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Foreword 

THIS A S T M Manual on Presentation of Data and Control Chart Analysis is the sixth 
revision of the original ASTM Manual on Presentation of Data first published in 1933. 
This sixth revision was prepared by the ASTM El 1.10 Subcommittee on Sampling and 
Data Analysis, which serves the ASTM Committee E-11 on Quality and Statistics. 
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1 
INTRODUCTORY 
INFORMATION 

PREFACE 

T H I S Manual on the Presentation of Data 
and Control Chart Analysis (MNL 7), was 
prepared by ASTM's Committee E-11 on 
Quality and Statistics to make available to 
the ASTM INTERNATIONAL membership, 
and others, information regarding 
statistical and quality control methods, and 
to make recommendations for their 
application in the engineering work of the 
Society. The quality control methods 
considered herein are those methods that 
have been developed on a statistical basis 
to control the quality of product through 
the proper relation of specification, 
production, and inspection as parts of a 
continuing process. 

The purposes for which the Society 
was founded—the promotion of knowledge 
of the materials of engineering, and the 
standardization of specifications and the 
methods of testing—involve at every turn 
the collection, analysis, interpretation, and 
presentation of quantitative data. Such 
data form an important part of the source 
material used in arriving at new knowledge 
and in selecting standards of quality and 
methods of testing that are adequate, 
satisfactory, and economic, from the 
standpoints of the producer and the 
consumer. 

Broadly, the three general objects of 
gathering engineering data are to discover: 
(1) physical constants and frequency 
distributions, (2) the relationships—both 
functional and statistical—between two or 
more variables, and (3) causes of observed 
phenomena. Under these general headings, 
the following more specific objectives in the 
work of ASTM International may be cited: 
(a) to discover the distributions of quality 
characteristics of materials which serve as 
a basis for setting economic standards of 
quality, for comparing the relative merits of 
two or more materials for a particular use, 
for controlling quality at desired levels, for 

predicting what variations in quality may 
be expected in subsequently produced 
material; to discover the distributions of 
the errors of measurement for particular 
test methods, which serve as a basis for 
comparing the relative merits of two or 
more methods of testing, for specifying the 
precision and accuracy of standard tests, 
for setting up economical testing and 
sampling procedures; (b) to discover the 
relationship between two or more 
properties of a material, such as density 
and tensile strength; and (c) to discover 
physical causes of the behavior of materials 
under particular service conditions; to 
discover the causes of nonconformance with 
specified standards in order to make 
possible the elimination of assignable 
causes and the attainment of economic 
control of quality. 

Problems falling in these categories can 
be treated advantageously by the 
application of statistical methods and 
quality control methods. This Manual 
limits itself to several of the items 
mentioned under (a). PART 1 discusses 
frequency distributions, simple statistical 
measures, and the presentation, in concise 
form, of the essential information contained 
in a single set of n observations. PART 2 
discusses the problem of expressing + limits 
of uncertainty for various statistical 
measures, together with some working 
rules for rounding-off observed results to 
an appropriate number of significant 
figures. PART 3 discusses the control chart 
method for the analysis of observational 
data obtained from a series of samples, and 
for detecting lack of statistical control of 
quality. 

The present Manual is the sixth 
revision of earlier work on the subject. The 
original ASTM Manual on Presentation of 
Data, STP 15, issued in 1933 was prepared 
by a special committee of former 
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Subcommittee IX on Interpretation and 
Presentation of Data of ASTM Committee 
E-1 on Methods of Testing. In 1935, 
Supplement A on Presenting ± Limits of 
Uncertainty of an Observed Average and 
Supplement B on "Control Chart" Method of 
Analysis and Presentation of Data were 
issued. These were combined with the 
original manual and the whole, with minor 
modifications, was issued as a single volume 
in 1937. The personnel of the Manual 
Committee that undertook this early work 
were: H. F. Dodge, W. C. ChanceUor, J. T. 
McKenzie, R. F. Passano, H. G. Romig, R. T. 
Webster, and A. E. R. Westman. They were 
aided in their work by the ready cooperation 
of the Joint Committee on the Development 
of Apphcations of Statistics in Engineering 
and Manufacturing (sponsored by ASTM 
International and the American Society of 
Mechanical Engineers (ASME)) and 
especially of the chairman of the Joint 
Committee, W. A. Shewhart. The 
nomenclature and symbolism used in this 
early work were adopted in 1941 and 1942 in 
the American War Standards on Quahty 
Control (Zl.l, Z1.2, and Z1.3) of the 
American Standards Association, and its 
Supplement B was reproduced as an 
appenduc with one of these standards. 

In 1946, ASTM Technical Committee E-
11 on Quality Control of Materials was 
established under the chairmanship of H. F. 
Dodge, and the manual became its 
responsibility. A major revision was issued in 
1951 as ASTM Manual on Quality Control of 
Materials, STP 15C. The Task Group that 
undertook the revision of PART 1 consisted 
of R. F. Passano, Chairman, H. F. Dodge, A. 
C. Holman, and J. T. McKenzie. The same 
task group also revised PART 2 (the old 
Supplement A) and the task group for 
revision of PART 3 (the old Supplement B) 
consisted of A. E. R. Westman, Chairman, H. 
F. Dodge, A. I. Peterson, H. G. Romig, and L. 
E. Simon. In this 1951 revision, the term 
"confidence limits" was introduced and 
constants for computing 0.95 confidence 
hmits were added to the constants for 0.90 
and 0.99 confidence hmits presented in prior 

printings. Separate treatment was given to 
control charts for "number of defectives," 
"number of defects," and "number of defects 
per unit" and material on control charts for 
individuals was added. In subsequent 
editions, the term "defective" has been 
replaced by "nonconforming unit" and 
"defect" by "nonconformity" to agree with 
definitions adopted by the American Society 
for Quality Control in 1978 (See the 
American National Standard, ANSI/ASQC 
Al-1987, Definitions, Symbols, Formulas and 
Tables for Control Charts.) 

There were more printings of ASTM STP 
15C, one in 1956 and a second in 1960. The 
first added the ASTM Recommended Practice 
for Choice of Sample Size to Estimate the 
Average Quality of a Lot or Process (E 122) 
as an Appendix. This recommended practice 
had been prepared by a task group of ASTM 
Committee E-11 consisting of A. G. Scroggie, 
Chairman, C. A. Bicking, W. E. Deming, H. 
F. Dodge, and S. B. Littauer. This Appendix 
was removed from that edition because it is 
revised more often than the main text of this 
Manual. The current version of E 122, as well 
as of other relevant ASTM International 
pubhcations, may be procured from ASTM 
International. (See the hst of references at 
the back of this Manual.) 

In the 1960 printing, a number of minor 
modifications were made by an ad hoc 
committee consisting of Harold Dodge, 
Chairman, Simon Collier, R. H. Ede, R. J. 
Hader, and E. G. Olds. 

The principal change in ASTM STP 15C 
introduced in ASTM STP 15D was the 
redefinition of the sample standard 

deviation to be s = J^^ '~ /„-])• This 

change required numerous changes 
throughout the Manual in mathematical 
equations and formulas, tables, and 
numerical illustrations. It also led to a 
sharpening of distinctions between sample 
values, universe values, and standard 



values that were not formerly deemed 
necessary. 

New material added in ASTM STP 15D 
included the following items. The sample 
measure of kurtosis, g2, was introduced. This 
addition led to a revision of Table 8 and 
Section 34 of PART 1. In PART 2, a brief 
discussion of the determination of 
confidence limits for a universe standard 
deviation and a universe proportion was 
included. The Task Group responsible for 
this fourth revision of the Manual consisted 
of A. J. Duncan, Chairman R. A. Freund, F. 
E. Grubbs, and D. C. McCune. 

In the twenty-two years between the 
appearance oi ASTM STP 15D and Manual 
on Presentation of Data and Control Chart 
Analysis, &^ Edition there were two 
reprintings without significant changes. In 
that period a number of misprints and 
minor inconsistencies were found in ASTM 
STP 15D. Among these were a few 
erroneous calculated values of control chart 
factors appearing in tables of PART 3. 
While all of these errors were small, the 
mere fact that they existed suggested a 
need to recalculate all tabled control chart 
factors. This task was carried out by A. T. 
A. Holden, a student at the Center for 
Quality and Applied Statistics at the 
Rochester Institute of Technology, under 
the general guidance of Professor E. G. 
Schilling of Committee E 11. The tabled 
values of control chart factors have been 
corrected where found in error. In addition, 
some ambiguities and inconsistencies 
between the text and the examples on 
attribute control charts have received 
attention. 

A few changes were made to bring the 
Manual into better agreement with 
contemporary statistical notation and 
usage. The symbol |i (Greek "mu") has 
replaced X (and X') for the universe 
average of measurements (and of sample 
averages of those measurements.) At the 
same time, the symbol o has replaced a' as 
the universe value of standard deviation. 
This entailed replacing a by s^j-ms) to denote 

INTRODUCTORY 
INFORMATION 

the sample root-mean-square deviation. 
Replacing the universe values p', u' and c' 
by Greek letters was thought worse than 
leaving them as they are. Section 33, 
PART 1, on distributional information 
conveyed by Chebyshev's inequality, has 
been revised. 

Summary of changes in definitions and notations. 

M N L 7 

H, a, p , u , c 

(= universe values) 

|io, Oo, po, Uo, Co 

(= standard values) 

STP 15D 

X', (f, p', u', c' 

( = universe values) 

Xg,Oo', po', Uo', Co' 

(= standard values) 

In the twelve-year period since this Manual 
was revised again, three developments 
were made that had an increasing impact 
on the presentation of data and control 
chart analysis. The first was the 
introduction of a variety of new tools of 
data analysis and presentation. The effect 
to date of these developments is not fully 
reflected in PART 1 of this edition of the 
Manual, but an example of the "stem and 
leaf diagram is now presented in Section 
15. Manual on Presentation of Data and 
Control Chart Analysis, &'^ Edition from the 
first has embraced the idea that the control 
chart is an all-important tool for data 
analysis and presentation. To integrate 
properly the discussion of this established 
tool with the newer ones presents a 
challenge beyond the scope of this revision. 

The second development of recent years 
strongly affecting the presentation of data 
and control chart analysis is the greatly 
increased capacity, speed, and availability 
of personal computers and sophisticated 
hand calculators. The computer revolution 
has not only enhanced capabilities for data 
analysis and presentation, but has enabled 
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techniques of high speed real-time data-
taking, analysis, and process control, which 
years ago would have been unfeasible, if 
not unthinkable. This has made it desirable 
to include some discussion of practical 
approximations for control chart factors for 
rapid if not real-time application. 
Supplement A has been considerably 
revised as a result. (The issue of 
approximations was raised by Professor A. 
L. Sweet of Purdue University.) The 
approximations presented in this Manual 
presume the computational ability to take 
squares and square roots of rational 
numbers without using tables. Accordingly, 
the Table of Squares and Square Roots that 
appeared as an Appendix to ASTM STP 
15D was removed from the previous 
revision. Further discussion of 

approximations appears in Notes 8 and 9 of 
Supplement B, PART 3. Some of the 
approximations presented in PART 3 
appear to be new and assume 
mathematical forms suggested in part by 
unpublished work of Dr. D. L. Jagerman of 
AT&T Bell Laboratories on the ratio of 
gamma functions with near arguments. 

The third development has been the 
refinement of alternative forms of the 
control chart, especially the exponentially 
weighted moving average chart and the 
cumulative sum ("cusum") chart. 
Unfortunately, time was lacking to include 
discussion of these developments in the 
fifth revision, although references are 
given. The assistance of S. J Amster of 
AT&T Bell Laboratories in providing recent 
references to these developments is 
gratefully acknowledged. 

Manual on Presentation of Data and 
Control Chart Analysis, &^ Edition by 
Committee E-11 was initiated by M. G. 
Natrella with the help of comments from A. 
Bloomberg, J. T. Bygott, B. A. Drew, R. A. 
Freund, E. H. Jebe, B. H. Levine, D. C. 
McCune, R. C. Paule, R. F. Potthoff, E. G. 
Schilling and R. R. Stone. The revision was 
completed by R. B. Murphy and R. R. Stone 
with further comments from A. J. Duncan, 

R. A. Freund, J. H. Hooper, E. H. Jebe and 
T. D. Murphy. 

Manual on Presentation of Data and 
Control Chart Analysis, 7"» Edition has been 
directed at bringing the discussions around 
the various methods covered in PART 1 up 
to date. Especially, in the areas of whole 
number frequency distributions, empirical 
percentiles, and order statistics. As an 
example, an extension of the stem-and-leaf 
diagram has been added which is termed 
an "ordered stem-and-leaf," which makes it 
easier to locate the quartiles of the 
distribution. These quartiles, along with 
the maximum and minimum values, are 
then used in the construction of a box plot. 

In PART 3, additional material has 
been included to discuss the idea of risk, 
namely, the alpha (a) and beta (P) risks 
involved in the decision-making process 
based on data; and tests for assessing 
evidence of nonrandom behavior in process 
control charts. 

Also, use of the s(rms) statistic has been 
minimized in this revision in favor of the 
sample standard deviation s to reduce 
confusion as to their use. Furthermore, the 
graphics and tables throughout the text 
have been repositioned so that they appear 
more closely to their discussion in the text. 

Manual on Presentation of Data and 
Control Chart Analysis, Z"* Edition by 
Committee E-11 was initiated and led by 
Dean V. Neubauer, Chairman of the E l l . 1 0 
Subcommittee on Sampling and Data 
Analysis that oversees this document. 
Additional comments from Steve Luko, 
Charles Proctor, Paul Selden, Greg Gould, 
Frank Sinibaldi, Ray Mignogna, Neil 
UUman, Thomas D. Murphy, and R. B. 
Murphy were instrumental in the vast 
majority of the revisions made in this sixth 
revision. Thanks must also be given to 
Kathy Dernoga and Monica Siperko of the 
ASTM International New Publications 
department for their efforts in the 
publication of this edition. 
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PART 1 IS CONCERNED solely with presenting 
information about a given sample of data. It 
contains no discussion of inferences that 
might be made about the population from 
which the sample came. 

To see how the data may depart from a 
Normal distribution, prepare the grouped 
frequency distribution and its histogram. 
Also, calculate skewness, gi, and kurtosis, 

g2. 

S U M M A R Y 

Bearing in mind that no rules can be laid 
down to which no exceptions can be found the 
committee believes that if the 
recommendations presented are followed, the 
presentations will contain the essential 
information for a majority of the uses made of 
ASTM data. 

4. If the data seem not to be normally 
distributed, then one should consider 
presenting the median and percentiles 
(discussed in Section 6), or consider a 
transformation to make the distribution 
more normally distributed. The advice of a 
statistician should be sought to help 
determine which, if any, transformation is 
appropriate to suit the user's needs. 

5. Present as much evidence as possible that 
the data were obtained under controlled 
conditions. 

R E C O M M E N D A T I O N S F O R 
P R E S E N T A T I O N O F D A T A 

Given a sample of n observations of a single 
variable obtained under the same essential 
conditions: 

1. Present as a minimum, the average, the 
standard deviation, and the number of 
observations. Always state the number of 
observations. 

2. Also, present the values of the maximum 
and minimum observations. Any 
collection of observations may contain 
mistakes. If errors occur in the collection 
of the data, then correct the data values, 
but do not discard or change any other 
observations. 

3. The average and standard deviation are 
sufficient to describe the data, particularly 
so when they follow a Normal distribution. 

6. Present relevant information on precisely 
(a) the field of application within which the 
measurements are believed valid and (b) 
the conditions under which they were 
made. 

G L O S S A R Y O F S Y M B O L S U S E D I N 
P A R T I 

Observed frequency (number of 
observations) in a single bin of a 
frequency distribution 
Sample coefficient of skewness, a 
measure of skewness, or lopsidedness of 
a distribution 
Sample coefficient of kurtosis 
Number of observed values 
(observations) 
Sample relative frequency or proportion, 
the ratio of the number of occurrences of 
a given type to the total possible number 
of occurrences, the ratio of the number of 
observations in any stated interval to 

gi 

g2 
n 

Copyright 2002 by ASTM International www.astni.org 
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the total number of observations; sample 
fraction nonconforming for measured 
values the ratio of the number of 
observations lying outside specified 
limits (or beyond a specified limit) to the 
total number of observations 

R Sample range, the difference between 
the largest observed value and the 
smallest observed value. 

s Sample standard deviation 
s^ Sample variance 
cv Sample coefficient of variation, a 

measure of relative dispersion based on 
the standard deviation (see Sect. 31) 

X Observed values of a measurable 
characteristic; specific observed values 
are designated Xi, X2, X3, etc. in order of 
measurement, and X(i), X(2), X(3), etc. in 
order of their size, where X(i) is the 
smallest or minimum observation and 
X(n) is the largest or maximum 
observation in a sample of observations; 
also used to designate a measurable 
characteristic 

'x Sample average or sample mean, the 
sum of the n observed values in a sample 
divided by n 

NOTE 

The sample proportion p is an example of a 
sample average in which each observation 
is either a 1, the occurrence of a given type, 
or a 0, the nonoccurrence of the same type. 
The sample average is then exactly the 
ratio, p, of the total number of occurrences 
to the total number possible in the sample, 
n. 

If reference is to be made to the 
population from which a given sample came, 
the following symbols should be used. 

Yi Population skewness defined as the 
expected value (see Note) of (X - |i)^ 
divided by a^. It is spelled and 
pronounced "gamma one." 

72 Population coefficient of kurtosis defined 
as the amount by which the expected 
value (see Note) of (X - )x)* divided by a^ 
exceeds or falls short of 3; it is spelled 
and pronounced "gamma two." 

|X Population average or universe mean 

defined as the expected value (see Note) 
of X; thus E(X) = [i, spelled "mu" and 
pronounced "mew." 

p ' Population relative frequency 
a Population standard deviation, spelled 

and pronounced "sigma." 
o^ Population variance defined as the 

expected value (see Note) of the square 
of a deviation from the universe mean; 
t h u s E [ ( X - n ) 2 ] = a 2 

CV Population coefficient of variation 
defined as the population standard 
deviation divided by the population 
mean, also called the relative standard 
deviation, or relative error, (see Sect. 31) 

NOTE 

If a set of data is homogeneous in the sense 
of Section 3 of PART 1, it is usually safe to 
apply statistical theory and its concepts, 
like that of an expected value, to the data to 
assist in its analysis and interpretation. 
Only then is it meaningful to speak of a 
population average or other characteristic 
relating to a population (relative) frequency 
distribution function of X. This function 
commonly assumes the form of f(x), which 
is the probability (relative frequency) of an 
observation having exactly the value X, or 
the form of f(x)dx, which is the probability 
an observation has a value between x and x 
+ dx. Mathematically the expected value of 
a function of X, say h(X), is defined as the 
sum (for discrete data) or integral (for 
continuous data) of that function times the 
probability of X and written E[h(X)]. For 
example, if the probability of X lying 
between x and x + dx based on continuous 
data is f(x)dx, then the expected value is 

lh(x)fix)dx = E[hix)]. 

If the probability of X lying between x 
and X + dx based on continuous data is 
f(x)dx, then the expected value is 

I.h(x)f(x)dx = E[h(x)]. 

Sample statistics, like X, s ,̂ gi, and g2, 
also have expected values in most practical 
cases, but these expected values relate to 
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the population frequency distribution of 
entire samples of n observations each, 
rather than of individual observations. 

The expected value of X is [i, the same as 
that of an individual observation 
regardless of the population frequency 
distribution of X, and E(s2) = a^ likewise, 
but E(s) is less than a in all cases and its 
value depends on the population 
distribution of X. 

INTRODUCTION 

1. Purpose 

PART 1 of the Manual discusses the 
application of statistical methods to the 
problem of: (a) condensing the information 
contained in a sample of observations, and (b) 
presenting the essential information in a 
concise form more readily interpretable than 
the unorganized mass of original data. 

Attention will be directed particularly to 
quantitative information on measurable 
characteristics of materials and manufactured 
products. Such characteristics will be termed 
quality characteristics. 

2. Type of Data Considered 

Consideration will be given to the treatment 
of a sample of n observations of a single 
variable. Figure 1 illustrates two general 
types: (a) the first type is a series of n 
observations representing single measure­
ments of the same quality characteristic of n 
similar things, and (b) the second type is a 
series of n observations representing n 
measurements of the same quality 
characteristic of one thing. 

The observations in Figure 1 are denoted 
as Xi, where i = 1, 2, 3, ... , n. Generally, the 
subscript will represent the time sequence in 
which the observations were taken from a 
process or measurement. In this sense, we 
may consider the order of the data in Table 1 
as being represented in a time-ordered 
manner. 

Firsi Type Second Type 
n Chvobsmafm 

l/iMffs mtachfhing 
One 

thing 
n Observaiions 

a 
I a 

V 

FIG. 1—Two general types of data. 

Data of the first type are commonly 
gathered to furnish information regarding the 
distribution of the quality of the material itself, 
having in mind possibly some more specific 
purpose; such as the establishment of a quality 
standard or the determination of conformance 
with a specified quality standard, for example, 
100 observations of transverse strength on 100 
bricks of a given brand. 

Data of the second type are commonly 
gathered to furnish information regarding the 
errors of measurement for a particular test 
method, for example, 50-micrometer 
measurements of the thickness of a test block. 

N O T E 

The quality of a material in respect to some 
particular characteristic, such as tensile 
strength, is better represented by a 
frequency distribution function, than by a 
single-valued constant. 

The variability in a group of observed 
values of such a quality characteristic is 
made up of two parts: variability of the 
material itself, and the errors of 
measurement. In some practical problems, 
the error of measurement may be large 
compared with the variability of the 
material; in others, the converse may be 
true. In any case, if one is interested in 
discovering the objective frequency 
distribution of the quality of the material, 
consideration must be given to correcting 
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the errors of measurement (This is 
discussed in Ref. 1, pp. 379-384, in the 
seminal book on control chart methodology 
by Walter A. Shewhart.). 

3. Homogeneous Data 

While the methods here given may be used to 
condense any set of observations, the results 
obtained by using them may be of little value 
from the standpoint of interpretation unless 
the data are good in the first place and satisfy 
certain requirements. 

To be useful for inductive generalization, 
any sample of observations that is treated as a 
single group for presentation purposes should 
represent a series of measurements, all made 
under essentially the same test conditions, on 
a material or product, all of which has been 
produced under essentially the same 
conditions. 

If a given sample of data consists of two or 
more subportions collected under different test 
conditions or representing material produced 
under different conditions, it should be 
considered as two or more separate subgroups 
of observations, each to be treated 
independently in the analysis. Merging of such 
subgroups, representing significantly different 
conditions, may lead to a condensed 
presentation that will be of little practical 
value. Briefly, any sample of observations to 
which these methods are applied should be 
homogeneous. 

In the illustrative examples of PART 1, 
each sample of observations will be assumed to 
be homogeneous, that is, observations from a 
common universe of causes. The analysis and 
presentation by control chart methods of data 
obtained from several samples or capable of 
subdivision into subgroups on the basis of 
relevant engineering information is discussed 
in PART 3 of this Manual. Such methods 
enable one to determine whether for practical 

TABLE 1. Three groups of original data. 

(a) Transverse Strength of 270 Bricks of a Typical Brand, psi° 

860 
920 
1200 
850 
920 
1090 
830 
1040 
1510 
740 
1150 
1000 
1140 
1030 
700 
920 
860 
950 
1020 
1300 
890 
1080 
910 
870 
810 

1320 
1100 
830 
920 
1070 
700 
880 
1080 
1060 
1230 
860 
720 
1080 
960 
860 
1100 
990 
880 
750 
970 
1030 
970 
1100 
970 
1070 

820 
1250 
1100 
940 
1630 
910 
870 
1040 
840 
1020 
1100 
800 
990 
870 
660 
1080 
890 
970 
1070 
800 
1060 
960 
870 
910 
1100 

1040 
1480 
890 
1310 
670 
1170 
1340 
980 
940 
1060 
840 
1170 
570 
800 
1180 
980 
940 
1000 
920 
650 
1610 
1180 
980 
830 
460 

1000 
1150 
270 
1330 
1150 
800 
840 
1240 
1110 
990 
1060 
970 
790 
1040 
780 
760 
910 
990 
870 
1180 
1190 
1050 
730 
1030 
860 

1010 
740 
1070 
1020 
1170 
960 
1180 
800 
1240 
1020 
1030 
690 
1070 
820 
1230 
830 
1100 
830 
1010 
860 
1400 
920 
800 
1050 
1070 

1190 
1080 
830 
1390 
920 
1020 
740 
860 
1290 
820 
990 
1020 
820 
1180 
950 
1220 
1020 
850 
1230 
1150 
850 
1110 
800 
710 
880 

1180 
860 
1380 
830 
1120 
1090 
880 
1010 
870 
1030 
1100 
890 
580 
1350 
900 
1100 
1380 
630 
780 
1400 
1010 
780 
1140 
890 
1240 

1080 
1000 
960 
820 
1170 
2010 
790 
1130 
1260 
860 
1080 
700 
820 
1180 
760 
1090 
1010 
710 
1000 
880 
1010 
780 
940 
1010 
940 

1100 
810 
1360 
980 
1160 
890 
1100 
970 
1050 
850 
1070 
880 
1060 
950 
1380 
1380 
1030 
900 
1150 
730 
1240 
1190 
980 
1120 
860 

1130 
1000 
730 
1330 
1090 
930 
1260 
1140 
900 
890 
970 
1150 
980 
1110 
900 
1270 
950 
890 
1360 
910 
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purposes a given sample of observations may 
be considered to be homogeneous. 

4. Typical Examples of Physical Data 

Table 1 gives three typical sets of observations, 
each one of these datasets represents 
measurements on a sample of units or 

specimens selected in a random manner to 
provide information about the quality of a 
larger quantity of material—the general 
output of one brand of brick, a production lot of 
galvanized iron sheets, and a shipment of hard 
drawn copper wire. Consideration will be given 
to ways of arranging and condensing these 
data into a form better adapted for practical 
use. 

TABLE 1. Continued. 

(b) Weight of Coating of 100 Sheets 
of Galvanized Iron Sheets, oz/ft^'' 

(c) Breaking Strength of Ten 
Specimens of 0.104-in. Hard-

Drawn Copper Wire, Ib'̂  

1.467 

1.623 
1.520 
1.767 
1.550 
1.533 
1.377 
1.373 
1.637 
1.460 
1.627 
1.537 
1.533 
1.337 
1.603 
1.373 
1.457 
1.660 
1.323 
1.647 

1.603 

1.603 
1.383 
1.730 
1.700 
1.600 
1.603 
1.477 
1.513 
1.533 
1.593 
1.503 
1.600 
1.543 
1.567 
1.490 
1.550 
1.577 
1.483 
1.600 

1.577 

1.577 
1.323 
1.620 
1.473 
1.420 
1.450 
1.337 
1.440 
1.557 
1.480 
1.477 
1.550 
1.637 
1.570 
1.617 
1.477 
1.750 
1.497 
1.717 

1.563 

1.393 
1.647 
1.620 
1.530 
1.470 
1.337 
1.580 
1.493 
1.563 
1.543 
1.567 
1.670 
1.473 
1.633 
1.763 
1.573 
1.537 
1.420 
1.513 

1.437 

1.350 
1.530 
1.383 
1.457 
1.443 
1.473 
1.433 
1.637 
1.500 
1.607 
1.423 
1.573 
1.753 
1.467 
1.563 
1.503 
1.550 
1.647 
1.690 

578 

572 

570 

568 

572 

570 

570 

572 

576 

584 

" Measured to the nearest 10 psi. Test method used was ASTM Method of Testing Brick and Structural Clay (C 
67). Data from ASTM Manual for Interpretation of Refractory Test Data, 1935, p. 83. 

' Measured to the nearest 0.01 oz/ft̂  of sheet, averaged for three spots. Test method used was ASTM Triple Spot 
Test of Standard Specifications for Zinc-Coated (Galvanized) Iron or Steel Sheets (A 93). This has been discontinued 
and was replaced by ASTM Specification for General Requirements for Steel Sheet, Zinc-Coated (Galvanized) by the 
Hot-Dip Process (A 525). Data from laboratory tests. 

'Measured to the nearest 2 lb. Test method used was ASTM Specification for Hard-Drawn Copper Wire (B 1). Data 
from inspection report. 
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500 1000 1500 
Transverse Strength, psi. 

2000 

Fig. 2—Showing graphicaiiy the ungrouped frequency distribution of a set of observations. Each dot represents one bricl<, 
data of Table 2(a}. 

sorted from smallest to largest. These 
features should make it easier to convert from 
an ungrouped to a grouped frequency 
distribution. More importantly, they allow 
calculation of the order statistics tha t will aid 
in finding ranges of the distribution wherein 
lie specified proportions of the observations. A 
collection of observations is often seen as only 
a sample from a potentially huge population of 
observations and one aim in studying the 
sample may be to say what proportions of 
values in the population lie in certain ranges. 
This is done by calculating the percentiles of 
the distribution. We will see there are a 
number of ways to do this but we begin by 
discussing order statistics and empirical 
estimates of percentiles. 

UNGROUPED WHOLE NUMBER 
DISTRIBUTION 

5. Ungrouped Distribution 

An arrangement of the observed values in 
ascending order of magnitude will be referred 
to in the Manual as the ungrouped frequency 
distribution of the data, to distinguish it from 
the grouped frequency distribution defined in 
Section 8. A further adjustment in the scale of 
the ungrouped distribution produces the whole 
number distribution. For example, the data of 
Table 1(a) were multiplied by lO^, and those of 
Table 1(b) by 103, ^hi le those of Table 1(c) were 
already whole numbers. If the data carry 
digits past the decimal point, just round until a 
tie (one observation equals some other) appears 
and then scale to whole numbers. Table 2 
presents ungrouped frequency distributions for 
the three sets of observations given in Table 1. 

Figure 2 shows graphically the ungrouped 
frequency distribution of Table 2(a). In the 
graph, there is a minor grouping in terms of 
the unit of measurement. For the data of Fig. 2, 
it is the "rounding-off unit of 10 psi. It is 
rarely desirable to present data in the manner 
of Table 1 or Table 2. The mind cannot grasp in 
its entirety the meaning of so many numbers; 
furthermore, greater compactness is required 
for most of the practical uses that are made of 
data. 

6. Empirical Percentiles and Order 
Statistics 

As should be apparent, the ungrouped whole 
number distribution may differ from the 
original data by a scale factor (some power of 
ten), by some rounding and by having been 

A glance at Table 2 gives some 
information not readily observed in the original 
data set of Table 1. The data in Table 2 are 
arranged in increasing order of magnitude. 
When we arrange any data set like this the 
resulting ordered sequence of values are 
referred to as order statistics. Such ordered 
arrangements are often of value in the initial 
stages of an analysis. In this context, we use 
subscript notation and write X© to denote the 
P'^ order statistic. For a sample of n values the 
order statistics are X(i) < X(2) < X(3) < ... < X(n). 
The index i is sometimes called the rank of the 
data point to which it is attached. For a 
sample size of n values, the first order statistic 
is the smallest or minimum value and has rank 
1. We write this as X(i). The n"» order statistic 
is the largest or maximum value and has rank 
n. We write this as X(n). The i*'' order statistic 
is written as X(i), for 1 < i < ;x. For the breaking 
strength data in Table 2c, the order statistics 
are: X(i)=568, X(2)=570, ... , X(io)=584. 

When ranking the data values, we may find 
some that are the same. In this situation, we 
say that a matched set of values constitutes a 
tie. The proper rank assigned to values that 
make up the tie is calculated by averaging the 
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TABLE 2. Ungrouped frequency distributions in tabular form. 

(a) Transverse Strength, psi (data of Table 1 (a)) 

270 
460 
570 
580 
630 

650 
660 
670 
690 
700 

700 
700 
710 
710 
720 

730 
730 
730 
740 
740 

740 
750 
760 
760 
780 

780 
780 
780 
790 
790 

800 
800 
800 
800 
800 

800 
800 
810 
810 
820 

820 
820 
820 
820 
820 

820 
830 
830 
830 
830 

830 
830 
830 
840 
840 

840 
850 
850 
850 
850 

860 
860 
860 
860 
860 

860 
860 
860 
860 
860 

870 
870 
870 
870 
870 

870 
880 
880 
880 
880 

880 
880 
890 
890 
890 

890 
890 
890 
890 
890 

900 
900 
900 
900 
910 

910 
910 
910 
910 
920 

920 
920 
920 
920 
920 

930 
940 
940 
940 
940 

940 
950 
950 
950 
950 

960 
960 
960 
960 
970 

970 
970 
970 
970 
970 

970 
980 
980 
980 
980 

980 
980 
990 
990 
990 

990 
990 
1000 
1000 
1000 

1000 
1000 
1000 
1010 
1010 

1010 
1010 
1010 
1010 
1010 

1020 
1020 
1020 
1020 
1020 

1020 
1020 
1030 
1030 
1030 

1030 
1030 
1030 
1040 
1040 

1040 
1040 
1050 
1050 
1050 

1060 
1060 
1060 
1060 
1060 

1070 
1070 
1070 
1070 
1070 

1070 
1070 
1080 
1080 
1080 

1080 
1080 
1080 
1080 
1090 

1090 
1090 
1090 
1100 
1100 

1100 
1100 
1100 
1100 
1100 

1100 
1100 
1100 
1100 
1110 

1110 
1110 
1120 
1120 
1130 

1130 
1140 
1140 
1140 
1150 

1150 
1150 
1150 
1150 
1150 

1160 
1170 
1170 
1170 
1170 

1180 
1180 
1180 
1180 
1180 

1180 
1180 
1190 
1190 
1190 

1200 
1220 
1230 
1230 
1230 

1240 
1240 
1240 
1240 
1250 

1260 
1260 
1270 
1290 
1300 

1310 
1320 
1330 
1330 
1340 

1350 
1360 
1360 
1380 
1380 

1380 
1380 
1390 
1400 
1400 

1480 
1510 
1610 
1630 
2010 

ranks that would have been determined by the 
procedure above in the case where each value 
was different from the others. For example, 
there are many ties present in Table 2. The 
rank associated with the three values of 700 
would be the average of the ranks as if they 
were 700, 701, and 702, respectively. In other 
words, we see that the values of 700 occur in 
the 10*, llth^ and 12* positions, or 
represented as X(io), X(ii), and X(i2), 
respectively, if they were unequal. Thus, the 
value of 700 should carry a rank equal to 
(10+ll+12)/3 = 11, and each value specified as 
X(ii). 

The order statistics can be used for a 
variety of purposes, but it is for estimating the 
percentiles that they are used here. A 
percentile is a value that divides a distribution 
to leave a given fraction of the observations 

less than that value. For example, the 50* 
percentile, typically referred to as the median, 
is a value such that half of the observations 
exceed it and half are below it. The 75* 
percentile is a value such that 25% of the 
observations exceed it and 75% are below it. 
The 90* percentile is a value such that 10% of 
the observations exceed it and 90%) are below 
it. 

To aid in understanding the formulas 
that follow, consider finding the percentile 
that best corresponds to a given order 
statistic. Although there are several answers 
to this question, one of the simplest is to 
realize that a sample of size n will partition 
the distribution from which it came into n+1 
compartments as illustrated in the following 
figure. 
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statistic. For X(i), the percentile is 
100(l)/(24+l) - 4th; and for X(24), the percentile 
is 100(24/(24+1) = 96th. For the illustration in 
Figure 3, the point a corresponds to the 20*^ 
percentile, point b to the 40'^ percentile, point 
c to the GO'h percentile and point d to the 80* 
percentile. It is not difficult to extend this 
application. From the figure it appears that 
the interval defined by a < x < d should 
enclose, on average, 60% of the distribution of 
X. 

Fig. 3—Any distribution is partitioned into n+1 
compartments witti a sampie of n. 

In Figure 3, the sample size is rt=4; the 
sample values are denoted as a, b, c and d. 
The sample presumably comes from some 
distribution as the figure suggests. Although 
we do not know the exact locations that the 
sample values correspond to along the true 
distribution, we observe that the four values 
divide the distribution into 5 roughly equal 
compartments. Each compartment will 
contain some percentage of the area under the 
curve so that the sum of each of the 
percentages is 100%. Assuming that each 
compartment contains the same area, the 
probability a value will fall into any 
compartment is 100[l/(n+l)]%. 

Similarly, we can compute the percentile 
that each value represents by 100[i/(n+l)]%, 
where i = 1, 2, ..., n. If we ask what percentile 
is the first order statistic among the four 
values, we estimate the answer as the 
100[l/(4+l)]% = 20%, or 20th percentile. This 
is because, on average, each of the 
compartments in Figure 3 will include 
approximately 20% of the distribution. Since 
there are ?i+l=4+l=5 compartments in the 
figure, each compartment is worth 20%. The 
generalization is obvious. For a sample of n 
values, the percentile corresponding to the i'h 
order statistic is 100[i/(7i+l)]%, where i = 1, 2, 
..., n. 

For example, if n=24 and we want to 
know which percentiles are best represented 
by the l^t and 24th order statistics, we can 
calculate the percentile for each order 

We now extend these ideas to estimate 
the distribution percentiles. For the coating 
weights in Table 2(b), the sample size is 
n.=100. The estimate of the 50*^ percentile, or 
sample median, is the number lying halfway 
between the 50th and Sl'̂ t order statistics (X(50) 
= 1.537 and X(5i) = 1.543, respectively). Thus, 
the sample median is (1.537 +1.543)/2 = 1.540. 
Note that the middlemost values may be the 
same (tie). When the sample size is an even 
number, the sample median will always be 
taken as halfway between the middle two 
order statistics. Thus, if the sample size is 
250, the median is taken as (X(i25)+X(i26))/2. If 
the sample size is an odd number, the median 
is taken as the middlemost order statistic. 
For example, if the sample size is 13, the 
sample median is taken as X(7). Note that for 
an odd numbered sample size, n, the index 
corresponding to the median will be i -
in+l)/2. 

We can generalize the estimation of any 
percentile by using the following convention. 
Let p be a proportion, so that for the 50th 
percentile p equals 0.50, for the 25th percentile 
p = 0.25, for the lO'h percentile p = 0.10, and 
so forth. To specify a percentile we need only 
specify p. An estimated percentile will 
correspond to an order statistic or weighted 
average of two adjacent order statistics. First, 
compute an approximate rank using the 
formula i = (n+l)p. If i is an integer then the 
lOOp"* percentile is estimated as X© and we 
are done. If i is not an integer, then drop the 
decimal portion and keep the integer portion 
of i. Let k be the retained integer portion and r 
be the dropped decimal portion (note: 0<r<l). 
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(b) Weight of Coating, oz/ft^ 
(data of Table 1(6)) 

(c) Breaking Strength, lb. 
(data of Table 1(c)) 

1.323 
1.323 
1.337 
1337 
1.337 

1.350 
1.373 
1.373 
1.377 
1.383 

1.383 
1.393 
1.420 
1.420 
1.423 

1.433 
1.437 
1.440 
1.443 
1.450 

1.457 
1.457 
1.460 
1.467 
1.467 

1.470 
1.473 
1.473 
1.473 
1.477 

1.477 
1.477 
1.480 
1.483 
1.490 

1.493 
1.497 
1.500 
1.503 
1.503 

1.513 
1.513 
1.520 
1.530 
1.530 

1.533 
1.533 
1.533 
1.537 
1.537 

1.543 
1.543 
1.550 
1.550 
1.550 

1.550 
1.557 
1.563 
1.563 
1.563 

1.567 
1.567 
1.570 
1.573 
1.573 

1.577 
1.577 
1.577 
1.580 
1.593 

1.600 
1.600 
1.600 
1.603 
1.603 

1.603 
1.603 
1.607 
1.617 
1.620 

1.620 
1.623 
1.627 
1.633 
1.637 

1.637 
1.637 
1.647 
1.647 
1.647 

1.660 
1.670 
1.690 
1.700 
1.717 

1.730 
1.750 
1.753 
1.763 
1.767 

568 
570 
570 
570 
572 

572 
572 
576 
578 
584 

The estimated lOOp"* percentile is computed 
from the formula X(k) + r(X(k+i) - X(k)). 

Consider the transverse strengths with 
?i=270 and let us find the 2.5'^ and 97.5*^ 
percentiles. For the 2.5*̂ ^ percentile, p = 0.025. 
The approximate rank is computed as i = 
(270+1) 0.025 = 6.775. Since this is not an 
integer, we see that k-6 and r=0.775. Thus, 
the 2.5*'̂  percentile is estimated by X(6) + r(X(7)-
X(6)), which is 650 + 0.775(660-650) = 657.75. 
For the 97.5'^ percentile, the approximate 
rank is i = (270+1) 0.975 == 264.225. Here 
again, i is not an integer and so we use ^=264 
and r=0.225; however; notice that both X(264) 
and X(265) are equal to 1400. In this case, the 
value 1400 becomes the estimate. 

GROUPED FREQUENCY 
DISTRIBUTIONS 

7. Introduction 

Merely grouping the data values may 
condense the information contained in a set of 
observations. Such grouping involves some 
loss of information but is often useful in 
presenting engineering data. In the following 
sections, both tabular and graphical 
presentation of grouped data will be 
discussed. 
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8. Definitions 

A grouped frequency distribution of a set 
of observations is an arrangement that shows 
the frequency of occurrence of the values of 
the variable in ordered classes. 

The interval, along the scale of 
measurement, of each ordered class is termed 
a bin. 

The frequency for any bin is the number of 
observations in that bin. The frequency for a 
bin divided by the total number of 
observations is the relative frequency for that 
bin. 

Table 3 illustrates how the three sets of 
observations given in Table 1 may be 
organized into grouped frequency 
distributions. The recommended form of 
presenting tabular distributions is somewhat 
more compact, however, as shown in Table 4. 
Graphical presentation is used in Fig. 4 and 
discussed in detail in Section 14. 

9. Choice of Bin Boundaries 

It is usually advantageous to make the bin 
intervals equal. It is recommended that, in 
general, the bin boundaries be chosen half­
way between two possible observations. By 
choosing bin boundaries in this way, certain 
difficulties of classification and computation 
are avoided (See Ref. 2, pp. 73-76). With this 
choice, the bin boundary values will usually 
have one more significant figure (usually a 5) 
than the values in the original data. For 
example, in Table 3(a), observations were 
recorded to the nearest 10 psi, hence the bin 
boundaries were placed at 225, 375, etc., 
rather than at 220, 370, etc., or 230, 380, etc. 
Likewise, in Table 3(6), observations were 
recorded to the nearest 0.01 oz/ft^, hence bin 
boundaries were placed at 1.275, 1.325, etc., 
rather than at 1.28, 1.33, etc. 

10. Number of Bins 

The number of bins in a frequency 
distribution should preferably be between 13 
and 20. (For a discussion of this point. See 
Ref. 1, p. 69, and Ref. 18, pp. 9-12.) Sturge's 
rule is to make the number of bins equal to 
l-t-3.31ogio(n). If the number of observations 
is, say, less than 250, as few as 10 bins may be 
of use. When the number of observations is 
less than 25, a frequency distribution of the 
data is generally of little value from a 
presentation standpoint, as for example the 10 
observations in Table 3(c). In general, the 
outline of a frequency distribution when 
presented graphically is more irregular when 
the number of bins is larger. This tendency is 
illustrated in Fig. 4. 

11. Rules for Constructing Bins 

After getting the ungrouped whole number 
distribution, one can use a number of popular 
computer programs to automatically construct 
a histogram. For example, a spreadsheet 
program, e.g., Excel^, can be used by selecting 
the Histogram item from the Analysis 
Toolpack menu. Alternatively, you can do it 
manually by applying the following rules: 

• The number of bins (or "cells" or "levels") 
is set equal to NL = CEIL(2.1 log(n)), 
where n is the sample size and CEIL is an 
Excel spreadsheet function that extracts 
the largest integer part of a decimal 
number, e.g., 5 is CEIL(4.1)). 

• Compute the bin interval as LI = 
CEIL(RG/NL), where RG = LW-SW, and 
LW is the largest whole number and SW is 
the smallest among the n observations. 

• Find the stretch adjustment as SA = 
CEIL((NL*LI-RG)/2). Set the start 
boundary at START = SW-SA-0.5 and 
then add LI successively NL times to get 
the bin boundaries. Average successive 
pairs of boundaries to get the bin 
midpoints. 

' Excel is a trademark of Microsoft Corporation. 
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TABLE 3. Three examples of grouped frequency distribution, showing bin midpoints and bin boundaries. 

Observed 
Frequency 

(a) Transverse strength, psi 
(data of Table 1 {a)) 

(b) Weight of coating, oz/fl^ 
(data of Table 1 (b)) 

(c) Breaking strength, lb 
(data Table 1 (c)) 

Bin 
Midpoint 

300 

450 

600 

750 

900 

1050 

1200 

1350 

1500 

1650 

1800 

1950 

Total 

1.300 

1.350 

1.400 

1.450 

1.500 

1.550 

1.600 

1.650 

1.700 

1.750 

Total 

568 

570 

572 

574 

576 

578 

580 

582 

584 

Total 

Bin 
Boundaries 

225 

375 

525 

675 

825 

975 

1125 

1275 

1425 

1575 

1725 

1875 

2025 

1.275 

1.325 

1.375 

1.425 

1.475 

1.525 

1.575 

1.625 

1.675 

1.725 

1.775 

567 

569 

571 

573 

575 

577 

579 

581 

583 

585 

38 

80 

83 

39 

17 

2 

2 

0 

1 

270 

2 

6 

7 

14 

14 

22 

17 

10 

3 

5 

100 

1 

3 

3 

0 

1 

1 

0 

0 

1 

10 
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TABLE 4. Four methods of presenting a tabular frequency distribution (data of TABLE 1(a)). 

(a) Frequency 

Transverse Strength, 
psi 

225 to 375 
375 to 525 
525 to 675 
675 to 825 
825 to 975 

975 to 1125 
1125 to 1275 
1275 to 1425 
1425 to 1575 
1575 to 1725 
1725 to 1875 
1875 to 2025 

Total 

Number of Bricks 
Having Strength 

Within Given Limits 

1 
1 
6 

38 
80 
83 
39 
17 
2 
2 
0 
1 

270 

(c) Cumulative Frequency 

Transverse Strength, 
psi 

375 
525 
675 
825 
975 

1125 
1275 
1425 
1575 
1725 
1875 
2025 

Number of Bricks 
Having Strength 
less than Given 

Values 

1 
2 
8 

46 
126 
209 
248 
265 
267 
269 
269 
270 

(6) Relative Frequency 
(expressed in percentages) 

Transverse Strength, 
psi 

225 to 375 
375 to 525 
525 to 675 
675 to 825 
825 to 975 

975 to 1125 
1125 to 1275 
1275 to 1425 
1425 to 1575 
1575 to 1725 
1725 to 1875 
1875 to 2025 

Total 
Number of observations 

Percentage of Bricks 
Having Strength 

Within Given Limits 

0.4 
0.4 
2.2 

14.1 
29.6 
30.7 
14.5 

6.3 
0.7 
0.7 
0.0 
0.4 

100.0 
= 270 

(d) Cumulative Relative Frequency (expressed in 
percentages) 

Transverse Strength, 
psi 

375 
525 
675 
825 
975 

1125 
1275 
1425 
1575 
1725 
1875 
2025 

Percentage of Bricks 
Having Strength 
less than Given 

Values 

0.4 
0.8 
3.0 

17.1 
46.7 
77.4 
91.9 
98.2 
98.9 
99.6 
99.6 

100.0 

Number of observations = 270 

NOTE—"Number of observations" should be recorded with tables of relative frequencies. 

100 

> 80 
o 
S 60h 
I 40 

Using 12 cells, (Table III [a]) Using 19 cells 

500 1000 1500 2000 500 1000 1500 2000 

Fig. 4—Illustrating increased irregularity with larger number of cells, or bins. 
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• Having defined the bins, the last step is to 
count the whole numbers in each bin and 
thus record the grouped frequency 
distribution as the bin midpoints with the 
frequencies in each. 

• The user may improve upon the rules but 
they will produce a useful starting point 
and do obey the general principles of 
construction of a frequency distribution. 

Figure 5 illustrates a convenient method 
of classifying observations into bins when the 
number of observations is not large. For each 
observation, a mark is entered in the proper 
bin. These marks are grouped in five's as the 
tallying proceeds, and the completed 
tabulation itself, if neatly done, provides a 
good picture of the frequency distribution. 

If the number of observations is, say, over 
250, and accuracy is essential, the use of a 
computer may be preferred. 

12. Tabular Presentation 
Methods of presenting tabular frequency 
distributions are shown in Table 4. To make a 
frequency tabulation more understandable, 
relative frequencies may be listed as well as 
actual frequencies. If only relative frequencies 
are given, the table cannot be regarded as 
complete unless the total number of 
observations is recorded. 

Confusion often arises from failure to 
record bin boundaries correctly. Of the four 
methods, A to D, illustrated for strength 
measurements made to the nearest 10 lb., only 
Methods A and B are recommended (Table 5). 
Method C gives no clue as to how observed 
values of 2100, 2200, etc., which fell exactly at 
bin boundaries were classified. If such values 
were consistently placed in the next higher bin, 
the real bin boundaries are those of Method A. 
Method D is liable to misinterpretation since 
strengths were measured to the nearest 10 lb. 
only. 

Transverse 
Strength, 

psi. 

225 to 375 

375 to 525 

525 to 675 

675 to 825 

825 to 975 

975 to 1125 

1125 to 1275 

1275 to 1425 

1425 to 1575 

1575 to 1775 

1725 to 1875 

1875 to 2025 

1 
1 
mi 
mmmitfritfritiMttnii 
1tfrltfr1tH~ltH*1tfrltfrltfrlHKllH-ttfr1lfr1Hf1tfr1^ 
itfrmitfritfrittt-iifrttfrmitfrmmmmmmm 
iifritifiiifmittntifmiiii 
mmitifii 
II 
II 

1 
Total 

Frequency 

1 

1 

6 

38 

80 

83 

39 

17 

2 

2 

0 

1 

270 

Fig. 5—Method of classifying observations. Data of Table 1(a). 
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TABLE 5. Methods A through D illustrated for strength measurements to the nearest 10 lb. 

RECOMMENDED NOT RECOMMENDED 

METHOD A METHOD B METHOD C METHOD D 

NUMBER NUMBER 
OF OF 

OBSER- OBSER­
VATIONS STRENGTH, VATIONS 

lb. 
STRENGTH, 

lb. 
STRENGTH, 

lb. 

NUMBER 
OF 

OBSER­
VATIONS STRENGTH, 

lb. 

NUMBER 
OF 

OBSER­
VATIONS 

1995 to 2095 

2095 to 2195 

2195 to 2295 

2295 to 2395 

2395 to 2495 

etc. 

1 

3 

17 

36 

82 

etc. 

2000 to 2090 

2100 to 2190 

2200 to 2290 

2300 to 2390 

2400 to 2490 

etc. 

1 

3 

17 

36 

82 

etc. 

2000 to 2100 

2100 to 2200 

2200 to 2300 

2300 to 2400 

2400 to 2500 

etc. 

1 

3 

17 

36 

82 

etc. 

2000 to 2099 

2100 to 2199 

2200 to 2299 

2300 to 2399 

2400 to 2499 

etc. 

1 

3 

17 

36 

82 

etc. 

100 

80 

60 

40 

20 

0 

80 

60 

40 

20 

0 

80 

60 

40 

20 

0 

80 

60 

40 

20 

0 - R 

Frequency 
Bar Chart 

(Bars centered on -
cell midpoints) 

Alternate Form 
of Frequency 

Bar Chart -
(Line erected at 
cell midpoints) 

— Frequency - • 
Histogram 

(Columns erected 
on cells) 

500 1000 1500 

Transverse Strength, psi. 

30 

20 

10 

0 

30 

20 

10 -
c 

CD 

Q . 

30 

20 

10 

0 

30 

20 

10 

0 

2000 

Frequency I I I 11 6l38l80l83l39ll7l2 I 2 lo I 1 I 
C e l l B o u n d r i e s S ^ § g § g m ^ § | | 

Cel l M idpo in t I30ol45ol60ol75ol90oll05oll20oll35oll50oll65olia0oll95ol 

FIG. 6—Graphical presentations of a frequency 
distribution. Data of Table 1(a) as grouped in Table 3(a). 

13. Graphical Presentation 
Using a convenient horizontal scale for 

values of the variable and a vertical scale for 
bin frequencies, frequency distributions may be 
reproduced graphically in several ways as 
shown in Fig. 6. The frequency bar chart is 
obtained by erecting a series of bars, centered 
on the bin midpoints, with each bar having a 
height equal to the bin frequency. An alternate 
form of frequency bar chart may be constructed 
by using lines rather than bars. The 
distribution may also be shown by a series of 
points or circles representing bin frequencies 
plotted at bin midpoints. The frequency polygon 
is obtained by joining these points by straight 
lines. Each endpoint is joined to the base at the 
next bin midpoint to close the polygon. 

Another form of graphical representation 
of a frequency distribution is obtained by 
placing along the graduated horizontal scale a 
series of vertical columns, each having a width 
equal to the bin width and a height equal to the 
bin frequency. Such a graph, shown at the 
bottom of Fig. 6, is called the frequency 
histogram of the distribution. In the histogram, 
if bin widths are arbitrarily given the value 1, 
the area enclosed by the steps represents 
frequency exactly, and the sides of the columns 
designate bin boundaries. 
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The same charts can be used to show 
relative frequencies by substituting a relative 
frequency scale, such as that shown in Fig. 6. 
It is often advantageous to show both a 
frequency scale and a relative frequency scale. 
If only a relative frequency scale is given on a 
chart, the number of observations should be 
recorded as well. 

14. Cumulative Frequency 
Distribution 

Two methods of constructing cumulative 
frequency polygons are shown in Fig. 7. Points 
are plotted at bin boundaries. The upper chart 
gives cumulative frequency and relative 
cumulative frequency plotted on an arithmetic 
scale. This type of graph is often called an 
ogive or "s" graph. Its use is discouraged 
mainly because it is usually difficult to 
interpret the tail regions. 

The lower chart shows a preferable method 
by plotting the relative cumulative frequencies 
on a normal probability scale. A Normal 
distribution (see Fig. 14) will plot cumulatively 
as a straight line on this scale. Such graphs 
can be drawn to show the number of 
observations either "less than" or "greater 
than" the scale values. (Graph paper with one 
dimension graduated in terms of the 
summation of Normal law distribution has 
been described in Refs. 3,18). It should be 
noted that the cumulative percents need to be 
adjusted to avoid cumulative percents from 
equaling or exceeding 100%. The probability 
scale only reaches to 99.9% on most available 
probability plotting papers. Two methods 
which will work for estimating cumulative 
percentiles are [cumulative frequency/(n+1)], 
and [(cumulative frequency — 0.5)/n]. 

§ 300 

100 

50 S 

1500 

Transverse Strength, psi. 

(a) Using arithmetic scale for frequency. 
(b) Using probability scale for relative frequency. 

Fig. 7—Graphical presentations of a cumulative frequency distribution. Data of Table 4: (a) using arithmetic scale for 
frequency, and (b) using probability scale for relative frequency. 
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For some purposes, the number of 
observations having a value "less than" or 
"greater than" particular scale values is of 
more importance than the frequencies for 
particular bins. A table of such frequencies is 
termed a cumulative frequency distribution. 
The "less than" cumulative frequency 
distribution is formed by recording the 
frequency of the first bin, then the sum of the 
first and second bin frequencies, then the sum 
of the first, second, and third bin frequencies, 
and so on. 

Because of the tendency for the grouped 
distribution to become irregular when the 
number of bins increases, it is sometimes 
preferable to calculate percentiles from the 
cumulative frequency distribution rather than 
from the order statistics. This is 
recommended as n passes the hundreds and 
reaches the thousands of observations. The 
method of calculation can easily be illustrated 
geometrically by using Table 4(d), Cumulative 
Relative Frequency and the problem of getting 
the 2.5*11 and 97.5'^ percentiles. 

The first step is to reduce the data to two or 
three-digit numbers by: (1) dropping constant 
initial or final digits, like the final zero's in 
Table 1(a) or the initial one's in Table 1(b); (2) 
removing the decimal points; and finally, (3) 
rounding the results after (1) and (2), to two or 
three-digit numbers we can call coded 
observations. For instance, if the initial one's 
and the decimal points in the data of Table 1(b) 
are dropped, the coded observations run from 
323 to 767, spanning 445 successive integers. 

If forty successive integers per class 
interval are chosen for the coded observations 
in this example, there would be 12 intervals; if 
thirty successive integers, then 15 intervals; 
and if twenty successive integers then 23 
intervals. The choice of 12 or 23 intervals is 
outside of the recommended interval from 13 to 
20. While either of these might nevertheless be 
chosen for convenience, the flexibility of the 
stem and leaf procedure is best shown by 
choosing thirty successive integers per interval, 
perhaps the least convenient choice of the three 
possibilities. 

We first define the cumulative relative 
frequency function, F(x), from the bin 
boundaries and the cumulative relative 
frequencies. It is just a sequence of straight 
lines connecting the points (X=235, 
F(235)=0.000), (X=385, F(385)=0.0037), 
(X=535, F(535)=0.0074), and so on up to 
(X=2035, F(2035)=1.000). Notice in Fig. 7, 
with an arithmetic scale for percent, and you 
can see the function. A horizontal line at 
height 0.025 will cut the curve between X=535 
and X=685, where the curve rises from 0.0074 
to 0.0296. The full vertical distance is 0.0296-
0.0074 = 0.0222, and the portion lacking is 
0.0250-0.0074 = 0.0176, so this cut will occur 
at (0.0176/0.0222) 150+535 = 653.9 psi. The 
horizontal at 97.5% cuts the curve at 1419.5 
psi. 

15. "Stem and Leaf Diagram 

It is sometimes quick and convenient to 
construct a "stem and leaf diagram, which 
has the appearance of a histogram turned on 
its side. This kind of diagram does not require 
choosing explicit bin widths or boundaries. 

Each of the resulting 15 class intervals for 
the coded observations is distinguished by a 
first digit and a second. The third digits of the 
coded observations do not indicate to which 
intervals they belong and are therefore not 
needed to construct a stem and leaf diagram in 
this case. But the first digit may change (by 
one) within a single class interval. For 
instance, the first class interval with coded 
observations beginning with 32, 33 or 34 may 
be identified by 3(234) and the second class 
interval by 3(567), but the third class interval 
includes coded observations with leading digits 
38, 39 and 40. This interval may be identified 
by 3(89)4(0) The intervals, identified in this 
manner, are listed in the left column of Fig. 8. 
Each coded observation is set down in turn to 
the right of its class interval identifier in the 
diagram using as a symbol its second digit, in 
the order (from left to right) in which the 
original observations occur in Table 1(b). 

In spite of the complication of changing 
some first digits within some class intervals, 
this stem and leaf diagram is quite simple to 
construct. In this particular case, the diagram 
reveals "wings" at both ends of the diagram. 
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First (and 

second) Digit: 

3(234) 
3(567) 
3(89)4(0) 
4(123) 
4(456) 
4(789) 
5(012) 
5(345) 
5(678) 
5(9)6(01) 
6(234) 
6(567) 
6(89)7(0) 
7(123) 
7(456) 

Second Digits Only 

3 2 2 3 3 
7 7 7 5 
8 9 8 
2 2 3 3 2 
6 6 5 5 4 5 4 6 
7 9 8 7 8 7 7 9 7 9 7 7 
2 1 0 1 0 0 
5 3 3 3 3 4 5 5 5 3 4 3 3 5 
6 7 7 7 7 6 8 6 6 7 7 6 
0 0 0 0 9 0 0 1 0 
2 3 2 4 2 3 4 2 3 3 4 
67 
09 
3 1 
6 5 6 5 

FIG. 8—Stem and leaf diagram of data from Table 1(b) 
with groups based on triplets of first and second 
decimal digits. 

As this example shows, the procedure does 
not require choosing a precise class interval 
width or boundary values. At least as 
important is the protection against plotting 
and counting errors afforded by using clear, 
simple numbers in the construction of the 
diagram—a histogram on its side. For further 
information on stem and leaf diagrams see 
Refs. 4 and 18. 

16. "Ordered Stem and Leaf Diagram 
and Box Plot 

The stem and leaf diagram can be 
extended to one that is ordered. The ordering 
pertains to the ascending sequence of values 
within each "leaf. The purpose of ordering 
the leaves is to make the determination of the 
quartiles an easier task. The quartiles 
represent the 2b''^, 50"i (median), and 75'^ 
percentiles of the frequency distribution. 
They are found by the method discussed in 
Section 6. 

In Fig. 8a, the quartiles for the data are 
bold and underlined. The quartiles are used 
to construct another graphic called a box plot. 

The 'TJOX" is formed by the 2 5 * and 75'*^ 
percentiles, the center of the data is dictated by 
the 50'^ percentile (median) and "whiskers" are 
formed by extending a line from either side of 
the box to the minimum, X(i) point, and to the 
maximum, X(n) point. Fig. 8b shows the box 
plot for the data from Table 1(b). For further 
information on boxplots, see Ref. 18. 

First (and 

second) Digit: 

3(234) 
3(567) 
3(89)4(0) 
4(123) 
4(456) 
4(789) 
5(012) 
5(345) 
5(678) 
5(9)6(01) 
6(234) 
6(567) 
6(89)7(0) 
7(123) 
7(456) 

Second Digits Only 

2 2 3 3 3 
5 7 7 7 
8 8 9 
2 2 2 3 3 
4 4 5 5 5 6 6 6 
7 7 7 7 7 7 7 8 8 9 9 9 
0 0 0 1 1 2 
3 3 3 3 3 3 3 4 4 5 5 5 5 5 
6 6 6 6 6 7 7 7 7 7 7 8 
90 0 0 0 0 0 0 1 
2 2 2 2 3 3 3 3 4 4 4 
67 
90 
1 3 
5 5 6 6 

FIG. 8a—Ordered stem and leaf diagram of data from 
Table 1(b) with groups based on triplets of first and 
second decimal digits. The 25'", 50*̂  and 75"̂  quartiles are 
shown in bold type and are underlined. 

1.323 1.767 
1.4678 1.540 1.6030 

FIG. 8b—Box plot of data from Table 1(b) 

The information contained in the data may 
also be summarized by presenting a tabular 
grouped frequency distribution, if the number 
of observations is large. A graphical 
presentation of a distribution makes it possible 
to visualize the nature and extent of the 
observed variation. 

While some condensation is effected by 
presenting grouped frequency distributions, 
further reduction is necessary for most of the 
uses that are made of ASTM data. This need 
can be fulfilled by means of a few simple 
functions of the observed distribution, notably, 
the average and the standard deviation. 
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FUNCTIONS OF A FREQUENCY 
DISTRIBUTION 

17. Introduct ion 

In the problem of condensing and 
summarizing the information contained in the 
frequency distribution of a sample of 
observations, certain functions of the 
distribution are useful. For some purposes, a 
statement of the relative frequency within 
stated limits is all tha t is needed. For most 
purposes, however, two salient characteristics 
of the distribution which are illustrated in 
Fig. 9a are: (a) the position on the scale of 
measurement—the value about which the 
observations have a tendency to center, and 

(b) the spread or dispersion of the observations 
about the central value. 

A third characteristic of some interest, but 
of less importance, is the skewness or lack of 
symmetry—the extent to which the 
observations group themselves more on one 
side of the central value than on the other (see 
Fig. 9b). 

A fourth characteristic is "kurtosis" which 
relates to the tendency for a distribution to 
have a sharp peak in the middle and excessive 
frequencies on the tails as compared with the 
Normal distribution or conversely to be 
relatively flat in the middle with little or no 
tails (see Fig. 10). 

Swwd 

. . • i t l 1 M i l . . . . . lllllh. 

yilllllllllllllii....... 

i l l l l l l l ..lllllll.. 

Different pMrifions, Mmc 

Same Powtion, different 
spreads 

Different Positions, 
different spreads 

Scale of mtesurtmenf > 

FIG. 9a—Illustrating two salient characteristics of distributions—position and spread. 

Negative Skewness 

91 =-1.00 

. . . i i I'l X 

Positive Skewness 

g, =0 g, = +1.00 

1111 iu. 
— Scale of Measurement — 

I llm. 

FIG. 9b—Illustrating a third characteristic of frequency distributions—skewness, and particular values of skewness, g,. 
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Leptokurtic Mesokurtic Platykurtic 

±L 

92=100 

I L O . 

9 2 = 0 

JLx. 

92=-0.9 

FIG. 10—Illustrating the kurtosis of a frequency distribution and particular values of g^ 

Several representative sample measures 
are available for describing these 
characteristics, but by far the most useful are 
the arithmetic mean X, the standard deviation 
s, the skewness factor g^, and the kurtosis 
factor g2—all algebraic functions of the 
observed values. Once the numerical values of 
these particular measures have been 
determined, the original data may usually be 
dispensed with and two or more of these values 
presented instead. 

The four characteristics of the distribution 
of a sample of observations just discussed are 
most useful when the observations form a 
single heap with a single peak frequency not 
located at either extreme of the sample values. 
If there is more than one peak, a tabular or 
graphical representation of the frequency 
distribution conveys information the above four 
characteristics do not. 

19. Average (Arithmetic Mean) 

The average (arithmetic mean) is the most 
widely used measure of central tendency. The 
term average and the symbol X will be used in 
this Manual to represent the arithmetic mean 
of a sample of numbers. 

The average, X, of a sample of n numbers, 
Xi, Xg,..., Xn, is the sum of the numbers divided 
by n, that is 

(1) 

where the expression .Z^ Xi means "the sum of 

all values of X, from Xi to X„, inclusive." 

18. Relat ive Frequency 

The relative frequency p within stated limits 
on the scale of measurement is the ratio of the 
number of observations lying within those 
limits to the total number of observations. 

In practical work, this function has its 
greatest usefulness as a measure of fraction 
nonconforming, in which case it is the fraction, 
p, representing the ratio of the number of 
observations lying outside specified limits (or 
beyond a specified limit) to the total number of 
observations. 

Considering the n values of X as specifying 
the positions on a straight line of n particles of 
equal weight, the average corresponds to the 
center of gravity of the system. The average of 
a series of observations is expressed in the 
same units of measurement as the 
observations, tha t is, if the observations are in 
pounds, the average is in pounds. 

20. Other Measures of Central 
Tendency 

The geometric mean, of a sample of n numbers, 
Zi, Xj,..., Xn, is the n."" root of their product, 
that is 
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or 

geometric mean = ^X\X2 ••• X„ 

log (geometric mean) 

logX,+logX2+ ••• +logX„ 

(2) 

(3) 

Equation 3, obtained by taking logarithms of 
both sides of Eq 2, provides a convenient 
method for computing the geometric mean 
using the logarithms of the numbers. 

NOTE 

The distribution of some quality 
characteristics is such that a 
transformation, using logarithms of the 
observed values, gives a substantially 
Normal distribution. When this is true, the 
transformation is distinctly advantageous 
for (in accordance with Section 29) much of 
the total information can be presented by 
two functions, the average, X, and the 
standard deviation, s, of the logarithms of 
the observed values. The problem of 
transformation is, however, a complex one 
that is beyond the scope of this Manual. 
See Ref. 18. 

The median 
distribution of n 
middlemost value. 

of the frequency 
numbers is the 

The mode of the frequency distribution 
of n numbers is the value that occurs most 
frequently. With grouped data, the mode 
may vary due to the choice of the interval 
size and the starting points of the bins. 

s = . 
(Xi - Xf +{X2-Xf +•••+ {X„ - Xf 

n-\ 

v\2 (4) 

where X is defined by Eq 1. The quantity ŝ  is 
called the sample variance. 

The standard deviation of any series of 
observations is expressed in the same units of 
measurement as the observations, tha t is, if 
the observations are in pounds, the standard 
deviation is in pounds. (Variances would be 
measured in pounds squared.) 

A frequently more convenient formula for 
the computation of s is 

Is^--
(=1 (5) 

n-\ 

but care must be taken to avoid excessive 
rounding error when n is larger than s. 

NOTE 

A useful quantity related to the standard 
deviation is the root-mean-square deviation 

T7\2 mx-x) 
^(rms) ~ 

i=l = S, 
\n-\ 

2 1 . S t a n d a r d D e v i a t i o n 

The standard deviation is the most widely used 
measure of dispersion for the problems 
considered in PART 1 of the Manual. 

For a sample of n numbers, Xi, X2..., X^, 
the sample standard deviation is commonly 
defined by the formula 

22. O t h e r M e a s u r e s o f D i s p e r s i o n 

The coefficient of variation, cv, of a sample of n 
numbers, is the ratio (sometimes the coefficient 
is expressed as a percentage) of their standard 
deviation, s, to their average X. It is given by 

s 

X 
(6) 
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The coefficient of variation is an adaptation of 
the standard deviation, which was developed 
by Prof. Karl Pearson to express the variability 
of a set of numbers on a relative scale rather 
than on an absolute scale. It is thus a 
dimensionless number. Sometimes it is called 
the relative standard deviation, or relative 
error. 

The average deviation of a sample of n 
numbers, X^, X^, ..., X„, is the average of the 
absolute values of the deviations of the 
numbers from their average X that is 

t,\x-x\ 
average deviation (7) 

where the symbol | | denotes the absolute 
value of the quantity enclosed. 

The range i? of a sample of n numbers is 
the difference between the largest number and 
the smallest number of the sample. One 
computes R from the order statistics as R = 
X(n)-X(i). This is the simplest measure of 
dispersion of a sample of observations. 

23. Skewness—g^ 

A useful measure of the lopsidedness of a 
sample frequency distribution is the coefficient 
of skewness gi. 

The coefficient of skewness g^, of a sample 
of n numbers, X^, X^, ..., X^, is defined by the 
expression gi = ks/s^. Where ks is the third k-
statistic as defined by R. A. Fisher. The k-
statistics were devised to serve as the moments 
of small sample data. The first moment is the 
mean, the second is the variance, and the third 
is the average of the cubed deviations and so 

on. Thus, ki= X ,k2- s^, 

K'l — 

(n-l)(«-2) 

Notice that when n is large 

X(^,-^)' 
^1 = 

!=1 (8) 
ns 

This measure of skewness is a pure number 
and may be either positive or negative. For a 
symmetrical distribution, gi is zero. In general, 
for a nonsymmetrical distribution, g^ is 
negative if the long tail of the distribution 
extends to the left, towards smaller values on 
the scale of measurement, and is positive if the 
long tail extends to the right, towards larger 
values on the scale of measurement. Figure 9 
shows three unimodal distributions with 
different values of gj. 

23a. Kurtos i s—g2 

The peakedness and tail excess of a sample 
frequency distribution is generally measured 
by the coefficient of kurtosis ^2-

The coefficient of kurtosis ga for a sample of 
n numbers, Xi, X^, ..., X„, is defined by the 
expression g2 = k4/s^ and 

K = {n-\){n-2){n-3) («-2)(«-3) 

Notice that when n is large 

g2=-^ 1 3 
ns 

(9) 

Again this is a dimensionless number and may 
be either positive or negative. Generally, when 
a distribution has a sharp peak, thin shoulders, 
and small tails relative to the bell-shaped 
distribution characterized by the Normal 
distribution, g2 is positive. When a distribution 
is flat-topped with fat tails, relative to the 
Normal distribution, gz is negative. Inverse 
relationships do not necessarily follow. We 
cannot definitely infer anything about the 
shape of a distribution from knowledge of g2 
unless we are willing to assume some 
theoretical curve, say a Pearson curve, as being 
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appropriate as a graduation formula (see Fig. 
14 and Section 30). A distribution with a 
positive g2 is said to be leptokurtic. One with a 
negative ^2 is said to be platykurtic. A 
distribution with ^2 = 0 is said to be 
mesokurtic. Figure 10 gives three unimodal 
distributions with different values of ^2-

24. Computational Tutorial 

The method of computation can best be 
illustrated with an artificial example for n=4 
with Xi = 0, X2 = 4, Xs = 0, and X4 = 0. Please 

first verify that X= 1. The deviations from 
this mean are found as - 1 , 3, -1 , and - 1 . The 
sum of the squared deviations is thus 12 and ŝ  
= 4. The sum of cubed deviations is —1+27-1-1 
= 24, and thus ks = 16. Now we find gi = 16/8 -
2. Please verify that g2 = 4. Since both gi and 
g2 are positive, we can say that the distribution 
is both skewed to the right and leptokurtic 
relative to the Normal distribution. 

Of the many measures that are available 
for describing the salient characteristics of a 

sample frequency distribution, the average X, 
the standard deviation s, the skewness gi, and 
the kurtosis g2, are particularly useful for 
summarizing the information contained 
therein. So long as one uses them only as 
rough indications of uncertainty we list 
approximate sampling standard deviations of 

the quantities X, s^, gi and g2, as 

SE{x)=sl4n, 

SB (g-2) = yjlAIn , respectively. 

When using a computer software 
calculation, the ungrouped whole number 
distribution values will lead to less round off in 
the printed output and are simple to scale back 
to original units. The results for the data from 
Table 2 are given in Table 6. 

AMOUNT OF INFORMATION 
CONTAINED IN p , J^, s, g^, AND g^ 

25. Summarizing the Information 

Given a sample of n observations, Xi, X2, X3, ..., 
Xn, of some quality characteristic, how can we 
present concisely information by means of 
which the observed distribution can be closely 
approximated, that is, so that the percentage of 
the total number, n, of observations lying 
within any stated interval from, say, X-atoX 
= b, can be approximated? 

Table 6. Summary Statistics for Three Sets of Data 

Datasets 

Transverse Strength, 
psi 

Weight of Coating, 
Oz/ft2 

Breaking Strength, lb 

X 

999.8 

1.535 

573.2 

s 

201.8 

0.1038 

4.826 

gi 

0.611 

0.013 

1.419 

g2 

2.567 

-0.291 

1.797 
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The total information can be presented only 
by giving all of the observed values. It will be 
shown, however, that much of the total 
information is contained in a few simple 
functions—notably the average X, the 
standard deviation s, the skewness ^i, and the 
kurtosis ^2-

26. Several Values of Relative 
Frequency, p 

By presenting, say, 10 to 20 values of relative 
frequency p, corresponding to stated bin 
intervals and also the number n of 
observations, it is possible to give practically 
all of the total information in the form of a 
tabular grouped frequency distribution. If the 
ungrouped distribution has any peculiarities, 
however, the choice of bins may have an 
important bearing on the amount of 
information lost by grouping. 

27, Single Percentile of Relative 
Frequency, p 

If we present but a percentile value, Qp, of 
relative frequency p, such as the fraction of the 
total number of observed values falling outside 
of a specified limit and also the number n of 
observations, the portion of the total 
information presented is very small. This 
follows from the fact that quite dissimilar 
distributions may have identically the same 
percentile value as illustrated in Fig. 11. 

Specified Limit (min. 

Q„ 

FIG. 11—Quite different distributions may have the same 
percentile value of p, fraction of total observations below 
specified limit. 

NOTE 

For the purposes of PART 1 of this 
Manual, the curves of Figs. 11 and 12 
may be taken to represent frequency 
histograms with small bin widths and 
based on large samples. In a frequency 
histogram, such as that shown at the 
bottom of Fig. 5, let the percentage 
relative frequency between any two bin 
boundaries be represented by the area of 
the histogram between those boundaries, 
the total area being 100 percent. Since the 
bins are of uniform width, the relative 
frequency in any bin is then proportional 
to the height of that bin and may be read 
on the vertical scale to the right. 

Average 

• 

1 

>' t 

,' ( 

^ . ' - ' 

X, — Xj — X3 

1 \ 
1 1 
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••211 
3\.'. 

1 ' . ^ ^ 

FIG. 12—Quite different distributions may have the 
same average. 

If the sample size is increased and the 
bin width reduced, a histogram in which 
the relative frequency is measured by 
area approaches as a limit the frequency 
distribution of the population, which in 
many cases can be represented by a 
smooth curve. The relative frequency 
between any two values is then 
represented by the area under the curve 
and between ordinates erected at those 
values. Because of the method of 
generation, the ordinate of the curve may 
be regarded as a curve of relative 
frequency density. This is analogous to the 
representation of the variation of density 
along a rod of uniform cross section by a 
smooth curve. The weight between any 
two points along the rod is proportional to 
the area under the curve between the two 
ordinates and we may speak of the density 
(that is, weight density) at any point but 
not of the weight at any point. 
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28. Average X Only 

If we present merely the average, X, and 
number, n, of observations, the portion of the 
total information presented is very small. Quite 
dissimilar distributions may have identically 
the same value of X as illustrated in Fig. 12. 

In fact, no single one of the five functions, 
Qp, X, s, gi, or g2, presented alone, is generally 
capable of giving much of the total information 
in the original distribution. Only by presenting 
two or three of these functions can a fairly 
complete description of the distribution 
generally be made. 

An exception to the above statement 
occurs when theory and observation suggest 
that the underlying law of variation is a 
distribution for which the basic characteristics 
are all functions of the mean. For example, 
"life" data "under controlled conditions" 
sometimes follows a negative exponential 
distribution. For this, the cumulative relative 
frequency is given by the equation 

F{X) = l-e -x/Q 0 < X < o o (14) 

This is a single parameter distribution for 
which the mean and standard deviation both 
equal 0. That the negative exponential 
distribution is the underlying law of variation 
can be checked by noting whether values of 1 — 
F(X) for the sample data tend to plot as a 
straight line on ordinary semi-logarithmic 
paper. In such a situation, knowledge of X 
will, by taking 0 = X in Eq. 14 and using tables 

of the exponential function, yield a fitting 
formula from which estimates can be made of 
the percentage of cases lying between any two 
specified values of X. Presentation of X and n 
is sufficient in such cases provided they are 
accompanied by a statement that there are 
reasons to believe that X has a negative 
exponential distribution. 

29. Average X and Standard 
Deviation s 

These two functions contain some information 
even if nothing is known about the form of the 
observed distribution, and contain much 
information when certain conditions are 
satisfied. For example, more than 1 - 1/k'' of 
the total number n of observations lie within 
the closed interval X ± ks (where k is not less 
than 1). 

This is Chebyshev's inequality and is shown 
graphically in Fig. 13. The inequality holds 
true of any set of finite numbers regardless of 
how they were obtained. Thus if X a n d s are 
presented, we may say at once that more than 
75 percent of the numbers lie within the 
interval X ± 2s; stated in another way, less 
than 25 percent of the numbers differ from X 
by more than 2s. Likewise, more than 88.9 
percent lie within the interval X ± 3s, etc. 
Table 7 indicates the conformance with 
Chebyshev's inequality of the three sets of 
observations given in Table 1. 

.75.00. 

Percentage 

0 40 60 70 I 80 
1 1,1 I, 1 — I ^ l | i . i i i . . ^ l . . I i i I • I • I ^ • • I I 

. 8 8 . 8 9 . 

90 
I, I , I, 

92 

.93.75. 

94 

FIG. 13—Percentage of the total observations lying within the interval x ± Acs always exceeds the percentage given on this 
chart. 
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TABLE 7. Comparison of observed percentages and Chebyshev's minimum percentages of 
the total observations lying within given intervals. 

INTERVAL, 

X±ks 

CHEBYSHEVS 
MINIMUM 

OBSERVATIONS 
LYING 

WITHIN THE 
GIVEN_ 

INTERVAL X ±ks 

OBSERVED PERCENTAGES" 

DATA OF 
TABLE 

1(a) 
{n = 270) 

DATA OF 
TABLE 

1(6) 
{n = 100) 

DATA 
OF 

TABLE 
1(c) 

(n = 10) 

X± 2.0s 75.0 96.7 94 90 

X ± 2.5s 84.0 97.8 100 90 

X± 3.0s 88.9 98.5 100 100 

"Data of Table 1(a): X= 1000, s = 202; data of Table 1(&): X= 1.535, s = 0.105; data of Table 1(c): X 
= 573.2, s = 4.58. 

To determine approximately just what 
percentages of the total number of 
observations lie within given limits, as 
contrasted with minimum percentages within 
those limits, requires additional information 
of a restrictive nature. If we present X, s, and 
n, and are able to add the information "data 
obtained under controlled conditions," then it 
is possible to make such estimates 
satisfactorily for limits spaced equally above 
and below X. 

What is meant technically by "controlled 
conditions" is discussed by Shewhart (see Ref. 
1) and is beyond the scope of this Manual. 
Among other things, the concept of control 
includes the idea of homogeneous data—a set 
of observations resulting from measurements 
made under the same essential conditions and 
representing material produced under the 
same essential conditions. It is sufficient for 
present purposes to point out that if data are 
obtained under "controlled conditions," it may 
be assumed that the observed frequency 
distribution can, for most practical purposes, 
be graduated by some theoretical curve say, 
by the Normal law or by one of the non-
normal curves belonging to the system of 
frequency curves developed by Karl Pearson. 
(For an extended discussion of Pearson curves, 
see Ref. 5). Two of these are illustrated in Fig. 
14. 

The applicability of the Normal law rests 
on two converging arguments. One is 
mathematical and proves that the distribution 
of a sample mean obeys the Normal law no 
matter what the shape of the distributions are 
for each of the separate observations. The 
other is that experience with many, many sets 
of data show that more of them approximate 
the Normal law than any other distribution. In 
the field of statistics, this effect is known as the 
central limit theorem. 

Supposing a smooth curve plus a gradual 
approach to the horizontal axis at one or both 
sides derived the Pearson system of curves. 
The Normal distribution's fit to the set of data 
may be checked roughly by plotting the 
cumulative data on Normal probability paper 
(see Section 13). Sometimes if the original data 
do not appear to follow the Normal law, some 
transformation of the data, such as log X, will 
be approximately normal. 

Thus, the phrase "data obtained under 
controlled conditions" is taken to be the 
equivalent of the more mathematical assertion 
that "the functional form of the distribution 
may be represented by some specific curve." 
However, conformance of the shape of a 
frequency distribution with some curve should 
by no means be taken as a sufficient criterion 
for control. 
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Ben snaped 

Examples of two Pearson non-normal frequency curves 

FIG. 14— Â frequency distribution of observations obtained under controlled conditions will usually have an outline that 
conforms to the Normal law or a non-normal Pearson frequency curve. 

Percentage 
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FIG. 15—Normal law integral diagram giving percentage of total area under Normal law curve falling within the range \i ± ka. 
This diagram is also useful in probability and sampling problems, expressing the upper (percentage) scale values in 
decimals to represent "probability." 

Generally for controlled conditions, the 
percentage of the total observations in the 
original sample lying within the interval 
X±ks may be determined approximately 

from the chart of Fig. 15, which is based on 
the Normal law integral. The approximation 
may be expected to be better the larger the 
number of observations. Table 8 compares the 
observed percentages of the total number of 
observations lying within several symmetrical 
intervals about X with those estimated from 
a knowledge of X and s, for the three sets of 
observations given in Table 1. 

30. Average X, Standard Deviat ion s, 
Skewness gi, and Kurtosis g2 

If the data are obtained under "controlled 
conditions" and if a Pearson curve is assumed 
appropriate as a graduation formula, the 

presentation of ̂ 1 and g2 in addition to X and s 
will contribute further information. They will 
give no immediate help in determining the 
percentage of the total observations lying 
within a symmetric interval about the 
average X, tha t is, in the interval of X ± ks. 
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TABLE 8. Comparison of observed percentages and theoretical estimated percentages of the total observations 
lying within given intervals. 

INTERVAL, 

X ±ks 

X ± 0.6745s 

X ± 1.0s 

X ± 1.5s 

X ± 2.0s 

X ± 2.5s 

X ± 3 . 0 s 

THEORETICAL 
ESTIMATED PERCENTAGES" 
OF TOTAL OBSERVATIONS 

LYING WITHIN THE 

GIVEN INTERVAL X ±ks 

50.0 

68.3 

86.6 

95.5 

98.7 

99.7 

OBSERVED PERCENTAGES 

DATA OF 
TABLE 1(a) 

{n = 270) 

52.2 

76.3 

89.3 

96.7 

97.8 

98.5 

DATA OF 
TABLE 1(6) 

{n = 100) 

54 

72 

84 

94 

100 

100 

DATA OF 
TABLE 1(c) 

{n = 10) 

70 

80 

90 

90 

90 

100 

"Use Fig. 15 with X and s as estimates of |x and a. 

What they do is to help in estimating observed 
percentages (in a sample already taken) in an 
interval whose limits are not equally spaced 
above and below X. 

If a Pearson curve is used as a graduation 
formula, some of the information given by g^ 
and g^ may be obtained from Table 9 which is 
taken from Table 42 of the Biometrika Tables 
for Statisticians. For j3, = gf and jŜ  = g^ + 3, 
this table gives values of ^̂  for use in 
estimating the lower 2.5 percent of the data 
and values of k^j for use in estimating the 
upper 2.5 percent point. More specifically, it 
may be estimated that 2.5 percent of the cases 
are less than X-k^s and 2.5 percent are 
greater than X + k^s • Put another way, it may 
be estimated that 95 percent of the cases are 
between X-k^s and X + k^s-

Table 42 of the Biometrika Tables for 
Statisticians also gives values of ki and ku for 
0.5, 1.0, and 5.0 percent points. 

(6) we may estimate that approximately 95 

percent of the 270 cases lie between X — k^s 

and X + kyS,or between 1000 - 1.801 (201.8) = 

636.6 and 1000 + 2.17 (201.8) = 1437.7. The 
actual percentage of the 270 cases in this range 
is 96.3 percent (see Table 2(a)). 

Notice that using just X±l.96s gives the 
interval 604.3 to 1395.3 which actually 
includes 95.9% of the cases versus a theoretical 
percentage of 95%. The reason we prefer the 
Pearson curve interval arises from knowing 
that the gi = 0.63 value has a standard error of 
0-15 (= V6/270) and is thus about four 

standard errors above zero. That is, if future 
data come from the same conditions it is highly 
probable that they will also be skewed. The 
604.3 to 1395.3 interval is symmetric about the 
mean, while the 636.6 to 1437.7 interval is 
offset in line with the anticipated skewness. 
Recall that the interval based on the order 
statistics was 657.8 to 1400 and that from the 
cumulative frequency distribution was 653.9 to 
1419.5. 

Example 

For a sample of 270 observations of the 
transverse strength of bricks, the sample 
distribution is shown in Fig. 5. From the 
sample values of g^ = 0.61 and ga = 2.57, we 
take pi = gi2 = (0.61)2 = 0.37 and P2 = g2 + 3 = 
2.57 + 3 = 5.57. Thus, from Tables 9(a) and 

When computing the median, all methods 
will give essentially the same result but we 
need to choose among the methods when 
estimating a percentile near the extremes of 
the distribution. 
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TABLE 9. Lower and upper 2.5 percent points ^̂  and k^ of the standardized deviate (X- |x)/o, given by Pearson 

frequency curves for designated values of Pi(estimated as equal to g^) and PJ (estimated as equal to ^2 + 3). 

(a) Lower" /JL 

(b) Upper ^L 

Pilp2 

1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.2 
3.4 
3.6 
3.8 
4.0 
4.2 
4.4 
4.6 
4.8 
5.0 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.2 
3.4 
3.6 
3.8 
4.0 
4.2 
4.4 
4.6 
4.8 
5.0 

0.00 

1.65 
1.76 
1.83 
1.88 
1.92 
1.94 
1.96 
1.97 
1.98 
1.99 
1.99 
1.99 
2.00 
2.00 
2.00 
2.00 
2.00 
1.65 
1.76 
1.83 
1.88 
1.92 
1.94 
1.96 
1.97 
1.98 
1.99 
1.99 
1.99 
2.00 
2.00 
2.00 
2.00 
2.00 

0.01 

1.68 
1.76 
1.82 
1.86 
1.89 
1.91 
1.93 
1.94 
1.95 
1.95 
1.96 
1.96 
1.96 
1.96 
1.97 
1.97 

1.82 
1.89 
1.94 
1.97 
1.99 
2.01 
2.02 
2.02 
2.02 
2.03 
2.03 
2.03 
2.03 
2.03 
2.03 
2.03 

0.03 

1.62 
1.71 
1.77 
1.82 
1.85 
1.87 
1.89 
1.90 
1.91 
1.92 
1.93 
1.93 
1.94 
1.94 
1.94 
1.94 

1.86 
1.93 
1.98 
2.01 
2.03 
2.04 
2.05 
2.05 
2.05 
2.05 
2.05 
2.05 
2.05 
2.05 
2.05 
2.05 

0.05 

1.56 
1.66 
1.73 
1.78 
1.82 
1.84 
1.86 
1.88 
1.89 
1.90 
1.91 
1.91 
1.92 
1.92 
1.93 
1.93 

1.89 
1.96 
2.01 
2.03 
2.05 
2.06 
2.07 
2.07 
2.07 
2.07 
2.07 
2.07 
2.07 
2.07 
2.07 
2.07 

0.10 

1.57 
1.65 
1.71 
1.76 
1.79 
1.81 
1.83 
1.85 
1.86 
1.87 
1.88 
1.88 
1.89 
1.89 
1.90 

2.00 
2.05 
2.08 
2.09 
2.10 
2.11 
2.11 
2.11 
2.11 
2.11 
2.10 
2.10 
2.10 
2.10 
2.09 

0.15 

1.49 
1.58 
1.64 
1.70 
1.74 
1.77 
1.79 
1.81 
1.82 
1.84 
1.84 
1.85 
1.86 
1.87 
1.87 

2.04 
2.08 
2.11 
2.13 
2.13 
2.14 
2.14 
2.14 
2.13 
2.13 
2.13 
2.13 
2.12 
2.12 
92.1 

0.20 

1.41 
1.51 
1.58 
1.65 
1.69 
1.72 
1.75 
1.77 
1.79 
1.81 
1.82 
1.83 
1.83 
1.84 
1.85 

2.06 
2.11 
2.14 
2.15 
2.16 
2.16 
2.16 
2.16 
2.16 
2.15 
2.15 
2.15 
2.14 
2.14 
22.1 

0.30 

1.39 
1.47 
1.55 
1.60 
1.65 
1.68 
1,71 
1.73 
1.75 
1.76 
1.78 
1.79 
1.80 
1.81 

2.15 
2.18 
2.20 
2.21 
2.21 
2.21 
2.20 
2.20 
2.19 
2.19 
2.18 
2.18 
2.17 
2.17 

0.40 

1.37 
1.45 
1.52 
1.57 
1.61 
1.65 
1.67 
1.70 
1.72 
1.73 
1.75 
1.76 
1.77 

2.22 
2.24 
2.25 
2.25 
2.25 
2.24 
2.24 
2.23 
2.22 
2.22 
2.21 
2.21 
2.20 

0.50 

1.35 
1.42 
1.49 
1.54 
1.58 
1.62 
1.64 
1.67 
1.69 
1.70 
1.72 
1.73 

2.27 
2.28 
2.29 
2.28 
2.28 
2.27 
2.26 
2.25 
2.25 
2.24 
2.23 
2.23 

0.60 

1.33 
1.40 
1.46 
1.51 
1.56 
1.59 
1.62 
1.64 
1.66 
1.68 
1.69 

2.32 
2.32 
2.32 
2.31 
2.30 
2.29 
2.28 
2.28 
2.27 
2.26 
2.25 

0.70 

1.32 
1.39 
1.44 
1.49 
1.53 
1.56 
1.59 
1.62 
1.64 
1.65 

2.35 
2.35 
2.34 
2.33 
2.32 
2.31 
2.31 
2.30 
2.29 
42.2 

0.80 

1.24 
1.31 
1.38 
1.43 
1.47 
1.51 
1.54 
1.57 
1.59 
1.61 

2.38 
2.38 
2.37 
2.36 
2.35 
2.34 
2.33 
2.32 
2.31 
2.30 

0.90 

1.23 
1.30 
1.36 
1.41 
1.45 
1.49 
1.52 
1.55 
1.57 

2.41 
2.41 
2.40 
2.38 
2.37 
2.36 
2.35 
2.34 
82.3 

1.00 

1.23 
1.29 
1.35 
1.40 
1.44 
1.47 
1.50 
1.53 

2.44 
2.43 
2.41 
2.40 
2.39 
2.38 
2.36 
2.35 

NOTES—This table was reproduced from Biometrika Tables for Statisticians, Vol. 1, p. 207, with the kind permission of the Biometrika 
Trust. The Biometrika Tables also give the lower and upper 0.5, 1.0, and 5 percent points. Use for a large sample only, say n > 250. Take /x 

= X and a = s. 
''When gj > 0, the skewness is taken to be positive, and the deviates for the lower percentage points are negative. 

As a first step, one should scan the data 
to assess its approach to the Normal law. We 
suggest dividing gi and g2 by their standard 
errors and if either ratio exceeds 3 then look 
to see if there is an outlier. An outlier is an 
observation so small or so large that there are 
no other observations near it and so extreme 
that persons familiar with the measurements 
can assert that such extreme value will not 
arise in the future under ordinary conditions. 
A glance at Fig. 2 suggests the presence of 

outliers but we must suppose that the second 
criterion was not satisfied. 

If any observations seem to be outliers 
then discard them. If n is very large, say 
M>10000, then use the percentile estimator 
based on the order statistics. If the ratios are 
both below 3 then use the Normal law for 
smaller sample sizes. If n is between 1000 and 
10000 but the ratios suggest skewness and/or 
kurtosis, then use the cumulative frequency 
function. For smaller sample sizes and 



evidence of skewness and/or kurtosis, use the 
Pearson system curves. Obviously, these are 
rough guidehnes and the user must adapt 
them to the actual situation by trying 
alternative calculations and then judging the 
most reasonable. 

NOTE ON TOLERANCE LIMITS 

In Sections 33 through 34, the 
percentages of X values estimated to be 
within a specified range pertain only to 
the given sample of data which is being 
represented succinctly by selected 
statistics, X, s, etc. The Pearson curves 
used to derive these percentages are used 
simply as graduation formulas for the 
histogram of the sample data. The aim of 
Sections 33 to 34 is to indicate how much 
information about the sample is given by 
X, s, gi, and g2. It should be carefully 
noted that in an analysis of this kind the 
selected ranges of X and associated 
percentages are not to be confused with 
what in the statistical literature are 
called "tolerance limits." 

In statistical analysis, tolerance 
limits are values on the X scale that 
denote a range which may be stated to 
contain a specified minimum percentage 
of the values in the population there 
being attached to this statement a 
coefficient indicating the degree of 
confidence in its truth. For example, with 
reference to a random sample of 400 
items, it may be said, with a 0.91 
probability of being right, that 99 percent 
of the values in the population from 
which the sample came will be in the 
interval X(4oo) - X(i) where X(4oo) and X(i) 
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are respectively the largest and smallest 
values in the sample. If the population 
distribution is known to be Normal it 
might also be said, with a 0.90 probability 
of being right, that 99 percent of the 
values of the population will lie in the 
interval X ± 2.703J. Further information 
on statistical tolerances of this kind is 
presented in Refs. 6, 7, and 18. 

31. Use of Coefficient of Variation 
Instead of the Standard Deviat ion 

So far as quantity of information is concerned, 
the presentation of the sample coefficient of 
variation, cv, together with the average, X, is 
equivalent to presenting the sample standard 
deviation, s, and the average, X, since s may be 

computed directly from the values of cv = sjX 

and X. In fact, the sample coefficient of 
variation (multiplied by 100) is merely the 
sample standard deviation, s, expressed as a 
percentage of the average, X. The coefficient of 
variation is sometimes useful in presentations 
whose purpose is to compare variabilities, 
relative to the averages, of two or more 
distributions. It is also called the relative 
standard deviation or relative error. 

Example 1 

Table 10 presents strength test results for two 
different materials. It can be seen that whereas 
the standard deviation for Material B is less 
than the standard deviation for Material A, the 
latter shows the greater relative variability as 
measured by the coefficient of variability. 

TABLE 10. 

MATERIAL 

A 
B 

Strength test results. 

NUMBER OF 
OBSERVATIONS, 

1 n 

160 
150 

AVERAGE 
STRENGTH, LB, 

X 

1100 
800 

STANDARD 
DEVIATION, LB, 

s 

225 
200 

COEFFICIENT OF 
VARIATION, % 

cv 

20.4 
25.0 
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TABLE 11. Data for two test conditions. 

TEST 
CONDITION 

A 
B 

NUMBER OF AVERAGE 
SPECIMENS n LIFE o 

50 14 h 
50 80 min 

STANDARD 
DEVIATION s 

4.2 h 
23.2 min 

COEFFICIENT 
OF 

VARMTION, m, % 

30.0 
29.0 

The coefficient of variation is particularly 
applicable in reporting the results of certain 
measurements where the variability, a, is 
known or suspected to depend upon the level 
of the measurements. Such a situation may be 
encountered when it is desired to compare the 
variability (a) of physical properties of related 
materials usually at different levels, (b) of the 
performance of a material under two different 
test conditions, or (c) of analyses for a specific 
element or compound present in different 
concentrations. 

Example 2 

The performance of a material may be tested 
under widely different test conditions as for 
instance in a standard life test and in an 
accelerated life test. Further, the units of 
measurement of the accelerated life tester 
may be in minutes and of the standard tester, 
in hours. The data shown in Table 11 indicate 
essentially the same relative variability of 
performance for the two test conditions. 

32. General Comment on Observed 
Frequency Distributions of a 
Series of ASTM Observations 

Experience with frequency distributions for 
physical characteristics of materials and 
manufactured products prompts the 
committee to insert a comment at this point. 
We have yet to find an observed frequency 
distribution of over 100 observations of a 
quality characteristic and purporting to 
represent essentially uniform conditions, that 
has less than 96 percent of its values within 

the range X ± 3s. For a Normal distribution, 
99.7 percent of the cases should theoretically 
lie between ^ ± 3a as indicated in Fig. 15. 

Taking this as a starting point and 
considering the fact that in ASTM work the 
intention is, in general, to avoid throwing 
together into a single series data obtained 
under widely different conditions—different in 
an important sense in respect to the 
characteristic under inquiry—we believe that it 
is possible, in general, to use the methods 
indicated in Sections 33 and 34 for making 
rough estimates of the observed percentages of 
a frequency distribution, at least for making 
estimates (per Section 33) for symmetric 
ranges around the average, that is, X± ks. 
This belief depends, to be sure, upon our own 
experience with frequency distributions and 
upon the observation that such distributions 
tend, in general, to be unimodal—to have a 
single peak—as in Fig. 14. 

Discriminate use of these methods is, of course, 
presumed. The methods suggested for 
controlled conditions could not be expected to 
give satisfactory results if the parent 
distribution were one like that shown in Fig. 
16—a bimodal distribution representing two 
different sets of conditions. Here, however, the 
methods could be applied separately to each of 
the two rational subgroups of data. 

Fig. 16—A bimodal distribution arising from two different 
systems of causes. 
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33. Summary—Amount of 
Information Contained in Simple 
Functions of the Data 

The material given in Sections 24 to 
inclusive, may be summarized as follows: 

32, 

1. If a sample of observations of a single 
variable is obtained under controlled 
conditions, much of the total information 
contained therein may be made available 
by presenting four functions—the 
average X, the standard deviation, s, the 
skewness, ^i the kurtosis, g^ and the 
number n, of observations. Of the four 

functions, X and s contribute most; g^ and 
g2 contribute in accord with how small or 
how large are their standard errors, 
namely -J^ln and ^lAIn-

2. The average, X, and the standard 
deviation, s, give some information even 
for data that are not obtained under 
controlled conditions. 

3. No single function, such as the average, of 
a sample of observations is capable of 
giving much of the total information 
contained therein unless the sample is 
from a universe that is itself characterized 
by a single parameter. To be confident, the 
population that has this characteristic will 
usually require much previous experience 
with the kind of material or phenomenon 
under study. 

Just what functions of the data should be 
presented, in any instance, depends on what 
uses are to be made of the data. This leads to 
a consideration of what constitutes the 
"essential information." 

ESSENTIAL INFORMATION 

34. Introduction 

Presentation of data presumes some intended 
use either by others or by the author as 

supporting evidence for his or her conclusions. 
The objective is to present that portion of the 
total information given by the original data 
that is believed to be essential for the 
intended use. Essential information will be 
described as follows: "We take data to answer 
specific questions. We shall say that a set of 
statistics (functions) for a given set of data 
contains the essent ial information given by 
the data when, through the use of these 
statistics, we can answer the questions in 
such a way that further analysis of the data 
will not modify our answers to a practical 
extent," (taken from PART 2, Ref. 1). 

The Preface to this Manual lists some of 
the objectives of gathering ASTM data of the 
type under discussion—a sample of 
observations of a single variable. Each such 
sample constitutes an observed frequency 
distribution, and the information contained 
therein should be used efficiently in 
answering the questions that have been 
raised. 

35. W h a t F u n c t i o n s o f t h e D a t a 
C o n t a i n t h e E s s e n t i a l I n f o r m a t i o n 

The nature of the questions asked determine 
what part of the total information in the data 
constitutes the essential information for use in 
interpretation. 

If we are interested in the percentages of 
the total number of observations that have 
values above (or below) several values on the 
scale of measurement, the essential 
information may be contained in a tabular 
grouped frequency distribution plus a 
statement of the number of observations n. 
But even here, if n is large and if the data 
represent controlled conditions, the essential 
information may be contained in the four 
sample functions—the average X, the 
standard deviation s, the skewness g^, the 
kurtosis g^, and the number of observations n. 
If we are interested in the average and 
variability of the quality of a material, or in 
the average quality of a material and some 
measure of the variability of averages for 
successive samples, or in a comparison of the 



36 
DATA AND 
CONTROL 
CHART ANAT,YSTS 

average and variability of the quality of one 
material with that of other materials, or in 
the error of measurement of a test, or the 
like, then the essential information may be 
contained in the X , s, and n of each sample 
of observations. Here, if n is small, say 10 or 
less, much of the essential information may 
be contained in the X, R (range), and n of 
each sample of observations. The reason for 
use of R when n < 10 is as follows: 

It is important to note (see Ref. 8) that 
the expected value of the range R (largest 
observed value minus smallest observed 
value) for samples of n observations each, 
drawn from a Normal universe having a 
standard deviation a varies with sample size 
in the following manner. 

The expected value of the range is 2.1(7 
for n = 4, 3.1(7 for n = 10, 3.9(7 for n = 25, 
and 6.1(7 for n = 500. From this it is seen 
that in sampling from a Normal population, 
the spread between the maximum and the 
minimum observation may be expected to be 
about twice as great for a sample of 25, and 
about three times as great for a sample of 500, 
as for a sample of 4. For this reason, n should 
always be given in presentations which give 
R. In general, it is better not to use R i£ n 
exceeds 12. 

If we are also interested in the 
percentage of the total quantity of product 
that does not conform to specified limits, then 
part of the essential information may be 
contained in the observed value of fraction 
defective p. The conditions under which the 
data are obtained should always be indicated, 
i.e., (a) controlled, (b) uncontrolled, or (c) 
unknown. 

samples in the future, we need to consider 
errors that may arise from sampling. The 
problems of sampling errors that arise in 
estimating process means, variances, and 
percentages are discussed in PART 2. For 
discussions of sampling errors in comparisons 
of means and variabilities of different samples, 
the reader is referred to texts on statistical 
theory (for example, Ref. 9). The intention here 
is simply to note those statistics, those 
functions of the sample data, which would be 
useful in making such comparisons and 
consequently should be reported in the 
presentation of sample data. 

36. Present ing X Only Versus 
Present ing X and s 

Presentation of the essential information 
contained in a sample of observations 
commonly consists in presenting X, s, and n. 
Sometimes the average alone is given—no 
record is made of the dispersion of the observed 
values nor of the number of observations taken. 
For example. Table 12 gives the observed 
average tensile strength for several materials 
under several conditions. 

TABLE 12. Information of value may be lost if only the 
average is presented. 

Tensile Strength psi 

Condition a Condition b Condition c 
Material Average, J Average, x Average, x 

A 
B 

C 

51430 

59 060 

57 710 

47 200 

57 380 

74 920 

49 010 

60 700 

80 460 

If the conditions under which the data 
were obtained were not controlled, then the 
maximum and minimum observations may 
contain information of value. 

It is to be carefully noted that if our 
interest goes beyond the sample data 
themselves to the processes that generated 
the samples or might generate similar 

The objective quality in each instance is a 
frequency distribution, from which the set of 
observed values might be considered as a 
sample. Presenting merely the average, and 
failing to present some measure of dispersion 



Material 

A 
B 
C 

TABLE 13. Presentation of essential information (data of TABLE 8). 

Tests 

20 
18 
27 

Condition a 

Average, 

51430 
59 060 
75 710 

Standard 
Deviation, 

s 

920 
1320 
1840 

Tensile Strength, psi 

Condition b 

Average, 

47 200 
57 380 
74 920 

Standard 
Deviation, 

s 

830 
1360 
1650 
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Condition c 

Average, 

49 010 
60 700 
80 460 

Standard 
Deviation, 

1070 
1480 
1910 

and the number of observations generally 
loses much information of value. Table 13 
corresponds to Table 12 and provides what 
will usually be considered as the essential 
information for several sets of observations, 
such as data collected in investigations 
conducted for the purpose of comparing the 
quality of different materials. 

37. Observed Relat ionships 

ASTM work often requires the presentation of 
data showing the observed relationship 
between two variables. Although this subject 
does not fall strictly within the scope of PART 
1 of the Manual, the following material is 
included for general information. Attention 
will be given here to one type of relationship, 
where one of the two variables is of the nature 
of temperature or time—one that is controlled 
at will by the investigator and considered for 
all practical purposes as capable of "exact" 
measurement, free from experimental errors. 
(The problem of presenting information on the 
observed relationship between two statistical 

variables, such as hardness and tensile 
strength of an alloy sheet material, is more 
complex and will not be treated here. For 
further information, see Refs. 1, 2, and 9.) Such 
relationships are commonly presented in the 
form of a chart consisting of a series of plotted 
points and straight lines connecting the points 
or a smooth curve which has been "fitted" to 
the points by some method or other. This 
section will consider merely the information 
associated with the plotted points, i.e., scatter 
diagrams. 

Figure 17 gives an example of such an 
observed relationship. (Data are from records 
of shelf life tests on die-cast metals and alloys, 
former Subcommittee 15 of ASTM Committee 
B-2 on Non-Ferrous Metals and Alloys.) At 
each successive stage of an investigation to 
determine the effect of aging on several alloys, 
five specimens of each alloy were tested for 
tensile strength by each of several laboratories. 
The curve shows the results obtained by one 
laboratory for one of these alloys. Each of the 
plotted points is the average of five observed 
values of tensile strength and thus attempts to 
summarize an observed frequency distribution. 

Years 

Fig. 17—Exampte of graph showing an observed relationship. 
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c 34.000 

32,000 
0 

• Observed value 
*' Average of observed value 
^Objective distribution 

2 3 

Years 

Fig. 18—Showing pictorially what lies bacl( of the plotted points in Fig. 17. Each plotted point in Fig. 17 is 
the average of a sample from a universe of possible observations. 

Figure 18 has been drawn to show 
pictorially what is behind the scenes. The 
five observations made at each stage of 
the life history of the alloy constitute a 
sample from a universe of possible values 
of tensile strength—an objective frequency 
distribution whose spread is dependent on 
the inherent variability of the tensile 
strength of the alloy and on the error of 
testing. The dots represent the observed 

values of tensile strength and the bell-
shaped curves the objective distributions. 
In such instances, the essential 
information contained in the data may be 
made available by supplementing the 
graph by a tabulation of the averages, the 
standard deviations, and the number of 
observations for the plotted points in the 
manner shown in Table 14. 

TABLE 14. Summary of essential information for Fig. 18. 

Time of 
Test 

Initial 
6 months 

1 year 
2 years 
5 years 

Tensile strength, 

Number of 
Specimens 

5 
5 
5 
5 
5 

Average, x 

35 400 
35 980 
36 220 
37 460 
36 800 

psi 

Standard 
Deviation, ̂  

950 
668 
869 
655 
319 
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38. S u m m a r y : E s s e n t i a l 
I n f o r m a t i o n 

The material given in Sections 34 to 37, 
inclusive, may be summarized as follows. 

1. What constitutes the essential 
information in any particular instance 
depends on the nature of the questions 
to be answered, and on the nature of 
the hypotheses that we are willing to 
make based on available information. 
Even when measurements of a quality 
characteristic are made under the 
same essential conditions, the 
objective quality is a frequency 
distribution tha t cannot be adequately 
described by any single numerical 
value. 

2. Given a series of observations of a 
single variable arising from the same 
essential conditions, it is the opinion 
of the committee that the average, X, 
the standard deviation, s, and the 
number, n, of observations contain the 
essential information for a majority of 
the uses made of such data in ASTM 
work. 

Empirical knowledge is not contained in 
the observed data alone, rather it arises 
from interpretation—an act of thought. 
(For an important discussion on the 
significance of prior information and 
hypothesis in the interpretation of data, 
see Ref. 10; a treatise on the philosophy of 
probable inference which is of basic 
importance in the interpretation of any 
and all data is presented in Ref. 11.) 
Interpretation consists in testing 
hypotheses based on prior knowledge. 
Data constitute but a part of the 
information used in interpretation—the 
judgments that are made depend as well 
on pertinent collateral information, much 
of which may be of a qualitative rather 
than of a quantitative nature. 

If the data are to furnish a basis for 
most valid prediction, they must be 
obtained under controlled conditions and 
must be free from constant errors of 
measurement. Mere presentation does not 
alter the goodness or badness of data. 
However, the usefulness of good data may 
be enhanced by the manner in which they 
are presented. 

NOTE 

If the observations are not obtained 
under the same essential conditions, 
analysis and presentation by the 
control chart method, in which order 
(see PART 3 of this Manual) is taken 
into account by rational subgrouping 
of observations, commonly provides 
important additional information. 

40. R e l e v a n t I n f o r m a t i o n 

Presented data should be accompanied by 
any or all available relevant information, 
particularly information on precisely the 
field within which the measurements are 
supposed to hold and the condition under 
which they were made, and evidence that 
the data are good. Among the specific 
things that may be presented with ASTM 
data to assist others in interpreting them 
or to build up confidence in the 
interpretation made by an author are: 

P R E S E N T A T I O N O F R E L E V A N T 
I N F O R M A T I O N 

1. The kind, grade, and character of 
material or product tested. 

39. I n t r o d u c t i o n 
2. The mode and conditions of 

production, if this has a bearing on the 
feature under inquiry. 
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3. The method of selecting the sample; 
steps taken to ensure its randomness 
or representativeness. (The manner in 
which the sample is taken has an 
important bearing on the 
interpretability of data and is 
discussed by Dodge (see Ref. 12).) 

4. The specific method of test (if an 
ASTM or other standard test, so state; 
together with any modifications of 
procedure). 

5. The specific conditions of test, 
particularly the regulation of factors 
that are known to have an influence 
on the feature under inquiry. 

6. The precautions or steps taken to 
eliminate systematic or constant 
errors of observation. 

7. The difficulties encountered and 
eliminated during the investigation. 

8. Information regarding parallel but 
independent paths of approach to the 
end results. 

9. Evidence that the data were obtained 
under controlled conditions; the 
results of statistical tests made to 
support belief in the constancy of 
conditions, in respect to the physical 
tests made or the material tested, or 
both. (Here, we mean constancy in the 
statistical sense, which encompasses 
the thought of stability of conditions 
from one time to another and from one 
place to another. This state of affairs 
is commonly referred to as "statistical 
control." Statistical criteria have been 
developed by means of which we may 
judge when controlled conditions exist. 
Their character and mode of 
application are given in PART 3 of 
this Manual; see also Ref. 13.) 

be vague, yet without it the interpretation 
of the data and the conclusions reached 
may be misleading or of little value to 
others. 

41. Evidence of Control 

One of the fundamental requirements of 
good data is that they should be obtained 
under controlled conditions. The 
interpretation of the observed results of an 
investigation depends on whether or not 
there is justification for believing that the 
conditions were controlled. 

If the data are numerous and 
statistical tests for control are made, 
evidence of control may be presented by 
giving the results of these tests. (For 
examples, see Refs. 14-18.) Such 
quantitative evidence greatly strengthens 
inductive arguments. In any case, it is 
important to indicate clearly just what 
precautions were taken to control the 
essential conditions. Without tangible 
evidence of this character, the reader's 
degree of rational belief in the results 
presented will depend on his faith in the 
ability of the investigator to eliminate all 
causes of lack of constancy. 

RECOMMENDATIONS 

42. Recommendations for 
Presentat ion of Data 

The following recommendations for 
presentation of data apply for the case 
where one has at hand a sample of n 
observations of a single variable obtained 
under the same essential conditions. 

1. Present as a minimum, the average, 
the standard deviation, and the 
number of observations. Always state 
the number of observations taken. 

Much of this information may be 
qualitative in character, some may even 

2. If the number of observations is 
moderately large (7i>30), present also 
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4. 

the value of the skewness, ^i , and the 
value of the kurtosis, ^2- An additional 
procedure when n is large (n>100) is to 
present a graphical representation, 
such as a grouped frequency 
distribution. 

If the data were not obtained under 
controlled conditions and it is desired 
to give information regarding the 
extreme observed effects of assignable 
causes, present the values of the 
maximum and minimum observations 
in addition to the average, the 
standard deviation, and the number of 
observations. 

Present as much evidence as possible 
that the data were obtained under 
controlled conditions. 

Present relevant information on 
precisely (a) the field within which the 
measurements are believed valid and 
(6) the conditions under which they 
were made. 
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Presenting Plus or Minus Limits of 
Uncertainty of on Observed Average 
GLOSSARY OF SYMBOLS USED IN 
PART 2 

1̂  
a 

k 
n 
P 
P' 
(J 

P 

s 
c 
X 

X 

Population mean 
Factor, given in Table 2 of PART 2, for 
computing confidence limits for [i 
associated with a desired value of 
probability, P, and a given number of 
observations, n 
Deviation of a Normal variable 
Number of observed values (observations) 
Sample fraction nonconforming 
Population fraction nonconforming 
Population standard deviation 
Probability; used in PART 2 to designate 
the probability associated with confidence 
limits; relative frequency with which the 
averages |J, of sampled populations may be 
expected to be included within the 
confidence limits (for |x) computed from 
samples 
Sample standard deviation 
Estimate of a based on several samples 
Observed value of a measurable 
characteristic; specific observed values are 
designated X^, X2, X3, etc.; also used to 
designate a measurable characteristic 
Sample average (arithmetic mean), the 
sum of the n observed values in a set 
divided by n 

1. Purpose 

P A R T 2 of t h e M a n u a l d iscusses t h e 
p rob lem of p r e s e n t i n g p lus or m i n u s l imi t s 
to ind ica te t h e u n c e r t a i n t y of t h e ave rage 
of a n u m b e r of obse rva t ions ob ta ined 
u n d e r t h e s a m e essen t i a l condi t ions , a n d 
sugges t s a form of p r e s e n t a t i o n for u s e in 
A S T M r e p o r t s a n d publ ica t ions w h e r e 
needed . 

2. T h e P r o b l e m 

An observed a v e r a g e X, is subject to t h e 
u n c e r t a i n t i e s t h a t a r i se from s a m p l i n g 
fluctuations a n d t e n d s to differ from t h e 
popu la t ion m e a n . The smal le r t h e n u m b e r 
of observa t ions , n, t h e l a rge r t h e 
fluctuations a r e l ikely to be . 

W i t h a se t of n observed va lues of a 
va r i ab le X, whose ave rage (a r i thmet ic 
m e a n ) is X, a s in Table 1, i t is often 
des i red to i n t e r p r e t t h e r e s u l t s in some 
way . O n e w a y is to cons t ruc t a n i n t e rva l 
such t h a t t h e m e a n , ft = 573.2 ± 3.5 lb., 
l ies w i t h i n l imi ts be ing es tab l i shed from 
t h e q u a n t i t a t i v e d a t a a long w i t h t h e 
impl ica t ions t h a t t h e m e a n \i of t h e 
popu la t ion s a m p l e d is inc luded w i t h i n 
t h e s e l imi t s w i t h a specified probabi l i ty . 
How should such l imi ts be computed , a n d 
w h a t m e a n i n g m a y be a t t a c h e d to t h e m ? 

TABLE 1. Breaking strength often specimens of 
0.104-in. hard-drawn copper wire. 

Specimen 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

re = 10 

Average, ^ 
Standard deviation, s 

Breaking Strength, 
X, lb 

578 
572 
570 
568 
572 
570 
570 
572 
576 
584 

5732 

573.2 
4.83 

Copyright® 2002 by ASTM International www.astm .org 
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NOTE 

The mean |i, is the value of X that 
would be approached as a statistical 
limit as more and more observations 
were obtained under the same 
essential conditions and their 
cumulative averages computed. 

3. Theoretical Background 

Mention should be made of the practice, 
now mostly out of date in scientific work, 
of recording such limits as 

X ± 0.6745 
V« 

where 

X = observed average, 
s = observed standard deviation, 
n = number of observations. 

and 

and referring to the value 0.6145 s/^Jn as 
the "probable error" of the observed 
average, X. (Here the value of 0.6745 
corresponds to the Normal law probability 
of 0.50, see Table 8 of PART 1.) The term 
"probable error" and the probability value 
of 0.50 properly apply to the errors of 
sampling when sampling from a universe 
whose average, p., and whose standard 
deviation, o, are known (these terms apply 
to limits \i ± 0.6745CT/Vn), but they do not 
apply in the inverse problem when merely 
sample values of X and s are given. 

Investigation of this problem [1-3] has 
given a more satisfactory alternative 
(section 4), a procedure which provides 
limits that have a definite operational 
meaning. 

N O T E 

While the method of Section 4 
represents the best that can be done 
at present in interpreting a sample 
X and s, when no other information 
regarding the variability of the 
population is available, a much more 
satisfactory interpretation can be 
made in general if other information 
regarding the variability of the 
population is at hand, such as a 
series of samples from the universe 
or similar populations for each of 
which a value of s or Jf? is computed. 
If s or i? displays statistical control, 
as outlined in PART 3 of this 
Manual, and a sufficient number of 
samples (preferably 20 or more) are 
available to obtain a reasonably 
precise estimate of c, designated as 
a, the limits of uncertainty for a 
sample containing any number of 
observations, n, and arising from a 
population whose t rue standard 
deviation can be presumed equal to 
a, can be computed from the 
following formula: 

X±k 
v« 

where k = 1.645, 1.960, and 2.576 for 
probabilities of P = 0.90, 0.95, and 
0.99, respectively. 

4. Computation of Limits 

The following procedure applies to any 
long run series of problems for each of 
which the following conditions are met: 

Given: A sample of n observations, Xi, 
X2, X3, ..., Xn, having an average = X a n d a 
standard deviation = s. 
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TABLE 2. Factors for calculating 90, 95, and 99 percent confidence limits for averages." 

Number of 
Observations in 

Sample, n 

4 

5 
6 

7 

8 

9 

10 

11 
12 

13 

14 

15 

16 

17 
18 

19 
20 

21 

22 

23 
24 

25 

n greater 
than 25 

90% 
Confidence Limits 

(P = 0.90) 
Value of a 

1.177 

0.953 
0.823 

0.734 

0.670 

0.620 

0.580 

0.546 
0.518 

0.494 

0.473 

0.455 

0.438 

0.423 
0.410 
0.398 

0.387 

0.376 

0.367 
0.358 

0.350 
0.342 

1.645 

approximately 

Confidence Limits, * X :kas 

95% 
Confidence Limits 

(P = 0.95) 
Value of a 

1.591 
1.241 

1.050 

0.925 
0.836 

0.769 

0.715 
0.672 

0.635 

0.604 

0.577 

0.554 

0.533 
0.514 

0,497 
0.482 

0.468 

0.455 

0.443 
0.432 
0.422 

0.413 

1560 

approximately 

99% 
Confidence Limits 

(P = 0.99) 
Value of a 

2.921 
2.059 

1.646 

L401 

1.237 

1.118 

1.028 

0.955 
0.897 

0.847 
0.805 

0.769 

0.737 

0.708 
0.683 

0.660 

0.640 
0.621 

0.604 

0.588 
0.573 

0.559 

2.576 

approximately 

*Limits which may be expected to include |X (9 times in 10, 95 times in 100, or 99 times in 100) in a series of 
problems, each involving a single sample of n observations. 
Values of a computed from Fisher, R. A., "Table of t" Statistical Methods for Research Workers, Table IV based on 
Student's distribution of t. 

" Recomputed in 1975. The a of this Table 2 equals Fisher's « for n - 1 degrees of freedom divided by Vn. See also 

Fig. 1. 
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FIG. 1—Curves giving factors for calculating 50 to 99 percent confidence limits for averages (see also 
Table 2). Redrawn in 1975 for new values of a. Error in reading a not likely to be > 0.01. The numbers 
printed by curves are the sample sizes n. 
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Conditions: (a) The population sampled is 
homogeneous (statistically controlled) in 
respect to X, the variable measured, (b) 
The distribution of X for the population 
sampled is approximately Normal, (c) The 
sample is a random sample. ' 

These limits are commonly referred to 
as "confidence limits" [4,5,18] for the three 
columns of Table 2 they may be referred to 
as the "90 percent confidence limits," "95 
percent confidence limits" and "99 percent 
confidence limits," respectively. 

Procedure: Compute limits 

X±as 

where the value of a is given in Table 2 for 
three values of P and for various values of 

Meaning: If the values of o given in 
Table 2 for P = 0.95 are used in a series of 
such problems, then, in the long run, we 
may expect 95 percent of the intervals 
bounded by the limits so computed, to 
include the population averages p. of the 
populations sampled. If in each instance, 
we were to assert tha t jx is included within 
the limits computed, we should expect to 
be correct 95 times in 100 and in error 5 
times in 100; that is, the statement "ji is 
included within the interval so computed" 
has a probability of 0.95 of being correct. 
But there would be no operational 
meaning in the following statement made 
in any one instance: "The probability is 
0.95 that |j. falls within the limits 
computed in this case" since |a, either does 
or does not fall within the limits. It should 
also be emphasized that even in repeated 
sampling from the same population, the 
interval defined by the limits X±as will 
vary in width and position from sample to 
sample, particularly with small samples 
(see Fig. 2). It is this series of ranges 
fluctuating in size and position which will 
include, ideally, the population mean |J,, 95 
times out of 100 for P - 0.95. 

If the population sampled is finite, that is, made up of a finite 
number of separate units that may be measured in respect to the 
variable, X, and if interest centers on the [i of this poptJation, then this 
procedure assumes that the number of units, n, in the sample is 
relatively small compared with the number of units, Â , in the 
population, say n is less than about 5 percent of Â . However, 
correction for relative size of sample can be made by multiplying >s 

by the factor Jl-(n/ N). On the other hand, if interest centers on the 

\i of the underlying process or soiffce of the finite population, then this 
correction factor is not used. 

The magnitude P = 0.95 applies to the 
series of samples, and is approached as a 
statistical limit as the number of instances 
in the series is increased indefinitely; 
hence it signifies "statistical probability." 
If the values of a given in Table 2 for P = 
0.99 are used in a series of samples, we 
may, in like manner, expect 99 percent of 
the sample intervals so computed to 
include the population mean |i. 

Other values of P could, of course, be 
used if desired—the use of chances of 95 in 
100, or 99 in 100 are, however, often found 
convenient in engineering presentations. 
Approximate values of a for other values 
of P may be read from the curves in Fig. 1, 
for samples otn -25 or less. 

For larger samples (n greater than 
25), the constants, 1.645, 1.960, and 2.576, 
in the expressions 

a = • 
1645 1960 

, and a = 
2.576 

at the foot of Table 2 are obtained directly 
from Normal law integral tables for 
probability values of 0.90, 0.95, and 0.99. 
To find the value of this constant for any 
other value of P, consult any standard text 
on statistical methods or read the value 
approximately on the "^" scale of Fig. 15 of 
PART 1 of this Manual. For example, use 
of a = l/Vn yields P = 68.27% and the 

limits plus or minus one standard error, 
which some scientific journals print 
without noting a percent. 
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Case (4) 
P=0.50 

i|||||i1j.|||l|''|l''i|Ul''i|ili'lj'i'||i|'''i'i|i''l ii'i'i' 

Case (B) 
P=0.90 

)< 

10 20 30 40 50 60 70 80 90 100 

Sample Number 

FIG. 2—Illustration showing computed intervals based on sampling experiments; 100 samples of n = 4 
observations each, from a Normal universe having \i=0 and o = case A is taken from Fig. 8 of Ref. 2, 
and Case B gives corresponding intervals for limits Jf ±1.18 s, based on P = 0.90. 

5. Experimental Illustration 
Figure 2 gives two diagrams illustrating 
the results of sampling experiments for 
samples of ?i = 4 observations each drawn 
from a Normal population, for values of 
Case A, P = 0.50, and Case B, P = 0.90. 
For Case A, the intervals for 51 out of 100 
samples included p, and for Case B, 90 out 
of 100 included yi. If, in each instance (that 
is, for each sample) we had concluded that 
the population mean |J. is included within 
the limits shown for Case A, we would 
have been correct 51 times and in error 49 
times, which is a reasonable variation 
from the expectancy of being correct 50 
percent of the time. 

In this experiment all samples were 
taken from the same population. However, 
the same reasoning applies to a series of 
samples each drawn from a population 
from the same universe as evidenced by 
conformance to the three conditions set 
forth in Section 4. 

6. Presentation of Data 
In presentation of data, if it is desired to 
give limits of this kind, it is quite 
important that the probability associated 
with the limits be clearly indicated. The 
three values P = 0.90, P = 0.95, and P = 
0.99 given in Table 2 (chances of 9 in 10, 
95 in 100, and 99 in 100) are arbitrary 
choices that may be found convenient in 
practice. 

Example 

Given a sample of 10 observations of 
breaking strength of hard-drawn copper 
wire as in Table 1, for which 

X = 573.2 lb 

s = 4.83 lb 

Using this sample to define limits of 
uncertainty based on P == 0.95 (Table 2), 
we have 
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X± 0.715^ = 573.2 ± 3.5 

= 569.7 and 576.7 

Two pieces of information are needed to 
supplement this numerical result: (a) the 
fact that 95 in 100 limits were used, and 
(6) that this result is based solely on the 
evidence contained in 10 observations. 
Hence, in the presentation of such limits, 
it is desirable to give the results in some 
such way as the following 

573.2 ± 3.5 lb (P = 0.95, « = 10) 

The essential information contained in 
the data is, of course, covered by 
presenting X, s, and n (see PART 1 of 
this Manual) and the limits under 
discussion could be derived directly 
therefrom. If it is desired to present such 
limits in addition to X, s, and n, the 
tabular arrangement given in Table 3 is 
suggested. 

A satisfactory alternative is to give the 
± value in the column designated 
"Average, X " and to add a note giving the 
significance of this entry, as shown in 
Table 4. If one omits the note, it will be 

assumed that a = was used and 

that P = 68%. 

7. One-Sided Limits 

Sometimes we are interested in limits of 
uncertainty in one direction only. In this 
case we would present X + a s or X-as 
(not both), a one-sided confidence limit 
below or above which the population mean 
may be expected to lie in a stated 
proportion of an indefinitely large number 
of samples. The a to use in this one-sided 
case and the associated confidence 
coefficient would be obtained from Table 2 
or Fig. 1 as follows. 

For a confidence coefficient of 0.95 use 
the a hsted in Table 2 under P = 0.90. 

For a confidence coefficient of 0.975 
use the a listed in Table 2 under P = 0.95. 

For a confidence coefficient of 0.995 
use the a listed in Table 2 under P = 0.99. 

In general, for a confidence coefficient 
of Pi use the a derived from Fig. 1 for P = 
1 - 2(1 - Pi). For example, with TI = 10, X 
= 573.2, and s = 4.83 the one-sided upper 
Pi = 0.95 confidence limit would be to use 
a = 0.58 for P = 0.90 in Table 2, which 
yields 573.2-H 0.58(4.83) = 573.2 + 2.8 = 
576.0. 

TABLE 3. Suggested tabular arrangement. 

NUMBER OF 
TESTS, n AVERAGE, X 

LIMITS FOR n 
(95 PERCENT 

CONFIDENCE LIMITS) 
STANDARD 

DEVIATION, s 

10 573.2 573.2 ±3.5 4.83 

TABLE 4. Alternative to Table 3. 

NUMBER OF TESTS, n 

10 

AVERAGE, X ° 

573.2 (± 3.5) 

STANDARD DEVIATION, s 

4.83 

"The + entry indicates 95 percent confidence limits for |x. 
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level of p-r 
measurement true 

value level 
constant 

- I — I — • — • — r — T 

560 580 600 620 

FIG. 3—Showing how plus or minus limits (Li and L2) are unrelated to a systematic or constant en-or. 

8. General Comments on the Use 
of Confidence Limits 

In making use of limits of uncertainty of 
the type covered in this part, the engineer 
should keep in mind: (1) the restrictions as 
to (a) controlled conditions, (b) 
approximate Normality of population, (c) 
randomness of sample; and (2) the fact 
that the variability under consideration 
relates to fluctuations around the level of 
measurement values, whatever that may 
be, quite regardless of whether or not the 
population mean \i, of the measurement 
values is widely displaced from the true 
value, [IT , of the thing measured, as a 
result of the systematic or constant errors 
present throughout the measurements. 

For example, breaking strength values 
might center around a value of 575.0 lb 
(the population mean |i, of the 
measurement values) with a scatter of 
individual observations represented by the 
dotted distribution curve of Fig. 3, 
whereas the true average [ij. for the batch 
of wire under test is actually 610.0 lb, the 
difference between 575.0 and 610.0 
representing a constant or systematic 
error present in all the observations as a 
result, say, of an incorrect adjustment of 
the testing machine. 

The limits thus have meaning for 
series of like measurements, made under 

like conditions, including the same 
constant errors if any be present. 

In the practical use of these limits, the 
engineer may not have assurance that 
conditions (a), (b), and (c) given in section 
4 are met, hence it is not advisable to lay 
great emphasis on the exact magnitudes of 
the probabilities given in Table 2, but 
rather to consider them as orders of 
magnitude to be used as general guides. 

9. Number of Places to be 
Retained in Computation and 
Presentat ion 

The following working rule is 
recommended in carrying out 
computations incident to determining 
averages, standard deviations, and "limits 
for averages" of the kind here considered, 
for a sample of n observed values of a 
variable quantity: 

"In all operations on the sample of n 
observed values, such as adding, 
subtracting, multiplying, dividing, 
squaring, extracting square root, etc., 
retain the equivalent of two more 
places of figures than in the single 
observed values. For example, if 
observed values are read or 
determined to the nearest 1 lb., carry 
numbers to the nearest 0.01 lb. in the 
computations; if observed values are 
read or determined to the nearest 10 
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lb., carry numbers to the nearest 0.1 
lb. in the computations, etc." 

Deleting places of figures should be 
done after computations are completed, in 
order to keep the final results 
substantially free from computation 
errors. In deleting places of figures the 
actual rounding-off procedure should be 
carried out as follows.^ 

1. When the figure next beyond the last 
figure or place to be retained is less 
than 5, the figure in the last place 
retained should be kept unchanged. 

2. When the figure next beyond the last 
figure or place to be retained is more 
than 5, the figure in the last place 
retained should be increased by 1. 

3. When the figure next beyond the last 
figure or place to be retained is 5, and 
(a) there are no figures, or only zeros, 
beyond this 5, if the figure in the last 
place to be retained is odd, it should be 
increased by 1; if even, it should be 
kept unchanged; but (b) if the 5 next 
beyond the figure in the last place to 
be retained is followed by any figures 
other than zero, the figure in the last 
place retained should be increased by 
1, whether odd or even. For example, 
if in the following numbers, the places 
of figures in parenthesis are to be 
rejected 

39 4(49) becomes 39 400, 

39 4(50) becomes 39 400, 

39 4(51) becomes 39 500, and 

^ This rounding-off procedure agrees with that 
adopted in ASTM Recommended Practice for 
Indicating which Places of Figures Are to be 
Considered Significant in Specified Limiting Values 
(E 29). 

39 5(50) becomes 39 600. 

The number of places of figures to be 
retained in presentation depends on what 
use is to be made of the results and on the 
sampling variation present. No general 
rule, therefore, can safely be laid down. 
The following working rule has, however, 
been found generally satisfactory by the 
committee in presenting the results of 
testing in technical investigations and 
development work: 

(a) See TABLE 5 for averages. 

(b) For standard deviations, retain 
three places of figures. 

(c) If "limits for averages" of the kind 
here considered are presented, 
retain the same places of figures 
as are retained for the average. 

For example, ii n = 10, and if 
observed values were obtained to 
the nearest 1 lb, present averages 
and "limits for averages" to the 
nearest 0.1 lb, and present the 
standard deviation to three places 
of figures. This is illustrated in the 
tabular presentation in section 6. 

Rule (a) will result generally in one 
and conceivably in two doubtful places of 
figures in the average, that is, places 
which may have been affected by the 
rounding-off (or observation) of the n 
individual values to the nearest number of 
units stated in the first column of the 
table. Referring to Tables 3 and 4 the 
third place figures in the average, 
X = 573.2, corresponding to the first place 
of figures in the ± 3.5 value is doubtful in 
this sense. One might conclude that it 
would be suitable to present the average 
to the nearest pound, thus, 

573 ± 3 lb ( F = 0.95, n^lO) 



TABLE 5. Averages. 

WHEN THE SINGLE VALUES 
ARE OBTAINED TO 

THE NEAREST 

0.1, 1, 10, etc., units 
0.2, 2, 20, etc., units 
0.5, 5, 50, etc., units 

RETAIN THE FOLLOWING NUMBER OF 
PLACES OF FIGURES IN THE AVERAGE 
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AND WHEN THE 
NUMBER OF OBSERVED 

VALUES IS 

less than 4 
less than 10 

[same number 
•̂  of places as in 
[single values 

2 to 20 
4 to 40 

10 to 100 

1 more 
place than 
in single 
values 

21 to 200 
41 to 400 

101 to 1000 

2 more 
places 
than 
in single 
values 

TABLE 6. Effect of rounding. 

NOT ROUNDED 

LIMITS DIFFERENCE 

573.5 ±1 .4 572.1 574.9 2.8 
573.5 ±1 .5 572.0 575.0 3.0 

574 ± 1 
574 ± 2 

ROUNDED 

LIMITS 

573 575 
572 576 

DIFFERENCE 

2 
4 

This might be satisfactory for some 
purposes. However, the effect of such 
rounding off to the first place of figures of 
the plus or minus value may be quite 
pronounced if the first digit of the plus or 
minus value is small, as indicated in Table 
6. If further use were to be made of these 
data—collecting additional observations to 
be combined with these, gathering other 
data to be compared with these, etc.— 
then the effect of such rounding off of X 
in a presentation might seriously interfere 
with proper subsequent use of the 
information. 

The number of places of figures to be 
retained or to be used as a basis for action 
in specific cases cannot readily be made 
subject to any general rule. It is, therefore, 
recommended that in such cases the 
number of places be settled by definite 
agreements between the individuals or 
parties involved. In reports covering the 
acceptance and rejection of material 
ASTM E 29 gives specific rules that are 
applicable when reference is made to this 
recommended practice. 

SUPPLEMENT A 

Present ing Plus or Minus Limits of 
Uncertainty for CT —Normal 
Distribution^ 

When observations Xi, X2, ..., X^ are made 
under controlled conditions, and there is 
reason to believe the distribution of X is 
Normal, two-sided confidence limits for 
the standard deviation of the population 
with confidence coefficient, P, will be given 
by lower confidence limit for 

= sp-l)/xl P)I2 (1) 

upper confidence limit for 

'^4(n-\)lxl ! + /•)/2 

where the quantity xli-p)i2 (ô ^ Xl\+p)i2) is 

the x^ value of a chi-square variable with n 

The analysis is strictly valid only for an unlimited 
population such as presented by a manufacturing or 
measurement process. When the population sampled is 
relatively small compared with the sample size n, the reader 
is advised to consult a statistician. 
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- 1 degrees of freedom which is exceeded 
with probabihty (1 - P)/2 or (1 + P)/2 as 
found in most statistics text books. 

To facihtate computation, Table 7 
gives values of 

and for the upper confidence limit (3) 

^u=bu^ 

^ = y ( « - l)/-^(i_P)/2 and 
(2) 

for P = 0.90, 0.95, and 0.99. Thus we 
have, for a Normal distribution, the 
estimate of the lower confidence limit for o 
as 

Example 

Table 1 of PART 2 gives the standard 
deviation of a sample of 10 observations of 
breaking strength of copper wire as s = 
4.83 lb. If we assume that the breaking 
strength has a Normal distribution, which 
may actually be somewhat questionable, 
we have as 0.95 confidence limits for the 
universe standard deviation a that yield a 

TABLE 7. 6-factors for calculating confidence limits for a, 

Normal distribution." 

Number of 
Observations 
in Sample, n 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

For larger n 

and 

1 90% 
Confidence Limits 

bL 

0.510 
0.578 
0.619 
0.649 
0.671 
0.690 
0.705 
0.718 
0.730 
0.739 
0.747 
0.756 
0.762 
0.769 
0.775 
0.780 
0.785 
0.789 
0.794 
0.798 
0.801 
0.806 
0.808 
0.812 
0.814 
0.818 
0.821 
0.823 
0.826 
0.828 

1/(1 + 1 

1/(1-1 

bu 

16.0 
4.41 
2.92 
2.37 
2.09 
1.91 
1.80 
1.71 
1.64 
1.59 
1.55 
1.51 
1.49 
1.46 
1.44 
1.42 
1.40 
1.38 
1.37 
1.35 
1.35 
1.34 
1.33 
1.32 
1.31 
1.30 
1.29 
1.29 
1.28 
1.27 

1645 /Jli^ 
IMS /Jzi^) 

95% 
Confidence Limits 

bL 

0.446 
0.521 
0.566 
0.600 
0.625 
0.645 
0.661 
0.676 
0.688 
0.698 
0.709 
0.718 
0.725 
0.732 
0.739 
0.745 
0.750 
0.756 
0.760 
0.765 
0.769 
0.773 
0.777 
0.780 
0.785 
0.788 
0.791 
0.793 
0.797 
0.799 

1/(1 + 1 

1/(1-1 

bv 

31.9 
6.29 
3.73 
2.87 
2.45 
2.20 
2.04 
1.92 
1.83 
1.75 
1.70 
1.65 
1.61 
1.58 
1.55 
1.52 
1.50 
1.48 
1.46 
1.44 
1.43 
1.41 
1.40 
1.39 
1.38 
1.37 
1.36 
1.35 
1.35 
1.34 

[Smijln) 
[960/.j2n) 

1 99% 
Confidence Limits 

(-L 

0.356 
0.434 
0.484 
0.518 
0.547 
0.569 
0.587 
0.603 
0.618 
0.630 
0.641 
0.651 
0.660 
0.669 
0.676 
0.683 
0.690 
0.696 
0.702 
0.707 
0.712 
0.717 
0.721 
0,725 
0.730 
0.734 
0.738 
0,741 
0,745 
0,747 

bv 

159.5 
14.1 
6.47 
4.40 
3,48 
2,98 
2,66 
2,44 
2,28 
2,15 
2,06 
1,98 
1,91 
1.85 
1.81 
1,76 
1,73 
1,70 
1,67 
1,64 
1,62 
1,60 
1,58 
1,56 
1.54 
1.52 
1.51 
1,50 
1,49 
1.47 

l / ( l + 2 5 7 6 / » ^ ) 

1 / ( 1 - 2 . 5 7 6 / . , ^ 

Confidence limits for a = bi^s and b^s. 



lower 0.95 confidence limit of 

d i = 0.688^4.83; = 3.32 lb. 

and upper 0.95 confidence limit of 

Ojj = 1.83^4.83; = 8.83 lb. 

If we wish a one-sided confidence limit 
on the low side with confidence coefficient 
P, we estimate the lower one-sided 
confidence limit as 

G^=s^{n-\)lxl. 

For a one-sided confidence limit on the 
high side with confidence coefficient P, we 
estimate the upper one-sided confidence 
limit as 

^4in-^)lxl 

Thus for P = 0.95, 0.975, and 0.995 we 
use the 6L or b^ factor from Table 7 in the 
columns headed 0.90, 0.95, and 0.99, 
respectively. For example, a 0.95 upper 
one-sided confidence limit for o based on a 
sample of 10 items for which s = 4.83 will 
be 

^U ^U(0.90)'^ 

= 1.64(4.83) 

= 7.92 

A lower 0.95 one-sided confidence limit 
would be 

a, =b L(0.90)'' 

= 0.730(4.83) 

= 3.53 
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SUPPLEMENT B 

Present ing Plus or Minus Limits of 
Uncertainty for />'* 

When there is a fraction p of a given 
category, for example, the fraction 
nonconforming, in n observations obtained 
under controlled conditions, 95 percent 
confidence limits for the population 
fraction p' may be found from the chart in 
Fig. 41 of Biometrika Tables for 
Statisticians, Vol. 1. A reproduction of this 
fraction is entered on the abscissa and the 
upper and lower 0.95 confidence limits are 
chart for selected sample sizes is shown in 
Fig. 4. To use the chart, the sample read 
on the vertical scale for various values of 
n. Approximate limits for values of n not 
shown on the Biometrika chart may be 
obtained by graphical interpolation. The 
Biometrika Tables for Statisticians also 
give a chart for 0.99 confidence limits. 

In general, for an np and n(l - p) at 
least 6 and preferably 0.10 < p < 0.90, the 
following formulas can be applied 

approximate 0.90 confidence limits 

p±L645.^p{l-p)/n 

approximate 0.95 confidence limits 

p±L960yjp{l-p)/n (4) 

approximate 0.99 confidence limits 

p ±2.576^ p{\-p)/n. 

Example 

Refer to the data of Table 2(a) of PART 1 
and Fig. 4 of PART 1 and suppose that 
the lower specification limit on transverse 

The analysis is strictly valid only for an unlimited 
population such as presented by a manufacturing or 
measurement process. When the population sampled is 
relatively small compared with the sample size n, the reader 
is advised to consult a statistician. 
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0-65 

0-60 
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P • 

Reproduced by permission of the Biometrika Trust. 

FIG. 4—Chart providing confidence iimits for p' in binomiai sampling, given a sample fraction. 
Confidence coefficient = 0.95. The numbers printed along the curves indicate the sample size n. If for a 
given value of the abscissa, p^ and Pg are the ordinates read from (or interpolated between) the 
appropriate lower and upper curves, then Pr{pA < p' < PB} > 0.95. 
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strength is 675 psi and there is no upper 
specification Hmit. Then the sample 
percentage of bricks nonconforming (the 
sample "fraction nonconforming" p) is seen 
to be 8/270 = 0.030. Rough 0.95 confidence 
limits for the universe fraction 
nonconforming p' are read from Fig. 4 as 
0.02 to 0.07. Using Eq 4, we have 
approximate 95 percent confidence limits 
as 
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One-sided confidence limits for a 
population fraction p' can be obtained 
directly from the Biometrika chart or Fig. 
4, but the confidence coefficient will be 
0.975 instead of 0.95 as in the two-sided 
case. For example, with n = 200 and the 
sample p = 0.10 the 0.975 upper one-sided 
confidence limit is read from Fig. 4 to be 
0.15. When the Normal approximation can 
be used, we will have the following 
approximate one-sided confidence limits 
forp' 

P = n qo- lower limit =p - l.2S2ylp(l-p)/n 

upper limit =p + l.282.yjp{l-p)/n 

P = 0.95: 
lower limit -p - 1.645^p{l-p)/n 

upper limit =p + 1.645^p(l-p)/n 

P = 0.99: 
. lower limit =/? - 2326-^p{[-p)/n 

upper limit =p + 2.326-yJp{l-p)/n 
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Control Chart Method of Analysis 
and Presentation of Data 

GLOSSARY OF TERMS 
SYMBOLS USED IN PART 3 

AND 

In general, the terms and symbols used in 
PART 3 have the same meanings as in 
preceding parts of the Manual. In a few 
cases, which are indicated in the following 
glossary, a more specific meaning is 
attached to them for the convenience of a 
portion or all of PART 3. Mathematical 
definitions and derivations are given in 
Supplement A. 

Glossary of Terms 

assignable cause, n.—an identifiable 
factor that contributes to variation in 
quality and which it is feasible to 
detect and identify. Sometimes 
referred to as a special cause. 

chance cause, n.—an identifiable factor 
that exhibits variation which is 
random and free from any 
recognizable pattern over time. 
Sometimes referred to as a common 
cause. 

lot, n.—a definite quantity of some 
commodity produced under conditions 
that are considered uniform for 
sampling purposes. 

sample, n.—a group of units, or portion of 

material, taken from a larger collection 
of units or quantity of material, which 
serves to provide information that can 
be used as a basis for action on the 
larger quantity or on the production 
process. May be referred to as a 
subgroup in the construction of a 
control chart. 

subgroup, n.—one of a series of groups 
of observations obtained by 
subdividing a larger group of 
observations; alternatively, the data 
obtained from one of a series of 
samples taken from a series of lots or 
from sublots taken from a process. One 
of the essential features of the control 
chart method is to break up the 
inspection data into rational subgroups, 
that is, to classify the observed values 
into subgroups, within which variations 
may, for engineering reasons, be 
considered to be due to nonassignable 
chance causes only, but between 
which there may be differences due to 
one or more assignable causes whose 
presence is considered possible. May be 
referred to as a sample from the 
process in the construction of a control 
chart. 

unit, n.—one of a number of similar 
articles, parts, specimens, lengths, 
areas, etc. of a material or product. 

sublot, n.—an identifiable part of a lot. 

Glossary of Symbols 
Symbol General In PART 3, Control Charts 

number of nonconformities; more specifically the 
number of nonconformities in a sample (subgroup) 

Copyright 2002 by ASTM Inteniational www.astin.org 
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Glossary of Symbols—Continued 
Symbol General 

d2 

k 
MR 

MR 

np 

R 

u 

X 

X 

typically the absolute value of the 
difference of two successive 
values plotted on a control chart. 
It may also be the range of a 
group of more than two 
successive values. 

average of n-1 moving ranges from 
a series of n values 

number of observed values 
(observations) 

relative frequency or proportion, the 
ratio of the number of 
occurrences to the total possible 
number of occurrences 

number of occurrences 

range of a set of numbers, that is, 
the difference between the 
largest number and the smallest 
number 

sample standard deviation 

observed value of a measurable 
characteristic; specific observed 
values are designated X^, X2, X^, 
etc.; also used to designate a 
measurable characteristic 

average (arithmetic mean); the sum 
of the n observed values divided 
hyn 

In PART 3, Control Charts 

a factor that is a function of n and expresses the ratio 
between the expected value of J for a large number 
of samples of n observed values each and the a of 
the universe sampled. (Values of f. = E(I)la ^"^^ 

given in Tables 6 and 16, and in Table 49 in 
Supplement A, based on a Normal distribution.) 

a factor that is a function of n and expresses the ratio 
between expected value of R for a large number of 
samples of n observed values each and the a of the 

universe sampled. (Values of di = E(R)I o are given in 
Tables 6 and 16 and in Table 49 in Supplement A, 
based on a Normal distribution.) 

number of subgroups or samples under consideration 
the absolute value of the difference of two successive 

values plotted on a control chart. 

average moving range of n-1 moving ranges from a series 
of n values 

MR 
\X^-X^\ + --- + \X,-X„ 

subgroup or sample size, that is, the number of units or 
observed values in a sample or subgroup 

fraction nonconforming, the ratio of the number of 
nonconforming units (articles, parts, specimens, etc.) to 
the total number of units under consideration; more 
specifically, the fraction nonconforming of a sample 
(subgroup) 

number of nonconforming units; more specifically, the 
number of nonconforming units in a sample of n units 

range of the n observed values in a subgroup (sample) (the 
symbol R is also used to designate the moving range in 
Figures 29 and 30) 

standard deviation of the n observed values in a subgroup 
(sample) 

\x^-'xf+ • • • +(x-lcf 

or expressed in a form more convenient but sometimes 
less accurate for computation purposes 

7 ( x f + • • • + xl) - {x,+ • • • +x„f 
n{n - 1) 

nonconformities per units, the number of nonconformities 
in a sample of n units divided by n 

average of the n observed values in a subgroup (sample) 

X = -
Z + X + + X 
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Q u a l i f i e d 
S y m b o l s 

o„a„a„a^ ;etc. 

X,s,R,p,etc. 

|X, o, p', u', c' 

^lo, Oo, Po , " o . Co, 

standard deviation of values oiX, s, 

R, p, etc. 

average of a set of values oi X,s, R, 
p, etc. (the overbar notation 
signifies an average value) 

mean, standard deviation, fraction 
nonconforming, etc., of the 
population 

alpha risk of claiming that a 
hypothesis is true when it is 
actually true 

beta risk of claiming that a 
hypothesis is false when it is 
actually false 

standard deviation of the sampling distribution of X, s, R, 
p, etc. 

average of the set of k subgroup (sample) values of X s, R, 
p, etc., under consideration; for samples of unequal size, 
an overall or weighted average 

standard value of |x, 0, p', etc., adopted for computing 
control limits of a control chart for the case. Control 
with Respect to a Given Standard (see Sections 18 to 27) 

risk of claiming that a process is out of statistical control 
when it is actually in statistical control, a.k.a.. Type I 
error. 100(l-a)% is the percent confidence. 

risk of claiming that a process is in statistical control when 
it is actually out of statistical control, a.k.a.. Type 11 
error. 100(1-|3)% is the power of a test that declares the 
hypothesis is false when it is actually false. 

G E N E R A L P R I N C I P L E S 

1. P u r p o s e 

PART 3 of the Manual gives formulas, 
tables, and examples that are useful in 
applying the control chart method [1] of 
analysis and presentation of data. This 
method requires that the data be obtained 
from several samples or that the data be 
capable of subdivision into subgroups 
based on relevant engineering 
information. Although the principles of 
PART 3 are applicable generally to many 
kinds of data, they will be discussed 
herein largely in terms of the quality of 
materials and manufactured products. 

The control chart method provides a 
criterion for detecting lack of statistical 
control. Lack of statistical control in data 
indicates that observed variations in 
quality are greater than should be 
attributed to chance. Freedom from 
indications of lack of control is necessary 

for scientific evaluation of data and the 
determination of quality. 

The control chart method lays 
emphasis on the order or grouping of the 
observations in a set of individual 
observations, sample averages, number of 
nonconformities, etc., with respect to time, 
place, source, or any other consideration 
that provides a basis for a classification 
which may be of significance in terms of 
known conditions under which the 
observations were obtained. 

This concept of order is illustrated by the 
data in Table 1 in which the width in 
inches to the nearest 0.0001-in. is given 
for 60 specimens of Grade BB zinc which 
were used in ASTM atmospheric corrosion 
tests. 

At the left of the table, the data are 
tabulated without regard to relevant 
information. At the right, they are shown 
arranged in ten subgroups, where each 
subgroup relates to the specimens from a 
separate milling. The information 
regarding origin is relevant engineering 
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TABLE 1. Comparison of data before and after subgrouping (width in inches of specimens of 
Grade BB zinc). 

Before Subgrouping 

0.5005 

0.5000 

0.5008 

0.5000 

0.5005 

0.5000 

0.4998 

0.4997 

0.4998 

0.4994 

0.4999 

0.4998 

0.4995 

0.4995 

0.4995 

0.4995 

0.4995 

0.4996 

0.4998 

0.5005 

0.5005 

0.5002 

0.5003 

0.5004 

0.5000 

0.5005 

0.5008 

0.5007 

0.5008 

0.5010 

0.5008 

0.5009 

0.5010 

0.5005 

0.5006 

0.5009 

0.5000 

0.5001 

0.5002 

0.4995 

0.4996 

0.4997 

0.4993 

0.4994 

0.4999 

0.4996 

0.4996 

0.4997 

0.4995 

0.4995 

0.4997 

0.4992 

0.4995 

0.4992 

0.4994 

0.4998 

0.5000 

0.4990 

0.5000 

0.5000 

Subgroup 

(Mining) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 

0.5005 

0.4998 

0.4995 

0.4998 

0.5000 

0.5008 

0.5000 

0.4993 

0.4995 

0.4994 

After Subgrouping 

2 

0.5000 

0.4997 

0.4995 

0.5005 

0.5005 

0.5009 

0.5001 

0.4994 

0.4995 

0.4998 

Specimen 

3 

0.5008 

0.4998 

0.4995 

0.5005 

0.5008 

0.5010 

0.5002 

0.4999 

0.4997 

0.5000 

4 

0.5000 

0.4994 

0.4995 

0.5002 

0.5007 

0.5005 

0.4995 

0.4996 

0.4995 

0.4990 

5 

0.5005 

0.4999 

0.4995 

0.5003 

0.5008 

0.5006 

0.4996 

0.4996 

0.4995 

0.5000 

6 

0.5000 

0.4998 

0.4996 

0.5004 

0.5010 

0.5009 

0.4997 

0.4997 

0.4992 

0.5000 

information, which makes it possible to 
apply the control chart method to these 
data (see Example 3). 

2. Terminology and Technical 
Background 

Variation in quality from one unit of 
product to another is usually due to a very 
large number of causes. Those causes, for 
which it is possible to identify, are termed 
special causes, or assignable causes. Lack 
of control indicates one or more assignable 
causes are operative. The vast majority of 
causes of variation may be found to be 
inconsequential and cannot be identified. 
These are termed chance causes, or 
common causes. However, causes of large 
variations in quality generally admit of 
ready identification. 

In more detail we may say tha t for a 
constant system of chance causes, the average 
X, the standard deviations s, the value of 
fraction nonconforming p, or any other 
functions of the observations of a series of 
samples will exhibit statistical stability of the 
kind that may be expected in random samples 
from homogeneous material. The criterion of 
the quality control chart is derived from laws 
of chance variations for such samples, and 
failure to satisfy this criterion is taken as 
evidence of the presence of an operative 
assignable cause of variation. 

As applied by the manufacturer to 
inspection data, the control chart provides a 
basis for action. Continued use of the control 
chart and the elimination of assignable causes 
as their presence is disclosed, by failures to 
meet its criteria, tend to reduce variability 
and to stabilize quality at aimed-at levels [2-
8,12]. While the control chart method has 
been devised primarily for this purpose, it 
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provides simple techniques and criteria 
that have been found useful in analyzing 
and interpreting other types of data as 
well. 

3. Two Uses 
The control chart method of analysis is 
used for the following two distinct 
purposes. 

A. Control—No Standard Given 

To discover whether observed values of 
X, s, p, etc., for several samples of n 
observations each, vary among themselves 
by an amount greater than should be 
attributed to chance. Control charts based 
entirely on the data from samples are 
used for detecting lack of constancy of the 
cause system. 

B. Control with Respect to a Given 
Standard 

To discover whether observed values of 
X, s, p, etc., for samples of n observations 
each, differ from standard values (XQ, OO, Po, 
etc., by an amount greater than should be 
attributed to chance. The standard value 
may be an experience value based on 
representative prior data, or an economic 
value established on consideration of 
needs of service and cost of production, or 
a desired or aimed-at value designated by 
specification. It should be noted 
particularly that the standard value of a, 
which is used not only for setting up 
control charts for s or i? but also for 
computing control limits on control charts 
for X, should almost invariably be an 
experience value based on representative 
prior data. Control charts based on such 
standards are used particularly in 
inspection to control processes and to 
maintain quality uniformly at the level 
desired. 

4. Breaking up Data into Rational 
Subgroups 

One of the essential features of the control 
chart method is what is referred to as 
breaking up the data into rationally chosen 
subgroups called rational subgroups. This 
means classifying the observations under 
consideration into subgroups or samples, 
within which the variations may be considered 
on engineering grounds to be due to 
nonassignable chance causes only, but 
between which the differences may be due to 
assignable causes whose presence are 
suspected or considered possible. 

This part of the problem depends on 
technical knowledge and familiarity with the 
conditions under which the material sampled 
was produced and the conditions under which 
the data were taken. By identifying each 
sample with a time or a source, specific causes 
of trouble may be more readily traced and 
corrected, if advantageous and economical. 
Inspection and test records, giving 
observations in the order in which they were 
taken, provide directly a basis for subgrouping 
with respect to time. This is commonly 
advantageous in manufacture where it is 
important, from the standpoint of quality, to 
maintain the production cause system 
constant with time. 

It should always be remembered that 
analysis will be greatly facilitated if, when 
planning for the collection of data in the first 
place, care is taken to so select the samples 
that the data from each sample can properly 
be treated as a separate rational subgroup, 
and that the samples are identified in such a 
way as to make this possible. 

5. General Technique in Using 
Control Chart Method 

The general technique (see Ref. 1, Criterion I, 
Chapter XX) of the control chart method 
variations in quality generally admit of ready 
identification is as follows. Given a set of 
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observations, to determine whether an 
assignable cause of variation is present: 

a. Classify the total number of 
observations into k rational subgroups 
(samples) having n^, ^ij, ..., n,^ 
observations, respectively. Make 
subgroups of equal size, if practicable. 
It is usually preferable to make 
subgroups not smaller than n = A for 
variables X, s, or R, nor smaller than 
n = 25 for (binary) attributes. (See 
Sections 13, 15, 23, and 25 for further 
discussion of preferred sample sizes 
and subgroup expectancies for general 
attributes.) 

b. For each statistic (X, s, R, p, etc.) to 
be used, construct a control chart with 
control limits in the manner indicated 
in the subsequent sections. 

c. If one or more of the observed values 
of X, s, R, p, etc., for the k subgroups 
(samples) fall outside the control 
limits, take this fact as an indication 
of the presence of an assignable cause. 

n. Note that this standard deviation is not the 
standard deviation computed from the 
subgroup values (of X, s, R, p, etc.) plotted on 
the chart, but is computed from the variations 
within the subgroups (see Supplement B, 
Note 1). 

Throughout this part of the Manual such 
standard deviations of the sampling 
distributions will be designated as a ^ , Gg, GR, 

Cp, etc., and these symbols, which consist of a 
and a subscript, will be used only in this 
restricted sense. 

For measurement data, if [i and a were 
known, we would have 

Control limits for: 

average (expected z ) + 3 cr_ 

standard deviations (expected s) ± 3cr, 

ranges (expected R) ± 3CT̂  

where the various expected values are derived 
from estimates of (i or o. For attribute data, if 
p' were known, we would have control limits 
for values of p (expected p) ± 30p, where 
expected p = p'. 

6, Control Limits and Criteria of 
Control 

In both uses indicated in Section 3, the 
control chart consists essentially of 
symmetrical limits (control limits) placed 
above and below a central line. The 
central line in each case indicates the 
expected or average value of X, s, R, p, 
etc. for subgroups (samples) of n 
observations each. 

The control limits used here, referred 
to as 3-sigma control limits, are placed at 
a distance of three standard deviations 
from the central line. The standard 
deviation is defined as the standard 
deviation of the sampling distribution of 
the statistical measure in question {X, s, 
R, p, etc.) for subgroups (samples) of size 

The use of 3-sigma control limits can be 
attributed to Walter Shewhart who based this 
practice upon the evaluation of numerous 
datasets (see Ref. 1). Shewhart determined 
that based on a single point relative to 3-
sigma control limits the control chart would 
signal assignable causes affecting the process. 
Use of 4-sigma control limits would not be 
sensitive enough, and use of 2-sigma control 
limits would produce too many false signals 
(too sensitive) based on the evaluation of a 
single point. 

Figure 1 indicates the features of a control 
chart for averages. The choice of the factor 3 
(a multiple of the expected standard deviation 
of X, s, R, p, etc.) in these limits, as Shewhart 
suggested (Ref. 1), is an economic choice based 
on experience that covers a wide range of 
industrial applications of the control chart, 
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rather than on any exact value of 
probabiUty (see Supplement B, Note 2). 
This choice has proved satisfactory for use 
as a criterion for action, that is, for looking 
for assignable causes of variation. 

Observed Values of X 
Upper Control Limlt-

2 4 6 8 
Subgroup (Sample) Number 

10 

FIG. 1—Essential features of a control chart 
presentation; chart for averages. 

This action is presumed to occur in the 
normal work setting, where the cost of too 
frequent false alarms would be 
uneconomic. Furthermore, the situation 
of too frequent false alarms could lead to a 
rejection of the control chart as a tool if 
such deviations on the chart are of no 
practical or engineering significance. In 
such a case, the control limits should be 
re-evaluated to determine if they correctly 
reflect the system of chance, or common, 
cause variation of the process. For 
example, a control chart on a raw material 
assay may have understated control limits 
if the data on which they were based 
encompassed only a single lot of the raw 
material. Some lot-to-lot raw material 
variation would be expected since nature 
is in control of the assay of the material as 
it is being mined. Of course, in some 
cases, some compensation by the supplier 
may be possible to correct problems with 
particle size and the chemical composition 
of the material in order to comply with the 
customer's specification. 

In exploratory research, or in the early 
phases of a deliberate investigation into 
potential improvements, it may be 

worthwhile to investigate points that fall 
outside what some have called a set of 
warning limits (often placed two standards 
deviation about the centerline). The chances 
that any single point would fall two standard 
deviations from the average is roughly 1 in 20, 
or 5% of the time, when the process is indeed 
centered and in statistical control. Thus, 
stopping to investigate a false alarm once for 
every 20 plotting points on a control chart 
would be too excessive. Alternatively, an 
effective rule of nonrandomness would be to 
take action if two consecutive points were 
beyond the warning limits on the same side of 
the centerline. The risk of such an action 
would only be roughly 1 in 800! Such an 
occurrence would be considered an unlikely 
event and indicate that the process is not in 
control, so justifiable action would be taken to 
identify an assignable cause. 

A control chart may be said to display a 
lack of control under a variety of 
circumstances, any of which provide some 
evidence of nonrandom behavior. Several of 
the best known nonrandom patterns can be 
detected by the manner in which one or more 
tests for nonrandomness are violated. The 
following list of such tests are given below: 

1. Any single point beyond 3o limits 

2. Two consecutive points beyond 2a 
limits on the same side of the 
centerline 

3. Eight points in a row on one side of 
the centerline 

4. Six points in a row that are moving 
away or toward the centerline with no 
change in direction (a.k.a., trend rule) 

5. Fourteen consecutive points 
alternating up and down (sawtooth 
pattern) 

6. Two out of three points beyond 2o 
limits on the same side of the 
centerline 
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7. Four out of five points beyond l a 
limits on the same side of the 
centerUne 

8. Fifteen points in a row within the 
l o Umits on either side of the 
centerline (a.k.a., stratification 
rule—sampling from two sources 
within a subgroup) 

9. Eight consecutive points outside 
the l a limits on both sides of the 
centerline (a.k.a., mixture rule— 
sampling from two sources 
between subgroups) 

There are other rules that can be applied 
to a control chart in order to detect 
nonrandomness, but those given here are 
the most common rules in practice. 

It is also important to understand 
what risks are involved when 
implementing control charts on a process. 
If we state that the process is in a state of 
statistical control, and present it as a 
hypothesis, then we can consider what 
risks are operative in any process 
investigation. In particular, there are two 
types of risk that can be seen in the 
following table: 

DECISION ABOUT 
THE STATE OF 
THE PROCESS 

BASED ON DATA 

Process is IN 
control 

Process is OUT of 
control 

TRUE STATE OF THE PROCESS 

Process is IN Process is OUT of 
control control 

No error is 
made 

Alpha (a) risk, 
or Type I error 

Beta (P) risk, or 
Type II error 

No error is made 

exists unless the plotted points for at least 25 
consecutive subgroups fall within 3-sigma 
control limits. On the other hand, the number 
of subgroups needed to detect a lack of 
statistical control at the start may be as small 
as 4 or 5. Such a precaution against 
overlooking trouble may increase the risk of a 
false indication of lack of control. But it is a 
risk almost always worth taking in order to 
detect trouble early. 

What does this mean? If the objective of a 
control chart is to detect a process change, and 
that we want to know how to improve the 
process, then it would be desirable to assume 
a larger alpha (a) risk (smaller beta (P) risk) 
by using control limits smaller than 3 
standard deviations from the centerline. This 
would imply that there would be more false 
signals of a process change if the process were 
actually in control. Conversely, if the alpha 
risk is too small, by using control limits larger 
than 2 standard deviations from the 
centerline, then we may not be able to detect a 
process change when it occurs which results in 
a larger beta ((3) risk. 

Typically, in a process improvement effort, 
it is desirable to consider a larger alpha risk 
with a smaller beta risk. However, if the 
primary objective is to control the process with 
a minimum of false alarms, then it would be 
desirable to have a smaller alpha risk with a 
larger beta risk. The latter situation is 
preferable if the user is concerned about the 
occurrence of too many false alarms, and is 
confident that the control chart limits are the 
best approximation of chance cause variation. 

Once statistical control of the process has 
been established, occurrence of one plotted 
point beyond 3-sigma limits in 35 consecutive 
subgroups or 2 points in 100 subgroups need 
not be considered a cause for action. 

For a set of data analyzed by the 
control chart method, when may a state of 
control be assumed to exist? Assuming 
subgrouping based on time, it is usually 
not safe to assume that a state of control 

NOTE 

In a number of examples in PART 3, 
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fewer than 25 points are plotted. In 
most of these examples, evidence of a 
lack of control is found. In others, it is 
considered only that the charts fail to 
show such evidence, and it is not safe 
to assume a state of statistical control 
exists. 

CONTROL —NO STANDARD 
GIVEN 

7. Introduction 

Sections 7 to 17 cover the technique of 
analysis for control when no standard is 
given, as noted under A in Section 3. Here 
standard values of î, a, p', etc., are not 
given, hence values derived from the 
numerical observations are used in 
arriving at central lines and control limits. 
This is the situation that exists when the 
problem at hand is the analysis and 
presentation of a given set of experimental 
data. This situation is also met in the 
initial stages of a program using the 
control chart method for controlling 
quality during production. Available 
information regarding the quality level 
and variability resides in the data to be 
analyzed and the central lines and control 
limits are based on values derived from 
those data. For a contrasting situation, see 
Section 18. 

A. Large Samples of Equal Size 

For samples of size n, the control chart lines 
are as shown in Table 2. 

TABLE 2. Formulas for control chart lines. ̂  

For averages X 

For standard 
deviations s 

CENTRAL 
LINE 

J 

CONTROL 
LIMITS 

" Y + I •̂  
V«-0.5 

•J2n~2.5 

ay 

(2> 

" Formula 1 for control limits is an approximation based 
on Eq 70, Supplement A. It may be used for n of 10 or more. 

* Formula 2 for control limits is an approximation based 
on Eq 75, Supplement A. It may be used for n of 10 or more. 

where 

X = the grand average of the observed 

values of X for a / / s amples , 

=(X, +X^ + ••• +Xt)/k (3) 

J = the average subgroup standard deviation, 

h)/k (4) = (5 , + S 2 + -

where the subscripts 1, 2, . . ., ^ refer to the k 
subgroups, respectively, all of size n. (For a 
discussion of this formula, see Supplement 
B, Note 3; also see Example 1). 

B. Large Samples of Unequal Size 

Use Equations 1 and 2 but compute X and J 
as follows 

8. Control Charts for Averages, X, 
and for Standard Deviations, 
s—Large Samples 

This section assumes that a set of 
observed values of a variable X can be 
subdivided into k rational subgroups 
(samples), each subgroup containing n of 
more than 25 observed values. 

X = the grand average of the observed values 
of X for all samples 

Previous editions of this manual had used n instead of n - 0.5 in 
Equation 1, and 2 (n - 1) instead of 2n - 2.5 in Equation 2 for 
control limits. Both formulas are approximations, but the present 
ones are better for n less than 50. Also, it is important to note that 
the lower control limit for the standard deviation chart is the 
maximum of J -3a and 0 since negative values have no 

meaning. This idea also applies to the lower control limits for 
attribute control charts. 
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«1 + «2 "I 1" ^ i 
(5) 

grand total of X values divided by 
their total number 

s = the weighted standard deviation 

(6) 

where the subscripts 1, 2, . . . , k refer to 
the k subgroups, respectively. (For a 
discussion of this formula, see 
Supplement B, Note 3.) Then compute 
control limits for each sample size 
separately, using the individual sample 
size, n, in the formula for control limits 
(see Example 2). 

When most of the samples are of 
approximately equal size, computing and 
plotting effort can be saved by the 
procedure given in Supplement B, Note 
4. 

TABLE 3. 

For 

averages X 

For standard 

deviations 5 

Formulas for control chart lines." 

CENTRAL 
LINE 

X 

7 

CONTROL 
CHART 

METHOD 

CONTROL LIMITS 

FORMULA 
USING 

FACTORS 
IN TABLE 6 

X+A,s 

BxS and B^s 

ALTERNATE 
FORMULA 

^ ' 1 '' 
•jn - 0.5 

? + 3 , ' 
4lr, - 15 

(7)° 

(8)' 

Alternate Formula 7 is an approximation based on Eq 70, 
Supplement A. It may be used for « of 10 or more. The values of 
A3 in the tables were computed from Eqs 42 and 57 in Supplement 
A. 

Alternate Formula 8 is an approximation based on Eq 75, 
Supplement A. It may be used for n of 10 or more. The values of B3 
and B4 in the tables were computed from Eqs 42, 61, and 62 in 
Supplement A. 

X = the grand average of observed values 

of X for all samples, 

k 
(9) 

and Si, S2, etc., refer to the observed standard 
deviations for the first, second, etc., samples 
and factors C4, A3, B3, and B4 are given in 
Table 6. For a discussion of Eq 9, see 
Supplement B, Note 3; also see Example 3. 

9. Control Charts for Averages X, 
and for Standard Deviat ions , 
s—Small Samples 

This section assumes that a set of 
observed values of a variable X is 
subdivided into k rational subgroups 
(samples), each subgroup containing n=25 
or fewer observed values. 

A. Small Samples of Equal Size 

For samples of size n, the control chart 
lines are shown in Table 3. The 
centerlines for these control charts are 
defined as the overall average of the 
statistics being plotted, and can be 
expressed as 

B. Small Samples of Unequal Size 

For small samples of unequal size, use 
Equations 7 and 8 (or corresponding factors) 
for computing control chart lines. Compute X 
by Eq 5. Obtain separate derived values of J 
for the different sample sizes by the following 
working rule: Compute a the overall average 
value of the observed ratio s/c^ for the 
individual samples; then compute J = c^a for 

each sample size n. As shown in Example 4, 
the computation can be simplified by 
combining in separate groups all samples 
having the same sample size n. Control limits 
may then be determined separately for each 
sample size. These difficulties can be avoided 
by planning the collection of data so that the 
samples are made of equal size. The factor C4 
is given in Table 6 (see Example 4). 
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10. Control Charts for Averages , X, 
and for Ranges, R—Small 
Samples 

This section assumes that a set of observed 
values of a variable X is subdivided into k 
rational subgroups (samples), each subgroup 
containing n- 10 or fewer observed values. 

The range, R, of a sample is the 
difference between the largest observation 
and the smallest observation. When n = 10 
or less, simplicity and economy of effort 
can be obtained by using control charts for 
X a n d R in place of control charts for 
X a n d s. The range is not recommended, 
however, for samples of more than 10 
observations, since it becomes rapidly less 
effective than the standard deviation as a 
detector of assignable causes as n 
increases beyond this value. In some 
circumstances it may be found satisfactory 
to use the control chart for ranges for 
samples up to n = 15, as when data are 
plentiful or cheap. On occasion it may be 
desirable to use the chart for ranges for 
even larger samples: for this reason Table 
6 gives factors for samples as large as n. = 
25. 

where X is the grand average of observed 

values of X for all samples, R is the average 
value of range R for the k individual samples 

(2?i + i?2 + • . . + Rk)/ k (12) 

and the factors ^2, ^2, D3 and D4 are given in 
Table 6, and d^ in Table 49 (See Example 5). 

B. Small Samples of Unequal Size 

For small samples of unequal size, use 
Formulas 10 and 11 (or corresponding factors) 

for computing control chart lines. Compute X 
by Eq 5. Obtain separate derived values of R 
for the different sample sizes by the following 
working rule: compute 6, the overall average 
value of the observed ratio R/d2 for the 
individual samples. Then compute R = did 
for each sample size n. As shown in Example 
6, the computation can be simplified by 
combining in separate groups all samples 
having the same sample size n. Control limits 
may then be determined separately for each 
sample size. These difficulties can be avoided 
by planning the collection of data so that the 
samples are made of equal size. 

A. Small Samples of Equal Size 

For samples of size n, the control chart 
lines are as shown in Table 4. 

TABLE 4. Formulas for control chart lines. 

CONTROL LIMITS 

FORMULA 
USING 

CENTRAL FACTORS IN ALTERNATE 
LINE TABLE 6 FORMULA 

For 
Averages 

X 

For 
Ranges R 

X±3 ^ 
X 

R 

X±A^R d^^n 

- - R ± 3 ^ 
D,R and D,R d. 

(10) 

(11) 

11. Summary, Control Charts for X, s, 
and R—No Standard Given 

The most useful formulas and equations from 
Sections 7 to 10, inclusive, are collected in 
Table 5 and are followed by Table 6, which 
gives the factors used in these and other 
formulas. 

12. Control Charts for Attributes 
Data 

Although in what follows the fraction p is 
designated fraction nonconforming, the 
methods described can be applied quite 
generally and p may in fact be used to 
represent the ratio of the number of items. 
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CENTRAL LINE CONTROL LIMITS 

Averages using s 

Averages using R 

Standard deviations 

Ranges 

X 

X 

s 

X ± Aji (s as given by Eq 9) 

Y±A^J(Ras given by Eq 12) 

B^s and B^s (J as given by Eq 9) 

D^ ^ and D^ ^ (R as given by Eq 12) 

"Control—no standard given (|i, a, not given)—small samples of equal size. 

TABLE 6. Factors for computing control chart lines—no standard given. 

OBSERVATIONS 
IN SAMPLE, n 

2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

Over 25 

CHART FOR 
AVERAGES 

FACTORS FOR 
CONTROL LIMITS 

A, 

1.880 
1.023 
0.729 
0.577 

0.483 
0.419 
0.373 
0.337 
0.308 

0.285 
0.266 
0.249 
0.235 
0.223 

0.212 
0.203 
0.194 
0.187 
0.180 

0.173 
0.167 
0.162 
0.157 
0.153 

A, 

2.659 
1.954 
1.628 
1.427 

1.287 
1.182 
1.099 
1.032 
0.975 

0.927 
0.886 
0.850 
0.817 
0.789 

0.763 
0.739 
0.718 
0.698 
0.680 

0.663 
0.647 
0.633 
0.619 
0.606 

a 

CHART FOR 
STANDARD DEVL^TIONS 

FACTORS 
FOR 

CENTRAL 
LINE 

Ci 

0.7979 
0.8862 
0.9213 
0.9400 

0.9515 
0.9594 
0.9650 
0.9693 
0.9727 

0.9754 
0.9776 
0.9794 
0.9810 
0.9823 

0.9835 
0.9845 
0.9854 
0.9862 
0.9869 

0.9876 
0.9882 
0.9887 
0.9892 
0.9896 

6 

FACTORS FOR 
CONTROL LIMITS 

B, 

0 
0 
0 
0 

0.030 
0.118 
0.185 
0.239 
0.284 

0.321 
0.354 
0.382 
0.406 
0.428 

0.448 
0.466 
0.482 
0.497 
0.510 

0.523 
0.534 
0.545 
0.555 
0.565 

c 

B, 

3.267 
2.568 
2.266 
2.089 

1.970 
1.882 
1.815 
1.761 
L716 

1.679 
1.646 
1.618 
1.594 
1.572 

1.552 
1.534 
1.518 
1.503 
1.490 

1.477 
1.466 
1.455 
1.445 
1.435 

d 

CHART FOR RANGES 

FACTORS 
FOR 

CENTRAL 
LINE 

0̂ 2 

1.128 
1.693 
2.059 
2.326 

2.534 
2.704 
2.847 
2.970 
3.078 

3.173 
3.258 
3.336 
3.407 
3.472 

3.532 
3.588 
3.640 
3.689 
3.735 

3.778 
3.819 
3.858 
3.895 
3.931 

FACTORS FOR 
CONTROL LIMITS 

^ 3 

0 
0 
0 
0 

0 
0.076 
0.136 
0.184 
0.223 

0.256 
0.283 
0.307 
0.328 
0.347 

0.363 
0.378 
0.391 
0.404 
0.415 

0.425 
0.435 
0.443 
0.452 
0.459 

D4 

3.267 
2.575 
2.282 
2.114 

2.004 
1.924 
1.864 
1.816 
1.777 

1.744 
1.717 
1.693 
1.672 
1.653 

1.637 
1.622 
1.609 
1.596 
1.585 

1.575 
1.565 
1.557 
1.548 
1.541 

"3 /7 /1-0 ,5 

''(4/!-4)/(4/i-3) 

' l -3 /V2n-2 .5 

''l + 3/V2n-2.5 
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occurrences, etc. tha t possess some given 
attribute to the total number of items 
under consideration. 

The fraction nonconforming, p, is 
particularly useful in analyzing inspection 
and test results that are obtained on a "go/ 
no-go" basis (method of attributes). In 
addition, it is used in analyzing results of 
measurements that are made on a scale 
and recorded (method of variables). In the 
latter case, p may be used to represent the 
fraction of the total number of measured 
values falling above any limit, below any 
limit, between any two limits, or outside 
any two limits. 

The fraction p is used widely to 
represent the fraction nonconforming, that 
is, the ratio of the number of 
nonconforming units (articles, parts, 
specimens, etc.) to the total number of 
units under consideration. The fraction 
nonconforming is used as a measure of 
quality with respect to a single quality 
characteristic or with respect to two or 
more quality characteristics treated 
collectively. In this connection it is 
important to distinguish between a 
nonconformity and a nonconforming unit. 
A nonconformity is a single instance of a 
failure to meet some requirement, such as 
a failure to comply with a particular 
requirement imposed on a unit of product 
with respect to a single quality 
characteristic. For example, a unit 
containing departures from requirements 
of the drawings and specifications with 
respect to (1) a particular dimension, (2) 
finish, and (3) absence of chamfer, 
contains three defects. The words 
"nonconforming unit" define a unit 
(article, part, specimen, etc.) containing 
one or more "nonconformities" with 
respect to the quality characteristic under 
consideration. 

When only a single quality 
characteristic is under consideration, or 
when only one nonconformity can occur on 
a unit, the number of nonconforming units 

in a sample will equal the number of 
nonconformities in that sample. However, 
it is suggested that under these 
circumstances the phrase "number of 
nonconforming units" be used rather than 
"number of nonconformities." 

Control charts for attributes are 
usually based either on counts of 
occurrences or on the average of such 
counts. This means that a series of 
attribute samples may be summarized in 
one of these two principal forms of a 
control chart and, though they differ in 
appearance, both will produce essentially 
the same evidence as to the state of 
statistical control. Usually it is not 
possible to construct a second type of 
control chart based on the same attribute 
data which gives evidence different from 
that of the first type of chart as to the 
state of statistical control in the way the 
X and s (or X and R) control charts do for 
variables. 

An exception may arise when, say, 
samples are composed of similar units in 
which various numbers of nonconformities 
may be found. If these numbers in 
individual units are recorded, then in 
principle it is possible to plot a second type 
of control chart reflecting variations in the 
number of nonuniformities from unit to 
unit within samples. Discussion of 
statistical methods for helping to judge 
whether this second type of chart gives 
different information on the state of 
statistical control is beyond the scope of 
this Manual. 

In control charts for attributes, as in s 
and R control charts for small samples, 
the lower control limit is often at or near 
zero. A point above the upper control limit 
on an attribute chart may lead to a costly 
search for cause. It is important, 
therefore, especially when small counts 
are likely to occur, that the calculation of 
the upper limit accounts adequately for 
the magnitude of chance variation that 
may be expected. Ordinarily there is little 
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to justify the use of a control chart for 
attributes if the occurrence of one or two 
nonconformities in a sample causes a 
point to fall above the upper control limit. 

expected np is four or more. When n is less 
than 25 or when the expected np is less 
than 1, the control chart for p may not 
yield reliable information on the state of 
control. 

NOTE 

To avoid or minimize this problem of 
small counts, it is best if the expected 
or estimated number of occurrences 
in a sample is four or more. An 
attribute control chart is least useful 
when the expected number of 
occurrences in a sample is less than 
one. 

The average fraction nonconforming 
p is defined as 

_ _ total # of nonconforming units in all samples 

total # of units in all samples 

= fraction nonconforming in the complete set 

of test results. 
(13) 

NOTE 

The lower control limit based on the 
formulas given may result in a 
negative value that has no meaning. 
In such situations, the lower control 
limit is simply set at zero. 

A. Samples of Equal Size. 

For a sample of size n, the control chart 
lines are as follows in Table 7 (see 
Example 7). 

It is important to note that a 
positive non-zero lower control limit 
offers the opportunity for a plotted 
point to fall below this limit when the 
process quality level significantly 
improves. Identifying the assignable 
cause(s) for such points will usually 
lead to opportunities for process and 
quality improvements. 

13. C o n t r o l C h a r t for F r a c t i o n 
N o n c o n f o r m i n g p 

This section assumes that the total 
number of units tested is subdivided into 
k rational subgroups (samples) consisting 
of Ml, n2,---> % units, respectively, for each 
of which a value ofp is computed. 

Ordinarily the control chart of p is 
most useful when the samples are large, 
say when n is 50 or more, and when the 
expected number of nonconforming units 
(or other occurrences of interest) per 
sample is four or more, that is, the 

TABLE 7. Formulas for control chart lines. 

CENTRAL 
LINE 

CONTROL 
LIMITS 

For values 
ofp 

^±3. P{^-P) (14) 

When p is small, say less than 0.10, 

the factor 1 - p may be replaced by unity 

for most practical purposes, which gives 
control limits for p by the simple relation 

p±3J^ (14a) 

B. Samples of Unequal Size 

Proceed as for samples of equal size but 
compute control limits for each sample 
size separately. 

When the data are in the form of a 
series of k subgroup values of p and the 
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TABLE 8. Formulas for control chart lines. 

CENTRAL 
LINE 

CONTROL 
LIMITS 

For values of rep np np±3Jnp(\-p) (16) 

corresponding sample sizes n, p may be 

computed conveniently by the relation 

p = -^^ 2^-^ ^^-^ (15) 

where the subscripts 1, 2,..., k refer to the 
k subgroups. When most of the samples 
are of approximately equal size, 
computation and plotting effort can be 
saved by the procedure in Supplement B, 
Note 4 (see Example 8). 

NOTE 

If a sample point falls above the 
upper control limit for p when np is 

less than 4, the following check and 
adjustment method is recommended 
to reduce the incidence of misleading 
indications of a lack of control. If the 
non-integral remainder of the product 
of n and the upper control limit value 
for p is one-half or less, the indication 
of a lack of control stands. If that 
remainder exceeds one-half, add one 
to the product and divide the sum by 
n to calculate an adjusted upper 
control limit for p. Check for an 
indication of lack of control in p 
against this adjusted limit (see 
Example 7 and Example 8). 

14, Control Chart for Numbers of 
Nonconforming Units np 

The control chart for np, number of 
conforming units in a sample of size n, is 
the equivalent of the control chart for p, 

for which it is a convenient practical 
substitute when all samples have the 
same size n. It makes direct use of the 
number of nonconforming units np, in a 
sample (np - the fraction nonconforming 
times the sample size.) 

For samples of size n, the control chart 
lines are as shown in Table 8, where 

np - total number of nonconforming units 

in all samples/number of samples 

(17) 

= the average number of 
nonconforming units in the k 
individual samples, and 

p = the value given by Eq 13. 

When p is small, say less than 0.10, 

the factor l~p may be replaced by unity 

for most practical purposes, which gives 
control limits for np by the simple relation 

np ±3 ^jnp (18) 

or, in other words, it can be read as the 

avg. number of nonconforming units + 

3.̂ /average number of nonconform ing units 

where "average number of nonconforming 
units" means the average number in 
samples of equal size (see Example 7). 

When the sample size, n, varies from 
sample to sample, the control chart for p 
(Section 13) is recommended in preference 
to the control chart for np; in this case, a 
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graphical presentation of values of np does 
not give an easily understood picture, 
since the expected values, np, (central 

line on the chart) vary with n, and 
therefore the plotted values of np become 
more difficult to compare. The 
recommendations of Section 13 as to size 
of n and expected np in a sample apply 
also to control charts for the numbers of 
nonconforming units. 

When only a single quality 
characteristic is under consideration, and 
when only one nonconformity can occur on 
a unit, the word "nonconformity" can be 
substituted for the words "nonconforming 
unit" throughout the discussion of this 
section but this practice is not 
recommended. 

NOTE 

If a sample point falls above the 
upper control limit for np when np is 

less than 4, the following check and 
adjustment procedure is to be 
recommended to reduce the incidence 
of misleading indications of a lack of 
control. If the non-integral remainder 
of the upper control limit value for np 
is one-half or less, the indication of a 
lack of control stands. If that 
remainder exceeds one-half, add one 
to the upper control limit value for np 
to adjust it. Check for an indication of 
lack of control in np against this 
adjusted limit (see Example 7). 

15. Control Chart for 
Nonconformities per Unit u 

In inspection and testing, there are 
circumstances where it is possible for 
several nonconformities to occur on a 
single unit (article, part, specimen, unit 
length, unit area, etc.) of product, and it is 
desired to control the number of 
nonconformities per unit, rather than the 
fraction nonconforming. For any given 

sample of units, the numerical value of 
nonconformities per unit, u, is equal to the 
number of nonconformities in all the units 
in the sample divided by the number of 
units in the sample. 

The control chart for the 
nonconformities per unit in a sample u is 
convenient for a product composed of units 
for which inspection covers more than one 
characteristic, such as dimensions checked 
by gages, electrical and mechanical 
characteristics checked by tests, and 
visual nonconformities observed by the 
eye. Under these circumstances, several 
independent nonconformities may occur 
on one unit of product and a better 
measure of quality is obtained by making 
a count of all nonconformities observed 
and dividing by the number of units 
inspected to give a value of 
nonconformities per unit, rather than 
merely counting the number of 
nonconforming units to give a value of 
fraction nonconforming. This is 
particularly the case for complex 
assemblies where the occurrence of two or 
more nonconformities on a unit may be 
relatively frequent. However, only 
independent nonconformities are counted. 
Thus, if two nonconformities occur on one 
unit of product and the second is caused 
by the first, only the first is counted. 

The control chart for nonconformities 
per unit (more especially the chart for 
number of nonconformities, see Section 
16) is a particularly convenient one to use 
when the number of possible 
nonconformities on a unit is 
indeterminate, as for physical defects 
(finish or surface irregularities, flaws, pin­
holes, etc.) on such products as textiles, 
wire, sheet materials, etc., which are not 
continuous or extensive. Here, the 
opportunity for nonconformities may be 
numerous though the chances of 
nonconformities occurring at any one spot 
may be small. 
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Table 9. Formulas for control chart lines. 

CENTRAL 
LINE 

CONTROL 
LIMITS 

For values 
of u 

u±3f 
V n 

(20) 

This section assumes that the total 
number of units tested is subdivided into k 
rational subgroups (samples) consisting of 
rii, n2,. . ., n^ units, respectively, for each of 
which a value of u is computed. 

The control chart for u is most useful 
when the expected nu is 4 or more. When 
the expected nu is less than 1, the control 
chart for u may not yield reliable 
information on the state of control. 

The average nonconformities per unit, 
M, is defined as 

_ total # nonconformities in all samples 
u = — 

total # units in all samples 

= nonconformities per unit in the 

complete set of test results 

(19) 

The simplified relations shown for 
control limits for nonconformities per unit 
assume that for each of the characteristics 
under consideration the ratio of the 
expected number of nonconformities to the 
possible number of nonconformities is 
small, say less than 0.10, an assumption 
that is commonly satisfied in quality 
control work. For an explanation of the 
nature of the distribution involved, see 
Supplement B, Note 5. 

A. Samples of Equal Size 

For samples of size n (n = number of 
units), the control chart lines are as shown 
in Table 9. 

For samples of equal size, a chart for 
the number of nonconformities, c, is 
recommended, see Section 16. In the 
special case where each sample consists of 
only one unit, that is, « = 1, then the chart 
for u (nonconformities per unit) is 
identical with that chart for c (number of 
nonconformities) and may be handled in 
accordance with Section 16. In this case 
the chart may be referred to either as a 
chart for nonconformities per unit or as a 
chart for number of nonconformities, but 
the latter designation is recommended 
(see Example 9). 

B. Samples of Unequal Size 

Proceed as for samples of equal size but 
compute the control limits for each sample 
size separately. 

When the data are in the form of a 
series of subgroup values of u and the 
corresponding sample sizes, u may be 
computed by the relation 

H=_J_J 2_2 UL (21) 

where as before, the subscripts 1, 2, ..., k 
refer to the k subgroups. 

Note that ni, ^2, etc., need not be 
whole numbers. For example, if u 
represents nonconformities per 1000 ft of 
wire, samples of 4000 ft, 5280 ft, etc., then 



the corresponding values will be 4.0, 5.28, 
etc., units of 1000 ft. 

When most of the samples are of 
approximately equal size, computing and 
plotting effort can be saved by the 
procedure in Supplement B, Note 4 (see 
Example 10). 
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TABLE 10. Formulas for control chart lines. 

CENTRAL 
LINE 

For values of c F 

CONTROL 
LIMITS 

c ± 3 V? (22) 

where 

NOTE 

If a sample point falls above the 
upper limit for u where riuis less 
than 4, the following check and 
adjustment procedure is 
recommended to reduce the 
incidence of misleading indications 
of a lack of control. If the non-
integral remainder of the product of 
n and the upper control limit value 
for u is one half or less, the 
indication of a lack of control stands. 
If that remainder exceeds one-half, 
add one to the product and divide 
the sum by n to calculate an 
adjusted upper control limit for u. 
Check for an indication of lack of 
control in u against this adjusted 
limit (see Examples 9 and 10). 

_ total number of nonconfirmities in all samples 
c = — 

number of samples 
= average number of nonconformities per sample. 

(23) 

The use of c is especially convenient 
when there is no natural unit of product, 
as for nonconformities over a surface or 
along a length, and where the problem is 
to determine uniformity of quality in equal 
lengths, areas, etc., of product (see 
Example 9 and Example 11). 

B. Samples of Unequal Size 

For samples of unequal size, first compute 
the average nonconformities per unit M, 
by Eq 19; then compute the control limits 
for each sample size separately as shown 
in Table 11. 

16. Control Chart for Number of 
Nonconformit ies , c 

The control chart for c, the number of 
nonconformities in a sample, is the 
equivalent of the control chart for u, for 
which it is a convenient practical 
substitute when all samples have the 
same size n (number of units). 

A. Samples of Equal Size 

For samples of equal size, if the average 
number of nonconformities per sample is 
c, the control chart lines are as shown in 
Table 10. 

TABLE 11. Formulas for control chart lines. 

CENTRAL 
LINE 

CONTROL LIMITS 

For values of c nu ± 3 Jnu (24) 

The control chart for u is 
recommended as preferable to the control 
chart for c when the sample size varies 
from sample to sample for reasons stated 
in discussing the control charts for p and 
np. The recommendations of Section 15 as 
to expected c = nu also applies to control 
charts for numbers of nonconformities. 
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TABLE 12. Formulas for control chart lines. 

C O N T R O I ^ N O STANDARD GIVEN—ATTRIBUTES DATA 

CENTRAL LINE CONTROL LIMITS APPROXIMATION 

Fraction nonconforming p 15.3 B b £ ) P 1 3 , ^ 

Number of nonconforming units np np np ± 3 ^np{l~p) np ± 3 ^ 

Nonconformities per unit, u 

Number of nonconformities c 

samples of equal size 

samples of unequal size 

u ± 3 if 
c ± 3 Vc" 

nu ± 3 -Jnu 

NOTE 

If a sample point falls above the 
upper control limit for c when nu is 
less than 4, the following check and 
adjustment procedure is to be 
recommended to reduce the incidence 
of misleading indications of a lack of 
control. If the non-integral remainder 
of the upper control limit for c is one-
half or less, the indication of a lack of 
control stands. If that remainder 
exceeds one-half, add one to the upper 
control limit value for c to adjust it. 
Check for an indication of lack of 
control in c against this adjusted limit 
(see Examples 9 and 11). 

C O N T R O L WITH R E S P E C T TO A 
G I V E N S T A N D A R D 

18. I n t r o d u c t i o n 

Sections 18 to 27 cover the technique of 
analysis for control with respect to a given 
standard, as noted under (B) in Section 3. 
Here, standard values of \i, a, p,' etc., are 
given, and are those corresponding to a 
given standard distribution. These 
standard values, designated as Ho, Oo, Po 
etc., are used in calculating both central 
lines and control limits. (When only [ig is 
given and no prior data are available for 
establishing a value of Oo, analyze data 
from the first production period as in 
Sections 7 to 10, but use Ho for the central 
line.) 

17. S u m m a r y , C o n t r o l C h a r t s for 
p, np, u, a n d c—No S t a n d a r d 
G i v e n 

The formulas of Sections 13 to 16, 
inclusive, are collected as shown in Table 
12 for convenient reference. 

Such standard values are usually 
based on a control chart analysis of 
previous data (for the details, see 
Supplement B, Note 6), but may be given 
on the basis described in Section 2>B. Note 
that these standard values are set up 
before the detailed analysis of the data at 
hand is undertaken and frequently before 
the data to be analyzed are collected. In 
addition to the standard values, only the 
information regarding sample size or sizes 
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is required in order to compute central 
lines and control limits. 

controlling X at the standard 
level |i<,that has been given. 

For example, the values to be used as 
central lines on the control charts are 

for averages, 
for standard deviations. 
for ranges. 
for values of p, 
etc.. 

^ 0 

c^o^ 

^2^0 

Po 

where factors C4 and d2, which depend only 
on the sample size, n, are given in Table 
16, and defined in Supplement A. 

Note that control with respect to a 
given standard may be a more exacting 
requirement than control with no 
standard given, described in Sections 7 to 
17. The data must exhibit not only control 
but control at a standard level and with no 
more than standard variability. 

Extending control limits obtained from 
a set of existing data into the future and 
using these limits as a basis for purposive 
control of quality during production, is 
equivalent to adopting, as standard, the 
values obtained from the existing data. 
Standard values so obtained may be 
tentative and subject to revision as more 
experience is accumulated (for details, see 
Supplement B, Note 6). 

In other cases, interest centers on 
controlling the conformance to 
specified minimum and maximum 
limits within which material is 
considered acceptable, sometimes 
established without regard to the 
actual variation experienced in 
production. Such limits may 
prove unrealistic when data are 
accumulated and an estimate of 
the standard deviation, say o* of 
the process is obtained therefrom. 
If the natural spread of the 
process (a band having a width of 
60*), is wider than the spread 
between the specified limits, it is 
necessary either to adjust the 
specified limits or to operate 
within a band narrower than the 
process capability. Conversely, if 
the spread of the process is 
narrower than the spread 
between the specified limits, the 
process will deliver a more 
uniform product than required. 
Note that in the latter event 
when only maximum and 
minimum limits are specified, the 
process can be operated at a level 
above or below the indicated mid-
value without risking the 
production of significant amounts 
of unacceptable material. 

NOTE 

Two situations that are not covered 
specifically within this section should 
be mentioned. 

1. In some cases a standard value of 
\i is given as noted above, but no 
standard value is given for a. 
Here a is estimated from the 
analysis of the data at hand and 
the problem is essentially one of 

19. Control Charts for Averages X 
and for S tandard Deviation, s 

For samples of size n, the control chart 
lines are as shown in Table 13. 

For samples of n greater than 25, 
replace C4 by (4n - 4)/(4n - 3). 

See Examples 12 and 13; also see 
Supplement B, Note 9. 
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TABLE 13. Formulas for control chart lines.^ 

CONTROL LIMITS 

FORMULA USING 
CENTRAL FACTORS IN ALTERNATE 

LINE TABLE 16 FORMULA 

For averages X \in Ho ± ^ ^ 0 Cn 

j "o±3-r 

For standard ^ ^ ^ ^ ^ ^ ^ ti 

V2«-1.5 
"0 

(26) 

(26)" 

Alternate Formula 26 is an approximation based on Eq 74, Supplement A. It may 
be used for n of 10 or more. The values of Bs and Be given in the tables are computed 
from Eqs 42, 59, and 60 in Supplement A. 

For samples of n = 2 5 or less, use 
Table 16 for factors A, B^, and Be- Factors 
C4, A, Bs and B^ are defined in 
Supplement A. See Examples 14 and 15. 

20. C o n t r o l C h a r t for R a n g e s R 

The range, R, of a sample is the difference 
between the largest observation and the 
smallest observation. 

For samples of size n, the control chart 
lines are as shown in Table 14. 

TABLE 14. Formulas for control chart lines. 

CONTROL LIMITS 

FORMULA USING 
FACTORS IN 

CENTRAL TABLE 16 ALTERNATE 
LINE FORMULA 

For range R d^o^ DIOQ and DiOo dzf'o * '̂ s'̂ o (27) 

Use Table 16 for factors d2, Di, and D2. 

Factors d^, d^, Di, and D2 are defined 
in Supplement A. 

^Previous editions of this manual had 2{n -
1) instead of 2fi - 1.5 in Alternate Formula 
26. Both formulas are approximations, but 
the present one is better for n less than 50 

For comments on the use of the control 
chart for ranges, see Section 10 (also see 
Example 16). 

2 1 . S u m m a r y , C o n t r o l C h a r t s for 

X, s, a n d R — S t a n d a r d G i v e n 

The most useful formulas from Sections 19 
and 20 are summarized as shown in Table 
15 and are followed by Table 16 which 
gives the factors used in these and other 
formulas. 

22. C o n t r o l C h a r t s for A t t r i b u t e s 
D a t a 

The definitions of terms and the 
discussions in Sections 12 to 16, inclusive, 
on the use of the fraction nonconforming, 
p, number of nonconforming units, np, 
nonconformities per unit, u, and number 
of nonconformities, c, as measures of 
quality are equally applicable to the 
sections which follow and will not be 
repeated here. It will suffice to discuss the 
central lines and control limits when 
standards are given. 

23 . C o n t r o l C h a r t for F r a c t i o n 
N o n c o n f o r m i n g , p 

Ordinarily, the control chart for p is most 
useful when samples are large, say, when 
n is 50 or more and when the expected 
number of nonconforming units (or other 
occurrences of interest) per sample is four 
or more, that is, the expected values of np 
is four or more. When n is less than 25 or 
the expected np is less than 1, the control 
chart for p may not yield reliable 
information on the state of control even 
with respect to a given standard. 
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TABLE 15. Formulas for control chart lines 

CONTROL WITH RESPECT TO A GIVEN STANDARD (Ho, Oo GIVEN) 

CENTRAL LINE CONTROL LIMITS 

Average X 
Standard Deviations s 
Range R 

C4O0 Be Oo and B^ Oo 
A a„ and D^ o„ 

TABLE 16. Factors for computing control chart lines—standard given. 

OBSERVATIONS 
IN SAMPLE, n 

2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

Over 25 

° (4n-4) / (4n 

CHART FOR 
AVERAGES 

FACTORS 
FOR 

CONTROL 
LIMITS 

A 

2.121 
1.732 
1.500 
1.342 

1.225 
1.134 
1.061 
1.000 
0.949 

0.905 
0.866 
0.832 
0.802 
0.775 

0.750 
0.728 
0.707 
0.688 
0.671 

0.655 
0.640 
0.626 
0.612 
0.600 

3/Vn' 

- 3 ) 

CHART FOR 
STANDARD DEVIATIONS 

FACTOR 
FOR 

CENTRAL 
LINE 

C4 

0.7979 
0.8862 
0.9213 
0.9400 

0.9515 
0.9594 
0.9650 
0.9693 
0.9727 

0.9754 
0.9776 
0.9794 
0.9810 
0.9823 

0.9835 
0.9845 
0.9854 
0.9862 
0.9869 

0.9876 
0.9882 
0.9887 
0.9892 
0.9896 

a 

FACTORS FOR 
CONTROL LIMITS 

B, 

0 
0 
0 
0 

0.029 
0.113 
0.179 
0.232 
0.276 

0.313 
0.346 
0.374 
0.399 
0.421 

0.440 
0.458 
0.475 
0.490 
0.504 

0.516 
0.528 
0.539 
0.549 
0.559 

b 

Be 

2.606 
2.276 
2.088 
1.964 

1.874 
1.806 
1.751 
1.707 
1.669 

1.637 
1.610 
1.585 
1.563 
1.544 

1.526 
1.511 
1.496 
1.483 
1.470 

1.459 
1.448 
1.438 
1.429 
1.420 

c 

CHART FOR RANGES 

FACTOR 
FOR 

CENTRAL 
LINE 

da 

1.128 
1.693 
2.059 
2.326 

2.534 
2.704 
2.847 
2.970 
3.078 

3.173 
3.258 
3.336 
3.407 
3.472 

3.532 
3.588 
3.640 
3.689 
3.735 

3.778 
3.819 
3.858 
3.895 
3.931 

FACTORS FOR 
CONTROL LIMITS 

Dr 

0 
0 
0 
0 

0 
0.205 
0.388 
0.547 
0.686 

0.811 
0.923 
1.025 
1.118 
1.203 

1.282 
1.356 
1.424 
1.489 
1.549 

1.606 
1.660 
1.711 
1.759 
1.805 

D2 

3.686 
4.358 
4.698 
4.918 

5.079 
5.204 
5.307 
5.393 
5.469 

5.535 
5.594 
5.647 
5.696 
5.740 

5.782 
5.820 
5.856 
5.889 
5.921 

5.951 
5.979 
6.006 
6.032 
6.056 

''(4n-4)/(4«-3)-3/.v/2n-2.5 

'(4n-4)/ (4n-3)+3/^2n-2.5 

See Supplement B, Note 9, on replacing first term in footnotes b and c by unity. 
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For samples of size n, where po is the 
standard value of/), the control chart lines 
are as shown in Table 17 (see Example 
IT). 

TABLE 17. Formulas for control chart lines. 

For values of p 

CENTRAL 
LINE 

po 

CONTROL LIMITS 

;,„±3j^»(^-^«) (28) 
V n 

When Po is small, say less than 0.10, 
the factor 1 - Po may be replaced by unity 
for most practical purposes, which gives 
the simple relation for computing the 
control limits for p as 

For samples of size n, where po is the 
standard value of p , the control chart lines 
are as shown in Table 18. 

TABLE 18. Formulas for control chart lines. 

CENTRAL 
LINE 

For values of npo 
np 

CONTROL 
LIMITS 

npf,±3^npu{l-po) (29) 

When Po is small, say less than 0.10, 
the factor 1 - po may be replaced by unity 
for most practical purposes, which gives 
the simple relation for computing the 
control limits for np as 

V n 
(28a) np o±3V "Po (30) 

For samples of unequal size, proceed 
as for samples of equal size but compute 
control limits for each sample size 
separately (see Example 18). 

When detailed inspection records are 
maintained, the control chart for p may be 
broken down into a number of component 
charts with advantage (see Example 19). 
See the NOTE at the end of Section 13 for 
possible adjustment of the upper control 
limit when npo is less than 4. (Substitute 
npo for np.) See Examples 17, 18, and 19 
for applications. 

24. Control Chart for Number of 
Nonconforming Units, np 

The control chart for np, number of 
nonconforming units in a sample, is the 
equivalent of the control chart for fraction 
nonconforming, p , for which it is a 
convenient practical substitute, 
particularly when all samples have the 
same size, n. It makes direct use of the 
number of nonconforming units, np, in a 
sample (np = the product of the sample 
size and the fraction nonconforming). See 
Example 17. 

As noted in Section 14, the control 
chart for p is recommended as preferable 
to the control chart for np when the 
sample size varies from sample to sample. 
The recommendations of Section 23 as to 
size of n and the expected np in a sample 
also apply to control charts for the number 
of nonconforming units. 

When only a single quality 
characteristic is under consideration, and 
when only one nonconformity can occur on 
a unit, the word "nonconformity" can be 
substituted for the words "nonconforming 
unit" throughout the discussion of this 
article, but this practice is not 
recommended. See the NOTE at the end 
of Section 14 for possible adjustment of 
the upper control limit when npo is less 
than 4. (Substitute npo for np.) See 
Examples 17 and 18. 

25. Control Chart for 
Nonconformities per Unit, u 

For samples of size n {n = number of 
units), where Uo is the standard value of u, 
the control chart lines are as shown in 
Table 19. 
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TABLE 19. Formulas for control chart lines. 

CENTRAL LINE CONTROL 
LIMITS 

For values of u (31) 
: 3,Mi-

See Examples 20 and 21. 

As noted in Section 15, the relations 
given here assume that for each of the 
characteristics under consideration, the 
ratio of the expected to the possible 
number of nonconformities is small, say 
less than 0.10. 

If u represents "nonconformities per 
1000 ft of wire," a "unit" is 1000 ft of wire. 
Then if a series of samples of 4000 ft are 
involved, uo represents the standard or 
expected number of nonconformities per 
1000 ft, and n. = 4. Note that n need not be 
a whole number, for if samples comprise 
5280 ft of wire each, n - 5.28, that is, 5.28 
units of 1000 ft (see Example 11). 

Where each sample consists of only 
one unit, that is n= 1, then the chart for u 
(nonconformities per unit) is identical 
with the chart for c (number of 
nonconformities) and may be handled in 
accordance with Section 26. In this case 
the chart may be referred to either as a 
chart for nonconformities per unit or as a 
chart for number of nonconformities, but 
the latter practice is recommended. 

Ordinarily, the control chart for u is 
most useful when the expected nu is 4 or 
more. When the expected nu is less than 1, 
the control chart for u may not yield 
reliable information on the state of control 
even with respect to a given standard. 

See the NOTE at the end of Section 15 
for possible adjustment of the upper 
control limit when TIUQ is less than 4. 
(Substitute nuo for MU.^See Examples 20 
and 21. 

26. Control Chart for Number of 
Nonconformities, c 

for c, number of 
a sample, is the 

The control chart 
nonconformities in a sample, is 
equivalent of the control chart for 
nonconformities per unit for which it is a 
convenient practical substitute when all 
samples have the same size, n (number of 
units). Here c is the number of 
nonconformities in a sample. 

If the standard value is expressed in 
terms of number of nonconformities per 
sample of some given size, that is, 
expressed merely as CQ, and the samples 
are all of the same given size (same 
number of product units, same area of 
opportunity for defects, same sample 
length of wire, etc.), then the control chart 
lines are as shown in Table 20. 

TABLE 20. Formulas for control chart lines (C„ given). 

CENTRAL 
LINE 

CONTROL 
LIMITS 

For number of 
nonconformities, c c^+iyfc^ (32) 

Use of Co is especially convenient when 
there is no natural unit of product, as for 
nonconformities over a surface or along a 
length, and where the problem of interest 
is to compare uniformity of quality in 
samples of the same size, no matter how 
constituted (see Example 21). 

When the sample size, n, (number of 
units) varies from sample to sample, and 
the standard value is expressed in terms 
of nonconformities per unit, the control 
chart lines are as shown in Table 21. 

TABLE 21. Formulas for control chart lines (uo given). 

CENTRAL 
LINE 

CONTROL 
LIMITS 

For values of c nuo nUgtsJnu^ (33) 
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TABLE 22. Formulas for control chart lines. 

CONTROL WITH RESPECT TO A GIVEN STANDARD (po, npo, u„ OR Co GIVEN) 

CENTRAL LINE CONTROL LIMITS APPROXIMATION 

Fraction nonconforming, p 

Number of nonconforming units, np 

Nonconformities per unit, u 

Number of nonconformities, c 
Samples of equal size CQ given) 

Samples of unequal size (UQ given) 

npo 

Po± 3 
Po{^-Po) Po± 3 

nPo± 3V"Po(l-/'o) 

Mo± 3 

Co± 3 ^ 

«MQ ± 3 -JnUfj 

Under these circumstances the control 
chart for u (Section 25) is recommended in 
preference to the control chart for c, for 
reasons stated in Section 14 in the 
discussion of control charts for p and for 
np. The recommendations of Section 25 as 
to the expected c - nu also applies to 
control charts for nonconformities. 

See the NOTE at the end of Section 16 
for possible adjustment of the upper 
control limit when nuo is less than 4. 
(Substitute Co = nuo for nu). See Example 
21. 

27. Summary, Control Charts for 
p, np, u, and c—Standard 
Given 

The formulas of Sections 22 to 26, 
inclusive, are collected as shown in Table 
22 for convenient reference. 

CONTROL CHARTS FOR 
INDIVIDUALS 

28. Introduction 

Sections 28 to 30^ deal with control charts 
for individuals, in which individual 
observations are plotted one by one. This 
type of control chart has been found useful 
more particularly in process control when 
only one observation is obtained per lot or 
batch of material or at periodic intervals 
from a process. This situation often arises 
when: (a) sampling or testing is 
destructive, (6) costly chemical analyses or 
physical tests are involved, and (c) the 
material sampled at any one time (such as 
a batch) is normally quite homogeneous, 
as for a well-mixed fluid or aggregate. 

The purpose of such control charts is 
to discover whether the individual 
observed values differ from the expected 

To be used with caution if the distribution of individual values is 
marlcedly asymmetrical. 



81 
CONTROL 
CHART 

METHOD 

value by an amount greater than should 
be attributed to chance. 

When there is some definite rational 
basis for grouping the batches or 
observations into rational subgroups, as, 
for example, four successive batches in a 
single shift, the method shown in Section 
29 may be followed. In this case, the 
control chart for individuals is merely an 
adjunct to the more usual charts but will 
react more quickly to a sharp change in 
the process than the X chart. This may be 
important when a single batch represents 
a considerable sum of money. 

When there is no definite basis for 
grouping data, the control limits may be 
based on the variation between batches, 
as described in Section 30. A measure of 
this variation is obtained from moving 
ranges of two observations each (the 
absolute value of successive differences 
between individual observations that are 
arranged in chronological order). 

A control chart for moving ranges may 
be prepared as a companion to the chart 
for individuals, if desired, using the 
formulas of Section 30. It should be noted 
that adjacent moving ranges are 
correlated, as they have one observation in 
common. 

The methods of Sections 29 and 30 
may be applied appropriately in some 
cases where more than one observation is 
obtained per lot or batch, as for example 
with very homogeneous batches of 
materials, for instance, chemical solutions, 
batches of thoroughly mixed bulk 
materials, etc., for which repeated 
measurements on a single batch show the 
within-batch variation (variation of 
quality within a batch and errors of 
measurement) to be very small as 
compared with between-batch variation. 
In such cases, the average of the several 
observations for a batch may be treated as 

an individual observation. However, this 
procedure should be used with great 
caution; the restrictive conditions just 
cited should be carefully noted. 

The control limits given are three 
sigma control limits in all cases. 

29. Control Chart for Individuals , 
X—Using Rational Subgroups 

Here the control chart for individuals is 
commonly used as an adjunct to the more 
usual X and s, or X and R, control charts. 
This can be useful, for example, when it is 
important to react immediately to a single 
point that may be out of statistical control, 
when the ability to localize the source of 
an individual point that has gone out of 
control is important, or when a rational 
subgroup consisting of more than two 
points is either impractical or nonsensical. 
Proceed exactly as in Sections 9 to 11 
(control—no standard given) or Sections 
19 to 21 (control—standard given), 
whichever is applicable, and prepare 
control charts for X and s, or for X and 
R. In addition, prepare a control chart for 
individuals having the same central line 
as the X chart but compute the control 
limits as shown in Table 23. 

Table 26 gives values of E2 and Eg, for 
samples of ?i = 10 or less. Values that are 
more complete are given in Table 50, 
Supplement A for n through 25 (see 
Examples 22 and 23). 

30. Control Chart for Individuals , 
X—Using Moving Ranges 

A. No Standard Given 

Here the control chart lines are computed 
from the observed data. In this section the 
symbol, MR, is used to signify the moving 
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TABLE 23. Formulas for control chart lines. 

CHART FOR INDIVIDUALS—ASSOCIATED WITH CHART FOR 
sORR HAVING SAMPLE SIZE n 

CONTROL LIMITS 
FORMULA 

USING 
NATURE OF CENTRAL FACTORS ALTERNATE 

DATA LINE jj^ FORMULA 

TABLE 26 
NO STANDARD GIVEN 

Samples of equal size 
based on s 

based on R 

Samples of unequal size: o 
computed from observed 
values of s per Section 9 or from 
observed values of 
R per SectionlO(6) 

X X + EjS 

X X + E^R 

X 

X±3J/c, 

X±iRld^ 

X±3(T 

(34) 

(35) 

(36)° 

STANDARD GIVEN 

Samples of equal or unequal size \^ Ho+3(7„ (37) 

"See Example 4 for determination of 6 based on values of i and Example 6 for determination of a based on values of R 

TABLE 24. Formulas for control chart lines. 

CHART FOR INDIVIDUALS—USING MOVING RANGES— 
NO STANDARD GIVEN 

CENTRAL 
LINE CONTROL LIMITS 

For individuals X X ±E,MR = X ±2.66MR (33) 
For moving ranges of R D^MR = 3.27MR (39) 
two observations _ -TTK /̂  

D^MR =0 

range. The control chart lines are as 
shown in Table 24 where j5 Standard Given 

X= the average of the individual When [i^ and Oo are given, the control 
observations, chart lines are as shown in Table 25. 

MR = the mean moving range, (see See Example 25. 
Supplement B, Note 7 for more 
general discussion) the average of 
the absolute values of successive EXAMPLES 
differences between pairs of the 
individual observations, and 

n — 2 for determining E2, D3 and D4. 

31, Illustrative Examples — 
Control, No Standard Given 

Examples 1 to 11, inclusive, illustrate the 
^ee Example 24. ^^^ ^f ^^^ control chart method of 
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TABLE 25. Formulas for control chart lines. 
CHAET FOR INDIVIDUALS—STANDARD GIVEN 

CENTRAL 
LINE CONTROL LIMITS 

For individuals 

For moving ranges of two 
observations 

^0 Ho±3oo 

D20o= 3.69oo 

DiOo = 0 

(40) 

(41) 

TABLE 26. Factors for computing control limits. 

CHART FOR INDIVIDUALS—ASSOCIATED WITH CHART FOR s OR i? HAVING SAMPLE SIZE n 

OBSERVATIONS IN SAMPLES OF 

EQUAL SIZE (FROM WHICH s" OR iJ 
HAS BEEN DETERMINED) 10 

Factors for control limits 

£3 

Ei 

3.760 

2.659 

3.385 

1.772 

3.256 

1.457 

3.192 

1.290 

3.153 

1.184 

3.127 

1.109 

3.109 

1.054 

3.095 

1.010 

3.084 

0.975 

TABLE 27. Operating characteristic, daily control data 

Sample 
Sample 

Size 
Average Standard Deviation 

1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

Total 
Average 

50 
50 
50 
50 
50 

50 
50 
50 
50 
50 

500 
50 

35.1 
34.6 
33.2 
34.8 
33.4 

33.9 
34.4 
33.0 
32.8 
34.8 

340.0 
34.0 

5.35 
4.73 
3.73 
4.55 
4.00 

4.30 
4.98 
5.30 
3.29 
3.77 

44.00 
4.40 
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analyzing data for control, when no 
standard is given (see Sections 7 to 17). 

Example 1: Control Charts for X and s, 
Large Samples of Equal Size (Section 8A) 

A manufacturer wished to determine if his 
product exhibited a state of control. In this 
case, the central lines and control limits 
were based solely on the data. Table 27 
gives observed values of X and s for daily 
samples of n. = 50 observations each for 
ten consecutive days. Figure 2 gives the 
control charts for X and s. 

381-
I K 

4> 

? 34 

30 

• ^ - ^ J k | 1 ^ ^ ^ " T B T T ^ ^ T T r^ 

' • • ' ' ' ' • • 

8 10 

ForX X±3 I - 3 4 . 0 + 1.9, 
V n - 0 . 5 

32.1 and 35.9 

" + 1 •̂  - 1 10 + 1 31 
"V2«-2.5 

3.06 and 5.74 

Results—The charts give no evidence of 
lack of control. Compare with Example 12, 
in which the same data are used to test 
product for control at a specified level. 

Example 2: Control Charts for X and s, 
Large Samples of Unequal Size (Section 
8B) 

To determine whether there existed any 
assignable causes of variation in quality 
for an important operating characteristic 
of a given product, the inspection results 
given in Table 28 were obtained from ten 
shipments whose samples were unequal in 
size; hence, control limits were computed 
separately for each sample size. 

TABLE 28. Operating characteristic, mechanical part . 

2 4 6 8 10 
Sample Number 

FIG. 2—Control charts for X and s. Large samples 
of equal size, n = 50; no standard given. 

Central Lines 

ForX:X = 34.0 

For s: 1 = 4.40 

Control Limits 
re = 50 

Shipment 

1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

Total 
Weighted 
average 

Sample 
Size 

n 

50 
50 
100 
25 
25 

50 
100 
50 
50 
50 

550 
55 

Average 
X 

bb.l 
54.6 
52.6 
55.0 
53.4 

55.2 
53.3 
52.3 
53.7 
54.3 

Znjf =29590.0 
53.8 

Standard Deviation 

S?ts 

s 

4.35 
4.03 
2.43 
3.56 
3.10 

3.30 
4.18 
4.30 
2.09 
2.67 

= 1864.50 
3.39 

Figure 3 gives the control charts for X 
and s. 
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4 6 8 
Shipment Numt>«r 

10 

FIG. 3—Control charts for X and s. Large samples 
of unequal size, n = 25, 50,100; no standard given. 

Central Lines 

F o r X ; f = 53.8 

F o r i : s =3.39 

Control Limits 

ForX: X±3 
Vn-0.5 

= 53.8± 
10.17 

V H - 0 . 5 

n =25:51.7 and 55.9 

n =50:52.4 and 55.2 

n =100: 52.8and54.8 

For.s: s ±2i , — ^ = 3.39 + -
V2«-2.5 \l2n-2.5 

«=25:1.91and4.87 

« =50:2.36 and 4.42 

« =100: 2.67 and 4.11 

Results—Lack of control is indicated 
with respect to both X and s. Corrective 
action is needed to reduce the variabihty 
between shipments. 

TABLE 29. Width in inches, specimens of 
Grade BB zinc. 

Set 

1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

X, 

0.6006 
0.4998 
0.4995 
0.4998 
0.5000 

0.6008 
0.5000 
0.4993 
0.4995 
0.4994 

Average 

Measured Values 

X, 

0.5000 
0.4997 
0.4996 
0.5005 
0.6005 

0.5009 
0.5001 
0.4994 
0.4995 
0.4998 

X, X, 

Group 1 
0.5008 0.5000 
0.4998 0.4994 
0.4995 0.4995 
0.6006 0.5002 
0.5008 0.6007 

Group 2 
0.5010 0.5005 
0.5002 0.4995 
0.4999 0.4996 
0.4997 0.4992 
0.6000 0.4990 

X, 

0.6005 
0.4999 
0.4995 
0.5003 
0.5008 

0.5006 
0.4996 
0.4996 
0.4995 
0.6000 

Ae 

0.5000 
0.4998 
0.4996 
0.5004 
0.6010 

0.5009 
0.4997 
0.4997 
0.4992 
0.5000 

Average, 
X 

0.50030 
0.49973 
0.49952 
0.50028 
0.50063 

0.60078 
0.49985 
0.49958 
0.49943 
0.49970 

0.49998 

Standard 
Deviation, 

s 

0.00035 
0.00018 
0.00004 
0.00026 
0.00035 

0.00019 
0.00029 
0.00021 
0.00020 
0.00041 

0.00025 

Range, 
E 

0.0008 
0.0005 
0.0001 
0.0007 
0.0010 

0.0006 
0.0007 
0.0006 
0.0005 
0.0010 

0.00064 

of sets of specimens consisting of six 
specimens each used in atmosphere 
exposure tests sponsored by ASTM. In 
each of the two groups, the five sets 
correspond to five different milHngs that 
were employed in the preparation of the 
specimens. Figure 4 shows control charts 
for X and s. 

0.501 

? 0 . 5 0 0 

> 
e < 
- 0 .499 

i | aoooe 

I 0.0004 

f 0.0002 

I 0 

10 

> K f t „ > ^ 

4 6 8 10 
Sat Number 

Example 3: Control Charts for X and s, 
Small Samples of Equal Size (Section 9A) 

Table 29 gives the width in inches to the 
nearest 0.0001-in. measured prior to 
exposure for ten sets of corrosion 
specimens of Grade BB zinc. These two 
groups of five sets each were selected for 
illustrative purposes from a large number 

FIG. 4—Control chart for X and s. Small samples 
of equal size, n = 6 no standard given. 

Results—The chart for averages indicates 
the presence of assignable causes of 

variation in width, X, from set to set, that 
is, from milling to milling. The pattern of 
points for averages indicates a systematic 
pattern of width values for the five 
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millings, a factor that required recognition 
in the analysis of the corrosion test 
results. 

For 

For 

Central Lines 

Z: X 

s: s 

= 0.49998 
= 0.00025 

Control Limits 
n = 6 

ForX: X±A,s = 

0.49998 ± (l.287)(0.00025) 

0.49966 and 0.50030 

Fori : S,? = (1.970X0.00025) = 0.00049 

B,s = (0.030X0.00025)= 0.00001 

Example 4: Control Charts for X and s, 
Small Samples of Unequal Size (Section 
9B) 

Table 30 gives interlaboratory calibration check 
data on 21 horizontal tension testing machines. 
The data represent tests on No. 16 wire. The 
procedure is similar to that given in Example 3, 
but indicates a suggested method of computation 
when the samples are not equal in size. Figure 5 
gives control charts for X and s. 

5 10 IS 
Mochint Number 

20 

FIG. 5—Control chart for X and s. Small samples 
of unequal size, n = 4 no standard given. 

a = - L f ^ : l L , i ^ ] = 0.902 
2ll 0.9213 0.9400 j 

Central Lines 

For H: X = 71.65 

For i: « = 4; ? = C4a = (0.9213)(0.902) 

= 0.831 

« = 5: ? = £40 = (0.9400)(0.902) 

= 0.848 

Control Limits 

ForX:« = 4: X ± A^l = 

71.65 ± (l.628)(0.83l), 

73.0, and 703 

n = 5: X + ^3 J = 

71.65 ± (l.427)(0.848), 

72.9, and 70.4 

F o r i : n = 4:5,5 = (2.266X0.831) = 1.88 

B3i=(0X0.83l)=0 

„ = 5 :B,i = (2.089X0.848) = 1.77 

B35=(0X0.848) = 0 

Results—The calibration levels of 
machines were not controlled at a common 
level; the averages of six machines are 
above and the averages of five machines 
are below the control limits. Likewise, 
there is an indication that the variability 
within machines is not in statistical 
control, since three machines, Numbers 6, 
7, and 8, have standard deviations outside 
the control limits. 

Example 5: Control Charts for X and R, 
Small Samples of Equal Size (Section lOA) 

Same data as in Example 3, Table 29. Use 
is made of control charts for averages and 
ranges rather than for averages and 
standard deviations. Figure 6 shows 

control charts for X and R. 



TABLE 30. Interlaboratory calibration, horizontal tension testing machines. 

0.501 
IX 

o" 0.500 
«> 

£ 0 .499 
c 

i 0.0020 
a: 0.0015 

• 0.0010 

o 0.0005 
IE 0 

Machine 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 
21 

Total 

: V-_x 
' 1 

2 

> 

Number of 

Tests 

5 
5 
5 
5 
5 

5 
4 
5 
5 
5 

5 
5 
5 
5 
5 

4 
5 
5 
5 
5 
5 

103 

i5 't 

-^-J 
^ — 

J 1 1 i 

4 6 

> ^ . 
X "̂  

s / , , . 

1 

73 
70 
74 
70 
70 

65 
72 
69 
71 
71 

71 
70 
73 
74 
72 

75 
68 
71 
72 
68 
69 

^ _ 

—^ 

1 

[ 

Test Value 

2 

73 
71 
74 
70 
70 

65 
72 
70 
71 
71 

71 
71 
74 
74 
72 

75 
69 
71 
73 
69 
69 

3 

73 
71 
74 
70 
70 

66 
74 
71 
71 
71 

72 
71 
74 
75 
72 

75 
69 
72 
73 
70 
69 

4 

75 
71 
74 
72 
70 

69 
76 
73 
71 
71 

72 
72 
75 
75 
73 

76 
69 
72 
73 
71 
69 

5 

75 
72 
75 
73 
70 

70 

73 
72 
72 

72 
72 
75 
75 
73 

70 
73 
73 
71 
69 

weighted average X = 

« _ . — 

.x .i_ 
8 

t 1 

to 

- _ l 

Aver­
age 

X 

73.8 
71.0 
74.2 
71.0 
70.0 

67.0 
73.5 
71.2 
71.2 
71.2 

71.6 
71.2 
74.2 
74.6 
72.4 

75.3 
69.0 
71.8 
72.8 
69.8 
69.0 

= 71.65 

Standard 
Deviation s 

n=4 n=5 

1.10 
0.71 
0.45 
1.41 
0 

2.35 
1.91 

1.79 
0.45 
0.45 

0.55 
0.55 
0.84 
0.55 
0.55 

0.50 
0.71 
0.84 
0.45 
1.30 
0 

2.41 15.34 

Range 
R 

n = 4 H 

4 

1 

5 

Control Limits 

n 

For X 

= 6 

X±A,R 

= 0.49998 ± (0.483)(0. 00( 
= 0.50029 and 0.4996' 

For R -.DJR =(2.004)(0.00064) 

D,R = (0)(0.00064) = ( 
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= 5 

2 
2 
1 
3 
0 

5 

4 
1 
1 

1 
2 
2 
1 
1 

2 
2 
1 
3 
0 

34 

)64) 

= 0.00128 

) 

2 4 6 8 10 
Set Number 

FIG. 6—Control charts for X and R. Small Samples 
of equal size, n = 6; no standard given. 

Results—The results are practically 
identical in all respects with those 
obtained by using averages and standard 
deviations, Fig. 4, Example 3. 

Central Lines 

For Z: Z = 0.49998 
For R:^= 0.00064 

Example 6: Control Charts for X and R, 
Small Samples of Unequal Size (Section 
lOB) 

Same data as in Example 4, Table 8. In 
the analysis and control charts, the range 
is used instead of the standard deviation. 
The procedure is similar to that given in 
Example 5, but indicates a suggested 
method of computation when samples are 
not equal in size. Figure 7 gives control 

charts for X and R. 

a is determined from the tabulated 
ranges given in Example 4, using a similar 
procedure to that given in Example 4 for 
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standard deviations where samples are 
not equal in size, tha t is 

G--
1 ^ - + - ^ ^ 1 = 0.812 

21U.059 2.326 

5 10 (5 
Mochine Number 

FIG. 7—Control charts for X and R. Small samples 
of unequal size, n = 4, 5; no standard given. 

Results—The results are practically 
identical in all respects with those 
obtained by using averages and standard 
deviations. Fig. 5, Example 4. 

Central Lines 

For Z: Z = 7L65 

For R. n = 4: R = djO = 

(2.059)(0.812)=L67 

?i = 5: R = djO = 

(2.326)(0.812)=L89 

Control Limits 

For 'X:n = 4:X± A.^ = 
71.65 ± (0.729)(1.67) 

70.4 and 72.9 

n = 5: X ± A2^ = 
7L65 ± (0.577)(1.89) 

70.6 and 72.7 

Fori? :« = 4 iD^A =(2.282)(L67) = 3.8 

A ^ = (0)(1.67) = 0 

„ = 5. D,^= (2.114X1.89) = 4.0 

D3^ = (0)(1.89) = 0 

Example 7: Control Charts for p, Samples 
of Equal Size (Section ISA) and np, 
Samples of Equal Size (Section 14) 

Table 31 gives the number of 
nonconforming units found in inspecting a 
series of 15 consecutive lots of galvanized 
washers for finish nonconformities such as 
exposed steel, rough galvanizing. The lots 
were nearly the same size and a constant 
sample size oi n - 400 were used. The 
fraction nonconforming for each sample 
was determined by dividing the number of 
nonconforming units found, np, by the 

TABLE 31. Finish defects, galvanized washers. 

LOT 

No. 1 
No. 2 
No. 3 
No. 4 
No. 5 

No. 6 
No. 7 
No. 8 

SAMPLE 
SIZE 

n 

400 
400 
400 
400 
400 

400 
400 
400 

NUMBER OF 
NONCONFORMING 

UNITS 
np 

1 
3 
0 
7 
2 

0 
1 
0 

FRACTION 
NONCONFORMING 

P 

0.0025 
0.0075 
0 
0.0175 
0.0050 

0 
0.0025 
0 

LOT 

No. 9 
No. 10 

No. 11 
No. 12 
No. 13 
No. 14 
No. 15 

Total 

SAMPLE 
SIZE 

n 

400 
400 

400 
400 
400 
400 
400 

6000 

NUMBER OF 
NONCONFORMING 

UNITS 
np 

8 
5 

2 
0 
1 
0 
3 

33 

FRACTION 
NONCONFORMING 

P 

0.0200 
0.0125 

0.0050 
0 
0.0025 
0 
0.0075 

0.0825 
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sample size, n, and is listed in the table. 
Figure 8 gives the control chart for p, and 
Fig. 9 gives the control chart for np. 

5 10 
Lot Number 

Fig. 8—Control chart for p. Samples of equal size, 
n=400; no standard given. 

Note that these two charts are identical 
except for the vertical scale. 

(a) Control chart for p 

Central Line 
- 33 
^ 6000 

- 0.0825 

: 0.0055 

15 
: 0.0055 

p±3, 

0.0055 ±3. 

~4-p) 

^ 10.0055(0.9945) 
400 

0.0055 + 0.0111= 
0 and 0.0166 

Fig. 9—Control chart for np. Samples of equal size, 
n=400; no standard given. 

Results—Lack of control is indicated; 
points for lots numbers 4 and 9 are outside 
the control limits. 

(b) Control chart for np 

Control Limits 
« = 400 

TABLE 32. Surface defects, galvanized hardware. 

LOT 

No. 1 
No. 2 
No. 3 
No. 4 
No. 5 

No. 6 
No. 7 
No. 8 
No. 9 
No. 10 

No. 11 
No. 12 
No. 13 
No. 14 
No. 15 

SAMPLE 
SIZE, 

n 

580 
550 
580 
640 
880 

880 
640 
550 
580 
880 

800 
800 
580 
580 
550 

NUMBER OF 
NONCONFORMING 

UNITS 

np 

9 
7 
3 
9 

13 

14 
14 
10 
12 
14 

6 
12 

7 
11 
5 

FRACTION 
NONCONFORMING 

P 

0.0155 
0.0127 
0.0052 
0.0141 
0.0148 

0.0159 
0.0219 
0.0182 
0.0207 
0.0159 

0.0075 
0.0150 
0.0121 
0.0190 
0.0091 

LOT 

No. 16 
No.l7 
No.18 
No. 19 
No.20 

No.21 
No.22 
No.23 
No.24 
No. 25 

No.26 
No.27 
No.28 
No.29 
No.30 
No.31 

Total 

SAMPLE 
SIZE 

n 

330 
330 
640 
580 
550 

510 
640 
300 
330 
880 

880 
800 
580 
880 
880 
330 

19 510 

NtnVIBER OF 
NONCONFORMING 

UNITS 
np 

4 
2 
4 
7 
9 

7 
12 
8 
5 

18 

7 
8 
8 

15 
3 
5 

268 

FRACTION 
NONCONFORMING 

P 

0.0121 
0.0061 
0.0063 
0.0121 
0.0164 

0.0137 
0.0188 
0.0267 
0.0152 
0.0205 

0.0080 
0.0100 
0.0138 
0.0170 
0.0034 
0.0152 
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Central Line 
?i = 400 

_ 33 
np -• 

15 
• = 2.2 

Control Limits 
?i = 400 

np±3-,/n^ = 2.2 + 4.4 

0 and 6.6 

NOTE 

Since the value of np is 2.2, which is 
less than 4, the NOTE at the end of 
Section 13 (or 14) applies. The 
product of n and the upper control 
limit value for p is 400x0.0166 = 
6.64. The non-integral remainder, 
0.64, is greater than one-half, and so 
the adjusted upper control limit value 
for p is (6.64 -I- l)/400 = 0.0191. 
Therefore, only the point for Lot 9 is 
outside limits. For np, by the NOTE 
of Section 14, the adjusted upper 
control limit value is 7.6 with the 
same conclusion. 

Example 8: Control Chart for p, Samples 
of Unequal Size (Section 13B) 

Table 32 gives inspection results for 
surface defects on 31 lots of a certain type 
of galvanized hardware. The lot sizes 
varied considerably and corresponding 
variations in sample sizes were used. 
Figure 10 gives the control chart for 
fraction nonconforming p. In practice, 
results are commonly expressed in 
"percent nonconforming," using scale 
values of 100 times p. 

Central Line 

268 
P = 

19 510 
• = 0.01374 

Control Limits 

p + 3. PJ^-P) 

>.m 

.02 

0 

' 
r 
1 

'""""l.J-^'l^-J"''** 

r r 1 ri*^*, , 

1 

1 , ' ' T J 
h r 
\L.,-riJ 

n— t̂ r-« 
10 15 20 

Ljot Number 
25 30 

FIG. 10—Control chart for p. Samples of 
unequal size, n = 200 to 880; no 
standard given. 

For n = 300 

0.01374 ±3, 
0.01374(0.98626) 

300 

0.01374±3(0.006720) = 

0.0137410.02016 

0 and 0.03390 

For n = 880 

0.01374 ± 3 
0.01374(0.98626) 

880 
0.01374 ±3(0.003924) = 

0.01374 ±0.01177 
0.00197 and 0.02551 

Results—^A state of control may be 
assumed to exist since 25 consecutive 
subgroups fall within 3-sigma control 
limits. There are no points outside limits, 
so that the NOTE of Section 13 does not 
apply. 

Example 9: Control Charts for u, Samples 
of Equal Size (Section ISA) and c. Samples 
of Equal Size (Section 16A) 

Table 33 gives inspection results in terms 
of nonconformities observed in the 
inspection of 25 consecutive lots of burlap 
bags. Since the number of bags in each lot 
differed slightly, a constant sample size, n 
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TABLE 33. Number of nonconformities in consecutive samples of ten units each—^burlap bags. 

SAMPLE 

TOTAL 
NONCONFORMITIES 

IN SAMPLE 
NONCONFORMITIES 

PER UNIT 

TOTAL 
NONCONFORMITIES 

IN SAMPLE 
u SAMPLE 

NONCONFORMITIES 
PER UNIT 

u 

1 
2 
3 
4 

5 
6 
7 
8 

9 
10 
11 
12 

17 
14 
6 

23 

5 
7 

10 
19 

29 
18 
25 
5 

1.7 
1.4 
0.6 
2.3 

0.5 
0.7 
1.0 
1.9 

2.9 
1.8 
2.5 
0.5 

13 
14 
15 
16 

17 
18 
19 
20 

21 
22 
23 
24 
25 

Total 

11 
18 
13 

22 
6 

23 
22 

9 
15 
20 
6 

24 

375 

0.8 
1.1 
1.8 
1.3 

2.2 
0.6 
2.3 

2.2 
0.9 
1.5 
2.0 
0.6 
2.4 

37.5 

= 10 w a s used . All nonconformi t ies w e r e 
coun ted a l t h o u g h two or more 
nonconformi t ies of t h e s a m e or different 
k i n d s occurred on t h e s a m e bag . T h e 
nonconformi t ies pe r u n i t v a l u e for each 
s amp le w a s d e t e r m i n e d by dividing t h e 
n u m b e r of nonconformi t ies found by t h e 
s a m p l e size a n d is l i s ted in t h e t ab le . 
F i g u r e 11 gives t h e control c h a r t for u, 
a n d Fig. 12 gives t h e control c h a r t for c. 
Note t h a t t h e s e two c h a r t s a r e ident ica l 
except for t h e ver t ica l scale. 

10 IS 
Sample Number 

FIG. 11—Control chart for u. Samples of 
equal size, n = 10; no standard given. 

(a) u 
Central Line 

Control Limits 
71 = 10 

«±3 

1.50 + 3V0.150 = 

1.5011.16 

0.34 and 2.66 

Sample Number 

FIG. 12—Control chiart for c. Samples of equal 
size, n = 10; no standard given. 

(b)c 

Central Line 
375 

c = ^ ^ = 15.0 
25 

37.5 

25 
1.5 
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TABLE 34. Number of nonconformities in samples from 20 successive lots of Type A machines. 

LOT 

No. 1 
No. 2 
No. 3 
No. 4 
No. 5 

No. 6 
No. 7 
No. 8 
No. 9 

No. 10 

SAMPLE 
SIZE 

n 

20 
20 
40 
25 
25 

25 
40 
40 
40 
40 

TOTAL 
NON­

CONFORMITIES 
SAMPLE 

c 

72 
38 
76 
35 
62 

81 
97 
78 

103 
56 

NON­
CONFORMITIES 

PER UNIT 
u 

3.60 
1.90 
1.90 
1.40 
2.48 

3.24 
2.42 
1.95 
2.58 
1.40 

LOT 

No. 11 
No. 12 
No. 13 
No. 14 
No. 15 

No. 16 
No. 17 
No. 18 
No. 19 
No. 20 

Total 

SAMPLE 
SIZE 

n 

25 
25 
25 
25 
25 

20 
20 
20 
40 
40 

580 

TOTAL 
NON­

CONFORMITIES 
SAMPLE 

c 

47 
55 
49 
62 
71 

47 
41 
52 

128 
84 

1334 

NON­
CONFORMITIES 

PER UNIT 
u 

1.88 
2.20 
1.96 
2.48 
2.84 

2.35 
2.05 
2.60 
3.20 
2.10 

Control Limits 
K = 10 

15.0±3Vl5 = 

15.0±11.6 

3.4 and 26.6 

per unit value for each sample, number of 
nonconformities in sample divided by 
number of units in sample, was 
determined and these values are listed in 
the last column of the table. Figure 13 
gives the control chart for u with control 
limits corresponding to the three different 
sample sizes. 

Results—Presence of assignable causes of 
variation is indicated by Sample 9. Since 
the value of nu is 15 (greater than 4), the 
NOTE at the end of Section 15 (or 16) 
does not apply. 

Example 10: Control Chart for u, Samples 
of Unequal Size (Section 15B) 

Table 34 gives inspection results for 20 
lots of different sizes for which 3 different 
sample sizes were used, 20, 25, and 40. 
The observed nonconformities in this 
inspection cover all of the specified 
characteristics of a complex machine 
(Type A), including a large number of 
dimensional, operational, as well as 
physical and finish requirements. Because 
of the large number of tests and 
measurements required as well as possible 
occurrences of any minor observed 
irregularities, the expectancy of 
nonconformities per unit is high, although 
the majority of such nonconformities are 
of minor seriousness. The nonconformities 

Central Line 

- 1334 
M = = 2.30 

580 

Control Limits 

« = 20 

M±3J-= 2.30 ±1.02, 
V n 

1.28 and 3.32 

n = 25 

M±3J-=2.30±0.91, 
V n 

1.39and3.21 

« = 40 

M ±3 j - = 2.3010.72, 
V n 

1.58 and 3.02 
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4.0 r 

10 
Lot Number 

FIG. 13—Control chart for u. Samples of unequal 
size, n = 20, 25, 40; no standard given. 

Results—Lack of control of quality is 
indicated; plotted points for lot numbers 1, 
6, and 19 are above the upper control limit 
and the point for lot number 10 is below 
the lower control limit. Of the lots with 
points above the upper control limit, lot 
no. 1 has the smallest value of nu (46), 
which exceeds 4, so that the NOTE a t the 
end of Section 15 does not apply. 

Example 11: Control Charts for c, Samples 
of Equal Size (Section 16A) 

Table 35 gives the results of continuous 
testing of a certain type of rubber-covered 
wire at specified test voltage. This test 
causes breakdowns at weak spots in the 
insulation, which are cut out before 
shipment of wire in short coil lengths. The 
original data obtained consisted of records 
of the number of breakdowns in successive 
lengths of 1000 ft each. There may be 0, 1, 
2, 3, ..., etc. breakdowns per length, 
depending on the number of weak spots in 
the insulation. Such data might also have 
been tabulated as number of breakdowns 
in successive lengths of 100 ft each, 500 ft 
each, etc. Here there is no natural unit of 
product (such as 1 in., 1 ft, 10 ft, 100 ft, 
etc.), in respect to the quality 
characteristic 'Tareakdown" since failures 
may occur at any point. Since the original 
data were given in terms of 1000-ft 
lengths, a control chart might have been 

maintained for "number of breakdowns in 
successive lengths of 1000 ft each." So 
many points were obtained during a short 
period of production by using the 1000-ft 
length as a unit and the expectancy in 
terms of number of breakdowns per length 
was so small tha t longer unit lengths were 
tried. Table 35 gives (a) the "number of 
breakdowns in successive lengths of 5000 
ft each," and (b) the "number of 
breakdowns in successive lengths of 10 
000 ft each." Figure 14 shows the control 
chart for c where the unit selected is 
5000ft, and Fig. 15 shows the control chart 
for c where the unit selected is 10 000 ft. 
The standard unit length finally adopted 
for control purposes was 10 000 ft for 
'Tjreakdown." 

10 20 30 40 50 60 
Succtssive Lengths of S 000 ft. Each 

FIG. 14—Control chart for c. Samples of 
equal size, n =1 standard length of 5000 ft; 
no standard given. 

(a) Lengths of 5 000 ft Each 

Central Line 

c = = 3.12 
60 

Control Limits 

6.23±3V623 
0 and 13.72 
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TABLE 35. Number of breakdowns in successive lengths of 5 000 ft each and 
10 000 ft each for rubber-covered wire. 

Number Number Number Number Number 
of of of of of 

Length Break- Length Break- Length Break- Length Break- Length Break-
No. downs No. downs No. downs No. downs No. downs 

1 
2 
3 
4 
5 
6 

7 
8 
9 
10 
11 
12 

0 
1 
1 
0 
2 
1 

3 
4 
5 
3 
0 
1 

13 
14 
15 
16 
17 
18 

19 
20 
21 
22 
23 
24 

(a) Lengths of 5 000 ft Each 

1 
1 
2 
4 
0 
1 

1 
0 
6 
4 
3 
2 

25 
26 
27 
28 
29 
30 

31 
32 
33 
34 
35 
36 

0 
0 
9 
10 
8 
8 

6 
14 
0 
1 
2 
4 

37 
38 
39 
40 
41 
42 

43 
44 
45 
46 
47 
48 

5 
7 
1 
3 
3 
2 

0 
1 
5 
3 
4 
3 

49 
50 
51 
52 
53 
54 

55 
56 
57 
58 
59 
60 

5 
4 
2 
0 
1 
2 

5 
9 
4 
2 
5 
3 

Total 
(b) Lengths of 10 000 ft Each 

60 187 

1 
2 
3 
4 
5 
6 

Total 

1 
1 
3 
7 
8 
1 

7 
8 
9 
10 
11 
12 

2 
6 
1 
1 
10 
5 

13 
14 
15 
16 
17 
18 

0 
19 
16 
20 
1 
6 

19 
20 
21 
22 
23 
24 

12 
4 
5 
1 
8 
7 

25 
26 
27 
28 
29 
30 

30 

9 
2 
3 
14 
6 
8 

187 

(a) Results—Presence of assignable 
causes of variation is indicated by length 
numbers 27, 28, 32, and 56 falling above 
the upper control limit. Since the value of 
c=nu is 3.12 (less than 4), the NOTE at 
the end of Section 16 does apply. The non-
integral remainder of the upper control 
limit value is 0.42. The upper control limit 
stands, as do the indications of lack of 
control. 

(b) Lengths of 10 000 ft Each 

Central Line 
- 187 , , . , 
c = = 6.23 

30 

Control Limits 

C±3^|¥ = 

5 10 15 20 25 30 
Succ««si¥e Ltngtht of 10.000 ft. eoch 

6.23±3V6.23 
0 and 13.72 

(b) Results—Presence of assignable 
causes of variation is indicated by length 
numbers 14, 15, 16, and 28 falling above 
the upper control limit. Since the value of 
c i s 6.23 (greater than 4), the NOTE at 
the end of Section 16 does not apply. 

FIG. 15—Control chart for c. Samples of equal size, 
n = ^ standard length of 10 000 ft; no standard 
given. 



32. Illustrative Examples—Control 
With Respect to a Given 
Standard 

Examples 12 to 21, inclusive, illustrate the 
use of the control chart method of 
analyzing data for control with respect to 
a given standard (see Sections 18 to 27). 

Example 12: Control Charts for X and s, 
Large Samples of Equal Size (Section 19) 

A manufacturer attempted to maintain an 
aimed-at distribution of quality for a 
certain operating characteristic. The 
objective standard distribution which 
served as a target was defined by 
standard values: jJo = 35.00 lb., and OQ = 
4.20 lb. Table 36 gives observed values of 

X a n d s for daily samples of n = 50 
observations each for ten consecutive 
days. These data are the same as used in 
Example 1 and presented as Table 27. 

Figure 16 gives control charts for X and s. 

Central Lines 
For X : ^ = 35.00 

For s:c^= 4.20 

Control Limits 
n = 50 

On 

33.2 and 36.8 

. 4/3-4 , 
For s I"; 7 F o ± 3 J Q 

4 n - 3 ; ' " ^/2n-15 
2.91 and 5.45 

95 
CONTROL 

CHART 
MFTHOn 

= 418 ±127, 

IK 

at 

38 

34 

\ *m I I i I i i.,_i. 
9 

•» î: 4 
c o 

6 8 10 

-
^ 

•-
• 

^ li 
— 

V 
— 

^ . I 1 .1 

^ 

^ _ 

r V P&" 

2 4 8 9 
Sample HumlMr 

10 

FIG. 16—Control charts for X and & Large samples 
of equal size, n = 50; {i,, o „ given. 

Results—Lack of control at 
standard level is indicated on the 
eighth and ninth days. Compare 
with Example 1 in which the same 
data were analyzed for control 
without specifying a standard 
level of quality. 

For X:|Xo ±3-7^= 35.00 + 1.8, 
•Jn 

TABLE 36. Operating characteristic, dally control data. 

Sample 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

Sample Size, n 

50 
50 
50 
50 
50 

50 
50 
50 
50 
50 

Average, x 

35.1 
34.6 
33.2 
34.8 
33.4 

33.9 
34.4 
33.0 
32.8 
34.8 

Standard Deviation, s 

5.35 
4.73 
3.73 
4.55 
4.00 

4.30 
4.98 
5.30 
3.29 
3.77 
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Control Limits 
Example 13: Control Charts for X and s, 
Large Samples of Unequal Size (Section 
19) 

For a product, it was desired to control a 
certain critical dimension, the diameter, 
with respect to day to day variation. Daily 
sample sizes of 30, 50, or 75 were selected 
and measured, the number taken 
depending on the quantity produced per 
day. The desired level was ^o = 0.20000 in. 
with ao = 0.00300 in. Table 37 gives 

observed values of X and s for the 
samples from 10 successive days' 
production. Figure 17 gives the control 

charts for X and s. 

TABLE 37. Diameter in inches, control data. 

Sample 
Sample n 

1 30 
2 50 
3 50 
4 30 
5 75 

6 75 
7 75 
8 50 
9 50 
10 30 

0.20200 
IK 

JC 0.20000 
o 

s s J * 0.19800 

E 
5 0.00500 

Is 

tz 0.00300 

0.00100 

Size Average 

X 

0.20133 
0.19886 
0.20037 
0.19965 
0.19923 

0.19934 
0.19984 
0.19974 
0.20095 
0.19937 

"<r^-—^*i 

r^—L-J" 

2 4 

. - - - u ~ ^ ^ -

• 1 1 f ~ 

2 4 
Sompit 

Standard Deviation 

6 

s 

0.00330 
0.00292 
0.00326 
0.00358 
0.00313 

0.00306 
0.00299 
0.00335 
0.00221 
0.00397 

^ K 
— L . _ _ ^ _ _ 

8 10 

'^"7 
- - - - - w - J ^ 

6 8 10 
Numbtr 

FIG. 17—Control charts for X and s. Large samples 
of unequal size, n = 30, 50, 70; ^g,ao given. 

Central Lines 

For X : Ho = 0.20000 
Fors: OQ = 0.00300 

For X: M-0±3-7^ 

n. = 30 

0.2000 ± 3 ° : 5 ^ = 
V30 

0.20000 ±0.00164 

0.19836 and 0.20164 

n = 50 
0.19873 and 0.20127 

n, = 75 
0.19896 and 0.20104 

For s: c^a^ ± 3 

?i = 30 

li^lo.00300±3^:?22B: 
i i 7 J 4s%l 

0.0029710.00118 
0.00180 and 0.00415 

-Jin-1.5 

n = 50 
0.00389 and 0.00208 

71 = 75 
0.00225 and 0.00373 

Results—The charts give no evidence of 
significant deviations from standard 
values. 

Example 14: Control Chart for X and s, 
Small Samples of Equal Size (Section 19) 

Same product and characteristic as in 
Example 13, but in this case it is desired 
to control the diameter of this product 
with respect to sample variations during 
each day, since samples of 10 were taken 
at definite intervals each day. The desired 
level is Ho = 0.20000 in. with OQ = 0.00300 

in. Table 38 gives observed values of X 
and s for 10 samples of 10 each taken 
during a single day. Figure 18 gives the 

control charts for X and s. 
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TABLE 38. Control data for one day's product. 

Sample 

1 
2 

3 

4 

5 

6 

7 

8 

9 

10 

Sample 
n 

10 
10 

10 

10 

10 

10 

10 

10 

10 

10 

Size Average 

0.19838 
0.20126 

0.19868 

0.20071 

0.20050 

0.20137 

0.19883 

0.20218 

0.19868 

0.19968 

Central lines 

F o r X : 

Standard Deviation 
s 

\io = 0.20000 

0.00350 
0.00304 

0.00333 

0.00337 

0.00159 

0.00104 

0.00299 

0.00327 

0.00431 

0.00356 

n = lO 

For s: C4O0 = (0.9727)(0.00300) = 0.00292 

Control Limits 

n = 10 

For X: (XQ ± ^^o = 

0.20000 ± (0.949)(0.00300), 

0.19715 and 0.20285 

For s: Bê ^o = (1.669)(0.00300) = 0.00501 

B5O0 = (0.276)(0.00300) = 0.00083 

0.20300 

I 0.20000 
> 

O.I9S0O 

/^v^^^T^C^" 
1 , . 1 , • • 

10 

V p. 
0.00600 

I I 0.00400 -
I.I 0.00200 

2 4 6 8 
SompI* Number 

10 

FIG.18—Control charts for Xand s. Small samples 
of equal size, n = 10; )i„,a,given. 

Results—No lack of control indicated. 

Example 15: Control Chart for Xand s. 
Small Samples of Unequal Size (Section 
19) 

A manufacturer wished to control the 
resistance of a certain product after it had 
been operating for 100 h, where [IQ = 150 i^ 
and Oo = 7.5 Q from each of 15 consecutive 
lots, he selected a random sample of 5 
units and subjected them to the operating 
test for 100 h. Due to mechanical failures, 
some of the units in the sample failed 
before the completion of 100 h of 
operation. Table 39 gives the averages and 
standard deviations for the 15 samples 
together with their sample sizes. Figure 

19 gives the control charts forX and s. 

)T0 

|X 160 

• I S O 

E < 140 
o 

130 
« 
u c o 

SS 5 

° O 

- L J - J T r ^ ^ J ~ 

I I I , 

6 8 10 12 14 

' • ' • • • -JL 
2 4 6 8 10 12 14 

Lot Number 
FIG. 19—Control charts for X and s. Small 
samples of unequal size, n = 3 , 4,5; \i,,a„ given. 

Central Lines 
F o r X : /!„ =150 

« = 3 
Mo ±^(To= 150 ±1.732(7.5) 

137.0 and 163.0 

« = 4 
/Xo±^a„= 150 ±1.500(7.5) 

138.8andl61.2 

H = 5 

Mo ±^<7o= 150 ±1.342(7.5) 

139.9 and 160.1 
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T A B L E 39 . R e s i s t a n c e i n o h m s a f te r 100-h o p e r a t i o n , lot b y lot con t ro l d a t a . 

Sample 

Sample 
Size Average 

1 

Standard 
Deviation 

Sample 
Size 

Sample 
Average 

X 

Standard 
Deviation 

154.6 
143.4 
160.8 
152.7 

136.0 
147.3 
161.7 
151.0 

12.20 
9.75 

11.20 
7.43 

4.32 
8.65 
9.23 
7.24 

9 
10 
11 
12 

13 
14 
15 

156.2 
137.5 
153.8 
143.4 

156.0 
149.8 
138.2 

8.92 
3.24 
6.85 
7.64 

10.18 
8.86 
7.38 

For s: oo = 7.5 
« = 3 

040-0= (0.8862X7.5) =6.65 
n=4: 

C4(7o= (0.9213X7.5)= 6.91 
n, = 5 

c,c7o= (0.9400X7.5) =7.05 

For s: oo = 7.5 

n = 3 :5gC7o =(2.276X7.5)= 17.07 

5^(70= (0X7-5) =0 

n = 4 :B,c7o =(2.088X7.5) = 15.66 

55CT„= (0X7.5)= 0 

n = 5:B,a^ =(l .964X7.5)= 14.73 

5,(70= (0X7.5) =0 

Results—Evidence of lack of control is 
indicated since samples from lots 
Numbers 5 and 10 have averages below 
their lower control limit. No standard 
deviation values are outside their control 
limits. Corrective action is required to 
reduce the variation between lot averages. 

Example 16: Control Charts for X and R, 
Small Samples of Equal Size (Section 19 
and 20) 

Consider the same problem as in Example 
12 where |Lio = 35.00 lb and Oo = 4.20 lb. 
The manufacturer wished to control 
variations in quality from lot to lot by 
taking a small sample from each lot. Table 
40 gives observed values of X and R for 
samples of n = 5 each, selected from ten 

consecutive lots. Since the sample size n is 
less than 10, actually 5, he elected to use 
control charts for X and R rather than for 
X and s. Figure 20 gives the control 
charts for X and R. 

T A B L E 40 , O p e r a t i n g c h a r a c t e r i s t i c , lo t by lo t 
con t ro l d a t a . 

Sample Size 
Lot 

Average Range 

No. 
No. 
No. 
No. 
No. 

No. 6 
No. 7 
No. 8 
No. 9 
No. 10 

36.0 
31.4 
39.0 
35.6 
38.8 

41.6 
36.2 
38.0 
31.4 
29.2 

6.6 
0.5 

15.1 
8.8 
2.2 

3.5 
9.6 
9.0 

20.6 
21.7 

2 4 6 8 
Lot Number 

FIG. 20—Control charts for X and R. Small 
samples of equal size, n = 5; |ig, Og given. 



Central Lines 
For X: Ho = 35.00 

« = 5 
For R: d^Oo = 2.326(4.20)= 9.i 

Control Limits 
n = 5 

For X: Ho ± Aco -

35.00 + (l.342)(4.20) 

29.4 and 40.6 

For R: d^a^ = (4.918)(4.20) 
AiOo = (0)(4.20) = 0 

^20.7 

Results—Lack of control a t t h e s t a n d a r d 
level is i nd ica t ed by r e s u l t s for lot 
n u m b e r s 6 a n d 10. Correct ive act ion is 
r e q u i r e d bo th w i th respec t to ave rages a n d 
w i t h r e spec t to var iab i l i ty w i t h i n a lot. 

Example 17: Control Charts for p, Samples 
of Equal Size (Section 23) and np, Samples 
of Equal Size (Section 24) 

Cons ider t h e s a m e d a t a a s i n Example 7, 
Table 31 . The m a n u f a c t u r e r w i shes to 
control h i s process w i t h r e spec t to f inish 
on ga lvan ized w a s h e r s a t a level such t h a t 
t h e fraction nonconforming po - 0.0040 (4 
nonconforming w a s h e r s p e r t h o u s a n d ) . 
Table 31 of Example 7 gives observed 
v a l u e s of " n u m b e r of nonconforming u n i t s " 
for finish nonconformi t ies such as exposed 
steel , r o u g h ga lvan iz ing in s a m p l e s of 400 
w a s h e r s d r a w n from 15 successive lots. 
F igu re 21 shows t h e control c h a r t for p, 
a n d Fig. 22 gives t h e control c h a r t for np. 
In pract ice , only one of t h e s e control 
c h a r t s would be u s e d since, except for 
c h a n g e of scale, t h e two c h a r t s a r e 
ident ica l . 
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(a)p 
Central Line 

Po = 0.0040 

Control Limits 
« = 400 

p,±3. Po(^-Po) 

0^040^ 00040(09960) 

V 400 
0.0040 ± 0.0095 

0 and 0.0135 

5 10 
Lot Number 

FIG. 22—Control chart for np. Samples of equal 
size, n = 400; p„ given. 

(b)np 
Central Line 

npg = 0.0040 (400) = 1.6 

Control limits 

Extract formula: 
?i = 400 

"/'o ± y n p „ { l ~ p , ) = 

1.613^1.6(0.996) = 

1.6±3Vl.5936 = 

1.6 ±3(1.262) 

0 and 5.4 

? 0.02 -

5 10 
Lot Numbtr 

FIG. 21—Control ciiart for p. Samples of equal size, 
n = 400; Pggiven. 

Simplified approximate formula: 
« = 400 

Since po is small, replace Eq 29 by Eq 30 

1 . 6 ± 3 V L 6 = 

1.6 ±3(1.265) 

0 and 5.4 
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Results—Lack of control of quality is 
indicated with respect to the desired level; 
lot numbers 4 and 9 are outside control 
limits. 

NOTE 

Since the value of npo is 1.6, less than 
4, the NOTE at the end of Section 13 
(or 14) applies, as mentioned at the 
end of Section 23 (or 24). The product 
of n and the upper control limit value 
for p is 400 X 0.0135 = 5.4. The 
nonintegral remainder, 0.4, is less 
than one-half. The upper control limit 
stands as does the indication of lack 
of control to po. For np, by the NOTE 
of Section 14, the same conclusion 
follows. 

Example 18: Control Chart for p (Fraction 
Nonconforming), Samples of Unequal Size 
(Section 23e) 

The manufacturer wished to control the 
quality of a type of electrical apparatus 
with respect to two adjustment 

characteristics at a level such that the 
fraction nonconforming po = 0.0020 (2 
nonconforming units per thousand). Table 
41 gives observed values of "number of 
nonconforming units" for this item found 
in samples drawn from successive lots. 

Sample sizes vary considerably from 
lot to lot and, hence, control limits are 
computed for each sample. Equivalent 
control limits for "number of 
nonconforming units," np, are shown in 
column 5 of the table. In this way, the 
original records showing "number of 
nonconforming units" may be compared 
directly with control limits for np. Figure 
23 shows the control chart for p . 

FIG. 23—Control chart for p. Samples of unequal 

size, to 2500; Po given. 

TABLE 41. Adjustment irregularities, electrical apparatus. 

LOT 

No. 1 
No. 2 
No. 3 
No. 4 
No. 5 

No. 6 
No. 7 
No. 8 
No. 9 
No. 10 

No. 11 
No. 12 
No. 13 
No. 14 
No. 15 

No. 16 
No. 17 
No. 18 
No. 19 
No. 20 

SAMPLE 
SIZE 

n 

600 
1300 
2000 
2500 
1550 

2000 
1550 

780 
260 

2000 

1550 
950 
950 
950 
35 

330 
200 
600 

1300 
780 

NUMBER OF 
NON­

CONFORMING 
UNITS 

2 
2 
1 
1 
5 

2 
0 
3 
0 

15 

7 
2 
5 
2 
0 

3 
0 
4 
8 
4 

FRACTION 
NON-CONFORMING p 

0.0033 
0.0015 
0.0005 
0.0004 
0.0032 

0.0010 
0.0000 
0.0038 
0.0000 
0.0075 

0.0045 
0.0021 
0.0053 
0.0021 
0.0000 

0.0091 
0.0000 
0.0067 
0.0062 
0.0051 

UPPER 
CONTROL 

LIMIT FOR np 

4.5 
7.4 

10.0 
11.7 

8.4 

10.0 
8.4 
5.3 
2.7 

10.0 

8.4 
6.0 
6.0 
6.0 
0.9 

3.1 
2.3 
4.5 
7.4 
5.3 

UPPER CONTROL 
LIMIT FOR J3 

0.0075 
0.0057 
0.0050 
0.0047 
0.0054 

0.0050 
0.0054 
0.0068 
0.0103 
0.0050 

0.0054 
0.0063 
0.0063 
0.0063 
0.0247 

0.0094 
0.0115 
0.0075 
0.0057 
0.0068 



Central Line for p 

Po= 0.0020 

Control Limits for p 

A ±3^ 
A ( 1 - / ' O ) 

For n = 600 : 

0.0020 ±3 
0.002(0,998) 

600 

0.0020 ±3(0.001824) 

0 and 0.0075 

(same procedure for other values of n) 

Control Limits for np 

Using Eq 30 for np, 

For « = 600: 
1.2 ± 3 Vr2= 1.2 ±3(1.095), 

0 and 4.5 

(same procedure for other values of n) 

Results—Lack of control and need for 
corrective action indicated by results for 
lots Numbers 10 and 19. 

NOTE 

The values of npo for these lots are 4.0 and 
2.6, respectively. The NOTE at the end of 
Section 13 (or 14) applies to lot number 
19. The product of n and the upper control 
limit value for p is 1300 x 0.0057 = 7.41. 
The nonintegral remainder is 0.41, less 
than one-half. The upper control limit 
stands, as does the indication of lack of 
control at po. For np, by the NOTE of 
Section 14, the same conclusion follows. 
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Example 19: Control Chart for p (Fraction 
Rejected), Total and Components, Samples 
of Unequal Size (Section 23) 

A control device was given a 100 percent 
inspection in lots varying in size from 
about 1800 to 5000 units, each unit being 
tested and inspected with respect to 23 
essentially independent characteristics. 
These 23 characteristics were grouped into 
three groups designated Groups A, B, and 
C, corresponding to three successive 
inspections. 

A unit found nonconforming at any time 
with respect to any one characteristic was 
immediately rejected; hence units found 
nonconforming in, say, the Group A 
inspection were not subjected to the two 
subsequent group inspections. In fact, the 
number of units inspected for each 
characteristic in a group itself will differ 
from characteristic to characteristic if 
nonconformities with respect to the 
characteristics in a group occur, the last 
characteristic in the group having the 
smallest sample size. 

Since 100 percent inspection is used, no 
additional units are available for 
inspection to maintain a constant sample 
size for all characteristics in a group or for 
all the component groups. The fraction 
nonconforming with respect to each 
characteristic is sufficiently small so that 
the error within a group, although rather 
large between the first and last 
characteristic inspected by one inspection 
group, can be neglected for practical 
purposes. Under these circumstances, the 
number inspected for any group was equal 
to the lot size diminished by the number of 
units rejected in the preceding 
inspections. 

Part 1 of Table 42 gives the data for 12 
successive lots of product, and shows for 
each lot inspected the total fraction 
rejected as well as the number and 
fraction rejected at each inspection 
station. Par t 2 of Table 42 gives values of 
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Po, fraction rejected, at which levels the 
manufacturer desires to control this 
device, with respect to all twenty-three 
characteristics combined and with respect 
to the characteristics tested and inspected 
at each of the three inspection stations. 
Note that the po for all characteristics (in 
terms of nonconforming units) is less than 
the sum of the Po values for the three 
component groups, since nonconformities 

from more than one characteristic or 
group of characteristics may occur on a 
single unit. Control limits, lower and 
upper, in terms of fraction rejected are 
listed for each lot size using the initial lot 
size as the sample size for all 
characteristics combined and the lot size 
available at the beginning of inspection 
and test for each group as the sample size 
for that group. 

TABLE 42. Inspection data for 100 percent inspection—control device. 

Observed Number of Rejects and Fraction Rejected 

Lot 

No. 1 
No .2 
No. 3 
No. 4 

No. 5 
No. 6 
No. 7 
No. 8 

No. 9 
No. 10 
No. 11 
No. 12 

All Groups Combined 
Lot 

Size, 
n 

4814 
2159 
3089 
3156 

2139 
2588 
2510 
4103 

2992 
3545 
1841 
2748 

Total Rejected 

Number 

914 
359 
565 
626 

434 
503 
487 
803 

547 
643 
353 
418 

Fraction 

0.190 
0.166 
0.183 
0.198 

0.203 
0.194 
0.194 
0.196 

0.183 
0.181 
0.192 
0.152 

Lot 

Size, 
n 

4814 
2159 
3089 
3156 

2139 
2588 
2510 
4103 

2992 
3545 
1841 
2748 

Group A 
Rejected 

Number 

311 
128 
195 
233 

146 
177 
143 
318 

208 
172 
97 

141 

Fraction 

0.065 
0.059 
0.063 
0.074 

0.068 
0.068 
0.057 
0.078 

0.070 
0.049 
0.053 
0.051 

Lot 

Size, 
n 

4503 
2031 
2894 
2923 

1993 
2411 
2367 
3785 

2784 
3373 
1744 
2607 

Group B 
Rejected 

Number 

253 
105 
149 
142 

101 
151 
116 
242 

130 
180 
119 
114 

Fraction 

0.056 
0.052 
0.051 
0.049 

0.051 
0.063 
0.049 
0.064 

0.047 
0.053 
0.068 
0.044 

Lot 

Size, 
n 

4250 
1926 
2745 
2781 

1892 
2260 
2251 
3543 

2654 
3193 
1625 
2493 

Group C 
Reje 

Number 

350 
126 
221 
251 

187 
175 
228 
243 

209 
291 
137 
163 

!Cted 

Fraction 

0.082 
0.065 
0.081 
0.090 

0.099 
0.077 
0.101 
0.069 

0.079 
0.091 
0.084 
0.065 

Central Lines and Control Limits, Based on Standard p^ Values 

All Groups Combined Group A Group B Group C 

Central Lines 

P«= 

Lot 

0.180 0.070 

Control Limits 

0.050 0.080 

No. 1 
No. 2 
No. 3 
No. 4 

No. 5 
No. 6 
No. 7 
No. 8 

No. 9 
No. 10 
No. 11 
No. 12 

0.197 and 0.163 
0.205 and 0.155 
0.201 and 0.159 
0.200 and 0.160 

0.205 and 0.155 
0.203 and 0.157 
0.203 and 0.157 
0.198 and 0.162 

0.201 and 0.159 
0.200 and 0.160 
0.207 and 0.153 
0.202 and 0.158 

0.081 and 0.059 
0.086 and 0.054 
0.084 and 0.056 
0.084 and 0.056 

0.086 and 0.054 
0.085 and 0.055 
0.085 and 0.055 
0.082 and 0.058 

0.084 and 0.056 
0.083 and 0.057 
0.088 and 0.052 
0.085 and 0.055 

0.060 and 0.040 
0.064 and 0.036 
0.062 and 0.038 
0.062 and 0.038 

0.065 and 0.035 
0.063 and 0.037 
0.064 and 0.036 
0.061 and 0.039 

0.062 and 0.038 
0.061 and 0.039 
0.066 and 0.034 
0.063 and 0.037 

0.093 and 0.067 
0.099 and 0.061 
0.096 and 0.064 
0.095 and 0.065 

0.099 and 0.061 
0.097 and 0.063 
0.097 and 0.063 
0.094 and 0.066 

0.096 and 0.064 
0.094 and 0.066 
0.100 and 0.060 
0.096 and 0.064 
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Total 
Group C: n = 4250 

u- 0.14 
4 6 8 10 12 

Lot Number 

Group B 

0.021 • • ' 
2 4 6 8 10 12 2 4 6 8 10 12 

Lot Number Lot Number 
Group C 

0.10 

1 1 0.06 

2 4 6 8 10 12 
Lot Number 

FIG. 24—Control charts for p (fraction rejected) for 
total and components. Samples of unequal size, n = 
1625 to 4814; Po given. 

Figure 24 shows four control charts, one 
covering all rejections combined for the 
control device and three other charts 
covering the rejections for each of the 
three inspection stations for Group A, 
Group B, and Group C characteristics, 
respectively. Detailed computations for 
the over-all results for one lot and one of 
its component groups are given. 

P,±^-

0.080±3 

n 
0.080(0.920) 

4250 
0.080 + 3(0.0042) 
0.067 and 0.093 

Results—Lack of control is indicated for 
all characteristics combined; lot number 
12 is outside control limits in a favorable 
direction and the corresponding results for 
each of the three components are less than 
their standard values, Group A being 
below the lower control limit. For Group A 
results, lack of control is indicated since 
lot numbers 10 and 12 are below their 
lower control limits. Lack of control is 
indicated for the component 
characteristics in Group B, since lot 
numbers 8 and 11 are above their upper 
control limits. For Group C, lot number 7 
is above its upper limit indicating lack of 
control. Corrective measures are indicated 
for Groups B and C and steps should be 
taken to determine whether the Group A 
component might not be controlled at a 
smaller value of po, such as 0.06. The 
values of npo for lot numbers 8 and 11 in 
Group B and lot number 7 in Group C are 
all larger than 4. The NOTE at the end of 
Section 13 does not apply. 

Central Lines 

See Table 42 

Control Limits 

See Table 42 
For Lot Number 1 

Total: n, = 4814 

PQ 
+ 3 (i-^o) Po 

0.180±3 
0.180(0.820) 

4814 
0.180 ±3(0.0055) 
0.163 and 0.197 

Example 20: Control Chart for u. Samples 
of Unequal Size (Section 25) 

It is desired to control the number of 
nonconformities per billet to a standard of 
1.000 nonconformities per unit in order 
that the wire made from such billets of 
copper will not contain an excessive 
number of nonconformities. The lot sizes 
varied greatly from day to day so that a 
sampling schedule was set up giving three 
different samples sizes to cover the range 
of lot sizes received. A control program 
was instituted using a control chart for 
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TABLE 43. Lot by lot inspection results for copper billets in terms of number of nonconformities and nonconformities per unit. 

NUMBER OF 
SAMPLE NON-

SIZE CONFORMITIES 
LOT n c 

No. 1 100 
No. 2 100 
No. 3 200 
No. 4 400 
No. 5 400 
No. 6 400 
No. 7 200 
No. 8 200 
No. 9 100 

' '«=3566/3500 = 1.019. 

75 
138 
212 
444 
508 
312 
168 
266 
119 

NON­
CONFORMITIES 

PER UNIT 
u 

0.750 
1.380 
1.060 
1.110 
1.270 
0.780 
0.840 
1.330 
1.190 

nonconformities per unit with reference to 
the desired standard. Table 43 gives data 
in terms of nonconformities and 
nonconformities per unit for 15 
consecutive lots under this program. 
Figure 25 shows the control chart for u. 

i C _ 

LOT 

No. 10 
No. 11 
No. 12 
No. 13 
No. 14 
No. 15 

Total 
Overall" 

SAMPLE 
SIZE 

n 

100 
100 
400 
400 
200 
200 

3500 

NUMBER OF 
NONCONFORMITIES 

c 

130 
58 

480 
316 
162 
178 

3566 

« = 200 

«„+3£ = 
V n 

1.000±3Jl-0°0 = 
V 200 

1.000 ±3(0.0707) 

0.788 and 1.212 

NON­
CONFORMITIES 

PER UNIT 
u 

1.300 
0.580 
1.200 
0.790 
0.810 
0.890 

1.019 

n = 400 

4 6 8 (0 
Lot Number 

12 14 

u,±3. 

1.000 ±3 1.000 

FIG. 25—Control chart for u. Samples of 
unequal size, n = 100, 200, 400; n given. 

Central Line 
Wo =1.000 

Control Limits 
n = 100 

u,±3^ = 
V n 

1.000 1.000 ±3., 
100 

1.000 ±3(0.100) 
0.700 and 1.300 

400 
1.000 ±3(0.0500) 
0.850 and 1.150 

Results—Lack of control of quality is 
indicated with respect to the desired level 
since lot numbers 2, 5, 8, and 12 are above 
the upper control limit and lot numbers 6, 
11, and 13 are below the lower control 
hmit. The overall level, 1.019 
nonconformities per unit, is slightly above 
the desired value of 1.000 nonconformities 
per unit. Corrective action is necessary to 
reduce the spread between successive lots 
and reduce the average number of 
nonconformities per unit. The values of 
npo for all lots are at least 100 so that the 
NOTE at end of Section 15 does not apply. 
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TABLE 44. Daily inspection results for T5rpe D motors in terms of 
nonconformities per sample and nonconformities per unit. 

LOT 

No. 1 
No. 2 
No. 3 
No. 4 
No. 5 

No. 6 
No. 7 
No. 8 
No. 9 

No. 10 

Total 
Average 

SAMPLE SIZE 
n 

25 
25 
25 
25 
25 

25 
25 
25 
25 
25 

250 
25.0 

NUMBER OF 
NONCONFORMITIES 

c 

81 
64 
53 
95 
50 

73 
91 
86 
99 
60 

752 
75.2 

NONCONFORMITIES 
PER UNIT 

u 

3.24 
2.56 
2.12 
3.80 
2.00 

2.92 
3.64 
3.44 
3.96 
2.40 

30.08 
3.008 

Example 21: Control Charts for c. Samples 
of Equal Size (Section 26) 

A Type D motor is being produced by a 
manufacturer that desires to control the 
number of nonconformities per motor at a 
level of Uo= 3.000 nonconformities per unit 
with respect to all visual nonconformities. 
The manufacturer produces on a 
continuous basis and decides to take a 
sample of 25 motors every day, where a 
day's product is treated as a lot. Because 
of the nature of the process, plans are to 
control the product for these 
nonconformities at a level such that CQ -
75.0 nonconformities and nu^ - CQ. Table 
44 gives data in terms of number of 
nonconformities, c, and also the number of 
nonconformities per unit, u, for 10 
consecutive days. Figure 26 shows the 
control chart for c. As in Example 20, a 
control chart may be made for u, where 
the central line is UQ = 3.000 and the 
control limits are 

Central Line 

c^ = nu„ =3.000x25 = 75.0 

Control Limits 

n = 25 

75.0±3V75.0 = 

75.0±3(8.66) 

49.02 and 100.98 

4 6 
Lot Number 

FIG. 26—Control chart for c. Sample of equal size, n 
= 25; Co given. 

3.000 
3.000 + 3 

25 

3.000 ±3(0.3464) 
1.96 and 4.04 

Results—No significant deviations from 
the desired level. There are no points 
outside limits so that the NOTE at the 
end of Section 16 does not apply. In 
addition, co = 75, larger than 4. 
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33. Il lustrative Examples-
Chart for Individuals 

-Control 

Examples 22 to 25, inclusive, illustrate the 
use of the control chart for individuals, in 
which individual observations are plotted 
one by one. The examples cover the two 
general conditions: (a) control, no 
standard given; and (b) control with 
respect to a given standard (see Sections 
28 to 30). 

Example 22: Control Chart for 
Individuals, X — Using Rational 
Subgroups, Samples of Equal Size, No 

Standard Given — Based on X and MR 
(Section 29) 

In the manufacture of manganese steel 
tank shoes, five 4-ton heats of metal were 
cast in each 8-h shift, the silicon content 
being controlled by ladle additions 
computed from preliminary analyses. 

High silicon content was known to aid in 
the production of sound castings, but the 
specification set a maximum of 1.00 
percent silicon for a heat, and all shoes 
from a heat exceeding this specification 
were rejected. It was important, therefore, 
to detect any trouble with silicon control 
before even one heat exceeded the 
specification. 

Since the heats of metal were well 
stirred, within-heat variation of silicon 
content was not a useful basis for control 
limits. However, each 8-h shift used the 
same materials, equipment etc., and the 
quality depended largely on the care and 
efficiency with which they operated so 
that the five heats produced in an 8-h shift 
provided a rational subgroup. 

Data analyzed in the course of an 
investigation and before standard values 
were established are shown in Table 45 

TABLE 45. Silicon content of heats of manganese steel, percent. 

Day 

Monday 

Tuesday 

Wednesday 

Thursday 

Friday 

Total 
Average 

Shift 

1 
2 
3 

1 
2 
3 

1 
2 
3 

1 
2 
3 

1 
2 
3 

15 

1 

0.70 
0.83 
0.86 

0.80 
0.64 
0.68 

0.80 
0.65 
0.64 

0.77 
0.72 
0.73 

0.79 
0.85 
0.67 

2 

0.72 
0.68 
0.78 

0.78 
0.66 
0.64 

0.63 
0.81 
0.70 

0.83 
0.67 
0.66 

0.70 
0.80 
0.78 

3 

0.61 
0.83 
0.71 

0.68 
0.79 
0.71 

0.69 
0.68 
0.66 

0.88 
0.77 
0.72 

0.63 
0.78 
0.81 

Heat 

4 

0.75 
0.71 
0.70 

0.70 
0.81 
0.69 

0.62 
0.84 
0.65 

0.70 
0.74 
0.73 

0.70 
0.85 
0.84 

5 

0.73 
0.73 
0.90 

0.74 
0.68 
0.81 

0.75 
0.66 
0.93 

0.64 
0.72 
0.71 

0.88 
0.62 
0.96 

Size, n 

5 
5 
5 

5 
5 
5 

5 
5 
5 

5 
5 
5 

5 
5 
5 

Sample 
Average, X 

0.702 
0.756 
0.790 

0.740 
0.716 
0.706 

0.698 
0.728 
0.716 

0.764 
0.724 
0.710 

0.740 
0.780 
0.812 

11.082 
0.7388 

Range, R 

0.14 
0.15 
0.20 

0.12 
0.17 
0.17 

0.18 
0.19 
0.29 

0.24 
0.10 
0.07 

0.25 
0.23 
0.29 

2.79 
0.186 
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0.90 

0.60 
Shift 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

Mon. Tues. Wed. Thurs. Fri. 

0) " -

°- <B 
c E 
c tr o o 

0.40 

0.20 : ̂ 'K^ ^ v / ^ 
Shift 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

IWon. Tues. Wed. Thurs. Fri. 

0.50 
Shift 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

Mon. Tues. Wed. Thurs. Fri. 

FIG. 27—Control charts for X, R, and X. Samples 
of equal size, n = 5; no standard given. 

and control charts for X, MR, and X are 

shown in Fig. 27. 

Central Lines 

For X: X = 0.7388 

Fori?: ^=0.186 

ForZ: X = 0.7388 

Control Limits 
re = 5 

For X:X±A^R = 
0.7388±(0.577)(0.186) 

0.631 and 0.846 

For a Z)4^ = (2.115X0.186)= 0.393 

D3^ = (0X0.186)=0 

ForZ: 'X±EJ^ = 

0.7388 ± (1.290) (0.186) 
0.499 and 0.979 

Results—None of the charts give evidence 
of lack of control. 

Example 23: Control Chart for 
Individuals, X—Using Rational 
Subgroups, Standard Given, Based on joo 
and Oo (Section 29) 

In the hand spraying of small instrument 
pins held in bar frames of 25 each, coating 
thickness and weight had to be delicately 
controlled and spray-gun adjustments 
were critical and had to be watched 
continuously from bar to bar. Weights 
were measured by careful weighing before 
and after removal of the coating. 
Destroying more than one pin per bar was 
economically not feasible, yet failure to 
catch a bar departing from standards 
might result in the unsatisfactory 
performance of some 24 assembled 
instruments. The standard lot size for 
these instrument pins was 100 so that 
initially control charts for average, and 
range were set up with n = A.lt was found 
that the variation in thickness of coating 
on the 25 pins on a single bar was quite 
small as compared with the between-bar 
variation. Accordingly, as an adjunct to 
the control charts for average and range, a 
control chart for individuals, X, at the 
sprayer position was adopted for the 
operator's guidance. 

Table 46 gives data comprising 
observations on 32 pins taken from 
consecutive bar frames together with 8 
average and range values where n = 4. It 
was desired to control the weight with an 
average ^o= 20.00 mg and Oo = 0.900 mg. 
Figure 28 shows the control chart for 
individual values X for coating weights of 
instrument pins together with the control 
charts for X and R for samples where n = 
4. 
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TABLE 46. Coating weights of instrument pins, milligrams. 

Sample, « = 4 Sample, n = 4 

Individual 

I 
2 
3 
4 

5 
6 
7 
8 

9 
10 
11 
12 

13 
14 
15 
16 

Individual 
Observation, X 

18.5 
21.2 
19.4 
16.5 

17.9 
19.0 
20.3 
21.2 

19.6 
19.8 
20.4 
20.5 

22.2 
21.5 
20.8 
20.3 

Sample 

Average, 

X 

Range, 

R Individual 

Individual 

Observation, X 
Sample 

Average, 

X 

Range, 

R 

18.90 

19.60 

20.08 

21.20 

4.7 

3.3 

0.9 

1.9 

17 
18 
19 
20 

21 
22 
23 
24 

25 
26 
27 
28 

29 
30 
31 
32 

19.1 
20.6 
20.8 
21.6 

22.8 
22.2 
23.2 
23.0 

19.0 
20.5 
20.3 
19.2 

20.7 
21.0 
20.5 
19.1 

20.52 

22.80 

19.75 

20.32 

2.5 

1.0 

1.5 

1.9 

Total 
Average 

652.7 
20.40 

163.17 
20.40 

17.7 
2.21 

E 25 

lU 
• I I 
o 

IK 

6 ? 

IS 

23 

20 

Kf»^y__ tc\ 
I 1 . I . I I I . . . H • 1 I I I • 1 • ! • . • I I 1 I 

4 a 12 16 » ) 24 26 32 
Individuol Numbtr 

» ^ ^ H M . 

^ ^ 1 " * * 

_ J 1,. 1 1... J -

j _ _ /j^ 

' 
5 6 

ii: 
0 

6 r 

3 4 5 6 7 
Sample Number 

FIG. 28—Control charts forX, X, and R. Small 
samples of equal size, n _ 4; (j, ag given. 

Central Line 
For X: / io = 20.00 

Control Limits 

ForZ:Ai„±3(7o = 

20.00 ± 3(0.900) 
17.3 and 22.7 

Central Lines 

For X:|Io= 20.00 

Fori?: d^<s^= (2.059) (0.900) = 1.85 

Control Limits 

71 = 4 

For X:Ho±AOo = 

20.00 ± (1.500)(0.900) 
18.65 and 21.35 

For R: D20o= (4.698) (0.900) = 4.23 

DiCJo= (0) (0.900) = 0 

Results—^All t h r e e c h a r t s show lack of 
control . At t h e ou tse t , bo th t h e c h a r t for 
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ranges and the chart for individuals gave 
indications of lack of control. 
Subsequently, for Sample 6 the control 
chart for individuals showed the first uni t 
in the sample of 4 to be outside its upper 
control limit, thus indicating lack of 
control before the entire sample was 
obtained. 

Example 24: Control Charts for 
Individuals, X, and Moving Range, MR, of 
Two Observations, No Standard Given— 
Based on X and MR the Mean Moving 
Range (Section 30A) 

A distilling plant was distilling and 
blending batch lots of denatured alcohol in 
a large tank. It was desired to control the 
percentage of methanol for this process. 
The variability of sampling within a single 
lot was found to be negligible so it was 
decided feasible to take only one 
observation per lot and to set control 
limits based on the moving range of 
successive lots. Table 47 gives a summary 
of the methanol content, X, of 26 
consecutive lots of the denatured alcohol 
and the 25 values of the moving range, 
MR, the range of successive lots with n -
2. Figure 29 gives control charts for 
individuals, X, and the moving range, MR. 

6.0 

5.0 

4.0 

« °= 1.0 

o 

0.5 

A V \ A A, 
.•v^^ v ^ 

; 

: 

5 

n 

10 

K i 

15 

/ 

hP 

20 

\K ? 

25 

S 

A .J\^^v v.v s 
10 15 
Lot Number 

20 25 

Fig. 29—Control charts for X and MR. No standard 
given; based on moving range, where n=2. 

Central Lines 
128.1 

For X : X = 
26 

= 4.927 

For R:R = — = 0.288 
25 

Control Limits 
« = 2 

For X: X± EJM = X ±2.mOMR 
4.927 ±(2.660X0.288) 

4.2 and 5.7 

For R:DjdR=i^.26l\Q.2U)=Q3A 

D 3 M = (0X0.288)=0 

TABLE 47. Methanol content of successive lots of denatured alcohol and moving range for n = 2. 

LOT 

No. 1 
No. 2 
No. 3 
No. 4 
No. 5 

No. 6 
No. 7 
No. 8 
No. 9 

No. 10 
No. 11 
No. 12 
No. 13 

PERCENTAGE OF 
METHANOL X 

4.6 
4.7 
4.3 
4.7 
4.7 

4.6 
4.8 
4.8 
5.2 

5.0 
5.2 
5.0 
5.6 

MOVING 
RANGE MR 

0.1 
0.4 
0.4 
0 

0.1 
0.2 
0 

0.4 

0.2 
0.2 
0.2 
0.6 

LOT 

No. 14 
No. 15 
No. 16 
No. 17 
No. 18 

No. 19 
No. 20 
No. 21 
No. 22 

No. 23 
No. 24 
No. 25 
No. 26 

Total 

PERCENTAGE OF 
METHANOLX 

5.5 
5.2 
4.6 
5.5 
5.6 

5.2 
4.9 
4.9 
5.3 

5.0 
4.3 
4.5 
4.4 

128.1 

MOVING 
RANGE MJR 

0.1 
0.3 
0.6 
0.9 
0.1 

0.4 
0.3 
0 

0.4 

0.3 
0.7 
0.2 
0.1 

7.2 
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Results—The trend pattern of the 
individuals and their tendency to crowd 
the control limits suggests that better 
control may be attainable. 

Example 25: Control Charts for 
Individuals, X, and Moving Range, MR, of 
Two Observations, Standard Given— 
Based on |io and OQ (Section SOB) 

The data are from the same source as for 
Example 24, in which a distilling plant 
was distilling and blending batch lots of 
denatured alcohol in a large tank. It was 
desired to control the percentage of water 
for this process. The variability of 
sampling within a single lot was found to 
be negligible so it was decided to take only 
one observation per lot and to set control 
limits for individual values, X, and for the 
moving range, MR, of successive lots with 
n = 2 where |a,o = 7.800 percent and OQ = 
0.200 percent. Table 48 gives a summary 
of the water content of 26 consecutive lots 
of the denatured alcohol and the 25 values 
of the moving range, R. Figure 30 gives 
control charts for individuals, X, and for 
the moving range, MR. 

9.0 

« 8.0 -

E 2 7.0 
_i_L I • • • I I • 

10 15 20 25 

10 15 
Lot Number 

Fig. 30—Control charts for X and moving range, 
MR, wliere n = 2. Standard given; based on |j.o and 

Oo-

Central Lines 
For X: Ho =7.800 

K = 2 

For R: d^o^ = (L128XO.200) = 0.23 

Control Limits 
ForZ:|io±30 = 
7.800 ±3(0.200) 

7.2 and 8.4 
K = 2 

For R. D2O0 = (3.686)(0.200) = 0.74 
DIOQ = (0)(0.200) = 0 

TABLE 48. Water content of successive lots of denatured alcohol and moving range for re = 2. 

Lot 

No. 1 
No. 2 
No. 3 
No. 4 
No. 5 
No. 6 
No. 7 
No. 8 
No. 9 

No. 10 
No. 11 
No. 12 
No. 13 

Percentage of 
Water, X 

8.9 
7.7 
8.2 
7.9 
8.0 
8.0 
7.7 
7.8 
7.9 
8.2 
7.5 
7.5 
7.9 

Moving 
Range, MR 

1.2 
0.5 
0.3 
0.1 
0 

0.3 
0.1 
0.1 
0.3 
0.7 
0 

0.4 

Lot 

No. 14 
No. 15 
No. 16 
No. 17 
No. 18 
No. 19 
No. 20 
No. 21 
No. 22 
No. 23 
No. 24 
No. 25 
No. 26 

Total 
Number of values 

Average 

Percentage of 
Water, X 

8.2 
8.2 
7.5 
7.5 
7.8 
8.5 
7.5 
8.0 
8.5 
8.4 
7.9 
8.4 
7.5 

207.1 
26 

7.965 

Moving 
Range, MR 

0.3 
0 

0.7 
0 

0.3 
0.7 
1.0 
0.5 
0.5 
0.1 
0.5 
0.5 
0.9 

10.0 
25 

0.400 
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Results—Lack of control at desired levels 
is indicated with respect to both the 
individual readings and the moving range. 
These results indicate corrective measures 
should be taken to reduce the level in 
percent and to reduce the variation 
between lots. 

SUPPLEMENT A 

Mathematical Relations and 
Tables of Factors for Computing 
Control Char t Lines 

Scope 

Supplement A presents mathematical 
relations used in arriving at the factors 
and formulas of PART 3. In addition, 
Supplement A presents approximations 
to C4, I/C4, -B3, -B4, -B5, and Be for use when 
needed. Finally, a more comprehensive 
tabulation of values of these factors is 
given in Tables 49 and 50, including 
reciprocal values of C4 and ^2, and values 
of da. 

Factors d, d^, and d^, (values for n = 2 to 
25, inclusive, in Table 49) 

The relations given for factors C4, ^2, and 
da are based on sampling from a universe 
having a Normal distribution (see Ref. 1, 
p. 184). 

n-2 

n-\ n-3 
(42) 

where the symbol {k/2)\ is called "k/2 
factorial" and satisfies the relations (-1/2)! 
= VTT, 0! = 1, and (t/2)! = (fc/2)[((A; - 2)/2)!] 
for A: = 1, 2, 3, ... . If A: is even, ^/2)! is 
simply the product of all integers from k/2 
down to 1; for example, if ^ = 8, (8/2)! = 4! 

= 4- 3 • 2 • 1 = 24. If A: is odd, ^/2) is the 
product of all half-integers from k/2 down 
to 1/2, multiplied by VTT; for example, ii k = 
7, so (7/2)! = (7/2) • (5/2) • (3/2) • (1/2) • 4^ 
= 11.6317. 

d^=f [-([-a^y-a;;]dx^ (43) 

where 

«! = , f e '•" '^^dx, and n = sample size. 
^/2K •'-'" 

d, = ̂ 2 £ [jl-o(-(\-o^T + (o^-c^r]dx„dx, -d 

(44) 
where 

a, = ,— I e dx 

1 f 
•s/lTt' 

'e-^^'''^dx 

n = sample size, and c?2 = average range 
for a Normal law distribution with 
standard deviation equal to unity. (In his 
original paper, Tippett [9] used w for the 
range and w for ^2.). 

The relations just mentioned for C4, dz, 
and da are exact when the original 
universe is Normal but this does not limit 
their use in practice. They may for most 
practical purposes be considered 
satisfactory for use in control chart work 
although the universe is not Normal. 
Since the relations are involved and thus 
difficult to compute, values of C4, o?2, and 
ds for n = 2 to 25, inclusive, are given in 
Table 49. All values listed in the table 
were computed to enough significant 
figures so that when rounded off in 
accordance with standard practices the 
last figure shown in the table was not in 
doubt. 
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Standard Deviations of X, s, R, p, np, u, 

and c 

The standard deviations of X, s, R, p, 
etc., used in setting 3-sigma control limits 
and designated a^, Og, CR, Op, etc., in 

PART 3, are the standard deviations of 

the sampling distributions of X, s, R, p, 
etc., for subgroups (samples) of size n. 
They are not the standard deviations 
which might be computed from the 
subgroup values of X, s, R, p, etc., plotted 
on the control charts but are computed by 
formula from the quantities listed in Table 
51. 

TABLE 49. Factors for computing control chart lines. 

OBSERVA­
TIONS 
IN 

SAMPLE, n 

2 
3 
4 
5 

6 
7 
8 
9 
10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

Over 25 

CHART FOE 
AVERAGES 

FACTORS FOR 
CONTROL LIMITS 

A 

2.121 
1.732 
1.500 
1.342 

1.225 
1.134 
1.061 
1.000 
0.949 

0.905 
0.866 
0.832 
0.802 
0.775 

0.750 
0.728 
0.707 
0.688 
0.671 

0.655 
0.640 
0.626 
0.612 
0.600 

3/V« 

A 

1.880 
1,023 
0.729 
0.577 

0.483 
0.419 
0.373 
0.337 
0.308 

0.285 
0.266 
0.249 
0.235 
0.223 

0.212 
0.203 
0.194 
0.187 
0.180 

0.173 
0.167 
0.162 
0.157 
0.153 

A, 

2.659 
1.954 
1.628 
1.427 

1.287 
1.182 
1.099 
1.032 
0.975 

0.927 
0.886 
0.850 
0.817 
0.789 

0.763 
0.739 
0.718 
0.698 
0.680 

0.663 
0.647 
0.633 
0.619 
0.606 

a 

CHART FOR STANDARD DEVIATIONS 

FACTORS FOR 
CENTRAL LINE 

C4 

0.7979 
0.8862 
0.9213 
0.9400 

0.9515 
0.9594 
0.9650 
0.9693 
0.9727 

0.9754 
0.9776 
0.9794 
0.9810 
0.9823 

0.9835 
0.9845 
0.9854 
0.9862 
0.9869 

0.9876 
0.9882 
0.9887 
0.9892 
0.9896 

b 

lie. 

1.2533 
1.1284 
1.0854 
1.0638 

1.0510 
1.0424 
1.0363 
1.0317 
1.0281 

1.0253 
1.0230 
1.0210 
1.0194 
1.0180 

1.0168 
1.0157 
1.0148 
1.0140 
1.0132 

1.0126 
1.0120 
1.0114 
1.0109 
1.0105 

C 

I 

B3 

0 
0 
0 
0 

0.030 
0.118 
0.185 
0.239 
0.284 

0.321 
0.354 
0.382 
0.406 
0.428 

0.448 
0.466 
0.482 
0.497 
0.510 

0.523 
0.534 
0.545 
0.555 
0.565 

d 

FACTORS FOR 
CONTROL LIMITS 

Bt 

3.267 
2.568 
2.266 
2.089 

1.970 
1.882 
1.815 
1.761 
1.716 

1.679 
1.646 
1.618 
1.594 
1.572 

1.552 
1.534 
1.518 
1.503 
1.490 

1.477 
1.466 
1.455 
1.445 
1.435 

e 

4 

0 
0 
0 
0 

0.029 
0.113 
0.179 
0.232 
0.276 

0.313 
0.346 
0.374 
0.399 
0.421 

0.440 
0.458 
0.475 
0.490 
0.504 

0.516 
0.528 
0.539 
0.549 
0.559 

f 

B, 

2.606 
2.276 
2.088 
1.964 

1.874 
1.806 
1.751 
1.707 
1.669 

1.637 
1.610 
1.585 
1.563 
1.544 

1.526 
1.511 
1.496 
1.483 
1.470 

1.459 
1.448 
1.438 
1.429 
1.420 

g 

FACTORS FOR 
CENTRAL LINE 

^2 

1.128 
1.693 
2.059 
2.326 

2.534 
2.704 
2.847 
2.970 
3.078 

3.173 
3.258 
3.336 
3.407 
3.472 

3.532 
3.588 
3.640 
3.689 
3.735 

3.778 
3.819 
3.858 
3.895 
3.931 

lick 

0.8862 
0.5908 
0.4857 
0.4299 

0,3946 
0.3698 
0.3512 
0.3367 
0.3249 

0.3152 
0.3069 
0.2998 
0.2935 
0.2880 

0.2831 
0.2787 
0.2747 
0.2711 
0.2677 

0.2647 
0.2618 
1.2592 
0.2567 
0.2544 

CHART FOR RANGES 

FACTORS FOR CONTROL LIMITS 

d, 

0.853 
0.888 
0.880 
0.864 

0.848 
0.833 
0.820 
0.808 
0.797 

0.787 
0.778 
0.770 
0.763 
0.756 

0.750 
0.744 
0.739 
0.733 
0.729 

0.724 
0.720 
0.716 
0.712 
0.708 

A 

0 
0 
0 
0 

0 
0.205 
0.388 
0.547 
0.686 

0.811 
0.923 
1.025 
1.118 
1.203 

1.282 
1.356 
1.424 
1.489 
1.549 

1.606 
1.660 
1.711 
1.759 
1.805 

D, 

3.686 
4.358 
4.698 
4.918 

5.079 
5.204 
5.307 
5.393 
5.469 

5.535 
5.594 
5.647 
5.696 
5.740 

5.782 
5.820 
5.856 
5.889 
5.921 

5.951 
5.979 
6.006 
6.032 
6.056 

A 

0 
0 
0 
0 

0 
0.076 
0.136 
0.184 
0.223 

0.256 
0.283 
0.307 
0.328 
0.347 

0.363 
0.378 
0.391 
0.404 
0.415 

0.425 
0.435 
0.443 
0.452 
0.459 

A 

3.267 
2.575 
2.282 
2.114 

2.004 
1.924 
1.864 
1.816 
1.777 

1.744 
1.717 
1.693 
1.672 
1.653 

1.637 
1.622 
1.609 
1.596 
1.585 

1.575 
1.565 
1.557 
1.548 
1.541 

NOTES—Values of all factors in this Table were recomputed in 1987 by A. T. A. Holden of the Rochester Institute of Technology. The 
computed values of d^ and dj as tabulated agree with appropriately rounded values from H. L. Harter, in Order Statistics and Their Use in Testing 
and Estimation, Vol. 1, 1969, p. 376. 

"s/Vw-o.s 

' '(4n-4)/(4«-3) 

"(4«-3)/(4«-4) 

' ' l -3/V2n-2.5 

' l+3/V2«-2.5 

^(4«-4)/(4«-3)-3/V2«-1.5 

^ (4« - 4)/(4n - 3)+3/-v/2n-1.5 

See Supplement B, NOTE 9, on replacing first term in Footnotes b, c, f, and g by unity 



TABLE 50. Factors for computing control limits— 
chart for individuals. 

OBSERVATIONS 
IN SAMPLE, n 

2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

Over 25 

CHART FOR INDIVIDUALS 

FACTORS FOR CONTROL 
LIMITS 

E, 

2.659 
1.772 
1.457 
1.290 

1.184 
1.109 
1.054 
1.010 
0.975 

0.946 
0.921 
0.899 
0.881 
0.864 

0.849 
0.836 
0.824 
0.813 
0.803 

0.794 
0.785 
0.778 
0.770 
0.763 

3/d^ 

E, 

3.760 
3.385 
3.256 
3.192 

3.153 
3.127 
3.109 
3.095 
3.084 

3.076 
3.069 
3.063 
3.058 
3.054 

3.050 
3.047 
3.044 
3.042 
3.040 

3.038 
3.036 
3.034 
3.033 
3.031 

3 
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TABLE 51. Basis of standard deviations for control limits. 

Control 

Chart 

X 

s 

R 

P 
np 

u 

c 

Standard Deviation Used in Computing 

3-Sigma Limits is Computed From 

Control—No 
Standard Given 

s ori? 

sorR 

s ori? 

P 
np 

u 

c 

Control--Standard Given 

Oo 

Oo 

Oo 

Po 

npo 

"o 
Co 

N O T E — X , R , etc., are computed averages of subgroup values; OQ Po. 

etc., are standard values. 
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The standard deviations o_ and Og 

computed in this way are unaffected by 
any assignable causes of variation 
between subgroups. Consequently, the 
control charts derived from them will 
detect assignable causes of this type. 

The expression under the square root 
sign in (47) can be rewritten as the 
reciprocal of a sum of three terms obtained 
by applying Stirling's formula (see Eq 
(12.5.3) of [10]) simultaneously to each 
factorial expression in (47). The result is 

The relations in Eqs. 45 to 55, 
inclusive, which follow, are all of the form 
standard deviation of the sampling 
distribution is equal to a function of both 
the sample size, n, and a universe value o, 
p', u', or cf. 

In practice a sample estimate or 
standard value is substituted for o, p', u' 
or c'. The quantities to be substituted for 
the cases "no standard given" and 
"standard given" are shown below 
immediately after each relation. 

o, = 

Average, X 

(45) 

where a is the standard deviation of the 
universe. For no standard given, 
substitute 5/C4 or ^ / j ^ for o, or for 

standard given, substitute OQ for o. 
Equation 45 does not assume a Normal 
distribution (see Ref 1, pp. 180 and 181). 

Standard Deviation, s 

<7. = c r ^ 2 
•C4 (46) 

^}2n~l.5 + P„ 
(48) 

where Pn is a relatively small positive 
quantity which decreases toward zero as n 
increases. For no standard given, 
substitute j / c ^ or R/d^ for o; for standard 
given, substitute Oo for o. For control 
chart purposes, these relations may be 
used for distributions other than normal. 

The exact relation of Eq 46 or Eq 47 is 
used in PART 3 for control chart analyses 
involving Os and for the determination of 
factors B3 and B4 of Table 6, and of B5 and 
Be of Table 16. 

Range, R 

OR = d^O (49) 

where o is the standard deviation of the 
universe. For no standard given, 
substitute jjc^ or R/d^ for o; for standard 
given, substitute Oofor a. 

The factor da given in Eq 44 
represents the standard deviation for 
ranges in terms of the true standard 
deviation of a Normal distribution. 

or by substituting the expression for C4 
from Equation (42) and noting {{n -
l) /2)x((n-3)/2)! = ( (n - l)/2)!. 

n-l ^"-M.f^i. 
\ 

.(47) 

Fraction Nonconforming, p 

^P 
/ ( I - / ) (50) 

where p ' is the value of the fraction 
nonconforming for the universe. For no 
standard given, substitute p for p' in (50); 
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for standard given, substitute po for p'. 
When p' is so small that the factor (1 - p') 
may be neglected, the following 
approximation is used 

^ . = (51) 

Number of Nonconforming Units, np 

^„, = > / ( ! - / ) (52) 

where p' is the value of the fraction 
nonconforming for the universe. For no 
standard given, substitute p for p'; and 

for standard given, substitute p for p'. 
When p' is so small that the term (1 - p') 
may be neglected, the following 
approximation is used 

(53) 

The quantity np has been widely used 
to represent the number of nonconforming 
units for one or more characteristics. 

The number of nonconformities found 
on any one unit may be considered to 
result from an unknown but large 
(practically infinite) number of causes 
where a nonconformity could possibly 
occur combined with an unknown but very 
small probability of occurrence due to any 
one point. This leads to the use of the 
Poisson distribution for which the 
standard deviation is the square root of 
the expected number of nonconformities 
on a single unit. This distribution is 
likewise applicable to sums of such 
numbers, such as the observed values of c, 
and to averages of such numbers, such as 
observed values of u, the standard 
deviation of the averages being 1/n times 
that of the sums. Where the number of 
nonconformities found on any one unit 
results from a known number of potential 
causes (relatively a small number as 
compared with the case described above), 
and the distribution of the 
nonconformities per unit is more exactly a 
multinomial distribution, the Poisson 
distribution, although an approximation, 
may be used for control chart work in 
most instances. 

The quantity np has a binomial 
distribution. Equations 50 and 52 are 
based on the binomial distribution in 
which the theoretical frequencies for np -
0, 1, 2, . . ., ?i are given by the first, second, 
third, etc. terms of the expansion of the 
binomial [(1 - p')\n where p' is the 
universe value. 

Nonconformities per Unit, u 

<T„ = (54) 

where n is the number of units in sample, 
and u ' is the value of nonconformities per 
unit for the universe. For no standard 
given, substitute ufor u'; for standard 
given, substitute UQ for u'. 

Number of Nonconformities , c 

Oc = V«i/ = 4c' (55) 

where n is the number of units in sample, 
u ' i s the value of nonconformities per unit 
for the universe, and c' is the number of 
nonconformities in samples of size n for 
the universe. For no standard given, 
substitute c=nu for c'; for standard 
given, substitute c'o — nu'o for c'. The 
distribution of the observed values of c is 
discussed above. 

F a c t o r s for C o m p u t i n g C o n t r o l 
L i m i t s 

Note that all these factors are actually 
functions of n only, the constant 3 
resulting from the choice of 3-sigma limits. 
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Averages Individuals 

A = 

A,= 

•Jn 

c^4n 

dj'Jn 

N O T E — 4 = ^ / c , , A^=A/d^ 

(56) 

(57) 

(58) 

Es=-

d. 

(67) 

(68) 

A p p r o x i m a t i o n s t o C o n t r o l C h a r t 
F a c t o r s for S t a n d a r d D e v i a t i o n s 

At times it may be appropriate to use 
approximations to one or more of the 
control chart factors c^, l/c^, B^, B^, 55,and 

B^ (see Supplement B, Note 8). 

Standard deviations 

B^^c.-Syjl^, 

B,=c,+3^ll^, 

B,=\-—^< 

54=1 + — V l ^ 

NOTE-B,=Bjc,,B,=Bjc,. 

Ranges 

£)] = (̂ 2 ~ 3 J3 

Dj-dj- M} 

A = 1 - 3 ^ 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 

The theory leading to Eqs 47 and 48 
also leads to the relation 

2«-2.5 - ^ [ l + (o.046875 + e^)/n ' ] (69) 
2n-\.5 

where Q„ is a small positive quantity 
which decreases towards zero as n 
increases. Eq 69 leads to the 
approximation 

C 4 -
2n-2.5 4n-5 

2«-1.5 H H - 3 
(70) 

which is accurate to 3 decimal places for n 
of 7 or more, and to 4 decimal places for n 
of 13 or more. The corresponding 
approximation for I/C4 is 

l/c,= 2«-1.5 4 n - 3 
2«-2.5 \4n-5 

(71) 

A = 1 + 3 - ^ 

NOTE—£>3 = Di/di, D, = Djdi 

which is accurate to 3 decimal places for n 
(66) of 8 or more, and to 4 decimal places for n 

of 14 or more. In many applications, it is 
sufficient to use the slightly simpler and 
slightly less accurate approximation 

c^=(4n-4)/(4n-3), (72) 

which is accurate to within one unit in the 
third decimal place for /i of 5 or more, and 
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to within one unit in the fourth decimal 
place for n of 16 or more (See Ref 2, p. 34). 
The corresponding approximation to I/C4 is 

l/c, = (4n-3)/(4«-4), (73) 

which has accuracy comparable to that of 
Eq72. 

NOTE 

The approximations to C4 in Eqs 70 
and 72 have the exact relation where 

V4«-5 _ 4« - 4 

V4«-3 4 « - 3 ^ ' (4«-4) 

The square root factor is greater than 
.998 for ?i of 5 or more. For ri of 4 or 
more an even closer approximation to 
C4 than those of Eq 70 and 72 is (4n-
45)/(4n-35) While the increase in 
accuracy over Eq 70 is immaterial, 
this approximation does not require a 
square-root operation. 

From Eqs 70 and 71 

7r^=W2n-li 

and 

I J ^ ^1/42^^25 

(74) 

(75) 

If the approximations of Eqs 72, 74 and 75 
are substituted into Eqs 59, 60, 61 and 62, 
the following approximations to the B-
factors are obtained: 

4 « - 4 3 

4n-3 -Jln-l.S 

„ 4 n - 4 3 
4n-3 -Jln-l.S 

(76) 

(77) 

5 3 = 1 - - = = ^ = 
A / 2 « - 1 . 5 

B, = \ + 
•Jln-l.S 

(78) 

(79) 

With a few exceptions the approximations 
in Eqs 76, 77, 78 and 79 are accurate to 3 
decimal places for n of 13 or more. The 
exceptions are all one unit off in the third 
decimal place. That degree of inaccuracy 
does not limit the practical usefulness of 
these approximations when n is 25 or 
more. (See Supplement B, Note 8.) For 
other approximations to B^, and BQ, see 
Supplement B, Note 9. 

Tables 6, 16, 49, and 50 of PART 3 
give all control chart factors through n -
25. The factors C4, I/C4, £5, Be, B3, and B^ 
may be calculated for larger values of n 
accurately to the same number of decimal 
digits as the tabled values by using Eqs 
70, 71, 76, 77, 78 and 79 respectively. If 
three-digit accuracy suffices for C4 or I/C4, 
Eqs 72 or 73 may be used for values of n 
larger than 25. 

Supplement B 

Explanatory Notes 

Note 1 

As explained in detail in Supplement A 
a J and Cs are based (1) on variation of 

individual values within subgroups and 
the size TI of a subgroup for the first use 
(A) Control—No Standard Given, and (2) 
on the adopted standard value of <7 and 
the size TI of a subgroup for the second use 
(B) Control with Respect to a Given 
Standard. Likewise, for the first use, Op is 
based on the average value of p, 
designated p, and n, and for the second 

use from po ai^d n. The method for 
determining c^ is outlined in Supplement 
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A. For purpose (A) the a s must be 
estimated from the data. 

Note 2 

This is discussed fully by Shewhart [1]. In 
some situations in industry in which it is 
important to catch trouble even if it 
entails a considerable amount of otherwise 
unnecessary investigation, 2-sigma limits 
have been found useful. The necessary 
changes in the factors for control chart 
limits will be apparent from their 
derivation in the text and in Supplement 
A. Alternatively, in process quality control 
work, probability control limits based on 
percentage points are sometimes used 
(See Ref. 2, pp. 15-16). 

Notes 

From the viewpoint of the theory of 
estimation, if normality is assumed, an 
unbiased and efficient estimate of the 
standard deviation within subgroups is 

1 l(n,-l)sf+--- + in,-iy (80) 
•+ n,-k 

where C4 is to be found from Table 6, 
corresponding to n, = ?Xi + . . . + Uk-k + \. 
Actually, C4 will lie between .99 and unity 
if '^l + . . . + Mft - A; + I is as large as 26 or 
more as it usually is, whether Ui, n^, etc. 
be large, small, equal, or unequal. 

Equations 4, 6, and 9, and the 
procedure of Sections 8 and 9, "Control— 
No Standard Given," have been adopted 
for use in PART 3 with practical 
considerations in mind, Eq 6 representing 
a departure from that previously given. 
From the viewpoint of the theory of 
estimation they are unbiased or nearly so 
when used with the appropriate factors as 
described in the text and for Normal 
distributions are nearly as efficient as 
Equation 80. 

It should be pointed out that the 
problem of choosing a control chart 
criterion for use in "Control—No Standard 
Given" is not essentially a problem in 
estimation. The criterion is by nature 
more a test of consistency of the data 
themselves and must be based on the data 
at hand including some which may have 
been influenced by the assignable causes 
which it is desired to detect. The final 
justification of a control chart criterion is 
its proven ability to detect assignable 
causes economically under practical 
conditions. 

When control has been achieved and 
standard values are to be based on the 
observed data, the problem is more a 
problem in estimation, although in 
practice many of the assumptions made in 
estimation theory are imperfectly met and 
practical considerations, sampling trials, 
and experience are deciding factors. 

In both cases, data are usually 
plentiful and efficiency of estimation a 
minor consideration. 

Note 4 

If most of the samples are of 
approximately equal size^, effort may be 
saved by first computing and plotting 
approximate control limits based on some 

^ According to Ref. 13, p. 18, "If the samples to 
be used for a p-chart are not of the same size, 
then it is sometimes permissible to use the 
average sample size for the series in calculating 
the control limits." As a rule of thumb, the 
authors propose that this approach works well as 
long as, "the largest sample size is no larger than 
twice the average sample size, and the smallest 
sample size is no less than half the average 
sample size." Any samples, whose sample sizes 
are outside this range, should either be separated 
(if too big) or combined (if too small) in order to 
make them of comparable size. Otherwise, the 
only other option is to compute control limits 
based on the actual sample size for each of these 
affected samples. 
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typical sample size, such as the most 
frequent sample size, standard sample 
size, or the average sample size. Then, for 
any point questionably near the limits, the 
correct limits based on the actual sample 
size for the point should be computed and 
also plotted, if the point would otherwise 
be shown in incorrect relation to the 
limits. 

Notes 

Here it is of interest to note the nature of 
the statistical distributions involved, as 
follows. 

(a) With respect to a characteristic for 
which it is possible for only one 
nonconformity to occur on a unit, and, in 
general, when the result of examining a 
unit is to classify it as nonconforming or 
conforming by any criterion, the 
underlying distribution function may often 
usefully be assumed to be the binomial, 
where p is the fraction nonconforming and 
n is the number of units in the sample (for 
example, see Equation 14 in PART 3). 

{b) With respect to a characteristic for 
which it is possible for two, three, or some 
other limited number of defects to occur on 
a unit, such as poor soldered connections 
on a unit of wired equipment, where we 
are primarily concerned with the 
classification of soldered connections, 
rather than units, into nonconforming and 
conforming, the underlying distribution 
may often usefully be assumed to be the 
binomial, where p is the ratio of the 
observed to the possible number of 
occurrences of defects in the sample and n 
is the possible number of occurrences of 
defects in the sample instead of the 
sample size (for example, see Equation 14 
in this part, with n defined as number of 
possible occurrences per sample). 

(c) With respect to a characteristic for 
which it is possible for a large but 
indeterminate number of nonconformities 
to occur on a unit, such as finish defects 

on a painted surface, the underlying 
distribution may often usefully be 
assumed to be the Poisson distribution. 
(The proportion of nonconformities 
expected in the sample, p, is 
indeterminate and usually small; and the 
possible number of occurrences of 
nonconformities in the sample, n, is also 
indeterminate and usually large; but the 
product np is finite. For the sample this 
np value is c.) (For example, see Equation 
22 in PART 3.) 

For characteristics of types (a) and (6) 
the fraction p is almost invariably small, 
say less than 0.10, and under these 
circumstances the Poisson distribution 
may be used as a satisfactory 
approximation to the binomial. Hence, in 
general, for all these three types of 
characteristics, taken individually or 
collectively, we may use relations based on 
the Poisson distribution. The relations 
given for control limits for number of 
nonconformities (Sections 16 and 26) have 
accordingly been based directly on the 
Poisson distribution, and the relations for 
control limits for nonconformities per unit 
(Sections 15 and 25), have been based 
indirectly thereon. 

Note 6 

In the control of a process, it is common 
practice to extend the central line and 
control limits on a control chart to cover a 
future period of operations. This practice 
constitutes control with respect to a 
standard set by previous operating 
experience and is a simple way to apply 
this principle when no change in sample 
size or sizes is contemplated. 

When it is not convenient to specify 
the sample size or sizes in advance, 
standard values of \i, a, etc. may be 
derived from past control chart data using 
the relations 
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;U„ = X = X (if individual chart) np„ = np 

R s MR . . . . . . _^. 
a„= — or — = (it md. chart) u^ =u 

d^ c^ c?2 
p„=p c,=c 

where the values on the right-hand side of 
the relations are derived from past data. 
In this process a certain amount of 
arbitrary judgment may be used in 
omitting data from subgroups found or 
believed to be out of control. 

Note 7 

It may be of interest to note that, for a 
given set of data, the mean moving range 
as defined here is the average of the two 
values of R which would be obtained 
using ordinary ranges of subgroups of two, 
starting in one case with the first 
observation and in the other with the 
second observation. 

The mean moving range is capable of 
much wider definition [11] but that given 
here has been the one used most in 
process quality control. 

When a control chart for averages and 
a control chart for ranges are used 
together, the chart for ranges gives 
information which is not contained in the 
chart for averages and the combination is 
very effective in process control. The 
combination of a control chart for 
individuals and a control chart for moving 
ranges does not possess this dual 
property; all the information in the chart 
for moving ranges is contained, somewhat 
less explicitly, in the chart for individuals. 

Notes 

The tabled values of control chart factors 
in this Manual were computed as 
accurately as needed to avoid contributing 
materially to rounding error in calculating 
control limits. But these limits also 
depend: (1) on the factor 3—or perhaps 

2—based on an empirical and economic 
judgment, and (2) on data that may be 
appreciably affected by measurement 
error. In addition, the assumed theory on 
which these factors are based cannot be 
applied with unerring precision. 
Somewhat cruder approximations to the 
exact theoretical values are quite useful in 
many practical situations. The form of 
approximation, however, must be simple 
to use and reasonably consistent with the 
theory. The approximations in PART 3, 
including Supplement A, were chosen to 
satisfy these criteria with little loss of 
numerical accuracy. 

Approximate formulas for the values 
of control chart factors are most often 
useful under one or both of the following 
conditions: (1) when the subgroup sample 
size n exceeds the largest sample size for 
which the factor is tabled in this Manual; 
or (2) when exact calculation by computer 
program or by calculator is considered too 
difficult. 

Under one or both of these conditions 
the usefulness of approximate formulas 
may be affected by one or more of the 
following: (a) there is unlikely to be an 
economically justifiable reason to compute 
control chart factors to more decimal 
places than given in the tables of this 
Manual; it may be equally satisfactory in 
most practical cases to use an 
approximation having a decimal-place 
accuracy not much less than that of the 
tables, for instance, one having a known 
maximum error in the same final decimal 
place; (b) the use of factors involving the 
sample range in samples larger than 25 is 
inadvisable; (c) a computer (with 
appropriate software) or even some models 
of pocket calculator may be able to 
compute from an exact formula by 
subroutines so fast that little or nothing is 
gained either by approximating the exact 
formula or by storing a table in memory; 
(d) because some approximations suitable 
for large sample sizes are unsuitable for 
small ones, computer programs using 
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approximations for control chart factors 
may require conditional branching based 
on sample size. 

Note 9 

The value of c^ rises towards unity as n 
increases. It is then reasonable to replace 
C4 by unity if control limit calculations can 
thereby be significantly simplified with 
little loss of numerical accuracy. For 
instance, Equations (4) and (6) for samples 
of 25 or more ignore C4 factors in the 
calculation of J. The maximum absolute 
percentage error in width of the control 
limits on X or s is not more than 100 (1 -
C4) %, where C4 applies to the smallest 
sample size used to calculate J. 

Previous versions of this Manual gave 
approximations to B5 and Be which 
substituted unity for C4 and used 
2{n -1) instead of 2« -1.5 in the expression 

under the square root sign of Eq 74. These 
approximations were judged appropriate 
compromises between accuracy and 
simplicity. In recent years three changes 
have occurred: (a) simple, accurate and 
inexpensive calculators have become 
widely available; (b) closer but still quite 
simple approximations to B5 and B^ have 
been devised; and (c) some applications of 
assigned standards stress the desirability 
of having numerically accurate limits. (See 
Examples 12 and 13). 

There thus appears to be no longer 
any practical simplification to be gained 
from using the previously published 
approximations for £5 and BQ. The 
substitution of unity for C4 shifts the value 
for the central line upwards by 
approximately (25/fi)%; the substitution of 
2{n - 1) for 2n - 1.5 increases the width 
between control limits by approximately 
{12ln)%. Whether either substitution is 
material depends on the application. 
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a, defined, 42 
A, defined, 76, 116 
American Society for Testing and Materials, 

purposes and objectives of, 1 
Approximations to control chart factors, 116-117, 120 
Arithmetic mean. See [i (population average or universe 

mean); X (sample arithmetic mean) 
Assignable causes 

defined, 56, 59 
determining if present, 60-61 
eliminating, 60 

Attributes data 
control charts (standard given), 74-80 

examples, 95-105 
control charts (standard not given), 64-74 

examples, 82-94 
Average. See [i (population average or universe mean); 

X (sample arithmetic mean) 
Average deviation, defined, 25 
Average quality, essential information for, 39 

B 

Bs, defined, 116, 117 
B^, defined, 116, 117 
Ss, defined, 76, 77, 116, 117, 121 
Be, defined, 76, 77, 116, 117, 121 
Bimodal frequency distributions, 24, 34 
Breaking strength, presentation of data for, 9—15, 42, 
47-48, 50-51 

c (number of nonconformities) 
control chart (standard given), 79-80 

example, 105 
control chart (standard not given), 73, 74 

examples, 91-94 
defined, 56 

standard deviation ( a ^ ) of, 115 
C4, 57, 75-77, 111, 112, 114, 116-117 
Causes of variation in quality 

detecting lack of constancy of, 59 
See also assignable causes; chance causes 

Cells 
boundary selection for, 14, 15, 17 
classifying observations into, 14, 17 
defined, 14 
frequency for, defined, 14 
graphic representation of, 18-19 
number of, 14 
relative frequency for, defined, 14 
tabular presentation of, 17-18 

Central lines 
formulas for 

standard given, 75-80 
standard not given, 64-74 

mathematical relations and tables of factors for 
computing, 111-118 

Central tendency 
measures of, 23-24 
See also specific measures of central tendency 

Chance causes, 59 
Chebyshev's inequality, 28-29 
Classifying observations, into cells, 14, 17 
Coefficient of kurtosis. See g^ (sample coefficient of 

kurtosis); zi (population coefficient of kurtosis) 
Coefficient of skewness. See g^ (sample coefficient of 

skewness); t i (population coefficient of skewness) 
Coefficient of variation. See cv (sample coefficient of 

variation); C F (population coefficient of variation) 
Computers, and presentation of data and control chart 

analysis, 3 
Condensing data, 7-41 

Confidence limits. See limits of uncertainty (for X) 
Constancy of cause system, lack of, detecting, 59 
Control chart method, 56-124 

control chart lines 
formulas for (standard given), 75-80 
formulas for (standard not given), 64-74 
mathematical relations and tables of factors for 

computing, 111-118 
control limits, 64-80 
criteria of control, 61-64, 118 
essential features of a control chart, 60 
general technique for using, 59-60 
importance of, 3 
for individuals, 80-81 

purpose of, 80-81 
using moving ranges, 81, 117-118 

example (standard given), 110-111 
example (standard not given), 109-110 

using rational subgroups, 60, 81 
example (standard given), 107-109 
example (standard not given), 106-107 

literature on, 122-124 
purpose of, 57-59 
and rational subgroups, 59 
standard given, 74-80 

for attributes data, 76-80 
examples, 100, 106, 107 

for c (number of nonconformities), 79-80 
example (equal size samples), 106, 107 

forp (fraction nonconforming), 77, 78, 80 
example (unequal size samples), 94-98 

forp (fraction rejected), example (unequal size 
samples), 93-95 

for np (number of nonconforming units), 78-80 
example (equal size samples), 94-97 

Copyright 2002 by ASTM International www.astm.org 



128 
INDEX 

purpose of, 59, 75, 76 
summary charts of formulas, 78, 80 
for u (nonconformities per unit), 78, 80 

example (unequal size samples), 105, 106 

for X and R, 77, 78 
example (small samples of equal size), 94, 

97 
for X and s 

example (large samples of equal size), 93, 
94,95 

example (large samples of unequal size), 94, 
95,96 

example (small samples of equal size), 93, 
96,97 

example (small samples of unequal size), 97 
standard not given, 64-74 

for attributes data, 66-74 
examples, 82-94 

for c (number of nonconformities), 73, 74 
example (equal size samples), 91-94 

for np (number of nonconforming units), 66-72, 
74 
example (equal size samples), 82, 83 

ior p (fraction nonconforming), 64-66, 74 
example (equal size samples), 88-90 
example (unequal size samples), 90 

purpose of, 59, 61 
summary charts of formulas, 64, 74 
for u (nonconformities per unit), 71-73 

example (equal size samples), 91-92 
example (unequal size samples), 92-94 

for X and R (small samples), 63-65 
example (equal size samples), 80-82 
example (unequal size samples), 81-82 

for X and s (large samples), 64-65, 67 
example (equal size samples), 82-83 
example (unequal size samples), 83-85 

for X and s (small samples), 65, 67 
example (equal size samples), 83, 84 
example (unequal size samples), 85 

terminology and technical background, 56-59 
Controlled conditions 

data not obtained under, 5, 39 
evidence for, 40 
and statistical control, 40 
and X and s, 29-30, 38, 39 

Costly testing, and control chart method, 80 
Cumulative frequency distributions, 14-15 

graphic representation of, 19, 20 
cv (sample coefficient of variation) 

amount of information contained in, 33-34 
defined, 5-6, 24-25 
standard deviation (s) vs., 33-34 

CF(population coefficient of variation), 6 

D 

D,, defined, 77, 112, 116 
d^ defined, 57,77, 111, 112 
D^ defined, 77, 112, 116 
da, defined. 111, 112 
Ds, defined, 112, 116 
Dt, defined, 112, 116 
Data 

breaking up into rational subgroups, 60 
condensing, 7-41 
homogeneous, 8, 29 
interpretation of, factors affecting, 39-40 
objects of gathering, 1 
physical, examples of, 7, 8-9 
raw, table of, 8-9 
type considered in manual, 6 
See also information; observations; presentation 

of data 
Defectives, nonconformities distinguished from, 68 
Definitions 

for Part 1 of manual, 5-6 
for Part 2 of manual, 42 
for Part 3 of manual, 56-58 
summary of changes in, 3 

Density, defined, 27 
Destructive sampling/testing, and control chart method, 

78 
Dispersion 

and essential information, 40 
measures of, 24-25 
See also specific measures of dispersion 

Distributions. See frequency distributions 

E 

E^ defined, 116 
E^ defined, 116 
E[f(X)], defined, 6 
Engineering data. See data 
Errors of measurement 

essential information for, 39 
and frequency distributions, 7 
type of data gathered for, 6-7 
See also sampling errors 

Essential information, 39-42 
defined, 39, 42 
functions of data containing, 39-40 
loss of, 40 
presentation of, 40 
and relationship between two variables, 40-42 

expected value of a function, defined, 6 

/(observed frequency), defined, 5 
Factors for computing control chart lines 

approximations to, 116-117, 120 
tables of, 113-115, 117 

Fraction nonconforming, See p (sample fraction 
nonconforming); p' (population fraction 
nonconforming) 

Fraction rejected. Seep (sample fraction rejected) 
Frequency 

cell, defined, 15 
observed, defined, 5 
See alsop '(population relative frequency); p 

(sample relative frequency or proportion) 
Frequency distributions 

amount of information contained in, 26-35 
bimodal, 23, 34 
characteristics of, 22 
and errors of measurement, 7 
estimating observed percentages of, 34 
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functions of, 22-25 
graphic representation of, 14, 16-17 

examples of, 14, 15, 17 
objective, example of, 38 
observed 

defined, 37 
example of, 38 

overview of, 6-7, 22 
tabular, 14-17 
unimodal, 22, 34 
See also grouped frequency distributions; 

ungrouped frequency distributions 
Functions, expected value of, defined, 6 

G 

gi (sample coefficient of skewness) 
amount of information contained in, 30-31, 33-35, 

37 
computation of, 28-29 
defined, 5, 25-26 
and essential information, 37 

§2 (sample coefficient of kurtosis) 
amount of information contained in, 30-31, 33-35, 

37 
computation of, 28-29 
defined, 5, 26 
and essential information, 37 

%i (population coefficient of skewness), defined, 6 
Xj (population coefficient of kurtosis), defined, 6 
Geometric mean, defined, 24 

"Go no-go" basis, a n d p (fraction nonconforming), 68 
Graphic representation 

of frequency distributions, 16, 20-21 
examples of, 17, 19, 21, 22 

Grouped frequency distributions, 13-21 
and cells 

boundary selection for, 15 
defined, 14 
number of, 15-16 

and classifying observations, 16 
cumulative frequency distributions, 16-17, 21, 22 
defined, 14 
graphic representation of, 16, 19, 20-21, 22 
and large numbers of observations, 16, 22 
and small numbers of observations, 16 
"stem and l ea f diagrams, 21-22 
tabular presentation of, 17-20 

H 

Homogeneous data, 8, 29 
Homogeneous materials, and control chart method, 78, 

79 
Hypotheses, and interpretation of data, 39 

Individuals, control charts for. See control chart method, 
for individuals 

Information 
prior, and interpretation of data, 39 
relevant, presentation of, 39-40 
total 

defined, 29-30 
functions for representing, 30-37 

See also data; essential information; observations 
Interpretation of data, factors affecting, 40-41 

K 

k, defined 
for Part 2 of manual, 42 
for Par t 3 of manual, 57 

/ti, 31-32 
ku, 31-32 
Kurtosis 

defined, 22 
illustrated, 25-26 
See also g^ (sample coefficient of kurtosis); Xj 

(population coefficient of kurtosis) 

Lack of constancy, of cause system, detecting, 59 
Large samples 

and computing X s, gi and gs, 28 

control charts for X and s (standard given), 77 
examples, 93, 94, 95 

control charts for X and s (standard not given), 
64-65, 67 
examples, 82-85 

and essential information, 39 
and grouped frequency distributions, 5, 14, 20 
recommendations for presentation of, 5 

Leptokurtic frequency distribution, 23, 26 
Limits, percentages of observations outside specified. See 

p (sample fraction nonconforming) 
Limits of uncertainty (for X), 42-43 

cautions about using, 47-48 
computation of, 42-45, 46-47 
one-sided, 48 
presentation of data for, 45-49 

forp ' (population fraction nonconforming), 53, 
54 

for o (population standard deviation), 51-53 
problem defined, 42-43 
theoretical background for, 43 

Lots, defined, 56 

M 

Manual 
history of development of, 1-2 
purpose of, 1 

Mean (arithmetic). See (J, (population average or universe 

mean); X (sample arithmetic mean) 
Mean (geometric), defined, 23 
Median, defined, 24 
Mesokurtic frequency distribution, 23, 26 
Minus or plus limits of uncertainty. See limits of 

uncertainty (for X) 
Mode, defined, 24 
Moving ranges 

and control charts for individuals, 81-82 
examples, 110-111 

H (population average or universe mean) 
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defined, 3, 6, 42, 58 

and limits of uncertainty (for X ) , 42-44 
standard value of, 58, 60, 79 

N 

n (number of observed values) 
defined, 5, 42, 57 
and essential information, 39-40, 41 
and range (R), 40 

Nonconformities 
defectives distinguished from, 66 
statistical distributions involving, 119 
See also c (number of nonconformities); p 

(sample fraction nonconforming); np 
(number of nonconforming units); u 
(nonconformities per unit); p' (population 

fraction nonconforming) 
Normal law, and "controlled conditions," 29 
Normal population, and expected value of range (K), 39-

40 
Normal variables, deviation of (k), 42 
Notation. See symbols 
np (number of nonconforming units) 

control chart (standard given), 78-80 
example, 94-97 

control chart (standard not given), 66-72, 74 
example, 82-84 

defined, 58, 66 
standard deviation (a„p) of, 115 

Number of observed values. See n (number of observed 
values) 

O 

o (value of standard deviation), defined, 42 
Objective frequency distributions. See frequency 

distributions 
Observations 

amount of information contained in, 30-31 
function for representing, 30-37 

classifying into cells, 14, 17 
number of {n) 

defined, 5, 42, 57 
and essential information, 39-40, 41 
and range (E), 40 

order of, 58 
and range (i?), 40 
of relationships between two variables, 40-42 
symbol for observed values {X), 6, 42, 58 
See also data; information; large samples; small 

samples 

Observed average. See X (sample arithmetic mean) 
Observed frequency, defined, 5 
Observed frequency distributions. See frequency 

distributions 

One-sided limits of uncertainty (X ), 48 
"Ordered stem and leaf diagram, 21 
Order of observations, 58 

examples, 82-83 
defined, 5, 27, 42, 58, 66 
essential information for, 39, 40 
standard deviation (â ) of, 58, 115, 116 
standard value of, 58, 60, 79 

p (sample fraction rejected), control charts (standard 
given), example, 93-95 

p (sample relative frequency or proportion) 
amount of information contained in, 27 
defined, 5, 27, 58 
graphic representation of, 17, 27 

P (probability), defined, 42 
p' (population fraction nonconforming) 

defined, 42, 58 
presenting limits of uncertainty for, 53-55 
standard value of, 58, 60, 79 

p ' (population relative frequency) 
defined, 6 
standard value of, 58 

Peaks 
multiple, 23, 38 
single, 27, 38 

Pearson curves, 29, 30, 31, 32 
Pearson, Karl, 25, 29 
Percentages of observations 
Percentages of observations outside specified limits. See 

p (sample fraction nonconforming) 
Physical data, examples of, 7, 8-9 
Platykurtic frequency distribution, 23, 26 
Plus or minus limits of uncertainty. See limits of 

uncertainty (for X) 
Poisson distribution, and nonconformities, 118 
Population average. See )X (population average or 

universe mean) 
Population coefficient of kurtosis. See ta (population 

coefficient of kurtosis) 
Population coefficient of skewness. See x^ (population 

coefficient of skewness) 
Population coefficient of variation. See V (population 

coefficient of variation) 
Population fraction nonconforming. See p' (population 

fraction nonconforming) 
Population relative frequency. Seep' (population relative 

frequency) 
Population standard deviation. See a (population 

standard deviation); a (estimated population 
standard deviation) 

Population variance. See (P (population variance) 
Position, defined and illustrated, 27 
Presentation of data 

recommendations for 
essential information, 39-40 
general, 5 

limits of uncertainty (for X ), 45-52 
relevant information, 40-41 

Prior information, and interpretation of data, 40 
"Probable error," defined, 43 
Probable inference, and interpretation of data, 40 

p (sample fraction nonconforming) 
control charts (standard given), 77, 78, 80 

examples, 94-98 
control charts (standard not given), 64-66, 74 

Q 

Quality characteristics 
average, 39 
defined, 6 



131 
INDEX 

representation of, 6-7, 23 
variability of, 39, 58-59 

Quality control charts. See control chart method 
Quality control methods, types employed in manual, 1 

R 

R (sample range) 
control charts (for individuals) 

using moving ranges, 81, 117-118 
examples, 109-110 

using rational subgroups, 59, 80, 81 
example, 105-108 

control charts (standard given) 

for I and R, 77-78 
example, 94 

control charts (standard not given) 

X and R (small samples), 63-65 
examples, 81-82 

defined, 6, 25, 39, 58 
and size of n, 40 
standard deviation (Oj) of, 58, 112 
variance in expected value of, 39-40 

Random samples, 29 
Range. See R (sample range) 
Rational subgroups 

breaking up data into, 59 
and control charts for individuals, 80-81, 83 

examples, 106-109 
defined, 56 
size of, 60 

Raw data, table of, 8-9 
Rejections. Seep (sample fraction rejected) 
Relationship, between two variables, 40-41 
Relative frequency 

for cells, 14 
See also p (sample relative frequency or 

proportion); p' (population relative 
frequency) 

Relative frequency density, defined, 27 
Relevant information, presentation of, 40-41 
Root-mean-square deviation. See S(,„,, (sample root-

mean-square deviation) 

s (sample standard deviation) 
amount of information contained in, 29-34, 35 
coefficient of variation (v) vs., 33-34 
computation of, 26-29, 58 
control charts (standard given), 76-78 

examples, 93-96 
control charts (standard not given) 

for X and s (large samples), 64-65, 67 
examples, 82-84 

for X and s (small samples), 65, 67 
examples, 83-85 

defined, 2, 6, 25, 42, 58 
and essential information, 35, 36, 37 
formulas for, 25 
standard deviation (o j of, 58, 112, 115 

ŝ  (sample variance), defined, 6, 24 

Sample average. See X (sample arithmetic mean) 

Sample coefficient of kurtosis. See g^ (sample coefficient 
of kurtosis) 

Sample coefficient of skewness. See gj (sample coefficient 
of skewness) 

Sample coefficient of variation. See v (sample coefficient 
of variation) 

Sample fraction nonconforming. See p (sample fraction 
nonconforming) 

Sample fraction rejected. Seep (sample fraction rejected) 

Sample mean. See X (sample arithmetic mean) 
Sample range. See R (sample range) 
Sample relative frequency density, defined, 24 
Sample relative frequency or proportion. See p (sample 

relative frequency or proportion) 
Sample standard deviation. See s (sample standard 

deviation) 
Sample variance. See ŝ  (sample variance) 
Samples 

defined, 56 
random, 29 

Sampling errors, 36 
See also errors of measurement 

Sampling method, and interpretability of data, 38 
Shewhart, W. A., 2, 29 

Short method, for computing X , s, g^, and g^, 28-29 
a (population standard deviation) 

defined, 3, 6, 58 
presenting limits of uncertainty for, 53-54 
standard value of, 58, 60, 61, 69, 112, 113, 115 

a (estimated population standard deviation), 
defined, 42, 43 

a ' . See a (population s tandard deviation) 
a^ (population variance), defined, 6 
Skewness 

defined, 25-26 
illustrated, 22 
see also gi (sample coefficient of 

skewness); Xi (population coefficient of 
skewness) 

Small samples 
and classifying observations into cells, 17 

control charts for X and R (standard given), 76-
78 
example, 94, 111 

control charts for X and R (standard not given), 
63-65 
examples, 81-82 

control charts for X and s (standard given), 75, 
76 
examples, 93-96 

control charts for X and s (standard not given), 
63,65 
examples, 79-81 

and grouped frequency distributions, 17 
Spread, defined and illustrated, 25 
Standard deviations 

approximations to control chart factors for, 116-
118, 120 

of sampling distributions, 58, 61, 114-115 
See also s (sample standard deviation); 

a (population standard deviation); 
6 (estimated population standard deviation) 

Standard values, 58, 60, 61, 74, 111-112, 117-118 
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summary of changes in notation for, 3 
Standards, and control charts. See control 

chart method, standard given; control 
chart method, standard not given 

Statistical control 
and control chart method, 58-59, 61-62 
defined, 43 

Statistical variables, relationship between two, 40 
"Stem and leaf diagrams, 20-21 
Subgroups 

defined, 56 
See also rational subgroups 

Supplement A (Part 2), 51-53 
Supplement A (Part 3), 111-117 
Supplement B (Part 2), 53-55 
Supplement B (Part 3), 117-121 
Symbols 

in Part 1 of manual, 5-6 
in Part 2 of manual, 42 
in Part 3 of manual, 56-58 
summary of changes in, 3 

Tabular grouped frequency distributions, 14-17, 39 
Tensile strength, presentation of data for, 36-38 
3-sigma control limits. See control chart method, control 

limits 
Time, subgrouping with respect to, 63 
Time—order, 29 
Tolerance limits, 33 
Total information 

defined, 29-30 
functions for representing, 30-39 

Transverse strength, presentation of data for, 8-20 
2-sigma control limits, 116 

U 

u (nonconformities per unit) 
control chart (standard given), 79, 80 

example, 110-111 
control chart (standard not given), 71-73 

examples, 91-94 
defined, 58, 68 
standard deviation (c!„) of, 115 

Uncertainty. See limits of uncertainty (for X) 
Ungrouped frequency distributions, 7-8 

graphic representation of, 10 
as representation of total information, 26 

table of, 8-9 
Unimodal frequency distributions, 22, 38 
Units, defined, 56 
Universe mean. See n (population average or universe 

mean) 
Universe standard deviation. See a (population standard 

deviation) 

Variability of quality 
causes of, 59-60 
essential information for, 39, 42 

Variables 
method of, and p (fraction nonconforming), 68 
relationship between two, 40-42 

Variance. See s^ (sample variance); â  (population 
variance) 

X 

X (observed values), defined, 6, 42, 58 

X (sample arithmetic mean) 
amount of information contained in, 32-37, 39 
computation of, 26-29, 58 
control charts (for individuals) using rational 

subgroups, 79 
examples, 103-106 

control charts (standard given) 

for X and R. 77, 78 
example, 95, 98 

for X and s, 75-77 
examples, 91-96 

control charts (standard not given) 

for X and R (small samples), 63-65 
examples, 81-82 

for X and s (large samples), 64-65, 67 
examples, 82-84 

for X and s (small samples), 65, 67 
examples, 83-85 

defined, 6, 23, 43, 58 
and essential information, 36, 37, 38 
standard deviation (Oj) of, 58, 115, 118 

See also limits of uncertainty (for X) 
X See (i (population average or universe mean) 
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