, w). The fifth fol-
lows from the definition of w(S), and the sixth from reversing the or-
der of optimization (and using free disposal). The seventh line follows
from maximization over S, and the last by the definition of the bid
functions.

Because the last term is less than the first term, the seller strictly
reduces his profit by refusing all of i’s bids after the deviation. So, ac-
cording to the rules of the auction, the seller accepts one of i’s bids, and
i’s deviation is profitable, contradicting the assumption that the original
profit-target strategies constitute an equilibrium. |

According to our earlier interpretation, outcomes in the core pay the
seller a competitive price for his resources. However, the core also in-
cludes the extreme payoff profile at which each bidder i earns 7% = 0
and the seller earns 7° = w(N). Intuitively, this extreme payoff reflects
the fact that all the relevant coalitions include the seller (except the sin-
gleton coalitions, which ensure each bidder gets at least zero), so the
core includes as one possibility that the seller is a perfect price discrim-
inator. In an auction, however, it is the bidders who get to make the
offers. Theorem 8.7 reflects the power the ability to make offers con-
veys: the bidders collectively bid just enough for the outcome to lie in
the core. In terms of our competitive pricing interpretation, the theo-
rem holds that the prices paid for the bidders’ resources are as high as
possible, consistent with paying the seller a competitive price for his
resources.?’

20 In their analysis of first-price package auctions, Bernheim and Whinston (1986) also de-
veloped the concept of coalition-proof Nash equilibrium and showed that the equilibria
identified in theorem 8.7 coincide exactly with the coalition-proof Nash equilibria of this
auction. Their analysis, consistent with the discussion following theorem 8.6, further indi-
cates the difficulty of creating incentives to sustain collusive outcomes, even when small
groups of bidders can communicate privately.
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8.3 Ausubel-Milgrom Ascending Proxy Auctions?!

In this section, we introduce the Ausubel-Milgrom ascending proxy auc-
tions, which incorporate many of the advantages of both the Vickrey and
first-price package designs while avoiding some key disadvantages. We
will show that this design essentially replicates the performance of the
Vickrey design when all goods are substitutes and, like the Bernheim-
Whinston first-price auction, has fullinformation equilibrium outcomes
that are bidder-optimal points in the core.

To develop the connection with the Vickrey auction, suppose that
goods are substitutes for all bidders. Then, for everyvalue profile, truthful
bidding is a Nash equilibrium of the ascending package auction, and the
allocation and payments coincide exactly with those of the Vickrey auc-
tion. The equilibrium payoff vector is then the unique bidder-optimal
pointin the core of the associated coalitional game. The ascending pack-
age auction thus matches the performance of the Vickrey auction when
goods are substitutes — the condition under which the Vickrey auction
performs best.

The ascending package auction performs quite differently from the
Vickrey auction when goods are not substitutes. Whenever there is full
information, the ascending package auction has profit-target Nash equi-
libria with strategies and equilibrium payoffs identical to those for the
first-price package auction, as described by theorem 8.7. In addition,
the ascending package auction duplicates the first-price package auc-
tion’s resistance to collusion (described by theorem 8.6) — a property also
shared by the Vickrey design.??

We model the proxy auction as a revelation game in which each bid-
der reports his values to a proxy agent who places bids in a multi-round
auction on the bidder’s behalf. We will study two versions of the proxy
auction. The first assumes unlimited bidder budgets. Because tight bud-
get constraints are a serious problem in some spectrum auctions, we
analyze a proxy auction that respects budget constraints in the succeed-
ing subsection.

21 This section follows Ausubel and Milgrom (2002).

22 Recall, though, that with even a small amount of outside enforcement, the Vickrey auction
is vulnerable to collusive equilibria. The same is true of the ascending proxy auction when
goods are substitutes.
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8.3.1 The Proxy Auction with Unlimited Budgets

In this subsection we study the ascending proxy auction with unlimited
budgets and negligibly small bid increments, showing three main results.
First, the algorithm selects a core allocation with respect to the prefer-
ences reported to the proxies. Second, with full information, the Nash
equilibria in target strategies induce bidder-optimal core allocations,
and every bidder-optimal core allocation corresponds to some profit
target equilibrium. Third, when goods are substitutes, truthful reporting
to the proxy bidders is a Nash equilibrium.

Except where otherwise specified, we use the model of section 8.2,
with quasi-linear preferences and valuation functions (v) ;.

The proxies place bids in a multi-round auction. In each round,
the auctioneer determines the feasible decision x that solves
maxyex{Y jen_o B7(x7) + v°(x)}, where B/ (x/) is the highest bid j has ever
made in any round for the package x/. The bidders for whom the maxi-
mum specifies x’ # @ are called the provisionally winning bidders, and
the set of all such bidders is called the provisionally winning coalition.

In each round, each bidder i faces a minimum bid m (x%) for every
possible package. Initially, for every bidder and package, m!(x’) = 0. As
the auction progresses, if the bidder has ever bid upon the package, then
the minimum bid is the bidder’s highest previous bid on that package
plus one increment.

The proxy operates as follows. In each round, ifbidder i is a provisional
winner, then i’s proxy makes no new bid. Otherwise, for every possible
package, the proxy uses the reported value function ' to determine the
package £’ with the highest potential profit#/ = o/ (£/) — m!(£!).If#’ < 0,
then the proxy places no new bid, butif #/ > 0, then i’s proxy bids m' (£/)
for the package £'. (It may be helpful to think of an exiting proxy’s final bid
asabid ofzero for the null allocation.) The auction terminates when there
are no new bids. At that time, the provisional winners and the provisional
allocation become the winners and the allocation of the auction.

We study the revelation game in which the bidders report values to
their proxies, but to study that game, we first need to examine the as-
cending auction process. Given any values the bidders report to their
proxies, one can reconstruct all of a bidder’s bids in prior rounds from
the potential profit #/(¢) associated with his most recent bid at time .
In particular (ignoring ties), by time ¢ the proxy has made all legal bids
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on any package with potential profit of at least #i(6). Let #°(f) be the
maximal value of seller’s objective. Let the full vector of payoffs be 7 (),
which we sometimes denote simply by 7.

8.3.1.1 Proxy Outcomes Are Core Outcomes

We focus here on the limiting case of small bid increments and treat
the rounds as continuous in time. Then bidder i’s current minimum bid
on any package x’ at time ¢ is max(0, 7' (x’) — #/(z)). Let @ denote the
corresponding coalitional value function computed according to (8.1).
Then the seller’s maximum payoff at time ¢ is given by

#°) =r§1€a}g<{v°(x)+ >~ max (0, f)j(xj)—frf(t))}

JjeN-0

:maxmax{vo(x)—i— > (ﬁj(xj)—frj(t))}

SCN xeX jeso
_ SoQy Ny
= rglca%{w(S) ‘Z 7 (t)}. (8.14)
jeS—0

The first equality uses the definitions of #9(f) and the proxy bids; the
second follows because the maximum over S chooses exactly the positive
summands; and the third follows the definition of .

Remarkably, (8.14) suggests one can characterize the auction as
a coalitional bargaining process. It is as if at any time ¢, each bid-
der demanded payoff #/(r), and a manager for the coalition S, who
planned to hire coalition members at prices (), bid the residual,
W(S) — X jes—o #1(t), to buy the seller’s resources. The winning coalition
of bidders at any time is the coalition making the most generous offer,
and losing bidders targeting positive payoffs reduce their demands and
try again. Formula (8.14) and the story behind it arise repeatedly in the
analysis below.

Formula (8.14) indicates that at any time ¢, no coalition S blocks the
payoffvector 7 (£) : w(S) < jes 77 (). When the auction ends, the payoff
vector is also feasible, so we have the following result:

Theorem 8.8. When the auction ends at time f, the final decision X max-
imizes the total of reported values, 3 .y v/ (%) = w(N), and the payoff
outcome satisfies 7 (f) € Core(N, w).
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Proof. Because 7 (f) is unblocked, it only remains to show that 7 (f) is
feasible. Let W be the winning coalition at time , and let 8/ (%/) denote
the final bid prices. By the rules of the auction,

ol (&) — BL(F) forie W,
A1) =1 (D) + X ewB/ (&) fori=0, (8.15)
0 fori ¢ WU {0}.

Writing 1°=1% we have Y, yA/(H) =) N0/ (X)) < maxex
Y jen v/ (@) =w(N). That establishes feasibility. Hence, @(N)=
Y jen 7 (F) and # (7) € Core(N, ). [

8.3.1.2 Profit-Target Strategies and Equilibrium

Theorem 8.9. In the ascending proxy auction, for any bidder i and any
reports 7~/ by the other bidders, let 7/ = maxy: IT (%', ). Then the 7*-
profit-target strategy is a best reply for bidder i in this auction.

Proof. The conclusion is trivial if 7/ = 0, so suppose 7’ > 0. Let  be
any report such that I’ (&, %) = 7/, and % be the associated final out-
come. Then the price i pays is v/ (%) — 7'. Let § = /(%) — (v (&) — 7).
By the rules of the auction, the report @# defined for each package by
it (x') = t/(x') — & leads to the same path of bids and the same auc-
tion outcome as the report /. According to theorem 8.8, the outcome
is total-value-maximizing with respect to the reports (5%, i), so there
is no outcome x that excludes i and satisfies v°(x) + Y jeN—i—0 o/ (x)) >
V(B + X jen_io 0/ (#) + @ (X). Hence, again using theorem 8.8, any re-
port by i that specifies the value # (%) for & leads either to the outcome
X or to some other outcome that does not exclude i.

Let v’ denote the 7!-profit-target strategy. By definition, its report for
#is vI(&) = vi(&) — 7! = U (&) — 8§ = i (F), so the report v’ leads to
some outcome at which i is a winning bidder. Because, by definition
of the profit-target strategy, the lowest profit associated with any bid
during the course of the auction using the report o' is 77/, it follows that
'@, o7 > 7' [

Theorem 8.9 is closely analogous to theorem 8.6 and has a similar
interpretation. In the ascending package auction with proxy bidders, no
bidder has an incentive to withhold demand, so no strategy profile aring
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of bidders could adopt protects an agreement about how to divide the
items against aggressive deviations by the ring members.

The next theorem duplicates the first sentence, but not the second, of
theorem 8.7.

Theorem 8.10. Suppose that x is bidder-optimal. Then the correspond-
ing n’-profit-target strategies constitute a Nash equilibrium of the as-
cending package auction.

Proof. Suppose 7 is bidder-optimal, and for each i let v denote the
wi-profit-target strategy. Suppose the strategy profile v is not a Nash
equilibrium. In particular, suppose thereis some player i with a profitable
deviation to a #/-profit-target strategy. If #' < 7' and i is a winner with
this deviation, then either the auction outcome is unaffected or i earns
a profit of less than 7/, so we restrict attention to the case &% > =’

Let T denote the winning coalition that results after the deviation,
and let the payoff outcome be #. Theni € Tand #' > ‘. Also, the profit-
target strategies imply that for all j € T, #/ > =/ (because the bidder j
makes no bids that involve a lower profit than /).

Because n € Core(N, ), for every coalition S we have w(S) <
> e ¢/, If there exists any ¢ > 0 such that for every coalition S we
have w(S) +¢ < Zjes”j’ then (' —¢, 7l 4+ ¢, 7779 € Core(NN, o),
which contradicts bidder optimality. So, there is some coalition S with
0 e Sandi ¢ Ssuchthat w(S) = Zjes”j-

Let 8(S) and B(T) denote the highest total seller payoff associated with
bids by the bidders in the coalitions S and T during the proxy auction,
given the specified deviation by bidder i. Then

B(S) = w(S) — Z max(r/, #)

jeS—0

> w(S) — Z i — Z max(0, #/ — 7 /)
jeS—0 jeT—-0

=7y — Z max(0, #/ — 7 /)

jeT—-0

> w(T) — Z nd — Z max(0, #/ — 7/)
jeT—-0 jeT—-0

=w(T) — Z 7l
jeT-0

= B(1). (8.16)
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The first step in (8.16) follows from the proxy rules: any losing bidders
in Sstop bidding only when their potential profits reach the specified lev-
els. The strictinequality in the second step follows becausei € T — Sand
#' > m'. The third step follows by selection of S, the fourth because = €
Core(NN, w), and the fifth and sixth by the definitions of T, 7, and 8(7).

We conclude that the coalition S offers a strictly higher total payoff
to the seller than does T, which is impossible, because T is the winning
coalition. This contradicts the hypothesis that bidder i has a profitable
deviation. [ |

To highlight the theorem’s scope and limits, consider a package auc-
tion with one unit of an indivisible good for sale. Suppose the good is
worth 8 to bidder 1 and 4 to bidder 2. Then, in equilibrium in a first-price
auction, both bidders bid 4 and bidder 1 wins. These are profit-target
strategies; bidder 1 bids for a profit of 4, bidder 2 bids for a profit of 0,
and the equilibrium payoff vector for the two bidders is (4, 0). This equi-
librium is consistent with theorem 8.7.

In the ascending auction, there exists a Nash equilibrium in which the
bidders play the same strategies. Bidder 1 tells its proxy to bid up to 4,
bidder 2 does the same, and bidder 1 wins. This equilibrium is one speci-
fied by theorem 8.10, but it highlights a problem with the equilibriaiden-
tified by the theorem. In the ascending proxy auction, it is a dominant
strategy for bidder 1 to report his value of 8 to the proxy. The identified
equilibrium is inconsistent with bidder 1’s dominant strategy.

This example indicates that the ascending auction performs better
than theorem 8.10 might suggest. When bidders in the ascending pack-
age auction have dominant strategies, they have simpler optimization
problems and less incentive to waste resources studying competitors’
values and strategies than they might otherwise.

8.3.1.3 The Proxy Auction When Goods Are Substitutes

The next theorem shows that the simplicity of bidding in the proxy auc-
tion when there is just one item for sale also applies when there are
several goods that are substitutes.

Theorem 8.11. Suppose that (1) foralli € N— 0, vl € Vgups (all bidders
regard the goods as substitutes) and (2) forall x € X, v9(x) = 0 (the seller
has no value for unsold goods). Then the strategy profile in which every
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bidder reports & = v’ is a Nash equilibrium. The corresponding payoff
vector satisfies #/ = ¥, = w(N) — w(N — i) = max{r’|x € Core(N, w)}.
In particular, the equilibrium payoff vector is the unique bidder-optimal
point in Core(N, w).

Proof. By theorem 8.8, for any report by bidder i, the payoff outcome
satisfies the core constraint: ) jeN—i #J > w(N — i). Moreover, for any
report by player i, some feasible outcome results, so the total payoff
necessarily satisfies ) je Nfrf < w(N). Hence, regardless of i’s report, his
payoff is bounded above by w(N) — w(N — i).

To show that truthful reporting is a best reply for i when all others
report truthfully, it is therefore sufficient to prove that if the goods are
substitutes for all the bidders, then i’s payoff from truthful reporting is
atleast w(N) — w(N — 7). We do this by showing that during the auction,
if there is any round ¢’ at which #i(t) < wN) — w(N — i), then i is part
of the provisionally winning coalition at every round ¢ > ¢'.

By Theorem 8.4, because goods are substitutes, the coalitional value
function w is bidder-submodular. Hence, for any coalition S with i € S,
we have w(S) —w(S—1i) > w(N) —w(N—1i). We use this inequality
below.

Suppose that S — i — 0 is the coalition excluding i that maximizes the
seller’s payoff at some round ¢ > ¢/, where 0, i € S. By (8.14) (and using
the fact that all bidders are reporting truthfully), the corresponding
seller payoff is w(S—1) — > s i o #1(1). If the seller were instead to
select the coalition S — 0, which includes i, then his payoff would
be w(S) — > jcso ) = w(S) — 2 jes—i-0 A1) — [w(N) — w(N — )] >
w(S) — Zjes_i_oﬁj(t) —[w(&) —wlS =D =wlS -1 — Zjes_i_oz%f(t).
So i must be part of any provisionally winning coalition.

Hence, by the mechanics of the auction, i’s profit target never falls
below w(N) — w(N — i) = ri,, so i eventually wins and earns 7’ > i,
This proves that truthful reporting is a best reply for i. By theorem 8.8,
truthful reporting leads to 7 € Core(N, w). By theorem 8.1, n{, = w(N) —
w(N — i) = max{r|r € Core(N, w)}, so #! < ni,. Hence, #' = w},. [

8.3.2 The Non-transferable-Utility Proxy Auction

In this section, we extend the ascending proxy auction to accommo-
date limited budgets and more general valuations than the quasi-linear
form used up to now. We show that an appropriate generalization of the
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auction algorithm still generates a core allocation with respect to re-
ported preferences, but we do not identify equilibria in this more general
case.

Suppose that each bidder i has a finite set Q' of feasible offers. (In the
ordinary ascending proxy auction, offers are package—price pairs, and
this analysis covers that special case.) Suppose that each bidder’s feasible
setincludes a null outcome, @ € @, which means that the seller does not
select player i. Assume that i has a strict ordering over Q' represented by
a utility function .

The feasible combinations of offers are those in the set Q° cC
xjeN,OQf. We assume that (@, ..., @) € Q° the null, or no-trade, out-
come is feasible. We also assume that the seller has a strict preference
ranking over the set Q° described by the utility function u°. A non-null
combination £ is feasible for the coalition S if (1) 0 € S, (2) £ € Q° (the
combination is feasible), and (3) £/ = @ for all j ¢ S. For coalitions ex-
cluding the seller, the only feasible allocation is null.

The auction rules generalize those of the preceding section. Each bid-
der reports his preferences once and for all to his proxy. The report is a
utility function @ : Q' — R that strictly ranks the elements of Q'. The
mechanism processes the reports in a series of rounds. The bidders’ past
bids and the seller’s most preferred feasible allocation summarize the
state of the auction after any round.

We describe the initial state of the auction with the collection of sets
¥i(0) = {@} and the allocation »°(0) = (@, ..., 0).

The process proceeds iteratively; the state of the process at round ¢
is ((W!(D)}ien—-0, @°(1)), where 0°(2) = () (£));cn—o is the seller’s currently
most preferred feasible allocation and Wi (#) is the set of offers made by
bidder i up to and including round ¢. The state evolves according to

'(t) = arg max 1’ (£) subjectto €' € Wi(f),i e N—0,
EeQ
o' (t+1) =arg  max it (£, (8.17)
Eie(Qi—wi()U(0)

, i i I PeToR <0

W41 = \Il.(t) Uflo'(t+ 1)} ifi (o (‘t—l— 1) > @ (w; (1) .

Wi(f) otherwise.

The second line of (8.17) identifies a potential offer, @' (t+ 1), thata proxy
may make at round ¢ + 1. According to the third line, the proxy actually
offers o' (¢t + 1) then if and only if bidder i strictly prefers that offer to its
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part of the provisional outcome, o? (f). Equivalently, the proxy makes the
offer if and only if (i) the bidder is not a provisional winner at round ¢
(w?(t) = ) and (ii) the bidder prefers the offer v (¢ + 1) to the no-trade
outcome.?® Thus, just as in the preceding subsection, the set of offers
made by any time ¢ consists of the null offer plus all offers that are more
profitable than the new offer (¢ + 1) “planned” for ¢ + 1:

Vi) = QYU (& € QiE (@) > i (o' (¢ + 1))} (8.18)

The auction process terminates at a round f when there is a round
with no new bids, that is, when & (o' (f + 1)) < @ (?(f)) for all i. At that
time, the provisional allocation «°(f) becomes the final allocation.

The coalitional game corresponding to this auction generally may
involve non-transferable utility, so we use the non-transferable utility
core (or NTU core) to analyze the outcome. Recall that an allocation
w is blocked if there exists some coalition S and allocation @ feasible
for coalition S such that all the members of S strictly prefer @ to w. An
allocation  is in the NTU core is if it is feasible (satisfying ' € Q for
alli € N) and unblocked. The main result of this section establishes that
the identified auction process selects a core allocation.

Theorem 8.12. When the ascending proxy auction ends at time 7, the
outcome °(F) = (a)?(f))iE ~N—o is an NTU-core allocation with respect to
the reported preferences (12, (T ieN—0)-

Proof. By construction, the final allocation «°(?) is feasible and Pareto-
preferred to the null allocation. If »°(?) is not a core allocation, then
there exists some coalition S and some non-null combination & feasible
for S that blocks it. Feasibility requires that 0 € S, £ € Q°, and &/ = @
forall j ¢ S.Blocking additionally requires that (i) t°(¢) > 1°(0°(f)) and
(ii) @ (£) > @ (?(D) for all i € S— 0. Using (8.18), we have &' € {@' €
QU (@) > i (' (F+ 1))} C Wi(P) foralli € N — 0. So, by the first line of
(8.17), U (@°(f)) > u° (&), contradicting (i). [ |

To illustrate the operation of this auction, suppose that offers are
pairs of packages and corresponding money bids, as in the preceding

23 In some versions of the ascending proxy auction, a bidder can revise the instructions to his
proxy at certain times during the auction (Ausubel and Milgrom (2001)). In that extended
design, the two descriptions of the proxy are not equivalent.
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section, but that bidder budgets are limited. To adapt the ascending
proxy auction to this situation, a bidder could report his package valua-
tion function and budget to his proxy. Bidder i’s budget would determine
Q. The proxy, behaving as prescribed by (8.17), would skip over bids that
exceed the budget, but otherwise the auction would choose bids by the
same criteria as in the ascending proxy auction with transferable utility.
Theorem 8.12 asserts that the allocation resulting from such an auction
is a core allocation with respect to the reported preferences and bud-
gets. This means that no coalition has a feasible allocation that every
coalition member prefers to the auction outcome, where feasibility in-
cludes the requirement that the allocation respect the bidders’ budget
limits.

This example establishes another advantage of the proxy auction de-
sign. Unlike the Vickrey auction, the ascending proxy auction can easily
extend to the case of limited budgets.

8.4 Conclusion

In this chapter, we have discussed three leading designs in the new and
burgeoningliterature on combinatorial auctions. The three mechanisms
have different advantages.

The Vickrey design is a dominant strategy auction mechanism that
produces efficient outcomes. As we saw in chapter 3, it is the only
such mechanism with the property that losing bidders pay nothing. The
dominant strategy property is valuable in that it makes bidding easy
and discourages unproductive research into competitors’ values and
plans.

Vickrey auctions suffer from a number of practical problems listed in
chapter 2. Some of these, including the complexities of package bidding,
are shared by all package auction designs. However, Vickrey auctions
lose their performance advantages when budgets are limited, and they
distort incentives for investment and mergers in ways that other pack-
age auctions do not. When goods are not substitutes, the Vickrey auction
suffers from an important collection of monotonicity problems. As the
set of bidders expands (for example through entry), it is possible that
the existing bidders’ payoffs rise and the seller’s revenue falls. Whenever
that happens, the outcome of the Vickrey auction ceases to be in the
core. Losing bidders can sometimes collude profitably, raising their bids
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to become winners while reducing the prices they pay. A single bidder
can sometimes profitably pretend to be multiple bidders. We showed
that one can generally rule out these problems when all goods are sub-
stitutes,?* but not otherwise.

One might summarize this discussion by saying that the Vickrey auc-
tion performs well when goods are substitutes and budgets are unlim-
ited, but can encounter important theoretical and practical problems
when goods may not be substitutes for some bidders and when budget
constraints bind. (An additional disadvantage, associated with invest-
ments and mergers, is discussed in chapter 2.)

The advantages of the first-price package auction are very different.
First, the auction itself is relatively simple and transparent: bidders need
not perform difficult calculations to tell whether the auctioneer has cal-
culated their prices correctly. When the bidders are fully informed about
all values, the outcomes of profit-target equilibria identified by the the-
ory lie in the core. Such equilibria therefore ensure a competitive price
for the seller’s goods. In addition, outcomes of such equilibria are bidder-
optimal and thus lie on the bidder Pareto frontier of the core. Intuitively,
this fact means that only competition — and not the seller’s monopoly
power — limits the bidders’ earnings. These properties hold regardless
of whether the goods are substitutes. In contrast, Vickrey outcomes are
guaranteed to enjoy these properties only when goods are substitutes.
In that case, the outcomes of the first-price auction in profit-target equi-
libria coincide exactly with the Vickrey outcomes.

A disadvantage of the first-price auction compared to the Vickrey auc-
tion is that bidders in the first-price package auction need to know a lot
for the first-price auction to perform well. To choose their optimal bids,
bidders need to set their profit targets accurately, and they need to be
able to coordinate on one of the multiple equilibria. These observations
suggest that the full information equilibrium outcomes are unlikely ever
to hold exactly, although it remains possible that they may describe a
central tendency for some kinds of environments.

The ascending proxy auction incorporates some of the advantages
of each of the two preceding designs. When goods are substitutes, the
ascending proxy auction has a Nash equilibrium in which each bidder

24 The problems can also be characterized using the coalitional value function; we showed
that most of the problems arise only when the function is not bidder-submodular.



References 335

reports his values truthfully, without regard to the other bidders’ val-
ues. The outcome in that case is the unique bidder-optimal point, so
it coincides with the Vickrey outcome. Thus, when the Vickrey design
performs best, the ascending package auction exactly matches its per-
formance. The two perform quite differently, however, when goods are
not substitutes.

In the full information case, the ascending proxy auction has profit-
target equilibria similar to those of the first-price package auction. The
equilibrium payoffs are bidder-optimal points in the core of the associ-
ated coalitional game. The fact that the outcomes are in the core implies
that the seller receives at least a competitive price for his goods. Be-
cause the payoff outcomes are bidder-optimal, the seller exercises no
monopoly power, but accepts the prices dictated by competition alone.

Finally, the ascending proxyauctionis adaptable tobudget constraints
and other extensions that frustrate the Vickrey design.

Besides the three auctions discussed here, several others based on
different principles have also been proposed. Some of these auctions
accept more than one bid from a particular bidder. These auctions are
hybrids of the designs studied in chapters 7 and chapter 8. In the for-
mer class of auctions, bidders must bid on items individually; the latter
auctions accept only one bid from each bidder and thus do not combine
bids. These hybrid designs simplify some bidding problems and likely
mix the advantages and disadvantages of the pure forms, but one can-
not assess them confidently without more analysis. Other combinatorial
auctions attracting interest include multi-stage or multi-round designs
in which bidders effectively exchange information about which pack-
ages might be interesting before making their final bids. The cognitive
challenge of bidding in a package auction is daunting, so developments
of this kind are likely to be critical to successful use of these designs.
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