Cambridge Textbooks in tinguistics

Minimalist Syntax

Exploring the structure of English

Andrew Radford

Chmisabect

This page intentionally left blank

Minimalist Syntax
 Exploring the Structure of English

Andrew Radford's latest textbook, Minimalist Syntax: Exploring the Structure of English, provides a clear and accessible introduction to current work in syntactic theory, drawing on the key concepts of Chomsky's Minimalist Program. Assuming little or no prior knowledge of syntactic theory, Radford takes students through a diverse range of topics in English syntax - such as categories and features, merger, null constituents, movement, case, split projections and phases and shows how the 'computational component' works within the minimalist framework. Beginning at an elementary level, the book introduces grammatical concepts and sets out the theoretical foundations of Principles and Parameters and Universal Grammar, before progressing in stages towards more complex phenomena. Each chapter contains a workbook section, in which students are encouraged to make their own analyses of English phrases and sentences through exercises, model answers and 'helpful hints'. There is also an extensive glossary of terms.

Although designed primarily for courses on syntactic theory or English syntax, this book also provides an up-to-date, clear and straightforward introduction to the field.
andrew radford is Professor of Linguistics at the University of Essex. He has published six books on syntax with Cambridge University Press: Italian Syntax (1977); Transformational Syntax (1981); Transformational Grammar (1988); Syntactic Theory and the Structure of English (1997); Syntax: a Minimalist Introduction (1997) and Linguistics: an Introduction (co-authored with a group of his Essex colleagues, 1999). He has also published a book on Syntactic Theory and the Acquisition of English Syntax (Blackwell, Oxford, 1990) and numerous articles on syntax and the acquisition of syntax.

General editors: S. r. anderson, J. bresnan, b. Comrie, w. dressler,
C. EWEN, R. HUDDLESTON, R. LASS, D. LIGHTFOOT, J. LYONS,
P. H. MATthews, R. POSNER, S. ROMAINE, N. V. SMITH, N. Vincent

Minimalist Syntax: Exploring the Structure of English

In this series:
P. h. matthews Morphology Second edition
B. Comrie Aspect
R. m. kempson Semantic Theory
т. Bynon Historical Linguistics
J. ALLWOOD, L.-G. anderson and ö. Dahl Logic in Linguistics
D. B. FRy The Physics of Speech
R. A. hudson Sociolinguistics Second edition
A. J. elliot Child Language
P. H. matthews Syntax
A. RadFord Transformational Syntax
L. bauer English Word-Formation
S. C. Levinson Pragmatics
G. brown and g. yule Discourse Analysis
r. huddleston Introduction to the Grammar of English
R. Lass Phonology
A. comrie Tense
w. Klein Second Language Acquisition
A. J. Woods, p. fletcher and A. hughes Statistics in Language Studies
D. A. CRUSE Lexical Semantics
A. RADFORD Transformational Grammar
m. Garman Psycholinguistics
G. G. Corbett Gender
h. J. giegerich English Phonology
R. Cann Formal Semantics
J. Laver Principles of Phonetics
F. R. palmer Grammatical Roles and Relations
m. A. jones Foundations of French Syntax
A. Radford Syntactic Theory and the Structure of English: a Minimalist Approach
R. D. Van valin, Jr, and r. J. lapolla Syntax: Structure, Meaning and Function
A. Duranti Linguistic Anthropology
A. cruttenden Intonation Second edition
J. K. chambers and p. trudgill Dialectology Second edition
C. Lyons Definiteness
R. Kager Optimality Theory
J. A. holm An Introduction to Pidgins and Creoles
C. G. Corbett Number
C. J. ewen and h. van der hulst The Phonological Structure of Words
f. r. palmer Mood and Modality Second edition
B. J. blake Case Second edition
E. Gussman Phonology: Analysis and Theory
m. yip Tone
w. croft Typology and Universals Second edition
F. coulmas Writing Systems: an Introduction to their Linguistic Analysis
p. J. hopper and e. c. traugott Grammaticalization Second edition
L. white Second Language Acquisition and Universal Grammar
I. Plag Word-Formation in English
W. croft and A. cruse Cognitive Linguistics
A. Siewierska Person
D. BÜRING Binding Theory
A. Radford Minimalist Syntax: Exploring the Structure of English

Minimalist Syntax
 Exploring the Structure of English

ANDREW RADFORD

University of Essex

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo
Cambridge University Press
The Edinburgh Building, Cambridge CB2 2RU, UK
Published in the United States of America by Cambridge University Press, New York www.cambridge.org
Information on this title: www.cambridge.org/9780521834971
© Andrew Radford 2004

This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published in print format 2004

ISBN-I3	$978-0-51 \mathrm{I}-2 \mathrm{II} 85-\mathrm{O}$	eBook (EBL)
ISBN-IO	$0-5 \mathrm{II}-2 \mathrm{I} 362-\mathrm{X}$	eBook (EBL)
ISBN-I3	$978-0-52 \mathrm{I}-83497-\mathrm{I}$	hardback
ISBN-IO	$0-52 \mathrm{I}-83497-\mathrm{X}$	hardback
ISBN-I3	$978-\mathrm{O}-52 \mathrm{I}-54274-6$ paperback	
ISBN-IO	$0-52 \mathrm{I}-54274-\mathrm{X}$	paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLS for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface page xi
1 Grammar 1
1.1 Overview 1
1.2 Traditional grammar 1
1.3 Universal Grammar 6
1.4 The Language Faculty 10
1.5 Principles of Universal Grammar 13
1.6 Parameters 16
1.7 Parameter-setting 21
1.8 Evidence used to set parameters 23
1.9 Summary 25
Workbook section 26
2 Words 33
2.1 Overview 33
2.2 Grammatical categories 33
2.3 Categorising words 38
2.4 Functional categories 40
2.5 Determiners and quantifiers 41
2.6 Pronouns 44
2.7 Auxiliaries 47
2.8 Infinitival to 49
2.9 Complementisers 52
2.10 Labelled bracketing 57
2.11 Grammatical features 58
2.12 Summary 60
Workbook section 62
3 Structure 66
3.1 Overview 66
3.2 Phrases 66
3.3 Clauses 71
3.4 Specifiers 76
3.5 Intermediate and maximal projections 80
3.6 Testing structure 84
3.7 Syntactic relations 90
3.8 Bare phrase structure 94
3.9 Summary 96
Workbook section 98
4 Null constituents 106
4.1 Overview 106
4.2 Null subjects 106
4.3 Null auxiliaries 111
4.4 Null T in auxiliariless finite clauses 115
4.5 Null T in bare infinitive clauses 121
4.6 Null C in finite clauses 124
4.7 Null C in non-finite clauses 128
4.8 Defective clauses 131
4.9 Case properties of subjects 134
4.10 Null determiners 140
4.11 Summary 145
Workbook section 146
5 Head movement 151
5.1 Overview 151
5.2 T-to-C movement 151
5.3 Movement as copying and deletion 154
$5.4 \quad$ V-to-T movement 158
5.5 Head movement 162
5.6 Auxiliary raising 166
5.7 Another look at negation 170
5.8 Do-support 173
5.9 Head movement in nominals 178
5.10 Summary 181
Workbook section 183
6 Wh-movement 188
6.1 Overview 188
6.2 Wh-questions 188
6.3 Wh-movement as a copying operation 190
6.4 Wh-movement, EPP and the Attract Closest Principle 197
6.5 Explaining what moves where 202
6.6 Wh-subject questions 206
6.7 Pied-piping 211
6.8 Yes-no questions 220
6.9 Wh-exclamatives 222
6.10 Relative clauses 223
6.11 That-relatives 228
6.12 Summary 234
Workbook section 236
7 A-movement 241
7.1 Overview 241
7.2 Subjects in Belfast English 241
7.3 Quotatives and idioms 244
7.4 Argument structure 248
7.5 Thematic roles 250
7.6 Unaccusative predicates 254
7.7 Passive predicates 260
7.8 Long-distance passivisation 264
7.9 Raising 266
7.10 Comparing raising and control predicates 268
7.11 Summary 274
Workbook section 276
8 Agreement, case and movement 281
8.1 Overview 281
8.2 Agreement 281
8.3 Feature valuation 284
8.4 Uninterpretable features and feature-deletion 287
8.5 Expletive it subjects 291
8.6 Expletive there subjects 298
8.7 Agreement and A-movement 307
8.8 EPP in control infinitives 309
8.9 EPP in other infinitives 313
8.10 Summary 322
Workbook section 323
9 Split projections 327
9.1 Overview 327
9.2 Split CP: Force, Topic and Focus projections 327
9.3 Split CP: Finiteness projection 332
9.4 Split VPs: VP shells in ergative structures 336
9.5 VP shells in resultative, double-object and object-control structures 344
9.6 VP shells in transitive, unergative, unaccusative, raising and locative inversion structures 348
9.7 Transitive light verbs and accusative case assignment 356
9.8 Evidence for a further projection in transitive verb phrases 362
9.9 Extending the shell analysis to nominals 367
9.10 Summary 372
Workbook section 374
10 Phases 381
10.1 Overview 381
10.2 Phases 381
10.3 Intransitive and defective clauses 385
10.4 Wh-movement through spec-CP 388
10.5 Wh-movement through spec-vP in transitive clauses 391
10.6 Evidence for successive-cyclic wh-movement through spec-CP 394
10.7 Evidence for wh-movement through spec-vP in transitive clauses 401
10.8 The role of phases in lexical selection 407
10.9 Questions about phases 409
10.10 The nature of A-bar movement 419
10.11 Summary 426
Workbook section 427
Glossary 432
References 485
Index 498

Preface

Aims

This book has two main aims, reflected in its title and subtitle. The first is to provide an intensive introduction to recent work in syntactic theory (more particularly to how the computational component operates within the model of grammar assumed in recent work within the framework of Chomsky's Minimalist Program). The second is to provide a description of a range of phenomena in English syntax, making use of minimalist concepts and assumptions wherever possible. The book can be seen as a successor to (or updated version of) my (1997a) book Syntactic Theory and the Structure of English. There is quite a lot of duplication of material between the earlier book and this one (particularly in the first few chapters), though the present book also contains substantial new material (e.g. on agreement, case, split projections and phases), and the analysis of many phenomena presented in this book differs from that in its predecessor (agreement being handled in terms of a feature-matching rather than a featurechecking framework, for example).

Key features

The book is intended to be suitable both for people with only minimal grammatical knowledge, and for people who have already done quite a bit of syntax but want to know something (more) about Minimalism. It is not historicist or comparative in orientation, and hence does not presuppose knowledge of earlier or alternative models of grammar. It is written in an approachable style, avoiding unnecessary complexity. I've taught earlier versions of the book to more than 200 students over the past three years, and greatly benefited from their mutterings and mystification, as well as their assignments (which told me a lot about what they didn't understand, and about what I needed to explain more carefully). I've worked through (and refined) the exercise material with the students, and the helpful hints which the exercises contain have been developed in order to try and eliminate some of the commonest errors students make. The book is intensive and progressive in nature, which means that it starts at an elementary level but gets progressively harder as you get further into it. A group of students I taught
an earlier version of the book to gave the following mean degree-of-difficulty score to each chapter on a five-point scale ranging from $1=$ very easy to $5=$ very hard: chapter $1=1.6$; chapter $2=1.8$; chapter $3=2.2$; chapter $4=2.7$; chapter $5=2.9$; chapter $6=3.2$; chapter $7=3.4$; chapter $8=3.7$; chapter $9=$ 4.2 ; chapter $10=4.4$. Successive chapters become cumulatively more complex, in that each chapter presupposes material covered in previous chapters as well as introducing new material: hence it is helpful to go back and read material from earlier chapters every so often. In some cases, analyses presented in earlier chapters are subsequently refined or revised in the light of new assumptions made in later chapters.

Organisation

Each of the ten chapters in the book contains a detailed text discussion of a particular topic (divided into sections to facilitate reading), together with an integral workbook section at the end of the chapter, containing exercise material (to be done as classwork or homework) with model answers and helpful hints provided. Although the book contains numerous references to (often highly technical) primary research works, the exercises are designed in such a way that they can be tackled on the basis of the coursebook material alone. The book also includes an extensive glossary which provides simple illustrations of how key technical terms are used (both theory-specific terms like EPP and traditional terms like subject): technical terms are written in bold print in the main text (italics being used for highlighting particular expressions - e.g. a key word appearing in an example sentence). The glossary contains entries for key technical terms in syntax which are used in a number of different places in the text (though not for terms which appear in only one part of the main text, and which are glossed in the text where they appear). The glossary also includes an integrated list of abbreviations.

Companion volume

This book is being published in parallel with an abridged version entitled English Syntax: an Introduction. In this longer version of the text, the main text (particularly in the later chapters) is generally $30-50$ per cent longer than the main text in the abridged version. This longer version is aimed primarily at students with (near-) native command of English who are taking syntax as a major rather than a minor course. The two books have an essentially parallel organisation into chapters and sections (though additional sections and technical discussion have been added in this longer version), and contain much the same exercise material (though with exercise material based on additional sections
of text included in the longer version). In keeping the two books parallel in structure and organisation as far as possible, I am mindful of the comment made in a review of two earlier books which I produced in parallel longer and shorter versions (Radford 1997a,b) that some readers may wish to read the short version of a given chapter first, and then look at the longer version afterwards, and that this 'is not facilitated by an annoyingly large number of non-correspondences' (Ten Hacken 2001, p. 2). Accordingly, I have tried to maximise correspondence between the 'long' and 'short' versions of these two new books.

Acknowledgments

Particular thanks are due to three brave Musketeers (Hajime Hattori, Cris Lozano and Peter Evans) for shooting down some of the more inane parts of an earlier draft of the book when they had it inflicted on them as students. I'd also like to thank Cambridge University Press's series editor (Neil Smith) for patiently wading through and commenting on two drafts of the longer version and one of the shorter one, and managing to make his comments challenging and goodhumoured at the same time. Thanks also go to Bob Borsley and Martin Atkinson for helpful thoughts on particular issues. And above all to my wife Khadija, for putting up with extended periods of authorial autism during the gestation period for the book.

Dedication

This book (like my 1981 Transformational Syntax book) is dedicated to Joe Cremona, who sadly died shortly before it went to press. Joe was my tutor at Cambridge for three of my undergraduate courses (History of Italian, History of Romanian, Vulgar Latin and Romance Philology). As I wrote in the preface to my 1981 book, Joe 'did more than anyone to awaken my interest in language, and to persuade me that just maybe linguistic theory wasn't quite as pointless as it seemed at the time' (when linguistics seemed to most students to be designed solely to inflict taxonomic torture on them). Thanks for everything, Joe - you will be sorely missed by the many people you helped go on to successful academic careers.

1 Grammar

1.1 Overview

In broad terms, this book is concerned with aspects of grammar. Grammar is traditionally subdivided into two different but interrelated areas of study morphology and syntax. Morphology is the study of how words are formed out of smaller units (called morphemes), and so addresses questions such as 'What are the component morphemes of a word like antidisestablishmentarianism, and what is the nature of the morphological operations by which they are combined together to form the overall word?' Syntax is the study of the way in which phrases and sentences are structured out of words, and so addresses questions like 'What is the structure of a sentence like What's the president doing? and what is the nature of the grammatical operations by which its component words are combined together to form the overall sentence structure?' In this chapter, we begin (in §1.2) by taking a brief look at the approach to the study of syntax taken in traditional grammar: this also provides an opportunity to introduce some useful grammatical terminology. In the remainder of the chapter, we look the approach to syntax adopted within the theory of Universal Grammar developed by Chomsky.

1.2 Traditional grammar

Within traditional grammar, the syntax of a language is described in terms of a taxonomy (i.e. classificatory list) of the range of different types of syntactic structures found in the language. The central assumption underpinning syntactic analysis in traditional grammar is that phrases and sentences are built up of a series of constituents (i.e. syntactic units), each of which belongs to a specific grammatical category and serves a specific grammatical function. Given this assumption, the task of the linguist analysing the syntactic structure of any given type of sentence is to identify each of the constituents in the sentence, and (for each constituent) to say what category it belongs to and what function it serves. For example, in relation to the syntax of a simple sentence like:
it would traditionally be said that the sentence consists of two constituents (the word students and the word protested), that each of these constituents belongs to a specific grammatical category (students being a plural noun and protested a past-tense verb) and that each serves a specific grammatical function (students being the subject of the sentence, and protested being its predicate). The overall sentence Students protested has the categorial status of a clause which is finite in nature (by virtue of denoting an event taking place at a specific time), and has the semantic function of expressing a proposition which is declarative in force (in that it is used to make a statement rather than, for example, ask a question). Accordingly, a traditional grammar of English would tell us that the simplest type of finite declarative clause found in English is a sentence like (1) in which a nominal subject is followed by a verbal predicate. Let's briefly look at some of the terminology used here.

In traditional grammar, words are assigned to grammatical categories (called parts of speech) on the basis of their semantic properties (i.e. meaning), morphological properties (i.e. the range of different forms they have), and syntactic properties (i.e. word-order properties relating to the positions they can occupy within sentences): a set of words which belong to the same category thus have a number of semantic, morphological and syntactic properties in common. For example, nouns are traditionally said to have the semantic property that they denote entities: so, bottle is a noun (since it denotes a type of object used to contain liquids), horse is a noun (since it denotes a type of animal), and John is a noun (since it denotes a specific person). Typical nouns (more specifically, count nouns) have the morphological property that they have two different forms: a singular form (like horse in one horse) used to denote a single entity, and a plural form (like horses in two horses) used to denote two or more entities. Nouns have the syntactic property that only (an appropriate kind of) noun can be used to end a four-word sentence such as They have no . . . In place of the dots here we could insert a singular noun like car or a plural noun like friends, but not other types of word (e.g. not see, or slowly or up, since these are not nouns).

In contrast to nouns, verbs are traditionally said to have the semantic property that they denote actions or events: so, eat, sing, pull and resign are all (actiondenoting) verbs. From a syntactic point of view, verbs have the property that only an appropriate kind of verb (in its uninflected form) can be used to complete a three-word sentence such as They/It can . . So, words like stay, leave, hide, die, starve and cry are all verbs and hence can be used in place of the dots here (but words like apple, under, pink and if aren't). From a morphological point of view, regular verbs like cry (in English) have the property that they have four distinct forms: e.g. alongside the dictionary citation form cry we find the present-tense form cries, the past-tense/perfect participle/passive participle form cried and the progressive participle form crying. Since chapter 2 is devoted to a discussion of grammatical categories, we shall have no more to say about them for the time being. Instead, we turn to look at some of the terminology used in
traditional grammar to describe the different grammatical functions that constituents fulfil.

Let's begin by looking at the following set of sentences:
(2) (a) John smokes
(b) The president smokes
(c) The president of Utopia smokes
(d) The former president of the island paradise of Utopia smokes

Sentence (2a) comprises the noun John which serves the function of being the subject of the sentence (and denotes the person performing the act of smoking), and the verb smokes which serves the function of being the predicate of the sentence (and describes the act being performed). In (2a), the subject is the single noun John; but as the examples in ($2 \mathrm{~b}-\mathrm{d}$) show, the subject of a sentence can also be an (italicised) phrase like the president, or the president of Utopia or the former president of the island paradise of Utopia.

Now consider the following set of sentences:
(3) (a) John smokes cigars
(b) John smokes Cuban cigars
(c) John smokes Cuban cigars imported from Havana
(d) John smokes a specific brand of Cuban cigars imported by a friend of his from Havana

Sentence (3a) comprises the subject John, the predicate smokes and the complement (or direct object) cigars. (The complement cigars describes the entity on which the act of smoking is being performed; as this example illustrates, subjects normally precede the verb with which they are associated in English, whereas complements typically follow the verb.) The complement in (3a) is the single noun cigars; but a complement can also be a phrase: in (3b), the complement of smokes is the phrase Cuban cigars; in (3c) the complement is the phrase Cuban cigars imported from Havana; and in (3d) the complement is the phrase a specific brand of Cuban cigars imported by a friend of his from Havana. A verb which has a noun or pronoun expression as its direct-object complement is traditionally said to be transitive.

From a semantic perspective, subjects and complements share in common the fact that they generally represent entities directly involved in the particular action or event described by the predicate: to use the relevant semantic terminology, we can say that subjects and complements are arguments of the predicate with which they are associated. Predicates may have one or more arguments, as we see from sentences such as (4) below, where each of the bracketed nouns is a different argument of the italicised predicate:
(4) (a) [John] resigned
(b) [John] felt [remorse]
(c) [John] sent [Mary] [flowers]

A predicate like resign in (4a) which has a single argument is said to function as a one-place predicate (in the relevant use); one like feel in (4b) which has two arguments is a two-place predicate; and one like send in (4c) which has three arguments is a three-place predicate.

In addition to predicates and arguments, sentences can also contain adjuncts, as we can illustrate in relation to (5) below:
(5) (a) The president smokes a cigar after dinner
(b) The president smokes a cigar in his office

In both sentences in (5), smokes functions as a two-place predicate whose two arguments are its subject the president and its complement a cigar. But what is the function of the phrase after dinner which also occurs in (5a)? Since after dinner isn't one of the entities directly involved in the act of smoking (i.e. it isn't consuming or being consumed), it isn't an argument of the predicate smoke. On the contrary, after dinner simply serves to provide additional information about the time when the smoking activity takes place. In much the same way, the italicised expression in his office in (5b) provides additional information about the location of the smoking activity. An expression which serves to provide (optional) additional information about the time or place (or manner, or purpose etc.) of an activity or event is said to serve as an adjunct. So, after dinner and in his office in $(5 a, b)$ are both adjuncts.

So far, all the sentences we have looked at in (1)-(5) have been simple sentences which contain a single clause. However, alongside these we also find complex sentences which contain more than one clause, like (6) below:

Mary knows John smokes
If we take the traditional definition of a clause as a predication structure (more precisely, a structure containing a predicate which has a subject, and which may or may not also contain one or more complements and adjuncts), it follows that since there are two predicates (knows and smokes) in (6), there are correspondingly two clauses - the smokes clause on the one hand, and the knows clause on the other. The smokes clause comprises the subject John and the predicate smokes; the knows clause comprises the subject Mary, the predicate knows and the complement John smokes. So, the complement of knows here is itself a clause - namely the clause John smokes. More precisely, the smokes clause is a complement clause (because it serves as the complement of knows), while the knows clause is the main clause (or principal clause or independent clause or root clause). The overall sentence (6) Mary knows John smokes is a complex sentence because it contains more than one clause. In much the same way, (7) below is also a complex sentence:

The press clearly think the president deliberately lied to Congress
Once again, it comprises two clauses - one containing the predicate think, the other containing the predicate lie. The main clause comprises the subject the
press, the adjunct clearly, the predicate think and the complement clause the president deliberately lied to Congress. The complement clause in turn comprises the subject the president, the adjunct deliberately, the predicate lied, and the complement to Congress.

As was implicit in our earlier classification of (1) as a finite clause, traditional grammars draw a distinction between finite clauses (which describe events taking place at a particular time) and non-finite clauses (which describe hypothetical or projected future events). In this connection, consider the contrast between the italicised clauses below (all three of which function as the complement of remember):
(8) (a) John couldn't remember what pills he is taking
(b) John couldn't remember what pills he took
(c) John couldn't remember what pills to take

In (8a), the clause what pills he is taking is finite by virtue of containing presenttense is: likewise, the clause what pills he took in (8b) is finite by virtue of containing past-tense took. However, the clause what pills to take in (8c) is nonfinite by virtue of containing no tense specification - take here is an infinitive form which is not inflected for tense, as we see from the fact that it could not be replaced by the past-tense form took here (cf. *'John couldn't remember what pills to took' - the star indicating ungrammaticality).

Whether or not a clause is finite in turn determines the kind of subject it can have, in that finite clauses can have a nominative pronoun like he as their subject, but non-finite clauses cannot (as we see from the ungrammaticality of *'John couldn't remember what pills he to take'). Accordingly, one way of telling whether a particular clause is finite or not is to see whether it can have a nominative pronoun (like I/we/he/she/they) as its subject. In this connection, consider whether the italicised clauses in $(9 a, b)$ below are finite or non-finite:
(9) (a) I didn't know students have problems with syntax
(b) I have never known students have problems with syntax

The fact that students in (9a) can be replaced by the nominative pronoun they (as in 'I didn't know they have problems with syntax') suggests that the italicised clause in (9a) is finite - as does the fact that the present-tense verb have can be replaced by its past-tense counterpart had in (9a). Conversely, the fact that students in (9b) can be replaced by the accusative pronoun them (as in 'I have never known them have problems with syntax') suggests that the italicised clause in (9b) is non-finite as does the fact that we can optionally use the infinitive particle to in (9b) (as in 'I have never known students to have problems with syntax'), and the fact that we can replace the have expression by one containing the infinitive form be (as in 'I have never known students be worried about syntax').

In addition to being finite or non-finite, each clause within a sentence has a specific force. In this connection, consider the following simple (single-clause) sentences:
(10) (a) He went home
(b) Are you feeling OK?
(c) You be quiet!
(d) What a great idea that is!

A sentence like (10a) is traditionally said to be declarative in force, in that it is used to make a statement. (10b) is interrogative in force in that it is used to ask a question. (10c) is imperative in force, by virtue of being used to issue an order or command. (10d) is exclamative in force, in that it is used to exclaim surprise or delight. In complex sentences, each clause has its own force, as we can see in relation to (11) below:
(11) (a) He asked where she had gone
(b) Did you know that he has retired?
(c) Tell her what a great time we had!

In (11a), the main (asked) clause is declarative, whereas the complement (gone) clause is interrogative; in (11b) the main (know) clause is interrogative, whereas the complement (retired) clause is declarative; and in (11c), the main (tell) clause is imperative, whereas the complement (had) clause is exclamative.

We can summarise this section as follows. From the perspective of traditional grammar, the syntax of a language is described in terms of a taxonomy (i.e. a classificatory list) of the range of different phrase-, clause- and sentence-types found in the language. So, for example, a typical traditional grammar of (say) English will include chapters on the syntax of negatives, interrogatives, exclamatives, imperatives and so on. The chapter on interrogatives will note (e.g.) that in main-clause questions in English like 'Is he winning?' the present-tense auxiliary $i s$ inverts with (i.e. moves in front of) the subject $h e$, but not in complement-clause questions like the if-clause in 'I wonder if he is winning', and will typically not be concerned with trying to explain why auxiliary inversion applies in main clauses but not complement clauses: this reflects the fact that the primary goal of traditional grammar is description rather than explanation.

1.3 Universal Grammar

In contrast to the taxonomic approach adopted in traditional grammar, Chomsky takes a cognitive approach to the study of grammar. For Chomsky, the goal of the linguist is to determine what it is that native speakers know about their native language which enables them to speak and understand the language: hence, the study of language is part of the wider study of cognition (i.e. what human beings know). In a fairly obvious sense, any native speaker of a language can be said to know the grammar of his or her native language. For example, any native speaker of English can tell you that the negative counterpart of I like syntax is I don't like syntax, and not e.g. *I no like syntax: in other words, native speakers know how to combine words together to form expressions (e.g. negative sentences) in their language. Likewise, any native speaker of English can tell you that a sentence like She loves me more than you is ambiguous and has two
interpretations which can be paraphrased as 'She loves me more than she loves you' and 'She loves me more than you love me': in other words, native speakers also know how to interpret (i.e. assign meaning to) expressions in their language. However, it is important to emphasise that this grammatical knowledge of how to form and interpret expressions in your native language is tacit (i.e. subconscious) rather than explicit (i.e. conscious): so, it's no good asking a native speaker of English a question such as 'How do you form negative sentences in English?', since human beings have no conscious awareness of the processes involved in speaking and understanding their native language. To introduce a technical term devised by Chomsky, we can say that native speakers have grammatical competence in their native language: by this, we mean that they have tacit knowledge of the grammar of their language - i.e. of how to form and interpret words, phrases and sentences in the language.

In work dating back to the 1960 s, Chomsky has drawn a distinction between competence (the native speaker's tacit knowledge of his or her language) and performance (what people actually say or understand by what someone else says on a given occasion). Competence is 'the speaker-hearer's knowledge of his language', while performance is 'the actual use of language in concrete situations' (Chomsky 1965, p. 4). Very often, performance is an imperfect reflection of competence: we all make occasional slips of the tongue, or occasionally misinterpret something which someone else says to us. However, this doesn't mean that we don't know our native language or that we don't have competence in it. Misproductions and misinterpretations are performance errors, attributable to a variety of performance factors like tiredness, boredom, drunkenness, drugs, external distractions and so forth. A grammar of a language tells you what you need to know in order to have native-like competence in the language (i.e. to be able to speak the language like a fluent native speaker): hence, it is clear that grammar is concerned with competence rather than performance. This is not to deny the interest of performance as a field of study, but merely to assert that performance is more properly studied within the different - though related - discipline of psycholinguistics, which studies the psychological processes underlying speech production and comprehension.

In the terminology adopted by Chomsky (1986a, pp. 19-56), when we study the grammatical competence of a native speaker of a language like English we're studying a cognitive system internalised within the brain/mind of native speakers of English; our ultimate goal in studying competence is to characterise the nature of the internalised linguistic system (or I-language, as Chomsky terms it) which makes native speakers proficient in English. Such a cognitive approach has obvious implications for the descriptive linguist who is concerned to develop a grammar of a particular language like English. According to Chomsky (1986a, p. 22) a grammar of a language is 'a theory of the I-language . . . under investigation'. This means that in devising a grammar of English, we are attempting to uncover the internalised linguistic system ($=$ I-language) possessed by native speakers of English - i.e. we are attempting to characterise a mental state (a state of competence, and thus linguistic
knowledge). See Smith (1999) for more extensive discussion of the notion of I-language.

Chomsky's ultimate goal is to devise a theory of Universal Grammar/UG which generalises from the grammars of particular I-languages to the grammars of all possible natural (i.e. human) I-languages. He defines UG (1986a, p. 23) as 'the theory of human I-languages . . . that identifies the I-languages that are humanly accessible under normal conditions'. (The expression 'are humanly accessible' means 'can be acquired by human beings'.) In other words, UG is a theory about the nature of possible grammars of human languages: hence, a theory of UG answers the question: 'What are the defining characteristics of the grammars of human I-languages?'

There are a number of criteria of adequacy which a theory of Universal Grammar must satisfy. One such criterion (which is implicit in the use of the term Universal Grammar) is universality, in the sense that a theory of UG must supply us with the tools needed to provide a descriptively adequate grammar for any and every human I-language (i.e. a grammar which correctly describes how to form and interpret expressions in the relevant language). After all, a theory of UG would be of little interest if it enabled us to describe the grammar of English and French, but not that of Swahili or Chinese.

However, since the ultimate goal of any theory is explanation, it is not enough for a theory of Universal Grammar simply to list sets of universal properties of natural language grammars; on the contrary, a theory of UG must seek to explain the relevant properties. So, a key question for any adequate theory of $U G$ to answer is: 'Why do grammars of human I-languages have the properties they do?' The requirement that a theory should explain why grammars have the properties they do is conventionally referred to as the criterion of explanatory adequacy.

Since the theory of Universal Grammar is concerned with characterising the properties of natural (i.e. human) I-language grammars, an important question which we want our theory of UG to answer is: 'What are the defining characteristics of human I-languages which differentiate them from, for example, artificial languages like those used in mathematics and computing (e.g. Java, Prolog, C etc.), or from animal communication systems (e.g. the tail-wagging dance performed by bees to communicate the location of a food source to other bees)?' It therefore follows that the descriptive apparatus which our theory of UG allows us to make use of in devising natural language grammars must not be so powerful that it can be used to describe not only natural languages, but also computer languages or animal communication systems (since any such excessively powerful theory wouldn't be able to pinpoint the criterial properties of natural languages which differentiate them from other types of communication system). In other words, a third condition which we have to impose on our theory of language is that it be maximally constrained: that is, we want our theory to provide us with technical devices which are so constrained (i.e. limited) in their expressive power that they can only be used to describe natural languages, and are not appropriate for the description of other communication systems. A theory which
is constrained in appropriate ways should enable us to provide a principled explanation for why certain types of syntactic structure and syntactic operation simply aren't found in natural languages. One way of constraining grammars is to suppose that grammatical operations obey certain linguistic principles, and that any operation which violates the relevant principles leads to ungrammaticality: see the discussion below in $\S 1.5$ for a concrete example.

A related requirement is that linguistic theory should provide grammars which make use of the minimal theoretical apparatus required: in other words, grammars should be as simple as possible. Much earlier work in syntax involved the postulation of complex structures and principles: as a reaction to the excessive complexity of this kind of work, Chomsky in work over the past ten years or so has made the requirement to minimise the theoretical and descriptive apparatus used to describe language the cornerstone of the Minimalist Program for Linguistic Theory which he has been developing (in work dating back to Chomsky 1993, 1995). In more recent work, Chomsky (1998, 1999, 2001, 2002) has suggested that language is a perfect system with an optimal design in the sense that natural language grammars create structures which are designed to interface perfectly with other components of the mind - more specifically with speech and thought systems. (For discussion of the idea that language is a perfect system of optimal design, see Lappin, Levine and Johnson 2000a,b, 2001; Holmberg 2000; PiattelliPalmarini 2000; Reuland 2000, 2001b; Roberts 2000, 2001a; Uriagereka 2000, 2001; Freidin and Vergnaud 2001; and Atkinson 2003.)

To make this discussion rather more concrete, let's suppose that a grammar of a language is organised as follows. One component of a grammar is a Lexicon ($=$ dictionary $=$ list of all the lexical items/words in the language and their linguistic properties), and in forming a given sentence out of a set of words, we first have to take the relevant words out of the Lexicon. Our chosen words are then combined together by a series of syntactic computations in the syntax (i.e. in the syntactic/computational component of the grammar), thereby forming a syntactic structure. This syntactic structure serves as input into two other components of the grammar. One is the semantic component which maps (i.e. 'converts') the syntactic structure into a corresponding semantic representation (i.e. to a representation of linguistic aspects of its meaning); the other is a PF component, so called because it maps the syntactic structure into a PF representation (i.e. a representation of its Phonetic Form, telling us how it is pronounced). The semantic representation interfaces with systems of thought, and the PF representation with systems of speech - as shown in diagrammatic form below:

In terms of the model in (12), an important constraint is that the (semantic and PF) representations which are 'handed over' to the (thought and speech) interface systems should contain only elements which are legible by the appropriate interface system - so that the semantic representations handed over to thought systems contain only elements contributing to meaning, and the PF representations handed over to speech systems contain only elements which contribute to phonetic form (i.e. to determining how the sentence is pronounced).

The neurophysiological mechanisms which underlie linguistic competence make it possible for young children to acquire language in a remarkably short period of time. Accordingly, a fourth condition which any adequate linguistic theory must meet is that of learnability: it must provide grammars which are learnable by young children in a short period of time. The desire to maximise the learnability of natural language grammars provides an additional argument for minimising the theoretical apparatus used to describe languages, in the sense that the simpler grammars are, the simpler it is for children to acquire them.

1.4 The Language Faculty

Mention of learnability leads us to consider the related goal of developing a theory of language acquisition. An acquisition theory is concerned with the question of how children acquire grammars of their native languages. Children generally produce their first recognisable word (e.g. Mama or Dada) by the age of twelve months. For the next six months or so, there is little apparent evidence of grammatical development in their speech production, although the child's productive vocabulary typically increases by about five words a month until it reaches around thirty words at age eighteen months. Throughout this single-word stage, children's utterances comprise single words spoken in isolation: e.g. a child may say Apple when reaching for an apple, or $U p$ when wanting to climb up onto her mother's knee. During the single-word stage, it is difficult to find any clear evidence of the acquisition of grammar, in that children do not make productive use of inflections (e.g. they don't add the plural $-s$ ending to nouns, or the past-tense $-d$ ending to verbs), and don't productively combine words together to form twoand three-word utterances.

At around the age of eighteen months (though with considerable variation from one child to another), we find the first visible signs of the acquisition of grammar: children start to make productive use of inflections (e.g. using plural nouns like doggies alongside the singular form doggy, and inflected verb forms like going/gone alongside the uninflected verb form go), and similarly start to produce elementary two- and three-word utterances such as Want Teddy, Eating cookie, Daddy gone office etc. From this point on, there is a rapid expansion in their grammatical development, until by the age of around thirty months they have typically acquired most of the inflections and core grammatical constructions used in English, and are able to produce adult-like sentences such as Where's Mummy
gone? What's Daddy doing? Can we go to the zoo, Daddy? etc. (though occasional morphological and syntactic errors persist until the age of four years or so - e.g. We goed there with Daddy, What we can do? etc.).

So, the central phenomenon which any theory of language acquisition must seek to explain is this: how is it that after a long drawn-out period of many months in which there is no obvious sign of grammatical development, at around the age of eighteen months there is a sudden spurt as multiword speech starts to emerge, and a phenomenal growth in grammatical development then takes place over the next twelve months? This uniformity and (once the spurt has started) rapidity in the pattern of children's linguistic development are the central facts which a theory of language acquisition must seek to explain. But how?

Chomsky maintains that the most plausible explanation for the uniformity and rapidity of first language acquisition is to posit that the course of acquisition is determined by a biologically endowed innate Language Faculty (or language acquisition program, to borrow a computer software metaphor) within the brain, which provides children with a genetically transmitted algorithm (i.e. set of procedures) for developing a grammar, on the basis of their linguistic experience (i.e. on the basis of the speech input they receive). The way in which Chomsky visualises the acquisition process can be represented schematically as in (13) below (where L is the language being acquired):

Children acquiring a language will observe people around them using the language, and the set of expressions in the language which a child hears (and the contexts in which they are used) in the course of acquiring the language constitute the child's linguistic experience of the language. This experience serves as input to the child's language faculty, which provides the child with a procedure for (subconsciously) analysing the experience and devising a grammar of the language being acquired. Thus, the input to the language faculty is the child's experience, and the output of the language faculty is a grammar of the language being acquired.

The hypothesis that the course of language acquisition is determined by an innate language faculty is known popularly as the innateness hypothesis. Chomsky maintains that the ability to speak and acquire languages is unique to human beings, and that natural languages incorporate principles which are also unique to humans and which reflect the nature of the human mind:

[^0]Moreover, he notes, language acquisition is an ability which all humans possess, entirely independently of their general intelligence:

Even at low levels of intelligence, at pathological levels, we find a command of language that is totally unattainable by an ape that may, in other respects, surpass a human imbecile in problem-solving activity and other adaptive behaviour. (Chomsky 1972, p. 10)

In addition, the apparent uniformity in the types of grammars developed by different speakers of the same language suggests that children have genetic guidance in the task of constructing a grammar of their native language:

We know that the grammars that are in fact constructed vary only slightly among speakers of the same language, despite wide variations not only in intelligence but also in the conditions under which language is acquired.
(Chomsky 1972, p. 79)
Furthermore, the rapidity of acquisition (once the grammar spurt has started) also points to genetic guidance in grammar construction:

Otherwise it is impossible to explain how children come to construct grammars . . . under the given conditions of time and access to data.
(Chomsky 1972, p. 113)
(The sequence 'under . . . data' means simply 'in so short a time, and on the basis of such limited linguistic experience.') What makes the uniformity and rapidity of acquisition even more remarkable is the fact that the child's linguistic experience is often degenerate (i.e. imperfect), since it is based on the linguistic performance of adult speakers, and this may be a poor reflection of their competence:

A good deal of normal speech consists of false starts, disconnected phrases, and other deviations from idealised competence. (Chomsky 1972, p. 158)

If much of the speech input which children receive is degenerate (because of performance errors), how is it that they can use this degenerate experience to develop a (competence) grammar which specifies how to form grammatical sentences? Chomsky's answer is to draw the following analogy:

Descartes asks: how is it when we see a sort of irregular figure drawn in front of us we see it as a triangle? He observes, quite correctly, that there's a disparity between the data presented to us and the percept that we construct. And he argues, I think quite plausibly, that we see the figure as a triangle because there's something about the nature of our minds which makes the image of a triangle easily constructible by the mind. (Chomsky 1968, p. 687)

The obvious implication is that in much the same way as we are genetically predisposed to analyse shapes (however irregular) as having specific geometrical properties, so too we are genetically predisposed to analyse sentences (however ungrammatical) as having specific grammatical properties. (For evaluation of this
kind of degenerate input argument, see Pullum and Scholz 2002; Thomas 2002; Sampson 2002; Fodor and Crowther 2002; Lasnik and Uriagereka 2002; Legate and Yang 2002; Crain and Pietroski 2002; and Scholz and Pullum 2002.)

A further argument Chomsky uses in support of the innateness hypothesis relates to the fact that language acquisition is an entirely subconscious and involuntary activity (in the sense that you can't consciously choose whether or not to acquire your native language - though you can choose whether or not you wish to learn chess); it is also an activity which is largely unguided (in the sense that parents don't teach children to talk):

Children acquire . . . languages quite successfully even though no special care is taken to teach them and no special attention is given to their progress. (Chomsky 1965, pp. 200-1)

The implication is that we don't learn to have a native language, any more than we learn to have arms or legs; the ability to acquire a native language is part of our genetic endowment - just like the ability to learn to walk.

Studies of language acquisition lend empirical support for the innateness hypothesis. Research has suggested that there is a critical period for the acquisition of syntax, in the sense that children who learn a given language before puberty generally achieve native competence in it, whereas those who acquire a (first or second) language after the age of nine or ten years rarely manage to achieve native-like syntactic competence: see Lenneberg (1967), Hurford (1991) and Smith $(1998,1999)$ for discussion. A particularly poignant example of this is a child called Genie (see Curtiss 1977; Rymer 1993), who was deprived of speech input and kept locked up on her own in a room until age thirteen. When eventually taken into care and exposed to intensive language input, her vocabulary grew enormously, but her syntax never developed. This suggests that the acquisition of syntax is determined by an innate 'language acquisition programme' which is in effect switched off at the onset of puberty. (For further discussion of the innateness hypothesis, see Antony and Hornstein 2002.)

1.5 Principles of Universal Grammar

If (as Chomsky claims) human beings are biologically endowed with an innate language faculty, an obvious question to ask is what is the nature of the language faculty. An important point to note in this regard is that children can in principle acquire any natural language as their native language (e.g. Afghan orphans brought up by English-speaking foster parents in an English-speaking community acquire English as their first language). It therefore follows that the language faculty must incorporate a theory of Universal Grammar/UG which enables the child to develop a grammar of any natural language on the basis of suitable linguistic experience of the language (i.e. sufficient speech input).

Experience of a particular language L (examples of words, phrases and sentences in L which the child hears produced by native speakers of L in particular contexts) serves as input to the child's language faculty which incorporates a theory of Universal Grammar providing the child with a procedure for developing a grammar of L.

If the acquisition of grammatical competence is indeed controlled by a genetically endowed language faculty incorporating a theory of UG, then it follows that certain aspects of child (and adult) competence are known without experience, and hence must be part of the genetic information about language with which we are biologically endowed at birth. Such aspects of language would not have to be learned, precisely because they form part of the child's genetic inheritance. If we make the (plausible) assumption that the language faculty does not vary significantly from one (normal) human being to another, those aspects of language which are innately determined will also be universal. Thus, in seeking to determine the nature of the language faculty, we are in effect looking for UG principles (i.e. principles of Universal Grammar) which determine the very nature of language.

But how can we uncover such principles? The answer is that since the relevant principles are posited to be universal, it follows that they will affect the application of every relevant type of grammatical operation in every language. Thus, detailed analysis of one grammatical construction in one language could reveal evidence of the operation of principles of Universal Grammar. By way of illustration, let's look at question-formation in English. In this connection, consider the following dialogue:

SPEAKER A: He had said someone would do something
SPEAKER B: He had said who would do what?
In (14), speaker B largely echoes what speaker A says, except for replacing someone by who and something by what. For obvious reasons, the type of question produced by speaker B in (14) is called an echo question. However, speaker B could alternatively have replied with a non-echo question like that in (15) below: Who had he said would do what?

If we compare the echo question He had said who would do what? in (14) with the corresponding non-echo question Who had he said would do what? in (15), we find that (15) involves two movement operations which are not found in (14). One is an auxiliary inversion operation by which the past-tense auxiliary had is moved in front of its subject he. (As we shall see in chapter 2, an auxiliary is a word like had/would in (15) which carries grammatical properties such as tense/aspect/mood/modality.) The other is a wh-movement operation by which the wh-word who is moved to the front of the overall sentence, and positioned in front of had. (A wh-word is a word like who/what/where/when etc. beginning with wh.)

A closer look at questions like (15) provides evidence that there are UG principles which constrain the way in which movement operations may apply. An
interesting property of the questions in (14) and (15) is that they contain two auxiliaries (had and would) and two wh-expressions (who and what). Now, if we compare (15) with the corresponding echo question in (14), we find that the first of the two auxiliaries (had) and the first of the wh-words (who) are moved to the front of the sentence in (15). If we try inverting the second auxiliary (would) and fronting the second wh-word (what), we end up with ungrammatical sentences, as we see from ($16 \mathrm{c}-\mathrm{e}$) below (the preposed items are italicised, and the corresponding echo question is given in parentheses; (16a) is repeated from the echo question in (14B), and (16b) from (15)):
(16) (a) He had said who would do what? (= echo question)
(b) Who had he said would do what? (cf. He had said who would do what?)
(c) *Who would he had said do what? (cf. He had said who would do what?)
(d) *What had he said who would do? (cf. He had said who would do what?)
(e) *What would he had said who do? (cf. He had said who would do what?)

If we compare (16b) with its echo-question counterpart (16a) He had said who would do what? we see that (16b) involves preposing the first wh-word who and the first auxiliary had, and that this results in a grammatical sentence. By contrast, (16c) involves preposing the first wh-word who and the second auxiliary would; (16d) involves preposing the second wh-word what and the first auxiliary had; and (16e) involves preposing the second wh-word what and the second auxiliary would. The generalisation which emerges from the data in (16) is that auxiliary inversion preposes the closest auxiliary had (i.e. the one nearest the beginning of the sentence) and likewise wh-fronting preposes the closest whexpression who. The fact that two, quite distinct, different movement operations (auxiliary inversion and wh-movement) are subject to the same locality condition (which requires preposing of the most local - i.e. closest - expression of the relevant type) suggests that one of the principles of Universal Grammar incorporated into the language faculty is a Locality Principle which can be outlined informally as:

Grammatical operations are local
In consequence of (17), auxiliary inversion preposes the closest auxiliary, and whmovement preposes the closest wh-expression. It seems reasonable to suppose that (17) is a principle of Universal Grammar (rather than an idiosyncratic property of question-formation in English). In fact, the strongest possible hypothesis we could put forward is that (17) holds of all grammatical operations in all natural languages, not just of movement operations; and indeed we shall see in later chapters that other types of grammatical operation (including agreement and case assignment) are subject to a similar locality condition. If so, and if we assume that abstract grammatical principles which are universal are part of our biological endowment, then the natural conclusion to reach is that (17) is a principle which
is biologically wired into the language faculty, and which thus forms part of our genetic make-up.

A theory of grammar which posits that grammatical operations are constrained by innate principles of UG offers the important advantage that it minimises the burden of grammatical learning imposed on the child (in the sense that children do not have to learn, for example, that auxiliary inversion affects the first auxiliary in a sentence, or that wh-movement likewise affects the first wh-expression). This is an important consideration, since we saw earlier that learnability is a criterion of adequacy for any theory of grammar - i.e. any adequate theory of grammar must be able to explain how children come to learn the grammar of their native language(s) in such a rapid and uniform fashion. The UG theory developed by Chomsky provides a straightforward account of the rapidity of the child's grammatical development, since it posits that there are a universal set of innately endowed grammatical principles which determine how grammatical operations apply in natural language grammars. Since UG principles which are innately endowed are wired into the language faculty and so do not have to be learned by the child, this minimises the learning load placed on the child, and thereby maximises the learnability of natural language grammars.

1.6 Parameters

Thus far, we have argued that the language faculty incorporates a set of universal principles which guide the child in acquiring a grammar. However, it clearly cannot be the case that all aspects of the grammar of languages are universal ; if this were so, all natural language grammars would be the same and there would be no grammatical learning involved in language acquisition (i.e. no need for children to learn anything about the grammar of sentences in the language they are acquiring), only lexical learning (viz. learning the lexical items/words in the language and their idiosyncratic linguistic properties, e.g. whether a given item has an irregular plural or past-tense form). But although there are universal principles which determine the broad outlines of the grammar of natural languages, there also seem to be language-particular aspects of grammar which children have to learn as part of the task of acquiring their native language. Thus, language acquisition involves not only lexical learning but also some grammatical learning. Let's take a closer look at the grammatical learning involved, and what it tells us about the language acquisition process.

Clearly, grammatical learning is not going to involve learning those aspects of grammar which are determined by universal (hence innate) grammatical operations and principles. Rather, grammatical learning will be limited to those parameters (i.e. dimensions or aspects) of grammar which are subject to languageparticular variation (and hence vary from one language to another). In other words, grammatical learning will be limited to parametrised aspects of grammar (i.e. those aspects of grammar which are subject to parametric variation from
one language to another). The obvious way to determine just what aspects of the grammar of their native language children have to learn is to examine the range of parametric variation found in the grammars of different (adult) natural languages.

We can illustrate one type of parametric variation across languages in terms of the following contrast between the Italian examples in $(18 a, b)$ below, and their English counterparts in (18c,d):
(18) (a) Maria parla francese
(b) Parla francese
(c) Maria speaks French
(d) *Speaks French

As (18a) and (18c) illustrate, the Italian verb parlare and its English counterpart speak (as used here) are two-place predicates which require both a subject argument like Maria and an object argument like francese/French: in both cases, the verb is finite (more specifically it is a present-tense form) and agrees with its subject Maria (and hence is a third-person-singular form). But what are we to make of Italian sentences like (18b) Parla francese ($=$ 'Speaks French') in which the verb parla 'speaks' has the overt complement francese 'French' but has no overt subject? The answer suggested in work over the past few decades is that the verb in such cases has a null subject which can be thought of as a silent or invisible counterpart of the pronouns he/she which appear in the corresponding English translation 'He/She speaks French'. This null subject is conventionally designated as pro, so that (18b) has the structure pro parla francese 'pro speaks French', where pro is a null-subject pronoun.

There are two reasons for thinking that the verb parla 'speaks' has a null subject in (18b). Firstly, parlare 'speak' (in the relevant use) is a two-place predicate which requires both a subject argument and an object argument: under the nullsubject analysis, its subject argument is pro (a null pronoun). Secondly, finite verbs agree with their subjects in Italian: hence, in order to account for the fact that the verb parla is in the third-person-singular form in (18b), we need to posit that it has a third-person-singular subject; under the null-subject analysis, we can say that parla 'speaks' has a null pronoun (pro) as its subject, and that pro (if used to refer to Maria) is a third-person-feminine-singular pronoun.

The more general conclusion to be drawn from our discussion is that in languages like Italian, finite verbs (i.e. verbs which carry present/past etc. tense) can have either an overt subject like Maria or a null pro subject. But things are very different in English. Although a finite verb like speaks can have an overt subject like Maria in English, it cannot normally have a null pro subject - hence the ungrammaticality of (18d) *Speaks French. So, finite verbs in a language like Italian can have either overt or null subjects, but in a language like English, finite verbs can generally have only overt subjects, not null subjects. We can describe the differences between the two types of language by saying that Italian is a null-subject language, whereas English is a non-null-subject language. More generally, there appears to be parametric variation between languages as to whether or not they allow finite verbs to have null subjects. The relevant parameter (termed the Null-Subject Parameter) would appear to be a binary one, with only
two possible settings for any given language L, viz. Leither does or doesn't allow finite verbs to have null subjects. There appears to be no language which allows the subjects of some finite verbs to be null, but not others - e.g. no language in which it is OK to say Drinks wine (meaning 'He/she drinks wine') but not OK to say Eats pasta (meaning 'He/she eats pasta'). The range of grammatical variation found across languages appears to be strictly limited to just two possibilities - languages either do or don't systematically allow finite verbs to have null subjects. (A complication glossed over here is posed by languages in which only some finite verb forms can have null subjects: see Vainikka and Levy 1999 and the collection of papers in Jaeggli and Safir 1989 for illustration and discussion.)

A more familiar aspect of grammar which appears to be parametrised relates to word order, in that different types of language have different word orders in specific types of construction. One type of word-order variation can be illustrated in relation to the following contrast between English and Chinese questions:
(19) (a) What do you think he will say?
(b) Ni xiangxin ta hui shuo shenme You think he will say what?

In simple wh-questions in English (i.e. questions containing a single word beginning with wh- like what/where/when/why) the wh-expression is moved to the beginning of the sentence, as is the case with what in (19a). By contrast, in Chinese, the wh-word does not move to the front of the sentence, but rather remains in situ (i.e. in the same place as would be occupied by a corresponding non-interrogative expression), so that shenme 'what' is positioned after the verb shuo 'say' because it is the (direct object) complement of the verb, and complements of the relevant type are normally positioned after their verbs in Chinese. Thus, another parameter of variation between languages is the wh-parameter - a parameter which determines whether wh-expressions can be fronted (i.e. moved to the front of the overall interrogative structure containing them) or not. Significantly, this parameter again appears to be one which is binary in nature, in that it allows for only two possibilities - viz. a language either does or doesn't allow wh-movement (i.e. movement of wh-expressions to the front of the sentence). Many other possibilities for wh-movement just don't seem to occur in natural language: for example, there is no language in which the counterpart of who undergoes wh-fronting but not the counterpart of what (e.g. no language in which it is OK to say Who did you see? but not What did you see?). Likewise, there is no language in which wh-complements of some verbs can undergo fronting, but not wh-complements of other verbs (e.g. no language in which it is OK to say What did he drink? but not What did he eat?). It would seem that the range of parametric variation found with respect to wh-fronting is limited to just two possibilities: viz. a language either does or doesn't allow wh-expressions to be systematically fronted. (However, it should be noted that a number of complications are overlooked here in the interest of simplifying exposition: e.g.
some languages like English allow only one wh-expression to be fronted in this way, whereas others allow more than one wh-expression to be fronted; see Bošković 2002a for a recent account. An additional complication is posed by the fact that wh-movement appears to be optional in some languages, either in main clauses, or in main and complement clauses alike: see Denham 2000; Cheng and Rooryck 2000.)

Let's now turn to look at a rather different type of word-order variation, concerning the relative position of heads and complements within phrases. It is a general (indeed, universal) property of phrases that every phrase has a head word which determines the nature of the overall phrase. For example, an expression such as students of philosophy is a plural noun phrase because its head word (i.e. the key word in the phrase whose nature determines the properties of the overall phrase) is the plural noun students: the noun students (and not the noun philosophy) is the head word because the phrase students of philosophy denotes kinds of student, not kinds of philosophy. The following expression of philosophy which combines with the head noun students to form the noun phrase students of philosophy functions as the complement of the noun students. In much the same way, an expression such as in the kitchen is a prepositional phrase which comprises the head preposition in and its complement the kitchen. Likewise, an expression such as stay with me is a verb phrase which comprises the head verb stay and its complement with me. And similarly, an expression such as fond of fast food is an adjectival phrase formed by combining the head adjective fond with its complement of fast food.

In English all heads (whether nouns, verbs, prepositions, or adjectives etc.) normally precede their complements; however, there are also languages like Korean in which all heads normally follow their complements. In informal terms, we can say that English is a head-first language, whereas Korean is a head-last language. The differences between the two languages can be illustrated by comparing the English examples in (20) below with their Korean counterparts in (21):
(20) (a) Close the door (b) desire for change
$\begin{array}{lll}\text { (21) (a) Muneul dadara } & \text { (b) byunhwa-edaehan galmang } \\ \text { change-for } & \text { desire }\end{array}$

In the English verb phrase close the door in (20a), the head verb close precedes its complement the door; if we suppose that the door is a determiner phrase, then the head of the phrase ($=$ the determiner the) precedes its complement ($=$ the noun door). Likewise, in the English noun phrase desire for change in (20b), the head noun desire precedes its complement for change; the complement for change is in turn a prepositional phrase in which the head preposition for likewise precedes its complement change. Since English consistently positions heads before complements, it is a head-first language. By contrast, we find
precisely the opposite ordering in Korean. In the verb phrase muneul dadara (literally 'door close') in (21a), the head verb dadara 'close' follows its complement muneul 'door'; likewise, in the noun phrase byunhwa-edaehan galmang (literally 'change-for desire') in (21b) the head noun galmang 'desire' follows its complement byunhwa-edaehan 'change-for'; the expression byunhwa-edaehan 'change-for' is in turn a prepositional phrase whose head preposition edaehan 'for/about' follows its complement byunhwa 'change' (so that edaehan might more appropriately be called a postposition; prepositions and postpositions are differents kinds of adposition). Since Korean consistently positions heads after their complements, it is a head-last language. Given that English is head-first and Korean head-last, it is clear that the relative positioning of heads with respect to their complements is one word-order parameter along which languages differ; the relevant parameter is termed the Head-Position Parameter.

It should be noted, however, that word-order variation in respect of the relative positioning of heads and complements falls within narrowly circumscribed limits. There are many logically possible types of word-order variation which just don't seem to occur in natural languages. For example, we might imagine that in a given language some verbs would precede and others follow their complements, so that (e.g.) if two new hypothetical verbs like scrunge and plurg were coined in English, then scrunge might take a following complement, and plurg a preceding complement. And yet, this doesn't ever seem to happen: rather all verbs typically occupy the same position in a given language with respect to a given type of complement. (A complication overlooked here in the interest of expository simplicity is that some languages position some types of head before their complements, and other types of head after their complements: German is one such language, as you will see from exercise 1.2.)

What this suggests is that there are universal constraints (i.e. restrictions) on the range of parametric variation found across languages in respect of the relative ordering of heads and complements. It would seem as if there are only two different possibilities which the theory of Universal Grammar allows for: a given type of structure in a given language must either be head-first (with the relevant heads positioned before their complements), or head-last (with the relevant heads positioned after their complements). Many other logically possible orderings of heads with respect to complements appear not to be found in natural language grammars. The obvious question to ask is why this should be. The answer given by the theory of parameters is that the language faculty imposes genetic constraints on the range of parametric variation permitted in natural language grammars. In the case of the Head-Position Parameter (i.e. the parameter which determines the relative positioning of heads with respect to their complements), the language faculty allows only a binary set of possibilities - namely that a given kind of structure in a given language is either consistently head-first or consistently head-last.

We can generalise our discussion in this section in the following terms. If the Head-Position Parameter reduces to a simple binary choice, and if the Wh-Parameter and the Null-Subject Parameter also involve binary choices, it
seems implausible that binarity could be an accidental property of these particular parameters. Rather, it seems much more likely that it is an inherent property of parameters that they constrain the range of structural variation between languages, and limit it to a simple binary choice. Generalising still further, it seems possible that all grammatical variation between languages can be characterised in terms of a set of parameters, and that for each parameter, the language faculty specifies a binary choice of possible values for the parameter.

1.7 Parameter-setting

The theory of parameters outlined in the previous section has important implications for a theory of language acquisition. If all grammatical variation can be characterised in terms of a series of parameters with binary settings, it follows that the only grammatical learning which children have to undertake in relation to the syntactic properties of the relevant class of constructions is to determine (on the basis of their linguistic experience) which of the two alternative settings for each parameter is the appropriate one for the language being acquired. So, for example, children have to learn whether the native language they are acquiring is a null-subject language or not, whether it is a wh-movement language or not, and whether it is a head-first language or not . . . and so on for all the other parameters along which languages vary. Of course, children also face the formidable task of lexical learning - i.e. building up their vocabulary in the relevant language, learning what words mean and what range of forms they have (e.g. whether they are regular or irregular in respect of their morphology), what kinds of structures they can be used in and so on. On this view, the acquisition of grammar involves the twin tasks of lexical learning and parameter-setting.

This leads us to the following view of the language acquisition process. The central task which the child faces in acquiring a language is to construct a grammar of the language. The innate Language Faculty incorporates (i) a set of universal grammatical principles, and (ii) a set of grammatical parameters which impose severe constraints on the range of grammatical variation permitted in natural languages (perhaps limiting variation to binary choices). Since universal principles don't have to be learned, the child's syntactic learning task is limited to that of parameter-setting (i.e. determining an appropriate setting for each of the relevant grammatical parameters). For obvious reasons, the theory outlined here (developed by Chomsky at the beginning of the 1980s and articulated in Chomsky 1981) is known as Principles-and-Parameters Theory/PPT.

The PPT model clearly has important implications for the nature of the language acquisition process, since it vastly reduces the complexity of the acquisition task which children face. PPT hypothesises that grammatical properties which are universal will not have to be learned by the child, since they are wired into the language faculty and hence part of the child's genetic endowment: on the contrary, all the child has to learn are those grammatical properties which are subject to
parametric variation across languages. Moreover, the child's learning task will be further simplified if it turns out (as research since 1980 has suggested) that the values which a parameter can have fall within a narrowly specified range, perhaps characterisable in terms of a series of binary choices. This simplified parametersetting model of the acquisition of grammar has given rise to a metaphorical acquisition model in which the child is visualised as having to set a series of switches in one of two positions (up/down) - each such switch representing a different parameter. In the case of the Head-Position Parameter, we can imagine that if the switch is set in the $u p$ position (for particular types of head), the language will show head-first word order in relevant kinds of structure, whereas if it is set in the down position, the order will be head-last. Of course, an obvious implication of the switch metaphor is that the switch must be set in either one position or the other, and cannot be set in both positions. (This would preclude, for example, the possibility of a language having both head-first and head-last word order in a given type of structure.)

The assumption that acquiring the grammar of a language involves the relatively simple task of setting a number of grammatical parameters provides a natural way of accounting for the fact that the acquisition of specific parameters appears to be a remarkably rapid and error-free process in young children. For example, young children acquiring English as their native language seem to set the Head-Position Parameter at its appropriate head-first setting from the very earliest multiword utterances they produce (at around eighteen months of age), and seem to know (tacitly, not explicitly, of course) that English is a head-first language. Accordingly, the earliest verb phrases and prepositional phrases produced by young children acquiring English consistently show verbs and prepositions positioned before their complements, as structures such as the following indicate (produced by a young boy called Jem/James at age twenty months; head verbs are italicised in (22a) and head prepositions in (22b), and their complements are in non-italic print):
(22) (a) Touch heads. Cuddle book. Want crayons. Want malteser. Open door. Want biscuit. Bang bottom. See cats. Sit down
(b) On Mummy. To lady. Without shoe. With potty. In keyhole. In school. On carpet. On box. With crayons. To Mummy

The obvious conclusion to be drawn from structures like (22) is that children like Jem consistently position heads before their complements from the very earliest multiword utterances they produce. They do not use different orders for different words of the same type (e.g. they don't position the verb see after its complement but the verb want before its complement), or for different types of words (e.g. they don't position verbs before and prepositions after their complements).

A natural question to ask at this point is how we can provide a principled explanation for the fact that from the very onset of multiword speech we find English children correctly positioning heads before their complements. The Principles-and-Parameters model enables us to provide an explanation for why
children manage to learn the relative ordering of heads and complements in such a rapid and error-free fashion. The answer provided by the model is that learning this aspect of word order involves the comparatively simple task of setting a binary parameter at its appropriate value. This task will be a relatively straightforward one if the language faculty tells the child that the only possible choice is for a given type of structure in a given language to be uniformly head-first or uniformly head-last. Given such an assumption, the child could set the parameter correctly on the basis of minimal linguistic experience. For example, once the child is able to parse (i.e. grammatically analyse) an adult utterance such as Help Daddy and knows that it contains a verb phrase comprising the head verb help and its complement Daddy, then (on the assumption that the language faculty specifies that all heads of a given type behave uniformly with regard to whether they are positioned before or after their complements), the child will automatically know that all verbs in English are canonically (i.e. normally) positioned before their complements.

1.8 Evidence used to set parameters

One of the questions posed by the parameter-setting model of acquisition outlined here is just how children come to arrive at the appropriate setting for a given parameter, and what kind(s) of evidence they make use of in setting parameters. As Chomsky notes (1981, pp. 8-9), there are two types of evidence which we might expect to be available to the language learner in principle, namely positive evidence and negative evidence. Positive evidence comprises a set of observed expressions illustrating a particular phenomenon: for example, if children's speech input is made up of structures in which heads precede their complements, this provides them with positive evidence which enables them to set the Head-Position Parameter appropriately. Negative evidence might be of two kinds - direct or indirect. Direct negative evidence might come from the correction of children's errors by other speakers of the language. However, (contrary to what is often imagined) correction plays a fairly insignificant role in language acquisition, for two reasons. Firstly, correction is relatively infrequent: adults simply don't correct all the errors children make (if they did, children would soon become inhibited and discouraged from speaking). Secondly, children are notoriously unresponsive to correction, as the following dialogue (from McNeill 1966, p. 69) illustrates:
(23) Child: Nobody don't like me
adult: No, say: ‘Nobody likes me’
Child: Nobody don't like me
(8 repetitions of this dialogue)
adult: No, now listen carefully. Say 'Nobody likes me’
CHild: Oh, nobody don't likes me

As Hyams (1986, p. 91) notes: 'Negative evidence in the form of parental disapproval or overt corrections has no discernible effect on the child's developing syntactic ability.' (For further evidence in support of this conclusion, see McNeill 1966; Brown, Cazden and Bellugi 1968; Brown and Hanlon 1970; Braine 1971; Bowerman 1988; Morgan and Travis 1989; and Marcus 1993.)

Direct negative evidence might also take the form of self-correction by other speakers. Such self-corrections tend to have a characteristic intonation and rhythm of their own, and may be signalled by a variety of fillers (such as those italicised in (24) below):
(24) (a) The picture was hanged . . . or rather hung . . . in the Tate Gallery
(b) The picture was hanged . . . sorry hung . . . in the Tate Gallery
(c) The picture was hanged . . . I mean hung . . . in the Tate Gallery

However, self-correction is arguably too infrequent a phenomenon to play a major role in the acquisition process.

Rather than say that children rely on direct negative evidence, we might instead imagine that they learn from indirect negative evidence (i.e. evidence relating to the non-occurrence of certain types of structure). Suppose that a child's experience includes no examples of structures in which heads follow their complements (e.g. no prepositional phrases like * dinner after in which the head preposition after follows its complement dinner, and no verb phrases such as * cake eat in which the head verb eat follows its complement cake). On the basis of such indirect negative evidence (i.e. evidence based on the non-occurrence of head-last structures), the child might infer that English is not a head-last language.

Although it might seem natural to suppose that indirect negative evidence plays some role in the acquisition process, there are potential learnability problems posed by any such claim. After all, the fact that a given construction does not occur in a given chunk of the child's experience does not provide conclusive evidence that the structure is ungrammatical, since it may well be that the nonoccurrence of the relevant structure in the relevant chunk of experience is an accidental (rather than a systematic) gap. Thus, the child would need to process a very large (in principle, infinite) chunk of experience in order to be sure that non-occurrence reflects ungrammaticality. It seems implausible to suppose that children store massive chunks of experience in this way and search through it for negative evidence about the non-occurrence of certain types of structure. In any case, given the assumption that parameters are binary and single-valued, negative evidence becomes entirely unnecessary: after all, once the child hears a prepositional phrase like with Daddy in which the head preposition with precedes its complement Daddy, the child will have positive evidence that English allows head-first order in prepositional phrases; and given the assumptions that the HeadPosition Parameter is a binary one and that each parameter allows only a single setting, then it follows (as a matter of logical necessity) that if English allows headfirst prepositional phrases, it will not allow head-last prepositional phrases. Thus, in order for the child to know that English doesn't allow head-last prepositional
phrases, the child does not need negative evidence from the non-occurrence of such structures, but rather can rely on positive evidence from the occurrence of the converse order in head-first structures (on the assumption that if a given structure is head-first, UG specifies that it cannot be head-last). And, as we have already noted, a minimal amount of positive evidence is required in order to identify English as a uniformly head-first language (i.e. a language in which all heads precede their complements). Learnability considerations such as these have led Chomsky (1986a, p. 55) to conclude that 'There is good reason to believe that children learn language from positive evidence only.' The claim that children do not make use of negative evidence in setting parameters is known as the No-Negative-Evidence Hypothesis; it is a hypothesis which is widely assumed in current acquisition research. (See Guasti 2002 for a technical account of language acquisition within the framework used here.)

1.9 Summary

We began this chapter in $\S 1.2$ with a brief look at traditional grammar, noting that this is a taxonomic (i.e. classificatory) system in which the syntax of a language is essentially described in terms of a list of phrase, clause and sentence types found in the language. We noted that Chomsky adopts a very different cognitive approach to the study of language in which a grammar of a language is a model of the internalised grammatical competence (or I-language) of a native speaker of the language. We saw that Chomsky's ultimate goal is to develop a theory of Universal Grammar/UG which characterises the defining properties of the grammars of natural languages - a theory which is universal, explanatory and constrained, and which provides descriptively adequate grammars which are minimally complex and hence learnable. In $\S 1.4$, we went on to look at the nature of language acquisition, and argued that the most fundamental question for a theory of language acquisition to answer is why it should be that after a period of a year and a half during which there is little evidence of grammatical development visible in the child's speech output, most of the grammar of the language is acquired by children during the course of the following year. We outlined the innateness hypothesis put forward by Chomsky, under which the course of language acquisition is genetically predetermined by an innate language faculty. In $\S 1.5$, we noted Chomsky's claim that the language faculty incorporates a theory of Universal Grammar/UG which embodies a set of universal grammatical principles that determine the ways in which grammatical operations work; and we saw that the syntax of questions in English provides evidence for postulating that syntactic operations are constrained by a universal Locality Principle. In §1.6, we went on to argue that the grammars of natural languages vary along a number of parameters. We looked at three such parameters - the Wh-Parameter, the Null-Subject Parameter, and the Head-Position Parameter, arguing that each of these parameters is binary in nature by virtue of having two alternative
settings. In §1.7, we argued that the syntactic learning task which children face involves parameter-setting - i.e. determining which of two possible settings is the appropriate one for each parameter in the language being acquired. We further argued that if parameters have binary settings (e.g. so that a given kind of structure in a given language is either head-first or head-last), we should expect to find evidence that children correctly set parameters from the very onset of multiword speech: and we presented evidence to suggest that from their very earliest multiword utterances, children acquiring English as their mother tongue correctly set the Head-Position Parameter at the head-first value appropriate for English. We concluded that the acquisition of grammar involves the twin tasks of lexical learning (i.e. acquiring a lexicon/vocabulary) and parameter-setting. In §1.8, we asked what kind of evidence children use in setting parameters, and concluded that they use positive evidence from their experience of the occurrence of specific types of structure (e.g. head-first structures, or null-subject structures, or wh-movement structures).

Workbook section

Exercise 1.1

Below are examples of utterances produced by a girl called Lucy at age twenty-four months. Comment on whether Lucy has correctly set the three parameters discussed in the text (the Head-Position Parameter, the Wh-Parameter and the Null-Subject Parameter). Discuss the significance of the relevant examples for the parameter-setting model of acquisition.

Child sentence

1	What doing?
2	Want bye-byes
3	Mummy go shops
4	
5	Me have yoghurt?
6	Daddy doing?
	Think Teddy sleeping

$7 \quad$ What me having?
8 No me have fish
9 Where Daddy gone?
10 Gone office
11 Want bickies

What Teddy have?
Where going?
Me go shops
Daddy drinking coffee
What Nana eating?
Want choc'ate

Adult counterpart

'What are you doing?'
'I want to go to sleep'
'Mummy went to the shops'; this was in reply to 'Where did Mummy go?'
'Can I have a yoghurt?'
'What's Daddy doing?'
'I think Teddy's sleeping'; this was in reply to 'What d'you think Teddy's doing?'
'What am I having?'; this followed her mother saying 'Mummy's having fish for dinner'
'I'm not going to have fish'
'Where's Daddy gone?'
'He's gone to his office'
'She wants some biscuits'; this was her reply to 'What does Dolly want?'
'What can Teddy have?'
'Where are you going?'
'I want to go to the shops'
'Daddy's drinking coffee'
'What's Grandma eating?'
'He wants some chocolate'; this was her reply to 'Teddy wants some meat, does he?'

Dolly gone?
Watch te'vision
Me have more
In kitchen
Me play with Daddy
Open door

'Where's Dolly gone?'
'I'm going to watch television'
'I want to have some more'
'In the kitchen' (reply to 'Where's Mummy?')
'I want to play with Daddy'
'(Please) open the door!'

Helpful hints

If Lucy has correctly set the Wh-Parameter, we should expect to find that she systematically preposes wh-expressions and positions them sentence-initially. If she has correctly set the Head-Position Parameter, we should expect to find (e.g.) that she correctly positions the complement of a verb after the verb, and the complement of a preposition after the preposition; however, where the complement is a wh-expression, we expect to find that the complement is moved into sentence-initial position in order to satisfy the requirements of the Wh-Parameter (if the Wh-Parameter in some sense overrides the Head-Position Parameter). If Lucy has correctly set the Null-Subject Parameter, we should expect to find that she does not use null subjects in finite clauses: however, it seems clear that many of the sentences produced by two-year-old English children like Lucy do indeed have null subjects - and this led Nina Hyams in influential research $(1986,1992)$ to conclude that English children go through a null-subject stage in which they use Italian-style null finite (pro) subjects. If Hyams is right, this implies that children may sometimes start out with incorrect settings for a given parameter, and then later have to re-set the parameter a conclusion which (if true) would provide an obvious challenge to the simple parameter-setting model of acquisition outlined in the main text.

However, the picture relating to the use of null subjects is complicated by the fact that in addition to finite null subjects (i.e. the pro subject found in finite clauses in languages like Italian but not English), there are three other types of null subject which occur in adult English (and other languages). One are imperative null subjects, found in imperatives such as Shut up! and Don't say anything! (Imperatives are sentences used to issue orders; they are the kind of sentences you can put please in front of - as in Please don't say anything!) Another are non-finite null subjects which are found in a range of non-finite clauses in English (i.e. clauses containing a verb which is not marked for tense and agreement), including main clauses like Why worry? and complement clauses like those bracketed in I want [to go home] and I like [playing tennis]: the kind of null subject found in non-finite clauses in English is usually designated as PRO and called 'big PRO' (whereas the kind of null subject found in a finite clause in a null-subject language like Italian is designated as pro and called 'little pro'. The terms big and little here simply reflect the fact that PRO is written in 'big' capital letters, and pro in 'small' lower-case letters). A third type of null subject found in English are truncated null subjects - so called because English has a process of truncation which allows one or more words at the beginning of a sentence to be truncated (i.e. omitted) in certain types of style (e.g. diary styles of written English and informal styles of spoken English). Hence in colloquial English, a question like Are you doing anything tonight? can be reduced (by truncation) to You doing anything tonight? and further reduced (again by truncation) to Doing anything tonight? Truncation is also found in abbreviated written styles of English: for example, a diary entry might read Went to a party. Had a great time. Got totally smashed (with the subject I being truncated in each of the three sentences). An important constraint on truncation is that it can only affect words at the beginning of a sentence, not, for example, words in the middle of a sentence: hence, although we can truncate are and you in Are you doing anything tonight? we
can't truncate them in What are you doing tonight? (as we see from the ungrammaticality of *What doing tonight?) since here are and you are preceded by what and hence occur in the middle of the sentence.

What all of this means is that in determining whether Lucy has mis-set the Null-Subject Parameter and has misanalysed English as a null-subject language (i.e. a language which allows finite null 'little pro' subjects), you have to bear in mind the alternative possibility that the null subjects used by Lucy may represent one or more of the three kinds of null subject permitted in adult English (viz. imperative null subjects, truncated null subjects and non-finite null subjects).

Since truncation occurs only sentence-initially (at the beginning of a sentence), but finite null (little pro) subjects in a genuine null-subject language like Italian can occur in any subject position in a sentence, one way of telling the difference between a finite null subject and a truncated null subject is to see whether children omit subjects only when they are the first word in a sentence (which could be the result of truncation), or whether they also omit subjects in the middle of sentences (as is the case in a genuine null-subject language like Italian). Another way of differentiating the two is that in null-subject languages we find that overt pronoun subjects are only used for emphasis, so that in an Italian sentence like L'ho fatto io (literally 'It have done I') the subject pronoun io ' I ' has a contrastive interpretation, and the relevant sentence is paraphraseable in English as ' I was the one who did it' (where italics indicate contrastive stress); by contrast, in a non-null-subject language like English, subject pronouns are not intrinsically emphatic - e.g. he doesn't necessarily have a contrastive interpretation in an English diary-style sentence such as Went to see Jim. Thought he might help. A third way of telling whether truncation is operative in Lucy's grammar or not is to see whether expressions other than subjects can be truncated, as can happen in adult English (e.g. What time is it? can be reduced to Time is it? via truncation in rapid spoken English).

At first sight, it might seem unlikely that (some of) Lucy's null subjects could be non-finite ('big PRO') subjects, since all the clauses she produces in the data given above occur in finite contexts (i.e. in contexts where adults would use a finite clause). Note, however, that two-year-old children typically go through a stage which Wexler (1994) calls the Optional Infinitives/OI stage during which (in finite contexts) they sometimes produce finite clauses, and sometimes non-finite clauses (the relevant non-finite clauses typically containing an infinitive form like go or a participle like going/gone). Hence, an additional possibility to bear in mind is that some of Lucy's clauses may be non-finite and have non-finite ('big PRO') null subjects.

In relation to the sentences in 1-23, make the following assumptions. In 1 doing is a verb which has a null subject and the complement what; in 2 want is a verb which has a null subject and the complement bye-byes; in 3 go is a verb which has the subject Mummy and the complement shops; in 4 have is a verb which has the subject $m e$ and the complement yoghurt; in 5 doing is a verb which has the subject Daddy, and its complement is a null counterpart of what; in 6 think is a verb with a null subject and its complement is Teddy sleeping (with Teddy serving as the subject of the verb sleeping); in 7, having is a verb which has the subject me and the complement what; in 8 no is a negative particle which has the complement me have fish (assume that no is the kind of word which doesn't have a subject), and have is a verb which has the subject $m e$ and the complement fish; in 9 gone is a verb which has the subject Daddy and the complement where; in 10 gone is a verb which has a null subject and the complement office; in 11 want is a verb which has a null subject and the complement bickies; in 12 have is a verb which has the subject Teddy and the complement what; in 13 going is a verb which has a null subject and the complement where; in 14

Abstract

go is a verb which has the subject me and the complement shops; in 15 drinking is a verb which has the subject Daddy and the complement coffee; in 16 eating is a verb which has the subject Nana and the complement what; in 17 want is a verb which has a null subject and the complement choc'ate; in 18 gone is a verb which has the subject Dolly and its complement is a null counterpart of where; in 19 watch is a verb which has a null subject and the complement te'vision; in 20 have is a verb which has the subject $m e$ and the complement more; 21 is a prepositional phrase in which the preposition in has the complement kitchen (assume that phrases don't have subjects); in 22 play is a verb which has the subject me and the complement with Daddy (and in turn Daddy is the complement of the preposition with); and in 23 open is a verb whose subject is null and whose complement is door.

Model answer for sentence 1

In What doing? the two-place predicate doing has an overt object what and a null subject of some kind. Since the object what does not occupy the normal postverbal position associated with objects in English (cf. the position of the object something in Do something!), what has clearly undergone wh-movement: this suggests that Lucy has correctly set the wh-parameter at the 'requires wh-movement' value appropriate for English. Because the object complement what has undergone wh-movement, we cannot tell (from this sentence) whether Lucy generally positions (unmoved) complements after their heads: in other words, this particular sentence provides us with no evidence of whether Lucy has correctly set the Head-Position Parameter or not (though other examples in the exercise do). Much more difficult to answer is the question of whether Lucy has correctly set the Null-Subject Parameter at the value appropriate to English, and hence (tacitly) 'knows' that finite clauses do not allow a null finite pro subject in English. At first sight, it might seem as if Lucy has wrongly analysed English as a null-subject language (and hence mis-set the Null-Subject Parameter), since What doing? has a null subject of some kind. But the crucial question here is: what kind of null subject does the verb doing have? It clearly cannot be an imperative null subject, since the sentence is interrogative in force, not imperative. Nor can it be a truncated null subject, since truncated subjects only occur in sentence-initial position (i.e. as the first word in a sentence), and what is the first word in the sentence in What doing? (since preposed wh-words occupy sentence-initial position in questions). This leaves two other possibilities. One is that the null subject in What doing? is the 'little pro' subject found in finite clauses in genuine null-subject languages like Italian: since the verb doing is non-finite, this would entail positing that the sentence What doing? contains a null (i.e. 'silent' or 'invisible') finite auxiliary (raising questions about why the auxiliary is null rather than overt); this in turn would mean that Lucy has indeed mis-set the Null-Subject Parameter (raising questions about how she comes to do so, and why she doesn't mis-set the other two parameters we are concerned with here). However, an alternative possibility is that the structure What doing? is a non-finite clause (like adult questions such as Why worry?) and has the kind of non-finite ('big PRO') null subject found in non-finite clauses in many languages (English included). If so (i.e. if What doing is a non-finite clause which has the structure What PRO doing?), there would be no evidence that Lucy has mis-set the Null-Subject Parameter - i.e. no evidence that she ever produces finite clauses with a 'little pro' subject. This in turn would mean that we can maintain the hypothesis put forward in the main text that children correctly set parameters at their appropriate value from the very earliest stages of the acquisition of syntax. The error Lucy makes in producing sentences like What doing? would be in not knowing that main clauses generally have to be finite in English, and that main clause questions generally have to contain a finite auxiliary.

Exercise 1.2

In the text, we noted that the Head-Position Parameter has a uniform head-first setting (in the sense that all heads precede their complements) in English, and a uniform head-last setting (in the sense that all heads follow their complements) in Korean. However, we also noted that there are languages in which some heads precede their complements (giving rise to head-first structures), and others follow them (giving rise to head-last structures). German is argued by some to be a language of this latter type, in which (e.g.) prepositions, determiners and complementisers canonically precede their complements, but (auxiliary and main) verbs canonically follow their complements. Discuss the extent to which German sentences like those in $1-5$ below (kindly provided for me by Harald Clahsen) bear out this claim, and say which examples prove problematic and why.

```
1 Hans muss stolz auf seine Mutter sein
    Hans must proud of his mother be
    'Hans must be proud of his mother'
```

2 Hans muss auf seine Mutter stolz sein
Hans must of his mother proud be
'Hans must be proud of his mother'
3 Hans geht den Fluss entlang
Hans goes the river along
'Hans goes along the river'
4 Hans muss die Aufgaben lösen
Hans must the exercises do
'Hans must do the exercises'
5 Ich glaube dass Hans die Aufgaben lösen muss
I think that Hans the exercises do must
'I think that Hans must do the exercises'

Likewise, in the text we claimed that the Wh-parameter has a uniform setting in that languages either do or don't systematically prepose wh-expressions. Discuss the potential problems posed for this claim by colloquial French interrogative structures such as those below:
6 Où tu vas?
Where you go?
'Where are you going?'
$7 \quad \mathrm{Tu}$ vas où?
You go where?
'Where are you going?'
8 Dis-moi où tu vas
Tell-me where you go
'Tell me where you are going'
$9 \quad$ *Dis-moi tu vas où
Tell-me you go where
(intended as synonymous with 8)

Helpful hints

In relation to the German sentences $1-5$, make the following assumptions about their structure. In 1 and 2 muss is a finite (modal) verb, Hans is its subject and stolz auf seine Mutter sein is its complement; sein is an infinitive verb form and stolz auf seine Mutter is its complement; stolz is an adjective, and auf seine Mutter is its complement; auf is a preposition and seine Mutter is its complement; seine is a determiner, and Mutter is its complement. In 3 geht is a verb, Hans is its subject and den Fluss entlang is its complement; entlang is a preposition (or, more precisely, a postposition) and den Fluss is its complement; den is a determiner and Fluss is its complement. In 4 muss is a finite verb, Hans is its subject and die Aufgaben lösen is its complement; lösen is a non-finite verb in the infinitive form, and die Aufgaben is its complement; die is a determiner and Aufgaben is its complement. In 5 glaube is a finite verb, ich is its subject and dass Hans die Aufgaben lösen muss is its complement; dass is a complementiser (i.e. a complement-clauseintroducing particle or conjunction) and Hans die Aufgaben lösen muss is its complement; muss is a finite verb, Hans is its subject, and die Aufgaben lösen is its complement; lösen is a non-finite verb in the infinitive form and die Aufgaben is its complement; die is a determiner and Aufgaben is its complement.

In relation to the examples in $1-5$, identify all the prepositions, complementisers and determiners you can find in the sentences, and say whether (as claimed above) these precede their complements. Likewise, identify all the (auxiliary and main) verbs found in the sentences and say whether they do (or do not) follow their complements, as claimed above. Pay particular attention to heads which are exceptions to the relevant generalisations about head position. Assume that exceptional word order can be accounted for either in lexical terms (e.g. that the lexical entry for a particular preposition may say that it does not occupy the canonical head-first position found in typical prepositional phrases), or in structural terms (in that a particular kind of head may undergo a movement operation which moves it out of its canonical position). In relation to possible structural factors which mask the underlying word order in German, bear in mind that German is traditionally claimed to be a verb-second/V2 language - i.e. a language in which a finite verb $(=\mathrm{V})$ in a main clause is moved out of its canonical position into second position in the clause, e.g. into a position where it immediately follows a subject expression like Hans or ich ‘I'. In addition, comment on the problems posed by determining the canonical setting of the Head-Position Parameter for adjectival phrases in German.

In relation to the French sentences 6-9, bear in mind that Où tu vas and Tu vas où are main clauses in 6 and 7 and complement clauses in 8 and 9 (in that they serve as the complement of the imperative verb dis 'tell' in 8 and 9). Is there an asymmetry between how wh-movement works in main clauses and in complement clauses? Does this suggest that it may be too simplistic to posit a Wh-Parameter under which wh-expressions either are or aren't systematically preposed? Why?

Model answer for sentence 1

In 1, the determiner seine 'his' precedes its complement Mutter 'mother', and the preposition auf 'of' precedes its complement seine Mutter 'his mother', in accordance with the suggested generalisation that determiners and prepositions in German show canonical head-first order and hence are typically positioned before their complements. The adjective stolz 'proud' also precedes its complement auf seine Mutter 'of his mother' in 1. By contrast, the verb sein 'be' follows its complement stolz auf seine Mutter 'proud of his mother'. One possible generalisation which this might suggest is the following:
(i) In German, verbs are canonically positioned after their complements, but other heads are canonically positioned before their complements

However, an apparent exception to the claim made in (i) is posed by the fact that the finite verb muss 'must' in the main clause precedes its own complement stolz auf seine Mutter sein 'proud of his mother be'. This apparently exceptional word order is arguably attributable to the status of German as a so-called verb-second language - i.e. a language which has a verb-fronting operation which moves a finite verb in a main clause out of the canonical clause-final position occupied by verbs (including by the verb muss in 5) into second position within the clause: as a result of this movement operation, the verb muss comes to follow the main clause subject Hans. (For a discussion of the structure of verb-second clauses in German, see Radford et al. 1999, pp. 349-54 - though some of the material there may not be clear to you until you have read the first six chapters in this book.)

2 Words

2.1 Overview

In this chapter, we look at the grammatical properties of words. We begin by looking at the categorial properties of words and at how we determine what grammatical category a given word belongs to (in a given use): in the course of our discussion we introduce some new categories which will not be familiar from traditional grammar. We go on to show that categorial information alone is not sufficient to describe the grammatical properties of words, ultimately concluding that the grammatical properties of words must be characterised in terms of sets of grammatical features.

2.2 Grammatical categories

In $\S 1.2$, we noted that words are assigned to grammatical categories in traditional grammar on the basis of their shared semantic, morphological and syntactic properties. The kind of semantic criteria (sometimes called 'notional' criteria) used to categorise words in traditional grammar are illustrated in muchsimplified form below:
(i) Verbs denote actions (go, destroy, buy, eat etc.)
(ii) Nouns denote entities (car, cat, hill, John etc.)
(iii) Adjectives denote states (ill, happy, rich etc.)
(iv) Adverbs denote manner (badly, slowly, painfully, cynically etc.)
(v) Prepositions denote location (under, over, outside, in, on etc.)

However, semantically based criteria for identifying categories must be used with care: for example, assassination denotes an action but is a noun, not a verb; illness denotes a state but is a noun, not an adjective; in fast food, the word fast denotes the manner in which the food is prepared but is an adjective, not an adverb; and Cambridge denotes a location but is a noun, not a preposition.

The morphological criteria for categorising words concern their inflectional and derivational properties. Inflectional properties relate to different forms of the same word (e.g. the plural form of a noun like cat is formed by adding the
plural inflection $-s$ to give the form cats); derivational properties relate to the processes by which a word can be used to form a different kind of word by the addition of an affix of some kind (e.g. by adding the suffix -ness to the adjective sad we can form the noun sadness). Although English has a highly impoverished system of inflectional morphology, there are nonetheless two major categories of word which have distinctive inflectional properties - namely nouns and verbs. We can identify the class of nouns in terms of the fact that they generally inflect for number, and thus have distinct singular and plural forms - cf. pairs such as dog/dogs, man/men, ox/oxen etc. Accordingly, we can differentiate a noun like fool from an adjective like foolish by virtue of the fact that only (regular, countable) nouns like fool - not adjectives like foolish - can carry the noun plural inflection -s: They are fools [noun]/*foolishes [adjective]

There are several complications which should be pointed out, however. One is the existence of irregular nouns like sheep which are invariable and hence have a common singular/plural form (cf. one sheep, two sheep). A second is that some nouns are intrinsically singular (and so have no plural form) by virtue of their meaning: only those nouns (called count/countable nouns) which denote entities which can be counted have a plural form (e.g. chair - cf. one chair, two chairs); some nouns denote an uncountable mass and for this reason are called mass/uncountable/non-count nouns, and so cannot be pluralised (e.g. furniture - hence the ungrammaticality of *one furniture, * two furnitures). A third is that some nouns (like scissors and trousers) have a plural form but no countable singular form. A fourth complication is posed by noun expressions which contain more than one noun; only the head noun in such expressions can be pluralised, not any preceding noun used as a modifier of the head noun: thus, in expressions such as car doors, policy decisions, skate boards, horse boxes, trouser presses, coat hangers etc. the second noun is the head and can be pluralised, whereas the first noun is a modifier and so cannot be pluralised.

In much the same way, we can identify verbs by their inflectional morphology in English. In addition to their uninflected base form ($=$ the citation form under which they are listed in dictionaries), verbs typically have up to four different inflected forms, formed by adding one of four inflections to the appropriate stem form: the relevant inflections are the perfect/passive participle suffix $-n$, the past-tense suffix $-d$, the third-person-singular present-tense suffix $-s$, and the progressive participle/gerund suffix -ing. Like most morphological criteria, however, this one is complicated by the irregular and impoverished nature of English inflectional morphology; for example, many verbs have irregular past or perfect forms, and in some cases either or both of these forms may not in fact be distinct from the (uninflected) base form, so that a single form may serve two or three functions (thereby neutralising or syncretising the relevant distinctions), as the table (3) below illustrates:

Base	Perfect	Past	Present	Progressive				
show	shown	showed	shows	showing				
go	gone	went	goes	going				
speak	spoken	spoke	speaks	speaking				
see	seen	saw	sees	seeing				
come		came	comes	coming				
wait	waited	waits	waiting					
meet	met	meets	meeting					
cut							cuts	cutting

(The largest class of verbs in English are regular verbs which have the morphological characteristics of wait, and so have past, perfect and passive forms ending in the suffix $-d$.) The picture becomes even more complicated if we take into account the verb be, which has eight distinct forms (viz. the base form be, the perfect form been, the progressive form being, the past forms was/were, and the present forms am/are/is). The most regular verb suffix in English is -ing, which can be attached to the base form of almost any verb (though a handful of defective verbs like beware are exceptions).

The obvious implication of our discussion of nouns and verbs here is that it would not be possible to provide a systematic account of English inflectional morphology unless we were to posit that words belong to grammatical categories, and that a specific type of inflection attaches only to a specific category of word. The same is also true if we wish to provide an adequate account of derivational morphology in English (i.e. the processes by which words are derived from other words): this is because particular derivational affixes can only be attached to words belonging to particular categories. For example, the negative prefixes unand in- can be attached to adjectives to form a corresponding negative adjective (as in pairs such as happy/unhappy and flexible/inflexible) but not to nouns (so that a noun like fear has no negative counterpart *unfear), nor to prepositions (so that a preposition like inside has no negative antonym *uninside). Similarly, the adverbialising (i.e. adverb-forming) suffix -ly in English can be attached only to adjectives (giving rise to adjective/adverb pairs such as sad/sadly) and cannot be attached to a noun like computer, or to a verb like accept, or to a preposition like with. Likewise, the nominalising (i.e. noun-forming) suffix -ness can be attached only to adjective stems (so giving rise to adjective/noun pairs such as coarse/coarseness), not to nouns, verbs or prepositions. (Hence we don't find -ness derivatives for a noun like boy, or a verb like resemble, or a preposition like down.) In much the same way, the comparative suffix -er can be attached to adjectives (e.g. tall/taller) and some adverbs (e.g. soon/sooner) but not to other types of word (e.g. woman/* womanner); and the superlative suffix -est can attach to adjectives (e.g. tall/tallest) but not other types of word (e.g. down/*downest; donkey/*donkiest, enjoy/*enjoyest). There is no point in multiplying examples
here: it is clear that derivational affixes have categorial properties, and any account of derivational morphology will clearly have to recognise this fact (see e.g. Aronoff 1976 and Fabb 1988).

As we noted earlier, there is also syntactic evidence for assigning words to categories: this essentially relates to the fact that different categories of words have different distributions (i.e. occupy a different range of positions within phrases or sentences). For example, if we want to complete the four-word sentence in (4) below by inserting a single word at the end of the sentence in the position: They have no -
we can use an (appropriate kind of) noun, but not a verb, preposition, adjective, or adverb, as we see from:
(5) (a) They have no car/consciencelfriends/ideas [nouns]
(b) *They have no went [verb]/for [preposition]/older [adjective]/conscientiously [adverb]

So, using the relevant syntactic criterion, we can define the class of nouns as the set of words which can terminate a sentence in the position marked - in (4).

Using the same type of syntactic evidence, we could argue that only a verb (in its infinitive/base form) can occur in the position marked - in (6) below to form a complete (non-elliptical) sentence:

They/it can -
Support for this claim comes from the contrasts in (7) below:
(7) (a) They can stay/leave/hide/die/starve/cry [verb]
(b) *They can gorgeous [adjective]/happily [adverb]/down [preposition]/door [noun]

And the only category of word which can occur after very (in the sense of extremely) is an adjective or adverb, as we see from (8) below:
(8) (a) He is very slow [very+adjective]
(b) He walks very slowly [very+adverb]
(c) *Very fools waste time [very+noun]
(d) *He very adores her [very+ verb]
(e) *It happened very after the party [very+preposition]
(But note that very can only be used to modify adjectives/adverbs which by virtue of their meaning are gradable and so can be qualified by words like very/rather/somewhat etc; adjectives/adverbs which denote an absolute state are ungradable by virtue of their meaning, and so cannot be qualified in the same way - hence the oddity of !Fifteen students were very present, and five were very absent, where ! marks semantic anomaly.)

Moreover, we can differentiate adjectives from adverbs in syntactic terms. For example, only adverbs can be used to end sentences such as He treats her -, She behaved -, He worded the statement -:
(9) (a) He treats her badly [adverb]/*kind [adjective]/*shame [noun]/*under [preposition]
(b) She behaved abominably [adverb]/* appalling [adjective]/* disgrace [noun]/* down [preposition]
(c) He worded the statement carefully [adverb]/* $\operatorname{good}[$ adjective] $/ *$ tact [noun]/* in [preposition]

And since adjectives (but not adverbs) can serve as the complement of the verb be (i.e. can be used after be), we can delimit the class of (gradable) adjectives uniquely by saying that only adjectives can be used to complete a four-word sentence of the form They are very -:
(10) (a) They are very tall/pretty/kind/nice [adjective]
(b) *They are very slowly [adverb]/gentlemen [noun]/astonish [verb]/outside [preposition]

Another way of differentiating between an adjective like real and an adverb like really is that adjectives are used to modify nouns, whereas adverbs are used to modify other types of expression:
(11) (a) There is a real crisis [real+noun]
(b) He is really nice [really+adjective]
(c) He walks really slowly [really+adverb]
(d) He is really down [really+ preposition]
(e) He must really squirm [really+verb]

Adjectives used to modify a following noun (like real in There is a real crisis) are traditionally said to be attributive in function, whereas those which do not modify a following noun (like real in The crisis is real) are said to be predicative in function.

As for the syntactic properties of prepositions, they alone can be intensified by right in the sense of 'completely', or by straight in the sense of 'directly':
(12) (a) Go right up the ladder
(b) He went right inside
(c) He walked straight into a wall
(d) He fell straight down

By contrast, other categories cannot be intensified by right/straight (in Standard English):
(13) (a) ${ }^{*}$ He right/straight despaired [right/straight + verb]
(b) *She is right/straight pretty [right/straight+adjective]
(c) *She looked at him right/straight strangely [right/straight+adverb]
(d) *They are right/straight fools [right/straight+noun]

It should be noted, however, that since right/straight serve to intensify the meaning of a preposition, they can only be combined with those (uses of) prepositions which express the kind of meaning which can be intensified in the appropriate way (so that He made right/straight for the exit is OK, but *He bought a present right/straight for Mary is not).

A further syntactic property of some prepositions (namely those which take a following noun or pronoun expression as their complement - traditionally called transitive prepositions) which they share in common with (transitive) verbs is the fact that they permit an immediately following accusative pronoun as their complement (i.e. a pronoun in its accusative form, like me/us/him/them):
(14) (a) She was against him [transitive preposition+accusative pronoun]
(b) She was watching him [transitive verb+accusative pronoun]
(c) *She is fond him [adjective+accusative pronoun]
(d) *She works independently him [adverb+accusative pronoun]
(e) *She showed me a photo him [noun+accusative pronoun]

Even though a preposition like with does not express the kind of meaning which allows it to be intensified by right or straight, we know it is a (transitive) preposition because it is invariable (so not e.g. a verb) and permits an accusative pronoun as its complement, e.g. in sentences such as He argued with me/us/him/them. (For obvious reasons, this test can't be applied to prepositions used intransitively without any complement, like those in $12 \mathrm{~b}, \mathrm{~d}$ above.)

2.3 Categorising words

Given that different categories have different morphological and syntactic properties, it follows that we can use the morphological and syntactic properties of a word to determine its categorisation (i.e. what category it belongs to). The morphological properties of a given word provide an initial rough guide to its categorial status: in order to determine the categorial status of an individual word, we can ask whether it has the inflectional and derivational properties of a particular category of word. For example, we can tell that happy is an adjective by virtue of the fact that it has the derivational properties of typical adjectives: it can take the negative prefix un- (giving rise to the negative adjective unhappy), the comparative/superlative suffixes -er/-est (giving rise to the forms happier/happiest), the adverbialising suffix -ly (giving rise to the adverb happily) and the nominalising suffix -ness (giving rise to the noun happiness).

However, we cannot always rely entirely on morphological clues, owing to the fact that morphology is sometimes irregular, sometimes subject to idiosyncratic restrictions and sometimes of limited productivity. For example, although regular adverbs (like quickly, slowly, painfully etc.) generally end in the derivational suffix -ly, this is not true of irregular adverbs like fast (e.g. in He walks fast); moreover, when they have the comparative suffix -er added to them, regular adverbs lose their -ly suffix because English is a monosuffixal language (in the sense of Aronoff and Fuhrhop 2002), so that the comparative form of the adverb quickly is quicker not *quicklier. What all of this means is that a word belonging to a given class may have only some of the relevant morphological properties, or even (in the case of a completely irregular item) none of them.

For example, although the adjective fat has comparative/superlative forms in -er/-est (cf. fat/fatter/fattest), it has no negative un- counterpart (cf. *unfat) and no adverb counterpart in -ly (cf. *fatly). Even more exceptional is the adjective little, which has no negative un- derivative (cf. *unlittle), no adverb -ly derivative (cf. *littlely/* littly), no noun derivative in -ness (at least in my variety of English - though littleness does appear in the Oxford English Dictionary), and no -er/-est derivatives (the forms *littler/* ${ }^{*}$ ittlest are likewise not grammatical in my variety).

What makes morphological evidence even more problematic is the fact that many morphemes may have more than one use. For example, $-n /-d$ and -ing are inflections which attach to verbs to give perfect or progressive forms (traditionally referred to as participles). However, certain $-n /-d$ and -ing forms seem to function as adjectives, suggesting that -ing and $-n /-d$ can also serve as adjectivalising (i.e. adjective-forming) morphemes. So, although a word like interesting can function as a verb (in sentences like Her charismatic teacher was gradually interesting her in syntax), it can also function as an adjective (used attributively in structures like This is an interesting book, and predicatively in structures like This book is very interesting). In its use as an adjective, the word interesting has the negative derivative uninteresting (as in It was a rather uninteresting play) and the -ly adverb derivative interestingly (though, like many other adjectives, it has no noun derivative in -ness, and no comparative or superlative derivatives in -er/-est). Similarly, although $-n /-d$ can serve as a perfect participle inflection (in structures like We hadn't known/expected that he would quit), it should be noted that many words ending in $-n /-d$ can also function as adjectives. For example, the word known in an expression such as a known criminal seems to function as an (attributive) adjective, and in this adjectival use it has a negative un- counterpart (as in expressions like the tomb of the unknown warrior). Similarly, the form expected functions as a perfect participle verb form in structures like We hadn't expected him to complain, but seems to function as an (attributive) adjective in structures such as He gave the expected reply; in its adjectival (though not in its verbal) use, it has a negative un- derivative, and the resultant negative adjective unexpected in turn has the noun derivative unexpectedness.

So, given the potential problems which arise with morphological criteria, it is unwise to rely solely on morphological evidence in determining categorial status: rather, we should use morphological criteria in conjunction with syntactic criteria (i.e. criteria relating to the range of positions that words can occupy within phrases and sentences). One syntactic test which can be used to determine the category that a particular word belongs to is that of substitution - i.e. seeing whether (in a given sentence) the word in question can be substituted by a regular noun, verb, preposition, adjective, or adverb etc. We can use the substitution technique to differentiate between comparative adjectives and adverbs ending in -er, since they have identical forms. For example, in the case of sentences like:
(15) (a) He is better at French than you
(b) He speaks French better than you
we find that better can be replaced by a more+adjective expression like more fluent in (15a) but not (15b), and conversely that better can be replaced by a more +adverb expression like more fluently in (15b) but not in (15a):
(16) (a) He is more fluent/* more fluently at French than you
(b) He speaks French more fluently/* more fluent than you

Thus, the substitution test provides us with syntactic evidence that better is an adjective in (15a), but an adverb in (15b).

The overall conclusion to be drawn from our discussion is that morphological evidence may sometimes be inconclusive, and has to be checked against syntactic evidence. A useful syntactic test which can be employed is that of substitution: for example, if a morphologically indeterminate word can be substituted by a regular noun wherever it occurs, then the relevant word has the same categorial status as the substitute word which can replace it, and so is a noun.

2.4 Functional categories

Thus far, we have looked at the five major grammatical categories of English (i.e. the five categories with the largest membership), viz. noun, verb, preposition, adjective and adverb. For typographical convenience, it is standard practice to use capital-letter abbreviations for categories, thus N for noun, V for verb, P for preposition, A for adjective and ADV for adverb. The words which belong to these five categories are traditionally said to be contentives (or content words), in that they have substantive descriptive content. However, in addition to content words languages also contain functors (or function words) i.e. words which serve primarily to carry information about the grammatical function of particular types of expression within the sentence (e.g. information about grammatical properties such as person, number, gender, case etc.). The differences between contentives and functors can be illustrated by comparing a (contentive) noun like car with a (functional) pronoun like they. A noun like car has obvious descriptive content in that it denotes an object which typically has four wheels and an engine, and it would be easy enough to draw a picture of a typical car; by contrast, a pronoun such as they has no descriptive content (e.g. you can't draw a picture of they), but rather is a functor which (as we shall see shortly) simply encodes a set of grammatical (more specifically, person, number and case) properties in that it is a third-person-plural nominative pronoun.

One test of whether words have descriptive content is to see whether they have antonyms (i.e. opposites): if a word has an antonym, it is a contentive (though if it has no antonym, you can't be sure whether it is a functor or a contentive). For
example, a noun/ N such as loss has the antonym gain; a verb/V such as rise has the antonym fall; an adjective/A such as tall has the antonym short; an adverb/ADV such as early (as in He arrived early) has the antonym late; and a preposition/P such as inside has the antonym outside. This reflects the fact that nouns, verbs, adjectives, adverbs and prepositions typically have substantive descriptive content, and so are contentives. By contrast, a particle like infinitival to, or an auxiliary like do (e.g. 'Do you want to smoke?'), or a determiner like the, or a pronoun like they, or a complementiser (i.e. complement-clause-introducing particle) like that (as used in a sentence like 'I said that I was tired') have no obvious antonyms, and thus can be said to lack descriptive content, and so to be functors. Using rather different (but equivalent) terminology, we can say that contentives have substantive lexical content (i.e. idiosyncratic descriptive content which varies from one lexical item/word to another), whereas functors have functional content. We can then conclude that nouns, verbs, adjectives, adverbs and prepositions are lexical or substantive categories (because the words belonging to these categories have substantive lexical/descriptive content) whereas particles, auxiliaries, determiners, pronouns and complementisers are functional categories (because words belonging to these categories have an essentially grammatical function). In the sections that follow, we take a closer look at the main functional categories found in English.

2.5 Determiners and quantifiers

The first type of functional category which we shall deal with is the category of determiner (abbreviated to D , or sometimes DET). Items such as those bold-printed in (17) below (as used there) are traditionally said to be (referential) determiners (because they determine the referential properties of the italicised noun expression which follows them):
(17) (a) The village store is closed
(b) This appalling behaviour has got to stop
(c) That dog of yours is crazy

Referential determiners are used to introduce referring expressions: an expression like the car in a sentence such as Shall we take the car? is a referring expression in the sense that it is typically used to refer to a specific car which is assumed to be familiar to the hearer/addressee.

A related class of words are those which belong to the category quantifier (abbreviated to Q), and this is traditionally said to include items like those boldprinted below:
(18) (a) Most good comedians tell some bad jokes
(b) Many students have no money
(c) Every true Scotsman hates all Englishmen
(d) Each exercise contains several examples

Such items are termed quantifiers because they serve to quantify the italicised noun expression which follows them. Since determiners and quantifiers are positioned in front of nouns (cf. the boys and many boys), and adjectives can similarly be positioned in front of nouns (cf. tall boys), an obvious question to ask at this point is why we couldn't just say that the determiners/quantifiers in (17) and (18) have the categorial status of adjectives. The answer is that any attempt to analyse determiners or quantifiers as adjectives in English runs up against a number of serious descriptive problems. Let's see why.

One reason for not subsuming determiners/quantifiers within the category of adjectives is that they are syntactically distinct from adjectives in a variety of ways. For example, adjectives can be iteratively (i.e. repeatedly) stacked in front of a noun they modify, in the sense that you can go on putting more and more adjectives in front of a given noun (as in handsome strangers, dark handsome strangers, tall dark handsome strangers, sensitive tall handsome strangers etc.). By contrast, neither determiners nor quantifiers can be stacked in this way (so that although we can have a quantifier+determiner+noun expression like both the twins, we cannot have a multiple determiner expression like *the these books or a multiple quantifier expression such as *all both twins). Moreover, determiners, quantifiers and adjectives can be used together to modify a noun, but when they do so, any determiner or quantifier modifying the noun has to precede any adjective(s) modifying the noun:
(19) (a) the same old excuses [determiner+adjective + adjective + noun]
(b) *same the old excuses [adjective + determiner+adjective + noun]
(c) *same old the excuses [adjective+adjective + determiner+noun]

Thus, determiners and quantifiers seem to have a different distribution (and hence to be categorially distinct) from adjectives.

A further difference between determiners/quantifiers and adjectives can be illustrated in relation to what speaker B can - and cannot - reply in the following dialogue:

SPEAKER A: What are you looking for?
SPEAKER B: *Chair/*Comfortable chair/A chair/Another chair/The chair/That chair
As noted earlier, nouns like chair have the property that they are countable (in the sense that we can say one chair, two chairs etc.), and in this respect they differ from mass nouns like furniture which are uncountable (hence we can't say * one furniture, *two furnitures etc). We see from (20) that a singular count noun like chair cannot stand on its own as a complete noun expression, nor indeed can it function as such even if modified by an adjective like comfortable; rather, a singular count noun requires a modifying determiner or quantifier like a/another/the/that etc. This provides us with clear evidence that determiners and quantifiers in English have a different categorial status from adjectives.

Indeed, a more general property which differentiates determiners/quantifiers from adjectives is that determiners/quantifiers tend to be restricted to modifying
nouns which have specific number (or countability) properties. For example, a modifies a singular count noun, much modifies a (singular) mass noun, several modifies a plural count noun, more modifies either a plural count or a (singular) mass noun:
(21) (a) Can you pass me a chair/* \mathbf{a} chairs/* ${ }^{*}$ furniture?
(b) He doesn't have much furniture/*much chair/* much chairs of his own
(c) He bought several chairs/*several chair/*several furniture in the sale
(d) Do we need more furniture/more chairs/* more chair?

By contrast, typical adjectives like nice, simple, comfortable, modern etc. can generally be used to modify all three types of noun:
(22) (a) We need a nice, simple, comfortable, modern chair
(b) We need some nice, simple, comfortable, modern chairs
(c) We need some nice, simple, comfortable, modern furniture
(It should be noted, however, that a determiner like the can also be used to modify singular/plural count and non-count nouns alike.)

It seems reasonable to suppose that determiners and quantifiers are functional categories whereas adjectives are a lexical/substantive category. After all, there is an obvious sense in which adjectives (e.g. thoughtful) have descriptive content but determiners and quantifiers do not - as we can illustrate in terms of the following contrast (? and ! are used to denote increasing degrees of semantic/pragmatic anomaly):
(23) (a) a thoughtful friend/?cat/??fish/?!pan/!problem
(b) a/another/every/the/this friend/cat/fish/pan/problem

As (23a) illustrates, an adjective like thoughtful can only be used to modify certain types of noun; this is because its descriptive content is such that it is only compatible with (e.g.) an expression denoting a rational (mind-possessing) entity. By contrast, determiners/quantifiers like those bold-printed in (23b) lack specific descriptive content, and hence can be used to modify any semantic class of noun (the only restrictions being grammatical in nature - e.g. $a(n) /$ another can only be used to modify a singular count noun expression). Thus, it seems appropriate to conclude that determiners and quantifiers are functional categories, and adjectives a lexical category.

Some linguists (e.g. Lyons 1999 and Adger 2003) treat quantifiers as a subtype of determiner and hence assign them to the category D : one possibility along these lines is to suppose that items like the/this/that are definite determiners, and those like a/some/many are indefinite determiners (and such a categorisation could be said to be implicit in the traditional claim that the is a 'definite article' and a an 'indefinite article'). However, the fact that a determiner like the can combine with a quantifier like all/every in a sentence like:
provides some syntactic evidence that the two have different distributions and hence may belong to different categories. Moreover, quantifiers and determiners exhibit different syntactic behaviour in respect of questions such as:
(25) (a) Who didn't he want [any pictures of $]$?
(b) ??Who didn't he want [the pictures of $]$?

In both cases, who is the complement of the word of and is moved to the front of the sentence from its original position after of. But whereas fronting who when it is the complement of the quantifier expression any pictures of results in a grammatical sentence, fronting who when it is the complement of a determiner expression like the pictures of generally leads to a sentence of rather more questionable grammaticality (the relevant phenomenon being known as the definiteness effect. It should be noted, however, that there is quite a bit of variation between speakers as to how good or bad they judge sentences like (25b) to be). So, sentences like (24) and (25) could be said to provide evidence that quantifiers and determiners are syntactically distinct and so belong to different categories (though there is no general agreement on this).

2.6 Pronouns

Traditional grammars posit a category of pronoun (which we can abbreviate as PRN) to denote a class of words which are said to 'stand in place of' (the meaning of the prefix pro-) or 'refer back to' noun expressions. However, there are reasons to think that there are a number of different types of pronoun found in English and other languages (see Déchaine and Wiltschko 2002). One such type is represented by the word one in the use illustrated below:
(26) (a) John has a red car and Jim has a blue one
(b) I'll take the green apples if you haven't got any red ones

From a grammatical perspective, one behaves like a regular count noun here in that it has the s-plural form ones and occurs in a position (after an adjective like blue/red) in which a count noun could occur. However, it is a pronoun in the sense that it has no descriptive content of its own, but rather takes its descriptive content from its antecedent (e.g. one in (26a) refers back to the noun car and so one is interpreted as meaning 'car'). Let's refer to this kind of pronoun as an \mathbf{N}-pronoun (or pronominal noun).

By contrast, in the examples in (27) below, the bold-printed pronoun seems to serve as a pronominal quantifier. In the first (italicised) occurrence in each pair of examples, it is a prenominal (i.e. noun-preceding) quantifier which modifies a following noun expression (viz. guests/miners/protesters/son/cigarettes/bananas); in the second (bold-printed) occurrence it has no noun expression following it and so functions as a pronominal quantifier:
(27) (a) All guests are welcome/All are welcome
(b) Many miners died in the accident/Many died in the accident
(c) Several protesters were arrested/Several were arrested
(d) Each son was envious of the other/Each was envious of the other
(e) I don't have any cigarettes/I don't have any
(f) We have no bananas/We have none

We might therefore refer to pronouns like those bold-printed in (27) as Qpronouns (or pronominal quantifiers). If (as will be suggested in chapter 6) question words like which?/what? in expressions like which books?/what idea? are interrogative quantifiers, it follows that interrogative pronouns like those italicised in the examples below:
(28) (a) What have you been doing?
(b) Which did you choose?
(c) Who is she talking to?
are also Q-pronouns.
A third type of pronoun are those bold-printed in the examples below:
(29) (a) I prefer this tie/I prefer this
(b) I haven't read that book/I haven't read that
(c) I don't particularly like these hats/I don't particularly like these
(d) Have you already paid for those items/Have you already paid for those?

Since the relevant words can also serve (in the italicised use) as prenominal determiners which modify a following noun, we can refer to them as D-pronouns (i.e. as pronominal determiners).

A further type of pronoun posited in traditional grammar are so-called personal pronouns like I/me/we/us/you/he/him/she/her/it/they/them. These are called personal pronouns not because they denote people (the pronoun it is not normally used to denote a person), but rather because they encode the grammatical property of person. In the relevant technical sense, I/me/my/we/us/our are said to be firstperson pronouns, in that they are expressions whose reference includes the person/s speaking; you/your are second-person pronouns, in that their reference includes the addressee/s (viz. the person/s being spoken to), but excludes the speaker/s; he/him/his/she/her/it/its/they/them/their are third-person pronouns in the sense that they refer to entities other than the speaker/s and addressee/s. Personal pronouns differ morphologically from nouns and other pronouns in modern English in that they generally have (partially) distinct nominative, accusative and genitive case forms, whereas nouns have a common nominative/accusative form and a distinct genitive 's form - as we see from the contrasts below:
(30) (a) John snores/He snores
(b) Find John!/Find him!
(c) Look at John's trousers!/Look at his trousers!

Personal pronouns like he/him/his and nouns like John/John's change their morphological form according to the position which they occupy within the sentence, so that the nominative forms he/John are required as the subject of a finite verb like snores, whereas the accusative forms him/John are required when used as the complement of a transitive verb like find (or when used as the complement of a transitive preposition), and the genitive forms his/John's are required (inter alia) when used to express possession: these variations reflect different case forms of the relevant items.

Personal pronouns are functors by virtue of lacking descriptive content: whereas a noun like dogs denotes a specific type of animal, a personal pronoun like they denotes no specific type of entity, but has to have its reference determined from the linguistic or non-linguistic context. Personal pronouns encode the grammatical properties of (first, second or third) person, (singular or plural) number, (masculine, feminine or neuter/inanimate) gender and (nominative, accusative or genitive) case, as shown in the table in (31) below:
(31) Table of personal pronoun forms

Person	Number	Gender	Nominative	Accusative	Genitive
1	SG	M / F	I	me	my/mine
1	PL	M / F	we	us	our/ours
2	$\mathrm{SG} / \mathrm{PL}$	M / F	you	you	your/yours
3	SG	M	he	him	his
3	SG	F	she	her	her/hers
3	SG	N	it	it	its
3	PL	$\mathrm{M} / \mathrm{F} / \mathrm{N}$	they	them	their/theirs

($\mathrm{SG}=$ singular; $\mathrm{PL}=$ plural; $\mathrm{M}=$ masculine; $\mathrm{F}=$ feminine; $\mathrm{N}=$ neuter. Note that some genitive pronouns have separate weak and strong forms, the weak form being used prenominally to modify a following noun expression - as in 'Take my car' and the strong form being used pronominally - as in 'Take mine'.) On the nature of gender features in English, see Namai (2000).

But what grammatical category do personal pronouns belong to? Studies by Postal (1966), Abney (1987), Longobardi (1994) and Lyons (1999) suggest that they are D-pronouns. This assumption would provide us with a unitary analysis of the syntax of the bold-printed items in the bracketed expressions in sentences such as $(32 a, b)$ below:
(32) (a) [We republicans] don't trust [you democrats]
(b) $[\mathbf{W e}]$ don't trust [you]

Since we and you in (32a) modify the nouns republicans/democrats and since determiners like the are typically used to modify nouns, it seems reasonable to suppose that we/you function as prenominal determiners in (32a). But if this is so, it is plausible to suppose that we and you also have the categorial status of
determiners (i.e. D-pronouns) in sentences like (32b). It would then follow that we/you have the categorial status of determiners in both (32a) and (32b), but differ in that they are used prenominally (i.e. with a following noun expression) in (32a), but pronominally (i.e. without any following noun expression) in (32b). Note, however, that third-person pronouns like he/she/it/they are typically used only pronominally - hence the ungrammaticality of expressions such as *they boys in standard varieties of English (though this is grammatical in some nonstandard varieties of English - e.g. that spoken in Bristol in South-West England). Whether or not such items are used prenominally, pronominally or in both ways is a lexical property of particular items (i.e. an idiosyncratic property of individual words).

Although the D-pronoun analysis has become the 'standard' analysis of personal pronouns over the past three decades, it is not entirely without posing problems. For example, a typical D-pronoun like these/those can be premodified by the universal quantifier all, but a personal pronoun like they cannot:
(33) (a) All these are broken
(b) All those are broken
(c) ${ }^{*}$ All they are broken

Such a contrast is unexpected if personal pronouns like they are D-pronouns like those/these, and clearly raises questions about the true status of personal pronouns (an issue which we leave open here).

Because a number of aspects of the syntax of pronouns remain to be clarified and because the category pronoun is familiar from centuries of grammatical tradition, the label PRN/pronoun will be used throughout the rest of this book to designate pronouns. It should, however, be borne in mind that there are a number of different types of pronoun (including N-pronouns, Qpronouns and D-pronouns), so that the term pronoun does not designate a unitary category. Some linguists prefer the alternative term proform (so that, for example, when used pronominally, one could be described as an \mathbf{N}-proform or pro-N).

2.7 Auxiliaries

Having looked at the nominal functional category pronoun, we now turn to look at the verbal functional category auxiliary. Traditional grammarians use this term to denote a special class of items which once functioned simply as verbs, but in the course of the evolution of the English language have become sufficiently distinct from main verbs that they are now regarded as belonging to a different category of auxiliary (conventionally abbreviated to AUX).

Auxiliaries differ from main verbs in a number of ways. Whereas a typical main verb like want may take a range of different types of complement (e.g. an infinitival to-complement as in I want [(you) to go home], or a noun expression as in I want
[lots of money]), by contrast auxiliaries typically allow only a verb expression as their complement, and have the semantic function of marking grammatical properties associated with the relevant verb, such as tense, aspect, voice, or mood. The items italicised in (34) below (in the use illustrated there) are traditionally categorised as auxiliaries taking a [bracketed] complement containing a boldprinted non-finite verb:
(34) (a) He has/had [gone]
(b) She is/was [staying at home]
(c) They are/were [taken away for questioning]
(d) He really does/did [say a lot]
(e) You can/could [help us]
(f) They may/might [come back]
(g) He will/would [get upset]
(h) I shall/should [return]
(i) You must [finish your assignment]
(j) You ought [to apologise]

In the uses illustrated here, have/be in (34a,b) are (perfect/progressive) aspect auxiliaries, be in (34c) is a (passive) voice auxiliary, do in (34d) a (present/past) tense auxiliary, and can/could/may/might/will/would/shall/should/must/ought in ($34 \mathrm{e}-\mathrm{j}$) modal auxiliaries. As will be apparent, ought differs from other modal auxiliaries like should which take an infinitive complement in requiring use of infinitival to.

There are clear syntactic differences between auxiliaries and verbs. For example (as we saw in §1.5), auxiliaries can undergo inversion (and thereby be moved into pre-subject position) in questions such as (35) below, where the inverted auxiliary is italicised and the subject is bold-printed:
(35) (a) Can you speak Japanese?
(b) Does he smoke?
(c) Is it raining?

By contrast, typical verbs do not themselves permit inversion, but rather require what is traditionally called Do-support (i.e. they have inverted forms which require the use of the auxiliary Do):
(36) (a) *Intends he to come?
(b) Does he intend to come?
(c) *Saw you the mayor?
(d) Did you see the mayor?
(e) *Plays he the piano?
(f) Does he play the piano?

A second difference between auxiliaries and verbs is that auxiliaries can generally be directly negated by a following not (which can usually attach to the auxiliary in the guise of its contracted form $\left.n^{\prime} t\right)$:
(37) (a) John could not/couldn't come to the party
(b) I do not/don't like her much
(c) He is not/isn't working very hard
(d) They have not/haven't finished

By contrast, verbs cannot themselves be directly negated by not/n't, but require indirect negation through the use of Do-support:
(38) (a) *They like not/liken't me
(b) They do not/don't like me
(c) ${ }^{*}$ I see not/seen't the point
(d) I do not/don't see the point
(e) *You came not/camen't
(f) You did not/didn't come
(Note that in structures such as John decided not to stay the negative particle not negates the infinitive complement to stay rather than the verb decided, as we see from the fact that the sentence can be paraphrased as 'John decided that he would not stay', not as 'John did not decide that he would stay.') And thirdly, auxiliaries can appear in sentence-final tags, as illustrated by the examples below (where the part of the sentence following the comma is traditionally referred to as a tag):
(39) (a) You don't like her, do you?
(b) He won't win, will he?
(c) She isn't working, is she?
(d) He can't drive, can he?

In contrast, verbs can't themselves be used in tags, but rather require the use of do-tags:
(40) (a) You like her, do/*like you?
(b) They want one, do/* want they?

So, on the basis of these (and other) syntactic properties, we can conclude that auxiliaries constitute a different category from verbs.

2.8 Infinitival to

A fourth type of functor found in English is the infinitive particle $t o-$ so called because the only kind of complement it allows is one containing a verb in the infinitive form (the infinitive form of the verb is its uninflected base form, i.e. the citation form found in dictionary entries). Typical uses of infinitival to are illustrated in (41) below:
(41) (a) I wonder whether to [go home]
(b) Many people want the government to [change course]
(c) We don't intend to [surrender]

In each example in (41), the [bracketed] complement of to is an expression containing a (bold-printed) verb in the infinitive form. But what is the categorial status of infinitival to?

We are already familiar with an alternative use of to as a preposition, e.g. in sentences such as:
(42) (a) He stayed to [the end of the film]
(b) He went to [the police]

In (42), to behaves like a typical (transitive) preposition in taking a [bracketed] the-phrase (i.e. determiner phrase) as its complement (viz. the end of the film and the police). It might therefore seem that to is a preposition in both uses one which takes a following determiner phrase complement (i.e. has a determiner expression as its complement) in (42) and a following verbal complement in (41).

However, infinitival to is very different in its behaviour from prepositional to in English: whereas prepositional to is a contentive with intrinsic lexical semantic content (e.g. it means something like 'as far as'), infinitival to seems to be a functor with no lexical semantic content. Because of its intrinsic lexical content, the preposition to can often be modified by intensifiers like right/straight (a characteristic property of prepositions), as in:
(43) (a) He stayed right to the end of the film
(b) He went straight to the police

By contrast, infinitival to (because of its lack of lexical content) cannot be intensified by right/straight:
(44) (a) *I wonder whether right/straight to go home
(b) *Many people want the government right/straight to change course
(c) *We don't intend right/straight to surrender

Moreover, what makes the prepositional analysis of infinitival to even more problematic is that it takes a different range of complements from prepositional to (and indeed different from the range of complements found with other prepositions). For example, prepositional to (like other prepositions) can have a noun expression as its complement, whereas infinitival to requires a verbal complement:
(45) (a) I intend to resign $[=\mathbf{t o}+$ verb $] / *$ I intend to resignation $[=\mathbf{t o}+$ noun $]$
(b) She waited for John to arrive $[=\mathbf{t o}+$ verb $] /$ She waited for John *to arrival $[=\mathbf{t o}+$ noun $]$
(c) Try to decide $[=\mathbf{t o}+$ verb $] / *$ Try to decision $[=\mathbf{t o}+$ noun $]$

Significantly, genuine prepositions in English (such as those bold-printed in the examples below) only permit a following verbal complement when the verb is in the -ing form (known as the gerund form in this particular use), not when the verb is in the uninflected base/infinitive form:
(46) (a) I am against capitulating/* capitulate
(b) Try and do it without complaining/* complain
(c) Think carefully before deciding/* decide

By contrast, infinitival to can only take a verbal complement when the verb is in the infinitive form, never when it is in the gerund form:
(47) (a) I want to go/* going there
(b) You must try to work/* working harder
(c) You managed to upset/* upsetting them

A further difference between infinitival and prepositional to (illustrated in (48) below) is that infinitival to permits ellipsis (i.e. omission) of its complement, whereas prepositional to does not:

SPEAKER A: Do you want to go to the cinema?
SPEAKER B: No, I don't really want to (ellipsis of complement of infinitival to) *No, I don't really want to go to (ellipsis of complement of prepositional to)

Thus, there are compelling reasons for assuming that infinitival to is a different lexical item (i.e. a different word) belonging to a different category from prepositional to. So what category does infinitival to belong to?

In the late 1970s, Chomsky suggested that there are significant similarities between infinitival to and a typical auxiliary like should. For example, they occupy a similar position within the clause:
(49) (a) It's vital [that John should show an interest]
(b) It's vital [for John to show an interest]

We see from (49) that to and should are both positioned between the subject John and the verb show. Moreover, just as should requires after it a verb in the infinitive form (cf. 'You should show/*showing/*shown more interest in syntax'), so too does infinitival to (cf. 'Try to show/*showing/*shown more interest in syntax'). Furthermore, infinitival to behaves like typical auxiliaries (e.g. should) but unlike typical non-auxiliary verbs (e.g. want) in allowing ellipsis of its complement:
(50) (a) I don't really want to go to the dentist's, but I know I should
(b) I know I should go to the dentist's, but I just don't want to
(c) *I know I should go to the dentist's, but I just don't want

The fact that to patterns like the auxiliary should in several respects strengthens the case for regarding infinitival to and auxiliaries as belonging to the same category. But what category?

Chomsky (1981, p. 18) suggested that the resulting category (comprising finite auxiliaries and infinitival to) be labelled INFL or Inflection, though (in accordance with the standard practice of using single-letter symbols to designate word categories) in later work (1986b, p. 3) he replaced INFL by the single-letter symbol \mathbf{I}. The general idea behind this label is that finite auxiliaries are inflected forms (e.g. in 'He doesn't know', the auxiliary doesn't carries the third-person-singular present-tense inflection $-s$), and infinitival to serves much the same function in English as infinitive inflections in languages like Italian which have overtly inflected infinitives (so that Italian canta-re = English to sing). Under the INFL analysis, an auxiliary like should is a finite I/INFL, whereas the particle to is an infinitival I/INFL.

However, in work since the mid 1990s, a somewhat different categorisation of auxiliaries and infinitival to has been adopted. As the pairs of examples in (34a-h) show, finite auxiliaries typically have two distinct forms - a present-tense form
and a corresponding past-tense form (cf. pairs such as does/did, is/was, has/had, can/could etc.). Thus, a common property shared by all finite auxiliaries is that they mark (present/past) Tense. In much the same way, it might be argued that infinitival to has Tense properties, as we can see from the contrast below:
(51) (a) We believe [the President may have been lying]
(b) We believe [the President to have been lying]

In (51a), the bracketed complement clause has a present-tense interpretation (paraphraseable as 'We believe it is possible that the President has been lying'): this is because it contains the present-tense auxiliary may. However, the bracketed infinitive complement clause in (51b) can also have a present-tense interpretation, paraphraseable as 'We believe the President has been lying.' Why should this be? A plausible answer is that infinitival to carries Tense in much the same way as an auxiliary like may does. In a sentence like (51b), to is most likely to be assigned a present-tense interpretation. However, in a sentence such as (52) below:

The Feds believed [the junkies to have already stashed the hash in the trash-can by the time they were caught]
infinitival to seems to have a past-tense interpretation, so that (52) is paraphraseable as 'The Federal Agents believed the junkies had already stashed the hash in the trash-can by the time they were caught.' What this suggests is that to has abstract (i.e. invisible) tense properties, and has a present-tense interpretation in structures like (51b) when the bracketed to-clause is the complement of a present-tense verb like believe, and a past-tense interpretation in structures like (52) when the bracketed to-clause is the complement of a past-tense verb like believed. If finite auxiliaries and infinitival to both have (visible or invisible) tense properties, we can assign the two of them to the same category of T/Tensemarker - as is done in much contemporary work. The difference between them is sometimes said to be that auxiliaries carry finite tense (i.e. they are overtly specified for tense, in the sense that e.g. does is overtly marked as a present-tense form and did as a past-tense form) whereas infinitival to carries non-finite tense (i.e. it has an unspecified tense value which has to be determined from the context. For a more technical discussion of tense, see Julien 2001.)

2.9 Complementisers

The last type of functional category which we shall look at in this chapter is that of complementiser (abbreviated to COMP in earlier work and to \mathbf{C} in more recent work): this is a term employed to describe the kind of (italicised) word which is used to introduce complement clauses such as those bracketed below:
(53) (a) I think [that you may be right]
(b) I doubt [if you can help me]
(c) I'm anxious [for you to receive the best treatment possible]

Each of the bracketed clauses in (53) is a complement clause, in that it functions as the complement of the word immediately preceding it (think/doubt/anxious); the italicised word which introduces each clause is known in work since 1970 as a complementiser (but was known in more traditional work as a particular type of subordinating conjunction).

Complementisers are functors in the sense that they encode particular sets of grammatical properties. For example, complementisers encode (non-)finiteness by virtue of the fact that they are intrinsically finite or non-finite. More specifically, the complementisers that and if are inherently finite in the sense that they can only be used to introduce a finite clause (i.e. a clause containing a present- or past-tense auxiliary or verb), and not e.g. an infinitival to-clause; by contrast, for is an inherently infinitival complementiser, and so can be used to introduce a clause containing infinitival to, but not a finite clause containing a tensed auxiliary like (past-tense) should; compare the examples in (53) above with those in (54) below:
(54) (a) *I think [that you to be right]
(b) ${ }^{*}$ I doubt [if you to help me]
(c) *I'm anxious [for you should receive the best treatment possible]
$(54 a, b)$ are ungrammatical because that/if are finite complementisers and so cannot introduce an infinitival to clause; (54c) is ungrammatical because for is an infinitival complementiser and so cannot introduce a finite clause containing a past-tense auxiliary like should.

Complementisers in structures like (53) serve three grammatical functions. Firstly, they mark the fact that the clause they introduce is an embedded clause (i.e. a clause which is contained within another expression - in this case, within a main clause containing think/doubt/anxious). Secondly, they serve to indicate whether the clause they introduce is finite or non-finite (i.e. denotes an event taking place at a specified or unspecified time): that and if serve to introduce finite clauses, while for introduces non-finite (more specifically, infinitival) clauses. Thirdly, complementisers mark the force of the clause they introduce: typically, if introduces an interrogative (i.e. question-asking) clause, that introduces a declarative (statement-making) clause and for introduces an irrealis clause (i.e. a clause denoting an 'unreal' or hypothetical event which hasn't yet happened and may never happen).

However, an important question to ask is whether we really need to assign words such as for/that/if (in the relevant function) to a new category of C/complementiser, or whether we couldn't simply treat (e.g.) for as a preposition, that as a determiner and if as an adverb. The answer is 'No', because there are significant differences between complementisers and other apparently
similar words. For example, one difference between the complementiser for and the preposition for is that the preposition for has substantive lexical semantic content and so (in some but not all of its uses) can be intensified by straight/right, whereas the complementiser for is a functor and can never be so intensified:
(55) (a) He headed straight/right for the pub [for = preposition]
(b) The dog went straight/right for her throat [for $=$ preposition]
(c) *He was anxious straight/right for nobody to leave [for = complementiser]
(d) *It is vital straight/right for there to be peace [for $=$ complementiser]

Moreover, the preposition for and the complementiser for also differ in their syntactic behaviour. For example, a clause introduced by the complementiser for can be the subject of an expression like would cause chaos, whereas a phrase introduced by the preposition for cannot:
(56) (a) For him to resign would cause chaos [=for-clause]
(b) ${ }^{*}$ For him would cause chaos [=for-phrase]

What makes it even more implausible to analyse infinitival for as a preposition is the fact that (bold-printed) prepositions in English aren't generally followed by a [bracketed] infinitive complement, as we see from the ungrammaticality of:
(57) (a) *She was surprised at [there to be nobody to meet her]
(b) *I'm not sure about [you to be there]
(c) ${ }^{*}$ I have decided against [us to go there]

On the contrary, as examples such as (46) above illustrate, the only verbal complements which can be used after prepositions are gerund structures containing a verb in the -ing form.

A further difference between the complementiser for and the preposition for is that the noun or pronoun expression following the preposition for (or a substitute interrogative expression like who?/what?/which one?) can be preposed to the front of the sentence (with or without for) if for is a preposition, but not if for is a complementiser. For example, in (58) below, for functions as a preposition and the (distinguished) nominal Senator Megabucks functions as its complement, so that if we replace Senator Megabucks by which senator? the wh-expression can be preposed either on its own (in informal styles of English) or together with the preposition for (in formal styles):
(58) (a) I will vote for Senator Megabucks in the primaries
(b) Which senator will you vote for in the primaries? [= informal style]
(c) For which senator will you vote in the primaries? [= formal style]

However, in (59a) below, the italicised expression is not the complement of the complementiser for (the complement of for in (59a) is the infinitival clause Senator Megabucks to keep his cool), but rather is the subject of the expression to keep his cool; hence, even if we replace Senator Megabucks by the interrogative wh-phrase which senator, the wh-expression can't be preposed (with or without for):
(59) (a) They were anxious for Senator Megabucks to keep his cool
(b) *Which senator were they anxious for to keep his cool?
(c) ${ }^{*}$ For which senator were they anxious to keep his cool?

Furthermore, when for functions as a complementiser, the whole for-clause which it introduces can often (though not always) be substituted by a clause introduced by another complementiser; for example, the italicised for-clause in (60a) below can be replaced by the italicised that-clause in (60b):
(60) (a) Is it really necessary for there to be a showdown?
(b) Is it really necessary that there (should) be a showdown?

By contrast, the italicised for-phrase in (61a) below cannot be replaced by a that-clause, as we see from the ungrammaticality of (61b):
(61) (a) We are heading for a general strike
(b) *We are heading that there (will) be a general strike

So, there is considerable evidence in favour of drawing a categorial distinction between the preposition for and the complementiser for: they are different lexical items (i.e. words) belonging to different categories.

Consider now the question of whether the complementiser that could be analysed as a determiner. At first sight, it might seem as if such an analysis could provide a straightforward way of capturing the apparent parallelism between the two uses of that in sentences such as the following:
(62) (a) I refuse to believe that [rumour]
(b) I refuse to believe that [Randy Rabbit runs Benny's Bunny Bar]

Given that the word that has the status of a prenominal determiner in sentences such as (62a), we might suppose that it has the function of a preclausal determiner (i.e. a determiner introducing the following italicised clause Randy Rabbit runs Benny's Bunny Bar) in sentences such as (62b).

However, there is evidence against a determiner analysis of the complementiser that. Part of this is phonological in nature. In its use as a complementiser (in sentences such as (62b) above), that typically has the reduced form/ðət/, whereas in its use as a determiner (e.g. in sentences such as (62a) above), that invariably has the unreduced form /ðæt/: the phonological differences between the two suggest that we are dealing with two different lexical items here (i.e. two different words), one of which functions as a complementiser and typically has a reduced vowel, the other of which functions as a determiner and always has an unreduced vowel.

Moreover, that in its use as a determiner (though not in its use as a complementiser) can be substituted by another determiner (such as this/the):
(63) (a) Nobody else knows about that incident/this incident/the incident (= determiner that)
(b) I'm sure that it's true/*this it's true/** the it's true (= complementiser that)

Similarly, the determiner that can be used pronominally (without any complement), whereas the complementiser that cannot:
(64) (a) Nobody can blame you for that mistake (prenominal determiner)
(b) Nobody can blame you for that (pronominal determiner)
(65) (a) I'm sure that you are right (preclausal complementiser)
(b) *I'm sure that (pronominal complementiser)

The clear phonological and syntactic differences between the two argue that the word that which serves to introduce complement clauses is a different item (belonging to the category $\mathrm{C} /$ complementiser) from the determiner/D that which modifies noun expressions.

The third item which we earlier suggested might function as a complementiser in English is interrogative if. However, at first sight, it might seem as if there is a potential parallelism between if and interrogative wh-adverbs like when/where/whether, since they appear to occupy the same position in sentences like:

I don't know [where/when/whether/if he will go]
Hence we might be tempted to analyse if as an interrogative adverb.
However, there are a number of reasons for rejecting this possibility. For one thing, if differs from interrogative adverbs like where/when/whether not only in its form (it isn't a wh-word, as we can see from the fact that it doesn't begin with $w h$), but also in the range of syntactic positions it can occupy. For example, whereas typical wh-adverbs can occur in finite and infinitive clauses alike, the complementiser if is restricted to introducing finite clauses:
(67) (a) I wonder [when/where/whether/if I should go] [= finite clause]
(b) I wonder [when/where/whether/* if to go] [=infinitive clause]

Moreover, if is different from interrogative wh-adverbs (but similar to other complementisers) in that it cannot be used to introduce a clause which serves as the complement of a (bold-printed) preposition:
(68) (a) I'm not certain about [whether/when/where he'll go]
(b) *I'm concerned over [if taxes are going to be increased]
(c) *I'm puzzled at [that he should have resigned]
(d) *'m not very keen on [for you to go there]

Finally, whereas a wh-adverb can typically be coordinated with (e.g. joined by a coordinating conjunction like and/or to) the adverb not, this is not true of if:
(69) (a) I don't know [whether or not he'll turn up]
(b) *I don't know [if or not he'll turn up]

For reasons such as these, it seems more appropriate to categorise if as an interrogative complementiser, and whether/where/when as interrogative adverbs. More
generally, our discussion in this section highlights the need to posit a category C of complementiser, to designate clause-introducing items such as if/that/for which serve the function of introducing specific types of finite or infinitival clause.

2.10 Labelled bracketing

Having looked at the characteristics of the major substantive/lexical and functional categories found in English, we are now in a position where we can start to analyse the grammatical structure of expressions. An important part of doing this is to categorise each of the words in the expression. A conventional way of doing so is to use the traditional system of labelled bracketing: each word is enclosed in a pair of square brackets, and the lefthand member of each pair of brackets is given an appropriate subscript category label to indicate what category the word belongs to. To save space (and printer's ink), it is conventional to use the following capital-letter abbreviations:

$\mathrm{N}=$ noun	$\mathrm{V}=$ verb
$\mathrm{A}=$ adjective	$\mathrm{ADV}=$ adverb
$\mathrm{P}=$ preposition	$\mathrm{D} / \mathrm{DET}=$ determiner
$\mathrm{Q}=$ quantifier	$\mathrm{T}=$ Tense-marker (e.g. auxiliary/infinitival to $)$
$\mathrm{C} /$ COMP $=$ complementiser	$\mathrm{PRN}=$ pronoun

Adopting the abbreviations in (70), we can represent the categorial status of each of the words in a sentence such as:
(71) Any experienced journalist knows that he can sometimes manage to lure the unsuspecting politician into making unguarded comments
as in (72) below:
(72) [Q Any] [A experienced] [N journalist] [v knows] [C that] [PRN he] [T can]
[adv sometimes] [v manage] [T to] [v lure] [d the] [A unsuspecting]
[N politician] [P into] [v making] [A unguarded] [N comments]
What (72) tells us is that the words journalist/politician/comments belong to the category $\mathrm{N} /$ noun, the to the category $\mathrm{D} /$ determiner, he to the category PRN/pronoun (though if personal pronouns like he are analysed as D-pronouns, he would be assigned to the category D), any to the category $\mathrm{Q} / q u a n t i f i e r$, experienced/unsuspecting/unguarded to the category A/adjective, sometimes to the category $\mathrm{ADV} /$ adverb, into to the category $\mathrm{P} /$ preposition, knows/manage/lure/making to the category V/verb, can/to to the category T/Tense-marker and that to the category $\mathrm{C} /$ complementiser. It is important to note, however, that the category labels used in (72) tell us only how the relevant words are being used in this particular sentence. For example, the N label on comments in (72) tells us that the item in
question functions as a noun in this particular position in this particular sentence, but tells us nothing about the function it may have in other sentences. So, for example, in a sentence such as:
The president never comments on hypothetical situations
the word comments is a verb - as shown in (74) below:

$$
\begin{equation*}
\text { [D The] [} \mathrm{N} \text { president] [ADV never] [v comments] [P on] [A hypothetical] [N situations] } \tag{74}
\end{equation*}
$$

Thus, a labelled bracket round a particular word is used to indicate the grammatical category which the word belongs to in the particular position which it occupies in the phrase or sentence in question, so allowing for the possibility that (what appears to be) the same word may have a different categorial status in other positions in other structures.

2.11 Grammatical features

In the previous section, we suggested that we can assign words in sentences to categories on the basis of their grammatical properties. However, it should be pointed out that simply specifying what category a particular word in a particular sentence belongs to does not provide a full description of the grammatical properties of the relevant word. For example, categorising he as a pronoun in (72) doesn't tell us in what ways he differs from other pronouns like e.g. I/us/you/her/it/them - i.e. it doesn't tell us about the (third) person, (singular) number, (masculine) gender and (nominative) case properties of he. In other words, there is a great deal of additional grammatical information about words which is not represented by simply attaching a category label to the word information which provides a finer level of detail than relatively coarse categorial descriptions. This information is generally described in terms of sets of grammatical features; by convention, features are enclosed in square brackets and often abbreviated (to save space). Using grammatical features, we can describe the person/number/gender/case properties of the pronoun he in terms of the features [3-Pers, Sg-Num, Masc-Gen, Nom-Case] i.e. 'Third-Person, Singular-Number, Masculine-Gender, Nominative-Case'. Each of these features comprises an attribute (i.e. a property like person, number, gender or case) and a value (which can be first/second/third for person, singular/plural for number, masculine/feminine/neuter for gender, and nominative/accusative/genitive for case).

An adequate description of syntax also requires us to specify the selectional properties of individual words (e.g. what kinds of complement they can take). We can illustrate the importance of selectional information by considering what kinds of word can occupy the position marked by - in the sentences below:
(75) (a) He might - to Paris
(b) He is - to Paris
(c) He has - to Paris

A categorial answer would be 'A verb'. However, we can't just use any verb: for example, it's OK to use verbs like go/fly, but not verbs like find/stay. This is because different verbs select (i.e. 'take') different types of complement, and verbs like go/fly select a to-expression as their complement but verbs like find/stay do not. But the story doesn't end there, since each of the structures in (75) requires a different form of the verb: in (75a) we can use the infinitive form go, but not other forms of the verb (cf. He might go/* going/* gone/* goes/* went to Paris); in (75b) we can only use the progressive participle form going (cf. He is going/*go/*gone/* goes/* went to Paris); and in (75c) we can only use the perfect participle form gone (cf. He has gone/* go/* going/* goes/*went to Paris). This in turn is because the auxiliary might selects (i.e. 'takes') an infinitive complement, the progressive auxiliary is selects a progressive participle complement, and the perfect auxiliary has selects a perfect participle complement. In other words, a full description of the grammatical properties of words requires us to specify not only their categorial and subcategorial properties, but also their selectional properties. It is widely assumed that the selectional properties of words can be described in terms of selectional features. For example, the fact that progressive be selects a progressive participle complement might be described by saying that it has the selectional feature [V-ing] - a notation intended to signify that it selects a complement headed by a verb carrying the -ing suffix.

As far back as his 1965 book Aspects of the Theory of Syntax, Chomsky argued that all the grammatical properties of a word (including its categorial properties) can be described in terms of a set of grammatical features. In work in the 1970 s, he argued that the categorial distinction between nouns, verbs, adjectives and prepositions can be handled in terms of two sets of categorial features, namely $[\pm \mathrm{V}]$ 'verbal/non-verbal' and $[\pm \mathrm{N}]$ 'nominal/non-nominal'. More specifically, he suggested that the categorial properties of nouns, verbs adjectives and prepositions could be described in terms of the sets of features in (76) below:

$$
\begin{array}{ll}
\text { verb }=[+\mathrm{V},-\mathrm{N}] & \text { adjective }=[+\mathrm{V},+\mathrm{N}] \tag{76}\\
\text { noun }=[-\mathrm{V},+\mathrm{N}] & \text { preposition }=[-\mathrm{V},-\mathrm{N}]
\end{array}
$$

What (76) claims is that verbs have verbal but not nominal properties, adjectives have both nominal and verbal properties, nouns have nominal but not verbal properties, and prepositions have neither nominal nor verbal properties. This analysis was designed to capture the fact that some grammatical properties extend across more than one category and so can be said to be cross-categorial. For example, Stowell (1981, p. 57 fn. 17) notes that verbs and adjectives in English share the morphological property that they alone permit un-prefixation (hence we find verbs like undo and adjectives like unkind, but not nouns like *unfriend or prepositions like *uninside): in terms of the set of categorial features in (76), we
can account for this by positing that $u n$ - can only be prefixed to words which have the categorial feature $[+\mathrm{V}]$. Likewise, as the following example kindly provided for me by Andrew Spencer shows, in Russian nouns and adjectives inflect for case, but not verbs or prepositions:
(77) Krasivaya dyevushk a vsunula chornuy u koshk u v pustuy u korobk u Beautiful girl put black cat in empty box
'The beautiful girl put the black cat in the empty box'
Thus, the nouns and adjectives in (77) carry (italicised) case endings ($-a$ is a nominative suffix and $-u$ an accusative suffix), but not the verb or preposition. In terms of the set of categorial features in (76) we can account for this by positing that case is a property of items which carry the categorial feature $[+\mathrm{N}]$.

An obvious drawback to the system of categorial features in (76) above is that it describes the categorial properties of a number of substantive/lexical categories, but not those of functional categories. Each functional category seems to be closely related to a corresponding lexical category: for example, auxiliaries appear to be related to verbs, determiners to adjectives, and the complementiser for to the preposition for. One way of handling both the similarities and differences between substantive categories and their functional counterparts is in terms of a functionality feature $[\pm \mathrm{F}]$, with functional categories carrying the feature $[+\mathrm{F}]$, and substantive categories carrying the feature $[-F]$. On this view, main verbs would have the feature specification $[-\mathrm{N},+\mathrm{V},-\mathrm{F}]$ whereas auxiliaries would have the feature specification $[-\mathrm{N},+\mathrm{V},+\mathrm{F}]$; likewise, the complementiser for would have the feature specification $[-\mathrm{N},-\mathrm{V},+\mathrm{F}]$, and the preposition for would be specified as $[-\mathrm{N},-\mathrm{V},-\mathrm{F}]$. We shall not speculate any further on this possibility here: for an attempt to motivate such an analysis, see Radford (1997a, pp. 65-68 and p. 84).

Although many details remain to be worked out, it seems clear that in principle, all grammatical properties of words (including their categorial properties) can be described in terms of sets of grammatical features. (See Ramat 1999 on categories and features.) However, in order to simplify our exposition, we shall continue to make use of traditional category labels throughout much of the book, gradually introducing specific features in later chapters where some descriptive purpose is served by doing so.

2.12 Summary

In this chapter, we have looked at the role played by categories in characterising the grammatical properties of words. In §2.2, we looked at the criteria used for categorising words, noting that semantic criteria have to be used with care, and that morphological criteria (relating to the inflectional and derivational properties of words) and syntactic criteria (relating to the range of positions
which words can occupy within phrases and sentences) tend to be more reliable. In $\S 2.3$ we suggested that we can determine the categorial status of a word from its morphological and syntactic properties, with substitution being used as a test in problematic cases. In $\S 2.4$ we went on to draw a distinction between substantive/lexical categories (whose members have substantive lexical content) and functional categories (whose members have no substantive lexical content and serve only to mark grammatical properties such as number, person, case etc.). We then looked at a number of different types of functional category found in English. We began in $\S 2.5$ with determiners $(=\mathrm{D})$ and quantifiers $(=\mathrm{Q})$, arguing that they are categorially distinct from adjectives since they precede (but don't follow) adjectives, they can't be stacked, and they impose grammatical restrictions on the types of expression they can modify (e.g. a can only modify a singular count noun expression). In §2.6, we looked at pronouns and argued that English has at least three distinct types of pronoun, namely N-pronouns (like one), Q-pronouns (like several) and D-pronouns (like this). We went on to note that recent research has suggested that personal pronouns like he are also D -pronouns, but that this categorisation is not entirely unproblematic. In § 2.7 we looked at the functional counterparts of verbs, namely auxiliaries: we argued that these are functors in that (unlike lexical verbs) they describe no specific action or event, but rather encode verb-related grammatical properties such as tense, mood, voice and aspect; we noted that auxiliaries are syntactically distinct from verbs in that (e.g.) they undergo inversion. In § 2.8 we discussed the nature of infinitival to: we showed that it is distinct from the preposition to, and shares a number of properties in common with finite auxiliaries (e.g. auxiliaries and infinitival to allow ellipsis of their complements, but prepositional to does not). We noted the assumption made in much research over the past three decades that finite auxiliaries and infinitival to are different exponents of the same category (labelled I/INFL/Inflection in earlier work and T/Tense-marker in more recent work), with an auxiliary like will marking finite tense, and infinitival to marking non-finite tense. In $\S 2.9$ we argued that complementisers ($=\mathrm{C}$ or COMP) like that/if/for are a further category of functors, and that they mark the force of a complement clause (e.g. indicate whether it is interrogative, declarative or irrealis), and that (e.g.) if is distinct from interrogative adverbs like how/when/whether in that it can only introduce a finite clause, and cannot introduce a clause which is used as the complement of a preposition. In §2.10, we showed how the labelled bracketing technique can be used to categorise words in particular phrases and sentences. Finally, in §2.11 we noted that assigning words to grammatical categories provides a description of only some of their grammatical properties, and that a fuller description requires the use of grammatical features to describe their other grammatical properties. We went on to note Chomsky's claim that the categorial properties of words can also be described in terms of a set of grammatical features - bringing us to the conclusion that all grammatical properties of words can be characterised in terms of sets of features.

Workbook section

Exercise 2.1

Discuss the grammatical and categorial properties of the highlighted words in each of the following examples, giving arguments in support of your analysis:

1a	Nobody need/dare say anything
b	Nobody needs/dares to ask questions
c	John is working hard
d	John may stay at home
e	John has done it
f	John has to go there
g	John used to go there quite often
2a	Executives like to drive to work
b	I look forward to learning to drive
c	It's difficult to get him to work
d	I've never felt tempted to turn to taking drugs
e	Better to yield to temptation than to submit to deprivation!
f	Failure to achieve sometimes drives people to drink
g	Try to go to sleep.
3a	It is important for parents to spend time with their children
b	It would be disastrous for me for my driving-licence to be withdrawn
c	He was arrested for being drunk
d	We are hoping for a peace agreement to be signed
e	Ships head for the nearest port in a storm
f	Congress voted for the treaty to be ratified
g	It would be unfortunate for the students to fail their exams

Helpful hints

A particular problem arises (in the case of some of the examples in 3) in relation to words which allow a prepositional phrase complement (comprising a preposition and a noun or pronoun expression) in one use, and a for-infinitive clause in another - as with arrange in the examples below
(i) (a) I can arrange for immediate closure of the account
(b) I can arrange for the account to be closed immediately

In (ia) for is used with the noun expression immediate closure of the account as its complement, and is clearly a preposition - as we can see from the fact that (like the complement of a typical preposition) the relevant noun expression can be moved to the front of the sentence to highlight it:
(ii) Immediate closure of the account, I can certainly arrange for

By contrast, for in (ib) seems to be a complementiser rather than a preposition. For one thing, prepositions don't allow an infinitival complement, as we see from examples like (57) in the main text. Moreover, the complement of for in (ib) cannot be preposed - as we see from the ungrammaticality of:
(iii) *The account to be closed immediately, I can certainly arrange for

What we might have expected to find is two occurrences of for, one serving as an (italicised) preposition introducing the complement of arrange, and the other serving as a (bold-printed) complementiser introducing the infinitive complement - much as we find in:
(iv) What I can certainly arrange for is for the account to be closed immediately

But the expected for for sequence isn't grammatical in sentences like:
(v) *I can certainly arrange for for the account to be closed immediately

The reason seems to be that words which take a prepositional complement generally drop the preposition when the (italicised) preposition has a complement introduced by a (bold-printed) complementiser:
(vi) (a) What you can't be sure of is that he is telling the truth
(b) *You can't be sure of that he is telling the truth
(c) You can't be sure that he is telling the truth

Hence, although we might in principle expect to find a preposition+complementiser structure in (v), what seems to happen in practice is that the preposition is dropped in such structures - hence in (ib) the for which we find is the complementiser for rather than the (dropped) preposition for.

Model answer for sentences 1a, 2a and 3a

The main problem raised by the examples in 1 is whether the highlighted items have the categorial status of verbs or auxiliaries as they are used in each example - or indeed whether some of the items in some of their uses have a dual verb/auxiliary status (and so can function either as verbs or as auxiliaries). The words need/dare in 1a resemble modal auxiliaries like will/shall/can/may/must in that they lack the third-person-singular $-s$ inflection, and take a bare infinitive complement (i.e. a complement containing the infinitive verb-form say but lacking the infinitive particle to). They behave like auxiliaries (in Standard English) in that they undergo inversion in questions, can appear in tags, and can be negated by not/n't:
(i) (a) Need/Dare anyone say anything?
(b) He needn't/daren't say anything, need/dare he?

Conversely, they are not used with DO-support in any of these three constructions in Standard English:
(ii) (a) ${ }^{*}$ Does anyone need/dare say anything?
(b) *He doesn't need/dare say anything, does he?

Thus, need/dare when followed by a bare infinitive complement seem to have the status of (modal) auxiliaries. In 1a, need/dare are third-person-singular present-tense finite verb forms, as we see from the fact that the subject of need is the nominative pronoun they in (iii) below:
(iii) Nobody need say anything, need they?
(Recall that finite verbs require nominative subjects.)
In 2a, the first to is an infinitive particle, and the second to is a preposition. Thus, the second to (but not the first) can be modified by the prepositional intensifier straight (cf. Executives like to drive straight to work, but not *Executives like straight to drive to work). Moreover, the second to is a contentive preposition which has the antonym from (cf. Executives like to drive from work), whereas the first has no obvious antonym since it is an infinitive particle (cf. *Executives like from drive/driving to work). In addition, like a typical transitive preposition, the second to (but not the first) can be followed by an accusative pronoun complement like them (cf. Executives think the only way of getting to their offices is to drive to them). Conversely, the first (infinitival) to allows ellipsis of its complement (cf. Executives like to), whereas the second (prepositional) to does not (cf. *Executives like to drive to). Thus, in all relevant respects the first to behaves like an infinitive particle, whereas the second to behaves like a preposition.

In 3a, for could be either a complementiser (introducing the infinitival clause parents to spend time with their children), or a preposition (whose complement is the noun parents). The possibility that for might be used here as a preposition is suggested by the fact that the string for parents (or an interrogative counterpart like for how many parents?) could be preposed to the front of its containing sentence, as in:
(iv) (a) For parents, it is important to spend time with their children
(b) For how many parents is it important to spend time with their children?

The alternative possibility that for might be used as a complementiser (with the infinitival clause parents to spend time with their children serving as its complement) is suggested by the fact that the for-clause here could be substituted by a that-clause, as in:
(v) It is important that parents should spend time with their children

Thus, 3a is structurally ambiguous between one analysis on which for functions as a transitive preposition, and a second on which for functions as an infinitival complementiser which is irrealis in force.

Exercise 2.2

Use the labelled bracketing technique to assign each word in each of the sentences below to a grammatical category which represents how it is being used in the position in which it occurs in the sentence concerned. Give reasons in support of your proposed categorisation, highlight any analytic problems which arise, and comment on any interesting properties of the relevant words.

1 He was feeling disappointed at only obtaining average grades in the morphology exercises
2 Student counsellors know that money troubles can cause considerable stress

4 Seasoned press commentators doubt if the workers will ever fully accept that substantial pay rises lead to runaway inflation
5
Students often complain to their high school teachers that the state education system promotes universal mediocrity

Some scientists believe that climatic changes result from ozone depletion due to excessive carbon dioxide emission
7 Linguists have long suspected that peer group pressure shapes linguistic behaviour patterns in very young children You don't seem to be too worried about the possibility that many of the shareholders may now vote against your revised takeover bid

Model answer for sentence 1

(i) [PRN He] [T was] [v feeling] [A disappointed] [pat] [ADV only] [v obtaining] [A average] [N grades] [P in] [D the] [N morphology] [N exercises]

An issue of particular interest which arises in (i) relates to the status of the words average and morphology. Are these nouns or adjectives - and how can we tell? Since nouns used to modify other nouns are invariable in English (e.g. we say skate boards, not *skates boards), we can't rely on morphological clues here. However, we can use syntactic evidence. If (as assumed here) the word average functions as an adjective in 1, we should expect to find that it can be modified by the kind of adverb like relatively which can be used to modify adjectives (e.g. relatively good); by contrast, if morphology serves as a noun in 1 , we should expect to find that it can be modified by the kind of adjective (e.g. inflectional) which can be used to modify such a noun. In the event, both predictions are correct:
(ii) He was feeling disappointed at only obtaining relatively average grades in the inflectional morphology exercises

Some additional evidence that average can function as an adjective comes from the fact that it has the -ly adverb derivative averagely, and (for some speakers at least) the noun derivative averageness - e.g. The very averageness of his intellect made him the CIA's choice for president. Moreover (like most adjectives), it can be used predicatively in sentences like His performance was average. (Note, however, that in structures such as morphology exercises, you will not always find it easy to determine whether the first word is a noun or adjective. Unless there is evidence to the contrary - as with average in (ii) above - assume that the relevant item is a noun if it clearly functions as a noun in other uses.)

3 Structure

3.1 Overview

In this chapter, we introduce the notion of syntactic structure, looking at how words are combined together to form phrases and sentences. We shall argue that phrases and sentences are built up by a series of merger operations, each of which combines a pair of constituents together to form a larger constituent. We show how the resulting structure can be represented in terms of a tree diagram, and we look at ways of testing the structure of phrases and sentences.

3.2 Phrases

To put our discussion on a concrete footing, let's consider how an elementary two-word phrase such as that produced by speaker B in the following mini-dialogue is formed:

SPEAKERA: What are you trying to do?
speaker b: Help you
As speaker B's utterance illustrates, the simplest way of forming a phrase is by merging (a technical term meaning 'combining') two words together: for example, by merging the word help with the word you in (1), we form the phrase help you. The resulting phrase help you seems to have verb-like rather than nounlike properties, as we see from the fact that it can occupy much the same range of positions as the simple verb help, and hence e.g. occur after the infinitive particle to:
(2) (a) We are trying to help (b) We are trying to help you

By contrast, the phrase help you cannot occupy the kind of position occupied by a pronoun such as you, as we see from (3) below:
$\begin{array}{ll}\text { (3) (a) You are very difficult } & \text { (b) }{ }^{*} \text { Help you are very difficult }\end{array}$
So, it seems clear that the grammatical properties of a phrase like help you are determined by the verb help, and not by the pronoun you. Much the same can be said about the semantic properties of the expression, since the phrase help you
describes an act of help, not a kind of person. Using the appropriate technical terminology, we can say that the verb help is the head of the phrase help you, and hence that help you is a verb phrase: and in the same way as we abbreviate category labels like verb to \mathbf{V}, so too we can abbreviate the category label verb phrase to VP. If we use the traditional labelled bracketing technique to represent the category of the overall verb phrase help you and of its constituent words (the verb help and the pronoun you), we can represent the structure of the resulting phrase as in (4) below:
[vp [v help] [prn you]]

An alternative (equivalent) way of representing the structure of phrases like help you is via a labelled tree diagram such as (5) below (which is a bit like a family tree diagram - albeit for a small family):

What the tree diagram in (5) tells us is that the overall phrase help you is a verb phrase (VP), and that its two constituents are the verb (V) help and the pronoun (PRN) you. The verb help is the head of the overall phrase (and so is the key word which determines the grammatical and semantic properties of the phrase help you); introducing another technical term at this point, we can say that conversely, the VP help you is a projection of the verb help - i.e. it is a larger expression formed by merging the head verb help with another constituent of an appropriate kind. In this case, the constituent which is merged with the verb help is the pronoun you, which has the grammatical function of being the complement (or direct object) of the verb help. The head of a projection/phrase determines the grammatical properties of its complement: in this case, since help is a transitive verb, it requires a complement with accusative case (e.g. a pronoun like me/us/him/them), and this requirement is satisfied here since you can function as an accusative form (as you can see from the table of pronoun forms given in (31) in §2.6).

The tree diagram in (5) is entirely equivalent to the labelled bracketing in (4), in the sense that the two provide us with precisely the same information about the structure of the phrase help you. The differences between a labelled bracketing like (4) and a tree diagram like (5) are purely notational: each category is represented by a single labelled node in a tree diagram (i.e. by a point in the tree which carries a category label like VP, V or PRN), but by a pair of labelled brackets in a labelled bracketing. In each case, category labels like V/verb and PRN/pronoun should be thought of as shorthand abbreviations for the set of grammatical features which characterise the overall grammatical properties of the relevant words (e.g. the pronoun you as used in (5) carries a set of features including [second-person] and [accusative-case], though these features are not shown by the category label PRN).

Since our goal in developing a theory of Universal Grammar is to uncover general structural principles governing the formation of phrases and sentences, let's generalise our discussion of (5) at this point and hypothesise that all phrases are formed in essentially the same way as the phrase in (5), namely by a binary (i.e. pairwise) merger operation which combines two constituents together to form a larger constituent. In the case of (5), the resulting phrase help you is formed by merging two words. However, not all phrases contain only two words - as we see if we look at the structure of the phrase produced by speaker B in (6) below:
(6) SPEAKER A: What was your intention?
speaker b: To help you
The phrase in (6B) is formed by merging the infinitive particle to with the verb phrase help you. What's the head of the resulting phrase to help you? A reasonable guess would be that the head is the infinitival tense particle/T to, so that the resulting expression to help you is an infinitival TP (= infinitival tense projection $=$ infinitival tense phrase). This being so, we'd expect to find that TPs containing infinitival to have a different distribution (and so occur in a different range of positions) from VPs/verb phrases - and this is indeed the case, as we see from the contrast below:
(7) (a) They ought to help you (= ought + TP to help you)
(b) *They ought help you (= ought + VP help you)
(8) (a) They should help you (= should + VP help you)
(b) *They should to help you (= should + TP to help you)

If we assume that help you is a VP whereas to help you is a TP, we can account for the contrasts in (7) and (8) by saying that ought is the kind of word which selects (i.e. 'takes') an infinitival TP as its complement, whereas should is the kind of word which selects an infinitival VP as its complement. Implicit in this claim is the assumption that different words like ought and should have different selectional properties which determine the range of complements they permit (as we saw in §2.11).

The infinitive phrase to help you is formed by merging the infinitive particle to with the verb phrase help you. If (as we argued in the previous chapter) infinitival to is a non-finite tense particle (belonging to the category T) and if to is the head of the phrase to help you, the structure formed by merging the infinitival T-particle to with the verb phrase/VP help you in (5) will be the TP (i.e. non-finite/infinitival tense projection/phrase) in (9) below:

The head of the resulting infinitival tense projection to help you is the infinitive particle to, and the verb phrase help you is the complement of to; conversely, to help you is a projection of to. In keeping with our earlier observation that 'The head of a projection/phrase determines grammatical properties of its complement', the non-finite tense particle to requires an infinitival complement: more specifically, to requires the head V of its VP complement to be a verb in its infinitive form, so that we require the infinitive form help after infinitival to (and not a form like helping/helped/helps). Refining our earlier observation somewhat, we can therefore say that 'The head of a projection/phrase determines grammatical properties of the head word of its complement'. In (9), to is the head of the TP to help you, and the complement of to is the VP help you; the head of this VP is the V help, so that to determines the form of the V help (requiring it to be in the infinitive form help).

More generally, our discussion here suggests that we can build up phrases by a series of binary merger operations which combine successive pairs of constituents to form ever larger structures. For example, by merging the infinitive phrase to help you with the verb trying, we can form the even larger phrase trying to help you produced by speaker B in (10) below:

SPEAKER A: What are you doing?
SPEAKER B: Trying to help you

The resulting phrase trying to help you is headed by the verb trying, as we see from the fact that it can be used after words like be, start or keep which select a complement headed by a verb in the -ing form (cf. They were/started/kept trying to help you). This being so, the italicised phrase produced by speaker B in (10) is a VP (= verb phrase) which has the structure (11) below:

(11) tells us (amongst other things) that the overall expression trying to help you is a verb phrase/VP; its head is the verb/V trying, and the complement of trying is the TP/infinitival tense phrase to help you: conversely, the VP trying to help you is a projection of the V trying. An interesting property of syntactic structures illustrated in (11) is that of recursion - that is, the property of allowing a given structure to contain more than one instance of a given category (in this case, more than one verb phrase/VP - one headed by the verb help and the other headed by the verb trying).

Since our goal in developing a theory of Universal Grammar/UG is to attempt to establish universal principles governing the nature of linguistic structure, an
important question to ask is whether there are any general principles of constituent structure which we can abstract from structures like (5), (9) and (11). If we look closely at the relevant structures, we can see that they obey the following two (putatively universal) constituent structure principles:

(12) Headedness Principle

Every syntactic structure is a projection of a head word
Binarity Principle
Every syntactic structure is binary-branching
(The term syntactic structure is used here as an informal way of denoting an expression which contains two or more constituents.) For example, the structure (11) obeys the Headedness Principle (12) in that the VP help you is headed by the V help, the TP to help you is headed by the T to, and the VP trying to help you is headed by the V trying. Likewise, (11) obeys the Binarity Principle (13) in that the VP help you branches into two immediate constituents (in the sense that it has two constituents immediately beneath it, namely the V help and the PRN you), the TP to help you branches into two immediate constituents (the non-finite tense particle T to and the VP help you), and the VP trying to help you likewise branches into two immediate constituents (the V trying and the TP to help you). Our discussion thus leads us towards a principled account of constituent structure i.e. one based on a set of principles of Universal Grammar.

There are several reasons for trying to uncover constituent structure principles like (12) and (13). From a learnability perspective, such principles reduce the range of alternatives which children have to choose between when trying to determine the structure of a given kind of expression: they therefore help us develop a more constrained theory of syntax. Moreover, additional support for the Binarity Principle comes from evidence that phonological structure is also binary, in that (e.g.) a syllable like bat has a binary structure, consisting of the onset $|\mathrm{b}|$ and the rhyme $|\mathrm{at}|$, and the rhyme in turn has a binary structure, consisting of the nucleus $|\mathrm{a}|$ and the coda $|\mathrm{t}|$ (see Radford et al. 1999, pp. 88ff. for an outline of syllable structure). Likewise, there is evidence that morphological structure is also binary: for example (under the analysis proposed in Radford et al. 1999, p. 164), the noun indecipherability is formed by adding the prefix de-to the noun cipher to form the verb decipher; then adding the suffix -able to this verb to form the adjective decipherable; then adding the prefix $i n$ - to this adjective to form the adjective indecipherable; and then adding the suffix -ity to the resulting adjective to form the noun indecipherability. It would therefore seem that binarity is an inherent characteristic of the phonological, morphological and syntactic structure of natural languages. There is also a considerable body of empirical evidence in support of a binary-branching analysis of a range of syntactic structures in a range of languages (see e.g. Kayne 1984a) - though much of this work is highly technical and it would therefore not be appropriate to consider it here.

3.3 Clauses

Having considered how phrases are formed, let's now turn to look at how clauses and sentences are formed. By way of illustration, suppose that speaker B had used the simple (single-clause) sentence italicised in (14) below to reply to speaker A, rather than the phrase used by speaker B in (10):

```
speaker a: What are you doing?
SPEAKER B: We are trying to help you
```

What's the structure of the italicised clause produced by speaker B in (14)?
In work in the 1960s, clauses were generally taken to belong to the category \mathbf{S} (Sentence/Clause), and the sentence produced by B in (14) would have been taken to have a structure along the following lines:

However, a structure such as (15) violates the two constituent structure principles which we posited in (12) and (13) above. More particularly, the S analysis of clauses in (15) violates the Headedness Principle (12) in that the S we are trying to help you is a structure which has no head of any kind. Likewise, the S analysis in (15) also violates the Binarity Principle (13) in that the S constituent We are trying to help you is not binary-branching but rather ternary-branching, because it branches into three immediate constituents, namely the PRN we, the T are, and the VP trying to help you. If our theory of Universal Grammar requires every syntactic structure to be a binary-branching projection of a head word, it is clear that we have to reject the S-analysis of clause structure in (15) as one which is not in keeping with UG principles.

Let's therefore explore an alternative analysis of the structure of clauses which is consistent with the headedness and binarity requirements in (12) and (13). More specifically, let's make the unifying assumption that clauses are formed by the same binary merger operation as phrases, and accordingly suppose that the italicised clause in (14B) is formed by merging the (present) tense auxiliary are with the verb phrase trying to help you, and then subsequently merging the resulting expression are trying to help you with the pronoun we. Since are belongs to the category T of tense auxiliary, it might at first sight seem as if merging
are with the verb phrase trying to help you will derive (i.e. form) the tense projection/tense phrase/TP are trying to help you. But this can't be right, since it would provide us with no obvious account of why speaker B's reply in (16) below is ungrammatical:

SPEAKER A: What are you doing?
SPEAKER B: *Are trying to help you
If are trying to help you is a TP (i.e. a complete tense projection), how come it can't be used to answer speaker A's question in (16), since we see from sentences like (6B) that TP constituents like to help you can be used to answer questions.

An informal answer we can give is to say that the expression are trying to help you is somehow 'incomplete', and that only 'complete' expressions can be used to answer questions. In what sense is Are trying to help you incomplete? The answer is that finite T constituents require a subject, and the finite auxiliary are doesn't have a subject in (16). More specifically, let's assume that when we merge a tense auxiliary $(=\mathrm{T})$ with a verb phrase $(=\mathrm{VP})$, we form an intermediate projection which we shall here denote as T^{\prime} (pronounced 'tee-bar'); and that only when we merge the relevant T-bar constituent with a subject like we do we form a maximal projection - or, more informally a 'complete TP'. Given these assumptions, the italicised clause in (14B) will have the structure (17) below:

What this means is that a tense auxiliary like are has two projections: a smaller intermediate projection (T^{\prime}) formed by merging are with its complement trying to help you to form the T-bar (intermediate tense projection) are trying to help you; and a larger maximal projection (TP) formed by merging the resulting T^{\prime} are trying to help you with its subject we to form the TP We are trying to help you. Saying that TP is the maximal projection of are in (17) means that it is the largest constituent headed by the tense auxiliary are.

Why should tense auxiliaries require two different projections, one in which they merge with a following complement to form a T-bar, and another in which the resulting T-bar merges with a preceding subject to form a TP? Following a suggestion made by Chomsky (1982, p. 10), the requirement for auxiliaries to
have two projections (as in (17) above) was taken in earlier work to be a consequence of a principle of Universal Grammar known as the Extended Projection Principle (conventionally abbreviated to EPP), which can be outlined informally as follows:

Extended Projection Principle/EPP
A finite tense constituent T must be extended into a TP projection containing a subject
Given that (as we noted at the end of the previous chapter) the grammatical properties of words are described in terms of sets of grammatical features, we can say that tense auxiliaries like are carry an [EPP] feature which requires them to have an extended projection into a TP which has a subject. If we posit that all tense auxiliaries carry an [EPP] feature, it follows that any structure (like that produced by speaker B in (16) above) containing a tense auxiliary which does not have a subject will be ungrammatical by virtue of violating the Extended Projection Principle (18).

The EPP requirement (for a finite auxiliary to have a subject) would seem to be essentially syntactic (rather than semantic) in nature, as we can see from sentences such as (19) below:
(19) (a) It was alleged that he lied under oath
(b) There has been no trouble

In structures like (19), the italicised subject pronouns it/there seem to have no semantic content (in particular, no referential properties) of their own, as we see from the fact that neither can be questioned by the corresponding interrogative words what?/where? (cf. the ungrammaticality of *What was alleged that he lied under oath? and *Where has been no trouble?), and neither can receive contrastive focus (hence it/there cannot be contrastively stressed in sentences like (19) above). Rather, they function as expletive pronouns - i.e. pronouns with no intrinsic meaning which are used in order to satisfy the syntactic Projection Principle/EPP. For example, the expletive subject it in (19a) might be argued to serve the syntactic function of providing a subject for the auxiliary was to agree with in person and number. (We deal with agreement in chapter 8 and so will have nothing more to say about it for the time being.)

It is interesting to note that theoretical considerations also favour a binarybranching TP analysis of clause structure like (17) over a ternary-branching S analysis like (15). The essential spirit of Minimalism is to reduce the theoretical apparatus which we use to describe syntactic structure to a minimum. For example, it has been suggested (e.g. by Kayne 1994, Yang 1999 and Chomsky 2001) that tree diagrams should only contain information about hierarchical structure (i.e. containment/constituent structure relations), not about linear structure (i.e. left-to-right word order), because linear information is redundant (in the sense that it can be predicted from hierarchical structure by simple word-order rules) if we use binary-branching trees. Suppose for example that we have a word-order rule for English to the effect that 'Any constituent of a phrase HP which is the
sister of the head H is positioned to the right of H , but any other constituent of HP is positioned to the left of H.' This word-order rule will correctly predict (inter alia) that the VP trying to help you in (17) must be positioned to the right of the tense auxiliary/T are (because the relevant VP is the sister of are), and that the pronoun we must be positioned to the left of are (because we is not the sister of are). As you can see for yourself, it's not clear how we can achieve the same result (of eliminating redundant word-order information from trees) under a ternary-branching analysis like (15), since both the pronoun we and the verb phrase trying to help you are sisters of are in (15). It should be noted in passing that an important consequence of assuming that linear order is not a syntactic relation is that it entails that syntactic operations cannot be sensitive to word order (e.g. we can't handle subject-auxiliary agreement by saying that a finite auxiliary agrees with a preceding noun or pronoun expression): rather, all syntactic operations must be sensitive to hierarchical rather than linear structure. How this works in practice will become clearer as our exposition unfolds.

A question which we have not so far asked about the structure of clauses concerns what role is played by complementisers like that, for and if, e.g. in speaker B's reply in (20) below:

SPEAKER A: What are you saying?
SPEAKER B: That we are trying to help you
Where does the $\mathrm{C} /$ complementiser that fit into the structure of the sentence? The answer suggested in work in the 1970s was that a complementiser merges with an S constituent like that in (15) above to form an $\mathbf{S}^{\prime} / \mathbf{S}-\mathrm{bar}$ (pronounced 'ess-bar') constituent like that shown below (simplified by not showing the internal structure of the VP trying to help you, which is as in (11) above):

However, the claim that a clause introduced by a complementiser has the status of an S-bar constituent falls foul of the Headedness Principle (12), which requires that every syntactic structure be a projection of a head word. The principle is violated because S-bar in (21) is analysed as a projection of the S constituent we are trying to help you, and S is clearly not a word (but rather a string of words).

An interesting way round the headedness problem is to suppose that the head of a clausal structure introduced by a complementiser is the complementiser itself: since this is a single word, there would then be no violation of the Headedness Principle (12) requiring every syntactic structure to be a projection of a head
word. Let's therefore assume that the complementiser that merges with the TP we are trying to help you (whose structure is shown in (17) above) to form the CP/complementiser projection/complementiser phrase in (22) below:

(22) tells us that the complementiser that is the head of the overall clause that we are trying to help you (and conversely, the overall clause is a projection of that) - and indeed this is implicit in the traditional description of such structures as that-clauses. (22) also tells us that the complement of that is the TP/tense phrase we are trying to help you. Clauses introduced by complementisers have been taken to have the status of $\mathrm{CP} /$ complementiser phrase constituents since the pioneering work of Stowell (1981) and Chomsky (1986b).

An interesting aspect of the analyses in (17) and (22) above is that clauses and sentences are analysed as headed structures - i.e. as projections of head words (in conformity with the Headedness Principle). In other words, just as phrases are projections of a head word (e.g. a verb phrase like help you is a projection of the verb help), so too a sentence like We will help you is a projection of the auxiliary will, and a complement clause like the bracketed that-clause in I can't promise [that we will help you] is a projection of the complementiser that. This enables us to arrive at a unitary analysis of the structure of phrases, clauses and sentences, in that clauses and sentences (like phrases) are projections of head words. More generally, it leads us to the conclusion that clauses/sentences are simply particular kinds of phrases (e.g. a that-clause is a complementiser phrase).

An assumption which is implicit in the analyses which we have presented here is that phrases and sentences are derived (i.e. formed) in a bottom-up fashion (i.e. they are built up from bottom to top). For example, the clause in (22) involves the following sequence of merger operations: (i) the verb help is merged with the pronoun you to form the VP help you; (ii) the resulting VP is merged with the non-finite T/tense particle to to form the TP to help you; (iii) this TP is in turn merged with the verb trying to form the VP trying to help you; (iv) the resulting VP is merged with the T/tense auxiliary are to form the T-bar are trying to help
you; (v) this T-bar is merged with its subject we to form the TP we are trying to help you; and (vi) the resulting TP is in turn merged with the C/complementiser that to form the CP structure (22) that we are trying to help you. By saying that the structure (22) is derived in a bottom-up fashion, we mean that lower parts of the structure nearer the bottom of the tree are formed before higher parts of the structure nearer the top of the tree. (An alternative top-down model is presented in Phillips 2003.)

$3.4 \quad$ Specifiers

A question which arises from our analysis of tense auxiliaries in (17/22) above as having an immediate projection into T-bar and an extended projection into TP is whether there are other constituents which can have both an intermediate and an extended projection. The answer is 'Yes', as we can see by comparing the alternative answers (23i/ii) given by speaker B below: SPEAKER A: Where did she hit him?
speaker b: (i) On the nose
(ii) Right on the nose

Let's first look at the structure of reply (i) On the nose in (23B), before turning to consider the structure of reply (ii) Right on the nose. On the nose in (23Bi) is a prepositional phrase/PP derived in the following fashion. The determiner the is merged with the noun nose to form the DP/determiner phrase the nose in (24) below:

(In work in the 1960s and 1970s, expressions like the nose were taken to have the categorial status of a NP/noun phrase; but here we follow more recent work dating from Abney 1987 which takes them to have the status of a DP/determiner phrase.) The preposition on is then merged with the resulting DP the nose to form the prepositional phrase/PP on the nose, which has the structure (25) below:

The overall expression on the nose is a projection of the preposition on and so has the status of a prepositional phrase: the head of the PP on the nose is the preposition on and the complement of the preposition on is the DP the nose.

Given the traditional assumption that a verb or preposition which takes a noun or pronoun expression as its complement is transitive, on is a transitive preposition in this use, and the nose is its complement.

Now consider the structure of reply (ii) Right on the nose in (23B). This differs from the PP on the nose in that it also contains the adverb right. It seems implausible to suppose that the adverb right is the head of the overall expression, since this would mean that right on the nose was an adverbial phrase/ADVP: on the contrary, it seems more plausible to suppose that right on the nose is a prepositional phrase/PP in which the adverb right is a modifier of some kind which serves to extend the prepositional expression on the nose into the even larger prepositional expression right on the nose (so that the head of the structure is once again the preposition on). Some evidence that right on the nose is a PP (and not an ADVP) comes from cleft sentences (i.e. structures of the form 'It was a car that John bought', where the italicised constituent a car is said to be focused, and hence to occupy focus position in the cleft sentence structure). As we see from (26) below:
(26) (a) It was with great sadness that he announced the resignation of the chairman
(b) *It was very sadly that he announced the resignation of the chairman
a prepositional phrase/PP like with great sadness can be focused in a cleft sentence, but not an adverbial phrase/ADVP like very sadly. In the light of this observation, consider the sentences below:
(27) (a) It was on the nose that she hit him
(b) It was right on the nose that she hit him

The fact that both on the nose and right on the nose can occupy focus position in a cleft sentence suggests that both are $\mathrm{PP} /$ prepositional phrase constituents: right on the nose cannot be an ADVP/adverbial phrase since we see from (26b) above that adverbial expressions cannot be focused in cleft sentences.

The conclusion we reach from the data in (26)-(27) above is that the adverb right in right on the nose serves to extend the prepositional expression on the nose into the even larger prepositional expression right on the nose. Using the bar notation introduced in (17) above, we can analyse right on the nose in the following terms. The preposition on merges with its DP complement the nose to form the intermediate prepositional projection on the nose which has the categorial status of \mathbf{P}^{\prime} (or \mathbf{P}-bar, pronounced 'pee-bar'); the resulting P-bar on the nose is then merged with the adverb right to form the PP below:

In other words, just as a tense auxiliary like are can be projected into a T^{\prime} like are trying to help you by merger with a following VP complement and then further projected into TP by merger with a preceding pronoun subject such as we, so too a preposition like on can be projected into a P^{\prime} like on the nose by merger with a following DP complement and then further projected into a PP like right on the nose by merger with a preceding adverbial modifier such as right.

Although we in (17) serves a different grammatical function from right in (28) (in that we is the subject of are trying to help you, whereas right is a modifier of on the nose), there is a sense in which the two occupy parallel positions within the overall structure containing them: just as we merges with a T^{\prime} to form a TP , so too right merges with a P^{\prime} to form a PP. Introducing a new technical term at this point, let's say that we serves as the specifier of the T are, of the T-bar are trying to help you and of the TP we are trying to help you in (17), and that right likewise serves as the specifier of the P on, of the P -bar on the nose and of the PP right on the nose in (28). More generally, we can say that a specifier is an expression which merges with an intermediate projection H -bar (where H -bar is a projection of some head word H) to project it into a maximal projection HP in the manner shown in (29) below:

Given the informal word-order rule we suggested earlier ('Any constituent of a phrase HP which is the sister of the head H is positioned to the right of H , but any other constituent of HP is positioned to the left of H'), it follows that heads precede complements but specifiers precede heads in English: in other words, English is a language with complement-last and specifier-first word order.

The assumption that determiners can head projections of their own also has interesting theoretical implications. We see from (29) above that syntactic heads can typically be merged with both a complement and a specifier. If determiners function as heads, we should expect that they too will allow an appropriate kind of expression to function as their specifier (in an appropriate kind of structure). In this connection, consider the following contrast:
(30) (a) I have never known a patient make a quite so rapid recovery
(b) I have never known a patient make quite so rapid a recovery

Modifiers in English are typically positioned between a determiner like a and a noun like recovery - and indeed this is the case with the modifying expression quite so rapid in (30a). However, in expressions like quite so rapid which contain a degree word like so/too/how, the whole degree expression can instead be positioned in front of a determiner like a - as in (30b). What syntactic position does the degree expression occupy in such cases? We can give a
principled answer to this question if we assume that determiners can project into determiner phrases, since we can then say that a degree expression positioned in front of a determiner occupies spec-DP - i.e. the specifier position within the determiner phrase. On this view, (30b) would have the skeletal structure shown below (where we follow Abney 1987 in taking an expression like quite so rapid to be a projection of the DEG/degree word so, and hence to be a DEGP constituent):

An analysis like (31) would mean that there is symmetry between the structure of determiner phrases and other types of phrase, in that (like other phrases), DPs allow a specifier of an appropriate kind. Indeed, although its internal structure is not shown in (31), the DEGP quite so rapid could be argued to have a similar specifier + head+complement structure, with the degree word so serving as its head, the adjective rapid as its complement, and the adverb quite as its specifier.

As those of you familiar with earlier work will have noticed, the kind of structures we are proposing here are very different from those assumed in traditional grammar and in work in linguistics in the 1960s and 1970s. Earlier work implicitly assumed that only items belonging to substantive/lexical categories could project into phrases, not words belonging to functional categories. More specifically, earlier work assumed that there were noun phrases headed by nouns, verb phrases headed by verbs, adjectival phrases headed by adjectives, adverbial phrases headed by adverbs and prepositional phrases headed by prepositions. However, more recent work has argued that not only content words but also function words can project into phrases, so that we have tense phrases headed by a tense-marker, complementiser phrases headed by a complementiser, determiner phrases headed by a determiner - and so on. More generally, the assumption made in work over the last twenty years or so is that in principle all word-level categories can project into phrases. This means that some of the structures we make use of here may seem (at best) rather strange to those of you with a more traditional background, or (at worst) just plain wrong. However, the structure of a given phrase or sentence cannot be determined on the basis of personal prejudice or pedagogical precepts inculcated into you at secondary school, but rather has to be determined on the basis of syntactic evidence of the kind discussed in $\S 3.6$ below. I would therefore ask traditionalists to be prepared to be open to new ideas and new analyses (a necessary prerequisite for understanding in any discipline).

3.5 Intermediate and maximal projections

One aspect of our analysis of prepositional phrases which might at first sight seem puzzling is that the same expression on the nose is analysed as a PP in (23Bi/25), but as a P-bar in (23Bii/28). Why should this be? The answer is that the label PP denotes the maximal projection of (i.e. the largest expression headed by) the relevant preposition in a given structure. In (23Bi), speaker B replies On the nose: since the largest expression headed by on in (23Bi) is On the nose, it follows that On the nose has the status of a PP here. By contrast, in (23Bii) speaker B replies Right on the nose: here, on the nose is not the largest expression headed by on, and hence is not a PP but rather a P-bar; on the contrary, the largest expression headed by on in (23Bii) is Right on the nose, so it is this larger expression which has the status of PP.

Interestingly, there is some empirical evidence in support of the claim that on the nose is not a PP in (23Bii/28). As we see from examples like (32) below, a PP (like that italicised below) can generally be preposed/fronted (i.e. moved to the front of the sentence) in order to highlight it:
(32) (a) They found a safe under the floorboards
(b) Under the floorboards, they found a safe

In the light of this observation, consider the following examples (where right in each case is to be interpreted as a modifier of on the nose):
(33) (a) She hit him right on the nose
(b) Right on the nose, she hit him
(c) *On the nose, she hit him right

The fact that right on the nose can be preposed in (33b) but not on the nose in (33c) provides evidence in support of the claim in (28) that right on the nose is a PP in (33a) but on the nose is not. If we assume that only maximal projections can be preposed, it follows that right on the nose can be preposed in (33) because it is the maximal projection of the preposition on (hence a PP), whereas on the nose cannot because it is an intermediate projection of the preposition on (hence a P-bar).

Although we have pointed out similarities between the structure of a PP like that in (28) and the structure of a TP like that in (17), there is a very important difference between the two. As we saw earlier from the grammaticality of We are trying to help you and the ungrammaticality of *Are trying to help you as replies to the question What are you doing?, tense auxiliaries like are obligatorily require an appropriate specifier (e.g. a subject pronoun like we). By contrast, the fact that we can reply either On the nose or Right on the nose to a question like Where did she hit him? tells us that prepositions can be used either with or without an appropriate kind of specifier (e.g. an adverbial modifier like $r i g h t)$. So, a significant difference between auxiliaries and prepositions is that it is
obligatory for an auxiliary to have a specifier but optional for a preposition to have a specifier.

Just as prepositional phrases can have an (optional) adverbial modifier as their specifier, so too can adjectival phrases - as we see from the alternative replies given by speaker B in (34) below:

SPEAKER A: How does your mother feel about your brother's success? SPEAKER B: (i) Proud of him (ii) Very proud of him

Reply (i) Proud of him in (34B) is an adjectival phrase/AP derived as follows. The preposition of merges with the pronoun him to form the $\mathrm{PP} /$ prepositional phrase of him. This is then merged with the adjective proud to form the AP/adjectival phrase proud of him, which has the structure (35) below:

But what is the structure of reply (ii) Very proud of him in (34B)? This differs from Proud of him in that it contains the adverb very. It seems implausible that the adverb very could be the head of the overall expression Very proud of him since this would mean that very proud of him was an ADVP (adverbial phrase); but an ADVP analysis would be problematic because a question like How does she feel? can have an adjectival expression like Happy as an appropriate reply but not an adverbial expression like Happily. Since Very proud of him can be used to reply to the how-question asked by speaker A in (34), very proud of him must be an adjectival expression headed by the adjective proud. Using the bar notation introduced earlier, we can say that the $\mathrm{A} /$ adjective proud merges with its $\mathrm{PP} /$ prepositional phrase complement of him to form the A-bar (intermediate adjectival projection) proud of him, and that the resulting A-bar in turn merges with the adverbial specifier very to form the full AP/adjectival phrase in (36) below:

Evidence in support of the analysis in (36) comes from data relating to the preposing of adjectival expressions in sentences such as (37) below:
(37) (a) She certainly seems to be very proud of him
(b) Very proud of him, she certainly seems to be
(c) *Proud of him, she certainly seems to be very

If we assume (as we did in our earlier discussion of (33) above) that only maximal projections can be preposed in this way (not intermediate projections), we can provide a straightforward account of the data in (37) in terms of the analysis in (36). The structure in (36) tells us that very proud of him is the maximal projection of the adjective proud, and so is an AP/adjectival phrase constituent; hence it can be preposed in (37a) by virtue of its status as a maximal projection. By contrast, (36) tells us that proud of him is an intermediate projection of the adjective proud and hence an A-bar constituent: because only maximal projections like AP can be preposed, and because proud of him is only an intermediate A-bar projection, it cannot be preposed - hence the ungrammaticality of (37c).

A variety of other types of expression can also have extended projections via merger with an optional specifier of an appropriate kind. One such are adverbial expressions like those italicised in (38) below:
(38) (a) She made up her mind independently of me
(b) She made up her mind quite independently of me

The adverb independently can be merged with a PP/prepositional phrase complement like of $m e$ to form the adverbial expression independently of me: this can serve either as a ADVP/adverbial phrase on its own - as in (38a) - or as an intermediate ADV-bar projection which can be extended into an ADVP by merger with an appropriate specifier (like the adverb quite) as in (38b).

Much the same might be said about the italicised noun phrases in (39) below (if the analysis of these structures in Radford 1993 is along the right lines):
(39) (a) The opposition will oppose the/any ban on imports
(b) The opposition will oppose the/any government ban on imports

The noun ban can be merged with a following prepositional phrase complement like on imports to form the nominal expression ban on imports: this can either serve as a complete noun phrase/NP on its own, or can serve as an intermediate \mathbf{N}-bar projection which is subsequently merged with an appropriate specifier (like the noun government) to form the larger noun phrase/NP government ban on imports. Because a noun expression headed by a singular count noun (like ban) must be modified by a determiner or quantifier, the resulting NP in either case must subsequently be merged with a determiner like the or a quantifier like any, so deriving a DP/determiner phrase like the (government) ban on imports or a QP/quantifier phrase like any (government) ban on imports.

In all of the structures which we have looked at so far which contain a specifier (i.e. in (17), (22), (28), (36), (38b) and (39b) above), the specifier has been a single word. However, this is by no means always the case, as we can see by comparing the two clauses in (40) below:
(40) (a) $H e$ has resigned
(b) The chairman has resigned
(40a) is derived by merging the T/tense auxiliary has with its verb complement resigned to form the intermediate T-bar projection has resigned, and then merging the resulting T-bar with the pronoun he which serves as its specifier/subject to derive the extended TP projection in (41) below:

Now consider how we derive (40b) The chairman has resigned. As before, the tense auxiliary has merges with its verb complement resigned to form the Tbar has resigned; and as before, the resulting T-bar then merges with its subject specifier. However, this time the subject is not the single word he but rather a determiner phrase/DP the chairman which has itself been formed by merging the determiner the with the noun chairman. The result of merging the DP the chairman with the T-bar has resigned is to derive the TP (42) below:

Evidence that the chairman is indeed the subject (and specifier) of has in (42) comes from auxiliary inversion facts in relation to sentences such as:
(43) (a) Has he resigned?
(b) Has the chairman resigned?

As we see by comparing the statement (40a) He has resigned with the corresponding question (43a) Has he resigned? a question like (43a) is formed by moving a finite auxiliary (has) in front of its subject (he). Hence, the fact that the auxiliary has in (40b) moves in front of the chairman in (43b) Has the chairman resigned? suggests that the chairman is the subject of has in (40b) The chairman has resigned - precisely as is claimed in (42).

If we compare (41) with (42), we can see that a specifier can be either a single word like he in (41) or a phrase like the DP the chairman in (42). In much the same way, a complement can be either a single word or a phrase. For example, in (42), the complement of has is the verb resigned; but in a more complex structure like (44) below:
(44)

the complement of has is the verb phrase resigned from the board, which is formed by merging the verb resigned with its $\mathrm{PP} /$ prepositional phrase complement from the board.

3.6 Testing structure

Thus far, we have argued that phrases and sentences are built up by merging successive pairs of constituents into larger and larger structures, and that the resulting structure can be represented in terms of a labelled tree diagram. The tree diagrams which we use to represent syntactic structure make specific claims about how sentences are built up out of various different kinds of constituent (i.e. syntactic unit): hence, trees can be said to represent the constituent structure of sentences. But this raises the question of how we know (and how we can test) whether the claims made about syntactic structure in tree diagrams are true. So far, we have relied mainly on intuition in analysing the structure of sentences we have in effect guessed at the structure. However, it is unwise to rely on intuition in attempting to determine the structure of a given expression in a given language. For, while experienced linguists over a period of years tend to acquire fairly strong intuitions about structure, novices by contrast tend to have relatively weak, uncertain and unreliable intuitions; moreover, even the intuitions of supposed experts may ultimately turn out to be based on little more than personal preference.

For this reason, it is more satisfactory (and more accurate) to regard constituent structure as having the status of a theoretical construct. That is to say, it is part of the theoretical apparatus which linguists find they need to make use of in order to explain certain data about language (just as molecules, atoms and subatomic particles are constructs which physicists find they need to make use of in order to explain the nature of matter in the universe). It is no more reasonable to rely wholly on intuition to determine syntactic structure than it would be to rely on intuition to determine molecular structure. Inevitably, then, much of the
evidence for syntactic structure is of an essentially empirical character, based on the observed grammatical properties of particular types of expression. The evidence typically takes the form 'Unless we posit that such-and-such an expression has such-and-such a constituent structure, we shall be unable to provide a principled account of the observed grammatical properties of the expression.' Thus, structural representations ultimately have to be justified in empirical terms, i.e. in terms of whether or not they provide a principled account of the grammatical properties of phrases and sentences.

So, a tree diagram like (44) has the status of a hypothesis (i.e. untested and unproven assumption) about the structure of the corresponding sentence The chairman has resigned from the board. How can we test our hypothesis and determine whether (44) is or isn't an appropriate representation of the structure of the sentence? The answer is that there are a number of standard heuristics (i.e. 'tests') which we can use to determine structure. One such test relates to the phenomenon of coordination. English and other languages have a variety of coordinating conjunctions (which we might designate by the category label CONJ - or perhaps just J) like and/but/or which can be used to coordinate ($=$ conjoin $=$ join together) expressions such as those bracketed below:
(45) (a) [fond of cats] and [afraid of dogs]
(b) [slowly] but [surely]
(c) [to go] or [to stay]

In each of the expressions in (45), an italicised coordinating conjunction has been used to conjoin the bracketed pairs of expressions. Clearly, any adequate grammar of English will have to provide a principled answer to the question: 'What kinds of strings (i.e. sequences of words) can and cannot be coordinated?'

Now, it turns out that we can't just coordinate any random set of strings, as we see by comparing the grammatical reply produced by speaker B in (46) below:

SPEAKERA: What does he do to keep fit?
SPEAKER B: Run up the hill and up the mountain
with the ungrammatical reply produced by speaker B in (47) below:
SPEAKER A: What did he do about his bills?
SPEAKER B: *Ring up the phone company and up the electricity company
Why should it be possible to coordinate the string up the hill with the string up the mountain in (46), but not possible to coordinate the string up the phone company with the string up the electricity company in (47)? We can provide a principled answer to this question in terms of constituent structure: the italicised string up the hill in (46) is a constituent of the phrase run up the hill (up the hill is a prepositional phrase, in fact), and so can be coordinated with another similar type of prepositional phrase (e.g. a PP such as up the mountain, or down the hill, or along the path, etc.). Conversely, however, the string up the phone company in (47) is not a constituent of the phrase ring up the phone company, and so
cannot be coordinated with another similar string like up the electricity company. (Traditional grammarians say that $u p$ is associated with ring in expressions like ring up someone, and that the expression ring up forms a kind of complex verb which carries the sense of 'telephone'.) On the basis of contrasts such as these, we can formulate the following generalisation:

Only constituents of the same type can be coordinated
A constraint (i.e. principle imposing restrictions on certain types of grammatical operation) along the lines of (48) is assumed in much work in traditional grammar.

Having established the constraint (48), we can now make use of it as a way of testing the tree diagram in (44) above. In this connection, consider the data in (49) below (in which the bracketed strings have been coordinated by and):
(49) (a) The chairman has resigned from [the board] and [the company]
(b) The chairman has resigned [from the board] and [from the company]
(c) The chairman has [resigned from the board] and [gone abroad]
(d) The chairman [has resigned from the board] and [is living in Utopia]
(e) *The [chairman has resigned from the board] and [company has replaced him]
(f) [The chairman has resigned from the board] and [the company has replaced him]
(49a) provides us with evidence in support of the claim in (44) that the board is a determiner phrase constituent, since it can be coordinated with another DP like the company; similarly, (49b) provides us with evidence that from the board is a prepositional phrase constituent, since it can be coordinated with another PP like from the company; likewise, (49c) provides evidence that resigned from the board is a verb phrase constituent, since it can be coordinated with another VP like gone abroad; in much the same way, (49d) provides evidence that has resigned from the board is a T-bar constituent, since it can be coordinated with another T^{\prime} like is living in Utopia (thereby providing interesting empirical evidence in support of the binary-branching structure assumed in the TP analysis of clauses, and against the ternary-branching analysis assumed in the S analysis of clauses); and in addition, (49f) provides evidence that the chairman has resigned from the board is a TP constituent, since it can be coordinated with another TP like the company has replaced him. Conversely, however, the fact that (49e) is ungrammatical suggests that (precisely as (44) claims) the string chairman has resigned from the board is not a constituent, since it cannot be coordinated with a parallel string like company has replaced him (and the constraint in (48) tells us that two strings of words can only be coordinated if both are constituents - and more precisely, if both are constituents of the same type). Overall, then, the coordination data in (49) provide empirical evidence in support of the analysis in (44). (It should be noted, however, that the coordination test is not always straightforward to apply, in part because there is more than one type of coordination - see e.g. Radford 1997a, pp. 104-7. Apparent complications arise in relation to sentences like 'He is cross with her and in a filthy mood', where the AP/adjectival phrase cross with
her has been coordinated with the $\mathrm{PP} /$ prepositional phrase in a filthy mood: to say that these seemingly different AP and PP constituents are 'of the same type' requires a more abstract analysis than is implied by category labels like AP and PP, perhaps taking them to share in common the property of being predicative expressions. See Phillips 2003 for an alternative approach to coordination, and Johnson 2002 for problematic cases in German.)

There are a variety of other ways of testing structure, but we will not attempt to cover them all here (see Radford 1997a, pp. 102-16 for more detailed discussion). However, we will briefly mention two which are already familiar from earlier discussion. In §2.3, we noted that substitution is a useful tool for determining the categorial status of words. We can also use substitution as a way of testing whether a given string of words is a constituent or not, by seeing whether the relevant string can be replaced by (or serve as the antecedent of) a single word. In this connection, consider:
(50) (a) The chairman has resigned from the board, and he is now living in Utopia
(b) The press say that the chairman has resigned from the board, and so he has
(c) If the Managing Director says the chairman has resigned from the board, he must have done
(d) If the chairman has resigned from the board (which you say he has), how come his car is still in the company car park?

The fact that the expression the chairman in (50a) can be substituted (or referred back to) by a single word (in this case, the pronoun he) provides evidence in support of the claim in (44) that the chairman is a single constituent (a DP/determiner phrase, to be precise). Likewise, the fact that the expression resigned from the board in (50b,c,d) can serve as the antecedent of so/done/which provides evidence in support of the claim in (44) that resigned from the board is a constituent (more precisely, a VP/verb phrase).

A further kind of constituent structure test which we made use of in $\S 3.5$ above relates to the possibility of preposing a constituent in order to highlight it in some way (i.e. in order to mark it out as a topic containing familiar/old information, or a focused constituent containing unfamiliar/new information). In our earlier discussion of (32), (33) and (37) above, we concluded that only a maximal projection can be highlighted in this way. This being so, one way we can test whether a given expression is a maximal projection or not is by seeing whether it can be preposed. In this connection, consider the following sentence:

The press said that the chairman would resign from the board, and resigned from the board he has

The fact that the italicised expression resigned from the board can be preposed in (51) indicates that it must be a maximal projection: this is consistent with the
analysis in (44) which tells us that resigned from the board is a verb phrase which is the maximal projection of the verb resigned.

However, an important caveat which should be noted in relation to the preposing test is that particular expressions can sometimes be difficult (or even impossible) to prepose even though they are maximal projections. This is because there are constraints (i.e. restrictions) on such movement operations. One such constraint can be illustrated by the following contrast:
(52) (a) I will certainly try to give up smoking
(b) Give up smoking, I will certainly try to
(c) *To give up smoking, I will certainly try

Here, the VP/verb phrase give up smoking can be highlighted by being preposed, but the TP/infinitival tense phrase to give up smoking cannot - even though it is a maximal projection (by virtue of being the largest expression headed by infinitival to). What is the nature of the restriction on preposing to+infinitive expressions illustrated by the ungrammaticality of (52c)? The answer is not clear, but may be semantic in nature. When an expression is preposed, this is in order to highlight its semantic content in some way (e.g. for purposes of contrast - as in 'Syntax, I don't like but phonology I do'). It may be that its lack of intrinsic lexical content makes infinitival to an unsuitable candidate for highlighting, and this may in turn be reflected in the fact that infinitival to cannot carry contrastive stress - as we see from the ungrammaticality of *'I don't want To', where capitals mark contrastive stress. What this suggests is that:

The smallest possible maximal projection is moved which contains the highlighted material

So, if we want to highlight the semantic content of the VP give up smoking, we prepose the VP give up smoking rather than the TP to give up smoking because the VP is smaller than the TP containing it.

However, this is by no means the only constraint on preposing, as we see from (54) below (where FBA is an abbreviation for the Federal Bureau of Assassinations - a purely fictitious body, of course):
(54) (a) Nobody had expected that the FBA would assassinate the king of Ruritania
(b) *King of Ruritania, nobody had expected that the FBA would assassinate the
(c) The king of Ruritania, nobody had expected that the FBA would assassinate
(d) *The FBA would assassinate the king of Ruritania, nobody had expected that $(\mathrm{NB}$. that $=$ б t)
(e) That the FBA would assassinate the king of Ruritania, nobody had expected

The ungrammaticality of (54b,d) tells us that we can't prepose the NP king of Ruritania or the TP the FBA would assassinate the king of Ruritania. Why should this be? One possibility (briefly hinted at in Chomsky 1999) is that there may be a constraint on movement operations to the effect that a DP can be preposed but not an NP which is contained within a DP, and likewise that a CP can be preposed
but not a TP which is contained within a CP. One implementation of this idea would be to posit a constraint like (55) below:

(55) Functional Head Constraint/FHC

The complement of a certain type of functional head F (e.g. a determiner or complementiser) cannot be moved on its own (without also moving F)

Suppose, then, that we want to highlight the NP king of Ruritania in (54) by preposing. (53) tells us to move the smallest possible maximal projection containing the highlighted material, and hence we first try to move this NP on its own: but the Functional Head Constraint tells us that it is not possible to prepose this NP on its own, because it is the complement of the determiner the. We therefore prepose the next smallest maximal projection containing the highlighted NP king of Ruritania - namely the DP the king of Ruritania; and as the grammaticality of (54c) shows, the resulting sentence is grammatical.

Now suppose that we want to highlight the TP the FBA would assassinate the king of Ruritania. (53) tells us to move the smallest maximal projection containing the highlighted material - but FHC (55) tells us that we cannot prepose a constituent which is the complement of a complementiser. Hence, we prepose the next smallest maximal projection containing the TP we want to highlight, namely the CP that the FBA would assassinate the king of Ruritania - as in (54e).

However, an apparent problem for the Functional Head Constraint (55) is posed by examples like:
(56) (a) Surrender to the enemy, I never will
(b) Surrender to the enemy, he resolutely refused to

The preposed verb phrase surrender to the enemy is the complement of will in (56a), and the complement of $t o$ in (56b). Given the analysis in $\S 2.7$ and $\S 2.8$, will is a finite T/tense constituent and to is a non-finite T/tense particle. If (as we have assumed so far) T is a functional category, we would expect the Functional Head Constraint (55) to block preposing of the VP surrender to the enemy because this VP is the complement of the functional T constituent will/to. The fact that the resulting sentences $(56 a, b)$ are grammatical might lead us to follow Chomsky (1999) in concluding that T is a substantive category rather than a functional category, and hence does not block preposing of its complement. Alternatively, it may be that the constraint only applies to certain types of functional category (as hinted at in (55)) - e.g. D and C but not T (perhaps because D and C are the 'highest' heads within nominal and clausal structures respectively - and indeed in chapter 10 we shall reformulate this constraint along such lines).

It is interesting to note that alongside sentences like (56) above in which a phrase has been highlighted by being preposed, we also find sentences like (57) below in which a single word has been preposed:
(57) (a) Surrender, I never will
(b) Surrender, he resolutely refused to

In (57) the verb surrender has been preposed on its own. At first sight, this might seem to contradict our earlier statement that only maximal projections can undergo preposing. However, more careful reflection shows that there is no contradiction here: after all, the maximal projection of a head H is the largest expression headed by H; and in a sentence like I never will surrender, the largest expression headed by the verb surrender is the verb surrender itself - hence, surrender in (57) is indeed a maximal projection. More generally, this tells us that an individual word can itself be a maximal projection, if it has no complement or specifier of its own.

The overall conclusion to be drawn from our discussion here is that the preposing test has to be used with care. If an expression can be preposed in order to highlight it, it is a maximal projection; if it cannot, this may either be because it is not a maximal projection, or because (even though it is a maximal projection) a syntactic constraint of some kind prevents it from being preposed, or because its head word has insufficient semantic content to make it a suitable candidate for highlighting.

3.7 Syntactic relations

Throughout this chapter, we have argued that phrases and sentences are formed by a series of binary merger operations, and that the resulting structures can be represented in the form of tree diagrams. Because they mark the way that words are combined together to form phrases of various types, tree diagrams are referred to in the relevant technical literature as phrase-markers (abbreviated to P-markers). They show us how a phrase or sentence is built up out of constituents of various types: hence, a tree diagram provides a visual representation of the constituent structure of the corresponding expression. Each node in the tree (i.e. each point in the tree which carries a category label like $\mathrm{N}, \mathrm{V}, \mathrm{A}^{\prime}, \mathrm{T}^{\prime}, \mathrm{PP}, \mathrm{CP}$ etc.) represents a different constituent of the sentence; hence, there are as many different constituents in any given phrase-marker as there are nodes carrying category labels. Nodes at the very bottom of the tree are called terminal nodes, and other nodes are non-terminal nodes: so, for example, all the $\mathrm{D}, \mathrm{N}, \mathrm{T}, \mathrm{V}$ and P nodes in (44) are terminal nodes, and all the DP, PP, VP, T^{\prime} and TP nodes are non-terminal nodes. The topmost node in any tree structure (i.e. TP in the case of (44) above) is said to be its root. Each terminal node in the tree carries a single lexical item (i.e. an item from the lexicon/dictionary, like dog or go etc.): lexical items are sets of phonological, semantic and grammatical features (with category labels like N, V, T, C etc. being used as shorthand abbreviations for the set of grammatical features carried by the relevant items).

It is useful to develop some terminology to describe the syntactic relations between constituents, since these relations turn out to be central to syntactic description. Essentially, a P-marker is a graph comprising a set of points
($=$ labelled nodes), connected by branches ($=$ solid lines) representing containment relations (i.e. telling us which constituents contain or are contained within which other constituents). We can illustrate what this means in terms of the following abstract tree structure (where A, B, C, D, E, F, G, H and J are different nodes in the tree, representing different constituents):

In (58), G immediately contains H and J (and conversely H and J are the two constituents immediately contained within G, and hence are the two immediate constituents of G): this is shown by the fact that H and J are the two nodes immediately beneath G which are connected to G by a branch (solid line). Likewise, E immediately contains F and G; B immediately contains C and D; and A immediately contains B and E. We can also say that E contains F, G, H and J; and that A contains B, C, D, E, F, G, H and J (and likewise that G contains H and J; and B contains C and D). Using equivalent kinship terminology, we can say that A is the mother of B and E (and conversely B and E are the two daughters of A); B is the mother of C and $\mathrm{D} ; \mathrm{E}$ is the mother of F and G ; and G is the mother of H and J. Likewise, B and E are sisters (by virtue of both being daughters of A) - as are C and $\mathrm{D} ; \mathrm{F}$ and G ; and H and J .

A particularly important syntactic relation is c-command (a conventional abbreviation of constituent-command), which provides us with a useful way of determining the relative position of two different constituents within the same tree (in particular, whether one is lower in the tree than the other or not). We can define this relation informally as follows (where X, Y and Z are three different nodes):

C-command

A constituent X c-commands its sister constituent Y and any constituent Z which is contained within Y

A more concrete way of visualising this is to think of a tree diagram as representing a network of train stations, with each of the labelled nodes representing the name of a different station in the network, and the branches representing the rail tracks linking the stations. We can then say that one node X c-commands another node Y if you can get from X to Y on the network by taking a northbound train, getting off at the first station, changing trains there and then travelling one or more stops south on a different line.

In the light of the definition of c-command given above, let's consider which constituents each of the nodes in (58) c-commands. A doesn't c-command any of
the other nodes, since A has no sister. B c-commands E, F, G, H and J because B's sister is E, and E contains F, G, H and J. C c-commands only D, because C's sister is D , and D does not contain any other constituent; likewise, D c-commands only C. E c-commands B, C and D because B is the sister of E and B contains C and D. F c-commands G, H and J, because G is the sister of F and G contains H and J. G c-commands only F, because G's sister is F, and F does not contain any other constituents. H and J likewise c -command only each other because they are sisters which have no daughters of their own.

We can illustrate the importance of the c-command relation in syntactic description by looking at the distribution of a class of expressions which are known as anaphors. These include reflexives (i.e. self/selves forms like myself/yourselffthemselves etc.) and reciprocals like each other and one another. Such anaphors have the property that they cannot be used to refer directly to an entity in the outside world, but rather must be bound by (i.e. take their reference from) an antecedent elsewhere in the same phrase or sentence. Where an anaphor has no (suitable) antecedent to bind it, the resulting structure is ungrammatical as we see from contrasts such as those in (60) below:
(60) (a) He must feel proud of himself
(b) ${ }^{*}$ She must feel proud of himself
(c) *Himself must feel proud of you

In (60a), the third-person-masculine-singular anaphor himself is bound by a suitable third-person-masculine-singular antecedent (he), with the result that (60a) is grammatical. But in (60b), himself has no suitable antecedent (the feminine pronoun she is not a suitable antecedent for the masculine anaphor himself), and so is unbound (with the result that (60b) is ill-formed). In (60c), there is no antecedent of any kind for the anaphor himself, with the result that the anaphor is again unbound and the sentence ill-formed.

There are structural restrictions on the binding of anaphors by their antecedents, as we see from:
(61) (a) The president may blame himself
(b) *Supporters of the president may blame himself
(62) (a) They may implicate each other
(b) *The evidence against them may implicate each other

As a third-person-masculine-singular anaphor, himself must be bound by a third-person-masculine-singular antecedent like the president; similarly, as a plural anaphor, each other must be bound by a plural antecedent like they/them. However, it would seem from the contrasts above that the antecedent must occupy the right kind of position within the structure in order to bind the anaphor or else the resulting sentence will be ungrammatical. The question of what is the right position for the antecedent can be defined in terms of the following structural condition:
(63) C-command condition on binding

A bound constituent must be c-commanded by an appropriate antecedent
The relevant bound constituent is the reflexive anaphor himself in (61), and its antecedent is the president; the bound constituent in (62) is the reciprocal anaphor each other, and its antecedent is they/them. Sentence (61a) has the structure (64) below:

The reflexive pronoun himself can be bound by the DP the president in (64) because the sister of the DP node is the T-bar node, and the pronoun himself is contained within the relevant T-bar node (by virtue of being one of the grandchildren of T-bar): consequently, the DP the president c-commands the anaphor himself and the binding condition (63) is satisfied. We therefore correctly specify that (61a) The president may blame himself is grammatical, with the president interpreted as the antecedent of himself.

But now consider why a structure like (65) below is ungrammatical (cf. (61b) above):

The answer is that the DP node containing the president doesn't c-command the PRN node containing himself, because the sister of the DP node is the P node of, and himself is not contained within (i.e. not a daughter, granddaughter, or great-granddaughter etc. of) the preposition of. Since there is no other appropriate antecedent for himself within the sentence (e.g. although the NP supporters of the president c-commands himself, it is not a suitable antecedent because it is a plural expression, and himself requires a singular antecedent), the anaphor himself remains unbound - in violation of the binding requirement on anaphors.

This is the reason why (61b) *Supporters of the president may blame himself is ungrammatical.

Our brief discussion of anaphor binding here highlights the fact that the relation c-command has a central role to play in syntax. It also provides further evidence for positing that sentences have a hierarchical constituent structure, in that the relevant restriction on the binding of anaphors in (63) is characterised in structural terms. There's much more to be said about binding, though we shan't pursue the relevant issues here: for technical discussion, see Reuland (2001a) and Reuland and Everaert (2001).

3.8 Bare phrase structure

In this chapter, we have used a system of category labels based on the bar notation which has been widely adopted since the 1970s. Within this framework, a sentence like (the title of Gloria Gaynor's immortal song) I will survive has the structure (66) below:

The bar notation used in (66) posits that there are three different levels of projection (i.e. types of expression): (i) heads (also called minimal projections) like the T/tense auxiliary will; (ii) intermediate projections like the T-bar will survive; and (iii) maximal projections like the TP I will survive. However, Chomsky (1999, p. 2) argues that a system of category labels which posits three different types of category label for projections of a given head H (viz. H, H-bar and HP) violates a UG principle which he terms the Inclusiveness Condition - outlined informally below:

Inclusiveness Condition

No new information can be introduced in the course of the syntactic computation
The reason why the bar notation used in trees like (66) violates inclusiveness is as follows. When the word will is taken out of the lexicon, its lexical entry specifies that it has a set of properties which include the grammatical properties represented by the category label T in (66). But the tree in (66) tells us that when will is merged with its complement survive, the resulting string will survive belongs to the category T-bar - in other words, it is an intermediate projection of will. Likewise, the tree in (66) also tells us that the larger string I will survive is a TP in other words, it is the maximal projection of will. But this information about intermediate and maximal projections is not part of the lexical entry for will, and
hence must be added in the course of the syntactic computation. However, adding such information about projection levels violates the Inclusiveness Condition (67).

One way of avoiding violation of inclusiveness is to remove all information about projection levels from trees, and hence replace a tree like (66) above by one like (68) below:

What our revised tree (68) says is that will, will survive and I will survive are all projections of the tense auxiliary will and hence are all tense expressions. Moreover, information about projection levels turns out to be entirely redundant, since it is predictable from looking at the relative positions of constituents within a given structure. Simply by looking at the positions they occupy in the tree (68) we can tell that will is the minimal projection of will (i.e. it is the smallest expression headed by will), that will survive is an intermediate projection of will (by virtue of being neither the smallest nor the largest expression headed by will) and that I will survive is the maximal projection of will (by virtue of being the largest expression headed by will). Similarly, we can tell that the V survive is both a minimal and a maximal projection, in that it is both the smallest and the largest expression headed by survive: hence (e.g.) it can behave like a maximal projection and undergo preposing (as in Survive, I will). In much the same way, we know from looking at the structure in (68) that the pronoun I is likewise both a minimal and a maximal projection: given their status as maximal projections, it follows that pronouns can undergo preposing (as with the pronoun him in Him, I would never trust). Since the information about projection levels in the bar notation is redundant, Chomsky reasons, such information should not be represented in the system of category labels used in tree diagrams: after all, the goal of Minimalism is to reduce theoretical apparatus to the minimum which is conceptually necessary.

Given the possibility (mentioned in §2.11) that categorial information (i.e. information about the category that an item belongs to) can be represented in terms of grammatical features (and hence subsumed within the set of features which characterise the idiosyncratic properties of individual words), a further possibility is that category labels like those in (68) can be entirely replaced by sets of features, so opening up the possibility of developing a theory of bare phrase structure - i.e. a theory in which there are no category labels in syntactic trees. An even more radical possibility along these lines would be for the structure of I will survive to be represented in terms of an unlabelled tree diagram like (69) below:
(69)

An unlabelled tree diagram like (69) tells us that the constituents of (69) are I, will, survive, will survive and I will survive. The lexical entries for the items I, will and survive comprise sets of features which include information about their grammatical and selectional properties: for example, the entry for will tells us that it is a finite auxiliary which selects an infinitival complement. The fact that will selects an infinitive complement (and that survive is an infinitive form and is the sister of will) means that survive must be the complement of will and hence that will survive is a projection of will. Likewise, the fact that will has an [EPP] feature requiring it to project a subject means that the nominative pronoun I must be the subject of will, and hence that I will survive is an extended projection of will. As before, the relative position of the relevant constituents within the overall structure tells us that will is a minimal projection (of itself), will survive is an intermediate projection of will, and I will survive is the maximal projection of will. The overall conclusion we arrive at is that the information about category labels and projection levels in a conventional labelled tree diagram like (66) above may well be redundant.

If the kind of reasoning outlined here is along the right lines, it opens up the possibility of developing a theory of bare phrase structure such as that outlined in a skeletal form in Chomsky (1995) and Uriagereka (1998) - though it should be noted that the relevant discussion in these two works is highly technical and not suitable for those who don't have some mathematical background in set theory. However, we shall continue to use traditional labelled trees and the bar notation to represent structure, category membership and projection levels throughout the rest of this book, since this remains the notation most widely used in contemporary work in syntax.

3.9 Summary

In this chapter, we have looked at how words are combined together to form phrases and sentences. In $\S 3.2$ we showed how more and more complex phrases can be built up by successive binary merger operations, each of which combines a pair of constituents to form a larger constituent. In $\S 3.3$ we argued that clauses containing a finite tense auxiliary are formed by merging the tense auxiliary with a verbal complement to form an intermediate T-bar projection which is then merged with a subject to form an extended TP/tense phrase projection. On this view, a sentence like It may rain would be formed by merging the present-tense auxiliary may with the verb rain to form the T-bar constituent may rain, and then merging the resulting T-bar with the pronoun it to derive the TP

It may rain. We also noted the claim made by Chomsky in earlier work that the requirement for tense auxiliaries to have a subject is a consequence of a principle of Universal Grammar called the Extended Projection Principle/EPP, which requires a finite T to have an extended projection into a TP containing a subject; and we noted that in more recent work this subject-requirement is described by saying that a finite T has an [EPP] feature requiring it to have an extended projection into a TP containing a subject. We went on to suggest that clauses introduced by a complementiser/ C are formed by merging C with a TP complement to form a CP/complementiser phrase. In $\S 3.4$ we argued that a prepositional phrase like right on the nose has a similar internal structure to a TP like He has resigned, and that in both cases the head P / T on/has merges with a following complement to form the intermediate $\mathrm{P}-\mathrm{bar} / \mathrm{T}-\mathrm{bar}$ projection on the nose/has resigned which in turn is merged with a preceding specifier to form the extended PP/TP projection right on the nose/he has resigned. In $\S 3.5$ we went on to argue that other types of head (e.g. adjectives, adverbs, and nouns) can likewise project both into an intermediate projection via merger with a following complement, and into an extended projection via merger with a preceding specifier. We introduced the term maximal projection to denote the largest expression headed by a particular word in a given structure. In §3.6, we looked at ways of testing constituent structure, outlining tests relating to coordination, substitution, and preposing. We noted that a variety of factors can sometimes prevent constituents from being preposed in order to highlight them; for example, items with little or no substantive lexical content generally cannot be preposed, and there are also syntactic restrictions on preposing - e.g. such movement operations are subject to a Functional Head Constraint which bars the complement of a certain type of functional head (e.g. determiner or complementiser) from being moved on its own. In §3.7, we looked at the syntactic relations between constituents within tree diagrams, noting that the relation c-command plays a central role in syntax, e.g. in relation to anaphor binding. In $\S 3.8$ we discussed the potential redundancy in the system of labels used to represent categories and projection levels in traditional phrase structure trees, and noted that Chomsky has been seeking to develop a theory of bare phrase structure in recent work.

For those of you familiar with work in traditional grammar, it will be clear that the assumptions made about syntactic structure within the Minimalist framework are somewhat different from those made in traditional grammar. Of course, there are some similarities: within both types of framework, it is assumed that lexical categories project into phrases, so that by combining a noun with one or more other constituents we can form a noun phrase, and likewise by combining a verb/preposition/adjective/adverb with one or more other constituents we can form a verb phrase/prepositional phrase/adjectival phrase/adverbial phrase. But there are two major differences between the two types of framework. One is that Minimalism (unlike traditional grammar) assumes that function words also project into phrases (so that by combining a determiner with a noun expression we form a determiner phrase, by combining a (present- or past-tense) auxiliary/T with a complement and a subject we form a Tense Projection/TP, and by combining
a complementiser with a TP we form a complementiser projection/CP). This in some cases results in an analysis which is rather different from that found in traditional grammar (e.g. in that the nose would be considered a noun phrase in traditional grammar, but is taken to be a determiner phrase within the framework adopted here). A further difference between the two frameworks is that Minimalism assumes that all syntactic structure is binary-branching, whereas traditional grammar (implicitly) does not.

Workbook section

Exercise 3.1

Discuss the derivation of the following sentences, showing how their structure is built up in a pairwise fashion by successive binary merger operations.

1 He has become very fond of Mary
2 She must be quite pleased to see you
3 He may need to ask for help
4 They are expecting to hear from you
$5 \quad$ You should try to talk to the president
6 Inflation is threatening to undermine the growth of the economy
7 Nobody could believe that Sam was working for the government
8 He may refuse to admit that he was defrauding the company
Show how evidence from coordination and pronoun substitution can be used in support of your analysis. In addition, say which constituents can (and cannot) be preposed - and why.

Helpful hints

Assume that the sentences are derived in a bottom-up fashion by first merging the last two words in the sentence to form a constituent, then merging the constituent thereby formed with the third-from-last word to form an even larger constituent, then merging this even larger constituent with the fourth-from-last word . . . and so on. (It should be noted, however, that while this simple procedure will work for most of the sentences in the two exercises in this chapter, it requires modification to handle more complex sentences - e.g. those with phrasal specifiers like sentences $1,2,5,16$ and 18 in exercise 3.2.)

Model answer for sentence 1

Merging the preposition of with the noun Mary which serves as its complement derives the PP (prepositional phrase) in (i) below:
(i)

Merging the adjective fond with the resulting PP (which is the complement of fond) forms the intermediate adjectival projection (A-bar) fond of Mary in (ii) below:
(ii)

Merging the A-bar in (ii) with the adverb very which serves as its specifier (in that it modifies fond of Mary) forms the AP/adjectival phrase in (iii) below:
(iii)

Merging the verb become with the AP very fond of Mary which serves as the complement of become forms the VP/verb phrase in (iv) below:
(iv)

Merging the tense auxiliary (T constituent) has with its verb phrase complement become very fond of Mary forms the intermediate T-bar projection (v) below:
(v)

Merging the T-bar in (v) with the pronoun he which serves as its subject/specifier will derive the TP:
(vi)

Evidence in support of the analysis in (vi) comes from coordination data in relation to sentences such as:
(vii) (a) He has become very fond [of Mary] and [of her sister]
(b) He has become very [fond of Mary] and [proud of her achievements]
(c) He has become [very fond of Mary] but [less fond of her sister]
(d) He has [become very fond of Mary] and [grown used to her mother]
(e) He [has become very fond of Mary] and [is hoping to marry her]

The fact that each of the italicised strings can be coordinated with another similar (bold-printed) string is consistent with the claim made in (vi) that of Mary is a PP, fond of Mary is an A-bar, very fond of Mary is an AP, become very fond of Mary is a VP and has become very fond of Mary is a T-bar.

Additional evidence in support of the analysis in (vi) comes from the use of the proforms so/which in:
(viii) (a) He is apparently very fond of Mary, though nobody expected him to become so
(b) If he has become very fond of Mary (which he has), why doesn't he ask her out?

The fact that very fond of Mary is the antecedent of so in (viiia) is consistent with the claim made in (vi) that very fond of Mary is an AP; likewise, the fact that become very fond of Mary is the antecedent of which in (viiib) is consistent with the claim made in (vi) that become very fond of Mary is a VP.

If we look at the question of which expressions in the sentence can and cannot be preposed in order to highlight them, we find the following picture (? indicates questionable grammaticality):
(ix) (a) Mary, he (certainly) has become very fond of
(b) ?Of Mary, he (certainly) has become very fond
(c) *Fond of Mary, he (certainly) has become very
(d) Very fond of Mary, he (certainly) has become
(e) Become very fond of Mary, he (certainly) has
(f) *Has become very fond of Mary, he (certainly)
(Adding the adverb certainly improves the acceptability of some of the relevant sentences, for discourse reasons which need not concern us.) In (53) in the main text, we suggested that highlighting involves preposing the smallest possible maximal projection containing the focused material. Suppose that we want to highlight Mary via preposing. Since Mary is a maximal projection in (vi) by virtue of being the largest expression headed by the word Mary, preposing Mary in (ixa) yields a grammatical outcome, as expected. By contrast, preposing the prepositional phrase of Mary yields a somewhat degraded sentence, as we see from (ixb): this may be because if we want to highlight Mary alone, we prepose the smallest maximal projection containing Mary, and this is clearly the N Mary not the PP of Mary. There would only be some point in preposing of Mary if we wanted to highlight of as well as Mary; but since the preposition of (rather like infinitival to) has little or no semantic content (some linguists suggesting that it is a genitive case particle in this kind of use and hence a functor), an of-phrase is not a good candidate for highlighting. The string fond of Mary cannot be preposed in (ixc) because it is an intermediate (A-bar) projection of the adjective fond, not its maximal projection (the maximal projection of the adjective fond being the AP very fond of Mary). By contrast, the string very fond of Mary can be preposed in (ixd) by virtue of its status as the maximal projection of fond (i.e. the largest expression headed by fond). In (ixe) we see that become very fond of Mary can also be preposed by virtue of being the maximal projection of the verb become - even though it is the complement of the T constituent has; hence, either T is not a functional category (as suggested in Chomsky 1999), or else the Functional Head Constraint applies only to some functional categories (e.g. those like D and C which are the highest heads in nominal/clausal structures respectively). By contrast, the string has become very fond of Mary cannot be preposed in (ixf) because of its status as an intermediate (T-bar) projection of has - the corresponding maximal projection of has being the TP He has become very fond of Mary.

Exercise 3.2

In §3.7, we showed how the relation c-command plays an important role in accounting for the use of reflexive and reciprocal anaphors. The same can be argued to be true of two other types of expression, namely non-anaphoric pronominals like he/him/her/it/them etc. and referential noun expressions like John or the president. Chomsky (1981) developed a Theory of Binding which incorporated the three binding principles outlined in a slightly revised form below:

Binding Principles

Principle A: an anaphor must be bound within its local domain
Principle B: a (non-anaphoric) pronominal (expression) must be free within its local domain
Principle C: an R-expression (i.e. referring noun expression) must be free within the overall structure containing it

Although there is controversy about how best to define the notion of local domain in relation to binding, for present purposes assume that this corresponds to the notion of TP, and that the three
binding principles in (i) thus amount to the following:
(ii) A: An anaphor (like himself) must be bound by (i.e. must refer to) a c-commanding constituent within the closest TP immediately containing it
B: A pronominal (like him) must not be bound by (i.e. must not refer to) any c-commanding constituent within the closest TP immediately containing it C: An R-expression (i.e. a referring noun expression like John/the president) must not be coreferential to (i.e. must not refer to the same entity as) any c-commanding expression within the overall tree structure containing it

In the light of the Binding Principles outlined informally in (ii), discuss the binding properties of the expressions Fred, John, he/him and himself in sentences 1-6 below, drawing trees to represent the structure of the sentences.

1a The rumours about Fred have upset him
b *The rumours about Fred have upset himself
2a The rumours about him have upset Fred
b *The rumours about himself have upset Fred
3a John must feel that Fred has disgraced himself
b *John must feel that himself has disgraced Fred
4a John must feel that he has disgraced Fred
b John must feel that Fred has disgraced him
5a John may wonder if the rumours about Fred will affect him
b John may wonder if the rumours about him will affect Fred
6a John may suspect that Fred has taken some pictures of him
b John may suspect that Fred has taken some pictures of himself
In addition to its role in Binding Theory, the notion c-command has traditionally been assumed to play an important part in accounting for the syntax of so-called (negative/interrogative) polarity expressions - i.e. expressions which are said to be restricted to occurring in negative or interrogative contexts. One way of characterising this restriction is to suppose that the relevant expressions are restricted to occurring in a position where they are c-commanded by what Klima (1964) termed an affective constituent (e.g. a negative, interrogative or conditional expression conditional expressions including iffunless in structures like 'I will shut him up if he tries to say anything'). Polarity expressions include the partitive quantifier any (and related compounds like anyonelanything), the items need and dare when serving as auxiliaries which don't take third-person singular $-s$ in the present tense and which have a bare (to-less) infinitive complement, and idioms like lift a finger. Show how the c-command condition accounts for the (un)grammaticality of the following:

7 You mustn't talk to anyone
$8 \quad$ Nobody need do anything
$9 \quad$ Who dare blame anyone?
10 She has refused to sign anything
11 She should know if anyone has made any changes
12 I don't think that anyone dare lift a finger

13

He may have no desire to change anything
Nobody will think that anything has changed
He may feel unable to do anything
No politician dare offend anyone
*Anyone isn't helping me
*The fact that nothing has happened will change anything John will deny that anything has happened
*John has denied anything John has denied any involvement John has denied involvement in any fraud

In relation to 17 (intended to be synonymous with There isn't anyone helping me) show how the traditional ternary-branching analysis of clauses as S-constituents (whereby 17 would be analysed as an S constituent comprising the pronoun/PRN anyone, the present-tense auxiliary/T isn't and the verb phrase/VP helping me) would be unable to provide a principled account of the ungrammaticality of 17 in terms of the c-command condition on polarity items. In relation to 19 and 20 , consider why some linguists (e.g. Landau 2002) have claimed that it is not the verb deny which is negative, but rather the complementiser that, and say why sentences like 21 and 22 cast doubt on this. Consider an alternative account of data like 19-22 under which we assume that a polarity item must be asymmetrically c-commanded by an affective item, and we define asymmetric c-command as follows:
(iii) X asymmetrically c-commands Y if X c-commands Y but Y does not c-command X
(A different approach to polarity items can be found in Acquaviva 2002.)

Helpful hints

Assume that need/dare (when they take a bare to-less infinitive complement) are modal auxiliaries which occupy the head T position of TP, and that they take a VP complement: assume also that they are polarity items in this use. Assume that no in 13 and 16 is a quantifier $(=Q)$ which heads a quantifier phrase $(=\mathrm{QP})$ constituent and has a noun phrase as its complement: assume that when the head Q of QP is negative, the overall QP is negative as well (because a phrase carries the same features as its head by virtue of being a projection of the relevant head). In addition, assume that mustn't/don't/isn't are (inherently negative) T/tense auxiliaries. Finally, assume that anyone/anything/nobody/nothing are pronouns (more specifically, they are Q-pronouns, i.e. pronominal quantifiers). [A descriptive detail which you might care to note is that the quantifier any has two uses. It can serve as a universal (or 'free choice') quantifier with a meaning similar to every (as in He'll do anything for a laugh): in this use, the initial a - of any is stressed, and the relevant word is not a polarity item - i.e. is not restricted to occurring in affective contexts. The second use of any is as a partitive (or existential) quantifier: in this use, it has a meaning similar to some and can be unstressed (with its initial vowel reduced to schwa or even being truncated in rapid colloquial speech styles - e.g. He wouldn't do 'nything), and is indeed a polarity item restricted to occurring in affective contexts. Assume that in the examples in 7-22 above, you are dealing with partitive any, and that this is a polarity item.]

Model answer for sentence 1a

Although we will not attempt to argue this here, there are good reasons for thinking that sentence 1a has the structure (i) below:
(i)

Him is a pronominal (i.e. a non-anaphoric pronoun), and hence subject to Principle B of Binding Theory. This specifies that a pronominal like him cannot refer to any expression c-commanding it within the closest TP containing it; and from this it follows that such a pronominal can (a) refer to an expression contained in a different TP within the same sentence, or (b) refer to an expression within the same TP as long as that expression does not c-command him, or (c) refer to some entity in the domain of discourse (e.g. some person not mentioned in the relevant sentence, but present in the discourse context). The second of these possibilities (b) allows for him to refer to Fred in (i), since although him and Fred are contained within the same TP, Fred does not c-command him (the only constituent which Fred c-commands being the preposition about) so that principle B is satisfied if him refers to Fred (or if indeed him refers to some other person not mentioned in the sentence).

The noun Fred is an R-expression by virtue of being a referring noun expression, and hence is subject to Principle C of Binding Theory. This specifies that an R-expression like Fred cannot be coreferential to any expression which c-commands it anywhere within the overall structure containing it. However, there is no violation of Principle C in (i) if Fred and him are coreferential, since Fred is not c-commanded by him. (The only constituent which him c-commands is the V upset). There is likewise no violation of Principle C if Fred refers to some person not mentioned within the sentence. Overall, then, principles B and C allow for the twin possibilities that him can either refer to Fred or refer to someone other than Fred who is not directly mentioned in the sentence.

Model answer for sentence 7

Given the assumptions made in the text, sentence 7 will have the structure (ii) below:
(ii)

The T node containing the negative auxiliary mustn't here c-commands the PRN node containing the polarity item anyone because the sister of [T mustn't] is [vp talk to anyone], and anyone is contained within this VP, since the PRN node is one of the grandchildren of the VP node. If you prefer to use the alternative train metaphor suggested in $\S 3.7$ (under which X c-commands Y if you can get from X to Y on a train by going one stop north, then taking a southbound train on a different line and travelling as many stops south as you choose), you can say that [T mustn't] c-commands [PRN anyone] because if you travel one stop north from the T station you arrive at the T-bar station, and if you then change trains at the T-bar station you can get a southbound train on a different line which will take you to the PRN station containing anyone (at the end of the line) via the VP and PP stations. Since the polarity item anyone is c-commanded by the negative auxiliary mustn't, the c-command condition on the use of polarity items is satisfied, and sentence 7 is therefore grammatical.

4 Null constituents

4.1 Overview

So far, our discussion of syntactic structure has tacitly assumed that all constituents in a given structure are overt (in the sense that they have overt phonetic features, as well as grammatical and semantic features). However, in this chapter we argue that syntactic structures may also contain null constituents (also known as empty categories) - i.e. constituents which have grammatical and semantic features but lack phonetic features (and so are 'silent' or 'inaudible').

4.2 Null subjects

We are already familiar with one kind of null constituent from the discussion of the Null-Subject Parameter in §1.6. There, we saw that alongside finite clauses like that produced by speaker A in the dialogue in (1) below with an overt subject like Maria, Italian also has finite clauses like that produced by speaker B , with a null subject pronoun conventionally designated as pro (and referred to affectionately as 'little pro'):

> SPEAKER A: Maria è tornata?
> Maria is returned?
> 'Has Maria returned?'

SPEAKER B: Sì, proè tornata
Yes, pro is returned
'Yes, she has returned'
One reason for positing that the sentence in (1B) has a null pro subject is that tornare 'return' (in the use illustrated here) is a one-place predicate which requires a subject: this requirement is satisfied by the overt subject Maria in (1A), and by the null pro subject in (1B). A second reason relates to the agreement morphology carried by the auxiliary e 'is' and the participle tornata 'returned' in (1). Just as the form of the (third-person-singular) auxiliary \grave{e} 'is' and the (feminine-singular) participle tornata is determined via agreement with the overt (third-person-femininesingular) subject Maria in (1A), so too the auxiliary and participle agree in exactly the same way with the null pro subject in (1B), which (as used here) is third person
feminine singular by virtue of referring to Maria. If the sentence in (1B) were subjectless, it is not obvious how we would account for the relevant agreement facts. Since all finite clauses in Italian allow a null pro subject, we can refer to pro as a null finite subject.

Although English is not an Italian-style null-subject language (in the sense that it is not a language which allows any and every kind of finite clause to have a null pro subject), it does have three different types of null subject (briefly discussed in exercise 1.1). One of these are imperative null subjects. As the examples in (2) below illustrate, an imperative sentence in English can have an overt subject which is either a second-person expression like you, or a third-person expression like anyone:
(2) (a) Don't you dare lose your nerve!
(b) Don't anyone dare lose their nerve!

However, imperative null subjects are intrinsically second person, as the contrast in (3) below shows:
(3) (a) Don't lose your nerve!
(b) *Don't lose their nerve!

In other words, imperative null subjects seem to be a silent counterpart of you. One way of describing this is to say that the pronoun you can have a null spellout (and thereby have its phonetic features not spelled out -i.e. deleted/omitted) when it is the subject of an imperative sentence.

A second type of null subject found in English are truncated null subjects. In cryptic styles of colloquial spoken English (and also in diary styles of written English) a sentence can be truncated (i.e. shortened) by giving a subject pronoun like I/you/he/we/they a null spellout if it is the first word in a sentence. So, in sentences like those in (4) below:
(4) (a) I can't find my pen
(b) $\quad I$ think I left it at home
(c) Why do I always lose things?
the two italicised occurrences of the subject pronoun I can be given a null spellout because in each case I is the first word in the sentence, but not other occurrences of I - as we see from (5) below:
(5) (a) Can't find my pen
(b) Think I left it at home/*Think left it at home
(c) *Why do always lose things?

However, not all sentence-initial subjects can be truncated (e.g. we can't truncate He in a sentence like He is tired, giving *Is tired): the precise nature of the constraints on truncation is unclear.

A third type of null subject found in English are non-finite null subjects, found in non-finite clauses which don't have an overt subject. In this connection,
compare the structure of the bracketed infinitive clauses in the (a) and (b) examples below:
(6) (a) We would like [you to stay]
(b) We would like [to stay]
(7) (a) We don't want [anyone to upset them]
(b) We don't want [to upset them]

Each of the bracketed infinitive complement clauses in the (a) examples in (6) and (7) contains an overt (italicised) subject. By contrast, the bracketed complement clauses in the (b) examples appear to be subjectless. However, we shall argue that apparently subjectless infinitive clauses contain a null subject. The particular kind of null subject found in the bracketed clauses in the (b) examples has the same grammatical and referential properties as a pronoun, and hence appears to be a null pronoun. In order to differentiate it from the null ('little pro') subject found in finite clauses in null-subject languages like Italian, it is conventionally designated as PRO and referred to as 'big PRO'. Given this assumption, a sentence such as (6b) will have a parallel structure to (6a), except that the bracketed TP has an overt pronoun you as its subject in (6a), but a null pronoun PRO as its subject in (6b) - as shown below:
(8)

Using the relevant technical terminology, we can say that the null PRO subject in (8) is controlled by (i.e. refers back to) the subject we of the matrix ($=$ containing $=$ next highest) clause - or, equivalently, that $w e$ is the controller or antecedent of PRO: hence, a structure like 'We would like PRO to stay' has an interpretation akin to that of 'We would like ourselves to stay'. Verbs (such as like) which allow an infinitive complement with a PRO subject are said to function (in the relevant use) as control verbs; likewise, a complement clause with a null PRO subject is known as a control clause.

An obvious question to ask at this juncture is why we should posit that apparently subjectless infinitive complements like those bracketed in (6b) and (7b) above have a null PRO subject. Part of the motivation for PRO comes from considerations relating to argument structure. The verb stay (as used in (6b) above)
is a one-place predicate which requires a subject argument - and positing a PRO subject for the stay clause satisfies the requirement for stay to have a subject. The null PRO subject of a control infinitive becomes overt if the infinitive clause is substituted by a finite clause, as we see from the paraphrases for the (a) examples given in the (b) examples below:
(9) (a) I am sorry [PRO to have kept you waiting]
(b) I am sorry [I have kept you waiting]
(10) (a) Jim promised [PRO to come to my party]
(b) Jim promised [he would come to my party]

The fact that the bracketed clauses in the (b) examples contain an overt (italicised) subject makes it plausible to suppose that the bracketed clauses in the synonymous (a) examples have a null PRO subject. (Note, however, that only verbs which select both an infinitive complement and a finite complement allow a control clause to be substituted by a finite clause with an overt subject - hence, not a control verb like want in I want to go home because want does not allow a that-clause complement, as we see from the ungrammaticality of *I want that I should leave. Interestingly, Xu 2003 claims that all control verbs in Chinese allow an overt subject pronoun in place of PRO in control clauses.)

Further evidence in support of positing a null PRO subject in such clauses comes from the syntax of reflexive anaphors (i.e. self/selves forms such as myself/yourselffhimself/themselves etc.). As examples such as the following indicate, reflexives generally require a local antecedent (the reflexive being italicised and its antecedent bold-printed):
(11) (a) They want [John to help himself]
(b) ${ }^{*}$ They want [John to help themselves]

In the case of structures like (11), a local antecedent means 'an antecedent contained within the same [bracketed] clause/TP as the reflexive'. (11a) is grammatical because it satisfies this locality requirement: the antecedent of the reflexive himself is the noun John, and John is contained within the same (bracketed) help-clause as himself. By contrast, (11b) is ungrammatical because the reflexive themselves does not have a local antecedent (i.e. it does not have an antecedent within the bracketed clause containing it); its antecedent is the pronoun they, and they is contained within the want clause, not within the [bracketed] help clause. In the light of the requirement for reflexives to have a local antecedent, consider now how we account for the grammaticality of the following:

> John wants [PRO to prove himself]

Given the requirement for reflexives to have a local antecedent, it follows that the reflexive himself must have an antecedent within its own [bracketed] clause. This requirement is satisfied in (12) if we assume that the bracketed complement clause has a PRO subject, and that PRO is the antecedent of himself. Since PRO
in turn is controlled by John (i.e. John is the antecedent of PRO), this means that himself is coreferential to (i.e. refers to the same individual as) John.

We can formulate a further argument in support of positing a PRO subject in apparently subjectless infinitive clauses in relation to the syntax of predicate nominals: these are nominal (i.e. noun-containing) expressions used as the complement of a copular (i.e. linking) verb such as be, become, remain (etc.) in expressions such as John was/became/remained my best friend, where the predicate nominal is my best friend, and the property of being/becoming/remaining my best friend is predicated of John. Predicate nominals of the relevant type have to agree in number with the subject of their own clause in copular constructions, as we see from examples such as the following:
(13) (a) They want [their son to become a millionaire/*millionaires]
(b) He wants [his sons to become millionaires/*a millionaire]

The italicised predicate nominal has to agree with the (bold-printed) subject of its own [bracketed] become clause, and cannot agree with the subject of the want clause. In the light of this local (clause-internal) agreement requirement, consider now how we account for the agreement pattern in (14) below:
(14) (a) They want [PRO to become millionaires/*a millionaire]
(b) He wants [PRO to become a millionaire/*millionaires]

If we posit that the become clause has a PRO subject which is controlled by (i.e. refers back to) the subject of the want clause, the relevant agreement facts can be accounted for straightforwardly: we simply posit that the predicate nominal (a) millionaire(s) agrees with PRO (since PRO is the subject of the become clause), and that PRO in (14a) is plural because its controller/antecedent is the plural pronoun they, and conversely that PRO in (14b) is singular because its antecedent/controller is the singular pronoun $h e$.

A further argument in support of positing that control clauses have a silent PRO subject can be formulated in theoretical terms. In the previous chapter, we noted that finite auxiliaries have an [EPP] feature which requires them to have a subject specifier. Since finite auxiliaries belong to the category T of tense-marker, we can generalise this conclusion by positing that all finite T constituents have an [EPP] feature requiring them to have a subject. However, since we argued in chapter 2 that infinitival to also belongs to the category T (by virtue of its status as a non-finite tense-marker), we can suggest the broader generalisation that not only a finite T but also a non-finite T containing the infinitive particle to has an [EPP] feature and hence must likewise project a subject. The analysis in (8) above is consistent with this generalisation, since it posits that the stay clause either has an overt you subject or a null PRO subject, with either type of subject satisfying the [EPP] feature of $t o$.

The overall conclusion which our discussion here leads us to is that just as infinitive complements like you to stay in (6a) have an overt subject (you), so too seemingly subjectless infinitive complements like to stay in (6b) have a null

PRO subject - as shown in (8) above. In structures like (8), PRO has an explicit controller, which is the subject of the matrix clause (i.e. of the clause which immediately contains the control verb). However, this is not always the case, as we can see from structures like (15) below:
(15) (a) It is important [PRO to take regular exercise]
(b) It's difficult [PRO to learn a foreign language]
(c) It's unwise [PRO to mix business with pleasure]

It is clear from examples like (16) below that apparently subjectless clauses like those bracketed in (15) and (16) must have a null PRO subject:
(16) (a) It's important [PRO to prepare myself properly for the exam]
(b) It's important [PRO not to take oneself too seriously]
since the reflexives myself/oneself require a local antecedent within the bracketed clause containing them, and PRO serves the function of being the antecedent of the reflexive. However, PRO itself has no explicit antecedent in structures like (15) and (16). In such cases (where PRO lacks an explicit controller), PRO can either refer to some individual outside the sentence (e.g. the speaker in (16a)) or can have arbitrary reference (as in (16b)) and refer to 'any arbitrary person you care to mention' and hence have much the same interpretation as arbitrary one in sentences like 'One can't be too careful these days'. (See Landau 1999, 2001 for further discussion of control structures.)

4.3 Null auxiliaries

So far, all the clauses we have looked at in this chapter and the last have contained a TP projection headed by a finite auxiliary or infinitival to. The obvious generalisation suggested by this is that all clauses contain TP. An important question begged by this assumption, however, is how we are to analyse finite clauses which contain no overt auxiliary. In this connection, consider the construction illustrated in (17) below:

He could have helped her, or [she have helped him]
Both clauses here (viz. the he clause and the bracketed she clause) appear to be finite, since both have nominative subjects (he/she). If all finite clauses contain a TP projection headed by a finite T constituent, it follows that both clauses in (17) must be TPs containing a finite T. This is clearly true of the he clause, since this contains the finite modal auxiliary could; however, the she clause doesn't seem to contain any finite auxiliary constituent, since have is an infinitive form in (17) (the corresponding finite form which would be required with a third-person subject like she being has). How can we analyse finite clauses as projections of a finite T constituent when clauses like that bracketed in (17) contain no finite auxiliary?

An intuitively plausible answer is to suppose that the string she have helped him in (17) is an elliptical (i.e. abbreviated) variant of she could have helped him, and that the T constituent could in the second clause undergoes a particular form of ellipsis called gapping. (Gapping is a grammatical operation by which the head of a phrase is given a null spellout - and so has its phonetic features deleted - when the same item occurs elsewhere within the sentence, and is so called because it leaves an apparent 'gap' in the phrase where the head would otherwise have been.) If so, the second clause will have the structure (18) below (where could marks an ellipsed counterpart of could, and have is treated as a non-finite AUX/Auxiliary heading an AUXP/Auxiliary Phrase - the rationale for AUXP will be discussed in §5.7):

The head T position of TP in a structure like (18) is filled by the ellipsed auxiliary could. Although an ellipsed item loses its phonetic features, it retains its grammatical and semantic features, so that eould in (18) is a silent counterpart of could. The null \mathbf{T} analysis in (18) provides a principled account of three observations. Firstly, the bracketed clause in (17) is interpreted as an elliptical form of she could have helped him: this can be straightforwardly accounted for under the analysis in (18) since T contains a null counterpart of could. Secondly, the subject is in the nominative case form she: this can be attributed to the fact that the T position in (18) is filled by a 'silent' counterpart of the finite auxiliary could, so that (like other finite auxiliaries) it requires a nominative subject. Thirdly, the perfect auxiliary have is in the infinitive form: this is because could (being a null copy of could) has the same grammatical properties as could, and so (like could) requires a complement headed by a word (like have) in the infinitive form.

A further argument in support of the null T analysis in (18) comes from facts relating to cliticisation (a process by which one word attaches itself in a leech-like fashion to another). The perfect auxiliary have has a range of variant forms in the spoken language. When unstressed, it can lose its initial /h/ segment and have its vowel reduced to schwa $/ \partial /$, and so be pronounced as $/ \partial v /$ e.g. in sentences such as You should have been there. (Because of is also pronounced / $\partial \mathrm{v} / \mathrm{when}$ unstressed, some people mistakenly write this as You should of been there - not
you, of course!) However, when have is used with a pronominal subject ending in a vowel or diphthong (e.g. a pronoun like $I / w e / y o u / t h e y$), it can lose its vowel entirely and be contracted down to $/ \mathrm{v} /$; in this weak form, it is phonetically too insubstantial to survive as an independent word and encliticises onto (i.e. attaches to the end of) its subject, resulting in structures such as:
(19) (a) You've done your duty
(b) They've retired General Gaga
(c) I've forgotten to lock the door
(d) We've saved you a place

However, note that have cannot cliticise onto she in (20) below:
(20) *He could have helped her or she've helped him
so that she've is not homophonous with the invented word sheeve. Why should cliticisation of have onto she be blocked here? Let's suppose that have-cliticisation is subject to the following structural conditions:
(21) Have can encliticise onto a pronoun ending in a vowel or diphthong provided that
(i) the pronoun asymmetrically c-commands have (i.e. the pronoun c-commands have but is not itself c-commanded by have)
(ii) the two are immediately adjacent, in the sense that there is no constituent intervening between the two (i.e. no constituent which c-commands have and which is in turn c-commanded by the pronoun)

The asymmetric c-command condition (21i) in effect requires the pronoun to be 'higher up' in the structure than have. (In the relevant technical sense, one constituent X asymmetrically c-commands another constituent Y if X c-commands Y, but Y does not c-command X.) The adjacency condition (21ii) requires have to be immediately adjacent to the pronoun which it cliticises to. (A descriptive detail which we set aside here is that (21) applies specifically to encliticisation of have: encliticisation of the's variant of has is subject to far less restrictive conditions on its use - but this will not be pursued here.)

To see how (21) works, consider the structure below:

Here, the pronoun they ends in a diphthong and so is the kind of pronoun that have can cliticise onto. The asymmetric c-command condition (21i) is met in that they c-commands have, but have does not c-command they. The adjacency condition
(21ii) is also met in that there is no constituent intervening between they and have. Since both its structural conditions are met, (21) correctly predicts that have can encliticise onto they, so deriving They've left. The kind of cliticisation involved here is essentially phonological (rather than syntactic), so that they and have remain separate words in the syntax, but are fused together in the PF component (i.e. the component responsible for determining Phonetic Form) once the structure generated (i.e. formed) by the syntax has been handed over to the PF component for morphological and phonological processing.

In the light of our discussion of have cliticisation, now consider why cliticisation of have onto she is not possible in (20) *He could have helped her or she've helped him. Under the null T analysis suggested above, the second clause in (20) contains a null variant of could and has the structure shown in (18) above, repeated as (23) below:

Although the asymmetric c-command condition (21i) is met in (23) in that she c-commands but is not c-commanded by have, the adjacency condition (21ii) is not met in that she is not immediately adjacent to have because the null auxiliary could intervenes between the two (in the sense that could c-commands have, and could is in turn c-commanded by she). Thus, the presence of the intervening null auxiliary could blocks cliticisation of have onto she in (23), thereby accounting for the ungrammaticality of (20) *He could have helped her or she've helped him. Turning this conclusion on its head, we can say that the ungrammaticality of (20) provides us with empirical evidence that the bracketed clause in (17) contains a null counterpart of could intervening between she and have - as is claimed in the analysis in (23) above.

Our discussion so far in this section has suggested that some seemingly auxiliariless clauses are TPs headed by a T containing an auxiliary which (via ellipsis) is given a null phonetic spellout. A rather different kind of null-auxiliary structure is found in African American English (AAE), in sentences such as the following (from Labov 1969, p. 717):

He just feel like he gettin' cripple up from arthritis

In AAE, specific forms of the auxiliary BE have null variants, so that we find null forms of are and is in contexts where Standard English (SE) would require the contracted forms 's and 're. Hence, in place of SE he's getting crippled we find AAE he gettin cripple (with a null counterpart of 's). Evidence in support of the assumption that AAE sentences like (24) incorporate a null variant of is comes from the fact that the missing auxiliary is may surface in a tag, as in sentences such as the following (where the sequence following the comma is the tag) (from Fasold 1980, p. 29):
(25) He gonna be there, I know he is

In tag sentences, the auxiliary found in the tag is a copy of the auxiliary used in the main clause. This being so, it follows that the main gonna clause in (25) must contain a null variant of the progressive auxiliary is. In other words, the main clause in (25) must be a TP with the structure shown in skeletal form in (26) below (strikethrough indicating that the phonetic features of the auxiliary are not spelled out):
(26) $\quad\left[{ }_{\mathrm{TP}} \mathrm{He}[\mathrm{T} i s]\right.$ gonna be there]

Interestingly, the form $a m$ (contracted to ' m) has no null counterpart in AAE, nor do the past-tense forms was/were. It would seem, therefore, that the only finite forms of BE which have a null counterpart in AAE are the specific auxiliary forms are and is. No less interestingly, Wolfram (1971, p. 149) reports that in nonstandard Southern White American English the use of null auxiliaries is even more restricted, and that the only form of BE with a null counterpart is are; cf. the parallel observation by Fasold (1980: 30) that 'There are many southern whites who delete only are.'

4.4 Null T in auxiliariless finite clauses

Our analysis of the kind of auxiliariless clauses discussed in §4.3 as TPs headed by a T which has a null phonetic spellout suggests the more general hypothesis that:

All finite clauses are TPs headed by an (overt or null) T constituent
Such a hypothesis has interesting implications for finite clauses such as the following which contain a finite verb but no auxiliary:
(28) (a) He enjoys syntax
(b) He enjoyed syntax

It implies that we should analyse auxiliariless finite clauses like those in (28a,b) above as TP constituents which have the respective structures shown in (29a,b) below:
(29)

(b)

Structures like those in (29) would differ from null-auxiliary structures like (23) He could have helped her or she could have helped him and (26) He is gonna be there in that they don't contain a silent counterpart of a specific auxiliary like could or is, but rather simply don't contain any auxiliary at all.

However, there's clearly something very odd about a null T analysis like (29) if we say that the relevant clauses are TPs which are headed by a T constituent which contains absolutely nothing. For one thing, a category label like T is an abbreviation for a set of features carried by a lexical item - hence, if we posit that structures like (29) are TPs, the head T position of TP has to be occupied by some kind of lexical item. Moreover, the structures which are generated by the syntactic component of the grammar are eventually handed over to the semantic component to be assigned a semantic interpretation, and it seems reasonable to follow Chomsky (1995) in requiring all constituents in a syntactic structure to play a role in determining the meaning of the overall structure. If so, it clearly has to be the case that the head T of TP contains some item which contributes in some way to the semantic interpretation of the sentence. But what kind of item could T contain?

In order to try and answer this question, it's instructive to contrast auxiliariless structures like those in (29) above with auxiliary-containing structures like those in (30) below:
(30)
(a)

(b)

The head T position in TP is occupied by the present-tense auxiliary does in (30a), and by the past-tense auxiliary did in (30b). If we examine the internal morphological structure of these two words, we see that does contains the presenttense affix $-s$, and that did contains the past-tense affix - d (each of these affixes being attached to an irregular stem form of the auxiliary DO). In schematic terms, then, we can say that the head T constituent of TP in structures like (30) is of the form auxiliary+tense affix.

If we now look back at the auxiliariless structures in (29), we see that the head V position of VP in these structures is occupied by the verbs enjoys and enjoyed, and that these have a parallel morphological structure, in that they are of the form verb+tense affix. So, what finite clauses like (29) and (30) share in common is that in both cases they contain an (auxiliary or main) verb carrying a tense affix. In structures like (30) which contain an auxiliary like Do, the tense affix is attached to the auxiliary; in structures like (29) which contain no auxiliary, the tense affix attaches instead to the main verb enjoy. If we make the reasonable assumption that (as its label suggests) T is the locus of the tense properties of a finite clause (in the sense that T is the constituent which carries its tense features), an interesting possibility to consider is that the relevant tense affix (in both types of clause structure) originates in the head T position of TP. Since tensed verbs agree with their subjects in person and number, let us suppose that the tense affix (below abbreviated to Tns) also carries person and number properties. On this view, sentences like He does enjoy syntax and He enjoys syntax would have the respective syntactic structures indicated in $(31 \mathrm{a}, \mathrm{b})$ below, where $[3 \mathrm{SgPr}]$ is an abbreviation for the features [third-person, singular-number, present-tense]:

(b)

The two structures share in common the fact that they both contain a tense affix (Tns) in T; they differ in that the tense affix is attached to the auxiliary Do in (31a), but is unattached in (31b) because there is no auxiliary in T for the affix to attach to.

Under the analysis in (31), it is clear that T in auxiliariless clauses like (31b) would not be empty, but rather would contain a tense/agreement affix whose semantic contribution to the meaning of the overall sentence is that it marks tense. But what about the phonetic spellout of the tense affix? In a structure like (31a), it is easy to see why the (third-person-singular-present) tense affix is ultimately spelled out as an s-inflection on the end of the auxiliary does, because the affix is directly attached to the auxiliary Do in T. But how come the affix ends up spelled out as an s-inflection on the main verb enjoys in a structure like (31b)? We can answer this question in the following terms. Once the syntax has formed a clause structure like (31), the relevant syntactic structure is then sent to the semantic component to be assigned a semantic interpretation, and to the PF component to be assigned a phonetic form. In the PF component, a number of morphological and phonological operations apply. One of these morphological
operations is traditionally referred to as Affix Hopping, and can be characterised informally as follows:

(32) Affix Hopping

In the PF component, an unattached tense affix is lowered onto the closest head c-commanded by the affix (provided that the lower head is a verb, since tense affixes require a verbal host to attach to)

Because the closest head c-commanded by T in (31b) is the verb enjoy (which is the head V of VP), it follows that (in the PF component) the unattached affix in T will be lowered onto the verb enjoy via the morphological operation of Affix Hopping, in the manner shown by the arrow in (33) below:

Since inflections in English are suffixes, we can assume that the tense affix will be lowered onto the end of the verb enjoy, to derive the structure $\left[\right.$ enjoy $\left.+T n s_{3 S g P r}\right]$. Since enjoy is a regular verb, the resulting structure will ultimately be spelled out in the phonology as the form enjoys.

What we have done so far in this section is sketch out an analysis of auxiliariless finite clauses as TPs headed by a T constituent containing an abstract tense affix which is subsequently lowered onto the verb by an Affix Hopping operation in the PF component (so resulting in a clause structure which looks as if it contains no T constituent). However, an important question to ask at this juncture is why we should claim that auxiliariless clauses contain an abstract T constituent. From a theoretical point of view, one advantage of the abstract T analysis is that it provides a unitary characterisation of the syntax of clauses, since it allows us to say that all clauses contain a TP projection, that the subject of a clause is always in spec-TP (i.e. always occupies the specifier position within TP), that a finite clause always contains an (auxiliary or main) verb carrying a tense affix, and so on. Lending further weight to theory-internal considerations such as these is a substantial body of empirical evidence, as we shall see.

One argument in support of the tense affix analysis comes from coordination facts in relation to sentences such as:
(34) (a) He enjoys syntax, and has learned a lot
(b) He enjoyed syntax, and is taking a follow-up course

In both sentences, the italicised string enjoys syntax/enjoyed syntax has been coordinated with a bold-printed constituent which is clearly a T-bar in that it comprises
a present-tense auxiliary (has/is) with a verb phrase complement (learned a lot/taking a follow-up course). On the assumption that only the same kinds of constituent can be conjoined by and, it follows that the italicised (seemingly T-less) strings enjoys syntax/enjoyed syntax must also be T-bar constituents; and since they contain no overt auxiliary, this means they must contain an abstract T constituent of some kind - precisely as the tense affix analysis in (33) claims.

A direct consequence of the tense affix analysis (33) of auxiliariless finite clauses is that finite auxiliaries and finite main verbs occupy different positions within the clause: finite auxiliaries occupy the head T position of TP , whereas finite main verbs occupy the head V position of VP. An interesting way of testing this hypothesis is in relation to the behaviour of items which have the status of auxiliaries in some uses, but of verbs in others. One such word is Have. In the kind of uses illustrated in (35) below, HAVE is a perfect auxiliary (and so requires the main verb to be in the perfect participle form seen/been):
(35) (a) They have seen the ghost
(b) They had been warned about the ghost

However, in the uses illustrated in (36) below, HAVE is causative or experiential in sense (and so has much the same meaning as cause or experience):
(36) (a) The doctor had an eye-specialist examine the patient
(b) The doctor had the patient examined by an eye-specialist
(c) The teacher had three students walk out on her
(d) I've never had anyone send me flowers

By traditional tests of auxiliarihood, perfect have is an auxiliary, and causative/experiential have is a main verb: e.g. perfect have can undergo inversion (Has she gone to Paris?) whereas causative/experiential have cannot (*Had the doctor an eye specialist examine the patient?). In terms of the assumptions we are making here, this means that finite forms of HAVE are positioned in the head T position of TP in their perfect use, but in the head V position of VP in their causative or experiential use.

Evidence in support of this claim comes from facts about cliticisation. We noted earlier in (21) above that the form have can cliticise onto an immediately adjacent pronoun ending in a vowel/diphthong which asymmetrically c-commands have. In the light of this, consider contrasts such as the following:
(37) (a) They've seen a ghost (= perfect have)
(b) *They've their car serviced regularly (= causative have)
(c) *They've students walk out on them sometimes (= experiential have)

How can we account for this contrast? If we assume that perfect have in (37a) is a finite (present-tense) auxiliary which occupies the head T position of TP, but that causative have in (37b) and experiential have in (37c) are main verbs occupying the head V position of a VP complement of a null T, then prior to cliticisation the three clauses will have the respective simplified structures indicated by the
partial labelled bracketings in (38a-c) below (where Tns is an abstract tense affix):
(38) (a) [тр They [T have + Tns] [vp [v seen] a ghost]]
(b) [TP They [${ }_{\mathrm{T}}$ Tns] [vp [v have] their car serviced regularly]]
(c) [TP They [${ }_{\mathrm{T}}$ Tns] [vp [v have] students walk out on them sometimes]]
(Here and throughout the rest of the book, partial labelled bracketings are used to show those parts of the structure most relevant to the discussion at hand, omitting other parts. In such cases, we generally show relevant heads and their maximal projections but omit intermediate projections, as in (38) above where we show T and TP but not T-bar.) Since we claimed in (21) above that cliticisation of have onto a pronoun is blocked by the presence of an intervening constituent, it should be obvious why have can cliticise onto they in (38a) but not in (38b,c): after all, there is no intervening constituent separating the pronoun they from have in (38a), but they is separated from the verb have in (38b,c) by an intervening T constituent containing a tense affix (Tns), so blocking contraction. It goes without saying that a crucial premise of this account is the assumption that (in its finite forms) have is positioned in the head T position of TP in its use as a perfect auxiliary, but in the head V position of VP in its use as a causative or experiential verb. In other words, have cliticisation facts suggest that finite clauses which lack a finite auxiliary are TPs headed by an abstract T constituent containing a tense affix.

A further piece of empirical evidence in support of the TP analysis comes from tag questions. As we see from the examples below, sentences containing (a finite form of) perfect have are tagged by have, whereas sentences containing (a finite form of) causative have are tagged by $d o$:
(39) (a) Mary has gone to Paris, has/*does she?
(b) Jules has his hair styled by Quentin Quiff, does/*has he?

Given the T-analysis of perfect have and the V-analysis of causative have and the assumption that all clauses contain a TP constituent, the main clauses in (39a,b) will have the respective (simplified) structures indicated in (40a,b) below:
(40) (a) [тр Mary [т has] [vp [v gone] to Paris]]
(b) [TP Jules [T Tns] [vp [v has] his hair styled by Quentin Quiff]]
(A complication which we overlook here and throughout is that HAVE will only be spelled out as the form has in the PF component, and hence should more properly be represented as the abstract item have in the syntax.) If we assume that the T constituent which appears in the tag must be a copy of the T constituent in the main clause, the contrast in (39) can be accounted for in a principled fashion. In (39a), the head T position of TP is filled by the auxiliary has, and so the tag contains a copy of has. In (39b), however, T contains only an abstract tense affix, hence we would expect the tag to contain a copy of this affix. Now, in the main
clause, the affix can be lowered from T onto the verb have in the head V position of VP, with the resulting verb eventually being spelled out as has. But in the tag, there is no verb for the affix to be lowered onto. Accordingly, Do-support is used: in other words, the (meaningless) dummy auxiliary stem do is attached to the affix in order to provide an overt verbal stem for the affix to attach to. The lexical entry for the irregular verb Do specifies that the string [DO+Tns] is spelled out as does when the tense affix carries the features [third-person, singular-number, present-tense].

In this section, we have argued that a finite T always contains a tense affix. In clauses containing an auxiliary, the auxiliary is directly merged with the tense affix to form an auxiliary+affix structure; in auxiliariless clauses, the tense affix is lowered onto the main verb by an Affix Hopping operation in the PF component, so forming a verb+affix structure. However, in order to avoid our exposition becoming too abstract, we will generally show auxiliaries and verbs in their orthographic form - as indeed we did in (40) above, where the relevant form of the word have was represented as has rather than as [HAVE+Affix ${ }_{3 S g P r}$].

4.5 Null T in bare infinitive clauses

In the previous section, we argued that auxiliariless finite clauses are TP constituents headed by an abstract T containing a tense affix. Given that clauses containing a finite auxiliary are also TPs, a plausible conclusion to draw is that all finite clauses are TPs. Since to infinitive clauses are also TPs (with to serving as a non-finite tense particle) we can generalise still further and say that all finite and infinitival clauses are TPs. This in turn has implications for how we analyse bare (i.e. to-less) infinitive complement clauses such as those bracketed below (where the italicised verb is infinitival in form):
(41) (a) I have never known [Tom criticise anyone]
(b) A reporter saw [Senator Sleaze leave Benny's Bunny Bar]
(c) You mustn't let [the pressure get to you]

If (as we are suggesting) all finite and infinitival clauses are indeed TPs, bare infinitive clauses like those bracketed in (41) will be TPs headed by a null T constituent. Since the relevant null T constituent resembles infinitival to in requiring the (italicised) verb in the bracketed complement clause to be in the infinitive form, we can take it to be a null counterpart of infinitival to (below symbolised as $t \theta$). This in turn will mean that the bracketed infinitive clause in (41a) has the structure (42) below:
(42)

We could then say that verbs like know, see and let (as used in (41) above) take an infinitival TP complement headed by an infinitive particle with a null spellout, whereas verbs like expect, judge, report, believe etc. take a TP complement headed by an infinitive particle which is overtly spelled out as to in structures like those below:
(43) (a) I expect [him to win]
(b) I judged [him to be lying]
(c) They reported [him to be missing]
(d) I believe [him to be innocent]

This means that all infinitive clauses are TPs headed by an infinitival T which is overtly spelled out as to in infinitive clauses like those bracketed in (43), but which has a null spellout in infinitive clauses like those bracketed in (41).

From a historical perspective, the null infinitive particle analysis is far from implausible since many bare infinitive clauses in present-day English had to infinitive counterparts in earlier varieties of English - as is illustrated by the following Shakespearean examples:
(44) (a) I saw [her coral lips to move] (Lucentio, The Taming of the Shrew, I.i)
(b) My lord your son made [me to think of this] (Helena, All's Well That Ends Well, I.iii)
(c) What would you have [me to do]? (Lafeu, All's Well That Ends Well, V.ii)
(d) I had rather hear [you to solicit that] (Olivia, All's Well That Ends Well, III.i)

Moreover, some bare infinitive clauses have to infinitive counterparts in presentday English:
(45) (a) I've never known [Tom (to) criticise anyone]
(b) Tom has never been known [to criticise anyone]
(46) (a) A reporter saw [Senator Sleaze leave Benny's Bunny Bar]
(b) Senator Sleaze was seen [to leave Benny's Bunny Bar]

The infinitive particle which heads the bracketed infinitival TP in sentences like (45) and (46) must be overtly spelled out as to when the relevant TP is used as the complement of a passive participle like known in (45b) or seen in (46b), but can have a null spellout when the relevant TP is the complement of an active transitive verb like the perfect participle known in (45a) or the past-tense form saw in (46a) - a key difference being that a null spellout for the infinitive particle is
optional in structures like (45a) but obligatory in structures like (46a). Although data like (44)-(46) are suggestive rather than conclusive, they make it plausible to suppose that bare infinitive clauses are TPs headed by a null variant of infinitival to.

Additional support for the null infinitive particle analysis of bare infinitive clauses comes from cliticisation facts in relation to sentences such as the following:
(47) (a) I can't let [you have my password]
(b) *I can't let [you've my password]

If we suppose that the bracketed infinitive complement in (47b) is a TP headed by a null variant of infinitival to as in:

$$
\begin{equation*}
\text { I can't let [TP you [T } t \theta] \text { have my password] } \tag{48}
\end{equation*}
$$

we can account for the fact that have cannot cliticise onto you by positing that the presence of the null infinitive particle to intervening between you and have blocks cliticisation of have onto you.

A further argument leading to the same conclusion comes from structures like:
(49) (a) Let [there be peace]
(b) I've never known [there be complaints about syntax]

It has been argued by Safir (1993) that the pronoun there (in this use as an expletive pronoun) is restricted to occurring in the specifier/subject position within TP. Such a restriction would account for contrasts such as:
(50) (a) I consider [there to be an economic crisis]
(b) ${ }^{*}$ I consider [there an economic crisis]
since the first bracketed complement is a TP headed by infinitival to, and the second is a type of verbless clause sometimes referred to as a small clause which appears not to be headed by T (since it contains no auxiliary or infinitival to, and no VP). If expletive there can only occur in spec-TP, it follows that the bracketed infinitive complement clauses in (49) must be TPs headed by a null infinitival T.

Our discussion here leads us to the wider conclusion that both to infinitive clauses and bare (to-less) infinitive clauses are TP constituents headed by an infinitive particle which has the overt spellout to in most types of infinitive clause, but has a null spellout in bare infinitive clauses. Given that we earlier argued that all finite clauses contain a TP projection (headed by a T which contains a tense affix, and may or may not also contain an auxiliary), the overall conclusion which we reach is that all finite and infinitival clauses contain a TP, and that T is overt in clauses containing a finite auxiliary or infinitival to, but is null elsewhere (because to in bare infinitive clauses has a null spellout, and the Tns affix in auxiliariless
finite clauses is lowered onto the main verb in the PF component). One advantage of this analysis is that it enables us to attain a uniform characterisation of the syntax of (finite and infinitival) clauses as TP structures headed by a T with a V or VP complement. (For alternative analyses of the types of structure discussed in this section, see Felser 1999a,b and Basilico 2003.)

4.6 Null C in finite clauses

The overall conclusion to be drawn from our discussion in §4.3-§4.5 is that all finite and infinitive clauses contain an overt or null T constituent which projects into TP (with the subject of the clause occupying the specifier position within TP). However, given that clauses can be introduced by complementisers such as if/that/for, a natural question to ask is whether apparently complementiserless clauses can likewise be argued to be CPs headed by a null complementiser. In this connection, consider the following:
(51) (a) We didn't know [if he had resigned]
(b) We didn't know [that he had resigned]
(c) We didn't know [he had resigned]

The bracketed complement clause is interpreted as interrogative in force in (51a) and declarative in force in (51b), and it is plausible to suppose that the force of the clause is determined by force features carried by the italicised complementiser introducing the clause: in other words, the bracketed clause is interrogative in force in (51a) because it is introduced by the interrogative complementiser if, and is declarative in force in (51b) because it is introduced by the declarative complementiser that.

But now consider the bare (i.e. seemingly complementiserless) clause in (51c): this can only be interpreted as declarative in force (not as interrogative), so that (51c) is synonymous with (51b) and not with (51a). Why should this be? One answer is to suppose that the bracketed bare clause in (51c) is a CP headed by a null variant of the declarative complementiser that (below symbolised as that), and that the bracketed complement clauses in (51a-c) have the structure (52) below:

Given the analysis in (52), we could then say that the force of each of the bracketed complement clauses in (51) is determined by the force features carried by the head C of the overall CP ; in (51a) the clause is a CP headed by the interrogative complementiser if and so is interrogative in force; in (51b) it is a CP headed by the declarative complementiser that and so is declarative in force; and in (51c) it is a CP headed by a null variant of the declarative complementiser that and so is likewise declarative in force. More generally, the null complementiser analysis would enable us to arrive at a uniform characterisation of all finite clauses as CPs in which the force of a clause is indicated by force features carried by an (overt or null) complementiser introducing the clause.

Empirical evidence in support of the null complementiser analysis of bare complement clauses like that bracketed in (51c) comes from coordination facts in relation to sentences such as:
(53) We didn't know [he had resigned] or [that he had been accused of corruption]

In (53), the italicised bare clause has been coordinated with a bold-printed clause which is clearly a CP since it is introduced by the overt complementiser that. If we make the traditional assumption that only constituents of the same type can be coordinated, it follows that the italicised clause he had resigned in (53) must be a CP headed by a null counterpart of that because it has been coordinated with a bold-printed clause headed by the overt complementiser that - as shown in simplified form in (54) below:

We didn't know [that he had resigned] or [that he had been accused of corruption]
What such an analysis implies is that the complementiser that can optionally be given a null phonetic spellout by having its phonetic features deleted in the PF component under certain circumstances: such an analysis dates back in spirit more than four decades (see e.g. Stockwell, Schachter and Partee 1973, p. 599).

There are a number of conditions governing that-deletion. Lexical factors seem to play a part here, in that just as only some predicates which select an infinitival TP complement allow the infinitive particle to have a null spellout (as we saw in the previous section), so too only some predicates which select a that-clause complement allow that to have a null spellout. Hornstein (2000) suggests that passive participles and adjectives resist that-deletion, but the real situation seems rather more complex. For example, the adjective clear readily allows that-deletion, but the adjective undeniable does not:
(55) (a) It is clear [that he was framed]
(b) It is clear [he was framed]
(56) (a) It is undeniable [that he was framed]
(b) ?*It is undeniable [he was framed]
(Irrelevantly, (56b) is grammatical if taken to be two separate sentences e.g. It is undeniable. He was framed.) There are also structural constraints on that-deletion. As Hawkins (2001, p. 13) notes, there is a strong adjacency effect insofar as that can generally only be deleted when it is asymmetrically ccommanded by and immediately adjacent to the relevant (bold-printed) predicateas can be seen by comparing the examples in (55) above with those in (57) and (58) below:
(57) (a) It is clear to everyone [that he was framed]
(b) ??It is clear to everyone [he was framed]
(58) (a) [That he was framed] is clear to everyone
(b) $\quad{ }^{*}[\mathrm{He}$ was framed $]$ is clear to everyone

In (57), the adjectival predicate clear asymmetrically c-commands but is not immediately adjacent to that (the two being separated by the intervening prepositional phrase to everyone), and so that cannot be given a null spellout. In (58), that is neither c-commanded by nor immediately adjacent to clear, so that once again that cannot be given a null spellout. The adjacency requirement might suggest that complementiser deletion involves cliticisation of the null complementiser onto the head immediately above it - but precisely how, when and why complementisers receive a null spellout remains shrouded in mystery.

So far in this section, we have argued that seemingly complementiserless finite declarative complement clauses are introduced by a null C constituent (here analysed as a null counterpart of the complementiser that). However, the null C analysis can be extended from finite embedded clauses to main (= root = principal $=$ independent) clauses like those produced by speakers A and B in (59) below:

SPEAKER A: I am feeling thirsty
SPEAKER b: Do you feel like a Coke?

The sentence produced by speaker A is declarative in force (by virtue of being a statement). If force is marked by a force feature carried by the head C of CP , this suggests that such declarative main clauses are CPs headed by a null complementiser carrying a declarative force feature. However, it seems unlikely that the null complementiser introducing declarative main clauses is a null counterpart of that, since that in English is only used to introduce embedded clauses, not main clauses. Let's therefore suppose that declarative main clauses in English are introduced by an inherently null complementiser (below symbolised as \varnothing), and hence that the sentence produced by speaker A in (59) has the structure shown in (60) below:
(60)

Under the CP analysis of main clauses in (60), the declarative force of the overall sentence is attributed to the fact that the sentence is a CP headed by a null complementiser \varnothing which carries a declarative force feature which we can represent as [Dec-Force]. (The purists among you may object that it's not appropriate to call a null declarative particle introducing a main clause a complementiser when it doesn't introduce a complement clause: however, in keeping with work over the past four decades, we'll use the term complementiser/C in a more general sense here, to designate a category of word which can introduce both complement clauses and other clauses, and which serves to mark properties such as force and finiteness.)

From a cross-linguistic perspective, an analysis such as (60) which posits that main clauses are CPs headed by a force-marking complementiser is by no means implausible in that we find languages like Arabic in which both declarative and interrogative main clauses can be introduced by an overt complementiser, as the examples below illustrate (adapted from Ross 1970, p. 245):
(61) (a) ?inna lwalada taraka lbayta

That the.boy left the.house
'The boy left the house' (declarative)
(b) Hal taraka lwaladu lbayta?

If left the.boy the.house
'Did the boy leave the house?' (interrogative)
Moreover (as we will see in more detail in §5.2), there is some evidence from sentences like (62) below that inverted auxiliaries in main-clause yes-no questions occupy the head C position of CP in English:

SPEAKER A: What were you going to ask me?
SPEAKER B: (a) If you feel like a Coke
(b) Do you feel like a Coke?
(c) *If do you feel like a Coke?

The fact that the inverted auxiliary $d o$ in (62b) occupies the same pre-subject position (in front of the bold-printed subject you) as the complementiser if in (62a), and the fact that if and $d o$ are mutually exclusive (as we see from the fact
that structures like (62c) are ungrammatical) suggests that inverted auxiliaries (like complementisers) occupy the head C position of CP . This in turn means that main-clause questions are CPs headed by a C which is interrogative in force by virtue of containing an interrogative force feature which can be represented as [Int-Force].

Interestingly, an interrogative main clause can be coordinated with a declarative main clause, as we see from sentences like (63) below: [I am feeling thirsty], but [should I save my last Coke till later]?

In (63) we have two (bracketed) main clauses joined together by the coordinating conjunction but. The second (italicised) conjunct should I save my last Coke till later? is an interrogative CP containing an inverted auxiliary in the head C position of CP. Given the traditional assumption that only constituents which belong to the same category can be coordinated, it follows that the first conjunct I am feeling thirsty must also be a CP; and since it contains no overt complementiser, it must be headed by a null complementiser - precisely as assumed in (60) above.

The more general conclusion which our discussion in this section leads us to is that all finite clauses have the status of CP constituents which are introduced by a complementiser. Finite complement clauses are CPs headed either by an overt complementiser like that or if or by a null complementiser (e.g. a null variant of that in the case of declarative complement clauses). Finite main clauses are likewise CPs headed by a C which contains an inverted auxiliary if the clause is interrogative, and an inherently null complementiser otherwise.

4.7 Null C in non-finite clauses

The overall conclusion to be drawn from our discussion in $\S 4.6$ is that all finite clauses (whether main clauses or complement clauses) are CPs headed by an (overt or null) complementiser which marks the force of the clause. But what about non-finite clauses? It seems clear that for-to infinitive clauses such as that bracketed in (64) below are CPs since they are introduced by the infinitival complementiser for:
(64) I will arrange [for them to see a specialist]

But what about the type of (bracketed) infinitive complement clause found after verbs like want in sentences such as (65) below?

She wanted [him to apologise]
At first sight, it might seem as if the bracketed complement clause in sentences like (65) can't be a CP, since it isn't introduced by the infinitival complementiser for. However, it is interesting to note that the complement of want is indeed introduced by for when the infinitive complement is separated from the verb want
in some way - e.g. when there is an intervening adverbial expression like more than anything as in (66a) below, or when the complement of want is in focus position in a pseudo-cleft sentence as in (66b):
(66) (a) She wanted more than anything for him to apologise
(b) What she really wanted was for him to apologise
(Pseudo-cleft sentences are sentences such as 'What John bought was a car', where the italicised expression is said to be focused and to occupy focus position within the sentence.) This makes it plausible to suggest that the complement of want in structures like (65) is a CP headed by a null variant of for (below symbolised as for), so that (65) has the skeletal structure (67) below (simplified by showing only those parts of the structure immediately relevant to the discussion at hand):

$$
\begin{equation*}
\text { She wanted [CP [C for }[\text { [TP him [T to] apologise] }] \tag{67}
\end{equation*}
$$

We can then say that the infinitive subject him is assigned accusative case by the complementiser for in structures like (67) in exactly the same way as the accusative subject them is assigned accusative case by the complementiser for in the bracketed complement clause in (64). (How case-marking works will be discussed in §4.9.) One way of accounting for why the complementiser isn’t overtly spelled out as for in structures like (67) is to suppose that it is given a null spellout (and thereby has its phonetic features deleted) when introducing the complement of a verb like want: we can accordingly refer to verbs like want as for-deletion verbs. For speakers of varieties of English such as mine, for-deletion is obligatory when the for-clause immediately follows a verb like want, but cannot apply when the for-clause is separated from want in some way - as the examples below illustrate:
(68) (a) *More than anything, she wanted for him to apologise
(b) More than anything, she wanted him to apologise
(c) She wanted more than anything for him to apologise
(d) *She wanted more than anything him to apologise
(69) (a) What she wanted was for him to apologise
(b) *What she wanted was him to apologise

It would seem, therefore, that for-deletion is subject to much the same strict adjacency requirement as that-deletion (discussed earlier in §4.6). Since havecliticisation is subject to much the same conditions, it may be that for-deletion somehow involves the complementiser cliticising to the verb want and thereby being given a null spellout (in much the same way as in African American English/AAE sentences like (25) He gonna be there, I know he is, the form is has a null spellout only in contexts where in Standard English/SE it would cliticise to a host, so that SE He's gonna corresponds to AAE He gonna).

Interestingly, not all for-deletion verbs behave exactly like want: for example, in my variety of English the verb prefer optionally (rather than obligatorily) allows deletion of for when it immediately follows prefer - cf.:
(70) (a) We would very much prefer for you to be there
(b) We would very much prefer you to be there

The precise conditions on when for can or cannot be deleted are unclear: there are complex lexical factors at work here (in that e.g. words like want and prefer may behave differently in a particular variety of English) and also complex sociolinguistic factors (in that there is considerable dialectal variation with respect to the use of for in infinitive complement clauses).

Having looked at for-deletion verbs which select an infinitival complement with an accusative subject, let's now consider the syntax of control infinitive clauses with a null PRO subject like that bracketed in (71) below:

What we shall argue here is that control clauses which have a null PRO subject are introduced by a null infinitival complementiser. However, the null complementiser introducing control clauses differs from the null complementiser found in structures like want/prefer someone to do something in that it never surfaces as an overt form like for, and hence is inherently null. There is, however, parallelism between the structure of a for infinitive clause like that bracketed in (64) above, and that of a control infinitive clause like that bracketed in (71), in that they are both CPs and have a parallel internal structure, as shown in $(72 \mathrm{a}, \mathrm{b})$ below (simplified by not showing the internal structure of the verb phrase see a specialist):
(a)

(b)

The two types of clause thus have essentially the same $\mathrm{CP}+\mathrm{TP}+\mathrm{VP}$ structure, and differ only in that a for infinitive clause like (72a) has an overt for complementiser and an overt accusative subject like them, whereas a control infinitive clause like (72b) has a null \varnothing complementiser and a null PRO subject.

Some evidence in support of claiming that a control clause with a null PRO subject is introduced by a null complementiser comes from coordination facts in relation to sentences such as the following:

The fact that the italicised control infinitive can be conjoined with the bold-printed CP headed by for suggests that control infinitives must be CPs (if only the same types of constituent can be conjoined).

Further evidence in support of the CP status of control infinitives comes from the fact that they can be focused in pseudo-cleft sentences. In this connection, consider the contrast below:
(74) (a) What I'll try and arrange is [for you to see a specialist]
(b) *What I'll try and arrange for is [you to see a specialist]
(c) What I'll try and arrange is [PRO to see a specialist]

The grammaticality of (74a) suggests that a CP like for you to see a specialist can occupy focus position in a pseudo-cleft sentence, whereas conversely the ungrammaticality of (74b) suggests that a TP like you to see a specialist cannot. If CP can be focused in pseudo-clefts but TP cannot, then the fact that a control infinitive like $P R O$ to see a specialist can be focused in a pseudo-cleft like (74c) suggests that it must have the same CP status as (74a) - precisely as the analysis in (74b) above claims.

Overall, the conclusion which our analysis in this section leads us to is that infinitive complements containing the complementiser for (or its null counterpart for) are CPs, and so are control infinitives (which contain a null complementiser \varnothing as well as a null PRO subject).

4.8 Defective clauses

In $\S 4.6$, we argued that all finite clauses are CPs , and in $\S 4.7$ we went on to argue that for infinitives with accusative subjects and control infinitives with null PRO subjects are likewise CPs. These two assumptions lead us to the more general conclusion that:

And indeed this is an assumption made by Chomsky in recent work. However, there is one particular type of clause which is exceptional in that it lacks the CP layer found in canonical clauses - namely infinitival complement clauses like those bracketed in (76) below which have (italicised) accusative subjects:
(76) (a) They believe [him to be innocent]
(b) We didn't intend [you to get hurt]

Complement clauses like those bracketed in (76) are exceptional in that their subjects are assigned accusative case by the transitive verb (believe/intend) immediately preceding them: what's exceptional about this is that the verb is in a different clause from the subject which it assigns accusative case to. For this reason, such clauses are known as exceptional case-marking clauses (or ECM clauses); and
verbs (like believe) when used with an ECM clause as their complement are known as ECM verbs.

ECM complement clauses seem to be TPs which lack the CP layer found in canonical clauses, and for this reason Chomsky (1999) terms them defective clauses. One reason for thinking that the bracketed ECM clauses in sentences like (76) are not full CPs is that they cannot readily be coordinated with for-infinitives, as we see from the ungrammaticality of (77) below:

*We didn't intend [you to hurt him] or [for him to hurt you]

Although (for speakers like me) the verb intend can take either a bare ECM infinitive complement or a for infinitive complement, the fact that the two cannot be conjoined suggests that the bare ECM infinitive clauses have the status of TPs while for-to infinitive clauses have the status of CPs. By contrast, coordination is indeed possible in sentences like:
(78) We didn't intend [you to hurt him] or [him to hurt you]
and this is because both bracketed clauses in (78) are infinitival TPs.
Further evidence that ECM infinitive clauses like those bracketed in (76) are TPs rather than CPs comes from the fact that they cannot occur in focus position in pseudo-clefts, as we see from the ungrammaticality of the sentences below:
(79) (a) *What they believe is [him to be innocent]
(b) *What we hadn't intended was [you to get hurt]

If ECM clauses are TPs, this follows from the restriction noted in (75) that only CPs (not TPs) can occur in focus position in a pseudo-cleft sentence. Moreover, a further property of sentences like (76) which would be difficult to account for if the bracketed complement clause were a CP is the fact that its (italicised) subject can be passivised and thereby made into the subject of the main clause, as in (80) below:
(80) (a) He is believed to be innocent
(b) You weren't intended to get hurt

This is because it is a property of the subject of an infinitival CP complement clause like that bracketed in (81a) below that its subject cannot be passivised as we see from the ungrammaticality of (81b):
(81) (a) We didn't intend [for you to get hurt]
(b) *You weren't intended [for to get hurt]

Likewise, the subject of the infinitival CP complement of a for-deletion verb like want cannot be passivised either:
(82) (a) She wanted [John to apologise]
(b) ${ }^{*}$ John was wanted [to apologise]

- and indeed this is precisely what we expect if the subjects of CPs cannot passivise, and if the bracketed complement clauses in (82) are CPs headed by a null counterpart of for, as claimed in $\S 4.7$. However, the fact that the passive sentences in (80) are grammatical suggests that the bracketed complement clauses in (76) are TPs rather than CPs (since the subject of an infinitival TP can be passivised, but not the subject of an infinitival CP). Hence, complement clauses like those bracketed in (76) above are defective clauses which have no CP layer, and (76a) They believe him to be innocent accordingly has the structure (83) below:

The particular aspect of the analysis in (83) most relevant to our discussion in this section is the claim that the complement clause him to be innocent is an infinitival TP headed by to, and its subject him is assigned accusative case by the transitive verb believe: how this happens, we shall look at in the next section.

We can extend the analysis of ECM predicates like believe proposed in this section to verbs like those discussed in $\S 4.5$ which select a bare infinitive complement. On this view, a sentence like I have never known him be rude to anyone would be analysed as containing a transitive perfect participle known which selects a TP complement headed by a null counterpart of infinitival to - as shown in skeletal form in (84) below:

$$
\begin{equation*}
\text { I have never known [}{ }_{\mathrm{TP}} \text { him [} \mathrm{T}_{\mathrm{T}} \mathrm{~m}^{\prime} \text {] be rude to anyone] } \tag{84}
\end{equation*}
$$

Since the subject of a TP complement can passivise, the analysis in (84) predicts that the subject of the bracketed infinitive complement in (84) can passivise, and this is indeed the case as we see from examples like (85) below:

> He has never been known to be rude to anyone

Because infinitival to can only have a null spellout when the TP complement it heads is the complement of an active transitive verb-form like the perfect
participle known in (84) and not when the relevant TP is the complement of a passive participle like known in (85), it follows that infinitival to must be given an overt spellout in sentences like (85).

Under the analysis proposed here, verbs which take a bare infinitive complement with an accusative subject are analysed as ECM predicates which select a TP complement headed by an infinitival T which has an overt spellout as to in passive structures like (85) and a null spellout in active structures such as (84). However, one predicate which is problematic to classify in such terms is let, since it allows a bare infinitive complement in active structures like (86a) below but doesn't allow the subject of the infinitive to passivise, as we see from the ungrammaticality of sentences like (86b):
(86) (a) You shouldn't let [him upset you]
(b) *He shouldn't be let [(to) upset you]

We can't describe the relevant facts by saying that let is a defective verb which has no passive participle form, since let is used as a passive participle in sentences like The prisoners were let out of jail. An alternative analysis is to suppose that whereas typical ECM predicates select an infinitival TP complement in both active and passive uses, let is irregular in that it only selects an infinitival TP complement in active uses, not when used as a passive participle. Similar lexical idiosyncrasies are found with a number of other verbs: for example, know only allows a bare infinitival complement with an accusative subject when used as a perfect participle in structures like (84) above. (An alternative way of accounting for the impossibility of passivisation in sentences like (86b) which we won't adopt here is to take let to be a verb selecting a CP complement headed by an inherently null complementiser which in turn selects an infinitival TP complement headed by a null counterpart of infinitival to: the ungrammaticality of (86b) then follows from the impossibility of passivising the subject of a CP complement.)

4.9 Case properties of subjects

A question which we haven't addressed so far is how subjects are casemarked. In this connection, consider how the italicised subject of the bracketed infinitive complement clause in (87) below is assigned accusative case:

She must be keen [for him to meet them]
Since for is a transitive complementiser, it seems plausible to suppose that the infinitive subject him is assigned accusative case by the transitive complementiser for - but how? We've already seen that the relation c-command plays a central role in our characterisation of a wide range of disparate phenomena, including the binding of anaphors, morphological operations like Affix Hopping, phonological operations like have-cliticisation, and so on. Let's therefore explore the possibility
that c-command is also central to case assignment. More particularly, let's suppose that:
(88) A transitive head assigns accusative case to a noun or pronoun expression which it c-commands

In addition, let's follow Pesetsky (1995) in positing the following UG principle governing the application of grammatical (and other kinds of linguistic) operations:

Earliness Principle

Operations apply as early in a derivation as possible
In the light of (88) and (89), let's look at the derivation of the bracketed complement clause in (87). The first step is for the verb meet to be merged with its pronoun complement them to form the VP shown in (90) below:

Meet is a transitive verb which c-commands the pronoun them. Since (88) specifies that a transitive head assigns accusative case to a pronoun which it c-commands, and since the Earliness Principle specifies that operations like case assignment must apply as early as possible in a derivation, it follows that the pronoun them will be assigned accusative case by the transitive verb meet at the stage of derivation shown in (90).

The derivation then continues by merging the infinitive particle to with the VP in (90), so forming the T-bar to meet them. The resulting T-bar is merged with its subject him to form the TP him to meet them. This TP in turn is merged with the complementiser for to form the CP shown in (91) below:

For is a transitive complementiser and c-commands the infinitive subject him. Since (88) specifies that a transitive head assigns accusative case to a pronoun which it c-commands, and since the Earliness Principle specifies that operations like case assignment must apply as early as possible in a derivation, it follows that
the pronoun him will be assigned accusative case by the transitive complementiser for at the stage of derivation shown in (91). This account of the case-marking of infinitive subjects can be extended from accusative subjects of for infinitives in structures like (91) to accusative subjects of ECM infinitives in structures like (83) They believe [him to be innocent], since the transitive verb believe c-commands the infinitive subject him in (83). (As we shall see in chapter 8, a tacit assumption underlying the case assignment analysis is that noun and pronoun expressions enter the derivation carrying a case feature which is initially unvalued, and which is then valued as nominative, accusative or genitive by a c-commanding head of an appropriate kind.)

Having looked at how accusative subjects are case-marked, let's now turn to look at the case-marking of nominative subjects. In this connection, consider the case-marking of the italicised subjects in (92) below:

He may suspect [that she is lying]
Consider first how the complement clause subject she is assigned case. The bracketed complement clause in (92) has the structure (93) below:

If we are to develop a unitary theory of case-marking, it seems plausible to suppose that nominative subjects (just like accusative subjects) are assigned case under c-command by an appropriate kind of head. Since the finite complementiser that in (93) c-commands the subject she, let's suppose that she is assigned nominative case by the complementiser that (in much the same way as the infinitive subject him in (91) is assigned accusative case by the transitive complementiser for). More specifically, let's assume that
(94) A finite complementiser assigns nominative case to a noun or pronoun expression which it c-commands

In (93), the only noun or pronoun expression c-commanded by the finite complementiser that is the clause subject she, which is therefore assigned nominative case in accordance with (94).

But how can we account for the fact that the main-clause subject he in (92) is also assigned nominative case? The answer is that (as we argued in §4.6) all canonical clauses - including all main clauses - are CPs introduced by a complementiser, and that if the clause contains no overt complementiser, it is
headed by a null complementiser. This being so, the main clause in (92) will have the structure (95) below:

Thus, the overall clause is headed by a null finite declarative complementiser [C \varnothing] in much the same way as the Arabic main clauses in (61) are headed by an overt complementiser, and it is this null finite complementiser which assigns nominative case to the subject he in (95) in accordance with (94) above, since the complementiser \varnothing c-commands the pronoun $h e$. (On the possibility of a finite C being a nominative case assigner, see Chomsky 1999, p. 35, fn.17.)

However, an interesting complication arises in relation to the Arabic data in (61) above. Sentence (61a) is introduced by the transitive finite complementiser ?inna 'that' and the subject lwalada 'the boy' is assigned accusative case in accordance with (88). By contrast, sentence (61b) is introduced by the finite complementiser hal 'if': this is not transitive and assigns nominative case to the subject lwaladu (which therefore carries the nominative ending $-u$ rather than the accusative ending $-a$). Such considerations suggest that we need to revise (94) by adding the italicised condition shown in (96) below:

An intransitive finite complementiser assigns nominative case to a noun or pronoun expression which it c-commands

Since none of the English finite complementisers (e.g. if, that, that and the null finite complementiser found in main clauses) are transitive, all finite clauses in English will have nominative subjects.

Having looked at accusative and nominative subjects, let's now turn to consider the null PRO subjects found in control clauses. If we suppose that it is a defining characteristic of all pronouns that they carry case, then PRO too must carry case and indeed there is some evidence that this is so. Part of the relevant evidence comes from structures like (97) below which contain a (bold-printed) floating quantifier which modifies the (italicised) subject of its clause, but is separated from (and positioned lower than) the subject:
They have all gone home

In a language like Icelandic which has a richer morphology than English, floating quantifiers agree in case with their antecedent (i.e. with the expression
which they modify). In a structure like (98) below (from Sigurðsson 1991, p. 331) the verb leiðist 'got bored' requires a subject with dative (= dat) case, and hence a floating quantifier modifying the subject also has dative case:
(98) Strákarnir leiðist öllum í skóla the.boys.dat bored all.dat in school
'The boys all got bored in school'
Interestingly, when the relevant verb is used in a control clause, a floating quantifier modifying the subject of the control clause has dative case, as the following example (from Sigurðsson ibid.) shows:

Strákarnir vonast til [að PRO leiðast ekki öllum í skóla]
The.boys.nom hoped for [to PRO bore not all.dat at school]
'The boys hoped to not all get bored at school'
Why should the floating quantifier in (99) be dative? It doesn't carry the same case as the main-clause subject strákarnir 'the boys', since the latter has nominative ($=$ NOM) case. On the contrary, the floating quantifier carries the same case as (and is construed as quantifying) the null PRO subject of its clause, and PRO has dative case because it is an idiosyncratic property of the relevant verb in Icelandic that it requires a dative subject. (Icelandic is said to be a language with quirkycase subjects in that some verbs require dative subjects, others require accusative subjects and so on. On dative and quirky subjects, see Moore and Perlmutter 2000, and Sigurðsson 2002.)

In short, the syntax of floating quantifiers in Icelandic makes it clear that PRO has case properties of its own. But what case does PRO carry in a morphologically impoverished language like English? Chomsky and Lasnik (1995, pp. 119-20) suggest that the subject of a control clause carries what they call null case. The morphological effect of null case is to ensure that a pronoun is unpronounced just as the morphological effect of nominative case is to ensure that (e.g.) a third-person-masculine-singular pronoun is pronounced as he. But how is PRO assigned null case? If we are to attain a unitary account of case-marking under which a noun or pronoun expression is case-marked by a head which c-commands it, a plausible answer is the following:
(100) A null intransitive non-finite complementiser assigns null case to a noun or pronoun expression which it c-commands

It follows from (100) that PRO in a structure like (72b) above will be assigned null case by the null (non-finite, intransitive) complementiser which c-commands PRO.

We can conflate the various claims made about case-marking above into (101) below:
(101) Case Assignment Conditions

A noun or pronoun expression is assigned case by the closest case-assigner which c-commands it (in consequence of the Earliness Principle) and is assigned
(i) accusative case if c-commanded by a transitive head (e.g a transitive verb like meet, or a transitive preposition like with or a transitive complementiser like for or for)
(ii) nominative case if c-commanded by an intransitive finite complementiser (like that, that, if or the null declarative main-clause complementiser \varnothing)
(iii) null case if c-commanded by a null intransitive non-finite complementiser \varnothing

If we assume that PRO is the only exponent of null case in English, it follows from (101iii) that control infinitive clauses (which are headed by a null-caseassigning complementiser under the analysis in §4.7) will always require a PRO subject.

What is particularly interesting about our discussion of case-marking here from a theoretical point of view is that it provides yet more evidence for the centrality of the relation c-command in syntax. (See Frank and Vijay-Shanker 2001 for a technical defense of the primitive nature of c-command.) An important theoretical question to ask at this juncture is why c-command should be such a fundamental relation in syntax. From a Minimalist perspective (since the goal of Minimalism is to utilise only theoretical apparatus which is conceptually necessary), the most principled answer would be one along the following lines. It is clear that the operation Merge (which builds phrases out of words, and sentences out of phrases) is conceptually necessary, in that (e.g.) to form a prepositional phrase like to Paris out of the preposition to and the noun Paris, we need some operation like Merge which combines the two together. In order to achieve the Minimalist goal of developing a constrained theory of Universal Grammar/UG which makes use only of concepts and constructs which are conceptually necessary, we can suppose that the only kind of syntactic relations which UG permits us to make use of are those created by the operation Merge. Now, two structural relations created by the operation Merge are contain(ment) and c-command in that if we merge a head X with a complement YP to form an XP projection, XP contains X, YP and all the constituents of YP, and X c-commands YP and all the constituents of YP. Minimalist considerations therefore lead us to hypothesise that the containment and c-command relations created by merger are the only primitive relations in syntax.

Our discussion in this section shows that case-marking phenomena can be accounted for in a principled fashion within a highly constrained Minimalist framework which makes use of the c-command relation which is created by the operation Merge. Note that a number of other grammatical relations which traditional grammars make use of (e.g. relations like subjecthood and objecthood) are not relations which can be used within the Minimalist framework. For example, a typical characterisation of accusative case assignment in traditional grammar is that a transitive verb or preposition assigns accusative case to its
object. There are two problems with carrying over such a generalisation into the framework we are using here. The first is that Minimalism is a constrained theory which does not allow us to appeal to the relation objecthood, only to the relations contain and c-command; the second is that the traditional objecthood account of accusative case assignment is empirically inadequate, in that it fails to account for the accusative case-marking of an infinitive subject by a transitive complementiser in structures like (91), because him is not the object of the complementiser for but rather the subject of to meet them (and the same holds for accusative subjects of ECM infinitive structures like (83) above). As our discussion in later chapters unfolds, it will become clear that there are a number of other syntactic phenomena which can be given a principled description in terms of the relations contain and c-command.

4.10 Null determiners

Thus far, we have argued that empty categories play an important role in the syntax of clauses in that clauses may contain a null subject, a null T constituent and a null C constituent. We now turn to argue that the same is true of the syntax of nominals (i.e. noun expressions), and that many bare nominals (i.e. noun expressions which contain no overt determiner or quantifier) are headed by a null determiner or null quantifier. The assumption that bare nominals contain a null determiner/quantifier has a long history - for example, Chomsky (1965, p. 108) suggests that the noun sincerity in a sentence such as Sincerity may frighten the boy is modified by a null determiner. Chomsky's suggestion was taken up and extended in later work by Abney (1987), Longobardi $(1994,1996,2001)$ and Bernstein (2001).

In this connection, consider the syntax of the italicised bare nominals in (102) below:

Italians love opera

As we see from (103a) below, the French counterpart of the bare nominals in (102) are DPs headed by the determiner les/l' ('the') - and indeed as (103b) shows, this type of structure is also possible in English:
(103) (a) Les Italiens adorent l'opéra

The Italians adore th'opera
'Italians love opera'
(b) The Italians love the opera

This suggests that bare nominals like those italicised in (102) above are DPs headed by a null determiner, so that the overall sentence in (102) has the structure (104) below:
(104)

Given the analysis in (104), there would be an obvious parallelism between the syntax of clauses and nominals, in that just as canonical clauses are CPs headed by an overt or null C constituent, so too canonical nominals are DPs headed by an overt or null D constituent.

One piece of empirical evidence in support of analysing bare nouns as DPs comes from sentences like:
(105) (a) Italians and [the majority of Mediterraneans] love opera
(b) Italians love [opera] and [the finer things in life]

The fact that the bare nouns Italians and opera can be coordinated with determiner phrases/DPs like the majority of Mediterraneans/the finer things in life (both headed by the determiner the) provides us with empirical evidence that bare nouns must be DPs, if only similar kinds of categories can be coordinated.

If (as we are suggesting here) there are indeed a class of null determiners, we should expect these to have specific grammatical, selectional and semantic properties of their own: and, as we shall see, there is indeed evidence that this is so. For one thing, the null determiner carries person properties - in particular, it is a third-person determiner. In this respect, consider sentences such as:
(106) (a) We linguists take ourselves/*yourselves/*themselves too seriously, don't wel* youl* they?
(b) You linguists take yourselves/**ourselves/*themselves too seriously, don't you/*wel*they?
(c) Linguists take themselves/*ourselves/* yourselves too seriously, don't they/* wel* you?
(106a) shows that a first-person expression such as we linguists can only bind (i.e. serve as the antecedent of) a first-person reflexive like ourselves, and can only be tagged by a first-person pronoun like we. (106b) shows that a secondperson expression like you linguists can only bind a second-person reflexive like yourselves, and can only be tagged by a second-person pronoun like you. (106c) shows that a bare nominal like linguists can only bind a third-person reflexive like themselves and can only be tagged by a third-person pronoun like they. One way of
accounting for the relevant facts is to suppose that the nominals we linguists/you linguists/linguists in (106a-c) are DPs with the respective structures shown in (107a-c):
(107)
(a)

(b)

(c)

and that the person properties of a DP are determined by the person features carried by its head determiner. If we is a first-person determiner, you is a second-person determiner and \varnothing is a third-person determiner, the grammaticality judgments in ($106 \mathrm{a}-\mathrm{c}$) above are precisely as the analysis in ($107 \mathrm{a}-\mathrm{c}$) would lead us to expect.

In addition to having specific person properties, the null determiner \varnothing also has specific selectional properties - as can be illustrated by the following set of examples:
(108) (a) I wrote poems
(b) I wrote poetry
(c) ${ }^{*}$ I wrote poem

If each of the italicised bare nouns in (108) is the complement of a null (quantifying) determiner \varnothing, the relevant examples show that \varnothing can select as its complement an expression headed by a plural count noun like poems, or by a singular mass noun like poetry - but not by a singular count noun like poem. The complementselection properties of the null determiner \varnothing mirror those of the overt quantifier enough:
(109) (a) I've read enough poetry
(b) I've read enough poems
(c) *I've read enough poem

The fact that \varnothing has much the same selectional properties as a typical overt (quantifying) determiner such as enough strengthens the case for positing the existence of a null determiner \varnothing, and for analysing bare nominals as DPs headed by a null determiner (or QPs headed by a null quantifier).

Moreover, there is evidence that the null determiner \varnothing has specific semantic properties of its own - as we can illustrate in relation to the interpretation of the italicised nominals in the sentences below:
(110) (a) Eggs are fattening
(b) Bacon is fattening
(c) I had eggs for breakfast
(d) I had bacon for breakfast

The nouns eggs and bacon in (110a/b) have a generic interpretation, paraphraseable as 'eggs/bacon in general'. In (110c,d) eggs and bacon have a partitive interpretation, paraphraseable as 'some eggs/bacon'. If we say that the italicised
bare nominals are DPs/determiner phrases headed by a null determiner, as shown below:

we can say that the null determiner has the semantic property of being a generic or partitive quantifier, so that bare nominals are interpreted as generic or partitive expressions.

The claim that null determiners have specific semantic properties is an important one from a theoretical perspective in the light of the principle suggested by Chomsky (1995) that all constituents (or at any rate, all heads and maximal projections) must be interpretable at the semantics interface (i.e. must be able to be assigned a semantic interpretation by the semantic component of the grammar, and hence must contribute something to the meaning of the sentence containing them). This principle holds for null constituents as well as overt constituents, so that e.g. a seemingly null T constituent contains an abstract affix carrying an interpretable tense feature, and a null C constituent contains an abstract morpheme carrying an interpretable force feature. If the null D constituent found in structures like (110) and (111) is interpreted as a (generic or partitive) quantifier, the null D analysis will satisfy the relevant requirement.

The assumption that bare nominals are headed by a null determiner allows us to arrive at a unitary characterisation of the syntax of nominals. We can then say that nominals like the president which are modified by an overt determiner are DPs, bare nominals like Italians are DPs headed by a null determiner, and personal pronouns like they (if analysed as D-pronouns, as in §2.6) are determiners used without a complement - as shown below:
(a)

(b)

(c)

This means that all nominal and pronominal expressions are D-expressions - i.e. projections of an (overt or null) D constituent - an assumption widely referred to as the DP hypothesis. Indeed, the DP hypothesis can be further extended if we follow Freidin and Vergnaud (2001) in supposing that a pronoun like they (if used to refer to linguists) in a sentence such as:

> Linguists think they are undervalued
is a DP comprising a head determiner they with a noun complement linguists which is given a null spellout in the PF component, as shown in (114) below:
(114)

However, Radford (1993) argued that while a phrasal analysis along the lines of (114) may be appropriate for some pronouns (e.g. which?), other pronouns (e.g. who?) seem to be simple heads. This difference of status is reflected in syntactic differences between the two: e.g. who can be modified by else but which and overtly phrasal expressions cannot (cf. Who else? *Which else? *How many people else?), and who can be positioned immediately in front of a preposition, but which and phrases cannot (cf. Who to? *Which to? *How many people to?). While an analysis like (114) may be appropriate for some types of pronoun in some languages (see Wiltschko 2002), it does not seem appropriate for English personal pronouns.

We have argued in this section that canonical nominal expressions are DPs headed by an (overt or null) determiner. However, there is evidence that this is true only of nominal expressions used as arguments (i.e. nominals used as the subject or complement of a predicate), not of non-argument nominals (e.g. nominals which have a vocative, predicative or exclamative use). More specifically (as Longobardi 1994 argues), non-argument nominals such as those italicised in (115) below can be N-projections lacking a determiner:
(115) (a) Do all syntacticians suffer from asteriskitis, doctor?
(b) Dr DoLittle is head of department
(c) Poor fool! He thought he'd passed the syntax exam

The italicised nominal expression serves a vocative function (i.e. is used to address someone) in (115a), a predicative function in (115b) (in that the property of being head of department is predicated of the unfortunate Dr DoLittle), and an exclamative function in (115c). Each of the italicised nominals in (115) is headed by a singular count noun (doctor/head/fool): in spite of the fact that such nouns require an overt determiner when used as arguments, here they function as non-arguments and are used without any determiner. This suggests that nonargument nominals can be N -expressions, whereas argument nominals are always D-expressions.

Chomsky (1999, fn. 10) maintains that only referential nominal arguments (i.e. nominal arguments which are referring expressions) have the status of true DPs, not 'nonspecifics, quantified and predicate nominals, etc.' If so, bare nominals with a quantificational interpretation would more appropriately be analysed as QPs headed by a null quantifier: on this view, the noun eggs in (110c) I had eggs for breakfast would be a QP headed by a null partitive quantifier (rather than a DP headed by a null determiner).

4.11 Summary

In this chapter, we have seen that null constituents (i.e. constituents which have no overt phonetic form but have specific grammatical and semantic properties) play a central role in syntax. We began by looking at null (finite, imperative, truncated and non-finite) subjects in $\S 4.2$, arguing in particular that control infinitive clauses have a null PRO subject which can refer to some expression within a higher clause, or refer to some entity in the domain of discourse, or have arbitrary reference. In $\S 4.3$ we showed that elliptical clauses like that bracketed in He could have helped her or [she have helped him] are TPs headed by a null (ellipsed) tense auxiliary. In $\S 4.4$ we extended this null T analysis to auxiliariless finite clauses like He enjoys syntax, arguing that they contain a TP headed by an abstract tense affix which is lowered onto the main verb by the morphological operation of Affix Hopping in the PF component. In $\S 4.5$ we argued that bare (to-less) infinitive clauses like that bracketed in I have never known [him tell a lie] are TPs headed by a null variant of infinitival to. We concluded that all finite and infinitive clauses contain a TP headed by an overt or null T constituent carrying finite or non-finite tense. In $\S 4.6$, we argued that all finite clauses are CPs, and that those which are not introduced by an overt complementiser are CPs headed by a null complementiser which encodes the force of the clause (so that a sentence like He enjoys syntax is declarative in force by virtue of being a CP headed by a null declarative C). In $\S 4.7$ we saw that for infinitives, the infinitive complements of want-class verbs and control infinitives are also CPs, and went on to posit that all canonical clauses are CPs. However, in $\S 4.8$ we argued that ECM (Exceptional Case-Marking) clauses with accusative subjects like that bracketed in I believe [him to be innocent] are defective clauses which have the status of TPs rather than CPs. In $\S 4.9$ we examined case-marking, arguing that a transitive head assigns accusative case to a noun or pronoun expression which it c-commands, an intransitive finite complementiser assigns nominative case to a noun or pronoun expression which it c-commands, and a null intransitive non-finite complementiser assigns null case to a pronoun expression which it c-commands. We also noted that in consequence of Pesetsky's Earliness Principle, noun and pronoun expressions are case-marked by the closest case-assigner which c-commands them. In §4.10, we looked briefly at the syntax of nominals, arguing that bare nominal arguments (like Italians and opera in Italians love opera) are DPs headed by a null determiner which has the grammatical property of being a third-person determiner, the selectional property of requiring as its complement a nominal headed by a singular mass noun or plural count noun, and the semantic property that it has a generic or partitive interpretation. We concluded that canonical nominals (more particularly, nominal arguments) are D-expressions, comprising either an overt or null D-pronoun (like he or PRO) used without a complement, or an overt or null determiner (like the or \varnothing) used with a noun expression as its complement; however, we noted the claims by Chomsky
and Longobardi that only referential nominal arguments are DPs, not quantified nominals, vocatives, exclamatives or predicate nominals.

Workbook section

Exercise 4.1

Draw tree diagrams to represent the structure of the following sentences, presenting arguments in support of your analysis and commenting on any null constituents they contain and the reasons for positing them. In addition, say how each of the noun or pronoun expressions is case-marked.

1	Students enjoy the classes
2	We have fun
3	Voters know politicians lie
4	John promised to behave himself
5	She sees no need for him to apologise
6	They would prefer students to do exams
7	Economists expect salaries to rise
8	He might like you to talk to her
9	I have known you have a tantrum
10	John wanted to help him

In addition, say why have-cliticisation is or is not permitted in $11 \mathrm{~b}, 12 \mathrm{~b}, 13 \mathrm{~b}, 14 \mathrm{~B}$ and 15 b below:

11 a	They have suffered hardship
b	They've suffered hardship
12a	The Sioux have suffered hardship
b	*The Sioux've suffered hardship
13 a	Sioux have suffered hardship b
14	*Sioux've suffered hardship
	SPEAKER A: How are students coping with your Fantasy Syntax course?
15a	SPEAKER B: *Two've given up They may have left
b	*They may've left

Helpful hints

Bear in mind that in the main text we argued that all clauses other than non-finite clauses used as the complement of an ECM verb are CPs, and that bare nominal arguments are DP or QP constituents headed by a null determiner or quantifier. For the purposes of this exercise, assume the following:
(i) Have can cliticise onto a word W provided that
-W is a noun or pronoun ending in a vowel or diphthong

- W asymmetrically c-commands have
- there is no intervening constituent c-commanded by W and
c-commanding have
In relation to 3, consider what case politicians has, and how you can use this to determine whether the complement of know is a TP or a CP. In 4, use Binding Principle A from exercise 3.2 to help you account for why himself is coreferential to John. In 5, assume that no is a negative quantifier
which has a noun phrase complement. In 10, use Binding Principle B from exercise 3.2 to help you account for why him cannot be coreferential to John. In relation to the (b,B) examples in 11-15, draw trees to represent the structure of the sentences immediately prior to cliticisation, and then show whether or not the analysis of have-cliticisation given in (i) above predicts that cliticisation is possible; note that the noun Sioux is pronounced |su:|. Show how the ungrammaticality of 13 b can be used to evaluate the hypothesis that a bare noun like Sioux in 13 is a DP headed by a null determiner. In addition, say how sentences like 11 b can be used to evaluate the plausibility of analyses (such as that proposed by Freidin and Vergnaud 2001) which take pronouns like they to be determiners which have a nominal complement whose phonetic features are given a null spellout in the PF component, so that e.g. if they refers to Sioux, the pronoun they would be a DP with the structure shown in (ii) below:
(ii)

Would it be any more or less plausible to suppose that the (numeral) quantifier two in sentences like that produced by speaker B in 14 has an N complement containing a null copy of the noun students? In relation to 15 , assume that have left is an AUXP comprising the AUX have and the V left.

Model answer for sentence 1

Given the arguments in the main text that all finite clauses contain a TP headed by a T constituent containing an affix which encodes tense and (person and number) agreement features, the sentence Students enjoy the classes will contain a TP headed by a tense affix which carries the features [third-person, plural-number, present-tense], which we can abbreviate to $T_{n s} s_{3 \mathrm{PLPr}}$. Likewise, given the arguments in the main text that ordinary finite clauses are CPs headed by an (overt or null) complementiser which marks the force of the clause, the overall sentence will be a CP headed by a null finite declarative complementiser [c \varnothing]. Finally, in accordance with the DP hypothesis, both nominal arguments containing an overt determiner (like the classes) and bare nominal arguments like students will be determiner phrases, differing only in whether they are headed by the overt third-person determiner the or the null third-person determiner [D \varnothing]. Given these assumptions, sentence 1 will have the structure below:

Because there is no auxiliary in T for it to attach to, the Tns affix in T is lowered onto the verb enjoy by the morphological operation of Affix Hopping in the PF component, forming enjoy $+\operatorname{Tns}_{3 \mathrm{PLPR}}$ (which is ultimately spelled out as the third-person-plural present-tense form enjoy).
Evidence that the overall clause Students enjoy the classes is a CP headed by a null complementiser comes from coordination facts in relation to sentences such as:
(ii) [Students enjoy the classes] but [do they like the lectures]?

In (ii) the declarative clause Students enjoy the classes has been coordinated with the interrogative clause do they like the lectures? which contains the inverted auxiliary do. If (as claimed in the main text) inverted auxiliaries occupy the head C position of CP , it follows that the second of the two coordinate clauses in (ii) must be a CP; and if only constituents of the same type can be coordinated, it follows that the first clause must also be a CP - as in (i) above. Evidence in support of positing a null present-tense T constituent in (i) comes from the fact that the T-bar ϕ enjoy the classes can be coordinated with another T-bar like don't like the lectures, as we see from (iii) below:

(iii) Students enjoy the classes, but don't like the lectures

Evidence that the bare nominal students is a DP headed by a null third-person determiner [D \varnothing] comes from the fact that sentence 1 can only be tagged by a third-person pronoun like they:
(iv) Students enjoy the lectures, don't they/* we/* you?

The null determiner is interpreted as a generic quantifier in (i).
The DP the classes in (i) is assigned accusative case by virtue of being c-commanded by the transitive verb enjoy (and enjoy is the closest case-assigner c-commanding the classes). Accordingly, the DP the classes can be substituted by an accusative pronoun, as in:

Students enjoy them

By contrast, the DP \varnothing students is assigned nominative case by virtue of being c-commanded by the intransitive finite complementiser \varnothing (which is the closest - and indeed only - case-assigner c-commanding the DP \varnothing students). We therefore correctly predict that this DP can be substituted by a nominative pronoun, as in:
(vi) They enjoy the classes

Exercise 4.2

Account for the (un)grammaticality of the bracketed infinitive complement clause structures in the following sentences in standard varieties of English:

1 a	They were planning [to escape]
b	*They were planning [him to escape]
2 a	We consider [him to be unsuitable]
b	*It is considered [him to be unsuitable]
3 a	He would like [me to leave]
b	He would like [to leave]
4 a	She seems keen [for them to participate]
b	*She seems keen [for to participate]

5 a	I received a request [to resign]
b	${ }^{*}$ I received a request [him to resign]
6 a	It was agreed [to review the policy]
b	${ }^{*}$ It was agreed [us to review the policy]
7 a	Congress decided [to ratify the treaty]
b	${ }^{*}$ Congress decided [for him to ratify the treaty]
8 a	She expected [to win the nomination]
b	She expected [him/*he to win the nomination]
9 a	He should let [you have a break]
b	${ }^{* H e}$ should let [have a break]
10 a	${ }^{* H e}$ said [her to like oysters]
b	${ }^{*}$ He said [to like oysters]

In addition, say how you would analyse structures like (4b) in varieties of English (like Belfast English) in which they are grammatical and have a meaning roughly paraphraseable as 'She seems keen for herself to participate.' What if for-to can serve as a compound T constituent in such sentences in the relevant varieties (and likewise in sentences such as I wanted Jimmy for to come with me, from Henry 1995, p. 85)?

Helpful hints

Note that (1b) is intended to have an interpretation paraphraseable as 'They were planning for him to escape', (9b) to have an interpretation paraphraseable as 'He should let himself have a break', (10a) to have an interpretation paraphraseable as 'He said she liked oysters', and (10b) to have an interpretation paraphraseable as 'He said he liked oysters' (where the two occurrences of he refer to the same individual). Assume that each of the italicised words in the above examples has its own idiosyncratic selectional properties, and that the selectional properties of any word W are described by saying: ' W selects as its complement an expression headed by . . .' (where in place of the dots you insert the features characterising the relevant head). So, you might say e.g. that a verb like arrange can select a complement headed by an infinitival complementiser (either the transitive infinitival complementiser for or the null intransitive infinitival complementiser \varnothing), whereas an ECM verb like believe selects a complement headed by the infinitival T to. By contrast, other verbs (it might turn out) don't select a particular kind of infinitive complement - or indeed any kind of infinitive complement. Assume that the seemingly subjectless clauses in 1-10 (whether grammatical or not) have a null PRO subject. Pay attention (i) to the selectional properties of the italicised words and (ii) to the case properties of the subjects of the bracketed complement clauses. In the case of the ungrammatical examples, consider whether the ungrammaticality is attributable to a selectional error (in that the italicised word is used with a kind of complement which it does not select/allow) or a case error (in that the subject of the bracketed complement clause has a case which it cannot be assigned in accordance with the case assignment conditions given in (101) in the main text) - or both.

Model answer for sentences $1 a$ and b

Given the CP analysis of finite clauses and control clauses in the text, 1a will have the structure (i) below:
(i)

The null complementiser introducing the CP complement of the verb planning is intransitive and non-finite, and accordingly assigns null case to the PRO subject which it c-commands. Support for the CP analysis of the bracketed complement clause to escape in 1a comes from the fact that (like other CPs, but unlike TPs) it can serve as the focused constituent in pseudo-cleft sentences like:
(ii) What they were planning (to do) was to escape

The fact that it is also possible to say:
(iii) They were planning for him to escape
suggests that plan can also select a complement headed by the transitive infinitival complementiser for. This leads to the greater generalisation that plan can select a CP complement headed by an infinitival complementiser (either the transitive infinitival complementiser for or the null intransitive infinitival complementiser \varnothing). The ungrammaticality of 1 b *They were planning him to escape could be attributable to a case error (if the null complementiser heading the complement clause is intransitive and so assigns null case to the infinitive subject), or to a spellout error (if the complementiser heading the complement clause is the kind of for complementiser which can never be given a null spellout - unlike the for introducing an infinitival complement of a verb like want).

5 Head movement

5.1 Overview

So far, we have examined a range of syntactic structures which are derived by a series of merger operations. We now go on to look at structures whose derivation involves not only merger but also a movement operation called head movement. In this chapter, we focus mainly on two specific types of head movement operation, one which affects auxiliaries in present-day English, and another which affected main verbs in earlier stages of English; we also look briefly at how head movement can apply to nouns.

5.2 T-to-C movement

In chapters 3 and 4, we saw that complementisers are positioned in front of subjects in the clauses they introduce. More specifically, we suggested that complementisers head a separate projection in clauses which we termed a complementiser phrase/ $\mathbf{C P}$, with the head C position of CP being filled by a complementiser like that/for/if. However, complementisers are not the only kind of word which can precede subjects in clauses. As we saw in our brief discussion of questions in $\S 4.6$, auxiliaries can also precede subjects in yes-no questions such as Do you feel like a Coke? In this respect, inverted auxiliaries seem to resemble complementisers - as the following (love-struck, soap-operesque) dialogue illustrates:

```
speaker a: Honey-buns, there's something I wanted to ask you
SPEAKER b: What, sweetie-pie?
SPEAKER A: If you will marry me
SPEAKER b (pretending not to hear): What d'you say, darlin'?
Speaker a: Will you marry me?
```

What's the structure of the two bold(-printed) proposals which speaker A makes in (1)? The answer is straightforward enough in the case of If you will marry $m e$: it's a clause introduced by the interrogative complementiser/C if, and so is a complementiser phrase/CP constituent with the structure (2) below:
(2)

But now consider the structure of the second proposal Will you marry me? What position is occupied by the inverted auxiliary will? Since will appears to occupy the same pre-subject position that the complementiser if occupies in (2), a plausible suggestion to make is that the inverted auxiliary actually occupies the head C position of CP. If this is so, we'd expect will and if to be mutually exclusive (on the assumption that we can only insert one word in a given head position like C , not two words): in other words, if both complementisers and inverted auxiliaries occupy the head C position of CP , we'd expect to find that a question can be introduced either by a complementiser or by a preposed auxiliary - but not by the two together. This is indeed the case, as we see from the ungrammaticality of speaker B's reply in (3) below:

> SPEAKER A: What d'you want to ask me?
> SPEAKER B: ${ }^{\text {If }}$ will you marry me

The fact that questions can't contain both a complementiser and an inverted auxiliary provides us with empirical evidence that inverted auxiliaries occupy the same structural position as complementisers - i.e. that both occupy the head C position of CP .

But how can a finite auxiliary (which normally occupies the head T position of TP) come to be positioned in the head C position of CP ? The conventional answer is that auxiliaries in questions move out of their normal post-subject position into pre-subject position by a movement operation which in chapter 1 we referred to as auxiliary inversion. Given our assumption that an inverted auxiliary occupies the head C position of CP , this means that the auxiliary moves from the head T position in TP into the head C position in CP, as shown by the arrow in (4) below:
(4)

Hence, auxiliary inversion in questions involves T-to-C movement.

An important question which is begged by the T-to-C movement analysis is why auxiliaries should move from T to C in questions. Using a metaphor adopted by Chomsky (1995), we can say that C is a strong head in questions in English and that a strong head position has to be filled (i.e. occupied) by an overt constituent of an appropriate kind. In a complement-clause yes-no question like that bracketed in: He asked [if I would marry him]

C is filled by the complementiser if - and indeed speaker A's first proposal in (1) might be regarded as an elliptical form of I wanted to ask you [if you will marry $m e$], with if introducing the bracketed complement clause, and constituents other than those of the bracketed clause undergoing ellipsis. However, complementisers like if can't be used to introduce main clauses in English, so some other way has to be found of filling the strong C position in main-clause questions. Adapting an analysis dating back to Baker (1970), let's suppose that in main clauses, an interrogative C is filled by a null question particle \mathbf{Q}, and that \mathbf{Q} attracts an auxiliary like will to move from T to C to attach to it , so filling the strong C position.

But why should the null interrogative complementiser Q attract an auxiliary to move from T to C? One possibility is to follow Chomsky (1995) in supposing that Q is affixal in nature, and attracts an overt head to attach to it. Since affixes generally only attach to a particular kind of word (e.g. the past-tense- d affix can attach to verbs but not nouns, prepositions or adjectives), and since only tensed (i.e. present- or past-tense) auxiliaries move to C , one implementation of this idea (suggested in Chomsky 1993) is to suppose that Q carries a strong tense feature, and hence attracts the head T constituent of TP to move from T to C. On this view, the tensed auxiliary will in (4) moves from T to attach to the invisible Q affix in C - as shown in (6) below:

The auxiliary will moves from T to C in order to satisfy the requirement for the null question affix Q to have an appropriate kind of item (i.e. a present- or past-tense T constituent) affixed to it. The Q -affix analysis is far from implausible from a cross-linguistic point of view: for example, yes-no questions in Latin could be formed using the overt question suffix -ne. If we adopt the question-affix analysis, we can say that it is the affixal status of an interrogative C (viz. the fact that C in main-clause questions contains a null affix Q) which triggers T-to-C movement. Given that English is a largely suffixal language (in that it
mainly utilises derivational and inflectional suffixes), we can take Q to be suffixal in nature, so that the attracted auxiliary will end up positioned to the left of Q .

5.3 Movement as copying and deletion

An interesting question which arises from the T-to-C movement analysis is what it means for the auxiliary to move out of T. If movement of an auxiliary from T to C were to result in the head T position of TP vanishing without trace, a sentence such as Will you marry me? would have the structure below:

But a structure such as (7) is problematic in that it violates two constituent structure principles which we posited in $\S 3.2$, namely:

Headedness Principle

Every syntactic structure is a projection of a head word

Binarity Principle

Every (non-terminal node in a) syntactic structure is binary-branching
A tree such as (7) would violate the headedness requirement (8) in that neither TP nor T-bar has a head T constituent; (7) would also violate the binarity requirement (9) in that T-bar is a non-terminal node in the tree (by virtue of not being one of the nodes at the very bottom of the tree) yet is not binary-branching (since T-bar does not have two daughters) but rather unary-branching (since T-bar has only one daughter).

It seems clear, then, that movement of an auxiliary from T to C cannot result in the loss of the original T constituent which heads TP: so, T must remain in place in the form of a null constituent of some kind as shown in (10) below (with ? indicating that the identity of the null constituent is yet to be determined):

(The internal structure of the VP marry me is as in (6) above, but is not shown here in order to save space, and because it is not relevant to the point at hand.) The structure in (10) satisfies both the headedness requirement (in that TP and T-bar are headed by a null T), and the binarity requirement (in that T-bar is a binarybranching constituent whose two daughters are a null T and its VP complement). However, the question posed by the analysis in (10) is: 'What is the nature of the mysterious T constituent ($=$?) which heads TP and T-bar after will moves to C?'

Our discussion of gapping (i.e. head ellipsis) in the previous chapter suggests a possible answer. In $\S 4.3$ we suggested that ellipsis of the second (italicised) occurrence of could in a sentence such as (11a) below results in a structure such as (11b) containing a null occurrence of could (designated as could):
(11) (a) He could have helped her, or she could have helped him
(b) He could have helped her, or she could have helped him

This raises the possibility that T-to-C movement could be a composite operation by which a copy of an auxiliary in T is first moved into C, and then the original occurrence of the auxiliary in T is deleted (by which we mean that its phonetic features are given a null spellout and so are unpronounced), leaving a null copy of the auxiliary in T. The assumption that movement is a composite operation involving two suboperations of copying and deletion is the cornerstone of Chomsky's copy theory of movement.

If we consider the copying component of movement more carefully, we see that it involves a form of merger operation by which a copy of a constituent which has already been merged in one position is subsequently merged in another position. To see what this means, let's look rather more closely at the derivation of Will you marry me? The first stage of derivation involves merging the verb marry with the pronoun me to form the VP marry me; the tense auxiliary will then merges with this VP to form the T-bar will marry me; this in turn merges with the subject you to form the TP you will marry me; the resulting TP merges with a C constituent containing the null question suffix Q , so that at this stage of derivation we have the simplified structure (12) below:

A copy of the T constituent will is then merged with the interrogative complementiser, so forming a complex C constituent which comprises both the original C constituent (containing Q) and the T constituent containing will. Subsequent
deletion of the phonetic features of the original occurrence of will in T derives the structure (13) below:

On this view, the inverted auxiliary will undergoes two separate merger operations in (13): first of all it is merged in T with its VP complement marry me, forming the T-bar will marry me; then (a copy of) will is merged with the null question particle Q in C , deriving Will $+Q$ you will marry me; subsequent deletion of the phonetic features of the original occurrence of will in T in turn derives Will $+Q$ you will marry me.

An interesting source of evidence in support of the copy theory of movement comes from the study of language acquisition. Young children sometimes produce auxiliary copying structures like the following (produced by a boy called Sam at age 2 years and 9 months: thanks to Ian Crookston for the data):
(14) (a) Can its wheels can spin?
(b) Did the kitchen light did flash?
(c) Is the steam is hot?
(d) Was that was Anna?

What is Sam doing here? The answer seems to be that he has mastered the copymerge component of auxiliary inversion and so is able to merge a copy of will in C : but he has not yet mastered the copy-deletion component of auxiliary inversion and so fails to delete the phonetic features of the original occurrence of the auxiliary in T. Accordingly, (14a) above has the simplified structure (15) below for Sam (in which the structure of the DP its wheels is not shown because it is irrelevant to the point at hand):

The fact that Sam seems to have mastered the merger operation involved in auxiliary inversion (i.e. merging an auxiliary in T and then merging a copy of the auxiliary in C) but not the copy-deletion operation (in that he fails to delete the
original occurrence of the auxiliary in T) suggests that it is plausible to analyse a movement operation like auxiliary inversion as a composite operation involving the two separate operations of copy-merge (i.e. merging a copy of a T-auxiliary in C) and copy-deletion.

In addition to evidence from child grammars we also have evidence from adult grammars in support of the claim that a moved auxiliary leaves behind a null copy of itself. Part of this evidence comes from the phenomenon of have-cliticisation which we touched on in $\S 4.4$ and in exercise 4.1. In this connection, note that have cannot cliticise onto the pronoun I/we/you/they in inversion structures such as:
(16) (a) Should they have/* they've called the police?
(b) Will we have/* we've finished the rehearsal by 9 pm ?
(c) Would you have/*you've come with me?
(d) Could I have/*'ve done something to help?
('ve represents the vowel-less clitic form /v/ here.) The sequence they've in (16a) does not rhyme with grave in careful speech styles, since it is pronounced /ðeiəv/ not /ðeIv/. Likewise, the sequence we've in (16b) is not homophonous with weave in careful speech styles, since we have in (16b) can be reduced to /wiəv/ but not /wi:v/. Similarly, you've doesn't rhyme with groove in (16c), nor I've with hive in (16d). Why should cliticisation of have onto the pronoun be blocked here? We can give a straightforward answer to this question if we posit that when an inverted auxiliary moves from T to C , it leaves behind a null copy of itself in the T position out of which it moves. Given this assumption, a sentence such as (16a) will have the simplified structure shown below (if we assume that have is an AUX heading AUXP - see §5.6):

In the previous chapter, we characterised have-cliticisation along the following lines:
(18) Have can encliticise onto a pronoun which asymmetrically c-commands have if the pronoun ends in a vowel or diphthong, and if there is no intervening constituent separating the two (i.e. if there is no intervening constituent c-commanding have and c-commanded by the pronoun).

Although in (17) the pronoun they ends in a diphthong and asymmetrically ccommands have (in the sense that they c-commands have but have does not c-command they), the two are separated by the intervening null auxiliary should which occupies the head T position of TP: since should c-commands have and is in turn c-commanded by they, it intervenes between the two in the relevant technical sense and hence blocks have-cliticisation, thereby accounting for the ungrammaticality of (16a) *Should they've called the police? Note that a crucial plank in the argumentation here is the assumption that T-to-C movement leaves behind a null copy of the moved auxiliary in the head T position of TP, and this null auxiliary serves to block cliticisation of have onto a c-commanding pronoun.

Our discussion of auxiliary inversion here has interesting implications for the derivation of sentences. In this connection, consider how we derive a sentence such as:

Can you swim?
The first stage is to go to the lexicon (= dictionary) and choose a lexical array (i.e. a selection of lexical items out of which the sentence is going to be built). In the case of (19), the lexical array will consist of the verb swim, the pronoun you, the auxiliary can, and the null interrogative complementiser Q. The next stage is for the auxiliary can and the verb swim to be taken out of the lexical array and merged, so deriving the T-bar can swim. The pronoun you is then taken from the lexical array, and merged with the T-bar can swim to form the TP you can swim. The null interrogative complementiser Q is then taken from the lexical array and merged with the TP you can swim to form the CP Q you can swim. Since Q is affixal and has a tense feature attracting a tensed head, Q triggers merger of a copy of the present-tense auxiliary can with Q , forming Can $+Q$ you can swim. Subsequent deletion of the original occurrence of can in T derives Can $+Q$ you can swim.

5.4 V-to-T movement

Having looked at T-to-C movement in English, we now turn to look at a rather different kind of movement operation, which involves V-to-T movement more specifically, movement of a finite main verb from the head V position of VP into the head T position of TP. We shall see that this kind of verb movement operation was productive in Elizabethan English (i.e. the English used during the reign of Queen Elizabeth I, when Shakespeare was writing), but is no longer productive in present-day English. Since part of the evidence for V-to-T movement involves negative sentences, we begin by looking at the syntax of negation.

In Elizabethan English, clauses containing a finite auxiliary are typically negated by positioning not between the auxiliary and the verb:
(20) (a) She shall not see me (Falstaff, The Merry Wives of Windsor, III.iii)
(b) I will not think it (Don Pedro, Much Ado About Nothing, III.ii)
(c) Thou hast not left the value of a cord (Gratiano, The Merchant of Venice, IV.i)

Let's suppose (for the time being, pending a reanalysis of negation in §5.7) that not in Elizabethan English is an adverb which functions as the specifier of the verbal expression following it (so that e.g. not is the specifier of see me in (20a) above, and hence modifies see me). If so, (20a) will have a structure along the lines of (21) below (where \varnothing is a null complementiser marking the declarative force of the sentence):

An analysis such as (21) provides a straightforward account of the position which not occupies in front of the verb see.

In negative questions, the auxiliary moves from T to C (as in present-day English), leaving not in front of the verb:
(22) (a) Have I not heard the sea rage like an angry boar? (Petruchio, The Taming of the Shrew, I.ii)
(b) Didst thou not hear somebody? (Borachio, Much Ado About Nothing, III.iii)
(c) Will you not dance? (King, Love's Labour's Lost, V.ii)

If questions involve movement of a finite auxiliary from T to C , then a sentence such as (22a) will involve the T-to-C movement operation shown in (23) below (where we take the string the sea rage like an angry boar to be an ECM clause headed by a null counterpart of infinitival to, symbolised as $t \theta$):

The auxiliary have is first merged in T and then moved to C (i.e. a copy of the auxiliary is merged with the question suffix Q in C), leaving behind a copy of
have in T which is ultimately deleted. The assumption that not is a VP-specifier provides a straightforward account of the fact that not remains positioned in front of the verb heard after have moves to C .

However, an interesting aspect of negative sentences in Shakespearean English is that in auxiliariless finite clauses like those in (24) below, the (bold-printed) main verb is positioned in front of not:
(24) (a) I care not for her (Thurio, The Two Gentlemen of Verona, V.iv)
(b) He heard not that (Julia, The Two Gentlemen of Verona, IV.ii)
(c) My master seeks not me (Speed, The Two Gentlemen of Verona, I.i)
(d) I know not where to hide my head (Trinculo, The Tempest, II.ii)

If not in Elizabethan English is a VP-specifier which is positioned at the leftmost edge of the verb phrase, how can we account for the fact that the verb (which would otherwise be expected to follow the negative particle not) ends up positioned in front of not in sentences like (24)? The answer we shall give here is that when a finite T in Elizabethan English contains no auxiliary, the verb moves out of the head V position of VP into the head T position of TP in order to fill T . If so, a sentence like (24a) I care not for her will involve the V-to-T movement operation represented by the dotted arrow in (25) below:

Thus, the verb care is first merged in the head V position within VP, and then moves into the head T position in TP, thereby ending up positioned in front of not (with the original occurrence of care in V being given a null spellout).

An important theoretical question to ask at this juncture is why the verb care should move from V to T. Using Chomsky's strength metaphor, we can suppose that a finite T is strong in Elizabethan English and so must be filled: this means that in a sentence in which the T position is not filled by an auxiliary, the verb moves from V to T in order to fill the strong T position. One way of characterising what it means for T to be strong is to suppose that T contains a Tns affix with a strong V-feature which requires it to have an (auxiliary or non-auxiliary) verb attached to it as its host. Let's suppose that a strong affix is one which can find a
host either by merger, or by attracting an appropriate item to attach to the affix. So, in a structure like (21), the strong (second-person-singular present-tense) Tns affix in T is provided with a host by directly merging the auxiliary may with the Tns affix in T, forming may+Tns (although the Tns affix is not shown in the simplified structure in (21) above); but in a structure like (25), the strong Tns affix in T attracts the closest verb which it c-commands (namely the verb care) to move to T and attach to the Tns affix, so that the affix is provided with a verbal host via movement - as shown in (26) below:

By contrast, T in present-day English contains a weak Tns affix (more specifically, an affix with a weak V-feature), and a weak Tns affix cannot attract a verb to move from V to T , but rather can only be attached to a verbal host either by merger of an auxiliary like may directly with the null Tns affix in T, or by lowering of the Tns affix onto the main verb, e.g. in auxiliariless finite clauses such as He enjoys the classes. In such auxiliariless clauses, the weak Tns affix in T undergoes the morphological operation of Affix Hopping in the PF component, lowering the affix onto the main verb in the manner shown by the arrow in (27) below:

On this view, both strong and weak Tns affixes can be directly merged with an auxiliary in T ; the two differ in how the affix comes to be attached to a main verb;
a strong Tns affix (like that found in Elizabethan English) triggers movement of the verb from V to T in structures like (26) above; a weak Tns affix (like that found in present-day English) is lowered onto the main verb in the PF component by Affix Hopping in structures like (27) above.

5.5 Head movement

There seem to be significant parallels between the kind of movement operation involved in T-to-C movement in (23) on the one hand, and V-to-T movement in (25) on the other. Both operations involve movement of a word from the head position in one phrase into the head position in a higher phrase. Accordingly, in (23) the auxiliary have moves from the head T position of TP into the head C position of CP ; and in (25) the verb care moves from the head V position of VP into the head T position of TP. This suggests that T-to-C movement and V-to-T movement are two different instances of a more general head movement operation by which an item occupying the head position in a lower phrase is moved into the head position in a higher phrase.

As we see from (23) above, questions in Elizabethan English involved the same inversion operation as in present-day English. Given our assumption that inversion involves movement from T to C , an obvious prediction made by the assumption that verbs move from V to T in Elizabethan English is that they can subsequently move from T to C in interrogatives - and this is indeed the case, as we see from the fact that the (italicised) moved verb ends up positioned in front of its (bold-printed) subject in questions like:
(28) (a) Saw you my master? (Speed, The Two Gentlemen of Verona, I.i)
(b) Speakest thou in sober meanings? (Orlando, As you Like It, V.ii)
(c) Know you not the cause? (Tranio, The Taming of the Shrew, IV.ii)
(d) Spake you not these words plain? (Grumio, The Taming of the Shrew, I.ii)

On the account given here, the derivation of a negative question such as (28c) Know you not the cause? will involve the two head movement operations shown in simplified form in (29) below:

(The structure in (29) is simplified for expository purposes by not showing the verb know attaching to a strong Tns affix in T, and by not showing movement of the resulting know + Tns structure to attach to a strong Q affix in C , forming the structure know $+T n s+Q$.) The verb know moves from V to T because a finite T is strong in Elizabethan English, by virtue of containing a Tns affix with a strong V-feature; and know subsequently moves from T to C because an interrogative C is likewise strong by virtue of containing a question particle Q with a strong T-feature. Consequently, know moves through T into C by two successive applications of head movement (numbered (1) and (2) above): know is first merged in V , then moved to T and from there moved to C . In structures like (29), head movement is said to apply in a successive-cyclic fashion, moving the verb know (in successive cycles or steps) first from V to T , and then from T to C . Each time the verb moves, it leaves behind a copy of itself which is eventually deleted.

A key assumption made in (29) is that the verb know moves to C via the intermediate step of moving to T. This raises the question of why know can't move directly from V to C in the manner shown in simplified form in (30) below:

One way of ruling out the kind of long-distance head movement operation illustrated in (30) is in terms of a locality principle suggested by Travis (1984), which we can outline in the following terms:
(31) Head Movement Constraint/HMC

Movement from one head position to another is only possible between a given head and the closest head which asymmetrically c-commands it (i.e. between a given head and the next highest head in the structure containing it)

If we look at the two movement operations in (29), we see that both obey HMC: operation (1) involves local movement of the verb know from the head V position of VP into the next highest head position in the structure, namely the head T position of TP; and operation (2) involves local movement of know from the head T position of TP into the next highest head position in the structure, namely the head C position of CP. Since both head movement operations are strictly local, there is no violation of HMC. By contrast, direct movement of know from V to C in (30) is non-local and violates HMC in that the verb know moves from the head V position of VP directly into the head C position of CP , in spite of the fact that C is not the next highest head above V . (On the contrary, T is the next highest head above V.) HMC therefore provides a principled account of why (28c) Know you not the cause? is ungrammatical in present-day English: the verb know cannot move directly to C (because this would violate the HMC requirement for movement to be local), and cannot move through T into C (because verbs can no longer move from V to T in present-day English).

However, such an analysis raises the question of why finite verbs should be able to move from V to T in Elizabethan English, but not in present-day English. Using Chomsky's strength metaphor, we can say that the Tns affix carried by a
finite T was strong in Elizabethan English, but is weak in present-day English. Because the affix was strong in finite clauses in Elizabethan English, it could attract a verb to move from V to T; but because the affix is weak in present-day English, T can only be filled by an auxiliary which is directly merged in T, not by a verb moving from V to T . More generally, we can suppose that there is parametric variation with respect to the relative strength of a given type of head, so that (e.g.) a finite T was strong in Elizabethan English but is weak in present-day English. We can refer to the relevant parameter as the Head-Strength Parameter. Note that the parameter may have different settings for different types of head in a given language: e.g. a finite T is weak in present-day English, but a finite C is strong in interrogative main clauses.

But why should a finite Tns affix be strong in Elizabethan English and weak in present-day English? A suggestion which has been made by a number of linguists (e.g. Platzack and Holmberg 1989, Roberts 1993, Rohrbacher 1999, Vikner 1997 and Koeneman 2000) is that the relative strength or weakness of a tense affix in a language is correlated with the relative richness of the system of subject-agreement inflections which it encodes, in the sense that a tense affix is strong in languages in which finite auxiliaries and verbs carry rich subjectagreement inflections (i.e. in which they carry a wide range of different agreement affixes) and weak in languages in which finite auxiliaries and verbs carry impoverished subject-agreement inflections. In this connection, it is interesting to note that whereas third-person-singular $-s$ is the only regular agreement inflection found on (present-tense) verbs in present-day Standard English, in Shakespearean English we find four present-tense inflections, viz. second-person-singular -st, third-person-singular $-t h$ or $-s$ (the two being dialectal variants) and third-personplural $-n$:
(32) (a) Thou sayst true (Petruchio, The Taming of the Shrew, IV.iii)
(b) The sight of love feedeth those in love (Rosalind, As You Like It, III.v)
(c) It looks ill, it eats drily (Parolles, All's Well That Ends Well, I.i)
(d) And then the whole quire hold their lips and laugh, and waxen in their mirth (Puck, A Midsummer Night's Dream, II.i)

If a Tns affix is strong in rich agreement languages and weak in poor agreement languages, we can correlate the strength of T in Elizabethan English with the relative richness of its subject-agreement morphology; and conversely, we can correlate the weakness of T in present-day English with the impoverished nature of its subject-agreement morphology. (See Vikner 1995 and Rohrbacher 1999 for attempts to do this, and Bobaljik 2000 for a dissenting view.)

The relative richness of the agreement features carried by finite verbs in Elizabethan times, as compared to present-day English, is reflected in a further syntactic difference between them. Elizabethan English was a null-subject language, and hence allowed finite verbs and finite auxiliaries (like those italicised below) to have null subjects (whether in root/main clauses or not, and whether the subject is sentence-initial or not):
(33) (a) Sufficeth, I am come to keep my word (Petruchio, The Taming of the Shrew, III.ii)
(b) Would you would bear your fortunes like a man (Iago, Othello, IV.i)
(c) Lives, sir (Iago, Othello, IV.i, in reply to 'How does Lieutenant Cassio?')
(d) Hast any more of this? (Trinculo, The Tempest, II.ii)
(e) After some question with him, was converted (Jacques de Boys, As You Like It, V.iii)
(f) Had it stretched so far, would have made nature immortal (Countess of Rousillon, All's Well That Ends Well, I.i)
(g) You must be so too, if heed me (Antonio, The Tempest, II.i)

Since the null subject in sentences like (33) occurs in a nominative position (by virtue of being the subject of a finite clause), it has nominative case and so is different from the 'big PRO' subject of infinitives (which has null case), and hence seems to be an instance of the finite 'little pro' subject found in null-subject languages like Italian - recall our brief discussion of null subjects in §4.2. By contrast, present-day English is a non-null-subject (i.e. pro-less) language, so that the present-day counterparts of (33) generally require (italicised) overt subjects:
(34) (a) It is enough that I have come to keep my word
(b) I wish you would bear your fortunes like a man
(c) $H e$ is alive, sir
(d) Have you any more of this?
(e) After some discussion with him, he was converted
(f) Had it stretched so far, it would have made nature immortal
(g) You ought to be like that as well, if you ask me

It would seem, therefore, that a finite T can have a null nominative pro subject in a language like Elizabethan English where finite verbs carry rich agreement morphology (and raise to T), but not in a language like present-day English where finite verbs have impoverished agreement morphology (and remain in situ - i.e. in the position in which they were originally merged, hence in the head V position of VP). Why should this be? One possibility is that in a language with a rich system of agreement inflections, the agreement inflections on the verb serve to identify the null subject (e.g. the -st inflection on hast in (33d) is a second-person-singular inflection, and hence allows us to identify the null pro subject as a second-person-singular subject with the same properties as thou). But in a weak-agreement language like contemporary English, agreement morphology is too impoverished to allow identification of a null pro subject (e.g. if we asked *Can help? we'd have no way of telling from the agreementless form can whether the missing subject is I, you, he, they or whatever).

Our discussion here suggests the possibility that there is parametric variation across languages in respect of whether finite verbs carry rich or impoverished subject-agreement morphology, and that the relative richness of agreement morphology correlates with whether the Tns affix in T in finite clauses is strong (and can trigger V-to-T raising) or weak, and with whether a finite T can have a null nominative pro subject or not. In rich-agreement languages, a finite T contains a strong Tns affix and the main verb raises to T if there is no auxiliary to host
the affix in T ; in poor agreement languages, T contains a weak Tns affix which is lowered onto the main verb by Affix Hopping if there is no auxiliary in T. (A minor complication is that poor-agreement languages may have other kinds of null subject: e.g. Japanese and Korean have no agreement morphology except in so-called 'honorific' constructions, but allow subjects and objects to be null if they can be discourse-identified - i.e. if their reference can be determined from the discourse context.)

5.6 Auxiliary raising

Although we assumed in the previous section that no verbs in presentday English can move from V to T , the picture is complicated by the behaviour of be in examples like (35) below:
(35) (a) She may not be suitable (b) She is not suitable

In (35a) the copular verb be seems to occupy the head V position in VP, and so follows not: but in (35b) is precedes not and so seems to occupy the head T position of TP. This suggests that the copula be originates as a main verb (in the head V position of VP) and remains in situ when non-finite as shown in simplified form in (36a) below, but moves into the head T position of TP when finite as shown in (36b):
(36) (a) [${ }_{C P}[\mathrm{C} \varnothing][$ TP she [T may] [vp not $[\mathrm{v} b e]$ suitable $\left.]\right]$]
(b) $\quad\left[{ }_{\mathrm{CP}}\left[{ }_{\mathrm{C}} \varnothing\right]\left[{ }_{\mathrm{TP}}\right.\right.$ she $\left[{ }_{\mathrm{T}} i s\right]\left[{ }_{\mathrm{VP}}\right.$ not $\left[\begin{array}{l}\mathrm{V} \\ i s\end{array}\right]$ suitable $\left.\left.]\right]\right]$

A similar conclusion is suggested by examples such as the following:
(37) (a) She may not be enjoying syntax \quad (b) She is not enjoying syntax

In (37a), the head T position of TP is occupied by the modal auxiliary may, and the head V position of VP is occupied by the verb enjoying; be therefore seems to occupy some intermediate position between the two. Since be (in this use) is an aspectual auxiliary (marking progressive aspect), let's suppose that be in (37) occupies the head AUX/Auxiliary position of an AUXP (i.e. Auxiliary Phrase). However, in (37b) progressive is occupies the head T position of TP and hence precedes not. One analysis of the relevant data is to suppose that aspectual be originates as the head AUX constituent of AUXP and remains in situ when nonfinite as shown in (38a) below, but moves from AUX to T when finite - as shown in (38b) (where not is taken to occupy a position to the left of AUXP - see the discussion in the next section):
(38) (a) [CP [C $\varnothing][$ TTP she [T may] not [AUXP [aUX be] [vp [v enjoying] syntax]]]]
(b) $\quad\left[{ }_{\mathrm{CP}}\left[{ }_{\mathrm{C}} \varnothing\right]\left[{ }_{\mathrm{TP}}\right.\right.$ she $\left[{ }_{\mathrm{T}}\right.$ is $]$ not $\left[\right.$ AUXP $\left[\begin{array}{c}\text { AUX } \\ \text { is }\end{array}\right][\mathrm{VP}[\mathrm{V}$ enjoying $]$ syntax $\left.\left.\left.]\right]\right]\right]$

On this view, present-day English would have a BE-raising operation moving finite forms of be from the head V position in VP (or the head AUX position in AUXP) into the head T position in TP (an idea which dates back to Klima 1964). This would mean that present-day English retains a last vestige of raising-to-T.

The different positions occupied by finite and non-finite forms of be are mirrored by the perfect auxiliary have - as the examples below illustrate:
(39) (a) He may not have done it (b) He has not done it

The head T position of TP in (39a) is occupied by may and the head V position of VP by done; hence the infinitive form have must occupy some position intermediate between the two, e.g. the head AUX position of an AUXP/Auxiliary Phrase, as in (40a) below. However the fact that the finite form has in (39b) is positioned in front of not suggests that finite forms of the perfect auxiliary have raise from AUX to T in the manner shown informally in (40b) below:
(40) (a) [CP [C ø] [TP He [T may] not [auxp [aux have] [vp [v done] it]]]]

So far, we have suggested that the auxiliaries be and have may raise to T from a lower AUX/V position within the clause in present-day English. Roberts (1998) argues that the same is true of some modal auxiliaries as well. In this connection, consider the interpretation of the following negative sentences:
(41) (a) You must not do that (= 'It is necessary for you not to do that')
(b) You need not do that ($=$ 'It is not necessary for you to do that')

In (41a) the modal must has wide scope with respect to negation (i.e. must has semantic scope over not) whereas in (41b) the modal need has narrow scope with respect to negation (i.e. need falls within the semantic scope of not). Roberts suggests that in sentences like (41) above, wide-scope modals like must are directly generated in T (as in (42a) below) whereas narrow-scope modals like need are initially generated in some position below T (perhaps the head AUX position of an AUXP) and from there move to T (as in (42b) below):
(42) (a) [$\left.\mathrm{CPP}^{[\mathrm{C}} \varnothing\right][\mathrm{TP}$ you [T must] not [$\mathrm{VP}[\mathrm{v}$ do] that $\left.]]\right]$

Roberts's analysis implies that present-day English has an operation by which narrow-scope auxiliaries raise from AUX to T. An interesting aspect of (42b) is that the polarity item need originates in a position where it is c-commanded by not (so satisfying the c-command requirement on polarity items discussed in exercise 3.2, if we assume that the relevant requirement is that a polarity item must be c-commanded by a negative/interrogative item at some stage of derivation). The two different T/AUX positions for auxiliaries can be occupied by different
modals in Scots English structures such as He must no can do it (= 'It must be the case that he does not have the capability to do it', from Brown 1991, p. 98), with must located in T and having scope over not and can located in AUX and falling within the scope of not.

If finite forms of be (in all uses) and have (in its use as a perfect auxiliary) and narrow-scope modals like need all raise to T , it is clear that the suggestion made in the previous section that T in present-day English is a weak head which does not trigger any form of V-raising is untenable. Rather, the appropriate generalisation would appear to be that in present-day English, only a highly restricted set of verbs can raise to T . In traditional grammars, the items which can raise to T are all said to function as auxiliaries in the relevant use. Adopting this intuition, we can say that a finite T in present-day English can trigger movement of an auxiliary verb to T (but not movement of a main verb to T). One mechanism by which we can describe the relevant phenomenon is to suppose that whereas a finite V in Elizabethan English had a strong V-feature enabling it to attract a finite auxiliary or non-auxiliary verb, a finite T in present-day English has a strong AUX-feature which enables it to attract an auxiliary verb to raise to T, but not a main verb. Of course, this raises the question of how precisely we characterise auxiliaries: one possibility is that we can define auxiliaries as verbs which do not function as predicates. Bearing in mind that canonical predicates have nominal, prepositional or clausal ($\mathrm{CP} / \mathrm{TP}$) arguments, we can suppose that be is not a predicate in structures like (36), since its complement is the adjective suitable, and adjectival expressions are not arguments - suggesting in turn that $b e$ in this use is not a predicate. (Indeed, one view of be in such structures is that it is a dummy or expletive verb used simply in order to satisfy the grammatical requirement that may requires a complement headed by a verb in the infinitive form, and an adjective like suitable is therefore not an appropriate kind of complement for may.) Likewise, the fact that be in (38), have in (40) and need in (42b) all have a VP complement may suggest that they are not predicates, if predicates require a nominal, prepositional or clausal complement. Clearly, careful consideration needs to be given to the question of what are the defining characteristics of an auxiliary - but we shall not pursue this issue here. (See Ackema 2001 for an alternative account of auxiliary raising in a different framework.)

On the analysis suggested here, a finite T in present-day English contains a Tns affix with a strong AUX feature. If the closest verbal head c-commanded by T is an auxiliary (as in (36b, 38b, 40b, 42b) above), the affix attracts it; but if the closest verbal head c-commanded by T is a main verb (as in (27) above), the affix is instead lowered onto the main verb in the PF component by Affix Hopping.

The assumption that auxiliaries may originate in a position lower than negation raises interesting questions about the syntax of infinitival to, given the similarities between auxiliaries and infinitival to. In this connection, it is interesting to note that although auxiliaries are positioned above not in finite clauses, infinitival to is generally positioned below not - as we see from sentences like (43) below:

Here, ought is a modal auxiliary which occupies the head T position of TP; we can see that it is an auxiliary from the fact that like typical auxiliaries, it allows negative cliticisation (giving rise to oughtn't). However, if (43) is a single clause and no clause can contain more than one T constituent, and if ought occupies the head T position of TP, it follows that infinitival to cannot occupy the head T position of TP but rather must occupy some lower position. One possibility is that to originates in the same AUX position as narrow-scope modals, so that (43) has the structure shown in skeletal form in (44) below:

$$
\begin{equation*}
\text { [СР [C } \varnothing][\text { TP John [T ought] not [auXP [aux to] say anything]]] } \tag{44}
\end{equation*}
$$

However, although not to is the normal word order in negative infinitives, the alternative order to not is also found, as the examples below illustrate:
(45) (a) He decided [not to co-operate with the police]
(b) He decided [to not co-operate with the police]

It seems reasonable to suppose that the two different word orders in the bracketed complement clauses in $(45 \mathrm{a}, \mathrm{b})$ reflect two different positions occupied by infinitival to, as suggested in $(46 a, b)$ below:
(46) (a) [CP [C \varnothing] [TP PRO [T $\varnothing]$ not [AUXP [AUX to] co-operate with the police]]]
(b) [${ }_{C P}\left[{ }_{C} \varnothing\right][$ TP $P R O[$ to not co-operate with the police $]]$

There is a subtle meaning difference between the two examples: (45b) implies a much more deliberate act of defiance than (45a). Given the analysis suggested in (46), this meaning difference can be attributed to a scope difference, with not c-commanding and so having scope over to in (46a), and to c-commanding and having scope over not in (46b). A similar scope difference is found between will and not in sentences like:
(47) (a) He almost certainly won't co-operate with the police
(b) He will almost certainly not co-operate with the police

In (47a), not has semantic scope over will and the sentence is paraphraseable as 'It is almost certainly not the case that he will co-operate with the police', whereas in (47b) will has scope over not and the sentence is paraphraseable as 'It will almost certainly be the case that he does not co-operate with the police.'

Although there are in principle two distinct positions which auxiliaries and infinitival to can occupy within clauses (viz. the head AUX position of AUXP, and the head T position of TP), if these two positions correlate directly with scope, it is plausible to assume that a given lexical item L (where L is a finite auxiliary or infinitival to) is only projected in the head AUX position of AUXP if L falls within the scope of an element like not which has scope over L but not over T , and that otherwise L is directly projected in the head T position of TP (and the sentence then contains no AUXP projection associated with L). In other words, in negative clauses like (42b) and (46b) in which the negative adverb not has scope over a narrow-scope auxiliary like need or infinitival to, the relevant item
is generated in the head AUX position of AUXP; but in non-negative structures like (48) below:
(48) [He may decide [to quit his job]]
the auxiliary may and the infinitival particle to are directly generated in the head T position of TP of the bracketed clause containing them, and neither clause contains an AUXP constituent (if AUX is only projected where required for scope purposes). One way of thinking of this is to suppose that AUX and T are syncretised (i.e. collapsed into a single T head) in structures in which there is no constituent intervening between the two. By contrast, non-finite auxiliaries (e.g. like be in He may be lying or He seems to be lying) always occupy the head AUX position of AUXP and never move into T.

5.7 Another look at negation

In $\S 5.4$ and $\S 5.5$ we assumed that the negative particle not is a VPspecifier which occupies initial position within VP. However, this assumption is problematic in a number of respects, as should be apparent if you look back at (38), (40), (42), (44) and (46b) in §5.6. For example, in a sentence such as (37a) She may not be enjoying syntax, it is clear that not does not occupy a VP-initial position immediately in front of the verb enjoying: on the contrary, not appears to occupy some position between the modal auxiliary may and the aspectual auxiliary be - as shown in (38a). Moreover, we shall argue in chapter 7 that only an argument of a verb can occupy the specifier position within VP - and not in a negative sentence like She may not sell it is not an argument of the verb sell (because not isn't one of the participants in the act of selling). It is clear, therefore, that we need to rethink our earlier analysis of negation. One alternative analysis which has been proposed in work dating back to Pollock (1989) is that not is contained within a separate NEGP/Negation Phrase projection, and that not serves as the specifier of NEGP (and hence is positioned in spec-NEGP): this has subsequently become a standard analysis of negation. (See Ingham 2000 for evidence of a NEGP constituent in Late Middle English; and see Haegeman 1995 for a wide-ranging account of the syntax of negation.)

Such an analysis is far from implausible from a historical perspective: in earlier varieties of English, sentences containing not also contained the negative particle $n e$ (with ne arguably serving as the head NEG constituent of NEGP and not as its specifier). This can be illustrated by the following Middle English example taken from Chaucer's Wife of Bath's Tale:

A lord in his houshold ne hath nat every vessel al of gold (lines 99-100)
'A lord in his household does not have all his vessels made entirely of gold'
A plausible analysis of a sentence like (49) is to suppose that ne originates as the head NEG constituent of NEGP, with nat (= 'not') as its specifier: the verb hath originates in the head V position of VP and from there moves to the head NEG
position of NEGP, attaching to the negative prefix ne to form the complex head ne + hath as shown in simplified form in (50) below:

> [NEGP nat [NEG ne+hath] [vp [v hath] every vessel al of gold]]

The resulting complex head ne + hath then attaches to a present-tense affix $T n s$ in T , as shown in simplified (and abbreviated) form in (51) below:

$$
\begin{align*}
& \text { [TP A lord . . . [T ne ne hath }+ \text { Tns] [negr nat [NEG ne +hath] [vp [v hath] every } \tag{51}\\
& \text { vessel al of gold]]] }
\end{align*}
$$

Merger of the TP in (51) with a null declarative complementiser will derive the CP structure associated with (49) A lord in his houshold ne hath nat every vessel al of gold.

By Shakespeare's time, ne had dropped out of use, leaving the head NEG position of NEGP null (just as in ne . . . pas 'not at.all' negatives in presentday French, ne has dropped out of use in colloquial styles). Positing that not in Elizabethan English is the specifier of a NEGP headed by a null NEG constituent opens up the possibility that V moves through NEG into T, so that (24a) I care not for her has the derivation shown (in simplified form) in (52) below:

This would mean that head movement applies in a successive-cyclic (two-step) fashion. Each of the two head movement operations in (52) - viz. movement of care from V to NEG, and then from NEG to T - is local in the sense that it satisfies the Head Movement Constraint (31), since in each case movement is from one head position into the next highest head position in the structure. If head movement is driven by affixal properties of heads, and if both T and NEG contain an affix with a strong V-feature which can trigger movement of a main verb, the verb care will first move from V to NEG in order to attach to a null negative affix (in much the same way as the verb hath in (50) moves from V to Neg to attach to the overt negative affix $n e$), and the resulting complex NEG head (comprising a null negative affix with a verb attached to it) in turn will move from NEG to T in order to attach to a strong tense affix in T .

An important question posed by the analysis in (52) is why sentences like (24a) I care not for her are ungrammatical in present-day English. The answer is that neither T nor NEG has a strong V-feature in present-day English, and so they are unable to attract a main verb like care to move through NEG into T. Still, this assumption in turn raises the question of why we can't simply leave the presenttense verb care in situ (in the head V position of VP) in present-day English - as in (53) below:

One answer is the following. Let's suppose that (just like syntactic operations), morphological and phonological operations in the PF component apply in a bottom-up fashion, and process structures in a cyclic fashion (i.e. in a stepwise fashion, one projection at a time). What this means is that when the syntax hands over the structure in (53) to the PF component, the lowest maximal projection in the structure (the VP care for her) will be processed first, then the next lowest maximal projection (the NEGP not ø care for her), then the next lowest maximal projection (the TP I Tns not ø care for her) and finally the overall CP (ø I Tns not ø care for her). Let's also posit that all operations (whether syntactic, morphological, or phonological) are subject to Pesetsky's (1995) Earliness Principle, which we outlined informally in $\S 4.9$ as follows:

Earliness Principle

Operations must apply as early as possible in a derivation
All of this means that Affix Hopping will apply to the Tns affix in (53) on the TP cycle - i.e. at the point where we have already processed VP and NEGP, and are now beginning to process TP. The structure which the PF component can 'see' on the TP cycle is (55) below:

$$
\begin{equation*}
\text { [TP I [т Tns] [NEGP not [NEG } \varnothing \text {] [vP [v care] for her]]] } \tag{55}
\end{equation*}
$$

At this point, we might expect Affix Hopping to apply to lower the Tns affix in T onto the verb care. There are two possible ways in which we might seek to achieve this. One is by lowering the affix directly from T onto V as in (56a) below, and the other is to lower the affix first onto null NEG head and then onto V in the manner shown in (56b):
(56) (a) [${ }_{\mathrm{TP}} \mathrm{I}\left[{ }_{\mathrm{T}} \operatorname{Tns}\right]\left[{ }_{\mathrm{NEGP}} \operatorname{not}\left[{ }_{\mathrm{NEG}} \varnothing\right][\mathrm{vp}[\mathrm{v}\right.$ care] for her] $]$]
(b) $\quad\left[{ }_{T \mathrm{TP}} \mathrm{I}\left[{ }_{\mathrm{T}} T n s\right]\left[{ }_{\text {NEGP }}\right.\right.$ not $\left[{ }_{\mathrm{NEG}} \varnothing\right][\mathrm{vP}[\mathrm{V}$ care $]$ for her $\left.\left.]\right]\right]$

However, a movement operation like (56a) which lowers the affix directly from T onto V would violate the Head Movement Constraint (31), since it involves lowering the head T of TP onto the head V of VP; and yet V is not the next lowest head in the structure (rather, NEG is), and HMC only allows a head to be lowered
onto the head immediately beneath it in the structure. Accordingly, we might suppose that Affix Hopping applies in a successive cyclic fashion, lowering the affix first from T onto NEG, and then from NEG onto V - as in (56b). However, there are two problems posed by any such successive-cyclic lowering operation. The first is that NEG doesn't seem to be the kind of head which is an appropriate host for a Tns affix (at least, if we assume that a tense affix attaches to an overt verb, since NEG is neither overt nor a verb): hence, the first step of the two-step movement arrowed in (56b) - namely lowering the affix onto NEG - may perhaps be ruled out for this reason. To make matters worse, the second step of lowering the Tns affix from NEG onto V in (56b) is also ruled out, because it violates a UG principle traditionally referred to as the Strict Cyclicity Principle, outlined informally below:

Abstract

Strict Cyclicity Principle/SCP At a stage of derivation where a given projection HP is being cycled/processed, only operations affecting the head H of HP and some other constituent of HP can apply

Lowering the Tns affix from T onto NEG in (56a) does not violate $\mathbf{S C P}$, since T-to-NEG lowering clearly affects T (by moving the Tns affix in T) and also affects a NEG constituent which is contained within TP (since this ends up having a Tns affix attached to it). But the subsequent operation of lowering the affix from NEG onto V is anticyclic, since NEG-to-V lowering does not affect T (in violation of SCP), but rather affects only NEG and V. We therefore correctly predict that sentences like *I not care for her are ungrammatical in present-day English. (See also Lasnik 1995, 2000 and Ochi 1999.)

A final point to be made here is that we have excluded from our discussion negative interrogatives like Shouldn't you be at work? Cormack and Smith (2000a) argue that in such sentences the negative particle $n ' t$ has scope over the modal (so that the sentence has a meaning paraphraseable as 'Is it not the case that you should be at work?') and hence originates in a position above TP. One proposal along these lines would be to suppose that NEGP in such sentences is positioned between CP and TP, and that the auxiliary should raises from T through NEG into C , with $n ' t$ cliticising onto the auxiliary. This would allow for the possibility of two types of negation occurring in a sentence such as Mightn't he not have seen her? where not originates within a NEGP immediately above VP, and n't within a NEGP immediately above TP.

5.8 DO-support

In present-day English, the negative counterpart of a sentence like I care for her requires Do-support, as we see from (58) below:

But how does do come to be introduced into the derivation - and why? In order to answer this question, let's look rather more closely at the derivation of sentence (58). Suppose that (as before) the syntactic component of our grammar generates the structure (53) above. Suppose (again as before) that this structure is then handed over to the PF component (where morphological and phonological operations apply in a bottom-up, cyclic fashion) and that we reach the point where the TP shown in (55) above (and repeated as (59) below) is being cycled in the PF component:

$$
\begin{equation*}
\text { [}{ }_{\text {TP }} \mathrm{I}[\mathrm{~T} T n s][\text { NEGP } \operatorname{not}[\text { NEG } \varnothing][\mathrm{vP}[\mathrm{v} \text { care] for her]]] } \tag{59}
\end{equation*}
$$

Since T contains an unattached Tns affix with a weak V-feature, we would expect the affix to be lowered onto an overt verbal stem by Affix Hopping. But if Affix Hopping is a purely local operation which lowers an unattached Tns affix onto the closest head c-commanded by T (hence onto the head word of the expression which is the complement of T), then it follows that all Affix Hopping can do is lower the affix onto the head NEG constituent of NEGP. But, as we have already seen, NEG is arguably not an appropriate host for the affix, since it is neither overt nor verbal. In order to avoid the derivation crashing, the 'dummy' auxiliary Do is merged with the unattached affix in T , forming the structure:

$$
\begin{equation*}
[\text { TP } \mathrm{I}[\mathrm{~T} \text { DO }+ \text { Tns }][\text { NEGP not }[\text { NEG } \varnothing][\mathrm{vP}[\mathrm{v} \text { care }] \text { for her }]]] \tag{60}
\end{equation*}
$$

If (as here) the Tns affix carries the features [first-person, singular-number, present-tense], the string $D O+T n s$ will eventually be spelled out as $d o$.

What is implicitly being assumed here is that Affix Hopping and do-Support are complementary PF operations which provide two different ways of ensuring that an affix attaches to an appropriate host. We can therefore see them as two types of Affix Attachment operation, as in (61) below:
(61) Affix Attachment

When the PF component processes a structure whose head H contains an (undeleted) Tense affix which is not attached to a verb:
(i) H is attached to the head immediately below it if that is an overt verb - i.e. if H has a complement headed by an overt verb [= Affix Hopping]
(ii) if not (i.e. if H does not have a complement headed by an overt verb), the expletive (i.e. semantically contentless) stem do is attached to the Tense affix [= Do-Support]

We can illustrate how (61) works in terms of the italicised structures below:
(62) (a) He won the race
(b) He said he would win the race, and he did
(c) He said he would win the race, and win the race, he did
(d) Did he win the race?
(e) Didn't he win the race?
(f) Some people don't believe he won the race, but he DID win it

Consider first (62a), which is derived as follows. The determiner the merges with the noun race to form the DP the race; the verb win merges with this DP to form the VP win the race. This VP is merged with a T constituent containing a (past-tense) affix Tns to form the T-bar Tns win the race. This T-bar merges with the pronoun he to form the TP he Tns win the race; and the resulting TP in turn is merged with a null declarative complementiser \varnothing to form the CP shown in skeletal form in (63) below:

$$
\begin{equation*}
\left[{ }_{\mathrm{CP}}[\mathrm{C} \varnothing]\left[{ }_{\mathrm{TP}} \mathrm{He}[\mathrm{~T} T n s][\mathrm{vp}[\mathrm{v} \text { win] the race }]]\right]\right. \tag{63}
\end{equation*}
$$

The syntactic structure (63) is then sent to the PF component (and the semantic component) to be processed. PF operations apply in a bottom-up, cyclic fashion. On the TP cycle, the Tns affix in T is lowered onto the verb win in accordance with (61i), so that the verb has the form win+Tns: since the lexical entry for the irregular verb win specifies that it is spelled out as won when it has a past-tense affix attached to it, the overall structure is eventually spelled out as (62a) He won the race.

Now consider why do is used in the elliptical clause he did in (62b). This would appear to have the syntactic structure shown in (64) below, with the italicised material undergoing ellipsis:

$$
\begin{equation*}
\left[{ }_{\mathrm{CP}}[\mathrm{C} \varnothing][\mathrm{TP} \text { he }[\mathrm{T} T n s][\mathrm{vP}[\mathrm{v} \text { win] the race }]]]\right. \tag{64}
\end{equation*}
$$

The Tns affix in T cannot subsequently be lowered onto the verb win in the PF component via the Affix Hopping operation (61i) because the verb is not overt (by virtue of having undergone ellipsis); hence the Do-support operation in (61ii) has to apply, attaching do to the Tns affix, with the resulting DO+Tns string eventually being spelled out as did.

Now consider the clause Win the race, he did in (62c). Let's suppose that (in the syntax) the VP win the race undergoes preposing in order to highlight it, and is thereby moved to the front of the overall clause (to become the specifier of the null complementiser), and that the phonetic features of the original occurrence of the VP win the race are given a null spellout, as shown informally in (65) below:

$$
\begin{equation*}
\text { [} \left.{ }_{\mathrm{CP}}[\mathrm{vp} \text { win the race }][\mathrm{C} \varnothing]\left[{ }_{\mathrm{TP}} \text { he }\left[{ }_{\mathrm{T}} \text { Tns }\right][\mathrm{vp} \text { win the race }]\right]\right] \tag{65}
\end{equation*}
$$

Once again, in the PF component the Tns affix cannot be lowered onto the verb win because the complement of T is a VP which contains a null copy of the verb win (the overall VP having moved to the front of the sentence, leaving a null copy behind). Accordingly, do-support (61ii) applies once again, and T is eventually spelled out as did.

Let's turn now to look at the derivation of the yes-no question (62d) Did he win the race? Let's suppose that a series of syntactic merger operations have applied to generate the structure (66) below:

Let's further suppose that the Q morpheme/question particle which occupies the head C position of CP has a strong T-feature and hence attracts whatever is contained within T to adjoin to Q . Since T in (66) contains only a Tns affix, this affix will adjoin to Q (and the original occurrence of the affix in T will be deleted), so deriving the structure (67) below:

$$
\begin{equation*}
\left[{ }_{\mathrm{CP}}[\mathrm{C} \text { Tns+Q}]\left[{ }_{\mathrm{TP}} \text { he }[\mathrm{T} \text { Tns] [} \mathrm{vp}[\mathrm{v} \text { win] the race }]]\right]\right. \tag{67}
\end{equation*}
$$

The resulting syntactic structure is then sent to the PF component to undergo morphological and phonological processing. Since the Tns affix in T gets deleted, it does not undergo Affix Hopping. By contrast, the Tns affix in C is not deleted and is unattached (in the sense that it is not attached to an overt verbal stem), and hence must undergo Affix Attachment (61). However, since the complement of the C constituent which contains the tense affix is not a VP headed by an overt verb (but rather is a TP headed by a null T), Affix Hopping (61i) cannot apply; consequently, Do-support (61ii) must apply instead, attaching the dummy stem Do to the unattached affix, to form the string $d o+T n s+Q$, which is eventually spelled out as did.

Now, consider the negative question (62e) Didn't he win the race? In keeping with the NEGP analysis of negation outlined in the previous section, let's suppose that after the VP win the race has been formed, it is merged with a null NEG head \varnothing to form a NEG-bar constituent, and that this in turn is merged with a negative adverb n ' t which serves as its specifier, forming the NEGP n't \varnothing win the race. This NEGP is then merged with a T containing an abstract Tns affix, forming the T-bar Tns n't ø win the race. Suppose that the clitic negative n ' t then attaches to the end of the Tns affix, with the original occurrence of n ' t in spec-NEGP being deleted, so forming the string Tns+n'tn't \varnothing win the race. The resulting T-bar is in turn merged with the subject he, forming the TP He Tns+n't n't \varnothing win the race. This is then merged with an interrogative C constituent containing a Q morpheme, forming the CP (68) below:

$$
\begin{equation*}
\text { [}{ }_{\mathrm{CP}}[\mathrm{C} \mathrm{Q}]\left[\mathrm{TrP}^{2} \text { he }\left[\mathrm{T} T n s+n^{\prime} t\right]\left[\mathrm{NEGP} n^{\prime} t[\mathrm{NEG} \emptyset][\mathrm{vP}[\mathrm{v} \text { win] the race }]]\right]\right] \tag{68}
\end{equation*}
$$

Since Q has a strong T-feature, it attracts all the material contained in T to adjoin to Q , so deriving:

$$
\begin{equation*}
\left[\mathrm { CP } [\mathrm { C } T n s + n ^ { \prime } t + \mathrm { Q }] \left[\mathrm{TP} \text { he }\left[\mathrm{T} T n s+n^{\prime} t\right]\left[\mathrm{NEGP} n^{\prime} t[\mathrm{NEG} \varnothing][\mathrm{vP}[\mathrm{v} \text { win] the race] }]]\right]\right.\right. \tag{69}
\end{equation*}
$$

The resulting syntactic structure is then handed over to the PF component. On the CP cycle, the Tns affix in C will be subject to Affix Attachment (61). However, since the complement of C is not a VP headed by an overt verb, Affix Hopping (61i) cannot apply, and Do-support (61ii) applies instead, creating the complex head $D O+T n s+n^{\prime} t+Q$, which is ultimately spelled out as didn't.

An interesting descriptive implication of the analysis presented in (69) is that it is in principle possible that the interrogative form of some auxiliaries may have
a different spellout from their non-interrogative counterparts. This is because in their interrogative form they attach to a null question complementiser Q , whereas in their non-interrogative form they do not. A case in point is $b e$. When used with a first person singular subject $(=I)$, this has the negative interrogative form aren'ta form which is not found with an I subject (in varieties of English like mine) in non-interrogative uses, as the following contrast shows:
(70) (a) Aren't I entitled to claim Social Security benefits?
(b) *I aren't entitled to claim Social Security benefits (=I'm not . . .)

This can be accounted for by positing that the string $b e+T n s_{1 S g P r}+n ' t+Q$ found in (70a) can be spelled out as aren't - but not the Q-less string be $+T n s_{1 S g P r}+n ' t$ in (70b) because this is not interrogative (by virtue of having no Q affix attached to it).

Finally, let's turn to consider the clause He DID win it in (62f), where capitals mark contrastive stress (and the utterance is used to deny any suggestion that he didn't win the race). One way of handling the relevant phenomenon is to suppose that T is the locus of contrastive stress in such structures, and hence contains an abstract EMP(hasis) marker of some kind which is spelled out as contrastive stress, and which must be attached to a verbal stem - so requiring do-support in contrastive structures like (62 f). Such an analysis would require us to suppose that EMP (perhaps by virtue of having phonological but not morphological content) is not an affix and so cannot be lowered from T onto V. An alternative possibility is that EMP is a clitic-like constituent which originates within the complement of T and (rather like the negative clitic n ' t) requires the use of Do-support to provide a host for the clitic EMP. We shall not speculate further on these (and other) analyses of emphatic do here. (On Do-support, see Halle and Marantz 1993, Lasnik 1995, Bobaljik 2002; see also Embick and Noyer 2001 for a different view.)

The analysis of Do-support outlined here has interesting theoretical implications. The structures generated by the syntactic component of the grammar are sent not only to the PF component (where they are assigned a phonetic form) but also to the semantic component (where they are assigned a semantic interpretation). Chomsky in recent work $(1995,1998,1999,2001)$ has proposed a constraint on grammars to the effect that syntactic structures must not contain constituents which are not legible at the semantics interface or at the PF interface (i.e. grammars must not contain constituents which do not contribute to determining the meaning or phonetic form of expressions). Under the analysis of Do-support presented here, the dummy auxiliary Do is analysed as a meaningless 'chunk' of morphology which is not present in the syntax, but rather is added in the PF component in order to provide a host for an unsupported tense affix. Since syntactic structures which contain 'meaningless' constituents will cause the derivation to crash at the semantics interface (because meaningless constituents cannot be assigned any semantic interpretation), this is a welcome result since if the dummy
auxiliary Do is not present in the syntax, it will not be processed by the semantic component: all the semantic component 'sees' in Do-support structures is a tense affix which is clearly interpretable by virtue of the fact that it encodes present or past tense.

5.9 Head movement in nominals

Our discussion so far has focused entirely on head movement in clauses. To end this chapter, we look briefly at head movement in nominals more particularly, at \mathbf{N}-movement (i.e. the movement of a noun out of the head N position of NP into a higher head position within the nominal expression containing it). In this connection, consider the syntax of the English nominal (71a) below and its Italian counterpart (71b) (from Cinque 1994, p. 86):
(71) (a) the Italian invasion of Albania
(b) l'invasione italiana dell'Albania
the invasion Italian of.the Albania
If the adjective Italian is the specifier of the noun invasion, (71a) will have the simplified structure:

On this view, the noun invasion merges with its PP complement of Albania to form the N -bar (intermediate nominal projection) invasion of Albania, and this in turn merges with the adjectival specifier Italian to form the NP (maximal nominal projection) Italian invasion of Albania; the resulting NP is then merged with the determiner the to form the DP the Italian invasion of Albania. The adjective Italian in (72) can be thought of as being (in an informal sense) the 'subject' of invasion, since it identifies the people who are doing the invading - and if subjects are typically specifiers, it is appropriate to analyse the kind of adjective found in (72) as the specifier of the N invasion, of the N -bar invasion of Albania and of the NP Italian invasion of Albania.

In the corresponding Italian structure (71b) l'invasione italiana dell'Albania, the head noun invasione ends up occupying a position to the left of the adjective italiana. Cinque (1994) argues that this is the result of the noun moving out of
the head N position within NP into some higher head position within the nominal (via Head Movement). At first sight, it might seem as if the noun attaches to the right of the head D constituent of DP: but - argues Cinque - any such assumption is falsified by nominals like (73) below:

> la grande invasione italiana dell' Albania the great invasion Italian of.the Albania 'the great Italian invasion of Albania'

The fact that the noun invasione ends up positioned after the adjective grande 'great' in (73) suggests that the noun cannot move to some position immediately to the right of the determiner $l a$ 'the'. Instead, the noun must 'move to a head intermediate between N and D' (Cinque 1994, p. 87). If this intervening head is the locus of the number properties of nominals (as suggested by Picallo 1991 and Ritter 1991), we can label this intermediate head Num (= Number). If the adjective grande 'great' serves as the specifier of Num, this will mean that the derivation of (73) involves the movement operation shown in (74) below:

The noun invasione originates in the head N position of NP and then (via head movement) moves into the head Num position of NumP, with the original occurrence of invasione in N being deleted. It may be that Num is a strong head in Italian (perhaps an affix with a strong N -feature triggering movement of N to Num) by virtue of the richness of the number morphology carried by nouns and adjectives in Italian, whereas Num is a weak head in present-day English by virtue of the impoverished nature of number morphology in English (e.g. adjectives no longer inflect for number). If Num is also the locus of gender properties in nouns, we can further correlate the strength of Num in Italian and its weakness in English with the fact that Italian has gender in nouns but English does not. It should also be noted that an assumption embodied in the analysis in (74) is that adjectives serve as specifiers of the expressions they modify, and that different types of adjective serve as specifiers to different types of head (e.g. italiana in (74) is the specifier of N, and grande is the specifier of Num): see Cinque (1994) for a more extensive
implementation of the idea that different kinds of adjectives serve as the specifiers of different kinds of heads, and Cinque (1999) for an extension of the specifier analysis to clausal adverbs.

While the kind of N -movement operation found in Italian is not found in present-day English, it did occur in earlier varieties of English. For example, in Chaucer's Troilus and Criseyde we find nominals such as those in (75) below where the italicised noun precedes the bold-printed adjective:
(75) (a) hire own brother dere (= her own brother dear)
(b) a thing immortal (= a thing immortal)
(c) blosmy bowes grene (= blossomy branches green)
(d) hire hornes pale (= her horns pale)

The italicised noun in such structures has moved from the head N position of NP into the head Num position of NumP, so moving in front of the bold-printed adjective. (See Kishimoto 2000 for arguments that present-day structures like something nice are a last vestige of this once-productive N -to-Num movement operation, deriving from some nice thing via movement of thing from N to Num.)

Although nouns generally move only as far as Num in Italian, in some other languages nouns can move above Num into the head D position of DP (if the head D of DP is strong/affixal in nature). Consider in this regard the following Norwegian examples (from Taraldsen 1990):
$\begin{array}{lll}\text { (76) (a) hans bøker om syntaks } & \text { (b) bøkene hans om syntaks } \\ \text { his books about syntax } & \text { books+the his about syntax }\end{array}$
Taraldsen argues that (76b) is derived via movement of the noun bøker 'books' from the head N position of NP to the head D position of DP , where it attaches to the left of the affixal determiner $+n e$ 'the'.

Longobardi (1994, p. 623) argues that proper nouns (i.e. names) in Italian can raise from N to D across an intervening adjective (like the possessive adjective mio) in structures like (77b) below:
(77) (a) Il mio Gianni ha finalmente telefonato

The my Gianni has finally phoned
'My Gianni has finally phoned'
(b) Gianni mio ha finalmente telefonato

Gianni mine has finally phoned
'My Gianni has finally phoned'
In (77a) the head D position of DP is filled by the determiner il 'the', and there is no movement of the proper noun Gianni from N to D. However, in (77b) the head D position of DP is filled by a null affixal determiner, and the proper noun Gianni raises from N to D to attach to the null determiner, in the process crossing the possessive adjective mio. In earlier varieties of English, a similar type of movement operation seems to be found in vocative expressions used to address
someone, as the italicised vocative in (78b) below illustrates (from Chaucer's Troilus and Criseyde):
(78) (a) 'Iwis, myn uncle,' quod she
'Certainly, my uncle,' said she
(b) 'And whi so, uncle myn? whi so?' quod she
'And why so, uncle mine, why so?' said she
As these examples show, the noun uncle can be positioned either before or after the possessive myn in vocative expressions. How can we account for this? One possibility (suggested in relation to Italian vocatives like mio caro Gianni 'my dear Gianni’ and Gianni mio caro 'Gianni my dear' by Longobardi 1994, p. 626) is that vocative structures like uncle myn are DPs in which the noun uncle has raised from N to D , whereas structures like myn uncle are 'smaller' nominals which lack a DP projection and hence cannot trigger N-to-D movement. (See Longobardi 1994, 1996, 2001 for an insightful discussion of the syntax and semantics of N-to-D movement in nominals. See also Vikner 1995 and Roberts 2001b for more general discussion of head movement.)

The general conclusion to be drawn from this section is that we find evidence from languages other than present-day English (and from earlier varieties of English) that head movement may apply in nominal as well as clausal structures. In particular, we find evidence of two types of N -movement operation: (i) movement of a noun to a Num position intermediate between D and N ; and (ii) movement of a noun to the head D position of DP (with the noun first moving to Num before moving to D, in order for movement of the noun to be successivecyclic and thereby satisfy the Head Movement Constraint).

5.10 Summary

In this chapter, we have been concerned with the syntax of head movement. We began by looking at auxiliary inversion in questions in English in $\S 5.2$, arguing that this involves a T-to-C movement operation whereby an auxiliary moves from the head T position of TP into the head C position of CP . We suggested that auxiliaries move to C in main clause questions because C in such structures is strong (perhaps by virtue of containing a null question particle Q which is affixal and has a strong tense feature) and so attracts an auxiliary in T to move to C . In $\S 5.3$ we argued that movement operations like auxiliary inversion involve two separate copying and deletion operations: a copy of the auxiliary in T is merged with an affixal Q constituent/question particle in C , and then the original occurrence of the auxiliary in T is deleted. In §5.4 we saw that finite main verbs in Elizabethan English could move from V to T by an operation of V-to-T movement (as is shown by word-order in negative sentences like I care not for her), but that this kind of movement is no longer possible in present-day

English. We suggested that a null finite T was strong in Elizabethan English (perhaps containing an abstract Tns affix with a strong V-feature triggering the raising of verbs to T) but that its counterpart in present-day English is weak (so that a Tns affix in T is lowered onto the main verb by the morphological operation of Affix Hopping). In §5.5 we argued that T-to-C movement and V-to-T movement are two different reflexes of a more general Head Movement operation, and that head movement is subject to a strict locality condition (imposed by the Head Movement Constraint) which requires it to apply in a successive cyclic (stepwise) fashion, so that movement is only possible between a given head and the next highest head within the structure containing it. We noted that finite verbs in Elizabethan English carried a richer system of agreement inflections than their counterparts in present-day English (allowing them to be used with a null nominative pro subject), and conjectured that T is strong in languages with rich subject-verb agreement morphology and weak in languages with poor subjectverb agreement morphology. In §5.6 we argued that present-day English has a last vestige of V-to-T raising in finite clauses whereby the auxiliaries BE and HAVE and narrow-scope modal auxiliaries raise from a lower AUX/V position into the head T position of TP. We suggested that a finite T in present-day English contains a Tns affix which can only attract an auxiliary to move to T, not a main verb: we noted that one possible implementation of this idea would be that a finite T has a strong AUX-feature in present-day English. We also suggested that infinitival to occupies the head AUX position of AUXP in negative infinitives of the form . . . not to . . . but that in non-negative structures both infinitival to and finite auxiliaries are directly merged in the head T position of TP. In §5.7, we took a closer look at negation. Revising our earlier analysis of not as a VP-specifier, we outlined an alternative analysis under which not is the specifier of a NEGP constituent which was headed by ne in Chaucerian English, but which is null in present-day English. On this view, Shakespearean negatives like He heard not that involve movement of the verb from V through NEG into T. Because NEG and T don't have a strong V-feature in present-day English, they can no longer trigger movement of a main verb. In $\S 5.8$ we outlined a morphological account of Affix Hopping and doSupport. We suggested that once the syntactic component of the grammar has generated a given syntactic structure (e.g. a complete CP), the relevant structure is then sent to the PF component for morphological and phonological processing. If a structure being processed by the PF component contains an unattached Tns affix, this is lowered onto the closest head below it by Affix Hopping if this is an overt verb; if not, the dummy item Do is attached to the affix by do-Support. In §5.9, we presented evidence that head movement can also apply in nominal structures. We argued that nouns in Italian raise to a head Num(ber) position intermediate between D and N in structures like la grande invasione italiana dell'Albania 'the great invasion Italian of.the Albania'. We noted that in some languages, nouns can raise still further to attach to $\mathrm{D}-\mathrm{e} . \mathrm{g}$. in Norwegian nominals such as bøkene hans 'books.the his'.

Workbook section

Exercise 5.1

Discuss the derivation of each of the following (declarative or interrogative) sentences, drawing a tree diagram to represent the structure of each sentence and saying why the relevant structure is (or is not) grammatical (in the case of 4 , saying why it is ungrammatical as a main clause):

1	He helps her	9 *He helps not her
2	*He d's help her	10 *He not helps her
3	*Helps he her?	11 He does not help her
4	${ }^{*}$ If he helps her?	12 He doesn't help her
5	Does he help her?	13 Doesn't he help her?
6	I wonder if he helps her	14 He might not help her
7	*I wonder if does he help her	15 He dare not help her
8	*I wonder if helps he her	

(Note that d's in 2 represents unstressed does, /dəz/.) Say what is archaic about the syntax of 16 below (the second line of the nursery rhyme Baa Baa Black Sheep) - and why such structures are no longer grammatical in many varieties of English:
$16 \quad$ Have you any wool?
Then, discuss the derivation of each of the following questions produced by a number of different children aged two to four years, and identify the nature of the child's error in each case:

17 Is the clock is working?
18 Does it opens?
19 Don't you don't want one?
20 Does it doesn't move?
Consider, also, the derivation of the following questions reported (by Akmajian and Heny 1975, p. 17) to have been produced by an unnamed three-year-old girl:

21 Is I can do that?
22 Is you should eat the apple?
23 Is the apple juice won't spill?
And finally, say why you think negative imperatives like 24 (which were grammatical in Elizabethan English) are ungrammatical in present-day English, and why we find 25 instead:
$24 \quad$ *Be not afraid!
25
Don't be afraid!

Helpful hints

In 13, account for the fact that the sentence is ambiguous between one interpretation paraphraseable as 'Is it the case that he doesn't help her' and another paraphraseable as 'Isn't it the case that he helps her?' In 14 and 15 , consider the scope relations between the auxiliary and not, and bear in mind the suggestion made in the main text that finite auxiliaries normally originate in T, but originate in an AUX position below NEG if they fall within the scope of not.

In 17-20, consider the possibility that children sometimes fail to delete the original occurrence of a moved T constituent. In 19 and 20, consider the possibility that attachment of the clitic n ' t to a Tns affix in T may either be treated by the child as a syntactic operation, or as a phonological operation which applies after the relevant syntactic structure has been formed. In relation to 24 , consider the possibility that although a T in finite declarative and interrogative clauses has a strong AUX feature, T in imperatives is weak and so can attract neither main verbs nor auxiliaries.

Model answer for sentence 1

Given the assumptions made in the text, 1 will have the simplified syntactic structure (i) below:
(i)

The overall clause is a CP headed by a null declarative complementiser \varnothing which has a TP complement headed by a T constituent which carries a present-tense Tns affix which is third-person singular by agreement with the subject $h e$, and which needs an overt verb stem to attach to. Since T does not have a strong V-feature in present-day English, the verb help cannot be raised to provide a host for the affix in T. After the syntactic structure in (i) has been formed, it is handed over to the PF component, where it is processed in a bottom-up, cyclic fashion. On the TP cycle, the Tns affix in T is lowered onto the end of the verb help by Affix Hopping, which specifies that a weak affix in T is lowered onto the head V of a VP complement of T . Affix Hopping results in the form $\left[h e l p+T n s_{3 S_{g} P r}\right]$, which is ultimately spelled out as helps. The complement pronoun her is assigned accusative case in the syntax by the c-commanding transitive verb help, and the subject pronoun he is assigned nominative case by the c-commanding null intransitive finite complementiser \varnothing.

Exercise 5.2

Discuss the derivation of the following Shakespearean sentences:
1 Thou marvell'st at my words (Macbeth, Macbeth, III.ii)
2 Macbeth doth come (Third Witch, Macbeth, I.iii)
3 He loves not you (Lysander, A Midsummer Night's Dream, III.ii)
4 You do not look on me (Jessica, The Merchant of Venice, II.vi)
5 Wilt thou use thy wit? (Claudio, Much Ado About Nothing, V.i)
6 Wrong I mine enemies? (Brutus, Julius Caesar, IV.ii)
7 Knows he not thy voice? (First Lord, All's Well That Ends Well, IV.i)
8 Didst thou not say he comes? (Baptista, The Taming of the Shrew, III.ii)
9 Canst not rule her? (Leontes, The Winter's Tale, II.iii)
10 Hath not a Jew eyes? (Shylock, The Merchant of Venice, III.i)

11 Do not you love me? (Benedick, Much Ado About Nothing, V.iv)
12
13
14
15
16
Buy thou a rope! (Antipholus, The Comedy of Errors, IV.i)
Fear you not him! (Tranio, The Taming of the Shrew, IV.iv) Speak not you to him! (Escalus, Measure for Measure, V.i) Do not you meddle! (Antonio, Much Ado About Nothing, V.i) She not denies it (Leonato, Much Ado About Nothing, IV.i)

Helpful hints

Assume that 9 has a null finite pro subject. Assume also that sentences 12-15 are imperative in force, and consider the possibility that V raises to C in imperatives in Elizabethan English (see Han 2001), perhaps attaching to a strong imperative affix Imp. Consider also the possibility that not had a dual status and could either function as an independent word (like present-day English not) or could serve as an enclitic particle (like present-day English n 't) which attached to an immediately adjacent finite T constituent. Finally, say in what way(s) sentence 16 proves problematic in respect of the assumptions made in the main text (and in the model answer below), and see if you can think of possible solutions (e.g. What if the verb raised as far as NEG but not as far as T?).

Model answer for sentences 1 and 2

Relevant aspects of the derivation of 1 (here presented in simplified form) are as follows. The verb marvel merges with its PP complement at my words to form the VP marvel at my words. This in turn is merged with a T constituent containing a present-tense Tns affix to form the T-bar Ths marvel at my words, which is in turn merged with its subject thou. The Tns affix agrees with thou and thus carries the features [second-person, singular-number, present-tense], below abbreviated to $2 S g P r$. The resulting TP is merged with a null intransitive finite C which marks the declarative force of the sentence and which assigns nominative case to thou by virtue of being the closest case-assigning head c-commanding thou. 1 thus has the syntactic structure shown in simplified form in (i) below, with the dotted arrow indicating movement of the verb marvel from V to T:
(i)

The string marvel $+T n s_{2 S_{g} P r}$ is ultimately spelled out as marvell'st in the PF component.
Sentence 2 is derived as follows. The verb come merges with a weak Tns affix in T, forming the T-bar Tns come. This will in turn be merged with its subject Macbeth, which we can take to be a DP headed by a null determiner, in accordance with the DP hypothesis (and indeed, proper names in many languages can be premodified by an overt determiner - cf. e.g. Italian la Callas, literally
'the Callas'). Merging the resulting TP with a null declarative complementiser will derive the syntactic structure shown in (ii) below:
(ii)

It would seem that the Tns affix undergoes Do-support in the PF component, and is ultimately spelled out as doth (which is a dialectal variant of does). What is surprising about this is that the dummy auxiliary DO is used only to support a Tns affix which is unable to find a host by any other means. So what we'd expect to happen when the structure in (ii) is handed over to the PF component is for the Tns affix to be lowered onto the verb come in the PF component by Affix Hopping, with the resulting verb being spelled out as cometh (a dialectal variant of comes). However, this is clearly not what happens.

One alternative possibility which this might lead us to consider is that Do is not a dummy auxiliary with a morphological support function in Elizabethan English, but rather has independent semantic content of some kind and so is directly generated in T in the syntax, just like (e.g.) the aspectual auxiliaries HAVE (marking perfect aspect) and BE (marking progressive aspect). In this connection, it is interesting to note that in Caribbean Creoles (according to Rickford 1986 and Harris 1986), Do is used to mark habitual aspect in sentences such as:
(iii) \quad He does be sick ($=$ 'He is usually sick')

Likewise, Do functions as a habitual aspect marker in Irish English (see Guilfoyle 1983, Harris 1986) and in south-western varieties of British English (see Wakelin 1977, pp. 120-21). However, sentence 2 doesn't seem to have a habitual interpretation paraphraseable as 'Macbeth usually comes' (but rather has an interpretation more akin to 'Macbeth is coming'), so it is not clear that this is a credible approach. Let's therefore continue to explore the possibility outlined in (ii) that Do is not generated in the syntax, but rather serves to support an unattached affix in the PF component.

One suggestion along these lines is that the Tns affix in a finite T in a structure like (ii) could be either strong or weak in Elizabethan English. Where it is strong, the Tns affix will trigger raising of the main verb from V to T ; where it is weak, the verb will remain in situ, and the Tns affix will remain unattached in the syntax. The resulting structure (ii) will then be handed over to the PF component, where it is processed in a bottom-up fashion. Although in present-day English do-support is only used where Affix Hopping cannot apply, let's suppose that in Shakespearean English the two are in free variation, in the sense that either can be used as a way of providing a host for an unattached affix in T. Applying Affix Hopping will lower the (third-person-singular present-tense) affix in (ii) onto the verb deriving the string come $+T n s_{3 S_{g} P r}$ (which is ultimately spelled out as cometh). Applying Do-support instead will result in the dummy stem do being attached to the Tns affix in T, so forming the string $d o+T n s_{3 S_{g} P r}$ (which is ultimately spelled out as doth). If an analysis along the lines outlined here is tenable, it implies that there was considerably more morphosyntactic variation in Shakespearean English than we find in
present-day varieties of Standard English - for example, in respect of a finite Tns affix being either strong or weak, and an unattached Tns affix either being lowered onto the verb, or having DO attached to it. Given that Shakespeare's writing contains a mixture of different dialect forms (as we see from the alternation between dialectal variants like comes/cometh and does/doth), this may not be implausible. However, as noted by Tieken-Boon van Ostade (1988), the origin of Do is 'one of the great riddles of English linguistic history'.

6 Wh-movement

6.1 Overview

In the previous chapter, we looked at the head movement operation by which a head can move into the next highest head position within the structure containing it. In this chapter, we look at a very different kind of movement operation traditionally termed wh-movement, by which a wh-expression like who or what languages moves into the specifier position within CP. We begin by looking at the syntax of wh-questions, and then go on to probe the syntax of other types of wh-clause, including exclamative clauses and relative clauses.

6.2 Wh-questions

So far, we have implicitly assumed that CP comprises a head C constituent (which can be filled by a complementiser or a preposed auxiliary) and a TP complement. However, one question which such an analysis begs is what position is occupied by the bold-printed constituent which precedes the italicised auxiliary in root interrogatives (i.e. main-clause questions) such as (1) below:
(1) (a) What languages can you speak?
(b) Which one would you like?
(c) Who was she dating?
(d) Where are you going?

Each of the sentences in (1) contains an italicised inverted auxiliary occupying the head C position of CP , preceded by a bold-printed interrogative wh-expression i.e. an expression containing an interrogative word beginning with wh- like what/which/who/where/when/why. (Note that how in questions like How are you? How well did he behave? etc. is also treated as a wh-word because it exhibits the same syntactic behaviour as interrogative words beginning with wh-.) Each of the wh-expressions in (1) functions as the complement of the verb at the end of the sentence - as we see from the fact that each of the examples in (1) has a paraphrase in which the wh-expression occupies complement position after the italicised verb:
(2) (a) You can speak what languages?
(b) You would like which one?
(c) She was dating who?
(d) You are going where?

Structures like (2) are termed wh-in-situ questions, since the bold-printed whexpression does not get preposed, but rather remains in situ (i.e. 'in place') in the canonical position associated with its grammatical function (e.g. what languages in (2a) is the direct object complement of speak, and complements are normally positioned after their verbs, so what languages is positioned after the verb speak). In English, wh-in-situ questions are used primarily as echo questions, to echo and question something previously said by someone else - as we can illustrate in terms of the following dialogue:
speaker a: I just met Lord Lancelot Humpalot speaker b: You just met who?

Echo questions such as that produced by speaker B in (3) suggest that the whexpressions in (1) originate as complements of the relevant verbs, and subsequently get moved to the front of the overall clause. But what position do they get moved into?

The answer is obviously that they are moved into some position preceding the inverted auxiliary. Since inverted auxiliaries occupy the head C position of CP, let's suppose that preposed wh-expressions are moved into a position preceding the head C of CP. Given that specifiers are positioned before heads, a plausible suggestion to make is that preposed wh-expressions move into the specifier position within $C P(=$ spec-CP). If so, a sentence like (1c) Who was she dating? will involve the arrowed movement operations shown in (4) below:
(4)

(To be more precise, interrogative pronouns like who are Q-pronouns and hence pronominal quantifiers.) Two different kinds of movement operation (indicated by the numbered arrows) are involved in (4): the movement arrowed in (1) involves the familiar operation of head movement by which the bold-printed auxiliary
was moves from the head T position of TP into the head C position of CP ; by contrast, (2) involves movement of an italicised wh-expression from the complement position within VP into the specifier position in CP, and this very different kind of movement operation is known as wh-movement. Note that unlike head movement (which, as its name suggests, moves only heads which are minimal projections), wh-movement moves maximal projections; for instance, in (1a) What languages can you speak? wh-movement moves the quantifier phrase what languages which is the maximal projection of the interrogative quantifier what? by virtue of being the largest expression headed by the word what; and in (1c) Who was she dating? it moves the interrogative Q-pronoun who (which is a maximal projection by virtue of being the largest expression headed by the word who). Following Cheng (1997), we might suppose that every clause must be typed (i.e. identified as declarative or interrogative etc. in type) in the syntax, and that a clause is typed as interrogative if it contains an interrogative head or specifier: on this view, movement of the interrogative pronoun who to spec-CP serves to type the CP in (4) as interrogative.

Evidence in support of the assumption that preposed wh-expressions move into spec-CP comes from varieties of English in which a preposed wh-expression can precede a complementiser like that. This is true, for example, of interrogative complement clauses like those bracketed below in Belfast English (from Henry 1995, p. 107):
(5) (a) I wonder [which dish that they picked]
(b) They didn't know [which model that we had discussed]

Since the complementiser that occupies the head C position in the bracketed CP, it seems reasonable to suppose that the wh-expressions which dish/which model in front of that occupy the specifier position within CP, and this is what Alison Henry argues. (See Seppänen and Trotta 2000 and Zwicky 2002 for discussion of the syntax of wh+that structures.)

6.3 Wh-movement as a copying operation

A tacit assumption made in our analysis of wh-movement in (4) is that just as a moved head (e.g. an inverted auxiliary) leaves behind a null copy of itself in the position out of which it moves, so too a moved wh-expression leaves behind a copy at its extraction site (i.e. in the position out of which it is extracted/moved). In earlier work in the 1970s and 1980s, moved constituents were said to leave behind a trace in the positions out of which they move (informally denoted as t), and traces of moved nominal constituents were treated as being like pronouns in certain respects. A moved constituent and its trace(s) were together said to form a (movement) chain, with the highest member of the chain (i.e. the moved constituent) being the head of the movement chain, and the lowest trace being the
foot of the chain. Within the framework of Chomsky's more recent copy theory of movement, a trace is taken to be a full copy (rather than a pronominal copy) of a moved constituent. Informally, however, we shall sometimes refer to the null copies left behind by movement as traces or trace copies in later sections and chapters.

The assumption that moved wh-expressions leave a copy behind can be defended not only on theoretical grounds (in terms of our desire to develop a unified theory of movement in which both minimal and maximal projections leave behind copies when they move), but also on empirical grounds. One such empirical argument comes from a phenomenon known as wanna-contraction. In colloquial English, the sequence want to can sometimes contract to wanna, as in (6) below:

(6) (a) I want to go home
 (b) I wanna go home

Given the claim made in $\S 4.7$ that control infinitive clauses are CPs headed by a null complementiser, the complement clause in (6a) will have the skeletal structure shown in (7) below:

The fact that wanna-contraction is possible in (6b) suggests that neither the intervening null complementiser \varnothing nor the intervening null subject PRO prevents to from cliticising onto want in the phonological component, forming want+to which is ultimately spelled out as wanta or wanna.

What is of particular interest to us is that (in non-sloppy speech styles) the sequence want to cannot contract to wanna in sentences like:
(8) (a) Who don't you want to win the game?
(b) *Who don't you wanna win the game?

Why should this be? Well, let's assume that who in (8) originates as the subject of the infinitive clause to win the game - as seems plausible in view of the fact that (8a) has the echo-question counterpart:

You don't want who to win the game?
Let's also assume that (for reasons outlined in §4.7) the complement of want in structures like (8) and (9) is a CP headed by a null complementiser (perhaps a null variant of for). On this view, (9) will have the skeletal structure (10) below: You don't want [${ }_{C P}\left[\mathrm{C}\right.$ ø] [TP who [T ${ }_{\mathrm{T}}$ to] win the game]]

Movement of who to the front of the overall sentence (together with auxiliary inversion) will result in the structure shown below (simplified, inter alia, by not showing the trace of the inverted auxiliary): Who don't you want [CP [C ø] [TP who [T to] win the game]]

However, wanna-contraction is not possible in a structure like (11) - as we see from the ungrammaticality of (8b) *Who don't you wanna win the game? Why should this be? This is unlikely to be because of the presence of the null complementiser \varnothing between want and to, since we see from the fact that structures like (7) allow wanna-contraction in sentences like (6b) that wanna-contraction is not blocked by an intervening null complementiser. So what blocks contraction in structures like (11)? The copy theory of movement provides us with a principled answer, if we assume that when who moves to the front of the overall sentence in (11), it leaves behind a copy of itself (which is ultimately given a null phonetic spellout), and it is the presence of this copy intervening between want and to which prevents wanna-contraction in (8b).

A different kind of evidence in support of the claim that preposed whexpressions leave behind a null copy when they move comes from a phenomenon which we can call preposition copying. In this connection, consider the following Shakespearean wh-structures:
(12) (a) In what enormity is Marcius poor in? (Menenius, Coriolanus, II.i)
(b) To what form but that he is should wit larded with malice and malice forced with wit turn him to? (Thersites, Troilus and Cressida, V.i)
(c) . . . that fair [for which love groan'd for] (Prologue to Act II, Romeo and Juliet)
$(12 \mathrm{a}, \mathrm{b})$ are interrogative clauses, and the bracketed structure in (12c) is a relative clause - so called because it contains a relative wh-pronoun which relating (more specifically, referring back) to the preceding noun expression that fair. In these examples, an italicised prepositional wh-phrase (i.e. a prepositional phrase containing a wh-word like what/which) has been moved to the front of the relevant clause by wh-movement. But a (bold-printed) copy of the preposition also appears at the end of the clause. In case you think that this is a Shakespearean quirk (or - Heaven forbid - a slip of the quill on the part of Will), the examples in (13) below show much the same thing happening in (bracketed) relative clauses in present-day English:
(13) (a) But if this ever-changing world [in which we live in] makes you give in and cry, say 'Live and Let Die' (Sir Paul McCartney, theme song from the James Bond movie Live and Let Die)
(b) IKEA only actually has ten stores [from which to sell from] (Economics reporter, BBC Radio 5)
(c) Israeli soldiers fired an anti-tank missile and hit a police post [in which the Palestinian policeman who was killed had been in] (News reporter, BBC Radio 5)
(d) Tiger Woods (about whom this Masters seems to be all about) is due to tee off shortly (Sports reporter, BBC Radio 5)
(e) The hearing mechanism is a peripheral, passive system over which we have no control over (undergraduate exam paper)

How can we account for preposition copying in structures like (12) and (13)?

The copy theory of movement enables us to provide a principled answer to this question. Let's suppose that wh-movement (like head movement) is a composite operation involving two suboperations of copying and deletion: the first stage is for a copy of the moved wh-expression to be moved into spec-CP; the second stage is for the original occurrence of the wh-expression to be deleted. From this perspective, preposition copying arises when the preposition at the original extraction site undergoes copying but not deletion. To see what this means in more concrete terms, consider the syntax of (12a) In what enormity is Marcius poor in? This is derived as follows. The wh-quantifier what merges with the noun enormity to derive the quantifier phrase/QP what enormity. This in turn is merged with the preposition in to form the prepositional phrase/PP in what enormity. This PP is then merged with the adjective poor to form the adjectival phrase/AP poor in what enormity. This AP is merged with the copular verb is to form the verb phrase/VP is poor in what enormity. This VP is merged with a finite T constituent which triggers raising of the verb is from V to T ; the resulting T-bar constituent is merged with its subject Marcius (which is a DP headed by a null determiner) to form the tense phrase/TP \varnothing Marcius is poor is in what enormity. Merging this with a strong C into which is moves forms the C-bar Is \varnothing Marcius is poor is in what enormity? Moving a copy of the PP in what enormity into spec-CP in turn derives the structure shown in simplified form in (14) below (with copies of moved constituents shown in italics):

The two italicised copies of the moved copular verb is are deleted by operation of copy-deletion. But consider how copy-deletion affects the copy left behind by movement of the PP in what enormity to spec-CP. If we suppose that copy-deletion in (12a) deletes the smallest phrase containing the wh-word what, it will delete the quantifier phrase what enormity rather than the prepositional phrase in what enormity, so deriving (12a) In what enormity is Marcius poor in? Thus, preposition copying structures like (12) and (13) provide evidence that wh-movement is a composite operation involving wh-copying and wh-deletion.

A related piece of evidence in support of wh-movement involving a copying operation comes from sentences such as those below:
(15) (a) What hope of finding survivors could there be?
(b) What hope could there be of finding survivors?
(16) (a) What proof that he was implicated have you found?
(b) What proof have you found that he was implicated?

In order to try and understand what's going on here, let's take a closer look at the derivation of (15). The expression what hope of finding survivors is a QP comprising the quantifier what and an NP complement which in turn comprises the noun hope and its PP complement of finding survivors. The overall QP what hope of finding survivors is initially merged as the complement of the verb be, but ultimately moves to the front of the overall sentence in (15a): this is unproblematic, since it involves wh-movement of the whole QP. But in (15b), it would seem as if only part of this QP (= the string what hope) undergoes wh-movement, leaving behind the PP of finding survivors. The problem with this is that the string what hope is not a constituent, only a subpart of the overall QP what hope of finding survivors. Given the standard assumption that only complete constituents can undergo movement, we clearly cannot maintain that the non-constituent string what hope gets moved on its own. So how can we account for sentences like (15b)? Copy theory provides us with an answer, if we suppose that wh-movement places a copy of the complete QP what hope of finding survivors at the front of the overall sentence, so deriving the structure shown in skeletal form in (17) below:

What hope of finding survivors could there be what hope of finding survivors
If we further suppose that the PP of finding survivors is spelled out in its original position (i.e. in the italicised position it occupied before wh-movement applied) but the remaining constituents of the QP (the quantifier what and the noun hope) are spelled out in the superficial (bold-printed) position in which they end up after wh-movement, (15b) will have the superficial structure shown in simplified form below after copy-deletion has applied (with strikethrough indicating constituents which receive a null spellout):
(18) What hope of finding survivors could there be whape of finding survivors

As should be obvious, such an analysis relies crucially on the assumption that moved constituents leave behind full copies of themselves. It also assumes the possibility of split spellout/discontinuous spellout, in the sense that (in sentences like (15) and (16) above) a PP or CP which is the complement of a particular type of moved constituent can be spelled out in one position (in the position where it originated), and the remainder of the constituent spelled out in another (in the position where it ends up). More generally, it suggests that (in certain structures) there is a choice regarding which part of a movement chain gets deleted (an idea developed in Bobaljik 1995; Brody 1995; Groat and O’Neil 1996; Pesetsky 1997, 1998; Richards 1997; Roberts 1997; Runner 1998; Nunes 1999; Cormack and Smith 1999; and Bošković 2001). A further possibility which this opens up is that wh-in-situ structures may involve a moved wh-expression being spelled out
in its initial position (at the foot of the movement chain) rather than in its final position (at the head of the movement chain): see Pesetsky (2000) and Reintges, LeSourd and Chung (2002) for analyses of this ilk, and Watanabe (2001) for a more general discussion of wh-in-situ structures.

A further piece of evidence in support of the copy account of wh-movement comes from the fact that an overt copy of a moved pronoun may sometimes appear at its extraction site - as (19) below illustrates (the \% sign indicating that only a certain percentage of speakers accept such sentences):
(19) (a) ${ }^{*} \mathrm{He}$ is someone [who I don't know anyone [that likes whel]
(b) $\% \mathrm{He}$ is someone [who I don't know anyone [that likes him]]

The sentences in (19) contain two bracketed relative clauses, one modifying someone and the other modifying anyone. The word who here is a relative pronoun which is initially merged as the complement of the verb likes, but undergoes whmovement and is thereby moved out of the relative clause containing likes to the front of the relative clause containing know. What we'd expect to happen is that the copy of who left behind at the extraction site receives a null spellout: but this leads to ungrammaticality in (19a), for the following reason. To use a colourful metaphor developed by Ross (1967), relative clauses are islands, in the sense that they are structures which are impervious to certain types of grammatical operation. Let's suppose that islands have the property that a copy of a moved constituent cannot be given a null spellout if the copy is inside an island and its antecedent lies outside the island: this condition prevents the italicised copy of who from receiving a null spellout in (19a), because it is contained within a relative clause island (namely the that-clause) and its bold-printed moved counterpart who lies outside the island. Some speakers resolve this problem by spelling out the copy overtly as him. Still, this raises the question of why they should spell out a copy of who as him rather than as who. Pesetsky $(1997,1998)$ argues that this is because of a principle which requires copies of moved constituents to be as close to unpronounceable as possible. Where islandhood constraints prevent a completely null spellout, the minimal overt spellout is simply to spell out the person/number/gender/case properties of the expression - hence the use of the third-person-masculine-singular accusative pronoun him in (19b).

Further evidence that wh-movement leaves behind a copy which is subsequently deleted comes from speech errors involving wh-copying, e.g. in relative clauses such as that bracketed below:

It's a world record [which many of us thought which wasn't on the books at all] (Athletics commentator, BBC2 TV)

What's the nature of the speech error made by the tongue-tied (or brain-drained) BBC reporter in (20)? The answer is that when moving the relative pronoun which from its initial italicised position to its subsequent bold-printed position, our intrepid reporter successfully merges a copy of which in the bold-printed position, but fails to delete the original occurrence of which in the italicised
position. Such speech errors provide us with further evidence that wh-movement is a composite operation involving both copying and deletion.

A different kind of argument in support of positing that a moved wh-expression leaves behind a null copy comes from the semantics of wh-questions. Chomsky (1981, p. 324) argues that a wh-question like (21a) below has a semantic representation (more precisely, a Logical Form/LF representation) which can be shown informally as in (21b) below, with (21b) being paraphraseable as 'Of which x (such that x is a person) is it true that she was dating x ?':
(21) (a) Who was she dating?
(b) Which x (x a person), she was dating x

In the $\mathbf{L F}$ representation (21b), the quantifier which functions as an interrogative operator which serves to bind the variable x. Since a grammar must compute a semantic representation for each syntactic structure which it generates/ forms, important questions arise about how syntactic representations are to be mapped/converted into semantic representations. One such question is how a syntactic structure like (21a) can be mapped into an LF representation like (21b) containing an operator binding a variable. If a moved wh-expression leaves behind a copy, (21a) will have the syntactic structure (4) above which is repeated in simplified form (omitting all details not immediately relevant to the discussion at hand) in (22) below (where whe is a null trace copy of the preposed wh-word who):

Who was she dating who?
The LF-representation for (21a) can be derived from the syntactic representation (22) in a straightforward fashion if the copy wh (22) is given an LF interpretation as a variable bound by the quantifier which.

The assumption that a wh-copy (i.e. a copy of a moved wh-expression) has the semantic function of a variable which is bound by a wh-quantifier has interesting implications for the syntax of wh-movement. In §3.8, we noted that there is a ccommand condition on binding to the effect that one constituent X can only bind another constituent Y if X c-commands Y. If we look at the structure produced by wh-movement, we find that it always results in a structure in which the moved wh-expression c-commands (by virtue of occurring higher up in the structure than) its copy. For example, in our earlier structure (4) above, the moved whpronoun who c-commands its copy who by virtue of the fact that who is contained within (and hence a constituent of) the C-bar was she dating who which is the sister of the PRN-node containing the moved wh-pronoun who. It would therefore seem that a core syntactic property of wh-movement (namely the fact that it always moves a wh-expression into a higher position within the structure containing it) follows from a semantic requirement - namely the requirement that a wh-copy (by virtue of its semantic function as a variable) must be bound by a c-commanding wh-expression (which has the semantic function of an operator expression). Given their semantic function as operators, wh-words are sometimes
referred to as wh-operators; likewise, wh-expressions are sometimes referred to as operator expressions, and wh-movement as operator movement.

A related semantic argument in support of the copy theory of movement is formulated by Chomsky (1995) in relation to the interpretation of sentences such as:

Joe wonders which picture of himself Jim bought
In (23), the reflexive anaphor himself can refer either to Joe or to Jim. An obvious problem posed by the latter interpretation is that a reflexive has to be c-commanded by a local antecedent (one contained within the same TP, as we saw in §3.7), and yet Jim does not c-command himself in (23). How can we account for the dual interpretation of himself? Chomsky argues that the copy theory of movement provides a principled answer to this question. The QP which picture of himself is initially merged as the complement of the verb bought but is subsequently moved to the front of the bought clause, leaving behind a copy in its original position, so deriving the structure shown in skeletal form in (24) below:
(24) [СР [те Joe wonders [СР which picture of himself [Tт Jim bought which picture of himself][]]

Although the italicised copy of the QP which picture of himself gets deleted in the PF component, Chomsky argues that copies of moved constituents remain visible in the semantic component, and that binding conditions apply to LF representations. If (24) is the LF representation of (23), the possibility of himself referring to Jim can be attributed to the fact that the italicised occurrence of himself is c-commanded by (and contained within the same TP as) Jim at LF. On the other hand, the possibility of himself referring to Joe can be attributed to the fact that the bold-printed occurrence of himself is c-commanded by (and occurs within the same TP as) Joe.

In this section, we have seen that there is a range of empirical evidence which supports the claim that a constituent which undergoes wh-movement leaves behind a copy at its extraction site. This copy is normally given a null spellout in the PF component, though we have seen that copies may sometimes have an overt spellout, or indeed part of a moved phrase may be spelled out in one position, and part in another. We have also seen that copies of moved wh-constituents are visible in the semantic component, and play an important role in relation to the interpretation of anaphors.

6.4 Wh-movement, EPP and the Attract Closest Principle

An important question raised by the analysis outlined above is what triggers wh-movement. Chomsky $(1998,1999,2001)$ suggests that an [EPP] feature is the mechanism which drives movement of wh-expressions to spec-CP.

More specifically, he maintains that just as T in finite clauses carries an [EPP] feature requiring it to be extended into a TP projection containing a subject as its specifier, so too C in wh-questions carries an [EPP] feature requiring it to be extended into a CP projection containing a wh-expression as its specifier. Some evidence that complementisers can indeed have an [EPP] feature comes from sentences like (25b) below:
(25) (a) There has been a riot
(b) He prevented there from being a riot

If we suppose that expletive there is inserted in a sentence like (25a) in order to satisfy an [EPP] feature carried by T, and if we further suppose (in the light of arguments offered by Landau 2002) that from is a complementiser in structures like (25b), it seems plausible to suppose that there is used in (25b) to satisfy an [EPP] feature carried by the complementiser from. More generally, the [EPP] feature of a head H requires H to have a specifier which matches one or more of the features carried by H : so, for example, since a finite T carries person and number features, its [EPP] feature requires it to have a subject with matching person and/or number features; and if we assume that C in a wh-clause contains a [WH] feature, this will mean that its [EPP] feature requires it to have a wh-specifier.

We can illustrate how the EPP analysis of wh-movement works by looking at the derivation of the bracketed interrogative complement clause in (26) below:

> He wants to know [where you are going]

The bracketed wh-question clause in (26) is derived as follows. The verb going is merged with its complement where (which is a locative adverbial pronoun) to form the VP going where. The present-tense auxiliary are is then merged with the resulting VP to form the T-bar are going where. The pronoun you is in turn merged with this T-bar to form the TP you are going where. A null complementiser [C ø] is subsequently merged with the resulting TP. Since the relevant clause is a whquestion, C contains a $[\mathrm{WH}]$ feature. In addition, since English (unlike Chinese) is the kind of language which requires wh-movement in ordinary wh-questions, C also has an [EPP] feature requiring it to have a specifier. Given these assumptions, merging C with its TP complement will form the C-bar in (27) below (where features are capitalised and enclosed within square brackets):

(A minor descriptive detail is that the locative adverbial pronoun where is categorised here as a PRN/pronoun, though it could equally be assigned to the category ADV/adverb.) The [WH] feature of C allows C to attract a wh-expression. The [EPP] feature of C requires C to project as its specifier an expression which has a feature which matches some feature of C : since C carries a [WH] feature, this amounts to a requirement that C must project a wh-specifier. On the assumption that the wh-pronoun where carries a $[\mathrm{WH}]$ feature, this means that C will attract the wh-pronoun where to move from the VP-complement position which it occupies in (27) above to CP-specifier position. If we suppose that the [WH] and [EPP] features carried by C are deleted (and thereby inactivated) once their requirements are satisfied (deletion being indicated by strikethrough), we derive the structure (28) below (assuming, too, that the phonological features of the trace of the moved wh-constituent where are also deleted):

There is no auxiliary inversion (hence no movement of the auxiliary are from T to C) because (28) is a complement clause, and an interrogative C only carries a [TNS] feature triggering auxiliary inversion in main clauses.

Chomsky (2001) maintains that movement is simply another form of merger. He refers to merger operations which involve taking an item out of the lexical array and merging it with some other constituent as external merge, and to movement operations by which an item contained within an existing structure is moved to a new position as internal merge. Accordingly, the structure (27) is created by a series of external merger operations, and is then mapped into (28) by an internal merger operation (namely wh-movement).

The EPP analysis of wh-movement has interesting implications for the syntax of multiple wh-questions which contain two or more separate wh-expressions. (See Dayal 2002 for discussion of the semantic properties of such questions.) A salient syntactic property of such questions in English is that only one of the wh-expressions can be preposed - as we see from the fact that in the bracketed interrogative clauses in (29) below, only who can be preposed and not what:
(29) (a) I wonder [who he might think has done what]
(b) ${ }^{*}$ I wonder [who what he might think has done]
(c) ${ }^{*}$ I wonder [what who he might think has done]
(d) *I wonder [what might he think who has done]

In order to get a clearer picture of what is going on in the bracketed complement clause here, let's consider what happens when we arrive at the stage of derivation shown in (30) below:

By hypothesis, the null complementiser [C ø] at the root/top of the tree contains a $[\mathrm{WH}]$ feature requiring the clause to contain a wh-expression, and an [EPP] feature requiring it to have a specifier matching the $[\mathrm{WH}]$ feature carried by C (i.e. to have a wh-specifier). In order to satisfy this requirement, C searches for a whexpression within the C-bar structure immediately containing it in (30). Since it is who rather than what which is preposed in (30) and since who is closer to C than what, let's suppose that C attracts the closest wh-expression which it c-commands. This requirement is a consequence of a principle of Universal Grammar (adapted from Chomsky 1995, p. 297) which we can outline informally as follows:
(31) Attract Closest Principle/ACP

A head which attracts a given kind of constituent attracts the closest constituent of the relevant kind
(Chomsky 1995, p. 311 proposes an analogous principle which he terms the Minimal Link Condition and formulates it thus: ' K attracts α only if there is no β, β closer to K than α, such that K attracts $\beta .{ }^{\prime}$) It follows from $\mathbf{A C P}$ that a C carrying [WH, EPP] features will trigger movement of the closest constituent
carrying a wh-feature to C . So, since who appears to be closer to C than what in (30), it is who which is attracted to move to spec-CP. Using rather different but equivalent terminology, sentences like (29) can be said to show a superiority effect in that C has to attract the 'highest' constituent of the relevant type. An alternative to the ACP account is to suppose that the relevant effect is a consequence of an Intervention Constraint to the effect that in a structure of the form [. . . X . . [. . . Y . . . [. . Z Z . . .]]] X cannot attract Z if there is a constituent Y of the same type as Z which intervenes between X and Z : on this view, the presence of who intervening between C and what in (30) prevents C from attracting what to move to spec-CP.

One question this raises, however, is how we determine whether who or what is closer to C. At first sight, it might seem as if there is a simple way of doing this namely by counting the number of nodes you have to go through if you try and get from one constituent to the other by climbing along the branches of the tree. In order to get from the C node containing the null complementiser to the PRN node containing who, we have to go through six other nodes (C-bar, TP, T-bar, VP, CP, TP), whereas in order to get from C to the PRN node containing what we have to go through eight other nodes (C-bar, TP, T-bar, VP, CP, TP, T-bar, VP): hence, this simple node-counting procedure tells us that who is closer to C than what, and consequently it is who which is attracted by C in (30) and not what, in accordance with the Attract Closest Principle.

However, the idea that grammars might employ a counting algorithm of some kind in order to determine how syntactic operations apply is implausible, since counting otherwise seems to play no part in syntax - for instance, we find no syntactic operations which target (e.g.) the fourth constituent in a sentence, or which invert the second and third constituents. Moreover, the notion of counting is alien to the spirit of Minimalism, which assumes that the only primitive relations in syntax are structural relations like contain and c-command which come about via merger. From a theoretical perspective, it is therefore preferable to define relative closeness in terms of structural relations. There are a variety of ways of doing this (see Fitzpatrick 2002), but for present purposes we can make the following assumption (where X, Y and Z are three different constituents):

X is closer to Y than to Z if X c-commands both Y and Z , and Z is
contained within some maximal projection which does not contain Y.
If we take X to be the main clause C in (30), Y to be who and Z to be what, we can see that who is closer to the main-clause C than what in terms of the definition of closeness in (32) because C c-commands both who and what but what is contained within a maximal projection ($=$ the VP done what) which does not contain who. In consequence, the Attract Closest Principle (31) correctly predicts that what cannot undergo wh-movement in (30), but who can, with who thereby moving into spec-CP and deriving the structure shown below (assuming deletion of the [WH] and [EPP] features of C, and of the trace copy of the moved pronoun who):
(33)

In short, the assumption that C carries [WH] and [EPP] features, in conjunction with the Attract Closest Principle (31) and the ancillary assumption that the [EPP] and [WH] features of C are deleted (and thereby inactivated) once a wh-expression has been moved to spec-CP, accounts for the pattern of grammaticality found in multiple wh-questions like (29). (Note that our focus on English here means that we do not deal with languages like Bulgarian which allow multiple wh-fronting: see Grewendorf 2001 and Bošković 2002a for alternative accounts of multiple wh-fronting.)

6.5 Explaining what moves where

Our discussion in the previous section looked at wh-movement in interrogative complement clauses which involve movement of a wh-word (rather than a wh-phrase), and which don't involve auxiliary inversion. But now consider how we handle the syntax of main-clause wh-questions like (34) below which involve both movement of a wh-phrase and movement of an auxiliary:

Which assignment have you done?
Let's suppose that the derivation of (34) proceeds as follows. The quantifier which merges with the noun assignment to form the QP which assignment. This in turn is merged with the verb done to form the VP done which assignment. The resulting VP is subsequently merged with the present-tense auxiliary have to form the T-bar have done which assignment, which is itself merged with the pronoun you to form the TP you have done which assignment. TP is then merged with a null interrogative C. Since (34) is a wh-question, C will carry a [WH] feature and an [EPP] feature. Since (34) is a main-clause question, we can assume (as in the previous chapter) that C also carries a [TNS] feature which triggers movement of a tensed auxiliary from T to C. Given these assumptions, merging C with the TP you have done which assignment will derive the following structure:
(35)

At first sight, the derivation might seem straightforward from this point on: the [TNS] feature of C attracts the present-tense auxiliary have to attach to a null question affix in C ; the [WH, EPP] features of C trigger movement of the whexpression which assignment to the specifier position within CP. Assuming that all the features of C are deleted (and thereby inactivated) once their requirements are satisfied, the relevant movement operations will derive the structure shown in simplified form below:

Since the resulting sentence (34) Which assignment have you done? is grammatical, things appear to work out exactly as required.

But if we probe a little deeper, we'll see that there are a number of questions raised by the derivation outlined above. The core assumptions underlying it are the following:
(37) (i) The [TNS] and [wH] features of C attract a constituent whose head carries a matching [TNS] and [WH] feature respectively
(ii) The [EPP] feature of C requires a constituent matching one of the features of C to be merged in spec-CP
(iii) Minimal and maximal projections (though not intermediate projections) can undergo movement

But while the assumptions made in (37) are perfectly compatible with the derivation assumed in (36), they raise important questions about what kind of constituent moves to what kind of position and why.

One such question is why the [TNS] feature of C in (35) attracts [T have] rather than [те you have done which assignment]. We can offer a principled answer to this question by supposing that a head which carries a feature [F] can freely attract either a minimal or a maximal projection carrying [F], but that UG principles rule out certain possibilities. From this perspective, we would expect that the [TNS] feature of C can in principle attract either T or TP (and indeed both are equally close to C in terms of the definition of closeness in (32) above), and if in practice C cannot attract TP, this is because some UG principle rules out this possibility. One reason why C cannot attract its TP complement may be that movement is an operation by which a head attracts (and is thereby merged with) a constituent which it is not already merged with. Since TP is already merged with C by virtue of being the complement of C , it follows that C cannot attract TP. The tacit assumption underlying our reasoning here is that UG incorporates a principle such as the following:

Remerger Constraint

No constituent can be merged more than once with the same head.
As we saw earlier, [TР you have done which assignment] is initially merged with C at the stage of derivation when the structure shown in (35) above is formed. To subsequently move TP into spec-CP would involve merging TP as the specifier of C - and this would violate the Remerger Constraint (38), since it would mean that TP was initially merged with C as its complement, and subsequently remerged with C as its specifier. By contrast, the Remerger Constraint would not prevent C from attracting [${ }_{\mathrm{T}}$ have], since have is not merged with C prior to T-to-C movement: on the contrary, have was initially merged with its VP complement done which assignment and its pronoun specifier you, so that merging (a copy of) have with C does not violate the constraint against remerger. In short, we can account for why C attracts T rather than TP in terms of a UG principle like (38) barring remerger operations.

A follow-up question is why a tensed auxiliary attracted by C moves into C rather than into spec-CP. A plausible answer to this question is that UG principles determine the landing site of moved constituents (i.e. determine where they end up being positioned). For concreteness, let's assume that UG incorporates a principle along the lines of (39) below:

Constituent Structure Constraint

(i) Only a head (i.e. minimal projection) can occupy a head position
(ii) Only a maximal projection can occupy a specifier or complement position
(39i) would mean that the head T constituent of TP (by virtue of being a minimal projection) can only move to the head C position of CP , not to the specifier
position within CP. (Chomsky 1995, p. 253 offers an alternative account based on chain uniformity, and Carnie 2000 discusses attendant problems.)

Now consider the question of why the [WH] feature of C attracts the QP which assignment rather than the Q which. Given our earlier assumptions, we'd expect that the [WH] feature carried by C can in principle attract either a wh-word or a wh-phrase. However, the [EPP] feature carried by C requires C to project a specifier, and (39ii) tells us that a specifier position can only be filled by a maximal projection. Since we have already seen that the Remerger Constraint (38) prevents C from attracting TP to move to spec-CP, the only way of satisfying the [EPP] requirement is for a wh-constituent to be moved into spec-CP; and since (39ii) tells us that only a maximal projection can occupy a specifier position, it follows that the $[\mathrm{WH}]$ feature of C attracts a wh-marked maximal projection like which assignment to move into spec-CP, not a wh-marked minimal projection like which. (Note, however, that the story told here for English needs to be modified for languages which allow certain types of wh-word to move to C, as would seem to be the case for Polish data in Borsley 2002, German data in Kathol 2001, and North Norwegian data in Radford 1994: it may be that C in such languages has an [EDGE] feature requiring a wh-expression to move to the edge of C rather than an [EPP] feature requiring a wh-expression to move to spec-CP.)

The story told above assumes that UG principles like the Remerger Constraint (38) and the Constituent Structure Constraint (39) determine that the [TNS] feature of C attracts movement of a tensed auxiliary to C , and that the [WH, EPP] features of C attract movement of a wh ${ }^{\text {MAX }}$ (i.e. a wh-marked maximal projection) to spec-CP. However, an entirely different approach to the problem of accounting for why the [TNS] and [WH] features of C attract different types of constituent to move to different positions in English is to posit that they are different types of feature which trigger different types of movement operation in different components of the grammar. For example, if the [TNS] feature on C is essentially affixal in nature, we could conclude that head movement operations like T-to-C movement are intrinsically morphological in nature (in that they are designed to provide an affix with a host), and hence take place in the PF component rather than the syntactic component - a possibility explored by Chomsky (1999, pp. 30-1). Chomsky notes that some evidence in support of such a hypothesis comes from the fact that head movement has rather different properties from typical syntactic movement operations like wh-movement. For example, head movement can attract only heads whereas wh-movement can attract maximal projections; head movement is a strictly local operation (whereby a head can attract the head of its complement), whereas wh-movement can attract more distant constituents (e.g. C can attract a wh-constituent which originates within a lower clause, as in (30) and (33) above); head movement involves a form of affixation operation by which one head is affixed to another (forming a compound head), whereas wh-movement is a merger operation by which a moved constituent is merged as the specifier of C ; and conversely
wh-movement has an effect on semantic interpretation (in that it creates an operator-variable configuration as we noted in relation to (21) above), whereas auxiliary inversion does not. These differences (Chomsky reasons) suggest that features like the $[\mathrm{WH}]$ feature of C are syntactic features triggering movement of a maximal projection in the syntax, whereas features like the [TNS] feature of C are morphological features triggering movement of a minimal projection in the PF component. (See Boeckx and Stjepanović 2001 for an additional argument for head movement being a PF operation, and Baltin 2002 for a rebuttal.)

Perceptive though Chomsky's observations are, they are suggestive rather than conclusive (see Embick and Noyer 2001 for a sceptical view). For example, his claim that head movement is a PF operation because it has no effect on semantic interpretation has little force if we assume that the semantic component interprets the tense properties of clauses by looking at the tense properties of the head T constituent of TP - and cares little whether what is in T is an overt auxiliary or a null copy of a moved auxiliary. Likewise, the argument that head movement is subject to a strict locality constraint like HMC is called into question by Hagstrom's (1998) analysis of wh-questions in wh-in-situ languages (like Japanese, Okinawan, Navajo and Sinhala) in which he claims that they involve long-distance head movement of a question particle to C. Hagstrom proposes to abandon HMC, and argues that the apparent locality of head movement is an artefact of the Attract Closest Principle/ACP (31). On this view, local (successive-cyclic) movement of the verb say from V to T to C in a Shakespearean sentence such as:

What said she? (Proteus, The Two Gentlemen of Verona, I.i)

will be a consequence of ACP rather than HMC. For example, if T has a strong V-feature and C has a strong T-feature (as we assumed in the previous chapter), T will attract the closest verb (i.e. the head V said of the VP said what) to move to T , and C will attract the closest tensed head (i.e. the head T constituent of TP , with T containing the moved verb said at the relevant stage of derivation) to move to C - thereby guaranteeing local head movement without the need for positing HMC. In short, the question of whether head movement is a syntactic operation (as argued by Roberts 2002) or a PF operation (as argued by Chomsky 1999) or has facets of both (as argued by Zwart 2001) is one which remains open at present.

6.6 Wh-subject questions

Underlying the analyses we have presented so far in this chapter is the assumption that questions in English have the following syntactic properties:
(41) (i) Interrogative clauses are CPs headed by a C with [wH, EPP] features
(ii) C in root/main interrogative clauses also has an affixal [TNS] feature

The [WH, EPP] features of C trigger movement of a wh-expression to spec-CP; and the affixal [TNS] feature carried by C in main-clause questions triggers movement of an auxiliary or tense affix from T to C (with a moved tense affix requiring concomitant Do-support, as we saw in §5.8).

However, the assumptions made in (41) raise interesting questions about how we account for the contrast in (42) below:
(42) (a) Who'd the police call? ('d=did)
(b) *Who the police called?
(c) Who called the police?
(d) *Who'd call the police? (' $d=d i d)$
$(42 \mathrm{a}, \mathrm{b})$ are wh-object questions, in the sense that the preposed interrogative expression who is the direct object complement of the verb call; as would be expected from the assumption in (41ii) that C in main-clause questions carries an affixal [TNS] feature, they require T-to-C movement and concomitant Do-support. By contrast, (42c,d) are wh-subject questions, in the sense that who is the subject of the verb call; contrary to what (41ii) would lead us to expect, wh-subject questions do not allow T-to-C movement and Do-support. (More precisely, Do can be used if it is emphatic, receives contrastive stress and is spelled out as the full form did - as in Who DID call the police? with capitals marking contrastive stress.) Why should this be?

One answer to this question (different versions of which are suggested in Radford 1997a and Agbayani 2000) is the following. Let's suppose that T-to-C movement (and concomitant Do-support) is only found in questions in which a wh-expression moves to spec-CP. In wh-object questions like (42a,b) it is clear that the wh-pronoun who moves to spec-CP, since it is the object of the verb call and if it had not moved to spec-CP, it would have been positioned after the verb (as in the echo question The police called who?). But in wh-subject questions like $(42 \mathrm{c}, \mathrm{d})$ it is by no means clear that the wh-pronoun who has moved into spec-CP, since even if it remained in situ in spec-TP it would still end up as the first overt constituent in the sentence. Let's therefore consider the possibility that in sentences like ($42 \mathrm{c}, \mathrm{d}$) where a wh-expression is the subject of the overall interrogative clause, the wh-expression remains in situ in spec-TP and does not move to spec-CP. If T-to-C movement and concomitant Do-support are only found in questions which involve movement of a wh-expression to spec-CP, and if wh-subject questions do not involve wh-movement to spec-CP, we can seemingly account for the absence of Do-support in wh-subject questions like (42c, d).

On this view, the derivation of (42c) would proceed as follows. The determiner the merges with the noun police to form the DP the police. This DP is then merged with the verb call to form the VP call the police. The resulting VP is in turn merged with a past-tense affix Tns, forming the T-bar Tns call the police. This T-bar is
then merged with the pronoun who, forming the TP who Tns call the police. If we follow Agbayani (2000) in supposing that all interrogative clauses are CPs, the resulting TP will be merged with an interrogative C to form the CP shown in simplified form below:

The past-tense affix in T will be lowered onto the main verb by Affix Hopping in the PF component, so that the verb is spelled out as called in (42c) Who called the police?

However, the spec-TP analysis of wh-subjects outlined in (43) above raises a number of questions. For example, why isn't the wh-pronoun who in (43) attracted to move to spec-CP and why isn't there any T-to-C movement if C always has [TNS, WH, EPP] features in main-clause questions as claimed in (41) above? Maintaining the claim in (41) that C in main-clause questions always has [TNS, WH, EPP] features at the same time as maintaining the wh-in-situ analysis of whsubject questions in (43) is going to require considerable ingenuity: for example, we might suppose that the [TNS, WH, EPP] features of C only trigger wh-movement and T-to-C movement when the relevant wh-expression is c-commanded by T. This would mean that C triggers both wh-movement and T-to-C movement in a structure like (35) because the closest wh-expression to C ($=$ which assignment) is c-commanded by T ; but it would also mean that there is neither wh-movement nor T-to-C movement in a structure like (43) because the closest wh-expression to C (=who) is not c-commanded by T. However, even this (somewhat contrived) analysis leaves us without a principled explanation of how the [TNS, WH, EPP] features of C are deleted in a structure like (43) which shows neither wh-movement nor T-to-C movement.

Moreover, the core assumption underlying the analysis in (43) above (viz. that the wh-subject remains in spec-TP in wh-subject questions like (42c) Who called the police?) is called into question by the observation by Pesetsky and Torrego (2001) that who in (42c) can be substituted by who on earth or who the hell:
(44) (a) Who on earth called the police?
(b) Who the hell called the police?

As Pesetsky (1987) notes (and as the examples in (45) below illustrate), whexpressions like who on earth and who the hell have the property that they cannot remain in situ, but rather must move to spec-CP:
(45) (a) Who on earth/Who the hell is she going out with?
(b) ${ }^{*}$ She is going out with who on earth/who the hell?

If wh-expressions like those italicised in (45) always move to spec-CP, it follows that the italicised subjects in (44) must likewise have moved to spec-CP - and hence it is plausible to suppose that the same is true of the subject who in (42c) Who called the police? (See den Dikken and Giannakidou 2002 for more detailed discussion of the syntax and semantics of expressions like who the hell?)

Let's therefore follow Pesetsky and Torrego in taking all wh-questions (including wh-subject questions) to be CPs which show movement of a wh-expression to spec-CP. In particular, let's suppose that after the TP who Tns call the police has been formed, it is merged with an interrogative C constituent which carries [TNS, WH, EPP] features, so forming the structure in (46) below (cf. (43) above):

What we might expect to happen at this point is for the [WH, EPP] features of C to attract who to move to spec-CP, and for the [TNS] feature of C to attract movement of the Tns affix from T to C , with the dummy auxiliary do being attached to the affix in the PF component in order to provide it with a host. But such a derivation would wrongly predict that (42d) *Who'd call the police? is grammatical on the relevant interpretation (where ' d is a contracted form of did). So it would seem that the [TNS] feature of C does not attract the head T constituent of TP. So what does it attract?

The answer given by Pesetsky and Torrego is that the [wH] and [TNS] features of C both attract the nominative wh-pronoun who, with the [EPP] feature of C ensuring that who moves to spec-CP. A key assumption underlying Pesetsky and Torrego's analysis is that the word who (by virtue of being the subject of a tensed clause) carries a tense feature as well as a wh-feature. More specifically, they posit that agreement between T and its subject involves not only copying the
person/number features of the subject onto T but also (conversely) copying the tense feature of T onto the subject. This is far from implausible from a crosslinguistic perspective, since in languages like Chamicuro, tense is overtly marked on subjects, as the following example (from Parker 1999, p. 552) shows:
Y-alíyo ka ké:ni
3-fall the PAST rain
'The rain fell' $=$ 'It rained'

In (47), the head D ka 'the' of the subject DP ka ké:ni 'the rain' is a past-tense determiner (the corresponding non-past determiner being na), providing clear evidence of tense-marking on the subject. If tense-marking of subjects also takes place in English, we can assume that a tensed T will have a tensed subject, so that who in Who called the police? will be a past-tense subject by virtue of being the subject of a past-tense T. Now, at first sight this might seem implausible, since who doesn't carry the regular past-tense suffix $-d$: however, this is because $-d$ is a verbal suffix which attaches only to (regular) verbs, hence not to a pronoun like who. Pesetsky and Torrego claim that the tense feature carried by the subject of a tensed clause in English is manifested as nominative case, so that a nominative subject is really a subject carrying a tense feature. On this view, who in (42c) Who called the police? will carry a tense feature which causes the subject pronoun to be spelled out as the tensed (nominative) form who, rather than as the accusative form whom or the genitive form whose.

In the light of these assumptions, let's return to the stage of derivation we reached in (46) above. As assumed in (41), C in a main-clause question carries [TNS], [WH] and [EPP] features: the [TNS] feature of C requires C to attract a tensed constituent to move to the edge of CP , its [WH] feature requires the relevant structure to contain a wh-marked constituent, and its [EPP] feature requires C to project a specifier carrying a feature matching one of the features of C. One way of satisfying these requirements would be to move who from spec-TP to spec-CP, and move (a copy of) the tense affix in T to C (using Do-support to provide a host for the affix). However (as we have already seen), this would wrongly predict that a sentence like (42d) *Who'd call the police? should be grammatical (where 'd is a clitic form of did). Why should such a derivation (involving two movement operations, WH-MOVEMENT and T-TO-C MOVEMENT) lead to ungrammaticality? Pesetsky and Torrego's answer is that simply moving who from spec-TP to specCP on its own (without T-to-C movement) can satisfy the requirements of all three [TNS, WH, EPP] features of C , and economy considerations dictate that a derivation involving a single movement operation O should be preferred to one involving both O and an additional movement operation. Movement of who to spec-CP can satisfy the [WH] and [EPP] features of C because who carries a whfeature and moves to spec-CP, and can at the same time satisfy the [TNS] feature of C because who carries a tense feature (by virtue of being the subject of a tensed clause). The resulting derived structure is as follows (with the arrow showing how wh-movement applies):
(48)

Since movement of the tensed wh-pronoun who to spec-CP is sufficient to satisfy the requirements of all three features carried by C , economy considerations dictate that T-To-c movement is unnecessary (hence not permitted) in wh-subject question structures, Pesetsky and Torrego reason. (An incidental detail is that the past-tense affix in T will subsequently be lowered onto the head V of VP in the PF component, with the result that the verb call is ultimately spelled out as the past-tense form called.)

Pesetsky and Torrego's analysis allows us to maintain the generalisation in (41) that all main-clause questions are CPs headed by a C constituent carrying [TNS, WH, EPP] features. In non-subject questions, the requirements of the [WH, EPP] features of C are met by moving a wh-expression into spec-CP, and the requirements of its [TNS] feature are met by T-to-C movement. But in questions where the attracted wh-expression is the subject of the interrogative clause, the requirements of all three features are met by moving the wh-subject who (which carries a tense feature by virtue of being the subject of a tensed T) into spec-CP.

6.7 Pied-piping

Our discussion of wh-movement in structures like (26/28) suggested that a C carrying [wH, EPP] features attracts a constituent headed by a wh-word to move to spec-CP. An interesting problem posed by this assumption is how we account for what happens in clauses like those bracketed in (49) below where an (italicised) wh-expression is the complement of a (bold-printed) preposition:
(49) (a) They asked [who he was referring to]
(b) They asked [to whom he was referring]

In these examples, the wh-pronoun $w h o(m)$ is the complement of the preposition to (whom being the accusative form of the pronoun in formal styles, who in other
styles). In informal styles, the wh-pronoun who is preposed on its own, leaving the preposition to stranded or orphaned at the end of the bracketed complement clause - as in (49a). However, in formal styles, the preposition to is pied-piped (i.e. dragged) along with the wh-pronoun whom, so that the whole PP to whom moves to spec-CP position within the bracketed clause - as in (49b). (The piedpiping metaphor was coined by Ross 1967, based on a traditional fairy story in which the pied-piper in the village of Hamelin enticed a group of children to follow him out of a rat-infested village by playing his pipe.)

Given the assumptions we have made hitherto, the bracketed interrogative complement clause in (49a) will be derived as follows. The preposition to merges with its pronoun complement who to form the PP to who. This in turn is merged with the verb referring to form the VP referring to who. This VP is then merged with the past-tense auxiliary was, forming the T-bar was referring to who which in turn is merged with its subject he to form the TP he was referring to who. Merging the resulting TP with a null interrogative complementiser carrying [WH, EPP] features will derive the structure shown in (50) below:

The [WH, EPP] features of C attract a wh-marked maximal projection to move to the specifier position within CP. Since the only wh-marked maximal projection in (50) is the wh-pronoun who (which is a maximal projection by virtue of being the largest expression headed by who) it follows that who will move to spec-CP (thereby deleting the $[\mathrm{WH}]$ and $[\mathrm{EPP}]$ features of C), so deriving the CP shown in simplified form below:

And (51) is the structure of the bracketed interrogative complement clause in (49a).

But what about the derivation of the bracketed complement clause in the formalstyle sentence (49b) They asked [to whom he was referring]? How can we account for the fact that the whole prepositional phrase to whom is moved to the front of the complement clause in (49b), with the preposition to being pied-piped along with the wh-pronoun whom? One approach to preposition pied-piping is to assume that the head P to of the PP to whom carries a wh-feature which it acquires from the wh-word whom via some form of feature-copying: by virtue of being a projection of to, the PP to whom will then carry the same wh-feature as its head preposition to, and so can be attracted by the [wH] feature of C. This is a traditional idea underlying metaphorical claims in earlier work that a wh-feature can percolate from a complement onto a preposition, or conversely (to use the more funereal metaphor adopted by Sag 1997) that a preposition can inherit a wh-feature from its complement. Let's suppose that this kind of feature-copying comes about via merger, and that (in formal styles of English) a preposition is wh-marked when merged with a wh-complement (in the sense that the wh-feature on the pronoun is thereby copied onto the preposition).

In the light of this assumption, we can return to consider the derivation of the formal-style bracketed complement clause in (49b) They asked [to whom he was referring]. Since the complement of the preposition to in (49b) is the pronoun whom which contains a wh-feature, to will inherit this wh-feature via merger with whom in formal styles, and if it does, the bracketed complement clause in (49b) will have the structure shown in (52) below at the stage of derivation when C merges with its TP complement:

The PP to whom will consequently carry a [WH] feature (not shown here), by virtue of being the maximal projection of the wh-marked preposition to. Given the Attract Closest Principle/ACP, the [wh] feature of C will attract the closest wh-marked maximal projection c-commanded by C. Since the PP to whom is
closer to C than the PRN whom, this means that the wh-marked PP to whom moves to spec-CP, so deriving the structure shown in simplified form below:

If wh-copying (between a preposition and its wh-object) and use of whom are both associated with formal styles of English, it follows that preposition piedpiping will occur with whom but not who. (But see Lasnik and Sobin 2000 for fuller discussion of the use of whom in present-day English.) Some evidence which might seem to support a feature-copying analysis of pied-piping comes from the observation made by Kishimoto (1992) that in Sinhala, a PP comprising a P and a wh-word has the question-particle $d ə$ suffixed to the (P head of the) overall PP, even though the relevant particle normally attaches to a wh-word: if $d ə$ attaches to a wh-marked constituent, this would be consistent with the view that the wh-feature on the wh-word percolates up to the head P of PP. (However, see Hagstrom 1998 for an alternative account.)

The feature-copying analysis of pied-piping outlined above has interesting ramifications for more complex cases of pied-piping, e.g. in sentences such as

In the capital of which province had the rebels hidden?
If (as we assumed in (37i) above) only a constituent with a wh-marked head can be attracted by a C carrying [WH, EPP] features, the story which we will have to tell about how the string in the capital of comes to be pied-piped along with the wh-QP which province will be the following. The preposition of is wh-marked by merger with its wh-complement which province, and the PP of which province thereby comes to carry the same wh-feature as its head. The noun capital is in turn wh-marked by merger with its wh-complement of which province, and the NP capital of which province carries the same wh-feature as its head. The determiner the is then wh-marked by merger with its wh-complement capital of which province, and the DP the capital of which province is thereby wh-marked as well. The preposition in is subsequently wh-marked by merger with its whcomplement the capital of which province, with the result that the whole PP in the capital of which province is wh-marked - and hence can be attracted by a C with a [WH] feature.

However, there are aspects of this feature-copying analysis which seem questionable. For example, the assumption that the wh-feature on the word which (via a series of merger operations) percolates onto of, capital, the and in raises the question of why none of these words shows any visible sign of being whmarked. The proliferation of wh-features entailed by the analysis seems not only
morphologically unmotivated but also (from the Minimalist perspective of trying to eliminate unnecessary descriptive apparatus) conceptually unattractive. Moreover, if a $[\mathrm{WH}]$ feature can percolate from a complement to a head via merger, there seems nothing to prevent the [WH] feature on the preposition in spreading onto the verb hidden in (54) and thence onto its VP projection hidden in the capital of which province, so triggering wh-movement of the VP headed by hidden and wrongly predicting that sentences like (55) below are ungrammatical:
*Hidden in the capital of which province had the rebels?
Clearly, constraints have to be put on wh-percolation, but the nature of these constraints is not clear. For example, is it just nominal and prepositional heads which can be wh-marked via merger with a wh-complement - and if so, why?

Furthermore, it is by no means clear that the core assumption underlying the analysis (namely that a wh-marked C attracts a constituent with a wh-marked head) can be defended in relation to sentences like:
(56) (a) Whose car did he borrow?
(b) How many cars do you own?

At first sight, there might seem to be no problem here: after all, why not simply assume that whose in (56a) is the head of whose car and that how in (56b) is the head of how many cars and hence that wh-movement targets a maximal projection headed by a wh-word like whose/how? However, the problem is that whose cannot be the head of whose car because whose carries genitive case and yet whose car is the complement of the transitive verb borrow and so must be accusative; and likewise how cannot be the head of how many cars because how is a degree adverb and yet how many cars is not an adverbial phrase but rather a quantifier phrase. It seems more plausible to take whose and how to be the specifiers of the expressions containing them, so that the relevant expressions have the structures shown in simplified form below:

(b)

(57a) is adapted from Chomsky (1995, p. 263) and assumes that the head of the overall DP is a null definite determiner (a null counterpart of the D constituent the), so that (57a) has an interpretation paraphraseable as 'the car belonging to who'. (57b) claims that the overall structure is a plural nominal expression headed by the quantifier many, with cars serving as its complement and how as its specifier.

The crucial aspect of the analyses in $(57 \mathrm{a}, \mathrm{b})$ from our perspective is that the wh-word whose/how is not the head of the overall DP/QP structure, but rather its specifier. This challenges the core assumption (37i) underlying the
feature-copying analysis of pied-piping - namely that a wh-marked C attracts a constituent with a wh-marked head. Such an assumption would provide us with no account of why the overall nominals whose car and how many cars undergo wh-movement in (56), and not who and how on their own. Note that we cannot simply suppose that a phrase is a projection of the features carried by its specifier as well as those carried by its head, since this would wrongly predict (e.g.) that whose car (by virtue of having a genitive specifier) should be genitive - when it is accusative as used in (56a).

Let's therefore explore an entirely different approach to pied-piping - one which dispenses with the feature-copying apparatus we used above. Chomsky (1995, pp. 262-5) offers such an approach based on a principle which we can outline informally as follows:

Convergence Principle

A head which attracts a constituent containing a feature $[\mathrm{F}]$ attracts movement of the smallest accessible constituent containing [F] which will lead to a convergent (i.e. well-formed) derivation

This means that the [WH] feature on C attracts the smallest constituent containing a word carrying a $[\mathrm{WH}]$ feature whose movement will lead to a well-formed sentence. In the case of a sentence like (34) Which assignment have you done? the smallest constituent carrying a wh-feature is the wh-word which that is the head Q of the QP which assignment, and hence a minimal projection; but since the [EPP] feature of C requires C to project a specifier, and the Constituent Structure Constraint (39ii) tells us that only a maximal projection can occupy a specifier position, which cannot move on its own, so the next smallest constituent containing which has to move, namely the QP which assignment. Since this is a maximal projection, it can move to spec-CP without violation of any constraints.

Now consider how the convergence account handles preposition pied-piping in the bracketed relative clauses in (49a) They asked [who he was referring to] and (49b) They asked [to whom he was referring]. These would both have the structure (50) above at the point where C is merged with its TP complement, and the [WH] feature of C would attract the smallest constituent containing a wh-word which will ensure convergence. Since the smallest such constituent is the wh-pronoun who, it is who which is preposed in informal-style relative-clause structures like who he was referring to in (49a). But let's suppose that in formal styles of English, there is a Stranding Constraint which 'bars preposition stranding' (Chomsky 1995, p. 264). This means that (in formal styles) the wh-pronoun whom cannot be preposed on its own, since this would lead to violation of the Stranding Constraint. So, instead, the next smallest constituent containing the wh-word is preposed, namely the PP to whom.

The assumption that pied-piping of additional material along with a wh-word occurs only when it is forced by the need to ensure convergence offers us an interesting account of pied-piping in sentences such as (59b-e) below, which are wh-movement counterparts of the wh-in-situ question in (59a):
(59) (a) You had thought a picture of whose mother was on the mantelpiece?
(b) *Whose had you thought a picture of mother was on the mantelpiece?
(c) ??Whose mother had you thought a picture of was on the mantelpiece?
(d) ??Of whose mother had you thought a picture was on the mantelpiece?
(e) *Picture of whose mother had you thought a was on the mantelpiece?
(f) A picture of whose mother had you thought was on the mantelpiece?

At the stage of derivation where the main-clause C is merged with its TP complement, (59b-f) will have the structure shown in simplified form below (if we take the indefinite article a to be a determiner rather than a quantifier):
(60)

The main-clause C constituent at the top of the tree contains an affixal [TNS] feature which attracts the tensed auxiliary had to move to C, and [WH, EPP] features which attract the smallest convergent constituent containing a wh-word to move to spec-CP. Let's look carefully at what happens.

Movement of the pronoun whose on its own in (59b) leads to ungrammaticality, and the obvious question to ask is why this should be. (Part of) the answer lies in a constraint identified by Ross (1967), termed the Left Branch Condition, which we can paraphrase loosely as in (61) below:

Left Branch Condition/LBC

In languages like English, the leftmost constituent of a nominal, adjectival, or adverbial expression cannot be extracted out of the expression containing it
(The term nominal expression can be taken to refer to DP/QP. Within an orderfree theory of syntax, the term leftmost should be reformulated in terms of some hierarchical counterpart like daughter - but this is a detail we set aside here.) LBC accounts for the ungrammaticality of structures such as those below in English (where the italicised wh-word is intended to modify the bold-printed expression):
(62) (a) *Whose are you dating girlfriend?
(b) *Which did she choose dress?
(c) *How are you happy with it?
(d) *How does she work independently of you?
(Irrelevantly, ($62 \mathrm{c}, \mathrm{d}$) are grammatical if how is construed as an independent adverb which does not modify the bold-printed material.) Since LBC blocks extraction of whose on its own in (60), the Convergence Principle (58) tells us to try preposing the next smallest constituent containing whose, namely the DP whose mother. But movement of this DP is not possible either, as we see from the ungrammaticality of (59c). How come?

One reason for the ungrammaticality of (59c) is that it violates a constraint on movement operations posited by Huang (1982) which we can outline informally as follows:
(63) Constraint on Extraction Domains/CED

Only complements allow material to be extracted out of them, not specifiers or adjuncts.

We can illustrate Huang's CED constraint in terms of the following contrasts:
(64) (a) He was taking [pictures of who]?
(b) Who was he taking [pictures of whe]?
(65) (a) [Part of what] has broken?
(b) *What has [part of what] broken?
(66) (a) He was angry [when she hid what]?
(b) *What was he angry [when she hid what]?
(64a), (65a) and (66a) are echo questions in which the wh-pronoun who/what remains in situ, while (64b), (65b) and (66b) are their wh-movement counterparts. In (64), who is extracted out of a bracketed nominal expression which is the complement of the verb taking, and yields the grammatical outcome (64b) since there is no violation of CED (extraction out of complement expressions being permitted by CED). By contrast, in (65) what is extracted out of a bracketed expression which is the subject (and hence specifier) of the auxiliary has, and since CED blocks extraction out of specifiers, the resulting sentence (65b) is ungrammatical. Likewise in (66), what is extracted out of a bracketed adjunct clause, and since CED blocks extraction out of adjuncts, (66b) is ungrammatical. (See Nunes and Uriagereka 2000 and Sabel 2002 for attempts to devise a Minimalist account of CED effects.)

In the light of Huang's CED constraint, the reason why extraction of whose mother leads to ungrammaticality in (59c) should be clear. This is because whose mother is contained within [DP a picture of whose \varnothing mother] in (60), and since this DP is the specifier of the T-bar was on the mantelpiece, CED blocks extraction of any material out of this DP. As should be obvious, movement of whose on its own in (59b) will also violate CED (as well as LBC) - hence (59b) shows a higher degree of ill-formedness (by virtue of violating both CED and LBC) than (59c) (which violates only CED).

In conformity with the Convergence Principle, we therefore try and prepose the next smallest constituent containing whose in (60), namely the PP of whose \varnothing mother. But extraction of this PP out of the containing [DP a picture of whose \varnothing mother] is again blocked by CED. Accordingly, we try and prepose the next smallest constituent containing whose, namely [np picture of whose Ø mother]: once again, however, this is blocked by CED - as well as by the Functional Head Constraint/FHC (discussed in §3.6) which forbids extraction of the complement of a functional head like D or C (and hence blocks extraction of the complement of the determiner a). Because it violates two constraints (CED and FHC), (59e) induces a higher degree of ungrammaticality than (59d) (which violates only CED). We therefore prepose the next smallest constituent containing whose, namely [dp a picture of whose \varnothing mother]. This is permitted by CED, since CED only blocks extraction out of a specifier, not extraction of a specifier. Since this DP is the smallest maximal projection containing whose which can be preposed without violating any constraint, the convergence analysis correctly predicts the grammaticality of (59f) A picture of whose mother had you thought was on the mantelpiece?

We began our analysis of pied-piping in this section by assuming that the [WH] feature on C can only attract a maximal projection carrying a wh-feature, and that a phrase only carries a wh-feature if it has a wh-head. We saw that one analysis of pied-piping consistent with this assumption is that it is the result of a feature-copying operation by which a head acquires a copy of a wh-feature carried by a constituent which it merges with. However, we noted that this account runs into problems in relation to wh-movement structures where the wh-word is the specifier of the head containing it. We sketched Chomsky's alternative convergence view under which the [WH] feature on C attracts the smallest constituent containing a wh-word whose movement will lead to a convergent derivation.

The convergence view is not entirely without posing problems however, as we can illustrate in terms of the following Polish examples kindly provided by Bob Borsley:
(67) (a) Którego Jan widział mężczyznạ?

Which Jan saw man?
'Which man did Jan see?'
(b) Którego mężczyznạ Jan widział?

Which man Jan saw?
'Which man did Jan see?'

If convergence requires us to move the smallest wh-marked constituent, then the fact that movement of the quantifier którego 'which' on its own is permitted would lead us to suppose that it should not be possible to move the larger QP którego mężczyzna 'which man?'. It is not clear how such data can best be dealt with under the convergence account: perhaps (as briefly mentioned in a parenthetical remark in §6.5) Polish allows either movement of a wh-head to C or movement of a wh-phrase to spec-CP, and hence permits either the smallest wh-marked head to move to C, or the smallest wh-phrase to move to spec-CP. Other solutions can be envisaged, but a book on English syntax is not the place to speculate on Polish syntax.

6.8 Yes-no questions

Implicit in our earlier claim (41) is the following assumption about wh-questions in English:

Main-clause questions are CPs headed by a C which carries [TNS, wH, EPP] features
This assumption has interesting implications for the syntax of yes-no questions such as:

Is it raining?
It implies that not only wh-questions but also yes-no questions are CPs containing an interrogative specifier. But what kind of specifier could yes-no questions contain? The answer suggested in Grimshaw (1993) and Roberts (1993) is that they contain a null question operator which is directly generated in spec-CP (i.e. which is positioned in spec-CP by simple merger rather than movement). From a historical perspective, the null-operator analysis is by no means implausible, since in Elizabethan English we found main-clause yes-no questions introduced by the overt question word whether, as illustrated below:
(70) (a) Whether had you rather lead mine eyes or eye your master's heels? (Mrs Page, The Merry Wives of Windsor, III.ii)
(b) Whether dost thou profess thyself a knave or a fool? (Lafeu, All's Well That Ends Well, IV.v)

Given the null-operator analysis of yes-no questions, we can posit that yesno questions have essentially the same syntax in present-day English as in Elizabethan English, save that yes-no questions could be introduced by the overt interrogative operator whether in Elizabethan English, but are introduced by a null interrogative operator (a null counterpart of whether) in present-day English.

A second piece of evidence in support of the null-operator analysis comes from the fact that yes-no questions can be introduced by whether when they are
transposed into reported speech (and so occur in a complement clause), as we see from the examples below:
(71) (a) 'Are you feeling better?' he asked
(b) He asked whether I was feeling better

A third piece of evidence is that yes-no questions with auxiliary inversion resemble whether questions in that in both cases yes/no are appropriate answers:
(72) (a) When he asked 'Did you vote for Larry Loudmouth?', I said 'Yes' and you said 'No'
(b) When he asked whether we voted for Larry Loudmouth, I said 'Yes' and you said 'No'

A fourth argument is that main-clause yes-no questions can be tagged by or not in precisely the same way as complement-clause whether questions:
(73) (a) Has he finished or not?
(b) I can't say whether he has finished or not

If yes-no questions are CPs containing a null yes-no question operator (a null counterpart of whether) in spec- CP , we can arrive at a unitary characterisation of questions as CPs with an interrogative specifier.

What all of this means is that (69) Is it raining? will be derived as follows. The present-tense auxiliary is merges with the verb raining to form the T-bar is raining. The resulting T-bar merges with the subject it to form the TP it is raining. This TP in turn merges with a null C which has [TNS, WH, EPP] features. The [TNS] feature of C attracts (a copy of) the T constituent is to merge with C ; the requirement imposed by the [WH, EPP] features of C for CP to contain a wh-specifier is satisfied by merging a null yes-no question operator in spec-CP (which, for concreteness, we can take to be a null counterpart of the adverb whether, below symbolised as whether), ultimately deriving the structure shown below (after deletion of the features of C and of the original occurrence of $i s$):

If we take the yes-no question operator to be a null counterpart of whether, the lexical entry for whether will need to specify that it receives a null spellout in main clauses but is spelled out as |weðə| elsewhere.

6.9 Wh-exclamatives

Although we have so far concentrated on interrogative clauses, there are a number of other types of wh-clause found in English. One of these are exclamative clauses like:
(75) (a) What fun we have had!
(b) What a pain in the neck he must be!
(c) How badly he is behaving!
(d) How he longed to see her again!

These show wh-movement of an (italicised) exclamative wh-expression (containing what! or how!) but no auxiliary inversion. Within the framework adopted here, one way of accounting for this is to suppose that wh-exclamative clauses are CPs headed by an exclamative C - i.e. by a C containing an exclamative force feature, [EXCL-FORCE] - and that an exclamative C carries [WH] and [EPP] features but no [TNS] feature (because the only kind of wh-clause whose head C contains a [TNS] feature is a main-clause question). This means that when C merges with its TP complement, (75a) will have the following structure:

The [wH] feature of C attracts the closest maximal projection with a wh-word (i.e. the QP what fun) and moves it into spec-CP, simultaneously deleting the [wh, EPP] features on C . The resulting derived structure is that shown in simplified form below:

The auxiliary have remains in situ in the head T position of TP , since C in (76) and (77) does not have a [TNS] feature and hence cannot attract have to move from T to C .

6.10 Relative clauses

A further type of wh-clause (briefly touched on earlier in relation to (12c), (13), (19) and (20) above) are relative clauses like those bracketed below:
(78) (a) It's hard to find someone [who you can relate to]
(b) It's hard to find someone [to whom you can relate]
(c) Can you think of things [which she might need]?
(d) Is there anybody [whose car I can borrow]?

They are called relative clauses because they contain a relative pronoun (who/whose/which) that 'relates' (i.e. refers back) to an (italicised) antecedent in a higher clause (generally one which immediately precedes the bold-printed relative wh-expression). Each of the bracketed relative clauses in (78) contains a bold-printed wh-expression which has undergone wh-movement and thereby been positioned at the front of the bracketed relative clause. In (78b) the preposition to has been pied-piped along with the (relative) wh-pronoun whom, so that to whom is preposed rather than whom on its own; likewise, in (78d) the noun car is pied-piped along with the genitive wh-pronoun whose.

Relative wh-clauses resemble exclamative wh-clauses in that they too show whmovement without auxiliary inversion. We can therefore analyse them in a similar way, namely as CPs containing a C with [WH, EPP] features but no [TNS] feature. On this view, the bracketed relative clause in (78a) would have the simplified structure shown below at the point where C is merged with its TP complement:

$$
\begin{equation*}
\text { [c } \varnothing_{\mathrm{wh}, \mathrm{EPP}} \text {] [TP you [T can] [vp [v relate] [pp [p to] who]]] } \tag{79}
\end{equation*}
$$

The [WH, EPP] features of the null C attract the closest maximal projection with a wh-word - i.e. the bold-printed relative pronoun who (which is the maximal projection of the wh-word who). Who then moves to spec-CP, thereby deleting the [WH, EPP] features of C and so forming the CP (80) below:

$$
\begin{equation*}
\text { [CP who [C } \left.\varnothing_{\mathrm{WHF}, \mathrm{twP}}\right][\mathrm{TP} \text { you [T can] [vP [v relate] [pP [p to] whe]]]] } \tag{80}
\end{equation*}
$$

An alternative possibility found in more formal styles is for the whole PP to be preposed, so that to is pied-piped along with the relative pronoun, deriving the structure shown in simplified form below:

$$
\begin{equation*}
\text { [CP to whom [c } \left.\varnothing_{\mathrm{WH}}, \mathrm{trP}\right][\mathrm{TP} \text { you [T can] [vp [v relate] to whom]]] } \tag{81}
\end{equation*}
$$

The relative pronoun in structures like (81) is spelled out as the accusative form whom in formal styles.

Although the relative pronoun is overtly spelled out as who/whom in structures like (80) and (81) above, relative pronouns in English can also be given a null spellout, so resulting in bare relative clauses (i.e. relative clauses which contain no overt relative pronoun) like those bracketed in the (b) examples below:
(82) (a) It's hard to find people [who you can trust]
(b) It's hard to find people [you can trust]
(83) (a) This is something [which I will treasure]
(b) This is something [I will treasure]
(84) (a) I know a place [where you can stay]
(b) I know a place [you can stay]
(85) (a) I remember the time [when we first met]
(b) I remember the time [we first met]
(86) (a) That's the reason [why I was late]
(b) That's the reason [I was late]

Although the bare relative clauses in the (b) examples don't contain an overt relative pronoun, there is reason to believe that they contain a null relative pronoun and hence (e.g.) that (82b) contains a null counterpart of who. For example, the verb trust in (82b) is a two-place transitive predicate which requires a noun or pronoun expression as its complement: since trust has no overt object, it must have a null object of some kind. On the assumption that all relative clauses contain a relative pronoun, the object must be a relative pronoun (or relative operator, to use alternative technical terminology). For concreteness, let's suppose that the object of the verb trust in (82b) is the relative pronoun who. If so, the bracketed relative clauses in $(82 \mathrm{a}, \mathrm{b})$ will both have the structure shown below at the point where the null complementiser C is merged with its TP complement:

$$
\begin{equation*}
\text { [C } \boldsymbol{\varnothing}_{\mathrm{wH}, \mathrm{EPP}} \text {] [TP you [T can] [vp [v trust] who]] } \tag{87}
\end{equation*}
$$

The [WH, EPP] features of the complementiser will attract the relative pronoun who to move to spec-CP and are thereafter deleted (along with the trace copy of the moved pronoun who), so deriving the CP (88) below:

$$
\begin{equation*}
\text { [cP who [C } \left.\varnothing_{\mathrm{WH}, \mathrm{EPP}}\right]\left[{ }_{\mathrm{TP}}\right. \text { you [T can] [vp [v trust] whe]]] } \tag{88}
\end{equation*}
$$

If we further suppose that the PF component permits a relative pronoun which occupies spec-CP position in a relative clause to be given a null spellout, then who in (88) can be given a null spellout in the PF component, so deriving:

$$
\begin{equation*}
\text { [cP whe [c } \left.\varnothing_{\mathrm{wwf}}, \mathrm{trf}\right] \text { [тр you [т can] [vp [v trust] whe]]] } \tag{89}
\end{equation*}
$$

One reason why the relative pronoun can be given a null spellout may be that its person/number/gender features can be identified by its antecedent: e.g. who refers back to people in (82a) and so is identifiable as a third-person-plural animate pronoun even if deleted.

While the analysis of bare relative clauses sketched above is plausible, an important question to ask is whether there is any empirical evidence in support of the key assumption that bare relative clauses contain a relative pronoun which undergoes wh-movement in the same way as overt relative pronouns do. An interesting piece of evidence in support of a wh-movement analysis comes from islandhood effects. As we noted earlier in §6.3, Ross (1967) argued that certain types of syntactic structures are islands - i.e. they are structures out of which no subpart can be moved via any kind of movement operation (the general idea behind his metaphor being that any constituent which is on an island is marooned there and can't be removed from the island by any movement operation of any kind). One type of island identified by Ross are wh-clauses (i.e. clauses beginning with a wh-expression). In this connection, note the ungrammaticality of sentences like:
(90) *He is someone [who nobody knows [what the FBA did to]]
(intended to have a meaning which can be paraphrased somewhat clumsily as 'He is someone such that nobody knows what the FBA did to him'). In (90), the relative pronoun who is the object of the preposition to, and is moved out of the bracketed did-clause to the front of the knows-clause. However, the did-clause is a wh-clause (by virtue of being introduced by what) and wh-clauses are islands: this means that moving who out of the did-clause will lead to violation of Ross's wh-island constraint (forbidding any constituent from being moved out of a wh-clause: see Sabel 2002 for a more detailed account of the constraint).

What is of more immediate relevance to our claim that bare relative clauses contain a relative pronoun which undergoes wh-movement is that bare relative clauses exhibit the same islandhood effect, as we see from the ungrammaticality of:
(91) *He is someone [nobody knows [what the FBA did to]]

How can we account for this? Given our assumption that bare relative clauses contain a relative pronoun which moves to spec-CP and is subsequently given a null spellout in the PF component, (91) will have the structure (92) below (simplified in numerous respects, including by not showing trace copies of moved constituents):
*He is someone [CP [C $\mathbf{C l}_{\text {ø }}$] nobody knows [CP what [C ø] the FBA did to]]
The relative pronoun who is initially merged as the complement of the preposition to and is then moved out of the did-clause to the front of the knows-clause, and receives a null spellout in the PF component. But since the did-clause is a whclause (by virtue of containing the preposed wh-word what) and since wh-clauses are islands, movement of the relative pronoun out of the did-clause will lead to violation of the wh-island constraint. Thus, our assumption that bare relative clauses contain a relative pronoun which undergoes wh-movement provides a principled account of the ungrammaticality of structures like (92).

In finite relative clauses like those bracketed in (82)-(86) above, the (italicised) relative pronoun can optionally be given a null spellout. But in infinitival relative clauses like those bracketed below, it is obligatory for the relative pronoun to have a null spellout:
(93) (a) *Everyone needs someone [who to love]
(b) Everyone needs someone [to love]
(94) (a) *I have no comment [which to make]
(b) I have no comment [to make]
(95) (a) *I need a place [where to stay]
(b) I need a place [to stay]
(96) (a) *It's the right time [when to act]
(b) It's the right time [to act]
(97) (a) *There's no reason [why to complain]
(b) There's no reason [to complain]

The bracketed structures in (93)-(97) above are control clauses, hence CPs containing a null intransitive complementiser and a null PRO subject. Given the assumptions made here, (93b) will have the partial, simplified structure shown in (98) below:

Everyone needs someone [cP who [C $\varnothing_{\mathrm{wff}} \mathrm{tff}$] [TP PRO [T to] [vp [v love] whe]]]
The relative pronoun will move from VP-complement position to CP-specifier position, and obligatorily be given a null spellout.

It is also obligatory for a relative pronoun to be given a null spellout in infinitival relative clauses containing the transitive complementiser for - as we see from the examples below:
(99) (a) *Find someone [who for them to play with]!
(b) Find someone [for them to play with]!
(100) (a) *Find a pen [which for me to write with]!
(b) Find a pen [for me to write with]!
(101) (a) *I've got a place [where for him to stay]
(b) I've got a place [for him to stay]
(102) (a) *This is the time [when for you to leave]
(b) This is the time [for you to leave]
(103) (a) *There's no reason [why for her to cry]
(b) There's no reason [for her to cry]

Accordingly, an infinitival relative clause like that bracketed in (99b) will contain a relative pronoun like who which is initially merged as the complement of the preposition with and then moves to become the specifier of the complementiser for, ultimately being given a null spellout.

So far, we have seen that relative pronouns are optionally given a null spellout in finite relative clauses, and obligatorily given a null spellout in non-finite (infinitival) relative clauses. However, there is an important complication which we have overlooked so far, which relates to pied-piping. In (both finite and nonfinite) relative clauses in which other material is pied-piped along with the relative pronoun when it moves to the front of the relative clause, the relative pronoun cannot be null but rather must be overtly spelled out - as we see from the contrast below (where strikethrough is used to denote a 'silent' relative pronoun with a null spellout, and traces of moved wh-pronouns are omitted):
(104) (a) I need something [which I can write with]
(b) I need something [which I can write with]
(c) I need something [with which I can write]
(d) ${ }^{*}$ I need something [with which I can write]
(105) (a) He is someone [who you can rely on]
(b) He is someone [whe you can rely on]
(c) He is someone [on whom you can rely]
(d) ${ }^{*} \mathrm{He}$ is someone [on whom you can rely]

Why should it be that relative pronouns can have a null spellout in structures like (104b) and (105b), but not in structures like (104d) and (105d)?

The reason seems to be related to a difference in the superficial position occupied by the relative pronoun in the two types of clause. This positional difference becomes apparent if we compare the superficial structure of the bracketed relative clauses in $(104 a, b)$ with that of the relative clauses in $(104 \mathrm{c}, \mathrm{d})$, shown in (106) below:
(a)

(b)

In (106a), the italicised relative pronoun which ends up (at the end of the syntactic derivation) as the specifier of the null complementiser heading the relative clause, and can be given a null spellout. By contrast, in (106b) the relative pronoun remains the complement of the preposition with throughout the derivation, and it is the whole PP with which that is in spec-CP. The descriptive generalisation which this suggests is the following:

Relative Pronoun Spellout Condition/RPSC

A relative pronoun occupying spec-CP position in a relative clause is given a null spellout at PF (optionally in a finite clause, obligatorily in a non-finite clause)

In accordance with RPSC, which can receive a null spellout in (106a) by virtue of occupying CP-specifier position, but not in (106b) by virtue of occupying PP-complement position.

Since it is obligatory for a relative pronoun in spec-CP to receive a null spellout in a non-finite relative clause, relative pronouns in non-finite relative clauses are spelled out differently from their finite counterparts - as we can see by comparing the examples in (104) above with those in (108) below:
(108) (a) *I need something [which to write with]
(b) I need something [which to write with]
(c) I need something [with which to write]
(d) *I need something [with which to write]

The key difference is that whereas a relative pronoun which occupies the specifier position in a finite relative clause can either have an overt spellout as in (104a) or a null spellout as in (104b), a relative pronoun which occupies spec-CP in an infinitival relative clause obligatorily receives a null spellout as in (108b), and cannot be overtly spelled out - as we see from the ungrammaticality of (108a).

6.11 That-relatives

A type of relative clause which we have not so far looked at are thatrelatives (i.e. relative clauses introduced by that) like those bracketed below:
(109) (a) It's hard to find people [that you can trust]
(b) There is little [that anyone can do]
(c) We now have computers [that even a child can use]

What's the status of that in such clauses? One answer (suggested by Sag 1997) is that the word that is a relative pronoun which behaves in much the same way as other relative pronouns like who and which. However, an alternative analysis which we will adopt here is to take that to be a relative clause complementiser ($=\mathrm{C}$). The C analysis accounts for several properties of relative that. Firstly, it is homophonous with the complementiser that found in declarative clauses like that bracketed in:
(110) I said [that you were right]
and has the same phonetically reduced exponent/ðət/. Secondly, (unlike a typical wh-pronoun) it can only occur in finite relative clauses like those bracketed in (109) above, not in infinitival relative clauses like those bracketed below:
(111) (a) The director is looking for locations [in which to film a documentary about the FBA]
(b) *The director is looking for locations [that to film a documentary about the FBA in]

Thirdly, unlike a typical wh-pronoun such as who (which has the formal-style accusative form whom and the genitive form whose), relative that is invariable
and has no variant case forms - e.g. it lacks the genitive form that's in standard varieties of English, as we see from (112) below:
(112) (a) Lord Lancelot Humpalot is someone [whose ego is even bigger than his libido]
(b) *Lord Lancelot Humpalot is someone [that's ego is even bigger than his libido]

Fourthly, unlike a typical wh-pronoun, that does not allow pied-piping of a preposition:
(113) (a) There are still diseases [for which there is no cure]
(b) *There are still diseases [for that there is no cure]

Observations such as these suggest that relative that is a complementiser rather than a relative pronoun. If so, that-relative clauses will be headed by an overt complementiser in the same way as infinitival relative clauses containing the transitive complementiser for in sentences such as (99-103) above.

However, given the assumption that all relative clauses contain a relative pronoun, it is plausible to conclude that relative clauses headed by that contain a relative pronoun which moves to spec-CP and which is ultimately given a null spellout in the PF component. The analysis of relative clause that as a complementiser which attracts a wh-pronoun to become its specifier is lent some plausibility by the fact that in earlier varieties of English we found relative clauses containing an overt (preposed) wh-pronoun followed by the complementiser that - as the following examples illustrate:
(114) (a) In every peril [which that is to drede] . . (Chaucer, Troilus and Criseyde)
(b) He hathe seyd that he woold lyfte them [whom that hym plese] (Middle English, from Traugott 1972, p. 156)

Moreover, we have syntactic evidence from island constraints in support of analysing that-relatives in present-day English as involving movement of a relative pronoun to spec-CP. For example, relative clauses containing that show the same wh-island sensitivity as relative clauses containing an overt wh-pronoun like who:
(115) (a) *He is someone [who nobody knows [what the FBA did to]]
(b) ${ }^{*} \mathrm{He}$ is someone [that nobody knows [what the FBA did to]]

This parallelism suggests that the derivation of that-relatives involves a relative pronoun moving to the spec-CP position within the relative clause and subsequently being given a null spellout at PF, with the ungrammaticality of (115a,b) being attributed to the fact that the relative pronoun originates as the complement of the preposition to and is extracted out of the bracketed what-clause in violation of the wh-island constraint.

This being so, the bracketed relative clause in (109a) It's hard to find people [that you can trust] will involve merging a relative pronoun like who as the object of the verb trust, so that the relative clause has the structure shown below at the point where the complementiser that is merged with its TP complement:
(116) [c that wh, EpP] [тP you [т can] [vp [v trust] who]]

The [WH, EPP] features of the complementiser that will attract the relative pronoun who to become the specifier of that and are thereby deleted (along with the trace copy of the moved pronoun who), so deriving the CP (117) below:

The spellout condition (107) will allow the relative pronoun to be given a null spellout in the PF component, so deriving:

$$
\begin{equation*}
\left[\mathrm{CP} \text { who [c that }{ }_{\text {wWH, exp }}\right][\text { TP you [T can] [vp [v trust] whe]]] } \tag{118}
\end{equation*}
$$

and (118) is the structure of the bracketed relative clause in (109a).
However, an important complication arises at this point. After all, our Relative Pronoun Spellout Condition/RPSC (107) tells us that a relative pronoun is optionally given a null spellout in a finite clause. So, while we would expect a structure like (118) in which the relative pronoun has a null spellout to be grammatical, we would also expect a structure like (117) in which the relative pronoun is overtly spelled out as who to be grammatical. It might at first sight seem as if we can get round this problem by modifying RPSC so as to specify that a relative pronoun is obligatorily given a null spellout in a relative clause headed by the complementiser that. However, this will not account for the fact that relative clauses headed by that are also ungrammatical if other material is pied-piped along with the relative pronoun:
(119) (a) *Colombo has found the weapon [with which that she was killed]
(b) *She is someone [on whom that you can rely]

And indeed, the same is true of infinitival relative clauses headed by the complementiser for:
(120) (a) *Try and find something [with which for me to write]
(b) *There must be someone [in whom for me to confide]

Why should sentences like (119) and (120) be ungrammatical?
The answer given to this question by Chomsky and Lasnik (1977) is that such sentences violate a constraint operating in present-day English they call the Multiply Filled COMP Filter/MFCF, and which we can outline informally as follows:
(121) Multiply Filled COMP Filter/MFCF

Any CP which contains an overt complementiser (that/if/for) with an overt specifier is ungrammatical

The relevant 'filter' is arguably reducible to a lexical property of overt complementisers (namely that they don't allow an overt specifier). Be that as it may, MFCF helps us account for contrasts such as the following in present-day English:
(122) (a) *They're looking for places [CP which [C that] FBA agents can hide in]
(b) *They're looking for places [CP in which [C that] FBA agents can hide]
(c) They're looking for places [CP which [C that] FBA agents can hide in]
(123)
(a) *They're looking for places [CP which [c for] FBA agents to hide in]
(b) *They're looking for places [CP in which [C for] FBA agents to hide]
(c) They're looking for places [CP which [C for] FBA agents to hide in]

Sentences like (122a,b) and (123a,b) violate MFCF because they contain an overt wh-expression (which or in which) which serves as the specifier of an overt complementiser (that or for): (123b) is also ruled out by the spellout condition (107) which requires a relative pronoun which occupies the specifier position in a non-finite relative clause to have a null spellout. By contrast, (122c) and (123c) involve no violation of MFCF because they contain a null relative pronoun which serves as the specifier of an overt complementiser.

In some varieties of English, MFCF seems to have a rather different form, permitting wh+that clauses like that bracketed (124a) below, but not those like that bracketed in (124b):
(a) \%I really don't know [what kind of plan that he has in mind]
(b) *I really don't know [what that he has in mind]

As noted by Zwicky (2002), the relevant varieties permit wh+that structures when the wh-expression is a wh-phrase like what kind of plan, but not when it is a whpronoun like what. Such varieties seem to have a somewhat different version of MFCF from that which operates in Standard English.

Since our discussion in this section and the last has made much use of null relative pronouns, it is interesting to explore the question of whether there are parallels between these and other null pronouns - e.g. null subject pronouns like 'big PRO' and 'little pro'. The answer seems to be that there are indeed potential parallels. For example, we claimed in $\S 4.9$ that in a control clause like that bracketed below:

$$
\begin{equation*}
\text { I tried [} \mathrm{CP}[\mathrm{C} \varnothing][\mathrm{TP} \text { PRO [} \mathrm{T} \text { to] help him]] } \tag{125}
\end{equation*}
$$

the null complementiser [C \varnothing] in the bracketed control clause obligatorily assigns null case to the subject of its TP complement. What this means is that the only type of subject which TP permits in a control clause is a null 'big PRO' subject. Let's suppose that just as the complementiser in a control clause requires the null spellout of a constituent which it case-marks (with the result that the only kind of subject allowed in a control clause is PRO), so too an overt relativeclause complementiser like for/that requires the null spellout of the wh-marked constituent which it attracts (with the result that relative clauses headed by for/that must contain a null relative pronoun). This assumption would account for the pattern of data found in for/that relative clauses like those bracketed in (122) and (123) above.

But what about relative clauses headed by a null infinitival complementiser? Here the distribution of null relative pronouns seems more akin to that of 'little pro' subjects in a null-subject language like Italian. In Italian, the subject of a finite clause is only null if it is a weak pronoun (e.g. one which is not focused or used contrastively), not if it is a DP like il presidente della repubblica 'the president of the republic' or Maria: hence, we find both overt and null subjects in finite clauses in Italian. If we suppose that relative pronouns are weak (as seems plausible since they cannot carry contrastive stress), we can draw a parallel between pro subjects in a null-subject language and English relative pronouns in a relative clause introduced by a null infinitival complementiser: if the wh-moved expression in the relative clause comprises a relative pronoun on its own (as in structures like (108a,b) above), it must obligatorily be given a null spellout (in the same way as a weak subject pronoun in a finite clause in Italian must be given a null spellout). But if the moved wh-expression is a larger structure (e.g. a PP comprising a preposition and a relative pronoun as in 108c,d), the wh-expression cannot be given a null spellout (in the same way as a DP subject like il presidente della repubblica 'the president of the republic' in a finite clause in Italian cannot be given a null spellout).

Finally, consider finite relative clauses headed by a null complementiser like those in $(104 \mathrm{a}, \mathrm{b})$ and $(105 \mathrm{a}, \mathrm{b})$ above, where a relative pronoun in spec-CP optionally receives a null spellout. There seem to be wider parallels here with the phenomenon of Topic Drop in finite clauses in languages like German. In German, an expression which is the topic of a sentence can be moved into the specifier position within CP (with concomitant movement of an auxiliary or non-auxiliary verb into C) and can optionally be given a null spellout if it is a pronoun - as we see from the optionality of the pronominal topic das 'that' in structures like that below (from Rizzi 1992, p. 105):
(Das) habe ich gestern gekauft
(That) have I yesterday bought
'I bought that yesterday'
If the preposed pronominal topic das 'that' in (126) occupies spec-CP position, the conditions under which it optionally receives a null spellout can be assimilated to those under which a relative pronoun in spec-CP optionally receives a null spellout in a finite clause headed by a null complementiser in English. Of course, important theoretical questions remain about how and why certain types of pronoun in specCP in certain types of clause receive a null spellout - but we shall not pursue these here. And the null spellout of whether in root main clauses may be a related phenomenon, given the observation by Rizzi (2000) that (in some languages) the specifier of a root clause can have a null spellout in certain types of structure.

A final descriptive detail which should be noted is that our discussion of relative clauses in this section and the last has concentrated on restrictive relative clauses, so called because in a sentence such as:
the bracketed relative clause restricts the class of men being referred to in the sentence to the one who they arrested. A different type of relative clause are appositive relative clauses like those italicised below:
(128) (a) John (who used to live in Cambridge) is a very good friend of mine
(b) Yesterday I met my bank manager, who was in a filthy mood
(c) Mary has left home - which is very upsetting for her parents

They generally serve as 'parenthetical comments' or 'afterthoughts' set off in a separate intonation group from the rest of the sentence in the spoken language (this being marked by parentheses, or a comma, or a hyphen in the written language). Unlike restrictives, appositives can be used to qualify unmodified proper nouns (i.e. proper nouns like John which are not modified by a determiner like the). Moreover, they are always introduced by an overt relative pronoun, as we see in relation to the parenthesised appositive relative clauses below:
(129) (a) John (who you met last week) is a good friend of mine
(b) *John (that you met last week) is a good friend of mine
(c) *John (you met last week) is a good friend of mine

Furthermore, whereas a restrictive relative clause like that bracketed in (130a) below can be extraposed (i.e. moved) to the end of the containing clause and thereby be separated from its italicised antecedent, an appositive relative clause like that bracketed in (130b) does not allow extraposition:
(130) (a) A man has been arrested [who the police want to interview about a series of burglaries]
(b) *John has been arrested [who the police want to interview about a series of burglaries]

A third type of relative clause are so-called free relative clauses such as those italicised in:
(131) (a) What you say is true
(b) I will go where you go
(c) I don't like how he behaved towards her

They are characterised by the fact that the wh-pronoun what/where/how appears to be antecedentless, in that it doesn't refer back to any other constituent in the sentence. Moreover, the set of relative pronouns found in free relative clauses is different from that found in restrictives or appositives: e.g. what and how can serve as free relative pronouns, but not as appositive or restrictive relative pronouns; and conversely which can serve as a restrictive or appositive relative pronoun but not as a free relative pronoun. Appositive relatives (discussed in Citko 2002) and free relatives are interesting in their own right, but we shall not attempt to explore their syntax here.

Although there are many interesting aspects of relative clauses which we will not go into here, the brief outline given in this section and the preceding one suffices for the purpose of underlining that it is not only interrogative wh-expressions which undergo wh-movement, but also exclamative wh-expressions and relative wh-expressions (with the latter showing null spellout of a wh-pronoun in certain
types of relative clause). Indeed, there are a range of other constructions which have been claimed to involve wh-movement of a null wh-operator, including comparative clauses like (132a) below, as-clauses like (132b), and so-called toughclauses like (132c):
(132) (a) It is bigger than I expected it to be
(b) Ames was a spy, as the FBI eventually discovered
(c) Syntax is tough to understand

It is interesting to note that (132a) has a variant form containing the overt wh-word what in some (non-standard) varieties of English, where we find It is bigger than what I expected it to be: see Kennedy and Merchant (2000), Lechner (2001) and Kennedy (2002) for discussion of comparative structures; see also Potts (2002) for discussion of $a s$-structures like (132b). We will not attempt to fathom the syntax of constructions like those in (132) here, however.

6.12 Summary

We began this chapter in $\S 6.2$ by arguing that main-clause whquestions are CPs headed by a C constituent which attracts a tensed auxiliary to move to C via head movement and a wh-expression to move into spec-CP via wh-movement. In §6.3 we argued that a moved wh-expression leaves behind a null copy of itself at its extraction site (i.e. in the position out of which it is extracted/moved); we presented arguments to this effect from wanna-contraction, preposition-copying, wh-copying, split spellout and operator-variable binding; and we noted that in earlier work, copies were analysed as traces. In $\S 6.4$ we outlined an analysis of complement-clause wh-questions, under which C carries [WH] and [EPP] features which attract a wh-expression c-commanded by C to move to spec-CP. We noted that in consequence of the Attract Closest Principle, C in multiple wh-questions attracts movement of the closest wh-expression which it c-commands. In $\S 6.5$ we looked at main-clause wh-questions, arguing that C in such cases carries not only [WH, EPP] features but also a [TNS] feature. We asked why the [TNS] feature of C attracts movement of T rather than TP, and concluded that movement of TP is ruled out by a Remerger Constraint which bars a head from being merged with the same constituent more than once; we argued that movement of an inverted auxiliary from T to C rather than to spec-CP is the consequence of a Constituent Structure Constraint to the effect that only a head can occupy a head position, and only a maximal projection can occupy a specifier position. We also asked why the [WH] feature of C attracts movement of a $\mathrm{wh}^{\mathrm{MAX}}$ (i.e. a maximal projection containing a wh-word) rather than a minimal projection, and concluded that this is because the [EPP] feature of C requires C to project a specifier, and the Constituent Structure Constraint will only allow a maximal projection to occupy a specifier position. We looked briefly at an alternative account developed by Chomsky under which the [TNS] feature of C is an affixal feature which triggers head movement in the PF component,
whereas the $[\mathrm{WH}]$ feature of C is a syntactic feature which triggers movement of a $w^{\text {Max }}$ to spec-CP. In $\S 6.6$ we discussed the syntax of wh-subject questions like Who called the police? which contain a wh-word which is the subject of the interrogative clause. We noted that such questions do not involve auxiliary inversion, and outlined Pesetsky and Torrego's account under which the relevant clauses are CPs, with the [WH] and [TNS] features of C jointly attracting the wh-subject to move from spec-TP to spec-CP (the relevant wh-subject being assumed to carry a copy of the tense feature carried by T). In $\S 6.7$ we noted that although the [WH, EPP] features of C (in simple cases) attract the closest maximal projection with a wh-head to move to spec-CP in English, wh-movement in formal styles of English may result in a preposition being pied-piped along with the wh-expression. We outlined a feature-copying account under which (in formal but not informal styles of English) a transitive preposition inherits a wh-feature carried by its complement, with the result that the preposition itself carries a [wh] feature, and its containing PP thereby becomes the closest wh ${ }^{\text {MAX }}$ to C (and hence moves to spec-CP). We noted, however, that this account runs into problems in relation to structures which involve movement of a wh-phrase in which the wh-word is the specifier rather than the head of the phrase. We outlined Chomsky's alternative convergence account under which a C with a [WH] feature attracts the smallest constituent containing a wh-word which will lead to convergence (i.e. which will ensure a grammatical outcome). In $\S 6.8$ we looked briefly at the syntax of yes-no questions, arguing that these contain a null question operator (a null counterpart of whether) in spec-CP. In $\S 6.9$ we discussed the syntax of exclamative clauses, arguing that these are CPs in which the head C constituent carries [WH, EPP] features, but no [TNS] feature: hence, exclamative clauses involve wh-movement without auxiliary inversion. In §6.10, we looked at the derivation of relative clauses, arguing that this involves movement of a wh-expression containing a relative pronoun to spec- CP , with a relative pronoun receiving a null spellout when occupying spec-CP - optionally in finite clauses, obligatorily in infinitival clauses. In §6.11, we looked at that-relatives, arguing that these too involve movement of a wh-pronoun to spec-CP, with the wh-pronoun obligatorily receiving a null spellout in consequence of the Multiply Filled COMP Filter. We explored typological similarities between null relative pronouns and other types of null pronoun (including null pro and PRO subjects and null topics).

Overall, the main point of this chapter has been to look at the syntax of preposed (interrogative, exclamative and relative) wh-expressions. All three types of expression end up (via movement) in an A-bar position - i.e. a specifier position which can be occupied by either an argument or an adjunct. Because it moves whexpressions into spec-CP and spec-CP is an A-bar position, wh-movement can be regarded as a particular instance of a more general A-bar movement operation. (As should be obvious, the term A-bar here is used in an entirely different manner from the way we employed it in $\S 3.5$, when we claimed that in an adjectival phrase like very proud of him, the string proud of him is an A-bar constituent and thus an intermediate projection of the adjective proud.)

Workbook section

Exercise 6.1

Discuss the derivation of the wh-clauses below, drawing tree diagrams to show their superficial structure and saying why they are grammatical or ungrammatical in standard varieties of English:

1a Which film have you seen?
b *Which have you seen film?
2a Dare anyone say anything?
b Who interrupted him?
3a Who/?Whom were you talking to?
b To whom/?To who were you talking?
4a Who have they spoken to?
b Who've they spoken to?
c ?To who have they spoken?
d *To who've they spoken?
5a Which picture of you have they published?
b *Which picture of you've they published?
6a What excuse has he given?
b *What has he given excuse?
c *What excuse he has given?
d *What he has given excuse?
7a In whose mother has he confided?
$\mathrm{b} \quad$ Whose mother has he confided in?
c *Whose has he confided in mother?
d *In whose has he confided mother?
8a What courage he has shown!
b *What he has shown courage!
c *What courage has he shown!
d *What has he shown courage!
9a How proud of him you must be!
b How proud you must be of him!
10a The leader of which party has resigned?
b *Leader of which party has the resigned?
c ?Of which party has the leader resigned?
d ?Which party has the leader of resigned?
e *Which has the leader of party resigned?
In addition, comment on relevant aspects of the syntax of the interrogative/exclamative Shakespearean sentences in (11) below, the African American English interrogatives in (12) (from Green 1998, pp. 98-9) and the bracketed complement clauses in Belfast English (adapted from Henry 1995) in (13) and (14):

11a What sayst thou? (Olivia, Twelfth Night, III.iv)
b What dost thou say? (Othello, Othello, III.iii)
c What didst not like? (Othello, Othello, III.iii)
d What visions have I seen! (Titania, A Midsummer Night's Dream, V.i)

```
12a What I'm gon' do? (= 'What am I going to do?')
    b How she's doing? (= 'How is she doing?')
13a They wondered [which one that he chose]
    b They wondered [which one did he choose]
    c *They wondered [which one that did he choose]
14a They wondered [if/whether (*that) we had gone]
    b *They wondered [if/whether had we gone]
    c They wondered [had we gone]
```


Helpful hints

In 2a, assume that dare, anyone and anything are polarity items, and that dare originates in T.
In 3-4, the prefixed question mark ? indicates that the use of $w h o(m)$ in the relevant sentence (for speakers like me) leads to stylistic incongruity (in that the accusative form whom and preposition pied-piping are used in more formal styles, and the accusative form who and preposition stranding in less formal styles). In 4-5, bear in mind the claim made in $\S 4.3$ that have can cliticise onto another word W as long as W is a pronoun ending in a vowel or diphthong, W asymmetrically c-commands (ha)ve, and there is no overt or null constituent intervening between W and have ($=$ no intervening constituent c-commanding have and c-commanded by W). In 6-10, compare how well the convergence and feature-copying accounts of pied-piping would handle the relevant data. In 14, consider the possibility that both if and whether are complementisers in Belfast English (though only if is a complementiser in Standard English).

Model answer for sentence 1 a

Sentence 1a is derived as follows. The quantifier which is merged with the noun film to form the QP which film. This in turn is merged with the (perfect participle) verb seen to form the VP seen which film. This is merged with the (present-) tense auxiliary have to form the T-bar have seen which film. The resulting T-bar is in turn merged with the pronoun you to form the TP you have seen which film. This is merged with a null C constituent containing [TNS, WH, EPP] features, so forming the C-bar in (i) below:
(i)

In principle, we would expect the [TNS] feature of C to be able to attract either T or TP to move to the edge of CP; but movement of TP is ruled out by the Remerger Constraint (because TP is already merged as the complement of C and hence cannot be remerged as the specifier of C), and hence the [TNS] feature of C attracts the present-tense auxiliary have to move to the edge of CP .

Since the Constituent Structure Constraint only allows a head to occupy a head position, have adjoins to the null complementiser in C. In principle, we would expect the [wH] feature of C to be able to attract either movement of a wh-head like which or movement of a wh-phrase like which film (and we see in the main text that both possibilities are found in languages like Polish). However, since the [EPP] feature of C requires C to project a specifier and the Constituent Structure Constraint requires a specifier position to be filled by a maximal projection, the [WH, EPP] features of C attract the closest maximal projection containing a wh-word (namely the QP which film, whose head is the wh-quantifier which) to move to spec-CP. Assuming that the features of C are deleted after their requirements are satisfied, the structure which results after head movement and wh-movement have applied is that shown in simplified form below:
(ii)

Exercise 6.2

Discuss the derivation of the bracketed restrictive relative clauses in the sentences below, drawing tree diagrams to show their superficial structure and saying why they are grammatical or ungrammatical in standard varieties of English:

1a	He is someone [who you can talk to]
b	He is someone [you can talk to]
c	He is someone [to whom you can talk]
d	${ }^{*}$ He is someone [to you can talk]
2a	${ }^{*}$ He is someone [who that you can talk to]
b	He is someone [that you can talk to]
c	${ }^{*}$ He is someone [to whom that you can talk]
d	${ }^{*}$ He is someone [to that you can talk]
3a	They recruit people [who have got a degree]
b	They recruit people [who've got a degree]
c	They recruit people [that have got a degree]
d	*They recruit people [have got a degree]
4a	*This is the way [how he behaved]
b	This is the way [he behaved]
c	*This is the way [how that he behaved]
d	This is the way [that he behaved]
5 a	*I need someone [who to love me]
b	I need someone [to love me]
c	*I need someone [who to love]
d	I need someone [to love]

6a	I need a place [in which to stay]
b	${ }^{*}$ I need a place [in to stay]
c	${ }^{*}$ I need a place [which to stay in]
d	I need a place [to stay in]
e	${ }^{*}$ I need a place [where to stay]
f	I need a place [to stay]
7a	${ }^{*}$ I need a place [in which for her to stay]
b	${ }^{*}$ I need a place [in for her to stay]
c	${ }^{*}$ I need a place [which for her to stay in]
d	I need a place [for her to stay in]
e	${ }^{*}$ I need a place [where for her to stay]
f	I need a place [for her to stay]
8a	${ }^{*}$ This is no way [how to behave]
b	This is no way [to behave]
c	${ }^{*}$ This is no way [how for you to behave]
d	This is no way [for you to behave]

Helpful hints

In relation to $3 \mathrm{~b}, \mathrm{~d}$ and $5 \mathrm{a}, \mathrm{b}$, consider whether a relative pronoun which is the subject of the relative clause is in spec-CP or in spec-TP (and whether the answer you come up with for 3b,d may be different to that you come up with for $5 \mathrm{a}, \mathrm{b}$), and how data relating to have-cliticisation and the null spellout of relative pronouns could have a bearing on this. (See the note on have-cliticisation in the helpful hints to the previous exercise.) In relation to 4 and 8 , assume that how is a manner pronoun/PRN which originates as the complement of the verb behave: try and identify the way in which how differs from other restrictive relative pronouns like who/which/where/why.

Model answer for sentence $1 a, b$

Sentence 1a is derived as follows. The preposition to merges with the wh-pronoun who to form the PP to who. This is merged with the verb talk to form the VP talk to who. The resulting VP is merged with the present-tense auxiliary can to form the T-bar can talk to who, and this is then merged with the subject you to form the TP you can talk to who. This TP is subsequently merged with a null complementiser (perhaps a null counterpart of that) which carries [WH, EPP] features, so deriving the structure shown in (i) below:

The [wh] feature of C attracts the closest expression containing a wh-feature to move to the edge of CP. Since the [EPP] feature of C requires it to project a specifier, and since the Constituent Structure Constraint requires a specifier position to be filled by a maximal projection, the [wH, EPP] features of C attract the closest maximal projection containing a wh-word to move to spec-CP. The wh-marked pronoun who is a maximal projection by virtue of being the largest expression headed by the wh-word who. Hence, who moves to spec-CP, and thereby erases the [WH, EPP] features of C, so deriving the structure shown in simplified form below, which is the superficial structure of the bracketed relative clause in 1a:
(ii)

Given that the Relative Pronoun Spellout Condition specifies that a relative pronoun occupying the specifier position in a finite relative clause can optionally have a null spellout in the PF component, an alternative possibility is for the relative pronoun who in spec-CP to be given a null spellout at PF, so deriving (iii) below, which is the superficial structure associated with the bracketed relative clause in 1 b :
(iii)

7 A-movement

7.1 Overview

In this chapter, we look at the syntax of subjects. So far, we have assumed that subjects originate in the specifier position within TP and remain in situ (except where the subject undergoes wh-movement and moves to spec-CP, e.g. in sentences like Who did he say was coming?). However, in this chapter we shall argue that subjects originate internally within the Verb Phrase as arguments of verbs, and are subsequently raised into the specifier position within TP , with the relevant movement operation being triggered by an [EPP] feature carried by T. Since spec-TP is an A-position (i.e. a position which can generally only be occupied by argument expressions), the operation by which subjects move into spec-TP is traditionally known as A-movement.

7.2 Subjects in Belfast English

Let's begin our discussion of the syntax of subjects by looking at some interesting data from Belfast English (kindly supplied to me by Alison Henry). Alongside Standard English constructions like (1a,b) below:
(1) (a) Some students should get distinctions
(b) Lots of students have missed the classes

Belfast English also has structures like (2a,b):
(2) (a) There should some students get distinctions
(b) There have lots of students missed the classes

Sentences like (2a,b) are called expletive structures because they contain the expletive pronoun there. (The fact that there is not a locative pronoun in this kind of use is shown by the impossibility of replacing it by locative here or questioning it by the interrogative locative where? or contrastively focusing it by assigning it contrastive stress.) For the time being, let's focus on the derivation of Belfast English sentences like ($2 \mathrm{a}, \mathrm{b}$) before turning to consider the derivation of Standard English sentences like (1a,b).

One question to ask about the sentences in $(2 a, b)$ is where the expletive pronoun there is positioned. Since there immediately precedes the tensed auxiliary should/have, a reasonable conjecture is that there is the subject of should/have and hence occupies the spec-TP position. If this is so, we'd expect to find that the (bold-printed) auxiliary can move in front of the (italicised) expletive subject (via T-to-C movement) in questions - and this is indeed the case in Belfast English, as the sentences in (3) below illustrate:
(3) (a) Should there some students get distinctions?
(b) Have there lots of students missed the classes?

But what position is occupied by the underlined quantified expressions some students/lots of students in (3)? Since they immediately precede the verbs get/missed and since subjects precede verbs, it seems reasonable to conclude that the expressions some students/lots of students function as the subjects of the verbs get/missed and (since subjects are typically specifiers) occupy spec-VP (i.e. specifier position within VP). If these assumptions are correct, (2a) will have the structure (4) below (simplified by not showing the internal structure of the expressions some students/distinctions: we can take both of these to be QP/Quantifier Phrase expressions, headed by the overt quantifier some in one case and by a null quantifier [Q \varnothing] in the other):
(4)

The analysis in (4) claims that the sentence contains two subjects/specifiers: there is the specifier (and syntactic subject) of should, and some students is the specifier (and semantic subject) of get.

Given the assumptions in (4), sentence (2a) will be derived as follows. The noun distinctions merges with a null quantifier $[\mathrm{Q} \varnothing]$ to form the QP \varnothing distinctions. By virtue of being the complement of the verb get, this QP is merged with the V get to form the \mathbf{V}-bar (incomplete verb expression) get \varnothing distinctions. The resulting V-bar is then merged with the subject of get, namely the QP some students (itself formed by merging the quantifier some with the noun students), so deriving the VP some students get \varnothing distinctions. This VP is in turn merged with the tense auxiliary should, forming the T-bar should some students get
\varnothing distinctions. Let's suppose that a finite T has an [EPP] feature requiring it to have a specifier with person/number properties. In sentences like (2a,b) in Belfast English, the requirement for T to have such a specifier can be satisfied by merging expletive there with the T-bar should some students get ø distinctions, so forming the TP There should some students get ø distinctions. The resulting TP is then merged with a null declarative complementiser, forming the CP shown in (4) above.

But what about the derivation of the corresponding Standard English sentence (1a) Some students should get distinctions? Let's suppose that the derivation of (1a) runs parallel to the derivation of (2a) until the point where the auxiliary should merges with the VP some students get ø distinctions to form the T-bar should some students get ø distinctions. As before, let's assume that [${ }_{\mathrm{T}}$ should] has an [EPP] feature requiring it to project a structural subject/specifier. But let's also suppose that the requirement for [T should] to have a specifier of its own cannot be satisfied by merging expletive there in spec-TP because in standard varieties of English there can generally only occur in structures containing an intransitive verb like be, become, exist, occur, arise, remain etc. Instead, the [EPP] requirement for T to have a subject with person/number properties is satisfied by moving the subject some students from its original position in spec-VP into a new position in spec-TP, in the manner shown by the arrows below:

Since spec-TP is an A-position which can only be occupied by an argument expression, the kind of movement operation illustrated by the dotted arrow in (5) is called \mathbf{A}-movement.

Given the arguments presented in chapters 5 and 6 that head movement and A-bar movement are composite operations involving copying and deletion, we would expect the same to be true of A-movement. One piece of evidence in support of a copying analysis of A-movement comes from scope facts in relation to sentences such as (6a) below, which will have the syntactic structure shown in simplified form in (6b) if everyone originates as the subject of the verb finished and is then raised up (by A-movement) to become the subject of the present-tense auxiliary HAVE:
(6) (a) Everyone hasn't finished the assignment yet
(b) [CP [C ø] [TP Everyone $[\mathrm{T}$ has] [NegP not [$\mathrm{Neg} \varnothing][\mathrm{vP}$ everyone [v finished] the assignment yet]]J]

For many speakers, sentences like (6a) are ambiguous between (i) a reading on which the quantifier expression everyone has scope over not so that the sentence means much the same as 'Everyone is in the position of not having finished the assignment yet', and (ii) another reading on which everyone falls within the scope of not (so that the sentence means much the same as 'Not everyone has finished the assignment yet'). We can account for this scope ambiguity in a principled fashion if we suppose that A-movement involves copying, that scope is defined in terms of c-command (so that a scope-bearing constituent has scope over constituents which it c-commands), and that the scope of a universally quantified expression like everyone in negative structures like (6b) can be determined either in relation to the initial position of everyone or in relation to its final position. In (6b) everyone is initially merged in a position (marked by strikethrough) in which it is c-commanded by (and so falls within the scope of) not; but via A-movement it ends up in an (italicised) position in which it c-commands (and so has scope over) not. The scope ambiguity in (6a) therefore reflects the two different positions occupied by everyone in the course of the derivation. (See Lebeaux 1995, Hornstein 1995, Romero 1997, Sauerland 1998, Lasnik 1998/1999, Fox 2000, and Boeckx 2000, 2001 for discussion of scope in A-movement structures.)

The claim that (non-expletive) subjects like some students/lots of students in sentences like ($1 \mathrm{a}, \mathrm{b}$) originate internally within the VP containing the relevant verb (and from there move into spec-TP in sentences like ($1 \mathrm{a}, \mathrm{b}$) above) is known in the relevant literature as the VP-Internal Subject Hypothesis ($=$ VPISH), and has been widely adopted in research since the mid 1980s. An extensive body of evidence was adduced in support of the hypothesis from a variety of sources and languages in the 1980s and early 1990s, e.g. in Kitagawa (1986), Speas (1986), Contreras (1987), Zagona (1987), Kuroda (1988), Sportiche (1988), Rosen (1990), Ernst (1991), Koopman and Sportiche (1991), Woolford (1991), Burton and Grimshaw (1992), McNally (1992), Guilfoyle, Hung and Travis (1992), and Huang (1993). Since then, it has become a standard analysis. In §§7.3-7.6 below, we look at some of the evidence in support of VPISH.

7.3 Quotatives and idioms

An interesting piece of evidence in support of the VP-Internal Subject Hypothesis comes from quotative inversion structures like (7) below:
'Sentences like this are called quotatives', said Leon
The relevant structures are called quotative because they involve a direct quotation (the underlined quoted material being enclosed within inverted commas);
they involve inversion in the sense that the bold-printed main verb said in (7) ends up positioned in front of its italicised subject Leon. Collins (1997), Collins and Branigan (1997) and Suñer (2000) argue that the italicised subject in such structures remains in situ in the specifier position within the verb phrase, and that the bold-printed verb moves to some higher head position above the VP in which it originates.

But what evidence is there that the subject remains in spec-VP in quotative inversion structures like (7)? Part of the evidence comes from the syntax of floating quantifiers. In structures in which the subject raises out of spec-VP into spec-TP in English, the moved subject in spec-TP can serve as the antecedent for a floating quantifier like all/both/each (i.e. for a quantifier which is positioned after the subject and forms a separate constituent, but is nonetheless interpreted as modifying the subject). We can illustrate this in terms of structures like (8) below:
(8) (a) The students should all/both/each get distinctions
(b) The students all/both/each got distinctions

In (8a) the bold-printed subject DP the students is in spec-TP and hence precedes the auxiliary should. The italicised floating quantifiers all/both/each are c-commanded by the subject DP the students, and are construed as modifying the subject DP. Hence, examples like (8a) tell us that a moved subject in spec-TP can serve as the antecedent of a floating quantifier positioned between the moved subject and the verb. By hypothesis, the bold-printed subject is likewise in specTP in (8b) and so can again occur as the antecedent of the italicised quantifier between the moved subject and the verb.

In the light of this restriction, consider the following contrast (noted by Collins and Branigan 1997):
(9) (a) 'We must do this again', the guests all declared to Tony
(b) *'We must do this again', declared the guests all to Tony

In the uninverted structure (9a), the subject the guests occupies the canonical spec-TP position associated with subjects, and hence can serve as the antecedent of the floating quantifier all. Now, if the subject were also in spec-TP in (9b), we'd again expect the quantifier all to be able to be positioned after the subject. The fact that this is not possible leads Collins and Branigan to conclude that the subject in quotative inversion structures like (9b) remains in situ in spec-VP. If so, this provides empirical evidence in support of VPISH.

However, the assumption that the postverbal subject in quotative inversion structures like (7) and (9b) remains in situ in spec-VP raises the question of where the verb and the quoted material (both of which end up in front of the subject) move to, since if they remained in situ within the verb phrase, they would be expected to follow the subject. Collins (1997) argues that the quoted material moves to spec-TP (a position which is normally occupied by the subject, but which is available for some other constituent to move into if the subject remains
in spec-VP). As for where the verb moves to, Suñer (2000) argues that it does not move to T (since T is not strong enough to attract main verbs to move to T in present-day English), but rather moves to the head Asp ($=$ Aspect) position of an $\mathbf{A s p P}$ ($=$ Aspect Phrase) projection which is positioned below T but above VP. On this view, a sentence like (7) would have the structure (10) below (with arrows showing movement, and t indicating trace copies of moved constituents):

Suñer notes that an interesting prediction made by the assumption that the verb undergoes short verb movement to Asp (rather than long verb movement to T) is that inversion of verb and subject will be blocked in structures containing an aspectual auxiliary like perfect have or progressive $b e$, and she notes that contrasts like that in (11) below provide empirical support for her claim:
(11) (a) 'What time is it?' John was asking of Mona
(b) *'What time is it?' was John asking of Mona
(c) *'What time is it?' was asking John of Mona

If finite aspectual auxiliaries originate in Asp and raise to T, was will originate in Asp in structures like (11) and hence will block movement of the verb asking to Asp - so accounting for the ungrammaticality of quotative inversion in structures like (11b,c). (See Alexiadou and Anagnostopoulou 2001 for discussion of other subject-in-situ structures.)

Further empirical evidence in support of the VP-Internal Subject Hypothesis comes from the syntax of idioms. We can define idioms as expressions (like those italicised below) which have an idiosyncratic meaning which is not a purely compositional function of the meaning of their individual parts:
(12) (a) Let's have a couple of drinks to break the ice
(b) Be careful not to upset the applecart
(c) The president must bite the bullet

There seems to be a constraint that only a string of words which forms a unitary constituent can be an idiom. So, while we find idioms like those in (12) which are of the form verb+complement (but where the subject isn't part of the idiom), we don't find idioms of the form subject+verb where the verb has a complement which isn't part of the idiom: this is because in subject+verb+complement structures, the verb and its complement form a unitary constituent (a V-bar), whereas the subject and the verb do not - and only unitary constituents can be idioms.

In the light of the constraint that an idiom is a unitary constituent with an idiosyncratic interpretation, consider idioms such as the following:
(13) (a) All hell broke loose
(b) The shit hit the fan
(c) The cat got his tongue

In (13), not only is the choice of verb and complement fixed, but so too is the choice of subject. In such idioms, we can't replace the subject, verb or complement by near synonyms - as we see from the fact that sentences like (14) below are ungrammatical (on the intended idiomatic interpretation):
(14) (a) *The whole inferno escaped
(b) ${ }^{*}$ Camel dung was sucked into the air conditioning
(c) *A furry feline bit his lingual articulator

However, what is puzzling about idioms like (13) is that one or more auxiliaries can freely be positioned between the subject and verb:
(15) (a) All hell will break loose
(b) All hell has broken loose
(c) All hell could have broken loose
(16) (a) The shit might hit the fan
(b) The shit has hit the fan
(c) The shit must have hit the fan

How can we reconcile our earlier claim that only a string of words which form a unitary constituent can constitute an idiom with the fact that all hell . . . break loose is a discontinuous string in (15), since the subject all hell and the predicate break loose are separated by the intervening auxiliaries will/has/could have? To put the question another way: how can we account for the fact that although the choice of subject, verb and complement is fixed, the choice of auxiliary is not?

The VP-Internal Subject Hypothesis provides a straightforward answer, if we suppose that subjects originate internally within VP, and that clausal idioms like those in (13) are VP idioms which require a fixed choice of head, complement and specifier in the VP containing them. For instance, in the case of (13a), the relevant VP idiom requires the specific word break as its head verb, the specific adjective loose as its complement, and the specific quantifier phrase all hell as its subject/specifier. We can then account for the fact that all hell surfaces in front of the auxiliary will in (15a) by positing that the QP all hell originates in spec-VP
as the subject of break loose, and is then raised (via A-movement) into spec-TP to become the subject of will break loose. Given these assumptions, (15a) will be derived as follows. The verb break merges with the adjective loose to form the idiomatic V-bar break loose. This is then merged with its QP subject all hell to form the idiomatic VP all hell break loose. The resulting VP is merged with the tense auxiliary will to form the T-bar will all hell break loose. Since finite auxiliaries carry an [EPP] feature requiring them to have a subject specifier with person/number features, the subject all hell moves from being the subject of break to becoming the subject of will - as shown in simplified form in (17) below:

We can then say that (in the relevant idiom) all hell must be the sister of break loose, and that this condition will be met only if all hell originates in spec-VP as the subject (and sister) of the V-bar break loose. We can account for how the subject all hell comes to be separated from its predicate break loose by positing that subjects originate internally within VP and from there raise to spec-TP (via A-movement) across an intervening T constituent like will, so that the subject and predicate thereby come to be separated from each other - movement of the subject to spec-TP being driven by an [EPP] feature carried by [T will] requiring will to have a subject with person/number features. Subsequently, the TP in (17) is merged with a null declarative complementiser, so deriving the structure associated with (15a) All hell will break loose.

7.4 Argument structure

The assumption that subjects originate internally within VP ties up in interesting ways with traditional ideas from predicate logic which we touched on briefly in $\S 1.2$. As we saw there, traditional work in logic maintains that propositions (which can be thought of as representing the substantive semantic content of clauses) comprise a predicate and a set of arguments. Simplifying somewhat, we can say that a predicate is an expression denoting an activity or event, and an argument is an expression denoting a participant in the relevant activity or event. For example, in sentences such as those below, the italicised verbs are predicates and the bracketed expressions represent their arguments.
(18) (a) [The guests] have arrived
(b) [The police] have arrested [the suspect]

In other words, the arguments of a verb are typically its subject and complement(s). It has been widely assumed in work spanning more than half a century that complements of verbs are contained within a projection of the verb - e.g. the suspect in (18b) is the direct-object complement of arrested and is contained within the verb phrase headed by arrested (so that arrested the suspect is a VP). Under the VP-Internal Subject Hypothesis, we can go further than this and make the following (more general) claim:

Predicate-Internal Argument Hypothesis

All the arguments of a predicate originate within a projection of the predicate

Such an assumption allows us to maintain that there is a uniform mapping (i.e. relationship) between syntactic structure and semantic argument structure - more specifically, between the position in which arguments are initially merged in a syntactic structure and their semantic function.

To see what this means in practice, consider the derivation of (18b) The police have arrested the suspect. The verb arrested merges with its direct-object complement the suspect (a DP formed by merging the determiner the with the noun suspect) to form the V-bar arrested the suspect. The resulting V-bar is in turn merged with the subject DP the police (formed by merging the determiner the with the noun police) to form the VP shown in (20) below (simplified by not showing the internal structure of the two DPs):

In a structure such as (20), the complement the suspect is said to be the internal argument of the verb arrested (in the sense that it is the argument contained within the immediate V-bar projection of the verb, and hence is a sister of the verb), whereas the subject the police is the external argument of the verb arrested (in that it occupies a position external to the V-bar constituent which is the immediate projection of the verb arrested). The VP in (20) is then merged with the presenttense auxiliary [т have], forming the T-bar have the police arrested the suspect. Since a finite T has an [EPP] feature requiring it to have a subject of its own, the DP the police moves from being the subject of arrested to becoming the subject of [T have], forming The police have the police arrested the suspect. Merging the resulting TP with a null declarative complementiser in turn derives the structure shown in simplified form in (21) below:
(21)

Under the analysis in (21), the argument structure of the verb arrest is directly reflected in the internal structure of the VP which it heads, since the suspect is the internal (direct-object) argument of arrested and the police was initially merged as its external (subject) argument - and indeed a null copy of the police is left behind in spec-VP, marking the spec-VP position as associated with the police.

7.5 Thematic roles

In the previous section, we concluded that the argument structure of clauses is directly reflected in the internal syntactic structure of verb phrases. However, there is an important sense in which it is not enough simply to say that in a sentence such as (18b) The police have arrested the suspect the verb arrest is a predicate which has two arguments - the internal argument the suspect and the external argument the police. After all, such a description fails to account for the fact that these two arguments play very different semantic roles in relation to the act of arrest - i.e. it fails to account for the fact that the police are the individuals who perform the act (and hence get to verbally and physically abuse the suspect), and that the suspect is the person who suffers the consequences of the act (e.g. being manhandled, handcuffed, thrown into the back of a windowless vehicle and beaten up). Hence, any adequate account of argument structure should provide a description of the semantic role which each argument plays.

In research spanning half a century - beginning with the pioneering work of Gruber (1965), Fillmore (1968) and Jackendoff (1972) - linguists have attempted to devise a universal typology of the semantic roles played by arguments in relation to their predicates. In the table in (22) below are listed a number of terms used to describe some of these roles (the convention being that terms denoting semantic roles are CAPITALISED), and for each role an informal gloss is given, together with an illustrative example (in which the italicised expression has the semantic role specified):
(22) List of roles played by arguments with respect to their predicates

Role	Gloss	Example
THEME	Entity undergoing the effect of some action	Mary fell over
AGENT	Entity instigating some action	Debbie killed Harry
EXPERIENCER	Entity experiencing some psychological state	I like syntax
LOCATIVE	Place in which something is situated or takes place	He hid it under the bed
GOAL	Entity representing the destination of some other entity	John went home
SOURCE	Entity from which something moves	He returned from Paris
INSTRUMENT	Means used to perform some action	He hit it with a hammer

We can illustrate how the terminology in (22) can be used to describe the semantic roles played by arguments in terms of the following examples
(23) (a) [The FBI] arrested [Larry Luckless]
[AGENT] [THEME]
(b) [The suspect] received [a caution]
[GOAL] [THEME]
(c) [The audience] enjoyed [the play]
[EXPERIENCER] [THEME]
(d) [The president] went [to Boston]
[THEME] [GOAL]
(e) [They] stayed [in a hotel]
[THEME] [LOCATIVE]
(f) [The noise] came [from the house]
[THEME] [SOURCE]
Given that - as we see from these examples - the THEME role is a central one, it has become customary over the past two decades to refer to the relevant semantic roles as thematic roles; and since the Greek letter θ ($=$ theta) corresponds to $t h$ in English and the word thematic begins with $t h$, it has also become standard practice to abbreviate the expression thematic role to $\boldsymbol{\theta}$-role (pronounced theeta-role by some and thayta-role by others). Using this terminology, we can say (e.g.) that in (23a) the FBI is the AGENT argument of the predicate arrested, and that Larry Luckless is the THEME argument of arrested.

Thematic relations (like AGENT and THEME) have been argued to play a central role in the description of a range of linguistic phenomena. For example, it has been argued that the distribution of certain types of adverb is thematically determined. Thus, Gruber (1976) argues that adverbs like deliberately can only be used to modify agent arguments:
(24) (a) John (= AGENT) deliberately rolled the ball down the hill
(b) \quad The ball (= THEME) deliberately rolled down the hill

Likewise, Fillmore (1972, p. 10) argues that the adverb personally can only be associated with EXPERIENCER arguments:
(25) (a) Personally, I (= experiencer) don't like roses
(b) Personally, your proposal doesn't interest me (= EXPERIENCER)
(c) *Personally, I (= AGENT) hit you
(d) *Personally, you hit $m e$ (= THEME)

In a similar vein, Fillmore (1968, p. 10) argues that only constituents with the same thematic function can be coordinated:
(26) (a) John (= AGENT) broke the window
(b) A hammer (= INSTRUMENT) broke the window
(c) ??John (= AGENT) and a hammer (= INSTRUMENT) broke the window

And Jackendoff (1972) argues at length that a number of constraints on passive structures can be accounted for in thematic terms. For example, he argues (1972, p. 44) that the ill-formedness of passive sentences like:
(27) (a) *Five dollars are cost by this book
(b) *Two hundred pounds are weighed by Bill
is attributable to violation of the following condition (formulated in thematic terms):

Passive Thematic Hierarchy Condition

The passive by-phrase must be higher on the Thematic Hierarchy than the superficial subject

The hierarchy referred to in (28) is that in (29) below:

```
Thematic Hierarchy
AGENT > LOCATIVE/SOURCE/GOAL > THEME
```

Jackendoff maintains that the by-phrase in both examples in (27) is a THEME argument of the relevant verb, whereas the superficial subject is a locative argument. Since theme is lower on the hierarchy (29) than locative, sentences like (27) violate the condition (28) and so are ungrammatical.

If we look closely at the examples in (23), we see a fairly obvious pattern emerging. Each of the bracketed argument expressions in (23) carries one and only one θ-role, and no two arguments of any predicate carry the same θ-role. Chomsky (1981) suggested that these thematic properties of arguments are the consequence of a principle of Universal Grammar traditionally referred to as the $\boldsymbol{\theta}$-criterion, and outlined in (30) below:
(30) Theta-criterion/ $\boldsymbol{\theta}$-criterion

Each argument bears one and only one θ-role, and each θ-role is assigned to one and only one argument (Chomsky 1981, p. 36)

A principle along the lines of (30) has been assumed (in some form or other) in much subsequent work.

However, a question which arises from (30) is how θ-roles are assigned to arguments. It seems clear that in V-bar constituents of the form verb+complement, the
thematic role of the complement is determined by the semantic properties of the verb. As examples like ($23 \mathrm{a}-\mathrm{c}$) illustrate, the θ-role associated with complements is often that of THEME (though this is not always the case - e.g. the complement me of the verb bother in Personally, it doesn't bother me has the thematic role of experiencer). However, the question of how subjects are assigned θ-roles is more complex.

Marantz (1984, pp. 23ff.) and Chomsky (1986a, pp. 59-60) argue that although verbs directly assign θ-roles to their internal arguments (i.e. complements), it is not the verb but rather the whole verb+complement (i.e. V-bar) expression which determines the θ-role assigned to its external argument. The evidence they adduce in support of this conclusion comes from sentences such as:
(31) (a) John threw a ball
(b) John threw a fit
(32) (a) John broke the window
(b) John broke his arm

Although the subject of the verb threw in both (31a) and (31b), John plays a different thematic role in the two sentences - that of AGENT in the case of threw a ball, but that of EXPERIENCER in threw a fit. Likewise, although the subject of the verb broke in both (32a) and (32b), John plays the role of AGENT in (32a) but that of EXPERIENCER on the most natural (accidental arm-breaking) interpretation of (32b). From examples such as these, Marantz and Chomsky conclude that the thematic role of the subject is not determined by the verb alone, but rather is compositionally determined by the whole verb+complement structure - i.e. by V-bar. On this view, a verb assigns a θ-role directly to its internal argument, but only indirectly (as a compositional function of the semantic properties of the overall V-bar) to its external argument. To use the relevant technical terminology, we can say that predicates directly $\boldsymbol{\theta}$-mark their complements, but indirectly $\boldsymbol{\theta}$-mark their subjects/specifiers.

A related observation is that auxiliaries seem to play no part in determining the assignment of θ-roles to subjects. For example, in sentences such as:
(33) (a) He will throw the ball/a fit
(b) He was throwing the ball/a fit
(c) He had been throwing the ball/a fit
(d) He might have been throwing the ball/a fit
the thematic role of the subject he is determined purely by the choice of V-bar constituent (i.e. whether it is throw the ball or throw a fit), and is not affected in any way by the choice of auxiliary. Clearly, any theory of θ-marking should offer us a principled answer to questions such as the following: how are θ-roles assigned? Why do some constituents (e.g. verbs) play a key role in θ-marking, while others (e.g. auxiliaries) do not?

We can provide a principled answer to these questions in the following terms. Let us assume that θ-roles are assigned to arguments via merger with a predicative
expression (i.e. an expression headed by an item which functions as a predicate e.g. a verb). In the light of this observation, consider our earlier sentence (18b) The police have arrested the suspect. Since the verb arrested is a predicate which selects a THEME complement, the complement the suspect will be assigned the θ-role of THEME argument of arrest when the verb merges with its complement. Since arrest is a predicate which (in addition to requiring a THEME complement) also requires an AGENT external argument, the subject the police will be assigned the θ-role of AGENT argument of arrest when it merges with the V-bar arrested the suspect. The resulting VP the police arrested the suspect is then merged with the auxiliary have to form the T-bar have the police arrested the suspect. Because a finite T has an [EPP] feature requiring it to have a specifier, the subject the police raises to spec-TP, deriving The police have the police arrested the suspect. However, the subject the police does not receive any θ-role from the auxiliary have, since auxiliaries are not predicates (unlike main verbs) and hence do not θ mark their subjects. The resulting TP is ultimately merged with a null declarative complementiser to derive the structure associated with (18b) The police have arrested the suspect.

Our discussion here suggests that thematic considerations lend further support to the VP-Internal Subject Hypothesis. By positing that subjects originate internally within VP, we can arrive at a unitary and principled account of θ-marking in terms of sisterhood, in that an argument is θ-marked by a predicative expression which is its sister: e.g. the verb arrested in (21) θ-marks its sister argument (complement) the suspect, and the V-bar arrested the suspect θ-marks its sister (subject) argument the police.

7.6 Unaccusative predicates

The overall conclusion to be drawn from our discussion so far is that subjects originate internally within VP, as θ-marked arguments of the verb. In all the structures we have looked at until now, the verb phrase has contained both a complement and a specifier (the specifier being the subject of the verb). However, in this and subsequent sections we look at VPs containing a verb and a complement but no specifier, and where it is the complement of the verb which subsequently moves to spec-TP.

One such type of VP are those headed by a special subclass of intransitive verbs which are known as unaccusative predicates for reasons which will become apparent shortly. In this connection, consider the syntax of the italicised arguments in structures such as the following:
(34) (a) There have arisen several complications
(b) There could have occurred a diplomatic incident
(c) There remains little hope of finding survivors

The fact that the italicised expressions are positioned after the bold-printed verbs suggests that they function as the complements of the relevant verbs - and indeed there is syntactic evidence in support of this view. Part of the evidence comes from their behaviour in relation to a constraint on movement operations discovered by Huang (1982) which we discussed in $\S 6.7$ and characterised as follows:

Constraint on Extraction Domains/CED

Only complements allow material to be extracted out of them, not specifiers or adjuncts.
In the light of Huang's CED constraint, consider a sentence such as:
(36) How many survivors does there remain [some hope of finding how many survivors]?

Here, the wh-phrase how many survivors has been extracted (via wh-movement) out of the bracketed expression some hope of finding how many survivors. Given that the Condition on Extraction Domains tells us that only complements allow material to be extracted out of them, it follows that the bracketed expression in (36) must be the complement of the verb remain. By extension, we can assume that the italicised expressions in (34) are likewise the complements of the bold-printed verbs.

A further argument supporting the claim that unaccusative subjects are initially merged as complements comes from observations about quantifier stranding in the West Ulster variety of English. McCloskey (2000) notes that West Ulster English allows wh-questions such as (37) below which have the interpretation 'What are all the things that you got for Christmas?':
(37) (a) What all did you get for Christmas?
(b) What did you get all for Christmas?

He argues that when the universal quantifier all is used to modify a wh-word like what, wh-movement can either move the whole expression what all to the front of the sentence (as in 37a), or can move the word what on its own, thereby stranding the quantifier in situ (as in 37b). In the light of his observation, consider the following sentence: What happened all at the party last night?

The fact that the quantifier all is stranded in a position following the unaccusative verb happened suggests that the wh-expression what all originates in postverbal position as the complement of the verb happened. More generally, sentences like (38) provide empirical evidence in support of positing that unaccusative subjects are initially merged as complements.

However, the unaccusative complements italicised in structures like (34) differ in an important respect from the complements of typical transitive verbs. A typical transitive verb has a thematic subject and a thematic complement, and assigns accusative case to its complement (as in She hit him, where hit has the nominative agent subject she and the accusative theme complement him). However,
unaccusative structures like (34) differ from transitive structures in that they have a non-thematic there subject (which is non-thematic in the sense that it isn't a thetamarked argument of the verb, but rather is a pure expletive), and (in languages which have a richer case system than English) the italicised complement receives nominative ($=$ NOM) case, as the following Icelandic example (which Matthew Whelpton kindly asked Johannes Gisli Jónsson to provide for me) illustrates:

$$
\begin{align*}
& \text { bad hafa komið } \text { nokkrir }_{\mathrm{NOM}} \text { gestir }_{\mathrm{NOM}} \tag{39}\\
& \text { There have come some } \quad \text { guests }
\end{align*}
$$

Because they don't assign accusative case to their complements, such verbs are known as unaccusative predicates.

Not all intransitive verbs allow their arguments to be positioned after them, however - as we see from the ungrammaticality of sentences such as (40) below:
(40) (a) *When the Snail Rail train arrived five hours late, there complained many passengers
(b) *In the dentist's surgery, there groaned a toothless patient
(c) *Every time General Wynott Nukem goes past, there salutes a guard at the gate

Intransitive verbs like complain/groan/salute are known as unergative verbs: they differ from unaccusatives in that the subject of an unergative verb has the thematic role of an AGENT argument, whereas the subject of an unaccusative verb has the thematic property of being a THEME argument.

In addition to the contrast illustrated in (34) and (40) above, there are a number of other important syntactic differences between unaccusative verbs and other types of verb (e.g. unergative verbs or transitive verbs). For example, Alison Henry (1995) notes that in one dialect of Belfast English (which she calls dialect A) unaccusative verbs can have (italicised) postverbal subjects in imperative structures like:
(41)(a) Leave you now!
(b) Arrive you before 6 o'clock!
(c) Be going you out of the door when he arrives!

By contrast, other (e.g. unergative or transitive) verbs don't allow postverbal imperative subjects, so that imperatives such as (42) below are ungrammatical in the relevant dialect:
(42) (a) *Read you that book!
(b) *Eat you up!
(c) *Always laugh you at his jokes!

Additional evidence for positing that unaccusative verbs are syntactically distinct from other verbs comes from auxiliary selection facts in relation to earlier stages of English when there were two perfect auxiliaries (have and be), each taking a complement headed by a specific kind of verb. Unaccusative verbs differed from transitive or unergative verbs in being used with the perfect auxiliary be, as the sentences in (43) below (taken from various plays by Shakespeare) illustrate:
(43) (a) Mistress Page is come with me (Mrs Ford, The Merry Wives of Windsor, V.v)
(b) Is the duke gone? Then is your cause gone too (Duke, Measure for Measure, V.i)
(c) How chance thou art returned so soon? (Antipholus, The Comedy of Errors, I.ii)
(d) She is fallen into a pit of ink (Leonato, Much Ado About Nothing, IV.i)

We find a similar contrast with the counterparts of perfect havelbe in a number of other languages - e.g. Italian and French (cf. Burzio 1986), Sardinian (cf. Jones 1994), German and Dutch (cf. Haegeman 1994), and Danish (cf. Spencer 1991): see Sorace (2000) for further discussion. A last vestige of structures like (43) survives in present-day English structures such as All hope of finding survivors is now gone.

A further difference between unaccusative predicates and others relates to the adjectival use of their perfect-participle forms. As the examples below indicate, perfect-participle ($-n /-d$) forms of unaccusative verbs can be used adjectivally (to modify a noun), e.g. in sentences such as:
(44) (a) The train arrived at platform 4 is the delayed 8.28 for London Euston
(b) The vice squad arrested a businessman recently returned from Thailand
(c) Several facts recently come to light point to his guilt
(d) Brigadier Bungle is something of a fallen hero

By contrast, perfect-participle forms of (active) transitive verbs or unergative verbs cannot be used in the same way, as we see from the ungrammaticality of examples like (45) below:
(45) (a) *The man committed suicide was a neighbour of mine
(b) *The thief stolen the jewels was never captured
(c) *The man overdosed was Joe Dough
(d) *The yawned student eventually fell asleep in class

In this respect, unaccusative verbs resemble passive participles, which can also be used adjectivally (cf. a changed man, a battered wife, a woman arrested for shoplifting etc.). Additional syntactic differences between unaccusative verbs and others have been reported for other languages (see e.g. Burzio 1986 on ne cliticisation in Italian, and Contreras 1986 on bare nominals in Spanish).

We thus have a considerable body of empirical evidence that unaccusative subjects behave differently from subjects of other (e.g. unergative or transitive) verbs. Why should this be? The answer given in work dating back to Burzio (1986) is that the subjects of unaccusative verbs do not originate as the subjects of their associated verbs at all, but rather as their complements, and that unaccusative structures with postverbal arguments involve leaving the relevant argument in situ in VP-complement position - e.g. in unaccusative expletive structures such as (34) above, and in Belfast English unaccusative imperatives such as (41). This being so, a sentence such as (34a) There have arisen several complications will be derived as follows. The quantifier several merges with the noun complications to
form the QP several complications. This is merged as the complement of the unaccusative verb arisen, forming the VP arisen several complications. The resulting VP is merged with the auxiliary have to form the T-bar shown in simplified form below:

The [EPP] feature carried by the finite T constituent have requires it to have a nominal expression as its specifier. This requirement is satisfied by merging expletive there in spec-TP. The resulting TP there have arisen several complications is then merged with a null declarative-force complementiser to form the CP (47) below:

And (47) is the structure of (34a) There have arisen several complications.
However, an alternative way for the T constituent in (46) to satisfy the [EPP] requirement to have a nominal specifier is for T to attract a nominal to move to spec-TP. In accordance with the Attract Closest Principle, T will attract the closest nominal within the structure containing it. Since the only nominal in (46) is the QP several complications, T therefore attracts this QP to move to spec-TP in the manner shown in simplified form in (48) below:

The type of movement involved is the familiar A-movement operation which moves an argument from a position lower down in a sentence to become the structural subject (and specifier) of TP. The resulting TP in (48) is subsequently merged with a null complementiser marking the declarative force of the sentence, so generating the structure associated with Several complications have arisen.

The A-movement analysis of unaccusative subjects outlined in (48) above allows us to provide an interesting account of sentence pairs like that in (49) below:
(49) (a) All hope of finding survivors has gone
(b) All hope has gone of finding survivors

Since Go is an unaccusative verb, the QP all hope offinding survivors will originate as the complement of gone. Merging gone with this QP will derive the VP gone all hope of finding survivors. The resulting VP is merged with the T constituent has to form the T-bar has gone all hope of finding survivors. Since T has an [EPP] feature requiring it to project a specifier, the QP all hope of finding survivors is raised to spec-TP, leaving an (italicised) copy behind in the position in which it originated. Merging the resulting TP with a null complementiser marking the declarative force of the sentence derives the structure shown in simplified form in (50) below:
$[\mathrm{CP}[\mathrm{C} \varnothing][\mathrm{TP}[\mathrm{QP}$ All hope of finding survivors] [T has] [vp [v gone]
[QP all hope of finding survivors]]]]

In the case of (49a), the whole of the QP all hope of finding survivors is spelled out in the bold-printed spec-TP position it moves to, and the italicised copy of the moved QP in VP-complement position is deleted in its entirety - as shown in simplified form in (51) below:

> [СР [С ø] [тР [QP All hope of finding survivors] [T has] [vp [v gone]
> [QP all hope of finding survivors]]]]

In the case of (49b), the quantifier all and the noun hope are spelled out in the bold-printed position they move to in (50), and the PP of finding survivors is spelled out in the VP-complement position in which it originates - as shown in (52) below:

> [СР [С ø] [те [QP All hope ef finding survivers] [T has] [vp [v gone]
> [QP all hope of finding survivors]]]]
(52) thus presents us with another example of the discontinuous/split spellout phenomenon highlighted in §6.3. It also provides evidence in support of taking Amovement (like other movement operations) to be a composite operation involving copying and deletion.

7.7 Passive predicates

A class of predicates which are similar in some respects to unaccusative predicates are passive predicates. Traditional grammarians maintain that the bold-printed verbs in sentences such as the (a) examples in (53)-(55) below are in the active voice, whereas the italicised verbs in the corresponding (b) sentences are in the passive voice (and have the status of passive participles):
(53) (a) Hundreds of passers-by saw the attack
(b) The attack was seen by hundreds of passers-by
(54) (a) Lex Luthor stole the kryptonite
(b) The kryptonite was stolen by Lex Luthor
(55) (a) They took everything
(b) Everything was taken

There are four main properties which differentiate passive sentences from their active counterparts. One is that passive (though not active) sentences generally require the auxiliary BE. Another is that the main verb in passive sentences is in the passive participle form (cf. seen/stolen/taken), which is generally homophonous with the perfect-participle form. A third is that passive sentences may (though need not) contain a by-phrase in which the complement of by plays the same thematic role as the subject in the corresponding active sentence: for example, hundreds of passers-by in the active structure (53a) serves as the subject of saw the attack, whereas in the passive structure (53b) it serves as the complement of the preposition by (though in both cases it has the thematic role of EXPERIENCER argument of see). The fourth difference is that the expression which serves as the complement of an active verb surfaces as the subject in the corresponding passive construction: for example, the attack is the complement of saw in the active structure (53a), but is the subject of was in the passive structure (53b). Since this chapter is concerned with A-movement (and hence the syntax of subjects), we focus on the syntax of the superficial subjects of passive sentences (setting aside the derivation of by-phrases).

Passive predicates resemble unaccusatives in that alongside structures like those in (56a)-(58a) below containing preverbal subjects they also allow expletive structures like (56b)-(58b), in which the italicised argument can be postverbal (providing it is an indefinite expression):
(56) (a) No evidence of any corruption was found
(b) There was found no evidence of any corruption
(57) (a) Several cases of syntactophobia have been reported
(b) There have been reported several cases of syntactophobia
(58) (a) A significant change of policy has been announced
(b) There has been announced a significant change of policy

How can we account for the dual position of the italicised expression in such structures?

The answer given within the framework outlined here is that a passive subject is initially merged as the thematic complement of the main verb (i.e. it originates as the complement of the main verb as in (56b)-(58b) and so receives the θ-role which the relevant verb assigns to its complement), and subsequently moves from VP-complement position into TP-specifier position in passive sentences such as (56a)-(58a). On this view, the derivation of sentences like (56) will proceed as follows. The noun corruption merges with the quantifier any to form the QP any corruption. The resulting QP then merges with the preposition of to form the PP of any corruption. This PP in turn merges with the noun evidence to form the NP evidence of any corruption. The resulting NP is merged with the negative quantifier no to form the QP no evidence of any corruption. This QP is merged as the complement of the passive verb found (and thereby assigned the thematic role of THEME argument of found) to form the VP found no evidence of any corruption. The VP thereby formed is merged with the auxiliary was forming the T-bar was found no evidence of any corruption. The auxiliary [т was] carries an [EPP] feature requiring it to have a specifier. This requirement can be satisfied by merging the expletive pronoun there in spec-TP, deriving the TP There was found no evidence of any corruption. Merging this TP with a null complementiser marking the declarative force of the sentence will derive the structure shown in simplified form in (59) below:

However, an alternative way of satisfying the [EPP] feature of T is not to merge there in spec-TP but rather to passivise the QP no evidence of any corruption i.e. to move it from being the thematic object of found to becoming the structural subject of was. Merging the resulting TP with a null complementiser which marks the sentence as declarative in force derives the CP shown in simplified form in (60) below (with the dotted arrow showing the movement which took place on the TP cycle):
(60)

The arrowed movement operation (traditionally called passivisation) by which QP moves from thematic complement position into structural subject position turns out to be a particular instance of the more general A-movement operation which serves to create structural subjects (i.e. to move arguments into spec-TP in order to satisfy the [EPP] feature of T). Note that an assumption implicit in the analyses in (59) and (60) is that verb phrases headed by intransitive passive participles remain subjectless throughout the derivation, because the T constituent was is the head which requires a structural subject by virtue of its [EPP] feature, not the verb found (suggesting that it is functional heads like T and C which trigger movement, not lexical heads like V).

In the case of (56a) No evidence of any corruption was found, the whole of the QP no evidence of any corruption is spelled out in the bold-printed specTP position in (60) at the head of the movement chain, and all the material in the italicised VP-complement position at the foot of the movement chain is deleted. However, in $\S 6.3$ we saw that some structures in which a moved noun has a prepositional complement may allow discontinuous spellout, with the noun and any preceding expressions modifying it being spelled out at the head of the movement chain, and its prepositional or clausal complement being spelled out at the foot of the movement chain. Discontinuous spellout is also permitted in (60), allowing for the possibility of the quantifier no and the noun evidence being spelled out in the bold-printed position at the head of the movement chain, and the PP of any corruption being spelled out in the italicised VP-complement position at the foot of the movement chain, so deriving the structure associated with the sentence in (61) below:

No evidence was found of any corruption

Sentences such as (61) thus provide us with empirical evidence that passive subjects originate as complements, on the assumption that of any corruption is a remnant of the preposed complement no evidence of any corruption.

Further evidence that passive subjects originate as complements comes from the distribution of idiomatic nominals like those italicised below:
(62) (a) They paid little heed to what he said
(b) Little heed was paid to what he said
(63) (a) They paid due homage to General Ghouly
(b) Due homage was paid to General Ghouly
(64) (a) The FBI kept close tabs on the CIA
(b) Close tabs were kept on the CIA by the FBI

In expressions such as pay heed/homage to and keep tabs on, the verb pay/keep and the noun expression containing heed/tabs/homage together form an idiom. Given our arguments in $\S 7.3$ that idioms are unitary constituents, it is apparent that the bold-printed verb and the italicised noun expression must form a unitary constituent when they are first introduced into the derivation. This will clearly be the case if we suppose that the noun expression originates as the complement of the associated verb (as in (62a)-(64a)), and becomes the subject of the passive auxiliary was/were in (62b)-(64b) via passivisation/A-movement.

Additional evidence that passive subjects are initially merged as complements comes from quantifier stranding in West Ulster English structures such as the following (from McCloskey 2000, p. 72):

> What was said all at the meeting?

Recall from our earlier discussion of sentences like (37) that McCloskey argues that stranded quantifiers modifying wh-expressions are left behind via movement of the wh-expression without the quantifier. This being so, sentences such as (65) provide evidence that what all originates as the complement of the passive participle said (with what subsequently being passivised on its own, stranding all) - and more generally, that passive subjects are initially merged as thematic objects.

A claim which is implicit in the hypothesis that passive subjects originate as thematic objects is that the subjects of active verbs and the complements of passive verbs have the same thematic function. Evidence that this is indeed the case comes from the traditional observation that the two are subject to the same pragmatic restrictions on the choice of expression which can occupy the relevant position, as we see from sentences such as the following (where ?, ?! and ! mark increasing degrees of pragmatic anomaly):
(66) (a) The students/?the camels/?!The flowers/!The ideas were arrested
(b) They arrested the students/?the camels/?!the flowers!!the ideas

We can account for this if we suppose that pragmatic restrictions on the choice of admissible arguments for a given predicate depend jointly on the semantic properties of the predicate and the thematic role of the argument: it will then follow that two expressions which fulfil the same thematic role in respect of a given predicate will be subject to the same pragmatic restrictions on argument choice.

Since passive subjects like those italicised in (66a) originate as complements, they will have the same θ-role (and hence be subject to the same pragmatic restrictions on argument choice) as active complements like those italicised in (66b).

We can arrive at the same conclusion (that passive subjects originate as thematic complements) on theoretical grounds. It seems reasonable to suppose that principles of UG correlate thematic structure with syntactic structure in a uniform fashion: this assumption is embodied in the Uniform Theta Assignment Hypothesis/UTAH argued for at length in Baker (1988). Given UTAH, it follows that two arguments which fulfil the same thematic function with respect to a given predicate will occupy the same initial position in the syntax. Hence if passive subjects have the same θ-role as active objects, it is plausible to suppose that passive subjects originate in the same VP-complement position as active objects.

7.8 Long-distance passivisation

Thus far, the instances of passivisation which we have looked at have been clause-internal in the sense that they have involved movement from complement to subject position within the same clause/TP. However, passivisation can also apply across certain types of clause boundary - as can be illustrated in relation to structures such as (67) and (68) below:
(67) (a) There are alleged to have been stolen a number of portraits of the queen
(b) A number of portraits of the queen are alleged to have been stolen
(68) (a) There are believed to have occurred several riots
(b) Several riots are believed to have occurred

It seems clear that the italicised expression in each case is the thematic complement of the bold-printed verb in the infinitive clause, so that a number of portraits of the queen is the thematic complement of the passive verb stolen in (67), and several riots is the thematic complement of the unaccusative verb occurred in (68). In (67a) and (68a), the italicised argument remains in situ as the complement of the bold-printed verb; but in (67b) and (68b) the italicised argument moves to become the structural subject of the auxiliary are. Let's look rather more closely at the derivation of sentences like (68a) on the one hand and (68b) on the other.
(68a) is derived as follows. The quantifier several merges with the noun riots to form the QP several riots. This QP merges with (and is θ-marked by) the unaccusative verb occurred to form the VP occurred several riots. The resulting VP merges with the perfect auxiliary have to form the AUXP have occurred several riots. This in turn merges with the infinitival tense particle to, so forming the TP to have occurred several riots. The resulting TP merges with the passive verb believed to form the VP believed to have occurred several riots. This then merges with the auxiliary are to form the T-bar are believed to have occurred
several riots. A finite T like are has an [EPP] feature requiring it to have a specifier, and one way of satisfying this requirement is for expletive there to be merged in spec-TP, forming the TP shown in (69) below (simplified by not showing intermediate projections, and by not showing the internal structure of the QP several riots):

```
[Tт There [T are] [vp [v believed] [TP [T to] [auXP [aux have]
[vp [v occurred] [QP several riots]]]]]]
```

However, an alternative way of satisfying the [EPP] requirement for are to have a structural subject is for the closest nominal expression it c-commands (namely, several riots) to passivise (i.e. undergo A-movement) and thereby move into spec-TP, as shown by the dotted arrow in (70) below (where t is a trace copy of the moved QP several riots):

The kind of passivisation operation shown by the dotted arrow in (70) is sometimes termed long-distance passivisation, since it involves moving an argument out of a lower TP into the specifier position in a higher TP. Since operations which move a nominal into spec-TP are instances of A-movement, long-distance passivisation is yet another instance of the familiar A-movement operation. The TPs in $(69,70)$ will subsequently be merged with a null complementiser marking the declarative force of the sentence, so deriving the overall structure associated with (68a,b).

A key assumption made in $(69,70)$ is that the to-infinitive complement of the verb believed is a TP and not a CP. This is in line with our assumption in $\S 4.8$ that believe is an ECM verb when used with an infinitival complement, and that its complement is a defective clause (lacking the CP layer found in canonical clauses) and hence a TP. Recall that we have independent evidence from contrasts such as the following:
(71) (a) Nobody intended [you to get hurt]
(b) You weren't intended [to get hurt]
(72) (a) Nobody intended [for you to get hurt]
(b) *You weren't intended [for to get hurt]
that an (italicised) expression contained within a TP complement like that bracketed in (71) can passivise, but an expression contained within a CP complement like that bracketed in (72) cannot. Consequently, the fact that several riots can passivise in (70) suggests that the to-infinitive complement of believed must be a TP, not a CP.

Evidence that we need to posit a long-distance passivisation operation comes from the fact that idiomatic nominals can undergo long-distance passivisation, as in the following examples:
(73) (a) Little heed is thought to have been paid to what he said
(b) Close tabs are alleged to have been kept on the FBI
(c) All hell is expected to break loose
(d) The shit is said to have hit the fan

The italicised idiomatic nominals are normally used as the complement of the bold-printed verbs in $(73 \mathrm{a}, \mathrm{b})$ and as the subject of the bold-printed expressions in ($73 \mathrm{c}, \mathrm{d}$). So how do they come to be used as the subject of a higher passive clause in sentences like (73)? The answer is that they undergo long-distance passivisation. Note, incidentally, that sentences like (73c,d) suggest that longdistance passivisation can move subjects as well as objects. This is because (in conformity with the Attract Closest Principle), passivisation involves movement of the closest nominal which the relevant tense auxiliary c-commands. In a clause like (73a) in which the verb paid projects a complement but no subject, the auxiliary will trigger preposing of the complement little heed on the TP cycle because this is the closest nominal c-commanded by the auxiliary is - the relevant movement being shown in skeletal form in (74a) below; by contrast, in a clause like (73c) in which the verb break projects a subject all hell, the auxiliary is will trigger passivisation of all hell because this is the closest nominal c-commanded by is - as shown in (74b) below:

 4

Although we have referred to the movement operation involved in structures like (74) as long-distance passivisation, it is in fact our familiar A-movement operation by which T attracts the closest nominal expression which it c-commands to move to spec-TP. (An incidental detail to note is that the TPs in (74) are subsequently merged with a null complementiser marking the declarative force of the sentence.)

7.9 Raising

A further type of structure which involves movement of an argument expression out of one clause to become the subject of another clause is illustrated by the (b) examples in (75)-(78) below:
(75) (a) There does seem [to remain some hope of peace]
(b) Some hope of peace does seem [to remain]
(76) (a) There does appear [to have been made remarkably little progress on disarmament]
(b) Remarkably little progress on disarmament does appear [to have been made]
(77) (a) It would seem [that Senator Slyme has been lying to Congress]
(b) Senator Slyme would seem [to have been lying to Congress]
(78) (a) It would appear [that they have underestimated her]
(b) They would appear [to have underestimated her]

In (75), the italicised expression some hope of peace is the thematic complement of the unaccusative predicate remain; it remains in situ in the expletive structure (75a), but raises to become the subject of the seem-clause in (75b). In (76), the italicised expression remarkably little progress on disarmament is the thematic complement of the passive verb made; it remains in situ in the expletive structure (76a) but raises to become the subject of the appear-clause in (76b). In (77), the italicised expression Senator Slyme is the thematic subject of the verb lying: if the complement clause is a finite clause as in (77a), it surfaces as the subject of the complement clause; but if the complement clause is infinitival as in (77b), it surfaces as the subject of the seem clause. Likewise, in (78), the italicised pronoun they is the thematic subject of the verb underestimate: if the complement clause is finite as in (78a), it surfaces as the subject of the complement clause; if the complement clause is infinitival as in (78b), it surfaces as the subject of the appear clause.

Examples like (75)-(78) suggest that verbs like seem and appear resemble passive predicates in that they allow an expression which is a theta-marked argument of a predicate in a lower clause to raise to become the subject of the seem/appearclause. Given this assumption, a sentence such as (75b) will have the following simplified derivation. At the point where the QP some hope of ø peace has been formed (the noun peace having been merged with a null quantifier), it will be merged with (and θ-marked by) the verb remain to form the VP remain some hope of \varnothing peace. This VP is then merged with the infinitival tense particle to to form the TP to remain some hope of \varnothing peace. The resulting infinitival TP is subsequently merged with the verb seem to form the VP seem to remain some hope of \varnothing peace. This in turn is merged with the finite tense auxiliary DO to form the T-bar does seem to remain some hope of ø peace. A finite T has an [EPP] feature requiring it to have a subject; one way of satisfying this requirement is to merge expletive there with the resulting T-bar, to form the TP shown in simplified form in (79) below:

$$
\begin{equation*}
\text { [} \left.\left.{ }_{\mathrm{TP}} \text { There }\left[\mathrm{T} \text { does] [vp [v seem] [}{ }_{\mathrm{TP}}[\mathrm{~T} \text { to] [} \mathrm{vp} \text { [v remain] some hope of } \varnothing \text { peace }]\right]\right]\right] \tag{79}
\end{equation*}
$$

An alternative way of satisfying the [EPP] feature of ${ }_{T}$ does] is to move the closest nominal c-commanded by does ($=$ the QP some hope of ø peace) from being the thematic complement of remain to becoming the structural subject of does, as shown in simplified form in (80) below:

The type of movement operation arrowed in (80) is traditionally known as raising (because it raises an argument out of a lower clause to become the subject of a higher clause) but in reality it turns out to be yet another instance of the more general A-movement operation by which T attracts the closest nominal which it c-commands to move to spec-TP. Words like seem/appear (when used with an infinitival complement) have the property that the subject of the seem/appearclause is created by being raised out of a complement clause, and so (for this reason) are known as raising predicates. The parallels between raising in structures like (80) and long-distance passivisation in structures like (70) should be obvious. (A minor detail to be tidied up is that the TPs in (79) and (80) are subsequently merged with a null complementiser marking the sentence as declarative in force.)

7.10 Comparing raising and control predicates

It might at first sight seem tempting to conclude from our discussion of long-distance passivisation structures like (74) and raising structures like (80) that all clauses containing a structure of the form verb+to+infinitive have a similar derivation to that in (74) and (80) in which some expression is raised out of the infinitive complement to become the subject of the main clause. However, any such conclusion would be undermined by our claim in $\S 4.2$ and $\S 4.7$ that some verbs which take to+infinitive complements are control predicates. In this connection, consider the difference between the two types of infinitive structure illustrated below:
(81) (a) He does seem [to scare them]
(b) He does want [to scare them]

As used in (81), the verb seem is a raising predicate, but the verb want is a control predicate. We will see that this reflects the fact that the verbs seem and want differ in respect of their argument structure. We can illustrate this by sketching out the derivation of the two sentences.

In the raising structure (81a), the verb scare merges with (and assigns the EXPERIENCER θ-role to) its internal argument/thematic complement them. The resulting V-bar scare them then merges with (and assigns the agent θ-role to) its external argument/thematic subject he. The resulting VP he scare them is then merged with the infinitival tense particle to, so forming the TP to he scare them. This in turn merges with the raising verb seem to form the VP seem to he scare them. The resulting VP seem to he scare them is subsequently merged with the (emphatic) auxiliary does. The [EPP] feature carried by [${ }_{\mathrm{T}}$ does] requiring it to have a structural subject triggers raising of the closest nominal c-commanded by does (namely he) from being thematic subject of scare them to becoming structural subject of does - as shown in schematic form below:

The resulting TP is then merged with a null complementiser marking the sentence as declarative in force.

A key assumption made in the raising analysis in (82) is that the verb seem (as used there) is a one-place predicate whose only argument is its infinitival TP complement, to which it assigns an appropriate θ-role - perhaps that of THEME argument of seem. This means that the VP headed by seem has no thematic subject: note, in particular, that the verb seem does not θ-mark the pronoun he, since he is θ-marked by scare, and the θ-CRITERION (30) rules out the possibility of any argument being θ-marked by more than one predicate. Nor does the VP headed by seem have a structural subject at any stage of derivation, since he raises to become the subject of the TP containing does, not of the VP containing seem.

Now let's turn to consider the derivation of the control infinitive structure (81b) He does want to scare them. As before, the verb scare merges with (and assigns the EXPERIENCER θ-role to) its internal argument (i.e. thematic complement) them. The resulting V-bar scare them then merges with (and assigns the agent θ-role to) its external argument. Given the assumption we made in $\S 4.2$ that control infinitives have a particular kind of null pronominal subject known as 'big PRO', the thematic subject of scare them will be PRO, and this will be merged in spec-VP (in accordance with the VP-Internal Subject Hypothesis), and thereby be assigned the θ-role of Agent argument of scare. The resulting VP PRO scare them then merges with infinitival to, forming the TP to PRO scare them. Given the conclusion we drew in $\S 4.8$ that control infinitives are CPs, this TP will in turn merge with a null infinitival complementiser to form the CP ø to PRO scare them. The CP thereby formed serves as the internal argument (and thematic complement) of the verb want, so is merged with want and thereby assigned the θ-role of THEME argument of want. The resulting V-bar want ø to PRO scare them then merges with its external argument (and thematic subject) $h e$, assigning he the thematic role of EXPERIENCER argument of want. The resulting VP he want \varnothing to PRO scare them is then merged with the tense auxiliary DO, forming the T-bar does he want \varnothing to PRO scare them. The [EPP] feature carried by [T does] requires it to have a structural subject, and this requirement is satisfied by moving the closest noun or pronoun expression c-commanded by does (namely the pronoun he) to become the structural subject of does, as shown in simplified form below:

The TP in (83) is then merged with a null complementiser marking the sentence as declarative in force. The resulting structure satisfies the $\boldsymbol{\theta}$-criterion (which requires each argument to be assigned a single θ-role, and each θ-role to be
assigned to a single argument), in that he is the EXPERIENCER argument of want, the bracketed CP in (83) is the THEME complement of want, PRO is the AGENT argument of scare, and them the EXPERIENCER argument of scare.

The analysis of control predicates presented here differs from that presented in chapter 4 in that it assumes that the PRO subject of a control infinitive like that bracketed in (81b) He does want to scare them is merged in spec-VP, and not (as assumed in chapter 4) in spec-TP. As we have seen, the requirement for PRO to be generated in spec-VP follows from the Predicate-Internal Argument Hypothesis (19) which posits that arguments are generated internally to a projection of their predicate, so that PRO (by virtue of being the thematic subject of scare) is generated as the specifier of the VP headed by scare. Baltin (1995, p. 244) provides an empirical argument in favour of claiming that the PRO subject is positioned in spec-VP in control infinitives. He notes that under the spec-VP analysis in (83), PRO will be positioned between to and scare rather than between want and to (as would be the case if PRO were in spec-TP), and hence PRO will not block to from cliticising onto want forming wanta/wanna. The fact that the contraction is indeed possible - as we see from (84) below: He does wanta/wanna scare them
leads Baltin to conclude that PRO is merged in spec-VP, and remains there throughout the derivation - at no point becoming the subject of infinitival to. Of course, an ancillary assumption which has to be made is that the null C which intervenes between want and to in (83) does not block contraction. One way of accounting for this might be to assume that to first cliticises onto the null C constituent introducing the complement clause in (83), and then subsequently (together with the null complementiser to which it has attached) cliticises onto the verb want.

An important conclusion which Baltin draws from his analysis of wanna contraction is that infinitival to in control structures does not have an [EPP] feature, and hence does not have a specifier at any stage of derivation. In much the same way, we can argue that the possibility of gonna contraction in raising structures such as (85) below:
Little heed is gonna be paid to my proposal
provides evidence in support of positing that infinitival to in raising structures does not have an [EPP] feature either. Prior to passivisation, (85) will have the structure shown informally in (86) below:

> [т is] [vp [v going] [те [т to] be paid little heed to my proposal]]

If the idiomatic nominal little heed is raised directly to become the subject of is without first becoming the subject of to, (85) will have the structure shown in (87) below after passivisation has applied:

The absence of any constituent intervening between to and going means that to can cliticise onto going, forming gonna. But if to in raising/passive infinitive structures has an [EPP] feature, the idiomatic nominal little heed will have to raise to become the specifier of infinitival to before becoming the subject of $i s$, so that after passivisation we will have the structure (88) below:

> [TP little heed [T is] [vp [v going] [TP little heed [T to] be paid little heed to my proposal]]]

We would then expect that the presence of a trace copy of little heed intervening between going and to should block contraction, and we would therefore wrongly predict that gonna contraction is not possible, and hence that (85) is ungrammatical . The fact that contraction is indeed possible suggests that infinitival to does not have an [EPP] feature in passive infinitive structures. Moreover, Bošković (2002b) argues that the ungrammaticality of double there structures like:
(89) (a) *There seems [there to be a problem]
(b) *There was reported [there to be a problem]
provides further evidence that infinitival to in raising/passive structures does not have an [EPP] feature, since if it did we should expect the bracketed infinitive complements to allow an expletive subject of their own. Epstein and Seeley (1999) likewise argue that A-movement always takes place in a single step, and not in multiple (successive-cyclic) steps. Given Baltin's argument that to does not have an [EPP] feature in control infinitives either, the more general conclusion which these two sets of claims invite is that:
(90) A finite T has an [EPP] feature, but infinitival to does not

And indeed this assumption is implicit in the analyses outlined in (79), (80), (82), (83) and (87) above.

There are interesting parallels between the derivation of unaccusative structures like (91a) below (sketched in (48) above), passive structures like (91b) (sketched in (70) above) and raising structures like (91c) (sketched in (82) above):

In each of these structures, a (bold-printed) one-place predicate which has no external argument (and which therefore projects into an intransitive VP which has a complement but no subject) allows movement of the closest (italicised) constituent c-commanded by the underlined T constituent out of the containing VP into spec-TP. For instance, the VP headed by the unaccusative verb arisen in (91a)
has no subject and consequently allows its complement several complications to move out of its containing VP into spec-TP. Likewise, the VPs headed by the passive verb believed and the unaccusative verb occurred in (91b) have no subject of their own, and so allow several riots to move out of both VPs into spec-TP in the main clause. Similarly, the VP headed by the raising verb seem in (91c) has no subject of its own and so allows the pronoun he to move into the main-clause spec-TP position.

What all of this points to is that an intransitive (subjectless) VP allows a nominal c-commanded by its head verb to be attracted by a higher T constituent to move into spec-TP. However where a VP has a thematic subject of its own, it is this subject which raises to spec-TP (because the Attract Closest Principle requires T to attract the closest nominal which it c-commands to raise to spec-TP). So, for example, in (91c) above, it is the subject he of the VP headed by scare which raises to spec-TP and thereby becomes the subject of the present-tense auxiliary does. The same is true of a control structure like (92) below (repeated from (83) above):

Here, the pronoun he originates as the thematic subject of want, and hence raises to spec-TP by virtue of being the closest nominal c-commanded by [т does].

What this suggests is that the particular property of passive, unaccusative and raising predicates which enables them to permit A-movement of a nominal argument which they c-command is that they are intransitive and therefore do not project an external argument (so that the VP they head is subjectless). By contrast, verbs which project an external argument of their own (and hence occur in a VP which has a thematic subject) require this subject to be attracted by a higher T constituent to move into spec-TP. These distinct patterns of movement are a consequence of the Attract Closest Principle. (See Culicover and Jackendoff 2001 for arguments that control and raising predicates have a distinct syntax.)

Having looked at the syntax of control predicates on the one hand and raising predicates on the other, we end this chapter by looking briefly at the question of how we can determine whether a given predicate which selects an infinitival to complement is a control predicate or a raising predicate. In this connection, it should be noted that there are a number of syntactic differences between raising and control predicates which are a direct reflection of the different thematic properties of these two types of predicate. For example, raising predicates like seem can have expletive it/there subjects, whereas control predicates like want cannot:
(93) (a) It seems/* wants to be assumed that he lied to Congress
(b) There seem/*want to remain several unsolved mysteries
(The expletive nature of it in (93a) is shown by the fact that it cannot be substituted by a referential pronoun like this/that, or questioned by what? Likewise, the expletive nature of there in (93b) is shown by the fact that it cannot be substituted by a referential locative adverb like here, or questioned by where?) This is because control predicates like want are two-place predicates which project a thematic subject (an EXPERIENCER in the case of want, so that the subject of want must be an expression denoting an entity capable of experiencing desires), and non-referential expressions like expletive it/there are clearly not thematic subjects and so cannot be assigned a θ-role. By contrast, raising predicates like seem have no thematic subject, and hence impose no restrictions on the choice of structural subject in their clause, so allowing a (non-thematic) expletive subject.

Similarly, raising predicates like seem (but not control predicates like want) allow idiomatic subjects such as those italicised below:
(94) Whenever they meet, . . .
(a) all hell seems/* wants to break loose
(b) the fur seems/* wants to fly
(c) the cat seems/* ${ }^{*}$ wants to get his tongue

The ungrammaticality of sentences like *All hell wants to break loose can be attributed to the fact that want is a control predicate, and hence (in order to derive such a structure) it would be necessary to assume that all hell originates as the subject of want, and that break loose has a separate PRO subject of its own: but this would violate the requirement that (on its idiomatic use) all hell can only occur as the subject of break loose, and conversely break loose (in its idiomatic use) only allows all hell as its subject. By contrast, All hell seems to break loose is grammatical because seem is a raising predicate, and so all hell can originate as the subject of break loose and then be raised up to become the subject of the null tense constituent $\left[\begin{array}{c}\mathrm{T} \\ \varnothing\end{array}\right]$ in the seem clause. The null T agrees in person and number with the 3 Sg expression all hell, but because there is no overt auxiliary in the head T position of TP to spell out the relevant features, the tense and agreement features of T are spelled out on the verb seem (via the morphological operation of Affix Hopping), with the consequence that the main verb ultimately surfaces in the third-person-singular present-tense form seems.

A further property which differentiates the two types of predicate is that raising predicates like seem preserve truth-functional equivalence under passivisation, so that (95a) below is cognitively synonymous with (95b):
(95) (a) John seems to have helped Mary
(b) =Mary seems to have been helped by John

By contrast, control predicates like want do not preserve truth-functional equivalence under passivisation, as we see from the fact that (96a) below is not cognitively synonymous with (96b):
(96) (a) John wants to help Mary
(b) \neq Mary wants to be helped by John

Moreover, there are pragmatic restrictions on the choice of subject which control predicates like want allow (in that the subject generally has to be a rational being, not an inanimate entity) - as we see from (97) below (where ! marks pragmatic anomaly):

My cat!!My gesture wants to be appreciated
By contrast, raising predicates freely allow animate or inanimate subjects:
My cat/My gesture seems to have been appreciated
The different properties of the two types of predicate stem from the fact that control predicates like want θ-mark their subjects, whereas raising predicates like seem do not: so, since want selects an EXPERIENCER subject as its external argument (and prototypical EXPERIENCERS are animate beings), want allows an animate subject like my cat, but not an inanimate subject like my gesture. By contrast, since raising predicates like seem do not θ-mark their subjects, they allow a free choice of subject.

A final remark to be made is that although our discussion of raising and control predicates has revolved around verbs, a parallel distinction is found in adjectives. For example, in sentences such as:
(99) (a) John is likely to win the race
(b) John is keen to win the race
the adjective likely is a raising predicate and keen a control predicate. We can see this from the fact that likely allows expletive and idiomatic subjects, but keen does not:
(100) (a) There is likely/*keen to be a strike
(b) All hell is likely/*keen to break loose

This is one reason why throughout this chapter we have talked about different types of predicate (e.g. drawing a distinction between raising and control predicates) rather than different types of verb.

7.11 Summary

This chapter has primarily been concerned with the syntax of subjects. In $\S 7.2$ we argued that Belfast English structures such as There should some students get distinctions provide us with evidence that subjects originate internally within VP, and we noted that the claim that subjects originate internally
within VP is known as the VP-Internal Subject Hypothesis/VPISH. We also maintained that sentences such as Some students should get distinctions involve movement of some students from the specifier position within VP to the specifier position within TP, and we noted that the relevant movement operation is known as A-movement. In $\S 7.3$ we claimed that the syntax of quotative structures like 'It wasn't me', said Mary provides support for VPISH, if Mary remains in situ in the specifier position within VP. We suggested that idioms like All hell will break loose provide further empirical support for the VPISH, since the assumption that idioms are unitary constituents requires us to suppose that all hell originates as the subject of break loose (in the specifier position within VP) and from there is raised up (by application of A-movement) to become the subject/specifier of the TP headed by will. In $\S 7.4$ we argued that the VP-Internal Subject Hypothesis allows us to posit a uniform mapping between (semantic) argument structure and (initial) syntactic structure, if we suppose that all arguments of a predicate originate internally within a projection of the predicate. It then follows that in a sentence such as The police have arrested the suspect, the predicate arrested is merged with its internal argument (= complement) the suspect to form the V-bar arrested the subject, and then the resulting structure is merged with the external argument (= subject) of arrested to form the VP the police arrested the suspect. Because finite auxiliaries have an [EPP] feature requiring them to project a specifier, the subject the police then moves (via A-movement) from spec-VP to spec-TP, thereby becoming the subject of have. In $\S 7.5$ we saw that different arguments play different semantic roles with respect to their predicates, and that these have traditionally been described in terms of a set of thematic roles ($=\boldsymbol{\theta}$-roles) such as THEME, AGENT, EXPERIENCER, LOCATIVE, GOAL, SOURCE etc. We suggested that an argument is assigned a θ-role ($=\boldsymbol{\theta}$-marked) via merger with a predicative expression. Hence, in The police have arrested the suspect, the internal argument the suspect is assigned the θ-role of THEME argument of the predicate arrested via merger with arrested; likewise, the external argument the police is assigned the θ-role of AGENT via merger with the V-bar arrested the suspect. We noted that there are constraints on θ-marking imposed by the $\boldsymbol{\theta}$-criterion, which requires each argument to bear one and only one θ-role, and each θ-role assigned by a given predicate to be assigned to one and only one argument. In §7.6, we looked at the syntax of unaccusative predicates like arise/remain/occur etc. and argued that the argument of an unaccusative verb originates as its complement but differs from the complement of a transitive verb in that it receives nominative rather than accusative case. We highlighted a number of further differences between unaccusative predicates and other types of predicate (e.g. in relation to the position of subjects in Belfast English imperatives, and auxiliary selection in earlier varieties of English). In §7.7, we looked at the structure of simple passive clauses, arguing that a passive subject originates as the thematic complement of a subjectless passive participle, and is raised into spec-TP (via A-movement) in order to satisfy the [EPP] feature of T. In $\S 7.8$ we saw that
passivisation can be a long-distance operation involving movement of an argument contained within an infinitival TP which is the complement of a passive participle. We noted that the position of idiomatic subjects in sentences like Little heed is thought to have been paid to their proposal provides empirical support for positing long-distance passivisation (as a particular instance of a more general A-movement operation whereby T attracts the closest noun or pronoun expression it c-commands to move to spec-TP). In $\S 7.9$ we argued that predicates like seem/appear function as raising predicates in the sense that their subjects originate internally within their infinitive complement, and from there are raised to spec-TP position within the seem/appear-clause: hence, in a sentence such as All hell would appear to have broken loose, the idiomatic expression all hell originates as the subject of broken loose and from there is raised up to become the subject of would by A-movement. In $\S 7.10$, we contrasted raising predicates with control predicates, noting that they differ in that control predicates θ-mark their subjects (and hence generally require an animate subject) and have a CP complement, whereas raising predicates do not θ-mark their subjects (and hence freely allow inanimate, expletive and idiomatic subjects) and have a TP complement. We also noted that (unlike control predicates), raising predicates preserve truth-functional equivalence under passivisation.

Workbook section

Exercise 7.1

Say whether the italicised verbs as used in the type of construction illustrated in the examples below function as raising or control predicates (or are ambiguous and can serve as both), and what evidence there is to support your analysis. Provide a detailed outline of the derivation of any one of the control sentences and any one of the raising sentences, giving arguments in support of your answer.

1	Employers tend to exploit employees
2	John has decided to quit the university
3	We came to appreciate the classes
4	You have to help me
5	They failed to hit the target
6	He tried to rectify the situation
7	He refused to sign the petition
8	He's beginning to irritate me
9	They attempted to pervert the course of justice
10	I happened to be passing your house
11	He is going to quit his job
12	He stands to lose a fortune
13	John promises to be a good student
14	He needs to have a shave
15	They managed to open the door

16	We intend to close the store
17	The weather is threatening to ruin the weekend
18	We are hoping to get a visa
19	She has chosen to ignore him
20	They are planning to visit London

Model answer for sentence 1

There are a number of reasons for suggesting that tend functions as a raising predicate when it takes an infinitive complement. For one thing (as we would expect if tend is a one-place raising predicate which does not θ-mark its subject), tend imposes no restrictions on its choice of subject, and so freely allows either an expression like Professor Peabrain (denoting an animate being) or an expression like Syntax (denoting an inanimate entity) as the subject of its containing clause - as illustrated in (i) below: Professor Peabrain/Syntax tends to baffle people

Moreover, tend allows a non-thematic subject like expletive there/it - as in the examples below:
(ii) There tends to be a lot of confusion about syntax
(iii) It tends to be assumed that syntax is hard
(We can tell that there is an expletive pronoun in (ii) from the fact that it cannot be substituted by here or questioned by where? Likewise, it must be expletive in (iii) because it cannot be substituted by this/that or questioned by what?) Moreover, tend can have an idiomatic subject, as in (iv) below:
(iv) All hell tends to break loose

Given that all hell can serve only as the subject of break loose in the relevant idiom in (iv), it is clear that we could not analyse tend as a control predicate in (iv) and claim that all hell originates as the subject of tend and PRO as the subject of break loose, since this would violate the requirement that all hell can occur only as the subject of break loose and conversely that break loose can only have the subject all hell (in the relevant idiom). By contrast, if tend is a raising predicate, we can claim that all hell originates as the subject of break loose and then raises up to become the subject of the (null T constituent in the) tend clause. Furthermore, tend preserves truth-functional equivalence under passivisation, as we can see from the fact that (v) and (vi) are truth-functionally equivalent:
(v) Employers tend to exploit employees
(vi) $\quad=$ Employees tend to be exploited by employers

Given the assumption that tend is a raising predicate, sentence 1 will be derived as follows. The noun employees merges with a null determiner (which has much the same generic sense as the in The Italians love pasta) to form the DP øemployees. The resulting DP merges with (and is assigned the θ-role of THEME argument of) the verb exploit to form the V-bar exploit ø employees. The DP øemployers (itself formed by merging a null determiner with the noun employers) is then
merged with (and assigned the θ-role of AGENT argument of) this V-bar, forming the VP \varnothing employers exploit ø employees. This VP is merged as the complement of the infinitival tense particle to, forming the TP to øemployers exploit ø employees. The relevant TP is in turn merged with the verb tend, forming the VP tend to ø employers exploit ø employees: we can perhaps take the TP complement of tend to have the thematic function of being a Theme argument of tend. The resulting VP is merged with a null present tense T , forming [T ø] tend to ø employers exploit \varnothing employees. By virtue of being finite, $\left[\begin{array}{c} \\ \varnothing\end{array}\right]$ has an [EPP] feature requiring it to have a specifier. In accordance with the Attract Closest Principle, this requirement is satisfied by moving the closest nominal c-commanded by $[\mathrm{T} \varnothing]$ - namely the DP \varnothing employers - into spec-TP in the manner shown by the dotted arrow below:

The resulting structure (vii) is merged with a null complementiser marking the declarative force of the sentence, so forming the structure (viii) below:
(viii) [CP [C ø] [TP ø employers [T ø] [vp [v tend] [TP [т to] [vP employers [v exploit] employees]]]]]

The derivation satisfies the $\boldsymbol{\theta}$-criterion by virtue of the fact that each argument carries one and only one θ-role: i.e. øemployees is the THEME argument of exploit, ø employers is the AGENT argument of exploit and the TP complement of tend is its THEME argument.

Exercise 7.2

Discuss the derivation of the following sentences:

1 a	There are certain to remain some problems
b	There were reported to remain some problems
c	There were thought likely to remain some problems
2 a	A change of policy was envisaged
b	A change of policy seems to be envisaged
c	A change of policy is thought likely to be envisaged
3 a	Differences of opinion are emerging
b	Differences of opinion are beginning to emerge
c	Differences of opinion appear to be starting to emerge
4 a	He is leaving the country
b	He is planning to leave the country
c	He is thought to be planning to leave the country
5 a	No details are going to be revealed
b	No details of any threats seem likely to be revealed
c	No details are expected to be revealed of any threats
6 a	What has happened?
b	What is expected to happen?
c	What seems to be likely to happen?

Helpful hints

Assume that the infinitive form be is a copular verb occupying the head V position of VP when immediately followed by an adjective, but is an auxiliary occupying the head AUX position of AUXP when immediately followed by a passive or progressive participle. For the purposes of this exercise, assume that a finite T has an [EPP] feature, but that infinitival to does not. Assume that he has the thematic role of an EXPERIENCER argument of the relevant predicates in 4, but that all other arguments in 1-6 are THEME arguments of their associated predicates. In relation to 5 a , consider the significance of the fact that going to can contract to gonna; in 5b,c assume that any is a partitive quantifier which has the property of being a polarity item (in the sense specified in exercise 3.2); in relation to 5c, bear in mind the discussion of discontinuous spellout in the text. In relation to 6 , bear in mind the discussion of the syntax of wh-subjects in $\S 6.6$.

Model answer for sentence 1a

The quantifier some merges with the noun problems to form the QP some problems. This QP is merged with (and assigned the θ-role of THEME complement of) the unaccusative predicate remain to form the VP remain some problems. This in turn is merged with the infinitival tense particle $t o$, forming the TP to remain some problems. This is then merged with the raising adjective certain to form the AP certain to remain some problems. This in turn is merged with the copular verb be to form the VP be certain to remain some problems. The resulting VP is merged with a null finite T which attracts the copula be to move from V to T in the manner indicated by the dotted arrow in (i), so forming the structure shown in simplified form below:
(i)

T (by virtue of being finite) has an [EPP] feature requiring it to project a subject, and this requirement is satisfied by merging there in spec-TP, forming the structure shown in abbreviated form in (ii) below (where t is a trace of the moved copula be):
(ii)

The TP in (ii) is subsequently merged with a null declarative complementiser.
The analysis presented here assumes that certain is a raising adjective. Evidence that this is so comes from the fact that clauses containing certain allow expletive and idiomatic subjects, as in:
(iii) (a) It is certain to be raining in Manchester
(b) The fur is certain to fly

The expletive nature of $i t$ in (iiia) is shown by the fact that it cannot be substituted by referential pronouns like this/that or questioned by what?

8 Agreement, case and movement

8.1 Overview

In this chapter, we take a look at the syntax of agreement. We begin by outlining the claim made by Chomsky in recent work that agreement involves a relation between a probe and a goal (though it should be noted that the term goal in this chapter is used in an entirely different way from the term Goal which was used to denote the thematic role played by a particular kind of argument in relation to its predicate in $\S 7.5$). We look at the nature of agreement, and go on to show that nominative and null case-marking involve agreement with T. Finally, we explore the relationship between the [EPP] feature carried by T and agreement, and look at the consequences of this for control infinitives on the one hand and raising infinitives on the other.

8.2 Agreement

In traditional grammars, finite auxiliaries are said to agree with their subjects. Since (within the framework used here) finite auxiliaries occupy the head T position of TP and their subjects are in spec-TP, in earlier work agreement was said to involve a specifier-head relationship (between T and its specifier). However, there are both theoretical and empirical reasons for doubting that agreement involves a spec-head relation. From a theoretical perspective (as we saw in §4.9), Minimalist considerations lead us to the conclusion that we should restrict the range of syntactic relations used in linguistic description, perhaps limiting it to the relation c-command created by merger. From a descriptive perspective, a spechead account of agreement is problematic in that it fails to account for agreement between the auxiliary are and the nominal several prizes in passive structures such as:

There are thought likely to be awarded several prizes

Since the auxiliary are occupies the head T position of TP in (1) and the expletive pronoun there is in spec-TP, a spec-head account of agreement would lead us to expect that are should agree with there. But instead, are agrees with the in situ
complement several prizes of the passive participle awarded. What is going on here? In order to try and understand this, let's take a closer look at the derivation of (1).

The quantifier several merges with the noun prizes to form the QP several prizes. This is merged as the thematic complement of the passive verb awarded to form the VP awarded several prizes. This in turn is merged with the passive auxiliary be to form the AUXP be awarded several prizes. This is then merged with the infinitival tense particle to, forming the TP to be awarded several prizes. The resulting TP is merged with the raising adjective likely to derive the AP likely to be awarded several prizes. This AP is subsequently merged with the passive verb thought to form the VP thought likely to be awarded several prizes. This in turn merges with the passive auxiliary be, forming the T-bar shown in simplified form in (2) below (where the notation BE indicates that the morphological form of the relevant item hasn't yet been determined):
(2)

The tense auxiliary [${ }_{\mathrm{T}} \mathrm{BE}$] needs to agree with an appropriate nominal within the structure containing it. Given Pesetsky's Earliness Principle (which requires operations to apply as early as possible in a derivation), T-agreement must apply as early as possible in the derivation, and hence will apply as soon as BE is introduced into the structure. On the assumption that c-command is central to syntactic operations, T will agree with a nominal (i.e. a noun or pronoun expression) which it c-commands. Accordingly, as soon as the structure in (2) is formed, [T BE] searches for a nominal which it c-commands to agree with.

To use the terminology introduced by Chomsky (1998, 1999, 2001), by virtue of being the highest head in the overall structure at this point in the derivation, BE serves as a probe which searches for a c-commanded nominal goal to agree with. The only nominal goal c-commanded by [T_{BE}] within the structure in (2) is the QP several prizes: $\left[\begin{array}{c}\mathrm{T} \\ \mathrm{BE}\end{array}\right]$ therefore agrees in person and number with several prizes, and so is ultimately spelled out as the third-person-plural form are in the PF component. Chomsky refers to person and number features together as
$\boldsymbol{\varphi}$-features (where φ is the Greek letter phi, pronounced in the same way as fie in English): using this terminology, we can say that the probe [T BE] agrees in φ-features with the goal several prizes. Subsequently, expletive there is merged in spec-TP to satisfy the [EPP] requirement for T to project a specifier, and the resulting TP is in turn merged with a null declarative complementiser to form the CP shown in simplified form below (which is the structure of (1) above):

> [СР [С $\varnothing][\mathrm{TP}$ There [т are] [vP [v thought] [AP [A likely] [TP to be awarded several prizes]]]]]

However, there are a number of details which we have omitted in (3); one relates to the case assigned to the complement (several prizes) of the passive participle awarded. Although case is not overtly marked on the relevant noun expressions in English, evidence from languages like Icelandic with a richer case system suggests that the complement of a passive participle in finite expletive clauses is assigned nominative case via agreement with T - as the following contrast (from Sigurðsson 1996, p. 12) illustrates:
(4) (a) pad voru lesnar fjórar boekur There were read four ${ }_{\text {NOM.PL }}$ books $_{\text {NOM.PL }}$
(b) bad var skilað fjórum bókum

There was returned four ${ }_{\text {DAT.PL }}$ books $_{\text {DAT.PL }}$
In (4a), the auxiliary voru is a third-person-plural form which agrees with the NOM.PL/nominative plural complement fjórar bœekur 'four books'. In (4b), the auxiliary is the agreementless form var 'was', and the complement of the passive participle is Dat.PL/dative plural. (Var is a third-person-singular form, but can be treated as an agreementless form if we characterise agreement by saying that 'An auxiliary is first/second person if it agrees with a first/second-person subject, but third person otherwise; it is plural if it agrees with a plural subject, but singular otherwise.' This means that a third-person-singular auxiliary can arise either by agreement with a third-person-singular expression or - as here can be a default form used as a fall-back when the auxiliary doesn't agree with anything.) Sigurðsson argues that it is an inherent lexical property of the participle skila 'returned' that (like around a quarter of transitive verbs in Icelandic) it assigns so-called inherent dative case to its complement (see Svenonius 2002a,b on dative complements), and (because it can't agree with a non-nominative complement) the auxiliary surfaces in the agreementless form var; by contrast, the participle lesnar 'read' in (4a) does not assign inherent case to its complement, and instead the complement is assigned (so-called) structural nominative case via agreement with the past-tense auxiliary voru 'were'.

Icelandic data like (4) suggest that there is a systematic relationship between nominative case assignment and T-agreement: they are two different reflexes of an agreement relationship between a finite T probe and a nominal goal. In consequence of the agreement relationship between the two, the T probe agrees with a nominal goal which it c-commands, and the nominal goal is assigned nominative
case. Accordingly, several prizes in (3) receives nominative case via agreement with [${ }_{\mathrm{T}}$ are]. (It should be noted in passing that throughout this chapter, we focus on characterising syntactic agreement. On so-called 'semantic agreement' in British English structures like The government are ruining the country, see den Dikken 2001 and Sauerland and Elbourne 2002.)

The approach to case assignment outlined here (in which subjects are assigned nominative case via agreement with a finite T) is different from that outlined in $\S 4.10$, where we suggested that subjects are case-marked by a c-commanding C constituent. But in one sense, our revised hypothesis that finite subjects are casemarked by T is consistent with our earlier analysis. In chapter 4, we argued that (in consequence of the Earliness Principle) a noun or pronoun expression is casemarked by the closest case-assigner which c-commands it: since we also assumed in chapter 4 that subjects originate in spec-TP, it was natural to assume that they are case-marked by the closest functional head above them, namely C. But once we move to an analysis like that in chapter 7 in which subjects originate internally within VP, our assumption that they are case-marked by the closest case-assigning head above them opens up the possibility that nominative subjects may be casemarked by T rather than by C - and indeed this is the assumption which we will make from now on (an assumption widely made in current research).

8.3 Feature valuation

Let's think through rather more carefully what it means to say that case is systematically related to agreement, and what the mechanism is by which case and agreement operate. To illustrate our discussion, consider the derivation of a simple passive such as that produced by speaker B below:

SPEAKERA: What happened to the protestors?
SPEAKER b: They were arrested
Here, discourse factors determine that a third-person-plural pronoun is required in order to refer back to the third-person-plural expression the protestors, and that a past-tense auxiliary is required because the event described took place in the past. So (as it were) the person/number features of they and the past-tense feature of were are determined in advance, before the items enter the derivation. By contrast the case feature assigned to they and the person/number features assigned to were are determined via an agreement operation in the course of the derivation: e.g. if the subject had been the singular pronoun one, the auxiliary would have been third person singular via agreement with one (as in One was arrested); and if THEY had been used as the object of a transitive verb (as in The police arrested them), it would have surfaced in the accusative form them rather than the nominative form they.

Generalising at this point, let's suppose that noun and pronoun expressions like THEY enter the syntax with their (person and number) φ-features already
valued, but their case feature as yet unvalued. (The notation THEY is used here to provide a case-independent characterisation of the word which is variously spelled out as they/them/their depending on the case assigned to it in the syntax.) Using a transparent feature notation, let's say that THEY enters the derivation carrying the features [3-Pers, Pl-Num, u-Case], where Pers $=$ person, Pl $=$ plural, Num $=$ number, and $u=$ unvalued. Similarly, let's suppose that finite T constituents (like the tense auxiliary BE) enter the derivation with their tense feature already valued, but their person and number φ-features as yet unvalued (because they are going to be valued via agreement with a nominal goal). This means that BE enters the derivation carrying the features [Past-Tns, u-Pers, u-Num]. In the light of these assumptions, let's see how the derivation of (5B) proceeds.

The pronoun THEY is the thematic complement of the passive verb arrested and so merges with it to form the VP arrested THEY. This is in turn merged with the tense auxiliary BE, forming the structure (6) below (where already-valued features are shown in bold, and unvalued features in italics):

Given Pesetsky's Earliness Principle, T-agreement will apply at this point. Let's suppose that agreement in such structures involves a c-command relation between a probe and a goal in which unvalued φ-features on the probe are valued by the goal, and an unvalued case feature on the goal is valued by the probe. (In Chomsky's use of these terms, it is the unvalued person/number features which serve as the probe rather than the item BE itself, but this is a distinction which we shall overlook throughout, in order to simplify exposition.) Since [${ }_{T} \mathrm{BE}$] is the highest head in the structure (6), it serves as a probe which searches for a c-commanded goal with an unvalued case feature, and locates the pronoun THEY. Accordingly, an agreement relation is established between the probe BE and the goal THEY. One reflex of this agreement relation is that the unvalued person and number features carried by the probe BE are valued by the goal THEY. Valuation here involves a Feature-Copying operation which we can sketch in general terms as follows (where α and β are two different constituents contained within the same structure, and where one is a probe and the other a goal):

Feature-Copying

If α is valued for some feature $[\mathrm{F}]$ and β is unvalued for $[\mathrm{F}]$ and if β agrees with α, the feature-value for $[\mathrm{F}]$ on α is copied onto β

In consequence of the Feature-Copying operation (7), the values of the person/ number features of THEY are copied onto BE, so that the unvalued person and number features [u-Pers, u-Num] on BE in (6) are assigned the [3-Pers, Pl-Num] values carried by THEY - as shown in (8) below, where the underlined features are those which have been valued via the Feature-Copying operation (7):
(8)

A second reflex of the agreement relation between BE and THEY is that the unvalued case feature [u-Case] carried by the goal THEY is valued by the probe BE. Since only auxiliaries with finite (present/past) tense have nominative subjects (and not e.g. infinitival auxiliaries), we can suppose that it is the finite tense features of the probe which are responsible for assigning nominative case to the goal. Accordingly, we can posit that nominative case assignment involves the kind of operation sketched informally below:

Nominative Case Assignment

An unvalued case feature on a goal is valued as nominative by a probe carrying finite tense if probe and goal match in φ-features (i.e. in person and number)

Since the person/number features of the probe BE match those of the goal THEY in (8), and since be carries finite tense (by virtue of its [Past-Tns] feature), the unvalued case feature on THEY is valued as nominative, resulting in the structure shown in (10) below (where the underlined feature is the one valued as nominative in accordance with (9) above):

Since all the features carried by BE are now valued, BE can ultimately be spelled out in the phonology as the third-person-plural past-tense form were. Likewise, since all the features carried by THEY are also valued, THEY can ultimately be spelled out as the third-person-plural nominative form they. However, the derivation in (8) is not yet terminated: the [EPP] feature of T will subsequently trigger A-movement
of they to become the structural subject of were, and the resulting TP they were arrested they will then be merged with a null declarative complementiser to form the structure \varnothing they were arrested they: but since our immediate concern is with case and agreement, we skip over these details here.

Although we have given an essentially Chomskyan account of nominative case-marking in (9) and will continue to use it throughout the rest of the book, a theoretically more elegant account would be to make use of Pesetsky and Torrego's assumption (discussed in §6.6) that nominative case is a manifestation of a tense feature on T. On this alternative view, the [u-Case] feature on THEY in (8) would be replaced by a [u-Tense] feature which is valued as [PastTense] by the Feature-Copying operation in (7), with any (present- or past-) tensed form of the pronoun being spelled out as they. This solution is more elegant in two respects. Firstly, it eliminates the need for a Nominative Case Assignment operation, since nominative case assignment becomes a tense-copying operation which is simply a particular instance of the Feature-Copying operation in (7). Secondly, it avoids a potential violation of a UG principle which Chomsky terms the Inclusiveness Condition and which he says (1999, p. 2) 'bars introduction of new elements (features) in the course of a derivation'. Under the analysis sketched in (8), THEY enters the derivation with an unvalued case feature which is then assigned the value nominative via agreement with a T constituent which has person, tense and number features. So it would seem that the value nominative is introduced into the derivation via a case-valuation operation like (9), leading to a potential violation of the Inclusiveness Condition. By contrast, under the alternative tense-copying analysis of nominative case, no new feature value is introduced into the derivation: instead, the existing [Past] value for the [Tns] feature on T is copied onto the subject.

8.4 Uninterpretable features and feature-deletion

Our discussion of how case and agreement work in a sentence such as (5B) has wider implications. One of these is that items may enter the derivation with some of their features already valued and others as yet unvalued: e.g. BE enters the derivation in (6) with its tense feature valued, but its φ-features unvalued; and THEY enters with its φ-features valued but its case feature unvalued. This raises the question of which features are initially valued when they first enter the derivation, which are initially unvalued - and why. Chomsky (1998) argues that the difference between valued and unvalued grammatical features correlates with a further distinction between those grammatical features which are interpretable (in the sense that they play a role in semantic interpretation), and those which are uninterpretable (and hence play no role in semantic interpretation). For example, it seems clear that the case feature of a pronoun like THEY is uninterpretable, since a subject pronoun surfaces as nominative, accusative or genitive depending on the type of [bracketed] clause it is in, without any effect on meaning - as the examples in (11) below illustrate:
(11) (a) It is said [they were arrested]
(b) He expected [them to be arrested]
(c) He was shocked at [their being arrested]

By contrast, the (person/number) φ-features of pronouns are interpretable, since e.g. a first-person-singular pronoun like I clearly differs in meaning from a third-person-plural pronoun like they. In the case of finite auxiliaries, it is clear that their tense features are interpretable, since a present-tense form like is differs in meaning from a past-tense form like was. By contrast, the (person/number) φ-features of auxiliaries are uninterpretable, in that they serve purely to mark agreement with a particular nominal. This suggests a correlation such as (12) below between whether or not features are interpretable and whether or not they are initially valued:
(12) Feature Value Correlation
(i) Interpretable features enter the derivation already valued
(ii) Features which enter the derivation unvalued are uninterpretable

The correlation between valuedness and interpretability turns out to be an important one. (It should be noted that Chomsky 1998 offers a rather different formulation of (12ii) to the effect that uninterpretable features enter the derivation unvalued, but his claim seems problematic e.g. for languages in which nouns may enter the derivation with an uninterpretable gender φ-feature with a fixed but arbitrary value: e.g. the noun Mädchen 'girl' is inherently neuter in gender in German, though it denotes a feminine entity.)

As we saw in the simplified model of grammar which we presented in §1.3, each structure generated by the syntactic component of the grammar is subsequently sent to the PF component of the grammar to be spelled out (i.e. assigned a PF representation which provides a representation of its Phonetic Form). If we assume that unvalued features are illegible to (and hence cannot be processed by) the PF component, it follows that every unvalued feature in a derivation must be valued in the course of the derivation, or else the derivation will crash (i.e. fail) because the PF component is unable to spell out unvalued features. In more concrete terms, this amounts to saying that unless the syntax specifies whether we require e.g. a first-person-singular or third-person-plural present-tense form of BE , the derivation will crash because the PF component cannot determine whether to spell out BE as am or are.

In addition to being sent to the PF component, each structure generated by the syntactic component of the grammar is simultaneously sent to the semantic component, where it is converted into an appropriate semantic representation. Clearly, interpretable features play an important role in the computation of semantic representations. Equally clearly, however, uninterpretable features play no role whatever in this process: indeed, since they are illegible to the semantic component, we need to devise some way of ensuring that uninterpretable features do not input into the semantic component. How can we do this?

Chomsky's answer is to suppose that uninterpretable features are deleted in the course of the syntactic derivation, in the specific sense that they are marked as being invisible in the semantic component while remaining visible in the syntax and in the PF component. To get a clearer idea of what this means in concrete terms, consider the uninterpretable nominative case feature on they in (5B) They were arrested. Since this case feature is uninterpretable, it has to be deleted in the course of the syntactic derivation, so that the semantic component cannot 'see' it. However, the PF component must still be able to 'see' this case feature, since it needs to know what case has been assigned to the pronoun THEY in order to determine whether the pronoun should be spelled out as they, them or their. This suggests the following convention:
(13) Feature Visibility Convention

Any uninterpretable feature deleted in the syntax is invisible to the semantic component, but remains visible in the syntactic component and in the PF component

The next question to ask at this juncture is what kind of syntactic operation is involved in the deletion of uninterpretable features. Let's suppose (following Chomsky) that feature-deletion involves the kind of operation outlined informally below (where α and β enter into an agreement relation, and one is a probe and the other a goal):

Abstract

Feature-Deletion α deletes any uninterpretable (person/number/case) feature(s) carried by β if α is φ-complete and if the value(s) of any φ-feature(s) carried by β match those of the corresponding φ-feature(s) of α

Here, α and β are two different constituents contained within the same structure, and one is a probe and the other a goal. In a language like English where finite verbs agree with their subjects in person and number (but not gender), β is $\boldsymbol{\varphi}$ complete if it carries both person and number features (though in a language like Arabic where finite verbs agree in person, number and gender with their subjects, β is φ-complete if it carries person, number and gender: see Nasu 2001, 2002 for discussion). For β to delete the person/number/case features of α, the φ-features of β must match the φ-features carried by α. Let's define the relation 'match' in the following terms:

The relation 'match'

α and β match in respect of some feature $[\mathrm{F}]$ either if both have the same value for $[\mathrm{F}]$, or if one is valued for $[\mathrm{F}]$ and the other unvalued for $[\mathrm{F}]$ - but not if they have different values for $[\mathrm{F}]$.

To make a rather abstract discussion more concrete, let's consider how featuredeletion applies in the case of our earlier structure (10) above. Here, both BE and THEY are φ-complete, since both are specified for person as well as number. Moreover, the two match in respect of their φ-features, since the two have
the same value for person and number (in that both are third person plural). Let's assume that (in consequence of the Earliness Principle), feature-deletion applies as early as possible in the derivation, and hence applies at the point where the structure in (10) has been formed. In accordance with Feature-Deletion (14), φ-complete BE can delete the uninterpretable case feature carried by THEY; and conversely φ-complete THEY can delete the uninterpretable person/number features carried by be. Feature-Deletion therefore results in the structure (16) below (where strikethrough indicates deletion):

The deleted features will now be invisible in the semantic component - in accordance with (13). The rest of the derivation proceeds as before.

Chomsky sees uninterpretable features as being at the very heart of agreement, and posits (1999, p. 4) that 'Probe and Goal must both be active for Agree to apply' and that a constituent α (whether Probe or Goal) is active only if α contains one or more uninterpretable features. In other words, it is the presence of uninterpretable features on a constituent that makes it active (and hence able to serve as a probe or goal, and to play a part in feature-valuation and feature-deletion).

As should be obvious, the Feature-Deletion operation posited in (14) is very different from the (Trace) Copy-Deletion operation we assumed in earlier chapters by which a trace copy of a moved constituent is deleted. Feature-Deletion is an operation which renders the affected features invisible to the semantic component, while leaving them visible to the phonological component. By contrast, Copy-Deletion is an operation which renders traces of moved constituents invisible to the phonological component (in the sense that they are not given any phonetic spellout), while leaving them visible in the semantic component. The reason why traces must remain visible in the semantic component is that they play an important role in semantic interpretation, as we can see in relation to a sentence such as (17a) below, which has the simplified structure (17b) (assuming that a famous politician originates as the object of the passive participle seen and raises to become the subject of has):
(17) (a) A famous politician has not been seen in the Hotel Casanova for weeks
(b) A famous politician has not been seen a famous politician in the Hotel Casanova for weeks
(17a) exhibits a scope ambiguity in respect of whether a famous politician has scope over not (so that the sentence is paraphraseable as 'There is a specific
famous politician, Gerry Attrick, who has not been seen in the Hotel Casanova for weeks') or conversely whether not has scope over a famous politician (so that the sentence is paraphraseable as 'Not a single famous politician has been seen in the Hotel Casanova for weeks'). If the semantic component is able to 'see' traces, it will 'see' the structure represented in skeletal form in (17b) above. One way of handling the scope ambiguity of sentences like (17a) is to posit that scope is defined in terms of c-command and that the scope ambiguity correlates with the fact that in the structure (17b), not is c-commanded by (so falls within the scope of) the moved constituent a famous politician, but conversely not c-commands (and hence has scope over) its trace a famous politician. A plausible conclusion to draw is that trace-deletion takes place in the phonological component, so that traces remain in the syntax and hence are visible in the semantic component, and can play a role in determining scope in relevant types of structure. The assumption that trace-deletion is a phonological operation is implicit in Chomsky's remark (1999, p. 11) that 'Phonological rules . . . eliminate trace.'

8.5 Expletive it subjects

So far, all the constructions we have looked at have involved a finite T agreeing with a noun or pronoun expression which carries interpretable person/number φ-features. However, English has two expletive pronouns which (by virtue of being non-referential) carry no interpretable φ-features. One of these is expletive it in sentences such as:
(18) (a) It is said that he has taken bribes
(b) It can be difficult to come to terms with long-term illness
(c) It's a pity that she can't come
(d) It's a long way from here to Lands End

The pronoun it in sentences like these appears to be an expletive, since it cannot be replaced by a referential pronoun like this or that, and cannot be questioned by what. Let's examine the syntax of expletive it by looking at the derivation of a sentence like (18a).

Suppose that we have reached the stage of derivation where the (passive participle) verb said has been merged with its CP complement that he has taken bribes to form the VP said that he has taken bribes. Merging this VP with the tense auxiliary BE forms the structure shown in simplified form below:

In accordance with Pesetsky's Earliness Principle, we might expect T-agreement to apply at this point. Accordingly, the probe BE (which is active by virtue of its uninterpretable person/number φ-features) searches for an active goal to value its unvalued φ-features. It might at first sight seem as if the CP headed by that is an appropriate goal, and is a third-person-singular expression which can value the person/number features of BE. However, it seems unlikely that such clauses have person/number features. One reason for thinking this is that even if the thatclause in (19) is coordinated with another that-clause as in (20) below, the verb BE remains in the singular form is:

It is said [that he has taken bribes and that he has embezzled company funds]
If each of the italicised clauses in (20) were singular in number, we would expect the bracketed coordinate clause to be plural (in the same way as the coordinate structure John and Mary is a plural expression in a sentence like John and Mary are an item): but the fact that the passive auxiliary is remains singular in (20) suggests that the CP has no number properties of its own. Nor indeed does the that-clause in (19) have an unvalued case feature which could make it into an active goal, since that-clauses appear to be caseless (as argued by Safir 1986), in that a that-clause cannot be used in a position like that italicised in (21) below where it would be assigned accusative case by a transitive preposition such as of:
(21) *There have been reports of that he has taken bribes

If the CP in (19) has no uninterpretable case feature, it is inactive and so cannot value the φ-features of BE.

However, a question we might ask about (19) is whether BE could instead agree with the subject of the that-clause, namely he: after all, he has an uninterpretable case feature (making it active), and is a third-person-singular expression and so could seemingly value the unvalued person/number features of BE. Yet it is clear that BE does not in fact agree with $h e$, since if we replace he by the first-personplural subject we, BE still surfaces in the third-person-singular form is - as (22) below illustrates:

It is said [CP that [TP we have taken bribes]]
Something, then, must prevent BE from agreeing with we - but what? The answer lies in a constraint developed by Chomsky termed the Phase Impenetrability Condition/PIC. Since understanding PIC requires a prior understanding of the notion of phase developed by Chomsky in recent work (1998, 1999, 2001), let's first take a look at what phases are.

In $\S 1.5$ we suggested that a fundamental principle of UG is a Locality Principle which requires all grammatical operations to be local. Using the probe-goal terminology introduced in this chapter, we can construe this as meaning that all grammatical operations involve a relation between a probe P and a local goal G which is sufficiently 'close' to the probe. However, an important question to ask is why probe-goal relations must be local. In this connection, Chomsky (2001,
p. 13) remarks that 'the P, G relation must be local' in order 'to minimise search' (i.e. in order to ensure that a minimal amount of searching will enable a probe to find an appropriate goal). His claim that locality is forced by the need to minimise search' suggests a processing explanation: the implication is that the Language Faculty can only process limited amounts of structure at one time and, more specifically, can only hold a limited amount of structure in its 'active memory' (Chomsky 1999, p. 9). In order to ensure a 'reduction of computational burden' (1999, p. 9) Chomsky proposes that 'the derivation of EXP[ressions] proceeds by phase' (ibid.), so that syntactic structures are built up one phase at a time. He maintains (2001, p. 14) that 'phases should be as small as possible, to minimise memory'. More specifically, he suggests (1999, p. 9) that phases are 'propositional' in nature, and hence include CPs. His rationale for taking CP to be phases is that CP represents a complete clausal complex (including a specification of force).

In what sense do phases ensure that grammatical operations are purely local? The answer given by Chomsky is that any goal within the (c-command) domain of the phase (i.e. any goal c-commanded by the head of the phase) is impenetrable to further syntactic operations. He refers to this condition as the Phase Impenetrability Condition/PIC - and we can state it as follows (cf. Chomsky 2001, p. 5, ex. 6):
(23) Phase Impenetrability Condition/PIC

Any goal in the (c-command) domain of a phase head is impenetrable to a probe outside the phase

Stated in a form like (23), the relevant condition clearly begs the question of why a goal positioned 'below' a phase head should be impenetrable to a probe positioned 'above' the phase. Chomsky's answer (2001, p. 5) is that once a complete phase has been formed, the domain of the phase head (i.e. its complement) undergoes a transfer operation by which it is simultaneously sent to the phonological component to be assigned an appropriate phonetic representation, and to the semantic component to be assigned an appropriate semantic representation - and hence no constituent in the relevant domain is thereafter able to undergo any further syntactic operations. So, for example, once the operations which take place on the CP cycle have been completed, the TP which is the domain/complement of the phase head C will be sent to the phonological and semantic components for processing. As a result, TP is no longer accessible in the syntax, and hence neither TP itself nor any constituent of TP can subsequently serve as a goal for a higher probe of any kind in the syntax.

In the light of the Phase Impenetrability Condition (23), let's return to our earlier structure (19) and ask why the auxiliary is in the main clause can't agree with the subject he of the complement clause. The answer is as follows. The complement clause that he has taken bribes is a CP , hence a phase. The domain of that CP (i.e. the constituent which is the complement of the head C of CP) is the TP he has taken bribes. This means that neither this TP nor any of its constituents can serve as a goal for a probe outside CP. Since is in (19) lies outside the bracketed

CP phase, and he lies inside its bracketed TP domain, PIC prevents agreement between the two. (See Polinsky and Potsdam 2001, and Branigan and MacKenzie 2002 for an analysis of apparent long-distance agreement in terms of PIC.)

So far, what we have established in relation to the structure in (19) is that be cannot agree with the that-clause because the latter is inactive and has no φ-features or case feature; nor can be agree with he, because PIC makes he impenetrable to BE . It is precisely because BE cannot agree with CP or with any of its constituents that expletive it has to be used, in order to satisfy the [EPP] requirement of T, and to value the φ-features of T. In keeping with the Minimalist spirit of positing only the minimal apparatus which is conceptually necessary, let's further suppose that expletive it has 'a full complement of φ-features' (Chomsky 1998, p. 44) but that (as Martin Atkinson (pc) suggests) these are the only features carried by $i t$ in its expletive use. More specifically, let's assume that expletive $i t$ carries the features [third-person, singular-number]. Since expletive it is a 'meaningless' expletive pronoun, these features will be uninterpretable. Given this assumption, merging it as the specifier of the T-bar in (19) above will derive the structure (24) below (with interpretable features shown in bold, and uninterpretable features in italics):

At this stage in the derivation, the pronoun it can serve as a probe because it is the highest head in the structure, and because $i t$ is active by virtue of its uninterpretable φ-features. Likewise, the auxiliary BE can serve as a goal for it because BE is ccommanded by it and BE is active by virtue of its uninterpretable φ-features. Feature-Copying (7) can therefore apply to value the unvalued φ-features on BE as third person singular (via agreement with $i t$), and Feature-Deletion (14) can apply to delete the uninterpretable φ-features of both it and BE, so deriving:

As required, all unvalued features have been valued at this point (BE ultimately being spelled out in the PF component as $i s$), and all uninterpretable features deleted. The resulting structure (25) is subsequently merged with a null declarative complementiser. The deleted uninterpretable person/number features of it and BE will be visible in the PF component and the syntax, but not in the semantic component; the undeleted [Pres-Tns] feature of BE will be visible in all three components. Hence, BE will be spelled out as is in the PF component, since the phonology can 'see' the third-person, singular-number, present-tense features carried by BE.

There are two particular features of the analysis outlined above which merit further comment. One is that we have assumed that expletive it carries person and number features, but no gender feature and no case feature. While it clearly carries an interpretable (neuter/inanimate) gender feature when used as a referential pronoun (e.g. in a sentence like This book has interesting exercises in it, where it refers back to this book), it has no semantic interpretation in its use as an expletive pronoun, and so can be assumed to carry no interpretable gender feature in such a use. The reason for positing that expletive it is a caseless pronoun is that it is already active by virtue of its uninterpretable φ-features, and hence does not 'need' a case feature to make it active for agreement (unlike subjects with interpretable φ-features). Some suggestive evidence that expletive it may be a caseless pronoun comes from the fact that it has no genitive form its - at least for speakers like me who don't say (e.g.) *He was annoyed at its raining.

A further assumption worth commenting on is that we have assumed that expletive it is intrinsically third person singular, and that this is why BE ends up in the third-person-singular form is in sentences like (18a) It is said that he has taken bribes. However, if we were to accept Chomsky's view that all uninterpretable features enter the derivation unvalued, we'd have to say that the pronoun it enters the derivation with unvalued person/number features, as in (26) below:

The obvious question which such an analysis would raise is how a pronoun with unvalued person/number features can value the unvalued person/number features of T (and conversely). To answer this question, we'd have to invoke default number/person valuation conditions such as those italicised below:
(27) Person/Number Valuation

Where α and β enter into an agreement relation and β has one or more unvalued φ-features which match corresponding φ-features carried by α, α values β as:
(i) first person if α is first person, second person if α is second person, and third person otherwise
(ii) plural if α is plural and singular otherwise
(27i) would ensure that the person features of both it and BE are assigned the default (otherwise) value [3-Pers]; and (27ii) would ensure that the number features of both it and BE are assigned the default value [Sg-Num]. We will not attempt to choose between the analyses in (24) and (26) here, but for concreteness we will henceforth assume (24).

Let's now turn to consider the question of how we handle sentences like the following, which contain so-called weather it:
(28) (a) It is raining (b) It has been snowing

One way of analysing a sentence like (28a) is to treat RAIN as a predicate which has no θ-marked argument, and to take $i t$ to be a non-referential (expletive) pronoun. This would mean that the first stage in the derivation of (28a) is for the tense auxiliary BE to be merged with the verb RAIN (which is ultimately spelled out as the form raining because the progressive auxiliary BE requires a complement headed by a verb in the ing-form). Merging expletive it as the specifier of the resulting T-bar BE raining would derive the structure (29) below, if we assume (for expository purposes) that it is intrinsically third person singular:

At this point, it is the highest head in the overall structure, and is active (by virtue of its uninterpretable φ-features) and so can serve as a probe. [T BE] is c-commanded by it and is also active (by virtue of its own uninterpretable φ features), and so can serve as a goal for the probe it. Accordingly, the unvalued person/number features on BE are valued via the Feature-Copying operation (7), with the result that the φ-features of BE are assigned the same values as those of $i t$. Since both it and BE are φ-complete (by virtue of carrying both person and number features), and since their φ-features have matching values, each can delete the uninterpretable φ-features of the other in accordance with Feature-Deletion (14), so deriving:
(30)

The deleted uninterpretable person/number features of it and BE will be visible in the PF component and the syntax, but not in the semantic component; the undeleted [Pres-Tns] feature of BE will be visible in all three components. Hence, BE will be spelled out as is in the PF component, since PF can 'see' the thirdperson, singular-number, present-tense features carried by BE. The resulting TP will subsequently be merged with a null declarative-force complementiser.

A key assumption in the analysis outlined above is that expletive it is a meaningless 'filler', and so non-referential. However, this assumption would seem to be called into question by the observation that expletive it can serve as the antecedent of PRO: cf.
(31) (a) It sometimes rains after PRO snowing (Chomsky 1981, p. 324)
(b) It can seem that someone is guilty without [PRO seeming that they actually committed the crime] (Williams 1994, p. 91)

If we suppose that only a referential pronoun can serve as the controller of PRO, a plausible conclusion to draw is that expletive $i t$ is referential (in a sense made precise by Chomsky 1981, who suggests that expletive it is a quasi-argument). And if weather it in sentences like (28a,b) is referential, it is also plausible to suppose that it is initially merged as a (quasi-)argument of the weather predicate with which it is associated. If we suppose that weather verbs like rain/snow are unaccusative (as is suggested by the fact that in Italian they can be used with the auxiliary essere 'be' in perfect-participle forms), this would mean that it in (28a,b) originates as the complement of the verb rain/snow. If weather it is indeed referential and if this means that its person/number features are interpretable, then it follows that weather it will also need an unvalued case feature to make it active in the syntax. Assuming all of this, we will have the structure shown in simplified form in (32) below at the stage when T is merged with its complement:

The unvalued person/number features of be will be valued as third person singular in accordance with Feature-Copying (7), and deleted in accordance with Feature-Deletion (14). The unvalued case feature on it will be valued as nominative by Nominative Case Assignment (9), and deleted by Feature-Deletion (14). The [EPP] feature of T will simultaneously trigger movement of it (which is active by virtue of its unvalued case feature) to spec-TP, so deriving the structure in (33) below (simplified by not showing features carried by the trace copy of $i t$):

As required, all uninterpretable features have been deleted, so the resulting derivation is convergent. If the analysis of expletive it outlined here is along the right lines it suggests that (contrary to what we assumed earlier) expletive it is not a pure 'dummy' element inserted in spec-TP to satisfy the [EPP] requirement of T, but rather is a (quasi-)argument which originates internally within VP. Of course, if expletive it carries case, we have to ask why (as noted above) it has no genitive form: however, this is arguably just a lexical idiosyncrasy, since even in its referential use it has no strong genitive form (Peter Evans (pc) points out), as we see from the ungrammaticality of ?*Its watering the flowers is something I don't like about my cat.

8.6 Expletive there subjects

Having looked at the syntax of expletive it in the previous section, we now turn to look at expletive there. As a starting point for our discussion, we'll go back to the very first sentence we looked at in this chapter, namely (1) There are thought likely to be awarded several prizes. Let's suppose that the derivation proceeds as before, until we reach the stage in (2) above. However, let's additionally assume that several prizes carries interpretable φ-features (marking it as a third-person-plural expression) and an uninterpretable (and unvalued) casefeature. Let's also assume (as in earlier discussions) that BE carries an interpretable present-tense feature, and uninterpretable (and unvalued) φ-features. This being so, the structure formed when BE is merged with its VP complement will be that shown in simplified form below:
(34)

Given the Earliness Principle, T-agreement will apply at this point in the derivation. Because BE is the highest head in the structure (in that it is the only head in the structure which is not c-commanded by another head), and because BE is active (by virtue of its uninterpretable φ-features), BE serves as a probe which searches for a nominal goal within the structure containing it. The nominal several prizes can serve as a goal for the probe BE, since several prizes is active by virtue of carrying an uninterpretable case feature. By application of Feature-Copying (7), the unvalued person and number features on BE are given the same values as those on several prizes - as shown in simplified form in (35) below:

$[\mathrm{BE}]$	thought likely to be awarded $[$ several prizes $]$
$[$ Pres-Tns $]$	$[$ 3-Pers $]$
$[3-\mathrm{Pers}]$	$[$ Pl-Num $]$
$[$ Pl-Num $]$	$[$ u-Case $]$

By application of Nominative Case Assignment (9), the unvalued case feature of the goal several prizes in (35) is assigned the value nominative as shown in (36) below, since the probe BE carries finite tense (more specifically, present tense), and since the probe $[\mathrm{BE}]$ and the goal several prizes have matching φ-feature values because both are third person plural:
[BE] thought likely to be awarded [several prizes]
[Pres-Tns]
[3-Pers]
[Pl-Num]
[3-Pers]
[Pl-Num]
[Nom-Case]

Via Feature-Deletion (14), the probe BE deletes the uninterpretable nominative case feature on several prizes, since BE is φ-complete (by virtue of carrying both person and number features) and the φ-features of the probe BE match those of the goal several prizes. Conversely, via the same Feature-Deletion operation
(14), the goal several prizes deletes the uninterpretable person/number features on the probe BE , since the goal is φ-complete (carrying both person and number features), and probe and goal have matching φ-feature values. Feature-Deletion yields:

$[\mathrm{BE}]$	thought likely to be awarded $[$ several prizes $]$
$[$ Pres-Tns $]$	$[3-\mathrm{Pers}]$
$[3$ Pers $]$	$[$ Pl-Num $]$
$[$ Pl-Num $]$	$[$ Nom-Case $]$

We have thus deleted all uninterpretable case/agreement features on both probe and goal, as required.

However, BE also has an [EPP] feature (not shown above) requiring it to project a structural subject. In (1) There are thought likely to be awarded several prizes, the [EPP] requirement of [${ }_{\mathrm{T}} \mathrm{BE}$] is satisfied by merging expletive there in spec-TP. Let's assume that (like expletive $i t$), expletive there carries no case feature (and hence has no genitive form, as we see from the ungrammaticality of *She was upset by there's being nobody to help her). More precisely, let's follow Chomsky $(1998,1999,2001)$ in positing that the only feature carried by expletive there is an uninterpretable person feature, and let's further suppose that there is intrinsically third person (consistent with the fact that a number of other words beginning with th- are third person - e.g. this, that, these, those and the). Accordingly, merging there in spec-TP will derive the structure shown in abbreviated form below:

The pronoun there serves as a probe because it is the highest head in the structure, and because it is active by virtue of carrying an uninterpretable third-person φ feature. It therefore searches for a c-commanded goal to agree with. Let's suppose that agreement (of the kind we are concerned with here) involves a T-nominal relation (i.e. a relation between T and a noun/pronoun expression): this being so, there (being a pronominal probe) will search for an active T constituent to serve as its goal, and find [T BE]. BE is an active goal for the probe there in (38) because be contains uninterpretable person/number features: these have been marked as invisible to the semantic component (via Feature-Deletion), but remain visible
and active in the syntax in accordance with the Feature Visibility Convention (13). Accordingly, Feature-Deletion (14) applies, and the goal BE deletes the matching uninterpretable third-person feature carried by the probe there. This is possible because there is active as a probe and BE is active as a goal (as we have just seen), and because the goal BE is φ-complete (having both person and number features), and the third-person feature carried by the probe there matches the third-person feature carried by the goal BE. Deleting the uninterpretable person feature of there, and merging the resulting TP with a null complementiser carrying an interpretable declarative force feature [Dec-Force], derives the CP shown in skeletal form below:

\emptyset	there	BE	thought likely to be awarded [several prizes]
[Dec-Force]	[3-Pers]	[Pres-Tns]	[3-Pers]
		[3-Pers]	[Pl-Num]
		[Pl-Num]	[Nom-Case]

Only the bold-printed interpretable features will be processed by the semantic component, not the barred italicised uninterpretable features (since these have all been deleted and deletion makes features invisible to the semantic component, while leaving them visible to the syntactic and phonological components); both the interpretable and uninterpretable features will be processed by the phonological component where BE will be spelled out as are. (On colloquial structures like There's lots of people in the room, see den Dikken 2001.)

An important question to ask in the context of our discussion of expletive it in the previous section and expletive there in this section is what factors determine the choice of expletive in a particular sentence. In this connection, let's ask why expletive there can't be used in place of expletive it in sentences like (40b) below:
(40) (a) It is said that he has taken bribes
(b) *There is said that he has taken bribes

Let's suppose that merging be with the VP headed by the verb said forms the structure shown in (19) above, and that subsequently merging there in spec-TP derives the structure shown in (41) below:

Because it is the highest head in the structure, and because it is active by virtue of its uninterpretable person feature, there serves as a probe. BE serves as the goal for
there because BE is c -commanded by there, and BE itself is active by virtue of its uninterpretable person/number features. Via Feature-Copying (7), the unvalued person feature of BE will be assigned the same third-person value as there - as shown in schematic form below:
(42)

there | BE |
| :---: |
| $[3-P e r s]$ |
| $[$ Pres-Tns $]$ |
| $[3-P e r s]$ |
| $[u-N u m]$ |

Via Feature-Deletion (14), BE can delete the uninterpretable person feature of there, because BE is φ-complete and the person features of BE and there have matching values. However, there cannot delete the person feature of BE , since there is φ-incomplete (in that it has person but not number), and only a φ-complete α can delete one or more features of B. Accordingly, the structure which results after Feature-Deletion applies is:

there | BE \quad said that he has taken bribes |
| :---: |
| $[$ 3 Pers $][$ Pres-Tns $]$ |
| $[3-\mathrm{Pers}]$ |
| $[$ u-Num $]$ |

However, the resulting derivation will ultimately crash, for two reasons. Firstly, the number feature on BE has remained unvalued, and the PF component cannot process unvalued features. And secondly, the uninterpretable person and number features on BE have not been deleted, and the semantic component cannot process uninterpretable features. In other words, our assumptions about the differences between expletive it and expletive there allow us to provide a principled account of why (40a) It is said that he has taken bribes is grammatical, but (40b) *There is said that he has taken bribes is not.

Now let's ask why expletive it can't be used in place of there in a sentence like (44b) below:
(44) (a) There are thought likely to be awarded several prizes
(b) ${ }^{*}$ It is thought likely to be awarded several prizes

One way of answering this question is by making the assumption outlined below:

EPP Generalisation

When T carries an [EPP] feature, this can be deleted
(i) by merging expletive there in spec-TP if T c-commands a matching indefinite goal (i.e. an indefinite noun or pronoun expression which matches T in person/number)
or (ii) by merging expletive it in spec-TP if T c-commands no matching goal
or (iii) by moving the closest matching active goal c-commanded by T into spec-TP

The requirement in (45iii) for T to attract the closest matching goal is a consequence of the Attract Closest Principle. (45i) stipulates the indefiniteness
requirement without explaining it. An interesting possibility to explore would be that in expletive there structures, the associate is indefinite because it has no person properties, so that there is inserted in order to value the person properties of T (though see Frampton and Gutmann 1999 for an alternative explanation. See also Lasnik 2001 on the nature of EPP.)

It follows from (45) that in structures like (34) where [T BE] c-commands (and agrees in person and number with) an indefinite nominal (several prizes), expletive there can be used but not expletive it, so deriving (44a) There are thought likely to be awarded several prizes. Conversely in structures like (19) where there is no matching goal accessible to the probe [${ }_{\mathrm{T}} \mathrm{BE}$], it can be used but not there - so deriving (18a) It is said that he has taken bribes. It also follows from (45) that neither expletive can be used in structures like the following:
(46) (a) *There was impeached the president
(b) *It was impeached the president

This is because was in (46) c-commands and agrees in person and number with the definite goal the president, so that the conditions for the use of either expletive in $(45 i, i i)$ are not met. The only way of deleting the [EPP] feature of T in such a case is to passivise the definite DP the president, so deriving:

The president was impeached
So, we see that the EPP Generalisation in (45) provides a descriptively adequate characterisation of data like (40), (44), (46) and (47). (See Bowers 2002 for an alternative account of the there/it distinction in expletives.)

However, our so-called 'generalisation' in (45) is little more than a descriptive stipulation, and begs the question of why the relevant restrictions on the use of expletives should hold. A preferable solution would be to see the choice between expletive there and expletive it as one rooted in UG principles. Reasoning along these lines, one possibility would be to posit that economy considerations dictate that we use an expletive carrying as few uninterpretable features as possible. In a structure like (19), the expletive has to serve two functions: (i) to satisfy the [EPP] requirement for T to have a specifier with person and/or number properties; and (ii) to value the unvalued person/number features of $\left.{ }_{T} \mathrm{BE}\right]$. Hence only expletive $i t$ can be used, since this carries both person and number. But in a structure like (2), the expletive is not needed to value the person/number features of [${ }_{T} \mathrm{BE}$] since these are valued by several prizes; rather, the expletive serves only to satisfy the requirement for T to have a specifier with person and/or number features. In this situation, we might suppose, there is preferred to it because there carries only person, and economy considerations dictate that we use as few uninterpretable features as possible.

Throughout this section, we have followed Chomsky in assuming that expletive there is a 'dummy' pronoun directly merged in spec-TP. However, just as there are some who believe that expletive it originates internally within VP, so too there are some who believe that expletive there originates internally within VP,
perhaps with a locative function (as suggested by Moro 1997). Bowers (2002, p. 195) argues that the ungrammaticality of transitive expletive structures such as the following in Standard English:

> *There has [someone eaten a bagel]
cannot be accounted for under Chomsky's spec-TP analysis of expletive there, since nothing in the spec-TP account prevents has from agreeing with (and assigning nominative case to) someone, with expletive there being inserted in spec-TP in order to delete the [EPP] feature of T. A principled way of ruling out sentences like (48), Bowers argues, is by supposing that expletive there originates in spec-VP as a nonthematic subject - and hence it can only occur in intransitive VPs which (by their very nature) do not have a thematic subject.

We can illustrate how such an analysis might work in terms of a sentence such as (49) below:

There have arisen several problems
The verb arise is an unaccusative predicate which projects a complement, but no thematic subject. Precisely because it projects no thematic subject, it can project an expletive subject (on Bowers's assumption that a predicate only allows an expletive subject if it has no thematic subject). This means that expletive there will initially be merged as the specifier of the VP headed by arisen in (49), so that at the stage of derivation when HAVE is merged with its VP complement, we have the structure shown in (50) below:

[T HAVE] will then probe for active matching goals which carry person and/or number features, and locates two such active goals, there and several problems. Accordingly, T simultaneously agrees with both there and several problems resulting in multiple agreement (i.e. agreement between a probe and more than one matching goal). Clearly, this will only yield a successful outcome if the associate carries the same third-person feature as there - thereby accounting for the observation by Sigurðsson (1996) that expletive associates must be third-person expressions. The [EPP] feature of T simultaneously attracts the closest active goal, so triggering movement of there to spec-TP. We can assume that all the
various operations affecting a given probe (like T in (50) above) apply simultaneously, so that agreement with there, agreement with several problems and movement of there to spec-TP all apply at the same time.

A potential problem posed by analysing expletive there as a (perhaps locative) quasi-argument initially merged in spec-VP is that (unlike expletive it in sentences such as (31) above) expletive there cannot serve as a controller for PRO - as we see from (51) below:

> There occurred three more accidents without [there/*PRO being any medical help available on the premises] (Haegeman 1994, p. 279)

If quasi-arguments have the property of being able to serve as controllers of PRO, sentences like (51) might be thought to argue against a VP-internal origin for expletive there. However, a straightforward way of accounting for the contrast between (31) and (51) is to suppose that PRO requires an antecedent with both person and number features, and that expletive it carries both of these features, but expletive there carries only person.

A VP-internal analysis of expletives like that in (50) also offers significant theoretical advantages over Chomsky's TP analysis, in that it provides us with a way of avoiding two potentially problematic aspects of Chomsky's analysis. One is that although a probe is generally the head of a containing projection (so that the head T of TP is the probe in most of the structures we have looked at in this chapter), Chomsky's TP analysis of expletives has to stipulate that a specifier can also serve as a probe when it is an expletive pronoun like there/it - a claim which is hard to square with his (2001) view that specifier-head agreement should be eliminated from the set of operations permitted by UG. By contrast, the VP-internal analysis of expletives allows us to maintain the stronger claim that only a head can be a probe. A second feature of Chomsky's analysis (illustrated in (38) above) is that he needs to assume that a T which has already had its person/number features valued and deleted by agreement with an indefinite associate can nonetheless serve as an active goal for agreement with an expletive probe. One way round this problem (suggested by Pesetsky and Torrego 2001) is to say that the relevant features are marked for deletion (or metaphorically speaking, sentenced to death) on the TP cycle, but not actually deleted (or, metaphorically speaking, executed) until a later stage of derivation (at the end of the CP cycle/phase). However, any such intrinsically undesirable splitting of deletion into two processes can be avoided under the account suggested here, which allows us to posit a unitary treatment of deletion along the lines of (52) below:

Feature Inactivation Hypothesis

An uninterpretable feature becomes inactive in the syntax (and invisible to the semantic component) immediately it is deleted

However, it should be noted that while (52) is compatible with a VP analysis of expletives, it is not compatible with Chomsky's claim that expletive there is directly merged in spec-TP.

A crucial premise of our alternative account of expletives is that in structures like (50), a T-probe can agree simultaneously with multiple goals (so that have simultaneously agrees in person with there and in person and number with several problems). However, this assumption raises interesting questions about how agreement works in transitive sentences like:

We are helping him
Given the assumptions we are making here, (53) will be derived as follows. The verb helping merges with its THEME complement him to form the V-bar helping him. This V-bar is in turn merged with its agent argument we to form the VP we helping him. The resulting VP is then merged with a present-tense T constituent to form the T-bar shown in simplified form in (54) below:

Given the Earliness Principle, T will serve as a probe at this point and look for one or more nominal goals to value (and delete) its unvalued person/number features. However, if (as we assumed in our discussion of (50) above) a probe can agree with multiple goals, an important question to ask is why T can't agree with both the subject we and the complement him. If (contrary to fact) multiple agreement were permitted in structures like (54), it would cause the derivation to crash because the person/number features of BE would have to be valued as first person plural in order to agree with the subject we and as third person singular in order to agree with the object him, and this would clearly lead to conflicting requirements on how the person/number features of BE should be valued. In reality, T agrees with the subject we in transitive structures like (54) and not with the object him. But in a framework which allows a probe to agree with multiple goals, how can we rule out agreement between T and the object of a transitive verb?

One answer to this question is provided by the Phase Impenetrability Condition, which we formulated in (23) above in the manner set out in (55) below:

Phase Impenetrability Condition/PIC

Any goal c-commanded by a phase head is impenetrable to any probe outside the phase
In our earlier discussion of PIC in §8.5, we noted Chomsky's (1999, p. 9) claim that phases are 'propositional' in nature, and that accordingly CPs are phases. However, Chomsky claims that transitive verb phrases (but not intransitive VPs) are also propositional in nature and hence phases, by virtue of the fact
that transitive VPs contain a complete thematic (argument structure) complex, including an external argument in spec-VP.

If transitive VPs are phases, and PIC allows only constituents on the edge (i.e. in the head or specifier position) of a phase to be accessible to a higher probe, it follows that in a structure like (54) above, the T constituent BE will only be able to agree with the subject we on the edge of the transitive VP phase, not with the object him which lies within the (c-command) domain of the transitive phase head helping. By contrast, in expletive structures like (50), PIC will not prevent the T constituent have from agreeing with both there and several problems, since the VP headed by the unaccusative verb arisen is intransitive (its specifier there not being an external argument but rather being a non-referential expletive pronoun).

If we adopt the Feature Inactivation Hypothesis (52), there is also another way in which we can prevent agreement between T and the object of a transitive verb in structures like (54). If the object him enters the derivation with an unvalued case feature and (in accordance with the Earliness Principle) the relevant case feature is valued as accusative (and deleted) as soon as him is merged with the transitive verb helping, it follows that once we reach the stage of derivation shown in (54) above, the accusative case feature carried by him will have been deleted, so making him inactive for agreement with T. (We look at accusative case assignment in the next chapter, so will say no more about it for the time being.)

8.7 Agreement and A-movement

So far, we have seen that agreement plays an important role not only in valuing the φ-features of T but also in valuing the case features of nominals. Chomsky $(1998,1999,2001)$ goes further and suggests that agreement also plays an important role in A-movement operations. To see why, let's return to consider the derivation of our earlier sentence (5B) They were arrested. Assume that the derivation proceeds as sketched earlier, with THEY being merged as the thematic complement of arrested, and the resulting VP in turn being merged with the tense auxiliary BE to form the structure (56) below:

In (56), ${ }_{\mathrm{T}} \mathrm{BE}$] is an active probe (by virtue of its uninterpretable person and number features) and has an uninterpretable [EPP] feature. It therefore searches for active
nominal goals which can value and delete its person/number features, locating the pronoun THEY (which is active by virtue of its uninterpretable case feature and which has person and number features which match those of be). Since the matching goal THEY is a definite pronoun, the [EPP] feature of [${ }_{T} \mathrm{BE}$] cannot be deleted by merging an expletive in spec-TP, but rather can only be deleted by movement of the goal to spec-TP, in accordance with (45iii): accordingly, THEY moves to become the specifier of BE , thereby deleting the uninterpretable [EPP] feature of be. Assuming that Feature-Copying, Nominative Case Assignment and Feature-Deletion work as before, the structure which is formed at the end of the TP cycle will be that shown below:

(To avoid excessive visual clutter, the trace copy of they left behind in VPcomplement position is shown here simply as they, but is in fact an identical copy of they, containing the same features as they. The same typographical convention will be used throughout the rest of this chapter.) The TP in (57) will subsequently be merged with a null declarative-force C , so terminating the syntactic derivation. Since all uninterpretable features have been deleted, the derivation converges i.e. results in a syntactic structure which can subsequently be mapped into wellformed phonetic and semantic representations.

A key assumption underlying the analysis sketched here is that T triggers movement of a nominal goal with which it agrees in person and number. Interesting empirical support for this claim comes from European Portuguese. Costa (2001) notes that in colloquial Portuguese, an intransitive verb used in an unaccusative structure like that below can be either third person singular or third person plural if used with an in-situ postverbal argument as in (58) below:

(58) (a)	Fecharam muitas fábricas 'Many fosed-3Pl many factories closed'	(b) Fechou muitas fábricas
	Closed-3Sg many factories	
	'Many factories closed'	

However, the postverbal argument (which originates as the complement of the verb) can only move in front of the verb into spec-TP if the verb (or, more accurately, the associated T-constituent) agrees with the subject in both person and number: cf.
(59) (a) Muitas fábricas fecharam Many factories closed-3Pl 'Many factories closed'
(b) *Muitas fábricas fechou Many factories closed-3Sg
'Many factories closed'

This suggests that movement of the italicised nominal from VP-complement position to spec-TP is dependent on full person/number agreement between T and the nominal which it attracts. Costa follows Belletti (1988) in positing that in agreementless sentences like (58b), the postverbal argument is assigned partitive case by the verb (which, in a language in which nouns have a limited case morphology will surface in a form homophonous with the accusative); assignment of case to the complement makes it inactive, and so ineligible to undergo T-agreement with the result that T surfaces in the agreementless default (third-person-singular) form. It may be that we find a related phenomenon in English sentence pairs such as:
(60) (a) There is only me considered suitable
(b) Only I am considered suitable

In (60a) the italicised pronoun expression follows the verb be, is not assigned nominative case, does not trigger T-agreement and is not raised to spec-TP; by contrast in (60b) the italicised nominal is assigned nominative case, triggers Tagreement, and is moved to spec-TP. Accordingly, sentences like (60) provide empirical support for Chomsky's claim that there is a close association between case, agreement and A-movement.

8.8 EPP in control infinitives

The analysis presented in the previous section assumes that a finite T carries an [EPP] feature which drives A-movement. But what about the kind of infinitival [${ }_{\mathrm{T}} t o$] constituent found in control clauses? In the previous chapter, we assumed that infinitival to never has an [EPP] feature, and hence that the PRO subject of a control clause like that bracketed in (61a) below remains in situ in spec-VP as in (61b), rather than raising to spec-TP as in (61c):
(61) (a) They don't want [to see you]
(b) They don't want [CP [C ø] [TP [T to] [vp PRO [v see] you]]]
(c) They don t want $\left[{ }_{C P}\left[{ }_{C} \varnothing\right]\left[{ }_{T P}\right.\right.$ PRO $\left[{ }_{T}\right.$ to] [${ }_{\mathrm{VP}}$ PRO ${ }_{\mathrm{V}}$ see] you $\left.\left.]\right]\right]$

We noted Baltin's (1995) claim that the in-situ analysis (61b) under which PRO remains in situ would account for why wanna-contraction is possible in such sentences (yielding They don't wanna see you), since there would be no PRO intervening between want and to. However, Baltin's argument is not entirely convincing. After all, if intervening null constituents block to from cliticising onto want and if control clauses are CPs, why doesn't the intervening null complementiser in ($61 \mathrm{~b}, \mathrm{c}$) block wanna-contraction? If we answer this question (as we did in the previous chapter) by suggesting that to first cliticises onto the null complementiser and then the two of them together subsequently cliticise onto want, we can handle the relevant data by supposing that only an overt subject in
spec-TP (like who at the relevant stage of derivation in *Who don't they want to see you?) in spec-TP blocks cliticisation of to onto C, not a null subject like PRO in (61c). What weakens the contraction argument still further is that this kind of contraction is idiosyncratic to the verb want (and indeed to the form want rather than wants, wanted, or wanting) rather than being associated with all control predicates, and this has led some linguists to suggest that wanna should simply be listed in the lexicon as an idiosyncratic form of want rather than being the product of a cliticisation operation. (See Boeckx 2000 for an alternative account of wanna-contraction.)

In short, the wanna-cliticisation argument for saying that PRO remains in situ is potentially flawed. Indeed, there seems to be counter-evidence in support of claiming that PRO does in fact move to spec-TP in control infinitives (and hence that control to has an EPP feature). Part of the evidence comes from the syntax of constituents like those italicised in (62) below which have the property that they are construed as modifying a bold-printed antecedent which is not immediately adjacent to them in the relevant structure:
(62) (a) They were both priding themselves on their achievements
(b) I don't myself think that Svengali was the best choice for England manager
(c) He was personally held responsible

Both in (62a) is a floating quantifier (and each/all can be used in a similar fashion); myself in (62b) is a floating emphatic reflexive; and personally in (62c) is an argument-oriented adverb (construed as modifying an argument, in this case he). In each sentence in (62), the italicised expression is construed as modifying the bold-printed subject of the clause. Contrasts such as those in (63) and (64) below:
(63) (a) Two republican senators were themselves thought to have been implicated
(b) *There were themselves thought to have been implicated two republican senators
(64) (a) Two republican senators are both thought to have been implicated
(b) *There are both thought to have been implicated two republican senators
suggest that a floating modifier must be c-commanded by its bold-printed antecedent.

In the light of the requirement for a floating modifier to be c-commanded by its antecedent, consider the syntax of the bracketed clauses in the following sentences:
(65) (a) [To both be betrayed by their friends] would be disastrous for Romeo and Juliet
(b) [To themselves be indicted] would be unfair on the company directors
(c) It was upsetting [to personally have been accused of corruption]

In each of these examples, the bracketed clause is a control clause containing a PRO argument. In each case, PRO is the thematic complement of a passive participle (viz. betrayed/indicted/accused). Hence, if control to has no [EPP] feature and PRO remains in situ, the TP in the bracketed infinitive complement in
(65b) will have the skeletal structure (66a) below, but if control to has an [EPP] feature, this will trigger movement of PRO to become the structural subject of to - as in (66b):
(66) (a) [${ }_{\mathrm{CP}}[\mathrm{C} \emptyset]\left[\mathrm{TTP}^{[\mathrm{T}}\right.$ to] [auXP themselves [AUX be] [vP [v indicted] PRO]]]]
(b) [${ }_{\mathrm{CP}}[\mathrm{C} \varnothing][$ [TP $\mathbf{P R O}[\mathrm{T}$ to] [auxp themselves [aux be] [vp [v indicted] PRO]] $]$

Given the requirement for a floating emphatic reflexive to be c-commanded by its antecedent, and given that PRO is the intended antecedent of themselves in (66), it is clear that (66a) cannot be the right structure, since PRO does not c-command themselves in (66a). By contrast, movement of PRO to spec-TP in (66b) means that PRO will indeed c-command themselves, so correctly predicting that (66b) is grammatical.

Let's therefore follow Chomsky $(1998,1999,2001)$ in positing that control to does indeed have an [EPP] feature, triggering raising of PRO to spec-TP. Let's also follow Chomsky in positing that PRO is assigned null case by agreement with a c-commanding T with null (non-finite) tense in much the same way as subjects in tensed clauses are assigned nominative case by agreement with a c-commanding T which has finite (present or past) tense. More specifically, let's assume that to in control infinitives contains not only an abstract non-finite tense feature, but also abstract φ-features; and let's further suppose that null case assignment can be characterised informally as follows:

Null Case Assignment

An unvalued case feature on a goal is valued as null by a probe carrying null (non-finite) tense if probe and goal match in (person and number) φ-features

See Stowell (1982) and Martin (2001) on the tense properties of control to, and Martin (2001) for evidence that control to has agreement features; but see Bowers (2002) for a different analysis of the case-marking of PRO subjects.

In the light of these assumptions, consider the derivation of the bracketed control clause in:

They have decided [PRO to help you]
Decide is a control predicate (as we see from the fact that (68) is paraphraseable as They have decided that they will help you, and from the fact that decide does not allow an expletive subject in a sentence like *There has decided to be an enquiry). Given the VP-Internal Subject Hypothesis, the PRO subject of the bracketed infinitive clause will originate in spec-VP, as the specifier of help you. More specifically, the derivation proceeds as follows. The verb help merges with its complement you, and the resulting V-bar help you in turn merges with its PRO subject to form the VP PRO help you. Merging control to with this VP forms the TP to help you. Let's suppose that since PRO refers back to they in (68), PRO (as used here) carries the interpretable features [3-Pers, Pl-Num]; let's also suppose that PRO enters the derivation with an unvalued case feature [u-Case]. In addition, let's assume that control to carries an interpretable non-finite-tense
feature [$\mathbf{N f} \mathbf{f - T n s}$] (denoting an irrealis event which has not yet happened but may happen in the future), and also has uninterpretable (and unvalued) person/number features. Finally (for the reasons given above), let's assume that to carries an [EPP] feature in control clauses. Given all these assumptions, merging to with [vp PRO help you] will form the T-bar (69) below (simplified by showing only features on constituents of immediate concern to us):

Since to is the highest head in the structure and is active (by virtue of its uninterpretable φ-features), it serves as a probe which searches for a goal to value and delete its φ-features. Since to c-commands PRO and PRO is active by virtue of its uninterpretable case feature, PRO can serve as a goal for the probe to. The unvalued φ-features on the probe are assigned the same third-person-plural values as those on the goal by Feature-Copying (7) and are deleted by Feature-Deletion (14). The unvalued case feature on PRO is assigned the value [Null-Case] by Null Case Assignment (67) and deleted by Feature-Deletion (14). Since PRO is a definite pronoun, the [EPP] feature of to is deleted by movement of PRO to spec-TP in accordance with the EPP Generalisation (45iii). The result of applying these various operations is to derive the TP (70) below (simplified in a number of ways, e.g. by showing the trace of PRO simply as t rather than as a deleted copy of PRO):
(70)

The resulting TP is subsequently merged with the null non-finite complementiser which introduces control clauses. As required, the structure which will serve as input to the semantic component will contain only (bold-printed) interpretable features - all uninterpretable features having been deleted.

A question of incidental detail which arises from the assumption made above that control T assigns null case to a nominal or pronominal expression which it c-commands is why T in (69) cannot assign null case to the pronoun you which is the object of the transitive verb help, since T c-commands you as well as PRO. One answer to this question is that (as we saw in §8.6), transitive verb phrases are phases, and hence the Phase Impenetrability Condition (55) allows a T probe to locate a goal on the edge of a transitive VP (like the PRO subject of the VP in (69) above), but not to locate a goal in the c-command domain of a transitive verb (hence not a pronoun like you in (69) since this is c-commanded by the transitive phase head help). A second answer is that the Earliness Principle requires you to be assigned case as early as possible in the derivation; and given our assumption in $\S 4.9$ that a transitive head assigns accusative case to a noun or pronoun expression which it c-commands, it follows that the case feature carried by you will be valued as accusative (and, we suppose, deleted) at the stage of derivation where it is merged as the complement of the transitive verb help: and our Feature Inactivation Hypothesis (52) tells us that once its case feature is deleted, you thereafter becomes inactive for agreement.

In the previous section, we suggested that a finite T has an [EPP] feature which triggers movement of the closest active matching goal to spec-TP, in conformity with the Attract Closest Principle. In this section, we have suggested that control to likewise carries an [EPP] feature triggering movement of the closest active goal to spec-TP. This suggests that we should look to see whether there is some property which finite T and control T share in common which will account for why both of them have an [EPP] feature. One possibility suggested by Chomsky (1999, p. 6) is 'to associate EPP with φ-completeness'. What this would mean is that T has an [EPP] feature only if it has a complete set of φ-features - an idea explored in Nasu (2001, 2002). On the assumption that in a language like English where T probes agree in person and number but not gender with appropriate goals T is φ-complete if it carries person and number features, we can say that a finite T is φ-complete by virtue of carrying person and number features, and the same is true of control to under the formulation of Null Case Assignment given in (67) above. However, a natural question to ask in relation to the φ completeness analysis of [EPP] is whether raising to also has an [EPP] feature, and if so whether it is φ-complete or not. This is the question we explore in the next section.

8.9 EPP in other infinitives

In the previous chapter, we posited that raising to does not carry an [EPP] feature. This would mean that a sentence such as (71a) below has the skeletal structure (71b), with he originating as the thematic subject of admire and being raised directly to become the structural subject of does (as shown by the dotted arrow):
(71) (a) He does seem to admire her
(b) $\quad\left[{ }_{\mathrm{CP}}[\mathrm{C} \varnothing]\left[{ }_{\mathrm{TP}} h e\left[{ }_{\mathrm{T}}\right.\right.\right.$ does $]\left[\mathrm{VP}[\mathrm{V}\right.$ seem $]\left[{ }_{\mathrm{TP}}\left[{ }_{\mathrm{T}}\right.\right.$ to $][\mathrm{VPP} h e[\mathrm{~V}$ admire $]$ her $\left.\left.\left.\left.]\right]\right]\right]\right]$

More specifically, we assumed that to in raising structures like (71b) does not have an [EPP] feature, so that he does not become the subject of to at any stage of derivation. If to in raising clauses is assumed to be defective (and hence to lack person and/or number φ-features), this is entirely consistent with Chomsky's suggested generalisation that only a φ-complete T carries an [EPP] feature.

However, Chomsky (2001, fn. 56) argues that (somewhat contrived) sentences like (72) below provide empirical evidence that raising to does after all have an [EPP] feature:

> John seems to Fred [to appear to himself [to like Mary]]

Here, himself refers to John, not to Fred. This is puzzling if we assume that the antecedent of a reflexive must be an argument locally c-commanding the reflexive (and hence contained within the same TP as the reflexive), since if raising to has no [EPP] feature and John moves directly from being the subject of the like clause to becoming the subject of the seem clause, the lefthand bracketed TP containing the reflexive will contain no antecedent for himself, and hence we will wrongly predict that sentences like (72) are ill-formed. By contrast, argues Chomsky, if we posit that raising to does indeed have an [EPP] feature, John will move from being subject of like Mary to becoming subject of to like Mary, then later becoming subject of to appear to himself to like Mary, before finally moving to become the subject of the null T constituent in the seem clause. This will mean that a null trace copy of John is left behind as the subject of each of the two infinitive clauses, as shown in skeletal form in (73) below:

John seems to Fred [Jөhn to appear to himself [Jøhn to like Mary]]
Since the reflexive himself is locally c-commanded by the bold-printed trace John in (73) within the lefthand bracketed TP containing the reflexive, (73) correctly predicts that himself will be interpreted as referring to John. (Recall that Chomsky posits that traces are deleted in the phonological component but remain visible in the syntactic and semantic components.) Further evidence that A-movement in raising structures is successive-cyclic is presented in Bošković (2002b).

Sentences like (73) suggest that raising to must have an [EPP] feature triggering movement of an argument to spec-TP. But it's important to bear in mind that the [EPP] feature on T works in conjunction with the person/number φ-features of T : more specifically, the [EPP] feature on T triggers movement to spec-TP of an expression which matches one or more of the φ-features of T. It therefore follows that T in raising clauses must carry one or more φ-features if it is to trigger movement of a nominal carrying φ-features of its own. Now it clearly cannot be the case that raising to carries both person and number, since if it did we
would wrongly predict that raising clauses require a null PRO subject (given that infinitival to assigns null case to its subject by (67) when carrying both person and number). The conclusion we reach, therefore, is that raising to must carry only one φ-feature. But which φ-feature - person or number?

The answer is provided by raising sentences such as the following: There do seem to remain several problems

On the assumption that raising to carries an [EPP] feature requiring it to project a subject, it seems reasonable to posit that expletive there will become the specifier of to remain several problems at some stage of derivation, and thereafter be raised up (in the manner shown by the arrow in the skeletal structure in (75) below) to become the specifier of $d o$ on the main-clause TP cycle:

This being so, merging there as the specifier of raising to on the subordinate clause TP cycle must satisfy the [EPP] feature of to. It follows that the φ-feature carried by to in (75) must match that carried by expletive there. Since we argued in $\S 8.6$ that expletive there carries person (but not number), it also follows that to in (75) must carry a person feature. This being so, the [EPP] feature of raising to will require it to project a specifier carrying a person feature, and expletive there clearly satisfies this requirement. (Note that the argument goes through irrespective of whether we follow Chomsky 2001 in positing that there originates as the specifier of to, or Bowers 2002 in assuming that there originates as the specifier of remain and is subsequently raised up to become the specifier of $t o$.)

Our conclusion can be generalised from raising sentences like (74/75) to longdistance passives like (76a) below, involving the movement operation arrowed in (76b):
(76) (a) There are thought to remain several problems
(b) ${ }_{\mathrm{TP}}$ There $\left[{ }_{\mathrm{T}}\right.$ are] [vP [V thought] [${ }_{\mathrm{TP}}$ there $\left[{ }_{\mathrm{T}} \mathrm{to}\right]$ [VP [v remain] several problems]]]]

Passive to (i.e. the kind of to found in long-distance passives) cannot carry both person and number features, since otherwise it would wrongly be predicted to require a subject with null case. Since the derivation of (76a) involves a stage at which there is the specifier of to and since there carries person but not number, it seems reasonable to conclude that passive to (like raising to) likewise carries person but not number.

We can generalise our finding still further to infinitival TPs such as those bracketed in (77) and (78) below:
(77) (a) They were expecting [TP the visitors to be met at the airport]
(b) They were expecting [TP there to be someone to meet the visitors at the airport]
(78) (a) I will arrange [${ }_{C P}$ for [TP the visitors to be met at the airport]]
(b) I will arrange [CP for [TP there to be someone to meet the visitors at the airport]]

The bracketed TPs in (77) are ECM clauses (with the properties noted in §4.8). Since the visitors originates as the thematic complement of the passive verb met in (77a) but ends up as the subject of [$\mathrm{T} t o$], it is clear that the head T of the bracketed complement-clause TP must contain an [EPP] feature and at least one φ-feature. Since the infinitive subject can be expletive there in (77b), and since there carries only person, it follows that the head T of an ECM clause must carry a person feature as well as an [EPP] feature. But if we suppose that a non-finite T which carries a full set of person and number features (like the head T of a control clause) assigns null case to its subject, then it is apparent from the fact that the subject of an ECM clause is an overt constituent and hence does not have null case that the head T of an ECM clause must also be defective, and so carry an [EPP] feature and a person feature, but no number feature. Our conclusion can be generalised in a straightforward fashion to for-infinitive structures like those bracketed in (78): if we define ECM structures as structures in which a constituent within TP is assigned case by an external head lying outside the relevant TP , it follows that for-infinitives are also ECM structures.

Our argumentation here leads us to the following more general conclusions:
(79) Feature composition of \mathbf{T} in English
(i) T always carries an [EPP] feature in all types of (finite and non-finite, main and complement) clauses
(ii) T carries a complete set of (person and number) φ-features in finite clauses and non-finite control clauses
(iii) $\quad \mathrm{T}$ is defective in respect of its φ-features in other types of non-finite clause (e.g. in raising clauses, long-distance passives, and ECM clauses) and carries only person (not number).

And these are essentially the assumptions made in Chomsky (2001).
In the light of the assumptions in (79), consider the derivation of the following sentence: Several prizes are thought likely [to be awarded]

Since the bracketed infinitive complement in (80) is a defective clause, [${ }_{\mathrm{T}} t o$] will carry uninterpretable [EPP] and person features (but no number feature) in accordance with (79i,iii). This means that at the point where to is merged with its complement we have the structure shown in skeletal form below:

$[\mathrm{T}$ to $]$	be awarded $[$ several prizes $]$
$[$ u-Pers $]$	$[$ 3-Pers $]$
$[E P P]$	$[$ Pl-Num $]$
	$[u$-Case $]$

Since [${ }_{\mathrm{T}} t o$] is the highest head in the structure at this point and is active by virtue of its uninterpretable person feature, $[\mathrm{T} t o$] serves as a probe which searches for an active goal and locates several prizes, which is active by virtue of its unvalued case feature. The goal several prizes values the unvalued person feature of to as third person and (by virtue of being φ-complete) deletes it. The unvalued case feature of several prizes cannot be valued or deleted by to, since to is φ-incomplete (by virtue of having no number feature), and only a finite/nonfinite φ-complete T can assign nominative/null case to a goal, and only a φ complete α can delete a matching feature of β. The [EPP] feature of to is deleted by movement of several prizes to spec-TP in accordance with the EPP Generalisation (45iii), thereby deriving the structure (82) below (simplified in various ways, including by showing the deleted trace of several prizes without its features):

[several prizes $]$	$[\mathrm{T}$ to $]$
$[$ 3-Pers $]$	$[\mathcal{Z}$-Pers $]$
$[$ PI-Num $]$	$[$ EPP $]$
$[$ u-Case $]$	

Merging the structure (82) with the raising adjective likely, merging the resulting AP with the passive verb thought and then merging the resulting VP with a finite present-tense T constituent containing BE will derive:
(83) [T BE$]$ thought likely [several prizes] [${ }_{\mathrm{T}}$ to] be awarded several prizes

$[$ Pres-Tns $]$	$[3-\mathrm{Pers}]$	$[3$-Pers $]$
$[u$-Pers $]$	$[$ Pl-Num $]$	$[$ EPP $]$
$[u-N u m]$	$[u$-Case $]$	

$$
[\text { u-Num }] \quad[u \text {-Case }]
$$

$$
[E P P]
$$

Because it is the highest head in the structure and is active by virtue of its uninterpretable φ-features, BE serves as a probe which searches for an active goal and locates several prizes. By virtue of being φ-complete, the goal several prizes values and deletes the uninterpretable person/number features of the probe BE . By virtue of being finite and φ-complete, BE values the unvalued case feature of several prizes as nominative, and deletes it. The [EPP] feature of BE is deleted by moving several prizes to spec-TP in accordance with (45iii), so deriving:
(84) [several prizes] [T_{BE}] thought likely several prizes [T_{T} to] be awarded several prizes [3-Pers] [Pres-Tns] [3Pers] [Pl-Num] [3-Pers] [EPP] [Nom-Case] [Pl-Num]
[EPP]
The resulting TP is subsequently merged with a null declarative complementiser, and BE is ultimately spelled out as are. Since all unvalued features have been valued and all uninterpretable features have been deleted, the derivation converges (i.e. results in a well-formed structure which can be assigned an appropriate phonetic representation and an appropriate semantic representation).

Now let's return to take another look at the derivation of our earlier sentence (1) There are thought likely to be awarded several prizes. Let's adopt Chomsky's TP analysis of expletives and suppose that we have reached the stage of derivation in (81) above, repeated as (85) below:

$$
\begin{array}{cc}
{[\mathrm{T} \text { to }]} & \text { be awarded [several prizes }] \tag{85}\\
{[\text { u-Pers }]} & {[\text { 3-Pers }]} \\
{[\text { EPP }]} & {[\text { Pl-Num }]} \\
& {[\text { u-Case }]}
\end{array}
$$

As before, to serves as a probe and identifies several prizes as an active goal. Since several prizes is φ-complete, it can not only value the unvalued person feature of to but also delete it, yielding:

$[\mathrm{T}$ to $]$	be awarded $[$ several prizes $]$
$[3$-Pers $]$	$[3$-Pers $]$
$[E P P]$	$[$ Pl-Num $]$
	$[$ u-Case $]$

Since the goal several prizes is an indefinite expression, the [EPP] feature of to can be deleted by merging expletive there in spec-TP in accordance with the EPP Generalisation (45i), deriving:

$$
\begin{array}{cc}
\text { there }[\mathrm{T} \text { to }] & \text { be awarded }[\text { several prizes }] \tag{87}\\
{[3 \text {-Pers }][3 \text {-Pers }]} & {[\mathbf{3 - P e r s}]} \\
{[\text { EPP }]} & {[\text { Pl-Num }]} \\
& {[\text { u-Case }]}
\end{array}
$$

Since there is the highest head in the structure and is active by virtue of its uninterpretable person feature, it serves as a probe, and picks out to as a matching goal containing a person feature. However, since to is defective (in that it has no number feature), it cannot delete the uninterpretable person feature on there. (We assume here that several prizes cannot serve as a possible goal for there, because agreement is a relation between a noun/pronoun expression like there and a T constituent like to, not a relation between two noun/pronoun expressions like there and several prizes.)

Merging the TP in (87) with the raising adjective likely, merging the resulting AP with the passive verb thought and merging the resulting VP with a presenttense T containing BE will derive:
$\left.\begin{array}{ccc}{[\mathrm{T} \mathrm{BE}]} & \text { thought likely } & {[\text { there }]}\end{array}\right][\mathrm{T}$ to $]$ be awarded [several prizes $]$

At this point, $\left[\begin{array}{l}\mathrm{T} \\ \mathrm{BE}\end{array}\right]$ is the highest head in the structure and so serves as a probe. Its uninterpretable person and number features make it active, and mean that [$\left.{ }_{T} B E\right]$ looks for active nominal goals which have person and/or number features.

However, there are two such active nominal goals which are accessible to the probe [${ }_{\mathrm{T}} \mathrm{BE}$] in (88) - namely the expletive pronoun there (active by virtue of its uninterpretable third-person feature) and the quantifier phrase several prizes (active by virtue of its uninterpretable case feature, and carrying both person and number features). Both are accessible to [т BE] in terms of the Phase Impenetrability Condition (55) since neither is c-commanded by a phase head (i.e. by a complementiser or by a transitive verb). Let's suppose (consistent with Chomsky 2001 and with our earlier discussion of (50) above) that when a probe locates more than one active goal, it undergoes simultaneous multiple agreement with all active goals accessible to it - in other words, the probe BE simultaneously agrees with both there and several prizes. The unvalued person feature of be will be valued as third person via Feature Matching with the third-person goals there and several prizes; the unvalued number feature of BE will be valued as plural via agreement with the plural goal several prizes. The unvalued case feature on the goal several prizes will be valued as nominative (and deleted) by the φ-complete probe BE because the two match in person and number and BE carries finite tense. The uninterpretable person/number features of the probe BE can in turn be deleted by the φ-complete goal several prizes. In accordance with (45iii) and the Attract Closest Principle, the [EPP] feature of BE attracts the closest active goal (namely there) to move to become the specifier of BE (movement resulting in deletion of the [EPP] feature on BE), deriving:

there [${ }_{\text {T }} \mathrm{BE}$]	thought likely there [T to]	be awarded [several prizes
[3-Pers] [Pres-Tns]	[3-Pers]	[3-Pers]
[3-Pers]	[EPP]	[Pl-Num]
[Pl Numm]		[Nom Case]
[EPP]		

The resulting structure will then be merged with a null declarative complementiser, and BE will ultimately be spelled out as the third-person-plural present-tense form are. As required, all uninterpretable features have been deleted from (89), so only the bold interpretable features are seen by the semantic component.

Note that an important assumption which is incorporated into the analysis presented here is that the φ-features of T agree with every goal which is accessible to them (giving rise to multiple agreement), but that (in consequence of the Attract Closest Principle) the [EPP] feature of T only triggers movement of the closest goal to spec-TP.

Under the analysis presented in this section (in which all instances of infinitival to carry an [EPP] feature), an important question which arises is how we account for the ungrammaticality of sentences like:
*There are thought likely several prizes to be awarded
Consider first how (90) might be derived, before considering why it is ill-formed. The derivation proceeds along familiar lines until we reach the stage of derivation in (83) above, repeated as (91) below:
(91) [$\left.{ }_{\mathrm{T}} \mathrm{BE}\right]$ thought likely [several prizes] $[\mathrm{T}$ to] be awarded several prizes

$[$ Pres-Tns $]$	$[3-\mathrm{Pers}]$	$[3$ Pers $]$
$[$ u-Pers $]$	$[$ Pl-Num $]$	$[$ EPP $]$
$[u$-Num $]$	$[u$-Case $]$	

[EPP]
As before, the case feature of several prizes is valued as nominative and deleted by [T_{BE}], and conversely the person/number features of BE are valued and deleted by several prizes. Let's suppose that the lexical array contains expletive there and that the [EPP] feature of BE is deleted by merging there in spec-TP, and that the uninterpretable third-person feature of there is deleted by the φ-complete [${ }_{\mathrm{T}} \mathrm{BE}$], so deriving:
(92) there [T BE$]$ thought likely [several prizes] [T to] be awarded several prizes

$[3$ Pers $][$ Pres-Tns $]$	$[3-P e r s]$	$[3$ Pers $]$
$[3$-Pers $]$	$[$ Pl-Num $]$	$[$ EPP $]$
$[$ Pl Numm $]$	$[廿$ Case $]$	

(92) is then merged with a null declarative complementiser, and BE is ultimately spelled out as are. Since the resulting structure contains no unvalued or uninterpretable features, we expect the corresponding sentence (90) to be well-formed. But it is ungrammatical. Why should this be?

Chomsky's answer is that Merge is a more primitive and less complex operation than Move and that 'Simple operations preempt more complex ones' (Chomsky 1998, p. 18). Merge is a more primitive relation than Move in that other combinatorial systems (like the artificial languages used in mathematics, logic or computer science) employ Merge but not Move. Move is more complex than Merge because it is a composite agree+copy+merge+pied-pipe operation. It therefore follows from 'complexity considerations' (Chomsky 1998, p. 18) that spec-TP must be filled by merger if the lexical array (i.e. the set of items taken out of the lexicon to build the relevant sentence structure) contains an expletive, with movement to spec-TP being used only as a last resort (i.e. where the lexical array contains no expletive). As Chomsky (1998, p. 17) puts it, 'Merge preempts the more complex operation Move' (though see Shima 2000 for a dissenting view). Since the sentence in (90) contains expletive there, it is clear that the lexical array for (90) includes an expletive. In the light of this observation, let's return to the earlier stage of derivation represented in (81) above, repeated as (93) below:

$$
\begin{array}{cc}
{[\mathrm{T} \text { to }]} & \text { be awarded [several prizes }] \tag{93}\\
{[\text { u-Pers }]} & {[\mathbf{3} \text {-Pers }]} \\
{[\text { EPP }]} & {[\text { Pl-Num }]} \\
& {[u \text {-Case }]}
\end{array}
$$

Complexity considerations - more explicitly what Chomsky (1999, p. 5) refers to as 'preference of Merge over (more complex) Move' - will require the [EPP] feature of [$\mathrm{T} t o$] be satisfied by merging expletive there in spec-TP, so resulting in (87) above, repeated as (94) below:

there $\left[{ }_{\mathrm{T}}\right.$ to $]$	
$[3$-Pers $][$ 3 Pers $]$	be awarded [several prizes $]$
$[$ EPPP $]$	$[\mathbf{P l}$-Num $]$
	$[$-Case $]$

Subsequently, the derivation will proceed through the steps discussed in (88) and (89) above, ultimately deriving the CP structure associated with There are thought likely to be awarded several prizes.

To revert to terminology used in earlier chapters, if T in English always has an [EPP] feature, A-movement will always be a local operation which (in complex structures where an argument moves out of one or more lower TP constituents to become the subject of a higher TP) applies in a successive-cyclic fashion, with the relevant argument moving to become the subject of a lower TP before going on to become the subject of a higher TP. Since we saw in $\S 5.6$ that head movement is also successive-cyclic (in that a moved head moves into the next highest head position within the structure immediately containing it), the greater generalisation would appear to be that all movement is local (and hence successive-cyclic in complex structures), so that any moved constituent moves into the closest appropriate landing site above it (as argued in Rizzi 2001a). If so, we would expect to find that wh-movement is also a local (hence successive-cyclic) operation. And indeed, theoretical considerations suggest that it must be.

In this chapter, we have seen that CPs and transitive VPs are phases, and that the Phase Impenetrability Condition/PIC (55) prevents a constituent which is ccommanded by a complementiser or a transitive verb from being attracted by an external head which c-commands the CP/VP containing the relevant complementiser/transitive verb. PIC turns out to have important consequences for how wh-movement operates in complex sentences such as: What will they think that he has done?

The wh-pronoun what originates as the thematic complement of the transitive verb done, and it might at first sight seem as if it moves from being the complement of the transitive verb done to becoming the specifier of the C constituent containing the inverted auxiliary will in a single step like that shown in highly simplified form in (96) below:

And indeed, this is precisely what we tacitly assumed in chapter 6. However, a single-step movement operation like that shown in (96) will involve three violations of the Phase Impenetrability Condition, since it involves the bracketed C constituent serving as a probe which attracts the wh-pronoun what to move out of a transitive VP headed by done, out of a CP headed by that, and out of a further transitive VP headed by think. The only way of avoiding violation of PIC is for wh-movement to apply in a successive-cyclic fashion, moving what first to the
front of the transitive VP headed by $d o$, then to the front of the complement clause CP headed by that, then to the front of the transitive VP headed by think, and finally to the front of the main-clause CP headed by the null complementiser to which the inverted auxiliary will adjoins. It would not be appropriate for us to look in more detail at the successive-cyclic nature of wh-movement at this point, until we have taken a closer look at the internal structure of verb phrases in chapter 9 and at the nature of phases in chapter 10: hence we postpone discussion of this until chapter 10.

8.10 Summary

In this chapter, we have taken a look at Chomsky's recent work on case, agreement and A-movement. In $\S 8.2$ we saw that agreement plays an integral role in nominative case assignment, in that nominative case is assigned to a nominal which agrees in person and number with a finite T. In $\S 8.3$ we argued that some features enter the derivation already valued (e.g. the tense feature of T and the person/number φ-features of nominals), whereas others (e.g. the φ-features of T and the case feature of nominals) are initially unvalued and are assigned values in the course of the derivation by operations like Feature-Copying (7) and Nominative Case Assignment (9). In §8.4, we claimed that interpretable features enter the derivation already valued, whereas those features which are initially unvalued are uninterpretable. We saw that agreement and case-marking involve a relation between an active probe and an active goal, and that probe and goal are only active if they carry one or more uninterpretable features (e.g. uninterpretable φ-features or case features). We also saw that uninterpretable features have to be deleted in the course of the derivation by a Feature-Deletion operation (14), in order to ensure that they do not feed into the semantic component and thereby cause the derivation to crash (because they are illegible in the semantic component), and that only a φ-complete α can delete an uninterpretable feature of β. In $\S 8.5$, we suggested that expletive $i t$ enters the derivation with uninterpretable third-person and singular-number features, and that these value, delete and in turn are deleted by those of the auxiliary in sentences such as It is said that he has taken bribes. However, we noted that weather it is quasi-referential, and may originate as an argument internally within VP. In §8.6, we looked at Chomsky's claim that there is merged directly in spec-TP, and serves as a probe whose uninterpretable third-person feature is deleted via agreement with a φ-complete T. We noted that such an analysis has consequences (for the nature of probes and the inactivation of features) which may not seem desirable, and outlined an alternative analysis of expletives as originating within VP. In §8.7 we outlined Chomsky's agreement-based theory of movement under which movement involves an agreement relation between an active probe with an [EPP] feature and an active goal, and we suggested in (45) that the [EPP] feature of T can be satisfied either by merger of an expletive in spec-TP, or by movement of the closest active matching
goal to spec-TP, with merger/movement of the relevant constituent in spec-TP deleting the [EPP] feature of T. In $\S 8.8$ we looked at the syntax of control infinitives, claiming that their PRO subject is assigned null case via agreement with a φ-complete T carrying null (non-finite) tense. We went on to argue that data relating to the distribution of floating modifiers suggest that T in control clauses has an [EPP] feature which triggers movement of PRO to spec-TP. In §8.9 we argued that T in other kinds of infinitive clause (e.g. the infinitival complements of raising, passive and ECM predicates) is defective in that although it carries uninterpretable [EPP] and person features (the latter serving to make T active), it lacks the number feature carried by a φ-complete T in finite and control clauses. We saw that such an analysis entails that A-movement takes place in a successivecyclic fashion, with the moved argument being raised to become the subject of a lower TP before raising to become the subject of a higher TP. We went on to consider the possibility that all movement operations are local (and hence apply in a successive-cyclic fashion in complex structures) and noted that this implies that A-bar movement operations like wh-movement are also successive-cyclic in complex sentences (but said we would postpone detailed discussion of this until chapter 10).

Workbook section

Exercise 8.1

Discuss the derivation of the following sentences.
1 There remains little hope of finding any survivors
2 There are expected to remain some problems
3 Several mineworkers are thought to have died
4 They are considered likely to want to enter the race
5 It would be unthinkable to compromise yourself
6 He appears to be thought to be certain to win the race
$7 \quad$ He is hoping to be promoted
8 It is rumoured that there have been several riots
9 It is thought to be likely that some houses have collapsed
10 There seem certain to remain some problems
In addition, say why the derivation of each of the following sentences crashes (informal paraphrases of the intended meaning being given where this may be unclear):

11 *There are expected some problems to remain (= 'There are expected to remain some problems')
*Some problems are expected there to remain (= 'There are expected to remain some problems')
*It is expected there to remain some problems ($=$ 'There are expected to remain some problems')
*There are rumoured that several prisoners were recaptured
*They appear were detained (= 'It appears that they were detained')
*He is believed has quit his job (= 'It is believed that he has quit his job')

Helpful hints

Assume (as in §§4.6-4.7) that all finite clauses and all control infinitive clauses (i.e. infinitive clauses which are the complement of a CONTROL predicate like decide) are canonical clauses and hence CPs containing a T headed by a φ-complete T with person, number and [EPP] features. By contrast, assume (as in §4.8) that seemingly subjectless infinitive clauses which are the complement of a raising predicate like seem/likely or a passive participle like expected are defective clauses, and hence are TPs headed by a defective T which has person and [EPP] features, but no number feature. Be careful not to confuse raising structures like It's likely to rain with control structures like It's easy to make a mistake: note that in the first structure we can have an expletive there subject (There's likely to be a strike), but not in the second (*There's easy to be a mistake). Assume that infinitival be is the head AUX constituent of an AUXP when followed by a passive participle, but the head V of a VP when followed by an adjective. Finally, assume that the preference for Merge over Move holds only internally within a given CP (i.e. where an expletive and a nominal which are competing for the same spec-TP position are both contained in the same CP). Do any of these sentences prove problematic for the analysis in the text - and if so, why?

Model answer for sentence 1

If we assume Chomsky's TP analysis of expletives, sentence 1 will be derived as follows. The noun hope is merged with its PP complement of finding any survivors (whose structure need not concern us here) to form the NP hope of finding any survivors. This NP is merged with the quantifier little to form the QP little hope of finding any survivors. This QP is merged as the complement of the unaccusative verb remain to form the VP remain little hope of finding any survivors. This in turn is merged with an affixal finite T constituent (below denoted as AFF) to form the structure shown in simplified form in (i) below:

The affixal T serves as a probe because it is the highest head in the structure, and because its uninterpretable person/number features make it active. In accordance with the Earliness Principle, T immediately searches for an active goal, locating the QP little hope of finding any survivors (which is active by virtue of having an uninterpretable case feature). The T probe values the case feature on the QP goal as nominative via the Nominative Case Assignment operation (9) in the main text, and deletes it via Feature-Deletion (14). Conversely, the QP goal values the unvalued φ-features on the T probe as third person singular via Feature-Copying (7) and deletes them via Feature-Deletion (14). If the lexical array for the relevant CP (i.e. the set of constituents out of which the CP in question is formed) includes expletive there, preference of Merge over Move will mean that the [EPP] requirement for T to have a specifier must be satisfied by
merging there in spec-TP, thereby deleting the [EPP] feature of T in accordance with (45i); the uninterpretable third-person feature of there will be deleted by the φ-complete affix in T. Merging the resulting TP with a null complementiser marking the sentence as declarative in force derives:
(ii)

All the features in (ii) feed into the PF component, and since there are no unvalued features in (ii), the relevant structure can be assigned an appropriate PF representation: since there is no overt auxiliary in T on which the Tense Affix (AFF) containing the person/number/tense features of T can be spelled out, the relevant affix is lowered onto the verb remain (by the morphological operation of Affix Hopping) in the PF component, so that the verb ultimately surfaces in the third-person-singular present-tense form remains. Since all features in (ii) are valued, (ii) can be mapped into an appropriate PF representation; and since all (italicised) uninterpretable features have been deleted, (ii) can also be mapped into an appropriate semantic representation.

Exercise 8.2

Discuss the derivation of following Belfast English sentences (kindly supplied to me by Alison Henry):

1
2
3
4
5
6

There should have been lots of students taking the course
There should have lots of students been taking the course
There should lots of students have been taking the course There have seemed to be lots of students enjoying the course There have seemed lots of students to be enjoying the course
There have lots of students seemed to be enjoying the course

Model answer for sentence 1

If we assume Chomsky's TP analysis of expletive there, sentence 1 will have the following (simplified) derivation. The transitive verb taking merges with its DP complement the course to form the V-bar taking the course. This is in turn merged with its subject QP lots of students (whose internal structure need not concern us here) to form the VP lots of students taking the course. This then merges with the progressive auxiliary been to form the progressive auxiliary projection (PROGP) been lots of students taking the course. This in turn is merged with the perfect auxiliary have to form the Perfect Auxiliary Projection (PERFP) have been lots of students taking the course. The resulting PERFP is in turn merged with a finite T constituent containing the past-tense modal auxiliary should, so deriving the T-bar shown in simplified form in (i) below (where only the features of those constituents of immediate interest to us are shown):
(i)

By virtue of its uninterpretable person and number features, [${ }_{\mathrm{T}}$ should] serves as a probe and identifies the QP lots of students as the only accessible active goal. (Since a transitive VP is a phase, the Phase Impenetrability Condition prevents T from accessing any constituent of a transitive VP other than its specifier and head - and hence prevents the VP complement the course from being a goal for T.) Accordingly, lots of students values (as third person plural) and deletes the person/number features of should, and conversely should values (as nominative) and deletes the case feature of lots of students. Since the goal lots of students is an indefinite expression, the [EPP] feature carried by [т should] can be deleted by merging expletive there in spec-TP in accordance with the EPP Generalisation (45i) in the main text - and indeed, preference of Merge over Move would dictate that we need to use an expletive subject if (as in 1) we have an expletive pronoun in our lexical array. Merging expletive there in spec-TP will delete the [EPP] feature of T, and conversely the uninterpretable person feature carried by there can be deleted by the φ-complete T constituent should, so deriving the simplified structure:
(ii) There should have been lots of students taking the course

$[3-P e r s]$	$[$ Past-Tns $]$
$[3$ Pers $]$	$[3-\mathrm{Pers}]$
$[$ Pl-Num $]$	$[$ Pl-Num $]$
$[\mathrm{Erf}]$	$[$ Nom-Case $]$

The resulting TP will subsequently be merged with a null declarative C. Since all unvalued features have been valued and all uninterpretable features deleted, the resulting derivation is convergent (in that it can be mapped into appropriate phonetic and semantic representations).

Helpful hints on sentences 2-6

Discuss the problems posed for Chomsky's Prefer-Merge-Over-Move principle by some of the sentences 2-6, and also the problems posed for the assumption made throughout our text so far that only C (in wh-clauses) and T (in all types of clause) have an [EPP] feature. Consider the possibility of an alternative account under which languages (and language varieties) may differ in respect of an EPP parameter in relation to what kind of heads carry an [EPP] feature.

9 Split projections

9.1 Overview

Hitherto, we have assumed a simple model of clause structure in which canonical clauses are $\mathrm{CP}+\mathrm{TP}+\mathrm{VP}$ structures. However, in $\S 5.6$ we suggested that it is necessary to 'split' TP into two different auxiliary-headed projections in sentences like He may be lying - namely a TP projection headed by the T constituent may and an AUXP projection headed by the AUX constituent be; and in $\S 7.3$ we suggested that it may be necessary to posit a further $\operatorname{Asp}(e c t)$ head in clauses to house the preposed verb in quotative structures like 'We hate syntax', said the students. In this chapter, we go on to suggest that CPs, VPs and NPs should likewise be split into multiple projections - hence the title of the chapter. We begin by looking at arguments that the CP layer of clause structure should be split into a number of separate projections: Force Phrase, Topic Phrase, Focus Phrase and Finiteness Phrase. We then go on to explore the possibility of splitting verb phrases into two or more separate projections an inner core headed by a lexical verb, and an outer shell headed by a light verb (with perhaps an additional projection between the two in transitive verb phrases). Finally we turn to look at evidence for a split projection analysis of NPs.

9.2 Split CP: Force, Topic and Focus projections

Our discussion of wh-movement in chapter 6 was concerned with movement of (interrogative, exclamative and relative) wh-expressions to the periphery of clauses (i.e. to a position above TP). However, as examples like (1) below illustrate, it is not simply wh-constituents which undergo movement to the clause periphery:
(1) No other colleague would he turn to

In (1), no other colleague (which is the complement of the preposition to) has been focused/focalised - i.e. moved to the front of the sentence in order to focus it (and thereby give it special emphasis). At first sight, it would appear that the focused object moves into spec-CP and that the pre-subject auxiliary would moves from

T to C in the manner shown in (2) below (simplified inter alia by not showing he originating within VP):

However, one problem posed by the CP analysis of focusing/focalisation sketched in (2) is that a structure containing a preposed focused constituent can occur after a complementiser like that, as in: I am absolutely convinced [that no other colleague would he turn to]

This suggests that there must be more than one type of CP projection 'above' TP in clauses: more specifically, there must be one type of projection which hosts preposed focused constituents, and another type of projection which hosts complementisers. Reasoning along these lines, Luigi Rizzi (1997, 2001b, 2003) suggests that CP should be split into a number of different projections - an analysis widely referred to as the split CP hypothesis. More specifically, he suggests that complementisers (by virtue of their role in specifying whether a given clause is declarative, interrogative, imperative, or exclamative in force) should be analysed as Force markers heading a ForceP ($=$ Force Phrase) projection, and that focused constituents should be analysed as contained within a separate FocP ($=$ Focus Phrase) headed by a Foc constituent ($=$ Focus marker).

On this view, the bracketed complement clause in (3) would have the structure shown in simplified form below:
(4)

The focused QP/quantifier phrase no other colleague originates as the complement of the preposition to and (by virtue of being focused) moves from complement position within PP into specifier position within FocP. The auxiliary would originates in T and from there moves into the head Foc position of FocP. One way of describing the relevant data is to suppose that the head Foc constituent of FocP carries an [EPP] feature and an uninterpretable focus feature which together attract the focused object no other colleague (which itself contains a matching interpretable focus feature) to move into spec-FocP, and that Foc is a strong head carrying an affixal [TNS] feature which attracts the auxiliary would to move from Tinto Foc.

From a discourse perspective, a focused constituent typically represents new information (i.e. information not previously mentioned in the discourse and assumed to be unfamiliar to the hearer). In this respect, focused constituents differ from another class of preposed expressions which serve as the topic of the clause immediately containing them. Topics typically represent old information (i.e. information which has already been mentioned in the discourse and hence is assumed to be known to the hearer). In this connection, consider the sentence produced by speaker B below:

> SPEAKER A: The demonstrators have been looting shops and setting fire to cars SPEAKER B: That kind of behaviour, we cannot tolerate in a civilised society

Here, the italicised phrase that kind of behaviour refers back to the activity of looting shops and setting fire to cars mentioned earlier by speaker A , and so is the topic of the discourse. Since the topic that kind of behaviour is the complement of the verb tolerate it would be expected to occupy the canonical complement position following tolerate. Instead, it ends up at the front of the overall sentence, and so would seem to have undergone a movement operation of some kind. Since the relevant movement operation serves to mark the preposed constituent as the topic of the sentence, it is widely known as topicalisation. (On differences between focusing and topicalisation, see Rizzi 1997; Cormack and Smith 2000b; Smith and Cormack 2002; Alexopoulou and Kolliakou 2002; and Drubig 2003.) However, since topicalisation moves a maximal projection to a specifier position on the periphery of the clause, it can (like focusing and wh-movement) be regarded a particular instance of the more general A-bar movement operation we looked at in chapter 7 whereby a moved constituent is attracted into an A-bar specifier position (i.e. the kind of specifier position which can be occupied by arguments and adjuncts alike).

Rizzi (1997) and Haegeman (2000) argue that just as focused constituents occupy the specifier position within a Focus Phrase, so too topicalised constituents occupy the specifier position within a Topic Phrase. This in turn raises the question of where Topic Phrases are positioned relative to other constituents within the clause. In this connection, consider the italicised clause in (6) below:

He had seen something truly evil - prisoners being ritually raped, tortured and mutiliated. He prayed that atrocities like those, never again would he witness

In the italicised clause in (6), that marks the declarative force of the clause; atrocities like those is the object of the verb witness and has been preposed in order to mark it as the topic of the sentence (since it refers back to the acts of rape, torture and mutilation mentioned in the previous sentence); the preposed negative adverbial phrase never again is a focused constituent, and hence requires auxiliary inversion. Thus, the italicised that-clause in (6) will have the simplified structure shown below:
(7)

We can assume that the head Top constituent of the Topic Phrase contains an [EPP] feature and an uninterpretable topic feature, and that these attract a maximal projection which carries a matching interpretable topic feature to move to the specifier position within the Topic Phrase. If we further assume that Top is a weak head (and so does not carry an affixal [TNS] feature), we can account for the fact that the auxiliary would remains in the strong Foc position and does not raise to the weak Top position.

Rizzi's split CP analysis raises interesting questions about the syntax of the kind of wh-movement operation which we find (inter alia) in interrogatives, relatives and exclamatives. Within the unitary (unsplit) CP analysis outlined in chapter 7, it was clear that wh-phrases moved into spec-CP; but if CP can be split into a number of distinct projections (including a Force Phrase, a Topic Phrase and a Focus Phrase), the question arises as to which of these projections serves as the landing site for wh-movement. Rizzi (1997, p. 289) suggests that 'relative operators occupy the highest specifier position, the spec of Force'. In this connection, consider the syntax of the bracketed relative clauses in (8) below:
(8) (a) A university is the kind of place [in which, that kind of behaviour, we cannot tolerate]
(b) Syntax is the kind of subject [which only very rarely will students enjoy]

In (8a), the preposed wh-expression in which precedes the preposed topic that kind of behaviour; in (8b) the preposed relative pronoun which precedes the preposed focused expression only very rarely. If Rizzi is right in suggesting that preposed relative operator expressions occupy specifier position within the Force Phrase, the bracketed relative clauses in $(8 a, b)$ above will have the simplified structures shown below:
(9) (a) [ForceP in which [Force $\varnothing]$ [TopP that kind of behaviour [Tор \varnothing] [TP we cannot tolerate $\mathbf{t} t]]$]
(b) [ForceP which [Force $\varnothing][$ FocP only very rarely [Foc will] [TP students t enjoy $t \mathbf{t}]]]$
(Trace copies of moved constituents are shown as t and printed in the same typeface as their antecedent.)

By contrast, Rizzi argues (1997, p. 299) that a preposed wh-operator expression 'ends up in Spec of Foc in main questions'. If (as he claims) clauses may
contain only a single Focus Phrase constituent, such an assumption will provide a straightforward account of the ungrammaticality of main-clause questions such as (10) below:
(10) (a) *What never again will you do?
(b) *What will never again you do?

If both what and never again (when preposed) move into the specifier position within FocP, if Foc allows only one focused constituent as its specifier, and if no clause may contain more than one FocP constituent, it follows that (10a) will be ruled out by virtue of Foc having two specifiers (what and never again) and that (10b) will be ruled out by virtue of requiring two Focus Phrase constituents (one hosting what and another hosting never again). Likewise, multiple wh-movement questions (i.e. questions in which more than one wh-expression is preposed) like (11) below will be ruled out in a similar fashion:
(11) (a) *Who where did he send?
(b) *Who did where he send?

The assumption that preposed wh-phrases occupy spec-FocP has interesting implications for our claim in $\S 6.8$ that yes-no questions contain an interrogative operator whether (a null counterpart of whether). If this null operator (like other interrogative expressions) occupies spec-FocP, and if Foc is a strong head, it follows that inverted auxiliaries in main-clause yes-no questions like Has he left? will involve movement of the inverted auxiliary has into the head Foc position within FocP, with the specifier position in FocP being filled by a null counterpart of whether. This assumption would account for the ungrammaticality of sentences such as the following:
(12) (a) *Will never again things be the same?
(b) *Can that kind of behaviour we tolerate in a civilised society?

If never again is the specifier of a FocP constituent in (12a), the inverted auxiliary must be in a higher FocP projection whose specifier is whether. However, we have already seen in relation to sentences like (10) and (11) above that clauses may only contain one FocP constituent, so the ungrammaticality of (12a) can be attributed to the impossibility of stacking one FocP on top of another. Likewise, if that kind of behaviour is a topicalised constituent occupying the specifier position within a Topic Phrase in (12b) and if an inverted auxiliary like can in a yes-no question occupies the head Foc position of a FocP containing whether as its specifier, this means that FocP is positioned above TopP in (12b). Given the Head Movement Constraint, can will have to move through Top to get into Foc; but since Top is a weak head, can is prevented from moving through Top into Foc; and since Foc is a strong affixal head, the affix in Foc ends up being stranded without any verb to attach to. If we reverse the order of the two projections and position TopP above FocP, the resulting structure is fine, as we see from (13) below:
(13) That kind of behaviour, can we tolerate in a civilised society?

In (13), the topic that kind of behaviour occupies the specifier position of a TopP which has a weak head, while the inverted auxiliary can occupies the strong head Foc position in a FocP which has the null operator whether as its specifier.

Although Rizzi argues that a preposed interrogative wh-expression moves into spec-FocP in main clauses, he maintains that a preposed wh-expression moves into a different position (spec-ForceP) in complement-clause questions. Some evidence in support of this claim comes from sentences such as the following (from Culicover 1991):
(14) (a) Lee wonders [whether under no circumstances at all would Robin volunteer]
(b) Lee wonders [why under no circumstances at all would Robin volunteer]

Here, the wh-expressions whether/why occur to the left of the focused negative phrase under no circumstances, suggesting that whether/why do not occupy specifier position within FocP but rather some higher position - and since ForceP is the highest projection within the clause, it is plausible to suppose that whether/why occupy spec-ForceP in structures like (14).

A question raised by Rizzi's analysis of relative and interrogative wh-clauses is where preposed wh-expressions move in exclamative clauses. In this connection, consider (15) below:
(15) (a) How many of their policies only rarely do politicians get around to implementing!
(b) In how many countries, that kind of behaviour, autocratic leaders would simply not tolerate!

In (15a), the italicised exclamative wh-expression how many of their policies precedes the bold-printed focused constituent only rarely, while in (15b) the exclamative wh-phrase in how many countries precedes the underlined topic that kind of behaviour. And in (16) below:
(16) In how many countries of the world, such behaviour, under no circumstances would autocratic leaders tolerate!
an italicised exclamative expression precedes both an underlined topicalised expression and a bold-printed focused expression - though the resulting sentence is clearly highly contrived. All of this suggests that exclamative wh-expressions (like relative wh-expressions) move into the specifier position within ForceP.

9.3 Split CP: Finiteness projection

In the previous section, we argued that above TP there may be not just a single CP projection but rather at least three different types of projection - namely a Force Phrase, a Topic Phrase and a Focus Phrase (the latter two being found only in clauses containing focused or topicalised constituents). However, Rizzi argues
that below FocP (and above TP) there is a fourth functional projection which he terms FinP/Finiteness Phrase, whose head Fin constituent serves the function of marking a clause as finite or non-finite. He argues that Fin is the position occupied by prepositional particles like $d i$ 'of' which introduce infinitival control clauses in languages like Italian in structures such as (17) below:

Gianni pensa, il tuo libro, di PRO conoscerlo bene Gianni thinks, the your book, of PRO know.it well 'Gianni thinks that your book, he knows well'

Rizzi maintains that the italicised clause which is the complement of pensa 'thinks' in (17) has the simplified structure (18) below:

Under his analysis, il tuo libro 'the your book' is a topic and di 'of' is a Fin head which marks its clause as non-finite (more specifically, as infinitival). Moreover, Rizzi maintains that the Fin head $d i$ 'of' assigns null case to the PRO subject of its clause (an account of null case assignment in keeping with our account in §4.9, but not with the Chomskyan account given in §8.8).

While present-day English has no overt counterpart of infinitival particles like Italian $d i$ in control clauses, it may be that for served essentially the same function in Middle English control infinitives such as those bracketed below:
(19) (a) Al were it good [no womman for to touche] (Chaucer, Wife of Bath's Tale, line 85) Although it would be good to touch no woman
(b) I wol renne out, [my borel for to shewe] (Chaucer, Wife of Bath's Tale, line 356) I will run out, in order to show my clothing

In $(19 a, b)$ the italicised expression is the direct object of the verb at the end of the line, but has been focalised/topicalised and thereby ends up positioned in front of for. This is consistent with the possibility that for occupies the same Fin position in Middle English as $d i$ in Modern Italian, and that the italicised complements in (19a,b) move into specifier position within a higher Focus Phrase/Topic Phrase projection. Since the for infinitive complement in (19) has a null subject rather than an overt accusative subject, we can suppose that it is intransitive in the relevant use.

An interesting possibility raised by this analysis is that for in overt-subject infinitives in present-day English also functions as a non-finite Fin head - though an obligatorily transitive one. In this regard, consider the two different replies given by speaker B below:
(20) SPEAKER A: What was the advice given by the police to the general public?

SPEAKER B: (i) Under no circumstances for anyone to approach the escaped convicts
(ii) That under no circumstances should anyone approach the escaped convicts

What is particularly interesting about speaker B's replies in (20) is that the focused prepositional phrase under no circumstances precedes the complementiser for in (20Bi), but follows the complementiser that in (20Bii). This suggests that for occupies the head Fin position of FinP, but that occupies the head Force position of ForceP. On this view, the two answers given by speaker B would have the respective skeletal structures shown in $(21 \mathrm{a}, \mathrm{b})$ below:

(b)

If Foc is a strong head in finite (though not infinitival) clauses, it follows that the auxiliary should in (21b) will raise from the head T position of TP into the head Foc position of FocP; and if we assume the Head Movement Constraint, it also follows that should must move first to Fin before moving into Foc. We can suppose that the reply given by speaker B in (22) below:

SPEAKERA: What was the advice given by the police to the general public?
SPEAKER B: Under no circumstances to approach the escaped convicts
has essentially the same structure as that shown in (21a), save that in place of the overt Fin head for we have a null Fin head, and that in place of the overt subject anyone we have a null PRO subject. In addition, if Foc is only a strong head in finite clauses, the Fin head remains in situ rather than raising to Foc.

The overall gist of Rizzi's split CP hypothesis is that in structures containing a topicalised and/or focalised constituent, CP splits into a number of different projections. In a clause containing both a topicalised and a focalised constituent, CP splits into four separate projections - namely a Force Phrase, Topic Phrase, Focus Phrase and Finiteness Phrase. In a sentence containing a topicalised but no focalised constituent, CP splits into three separate projections - namely into a Force Phrase, Topic Phrase and Finiteness Phrase. In a sentence containing a focalised but no topicalised constituent, CP again splits into three projections namely into a Force Phrase, Focus Phrase and Finiteness Phrase. However, in a structure containing no focalised or topicalised constituents, Rizzi posits that Force and Finiteness features are syncretised (i.e. collapsed) onto a single head, with the result that CP does not split in this case: in other words, rather than being realised on two different heads, the relevant force and finiteness features are realised on a single head corresponding to the traditional C constituent (so that C is in effect a composite force/finiteness head). In simple terms, what this means is that C only splits into multiple projections in structures containing a topicalised and/or focalised constituent.

We can illustrate the conditions under which CP does (or does not) split in terms of the syntax of the that-clauses in (23) below:
(23) (a) You must know that this kind of behaviour we cannot tolerate
(b) You must know that we cannot tolerate this kind of behaviour

In (23a) the object this kind of behaviour has been topicalised, so forcing CP to split into three projections (ForceP, TopP and FinP) as shown in simplified form in (24) below:
[ForceP [Force that] [Topp this kind of behaviour [Top \varnothing] [FinP [Fin \varnothing] [TP we [т cannot] tolerate t] $]$]]

By contrast, in (23b) there is no topicalised or focalised constituent, hence CP does not split into multiple projections. Accordingly, only a single C constituent is projected which carries both finiteness and force features, as in (25) below (where DEC is a declarative force feature and FIN is a finiteness feature):

$$
\begin{equation*}
\left[{ } _ { C P } [\mathrm { C } \text { that } { } _ { \text { DEC, } } { } _ { \mathrm { FIN } }] \left[{ }_{\mathrm{TP}}\right.\right. \text { we [T cannot] tolerate this kind of behaviour]] } \tag{25}
\end{equation*}
$$

Rizzi posits that (in finite clauses) the relevant types of head are spelled out in the manner shown informally in (26) below:
(26) A head in a split CP projection can be spelled out in English as:
(i) that in a complement clause if it carries a declarative force feature (with or without a finiteness feature)
(ii) $\quad \varnothing$ if it carries a finiteness feature (with or without a declarative force feature)

It follows from (26) that the Force head in (24) can be spelled out as that but not as \varnothing, and that Fin can be spelled out as \varnothing but not as that, so accounting for the ungrammaticality of:
(27) (a) ${ }^{*}$ You must know \varnothing this kind of behaviour that we cannot tolerate
(b) *You must know that this kind of behaviour that we cannot tolerate
(c) *You must know \varnothing this kind of behaviour \varnothing we cannot tolerate
(Irrelevantly, (27c) is grammatical if written with a colon between know and this kind of behaviour and read as two separate sentences.) It also means that the syncretised (force/finiteness) C constituent in (25) can either be spelled out as that in accordance with (26i), or be given a null spellout in accordance with (26ii) as in (28) below:

You must know [C $\emptyset_{\text {DEC, FIN }}$] we cannot tolerate this kind of behaviour
In other words, Rizzi's analysis provides a principled account of the (overt/null) spellout of finite declarative complementisers in English (though see Sobin 2002 for complications). (Complementiser spellout may be different in other languages - see e.g. Alexopoulou and Kolliakou 2002 on Greek.)

Before leaving the split CP analysis, an important technical complication should be pointed out (highlighted in relation to wh-movement at the end of §8.8). If we adopt Chomsky's Phase Impenetrability Condition/PIC (under which the complement of a phase head is impenetrable to an external probe) and if we assume that not only CPs but also transitive VPs are phases, it follows that topicalisation or focalisation of the complement of a transitive verb will mean that the object must first move to the edge of the verb phrase before moving to the clause periphery. For the time being we set this issue aside here, returning to it in chapter 10 because Chomsky's work on phases assumes that verb phrases are analysed as split projections in the manner outlined below.

9.4 Split VPs: VP shells in ergative structures

Having looked at evidence that CP can be split into a number of different projections, we now turn to look at evidence arguing that VPs should be split into two distinct projections - an outer VP shell and an inner VP core. For obvious reasons, this has become known as the VP shell analysis.

The sentences we have analysed throughout this book so far have generally contained simple verb phrases headed by a verb with a single complement. Such single-complement structures can easily be accommodated within the binarybranching framework adopted here, since all we need say is that a verb merges with its complement to form a (binary-branching) V-bar constituent. However, a particular problem for the binary-branching framework is posed by three-place
predicates like those italicised in (29) below which have a (bold-printed) subject and two (bracketed) complements:
(29 (a) He rolled [the ball] [down the hill]
(b) He filled [the bath] [with water]
(c) He broke [the vase] [into pieces]
(d) They withdrew [the troops] [from Ruritania]

If we assume that complements are sisters to heads, it might seem as if the V-bar constituent headed by rolled in (29a) has the structure (30) below:

However, a structure such as (30) is problematic within the framework adopted here. After all, it is a ternary-branching structure (V-bar branches into the three separate constituents, namely the V rolled, the DP the ball and the PP down the hill), and this poses an obvious problem within a framework which assumes that the merger operation which forms phrases is an inherently binary operation which can only combine constituents in a pairwise fashion. Moreover, a ternary-branching structure such as (30) would wrongly predict that the string the ball down the hill does not form a constituent, and so cannot be coordinated with another similar string (given the traditional assumption that only identical constituents can be conjoined) - yet this prediction is falsified by sentences such as:

> He rolled the ball down the hill and the acorn up the mountain

How can we overcome these problems?
One answer is to suppose that transitive structures like He rolled the ball down the hill have a complex internal structure which is parallel in some respects to causative structures like He made the ball roll down the hill (where maKe has roughly the same meaning as CAUSE). On this view the ball roll down the hill would serve as a VP complement of a null causative verb (which can be thought of informally as an invisible counterpart of MAKE). We can further suppose that the null causative verb is affixal in nature and so triggers raising of the verb roll to adjoin to the causative verb, deriving a structure loosely paraphraseable as He made + roll [the ball roll down the hill], where roll is a trace copy of the moved verb roll. We could then say that the string the ball down the hill in (31) is a VP remnant headed by a trace copy of the moved verb roll. Since this string is a VP constituent, we correctly predict that it can be coordinated with another VP remnant like the acorn up the mountain - as is indeed the case in (31).

Analysing structures like roll the ball down the hill as transitive counterparts of intransitive structures is by no means implausible, since many three-place transitive predicates like roll can also be used as two-place intransitive predicates
in which the (italicised) DP which immediately follows the (bold-printed) verb in the three-place structure functions as the subject in the two-place structure as we see from sentence-pairs such as the following:
(32) (a) They will roll the ball down the hill
(b) The ball will roll down the hill
(33) (a) He filled the bath with water
(b) The bath filled with water
(34) (a) He broke the vase into pieces
(b) The vase broke into pieces
(35) (a) They withdrew the troops from Ruritania
(b) The troops withdrew from Ruritania
(36) (a) They closed the store down
(b) The store closed down
(37) (a) They moved the headquarters to Brooklyn
(b) The headquarters moved to Brooklyn
(Verbs which allow this dual use as either three-place or two-place predicates are sometimes referred to as ergative predicates.) Moreover, the italicised DP seems to play the same thematic role with respect to the bold-printed verb in each pair of examples: for example, the ball is the THEME argument of roll (i.e. the entity which undergoes a rolling motion) both in (32a) They will roll the ball down the hill and in (32b) The ball will roll down the hill. Evidence that the ball plays the same semantic role in both sentences comes from the fact that the italicised argument is subject to the same pragmatic restrictions on the choice of expression which can fulfil the relevant argument function in each type of sentence: cf.
(38) (a) The ball/the rock!!the theory!!sincerity will roll down the hill
(b) They will roll the ball/the rock!! the theory!!sincerity down the hill

If principles of UG correlate thematic structure with syntactic structure in a uniform fashion (in accordance with Baker's 1988 Uniform Theta Assignment Hypothesis/UTAH), then it follows that two arguments which fulfil the same thematic function with respect to a given predicate must be merged in the same position in the syntax.

An analysis within the spirit of UTAH would be to assume that since the ball is clearly the subject of roll in (32a) The ball will roll down the hill, then it must also be the case that the ball originates as the subject of roll in (32b) They will roll the ball down the hill. But if this is so, how come the ball is positioned after the verb roll in (32b), when subjects are normally positioned before their verbs? A plausible answer to this question within the framework we are adopting here is to suppose that the verb roll moves from its initial (post-subject) position after the ball into a higher verb position to the left of the ball. More specifically, adapting ideas put forward by $\operatorname{Larson}(1988,1990)$, Hale and $\operatorname{Keyser}(1991,1993$,
1994) and Chomsky (1995), let's suppose that the (b) examples in sentences like (32)-(37) are simple VPs, but that the (a) examples are split VP structures which comprise an outer shell and an inner core.

More concretely, let's make the following assumptions. In (32b) The ball will roll down the hill, the V roll is merged with its PP complement down the hill to form the V-bar roll down the hill, and this is then merged with the DP the ball to form the VP structure (39) below:

In the case of (32b), the resulting VP will then be merged with the T constituent will to form the T-bar will roll down the hill; the [EPP] and φ-features of [T will] trigger raising of the subject the ball into spec-TP to become subject of will (in the manner shown by the dotted arrow below), deriving:

The resulting TP is subsequently merged with a null declarative C constituent. (Throughout this chapter, we simplify exposition by omitting details like this which are not directly relevant to the point at hand.)

Now consider how we derive (32a) They will roll the ball down the hill. Let's suppose that the derivation proceeds as before, until we reach the stage where the VP structure (39) the ball roll down the hill has been formed. But this time, let's assume that the VP in (39) is then merged as the complement of an abstract causative light verb (v) - i.e. a null verb with much the same causative interpretation as the verb make (so that They will roll the ball down the hill has a similar interpretation to They will make the ball roll down the hill). Let's also suppose that this causative light verb is affixal in nature (or has a strong V-feature), and that the verb roll adjoins to it, forming a structure which can be paraphrased literally as 'make+roll the ball down the hill' - a structure which has an overt counterpart in French structures like faire rouler la balle en bas de la colline (literally 'make roll the ball into bottom of the hill'). The resulting v-bar structure is then merged with
the subject they (which is assigned the θ-role of AGENT argument of the causative light verb), to form the complex vP (41) below (lower-case letters being used to denote the light verb, and the dotted arrow showing movement of the verb roll to adjoin to the null light verb \varnothing):
(41)

Subsequently, the vP in (41) merges with the T constituent will, the subject they raises into spec-TP, and the resulting TP is merged with a null declarative complementiser, forming the structure (42) below (where the dotted arrows show movements which have taken place in the course of the derivation):
(42)

The analysis in (42) correctly specifies the word order in (32a) They will roll the ball down the hill. (See Stroik 2001 for arguments that do is used to support a null light verb in elliptical structures such as John will roll a ball down the hill and Paul will do so as well.)

The VP-shell analysis in (42) provides an interesting account of an otherwise puzzling aspect of the syntax of sentences like (32a) - namely the fact that adverbs like gently can be positioned either before roll or after the ball, as we see from:
(43) (a) They will gently roll the ball down the hill
(b) They will roll the ball gently down the hill

Let's suppose that adverbs like gently are adjuncts, and that adjunction is a different kind of operation from merger. Merger extends a constituent into a larger type of projection, so that (e.g.) merging T with an appropriate complement extends T into T-bar, and merging T-bar with an appropriate specifier extends T-bar into TP. By contrast, adjunction extends a constituent into a larger projection of the same type, e.g. merging a moved V with a minimal projection like T forms a larger T constituent; merging an adjunct with an intermediate projection like T-bar extends T-bar into another T-bar constituent; merging an adjunct with a maximal projection like TP forms an even larger TP - and so on. (See Stepanov 2001 and Chomsky 2001 for technical accounts of differences between adjunction and merger.) Let's suppose that gently is the kind of adverb which can adjoin to an intermediate verbal projection. Given this assumption and the light-verb analysis in (42), we can then propose the following derivations for (43a,b).

In (43a), the verb roll merges with the PP down the hill to form the V-bar roll down the hill, and this V-bar in turn merges with the DP the ball to form the VP the ball roll down the hill, with the structure shown in (39) above. This VP then merges with a null causative light verb \varnothing to which the verb roll adjoins, forming the v-bar $\varnothing+$ roll the ball foll down the hill. The resulting v-bar merges with the adverb gently to form the larger v-bar gently $\varnothing+$ roll the ball roll down the hill; and this v-bar in turn merges with the subject they to form the vP they gently $\varnothing+$ roll the ball roll down the hill. The vP thereby formed merges with the T constituent will, forming the T -bar will they gently $\varnothing+$ roll the ball roll down the hill. The subject they raises to spec-TP forming the TP they will they gently $\varnothing+$ roll the ball roll down the hill. The resulting TP is then merged with a null declarative complementiser to derive the structure shown in simplified form in (44) below (with arrows showing movements which have taken place):

The analysis in (44) correctly specifies the word order in (43a) They will gently roll the ball down the hill.

Now consider how (43b) They will roll the ball gently down the hill is derived. As before, the verb roll merges with the PP down the hill, forming the V-bar roll down the hill. The adverb gently then merges with this V-bar to form the larger V-bar gently roll down the hill. This V-bar in turn merges with the DP the ball to form the VP the ball gently roll down the hill. The resulting VP is merged with a causative light verb $[\mathrm{v} \varnothing]$ to which the verb roll adjoins, so forming the v -bar $\varnothing+$ roll the ball gently roll down the hill. This v-bar is then merged with the subject they to form the vP they $\varnothing+$ roll the ball gently roll down the hill. The ${ }_{\mathrm{v}} \mathrm{P}$ thereby formed merges with [т will], forming the T-bar will they $\varnothing+$ roll the ball gently foll down the hill. The subject they raises to spec-TP, and the resulting TP is merged with a null declarative C to form the CP (45) below (with arrows showing movements which have taken place):

The different positions occupied by the adverb gently in (44) and (45) reflect a subtle meaning difference between (43a) and (43b): (43a) means that the action which initiated the rolling motion was gentle, whereas (43b) means that the rolling motion itself was gentle.

A light-verb analysis also offers us an interesting account of adverb position in sentences like:
(46) (a) He had deliberately rolled the ball gently down the hill
(b) *He had gently rolled the ball deliberately down the hill

Let's suppose that deliberately (by virtue of its meaning) can only be an adjunct to a projection of an agentive verb (i.e. a verb whose subject has the thematic role of AGENT). If we suppose (as earlier) that the light verb $[\mathrm{v} \varnothing]$ is a causative verb with an AGENT subject, the contrast in (46) can be accounted for straightforwardly: in (46a) deliberately is contained within a $v P$ headed by a null agentive causative
light verb; but in (46b) it is contained within a VP headed by the non-agentive verb roll. (The verb roll is a non-agentive predicate because its subject has the θ-role theme, not agent.) We can then say that adverbs like deliberately are adverbs which adjoin to a v-bar headed by an agentive light verb, but not to V-bar.

This in turn might lead us to expect to find a corresponding class of adverbs which can adjoin to V-bar but not v-bar. In this connection, consider the following contrasts (adapted from Bowers 1993, p. 609):
(47) (a) Mary jumped the horse perfectly over the last fence
(b) *Mary perfectly jumped the horse over the last fence

Given the assumptions made here, the derivation of (47a) would be parallel to that in (45), while the derivation of (47b) would be parallel to that in (44). If we assume that the adverb perfectly (in the relevant use) can function only as an adjunct to a V-projection, the contrast between (47a) and (47b) can be accounted for straightforwardly: in (47a), perfectly is adjoined to a V-bar, whereas in (47b) it is merged with a v-bar (in violation of the requirement that it can only adjoin to a V-projection).

As we have seen, the VP shell analysis outlined here provides an interesting solution to the problems posed by three-place predicates which have two complements. However, the problems posed by verbs which take two complements arise not only with transitive verbs which have intransitive counterparts (like those in (32)-(37) above), but also with verbs such as those bold-printed in (48) below (the complements of the verbs being bracketed):
(48) (a) They will load [the truck] [with hay]
(b) He gave [no explanation] [to his friends]
(c) They took [everything] [from her]
(d) Nobody can blame [you] [for the accident]

Verbs like those in (48) cannot be used intransitively, as we see from the ungrammaticality of sentences such as:
(49) (a) \quad *The truck will load with hay
(b) ${ }^{*}$ No explanation gave to his friends
(c) *Everything took from her
(d) *You can blame for the accident

However, it is interesting to note that in structures like (48) too we find that adverbs belonging to the same class as gently can be positioned either before the verb or between its two complements:
(50) (a) They will carefully load the truck with hay
(b) They will load the truck carefully with hay

This suggests that (in spite of the fact that the relevant verbs have no intransitive counterpart) a shell analysis is appropriate for structures like (48) too. If so, a sentence such as (48a) will have the structure shown in simplified form in (51) below (with arrows showing movements which take place):
(51)

We can then say that the adverb carefully adjoins to v-bar in (50a), and to V-bar in (50b). If we suppose that verbs like load are essentially affixal in nature (in the sense that they must adjoin to a null causative light verb with an AGENT external argument) we can account for the ungrammaticality of intransitive structures such as (49a) *The truck will load with hay.

9.5 VP shells in resultative, double-object and object-control structures

The VP shell analysis outlined above can be extended from predicates like load which have both nominal and prepositional complements to so-called resultative predicates which have both nominal and adjectival complements i.e. to structures such as those below:
(52) (a) The acid will turn the litmus-paper red
(b) They may paint the house pink

In (52a), the verb turn originates in the head V position of VP, with the DP the litmus-paper as its subject and the adjective red as its complement (precisely as in The litmus-paper will turn red); turn then raises to adjoin to a strong causative light verb \varnothing heading vP; the subject of this light verb (the DP the acid) in turn raises from spec-vP to spec-TP, and the resulting TP merges with a null declarative complementiser - as shown informally in (53) below:

(For alternative analyses of resultative structures like (52), see Keyser and Roeper 1992; Carrier and Randall 1992; and Oya 2002.)

We can extend the vP shell analysis still further, to take in double-object structures. such as:
(54) (a) They will get [the teacher] [a present]
(b) Could you pass [me] [the salt]?
(c) I showed [them] [my passport]
(d) She gave [me] [a hat]

For example, we could suggest that (54a) has the structure (55) below (with arrows indicating movements which take place in the course of the derivation):

That is, get originates as the head V of VP (with the teacher as its subject and a present as its complement, much as in The teacher will get a present), and then raises up to adjoin to the strong causative light verb \varnothing heading vP; the subject they in turn originates in spec-vP (and has the thematic role of AGENT argument of the null causative light verb \varnothing), and subsequently raises to spec-TP. (For a range of alternative analyses of the double-object construction, see Larson 1988; 1990; Johnson 1991; Bowers 1993; and Pesetsky 1995.)

The VP shell analysis outlined above also provides us with an interesting solution to the problems posed by so-called object-control predicates. In this connection, consider the syntax of the infinitive structure in (56) below: What decided you to take syntax?

For reasons given below, decide functions as a three-place predicate in this use, taking what as its subject, you as its object, and the clause to take syntax as a further complement. If we suppose that the infinitive complement to take syntax has a PRO subject (and is a CP headed by a null complementiser \varnothing), (56) will have the skeletal structure (57) below (simplified e.g. by ignoring traces: the three arguments of decide are bracketed):
[What] decided [you] [\varnothing PRO to take syntax]?
Since PRO is controlled by the object you, the verb decide (in such uses) is an object-control predicate.

There are a number of reasons for thinking that the verb decide in sentences like (56) is indeed a three-place object-control predicate, and that you is the object of decide (rather than the subject of to take syntax). Thus, (56) can be paraphrased (albeit a little clumsily) as: What decided you [that you should take syntax]?

We can then say that you in (57) corresponds to the italicised object you in (58), and the PRO subject in (57) corresponds to the bold-printed you subject of the complement clause in (58). Moreover, the verb decide imposes pragmatic restrictions on the choice of expression following it (which must be a rational, mind-possessing entity - not an irrational, mindless entity like the exam):
!What decided the exam to be difficult?

This suggests that the relevant expression must be an argument of decide. Furthermore, the expression following decide cannot be an expletive pronoun such as there:
(60) *What decided there to be an election?

A plausible conclusion to draw from observations such as these is that the (pro)nominal following decide is an (object) argument of decide in sentences such as (56), and serves as the controller of a PRO subject in the following to infinitive. However, this means that decide has two complements in structures such as (56) - the pronoun you and the control infinitive to take syntax. Within a binary-branching framework, we clearly can't assume that the V-bar headed by decide in (56) has a ternary-branching structure like:

However, we can avoid a structure like (61) if we suppose that (56) has a structure more akin to that of: What made you decide to take syntax?
but differing from (62) in that in place of the overt causative verb make is an affixal causative light verb \varnothing, with the verb decide raising to adjoin to the light verb as in (63) below:
(63)

The wh-pronoun what moves from spec-vP to spec-TP by A-movement, and then from spec-TP to spec-CP by A-bar movement. There is no T-to-C movement here for reasons which should be familiar from $\S 6.6$ (where we saw that questions with a wh-subject do not trigger auxiliary inversion). Instead, the past-tense affix (Tns) in T which carries person/number/tense features is lowered onto the light-verb complex $\varnothing+$ decide, which is ultimately spelled out as the past-tense form decided.

The light-verb analysis in (63) offers two main advantages over the analysis in (61). Firstly, (63) is consistent with the view that the merger operation by which phrases are formed is binary; and secondly, (63) enables us to attain a more unitary theory of control under which the controller of PRO is always a subject/specifier, never an object (since PRO in (63) is controlled by you, and you is the subject of the VP which was originally headed by the verb decide). This second result is a welcome one, since the verb decide clearly functions as a subject-control verb in structures such as:

Who decided PRO to take syntax?
where the PRO subject of to take syntax is controlled by the thematic subject of decided (i.e. by who).

Although the verb decide can be used both as a so-called object-control predicate in sentences like What decided you to take syntax? and as a subject-control predicate in sentences like Who decided to take syntax?, most object-control predicates (like persuade) have no subject-control counterpart - as we see from (65) below:
(65) (a) He persuaded Mary to come to his party
(b) ${ }^{*}$ Mary persuaded to come to his party

This means that the analysis of sentences like (65a) will involve a greater level of abstraction, since it involves claiming that persuade originates in the head V position of VP and that Mary is the thematic subject of persuade (so that persuade
originates in the same position as decide in (63) above, and Mary in the same position as you). We will also have to say that persuade is an obligatorily transitive affixal verb which must adjoin to the kind of abstract light verb which we find in structures like (63) - so accounting for the ungrammaticality of structures like (65b). (For further discussion of so-called object-control verbs, see Bowers 1993; for an analysis of the control verb promise, see Larson 1991.)

9.6 VP shells in transitive, unergative, unaccusative, raising and locative inversion structures

In $\S 9.4$ and $\S 9.5$, we looked at how to deal with the complements of three-place transitive predicates. But now we turn to look at the complements of simple (two-place) transitive predicates (which have subject and object arguments) like read in (66) below:

He read the book
Chomsky (1995) proposes a light-verb analysis of two-place transitive predicates under which (66) would (at the end of the vP cycle) have a structure along the lines of (67) below (with the arrow showing movement of the verb read from V to adjoin to a null light verb in v):

That is, read would originate as the head V of VP , and would then be raised to adjoin to a null agentive light verb \varnothing. (A different account of transitive complements as VP-specifiers is offered in Stroik 1990 and Bowers 1993.)

Chomsky's light-verb analysis of two-place transitive predicates can be extended in an interesting way to handle the syntax of a class of verbs which are known as unergative predicates. These are verbs like those italicised in (68) below which have agentive subjects, but which appear to have no complement:
(68) (a) Shall we lunch?
(d) Why not guess?
(b) Let's party!
(e) He apologised
(c) Don't fuss!
(f) She overdosed

Such verbs pose obvious problems for our assumption in the previous chapter that agentive subjects originate as specifiers and merge with an intermediate verbal projection which is itself formed by merger of a verb with its complement. The reason should be obvious - namely that unergative verbs like those italicised
in (68) appear to have no complements. However, it is interesting to note that unergative verbs often have close paraphrases involving an overt light verb (i.e. a verb such as have/make/take etc. which has little semantic content of its own in the relevant use) and a nominal complement:
(69) (a) Shall we have lunch
(d) Why not make a guess?
(b) Let's have a party!
(e) He made an apology
(c) Don't make a fuss!
(f) She took an overdose

This suggests a way of overcoming the problem posed by unergative verbs namely to suppose (following Baker 1988 and Hale and Keyser 1993) that unergative verbs are formed by incorporation of a complement into an abstract light verb. This would mean (for example) that the verb lunch in (68a) is an implicitly transitive verb, formed by incorporating the noun lunch into an abstract light verb which can be thought of as a null counterpart of have. Since the incorporated object is a simple noun (not a full DP), we can assume (following Baker 1988) that it does not carry case. The VP thereby formed would serve as the complement of an abstract light verb with an external argument (the external argument being we in the case of (68a) above). Under this analysis, unergatives would in effect be transitives with an incorporated object: hence we can account for the fact that (like transitives) unergatives require the use of the perfect auxiliary HAVE in languages (like Italian) with a HAVE/BE contrast in perfect auxiliaries.

Moreover, there are reasons to suppose that a light-verb analysis is required for unaccusative structures as well, and that the syntax of unaccusative predicates like come/go is rather more complex than we suggested in §7.6, where we noted Burzio's claim that the arguments of unaccusative predicates originate as their complements. An immediate problem posed by Burzio's assumption is how we deal with two-place unaccusative predicates which take two arguments. In this connection, consider unaccusative imperative structures such as the following in (dialect A of) Belfast English (see Henry 1995: note that youse is the plural form of you - corresponding to American English y'all):
(70) (a) Go you to school!
(b) Run youse to the telephone!
(c) Walk you into the garden!

If postverbal arguments of unaccusative predicates are in-situ complements, this means that each of the verbs in (70) must have two complements. But if we make the traditional assumption that complements are sisters of a head, this means that if both you and to school are complements of the verb go in (70a), they must be sisters of $g o$, and hence the VP headed by go must have the (simplified) structure (71) below:

However, a ternary-branching structure such as (71) is obviously incompatible with a framework such as that used here which assumes that the merger operation by which phrases are formed is inherently binary.

Since analysing unaccusative subjects in such structures as underlying complements proves problematic, let's consider whether they might instead be analysed as specifiers. On this view, we can suppose that the inner VP core of a Belfast English unaccusative imperative structure such as (70a) Go you to school! is not (71) above, but rather (72) below:

We can then say that it is a property of unaccusative predicates that all their arguments originate within VP. But the problem posed by a structure like (72) is that it provides us with no way of accounting for the fact that unaccusative subjects like you in (70a) Go you to school! surface postverbally. How can we overcome this problem? One answer is the following. Let us suppose that VPs like (72) which are headed by an unaccusative verb are embedded as the complement of a null light verb, and that the unaccusative verb raises to adjoin to the light verb in the manner indicated by the arrow in (73) below:

If (as Alison Henry argues) subjects remain in situ in imperatives in dialect A of Belfast English, the postverbal position of unaccusative subjects in sentences such as (70) can be accounted for straightforwardly. And the shell analysis in (73) is consistent with the assumption that the merger operation by which phrases are formed is intrinsically binary.

Moreover, the shell analysis enables us to provide an interesting account of the position of adverbs like quickly in unaccusative imperatives (in dialect A of Belfast English) such as:

If we suppose that adverbs like quickly are adjuncts which merge with an intermediate verbal projection (i.e. a single-bar projection comprising a verb and its complement), we can say that quickly in (74) is adjoined to the V-bar go to school
in (73). What remains to be accounted for (in relation to the syntax of imperative subjects in dialect A of Belfast English) is the fact that subjects of transitive and unergative verbs occur in preverbal (not postverbal) position: cf.
(75) (a) You read that book!
(b) *Read you that book!
(76) (a) Youse tell the truth!
(b) *Tell youse the truth
(77) (a) You protest!
(b) *Protest you!

Why should this be? If we assume (as in our discussion of (66) above) that transitive verbs originate as the head V of a VP complement of a null agentive light verb, an imperative such as (75a) will contain a vP with the simplified structure shown in (78) below (where the dotted arrow indicates movement of the verb read to adjoin to the null light verb heading vP):

The agent subject you will originate in spec-vP, as the subject of the agentive light verb \varnothing. Even after the verb read adjoins to the null light verb, the subject you will still be positioned in front of the resulting verbal complex $\varnothing+$ read. As should be obvious, we can extend the light-verb analysis from transitive verbs like read to unergative verbs like protest if we assume (as earlier) that such verbs are formed by incorporation of a noun into the verb (so that protest is analysed as having a similar structure to make (a) protest), and if we assume that unergative subjects (like transitive subjects) originate as specifiers of an agentive light verb.

Given these assumptions, we could then say that the difference between unaccusative subjects and transitive/unergative subjects is that unaccusative subjects originate within VP (as the argument of a lexical verb), whereas transitive/ unergative subjects originate in spec-vP (as the external argument of a light verb). If we hypothesise that verb phrases always contain an outer vP shell headed by a strong (affixal) light verb and an inner VP core headed by a lexical verb, and that lexical verbs always raise from V to v , the postverbal position of unaccusative subjects can be accounted for by positing that the subject remains in situ in such structures. Such a hypothesis will clearly require us to modify our earlier assumptions about the intransitive use of ergative predicates in sentences like (32)-(37) above, and to analyse intransitive ergatives in a parallel fashion to unaccusatives.

The light-verb analysis sketched here also offers us a way of accounting for the fact that in Early Modern English, the perfect auxiliary used with unaccusative verbs was be (as we saw in §7.6), whereas that used with transitive and unergative verbs was have. We can account for this by positing that the perfect auxiliary have selected a vP complement headed by a transitive light verb with an external argument, whereas the perfect auxiliary be selected a complement headed by an intransitive light verb with no external argument. The distinction has been lost in presentday English, with perfect have being used with both types of vP complement.

A class of predicates which are related to unaccusatives (in that they project no external argument) are raising predicates like seem. In this connection, consider the syntax of a raising sentence such as: The president does seem to me to have upset several people

Given the assumptions made in this chapter, (79) will be derived as follows. The verb upset merges with its QP complement several people to form the VP upset several people. This in turn merges with a null causative light verb, which (by virtue of being affixal in nature) triggers raising of the verb upset to adjoin to the light verb (as shown by the dotted arrow below); the resulting v-bar merges with its external agent argument the president to form the vP in (80) below (paraphraseable informally as 'The president caused-to-get-upset several people'):

The resulting vP is then merged with the auxiliary have to form an AUXP, and this AUXP is in turn merged with [$\mathrm{T}_{\mathrm{t}} t o$]. If we follow Chomsky (2001) in supposing that T in raising infinitives has an [EPP] feature and an unvalued person feature, the subject the president will be attracted to move to spec-TP, so deriving the structure shown in simplified form below (with the arrow marking A-movement):

The TP in (81) is then merged as the complement of seem, forming the V-bar seem the president to have upset several people (omitting traces and other empty categories, to make exposition less abstract). Let's suppose that to me is the EXPERIENCER argument of seem and is merged as the specifier of the resulting V-bar, forming the VP shown in (82) below (once again simplified by not showing traces and other empty categories):

On the assumption that all verb phrases contain an outer vP shell, the VP in (82) will then merge with a null (affixal) light verb, triggering raising of the verb seem to adjoin to the light verb. Merging the resulting vP with a finite T constituent containing (emphatic) DO will derive the structure shown in simplified form below (with the arrow showing the verb movement that took place on the vP cycle):

[T DO] serves as a probe looking for an active nominal goal. The Phase Impenetrability Condition (which renders the object of a transitive verb impenetrable to a c-commanding T constituent) makes the nominal several people impenetrable to T, since it is the object of the transitive verb upset: and let's assume that the pronoun me is likewise inaccessible to T (perhaps because a nominal goal is only active if it has an unvalued case feature, and the case feature of me has already been valued as accusative by the transitive preposition to; or perhaps because me serves as the goal of a closer probe, namely the transitive preposition to). If so, the president (which is active by virtue of having an unvalued case feature) will be the only nominal which can serve as the goal of [T DO] in (83). Accordingly, DO assigns nominative case to the president (and conversely agrees with the president, with DO ultimately being spelled out at PF as does), and the [EPP] and uninterpretable person/number features of DO ensure that the president moves into spec-TP, so deriving the structure shown in simplified form below:
(84)

The resulting TP will then be merged with a null declarative complementiser, forming the CP structure associated with (79) The president does seem to me to have upset several people. We can assume that the related sentence (85) below:

The president does seem to have upset several people
has an essentially parallel derivation, except that the verb seem in (85) projects no EXPERIENCER argument, so that the structure formed when seem is merged with its TP complement will not be (82) above, but rather [$\mathrm{VP}[\mathrm{v}$ seem] [TP the president [${ }_{\mathrm{T}}$ to] have upset several people $]$].

An interesting corollary of the light-verb analysis of raising verbs like seem is that the Italian counterpart of seem is used with the perfect auxiliary essere 'be' rather than avere 'have' - as we can illustrate in relation to:

Maria mi è sempre sembrata essere simpatica
Maria me is always seemed be nice
'Maria has always seemed to me to be nice'
(The position of the EXPERIENCER argument $m i$ 'to me' in (86) is accounted for by the fact that it is a clitic pronoun, and clitics attach to the left of a finite auxiliary or verb in Italian - in this case attaching to the left of \grave{e} 'is'.) Earlier, we suggested that in languages with the HAVE/BE contrast, HAVE typically selects a ${ }_{v P}$ complement with an external argument, whereas $B E$ selects a $v P$ complement with no external argument. In this context, it is interesting to note (e.g. in relation to structures like (84) above) that the light verb found in clauses containing a raising predicate like seem projects no external argument, and hence would be expected to occur with (the relevant counterpart of) the perfect auxiliary BE in a language with the HAVE/BE contrast. Data such as (86) are thus consistent with the light-verb analysis of raising predicates like seem outlined here. (It should be noted, however, that the HAVE/BE contrast is somewhat more complex than suggested here: see Sorace 2000 for a cross-linguistic perspective.)

The assumption made in this section that intransitive clauses have a split $\mathrm{vP}+\mathrm{VP}$ structure in which the verb raises from V to v provides us with a way of
analysing locative inversion structures such as (87) below, so called because the locative expression down the hill precedes the auxiliary will:

Down the hill will roll the ball
We can derive this as follows. The verb roll merges with its complement down the hill and its specifier the ball to form the VP the ball roll down the hill shown in (39) above. This is then merged with an intransitive light verb which (being strong) triggers movement of the verb roll from V to v , so deriving the structure shown in simplified form below:

The resulting vP is then merged with a finite T constituent will which has an [EPP] feature. Let's suppose that T (in addition to its person/number/tense and [EPP] features) in this kind of structure carries some additional feature which enables it to attract the PP down the hill and that as a result, down the hill moves to spec-TP, so deriving the structure:

Such an analysis leaves the subject the ball in situ in spec-VP (hence following the raised verb roll), thereby accounting for the word order we find in (87) Down the hill will roll the ball. Interestingly, a locative inversion structure can occur as the complement of a complementiser like that, as we see from:

He was startled to find that down the hill was rolling an enormous snowball
This is precisely what would be expected if locative inversion involves movement of a locative to spec-TP, as in (89) above. (See Levin and Rappaport Hovav

1995; Collins 1997; Nakajima 2001; and Bowers 2002 on locative inversion; see Culicover and Levins 2001 for arguments that locative inversion structures are different in nature from structures like 'Into the room walked carefully the students in the class who had heard about the social psych experiment that we were about to perpetrate' containing a long italicised postverbal subject.)

9.7 Transitive light verbs and accusative case assignment

In the previous chapter, we saw that nominative and null case are assigned to a goal by a matching φ-complete probe (the probe being a finite T for nominative case, and a non-finite control T for null case); however, we had nothing to say about accusative case assignment. If UG principles determine that all structural case assignment involves assignment of case to a goal by a φ-complete matching probe, we can hypothesise that accusative case is likewise assigned to a goal by a φ-complete probe which matches the goal in respect of its person and number features. But what could be the probe responsible for assignment of accusative case to (say) the accusative complement them in a transitive sentence such as that below?

You have upset them

Chomsky in recent work has suggested an answer along the lines of (92) below:
(92) A transitive light verb carrying person and number φ-features serves as a probe which assigns accusative case to a goal with matching person and number features and an active (unvalued) case feature

Let's further suppose that: A light verb is transitive only if it has a theta-marked external argument

In the light of (92) and (93), consider how the derivation of (91) proceeds.
The verb upset is merged with its complement THEY to form the VP upset THEY (capital letters being used to denote an abstract lexical item whose precise phonetic spellout as they/them/their has not yet been determined): the pronoun carries interpretable third-person, plural-number features and an uninterpretable (and unvalued) case feature. The resulting VP is then merged with a null transitive light verb which (since case assignment requires probe and goal to match in φ-features) will carry unvalued and uninterpretable person/number features, so forming the v -bar below (with interpretable features shown in bold and uninterpretable features in italics):
(94)

The null light verb probes and identifies THEY as the only active goal which carries an uninterpretable case feature. The goal THEY values (and, being φ complete, deletes) the person/number φ-features of the light-verb probe (these will ultimately have a null spellout, like the light verb itself). Conversely, the transitive light verb values the unvalued case feature of THEY as accusative in accordance with (92) (so that THEY is ultimately spelled out as them) and (by virtue of being φ-complete) deletes it, so deriving:

The null light verb is affixal, and so will trigger raising of the verb upset from V to v . Since the (causative) light verb in (95) is transitive, it projects an AGENT external argument. The relevant external argument is you in (91), and (if it refers to more than one individual) this enters the derivation with interpretable secondperson and plural-number features, but an unvalued case-feature, so forming the vP (96) below:
(96)

The vP thereby formed is merged with a null finite T containing the perfect auxiliary HAVE, which has an interpretable present-tense feature, uninterpretable
(and unvalued) φ-features, and an uninterpretable [EPP] feature. Merging T with its ${ }^{\mathrm{v} P}$ complement derives:

[T HAVE] then probes and locates the pronoun you as the only active goal with an unvalued case feature which it c-commands. This results in the pronoun valuing and deleting the person/number features of the auxiliary, and conversely in the auxiliary valuing the case feature of the pronoun as nominative, and deleting it: hence the items have and you are spelled out as have and you at PF. The [EPP] feature of Triggers raising of the pronoun you from spec-vP to spec-TP (thereby deleting the [EPP] feature on T), deriving the structure (98) below:

The resulting structure is then merged with a null declarative complementiser to derive the CP structure associated with (91) You have upset them. (On accusative case assignment in double-object structures like give someone something, see Goodall 1999.)

An interesting question arising from the assumption that the objects of transitive verbs are assigned accusative case by a light verb which projects an external argument is whether this analysis can be extended to the case-marking of (italicised) accusative subjects of the (bracketed) infinitival TPs in ECM/Exceptional Case-Marking structures like those below:
(99) (a) They proved [him to have stolen the jewels]
(b) They suspect [$m e$ to be an agent for the FBA]
(c) I believe [them to be innocent]
(d) I have always found [them to be accommodating]

At first sight, the answer would appear to be straightforward. After all, if the italicised subject occupies spec-TP position within the bracketed TP complement, and if the bold-printed ECM verb originates as the head of a VP which is the complement of a transitive light verb and subsequently raises to adjoin to the light verb (in the manner shown by the dotted arrow below), (99a) will have the structure shown in (100) below at the end of the main-clause vP cycle (simplified by not showing the internal structure of T-bar):

Since the light verb \varnothing which occupies the head v position within vP is transitive (by virtue of having an external argument, namely they), and since it c-commands the infinitive subject him, it can assign accusative case to him with concomitant φ-feature matching (i.e. the light verb will contain unvalued person and number features which are valued by those of him; like the light verb itself, these will ultimately have a null phonetic spellout).

However, an important question raised by the above analysis is how we account for the position of the italicised adverbial and prepositional expressions in ECM structures such as the following:
(101) (a) The DA will prove [the witness conclusively to have lied] (adapted from Bowers 1993, p. 632)
(b) I suspect [him strongly to be a liar] (Authier 1991, p. 729)
(c) I've believed [Gary for a long time now to be a fool] (Kayne 1984b, p. 114)
(d) I have found [Bob recently to be morose] (Postal 1974, p. 146)

In sentences like (101), the italicised adverbial/prepositional expression is positioned inside the bracketed infinitive complement, and yet is construed as modifying the (bold-printed) transitive verb which lies outside the bracketed complement clause. How can we account for this seeming paradox? To make our discussion more concrete, let's consider how to derive (101a).

If we assume that the adverb conclusively (by virtue of modifying the verb prove) originates as an adjunct to the V-bar headed by prove, the problem we face
is accounting for how both the verb prove and the DP the witness end up in front of the adverb conclusively. Movement of the verb prove in front of conclusively is no problem if we suppose that verbs move from the head V position in VP to adjoin to a null light verb, and thereby come to occupy the head v position of vP. But how does the infinitival subject the witness come to be positioned above the adverb conclusively, but below the verb prove?

One possibility is that an ECM verb like prove (like infinitival to in raising structures) has an [EPP] feature and an unvalued person feature which together require the closest matching nominal expression which they c-command to be moved to the outer edge of VP. Given this assumption, the relevant part of the derivation of (101a) will proceed as follows. The verb prove merges with the infinitival TP the witness to have lied (whose structure we ignore here, in order to simplify exposition) to form the V-bar prove the witness to have lied, and the adverb conclusively merges with this V-bar to form the even larger V-bar conclusively prove the witness to have lied. Let's suppose that the witness has valued (third-)person and (singular-)number features, and an unvalued and uninterpretable case feature, so that at this stage we have formed the V-bar shown in simplified form below:

The uninterpretable person feature on the verb prove serves as a probe which picks out the closest active goal with a matching person feature, locating the DP the witness, which is active by virtue of its uninterpretable case feature: since the DP the witness is φ-complete, it values and deletes the person feature on the verb prove. The [EPP] feature of prove triggers movement of the witness to the outer edge of the relevant V-projection (and is thereafter deleted), so that the witness becomes the specifier of the V-bar in (102), forming the VP (103) below:

Because the verb prove is not φ-complete (by virtue of carrying only person and not number), it does not value or delete the case feature on the DP the witness, so that the latter remains active.

The VP in (103) is then merged as the complement of a null (affixal) lightverb. The light verb is transitive (since it has the external argument the $D A$), and transitive light verbs carry a complete set of unvalued φ-features, so that merging the relevant light verb with (103) above will form (104) below:

At this point, the light verb (active by virtue of its uninterpretable φ-features) serves as a probe and searches for an active matching nominal goal which it ccommands, locating the witness (which is active by virtue of its uninterpretable case feature). The light verb values the unvalued case feature of the witness as accusative in accordance with (92), and deletes it. The DP the witness in turn values and deletes the unvalued person and number features of the light verb. Since the light verb is affixal in nature (indicated by the $+\operatorname{sign}$ in $\varnothing+$), it triggers raising of the verb prove to adjoin to the light verb. Since the light verb is transitive, it also projects an external argument (in this case, the $D A$) in spec-vP. Thus, at the end of the vP cycle, we have the structure shown in (105) below (simplified by showing only features of the light verb \varnothing and the DP the witness, and by omitting a number of traces and other empty categories):
(105)

Subsequently, the resulting vP is merged as the complement of [т will], which serves as a probe valuing (as nominative) and deleting the uninterpretable case feature on the DA (not shown here); the [EPP] feature and unvalued person/number features of will trigger movement of the DA to become the specifier of the TP headed by will. Merging the resulting TP with a null declarative complementiser
derives the structure associated with (101a) The DA will prove the witness conclusively to have lied.

9.8 Evidence for a further projection in transitive verb phrases

The account of the syntax of ECM subjects given in the previous section provides a way of capturing the intuition (defended in Postal 1974 and Lasnik and Saito 1991) that the subject of an ECM infinitive raises to become the object of the ECM verb. The raised subject the witness in (102)-(105) becomes the highest constituent within the inner VP core in which the ECM verb prove originates (as in López 2001); and since direct objects are the highest internal arguments within VP, this amounts to claiming that the infinitive subject is raised up to become the direct object of the verb prove.

However, some of the assumptions underlying this analysis seem questionable. For example, the assumption that a lexical verb like prove can have an [EPP] feature which triggers raising of the subject of its infinitive complement to become an internal argument of prove seems problematic from three standpoints. Firstly, [EPP] is a feature canonically associated with functional categories like T and C, and not with substantive (lexical) categories like V. Secondly, an internal argument of a verb is theta-marked by the verb, and yet the raised nominal the witness in a structure like (105) is not theta-marked by the ECM verb prove (but rather is a thematic argument of the verb lied). Thirdly, the verb prove starts out as a predicate with a single internal argument (a clausal complement), but ends up with two internal arguments - an accusative object and a clausal complement. This violates the Projection Principle suggested in earlier work by Chomsky (1981, p. 29) - a principle which requires that the properties of lexical items (including the kinds of arguments they permit) should remain constant throughout the derivation.

A further questionable aspect of the ECM analysis outlined in the previous section is the assumption that adverbs adjoin to intermediate projections. This is problematic in two respects. Firstly, other grammatical operations like movement seem 'blind' to intermediate projections, so that no intermediate projection can be a goal for movement (in the sense that no intermediate projection can undergo movement) or a target for movement (in the sense that no movement operation adjoins a moved constituent to an intermediate projection): on the contrary, only a head or a maximal projection can be a goal or target for movement. If movement cannot involve intermediate projections, we might assume that adjunction cannot either. Moreover, the assumption that adverbs can adjoin to intermediate projections seems to conflict with a principle suggested by Chomsky (1998, p. 49) to the effect that the selectional properties of a head must be satisfied before any other constituent can be introduced into the projection containing the head. Since a head selects its arguments, this suggests that a head must merge with its
arguments before any material can be adjoined to the relevant projection - or in simpler terms, it suggests that adverbs can adjoin only to maximal projections, and not (as we have assumed throughout so far in this chapter) to intermediate projections. But if this is so, an analysis of ECM structures like that in (105) is untenable, because it presupposes that an adverb like conclusively can be adjoined to an intermediate V-bar projection of the verb prove.

However, the dilemma we face is that if we suppose that adverbs like conclusively adjoin only to maximal projections like VP, it follows that conclusively must adjoin to the VP in (105), so that in place of (105) we will have the structure shown in simplified form in (106) below:

The twin problems posed by a structure like (106) are that on the one hand it wrongly predicts that (107a) below is grammatical, and that on the other it wrongly predicts that (107b) is ungrammatical:
(107) (a) *The DA will prove conclusively the witness to have lied
(b) The DA will prove the witness conclusively to have lied (= 101a)

How can we get round this problem without abandoning the claim that adverbs adjoin to maximal (and not intermediate) projections?

A solution advocated in Koizumi $(1993,1995)$ is to suppose that transitive verb phrases can be split into three projections rather than (as we have assumed so far) two, with an additional AgrOP (Object Agreement Projection) positioned between VP and vP. Work in the same era (dating back to Pollock 1989) similarly supposed that TP could be split into separate TP and AgrSP (Subject Agreement Projection) constituents: see Radford (1997a, §10.2-§10.9) for discussion of earlier work on Agr projections in English. However, after surveying the evidence for positing projections of abstract Agr(eement) heads, Chomsky (1995, p. 377) concludes that 'It seems reasonable to conjecture that Agr does not exist.' One objection which he voices to Agr heads is that they cannot be assigned any interpretation at the semantics interface, and hence will cause the derivation to crash.

Mindful of Chomsky's objections, Bowers (2002) proposes an alternative triple-projection account of the structure of transitive clauses in which located between vP and VP is a projection of a functional head which encodes an interpretable Transitivity property: he labels this head $\mathbf{T r}$, and assumes that it projects
into a TrP ‘Transitivity Phrase’. Bowers further supposes that Tr carries a set of (object-agreement) φ-features, and that it also has an [EPP] feature. On this view, (107b) will be derived as follows. The derivation proceeds in familiar ways until we reach the stage where the verb prove merges with its TP complement the witness to have lied to form the VP prove the witness to have lied. The adverb conclusively is then adjoined to this VP, expanding it into an even larger VP constituent. The resulting VP is then merged with a Tr (ansitivity) head which carries an interpretable transitivity feature (below shown crudely as [+Trans]), together with uninterpretable person/number/EPP features, so deriving (108) below:

The Tr head is strong, and so triggers raising of the verb prove from V to Tr . Tr is also active for agreement and case-marking by virtue of its uninterpretable person/number features, and so probes and locates the witness as the only active goal within its domain. Agreement between the two leads to valuation of the person/number features of Tr and to valuation of the case feature of the witness as accusative; the uninterpretable features on probe and goal are also deleted once valued, since both probe and goal are φ-complete. (An interesting possibility which we will not explore further here is that accusative case is in fact an uninterpretable transitivity feature which is valued by the transitivity feature on Tr - in much the same way as nominative case may be an uninterpretable tense feature which is valued by the interpretable tense feature on T , as we saw in §6.6.) Since Tr has an [EPP] feature, it triggers raising of the witness to spec-TrP (thereby deleting its [EPP] feature), so deriving the structure shown in simplified form in (109) below:

The resulting TrP is then merged with an agentive light verb (whose external argument is the agent the DA). The light verb is strong, so triggers raising of the verb prove from Tr to v , thereby forming the vP shown in simplified form below:

The derivation then continues in familiar ways, ultimately deriving (107b) The DA will prove the witness conclusively to have lied. This revised analysis of ECM structures is consistent with the twin assumptions that (i) adverbs adjoin only to maximal projections, and (ii) only functional heads (like Tr, T and C) can have an [EPP] feature.

However, these twin assumptions require us to rethink our earlier vP/VP analysis of simple transitive clauses. To see why, consider sentence (47a) above, repeated below:
(111) Mary jumped the horse perfectly over the last fence

In the light of our revised assumptions, this will now be derived as follows. The verb jumped merges with its complement over the last fence and its specifier the horse to form the VP the horse jumped over the last fence. The VP-adverb perfectly adjoins to this VP, so forming the even larger VP perfectly the horse jumped over the last fence. The resulting VP is then merged with a Tr (ansitivity) head which carries an interpretable transitivity feature, uninterpretable person/number φ-features and an interpretable [EPP] feature, so forming the structure shown in simplified form below:

The Tr head is strong, and consequently triggers raising of the verb jumped from V to Tr . Agreement between the Tr head and the DP the horse values (and deletes) the person/number features of Tr and values (as accusative) and deletes the case feature of the horse. The [EPP] feature of Tr triggers movement of the horse to spec- Tr , so deriving the overt structure shown in skeletal form in (113) below:

$$
\begin{equation*}
\text { [} \mathrm{TrP}^{\mathrm{P}} \text { the horse [} \mathrm{Tr}^{\mathrm{j}} \text { jumped] [vP perfectly over the last fence]] } \tag{113}
\end{equation*}
$$

The resulting TrP is then merged with an agentive light verb (whose external argument is the agent Mary). The light verb is strong, so triggers raising of the verb jumped from Tr to v , thereby forming the overt structure shown in highly simplified form below:
[vp Mary [v jumped] [TrP the horse [vp perfectly over the last fence]]]

The resulting vP will then be merged with a past-tense T constituent, with Mary raising to spec-TP. Merging the resulting TP with a null declarative complementiser will derive the syntactic structure associated with (111) Mary jumped the horse perfectly over the last fence.

If we follow Bowers (2002) in supposing that passive VPs also contain a Tr P projection, we can offer an interesting account of the position of the italicised indefinite nominal in passives such as:
(115) There were several prizes awarded

The (passive) verb award(ed) merges with its complement several prizes to form the VP awarded several prizes. This VP merges with a Tr head which (by virtue of being strong) triggers movement of the verb awarded from V to Tr and (by virtue of its [EPP] feature) triggers raising of the complement several prizes to become the specifier of the transitivity head Tr , so deriving the structure shown in skeletal form below: [${ }_{\mathrm{Tr}}$ several prizes [Tr_{r} awarded] [vp [v awarded] several prizes]]

This is then merged with a light verb containing the passive auxiliary be. Since $b e$ is a non-thematic verb which projects no external argument, expletive there can be merged in spec-vP, so deriving:
(117) [vP there $\left[\mathrm{v}\right.$ be] [TrPP several prizes [Tr_{r} awarded] [vP [v awarded] several prizes $]$]

The resulting vP is then merged with a finite T constituent which agrees with both there and several prizes (assigning nominative case to the latter), triggers raising of be from v to T, and also triggers raising of there from spec-vP to spec-TP, so ultimately deriving:

> [тР There [т be] [vP there [v be] [TrP several prizes [Tr awarded] [vp [v awarded] several prizes]]]]

The resulting TP is then merged with a null declarative complementiser, and BE is spelled out as were in the PF component. (See Chomsky 1999 for an alternative
account of sentences like (115) in which the preverbal position of several prizes is claimed to be the result of a PF movement process.)

While passives like (115) allow the complement to be positioned preverbally, unaccusatives do not - as we see from the ungrammaticality of:
(119) *There have several guests arrived

One way of accounting for this contrast is to suppose (following Bowers 2002) that passive verb phrases are $\mathrm{v} \mathrm{P}+\mathrm{TrP}+\mathrm{VP}$ structures which contain a TrP projection which can house a preposed complement, whereas unaccusative verb phrases are simple $\mathrm{vP}+\mathrm{VP}$ structures which (by virtue of lacking Tr P) contain no landing site for a preposed complement.

9.9 Extending the shell analysis to nominals

In much work over the past three decades (dating back to Chomsky 1970), linguists have argued that there is cross-categorial symmetry between the structure of verb phrases and noun phrases. If this is so and if VPs have a complex shell structure comprising (at least) an inner VP core and an outer vP shell, we should expect to find that noun phrases too can be split into an outer nP shell headed by a light noun and an inner NP core headed by a lexical noun: the nP shell in turn would be embedded within higher-level nominal projections which house adjectives, possessors, determiners and other nominal modifiers (see Cinque 1994, Longobardi 1994, 1996, 2001 and Bernstein 2001 for discussion of nominal superstructure). In this section, we briefly explore the possibility of extending the shell analysis to noun phrases. Since comparatively little detailed research along these lines has been done, the remarks made in this section about nP shells are inevitably somewhat speculative.

To see how a shell analysis of nominals might work, consider the derivation of so-called process nominals (i.e. nominals describing a process) like that in (120) below:

> Israel's withdrawal of troops from the occupied territories

Let's suppose that internal arguments of nouns are generally introduced by a preposition, the nature of which is determined by the theta-role carried by the relevant argument - e.g. the preposition to is typically used to introduce a Goal argument, by an AGENT argument, from a SOURCE argument, with an INSTRUMENT argument and so on - and that a THEME argument of a noun can optionally be introduced by the preposition of. (It should be noted, however, that the counterpart of the English of-phrase may be a nominal morphologically inflected for genitive case in other languages, as is evident from Cornilescu's 2001 study of Romanian, and this raises the question of whether of in this type of use is a marker of inherent genitive case in English: we set this question aside here.) In (120), the DP the
occupied territories is a SOURCE argument and so is introduced (and assigned accusative case) by the preposition from, and the expression troops (which is a QP headed by a null quantifier \varnothing) is a THEME argument which can correspondingly be introduced (and assigned accusative case by) the preposition of. Merging the noun withdrawal with its SOURCE complement from the occupied territories forms the N -bar withdrawal from the occupied territories; this N -bar is in turn merged with the THEME complement of \varnothing troops to form the NP shown below:

Let us suppose that the resulting NP is then merged with a null light noun, which is causative in sense and projects an AGENT external argument Israel (which is a DP headed by a null determiner), and (being affixal) triggers raising of the noun withdrawal to adjoin to the light noun, so deriving the nP structure (122) below:

However, the derivation is not yet terminated - for two reasons. Firstly, under the DP hypothesis, nominal arguments are DPs headed by an (overt or null) determiner, so that the nP in (122) has to be merged with an appropriate kind of D constituent; and secondly, the DP \varnothing Israel in (122) has an unvalued case feature which needs to be valued and deleted. Given that case is assigned to a goal by a c-commanding probe, an interesting possibility to explore at this juncture is that it is the head D of DP which assigns case to the nominal \varnothing Israel. More specifically, let's suppose that the nP in (122) is merged with a null φ-complete determiner which has the property that it assigns structural genitive case to a goal with an unvalued case feature and matching φ-features, in accordance with (123) below:

Genitive Case Assignment

A null φ-complete determiner probe assigns genitive case to a matching case-unvalued goal

Let's also suppose that the genitive case assigned by D to a noun expression is spelled out in the PF component as the genitive suffix 's. If none of the constituents in (123) undergo any further movement operations, merger of the relevant null (genitive-case-assigning) determiner with the nP in (122) will derive the DP shown in simplified form in (124) below:

However, a potential problem for the analysis in (124) is posed by nominals such as:

Israel's unexpected withdrawal of troops from the occupied territories
If we suppose that an adjective like unexpected occupies some position above nP (perhaps serving as the specifier of a functional head F which has an adjectival specifier, as in Cinque 1994), we have to account for how the 'subject' of the nominal (the DP Israel's) comes to be positioned in front of the adjective unexpected. The answer suggested by Abney (1987) is that the subjects of nominals move into spec-DP. In terms of the framework adopted here, this means that D in (124) carries an [EPP] feature (in addition to a complete set of - initially unvalued $-\varphi$-features), and hence triggers movement of the genitive DP Israel's from spec-nP to spec-DP in the manner shown by the arrow in (126) below (with traces shown as \mathbf{t} / t):

We can then account for the relevant word-order facts in a straightforward fashion. The claim that unexpected occupies the specifier (and not the head) position within FP is borne out by the possibility of substituting it by a phrasal constituent like
almost entirely unexpected - the significance of this being that phrases can only be specifiers, not heads. (Fu, Roeper and Borer 2001 present an alternative analysis of process nominals under which they contain an internal verb projection hence VP rather than NP. Their evidence for positing a VP comes from the possibility of using a VP adverb like suddenly and the VP proform do so in nominals like Israel's withdrawal of troops suddenly from the occupied territories before being asked to do so. If adverbs adjoin to maximal projections and suddenly adjoins to VP, this raises the possibility that transitive nominals contain a nominal counterpart of the TrP/Transitivity Phrase projection which appears in transitive verb phrases, and that the head Tr constituent of TrP case-marks the complement of troups and attracts it to move to spec- Tr P , with the noun withdrawal raising from the head V position of VP , through the head Tr position of TrP into the head v position of vP. However, we will not pursue this possibility any further here.)

The account of genitive case-marking outlined above can be extended to possessive constructions such as (127) below (intended to mean much the same as 'the picture of Mary which is in our possession'):

```
our picture of Mary
```

Let's suppose that the noun picture merges with its THEME complement of \varnothing Mary (where Mary is a DP headed by a null determiner) to form the NP picture of ø Mary. Let's further suppose (following Carstens 2001) that the resulting NP merges with a null light noun which has the function of marking possession, and that this light noun projects as its external argument the pronoun WE to which it assigns the θ-role of POSSESSOR (its NP complement being in turn assigned the θ-role of possessee). Given the assumption that light nouns are affixal, the noun picture will raise from N to adjoin to the light noun, so deriving:

The resulting nP will then be merged with a null φ-complete determiner which assigns genitive case to the pronoun WE in accordance with (123), so that it will ultimately be spelled out as our at PF. If the relevant determiner also carries an [EPP] feature, it will trigger movement of the genitive possessor our from spec-nP to spec-DP, so deriving the structure shown in simplified form below:
(129)

If adjectives occupy specifier position within a functional projection FP positioned between D and nP (as in (126) above), such an analysis will correctly predict that our precedes the adjective latest in our latest picture of Mary.

The analysis presented above follows Abney (1987) in positing that genitive nominals move to spec-DP in English. However, there is some evidence that (in some other languages, at least) the true landing-site of preposed possessives may be a position beneath DP. In this connection, consider the following possessive nominal in Italian:

> la loro bellissima casa
> the their beautiful house
> 'their beautiful house'

Here, the possessive pronoun loro 'their' occupies a position which is lower than that of the determiner $l a$ 'the' but higher than that of the attributive adjective bellissima 'beautiful'. So where is it positioned? We noted in $\S 5.9$ that work on the syntax of nominals has suggested that they contain a NumP 'Number Phrase' projection positioned immediately below DP. This being so, one possibility is to follow Valois (1991), Cinque (1994) and Carstens (2000, 2001) in positing that possessives in Italian (and perhaps genitive nominals in languages like English) move to spec-NumP. If so, and if we assume (as above) that adjectives occupy the specifier position within a functional projection FP , a nominal like our latest picture of Mary will have the structure shown in simplified form in (131) below:

On the revised analysis in (131), it would be the head Num constituent of NumP which agrees with and assigns genitive case to the possessor we and attracts it to move from the specifier position within nP to the specifier position within NumP.

The agreement-based analysis of structural genitive case assignment outlined here is not without posing problems, however. Not the least of these is that if the head Num constituent of NumP is the locus of the agreement properties of nominals, and if Num agrees with the possessor in possessive structures like (131), we should expect the overall DP to be plural (because the possessor our is plural) and yet it is singular, as we see from the singular agreement required on the boldprinted verb in sentences like: Our latest picture of Mary is/* ${ }^{*}$ are on the mantelpiece

Moreover, in Italian structures like (130), the determiner $l a$ 'the' and the adjective bellissima 'beautiful' are feminine singular and hence clearly agree with the feminine singular noun casa 'house' and not with the third-person-plural possessor loro 'their'. However, agreement facts are different in some other languages: for example, Dixon (2000) notes that the gender properties of a DP in certain types of possessive structure in Jarawara are determined by the possessor. We shall not delve into these issues here, but simply note the problems posed by an agreement-based analysis of genitive case-marking.

9.10 Summary

We began this chapter in $\S 9.2$ by outlining the claim made by Luigi Rizzi that in clauses which contain preposed focus/topic expressions, CP splits into a number of separate projections, viz. a Force Phrase/ForceP, a Topic Phrase/TopP and a Focus Phrase/FocP (with a Focus head being strong in finite clauses in English, but not a Topic or Force head). We pointed out that the split CP analysis of clauses raises interesting questions about the landing site of preposed wh-expressions; and we suggested that relative and exclamative whexpressions move to the specifier position within the Force Phrase, but that interrogative wh-expressions move to the specifier position within the Focus Phrase in main-clause questions (though they move to the specifier position within the Force Phrase in complement-clause questions). In $\S 9.3$ we went on to examine Rizzi's claim that split CP structures also contain a Finiteness Phrase/FinP. We noted his suggestion that clauses containing both a topicalised and a focalised constituent are ForceP/TopP/FocP/FinP structures; clauses containing only a topicalised (but no focalised) constituent are ForceP/TopP/FinP structures; clauses containing a focalised (but no topicalised) constituent are ForceP/FocP/FinP
structures; and clauses which contain neither a focalised nor a topicalised constituent are simple CPs (with the relevant force and finiteness features being syncretised on a single C head). In $\S 9.4$ we went on to outline work by Chomsky, Larson and Hale suggesting that VPs can be split into two distinct projections an inner VP core headed by a lexical verb and an outer vP shell headed by an affixal light verb. In particular, we looked at the syntax of ergative verbs like roll which are used both intransitively in structures like The ball rolled down the hill and transitively in structures like They rolled the ball down the hill. We argued that the verb phrase in the transitive structures comprises an inner VP core contained within an outer vP shell headed by a causative light verb with an agent subject, and that the light verb triggers raising of the verb roll from V to v . We argued that data relating to the distribution of various types of adverb lend support to the shell analysis, and we extended the shell analysis to transitive prepositional structures such as load the cart with hay. In §9.5, we presented a VP shell analysis for resultatives like turn the litmus-paper red, and double-object structures like get the teacher a present. We went on to argue that object-control structures like What decided you to take syntax? can likewise be analysed in terms of a shell structure in which you originates as the subject of decide and what as the subject of a causative light verb; and we suggested that this analysis can be extended to other object-control predicates like persuade. In §9.6 we outlined Chomsky's vP shell analysis of simple transitive structures like John read the book, and showed how such an analysis could be extended to unergatives if these are analysed as transitive predicates which undergo object incorporation. We went on to outline a shell analysis of two-place unaccusative predicates, showing how this would account for the word order found in Belfast English imperatives such as Go you to school! We also saw how the shell analysis can handle raising structures such as They seem to me to be fine, if the EXPERIENCER to me is analysed as occupying spec-VP, and if the verb seem raises from V to v and so comes to be positioned in front of to me. We concluded that intransitive verb phrases (like their transitive counterparts) have a shell structure in which the verb raises from V to v , and we showed that this would enable us to provide an account of locative inversion structures like Down the hill will roll the ball. In $\S 9.7$ we outlined Chomsky's account of accusative case-marking, under which accusative case is assigned to a case-unvalued goal by a φ-complete transitive light-verb (i.e. one which has an external argument). We suggested a way of extending this analysis to ECM infinitive structures like The DA will prove the witness conclusively to have lied, arguing that the infinitive subject (the witness) raises to become the specifier of the VP headed by prove, and that the verb prove in turn raises to adjoin to a light verb which occupies the head v position of $v P$. We noted that this analysis amounts to claiming that the subject the witness of the infinitive complement raises up to become the object of the transitive verb prove. However, in $\S 9.8$ we argued that the analysis of ECM subjects proposed in $\S 9.7$ is problematic in certain respects: firstly, it assumes that
the ECM subject is raised to become an internal argument of the verb prove, even though it is not theta-marked by prove; secondly, it assumes that the lexical verb prove can have an [EPP] feature, when this is canonically a property of functional categories like T and C ; and thirdly, it assumes that adverbs like conclusively can adjoin to intermediate projections, even though other grammatical operations (like movement) cannot target intermediate projections. We presented Bowers's alternative analysis under which transitive verb phrases incorporate a $\mathrm{TrP} / \mathrm{Tr}$ ansitivity Phrase and thus have a tripartite $\mathrm{vP}+\mathrm{TrP}+\mathrm{VP}$ structure, with accusative objects (and ECM subjects) being case-marked via agreement with Tr and raising to spec- Tr P , and the verb raising from V through Tr into v : we showed that such an analysis would allow us to suppose that adverbs only adjoin to maximal projections, and that only functional heads can have an [EPP] feature. We went on to show that if passive clauses also contain a TrP projection, we can provide a principled account of the preverbal position of passive complements in expletive structures like 'There were several prizes awarded.' In §9.9, we looked at ways in which the shell analysis could be extended to nominals, proposing an account of genitive case-marking in which a null φ-complete determiner assigns genitive case to a case-unvalued goal which it c-commands: however, we also noted that comparative evidence from Italian gives us reason to suppose that Num is the head which case-marks and attracts genitive expressions; and we highlighted empirical problems posed by the assumption that genitive case assignment involves agreement between a functional head (like D or Num) and a possessor.

Workbook section

Exercise 9.1

Assuming the grammaticality judgments given below (which are mine and which may be slightly different from those of some speakers), discuss how the relevant sentences could be analysed within the split CP framework. Where clauses are bracketed, concern yourself only with the structure of the bracketed material.

> He admitted [that students only rarely enjoy syntax]
> He admitted [that only rarely do students enjoy syntax]
> *He admitted [that only rarely students enjoy syntax]
> He admitted [that syntax, students only rarely enjoy]
> *He admitted [syntax, students only rarely enjoy]
> *He admitted [that syntax do students only rarely enjoy]
> He admitted [that syntax, only rarely do students enjoy]
> *He admitted [that syntax do only rarely students enjoy]
> *He admitted [that only rarely do syntax, students enjoy]
> *He admitted [that only rarely, syntax do students enjoy]

11 *He admitted [that only rarely, syntax, students enjoy]
12 What kind of courses do students only rarely enjoy?
13
14
15
16
*What kind of courses do only rarely students enjoy?
Syntax is something [which only rarely do students enjoy]
What's the reason [why syntax, students only rarely enjoy?]
I don't understand [why only rarely do students enjoy syntax]

Consider the implications for your analysis of assuming that Fin can be syncretised with any head immediately above it (whether a Force head, a Focus head or a Topic head) if at least one of them is null, if both Fin and the other head have the same strength (e.g. both are weak, or both are strong), and if Fin projects no specifier of its own.

Helpful hints

To simplify discussion, concern yourself only with the structure of the left periphery of the relevant clauses - i.e. the Force/Topic/Focus/Finiteness projections above the TP layer. Assume that you have reached a stage of derivation at which a TP has been formed whose head is a null third-person-plural present-tense affix (Tns), which merges with the verbal projection enjoy syntax to form the T-bar Tns enjoy syntax, and that the adverbial adjunct only rarely is then adjoined to this T-bar to expand it into the larger T-bar only rarely Tns enjoy syntax, which is then merged with its subject students to form the TP students only rarely Tns enjoy syntax. In accordance with the DP hypothesis, assume that both syntax and students are DPs headed by a null determiner. In relation to 15-16, assume that why originates in the position where it ends up.

Model answer for sentence 1

Rizzi posits that CP splits into multiple projections in clauses which contain a preposed topic or focus constituent. Although only rarely seems to function as a preposed focused expression and syntax as a preposed topic in the relevant examples above, neither the main admitted clause nor the complement enjoy clause contains a preposed topic/focus constituent in 1; hence, neither contains a FocP or TopP projection. Since Rizzi posits that force and finiteness features are syncretised on a single head (traditionally labelled C) in clauses which do not involve focalisation/topicalisation, both clauses in 1 will be CPs, the main clause headed by a null complementiser, and the complement clause headed by that. However, since our concern here is with the structure of the bracketed that clause which serves as the complement of the verb admitted, we concentrate on how this is derived.

Assume (as in the helpful hints) that we have reached a stage of derivation where we have formed the TP \varnothing students only rarely Tns enjoy ø syntax (where \varnothing is a null determiner, and Tns is a third-person-plural present-tense affix). Because there is no intervening topic or focus projection, the relevant force and finiteness features are here syncretised onto a single $\mathrm{C} /$ complementiser head (which is therefore marked as being both declarative and finite), so forming the structure shown in highly simplified form in (i) below:
(i)
[CP [C that ${ }_{\text {DEC, FIN }}$ [[TP \varnothing students only rarely [${ }_{\mathrm{T}} T n s$] enjoy syntax]]

The (third-person-plural present-tense) Tns affix will subsequently be lowered onto the adjacent verb enjoy in the PF component, with the result that this is ultimately spelled out as the third-person-plural present-tense form enjoy. The complementiser introducing the clause in (i) can be spelled out either as that by virtue of carrying a declarative-force feature (in accordance with (26i) in the main text), or can be given a null spellout as \varnothing by virtue of carrying a finiteness feature (in accordance with (26ii) in the main text). We therefore correctly predict that alongside sentence 1, we can also have a sentence like (ii) below, in which the bracketed complement clause contains a null complementiser:
(ii) He admitted [\varnothing students only rarely enjoy syntax]

Exercise 9.2

Discuss how the syntax of the following sentences could be analysed within the VP shell framework, giving arguments in support of your analysis:

1	They will increase the price to 30 dollars
2	Shall we sit him in the chair?
3	Will you climb me up there? (Child English)
4	This might make him angry
5	He will explain the problem fully to me
6	You must show her that she can trust you
7	Tourists may smuggle drugs illegally into the country
8	She will remind him to close the windows
9	The horse was jumped perfectly over the fence
10	You could ask him politely to keep quiet
11	The prosecution must prove to the jury beyond reasonable doubt that the defendant is
12	guilty
13	Some evidence does appear to have emerged of corruption
14	The police were reported by the press to have arrested a suspect
15	There are said to be several people suspected of corruption
16	Several politicians are widely thought to be suspected of corruption
17	There are said to have been several people detained
18	There are several people said to have been detained
19	There does seem to me to remain some unrest in Utopia
20	I believe there sincerely to remain some unrest in Utopia
Can you prove him to us to have defrauded the company?	

Comment in particular on the syntax of the italicised constituents, saying what position each one occupies, what case it receives and how. In addition, discuss how the shell analysis of nominals briefly sketched in $\S 9.9$ could handle the syntax of the following nominals:

21 the return of the president from Ohio
22
23
the president's return from Ohio
the unwillingness of the chairman to admit responsibility

24
25
26
27
28
29
30
the chairman's unwillingness to admit responsibility the decision by the chairman to admit responsibility the enemy's surrender of the city to the allies the surrender of the city to the allies by the enemy the city's surrender to the allies by the enemy the judge's instruction to the jury to acquit the defendant the withdrawal of troops from the occupied territories by the Israelis

In relation to the merger of verbs and nouns with their internal arguments, assume that internal arguments are canonically projected within VP/NP in the hierarchical order given by the Thematic Hierarchy below:

THEME $>$ other internal arguments $>$ AGENT by-phrase argument $>$ clausal argument
where $>=$ 'is projected higher up in the VP/NP structure than'. This means that the first internal argument to be merged with a verb (as its complement) will be the lowest one on the hierarchy, and the second to be merged (as its specifier) will be the second lowest - and so on.

Helpful hints

In 11, take beyond reasonable doubt to be a PP which functions as an adjunct, and don't concern yourself with its internal structure. (In relation to this sentence and others, you might want to consider the issue of whether the relevant structures provide us with evidence about whether adjuncts adjoin to intermediate or maximal projections.) In 11 and 12, take the that-clause to be a CP but don't concern yourself with its internal structure. In 21 and 24, assume that a THEME argument (like the president in 21 and 22) and an EXPERIENCER argument (like the chairman in 23 and 24) can be projected into the syntax either as a PP introduced (and assigned accusative case) by the transitive preposition of, or as a DP containing an unvalued case feature. In 23, 24, 25 and 29, take the infinitival clause to admit responsibility/to acquit the defendant to be a CP with a null complementiser and a null PRO subject, but don't concern yourself with the internal structure of the relevant CP. In structures like 27, 28 and 30, assume that where a noun has three internal arguments, two of them serve as specifiers to the same head (the one which is higher on the thematic hierarchy being positioned above the other), so that heads may have multiple specifiers (as suggested by Chomsky 1995).

Model answer for sentence 1

The verb increase can be used not only as a transitive verb in sentences such as 1 above, but also as an intransitive verb in sentences such as:

The price will increase to 30 dollars

Accordingly, we can take increase to be an ergative predicate which has much the same syntax as the verb roll discussed in the main text. This would mean that 1 is derived as follows. The verb increase merges with its PP complement to 30 dollars to form the V-bar increase to 30 dollars; this V-bar in turn merges with the DP the price to form the VP (iii) below:
(iii)

In accordance with the Thematic Hierarchy in (i), the theme argument the price in (iii) occupies a higher position within the structure than the goal argument to 30 dollars. On Chomsky's account of ergative structures, the VP in (iii) subsequently merges with a causative light verb ø with an external AGENT argument ($=$ they). The light verb is φ-complete and hence serves as a probe, identifying the price as an active goal (by virtue of its unvalued case feature), and assigning it accusative case in accordance with (92) in the main text. Because the light verb is affixal, the verb increase adjoins to it, so that at the end of the vP cycle we have the structure shown below:
(iv)

The vP in (iv) is then merged with a T constituent containing will, and this assigns nominative case to the subject they (since the two match in respect of their φ-features, albeit those of will are invisible). Since T has an [EPP] feature, it triggers raising of the subject they to spec-TP. Merging the resulting TP with a null declarative C forms the CP shown in simplified form below:
(v) [CP [C $\varnothing]\left[{ }_{\text {TP }}\right.$ they [T will] $\left[_{\mathrm{vP}}\right.$ they $[\mathrm{v} \varnothing+$ increase] [vp the price [v increase] to 30 dollars] $]$]

An interesting question which is posed by the analysis sketched here is how we account for the position of the adverb gradually in a sentence such as:
(vi) They will increase the price gradually to 30 dollars

An analysis along the lines of (iv) requires us to suppose that gradually is a V-bar adjunct which extends the V-bar increase to 30 dollars to the even larger V-bar gradually increase to 30 dollars. However, if we suppose that adjunction (like movement) cannot target intermediate projections and that adverbs canonically adjoin to maximal projections, we will then require a more complex
analysis (like that proposed in Bowers 2002) on which transitive clauses have a tripartite $\mathrm{vP}+\mathrm{Tr} \mathrm{P}+\mathrm{VP}$ structure. On this alternative view, the VP in (iii) will merge with a Tr (ansitivity) head which is strong and so triggers movement of the verb increase from V to Tr . The Tr head agrees with and assigns accusative case to the DP the price, and its [EPP] feature triggers raising of the price to spec- TrP, so deriving the structure shown in simplified form below:
(vii)

The resulting Tr P is then merged with an agentive light verb whose subject is they and which (by virtue of being strong) triggers raising of the verb increase from Tr to v , so deriving the structure shown in skeletal form below:
(viii) [vP they [v increase] [$\mathrm{TrP}^{\mathrm{r}}$ the price [Tr_{r} increase] [vp the price [v increase] to 30 dollars]]]

The derivation will then proceed along the lines sketched earlier. Under the alternative Tr P analysis sketched here, we could then say that the adverb gradually in (vi) is a VP-adjunct, and hence is adjoined to the VP in (vii) above.

Model answer for nominal 21

Return is an unaccusative noun with two arguments. In accordance with the Thematic Hierarchy (i), the source argument from Ohio (being lower on the hierarchy than the theme argument the president) is the first argument to merge with the noun return, forming the N -bar return from Ohio. The resulting N-bar is then merged with the theme argument the president. In the text and the helpful hints, we suggested that a THEME argument of a noun can (optionally) be introduced by the preposition of. If this happens here, the THEME argument will be projected into the syntax as the PP of the president, the case feature of the president being valued as accusative by the transitive preposition of. Merging of the president with the N -bar from Ohio will derive the NP shown in simplified form below:
(ix)
 of the president

return

The resulting NP is then merged as the complement of a strong null light noun which triggers raising of the noun return from N to n . Merging the resulting nP with the determiner the will form the DP shown below:
(x)

On the assumption that adjectives occupy a position between D and nP , such an analysis correctly predicts the position of the adjective unexpected in nominals such as:
(xi) the unexpected return of the president from Ohio

10 Phases

10.1 Overview

In this chapter, we look at recent work by Chomsky suggesting that syntactic structure is built up in phases (with phases including CP and transitive ${ }_{v P} \mathrm{P}$. At the end of each phase, part of the syntactic structure already formed undergoes transfer to the phonological and semantic components, with the result that the relevant part of the structure is inaccessible to further syntactic operations from that point on. (An important point of detail to note is that since we are outlining Chomsky's ideas on phases here, we shall follow his assumptions about the structure of verb phrases and expletive structures.)

10.2 Phases

In §8.5, we outlined Chomsky's claim in recent work that all syntactic operations involve a relation between a probe P and a local goal G which is sufficiently 'close' to the probe (or, in the case of multiple agreement, a relation between a probe and more than one local goal). We noted Chomsky's (2001, p. 13) remark that 'the P, G relation must be local' in order 'to minimise search', because the Language Faculty can only hold a limited amount of structure in its 'active memory' (Chomsky 1999, p. 9). Accordingly, syntactic structures are built up one phase at a time. Chomsky suggests (1999, p. 9) that phases are 'propositional' in nature, and include CP and transitive vP (more specifically, vP with an external argument, which he denotes as $v^{*} \mathrm{P}$). His rationale for taking CP and $v^{*} \mathrm{P}$ as phases is that CP represents a complete clausal complex (including a specification of force), and $\mathrm{v}^{*} \mathrm{P}$ represents a complete thematic (argument structure) complex (including an external argument).

Once all the operations which apply within a given phase have been completed, the domain of the phase (i.e. the complement of its head) becomes impenetrable to further syntactic operations. As we have already seen, Chomsky refers to this condition as the Phase Impenetrability Condition/PIC - and we can state it informally as follows (cf. Chomsky 2001, p. 5, ex. 6)

(1) Phase Impenetrability Condition/PIC

The c-command domain of a phase head is impenetrable to an external probe (i.e. a goal which is c-commanded by the head of a phase is impenetrable to any probe c-commanding the phase)

The reason why the domain of the phase head is impenetrable to an external probe (according to Chomsky 2001, p. 5) is that once a complete phase has been formed, the domain of the phase undergoes a transfer operation by which the relevant (domain) structure is simultaneously sent to the phonological component to be assigned an appropriate phonetic representation, and to the semantic component to be assigned an appropriate semantic representation - and from that point on, the relevant domain is no longer accessible to the syntax. So, for example, once a complete CP phase has been formed, the TP which is the domain (i.e. complement) of the phase head C will be sent to the phonological and semantic components for processing. As a result, TP is no longer visible in the syntax, and hence neither TP itself nor any constituent of TP can subsequently serve as a goal for a higher probe of any kind: i.e. no probe c-commanding CP can enter into a relation with TP or any constituent of TP.

In order to make our discussion more concrete, consider the derivation of the following sentence: Will Ruritania withdraw troops from Utopia?

Given Chomsky's vP+VP analysis of transitive verb phrases (which we shall adopt throughout here, setting aside Bowers's $\mathrm{vP}+\mathrm{TrP}+\mathrm{VP}$ analysis outlined in $\S 9.8$), (2) will be derived as follows. The verb withdraw merges with its complement from Utopia (with Utopia being a DP headed by a null determiner, given the DP hypothesis) and its specifier troops (which is a QP headed by a null partitive quantifier \varnothing) to form the VP \varnothing troops withdraw from \varnothing Utopia. This is then merged with a causative light verb whose external agent argument is Ruritania (another DP headed by a null determiner): since the light verb is affixal, it triggers movement of the verb withdraw from its original (italicised) position in V to v , so deriving (3) below:

The light verb will agree with (and assign accusative case to) the QP \varnothing troops. Since a transitive vP (i.e. a vP with an external argument) is a phase, and since the vP in (3) is transitive and has the external argument \varnothing Ruritania, the VP constituent (by virtue of being the domain/complement of the light verb which is the head of the phase) will undergo transfer to the phonological and semantic components at this point, and thereafter cease to be accessible to further syntactic operations. Let's suppose that as part of the transfer operation, traces are marked as having a null spellout in the phonological component (this being indicated by strikethrough), and that uninterpretable features which have been deleted by operation of agreement are removed from the structure handed over to the semantic component, but not from the structure handed over to the phonological component. Consequently, the phonological component will not spell out the trace of the verb withdraw in V , and only the constituents \varnothing troops and from Utopia will be given an overt phonetic spellout.

The syntactic computation then proceeds once more, with [T will] being merged with the vP in (3) to form the T-bar shown below (outline font being used to indicate those parts of the structure which received an overt or null spellout in the phonological component after the VP underwent transfer at the end of the vP phase, and strikethrough marking traces receiving a null spellout):

Since [${ }_{\mathrm{T}}$ will] has uninterpretable (and unvalued) person/number features, it is an active probe which searches for a local goal to value and delete its unvalued features. Neither \varnothing troops nor \varnothing Utopia are accessible to the probe will (since both are contained within a VP which has already been transferred to the phonological and semantic components); however, the DP ø Ruritania is accessible to will and is syntactically active by virtue of its uninterpretable case feature. Hence, will agrees (invisibly) with and assigns (invisible) nominative case to the DP \varnothing Ruritania. The auxiliary [T will] also has an [EPP] feature requiring movement of the closest matching goal to spec-TP; accordingly, the DP ø Ruritania is moved from its original (italicised) position in spec-vP to become the specifier of will, so deriving the structure:
(5)

The resulting TP is merged with a null interrogative C. Let's suppose (as we did in §6.8) that yes-no questions contain a null yes-no question operator in spec-CP (e.g. a null counterpart of the adverb whether), and that C is strong/affixal and attracts will to move from its original (italicised) position in T to adjoin to the null C heading CP . If so, at the end of the CP cycle we will have the structure (6) below:
(6)

Since CP is a phase and the domain of the head of a phase is spelled out at the end of a phase, TP undergoes transfer to the phonological and semantic components at this point. The transfer operation results in the italicised traces of will and \varnothing Ruritania receiving a null spellout in the phonological component.

However, we are now left with something of a problem. We have come to the end of the derivation, but so far neither C nor the null yes-no question operator which serves as its specifier have been 'handed over' to the phonological and semantic components for further processing. In order to ensure that this happens, let's make the additional assumption in (7ii) below about transfer:

Transfer

(i) At the end of each phase, the domain (i.e. complement of the phase head) undergoes transfer
(ii) At the end of the overall derivation, all remaining constituents undergo transfer

In the case of (6), the two remaining constituents which have not yet undergone transfer are those at the edge of CP (the edge of a projection comprising its head and any specifiers/adjuncts it has) - i.e. the C-constituent containing will and the null yes-no question operator in spec-CP. Accordingly, these undergo transfer to the phonological/semantic components at the end of the overall derivation.

10.3 Intransitive and defective clauses

Our illustrative account of phases in the previous section involved a structure containing a transitive vP phase and a CP phase. However, since neither intransitive clauses (i.e. those containing a vP with no external argument) nor defective clauses (i.e. clauses which are TPs lacking a CP projection) are phases, things work differently in such structures - as we can illustrate in relation to the derivation of:

There are thought by some to remain numerous problems in Utopia
The unaccusative verb remain merges with its Locative complement in ø Utopia (Utopia being a DP headed by a null determiner) to form the V-bar remain in \varnothing Utopia, and this V-bar is in turn merged with its THEME argument (the quantifier phrase numerous problems) to form the VP numerous problems remain in ø Utopia. This VP in turn is merged with a null light verb which, being affixal, triggers movement of the verb remain from its italicised position in V to adjoin to the light verb, so deriving:
(9)

Although a transitive vP is a phase (and requires its domain to be spelled out), the $v P$ in (9) is intransitive because it has no external argument (i.e. vP has no specifier). Hence, its VP complement does not undergo transfer at this point, and the syntactic derivation proceeds by merging the resulting vP with infinitival to. If (as Chomsky 2001, fn. 56 argues) infinitival to has an [EPP] feature and a person feature in defective clauses, it follows that to must project a specifier with person properties. In keeping with Chomsky's own assumptions about expletive there being directly generated in spec-TP and preference of Merge over Move, let's suppose that this requirement is satisfied by merging expletive there in spec-TP, so deriving:
(10)

The TP in (10) is then merged as the complement of the passive participle thought, forming a V-bar constituent which is in turn merged with the AGENT by-phrase by some to form a VP. Given our assumption in the previous chapter that all verb phrases have a complex shell structure, the resulting VP will in turn be merged as the complement of a light verb (arguably one which is participial in nature, so accounting for why the verb is eventually spelled out in the passive-participle form thought, and why Chomsky 1999 uses the label PRT to denote the relevant participial head): since light verbs are affixal in nature, this means that the verb thought will raise to adjoin to the light verb. Merging the resulting vP with the passive auxiliary BE will derive the T-bar constituent shown below:

At this point, BE is an active probe by virtue of its uninterpretable (and unvalued) φ-features, and so it searches for an accessible active goal to value its person/number features. There are two such goals within the structure in (11), namely the third-person-expletive pronoun there (active by virtue of its uninterpretable
person feature) and the third-person-plural QP numerous problems (active by virtue of its uninterpretable and unvalued case feature). Both there and numerous problems are accessible goals for be since neither is contained within a structure which has undergone transfer. Chomsky (2001) suggests that a probe P locates every active matching goal G within its search space (i.e. within that part of the syntactic structure which is accessible to the probe by virtue of not yet having undergone transfer), and that where there is more than one such goal, the probe simultaneously agrees with all the relevant goals at the same time: cf. his (2001, p.13) remark that ' P can find any matching goal in the phase PH that it heads, simultaneously deleting uninterpretable features.' (We can assume that the pronoun some is not active at this point, because it falls within the domain of a closer probe by which will already have valued its case feature as accusative.) What this means is that since be has uninterpretable person and number features, it will locate every active goal within its search space which has a person and/or number feature. Since there has a third-person feature which is uninterpretable (making it active), there is one such goal; likewise, numerous problems is another active goal, since it has third-person and plural-number features and is active by virtue of its uninterpretable case feature. Accordingly, be simultaneously agrees in person with there and numerous problems, and in number with numerous problems, so that BE is assigned the values [third-person, plural-number]. Since numerous problems is φ-complete, it can delete the uninterpretable person/number features of be. Conversely, bE (by virtue of being finite) can value the unvalued case feature of numerous problems as nominative, and (because be is also φ-complete) can delete the relevant case feature (and also the person feature of there). The [EPP] feature of T is deleted by moving the closest active goal (i.e. there) from its original position as the specifier of to (italicised below) to become the specifier of be. Merging the resulting TP with a null declarative complementiser derives the CP structure shown in simplified form in (12) below:

Since CP is a phase, the TP headed by [T BE] which constitutes its domain will undergo transfer at this point, in accordance with (7i). The italicised traces of moved constituents will be given a null spellout, and the auxiliary be in T will be spelled out as are in the phonological component (since it has been valued as third person plural in the course of the derivation). The null C heading CP subsequently undergoes transfer by (7ii), and is assigned a null spellout in the phonological component, and interpreted in the semantic component as marking the relevant sentence as declarative in force.

In the context of our discussion of phases here, the key point which emerges is that neither an intransitive vP nor a defective TP clause constitutes a phase - e.g. in the case of (12), not the intransitive vP containing remain, or the vP containing the passive participle thought, or the defective TP complement of thought. In consequence, the relevant vP^{P} and TP constituents are still accessible in the syntax at the point where BE is introduced into the derivation, so allowing BE to agree with numerous problems.

10.4 Wh-movement through spec-CP

The phase-based theory of syntax outlined above has far-reaching consequences for the operation of A-bar movement operations like wh-movement as we can illustrate in relation to the following sentence:
(13) Where is it thought that he will go?

The derivation of (13) proceeds as follows. The unaccusative verb go is merged with its GOAL argument (the locative adverbial pronoun where) to form the V-bar go where, which in turn is merged with its THEME argument he to form the VP he go where. This in turn is merged with a null affixal light verb which triggers raising of the verb go to v from its original (italicised) position in V , so forming:

Since vP is intransitive (by virtue of the fact that the light verb has no external argument), vP is not a phase, and Transfer cannot apply at this point. The syntactic computation therefore continues, with [T will] merging with the vP in (14). Will agrees with (and assigns nominative case to) he, and the [EPP] feature of will triggers raising of he from its original position (italicised below) in spec-VP to spec-TP. Merging the complementiser that with the resulting TP forms the CP shown in (15) below:
(15)

Since CP is a phase, its domain (i.e. its TP complement) will undergo transfer at this point. This means that neither TP nor any of the constituents of TP will subsequently be accessible to further syntactic operations - i.e. in effect, TP and its constituents are frozen in place once TP undergoes transfer.

However, this causes an obvious problem, since if all constituents of TP are frozen in place at this point, the wh-word where will be unable to move from the (sentence-final) VP-complement position it occupies in (15) to the (sentenceinitial) main-clause CP-specifier position which it clearly needs to occupy in (13) Where is it thought that he will go? One way to overcome this problem is to assume that (as suggested in §8.9) wh-movement applies in a successive-cyclic fashion, and that the complementiser that in structures like (15) has an [EPP] feature and a [WH] feature which together trigger movement of the closest wh-expression (= where) to become the specifier of the complement-clause CP headed by that before where subsequently moves on to become the specifier of the main clause C constituent containing the inverted auxiliary is. If this is so, at the stage of derivation represented in (15) above, where will move from the italicised position shown in (16) below to become the specifier of that:

At this point (once all the operations which apply on the CP-cycle have applied) the domain of C (i.e. its TP complement) will undergo transfer in accordance with (7i), because CP is a phase: one consequence of this is that the italicised traces will be marked as receiving a null spellout in the phonological component.

After transfer of TP is completed, the syntactic computation continues. The CP in (16) is merged as the complement of the verb think, and the resulting VP is in turn merged as the complement of a participial light verb (ensuring that THINK is eventually spelled out as the passive participle thought), with the verb think (below shown as thought) raising to adjoin to the light verb. The resulting vP is in turn merged as the complement of [${ }_{\mathrm{T}} \mathrm{BE}$], which has an [EPP] feature that is deleted by merger of expletive it in spec-TP (it in turn serving as a probe valuing the agreement features of BE). Merging the resulting TP with a null affixal C will trigger raising of BE from its original (italicised) position in T to C ; since C also has a wh-attracting [EPP] feature, it will trigger movement of where from the italicised spec-CP position in the complement clause into spec-CP position in the main clause, so deriving the CP shown in simplified form in (17) below:

Since CP is a phase, its domain (= the main-clause TP) will undergo transfer by (7i) at this point, so that the italicised traces of is, thought and where will receive a null spellout in the phonological component. Subsequently, the constituents where and $i s+\varnothing$ on the edge of the root CP undergo transfer by (7ii).

What our discussion here tells us is that just as A-movement applies in a successive-cyclic fashion (each time moving the relevant nominal into the next highest spec-TP position in the structure), so too (within a phase-based theory of syntax) A-bar movement operations like wh-movement must apply in a successive-cyclic fashion: this means that each time a new phase head is
introduced into the structure, it will serve as a probe which attracts the closest wh-goal to move into its specifier position.

10.5 Wh-movement through spec-vP in transitive clauses

Our discussion in the previous section showed that the assumption that CPs are phases means that long-distance wh-movement requires successivecyclic movement of a moved wh-expression through intermediate spec-CP positions. However, since transitive vPs are also phases, it follows that in structures containing one or more transitive vPs , wh-movement will have to pass through intermediate spec-vP positions as well (since transitive vPs are phases). We can illustrate how this works in terms of the following example:

What have they done?
(18) will be derived as follows. The verb DO (shown here in its spellout form done) merges with its thematic complement what to form the VP done what. This is merged with a transitive light verb whose external argument is they and which (by virtue of being affixal) triggers raising of done from V to v ; the light verb (by virtue of being transitive) also values the case feature of what as accusative and (by virtue of being φ-complete) deletes it. Let's suppose that just as C can have an [EPP] feature attracting movement of a wh-expression, so too a transitive light-verb (perhaps by virtue of being a phase head, like C) can likewise have a wh-attracting [EPP] feature. This being so, what will be moved to become a second specifier for vP , forming the structure below:

The notational convention assumed in (19) is that first merge of a head H with its complement forms an $\mathrm{H}-\mathrm{bar} / \mathrm{H}^{\prime}$ projection; second merge of H with a specifier forms an H -double-bar/ $\mathrm{H}^{\prime \prime}$ projection; third merge of H with another specifier forms an H-treble-bar/ $\mathrm{H}^{\prime \prime \prime}$ projection . . . and so on. However, by tradition, the maximal projection of H is denoted as HP: hence, the node labelled $v P$ in (19) is a v-treble-bar projection, but is labelled $v P$ because it is the maximal projection of the relevant light verb.

The double-specifier analysis in (19) is in accordance with Chomsky's (1998, p.16) assumption that a head can have multiple specifiers - in the case of (19), an inner specifier they representing the external argument of the light verb, and an outer specifier what which deletes the [EPP] feature of the light verb. In accordance with (7i), the VP in (19) will undergo transfer at the end of the vP phase, and the two italicised traces will thereby be given a null spellout. Of course, if what had not moved to spec-vP at this point, it would have been spelled out in situ and hence frozen in place, and thereby wrongly be predicted to be unable to undergo wh-movement. (Although we adopt Chomsky's multiple-specifier analysis here, it should be noted that one way of avoiding multiple specifiers would be to assume that light verbs are A-heads like T and hence only allow an argument as their specifier, and that what doesn't move to become a second specifier of vP , but rather moves to become the specifier of a separate A-bar head above vP - perhaps becoming the specifier of a Focus head. Note that in the terminology of Roberts 1994, a head like T which allows only an argument as its specifier is an A-head, and a head like C which allows either an argument or an adjunct as its specifier is an A-bar head.)

Since a transitive $v P$ is a phase, the VP domain done what in (19) will undergo transfer at the end of the vP cycle, and the trace copies of the moved constituents done and what will each receive a null spellout. The derivation then proceeds by merging [T have] with the vP in (19), forming the T-bar (20) below:

The probe have now searches for an appropriate goal. It needs to 'skip over' what and instead identify they as the expression that it agrees with, assigns nominative case to and attracts to move to spec-TP. Clearly we cannot say that what is inactive as a goal since it needs to be an active goal in order to be able to undergo subsequent wh-movement. However, it seems reasonable to suppose that what is active only for agreement with an A-bar head, not for agreement with an A-head. More specifically, we can suppose that a noun or pronoun expression which carries interpretable person/number/gender features is only active for agreement with an A-head if it has an unvalued and undeleted case feature: this would mean that what is ineligible for A-agreement because its case feature was valued as accusative and deleted by the transitive light verb at the earlier stage of derivation shown in (19) above. By contrast, since they in (20) has an unvalued case feature, it is active
for A-agreement and A-movement (but not for A-bar movement). Accordingly, have agrees with, assigns nominative case to and triggers movement of the subject they, so deriving:

This TP is then merged with a null complementiser with a strong tense feature (triggering movement of have from T to C) and an [EPP] feature which triggers movement of what to spec-CP, so deriving:
(22)

At the end of the CP phase, TP undergoes transfer in accordance with (7i) and the italicised traces are given a null spellout in the phonological component. Subsequently, the constituents at the edge of CP (i.e. its specifier what and its head have $+\varnothing$) undergo transfer in accordance with (7ii).

Our discussion of the derivation of (18) What have they done? shows us that in transitive clauses A-bar movement will involve movement through spec-vP into spec-CP. An obvious implication of this is that wh-sentences like (23) below which contain two transitive clauses: What might she think that they will do?
will correspondingly involve successive-cyclic wh-movement through two spec${ }_{v P}$ positions (and likewise through two spec-CP positions) - as shown in skeletal form below:

More generally, a sentence containing n transitive verbs and m CPs intervening between the initial position of a wh-expression and its ultimate landing site will involve movement through n spec-vP positions and m spec-CP positions.

10.6 Evidence for successive-cyclic wh-movement through spec-CP

The discussion in the previous section shows how (in a phase-based theory of syntax in which CPs and transitive vPs are phases) theoretical considerations force successive-cyclic wh-movement through spec-CP and spec-vP. However, an interesting question which arises is whether there is any empirical evidence in support of the successive-cyclic analysis. As we shall see, there is in fact considerable evidence in support of such an analysis. In this section, we look at evidence in support of successive-cyclic movement through spec-CP; and in the next section, we examine evidence of successive-cyclic movement through spec-vP.

Let's begin by looking at evidence from English. Part of the evidence comes from the interpretation of reflexive anaphors like himself. As we saw in exercise 3.2, these are subject to Principle A of Binding Theory which requires an anaphor to be locally bound and hence to have an antecedent within the TP most immediately containing it. This requirement can be illustrated by the contrast in (25) below:
(25) (a) ${ }^{*}$ Jim was surprised that [TP Peter wasn't sure [${ }_{C P}$ that [TTP Mary liked this picture of himself best]]]
(b) Jim was surprised that [TTP Peter wasn't sure [${ }_{C P}$ which picture of himself [tp Mary liked best]]]

In (25a), the TP most immediately containing the reflexive anaphor himself is the bold-printed TP whose subject is Mary, and since there is no suitable (third-person-masculine-singular) antecedent for himself within this TP, the resulting sentence violates Binding Principle A and so is ill-formed. However, in (25b) the wh-phrase which picture of himself has been moved to the specifier position within the bracketed CP , and the TP most immediately containing the reflexive anaphor is the italicised TP whose subject is Peter. Since this italicised TP does
indeed contain a c-commanding antecedent for himself(namely its subject Peter), there is no violation of Principle A if himself is construed as bound by Peter though Principle A prevents Jim from being the antecedent of himself.

In the light of this restriction, consider the following sentence:
Which picture of himself wasn't he sure that Mary liked best?
In (26), the antecedent of himself is he - and yet himself is clearly not ccommanded by he, as we see from (27) below (simplified, and showing only overt constituents):

In fact, the only elements c-commanded by the pronoun he in (27) are T-bar and its constituents. But if he does not c-command himself in (27), how come he is interpreted as the antecedent of himself when we would have expected such a structure to violate Principle A of Binding Theory and hence to be ill-formed?

We can provide a principled answer to this question if we suppose that whmovement operates in a successive-cyclic fashion, and involves an intermediate stage of derivation represented in (28) below (simplified by showing overt constituents only):
[${ }_{T P}$ He wasn't sure [cP which picture of himself that [TTP Mary liked best]]]
(Note that (28) is an intermediate stage of derivation, not a complete sentence structure; if it were a sentence, in relevant varieties it would violate the Multiply
Filled Comp Filter discussed in §6.11.) In (28), the anaphor himself has a ccommanding antecedent within the italicised TP most immediately containing it - namely the pronoun he. If we follow Belletti and Rizzi (1988), Uriagereka (1988) and Lebeaux (1991) in supposing that the requirements of Principle A can be satisfied at any stage of derivation, it follows that positing that a sentence like (26) involves an intermediate stage of derivation like (28) enables us to account for why himself is construed as bound by he. More generally, sentences like (26) provide us with evidence that long-distance wh-movement involves successive cyclic movement through intermediate spec-CP positions - and hence with evidence that CP is a phase. (See Fox 2000 and Barss 2001 for more detailed discussion of related structures.) At a subsequent stage of derivation, the wh-QP
which picture of himself moves into spec-CP in the main clause, so deriving the structure (27) associated with (26) Which picture of himself wasn't he sure that Mary liked best?

A further argument for successive-cyclic wh-movement through spec-CP (and consequently for the phasehood of CP) is offered by McCloskey (2000), based on observations about quantifier stranding/floating in West Ulster English. As we saw in §7.6, in this variety, a wh-word can be modified by the universal quantifier all, giving rise to questions such as:

What all did you get for Christmas? (= 'What are all the things which you got for Christmas?')

McCloskey argues that in such sentences, the quantifier and the wh-word originate as a single constituent. He further maintains that under wh-movement, the whword what can either pied-pipe the quantifier all along with it as in (29) above, or can move on its own leaving the quantifier all stranded. In this connection, consider the sentences in (30) below:
(30) (a) What all do you think that he'll say that we should buy?
(b) What do you think all that he'll say that we should buy?
(c) What do you think that he'll say all that we should buy?
(d) What do you think that he'll say that we should buy all?

McCloskey claims (2000, p. 63) that 'All in wh-quantifier float constructions appears in positions for which there is considerable independent evidence that they are either positions in which wh-movement originates or positions through which wh-movement passes. We have in these observations a new kind of argument for the successive-cyclic character of long wh-movement.'

McCloskey argues that the derivation of (30a-d) proceeds along the following lines (simplified in a number of ways). The quantifier all merges with its complement what to form the structure [all what]. The wh-word what then raises to become the specifier of all, forming the overt QP [what all]. (An incidental detail to note here is that this part of McCloskey's analysis violates the Remerger Constraint which we posited in $\S 6.5$ to the effect that 'No constituent can be merged more than once with the same head.' One way of getting round this is to suppose that what moves to a spec-DP position above QP, rather than to spec-QP. However, we shall ignore this detail in what follows.) The resulting QP [what all] is merged as the object of buy, forming [buy what all]. If what undergoes wh-movement on its own in subsequent stages of derivation, we derive (30d) 'What do you think that he'll say that we should buy all?' But suppose that the quantifier all is pied-piped along with what under wh-movement until we reach the stage shown in skeletal form below:
[cP what all [c that] we should buy]

If wh-movement then extracts what on its own, the quantifier all will be stranded in the most deeply embedded spec-CP position, so deriving (30c) 'What do you
think that he'll say all that we should buy?' By contrast, if all is pied-piped along with what until the end of the intermediate CP cycle, we derive:
[CP what all [C that] he'll say that we should buy]
If wh-movement then extracts what on its own, the quantifier all will be stranded in the intermediate spec-CP position and we will ultimately derive (30b) 'What do you think all that he'll say that we should buy?' But if all continues to be pied-piped along with what throughout the remaining stages of derivation, we ultimately derive (30a) 'What all do you think that he'll say that we should buy?'

There is also considerable empirical evidence in support of successive-cyclic movement through spec-CP from a number of other languages. One such piece of evidence comes from preposition pied-piping in Afrikaans. Du Plessis (1977, p. 724) notes that in structures containing a wh-pronoun used as the complement of a preposition in Afrikaans, a moved wh-pronoun can either pied-pipe (i.e. carry along with it) or strand (i.e. leave behind) the preposition - as the following sentences illustrate:
(33) (a) Waarvoor dink julle [werk ons]?

What-for think you work we?
'What do you think we are working for?'
(b) Waar dink julle [werk ons voor]?

What think you work we for? (same interpretation as 33a)
(c) Waar dink julle [voor werk ons]?

What think you for work we? (same interpretation as 33a)
Du Plessis argues that sentences such as (33c) involve movement of the PP waarvoor 'what-for' to spec-CP position within the bracketed complement clause, followed by movement of waar 'what' on its own into the main-clause specCP position, thereby stranding the preposition in the intermediate spec-CP position. On this view, sentences like (33c) provide empirical evidence that long-distance wh-movement involves movement through intermediate spec-CP positions.

A rather different kind of argument for successive-cyclic wh-movement comes from the phenomenon of wh-copying. A number of languages exhibit a form of long-distance wh-movement which involves leaving an overt copy of a moved wh-pronoun in intermediate spec-CP positions - as illustrated by the following structures cited in Felser (2001):
(34) (a) Wêr tinke jo wêr't Jan wennet

Where think you where'that Jan lives?
'Where do you think that John lives?' (Frisian, Hiemstra 1986, p. 99)
(b) Waarvoor dink julle waarvoor werk ons?

What-for think you what-for work we?
'What do you think we are working for?'
(c) Kas o Demiri mislenola kas i Arìfa dikhla?

Whom Demir think whom Arifa saw?
'Whom does Demir think Arifa saw?'
(Romani, adapted from McDaniel 1989, p. 569, fn.5)
(d) Wer glaubst du, wer dass du bist?

Who think you who that you are?
'Who do you think that you are?'
(German, Fanselow and Mahajan 2000, p. 220)
In cases of long-distance wh-movement out of more than one complement clause, a copy of a moved wh-pronoun appears at the beginning of each clause - as illustrated by (35) below:
(35) Wen glaubst du, wen Peter meint, wen Susi heiratet?

Who believe you who Peter thinks who Susi marries?
'Who do you believe Peter thinks that Susi is marrying?'
(GERMAN, Felser 2001, p. 13)
The wh-copies left behind at intermediate landing sites in sentences such as (34) and (35) suggest that long-distance wh-movement involves movement of the wh-expression through intermediate spec-CP positions - precisely as a phasebased theory of syntax would lead us to expect. (See Nunes 2001 for further discussion.)

A parallel wh-copying phenomenon is reported in an intriguing study of the acquisition of wh-questions by Ros Thornton (1995). She reports children producing long-distance wh-copy questions such as the following (1995, p. 147):
(36) (a) What do you think [what Cookie Monster eats]?
(b) Who do you think [who the cat chased]?
(c) How do you think [how Superman fixed the car]?

In such cases, the bold-printed wh-word moves to the front of the overall sentence, but leaves an italicised copy at the front of the bracketed complement clause. What this suggests is that wh-movement involves an intermediate step by which the whexpression moves to spec-CP position within the bracketed complement clause before moving into its final landing site in the main-clause spec-CP position. The error made by the children lies in not deleting the italicised medial trace of the wh-word. Of course, this raises the question of why the children don't delete the intermediate wh-word. One answer may be that the null complementiser heading the bracketed complement clause is treated by the children as being a clitic which attaches to the end of its specifier (just as have cliticises to its specifier in Who've they arrested?). Leaving an overt wh-copy of the pronoun behind provides a host for the clitic wh-complementiser to attach to. Such an analysis seems by no means implausible in the light of the observation made by Guasti, Thornton and Wexler (1995) that young children produce auxiliarycopying negative questions such as the following (the names of the children and their ages in years;months being shown in parentheses):
(37) (a) What did he didn't wanna bring to school? (Darrell 4;1)
(b) Why could Snoopy couldn't fit in the boat? (Kathy 4;0)

If we assume that contracted negative $n ' t$ is treated by the children as a PF enclitic (i.e. a clitic which attaches to the end of an immediately preceding auxiliary host in the PF component), we can conclude that the children spell out the trace of the inverted auxiliary did in order to provide a host for the enclitic negative n 't. More generally, data like (37) suggest that children may overtly spell out traces as a way of providing a host for a clitic.

A related phenomenon is reported by Alison Henry in her (1995) study of Belfast English. She notes that in main-clause wh-questions in Belfast English, not only the main-clause C but also intermediate C constituents show T-to-C movement (i.e. auxiliary inversion), as illustrated below:

What did Mary claim [did they steal]? (Henry 1995, p.108)
We can account for auxiliary inversion in structures like (38) in a straightforward fashion if we suppose that (in main and complement clauses alike in Belfast English) a C which attracts an interrogative wh-expression also carries an affixal [TNS] feature triggering auxiliary inversion. In order to explain auxiliary inversion in the bracketed complement clause in (38), we would then have to suppose that the head C of CP carries [WH, EPP] features which trigger movement of the interrogative pronoun what through spec-CP, given our assumption that C has an affixal [TNS] feature triggering auxiliary inversion in clauses in which C attracts an interrogative wh-expression. On this view, the fact that the complement clause shows auxiliary inversion provides evidence that the preposed wh-word what moves through the spec-CP position in the bracketed complement clause before subsequently moving into the main-clause spec-CP position.

Returning now to wh-questions produced by young children, it is interesting to note that a further type of structure which Ros Thornton (1995) reports one of the children in her study ($=\mathrm{AJ}$) producing are wh-questions like (39) below:
(39) (a) Which mouse what the cat didn't see?
(b) Which drink do you think [what the ghost drank]?

Here, the italicised C positions are filled by what - raising the question of why this should be. Thornton notes that a number of the children in her study also produced questions like:

> Which juice that the ghost could drink?

This suggests that what in structures such as (39) is a wh-marked variant of that. More specifically, it suggests that (for children like AJ) the complementiser that is spelled out as what when it carries [WH, EPP] features and attracts a wh-marked goal to move to spec-CP.

In the light of this assumption, let's now look at how wh-movement applies in the derivation of (39b). Since the bracketed complement clause is transitive in
(39b) and a transitive vP is a phase, the wh-phrase which drink will move to spec${ }_{v P}$ on the embedded clause vP cycle. Thus, at the stage when the complementiser that enters the derivation, we will have the overt structure below (a structure which is simplified by omitting all null constituents, including traces):

$$
\begin{equation*}
\text { [C that }{ }_{\mathrm{WH}, \mathrm{EPP}} \text {] the ghost [vP which drink drank] } \tag{41}
\end{equation*}
$$

The complementiser that has [WH, EPP] features and consequently attracts which drink to move to spec-CP, so deriving the overt structure shown in simplified form below:

$$
\begin{equation*}
\text { [cP which drink [c that }{ }_{\text {WH, EPP }} \text {] the ghost [vP drank]] } \tag{42}
\end{equation*}
$$

On the assumption that children like AJ spell out that as what when it carries the features [WH, EPP], the complementiser that will ultimately be spelled out as what. (By contrast, in standard varieties of adult English, the complementiser is always spelled out as that, irrespective of whether it is wh-marked or not.)

The next stage in the movement of the wh-phrase takes place on the mainclause vP phase, when which drink moves to spec-vP. At the point where the null complementiser heading the main clause is introduced into the derivation, we will have the following skeletal structure (with AFF denoting a tense affix, and the structure simplified by not showing trace copies or empty categories other than the main-clause C and T):
[C ø] you [т AFF] [vP which drink think [CP [C what] the ghost [vP drank]]]

The null main-clause complementiser has a strong [TNS] feature which triggers raising of the tense affix to C. It also has [WH, EPP] features which trigger movement of which drink to spec-CP, so deriving (44) below (with Do-support providing a host for the tense affix in the PF component):

$$
\begin{equation*}
\text { [CP Which drink [C do } \left.+\mathrm{AFF}+\varnothing] \text { you }{ }_{\mathrm{vPP}} \text { think [CP [C what] the ghost }\left[_{\mathrm{vP}} \text { drank] }\right]\right] \text {] } \tag{44}
\end{equation*}
$$

On this view, the fact that the complementiser that is spelled out as what in (39b) provides evidence that wh-movement passes through the intermediate spec-CP position.

A more general conclusion which can be drawn from our discussion of (39) is that wh-marking of a complementiser provides us with evidence that the relevant complementiser triggers wh-movement (and indeed it may be that what in non-standard comparatives like Yours is bigger than what mine is has the status of a complementiser which triggers wh-movement of a null wh-operator). In this connection, it is interesting to note that McCloskey (2001) argues that longdistance wh-movement in Irish triggers wh-marking of intermediate complementisers. The complementiser which normally introduces finite clauses in Irish is go 'that', but in (relative and interrogative) clauses involving wh-movement we find the wh-marked complementiser $a L$ (below glossed as what) - as the following long-distance wh-question shows:
(45) Cén t-úrscéal $a L$ mheas mé $a L$ dúirt sé $a L$ thuig sé? Which novel what thought I what said he what understood he? 'Which novel did I think that he said that he understood?'
(Note that the word order in (45) is wh-word+complementiser+verb+ subject+complement.) McCloskey argues that the wh-marking of each of the italicised complementisers in (45) provides evidence that wh-movement applies in a successive-cyclic fashion, with each successive C which is introduced into the derivation having [WH, EPP] features which trigger wh-marking of C and wh-movement of the relevant wh-expression. Chung (1994) provides parallel evidence from wh-marking of intermediate heads in Chamorro. The work of McCloskey and Chung provides further evidence that a complementiser is only wh-marked if it carries both a [WH] feature and an [EPP] feature.

Overall, then, we see that there is a considerable body of empirical evidence which supports the hypothesis that long-distance wh-movement is successivecyclic in nature and involves movement through intermediate spec-CP positions. Additional syntactic evidence comes from partial wh-movement in a variety of languages (see e.g. Cole 1982, Saddy 1991 and Cole and Hermon 2000), and from exceptional accusative case-marking by a higher transitive verb of the whsubject of a lower finite clause (reported for English by Kayne 1984a, p. 5 and for Hungarian by Bejar and Massam 1999, p. 66).

10.7 Evidence for wh-movement through spec-vP in transitive clauses

In the previous section, we noted that theoretical considerations lead us to conclude that, if transitive vPs are phases, wh-movement must involve movement through intermediate spec-vP positions in transitive clauses. An important question to ask, therefore, is whether there is any empirical evidence of whmovement through spec-vP. We shall see that there is.

One such piece of evidence comes from observations about have-cliticisation. In varieties of English such as my own, have when used as a main verb marking possession can contract onto an immediately adjacent pronoun ending in a vowel or diphthong, e.g. in sentences such as (46) below:
(46) (a) They have little faith in the government
(b) They've little faith in the government

However, cliticisation is blocked when the object of have undergoes whmovement, as we see from sentences like those below:
(47) (a) How little faith they have in the government!
(b) *How little faith they've in the government

To see why this should be, let's take a closer look at the derivation of (47).

The verb have merges with the prepositional phrase in the government to form the V-bar have in the government. This is then merged with the QP how little faith to form the VP how little faith have in the government. The resulting VP is merged with a null light verb forming a v-bar which is in turn merged with its subject they, and the verb have raises to adjoin to the light verb. Being transitive, the light verb assigns accusative case to how little faith. Since a transitive light verb is a phase head, the light verb will carry [WH, EPP] features which trigger movement of the wh-marked QP how little faith to spec-vP. The resulting vP is merged with a T constituent which agrees with, case-marks and triggers movement to spec-TP of the subject they, so that on the TP cycle we have the structure shown in simplified form in (48) below:

Since a finite T is generally able to attract possessive have to move from V to T , we might expect have to move from v to T at this point. But if have moves to T , it will then be adjacent to the subject they, leading us to expect have to be able to cliticise onto they in the PF component, so wrongly predicting that (47b) is grammatical. How can we prevent have cliticisation in such structures? One answer is to suppose that movement of have from v to T is blocked in structures like (48) by the intervening raised object how little faith in the outer spec-vP position. This would mean that the verb have remains in the head v position of vP rather than moving into T ; and if have cannot move into T , it will not be adjacent to (and so cannot cliticise onto) the subject they in spec-TP. As should be obvious, this kind of account is crucially dependent on the assumption that the preposed wh-phrase how little faith moves through spec-vP before moving into spec-CP.

Interestingly, it would seem that an intervening non-object constituent does not block movement of have from v to T , as we see from the fact that have-cliticisation is possible in sentences such as:
This is a government [which they've very little faith in]

If transitive vPs are phases and trigger wh-movement to spec-vP, at the stage of derivation corresponding to that in (48) above, the bracketed relative clause in (49) will have the structure shown in simplified form in (50) below:

However, since which is not the object of have in (50) but rather is the object of the preposition in, it does not prevent have raising from v to T , and thereafter cliticising onto the subject they in spec-TP. So it would seem that (for reasons which are not clear) have is prevented from raising to T across its own object, but not across other intervening constituents.

A very different kind of evidence in support of wh-movement through spec${ }_{v P}$ in transitive clauses comes from wh-marking of verbs (in languages with a richer verb morphology than English). We saw in §10.6 that a complementiser is wh-marked (in languages like Irish and Chamorro) if it has [EPP, WH] features and attracts a wh-marked goal. Chung $(1994,1998)$ presents evidence that whmovement out of a transitive verb phrase likewise triggers wh-marking of the verb in Chamorro. We can illustrate this phenomenon of wh-marking of transitive verbs in terms of the following example (from Chung 1998, p. 242):

$$
\begin{align*}
& \text { Hafa si Maria } s \text {-in-angane-nña as Joaquin? } \tag{51}\\
& \text { What pn Maria wh-say.to-AGR obl Joaquin } \\
& \text { 'What did Maria say to Joaquin?' }
\end{align*}
$$

(PN denotes a person/number marker, AGR an agreement marker, and OBL an oblique case marker.) The crucial aspect of the example in (51) is that the direct object hafa 'what' has been moved out of the transitive verb phrase in which it originates, and that this movement triggers wh-marking of the italicised verb, which therefore ends up carrying the wh-infix in. This suggests that a transitive light verb carrying [EPP, WH] features attracts a wh-marked goal and undergoes agreement with the goal, resulting in the verb which is adjoined to the light verb being overtly wh-marked (though see Dukes 2000 for an alternative perspective on the relevant affixes in Chamorro). For further examples of wh-marking of intermediate verbs in long-distance wh-movement structures, see Branigan and MacKenzie (2002) on Innu-aimûn, and den Dikken (2001) on Kilega.

A related piece of evidence comes from participle agreement in French in transitive clauses such as (52b) below (discussed in Kayne 1989, Branigan 1992, Ura 1993, 2001, Bošković 1997, Richards 1997 and Sportiche 1998):
(52) (a) Il a commis quelle bêtise? He has committed what blunder 'What blunder did he make?'
(b) Quelle bêtise il a commise?

What blunder he has committed 'What blunder did he make?'

The participle commis 'committed' is in the default (masculine-singular) form in (52a), and does not agree with the feminine-singular in-situ wh-object quelle bêtise 'what blunder' (the final -e in these words can be taken to be an orthographic marker of a feminine-singular form). However, the participle commise in (52b) contains the feminine-singular marker $-e$ and agrees with its preposed
feminine-singular object quelle bêtise 'what blunder' and consequently rhymes with bêtise. What's going on here?

Let's look first at the derivation of (52a). The QP quelle bêtise 'what blunder' in (52a) is merged as the complement of the verb commis 'committed' forming the VP commis quelle bêtise 'committed what blunder'. The resulting VP is then merged with a null transitive light verb whose external agent argument is the pronoun il 'he'; since the light verb is affixal, it triggers movement of the verb commis 'committed' to adjoin to the light verb, so that at the end of the vP phase we have the structure (53) below:

The light verb agrees in person/number φ-features with the object quelle bêtise 'what blunder' and assigns it accusative case. By hypothesis, the light verb has no [EPP] feature in wh-in-situ questions, so there is no movement of the wh-phrase quelle bêtise 'what blunder' to spec-vP. Subsequently the $v P$ (53) is merged as the complement of the auxiliary a 'has' which agrees in person/number φ features with (and triggers movement to spec-TP of) the subject il 'he'. Merging the resulting TP with a null complementiser which likewise has no [EPP] feature derives the structure associated with (52a) Il a commis quelle bêtise? (literally 'He has committed what blunder?').

Now consider the derivation of (52b). This is similar in a number of respects to that of (52a), so that (as before) the light verb agrees in person and number with (and assigns accusative case to) its object quelle bêtise 'what blunder'. But in addition, the light verb has [WH, EPP] features, and these attract the whmarked object quelle bêtise 'what blunder' to move to become an additional (outer) specifier for the vP , so deriving the structure shown in (54) below:

The resulting vP (54) is then merged as the complement of the auxiliary a 'has' which agrees in φ-features with (and triggers movement to spec-TP of) the subject il 'he'. Merging the resulting TP with a null interrogative complementiser which has [EPP, WH] features triggers movement of the wh-phrase to spec-CP, so deriving the structure associated with (52b) Quelle bêtise il a commise? (literally 'What blunder he has committed?')

In the light of the assumptions made above, consider why the participle surfaces in the agreeing (feminine-singular) form commise 'committed' in (52b), but in the non-agreeing (default) form commis in (52a). Bearing in mind our earlier observation that (in languages like Irish) a complementiser only shows overt wh-marking if it has an [EPP] feature as well as a [WH] feature, a plausible suggestion to make is that French participles only overtly inflect for gender/number agreement with their object if they have an [EPP] feature which forces movement of the object through spec-vP. However, any such assumption requires us to suppose that wh-movement proceeds through spec-vP in transitive clauses, and hence lends further support for Chomsky's claim that transitive vPs are phases. (The discussion here is simplified in a number of respects for expository purposes, e.g. by ignoring the specificity effect discussed by Richards 1997 pp. 158-60, and additional complications discussed by Ura 2001.)

Further evidence in support of successive-cyclic wh-movement through spec${ }^{v P}$ in transitive clauses comes from observations about mutation in Welsh made in Tallerman (1993). Tallerman claims that wh-traces trigger so-called soft mutation of the initial consonant of a following word. In this connection, consider the sentence in (55) below (where PROG denotes a progressive aspect marker):

Beth wyt ti 'n feddwyl oedd gen I ? What are you Prog thinking was with me ‘What do you think I had?'

What is particularly interesting here is that the italicised verb has undergone soft mutation, so that in place of the radical form meddwyl 'thinking', we find the mutated form feddwyl. Given independent evidence that Tallerman produces in support of claiming that wh-traces induce mutation, an obvious way of accounting for the use of the mutated verb-form feddwyl 'thinking' in (55) is to suppose that the wh-pronoun beth 'what' moves through spec-vP on its way to the front of the overall sentence, in much the same way as what moves in front of think in (24) above. We can then suppose that a wh-trace on the edge of vP triggers soft mutation on the lexical verb adjoined to the light verb heading the vP. (See Willis 2000 for a slightly different account of Welsh mutation.)

A further argument in support of wh-movement through spec-vP in transitive clauses comes from Spanish multiple-wh questions such as (56) below (discussed by Bošković 1997):

Qué dirá quién?
What will.say who?
'What will who say?'

Adapting Bošković's account of this contrast to the framework presented here, let's suppose that (56) is derived as follows. The verb (which ultimately surfaces in the form) dirá 'will.say' (glossed simply as say in the numbered structures below, in order to save space) is merged with its complement qué 'what' to form the VP dirá qué 'will.say what'. This in turn is merged with a transitive light verb which assigns accusative case to qué 'what', triggers raising of the verb dirá 'will.say' from V to v, and merges with its AGENT argument quién 'who'. On the assumption that transitive vPs are phases, and that a wh-object which moves to spec-CP moves through spec-vP, the light verb will also have [EPP, WH] features which trigger raising of the closest wh-expression c-commanded by the light verb (namely the wh-object qué 'what') to become a second (outer) specifier for vP , forming the structure shown in skeletal form below (with strikethrough used to indicate constituents which ultimately receive a null spellout after transfer):

$$
\begin{equation*}
\text { vvp } \left.^{\text {vué }} \text { what }\left[\mathrm{v}^{\prime \prime} \text { quién }_{\text {who }}\left[\mathrm{v}^{\prime}[\mathrm{v} \text { diráásay }]\left[\mathrm{vp}\left[\mathrm{v} \text { diríásay }_{\text {say }}\right] \text { qué }_{\text {what }}\right]\right]\right]\right] \tag{57}
\end{equation*}
$$

The resulting vP in (57) is then merged with an abstract T constituent, to form a TP. Given that Suñer (1994) argues that postverbal subjects in Spanish remain in situ within the verb phrase but that verbs move to T in finite clauses, we can assume that the verb dirá 'will.say' moves from v to T, but the subject quién 'who' remains in situ in spec-vP, so that at the end of the TP cycle we have formed the skeletal structure:

The resulting TP is then merged with a null interrogative complementiser, to form the structure below:

As in main-clause questions in English, C has [TNS, WH, EPP] features. The affixal [TNS] feature of C triggers raising of the verb dirá 'will.say' from T to C. The Attract Closest Principle requires the [EPP, WH] features of C to attract the closest wh-expression to move to spec-CP. Suppose that (following Chomsky 1995,
p. 358) we define closeness in terms of c-command, along the lines outlined below:
(60) $\quad \mathrm{A}$ probe X which c-commands two goals Y and Z is closer to Y than to Z if Y c-commands Z
(Note, incidentally, that this is a different definition of closeness from that given in $\S 6.4$, raising obvious questions about precisely how closeness should be defined but we'll set this issue aside here.) It will then follow that (by virtue of having moved to the outer specifier position within vP) the wh-object qué 'what' is closer to C than the wh-subject quién 'who'. Accordingly, it is the former which moves to spec-CP, deriving the structure (61) below:

$$
\begin{align*}
& \text { [vp [v dirá } \left.\left.\left.{ }_{\text {say }}\right] \text { qué }{ }_{\text {what }}\right] \text {]I]I]] }\right] \tag{61}
\end{align*}
$$

And (61) is the structure of (56) Qué dirá quién? 'What will who say?' Note that a crucial plank in the argumentation is the assumption that a wh-object in a transitive clause like (56) moves to spec-CP through spec-vP. (However, see Fitzpatrick 2002, pp. 457-8 for discussion of a potential problem.)

10.8 The role of phases in lexical selection

Hitherto, we have assumed that the main motivation for phases is to reduce the complexity of the computational operations which the syntax has to perform by ensuring that probes only have a limited search space within which to locate matching goals - and hence that all syntactic operations are local. However, Chomsky (1998) suggests that phases also have an important role to play in respect of lexical selection. We can illustrate this second role in relation to the following sentence (adapted from Chomsky 1998, p. 17, ex. (7ii)):

> There must be a possibility that proofs will be discovered

Suppose that we have reached the stage of derivation represented informally below:

> [T will] be discovered [proofs]

Since the lexical array for sentence (62) - i.e. the set of items we take out of the lexicon in order to form the sentence - includes expletive there, preference of Merge over Move will mean that we must select there at this point in order to satisfy the [EPP] requirement of $[\mathrm{T}$ will], so deriving:

$$
\begin{equation*}
\text { there [} \mathrm{T} \text { will] be discovered proofs } \tag{64}
\end{equation*}
$$

But this in turn means that we have no way of deriving (62), since (62) requires the nominal proofs to become the subject of will at the stage of derivation represented in (63). What are we to do at this point?

Chomsky (1998, pp. 19-20) suggests that the problem can be overcome in the following way. Suppose (as we have done throughout) that the first step in deriving a given expression is to take a set of items out of the lexicon, and that these constitute the lexical array out of which the expression will be composed. But suppose, in addition, that only a specific subarray of the items taken out of the lexicon can be accessed at any phase of derivation: in particular, suppose that the subarray out of which a given phase is built can comprise only a single occurrence of a phase head (e.g. C or a transitive light verb, v^{*}) - cf. Chomsky's (1999, p. 9) claim that 'a subarray contains exactly one C or v^{*} '. The subarray chosen is then 'placed in active memory (the "work space")' (Chomsky 1998, p. 19). Once a given lexical subarray is exhausted (i.e. all the items it contains have been merged in the relevant structure) and the derivation of the corresponding phase has been completed, the computation then selects another lexical subarray to build the next phase with . . . and so on. Returning now to (62) There must be a possibility that proofs will be discovered, let's suppose that our initial subarray of items comprises the set in (65) below:
(65) \{that, will, be discovered, proofs $\}$

Suppose furthermore that we have reached the stage of derivation in (63) above. ${ }_{\mathrm{T}}$ will] has an [EPP] feature requiring it to project a specifier. Preference of Merge over Move will mean that if the lexical subarray contains an expletive, this will be merged in spec-TP. But the subarray in (65) contains no expletive. Hence, the only way of deleting the [EPP] feature of [T will] in (63) is by movement of proofs to spec-TP, deriving:
[TP proofs [T will] be discovered proofs]
Merger of the complementiser that with the TP in (66) will in turn derive the CP (67) below:
[CP [C that] [TP proofs will be discovered proofs]]
The bracketed TP will undergo transfer at this point, and the italicised trace of proofs will be deleted from the structure transferred to the phonological component. Since we have now exhausted the lexical subarray in (65) and completed the derivation of the CP phase, the syntactic computation can now access a further subarray. Let's suppose that this comprises the set below (where \varnothing is a null declarative complementiser):

$$
\begin{equation*}
\{\varnothing, \text { there, must, be, a, possibility }\} \tag{68}
\end{equation*}
$$

Successive merger operations introducing possibility, a, be, must, there and \varnothing into the derivation will generate the structure (69) below:

At this point, TP_{1} will undergo transfer in accordance with (7i), and subsequently CP_{1} will undergo transfer in accordance with (7ii) - so eventually deriving the structure associated with (62) There must be a possibility that proofs will be discovered.

10.9 Questions about phases

Having presented an account of phases in $\S \S 10.2-10.8$ which is broadly consistent with Chomsky's recent work, we turn in this section to reflect on the nature of phases. One issue which arises out of our discussion in this chapter concerns the relation between EPP-hood and phasehood. In the system outlined in $\S \S 10.2-10.8$, the relation seems relatively clear (at least for heads which trigger A-bar movement operations like wh-movement): complementisers and transitive light verbs are phase heads and can have an [EPP] feature triggering A-bar movement, whereas intransitive light-verbs which have no external argument are not phase heads and cannot have an [EPP] feature triggering A-bar movement. Note, however, that this leads to a potential asymmetry: both transitive and intransitive complementisers alike have an [EPP] feature, but only transitive (not intransitive) light verbs have an [EPP] feature. Below, I present a piece of evidence calling into question the assumption that intransitive vPs cannot have an [EPP] feature: the evidence suggests that just as a wh-expression extracted out of transitive vP moves through spec-vP, so too a wh-expression extracted out of an intransitive vP also moves through spec-vP.

The relevant evidence comes from intransitive multiple wh-questions such as the following in Spanish (kindly provided by Cris Lozano, who trialled them on native speakers of both Peninsular Spanish and Mexican Spanish, and obtained unanimous, clearcut grammaticality judgments):
(70) (a) Adónde fue quién? Where went who?
(b) *Quién fue adónde?

Who went where?
(Imagine a scenario for such sentences in which a friend says to you 'President Phat Khat went to New York yesterday', and you say 'Sorry, I didn't hear you' and then go on to produce (70).) Unlike what happens in English, Spanish requires adónde (literally 'to.where', but here glossed simply as 'where') to be preposed, not quién 'who'. Why should this be?

Let's suppose that sentence (70a) is derived as follows. The unaccusative verb (which is ultimately spelled out as) fue 'went' is merged with its GOAL argument adónde 'where' to form the V-bar fue adónde 'went where' and the resulting V-bar is then merged with its THEME argument quién 'who' to form the VP quién fue adónde 'who went where'. This VP is in turn merged with an intransitive light verb, forming the structure shown below:
(71)

The light verb has a strong (affixal) V-feature, and so attracts the verb fue 'went' to move from V to v . If we suppose that the light verb also has [WH, EPP] features, it would be expected to attract the closest wh-expression to move to spec-vP. In terms of the c-command definition of closeness given in (60) above, quién 'who' is closer to the light verb than adónde 'where', and hence we'd expect quién 'who' to move to spec-vP. But the contrast in (70) suggests that the light verb is unable to attract quién 'who' and instead attracts adónde 'where'. This suggests that quién 'who' must be inactive for A-bar movement for some reason. But why?

The answer we shall suggest here is that:
An expression is only active for A-bar movement if it has an active A-bar feature (e.g. a wh-feature) but no active A-feature (e.g. no unvalued case feature)

The pronoun quién 'who' carries a case feature which is as yet unvalued at the stage of derivation shown in (71) above, and hence - given (72) - is inactive for an A-bar movement operation like wh-movement. If we suppose that the light verb attracts the closest wh-expression which is active for A-bar movement, it follows that the light verb will attract the locative pronoun adónde 'where' to move to spec-vP, so deriving the structure shown in simplified form in (73) below (strikethrough being used to indicate constituents which will ultimately receive a null spellout):

$$
\begin{equation*}
\left[\mathrm{v}^{\text {padónde }}{ }_{\text {where }}\left[\mathrm{v}^{\prime}\left[\mathrm{v} \text { fue }_{\text {went }}\right]\left[\mathrm{vP} \text { quién } \text { who }\left[\mathrm{v}^{\prime}\left[\mathrm{v} \text { fue }_{\text {went }]}\right] \text { adónde }_{\text {where }}\right]\right]\right]\right] \tag{73}
\end{equation*}
$$

The resulting $v P$ is then merged with a strong T constituent which triggers raising of verb fue 'went' to T, and which agrees with and assigns nominative case to the subject quién 'who', so deriving:
adónde where $^{\text {I I]I] }}$]

The TP thereby formed is then merged with a strong interrogative C constituent which carries [TNS, WH, EPP] features. The affixal [TNS] feature of C triggers raising of the verb fue 'went' from T to C, and its [WH, EPP] features trigger movement of the closest active wh-expression to spec-CP. Since adónde 'where'
is closer to C than quién 'who' in (73), it is the former which moves to spec-CP, so deriving the overt structure shown in highly simplified form below:

And (75) is the structure of (70a) Adónde fue quién? ‘Where did who go?’
There are several points of interest which arise from the derivation sketched above. The first is that in order to derive (70a) we need to assume that adónde 'where' moves to spec-vP at the stage of derivation shown in (73) above: if this did not happen, both quién 'who' and adónde 'where' would remain in situ until C is introduced into the derivation, and since quién 'who' would then be the closest wh-expression to C, we would wrongly predict that (70b) *Quién fue adónde? 'Who went where?' is the eventual outcome. More generally, the derivation outlined above leads us to suppose that intransitive vPs as well as their transitive counterparts can have an [EPP] feature which triggers successive-cyclic wh-movement through spec-vP.

We might therefore follow Legate (2002) in concluding that not only transitive vPs but also intransitive vPs are phases. However, such a conclusion is incompatible with the derivation for sentences like (70a) outlined here. The key point to note is that at the stage of derivation represented in (74) above, T must be able to agree with and assign nominative case to the subject quién 'who' in specVP; but if an intransitive vP is a phase, the Phase Impenetrability Condition (1) will block quién 'who' from serving as a goal for an external T probe, thereby leaving the uninterpretable case feature on quién 'who' and the uninterpretable person/number features on fue 'went' unvalued and undeleted, and causing the derivation to crash. In other words, the conclusion our discussion of sentences like (70) leads us to is that both intransitive and transitive light verbs can have [WH, EPP] features, but that only transitive vPs are phases. This leads to dissociation between the [EPP] property and phasehood. However, such a dissociation is found elsewhere (e.g. T in English has an [EPP] feature but is not a phase head).

Having looked at the relation between EPP-hood and phasehood, let's now turn to explore the question of whether (in addition to CPs and transitive vPs) other types of constituent may also be phases. Our discussion throughout this chapter so far has looked at the role of phases in the derivation of clausal structures, raising the question of whether there are also phases within the nominal domain. Reflecting on this question, Chomsky (1999, p. 11) writes: 'Considerations of semantic-phonetic integrity, and the systematic consequences of phase identification, suggest that the general typology should include among phases nominal categories.' Since phases do not allow any element to be extracted out of their domain, one way of accounting for contrasts like that in (76) below would be to suppose that definite DPs are phases:
(76) (a) Who were you reading [a book about]?
(b) *Who were you reading [the/this/that/his book about?]

We could then say that extraction of who out of the bracketed indefinite DP in (76a) is permitted because indefinite DPs are not phases, whereas extraction of who out of the definite DP in (76b) is not permitted because definite DPs are phases, and the Phase Impenetrability Condition (1) prevents who from being extracted out of the NP book about who which is the complement of the head D of the bracketed definite DP. (It should be noted that Chomsky 1999, p. 36, fn. 28 envisages the possibility that 'phases include DPs'.)

The assumption that definite DPs are phases would offer us a new perspective on the following contrasts which we first looked at in §3.6:
(77) (a) Nobody had expected that the FBA would assassinate the king of Ruritania
(b) [CP That the FBA would assassinate the king of Ruritania], nobody had expected
(c) ${ }^{*}{ }_{\text {TP }}$ The FBA would assassinate the king of Ruritania], nobody had expected that (NB that $=$ дәt)
(d) [DP The king of Ruritania], nobody had expected that the FBA would assassinate
(e) *[nP king of Ruritania], nobody had expected that the FBA would assassinate the

In (77b-e) a variety of constituents have been preposed to highlight them. In (77b) the fronted expression is a CP which functions as the complement of a non-phasal head (namely the verb expected) and can be preposed under appropriate discourse conditions. In (77c) the fronted constituent is a TP which is the complement of a phasal head (namely the complementiser that), and preposing the relevant TP violates the Phase Impenetrability Condition (1). In (77d), the fronted expression is a DP which is the complement of a non-phasal head (namely the verb assassinate), and hence there is no prohibition on extraction. But in (77e), extraction of an nP complement of the determiner the results in ungrammaticality: we can account for this if we suppose that definite DPs are phases, since the Phase Impenetrability Condition will prevent extraction of the nP king of Ruritania because this is the complement of the phase head the. The reason why the head of a phase does not allow extraction of its complement (or of any element contained within its complement) is that at the end of a phase, the complement of a phase head undergoes transfer in accordance with (7i) and thereafter becomes syntactically inactive.

The hypothesis that definite DPs are phases also offers us an interesting account of why (in languages like English) possessives cannot be extracted out of their containing DPs - as we see from the contrast between the echo question in (78a) below and its wh-movement counterpart in (78b):
(78) (a) You have framed [whose picture of Mary]?
(b) *Whose have you framed [whose picture of Mary]?

Suppose that (in keeping with the analysis outlined at the end of §9.9) the bracketed DP in (78a) has the structure shown in (79) below, with whose superficially positioned in the specifier position within a NumP/Number Phrase projection:
(79)

We can then account for why whose cannot be extracted out of the overall DP in (79) by supposing that a definite DP is a phase, and that at the end of the DP cycle, the NumP complement of DP undergoes transfer, with the result that whose cannot be extracted out of its containing NumP projection.

However, such an analysis is not entirely without posing problems. One such is how we account for the fact that the whole DP containing whose can undergo wh-movement: Whose picture of Mary have you framed?

The head v of $v P$ and the head C of CP in (80) contain [WH, EPP] features which attract the wh-pronoun whose (along with the pied-piped material picture of Mary) to move through spec-vP into spec-CP. But if a definite DP is a phase, the problem we face is that at the end of the DP cycle, the NumP constituent containing whose will undergo transfer to the PF and semantic components, and so the [WH] feature on whose will not be visible to either v or C. One apparent way of seemingly resolving this problem (without abandoning the assumption that a definite DP is a phase) would be to suppose that D has an [EPP] feature triggering movement of whose into spec-DP: but this would leave us with no phase-based account of why whose cannot subsequently be extracted from its containing DP in sentences like (78b). An alternative possibility (which would again allow us to continue to maintain that definite DPs are phases) would be to suppose that whose remains in spec-NumP but the wh-feature on whose percolates onto the head D of DP, perhaps via some form of agreement parallel to agreement between a complementiser and a subject in a number of languages. In this connection, it is interesting to note Haegeman's (1992, p. 47) claim that in West Flemish 'the complementiser of the finite clause agrees in person and number with the grammatical subject of the sentence it introduces'. Haegeman (1994, p. 131) provides the following illustrative data:
(81) (a) ...da den inspekteur da boek gelezen eet
...that the inspector that book read has
'. . . that the inspector has read that book'
(b) ...dan d'inspekteurs da boek gelezen een
... that the inspectors that book read have
'. . . that the inspectors have read that book'

The italicised complementiser has the form $d a$ when the bold-printed subject is third person singular, but dan when it is third person plural. If the head C of CP can agree in person and number with the specifier of its TP complement in structures like (81), it seems no less plausible to suppose that the head D of DP can agree in wh-ness with the specifier of its NumP complement in structures like (79). This would mean that the overall DP would have a wh-marked head and hence could undergo wh-movement.

Some evidence which is consistent with the view that definite DPs are phases comes from observations about the pied-piping of possessive phrases in Tzotzil made by Aissen (1996). She notes that although (italicised) possessors are generally positioned postnominally in Tzotzil as in (82a) below, when the possessor is an interrogative pronoun, it is moved to the front of the DP containing it, and the whole containing DP is then moved to the front of the interrogative clause, as in (82b):
(82) (a) Icham [xch'amal li Xune]

Died [child the Xun] 'Xun's child died’
(b) [Buch'u xch'amal] icham? [Who child] died 'Whose child died?'

The interrogative possessor in (82b) appears to move to spec-DP, and this movement is consistent with the view that DP is a phase, since if the possessor remained in situ within the NP complement of D, PIC would prevent C from attracting the wh-pronoun (since NP and its constituents would be impenetrable to C). Movement of the interrogative pronoun to the edge of DP makes it accessible to C.

However, there are a number of problems which arise if we assume that definite DPs are phases. For example, Ross (1967) noted that corresponding to a sentence like (83a) below, we find a range of types of relative clause including like those bracketed in (83b-e):
(83) (a) The government prescribes the height of the lettering on the covers of the reports
(b) Reports [which the government prescribes the height of the lettering on the covers of] are invariably boring
(c) Reports [the covers of which the government prescribes the height of the lettering on] almost always put me to sleep
(d) Reports [the lettering on the covers of which the government prescribes the height of] are a shocking waste of public funds
(e) Reports [the height of the lettering on the covers of which the government prescribes] should be abolished

Prior to wh-movement, the nominal containing the wh-pronoun which has the structure shown in skeletal form below:

This means that the italicised wh-moved expression in (83) has been moved out of three containing definite DPs in (83b), out of two in (83c), and out of one in (83d) - and all of these movements would be predicted to be impossible if definite DPs were phases.

One way round this problem (consistent with maintaining that definite DPs are indeed phases) would be to posit that (like other phase heads such as C and transitive v), the head D constituent of DP can have an [EPP] feature which allows it to attract a DP to move to its specifier position. This would mean that which in (83b) moves first to become the specifier of the DP the covers of which, then to become the specifier of the DP the lettering on the covers of which, then to become the specifier of the DP the height of the lettering on the covers of which, from there moving into spec-vP and thence into the spec-CP position which it occupies in (83b). An interesting question raised by the assumption that D can have an [EPP] feature triggering movement to its specifier position is why the NP king of Ruritania in (76e) cannot move to become the specifier of the DP the king of Ruritania, and from there go on to move to the front of the overall clause. The answer is that the Remerger Constraint prevents the NP king of Ruritania from moving to spec-DP, since this constraint tells us that a constituent which is merged as the complement of a given head cannot subsequently be remerged as its specifier. If DP is a phase, movement of the NP directly out of its containing DP will be blocked by the Phase Impenetrability Condition - as we saw earlier. (For an insightful discussion of extraction out of DPs, see Davies and Dubinsky 2003.)

However, the assumption that definite DPs are phases poses problems for casemarking. In languages with a richer case morphology than English, in a transitive sentence such as:

Mary chose the red dress

the accusative case which the transitive (light verb associated with the) verb chose assigns to its complement is carried not only by the (counterpart of the) determiner the but also by the (counterparts of the) adjective red and the noun dress. But if DP is a phase, its complement red dress will have been sent for transfer at the end of the DP cycle, leaving only the head D of DP visible for case-marking by the transitive (light) verb. Such an analysis would mean that we have to posit a PF operation which Schütze (2001) terms case-spreading to ensure that the case assigned to the determiner the in the syntax spreads to the adjective red and the noun dress in the morphology. What this means is that we end up with an asymmetric account of case-marking under which determiners are assigned case via agreement in the syntax, but adjectives and nouns are assigned case via a separate PF operation of case-spreading (which might be the analogue of the traditional notion of concord). Moreover, if the adjective red and the noun dress each have an unvalued and undeleted case feature at the end of the derivation, the derivation will crash at the semantics interface (since the undeleted case feature cannot be assigned any semantic interpretation). So, for an analysis along the
lines sketched out here to be workable, we would have to abandon the claim that uninterpretable features must be deleted in the syntax and instead suppose that uninterpretable features are intrinsically uninterpretable and so (like phonological features) are not handed over to the semantic component at the end of the relevant part of the syntactic derivation. On this alternative view, the only requirement for an unvalued, uninterpretable feature would be that it should be assigned a value (in the syntax or morphology) in order to be spelled out at PF. As should be apparent from our brief discussion here, the potential repercussions of taking DPs to be phases are considerable.

A further possibility to be explored if there are parallels between phases in the clausal and nominal domains is that just as CPs introduced by the prepositional complementiser for are phases, so too prepositional phrases may also be phases. This would provide one way of accounting for the fact that (as noted in §9.6) the auxiliary probe do cannot pick out $m e$ as its goal in structures such as (86) below:

If PP is a phase, the Phase Impenetrability Condition (1) will mean that the pronoun me is impenetrable to any head outside the PP to me. Consequently, me cannot serve as a goal for $d o$, and the probe $d o$ therefore locates the alternative goal the president, agreeing with it, assigning it nominative case and moving it to spec-TP. Merging the resulting TP with a null declarative complementiser derives the structure associated with:

The president does seem to me to have upset a lot of people
For, further details, see the discussion in §9.6.
However, one apparent problem posed by the assumption that PPs are phases is how we account for the fact that prepositional complements can be passivised in sentences such as:
(88) (a) Nothing was agreed on
(b) The information was asked for by the Dean
(c) Jim can be depended on for sound advice
(d) The president was shouted at by his wife

In each of the sentences in (88), the italicised nominal seems to originate as the complement of the bold-printed preposition. If prepositional phrases are phases,
we would expect the complement of a preposition to be impenetrable to an external head and hence not to be passivisable. To see why, suppose that we arrive at a point in the derivation of (88a) where we have generated the structure shown in simplified form below:

> [T BE] [vP [v agreed] [vp [v agreed] [pp [p on] nothing]]]

If PP is a phase, the domain of the PP phase (i.e. the nothing complement of the preposition on) will be impenetrable to the external T probe BE, so preventing BE from agreeing with, assigning nominative case to and triggering passivisation of nothing. An analysis along the lines of (89) would therefore wrongly predict that sentences like (88) are ungrammatical. Does the fact that sentences like (88) are grammatical therefore provide us with evidence that PPs are not phases?

Not necessarily. Radford (1988, pp. 427-32) argues that in prepositional passives like those in (88) above the preposition is adjoined to the verb (forming what pedagogical grammars of English sometimes call a phrasal verb). Part of the evidence in support of such an analysis is that it correctly predicts that no other (bold-printed) constituent can be positioned between the (italicised) verb and preposition in prepositional passives like (90) below:
(90) (a) *The resolution was agreed unanimously on by the committee
(b) *His integrity can be depended entirely on
(c) *The information was asked politely for by the Dean
(d) *The president was shouted angrily at by his wife

If prepositional passives do indeed involve a structure in which the preposition is adjoined to the verb, (88a) will have a structure along the lines shown in simplified form in (91) below at the point at which the T probe BE is introduced into the derivation:
(91) [T BE] [vp [v agreed+on] [vp [v agreed +on] nothing] $]$

The probe [$\mathrm{T}_{\mathrm{BE}} \mathrm{BE}$] will then agree with, assign nominative case to and trigger passivisation of the pronoun nothing, thereby correctly predicting the grammaticality of (88a). If such an analysis can be maintained, sentences like (88) pose no problem for the hypothesis that PPs are phases.

A further empirical challenge to the phasal status of PPs comes from the fact that (in informal styles of English) the complement of a preposition can undergo wh-movement, so stranding the preposition in sentences like:

Where are you going to?
Suppose we follow Chomsky in assuming that intransitive light verbs do not have an [EPP] feature triggering wh-movement, and suppose that we have reached the stage of derivation shown in simplified form in (93) below:
[C ø] [TP you [T are] [vp [v going] [vp [v going] [pp [p to] where]]]]

The affixal [TNS] feature of C will attract are to move from T to C . The [Wh, EPP] features of C need to attract where to move to spec-CP in order to derive (92).

But if PP is a phase, where will have undergone transfer at the end of the PP phase and so be impenetrable to C (and indeed to any head outside PP). It would therefore seem that we wrongly predict that sentences like (92) are ungrammatical (as indeed their counterparts are in many other languages). Does this provide us with evidence that PPs are not phases?

Once again, not necessarily. After all, a phase head like C can have an [EPP] feature permitting a wh-expression to move into spec-CP, and then be attracted by a higher head. Suppose, therefore, that in colloquial English, a preposition can carry an [EPP] feature. If this is so, the wh-word where can move to spec-PP in (93), so that at the stage when C is introduced into the derivation, we will have the structure (94) below (if we follow Chomsky in assuming that intransitive verb phrases are not phases):
[C ø] [TP you [T are] [vP [v going] [vP [v going] [pP where [P to] where]]]]

Since the edge of a phase (i.e. its specifier and head) are accessible to a ccommanding probe, and since where is on the edge of PP in (94) by virtue of being its specifier, nothing prevents the C probe from picking out where as its goal, so triggering movement of where to spec-CP. Concomitant movement of the auxiliary are from T to C will derive the structure associated with (92) Where are you going to? If we suppose that the Convergence Principle (discussed in $\S 6.7$) requires preposing of the smallest accessible wh-constituent in structures like (94) it follows that we correctly predict that only where will be preposed, not the PP where to - so accounting for the ungrammaticality of:
*Where to are you going?

However, in sentence fragments like that produced by speaker B below, we do indeed find structures of the form wh-word+preposition:

SPEAKER A: We're going off on holiday next week SPEAKER B: Where to?

Structures like where to? may provide us with some evidence in support of supposing that prepositions can have an [EPP] feature triggering movement of a wh-expression to spec-PP (though it should be noted that structures like (96B) are subject to strong constraints on the choice of wh-word and preposition: see Radford 1993 for some discussion). A final point to note about prepositions with wh-complements is that if we assume that P does not have an [EPP] feature in those languages and language varieties which do not allow preposition stranding (e.g. formal styles of English), we can account for why sentences like (92) are not grammatical in the relevant languages/varieties.

Our discussion in this section has been exploratory in nature, considering the possibility that both transitive and intransitive light verbs may have an [EPP] feature which triggers A-bar movement, and that the CP and (transitive) vP phases found in the clausal domain may have analogues in the nominal domain, with DP and/or PP perhaps being phases. As is clear from our discussion in this section,
any such claim is far from straightforward, and requires us to make additional assumptions if it is to be workable - e.g. about D having an [EPP] feature in sentences like (83), and P having an [EPP] feature in sentences like (92). Clearly, more research is needed in order to determine whether DPs and/or PPs are indeed phases.

10.10 The nature of A-bar movement

Throughout this chapter, we have made a number of informal assumptions about how A-bar movement operations like wh-movement work without looking at the precise mechanism which drives this movement. Chomsky (1998) suggests that we should expect A-bar movement to operate in a fashion parallel to A-movement. More specifically, he draws the following parallel:

Take wh-movement. This would be point-by-point analogous to A-movement if the wh-phrase has an uninterpretable feature [wh-] and an interpretable feature [Q], which matches the uninterpretable probe Q of a complementiser in the final stage. (Chomsky 1988, p. 44)

In footnote 92 , he makes the following additional observation (where $\mathrm{T}_{\mathrm{DEF}}$ denotes a defective T of the kind found in bare infinitival complements of raising and passive predicates):

To complete the analogy, C (and v with its φ-set deleted) may have a nonspecific P-feature analogous to [person] for $\mathrm{T}_{\mathrm{DEF}}$, perhaps contingent on the assignment of an [EPP] feature to a phase.

Let's try and tease out what this means for wh-movement.
To make our discussion more concrete, consider the derivation of a sentence such as:

Where might they think that he will go?
Assume that the derivation proceeds as discussed in relation to (13) Where is it thought that he will go? until we reach the stage of derivation when the complementiser that merges with its CP complement to form that he will go where (whose structure is shown in (15) above). Let's suppose that a wh-word contains an interpretable operator feature marking whether it is a question operator, a relative operator, or an exclamative operator, so that interrogative wh-words have the interpretable feature [Q-Op] 'question operator'. Let's further suppose (again following Chomsky) that wh-words also have an uninterpretable wh-feature which makes them active: since this is a P-feature (i.e. a peripheral feature associated with movement to the periphery of a phase) in Chomsky's terms, let's denote the relevant feature as $[w h-P]$. In addition, we can take the complementiser that in (97) to have an [EPP] feature and contingent on this (to use Chomsky's phrase) a 'non-specific P-feature'. Let's take the relevant P-feature to be an uninterpretable

P-feature, and let's assume that Chomsky's remark that it is 'non-specific' means that it enters the derivation unvalued - i.e. it enters the derivation as an uninterpretable and unvalued peripheral feature $[u-P]$. Finally, let's assume that the complementiser that (by virtue of being the head of a declarative clause) does not carry a Q-feature (i.e. does not carry a feature indicating that the clause is a question). Given these assumptions, at the point where the complementiser that is merged with its TP complement, we will have the structure shown in skeletal form below (where only features of immediate concern to us are shown):

$[$ that $]$ he will go $[$ where $]$	
$[u-P]$	$[w h-P]$
$[E P P]$	$[\mathbf{Q}-\mathbf{O p}]$

Recall that in $\S 8.4$ we noted (in relation to our discussion of T-agreement and nominative case-marking) that when a probe P which is an A-head (like T) locates a matching goal G, uninterpretable (person/number/case) features on one can only be deleted by the other if the deleter is complete (i.e. if it carries a complete set of person/number φ-features). Let's therefore assume that in much the same way, when a probe P is an A-bar head which locates a matching goal G , the one can only delete any uninterpretable A-bar features carried by the other if the deleter is complete (i.e. if it carries both a P-feature/peripheral feature and an O-feature/operator feature). Given this assumption, the derivation will proceed as follows. The uninterpretable $[u-P]$ feature of that in (98) makes it an active A-bar probe which searches for a goal that can value its unvalued $[u-P]$ feature, and locates where: accordingly, where values the $[u-P]$ feature of that as $[w h-P]-$ or, in simpler terms, wh-agreement takes place between that and where. Since where is complete (by virtue of having both a P-feature and an O-feature), it can also delete the uninterpretable $[w h-P]$ feature of that. Conversely, however, that cannot delete the uninterpretable wh-feature on where because that is not complete (since it has a P-feature but no O-feature). The [EPP] feature of that is deleted by moving where to spec-CP, so that at the end of the relevant phase we have the overt structure shown in skeletal form below (as throughout, the term overt structure being used informally to indicate that, in order to reduce visual clutter, we have not shown constituents which have a null spellout - e.g. traces):

The TP complement of that undergoes transfer at this point in accordance with (7i) above. Note that the wh-feature carried by where has not yet been deleted and so remains active.

Assume that the derivation proceeds until the vP phase containing the transitive light verb associated with think is formed. Suppose that the transitive light verb also has an [EPP] feature and an unvalued, uninterpretable P-feature, but that the light verb has no O-feature (since only the head C of an interrogative clause has an operator feature). Much the same will happen on the vP cycle as happened on the CP cycle: that is, the unvalued $[u-P]$ feature of the light verb will be valued as [wh-P] by wh-agreement with where, and thereafter deleted by complete where. The [EPP] feature of the light verb will trigger movement of where to a second specifier position above the external argument specifier they, so that at the end of the vP phase, we have the overt structure shown in (100) below:

Once again, note that the wh-feature of where has not yet been deleted and so remains active. In accordance with (7i), the VP that he will go will undergo transfer at this point (since a transitive vP is a phase, so that its complement undergoes transfer at the end of the vP cycle).

The vP in (100) is then merged with $[\mathrm{T}$ might $]$ and the subject they raises to spec-TP, deriving the TP they might where think that he will go. The resulting TP is subsequently merged with a null affixal complementiser $\varnothing+$ which has not only an uninterpretable $[E P P]$ feature and an uninterpretable $[u-P]$ feature, but also (because the clause which it heads is interrogative) an uninterpretable unvalued operator feature $[u-O p]$. Merger of the null complementiser with its TP complement derives the structure shown below (in which traces have been omitted to simplify exposition):

C is an active probe by virtue of its uninterpretable (and unvalued) peripheral and operator features, and locates where (which is active by virtue of its uninterpretable wh-feature) as a matching active goal. Where values the unvalued peripheral and operator features of C as $[w h-P]$ and $[Q-O p]$ respectively, and simultaneously deletes them (because where is complete by virtue of having both a P-feature and an O-feature). Since C is also complete, C can delete the wh- P feature of where (making it ineligible to serve as a goal for any other probe). The [EPP] feature of C is deleted by moving where into spec-CP. Since the null complementiser \varnothing carries an affixal tense feature (not shown above), it triggers raising of the auxiliary might from T to C , so deriving the overt structure shown in highly simplified form in (102) below:

In the semantic component, a CP containing an interrogative operator in spec-CP will be interpreted as interrogative, and so (102) will receive an interpretation which can be loosely paraphrased as 'What is the place such that they might think that he will go there?', with where interpreted as an operator which binds a theta-marked trace in VP-complement position (the trace not being shown in (102) above).

There are two particular features of the analysis outlined here which merit further comment. One is that the analysis assumes that a wh-expression will remain an active goal until it encounters a C with an operator feature: only at that point will the wh-feature on the wh-expression be inactivated, making it ineligible to serve as a goal for another probe - hence making it ineligible to undergo further movement. We can illustrate this in terms of the following contrast:
(103) (a) Has she asked [where he is going]?
(b) *Where has she asked [he is going]?

In (103), both the main clause and the bracketed complement clause are interrogative in nature and hence contain a C with (initially unvalued) O - and P features. Accordingly, movement of where to become the specifier of the bracketed complement clause in (103a) will result in the wh-feature of where being inactivated by the null C heading the bracketed complement clause, since the complement clause C is complete by virtue of carrying O - and P -features. Hence, once where moves to the italicised spec-CP position within the bracketed clause in (103a) its $[w h-P]$ feature is deleted, making it inactive and hence unable to
subsequently move into the bold-printed spec-CP position in the main clause in (103b).

The second feature of the analysis to note is that Chomsky's assumption that an interrogative C contains an uninterpretable operator feature has important implications for the syntax of yes-no questions. What this in effect means (if yes-no questions contain the same kind of C constituent as wh-questions) is that yes-no questions must contain a null question operator in spec-CP. One reason for this is that the semantic component needs some means of identifying the relevant sentence as a question, and since Chomsky's Q-feature on C is an uninterpretable feature, it clearly cannot be this feature which identifies the structure as a yes-no question since the relevant feature will be deleted in the course of the derivation and thereby become invisible to the semantic component. A second reason is that (by hypothesis) C in questions contains unvalued and uninterpretable O - and P -features, and these need to be valued and deleted by an appropriate constituent. Let's therefore suppose that yes-no questions contain a null whoperator - an invisible counterpart of the wh-adverb whether which could be used to introduce main-clause yes-no questions in Early Modern English sentences such as:

Whether dost thou profess thyself a knave or a fool? (Lafeu, All's Well That Ends Well, IV.v)

Let's further suppose that in sentences like (104), whether is directly merged in spec-CP, and contains an uninterpretable $[w h-P]$ P-feature and an interpretable [Q-Op] O-feature, and that the head C of CP contains unvalued and uninterpretable O- and P-features. This being so, the CP in (104) will have the structure (105) below at the point when whether is merged in spec-CP (assuming that merger of whether in spec-TP deletes the uninterpretable [EPP] feature of C):
(105)

The operator whether (which is active by virtue of its uninterpretable wh-feature) serves as a probe which can value and (by virtue of being complete - i.e. having both an O-feature and a P-feature) delete the two unvalued and uninterpretable O - and P -features of C . Conversely, C (being complete) can delete the wh-feature of whether. Hence, agreement in O - and P -features between whether and C will result in the following structure at the end of the relevant phase:
(106)

As desired, the only undeleted P-feature which survives at the end of the CP phase is the interpretable operator feature of whether. It may be that whether gets interpreted as a yes-no question operator because (unlike other wh-operators) it does not bind a trace (i.e. variable) - or its yes-no question interpretation may simply be part of the meaning of whether. We can suppose that yes-no questions in present-day English have a similar derivation, save that whether receives a null spellout in main clauses, in keeping with Rizzi's (2000) hypothesis that root specifiers in certain types of structure have a null spellout under appropriate conditions. (Note that the analysis of yes-no questions outlined above assumes that C in yes-no questions has the same feature composition as in wh-questions and hence has uninterpretable [Q-Op] and [wh-P] features. However, an alternative possibility is that C in yes-no questions may contain an interpretable operator feature, but no [wh-P] feature: such an analysis would obviate the need for positing a null variant of whether in spec-CP in main-clause yes-no questions in English.)

In this section, I have developed an analysis of wh-movement which attempts to implement the suggestion made by Chomsky (in the quotations given at the beginning of this section) about possible parallels between A-movement and Abar movement. The parallels should be obvious: for example, just as a (complete) T probe carries unvalued person/number features and an [EPP] feature which triggers movement of a goal to spec-TP, so too a (complete) C probe carries unvalued peripheral/operator features and an [EPP] feature which triggers movement of a goal to spec-CP; and just as intermediate T constituents (like raising to) are incomplete, so too intermediate C constituents are incomplete. Likewise, just as the goal in A-movement carries interpretable person/number features and an uninterpretable case feature which makes it active, so too the goal in A-bar movement carries an interpretable operator feature and an uninterpretable peripheral feature $[w h-P]$ which makes it active. The parallels are not exact, however: for example, one difference is that (under the analysis presented here) the uninterpretable $[w h-P]$ feature carried by the moved wh-expression enters the derivation already valued (so that it can wh-mark an intermediate complementiser), whereas the uninterpretable case feature carried by a nominal enters the derivation unvalued.

There are also empirical problems posed by our attempt to implement Chomsky's analysis. To see why, let's return to consider the structure of Belfast English questions like (38) above, repeated as (107) below:
(107) What did Mary claim [did they steal]? (Henry 1995, p.108)

Under the analysis of wh-movement sketched in this section, the intermediate C in the bracketed complement clause will enter the derivation carrying an unvalued P-feature $[u-P]$ which will be assigned the value $[w h-P]$ via agreement with the wh-pronoun what. This predicts that the head C of the complement clause CP will be wh-marked in precisely the same way as it would be if the wh-pronoun were relative or exclamative. But in fact that head C of the bracketed complementclause CP seems to be marked as specifically interrogative in (107), and for this reason requires auxiliary inversion - unlike what happens in a relative clause structure like: something which Mary claimed [that they stole/*did they steal]
where the italicised C constituent heading the bracketed complement clause can be spelled out as that but not as an inverted auxiliary like did. This suggests that the italicised intermediate C is marked as interrogative in a structure like (107), and as relative in a structure like (108). What this might suggest is that C must carry a clause-type feature of some kind, valued as relative if the clause contains a relative pronoun, and interrogative if it contains an interrogative pronoun. If what marks a pronoun as interrogative or relative is an interrogative operator feature [Q-Op] or a relative operator feature [R-Op], then it would seem as if intermediate C constituents do indeed carry an unvalued operator feature $[u-O p]$ which is valued as relative/interrogative via agreement with the wh-pronoun. If this is so, then the topmost C constituent in a wh-structure must carry some additional feature which makes it complete - perhaps a focus/topic feature (bearing in mind that it is sometimes claimed that interrogative pronouns behave like focused constituents, and relative pronouns behave like topics), or alternatively a scope feature. Details need to be worked out, but I will not attempt to do this here.

Clearly, this and other alternative analyses of A-bar movement operations need to be evaluated in future research - and obvious questions posed by multiple whquestions answered (one such question being how we ensure that only the 'highest' wh-expression in a multiple wh-question in English carries whatever feature makes such expressions active for wh-movement, and how the wh-expressions which remain in situ can be bound by C (as Pesetsky 1987 argues they must be) if C contains no interpretable interrogative feature. As noted in the Preface to the book, the Minimalist Program is precisely that - a programme to guide research: consequently, in relation to many (indeed, most) aspects of syntax we have more questions than answers at present.

10.11 Summary

In this chapter, we have taken a look at Chomsky's phase-based theory of syntax. In $\S 10.2$, we noted Chomsky's suggestion that the computational component of the Language Faculty can only hold limited amounts of syntactic structure in its working memory at any one time, and that clause structure is built up in phases (with phases including CP and transitive vP). At the end of each phase, the domain (i.e. complement of the phase head) undergoes transfer to the phonological and semantic components, with the result that neither the domain nor any constituent it contains are accessible to further syntactic operations from that point on. In $\S 10.3$ we saw that intransitive vPs and defective clauses (i.e. clauses which are TPs lacking an extended projection into CP) are not phases, and hence allow A-movement out of their complement, as in structures such as Numerous problems are thought to remain in Utopia. In $\S 10.4$ we saw that a phase-based theory of syntax requires us to assume that long-distance Abar movement (e.g. of wh-expressions) involves movement through intermediate spec-CP positions, since CP is a phase and only constituents at the edge of a phase can undergo subsequent syntactic operations. In $\S 10.5$ it was argued that A-bar movement in transitive clauses involves movement through intermediate spec-vP positions. In $\S 10.6$ a range of arguments were presented in support of successivecyclic A-bar movement through intermediate spec-CP positions, from structures including preposition stranding in Afrikaans, quantifier-stranding in West Ulster English, wh-copying in adult and child grammars, and wh-marking of complementisers in adult and child grammars. In $\S 10.7$ we looked at evidence from have-cliticisation in English, wh-marking of verbs in Chamorro, past-participle agreement in French, mutation in Welsh and multiple wh-questions in Spanish in support of claiming that wh-movement in transitive clauses involves movement through spec-vP. In $\S 10.8$ we looked at the role of phases in relation to lexical selection, noting that only a subarray of the items in the lexical array can be accessed on any given phase. In $\S 10.9$, we raised a number of questions about phases. We began by exploring the relation between EPP-hood and phasehood; we presented evidence (from multiple wh-questions in Spanish) that intransitive light verbs may have a wh-attracting [EPP] feature, and yet not be phases. We went on to explore the possibility that DP and/or PP may also be phases, noting that any such claim requires us to make a number of ancillary assumptions (e.g. about feature percolation and [EPP] features). In $\S 10.10$ we took a closer look at what drives wh-movement, exploring a way of implementing Chomsky's idea that an interrogative wh-word has an interpretable Q-feature and an uninterpretable wh-feature which makes it active, and conversely that an interrogative C has uninterpretable (and unvalued) Q- and P-features (with a non-interrogative C able to bear a P-feature but not a Q-feature). We noted that such an analysis would require us to suppose that yes-no questions contain an interrogative operator (e.g. a null counterpart of whether) in spec-CP. However, we also observed that the
analysis proposed in the text left in its wake a number of unanswered questions for future research.

Workbook section

Exercise 10.1

Discuss the role played by phases in the derivation of the following sentences:
$1 \quad$ What is expected to happen to him?
$2 \quad$ What is it expected will happen to him?
3 What are you expecting will happen to him?
$4 \quad$ What is he expected to say to her?
$5 \quad$ What is it expected that he will say to her?
$6 \quad$ What are you expecting that he will say to her?
7 How many prizes are there expected to be awarded?
8 How many prizes are you expecting there to be awarded?
$9 \quad$ How many prizes are you expecting to be awarded?
10 How many questions have you found the answer to?
11 Who has done what?
12 Who has gone where?

Helpful hints

In 7-10, take how many prizes/how many questions to be QPs, with many as the head, prizes/questions as the complement and how as the specifier. In relation to 11 and 12 , consider how the raising of who to spec-TP in English may help account for word-order differences with the corresponding Spanish examples discussed in the main text.

Model answer for sentence 1

The unaccusative verb happen is merged with its PP complement to him, forming the V-bar happen to him. This V-bar is then merged with the pronoun what to form the VP what happen to him. This VP is in turn merged with an intransitive light verb, which (being affixal) triggers raising of the verb happen from V to v . Since the relevant vP has no external argument, it is intransitive. If we follow Chomsky's assumption that intransitive vPs are not phases and their heads have no [EPP] feature, no wh-movement takes place at this point. The resulting vP merges with infinitival to, forming the T-bar in (i) below:
(i)

Since a (seemingly subjectless) infinitival complement of a passive participle is a defective clause (hence a TP headed by a defective T), infinitival to is defective here and so has person and [EPP] features, but no number feature. Infinitival to probes at this point, searching for an active goal with a person feature and an active A-feature, locating what (which has a person feature and is active by virtue of its unvalued case feature) and moving what to become the specifier of to, with the person feature of to being valued and deleted in the process, and the [EPP] feature of to likewise being deleted. The resulting TP is merged with the verb expect to form the VP expect what to happen to him. This VP will in turn be merged as the complement of an intransitive participial light verb (which Chomsky 1999 labels as PRT but which we label here as v) and thereby project into an intransitive participial vP : assuming that the head v of vP is affixal in nature, it will trigger raising of the verb expect to v (with expect being spelled out as the passive participle expected in the phonology). The resulting vP will in turn be merged as the complement of a finite T constituent $\left.{ }_{[T} \mathrm{BE}\right]$, deriving the overt structure shown in simplified form below:

The probe be identifies what as its goal (since what is active for agreement with an A-head by virtue of its unvalued case feature), agrees in person and number with what and (by virtue of its [EPP] feature) triggers movement of what to become the subject of BE. The resulting TP is merged with a null C constituent with carries [TNS, WH, EPP] features which trigger movement of what to spec-CP (but do not trigger T-to-C movement, if we adopt Pesetsky and Torrego's 2001 analysis of wh-subject questions, under which a wh-subject in a finite clause is tensed). Since CP is a phase, its TP domain will be spelled out at the end of the CP phase by (7i) in the main text, and the edge ($=$ specifier and head) of CP will in turn be spelled out at the end of the overall derivation (which coincides with the end of the CP phase) by (7ii), so deriving the structure shown in skeletal form below (simplified by omitting all traces):
(iii)

\varnothing is expected to happen to him
There is no movement of is from T to C , since C does not trigger auxiliary inversion in questions in which the preposed wh-word is the subject of the TP complement of C . The only phase in the structure is CP .

Exercise 10.2

Discuss the derivation of the following sentences, commenting on points of special interest. (Note that 3 b and $6 \mathrm{a}, \mathrm{b}$ are examples from non-standard varieties of English: see the helpful hints.)

1a	He is someone who/whom I believe has left
b	He is someone who/*whom it is believed has left
2a	He is someone [whom they claim to have died]
b	*They claim him to have died
3a	These are the people [who Clark thinks are telling the truth]
b	\%These are the people [who Clark think are telling the truth]
4a	*Who were you asking what happened to?
b	*What were you asking happened to him?
5 a	Who was expected to present the prizes?
b	*Who was decided to present the prizes? (= 'Who was it decided should present the
	prizes?')
6a	Who d'ya reckon what/*that seen'im? (= Who d'you think saw him?')
b	Who d'ya reckon that/*what 'e seen? (= Who d'you think that he saw?)
7 a	How little honesty there is in the world!
b	*How little honesty there's in the world!
8a	\%What is thought has happened to him? (sentence produced by interviewer, BBC
b	Radio 5 Live)
There look like there have been some problems	

Say why 8a is ungrammatical in standard varieties of English, and why sentences like 8 b are identified by Chomsky (1998, p. 46, fn.94) as potentially problematic for a phase-based theory of syntax which assumes that all finite clauses are CPs and hence phases.
In addition, discuss the derivation of the following child wh-questions reported in Thornton (1995). (Sentences 11 and 12 are adapted slightly for the purposes of this exercise.)

9 Which dinosaur that Grover didn't ride on?
10 Which mouse what the cat didn't see?
11 Which animal do you think what was chasing the cat?
12 Which Smurf do you think who was chasing the cat?

Helpful hints

In sentences 2 a and $3 \mathrm{a}, \mathrm{b}$, concern yourself only with the derivation of the bracketed relative clause structures. In relation to 2 , consider the possibility that (in active uses) verbs like claim select a CP complement headed by a null infinitival complementiser which lacks the ability to assign case. Sentence 3 b is a type of structure found in some ($=\%$) varieties of Northeastern American English (according to Kimball and Aissen 1971) and in such clauses the verb is reported to agree with the relative pronoun. In 4a, take who to originate as the complement of to. Sentences 6a,b are types of structure found in a non-standard variety of colloquial British English. In relation to 8a, consider how you might rule out movement of who through spec-CP in the complement clause into spec-TP in the main clause, and say whether it is necessary to follow Ura (2001) in attributing the ungrammaticality of such examples to violation of an Improper Movement Constraint which prevents movement from an A-bar to an A position (or, equivalently, prevents an A-head like T from attracting a constituent in an A-bar position) - or whether the case-marking properties of the head C constituent of the complement clause CP provide us with an alternative account. In relation to 9 and 10, make the simplifying assumption that didn't is an inherently negative auxiliary which originates in T . In relation to 12 , consider the possibility that an intermediate C with an [EPP] feature agrees in person, number and (animate or inanimate) gender with the subject of its clause.

Model answer for sentence 1a

What is puzzling about la is why the wh-pronoun can surface in the overtly accusative form whom when (prior to wh-movement) it was the subject of has left and so would have been expected to agree with (and be assigned nominative case by) has, and hence to be spelled out as nominative who. In order to try and find out what's going on here, let's take a look at the derivation of the relevant sentence.

The verb leave is unaccusative, and so the relative pronoun who originates as its internal argument. Merging leave with who derives the VP leave who. This VP is then merged with a strong light verb which triggers raising of leave to adjoin to the light verb. Merging the resulting vP with the auxiliary have (which requires the verb leave to be spelled out in the perfect participle form left at PF) derives the structure (i) below (with italics marking a copy of a moved constituent):

The unvalued person/number features of T serve as a probe, identifying who as a goal which is active by virtue of its unvalued case feature. Accordingly, have agrees with who and is ultimately spelled out at PF as has. We'd also expect the unvalued case feature of who to be valued as nominative via agreement with the finite T have at this point, but let's suppose that this doesn't happen. Instead, the EPP feature of T attracts who to move to spec-TP, so deriving the structure shown in skeletal form in (ii) below (trace copies left behind by movement being shown in italics):
(ii) [те who [t has] [vp [v leave] [vp [v leave] who]]]

The resulting TP is then merged with a C carrying [WH, EPP] features which attract who to move into spec-CP, and (since CP is a phase) the TP complement of C then undergoes transfer, so deriving the structure shown in (iii) below (with items being shown in their PF form, outline font indicating constituents which have undergone spellout, and strikethrough showing constituents which are given a null spellout in the PF component):
(iii) [CP who [C ø] [TP whe [T has] [vP [v left] [vP [v left] whe] $]$] $]$

The CP in (iii) is then embedded as the complement of the verb believe, deriving the structure shown in skeletal form in (iv) below (simplified, inter alia, by showing only those constituents of TP which have been overtly spelled out):
(iv) $\quad[\mathrm{vP}[\mathrm{v}$ believe] [CP who [C ø] [TP has left]]]

The VP in (iv) is then merged with a transitive light verb whose external argument is the pronoun (which is ultimately spelled out as) I, and the verb believe raises to adjoin to the light verb (leaving an italicised trace copy behind), forming the structure shown in simplified form in (v) below:
(v)

The light verb is transitive (by virtue of having an external argument) and so carries unvalued person/number features, allowing it to agree with and assign (exceptional) accusative case to the wh-pronoun who (which remains active at this point by virtue of its case feature not having yet been valued): accordingly, the accusative relative pronoun is spelled out as whom in formal styles, and as who in other styles. On the assumption that the light verb also carries [WH, EPP] features, it will trigger movement of who to become a second (outer) specifier for $\mathrm{v} P$. The derivation will thereafter continue in a familiar fashion, with I agreeing with, being assigned nominative case by and moving to become the specifier of the relative clause T constituent, and who moving from spec-vP to become the specifier of the null C constituent heading the relative clause. Note, however, that a crucial feature of this analysis is the assumption that a transitive vP is a phase, and triggers successive-cyclic movement of an extracted wh-expression through spec-vP.

While the force of the argument presented above is somewhat weakened by the problematic status of whom in present-day English (discussed in Lasnik and Sobin 2000), it is interesting to note that Bejar and Massam (1999, p. 66) report a similar phenomenon (of exceptional case-marking of the subject of a finite clause by a higher transitive verb) in Hungarian sentences such as:
(vi) Kiket mondtad hogy szeretnél ha eljönnék?

Whom you.said that you.would.like if came
'Who did you say you would like it if they came?'
Bejar and Massam suppose that different links in a movement chain can be assigned different cases, with PF determining which of the various cases is actually spelled out. Their analysis overcomes an apparent violation of the Earliness Principle in the derivation outlined above, since we would have expected who to be assigned nominative case at the stage of derivation represented in (i) above. However, their proposal poses an apparent challenge to the claim that the different links in movement chains are identical copies, since this will clearly not be so if different chain links carry different cases.

Glossary and list of abbreviations

Bold print is used to indicate technical terms, and to cross-refer to entries elsewhere in the glossary. Abbreviations used here are: ch. = chapter; $\S=$ section number; ex. = exercise.

A: see adjective, A-head, A-position, Binding.

AAE: African American English.
A-bar: an A-bar position is a position which can be occupied by arguments or adjuncts alike. For example, the specifier position within CP is said to be an A-bar position because it can contain not only an argument like the italicised wh-phrase in 'Which car did he fix?' but also an adjunct like the italicised adverbial phrase in 'How did he fix the car?' A-bar movement is a movement operation (like whmovement) which moves an argument or adjunct expression to an A-bar position. On A-bar head, see A-head.

Acc(usative): see case.

ACP: see Attract Closest Principle.

acquisition: the process by which people acquire their first language ($=\mathrm{L} 1$ acquisition) or a second language which is not their mother tongue ($=\mathrm{L} 2$ acquisition).
active: a contrast is traditionally drawn between sentence pairs such as (i) and (ii) below:
(ii) The jewels were stolen by the thieves
(i) is said to be an active clause (or sentence), and (ii) to be its passive counterpart; similarly, the verb stole is said to be an active verb (or a verb in the active voice) in (i), whereas the verb stolen is said to be a passive verb (or a verb in the passive voice - more specifically, a passive participle) in (ii); likewise, the auxiliary were in (ii) is said to be a passive auxiliary. In a different use, a probe or goal is said to be active for movement/agreement if it carries an uninterpretable feature. See §8.4.
adequacy, criteria of: these are the criteria which an adequate grammar or linguistic theory must meet. See $\S 1.3$.
adjacency condition: a condition requiring that two expressions must be immediately adjacent (i.e. there must be no constituent intervening between the two) in order for some operation to apply. For example, have must be immediately adjacent to they in order to cliticise onto it in structures such as They've gone home.
adjective: this is a category of word (abbreviated to A) which often denotes states (e.g. happy, sad), which typically has an adverb counterpart in -ly (e.g. sad/sadly), which typically has comparative/superlative forms in -er/-est (e.g. sadder/saddest), which can often take the prefix un- (e.g. unhappy), and which can often form a noun by the addition of the suffix -ness (e.g. sadness), etc. See §2.2 and §2.3.
adjoin: see adjunction.
adjunct: One way in which this term is used is to denote an optional constituent typically used to specify e.g. the time, place or manner in which an event takes place. Another way in which it is used is to denote a constituent which has been attached to another to form a larger constituent of the same type. (See adjunction.)
adjunction: this is a process by which one constituent is adjoined ($=$ attached) to another to form a larger constituent of the same type. For example, we could say that in a sentence like 'He should not go', the negative particle not (in the guise of its contracted form $n^{\prime} t$) can be adjoined to the auxiliary should to form the negative auxiliary shouldn't. In a sentence such as He gently rolled the ball down the hill, the adverb gently can be taken to be an adverb which adjoins to a verbal projection, extending it into a larger projection of the same kind. See §9.4.
adposition: a cover term subsuming preposition and postposition. For example, the English word in is a preposition since it is positioned before its complement (e.g. in Tokyo), whereas its Japanese counterpart is a postposition because it is positioned after its complement Tokyo. Both words are adpositions.

ADV/adverb: this is a category of word which typically indicates manner (e.g. 'wait patiently') or degree (e.g. 'exceedingly patient'). In English, most (but not all) adverbs end in -ly (e.g. quickly - but also almost). See §2.2 and 2.3.

AFF: see affix

affective: an affective constituent is an (e.g. negative, interrogative or conditional) expression which can have a polarity expression like (partitive) any in its scope. So, for example, interrogative if is an affective constituent as we see from the fact that an interrogative if-clause can contain partitive any in a sentence such as 'I wonder if he has any news about Jim.'
affix/affixal: the term affix is typically used to describe a grammatical morpheme which cannot stand on its own as an independent word, but which must be attached to a host word of an appropriate kind. An affix which attaches to the beginning of a
word (e.g. un- in unhappy) is called a prefix: an affix which attaches to the end of a word (e.g. $-s$ in chases) is called a suffix. An affixal head is one which behaves like an affix in needing to attach to a particular kind of host word. See also clitic. Affix Hopping is an operation by which an unattached affix in T is lowered onto a verb: see §4.4. Affix Attachment is an operation whereby an unattached tense affix lowers onto a verb where possible, but is otherwise supported by use of the dummy auxiliary do: see §5.8.

AGENT: this is a term used to describe the semantic (= thematic) role which a particular type of argument plays in a given sentence. It typically denotes a person who deliberately causes some state of affairs to come about - hence e.g. John plays the thematic role of AGENT in a sentence such as 'John smashed the bottle.' See §7.5.
agreement: an operation by which (e.g. in a sentence like They are lying) the person/number features of the T-constituent are get assigned the same values as those of its subject they, so that the present-tense auxiliary are is third person plural because it agrees in person and number with its third-person-plural subject they. See ch. 8.

A-head: an A-head is the kind of head (like T) which allows as its specifier an argument expression but not an adjunct expression. An A-bar head is the kind of head (like C) which allows as its specifier either an argument or an adjunct expression.
allomorphs: variant phonetic forms of a single morpheme. For example, the noun plural morpheme $\{\mathrm{s}\}$ in English has the three allomorphs /s/ (e.g. in cats) /z/ (e.g. in dogs) and /ız/ (e.g. in horses).

A-movement: movement from one A-position to another (typically, from a subject or complement position into another subject position). See ch. 7.

A-position: a position which can be occupied by an argument, but not by a non-argument expression (e.g. not by an adjunct). In practice, the term denotes a subject position, or a lexical complement position (i.e. a position occupied by a constituent which is the complement of a lexical/substantive head).
anaphor: this is an expression (like himself) which cannot have independent reference, but which must take its reference from an appropriate antecedent (i.e. expression which it refers to) within the same phrase or sentence. Hence, while we can say 'John is deluding himself' (where himself refers back to John), we cannot say *'Himself is waiting', since the anaphor himself here has no antecedent. A traditional distinction is drawn between reflexive anaphors (i.e. self forms like myself/ourselves/yourself/yourselves/himselffherself/itself/themselves) and the reciprocal anaphors each other/one another (e.g. ‘They help each other/one another'). See $\S 3.7$ and ex.3.2.
animate: the term animate is used to denote (the gender of) an expression which denotes a living being (e.g. a human being or animal), while the term inanimate is used in relation to an expression which denotes lifeless entities. For example, the relative pronoun who could be said to be animate in gender and the relative pronoun which inanimate - hence we say someone who upsets people and something which upsets people.
antecedent: an expression which is referred to by a pronoun or anaphor of some kind. For example, in 'John cut himself shaving', John is the antecedent of the anaphor himself, since himself refers back to John. In a sentence such as 'He is someone who we respect', the antecedent of the relative pronoun who is someone.

AP: adjectival phrase - i.e. a phrase headed by an adjective, such as fond of chocolate, keen on sport, good at syntax etc.
appositive relative clause: a relative clause which is used as a parenthetical comment, as with the parenthesised relative clause in 'John (who you met last week) is a good friend of mine.' See relative.
arbitrary: when we say that an expression has 'arbitrary reference', we mean that it can denote an unspecified set of individuals, and hence have much the same meaning as English one/people or French on. In a sentence such as 'It is difficult [PRO to learn Japanese]', the bracketed clause is said to have an abstract pronoun subject PRO which can have arbitrary reference, in which case the sentence is paraphraseable as 'It's difficult for people to learn Japanese.' See §4.2.
argument: this is a term borrowed by linguists from philosophy (more specifically, from predicate calculus) to describe the role played by particular types of expression in the semantic structure of sentences. In a sentence such as 'John hit Fred', the overall sentence is said to be a proposition (a term used to describe the semantic content of a clause), and to consist of the predicate hit and its two arguments John and Fred. The two arguments represent the two participants in the act of hitting, and the predicate is the expression (in this case the verb hit) which describes the activity in which they are engaged. By extension, in a sentence such as 'John says he hates syntax' the predicate in the main clause is the verb says, and its two arguments are John and the clause he hates syntax; the argument he hates syntax is in turn a proposition whose predicate is hates, and whose two arguments are he and syntax. Since the complement of a verb is positioned internally within V-bar whereas the subject of a verb is positioned outside V-bar, complements are also referred to as internal arguments, and subjects as external arguments. Expressions which do not function as arguments are nonarguments. The argument structure of a predicate provides a description of the set of arguments associated with the predicate, and the thematic role which each fulfils in relation to the predicate. See $\S 7.4$ and $\S 7.5$.
array: the lexical array for a given expression denotes the set of lexical items out of which the expression is formed. The term lexical subarray denotes the
particular subset of items from the lexical array out of which a particular phase is formed. See $\S 10.8$.
article: a term used in traditional grammar to describe a particular subclass of determiners: the determiner the is traditionally called the definite article, and the determiner a the indefinite article.

Asp/AspP: Aspect/Aspect Phrase. See §7.3.
aspect: a term typically used to denote the duration of the activity described by a verb (e.g. whether the activity is ongoing or completed). In sentences such as:
He has taken the medicine
(ii) He is taking the medicine
the auxiliary has is said to be an auxiliary which marks perfect aspect, in that it marks the perfection (in the sense of 'completion' or 'termination') of the activity of taking the medicine; for analogous reasons, taken is said to be a perfectparticiple verb form in (i) (though it is referred to in traditional grammars as a 'past participle'). Similarly, is functions as an auxiliary which marks progressive aspect in (ii), because it relates to an activity which is ongoing or in progress (for this reason, is in (ii) is also referred to as a progressive auxiliary); in the same way, the verb taking in (ii) is said to be the progressive-participle form of the verb (though it is sometimes known in traditional grammars as a 'present participle').
aspectual auxiliaries: auxiliaries which mark aspect - e.g. perfect have and progressive be. See aspect.
associate: an expression which represents the thematic argument in an expletive there construction, and which is associated with the expletive subject there: e.g. several prizes in There were awarded several prizes.
asymmetric c-command: see c-command.
attract: to say that a head H attracts a constituent C is to say that H triggers movement of C to some position on the edge of HP (so that C may move to adjoin to H , or to become the specifier of H).

Attract Closest Principle: a principle of grammar requiring that a head H which attracts a particular type of constituent attracts the closest constituent of the relevant type which it c-commands.
attribute: see value.
attributive adjectives: these are adjectives which are used to modify a following noun expression - e.g. red in 'John has a red Ferrari', where red attributes the property of being red to the noun Ferrari. Attributive adjectives contrast with predicative adjectives, which are adjectives used in structures such as 'The house was red' or 'They painted the house red', (where the property of being red is said to be predicated of the expression the house).

AUX/auxiliary: a term used to categorise items such as will/would/ can/could/shall/should/may/might/must/ought and some uses of have/be/do/ need/dare. Such items have a number of idiosyncratic properties, including the fact that they can undergo inversion (e.g. in questions like 'Can you speak French?'). By contrast, main verbs (i.e. verbs which are not auxiliaries) cannot undergo inversion - as we see from the ungrammaticality *'Speak you French?' See §2.7.

AUXP: auxiliary projection/auxiliary phrase-i.e. a phrase headed by an auxiliary which does not occupy the head T position of TP. See §5.6.
auxiliary copying: a phenomenon whereby a moved auxiliary leaves behind an overt copy of itself when it moves - as with can in a Child English question like What can I can have for dinner?
auxiliary inversion: see inversion.
auxiliary selection: this term relates to the type of expression which a given auxiliary selects as its complement: e.g. in many languages (the counterpart of) BE when used as a perfect auxiliary selects only a complement headed by a verb with no external argument, whereas (the counterpart of) HAVE selects a complement headed by a verb with an external argument.

B: on Principle B of Binding Theory, see ex. 3.2.
bar: when used as a suffix attached to a category label such as $\mathrm{N}, \mathrm{V}, \mathrm{P}, \mathrm{T}$ etc. (as in N-bar, V-bar, P-bar, T-bar etc.), it denotes an intermediate projection which is larger than a word but smaller than a phrase. Hence, in a phrase such as university policy on drugs, we might say that the string policy on drugs is an N -bar, since it is a projection of the head noun policy, but is an intermediate projection in that it has a larger projection into the NP university policy on drugs. The term bar notation refers to a system of representing projection levels which posits that (first) merge of a head H with its complement forms an H -bar constituent, (second) merge of a head with a specifier forms an H-double-bar constituent, (third) merge of a head with a further specifier forms an H-treble-bar constituent, and so on (with the maximal projection of H being labelled HP). On A-bar position, see A-position.
bare: a bare infinitive structure is one which contains a verb in the infinitive form, but does not contain the infinitive particle to (e.g. the italicised clause in 'He won't let you help him'). A bare noun is a noun used without any determiner to modify it (e.g. fish in 'Fish is expensive'). A bare clause is one not introduced by an overt complementiser (e.g. he was tired in 'John said he was tired'). A theory of bare phrase structure is one in which there are no category labels or projection levels associated with constituents: see §3.8.
base form: the base form of a verb is the simplest, uninflected form of the verb (the form under which the relevant verb would be listed in an English dictionary) hence forms like go/be/have/see/want/love are the base forms of the relevant verbs.

The base form can typically function either as an infinitive (e.g. 'Try to stay'), an imperative (e.g. 'Stay with me tonight!'), a present-tense indicative form (e.g. 'They sometimes stay with me'), or a subjunctive form (e.g. 'I demand that he stay with me').

Binarity Principle: a principle of Universal Grammar specifying that all nonterminal nodes in syntactic structures (i.e. tree diagrams) are binary-branching. See §3.2.
binary: a term relating to a two-way contrast. For example, number is a binary property in English, in that we have a two-way contrast between singular forms like cat and plural forms like cats. It is widely assumed that parameters have binary settings, that features have binary values, and that all branching in syntactic structure is binary.
binary-branching: a tree diagram in which every non-terminal node has two daughters is binary-branching; a category/node which has two daughters is also binary-branching. See §3.2.
bind/binder/binding: to say that one constituent X binds (or serves as the binder for) another constituent Y (and conversely that Y is bound by X) is to say that X determines properties (usually, referential properties) of Y. For example, in a sentence such as 'John blamed himself', the reflexive anaphor himself is bound by John in the sense that the referential properties of himself are determined by John (so that the two refer to the same individual). The C-command condition on binding says that a bound form must be c-commanded by its antecedent. On principles A, B and C of Binding Theory, see ex. 3.2.
bottom-up: to say that a syntactic structure is derived in a bottom-up fashion is to say that the structure is built up from bottom to top, with lower parts of the structure being formed before higher parts.
bound: in a traditional use of this term, a bound form is one which cannot stand alone and be used as an independent word, but rather must be attached to some other morpheme (e.g. negative $n ' t$, which has to attach to some auxiliary such as could). In a completely different use of the term, a bound constituent is one which has a binder (i.e. antecedent) within the structure containing it (see bind).
bracketing: a technique for representing the categorial status of an expression, whereby the expression is enclosed in square brackets, and the lefthand bracket is labelled with an appropriate category symbol - e.g. [d the]. See §2.10.
branch: a term used to represent a solid line linking a pair of nodes in a tree diagram, marking a mother/daughter (i.e. containment) relation between them.

C: see complementiser.

canonical: a term used to mean 'usual', 'typical' or 'normal', as in 'The canonical word order in English is specifier+head+complement.' The term canonical
clause denotes a (non-defective) clause which is a full $\mathrm{CP} /$ complementiser phrase: see §4.6 and §4.7.
case: the different case forms of a pronoun are the different forms which the pronoun has in different sentence positions. It is traditionally said that English has three cases - nominative (sometimes abbreviated to Nom), accusative (= Acc, sometimes referred to as objective), and genitive (= Gen). Personal pronouns typically inflect overtly for all three cases, whereas noun expressions inflect only for genitive case. The different case forms of typical pronouns and noun expressions are given below:

nominative	I	we	you	he	she	it	they	who	the king
accusative	me	us	you	him	her	it	them	who(m)	the king
genitive	my	our	your	his	her	its	their	whose	the king's
	mine	ours	yours		hers		theirs		

As is apparent, some pronouns have two distinct genitive forms: a weak (shorter) form used when they are immediately followed by a noun (as in 'This is my car'), and a strong (longer) form used when they are not immediately followed by a noun (as in 'This car is mine'). In Chomsky and Lasnik (1995), it is suggested that the null subject PRO found in control constructions carries null case. In languages like English where certain types of expression are assigned case by virtue of the structural position they occupy in a given clause (e.g. accusative if c-commanded by a transitive head, nominative if c-commanded by finite intransitive head), the relevant expressions are said to receive structural case. Where a constituent is assigned case by virtue of its semantic function (e.g. a GOAL complement of certain types of verb is assigned dative case in German), it is said to receive inherent case. In languages like Icelandic where subjects can be assigned a variety of cases (e.g. some are accusative and others dative, depending on the choice of verb and its semantic properties), subjects are said to have quirky case. In the Italian counterpart of a structure like 'She gave him them' the direct object corresponding to English 'them' is assigned accusative case, and the indirect object corresponding to English 'him' is assigned a distinct case, traditionally called dative case. (On direct and indirect objects, see object.) On nominative case assignment, see $\S 4.9$ and $\S 8.3$; on accusative case assignment, see $\S 4.9$, $\S 9.7$ and $\S 9.8$; on null case assignment, see $\S 4.9$ and $\S 8.8$; and on genitive case assignment, see $\S 6.7$ and $\S 9.9$.
case particle: some linguists take of in structures like destruction of the city or fond of pasta to be a genitive case particle in the sense that the of-phrase (e.g. of the city) is taken to have genitive case, and of is said to be the morpheme which marks genitive case.
categorial: categorial information is information about the grammatical category that an item belongs to. A categorial property is one associated with members of a particular grammatical category.
categorise/categorisation: assign(ing) an expression to a (grammatical) category.
category: a term used to denote a set of expressions which share a common set of linguistic properties. In syntax, the term is used for expressions which share a common set of grammatical properties. For example, boy and girl belong to the (grammatical) category noun because they both inflect for plural number (e.g. boys/girls), and can both be used to end a sentence such as 'The police haven't yet found the missing -.' In traditional grammar, the term parts of speech was used in place of categories.
causative verb: a verb which has much the same sense as 'cause'. For example, the verb have in sentences such as 'He had them expelled' or 'He had them review the case' might be said to be causative in sense (hence to be a causative verb).

C-command: a structural relation between two constituents. To say that one constituent X c-commands another constituent Y is (informally) to say that X is no lower than Y in the structure (i.e. either X is higher up in the structure than Y , or the two are at the same height). More formally, a constituent X c-commands its sister constituent Y and any constituent Z that is contained within Y. A constituent X asymmetrically c-commands another constituent Y if X c-commands Y but Y does not c-command X. See §3.7.

C-command condition on binding: a condition to the effect that a bound constituent (e.g. a reflexive anaphor like himself or the trace of a moved constituent) must be c-commanded by its antecedent (i.e. by the expression which binds it). See §3.7 and ex. 3.2.

CED: See Condition on Extraction Domains.

chain: a set of constituents comprising an expression and any trace copies associated with it. Where a constituent does not undergo movement, it forms a singlemembered chain.
citation: the citation form of a word is the form under which the word is listed in traditional dictionaries.
clause: a clause is defined in traditional grammar as an expression which contains (at least) a subject and a predicate, and which may contain other types of expression as well (e.g. one or more complements and/or adjuncts). In most cases, the predicate in a clause is a lexical (= main) verb, so that there will be as many different clauses in a sentence as there are different lexical verbs. For example, in a sentence such as 'She may think that you are cheating on her', there are two lexical verbs (think and cheating), and hence two clauses. The cheating clause is that you are cheating on her, and the think clause is She may think that you are cheating on her, so that the cheating clause is one of the constituents of the think clause. More specifically, the cheating clause is the complement of the think clause, and so is said to function as a complement clause in this type of
sentence. Clauses whose predicate is not a verb (i.e. verbless clauses) are known as small clauses: hence, in 'John considers [Mary intelligent]', the bracketed expression is sometimes referred to as a small clause.
cleft sentence: a structure such as 'It was syntax that he hated most', where syntax is said to occupy focus position within the cleft sentence.
clitic(isation): the term clitic denotes an item which is (generally) a reduced form of another word, and which has the property that (in its reduced form) it must cliticise (i.e. attach itself to) an appropriate kind of host (i.e. to another word or phrase). For example, we could say that the contracted negative particle $n ' t$ is a clitic form of the negative particle not which attaches itself to a finite auxiliary verb, so giving rise to forms like isn't, shouldn't, mightn't etc. Likewise, we could say that 've is a clitic which attaches itself to a pronoun ending in a vowel, so giving rise to forms like we've, you've, they've etc. When a clitic attaches to the end of another word, it is said to be an enclitic (and hence to encliticise) onto the relevant word. Clitics differ from affixes in a number of ways. For example, a clitic is often a reduced form of a full word, and has a corresponding full form (so that ' $l l$ is the clitic form of will, for example), whereas an affix (like noun plural -s in cats) has no full-word counterpart. Moreover, clitics can attach to phrases (e.g. 's can attach to the president in The president's lying), whereas an affix typically attaches to a word stem (e.g. the past-tense -ed affix attaches to the verb stem snow in snowed).
close/closer/closest: in structures in which a head X attracts a particular kind of constituent Y to move to the edge of XP, X is said to attract the closest constituent of type Y, in accordance with the Attract Closest Principle. On one view of closeness, if X c-commands Y and Z, X is closer to Y than to Z if Y c-commands Z. See also local.
cognition/cognitive: (relating to) the study of human knowledge.
common noun: see noun.
COMP: see complementiser.
comparative: the comparative form of an adjective or adverb is the form (typically ending in -er) used when comparing two individuals or properties: e.g. 'John is taller than Mary', where taller is the comparative form of the adjective tall.
competence: a term used to represent native speakers' knowledge of the grammar of their native language(s).
complement: this is a term used to denote a specific grammatical function (in the same way that the term subject denotes a specific grammatical function). A complement is an expression which is directly merged with (and hence is the sister of) a head word, thereby projecting the head into a larger structure of essentially the same kind. In 'Close the door', the door is the complement
of the verb close; in 'after dinner', dinner is the complement of the preposition after; in 'good at physics', at physics is the complement of the adjective good; in 'loss of face', of face is the complement of the noun loss. As these examples illustrate, complements typically follow their heads in English. The choice of complement (and the morphological form of the complement) is determined by properties of the head: for example, an auxiliary such as will requires as its complement an expression headed by a verb in the infinitive form (cf. 'He will gol* going $/^{*}$ gone'). Moreover, complements bear a close semantic relation to their heads (e.g. in 'Kill him', him is the complement of the verb kill and plays the semantic role of THEME argument of the verb kill). Thus, a complement has a close morphological, syntactic and semantic relation to its head. A complement clause is a clause which is used as the complement of some other word (typically as the complement of a verb, adjective or noun). Thus, in a sentence such as 'He never expected that she would come', the clause that she would come serves as the complement of the verb expected, and so is a complement clause. On complement selection, see selection.
complementiser: this term is used in two ways. On the one hand, it denotes a particular category of clause-introducing word such as thatliflfor, as used in sentences such as 'I think that you should apologise', 'I doubt if she realises', 'They're keen for you to show up'. On the other hand, it is used to denote the pre-subject position in clauses ('the complementiser position') which is typically occupied by a complementiser like that/iflfor, but which can also be occupied by an inverted auxiliary in sentences such as 'Can you help?', where can is said to occupy the complementiser position in the clause. A complementiser phrase $(\mathbf{C P})$ is a phrase/clause/expression headed by a complementiser (or by an auxiliary or verb occupying the complementiser position).
complex sentence: one which contains more than one clause.
component: a grammar is said to have three main components: a syntactic/computational component which generates syntactic structures, a semantic component which assigns each such syntactic structure an appropriate semantic interpretation, and a PF component which assigns each syntactic structure generated by the computational component an appropriate phonetic form. See §1.3.
compound word: a word which is built up out of two (or more) other words e.g. man-eater.

computational component: see component.

concord: a traditional term to describe an operation whereby a noun and any adjectives or determiners modifying it are assigned the same values for features such as number, gender and case.
conditional: a term used to represent a type of clause (typically introduced by if or unless) which lays down conditions - e.g. 'If you don't behave, I'll bar you', or 'Unless you behave, I'll bar you'. In these examples, the clauses If you don't behave and Unless you behave are conditional clauses.

Condition on Extraction Domains: a constraint to the effect that only complements allow constituents to be extracted out of them, not specifiers or adjuncts.
configurational: positional - i.e. relating to the position occupied by one or more constituents in a tree diagram. For example, a configurational definition of a structural subject (for English) would be 'an argument which occupies the specifier position in TP'. This definition is configurational in the sense that it tells you what position within TP the subject occupies.

CONJ: see conjunction.

conjoin: to join together two or more expressions, usually by a coordinating conjunction such as and/or/but. For example, in 'Naughty but nice', naughty has been conjoined with nice (and conversely nice has been conjoined with naughty).
conjunct: one of a set of expressions which have been conjoined. For example, in 'Rather tired but otherwise alright', the two conjuncts (i.e. expressions which have been conjoined) are rather tired and otherwise alright.
conjunction/CONJ: a word which is used to join two or more expressions together. For example, in a sentence such as 'John was tired but happy', the word but serves the function of being a coordinating conjunction because it coordinates (i.e. joins together) the adjectives tired and happy. In 'John felt angry and Mary felt bitter', the conjunction and is used to coordinate the two clauses Johnfelt angry and Mary felt bitter. In traditional grammar, complementisers like that/forlif are categorised as (one particular type of) subordinating conjunction.
constituent: a term denoting a structural unit - i.e. an expression which is one of the components out of which a phrase or sentence is built up. For example, the various constituents of a prepositional phrase $(=\mathrm{PP})$ such as 'Straight into touch' (e.g. as a reply to 'Where did the ball go?') would be the preposition into, the noun touch, the adverb straight and the intermediate projection (P-bar) into touch. To say that X is an immediate constituent of Y is to say that X immediately contains Y (see contain), or equivalently that X is the mother of Y: see §3.7.
constituent structure: the constituent structure (or phrase structure, or syntactic structure) of an expression is (a representation of) the set of constituents which the expression contains. Syntactic structure is usually represented in terms of a labelled bracketing or a tree diagram. The Constituent Structure Constraint is a grammatical principle which specifies that only a head can occupy a head position, and that only a maximal projection can occupy a complement or specifier position.
constrained: see restrictive.
constraint: a structural restriction which blocks the application of some process in a particular type of structure. The term tends to be used with the rather more specific meaning of 'a principle of Universal Grammar which prevents certain types of grammatical operation from applying to certain types of structure'.
contain: to say that one constituent X contains another constituent Y is to say that Y is one of the constituents out of which X is formed by a merger operation of some kind. In terms of tree diagrams, we can say that X contains Y if X occurs higher up in the tree than Y , and X is connected to Y by a continuous (unbroken) set of downward branches (the branches being represented by the solid lines connecting pairs of nodes in a tree diagram). If we think of tree diagrams as a network of train stations, we can say that X contains Y if it is possible to get from X to Y by travelling one or more stations south. To say that one constituent X immediately contains another constituent Y is to say that Y occurs immediately below X in a tree and is connected to X via a branch (or, that X contains Y and there is no intervening constituent Z which contains Y and which is contained by X). See §3.7.
content: this term is generally used to refer to the semantic content (i.e. meaning) of an expression (typically, of a word). However, it can also be used in a more general way to refer to the linguistic properties of an expression: e.g. the expression phonetic content is sometimes used to refer to the phonetic form of (e.g.) a word: hence, we might say that PRO is a pronoun which has no phonetic content (meaning that it is a 'silent' pronoun with no audible form).
contentives/content words: words which have intrinsic descriptive content (as opposed to functors, i.e. words which serve essentially to mark particular grammatical functions). Nouns, verbs, adjectives and (most) prepositions are traditionally classified as contentives, while pronouns, auxiliaries, determiners, complementisers and particles of various kinds (e.g. infinitival to, genitive of) are classified as functors. See §2.4.
contraction: a process by which two different words are combined into a single word, with either or both words being reduced in form. For example, by contraction, want to can be reduced to wanna, going to to gonna, he is to he's, they have to they've, did not to didn't etc. See also cliticisation.
contrastive: in a sentence like 'Syntax, I hate but phonology I enjoy', the expressions syntax and phonology are contrasted, and each is said to be contrastive in use.
control(ler)/control predicate: in non-finite clauses with a PRO subject which has an antecedent, the antecedent is said to be the controller of PRO (or to control PRO), and conversely PRO is said to be controlled by its antecedent; and the relevant kind of structure is called a control structure. So, in a structure
like 'John decided PRO to quit', John is the controller of PRO, and conversely PRO is controlled by John. The term control predicate denotes a word like try which takes an infinitive complement with a (controlled) PRO subject. Verbs like try which take a complement containing a PRO subject controlled by the subject of try are called subject-control predicates (see §4.2); verbs like persuade in sentences like I persuaded him to take syntax which take an infinitive complement whose PRO subject is controlled by the object of the main verb (here, the him object of persuade) are called object-control predicates (see §9.5).
converge(nce): a derivation converges (and hence results in a well-formed sentence) if the resulting PF-representation contains only phonetic features, and the associated semantic representation contains only (semantically) interpretable features. The Convergence Principle is a UG principle requiring that when a probe attracts a goal carrying some feature [F], it triggers movement of the smallest constituent containing [F] which will lead to a convergent (hence well-formed) derivation: see §6.7.
coordinate/coordination: a coordinate structure is a structure containing two or more expressions joined together by a coordinating conjunction such as and/but/or/nor (e.g. 'John and Mary' is a coordinate structure). Coordination is the operation by which two or more expressions are joined together by a coordinating conjunction.
copula/copular verb: a 'linking verb', used to link a subject with a non-verbal predicate. The main copular verb in English is be (though verbs like become, remain, stay etc. also have much the same linking function). In sentences such as 'They are lazy', 'They are fools' and 'They are outside', the verb are is said to be a copula in that it links the subject they to the adjectival predicate lazy, or the nominal predicate fools, or the prepositional predicate outside.
copy/copying: the Copy Theory of Movement is a theory developed by Chomsky which maintains that a moved constituent leaves behind a (trace) copy of itself when it moves, with the copy generally having its phonetic features deleted and so being null: see $\S 5.3, \S 6.3$ and $\S 7.2$. Feature Copying is an operation by which the value of a feature on one constituent is copied onto another (e.g. the values of the person/number features of a subject are copied onto an auxiliary): see $\S 8.3$.
coreferential: two expressions are coreferential if they refer to the same entity. For example, in 'John cut himself while shaving', himself and John are coreferential in the sense that they refer to the same individual.
count/countability: a count(able) noun is a noun which can be counted. Hence, a noun such as chair is a count noun since we can say 'One chair, two chairs, three chairs etc.'; but a noun such as furniture is a non-count/uncountable/mass noun since we cannot say '*one furniture, *two furnitures, *three furnitures etc.'

The countability properties of a noun determine whether the relevant item is a count noun or not.
counterexample: an example which falsifies a particular hypothesis. For example, an auxiliary like ought would be a counterexample to any claim that auxiliaries in English never take an infinitive complement introduced by to (e.g. 'You ought to tell them').

CP: complementiser phrase: see complementiser.

crash: a derivation is said to crash (i.e. 'fail') if one or more features carried by one or more constituents is illegible at either or both of the interface levels (the phonetics interface and the semantics interface). For example, if the person or number features of HAVE remain unvalued in a sentence such as 'He HAVE left', the resulting structure will crash at the phonetics interface, since the PF component will be unable to determine whether HAVE should be spelled out as have or has.
cross-categorial properties: properties which extend across categories, i.e. which are associated with more than one different category. See §2.11.
cycle/cyclic: syntactic operations (like agreement and movement) are said to apply in a cyclic fashion, such that each time a head H is merged with one or more other constituents, a new cycle of operations begins (in the sense that any operation affecting H and one or more other constituents which it c-commands applies at this point). See §5.7.

D: see determiner.

Dat: an informal abbreviate for dative case. See case.
daughter: a node X is the daughter of another node Y if Y is the next highest node up in the tree from X, and the two are connected by a branch (solid line).
declarative: a term used as a classification of the force (i.e. semantic function) of a clause which is used to make a statement (as opposed to an interrogative, exclamative or imperative clause).
default: a default value or property is one which obtains if all else fails (i.e. if other conditions are not satisfied). For example, if we say that - \varnothing is the default verbal inflection for regular verbs in English, we mean that regular verbs carry the inflection $-s$ in third-person-singular present-tense forms, $-d$ in past, perfect or passive forms, -ing if progressive or gerund forms, and - \varnothing otherwise (by default).
defective: a defective item is one which lacks certain properties. For example, if we suppose that T constituents generally carry person and number features, then infinitival to in all infinitive structures except control infinitives is a defective T constituent in that (under Chomsky's analysis) it carries person but not number. Any clause containing a defective T constituent is a defective clause.
definite: expressions containing determiners like the, this, that etc. are said to have definite reference in that they refer to an entity which is assumed to be known to the addressee(s): e.g. in a sentence such as 'I hated the course', the DP the course refers to a specific (e.g. Minimalist Syntax) course whose identity is assumed to be known to the hearer/reader. In much the same way, personal pronouns like helshelitlthey etc. are said to have definite reference. By contrast, expressions containing a determiner like a are indefinite, in that (e.g.) if you say 'I'm taking a course', you don't assume that the hearer/reader knows which course you are taking.

DEG: a degree word like so/too/how.
demonstrative: this is a term used to refer to words like this/that, theselthose and herelthere which indicate a location relatively nearer to or further from the speaker (e.g. this book means 'the book relatively close to me', and that book means 'the book somewhat further away from me').
derivation: the derivation of a phrase or clause is the set of syntactic (e.g. merger and movement) operations used to form the relevant structure. The derivation of a word is the set of morphological operations used to form the word.
derivational morphology/suffix: derivational morphology is the component of a grammar which deals with the ways in which one type of word can be formed from another: for example, by adding the suffix -ness to the adjective sad we can form the noun sadness, so that -ness is a derivational suffix. See §2.2.
derivative: to say that the noun happiness is a derivative of the adjective happy is to say that happiness is formed from happy by the addition of an appropriate derivational morpheme (in this case, the suffix -ness).
derive: to derive a structure it to say how it is formed (i.e. specify the operations by which it is formed).
derived structure: a structure which is produced by the application of one or more syntactic (e.g. merger, movement or agreement) operations.
descriptive adequacy: a grammar of a particular language attains descriptive adequacy if it correctly specifies which strings of words do (and don't) form grammatical phrases and sentences in the language, and correctly describes the structure and interpretation of the relevant phrases and sentences. See §1.3.

DET/determiner: a word like the/this/that which is typically used to modify a noun, but which has no descriptive content of its own. Most determiners can be used either prenominally (i.e. in front of a noun that they modify) or pronominally (i.e. used on their own without a following noun) - cf. 'I don't like that idea/I don't like that'). See §2.5.
determiner phrase: a phrase like the king (of Utopia) which comprises a determiner the, and a noun complement like king or a noun phrase complement like
king of Utopia. In work before the mid 1980s, a structure like the king of Utopia would have been analysed as a noun phrase ($=$ NP), comprising the head noun king, its complement of Utopia and its specifier the. Since Abney (1987), such expressions have been taken to have the status of $\mathrm{DP} /$ determiner phrase.
direct object: see object.
direct theta-marking: see theta-mark.
discontinuous spellout: a phenomenon whereby part of a moved phrase is spelled out in the position in which it originates, and the remainder in the position in which it ends up - as in 'How much do you believe of what he tells you?', where the wh-phrase how much of what he tells you moves to the front of the sentence, with how much being spelled out in the position it moves to, and of what he tells you being spelled out in the position in which it originates. See §6.3.
discourse: discourse factors are factors relating to the extrasentential setting in which an expression occurs (where extrasentential means 'outside the immediate sentence containing the relevant expression'). For example, to say that the reference of PRO is discourse-determined in a sentence such as 'It would be wise PRO to prepare yourself for the worst' means that PRO has no antecedent within the sentence immediately containing it, but rather refers to some individual(s) outside the sentence (in this case, the person being spoken to).
distribution/distributional: the distribution of an expression is the set of positions which it can occupy within an appropriate kind of phrase or sentence. Hence, a distributional property is in effect a word-order property.
domain: the domain (or, more fully, c-command domain) of a head H is the set of constituents c-commanded by H - namely its sister and all the constituents contained within its sister. For example, the domain of C includes its TP complement and any constituent of the relevant TP.

Do-support: this refers to the requirement for the 'dummy' (i.e. meaningless) auxiliary DO to be used to form questions, negatives or tags in sentences which would otherwise contain no auxiliary. Hence, because a non-auxiliary verb like want requires Do-support in questions/negatives/ tags, we have sentences such as 'Does he want some?', 'He doesn't want any' and 'He wants some, does he?' See §5.8.
double-object construction: see object.
DP: see determiner phrase.
DP hypothesis: the hypothesis that all nominal arguments have the status of DPs - not just nominals like the president which contain an overt determiner, but also 'bare' nominal arguments like politicians and promises (in sentences like 'Politicians break promises').

D-pronoun: a pronoun like that in 'I don't like that' which seems to be a pronominal determiner.

Earliness Principle: a principle which says that linguistic operations must apply as early in a derivation as possible.

Early Modern English/EME: the type of English found in the early seventeenth century (i.e. at around the time Shakespeare wrote most of his plays, between 1590 and 1620), also known as Elizabethan English.
echo question: a type of sentence used to question something which someone else has just said (often with an air of incredulity), repeating all or most of what they have just said. For example, if I say 'I've just met Nim Chimpsky' and you don't believe me (or don't know who I'm talking about), you could reply with an echo question such as 'You've just met who?'

ECM: see Exceptional Case-Marking.

economy: economy considerations require that (all other things being equal) syntactic representations should contain as few constituents and syntactic derivations involve as few grammatical operations as possible.
edge: the edge of a given projection HP is that part of HP which excludes the complement of H (hence, that part of the structure which includes the head H and any specifier/s which it has).

Elizabethan English: the type of English found in the early seventeenth century, during the reign of Queen Elizabeth I (i.e. at around the time Shakespeare wrote most of his plays, between 1590 and 1620), also known as Early Modern English/EME.
ellipsis/elliptical: ellipsis is a process by which an expression is omitted (in the sense that its phonetic features are deleted and so unpronounced), e.g. in order to avoid repetition. For example, in a sentence such as 'I will do it if you will do it', we can ellipse (i.e. omit) the second occurrence of do it to avoid repetition, and hence say 'I will do it if you will'. An elliptical structure is one containing an 'understood' constituent which has undergone ellipsis (i.e. been omitted).
embedded clause: a clause which is positioned internally within another constituent. For example, in a sentence such as 'He may suspect that I hid them', the hid-clause (= that I hid them) is embedded within (and is the complement of) the verb phrase headed by the verb suspect. Likewise, in 'The fact that he didn't apologise is significant', the that-clause (that he didn't apologise) is an embedded clause in the sense that it is embedded within a noun phrase headed by the noun fact. A clause which is not embedded within any other expression is a root clause (see root).

EME: see Early Modern English.

empirical evidence: evidence based on observed linguistic phenomena. In syntax, the term 'empirical evidence' usually means 'evidence based on grammaticality judgments by native speakers'. For example, the fact that sentences like *'Himself likes you' are judged ungrammatical by native speakers of Standard English provides us with empirical evidence that anaphors like himself can't be used without an appropriate antecedent (i.e. an expression which they refer back to).
empty: a constituent is empty/null if it is 'silent' and hence has no overt phonetic form. Empty categories include null subject pronouns like PRO and pro, null relative pronouns (like the null counterpart of who in someone who I know well), null determiners (like that in ' \varnothing John is tired') and null trace copies of moved constituents. See ch. 4.
enclitic/encliticise: see clitic.
entry: a lexical entry is an entry for a particular word in a dictionary (and hence by extension refers to the set of information about the word given in the relevant dictionary entry).

EPP: this was originally an abbreviation for the Extended Projection Principle, which posited that every T constituent must be extended into a TP projection which has a specifier. In more recent work, the requirement for a T constituent like will to have a specifier is said to be a consequence of T carrying an [EPP] feature requiring it to project a specifier. The EPP Generalisation specifies the conditions under which the [EPP] feature carried by a head is deleted via use of an expletive or via movement: see §8.6.
ergative: this term originally applied to languages like Basque in which the complement of a transitive verb and the subject of an intransitive verb are assigned the same morphological case. However, by extension, it has come to be used to denote verbs like break which occur both in transitive structures like 'Someone broke the window' and in intransitive structures like 'The window broke', where the window seems to play the same semantic role in both types of sentences, in spite of being the complement of broke in one sentence and the subject of broke in the other. See §9.4.

Exceptional Case-Marking/ECM: accusative subjects of infinitive clauses (e.g. him in 'I believe him to be innocent') are said to carry exceptional accusative case (in that the case of the accusative subject is assigned by the main-clause verb believe, and it is exceptional for the case of the subject of one clause to be assigned by the verb in a higher clause). Verbs (like believe) which take an infinitive complement with an accusative subject are said to be ECM verbs. See $\S 9.7$ and §9.8.
exclamative: a type of structure used to exclaim surprise, delight, annoyance etc. In English syntax, the term is restricted largely to clauses beginning with
wh-exclamative words like What! or How! - e.g. 'What a fool I was!' or 'How blind I was!' See $\S 6.9$ and $\S 9.2$.
existential: an existential sentence is one which is about the existence of some entity. For example, a sentence such as 'Is there any coffee left?' questions the existence of coffee. Consequently, the word any here is sometimes said to be an existential quantifier (as is some in a sentence like 'There is some coffee in the pot').
experience: children's experience is the speech input which they receive (or, more generally, the speech activity which they observe) in the course of acquiring their native language.

EXPERIENCER: a term used in the analysis of semantic/thematic roles to denote the entity which experiences some emotional or cognitive state - e.g. John in 'John felt unhappy', or 'John thought about his predicament'. See §7.5.
explanatory adequacy: a linguistic theory meets the criterion of explanatory adequacy if it explains why grammars have the properties that they do, and how children come to acquire grammars in such a short period of time. See §1.3.
expletive: a 'dummy' constituent with no inherent semantic content, such as the pronoun there in existential sentences like 'There is no truth in the rumour', or the pronoun it in sentences such as It is unclear why he resigned. See $\S 8.5$ and §8.6.
expression: this word is used in the text as an informal term meaning a string (i.e. continuous sequence) of one or more words which form a constituent.

Extended Projection Principle: see EPP.

external argument: see argument.
extract/extraction: extract(ion) is another term for move(ment), and so denotes an operation by which one constituent is moved out of another. For example, in a structure such as 'Who do you think [he saw -]' the pronoun who has been extracted out of the bracketed clause (i.e. it has been moved out of the position marked -), and moved to the front of the overall sentence. The extraction site for a moved constituent is the position which it occupied before undergoing movement.
extrapose/extraposition: a term used to denote a movement operation by which an expression (usually one which is very long, or highlighted in some way) is moved to the end of a given structure. For example, in a sentence like 'He bequeathed his priceless collection of Ming vases to Mary' the italicised object can undergo extraposition/be extraposed and thereby moved to the end of the sentence in 'He bequeathed to Mary his priceless collection of Ming vases.'
\mathbf{F} : this symbol is used as a convenient notational device to denote an abstract functional head (or an abstract feature) of some kind.
feature: a device used to describe a particular grammatical property. For example, the distinction between count and non-count nouns might be described in terms of a feature such as $[\pm$ Count]. On Feature-Copying, see copying. FeatureDeletion is an operation by which uninterpretable features are deleted: see §8.4. The Feature Visibility Convention specifies that deleted features are invisible in the semantic component but remain visible in the syntactic and PF components: see $\S 8.4$. The Feature Inactivation Hypothesis posits that an uninterpretable feature becomes inactive in the syntax (and invisible to the semantic component) immediately it is deleted: see $\S 8.6$.
feminine: this term is used in discussion of grammatical gender to denote pronouns like she/her/hers which refer to female entities.

FHC: see Functional Head Constraint.

filled: to say that a given position in a structure must be filled is to say that it cannot remain empty but rather must be occupied (usually by an overt constituent of an appropriate kind).

Fin/finite/FinP: the term finite verb/finite clause denotes (a clause containing) an auxiliary or non-auxiliary verb which can have a nominative subject like I/we/he/she/they. For example, compare the two bracketed clauses in:
(i) What if [people annoy her]? (ii) Don't let [people annoy her]

The bracketed clause and the verb annoy in (i) are finite because in place of the subject people we can have a nominative pronoun like they; by contrast, the bracketed clause and the verb annoy are non-finite in (ii) because people cannot be replaced by a nominative pronoun like they (only by an accusative pronoun like them): cf.
(iii) What if [they annoy her]? (iv) Don't let [them/* they annoy her]

By contrast, a verb or clause which has a subject with accusative or null case in English is non-finite; hence the bracketed clauses and italicised verbs are nonfinite in the examples below:
(v) Don't let [them annoy her] (vi) You should try [PRO to help]

Non-finite forms include infinitive forms like $b e$, and participle forms like being/been. In work by Luigi Rizzi on split CP projections (discussed in §9.3), infinitival complementisers like Italian di 'of' and English for are said to occupy the head Fin ('Finiteness') position within a FinP ('Finiteness Phrase') projection.
first person: see person.
> floating quantifier: a quantifier which is separated from the expression which it quantifies. For example, in a sentence such as 'The students have all passed their exams', all quantifies (but is not positioned next to) the students, so that all is a floating quantifier here.

Foc/focus/focusing/FocP: focus position in a sentence is a position occupied by a constituent which is highlighted in some way (usually in order to mark it as containing 'new' or 'unfamiliar' information). For example, in a cleft sentence such as 'It's syntax that they hate most' or a pseudo-cleft sentence such as 'What they hate most is syntax', the expression syntax is said to occupy focus position within the relevant sentence. Focusing denotes a movement operation by which a constituent is moved into a focus position at the beginning of a clause in order to highlight it (e.g. to mark it as introducing new information). Thus, in a sentence like 'Nothing could they do to save her', the expression nothing has been focused by being moved to the front of the overall sentence from its underlying position as the complement of the verb $d o$. In work on split CP projections by Luigi Rizzi (discussed in §9.2), preposed focused expressions are said to occupy the specifier position within a FocP ('Focus Phrase') projection which is headed by an abstract Foc ('Focus') head.
foot: the foot of a (movement) chain is the constituent which occupies the lowest position in the chain.
force: the complementisers that/if in a sentence such as I didn't know [that/if he was lying] are said to indicate that the bracketed clauses are declarative/interrogative in force (in the sense that they have the force of a question/a statement). In work on split CP projections by Luigi Rizzi (discussed in §§9.29.3), complementisers are said to constitute a Force head which can project into a Force Phrase.
formal: in an expression such as formal speech style, the word formal denotes a very careful and stylised form of speech (as opposed to the kind of informal colloquial speech style used in a casual conversation in a bar): in an expression such as formal features, the word formal means 'grammatical' (i.e. features which play a role in morphology/syntax).
fragment: an utterance which is not a complete sentence (in the sense that it does not constitute a clause). So, a phrase such as 'A new dress' used in reply to a question such as 'What did you buy?' would be a sentence-fragment. (By contrast, a sentence such as 'I bought a new dress' would not be a sentence-fragment, since it contains a complete clause.)
free relative clause: a clause containing a relative pronoun which has no overt antecedent, like that italicised in 'What you say is true.' See relative.
front/fronting: fronting is an informal term to denote a movement operation by which a given expression is fronted - i.e. moved to the front of some phrase or sentence.
function: expressions such as subject, specifier, complement, object, head and adjunct are said to denote the grammatical function which a particular expression fulfils in a particular structure (which in turn relates to the position which it occupies and certain of its grammatical properties - e.g. case and agreement properties).
functional category/Functional Head Constraint/function word/functor: a word which has no descriptive/lexical content and which serves an essentially grammatical function is said to be a function word or functor (by contrast, a word which has descriptive/lexical content is a content word or contentive). A functional category is a category whose members are function words: hence, categories such as complementiser, auxiliary, infinitive particle, case particle, or determiner are all functional categories - as well as the expressions they head (e.g. C-bar/CP, T-bar/TP, D-bar/DP etc.). See §2.4. The Functional Head Constraint is a grammatical principle which specifies that the complement of a certain type of functional head (including C and D) cannot be preposed on its own without moving the functional head along with it: see $\S 3.6$.
gapping: a form of ellipsis in which the head word is omitted from one (or more) of the conjuncts in a coordinate structure in order to avoid repetition. For example, the italicised second occurrence of bought can be gapped (i.e. omitted) in a sentence such as 'John bought an apple and Mary bought a pear', giving 'John bought an apple, and Mary a pear.'

Gen: in one use, an abbreviation for genitive case; in another, an abbreviation for gender.
gender: a grammatical property whereby words are divided into different grammatical classes which play a role in agreement/concord relationships. In French, for example, nouns are intrinsically masculine or feminine in gender (e.g. pommier 'apple tree' is masculine, but pomme 'apple' is feminine), and determiners inflect for gender (as well as number), so that $u n$ 'a' is the masculine form of the indefinite article, and une is its feminine form. Determiners in French have to agree in gender (and number) with the nouns they modify, hence we say un pommier 'an apple tree', but une pomme 'an apple'. In English, nouns no longer have inherent gender properties, and adjectives/determiners don't inflect for gender either. Only personal pronouns like he/she/it carry gender properties in modern English, and these are traditionally said to carry masculine/feminine/neuter gender respectively (though the term inanimate is sometimes used in place of neuter).
generate/generative: the syntactic component of a grammar is said to generate (i.e. specify how to form) a set of syntactic structures. A grammar which does so is said to be a generative grammar.
generic: to say that an expression like eggs in a sentence such as 'Eggs are fattening' has a generic interpretation is to say that it is interpreted as meaning 'eggs in general'.
genitive: see case.
gerund: when used in conjunction with the progressive aspect auxiliary be, verb forms ending in -ing are progressive participles; in other uses they generally function as gerunds. In particular, -ing verb forms are gerunds when they can be used as subjects, or as complements of verbs or prepositions, and when (in literary styles) they can have a genitive subject like my. Thus writing is a gerund (verb form) in a sentence such as 'She was annoyed at [my writing to her mother]', since the bracketed gerund structure is used as the complement of the preposition $a t$, and has a genitive subject $m y$.

GOAL/goal: the term GOAL is used in the analysis of semantic/thematic roles to denote the entity towards which something moves - e.g. Mary in 'John sent Mary a letter': see $\S 7.5$. In a different sense, the term goal represents a constituent which agrees with a higher head which serves as a probe: see §8.2.
gradable/ungradable: words are gradable if they denote a concept or property which can exist in varying degrees. For example, tall is gradable since we can say (e.g.) fairly/very/extremely tall; by contrast, dead is ungradable, since it denotes an absolute property (hence it's odd to say !very dead).
grammar: in traditional terms, grammar includes morphology and syntax. In a broader Chomskyan sense, grammar includes phonology and structural aspects of semantics: i.e. a grammar of a language is a computational system which derives the Phonetic Form and Semantic Representation of expressions.
grammatical: an expression is grammatical if it contains no morphological or syntactic error, and ungrammatical if it contains one or more morphological or syntactic errors. Grammatical features are (e.g. person, number, gender, case etc.) features which play a role in grammatical operations (e.g. in determining case or agreement properties).
have-cliticisation: an operation by which have (in the guise of its contracted clitic variant $/ \mathrm{v} /$) attaches to an immediately preceding word ending in a vowel or diphthong, resulting in forms such as I've, we've, they've etc.
head: this term has two main uses. The head (constituent) of a phrase is the key word which determines the properties of the phrase. So, in a phrase such as fond of fast food, the head of the phrase is the adjective fond, and consequently the phrase is an adjectival phrase (and hence can occupy typical positions associated
with adjectival expressions - e.g. as the complement of is in 'He is fond of fast food'). In many cases, the term head is more or less equivalent to the term word (e.g. in sentences such as 'An accusative pronoun can be used as the complement of a transitive head'). In a different use of the same word, the head of a movement chain is the highest constituent in the chain.
headed/Headedness Principle: an expression is headed if it has a head. The Headedness Principle specifies that every constituent must be headed. So, for example, an expression like fond of fast food is headed by the adjective fond and so is an adjectival phrase. See head.
head-first/-last: a head-first structure is one in which the head of an expression is positioned before its complement(s); a head-last structure is one in which the head of an expression is positioned after its complement(s). See §1.6.
head movement: movement of a word from one head position to another (e.g. movement of an auxiliary from T to C , or of a verb from V to T , or of a noun from N to D). See ch. 5.

Head Movement Constraint/HMC: a principle of Universal Grammar which specifies that movement between one head position and another is only possible between the head of a given structure and the head of its complement. See §5.5.

Head-Position Parameter: the parameter which determines whether a language positions a given type of head before or after its complement. See §1.6.

Head-Strength Parameter: a parameter whose setting determines whether a given kind of head is strong and can trigger movement of a lower head to attach to it, or weak and so cannot attract a lower head to move to attach to it. See §5.5.

HMC: see Head Movement Constraint.

homophonous: two different expressions are homophonous if they have the same phonetic form (e.g. we've and weave).
host: an expression to which a clitic or affix attaches. For example, if $n ' t$ cliticises onto could in expressions like couldn't, we can say that could is the host onto which n ' t cliticises.

I: see INFL.
identification/identify: in the relevant technical sense, we can say that the inflection -st identifies (or enables identification of) the null pro subject as second person singular in a Shakespearean sentence such as 'Hast pro any more of this?' (Trinculo, The Tempest, II.ii). This is because -st in Elizabethan English is a second-person-singular inflection, and since subjects agree with finite verbs in
person and number, it follows that the null pro subject must also be second person singular. See §5.5.
idiom: a string of words which has an idiosyncratic meaning (e.g. hit the roof in the sense of 'get angry').

I-language: I-language is a linguistic system internalised (i.e. internally represented) within the brain. See §1.3.
illegible: see legible.
immediate constituent: see constituent.
immediately contain: see contain.
Imp: a symbol used to designate an (affixal) imperative morpheme which occupies the head C position of CP in imperatives: see ex. 5.2.
impenetrable: inaccessible. See Phase Impenetrability Condition.
imperative: a term employed to classify a type of sentence used to issue an order (e.g. 'Be quiet!', 'Don't say anything!'), and also to classify the type of verb form used in an imperative sentence (e.g. be is an imperative verb form in 'Be quiet!').
impoverished: poor (see rich).
inanimate: see animate.
Inclusiveness Condition: a grammatical principle proposed by Chomsky (1999, p. 2) which 'bars introduction of new elements (features) in the course of a derivation'.
indefinite: see definite.
indicative: indicative (auxiliary and main) verb forms are finite forms which are used (inter alia) in declarative and interrogative clauses (i.e. statements and questions). Thus, the italicised items are said to be indicative in mood in the following sentences: 'He is teasing you', 'Can he speak French?', 'He had been smoking', 'He loves chocolate', 'He hated syntax.' An indicative clause is a clause which contains an indicative (auxiliary or non-auxiliary) verb. See mood.

indirect theta-marking: see theta-marking.

infinitive: the infinitive form of a verb is the (uninflected) form which is used (inter alia) when the verb is the complement of a modal auxiliary like can, or of the infinitive particle to. Accordingly, the italicised verbs are infinitive forms in sentences like 'He can speak French', and 'He's trying to learn French.' An infinitive clause is a clause which contains a verb in the infinitive form. Hence, the bracketed clauses are infinitive clauses in: 'He is trying [to help her]', and 'Why not let [him help her]?' (In both examples, help is an infinitive verb form, and
to when used with an infinitive complement is said to be an infinitive particle.) Since clauses are analysed as phrases within the framework used here, the term infinitive phrase can be used interchangeably with infinitive clause, to denote a TP projection headed by the infinitive particle to (or by a null counterpart of the infinitive particle to).

INFL: a category devised by Chomsky (1981) whose members include finite auxiliaries (which are INFLected for tense/agreement), and the INFinitivaL particle to. In more recent work, T is used in place of INFL. See §2.8.
inflection/inflectional: an inflection is an affix which marks grammatical properties such as number, person, tense, case. For example, a plural noun such as $d o g s$ in English comprises the stem form $d o g$ and the plural number inflection $-s$. Inflectional morphology is the grammar of inflections.
inherent case: see case.
initial grammar: the earliest grammar of their native language developed by infants.
innateness hypothesis: the hypothesis that children have a biologically endowed innate language faculty. See §1.4.
in situ: a constituent is said to remain in situ (i.e. 'in place') if it doesn't undergo a given kind of movement operation.
interface levels: levels at which the grammar interfaces (i.e. connects) with speech and thought systems which lie outside the domain of grammar. Phonetic Form is the level at which the grammar interfaces with articulatory-perceptual (speech) systems, and Semantic Representation is the level at which it interfaces with conceptual-intentional (thought) systems.
intermediate projection: see project(ion).
internal argument: see argument.
internalised grammar: a grammar which is internally represented within the mind/brain.
interpretable: a feature is (semantically) interpretable if it has semantic content: so, for example, a feature such as [Plural-Number] on a pronoun like they is interpretable, but a phonetic feature like [+nasal] is uninterpretable, and so too are many grammatical/formal features (e.g. case features). See §8.4.
interpretation: to say that an expression has a particular (semantic) interpretation is to say that it expresses a particular meaning. So, for example, we might say that a sentence such as 'He loves you more than Sam' has two different interpretations one on which Sam has a subject interpretation and is implicitly understood as the subject of loves you, and a second on which Sam has an object interpretation and
is implicitly understood as the object of he loves. The first interpretation can be paraphrased as 'He loves you more than Sam loves you', and the second as 'He loves you more than he loves Sam.'
interrogative: an interrogative clause or sentence is one which asks a question. See question.
intervention constraint: a principle specifying that in a structure of the form [. . . X . . [. . . Y . . . [. . . Z . . .]]], X cannot attract Z if there is a constituent Y of the same type as Z which intervenes between X and Z. See §6.4.
intransitive: see transitive.
intuitions: judgments given by native speakers about the grammaticality, interpretation and structure of expressions in their language.
inversion/inverted: a term used to denote a movement process by which the relative order of two expressions is reversed. It is most frequently used in relation to the more specific operation by which an auxiliary (and, in earlier stages of English, non-auxiliary) verb comes to be positioned before its subject, e.g. in questions such as 'Can you speak Swahili?', where can is positioned in front of its subject you. See ch. 5 . An inverted auxiliary/verb is one which is positioned in front of its subject (e.g. will in 'Will I pass the syntax exam?').
irrealis: an infinitive complement like that italicised in 'They would prefer (for) you to abstain' is said to denote an irrealis (a Latin word meaning 'unreal') event in the sense that the act of abstention is a hypothetical event which has not yet happened and may never happen.
island: a structure out of which no subpart can be extracted. For example, coordinate structures like William and Harry are islands in this sense. Hence, in a sentence like 'I admire William and Harry', we can topicalise the whole coordinate structure William and Harry by moving it to the front of the overall sentence (as in 'William and Harry, I admire'), but we cannot topicalise Harry alone (as we see from the ungrammaticality of *'Harry I admire William and').

K: case particle. See case.
label: a notational device used to represent linguistic properties of constituents. For example, if we say that the word man belongs to the category N of noun, we are using N as a label to indicate the categorial properties of the word man (i.e. to tell us what grammatical category man belongs to).

labelled bracketing: see bracketing.

landing site: the landing site for a moved constituent is the position it ends up in after it has been moved (e.g. the specifier position within CP is the landing site for a moved wh-expression).

Language Faculty: Chomsky argues that humans beings have an innate Language Faculty which provides them with an algorithm (i.e. set of procedures or programme) for acquiring a grammar of their native language(s). See §1.4.

LBC: see Left Branch Condition.

learnability: a criterion of adequacy for linguistic theory. An adequate theory must explain how children come to learn the grammar of their native languages in such a short period of time, and hence must provide for grammars of languages which are easily learnable by children. See §1.3.

Left Branch Condition: a constraint which specifies that in languages like English, the leftmost constituent of a nominal, adjectival or adverbial expression cannot be moved out of the expression containing it.
legible: to say that syntactic structures must be legible at the semantics and phonetics interfaces is to say that the structures inputted to the semantic component of the grammar must contain only features which contribute to semantic interpretation, and that the structures inputted to the PF component must contain only features which contribute to determining the phonetic form of an expression. Any structure which is not legible at a given interface is said to be illegible to the relevant interface.
level: in the sense in which this term is used in this book, constituents like T, T-bar and TP represent different projection levels - i.e. successively larger types of category (T being a minimal projection, T -bar an intermediate projection and TP a maximal projection). See projection.
lexical/lexicon: the word lexical is used in a number of different ways. Since a lexicon is a dictionary (i.e. a list of all the words in a language and their idiosyncratic linguistic properties), the expression lexical item in effect means 'word', the expression lexical entry means 'the entry in the dictionary for a particular word', the term lexical property means 'property of some individual word', the term lexical learning means 'learning words and their idiosyncratic properties' and the term lexical array means 'the set of words out of which a given expression is formed'. However, the word lexical is also used in a second sense, in which it is contrasted with functional (and hence means 'non-functional'). In this second sense, a lexical category is a category whose members are contentives (i.e. items with idiosyncratic descriptive content): hence, categories such as noun, verb, adjective or preposition are lexical categories in this sense. So, for example, the term lexical verb means 'main verb' (i.e. a non-auxiliary verb like go, find, hate, want etc.).

LF(-representation): (a representation of the) Logical Form (of an expression). See representation. The LF-component of a grammar is the (semantic) component which converts the syntactic structures produced by merger and movement operations into LF-representations.
light verb: this term is traditionally used to denote verbs (e.g. like take/make in expressions like make fun of and take heed of) with relatively little semantic content. However, in recent work on VP shells discussed in §§9.4-9.9, this term is extended to denote an abstract affixal verb (often with a causative sense like that of make) to which a noun, adjective or verb adjoins. For example, it might be claimed that the suffix -en in a verb like sadden is an affixal light verb which combines with an adjective like sad to form the causative verb sadden (which has a meaning loosely paraphraseable as 'make sad', or 'cause to become sad'). This type of analysis can be extended to verbs like roll as they are used in sentences like 'He rolled the ball down the hill', if we assume that roll here is used causatively (and so has a meaning paraphraseable as 'make roll', or 'cause to roll'), and hence involves adjunction of the verb roll to an abstract light verb (which can be thought of as a null verbal counterpart of -en).
link: a constituent (or position) which is part of a movement chain.
local: one constituent X can enter into a grammatical relation (e.g. an agreement relation) with another constituent Y only if Y is in the local c-command domain of X - i.e. only if Y is c-commanded by X and if Y is sufficiently close to X . In recent work, Chomsky has defined relative closeness (for syntactic operations like agreement) in terms of the Phase Impenetrability Condition.
locative: this is a term which denotes the semantic/thematic function of a constituent. A locative expression is one which denotes place. So, for example, there/where are locative pronouns in sentences such as 'Are you going there?' or 'Where are you going?' See §7.5.
locus: to say that T is the locus of tense is to say that the tense property associated with a tensed clause, or tensed auxiliary, or main verb originates as a tense feature (or tense affix) carried by the head T constituent of TP.
long-distance movement: a long-distance movement operation is one which moves a constituent out of one clause (TP/CP) into another.

main clause: see root clause.

main verb: a non-auxiliary verb. See auxiliary.
masc(uline): This term is used in discussion of grammatical gender to denote pronouns like he/him/his which refer to male entities.

mass noun: see count noun.

match: two constituents match in respect of some feature [F] either if one is valued for $[\mathrm{F}]$ and the other unvalued for $[\mathrm{F}]$, or if both carry the same value for [F]. See ch. 8 .
matrix: in a sentence such as 'I think he lied', the (italicised) lied clause is an embedded/complement clause (by virtue of being embedded as the complement
of the verb think), and the think clause is the matrix clause, in the sense that it is the clause immediately containing the lied clause.

maximal projection: see projection.

merge(r): an operation by which two constituents are combined together to form a single larger constituent. See ch. 3 .

MFCF: see Multiply Filled COMP Filter.

Minimalism/Minimalist program: a theory of grammar developed by Chomsky whose core assumption is that grammars are minimally complex, perfect systems of optimal design. See §1.3.
minimal projection: see projection.
MIT: The Massachusetts Institute of Technology (located in Cambridge, Massachusetts), where Chomsky has worked for the past five decades.
modal/modality: a modal auxiliary is an auxiliary which expresses modality (i.e. notions such as possibility, futurity or necessity). The set of modal auxiliaries found in English is usually assumed to include will/would/can/could/shall/ should/may/might/must/ought, and need/dare when followed by a 'bare'(to-less) infinitive complement.
modifier/modify: in an expression such as tall men, it is traditionally said that the adjective tall modifies (i.e. attributes some property to) or is a modifier of the noun men. Likewise, in a sentence such as 'Eat slowly!', the adverb slowly is said to modify the verb eat (in the sense that it describes the manner in which the hearer is being told to eat).
module: an individual component of a larger system. For example, a grammar might be said to contain a case module - i.e. a component which accounts for the case properties of relevant constituents.
mood: this is a term describing inflectional properties of finite verbs. (Auxiliary and non-auxiliary) verbs in English can be in the indicative mood, subjunctive mood or imperative mood. Examples of each type of mood are given by the italicised verb forms in the following: 'He hates [= indicative] spaghetti'; 'The court ordered that he be [= subjunctive] detained indefinitely'; 'Keep [= imperative] quiet!' The mood of the verb determines aspects of the interpretation of the relevant clause, so that e.g. subjunctive verbs occur in irrealis clauses.
morpheme: the smallest unit of grammatical structure. Thus, a plural noun such as cats comprises two morphemes, namely the stem cat and the plural suffix $-s$.
morphology/morphological: morphology studies how morphemes are combined together to form words. Morphological properties are properties relating to the form of words (i.e. relating to the inflections or affixes they carry). For
example, it is a morphological property of regular count nouns that they have a plural form ending in $-s$.
morphosyntactic: a morphosyntactic property is a 'grammatical' property, i.e. a property which affects (or is affected by) relevant aspects of morphology and syntax. For instance, case is a morphosyntactic property in that (e.g.) pronouns have different morphological forms and occupy different syntactic positions according to their case: e.g. the nominative form of the first-person-plural pronoun is we and its accusative form is $u s$; the two occupy different syntactic positions in that the nominative form occurs as the subject of a finite verb, whereas the accusative form occurs as the complement of a transitive verb or preposition: cf. 'We disagree', 'Join us.'
mother: a constituent X is the mother of another constituent Y if X is the next highest node up in the tree from Y, and the two are connected by a branch (solid line). See §3.7.
multiple agreement: agreement between a probe and more than one goal. See §8.6.
multiple specifiers: in his (1995) book and subsequent work, Chomsky suggests that certain types of head may allow more than one specifier (e.g. a light verb with an external argument/subject as its inner specifier may attract a wh-expression to become its outer specifier: see $\S 10.5$).
multiple wh-questions: questions containing more than one wh-word. See §6.4.
Multiply Filled COMP Filter: a constraint which specifies that (in present-day English) no overt complementiser (like that/if/for) can have an overt specifier.

N : see noun.

natural language: a language acquired in a natural setting by human beings (hence, excluding e.g. computer languages, animal communication systems etc.).

NEG: the head constituent of a NEGP (i.e. of a Negation Phrase constituent which contains not as its specifier). See §5.7.
negation: an operation or construction in which some proposition is said to be false. Negation involves the use of some negative item such as not, n't, nobody, nothing, never etc. - though most discussions of negation tend to be about the negative adverbs not/n't. See §5.7.
negative evidence: in the context of discussions about the nature of the evidence which children make use of in acquiring their native language(s), this term relates to evidence based on the non-occurrence of certain structures in the child's speech input, or on correction of children by others (e.g. adults). See §1.8.
negative particle: this term typically denotes the negative adverbs not/n't.

NEGP: see NEG.
neuter: see gender.
neutralise/neutralisation: when a grammatical contrast (e.g. that between a singular noun like cat and a plural noun like cats) is not marked in some expression (e.g. the singular/plural noun form sheep), the contrast is said to have been neutralised or syncretised (in the relevant expression).
\mathbf{N}-movement: movement of a noun to a higher position within a nominal expression. See §5.9.
node: a term used to denote each point in a tree diagram which carries a category label. Each node represents a separate constituent in the relevant structure.

Nom: an abbreviation for nominative. See case.
nominal: this is the adjective associated with the word noun, so that in principle a nominal (expression) is an expression containing a noun. However, the term is sometimes extended to mean 'expression containing a noun or pronoun'.
nominalisation/nominalising: nominalisation is a process by which some other type of expression is converted into a nominal (i.e. noun expression). For example, -ness is a nominalising (i.e. noun-forming) suffix in that if we suffix -ness to an adjective like sad, we form the noun sadness.
nominative: see case.
non-argument: see argument.
non-auxiliary verb: a 'lexical verb’ or 'main verb’ (like want, try, hate, smell, buy etc.) which requires Do-support to form questions, negatives and tags.
non-constituent: a non-constituent string is a sequence of words which do not together form a constituent.
non-count noun: see count noun.
no-negative-evidence hypothesis: the hypothesis that children acquire their native language(s) on the basis of positive evidence alone, and do not make use of negative evidence. See $\S 1.8$.
non-finite: see finite.
non-terminal: see terminal.
noun: a category of word (whose members include items such as boy/friend/ thought/sadness/computer) which typically denotes an entity of some kind. See $\S 2.2$ and §2.3. In traditional grammar, a distinction is drawn between common nouns and proper nouns. Proper nouns are names of individual people (e.g. Chomsky), places (e.g. Colchester, Essex, England), dates (e.g. Tuesday, February, Easter), magazines (e.g. Cosmopolitan) etc., whereas common nouns (e.g. boy,
table, syntax etc.) are nouns denoting general (non-individual) entities. Proper nouns have the semantic property of having unique reference, and the syntactic property that (unless themselves modified) they generally can't be modified by a determiner (cf. *the London).
noun phrase/NP: a phrase whose head is a noun. In work prior to the mid 1980s, a structure such as the king of Utopia was taken to be a noun phrase/NP comprising the head noun king, its complement of Utopia and its specifier the. In more recent work, such expressions are taken to be determiner phrases/DPs comprising the head determiner the and a noun phrase/NP complement king of Utopia, with the NP in turn comprising the head noun king and its complement of Utopia. See §3.4 and $\S 4.10$.

NP: see noun phrase.
N-pronoun: a pronoun like one in 'Mary bought a green one' which has the morphological and distributional properties of a (count) noun.
null: a null constituent is one which is 'silent' or 'unpronounced' and so has no overt phonetic form. See ch. 4.
null case: the case carried by PRO (see case).
null subject: a subject which has grammatical and semantic properties but no overt phonetic form. There are a variety of different types of null subject, including the null pro subject which can be used in any finite clause in a language like Italian, the null counterpart of you found in English imperative clauses like 'Shut the door!', the null PRO subject found in non-finite control clauses like that bracketed in 'The prisoners tried [PRO to escape]', and the null truncated subject found in sentences like 'Can't find my pen. Must be on my desk at home.' See §4.2.
null-subject language: this term is used to denote a language which allows any finite clause of any kind to have a null pro subject. For example, Italian is a null-subject language and so allows us to say 'Sei simpatica' (literally 'Are nice', meaning 'You are nice'); by contrast, English is a non-null-subject language in the sense that it doesn't allow the subject to be omitted in this type of structure (hence *'Are nice' is ungrammatical in English).
null-subject parameter: a parameter whose setting determines whether a language is a null-subject language or not. See $\S 1.6$.

Num: an abbreviation for the feature Number. In a different (but related) use, a category label denoting a particular head which is claimed by some to be the locus of number properties in noun expressions. It may correspond to the position which a noun like invasione 'invasion' moves to in an Italian nominal such as la grande invasione italiana dell’Albania (literally 'The great invasion Italian of.the Albania', and more idiomatically 'the great Italian invasion of Albania').

A Phrase headed by a Num constituent is labelled NumP 'Number Phrase'. See §5.9 and §10.9.
number: a term used to denote the contrast between singular and plural forms. In English, we find number contrasts in nouns (cf. 'one dog', 'two dogs'), in some determiners (cf. 'this book', 'these books'), in pronouns (cf. it/they), and in finite (auxiliary or main) verbs (cf. 'It smells', 'They smell').
object: the complement of a transitive item (e.g. in 'Help $m e$ ', $m e$ is the object of the transitive verb help; and in 'for $m e$ ', $m e$ is the object of the transitive preposition for). The term object is generally restricted to complements which carry accusative case - i.e. to nominal or pronominal complements: hence, nothing would be the object (and complement) of said in 'He said nothing', but the thatclause would be the complement (but not the object) of said in 'He said [that he was tired]' - though some traditional grammars extend the term object to cover clausal complements as well as (pro)nominal complements. In sentences such as 'She gave him them', the verb give is traditionally said to have two objects, namely him and them: the first object (representing the recipient) is termed the indirect object, and the second object (representing the gift) is termed the direct object; the relevant construction is known as the double-object construction. Where a verb has a single object (e.g. nothing in 'He said nothing'), this is the direct object of the relevant verb.
object-control predicate: see control.
objective: another term for accusative. See case.
one-place predicate: a predicate which has only one argument. See argument.
operator: this term is used in syntax to denote (e.g.) interrogative and negative expressions which have the syntactic properties that they trigger auxiliary inversion (cf. 'What have you done?', 'Nothing have I done') and allow a polarity item like partitive/existential any to occur in their scope (cf. 'What can anyone do?' 'Nothing can anyone do').
orphaned: see stranded.
overt: an expression is overt if it has a non-null phonetic form, but null if it has no phonetic content. Thus, him is an overt pronoun, but PRO is a null pronoun. The term overt structure is used in this book (though not more generally) as an informal expository term to refer to a simplified representation of the structure of a given expression which shows only the overt constituents which it contains (and hence excludes trace copies and other null constituents).

P: see preposition.

parameters: dimensions of grammatical variation within and across languages (e.g. the Null-Subject Parameter, Head-Position Parameter, Wh-Parameter). See §1.6.
parameter-setting: the process by which children determine which setting of a parameter is appropriate for the native language they are acquiring. See §1.7.
paraphrase: a paraphrase is an expression which has roughly the same meaning as the expression which it is being used to paraphrase, but which brings out the relevant meaning more clearly. For example, we can bring out the ambiguity of a sentence like He loves you more than me by saying that it has two different interpretations, one of which can be paraphrased as 'He loves you more than he loves me', and the other of which can be paraphrased as 'He loves you more than I love you.'
partial: a labelled bracketing is partial if it shows only part of the structure of a given sentence or expression (other parts being omitted to simplify exposition).
participle: a non-finite verb form which encodes aspect or voice. In European languages, participles have no person properties but (in languages like Latin or Icelandic which have a richer morphology than English) they may have number/gender/case properties. English has three types of participle: progressive participles (ending in -ing) used in conjunction with the progressive-aspect auxiliary be in sentences like 'It is raining'; perfect participles (generally ending in $-d$ or $-n$) used in conjunction with the perfect-aspect auxiliary have in sentences like 'He has gone home'; and passive participles (also generally ending in $-d$ or $-n$) used in conjunction with the passive-voice auxiliary be in sentences like 'He was arrested by Percy Plodd.'
particle: this is an informal term used to describe a range of (typically monosyllabic) items which are invariable in form, and which don't fit easily into traditional systems of grammatical categories. For example, infinitival to (e.g. 'Try to be nice') is said to be an infinitive particle; of as used in expressions like 'loss of face' is sometimes said to be a genitive case particle; not and n't are said to be negative particles. The term is sometimes extended to include prepositions used without a complement (e.g. down in 'He fell down').
partitive: a partitive quantifier is a word like some/any which quantifies over part of the members of a given set (as in 'Some students enjoy syntax').
part of speech: see category.
passive: see active; see also passivisation.
passive participle: see active, participle.
passivisation: a movement operation whereby an expression which is the thematic complement of a verb becomes the subject of the same clause (as in 'The jewels were stolen') or the subject of another clause (as in 'The minister was said to have lied to Parliament'). See §§7.7-7.8.
past tense: see tense.

PATIENT: a particular type of theta-role, denoting an entity which suffers the consequences of some action. For example, in a sentence such as 'John killed Harry', Harry is the patient argument of the verb kill. The more recent term THEME is used in this book in place of the traditional term patient. See §7.5.
percolation: an operation by which a feature which is attached to one category comes to be attached to another category higher up in the structure. See §6.7.

PERF: perfect-aspect auxiliary (e.g. have in 'He may have left'). See aspect.
perfect: in one sense of the word, in a sentence like 'He has gone home', has is an auxiliary marking perfect aspect, and gone is a perfect participle: see aspect, participle. In a different sense, by claiming that language is a perfect system, Chomsky means that grammars produce structures which are 'perfect' in that they are precisely of the form required to interface with speech and thought systems.
performance: a term which denotes observed language behaviour - e.g. the kind of things people actually say when they speak a language, and what meanings they assign to sentences produced by themselves or other people. Performance can be impaired by factors such as tiredness or drunkenness, giving rise to performance errors. Performance is contrasted with competence (which denotes fluent native speakers' knowledge of the grammar of their native language). See §1.3.

PERFP: phrase headed by a perfect-aspect auxiliary like have.
periphery: the periphery of a clause is that part of the clause structure which is positioned above TP - in other words the edge of CP (or its counterpart in a split CP system like that discussed in §§9.2-9.3).

Pers: an abbreviation of person.
person: in traditional grammar, English is said to have three grammatical persons. A first-person expression (e.g. I/we) is one whose reference includes the speaker(s); a second-person expression (e.g. you) is one which excludes the speaker(s) but includes the addressee(s) (i.e. the person or people being spoken to); a third-person expression (e.g. he/she/it/they) is one whose reference excludes both the speaker(s) and the addressee(s) - i.e. an expression which refers to someone or something other than the speaker(s) or addressee(s).
personal pronouns: these are pronouns which carry inherent person properties i.e. first-person pronouns such as $I / w e$, second-person pronouns such as you, and third-person pronouns such as he/she/it/they. See person.

PF(-representation): (a representation of the) Phonetic Form (of an expression). See representation. The PF-component of a grammar is the component which converts the syntactic structures generated by the computational component of the grammar into PF-representations, via a series of morphological and phonological operations. A PF-clitic is a clitic which attaches to another item in the

PF-component (not in the syntax), so that the two form a single phonetic word, but are not a single word in the syntax.

P-feature: a feature (e.g. a topic-, focus- or wh-feature) which attracts a constituent to move to the periphery of a clause.
phase: in work outlined in ch. 10, Chomsky argues that syntactic structures are built up in phases (phases including complementiser phrases and transitive verb phrases), and that once a phase has been produced, the domain/complement of the head of the phase undergoes transfer to the PF component and the semantic component, and thereby becomes impenetrable to further operations in the syntax.

Phase Impenetrability Condition: a constraint on grammatical operations which specifies that the domain/complement of a phase head is impenetrable/inaccessible to an external probe (i.e. to a probe which lies outside the relevant phase). See $\S 8.5$ and $\S 10.2$.
phi-features/ $\boldsymbol{\varphi}$-features: person and number features (and, in languages which have grammatical gender, gender features as well).
phonetic representation: see representation.
phonological features: features used to describe sound properties. For example, the difference between nasal and oral sounds might be described in terms of the feature [\pm NASAL].
phrase: the term phrase is used to denote an expression larger than a word which is a maximal projection: see projection. In traditional grammar, the term refers strictly to non-clausal expressions (hence, 'reading a book' is a phrase, but 'He is reading a book' is a clause, not a phrase). However, in more recent work, clauses are analysed as types of phrases: e.g. 'He will resign' is a tense phrase (TP), and 'That he will resign' is a complementiser phrase (CP). See §3.3 and §3.4.
phrase-marker: a tree diagram used to represent the syntactic structure of a phrase or sentence. See §3.7.
phrase structure: see constituent structure.

PIC: see Phase Impenetrability Condition.

pied-piping: a process by which a moved constituent drags one or more other constituents along with it when it moves. For example, if we compare a sentence like 'Who were you talking to?' with 'To whom were you talking?', we might say that in both cases the pronoun who is moved to the front of the sentence, but that in the second sentence the preposition to is pied-piped along with the pronoun whom. See §6.7.

PL: see plural.
plural: a plural expression is one which denotes more than one entity (e.g. these cars is a plural expression, whereas this car is a singular expression).

P-marker: see phrase-marker.
polarity expression: a word or phrase (e.g. a word like ever or a phrase like at all or care a damn) which has an inherent affective polarity, and hence is restricted to occurring within the scope of an affective (e.g. negative, interrogative or conditional) constituent. See affective.
positive evidence: In discussions of child language acquisition, this expression denotes evidence based on the actual occurrence of certain types of structure in the child's speech input. For example, hearing an adult say Open it gives a child positive evidence that verbs are canonically positioned before their complements in English. See §1.8.
possessive: a possessive structure is one which indicates possession: the term is most commonly used in relation to expressions like 'John's book' or 'his book' (where the italicised expressions denote the person who possesses the book). The italicised possessor in each structure is said to be genitive in case.
postposition: a type of word which is the counterpart of a preposition in languages which position prepositions after their complements. See adposition.
postulate: a postulate is a theoretical assumption or hypothesis; to postulate is to hypothesise.

PP: see prepositional phrase.

PPT: see Principles-and-Parameters Theory.

pragmatics: the study of how non-linguistic knowledge is integrated with linguistic knowledge in our use of language.

Pr: an abbreviation for the feature [present-tense]. See tense.
precede(nce): to say that one constituent precedes another is to say that it is positioned to its left (on the printed page) and that neither constituent contains the other. Precedence is left-to-right linear ordering.
preclausal: a preclausal expression is one which is positioned in front of a clause.
predicate: see argument, predicative.
Predicate-Internal Argument Hypothesis: the hypothesis that all the arguments of a predicate originate within a projection of the predicate. See §7.4.
predication: the process by which a predicate is combined with a subject in order to form a proposition. For example, in a sentence such as 'Boris likes vodka', the property of liking vodka is said to be predicated of Boris.
predicative: in structures such as 'John is in Paris/very silly/a liar', the italicised expressions are said to be predicative in that they predicate the property of being in Paris/being very silly/being a liar of John (i.e. they attribute the relevant property to John). A nominal like a liar when used predicatively is also referred to as a predicate nominal.
prefix: see affix.
prenominal: a prenominal expression is one which is positioned in front of a noun expression. For example, both a and red are prenominal in an expression such as a red car.
preposing: an informal term to indicate a movement operation by which a constituent is moved further to the left within a phrase or sentence.
preposition: a preposition is a word generally used to express location, manner etc. - e.g. at/in/on/under/by/with/from/against/down etc. In English, it is a characteristic property of prepositions that they are invariable, and that they can generally be modified by straight/right. Where a preposition has a nominal or pronominal complement, it is said to be transitive; where it has no complement, it is said to be intransitive. Hence down is a transitive preposition in 'He fell down the stairs', but an intransitive preposition in 'He fell down.'
prepositional phrase: a phrase whose head is a preposition - e.g. in town, on Sunday, to the market, for someone else etc.
preposition stranding: see stranding.
Pres/present tense: see tense.
principles: principles of Universal Grammar/UG principles describe potentially universal properties of natural language grammars: the terms condition and constraint are also used with much the same meaning as the term principle. Potential principles of Universal Grammar include the Headedness Principle, Binary Principle, Attract Closest Principle and Phase Impenetrability Condition.

Principles-and-Parameters Theory: this theory, developed in Chomsky (1981) and much subsequent work, claims that natural language grammars incorporate not only a set of innate universal principles which account for those aspects of grammar which are common to all languages, but also a set of parameters which account for those aspects of grammar which vary from one language to another. See Principles and Parameters.

PRN: see pronoun.
PRO: a null-case pronoun (known informally as 'big PRO', because it is written in capital letters) which represents the understood subject of an infinitive
complement of a control predicate, e.g. in a structure such as 'John decided PRO to leave.' See §4.2.
pro: a null nominative-case pronoun (known informally as 'little pro', because it is written in lower-case letters) which represents the understood null subject of a finite clause in a null-subject language. A Shakespearean sentence such as 'Wilt come?' (= ‘Will you come?', Stephano, The Tempest, III.ii) could be argued to have a null pro subject, and hence to have the structure 'Wilt pro come?', with pro having essentially the same interpretation as the second-person-singular pronoun thou. See §4.2.
probe: when a head is merged with its complement, it serves as a probe which searches for a matching goal within its complement (i.e. an expression which it can agree with). See $\S 8.2$.
proform: a proform is an expression (typically a word) which has no specific content of its own, but which derives its content from its antecedent. For example, in a sentence such as 'Mary may have been tired, but she didn't seem so', the antecedent of the word so is the adjective tired: hence so (in the use illustrated here) can be said to be an adjectival proform.

PROG: progressive-aspect auxiliary (e.g. be in 'He may be waiting for you'). See aspect.

PROGP: progressive phrase - i.e. a phrase headed by a PROG/progressive auxiliary constituent - e.g. be waiting for you in 'He may be waiting for you.'
progressive: see aspect.
project(ion): a projection is a constituent containing a head word. For example, a noun phrase such as students of linguistics is a projection of its head noun students (equivalently, we can say that the noun students here projects into the noun phrase students of linguistics). A minimal projection is a constituent which is not a projection of some other constituent: hence, heads (e.g. words) are minimal projections. An intermediate projection is a constituent which is larger than a word, but smaller than a phrase (e.g. is working in 'He is working'). A maximal projection is a constituent which is not contained within any larger constituent with the same head. So, for example, in a sentence like 'I've heard several accounts of what happened', the italicised noun phrase expression accounts of what happened is a maximal projection, since it is a projection of the noun accounts but is not contained within any larger projection of the noun accounts (if we assume that several accounts of what happened is a quantifier phrase headed by the quantifier several). By contrast, in a sentence such as 'I've heard several accounts', the italicised noun accounts is both a minimal projection (by virtue of the fact that it is not a projection of some other head) and a maximal projection (by virtue of the fact that it is not contained within any larger structure which has the same head noun). The Projection Principle is a UG principle suggested in earlier work by

Chomsky (1981, p. 29) which requires that the properties of lexical items should remain constant throughout the derivation: a related principle is the Inclusiveness Condition.
pronominal: a pronominal (expression) is a non-anaphoric pronoun like him which obeys Principle B of Binding Theory (and hence must not refer to any higher expression within the closest TP most immediately containing it). See ex. 3.2.
pronoun: the word pronoun is composed of two morphemes - namely pro (meaning 'on behalf of') and noun: hence, a pronoun is traditionally said to be a word used in place of a noun expression. Pronouns differ from nouns in that they have no intrinsic descriptive content, and so are functors. There are a range of different types of pronoun found in English, including the pronominal noun one(s) used in sentences like 'I'll take the red one(s ', pronominal quantifiers like any in 'I couldn't find any' and pronominal determiners like this in 'This is hard'. The term pronoun is most frequently used to indicate a class of items (like he/him/his) traditionally referred to as personal pronouns (though analysed in much recent work as pronominal determiners). See §2.6.
proper noun: see noun.
proposition: this is a term used to describe the semantic content (i.e. meaning) of a sentence. For example, we might say that the sentence 'Does John smoke?' questions the truth of the proposition that 'John smokes.'
pseudocleft sentence: a sentence such as 'What he hated most was syntax', where syntax is said to occupy focus position within the overall sentence.

Q: in one use, an abbreviation for quantifier; in another use, an abbreviation for question particle.
quantifier: a quantifier is a special type of determiner used to denote quantity. Typical quantifiers include the universal quantifiers all/both, the distributive quantifiers each/every, the existential/partitive quantifiers some/any etc.
quantifier floating: see floating quantifier.
QP/quantifier phrase: a phrase whose head is a quantifier - e.g. an expression such as many people, or few of the students.

Q-pronoun: a pronoun like many in 'I don't eat many' which seems to be a pronominal quantifier.
question: this refers to a type of sentence which is used to ask whether something is true, or to ask about the identity of some entity. See yes-no question and whquestion.
question operator: the analysis of yes-no questions presented in $\S 6.8$ suggests that they contain a null interrogative operator (i.e. a null counterpart of whether).
quirky case: see case.
raising (predicate): the term raising is used in two senses. In its most general sense, it denotes any movement operation which involves moving some constituent from a 'lower' to a 'higher' position in a structure. However, it also has a more specific sense, indicating a particular kind of A-movement operation by which an expression is moved from being the subject of one clause to becoming the subject of another. The term raising predicate denotes a word like seem whose subject is raised out of subject position in a complement clause to become subject of the seem clause. See $\S 7.9$ and $\S 7.10$.

reciprocal: see anaphor.

reduced: a reduced form is a form of a word which has lost one or more of its segments (i.e. vowel/consonants), and/or which contains a vowel which loses its defining characteristics and is realised as a neutral vowel like schwa $/ \Sigma /$. For example, the auxiliary have has the full (unreduced) form /hæv/ when stressed, but has the various reduced forms /həv/, /əv/ and /v/ when unstressed.
reference/referential/referring: the reference of an expression is the entity (e.g. object, concept, state of affairs) in the external world to which it refers. A referential/referring expression is one which refers to such an entity; conversely, a non-referential expression is one which does not refer to any such entity. For example the second there in a sentence such as 'There was nobody there' is referential (it can be paraphrased as 'in that place'), whereas the first there is nonreferential and so cannot have its reference questioned by where? (cf. *'Where was nobody there?).

reflexive: see anaphor.

relative: in a sentence such as 'He's someone [who you can trust]', the bracketed clause is said to be a relative clause because it 'relates to' (i.e. modifies, or restricts the reference of) the pronoun someone. The pronoun who which introduces the clause is said to be a relative pronoun, since it 'relates to' the expression someone (in the sense that someone is the antecedent of who). The Relative Pronoun Spellout Condition/RPSC specifies that a relative pronoun is given a null spellout if it occupies the specifier position within CP (optionally in a finite clause, obligatorily in a non-finite clause). See $\S 6.10$ and $\S 6.11$ for a general discussion of relative clauses. On the distinction between appositive/free/restrictive relative clauses, see the discussion of examples (127)-(131) in §6.11.

Remerger Constraint: a grammatical principle which specifies that no head can be remerged with a constituent with which it has already been merged.
representation: a syntactic representation (or structural representation) is a notation/device (typically, a tree diagram or labelled bracketing) used to represent the syntactic structure of an expression: a semantic representation is
a representation of linguistic aspects of the meaning of an expression; a PFrepresentation is a representation of the phonetic form of an expression.
restrictive: a restrictive theory is one which imposes strong constraints on the types of structures and operations found in natural language grammars. See §1.3. In a different use of the word, the italicised clause in a sentence like 'I saw the man who they arrested on TV' is a restrictive relative clause in the sense that it restricts the class of men being referred to in the sentence to the one they arrested.
resultative: a verb such as paint in a sentence such as 'John painted his house pink' is said to be a resultative verb in that the result of the action of painting is that the house becomes pink. See §9.5.

R-expression: a referring expression containing a noun, like John or the man next door. See ex. 3.2.
rich: to say that a language has a rich system of agreement inflections is to say that it has a large number of inflectional affixes which attach to verbs and distinctively mark first/second/third-person forms and singular/plural forms, with little syncretism; to say that a language has an impoverished/poor system of agreement inflections is to say that it has only a small number of such inflections, and that these do not clearly and consistently differentiate first/second/third-person forms and singular/plural forms.
root: the root of a tree diagram is the topmost node in the tree. Hence, a root clause is a free-standing clause, i.e. a clause which is not contained within any other expression. In traditional grammar, a root clause is termed a principal clause, independent clause or main clause. By contrast, an embedded clause is a clause which is contained within some larger expression; and a complement clause is an (embedded) clause which is used as the complement of some item. So, in a sentence such as 'I think he loves you', the think clause (i.e. the expression I think he loves you) is a root clause, whereas the loves clause (i.e. the expression he loves you) is an embedded clause. Moreover, the loves clause is also a complement clause, since it serves as the complement of the verb think.

RPSC: Relative Pronoun Spellout Condition. See relative.

S/S'/S-bar: category label used in work in the 1960s and 1970s to designate a sentence or clause. See §3.3.
scope: the scope of an expression is the set of constituents which it modifies or which fall within (what we might call informally) its 'sphere of influence'. For example, a sentence like He cannot be telling the truth has a meaning paraphraseable as 'It is not possible that he is telling the truth', and in such a sentence the negative not is said to have scope over the modal auxiliary can (and conversely can is said to fall within the scope of not, or to have narrow scope with respect to not). By contrast, a sentence such as You mustn't tell lies has a meaning paraphraseable as 'It is necessary that you not tell lies', and in such a sentence,
the auxiliary must is said to have scope over (or to have wide scope with respect to) the negative particle n ' t.

SCP: see Strict Cyclicity Principle.

SE: Standard English.
second person: see person.
select(ion)/selectional: when a word has a particular type of complement, it is said to select (i.e. 'take' or 'allow') the relevant type of complement (and the relevant phenomenon is referred to as complement-selection). For example, we can say that the word expect has the selectional property that it can select an infinitive complement (e.g. in structures like 'They expect to win').
semantics/semantic component: Semantics is the study of linguistic aspects of meaning. The semantic component of the grammar is the component which maps syntactic structures into semantic representations. See representation.
sentence: this term is usually used to denote a root clause - i.e. a free-standing clause which is not contained within some larger expression. See root.
sentence fragment: see fragment.
SG: an abbreviation for singular.
Shakespeare: Shakespeare's plays were written between (around) 1590 and 1620, and are examples of Early Modern English/Elizabethan English (though some have suggested that Shakespeare's English is rather conservative, and hence is more representative of a slightly earlier stage of English).
shell: this term is used in connection with the idea (discussed in §§9.4-9.8) that verb phrases comprise two different projections, an outer vP shell headed by a light verb, and an inner VP core headed by a lexical verb.
silent: see null.
simple sentence: one which contains a single clause.
singular: a singular expression is one which denotes a single entity (e.g. this car is a singular expression, whereas these cars is a plural expression).
sister: two nodes are sisters if they have the same mother (i.e. if they are directly merged with each other at some stage of derivation). See §3.7.
small clause: see clause.
SOURCE: a term used in the analysis of semantic/thematic roles to denote the entity from which something moves - e.g. the italicised expression in 'John returned from Paris.' See §7.5.
spec: see specifier. Terms like spec-CP/spec-TP/spec-VP (etc.) denote the specifier position within $\mathrm{CP} / \mathrm{TP} / \mathrm{VP}$ (etc.).
specification: the specification of an item is the set of features used to describe its properties.
specifier: the grammatical function fulfilled by certain types of constituent which precede the head of their containing phrase. For example, in a sentence such as 'John is working', John is superficially the specifier (and subject) of is working. In a sentence such as 'What did John do?' what is superficially the specifier of the CP headed by a C constituent containing the inverted auxiliary did. In a phrase such as 'straight through the window', straight is the specifier of the PP headed by the preposition through.
specifier-first: a specifier-first structure is one which has its specifier positioned in front of its head.
spellout: the point in a derivation at which part of a syntactic structure is sent to the PF component to be mapped into a PF-representation (i.e. a representation of its phonetic form). To say that an item has a null spellout is to say that it is 'silent' and so has a null phonetic form.
split CP/split NP/split VP: work by Luigi Rizzi discussed in §§9.2-9.3 has suggested that CP can be split into a number of distinct projections, including a Force Phrase, Focus Phrase, Topic Phrase and Finiteness Phrase. Similarly, work by Larson, Hale and Chomsky outlined in §§9.4-9.8 has suggested that verb phrases can be split into two different projections, an outer vP shell headed by a light verb, and an inner VP core headed by a lexical verb. In $\S 9.9$, a parallel split projection analysis of noun phrases is outlined. On split spellout, see discontinuous spellout.
stack(ing): to say (e.g.) that prenominal adjectives can be stacked in front of a noun is to say that we can have an indefinitely large number of adjectives positioned in front of a noun (e.g. 'a big, red, juicy, ripe apple').
star: an asterisk $\left({ }^{*}\right)$ used in front of an expression to indicate that the expression is ungrammatical.
stem: the stem of a word is the form to which inflectional affixes are added. So, a verb form like going comprises the stem go and the inflectional suffix -ing.
strand/stranded/stranding: a stranded (or orphaned) preposition is one which has been separated from its complement (by movement of the complement). For example, in an echo question like 'You're waiting for who?', the preposition for has not been stranded, since it is immediately followed by its complement who. But in 'Who are you waiting for?' the preposition for has been stranded or orphaned, in that it has been separated from its complement who: the relevant phenomenon is termed preposition stranding. The Stranding Constraint
specifies that in formal styles of English, a preposition cannot be separated from its complement and thereby be stranded.

Strict Cyclicity Principle: a UG principle which specifies that a cyclic operation can only affect the overall head H of a structure and some other constituent within the structure headed by H. See §5.7.
string: a continuous sequence of words contained within the same phrase or sentence. For example, in the sentence 'They hate syntax', the sequences They hate, hate syntax and They hate syntax are all strings - but They syntax is not. Note that a string need not be a constituent.
strong: a strong head is one which can attract (i.e. trigger movement of) another head; a weak head is one which cannot trigger movement. For example, C in an interrogative main clause is strong in present-day English, and so attracts an auxiliary to move from T to C - e.g. in sentences like Can you speak French? On an entirely different use of these terms in the expressions weak/strong genitive pronoun, see case.

structural: see case, representation.

structure: see constituent structure.

stylistic variation: variation correlated with stylistic factors. For example, whom is used in formal styles and who in other styles in sentences like 'He is someone whom/who I admire greatly.'

subarray: see array.

subject: the (superficial structural) subject of a clause is a noun or pronoun expression which is normally positioned between a complementiser and an (auxiliary or non-auxiliary) verb. Syntactic characteristics of subjects include the fact that they can trigger agreement with auxiliaries (as in 'The president is lying', where the auxiliary is agrees with the subject the president), and they can be inverted with auxiliaries in main-clause questions (as in 'Is the president lying?', where the auxiliary is has been inverted with the subject the president).
subject control predicate: see control.
subjunctive: in a (formal-style) sentence such as 'The judge ordered that he be detained indefinitely', the passive auxiliary verb be is traditionally said to be in the subjunctive mood, since although it has exactly the same form as the infinitive form be (e.g. in infinitive structures such as 'To be or not to be - that is the question'), it has a nominative subject $h e$, and hence is a finite verb form. In present-day spoken English, constructions containing subjunctive verbs are generally avoided, as they are felt to be archaic or excessively formal in style by many speakers. See Mood.
substantive: a substantive category is a category (like noun, verb, adjective, adverb, preposition) whose members are contentives (i.e. items with idiosyncratic descriptive content). See §2.4.
substitution: a technique used to determine the category which a given expression belongs to. An expression belongs to a given type of category if it can be substituted (i.e. replaced) in phrases or sentences like that in which it occurs by another expression which clearly belongs to the category in question. For example, we might say that clearer is an adverb in 'John speaks clearer than you' because it can be replaced by the adverbial expression more clearly. See §2.3.
successive-cyclic movement: movement in a succession of short steps. On the claim that head movement is successive-cyclic, see $\S 5.5$. On the claim that Amovement is successive-cyclic, see $\S 8.9$. On the claim that wh-movement is successive-cyclic, see ch. 10.
suffix: see affix.
superiority: wh-questions are said to show a superiority effect in the sense that in a question containing more than one wh-expression, it is the superior (i.e. highest) wh-expression which moves to the front of the interrogative clause. See §6.4.
superlative: the superlative is a form of an adjective/adverb (typically carrying the suffix -est) used to mark the highest value for a particular property in comparison with others. For example, hardest is the superlative form of hard in 'John is the hardest worker because he works hardest.'
syncretise/syncretism: in work on split CP projections discussed in §9.3, Rizzi has claimed that although Force and Finiteness are projected on separate heads when some (topicalised or focused) constituent intervenes between them, they are syncretised (i.e. collapsed/conflated) into a single head carrying both Force and Finiteness features when no constituent intervenes between them.

syntactic representation: see representation.

syntax: the component of a grammar which determines how words are combined together to form phrases and sentences.

T: a tense-marking constituent containing either a tensed auxiliary, or an abstract tense affix Tns, or a non-finite tense particle like infinitival to. T-to-C movement is movement of an auxiliary or non-auxiliary verb from the head T position of TP into the head C position of CP - as with the italicised inverted auxiliary in 'Is it raining?'
tag: a string usually consisting of an auxiliary and a subject pronoun which is 'tagged' onto the end of a sentence. Thus, the italicised string is the tag in the
following: 'The president isn't underestimating his opponents, is he?', and the overall sentence is known as a tag question/tag sentence.
taxonomy: a taxonomy is a classificatory system. A taxonomic theory of language is one which classifies constituents into different types. See $\S 1.2$.
tense: finite auxiliary and main verbs in English show a binary (two-way) tense contrast, traditionally said to be between present-tense forms and past-tense forms. Thus, in 'John hates syntax', hates is a present-tense verb form, whereas in 'John hated syntax', hated is a past-tense verb form. (An alternative classification which many linguists prefer is into [\pm PAST] verb forms, so that hated is [+PAST], and hates [-PAST].) This present/past-tense distinction correlates (to some extent) with time-reference, so that (e.g.) past-tense verbs typically describe an event taking place in the past, whereas present-tense verbs typically describe an event taking place in the present (or future). However, the correlation is an imperfect one, since e.g. in a sentence such as 'I might go there tomorrow', the auxiliary might carries the past-tense inflection - t (found on past-tense main verbs like left) but does not denote past time.
tensed: a tensed (auxiliary or non-auxiliary) verb form is one which carries (present/past) tense - e.g. is, can, could, hates, went etc. By extension, a tensed clause is one containing a tensed auxiliary or main verb. See tense.
terminal node: a node at the bottom of a tree.
ternary: three-way. For example, person properties might be described in terms of a ternary (three-valued) feature such as [1/2/3-Pers], with first-person pronouns like we being [1-Pers], second-person pronouns like you being [2-Pers] and thirdperson pronouns like they being [3-Pers]. A ternary-branching constituent is one which has three daughters.
thematic: on thematic role, see theta-role. On the Thematic Hierarchy which specifies where an argument carrying a given theta-role should be merged, see ex. 9.2. On the (different) Thematic Hierarchy which constrains how passivisation works, see $\S 7.5$.

THEME: the name of a specific theta-role (sometimes also termed patient) representing the entity undergoing the effect of some action (e.g. Harry in 'William teased Harry').
theory of grammar: a theory which specifies the types of categories, relations, operations and principles found in natural language grammars. See §1.3.
 that each argument should bear one and only one theta-role to a single predicate, and that each theta-role associated with a given predicate should be assigned to one and only one argument. See §7.5.
theta-mark/ $\boldsymbol{\theta}$-mark: to say that a predicate theta-marks its arguments is to say that it determines the theta-role played by its arguments. A predicate is said to directly theta-mark its complement(s), and to indirectly theta-mark its subject. See §7.5.
theta-role/日-role: the semantic role played by an argument in relation to its predicate (e.g. AGENT, THEME, GOAL etc.). For example, in a sentence like William teased Harry, the verb tease assigns the θ-role agent to its subject William and the theta-role theme to its complement Harry. See §7.5.
third person: see person.
three-place predicate: a predicate (typically a verb) which takes three arguments - e.g. the verb give in 'John gave Mary something' (where the three arguments of give are John, Mary and something). See argument.

Tns: an abstract affix which carries tense and agreement properties. See §4.4.
Top/Topic/Topicalisation/TopP: In a dialogue such as the following:
SPEAKER A: I've been having problems with the Fantasy Syntax seminar
SPEAKER B: That kind of course, very few students seem to be able to get their heads round
the italicised expression that kind of course can be said to be the topic of the sentence produced by speaker B, in the sense that it refers back to the Fantasy Syntax seminar mentioned by the previous speaker. An expression which represents 'old' or 'familiar' information in this way is said to be a topic. The movement operation by which the italicised expression moves from being the complement of the preposition round to the front of the overall sentence is traditionally termed topicalisation. In work by Luigi Rizzi on split CP projections discussed in §9.2, topic expressions which occur at the beginning of clauses are said to be contained within a TopP 'Topic Phrase' projection, headed by an abstract Top ($=$ 'Topic') constituent.

TP: tense projection/tense phrase - i.e. phrase headed by a tense-marked auxiliary or an abstract tense morpheme Tns. See §§3.2-3.3.
trace (theory): a trace of a moved constituent is a null copy left behind (as a result of movement) in each position out of which a constituent moves. Trace theory is a theory which posits that moved constituents leave behind a trace copy in each position out of which they move. See $\S 5.3, \S 6.3$ and $\S 7.2$.

transfer: see phase.

transitive: a word is traditionally said to be transitive (in a given use) if it assigns accusative case to a noun or pronoun expression which it c-commands. So, likes in 'John likes him' is a transitive verb, since it assigns accusative case to its complement him. Likewise, infinitival for is a transitive complementiser, since
it assigns accusative case to the subject of its infinitive complement (cf. 'I'm keen [for him to participate more actively]') An intransitive head etc. is one which has no complement, or which does not assign accusative case to (any expression contained within) its complement; hence e.g. wait is an intransitive verb in sentences like I'll wait, and likewise in I'll wait for you. See §4.9.
tree (diagram): A form of graph used to represent the syntactic structure of a phrase or sentence.
truncate/truncation: truncation is an operation by which a sentence is shortened by omitting one or more unstressed words at the beginning. For example, we can truncate a question like Are you going anywhere nice on holiday? by omitting are to form You going anywhere nice on holiday? and can further truncate the sentence by omitting you to give Going anywhere nice on holiday?

T-to-C movement: see T.

two-place predicate: a predicate which has two arguments - e.g. tease in 'William teased Harry' where the two arguments of the predicate tease are William and Harry. See argument.

UG: see Universal Grammar.

unaccusative: an unaccusative predicate is a word like come whose apparent 'subject' originates as its complement. See §7.6.
unary-branching: a unary-branching node is one which has a single daughter.
unbound: a constituent is unbound if it has no appropriate antecedent in an appropriate position within a given structure. For example, himself is unbound in a sentence such as *'She helped himself', since she is not an appropriate antecedent for himself, and there is no other appropriate antecedent for himself anywhere within the sentence.
unergative: an unergative predicate is a verb like groan in a sentence such as 'He was groaning' which has an AGENT subject but no overt object (though may have an incorporated object: see §9.6).
ungradable: see gradable.

ungrammatical: see grammatical.

Uniformity of Theta Assignment Hypothesis/UTAH: a hypothesis (developed by Baker 1988) which maintains that each theta-role assigned by a particular (kind of) predicate is canonically associated with a specific syntactic position: e.g. spec-vP is the canonical position associated with an AGENT argument.
uninterpretable: see interpretable.
Universal Grammar: those aspects of grammar which are universal, and which are assumed by Chomsky to be part of the innate knowledge which a child is born with.
universality: a criterion of adequacy for a theory of grammar, requiring that the theory be applicable to all natural languages. See $\S 1.3$.
unreduced: see reduced.
unspecified: to say that a constituent is unspecified for a given feature is to say that it lacks the relevant feature.
unvalued: see value.
UTAH: see Uniformity of Theta Assignment Hypothesis.
V: see verb.
v: see light verb.
value: in relation to a feature such as [SINGULAR-NUMBER], number is said to be an attribute (in the sense that it is the property being described) and singular its value. To value a feature is to assign it a value. For example, a finite auxiliary enters the derivation with its person and number features unvalued (i.e. not assigned any value), and these are then valued via agreement with the subject in the course of the derivation. See §8.3.
variety: a particular (e.g. geographical or social) form of a language.
verb: a category of word which has the morphological property that it can carry a specific range of inflections (e.g. the verb show can carry past-tense $-d$, third-person-singular present-tense $-s$, perfect $-n$ and progressive -ing, giving rise to shows/showed/shown/showing), and the syntactic property that it can head the complement of infinitival to (e.g. ‘Do you want to show me?') See §2.2 and §2.3. On verb movement, see V-to-T movement.
verb phrase: a phrase which is headed by a verb - e.g. the italicised phrase in ‘They will help you.' See ch. 3.

V-to-T movement: movement of a verb out of the head V position in VP into the head T position in TP. See §5.4.
vocative: a vocative expression is one which is used to address one or more individuals, and which is set off in a separate tone-group at the beginning or end of the sentence (marked in the spelling by the use of a comma). So, for example, Fred is a vocative expression in 'Fred, can you give me a hand?' and similarly, you two is a vocative expression in 'Come here, you two!'
voice: see active.
VP/VPISH: on VP, see verb phrase. A VP-adverb is an adverb (like perfectly) which adjoins to a projection of a lexical verb (V). The VP-Internal Subject Hypothesis/VPISH is the hypothesis that subjects originate internally within VP/vP: see ch. 7.
$\mathbf{v P}$: a phrase (maximal projection) headed by a light verb. A vP-adverb is an adverb which adjoins to a projection of a light verb (v).
weak: see strong.
wh: this is widely used as a feature carried by constituents which undergo whmovement (hence e.g. the relative pronoun who in someone who I think is lying can be described as a wh-pronoun, as can the interrogative pronoun who in Who are you waiting for? and the exclamative quantifier what in What fun we had!).
wh-copying: a phenomenon whereby a moved wh-expression leaves behind an overt copy of itself when it moves - as with movement of who in a Child English question such as Who do you think who chased the cat?
wh-expression: an expression containing a wh-word (i.e. containing a word carrying a [wh] feature).
wh-island constraint: a constraint which specifies that wh-clauses (i.e. clauses beginning with a wh-expression) are islands, so that no constituent can be moved out of a wh-clause. See island.
wh-movement: a type of movement operation whereby a wh-expression is moved to the front of a particular type of structure (e.g. to the front of the overall sentence in 'Where has he gone?'). See ch. 6.
wh-parameter: a parameter whose setting determines whether wh-expressions are (or are not) moved to the front of an appropriate type of clause (especially in relation to wh-questions). See §1.6.
wh-phrase: a phrase containing a wh-word.
wh-question: a question which contains a wh-word, e.g. 'What are you doing?' wh-word: a word which begins with wh (e.g. who/what/which/where/when/why), or which has a similar syntax to wh-words (e.g. how).
word order: the linear sequencing (left-to-right ordering) of words within a phrase or sentence.
yes-no question: a question to which 'Yes' or 'No' would be an appropriate answer - e.g. 'Is it raining?'

References

Abney, S. P. (1987) 'The English Noun Phrase in Its Sentential Aspect', PhD diss., MIT.
Ackema, P. (2001) 'On the relation between V-to-I and the structure of the inflectional paradigm', The Linguistic Review 18: 233-63.
Acquaviva, P. (2002) 'The morphological dimension of polarity licensing', Linguistics 40: 925-59.
Adger, D. (2003) Core Syntax: A Minimalist Approach, Oxford University Press, Oxford.
Agbayani, B. (2000) 'Wh-subjects in English and the Vacuous Movement Hypothesis', Linguistic Inquiry 31: 703-13.
Aissen, J. (1996) 'Pied-piping, abstract agreement and functional projections in Tzotzil', Natural Language and Linguistic Theory 14: 447-91.
Akmajian, A. and Heny, F. (1975) An Introduction to the Principles of Transformational Syntax, MIT Press, Cambridge, Mass.
Alexiadou, A. and Anagnostopoulou, E. (2001) 'The subject-in-situ generalization and the role of case in driving computations', Linguistic Inquiry 32: 193-231.
Alexopoulou, T. and Kolliakou, D. (2002) 'On Linkhood, Topicalisation and Clitic Left Dislocation', Journal of Linguistics 38: 193-245.
Antony, L. and Hornstein, N. (2002) Chomsky and His Critics, Blackwell, Oxford.
Aronoff, M. (1976) Word Formation in Generative Grammar, MIT Press, Cambridge, Mass.
Aronoff, M. and Fuhrhop, N. (2002) 'Restricting suffix combinations in German and English: closing suffixes and the monosuffix constraint', Natural Language and Linguistic Theory 20: 451-90.
Atkinson, M. (2003) Unpublished course handouts, University of Essex.
Authier, J.-M. (1991) 'V-governed expletives, case theory and the projection principle', Linguistic Inquiry 22: 721-40.
Baker, C. L. (1970) 'Notes on the description of English questions: the role of an abstract question morpheme', Foundations of Language 6: 197-219.
Baker, M. (1988) Incorporation, University of Chicago Press, Chicago.
Baltin, M. (1995) 'Floating quantifiers, PRO and predication', Linguistic Inquiry 26: 199-248.
Baltin, M. (2002) 'Movement to the higher V is remnant movement', Linguistic Inquiry 33: 653-9.

Baltin, M. and Collins, C. (eds.) (2001) The Handbook of Contemporary Syntactic Theory, Blackwell, Oxford.
Barss, A. (2001) 'Syntactic reconstruction effects', in Baltin and Collins (eds.), pp. 670-96.
Basilico, D. (2003) 'The topic of small clauses', Linguistic Inquiry 34: 1-35.
Bejar, S. and Massam, D. (1999) 'Multiple case checking', Syntax 2: 65-79.
Belletti, A. (1988) 'The case of unaccusatives', Linguistic Inquiry 19: 1-34.
Belletti, A. and Rizzi, L. (1988) 'Psych-verbs and θ-theory', Natural Language and Linguistic Theory, 6: 291-352.
Bernstein, J. B. (2001) 'The DP hypothesis: identifying clausal properties in the nominal domain', in Baltin and Collins (eds.) pp. 536-61.
Bobaljik, J. (1995) 'Morphosyntax: the Syntax of Verbal Inflection', PhD diss., MIT.

Bobaljik, J. D. (2000) 'The rich agreement hypothesis in review', draft manuscript, McGill University (http://www.msgill.ca/Linguistics/faculty/bobaljik/).
Bobaljik, J. (2002) 'A-chains at the PF-interface: copies and "covert" movement', Natural Language and Linguistic Theory 20: 197-267.
Boeckx, C. (2000) 'A note on Contraction', Linguistic Inquiry 31: 357-66.
Boeckx, C. (2001) 'Scope reconstruction and A-movement', Natural Language and Linguistic Theory 19: 503-48.
Boeckx, C. and Stjepanović, S. (2001) ‘Head-ing towards PF', Linguistic Inquiry 32: 345-55.
Borsley, R. (2002) 'Wh-phrases in Minimalism', unpublished paper, University of Essex.
Bošković, Ž. (1997) 'On certain violations of the superiority condition, AgrO and economy of derivation', Journal of Linguistics 33: 227-54.
Bošković, Ž. (2001) On the Nature of the Syntax-Phonology Interface: Cliticization and Related Phenomena, Elsevier, Amsterdam.
Bošković, Ž. (2002a) 'On multiple wh-fronting', Linguistic Inquiry 33: 351-83.
Bošković, Ž. (2002b) 'A-Movement and the EPP', Syntax 5: 167-218.
Bowerman, M. (1988) 'The "no negative evidence" problem: how do children avoid an overly general grammar?', in J. Hawkins (ed.), Explaining Language Universals, Blackwell, Oxford.
Bowers, J. (1993) 'The syntax of predication', Linguistic Inquiry 24: 591-656.
Bowers, J. (2002) 'Transitivity', Linguistic Inquiry 33: 183-224.
Braine, M. D. S. (1971) 'Three suggestions regarding grammatical analyses of children's language', in C. A. Ferguson and D. I. Slobin (eds.), Studies of Child Language Development, Holt Rinehart and Winston, New York, pp. 421-9.
Branigan, P. (1992) 'Subjects and Complementisers', PhD diss., MIT.
Branigan, P. and MacKenzie, M. (2002) 'Altruism, A-movement and object agreement in Innuaimûn', Linguistic Inquiry 33: 385-407.
Brody, M. (1995) A Radically Minimalist Theory, MIT Press, Cambridge, Mass.
Brown, K. (1991) 'Double modals in Hawick Scots', in P. Trudgill and J. K. Chambers (eds.), Dialects of English, Longman, London, pp. 74-103.
Brown R., Cazden, C. and Bellugi, U. (1968) 'The child's grammar from I to III', in J. P. Hill (ed.), Minnesota Symposium on Child Development, vol. 2, pp. 28-73.
Brown, R. and Hanlon, C. (1970) 'Derivational complexity and order of acquisition in child speech', in J. R. Hayes (ed.), Cognition and the Development of Language, Wiley, New York, pp. 11-53.
Burton, S. and Grimshaw, J. (1992) 'Coordination and VP-internal subjects', Linguistic Inquiry 23: 305-13.
Burzio, L. (1986) Italian Syntax, Reidel, Dordrecht.
Carnie, A. (2000) 'On the definition of X^{0} and XP', Syntax 3: 59-106.
Carrier, J. and Randall, J. H. (1992) 'The argument structure and syntactic structure of resultatives', Linguistic Inquiry 23: 173-234.
Carstens, V. (2000) 'Concord in Minimalist Theory', Linguistic Inquiry 31: 319-55.
Carstens, V. (2001) 'Multiple agreement and case deletion: against φ-(in)completeness', Syntax 4: 147-63.
Cheng, L. (1997) On the Typology of Wh-Questions, Garland, New York.
Cheng, L. and Rooryck, J. (2000) 'Licensing Wh-in-situ’, Syntax 3: 1-19.
Chomsky, N. (1965) Aspects of the Theory of Syntax, MIT Press, Cambridge, Mass.
Chomsky, N. (1968) Interview with S. Hamshire in The Listener, May 1968.
Chomsky, N. (1970) 'Remarks on nominalisation', in R. A. Jacobs and P. S. Rosenbaum (eds.), Readings in English Transformational Grammar, Ginn, Waltham, Mass, pp. 184221.

Chomsky, N. (1972) Language and Mind (enlarged edition), Harcourt Brace Jovanovich, New York.

Chomsky, N. (1981) Lectures on Government and Binding, Foris, Dordrecht.
Chomsky, N. (1982) Some Concepts and Consequences of the Theory of Government and Binding, MIT Press, Cambridge, Mass.
Chomsky, N. (1986a) Knowledge of Language: its Nature, Origin and Use, Praeger, New York.
Chomsky, N. (1986b) Barriers, MIT Press, Cambridge, Mass.
Chomsky, N. (1993) 'A minimalist program for linguistic theory', in Hale and Keyser (eds.), pp. 1-52 (reprinted as chapter 3 of Chomsky 1995).
Chomsky, N. (1995) The Minimalist Program, MIT Press, Cambridge, Mass.
Chomsky, N. (1998) Minimalist Inquiries: the Framework, MIT Occasional Papers in Linguistics, no. 15 (also published in R. Martin, D. Michaels and J. Uriagereka (eds.) (2000) Step by Step: Essays on Minimalism in Honor of Howard Lasnik, MIT Press, Cambridge, Mass., pp. 89-155).
Chomsky, N. (1999) Derivation by Phase, MIT Occasional Papers in Linguistics, no. 18 (also published in M. Kenstowicz (ed.) (2001) Ken Hale: a Life in Language, MIT Press, Cambridge, Mass., pp. 1-52).
Chomsky, N. (2001) 'Beyond Explanatory Adequacy', unpublished manuscript, MIT.
Chomsky, N. (2002) On Nature and Language, Cambridge University Press, Cambridge.
Chomsky, N. and Lasnik, H. (1977) 'Filters and Control', Linguistic Inquiry 8: 425-504.
Chomsky, N. and Lasnik, H. (1995) 'The theory of principles and parameters', in Chomsky 1995, pp. 13-127.
Chung, S. (1994) 'Wh-agreement and "Referentiality" in Chamorro', Linguistic Inquiry 25: 1-45.
Chung, S. (1998) The Design of Agreement: Evidence from Chamorro, University of Chicago Press, Chicago.
Cinque, G. (1994) 'Evidence for partial N-movement in the Romance DP', in G. Cinque, J. Koster, J.-Y. Pollock, L. Rizzi and R. Zanuttini (eds.), Towards Universal Grammar: Studies in Honor of Richard Kayne, Georgetown University Press, Washington DC, pp. 85-110.
Cinque, G. (1999) Adverbs and Functional Heads, Oxford University Press, Oxford.
Citko, B. (2002) '(Anti)reconstruction effects in free relatives: a new argument against the Comp account', Linguistic Inquiry 33: 507-11.
Cole, P. (1982) Imbabura Quechua, North-Holland, The Hague.
Cole, P. and Hermon, G. (2000) 'Partial wh-movement: evidence from Malay', in Lutz, Müller and von Stechow (eds.), pp. 101-30.
Collins, C. (1997) Local Economy, MIT Press, Cambridge, Mass.
Collins, C. and Branigan, P. (1997) 'Quotative Inversion', Natural Language and Linguistic Theory 15: 1-41.
Contreras, H. (1986) 'Spanish bare NPs and the ECP', in I. Bordelois, H. Contreras and K. Zagona (eds.), Generative Studies in Spanish Syntax, Foris, Dordrecht, pp. 25-49.
Contreras, J. (1987) 'Small clauses in Spanish and English', Natural Language and Linguistic Theory 5: 225-44.
Cormack, A. and Smith, N. (1999) 'Where is a sign merged?', Glot International 4, 6: 21.
Cormack, A. and Smith, N. (2000a) 'Head Movement and negation in English', Transactions of the Philological Society 98: 49-85.
Cormack, A. and Smith, N. (2000b) 'Fronting: the Syntax and Pragmatics of "Focus" and "Topic", UCL Working Papers in Linguistics 20: 387-417.
Cornilescu, A. (2001) 'Romanian nominalizations: case and aspectual structure', Journal of Linguistics 37: 467-501.
Costa, J. (2001) 'Postverbal subjects and agreement in unaccusative contexts in European Portuguese', The Linguistic Review 18: 1-17.

Crain, S. and Pietroski, P. (2002) 'Why language acquisition is a snap’, The Linguistic Review 19: 163-83.
Culicover, P. (1991) 'Topicalization, inversion and complementiser in English', in D. Delfitto, M. Everaert, A. Evers and F. Stuurman (eds.), OTS Working Papers: Going Romance and Beyond, University of Utrecht, pp. 1-45.
Culicover, P. and Jackendoff, R. (2001) 'Control is not movement', Linguistic Inquiry 32: 493-512.
Culicover, P. and Levine, R. D. (2001) 'Stylistic Inversion in English: a reconsideration', Natural Language and Linguisitc Theory 19: 283-310.
Curtiss, S. (1977) Genie: a Psycholinguistic Study of a Modern Day ‘Wild Child’, Academic Press, London.
Davies, W. and Dubinsky, S. (2003) 'On extraction from NPs', Natural Language and Linguistic Theory 21: 1-37.
Dayal, V. (2002) ‘Single-pair versus multiple-pair answers: wh-in-situ and scope’, Linguistic Inquiry 33: 512-20.
Déchaine, R.-M. and Wiltschko, M. (2002) 'Decomposing pronouns’, Linguistic Inquiry 33: 409-42.
den Dikken, M. (2001) 'Pluringulars, pronouns and quirky agreement', The Linguistic Review 18: 19-41.
den Dikken, M. and Giannakidou, A. (2002) 'From hell to polarity: "Aggressively non-Dlinked" wh-phrases as polarity items', Linguistic Inquiry 33: 31-61.
Denham, K. (2000) 'Optional wh-movement in Babine-Witsuwit'en', Natural Language and Linguistic Theory 18: 199-251.
Dixon, R. M. W. (2000) 'Categories of the Noun Phrase in Jarawara', Journal of Linguistics 36: 487-510.
Drubig, H. N. (2003) 'Toward a typology of focus and focus constructions', Linguistics 41: 1-50.
Dukes, M. (2000) ‘Agreement in Chamorro’, Journal of Linguistics 36: 575-88.
du Plessis, H. (1977) 'Wh-movement in Afrikaans', Linguistic Inquiry 8: 211-22.
Embick, D. and Noyer, R. (2001) 'Movement operations after Syntax', Linguistic Inquiry 32: 555-95.
Epstein, S. and Seeley, D. (1999) 'Specifying the GF "subject", eliminating A-chains and the EPP with a derivational model', ms. University of Michigan.
Ernst, T. (1991) 'On the scope principle', Linguistic Inquiry 22: 750-6.
Fabb, N. (1988) 'English suffixation is constrained only by selectional restrictions', Natural Language and Linguistic Theory 6: 527-39.
Fanselow, G. and Mahajan, A. (2000) 'Towards a minimalist theory of wh-expletives, whcopying and successive cyclicity', in Lutz, Müller and von Stechow (eds.), pp. 195-230.
Fasold, R. (1980) 'The relation between black and white speech in the south', ms., School of Languages and Linguistics, Georgetown University, Washington DC.
Felser, C. (1999a) Verbal Complement Clauses: a Minimalist Study of Direct Perception Constructions, Benjamins, Amsterdam.
Felser, C. (1999b) 'Perception and control: A Minimalist analysis of English direct perception complements', Journal of Linguistics 34: 351-85.
Felser, C. (2001) 'Wh-copying, phases and successive cyclicity', draft ms, University of Essex.
Fillmore, C. J. (1968) 'The case for case', in E. Bach and R. T. Harms (eds.), Universals in Linguistic Theory, Holt Rinehart and Winston, New York, pp. 1-88.
Fillmore, C. J. (1972) 'Subjects, speakers and roles', in D. Davidson and G. Harman (eds.), Semantics of Natural Language, Reidel, Dordrecht.
Fitzpatrick, J. M. (2002) 'On Minimalist approaches to the locality of movement', Linguistic Inquiry 33: 443-63.

Fodor, J. D. and Crowther, C. (2002) 'Understanding stimulus poverty arguments', The Linguistic Review 19: 105-45.
Fox, D. (2000) Economy and Semantic Interpretation, MIT Press, Cambridge, Mass.
Frampton, J. and Gutmann, S. (1999) 'Cyclic computation, a computationally efficient minimalist syntax', Syntax 2: 1-27.
Frank, R. and Vijay-Shanker, K. (2001) 'Primitive c-command', Syntax 4: 164-204.
Freidin, R. and Vergnaud, J. R. (2001) 'Exquisite connections: some remarks on the evolution of linguistic theory', Lingua 111: 639-66.
Fu, J., Roeper, T. and Borer, H. (2001) 'The VP within process nominals: evidence from adverbs and the VP anaphor do so', Natural Language and Linguistic Theory 19: 549-82.
Goodall, G. (1999) 'Accusative case in passives', Linguistics 37: 1-12.
Green, L. (1998) 'Semantic and syntactic patterns in African American English', ms., University of Massachusetts.
Grewendorf, G. (2001) 'Multiple wh-fronting', Linguistic Inquiry 32: 87-122.
Grimshaw, J. (1993) 'Minimal Projection, Heads, and Optimality', draft ms., Rutgers University.
Groat, E. and O’Neil, J. (1996) 'Spell-out at the LF interface', in W. Abraham, S. D. Epstein, H. Thráinsson and C. J.-W. Zwart (eds.), Minimal Ideas, Benjamins, Amsterdam, pp. 113-39.
Gruber, J. S. (1965) 'Studies in Lexical Relations', PhD diss., MIT.
Gruber, J. S. (1976) Lexical Structures in Syntax and Semantics, North-Holland, Amsterdam.
Guasti, M. T. (2002) Language Acquisition: the Growth of Grammar, Bradford Books, MIT Press, Cambridge, Mass.
Guasti, M. T., Thornton, R. and Wexler, K. (1995) 'Negation in children's questions: the case of English', in B. MacLaughlin and S. McEwen (eds.), Proceedings of the 19th Annual Boston University Conference on Language Development, Cascadilla Press, Somerville, Mass, pp. 228-39.
Guilfoyle, E. (1983) 'Habitual aspect in Hiberno-English', McGill Working Papers in Linguistics 1: 22-32.
Guilfoyle, E., Hung, H. and Travis, L. (1992) 'Spec of IP and spec of VP: two subjects in Austronesian languages', Natural Language and Linguistic Theory 10: 375-414.
Haegeman, L. (1992) Theory and Description in Generative Syntax: a Case Study of West Flemish, Cambridge University Press, Cambridge.
Haegeman, L. (1994, 2nd edition) Introduction to Government and Binding Theory, Blackwell, Oxford.
Haegeman, L. (1995) The Syntax of Negation, Cambridge University Press, Cambridge.
Haegeman, L. (2000) 'Inversion, non-adjacent inversion and adjuncts in CP', Transactions of the Philological Society 98: 121-60.
Hagstrom, P. A. (1998) 'Decomposing Questions', PhD diss, MIT.
Hale, K. and Keyser, S. J. (1991) On the Syntax of Argument Structure, Lexicon Project Working Papers, MIT, Center for Cognitive Science, Cambridge, Mass.
Hale, K. and Keyser, S. J. (1993a) 'On argument structure and the lexical expression of semantic relations', in Hale and Keyser (eds.), pp. 53-109.
Hale, K. and Keyser, S. J. (1993b) (eds.) The View from Building 20, MIT Press, Cambridge, Mass.
Hale, K. and Keyser, S. J. (1994) 'Constraints on argument structure’, in B. Lust, M. Suñer and J. Whitman (eds.), Heads, Projections and Learnability, Erlbaum, Hillsdale, NJ vol. 1, pp. 53-71.
Halle, M. and Marantz, A. (1993) 'Distributed morphology and the pieces of inflection', in Hale and Keyser (eds.), pp. 111-76.
Han, C.-H. (2001) 'Force, negation and imperatives', The Linguistic Review, 18: 289-325.

Harris, J. (1986) 'Expanding the superstrate: habitual aspect markers in Atlantic Englishes', English World-Wide 7: 171-99.
Hawkins, J. A. (2001) 'Why are categories adjacent?', Journal of Linguistics 37: 1-34.
Henry, A. (1995) Belfast English and Standard English: Dialect Variation and ParameterSetting, Oxford University Press, Oxford.
Hiemstra, I. (1986) 'Some aspects of wh-questions in Frisian', North-Western European Language Evolution (NOWELE) 8: 97-110.
Holmberg, A. (2000) 'Am I unscientific? A reply to Lappin, Levine and Johnson', Natural Language and Linguistic Theory 18: 837-42.
Hornstein, N. (1995) Logical Form: from GB to Minimalism, Blackwell, Oxford.
Hornstein, N. (2000) 'On A-chains: a reply to Brody', Syntax 3: 129-43.
Hornstein, N. and Lightfoot, D. (eds.) (1994) Verb Movement, Cambridge University Press, Cambridge.
Huang, C.-T. J. (1982) 'Logical Relations in Chinese and the Theory of Grammar', PhD diss., MIT.
Huang, C.-T. J. (1993) 'Reconstruction and the structure of VP: some theoretical consequences', Linguistic Inquiry 24: 103-38.
Hurford, J. (1991) 'The evolution of the critical period for language acquisition', Cognition 40: 159-201.
Hyams, N. (1986) Language Acquisition and the Theory of Parameters, Reidel, Dordrecht.
Hyams, N. (1992) 'A reanalysis of null subjects in child language', in J. Weissenborn, H. Goodluck and T. Roeper (eds.), Theoretical Issues in Language Acquisition, Erlbaum, London, pp. 249-67.
Ingham, R. (2000) 'Negation and OV order in Late Middle English', Journal of Linguistics 36: 13-38.
Jackendoff, R. S. (1972) Semantic Interpretation in Generative Grammar, MIT Press, Cambridge, Mass.
Jaeggli, O. and Safir, K. (1989) The Null Subject Parameter, Kluwer, Dordrecht.
Johnson, K. (1991) 'Object positions', Natural Language and Linguistic Theory 9: 577-636.
Johnson, K. (2002) 'Restoring exotic co-ordinations to normalcy', Linguistic Inquiry 33: 97-156.
Jones, M. A. (1994) Sardinian Syntax, Routledge, London.
Julien, M. (2001) 'The syntax of complex tenses', The Linguistic Review 18: 125-67.
Kathol, A. (2001) 'Positional effects in a monostratal grammar of German', Journal of Linguistics 37: 35-66.
Kayne, R. S. (1984a) Connectedness and Binary Branching, Foris, Dordrecht.
Kayne, R. S. (1984b) 'Principles of particle constructions', in J. Guéron et al. (eds.) Grammatical Representation, Foris, Dordrecht, pp. 101-40.
Kayne, R. S. (1989) 'Facets of Romance past participle agreement', in P. Benincà (ed.), Dialect Variation and the Theory of Grammar, Foris, Dordrecht, pp. 85-103.
Kayne, R. S. (1994) The Antisymmetry of Syntax, MIT Press, Cambridge, Mass.
Kennedy, C. (2002) 'Comparative deletion and optimality in syntax', Natural Language and Linguistic Theory 20: 553-621.
Kennedy, C. and Merchant, J. (2000) 'Attributive comparative deletion', Natural Language and Linguistic Theory 18: 89-146.
Keyser, S. J. and Roeper, T. (1992) 'Re: the abstract clitic hypothesis', Linguistic Inquiry 23: 89-125.
Kimball, J. and Aissen, J. (1971) 'I think, you think, he think', Linguistic Inquiry 2: 241-6.
Kishimoto, H. (1992) 'LF pied piping: evidence from Sinhala', Gengo Kenkyu 102: 46-87.
Kishimoto, H. (2000) 'Indefinite pronouns and overt N-raising', Linguistic Inquiry 31: 557-66.
Kitagawa, Y. (1986) 'Subjects in English and Japanese', PhD diss., University of Massachusetts.

Klima, E. S. (1964) 'Negation in English', in J. A. Fodor and J. J. Katz (eds.), The Structure of Language, Prentice-Hall, Englewood Cliffs, NJ, pp. 246-323.
Koeneman, O. (2000) 'The Flexible Nature of Verb Movement', PhD diss., University of Utrecht.
Koizumi, M. (1993) 'Object agreement phrases and the split VP hypothesis', MIT Working Papers in Linguistics 18: 99-148.
Koizumi, M. (1995) 'Phrase Structure in Minimalist Syntax', PhD diss., MIT.
Koopman, H. and Sportiche, D. (1991) 'The position of subjects', Lingua 85: 211-58.
Kuroda, Y. (1988) 'Whether we agree or not', Lingvisticae Investigationes 12: 1-47.
Labov, W. (1969) 'Contraction, deletion and inherent variability of the English copula', Language 45: 715-62.
Landau, I. (1999) 'Elements of Control', PhD diss., MIT.
Landau, I. (2001) 'Control and Extraposition: the case of Super-Equi', Natural Language and Linguistic Theory 19: 109-52.
Landau, I. (2002) '(Un)interpretable Neg in Comp’, Linguistic Inquiry 33: 465-92.
Lappin, S., Levine, R. D. and Johnson, D. E. (2000a) 'Topic . . . comment: the structure of unscientific revolutions', Natural Language and Linguistic Theory 18: 665-71.
Lappin, S., Levine, R. D. and Johnson, D. E. (2000b) 'The revolution confused: a response to our critics', Natural Language and Linguistic Theory 18: 873-90.
Lappin, S., Levine, R. D. and Johnson, D. E. (2001) 'The revolution maximally confused', Natural Language and Linguistic Theory 19: 901-19.
Larson, R. (1988) 'On the double object construction', Linguistic Inquiry 19: 335-91.
Larson, R. (1990) 'Double objects revisited: reply to Jackendoff’, Linguistic Inquiry 21: 589632.

Larson, R. (1991) 'Promise and the theory of control', Linguistic Inquiry 2: 103-39.
Lasnik, H. (1995) 'Verbal Morphology: Syntactic Structures meets the Minimalist Program', in H. Campos and P. Kempchinsky (eds.), Evolution and Revolution in Linguistic Theory, Georgetown University Press, Georgetown, pp. 251-75.
Lasnik, H. (1998) 'Some reconstruction riddles', in Penn Working Papers in Linguistics 5: 83-98, Penn Linguistics Circle, University of Pennsylvania, Philadelphia.
Lasnik, H. (1999) 'Chains of arguments', in S. D. Epstein and N. Hornstein (eds.), Working Minimalism, MIT Press, Cambridge, Mass., pp. 189-215.
Lasnik, H. (2000) Syntactic Structures Revisited: Contemporary Lectures on Classic Transformational Theory, MIT Press, Cambridge, Mass. (with M. Depiante and A. Stepanov)
Lasnik, H. (2001) 'A note on the EPP', Linguistic Inquiry 32: 356-61.
Lasnik, H. and Saito, M. (1991) 'On the subject of infinitives', Proceedings of the Chicago Linguistic Society 27: 324-43, University of Chicago.
Lasnik, H. and Sobin, N. (2000) 'The Who/Whom Puzzle: on the preservation of an archaic feature', Natural Language and Linguistic Theory 18: 343-71.
Lasnik, H. and Uriagereka, J. (2002) 'On the poverty of the challenge', The Linguistic Review 19: 147-50.
Lebeaux, D. (1991) 'Relative clauses, licensing and the nature of derivation', in S. Rothstein (ed.), Syntax and Semantics 25: Perspectives on Phrase Structure, Academic Press, New York, pp. 209-39.
Lebeaux, D. (1995) 'Where does Binding Theory apply?', University of Maryland Working Papers in Linguistics 3: 63-88.
Lechner, W. (2001) 'Reduced and phrasal comparatives', Natural Language and Linguistic Theory 19: 683-735.
Legate, J. A. (2002) 'Some interface properties of the phase', unpublished paper, MIT.
Legate, J. A. and Yang, C. D. (2002) 'Empirical re-assessment of stimulus poverty arguments', The Linguistic Review 19: 151-62.

Lenneberg, E. (1967) Biological Foundations of Language, Wiley, New York.
Levin, B. and Rappaport Hovav, M. (1995) Unaccusativity at the Syntax-Lexical Semantic Interface, MIT Press, Cambridge, Mass.
Longobardi, G. (1994) 'Reference and proper names', Linguistic Inquiry 25: 609-66.
Longobardi, G. (1996) 'The syntax of N-raising: a minimalist theory', OTS Working Papers no. 5, Research Institute for Language and Speech, Utrecht.
Longobardi, G. (2001) 'The structure of DPs: some principles, parameters and problems', in Baltin and Collins (eds.), pp. 562-603.
López, L. (2001) 'On the (non)complementarity of θ-Theory and Checking Theory', Linguistic Inquiry 32: 694-716.
Lutz, U., Müller, G. and von Stechow, A. (eds.) (2000) Wh-Scope Marking, Benjamins, Amsterdam.
Lyons, C. (1999) Definiteness, Cambridge University Press, Cambridge.
Martin, R. (2001) 'Null case and the distribution of PRO', Linguistic Inquiry 32: 141-66.
McCloskey, J. (2000) 'Quantifier Float and Wh-Movement in an Irish English', Linguistic Inquiry 31: 57-84.
McCloskey, J. (2001) 'The morphosyntax of WH-extraction in Irish', Journal of Linguistics 37: 67-100.
McDaniel, D. (1989) 'Partial and multiple wh-movement', Natural Language and Linguistic Theory 7: 565-604.
McNally, L. (1992) 'VP-coordination and the VP-internal subject hypothesis', Linguistic Inquiry 23: 336-41.
McNeill, D. (1966) 'Developmental Psycholinguistics', in F. Smith and G. A. Miller (eds.), The Genesis of Language, MIT Press, Cambridge, Mass., pp. 15-84.
Marantz, A. (1984) On the Nature of Grammatical Relations, MIT Press, Cambridge, Mass.
Marcus, G. F. (1993) 'Negative evidence in language acquisition', Cognition 46: 53-85.
Moore, J. and Perlmutter, D. M. (2000) 'What does it take to be a dative subject?', Natural Language and Linguistic Theory 18: 373-416.
Morgan, J. L. and Travis, L. (1989) 'Limits on negative information in language input', Journal of Child Language 16: 531-52.
Moro, A. (1997) The Raising of Predicates: Predicative Noun Phrases and the Theory of Clause Structure, Cambridge University Press, Cambridge.
Murasugi, K. and Saito, M. (1994) 'Adjunction and cyclicity', Proceedings of the 13th West Coast Conference on Formal Linguistics, pp. 302-17.
Nakajima, H. (2001) 'Verbs in locative constructions and the generative lexicon', The Linguistic Review 18: 43-67.
Namai, K. (2000) 'Gender features in English', Linguistics 38: 771-9.
Nasu, N. (2001) 'Associating EPP with ø-completeness', Proceedings of the North Eastern Linguistic Society 31: 351-67.
Nasu, N. (2002) 'Aspects of the Syntax of A-Movement: a Study of English Infinitival Contructions and Related Phenomena', PhD diss., University of Essex.
Nunes, J. (1999) 'Linearization of chains and phonetic realisation of chain links', in S. D. Epstein and N. Hornstein (eds.), Working Minimalism, MIT Press, Cambridge, Mass., pp. 217-49.
Nunes, J. (2001) 'Sideward movement', Linguistic Inquiry 32: 303-44.
Nunes, J. and Uriagereka, J. (2000) 'Cyclicity and extraction domains', Syntax 3: 20-43.
Ochi, M. (1999) 'Multiple spell-out and PF-adjacency', Proceedings of the North-Eastern Linguistic Society 29.
Oya, T. (2002) 'Reflexives and resultatives: some differences between English and German', Linguistics 40: 961-86.
Parker, S. (1999) 'On the behaviour of definite articles in Chamicuro', Language 75: 552-62.

Pesetsky, D. (1987) 'Wh-in-situ: movement and unselective binding', in E. J. Reuland and A. G. B. ter Meulen (eds.), The Representation of (In)definiteness, MIT Press, Cambridge, Mass., pp. 98-129.
Pesetsky, D. (1995) Zero Syntax: Experiencers and Cascades, MIT Press, Cambridge, Mass.
Pesetsky, D. (1997) 'Optimality Theory and Syntax: Movement and Pronunciation', in D. Archangeli and D. T. Langendoen (eds.), Optimality Theory: an Overview, Blackwell, Oxford, pp. 134-70.
Pesetsky, D. (1998) 'Some optimality principles of sentence pronunciation', in P. Barbosa, D. Fox, P. Hagstrom, M. McGinnis and D. Pesetsky (eds.), Is the Best Good Enough? MIT Press, Cambridge, Mass., pp. 337-83.
Pesetsky, D. (2000) Phrasal Movement and Its Kin, MIT Press, Cambridge Mass.
Pesetsky, D. and Torrego, E. (2001) 'T-to-C movement: causes and consequences', in M. Kenstowicz (ed.), Ken Hale: a Life in Language, MIT Press, Cambridge, Mass., pp. 355-426.
Phillips, C. (2003) 'Linear order and constituency’, Linguistic Inquiry 34: 37-90.
Piattelli-Palmarini, M. (2000) 'The metric of open-mindedness', Natural Language and Linguistic Theory, 18: 859-62.
Picallo, M. C. (1991) 'Nominals and nominalization in Catalan', Probus 3: 279-316.
Platzack, C. and Holmberg, A. (1989) 'The role of AGR and finiteness', Working Papers in Scandinavian Syntax 44: 101-17.
Polinsky, M. and Potsdam, E. (2001) 'Long-distance agreement and Topic in Tsez', Natural Language and Linguistic Theory 19: 583-646.
Pollock, J.-Y. (1989) 'Verb movement, Universal Grammar, and the structure of IP', Linguistic Inquiry 20: 365-424.
Postal, P. M. (1966) 'On so-called pronouns in English', in F. Dinneen (ed.), Nineteenth Monograph on Language and Linguistics, Georgetown University Press, Washington DC (reprinted in D. Reibel and S. Schane (eds.) (1969) Modern Studies in English, PrenticeHall, Englewood Cliffs, NJ, pp. 201-24).
Postal, P. M. (1974) On Raising, MIT Press, Cambridge, Mass.
Potts, C. (2002) 'The syntax and semantics of as-parentheticals', Natural Language and Linguistic Theory 20: 623-89.
Pullum, G. K. and Scholz, B. C. (2002) 'Empirical assessment of stimulus poverty arguments', The Linguistic Review 19: 9-50.
Radford, A. (1981) Transformational Syntax, Cambridge University Press, Cambridge.
Radford, A. (1988) Transformational Grammar, Cambridge University Press, Cambridge.
Radford, A. (1993) 'Head-hunting: on the trail of the nominal Janus', in G. Corbett, N. M. Fraser and S. McGlashan (eds.), Heads in Grammatical Theory, Cambridge University Press, Cambridge, pp. 73-11.
Radford, A. (1994) 'The syntax of questions in child English', Journal of Child Language 21: 211-36.
Radford, A. (1997a) Syntactic Theory and the Structure of English, Cambridge University Press, Cambridge.
Radford, A. (1997b) Syntax: a Minimalist Introduction, Cambridge University Press, Cambridge.
Radford, A., Atkinson, M., Britain, D., Clahsen, H. and Spencer, A. (1999) Linguistics: an Introduction, Cambridge University Press, Cambridge.
Ramat, P. (1999) 'Linguistic categories and linguists' categorizations', Linguistics 37: 157-80.
Reintges, C. H, LeSourd, P. and Chung, S. (2002) 'Movement, wh-agreement and apparent wh-in-situ', paper presented to Workshop on Wh-Movement, University of Leiden, December 2002.

Reuland, E. (2000) 'Revolution, discovery and an elementary principle of logic', Natural Language and Linguistic Theory 18: 843-8.
Reuland, E. (2001a) 'Primitives of Binding', Linguistic Inquiry 32: 439-92.
Reuland, E. (2001b) 'Confusion compounded', Natural Language and Linguistic Theory 19: 879-85.
Reuland, E. and Everaert, M. (2001) 'Deconstructing Binding', in Baltin and Collins (eds.), pp. 634-70.
Richards, N. (1997) 'What moves where when in which language?' PhD diss., MIT.
Rickford, J. R. (1986) 'Social contact and linguistic diffusion: Hiberno-English and New World Black English', Language 62: 245-89.
Ritter, E. (1991) 'Two functional categories in noun phrases: evidence from Modern Hebrew', in S. Rothstein (ed.), Perspectives on Phrase Structure: Heads and Licensing, Academic Press, New York, pp. 37-62.
Rizzi, L. (1992) 'Early null subjects and root null subjects’, Geneva Generative Papers vol. 0, pp. 102-14.
Rizzi, L. (1997) ‘The fine structure of the left periphery', in L. Haegeman (ed.), Elements of Grammar, Kluwer, Dordrecht, pp. 281-337.
Rizzi, L. (2000) 'Remarks on early null subjects', in M.-A. Freidemann and L. Rizzi (eds.), The Acquisition of Syntax, London, Longman, pp. 269-92.
Rizzi, L. (2001a) 'Relativized minimality effects', in Baltin and Collins (eds.), pp. 89-110.
Rizzi, L. (2001b) 'On the position "Int(errogative)" in the left periphery of the clause', in G. Cinque and G. Salvi (eds.), Current Issues in Italian Syntax, Elsevier, Amsterdam, pp. 287-96.
Rizzi, L. (2003) 'Locality and Left Periphery', to appear in A. Belletti (ed.), Structures and Beyond: the Cartography of Syntactic Structures, vol. 2, Oxford University Press, Oxford.
Roberts, I. (1993) Verbs and Diachronic Syntax, Kluwer, Dordrecht.
Roberts, I. (1994) 'Two types of head movement in Romance', in Hornstein and Lightfoot (eds.), pp. 207-42.
Roberts, I. (1997) 'Restructuring, head movement and locality’, Linguistic Inquiry 28: 423-60.
Roberts, I. (1998) 'Have/Be Raising, Move F and Procrastinate’, Linguistic Inquiry 29: 113-25.
Roberts, I. (2000) 'Caricaturing dissent', Natural Language and Linguistic Theory 18: 849-57.
Roberts, I. (2001a) 'Who has confused what? More on Lappin, Levine and Johnson', Natural Language and Linguistic Theory 19: 887-90.
Roberts, I. (2001b) 'Head Movement', in Baltin and Collins (eds.), pp. 113-47.
Roberts, I. (2002) Paper on Verb Movement presented at visiting speaker seminar, University of Essex.
Rohrbacher, B. (1999) Morphology-Driven Syntax: a theory of V-to-I raising and pro-drop, Benjamins, Amsterdam.
Romero, M. (1997) 'The correlation between scope reconstruction and connectivity effects', in E. Curtiss, J. Lyle and G. Webster (eds.), Proceedings of the XVI West Coast Conference in Formal Linguistics, CLSI, Stanford, pp. 351-65.
Rosen, S. T. (1990) Argument Structure and Complex Predicates, Garland, New York.
Ross, J. R. (1967) 'Constraints on Variables in Syntax’, PhD diss., MIT (published as Infinite Syntax! by Ablex Publishing Corporation, Norwood, NJ, 1986).
Ross, J. R. (1970) 'On declarative sentences', in R. A. Jacobs and P. S. Rosenbaum (eds.), Readings in English Transformational Grammar, Ginn, Waltham, Mass. pp. 222-72.
Runner, J. (1998) Noun Phrase Licensing and Interpretation, Garland, New York.
Rymer, R. (1993) Genie: a Scientific Tragedy, Harper Perennial, New York.
Sabel, J. (2002) 'A minimalist analysis of syntactic islands', The Linguistic Review 19: 271-315.
Saddy, D. (1991) 'Wh scope mechanisms in Bahasa Indonesia', in L. Cheng and H. Demirdache (eds.), MIT Working Papers in Linguistics 15: 183-218.

Sadock, J. M. (1984) 'West Greenlandic', in W. S. Chisholm (ed.), Interrogativity, Benjamins, Amsterdam, pp. 189-214.
Safir, K. (1986) Syntactic Chains, Cambridge University Press, Cambridge.
Safir, K. (1993) 'Perception, selection and structural economy', Natural Language Semantics 2: 47-70.
Sag, I. (1997) 'English relative clause constructions', Journal of Linguistics 33: 431-83.
Sampson, G. (2002) 'Exploring the richness of the stimulus', The Linguistic Review 19: 73-104.
Sauerland, U. (1998) 'The Meaning of Chains', PhD diss., MIT.
Sauerland, U. and Elbourne, P. (2002) 'Total reconstruction, PF movement and derivational order', Linguistic Inquiry 33: 283-319.
Scholz, B. C. and Pullum, G. K. (2002) 'Searching for arguments to support linguistic nativism', The Linguistic Review 19: 185-223.
Schütze, C. (2001) 'On the nature of default case', Syntax 4: 205-38.
Seppänen, A. and Trotta, J. (2000) 'The wh+that pattern in present-day English', in J. M. Kirk (ed.), Corpora Galore: Analyses and Techniques in Describing English, Rodopi, Amsterdam, pp. 161-75.
Shima, E. (2000) 'A preference for Move over Merge', Linguistic Inquiry 31: 375-85.
Sigurðsson, H. Á. (1991) 'Icelandic case-marked PRO and the licensing of lexical arguments', Natural Language and Linguistic Theory 9: 327-63.
Sigurðsson, H. Á. (1996) 'Icelandic finite verb agreement', Working Papers in Scandinavian Syntax 57: 1-46.
Sigurðsson, H. Á. (2002) 'To be an oblique subject: Russian vs. Icelandic', Natural Language and Linguistic Theory 20: 691-724.
Smith, N. (1998) 'Jackdaws, sex and language acquisition', Glot International 3, 7: 7.
Smith, N. (1999) Chomsky: Ideas and Ideals, Cambridge University Press, Cambridge.
Smith, N. and Cormack, A. (2002) 'Indeterminacy, inference, iconicity and interpretation: aspects of the grammar-pragmatics interface', in M. Makri-Tsilipakou (ed.), Selected Papers on Theoretical and Applied Linguistics, Aristotle University of Thessaloniki, pp. 38-53.
Sobin, N. (2002) 'The Comp-trace effect, the adverb effect, and minimal CP', Journal of Linguistics 38: 527-60.
Sorace, A. (2000) 'Gradients in auxiliary selection with intransitive verbs', Language 76: 859-90.
Speas, P. (1986) 'Adjunction and Projections in Syntax', PhD diss., MIT, Cambridge, Mass.
Spencer, A. J. (1991) Morphological Theory, Blackwell, Oxford.
Sportiche, D. (1988) 'A theory of floating quantifiers and its corollaries for constituent structure', Linguistic Inquiry 19: 425-49.
Sportiche, D. (1998) 'Movement, agreement and case', in Partitions and Atoms of Clause Structure, Routledge, London, pp. 88-243.
Stepanov, A. (2001) 'Late adjunction and minimalist phrase structure', Syntax 4: 94-125.
Stockwell, R., Schachter, P. and Hall Partee, B. (1973) The Major Syntactic Structures of English, Holt Rinehart and Winston, New York.
Stowell, T. (1981) 'Origins of Phrase Structure', PhD dissertation, MIT.
Stowell, T. (1982) 'The tense of infinitives', Linguistic Inquiry 13: 561-70.
Stroik, T. (1990) 'Adverbs as V-Sisters’, Linguistic Inquiry 21: 654-61.
Stroik, T. (2001) 'On the light verb hypothesis', Linguistic Inquiry 32: 362-9.
Suñer, M. (1994) 'V-movement and the licensing of argumental wh-phrases in Spanish', Natural Language and Linguistic Theory 12: 335-72.
Suñer, M. (2000) 'The syntax of direct quotes with special reference to Spanish and English', Natural Language and Linguistic Theory 18: 525-78.

Svenonius, P. (2002a) 'Case is uninterpretable aspect', http://www.hum.uit.no/a/svenonius/paperspage.html.
Svenonius, P. (2002b) 'Icelandic case and the structure of events', http://www.hum.uit.no/a/svenonius/paperspage.html.
Tallerman, M. O. (1993) 'Case assignment and the order of functional projections in Welsh', in A. Siewierska (ed.), Eurotyp Working Papers, Programme in Language Typology, European Science Foundation, pp. 1-41.
Taraldsen, T. (1990) 'D-projections and N-projections in Norwegian', in M. Nespor and J. Mascarò (eds.), Grammar in Progress, Foris, Dordrecht, pp. 419-31.

Ten Hacken, P. (2001) Review of Radford 1997a/b, Natural Language Engineering 7/1.
Thomas, M. (2002) 'Development of the concept of "the poverty of stimulus"', The Linguistic Review 19: 51-71.
Thornton, R. (1995) 'Referentiality and Wh-Movement in Child English: juvenile DLinkuency', Language Acquisition 4: 139-75.
Tieken-Boon van Ostade, I. (1988) 'The origins and development of periphrastic auxiliary do: a case of destigmatisation', Dutch Working Papers in English Language and Linguistics 3: 1-30.
Traugott, E. C. (1972) A History of English Syntax, Holt Rinehart and Winston, New York.
Travis, L. (1984) 'Parameters and Effects of Word Order Variation', PhD diss., MIT.
Ura, H. (1993) 'On feature-checking for wh-traces', MIT Working Papers in Linguistics 18: 243-80.
Ura, H. (2001) 'Local economy and generalized pied-piping', The Linguistic Review 18: 16991.

Uriagereka, J. (1988) ‘On Government’, PhD diss., University of Connecticut.
Uriagereka, J. (1998) Rhyme and Reason, MIT Press, Cambridge, Mass.
Uriagereka, J. (2000) 'On the emptiness of "design" polemics', Natural Language and Linguistic Theory 18: 863-71.
Uriagereka, J. (2001) 'Cutting derivational options', Natural Language and Linguistic Theory 19: 891-900.
Vainikka, A. and Levy, Y. (1999) 'Empty subjects in Finnish and Hebrew', Natural Language and Linguistic Theory 17: 613-71.
Valois, D. (1991) 'The Syntax of DP', PhD diss., University of California, Los Angeles.
Vikner, S. (1995) Verb Movement and Expletive Subjects in Germanic Languages, Oxford University Press, Oxford.
Vikner, S. (1997) ' V^{0}-to- I^{0} movement and inflection for person in all tenses', in L. Haegeman (ed.), The New Comparative Syntax, Longman, London, pp. 189-213.
Wakelin, M. F. (1977, 2nd edn.) English Dialects: an Introduction, Athlone, London.
Watanabe, A. (2001) 'Wh-in-situ languages', in Baltin and Collins (eds.), pp. 203-25.
Wexler, K. (1994) 'Optional Infinitives, Head Movement and the Economy of Derivations', in Hornstein and Lightfoot (eds.), pp. 305-50.
Williams, E. (1994) Thematic Structure in Syntax, MIT Press, Cambridge, Mass.
Willis, D. (2000) 'On the distribution of resumptive pronouns and wh-trace in Welsh', Journal of Linguistics 36: 531-73.
Wiltschko, M. (2001) 'The syntax of pronouns: evidence from Halkomelem Salish', Natural Language and Linguistic Theory 20: 157-95.
Wolfram, W. (1971) ‘Black-white speech differences revisited’, in W. Wolfram and N. H. Clark (eds.), Black-White Speech Relationships, Center For Applied Linguistics, Washington DC, pp. 139-61.
Woolford, E. (1991) 'VP-internal subjects in VSO and nonconfigurational languages', Linguistic Inquiry 22: 503-40.

Xu, L. (2003) 'Choice between the overt and the covert', Transactions of the Philological Society 101: 81-107.
Yang, C. D. (1999) ‘Unordered Merge and its linearization’, Syntax 1: 38-64.
Zagona, K. (1987) Verb Phrase Syntax, Kluwer, Dordrecht.
Zwart, C. J-W. (2001) 'Syntactic and phonological verb movement', Syntax 4: 34-62.
Zwicky, A. (2002) 'I wonder what kind of construction that this kind of example illustrates', in D. Beaver, L. D. Casillas Martínez, B. Z. Clark and S. Kaufmann (eds.), The Construction of Meaning, CSLI Publications, pp. 219-48.

Index

A-bar
feature 420
head 392, 420
movement 235, 329, 393, 419-25, 432
position 234-5, 241, 432
Abney 46, 76, 79, 140, 369, 371
accusative case (assignment) 5, 38, 45, 67, 134-6, 255, 356-67
Ackema 168
Acquaviva 103
acquisition 10-13; see also children's language
active 432
feature/goal/probe 290, 353, 386, 392, 410, 432
voice 260
adequacy, criteria of 8-10, 447, 451
Adger 43
adjacency condition/effect/requirement 113, 126, 129, 433
adjectival phrase 81-2
adjective $34,36-7,433$
attributive 37, 178-80
control 274
position of 180, 371
predicative 37
raising 274
adjoin see adjunction
adjunct $4,341,350,359,363,433$
adjunct clause 218
adjunction 341, 362, 417, 433
adposition 20, 433
adverb 36-7, 180, 251, 433
argument-oriented adverb 310
position of 340-3, 350, 359-62
VP adverb 343, 365, 483
vP adverb 484
see also deliberately, gently, how, perfectly,
personally, quickly, right, straight, very; and see VP adverb, vP adverb
adverbial phrase 82
affective constituent 102, 433
affix $34,36,433,441$
affixal
head 153, 434
light verb 337, 339
tense feature on C 205
verb 344
Affix Attachment 174-8, 434
Affix Hopping 118, 161, 166, 168, 172, 174, 186, 208, 273, 434
African American English 114, 129, 236
Afrikaans 397
Agbayani 207, 208
AGENT (theta-role) 251, 434
agentive verb 342
agreement 73, 117, 164, 281-322, 434
and A-movement 281-309, 322
between complementiser and subject 413, 429
heads 363
in French participles 403-5
in transitive clauses 306-7
long-distance 294
morphology 164-6, 179, 475
multiple/simultaneous 304, 319, 381
projection 363
semantic agreement 284
wh-agreement 420
agreementless default form 283, 309
A-head 392, 434
Aissen 414, 429
Akmajian 183
Alexiadou 246
Alexopoulou 329, 336
allomorph 434
A-movement 241-74, 286
and agreement 281-309, 322
as a copying operation 259
Anagnostopoulou 246
anaphor 92-4, 434, 438; see also reflexive, reciprocal
animate (gender) 435
antecedent $92,108,223,245,297,435$
antecedentless relative pronoun 233
anti-cyclic operation 173
Antony 13
antonym 40
any/anyone/anything 102, 237
appear 266
appositive relative clause 233, 435
A-position 434

Arabic 127, 137, 289
array, lexical 158, 320, 407, 408, 435-6
arbitrary reference 111,435
argument $3,144,435$
external/internal 249, 272, 435-6
-oriented adverb 310
quasi-argument 297, 305
restrictions on choice of $274,338,346$
structure 250, 435-6
Aronoff 36, 38
article (definite/indefinite) 436
as 234
aspect 186,436
as a syntactic head (Asp) 246
auxiliary 48,166
see also habitual, progressive, perfect
Aspects of the Theory of Syntax 59, 140
associate 435-6
asymmetric c-command 103, 113, 126, 440
Atkinson xiii, 9, 294
attract/attraction 153, 199, 435-6
Attract Closest Principle 200, 206, 213, 258, 266, 272, 302, 319, 406, 435-6
attribute (of feature) 58
attributive adjective 37, 178-80, 436
Authier 359
auxiliariless clause 115-21
auxiliary 47-9, 168, 436-7
aspect(ual) auxiliary 48,166
copying $156,398,437$
inversion/movement of $6,14,48,83,127$,
152-8, 328; see also T-to-C movement
modal auxiliary 48, 167, 173, 462
passive 432
perfect 119, 167, 246, 256
phrase/projection 112, 157, 166, 167, 436-7
progressive 246, 435-6
raising of 166-70
selection 256, 297, 349, 352, 437
tense auxiliary 48
voice auxiliary 48
Baker 153, 264, 338, 349
Baltin 206, 270, 309
bare
clause 124, 224-8, 437
infinitive 121-4, 437
nominal/noun 140-4, 257, 437
phrase structure 94-6
bar notation 77, 81, 94, 437
Barss 395
base form of verb 34, 437
Basilico 124
BE, raising of 166-70
Bejar 401, 431
Belfast English 149, 190, 236, 241-3, 256, 349, 399, 425
believe 131, 136, 265
Belletti 309, 395
Bellugi 24
Bernstein 140, 367
binarity/binary 17, 20, 21, 22, 438
Binarity Principle 70, 71, 154
binary-branching structure 86, 438
binary merger 68
binding 438
c-command condition on 92, 196
of a variable by an operator 196
principles A/B/C 101, 394
Bobaljik 164, 177, 194
Boeckx 206, 244, 310
Borer 370
Borsley xiii, 205, 219
Bošković $19,194,202,271,314,403$, 405
bottom-up (derivation) 75, 172, 175, 438
bound anaphor 92, 438
Bowerman 24
Bowers 303, 304, 311, 343, 345, 348, 356, 359, 363, 366, 367, 382
bracketing, labelled 57-8
Braine 24
branch 91, 438
Branigan 245, 294, 403
Bristol English 47
British English 429
Brody 194
Brown 24, 168
Bulgarian 202
Burton 244
Burzio 257
by 260
canonical
clause 131, 136
nominal 141
Caribbean Creole 186
Carnie 205
Carrier 344
Carstens 370, 371
case $45,46,439$
assignment/marking 134-40, 281-322, 415
dative 138, 283, 439
genitive $45,101,367,368$
inherent 283, 367, 439
nominative 5, 45, 136-7, 210, 256, 283-4, 286, 287
null 138, 311, 333
of subjects 134-40, 284
particle 101
partitive 309
quirky 138,439
spreading 415
structural 134-40, 283-4, 286, 356-72
caseless constituent 292, 295, 300, 349
categorial features 59
categorisation 38-40
category 1-2, 33-40, 61
functional 40, 41, 60, 79, 89, 454
lexical/substantive $41,60,79,89$
see also individual categories, e.g. noun
causative
verb 119, 337
light noun 368
light verb 339
Cazden 24
c-command 91-4, 134, 139, 244, 281, 310, 440
asymmetric c-command $103,113,126,440$
condition on binding 92, 196
scope correlating with 291
chain (in movement) 190, 440
chain uniformity 205
Chamicuro 210
Chamorro 401, 403
Chaucer 170, 180, 181, 229, 333
Cheng 19, 190
children's language/utterances $10-11,13,22,23$, $26-9,156,183,398,399,429$
Chinese 18, 109, 198
Chomsky, N. see individual entries such as agreement, bare phrase structure, cognitive approach to grammar, EPP, innateness, language faculty, Minimalism, null determiner, theta-criterion, Universal Grammar, etc.
Chung 195, 401, 403
Cinque 178, 179, 180, 367, 369, 371
citation form 2, 34
Citko 233
Clahsen 30
clause 2, 4, 71-6, 440
adjunct 218
auxiliariless 124, 224-8, 437
canonical 131, 136
comparative 234
complement 4, 442
declarative 53
defective 131-4, 265, 316
exceptional 131, 265
exclamative 222-3, 332
finite 5
independent/main/principal 4
infinitive 5
irrealis 53, 312
non-finite 5
relative 192, 195, 223-34, 414, 474
S and S-bar analysis of 71, 74, 86, 103
small 123, 441
type 190, 425
cleft sentence 77, 441
clitic/cliticisation 112, 113, 129, 354, 398, 441
of have 113-14, 119-20, 123, 146, 157-8, 237, 401-3
of to 270
of null complementiser 126
PF clitic 399, 468
closeness 200, 407, 410; see also Attract Closest Principle
cognition/cognitive approach to grammar 6
cognitive synonymy 273
Cole 401
Collins 245, 356
common noun 464
COMP see complementiser
comparative $35,38,39,234,400,441$
competence 7-8
complement 3, 19, 67, 69, 72, 83, 441
clause 4,442
of passive participle 260
of unaccusative verb 255
complementiser 52-7, 74-5, 442
agreement with subject 413, 429
deletion 129-30, 132
phrase/CP 151-8, 188-234, 442
transitive/intransitive 137
wh-marking of 420
complete expression 72
completeness 289, 420
complex sentence 4
component (of a grammar)
computational/syntactic component 9
PF component 9, 117, 288, 382, 468
semantic component $9,117,288,382$
computational component 9
conceptual necessity 139
concord 415, 442
condition see Inclusiveness Condition, Left-Branch Condition, Minimal Link Condition, Passive Thematic Hierarchy Condition, Phase Impenetrability Condition, Relative Pronoun Spellout Condition
Condition on Extraction Domains 218, 255
conditional clause 102, 443
conjunc(tion) 443
constituent 1, 67, 84
discontinuous constituent 193-5, 259, 262, 448
constituent structure 9, 66-98
Constituent Structure Constraint 204, 216, 238
constrained (theory of grammar) 8, 70
constraint 20, 86, 88, 444; see also Constituent Structure Constraint, Functional Head Constraint, Head-Movement Constraint, Improper Movement Constraint, Intervention Constraint, Remerger Constraint, Stranding Constraint, Wh-island Constraint; and see condition, principle
contain/containment 73, 91, 139, 444
immediate containment 91, 444
contentive/content word 40
contraction 444; see also cliticisation, wanna
contrastive focus/stress 73, 177, 241
Contreras 244, 257
control 108, 444
clause 108, 113, 130-1, 226, 333
compared to raising 268-74
object control 345-8, 445
predicate/verb 108, 445
subject control 445
controller 108, 111, 444
converge(nce) $308,317,445$
Convergence Principle 216, 218, 219, 418, 445
coordination $85-7,252,445$
copula/copular verb 445
copy/copying
auxiliary copying $156,398,437$
copying of features $213,214,285,445$
copy deletion 192, 290
copy-merge 156
copy theory of movement $154-8,190-7,243-4$, 259, 445
overt copy of moved constituent 195
preposition copying 192-3
wh-copying 195, 214
coreference 445
Cormack 173, 194, 329
Cornilescu 367
Costa 308
count/countable noun 2, 34, 42-3
counterexample 446
counting algorithm 201
covert see null
Crain 13
crash 288, 446
Cremona xiii
critical period 13
criteria
of adequacy 8-10
for categorising words 33-40
Crookston 156
cross-categorial property/symmetry 59, 367
Crowther 13
Culicover 272, 332
Curtiss 13
cycle/cyclic operation $163,172,175,446$
Danish 257
dare 102, 103, 237
dative case 138, 283, 439
daughter 91, 446
Davies 415
Dayal 199
Déchaine 44
declarative 6, 446
default form 283, 295, 309, 446
defective clause $131-4,265,316,385-8,446$
definite expression $303,411,447$
degenerate input to children 12-13
degree expression 78
deletion
of features 199, 287-91
of traces 290
marking for 305
deliberately 251, 342
demonstrative determiner 447
den Dikken 209, 284, 301, 403
Denham 19
derivation/derive/derived structure 75, 158, 447
derivational morphology 33-5, 447
Descartes 12
descriptive adequacy 8,447
determiner 45, 140-4, 368, 447
phrase 78-9, 447, 465
direct
object 3, 67
theta-marking 253
discontinuous constituent/spellout 193-5, 259, 262, 448
discourse 448
identification of null subject 166
distribution 36, 42, 448
Dixon 372
domain (of a head/phase) 293, 381, 448
Condition on Extraction Domains 218, 255
Do-support 48-9, 173-8, 186, 207, 400
in Elizabethan English 186
double-object structure 345, 358
double there structure 271
DP hypothesis 143, 368, 448
D-pronoun 45, 46, 143
Drubig 329
Dubinsky 415
Dukes 403
dummy constituent 168, 174
Du Plessis 397
Dutch 257
Earliness Principle 135, 139, 172, 282, 285, 290, 292, 299, 306, 307, 313, 431
Early Modern English 158-66, 220, 352, 449; see also Shakespeare
echo question $14,189,449$
ECM see exceptional case-marking
economy 196, 303, 449
edge 307, 449
edge feature 205
Elbourne 284
Elizabethan English 158-66, 220, 352, 449; see also Shakespeare
ellipsis/elliptical structure 51, 112, 153, 155, 175, 449; see also gapping
embedded constituent/clause 53, 449
Embick 177, 206
EMP/emphasis marker 177
empty see null
enclitic(isation) 113, 441; see also clitic
enough 142
entry, lexical 450
EPP feature 73, 243, 450
as property of functional heads 364-5
on C 197-202, 205
on D 369, 415
on ECM verb 360, 362
on Foc 328
on T 73, 96, 110, 241, 243, 248, 249, 254, 258, 261, 262, 265, 267, 268-9, 270-1, 286, 298, 302, 313-22, 385
on Top 330
on transitive light verb 391
on Transitivity head 364-5
relation to phases 409-11
relation to phi-completeness 313
EPP Generalisation 302, 312, 317
Epstein 271
ergative predicate/structure 336-44, 351, 450
Ernst 244
Evans xiii, 298
Everaert 94
evidence
for categorising words 33-40
used in acquisition 23-5
exceptional case-marking (ECM) 131, 265, 315, 358-62, 401, 430, 450
exclamative 6
clause 222-3, 332
nominal 144
existential quantifier 103
experience (in acquisition) 11, 23, 24
EXPERIENCER theta-role 251-2, 353, 451
experiential verb 119
explanatory adequacy 8,451
expletive $73,168,174,451$
choice of 301-3
it 272
there 123, 241, 256, 260, 272, 298-307, 366
transitive expletive structure 304
explicit knowledge 7
Extended Projection Principle 73; see also EPP
external argument 249, 272, 435-6
external merge 199
extract(ion) 451
site 190, 451
Condition on Extraction Domains 218, 255
extraposition 233, 451

Fabb 33-40
Fanselow 398
Fasold 115
feature 58-60, 67
copying $213,214,285,445$
deletion 199, 287-91
inactivation 199, 202, 305, 307, 313
inheritance 213
interpretable 287
matching 198, 199, 286, 289, 461
percolation 213, 214, 215
phi-feature/ φ-feature $283,311,314,469$
selectional 58-9, 68, 142, 149, 362, 476
uninterpretable 287-91
unvalued 285-7, 295
valuation 284-7
Valuation Correlation 288
Visibility Convention 289, 301
Felser 124, 397, 398
Fillmore 250, 251-2
finite clause/constituent 5, 27, 46, 51, 53, 452
FinP/Finiteness Projection 332-6
first person see person
Fitzpatrick 201, 407
floating
quantifier $137,245,255,263,310,396,453$
reflexive 310
focalised/focus/focused/focusing 77, 129, 131, 132, 453
Focus Phrase 327-36
Fodor 13
foot (of movement chain) 191, 262, 453
for 53, 54-5, 64, 128, 134, 226, 230, 316, 333-4
deletion/null variant of (for) 129-30, 132
force 5, 53, 124, 126, 222, 301, 453
Force Phrase 327-36
formal/informal style 216, 223
Fox 244, 395
fragment 453
Frampton 303
Frank 139
free relative clause 233
Freidin 9, 143, 147
French 30, 140, 171, 257, 339, 403-5
Frisian 397
from 198
fronting see preposing
frozen constituent 389
Fu 370
Fuhrhop 38
function, grammatical 1, 3-6, 454
function word see functor
functional category $40,41,60,79,89,454$
Functional Head Constraint 89, 219, 454
functionality feature 60
functor $40,46,454$
gapping 112, 155, 454
Gaynor 94
gender 46, 179, 288, 295, 454
generate 196
generic quantifier 142, 455
Genie 13
genitive case 45, 101, 367, 368
particle 101, 439
strong/weak form 46
gently 340-3
German 30-2, 87, 205, 232, 257, 288, 398
gerund $34,50,54,455$
Giannikidou 209
goal
for a probe 281, 282, 381, 455
theta-role (GOAL) 251, 455
gonna 270
Goodall 358
gradable adjectives 36,455
grammar 1-6, 26
grammatical
categories 33-61
learning 16, 21
Greek 336
Green 236
Grewendorf 202
Grimshaw 220, 244
Groat 194
Gruber 250, 251
Guasti 25, 398
Guilfoyle 186, 244
Gutmann 303
habitual aspect 186
Haegeman 170, 257, 305, 329, 413
Hagstrom 206, 214
Hale 338, 349
Halle 177
Hamelin 212
Han 185
Hanlon 24
happen 255
Harris 186
Hattori 3
have 112, 119-21, 256
cliticisation 113-14, 119-20, 123, 146, 157-8, 237, 401-3
HAVE/BE raising 167
Hawkins 126
head
-first/-last structure 19
of movement chain 190, 262, 456
of phrase $19,34,67,68,69,94,455$
see also A-bar head, A-head
Headedness Principle 70, 71, 74-5, 154

Head Movement 151-66, 178-81, 182, 205
Head Movement Constraint 163, 171, 172, 206, 331, 334, 456
Head-Position Parameter 20, 30-2, 456
Head-Strength Parameter 164, 456
Henry 149, 190, 236, 241, 256, 349, 399, 425
Heny 183
Hermon 401
Hiemstra 397
hierarchical structure 73
highlighting expressions $62,80,88,90$, 100
HMC see Head Movement Constraint
Holmberg 9, 164
Hornstein 13, 102, 244
host 456
how 215, 239
Huang 218, 244, 255
Hung 244
Hungarian 401, 431
Hurford 13
Hyams 24, 27
Icelandic 137, 256, 283
identification (of null constituent) 165, 166, 224, 456
idiom/idiomatic expression 246-8, 262, 265, 273
if 53, 56-7, 237
I-language 7-8
illegibility 288
immediate constituent 70, 91
immediate containment 91, 444
impenetrability see Phase Impenetrability Condition
imperative structure 6, 27, 350, 457
in Belfast English 256
in Elizabethan English 185
negative 183
null subject in 27
impoverished agreement morphology 164,179 , 475
Improper Movement Constraint 429
inactivation (of feature) 199, 202, 305, 307, 313, 422; see also active
inanimate (gender) 435
Inclusiveness Condition 94, 287, 457
incomplete expression 72
incorporation 349
indefinite expression/goal 260, 302, 318, 366, 412, 447
independent clause 4, 126
indicative mood 457
indirect object 466
indirect theta-marking 253
infinitival/infinitive 5, 457
complementiser 53
INFL 51
null particle to 121-4
particle to 49-52, 68, 110, 168-70, 458
phrase/projection 68
verb form 69
see also control, exceptional case-marking, raising
INFL 51
finite 51
infinitival 51
inflectional morphology 33-5
informal see formal
Ingham 170
inherent case 283, 367, 439
inheritance 213
innateness hypothesis 11
Innu-aimûn 403
in situ
expression 18
passive complement 281
subject 246,355
unaccusative complement 257,349
verb 165
wh-in-situ question 189, 194, 206, 404
INSTRUMENT theta-role 251
interface 9, 143, 177
intermediate projection $72,78,80-4,94,203,341$, 350, 362, 472
internal argument 249, 435-6
internal merge 199
internalised linguistic system 7-8
interpret/interpretation 7, 290, 458
interpretable constituent/feature 143, 287
interrogative 6, 53, 196, 198-9; see also question
Intervention Constraint 201, 459
intransitive structure 385-8
complementiser 137, 333
light verb 409-11
verb/verb phrase 409-11
inversion (of auxiliary) $6,14,48,83,127,152-8$, 328
quotative inversion 244-6
see also T-to-C movement
invisibility see visibility
Irish 400
Irish English 186
irrealis clause/mood 312, 459
island constraints/islandhood 195, 225, 229, 459; see also Wh-Island Constraint
it 272, 296
Italian 17, 27, 51, 106, 178-80, 181, 232, 257, 297, 333, 349, 354, 371

Jackendoff 250, 252, 272
Jaeggli 18

Japanese 166, 206
Jarawara 372
Johnson 9, 87, 345
Jones 257
Jónsson 256
Julien 52
Kathol 205
Kayne 70, 73, 359, 401, 403
Kennedy 234
Keyser 338, 344, 349
Kilega 403
Kimball 429
Kishimoto 180, 214
Kitagawa 244
Klima 102, 167
known 121-4, 133
Koeneman 164
Koizumi 363
Kolliakou 329, 336
Koopman 244
Korean 19, 166
Kuroda 244
labelled bracketing/tree diagram 57-8, 67
Labov 114
Landau 103, 111, 198
landing site 204, 459
for moved exclamative expression 332
for moved interrogative expression 330-2
for moved relative operator 330
for wh-movement 330-2
language faculty $10-13$
Lappin 9
Larson 338, 345, 348
Lasnik 13, 138, 173, 177, 214, 230, 244, 303, 362, 431
last resort 320
Late Middle English 170
Latin 153
learnability $10,16,24,25,70,460$
learning 16
grammatical 16, 21
lexical 16, 21
see also acquisition, learnability
Lebeaux 244, 395
Lechner 234
Left Branch Condition 217, 460
Legate 13, 411
legibility (at interfaces) $10,177,460$
Lenneberg 13
LeSourd 195
let 121-4, 134
level (of projection) 94, 460
Levin 355
Levine 9
Levins 356

Levy 18
lexical 460
array $158,320,407,408,435-6$
category $41,60,79,89$
entry 450
item 9, 51, 90
learning 16, 21
property 47
selection 407-9
subarray 408, 435-6
lexicon 9, 158
LF representation 196
light noun 368-72
light verb 339-67, 421, 461
linear word order 18, 73
local antecedent 109
local domain 461
local movement 321 ; see also successive-cyclic
Locality Principle 15, 292
locative expression/LOCATIVE theta-role 241, 251, 304, 461
locative inversion 355-6
locus 117, 461
Logical Form 196
long-distance
agreement 294
head movement 163
passivisation 264-6, 315
wh-movement 398
Longobardi 46, 140, 144, 146, 180, 181, 367
López 362
Lozano xiii, 409
Lyons 43, 46
MacKenzie 294, 403
Mahajan 398
main clause 4,126
main verb 436-7
map/mapping 9, 196, 249
Marantz 177, 253
Marcus 24
marked for deletion 305
Martin 311
Massam 401, 431
mass/non-count noun 34
matching (of features) 198, 199, 286, 289, 461
matrix clause 108, 461
maximal projection $72,78,80-4,87,90,94,190$, 203, 204, 212, 363, 472
McCartney 192
McCloskey 255, 263, 396, 400
McDaniel 398
McNally 244
McNeill 23, 24
memory 293, 381, 408

Merchant 234
merge/merger 66-98
external 199
internal merge 199
movement as a form of 199
preferred over Move 320, 326, 385, 407, 408
Middle English 170, 229, 333; see also Chaucer
Minimalism/Minimalist Program 9, 95, 462
Minimal Link Condition 200
minimal projection 94, 95, 203, 204, 472
modal auxiliary $48,167,173,462$
modifier/modify $34,77,78,462$
$\operatorname{mood} 457,462,478$
Moore 138
Morgan 24
Moro 304
morpheme 1
morphological structure 70
morphology 1
derivational 33-5, 447
inflectional 33-5
mother 91, 463
movement
and agreement 281-309, 322
as copying and deletion $154-8$
as a form of merger 199
chain 190
explaining what moves where 202-6
see also A-movement, A-bar movement,
Attraction, EPP, Head Movement,
N -movement, T-to-C Movement, V-to-T
movement, Wh-Movement
multiple
agreement 304, 319, 381
specifiers $377,391,463$
wh-movement 199-202, 331, 405-7, 409
Multiply Filled COMP Filter 230-1
Nakajima 356
Namai 46
narrow scope modal 167
Nasu 289, 313
Navajo 206
ne (in Italian) 257
need 102, 103, 167
negation 48, 170-3
in Elizabethan English 158-62
in Middle English 170
in present-day English 173-4
see also negative
negative
evidence in parameter-setting 23, 24
imperative 183
particle n't 399
phrase/projection (NEGP) 170-3
prefix 35, 59
negative (cont.)
quantifier 103
question 173, 176-7
neutralisation 34, 464
new information 329
N-movement 178-81
node 67, 90
node counting 201
nominal expression 464
nominal phase 411
nominalisation 464
nominative case $5,45,136-7,210,256,283-4$, 286, 287
non-count noun 34
non-echo question 14
no-negative-evidence hypothesis 25
non-finite clause/constituent 5, 27, 68, 311, 452
non-null subject language 17,465
non-terminal node 90
Northeastern American English 429
Norwegian 180, 205
notional criteria 33
not see negation/negative
noun $2,34,36,464$; see also common, count, mass, proper
noun phrase 82,465
Noyer 177, 206
N-pronoun/pronominal noun 44
n't see negation/negative
null
auxiliary 111-15
case (assignment) $138,311,333$
complementiser/C 124-31, 137
constituent 106-46
determiner 41-4, 140-4
finite subject 107
imperative subject 107
infinitive participle 121-4
non-finite subject 107
quantifier 140-4
question operator in yes-no questions 220, 331, 384, 423-4
question particle/Q 153
relative pronoun 224-8
spellout $107,112,123,125,129,134,143,155$, 224-8, 232, 383
subject 17, 27, 106-11, 465; see also pro, PRO
subject language $28,164,465$
subject parameter 17,106
T constituent 111-24
truncated subject 107
number
as a grammatical feature/property $34,46,466$
as a syntactic head (Num) 179, 180, 412, 465
Number Phrase 371-2
Nunes 194, 218, 398
object 140, 466
Agreement Projection/AgrOP 363
control predicate/structure 345-8
direct object 3, 67
double-object structure 345, 358
indirect object 466
objecthood 139
Ochi 173
of 367,439
O-feature 420
Okinawan 206
old information 329
one 44
O'Neil 194
one-place predicate 4
operator
binding a variable 196, 206
feature 420
interrogative 196
null (in yes-no questions) $220,331,384$, 423-4
relative 224
optimal design 9
Optional Infinitives stage (in acquisition) 28
orphaned preposition 212, 216, 397, 417-18
ought 168
Oya 344
parameter/parameter-setting/parametric variation 16-25, 26-9; see also Head-Position Parameter, Head-Strength Parameter, Null-Subject Parameter, Wh-Parameter
Parker 210
Partee 125
participial light verb (PRT) 386, 390
participle 466-7
agreement (in French) 403-5
passive 2, 34, 257, 260, 386, 432
perfect $2,34,246,257,436-7$
progressive 2, 34, 435-6
particle 467
genitive case 101, 439
infinitive 49-52, 68, 110, 168-70, 458
question (Q) 153
tense 68
partitive 467
case 309
quantifier 102, 103, 142
parts of speech 2 ; see also category
passive structure $252,260-6,366-7,386,432$
auxiliary 432
participle 2, 34, 257, 260, 386, 432
Thematic Hierarchy Condition 252
passivisation 132, 261, 303, 416
long distance 264-6
see also passive
past tense 2, 34
percolation 213, 214, 215
perfect
aspect 436-7
auxiliary $119,167,246,256$
participle 2, 34, 246, 257, 436-7
system 9
perfectly 343, 365
performance 7
periphery 468
Perlmutter 138
person, grammatical 45,53, 141, 468
first/second/third 45
feature on of expletive there 300
feature on to in defective clauses 315
personal pronoun 45, 143
personally 251
persuade 347
Pesetsky 135, 172, 194, 195, 208-11, 282, 285, 287, 291-2, 298, 305, 345, 425
PF (Phonetic Form)
clitic 399, 468
component 9, 117, 288, 382, 468
movement operation 205, 367
representation 9, 288
P-feature 419, 469
phase 292, 321, 381-409, 411, 416-18, 425
Phase Impenetrability Condition $292-4,306,313$, $319,321,353,381,411,415,416$
phi-/ φ-completeness 289, 302
and EPP 313
phi-feature $/ \varphi$-feature $283,311,314,469$
on infinitival to 314
phi-/ φ-incompleteness 302
Phillips 76, 87
Phonetic Form 9, 288; see also PF
phonological structure 70
phrasal verb 417
phrase 3, 66-70; see also individual phrases, e.g. noun phrase
phrase-marker 90
Piattelli-Palmarini 9
Picallo 179
pied-piping 211-20, 223, 227, 229, 230, 396, 397, 414, 469
Pietroski 13
Platzack 164
plural 2, 34
P-marker 90
polarity expression/item 102, 167, 237, 470
Polinsky 294
Polish 205, 219
Pollock 363
Portuguese 308
positive evidence (in parameter-setting) 23
possessive structure $46,180,181,215,370-2$, 412, 414, 470
POSSESSEE (theta-role) 370
POSSESSOR (theta-role) 370
possessor agreement 372
Postal 46, 359, 362
postposition 20
Potsdam 294
PPT see Principles-and-Parameters Theory
pragmatics 470
precede(nce) 470
predicate $3,248,435$; see also control, ergative, one-place, raising, resultative, two-place, three-place, unaccusative, unergative
Predicate-Internal Argument Hypothesis 249, 270
predicate nominal 110, 144, 471
predicative expression $37,110,144,253,436$, 471
prefer 130
Prefer Merge over Move Principle 320, 326, 385, 407, 408
prefix $35,59,434$
prenominal determiner/quantifier 44,45
preposing 54, 62, 64, 80, 87, 100
preposition $37-8,471$
adjoining to verb 417
copying 192-3
dropped before a clause 63
stranding of 212, 216, 397, 417-18
thematic function of 367
prepositional phrase 76-8, 80-1, 416-18
present tense 2, 34
principal clause 4,126
principles of Universal Grammar/UG 13-16; see Attract Closest Principle, Binarity
Principle, Binding Principles, Convergence
Principle, Earliness Principle, Headedness
Principle, Locality Principle, Strict Cyclicity
Principle; see also condition, constraint
Principles-and-Parameters Theory (PPT) 21, 471
PRN see pronoun
PRO 27, 108-11, 130, 137-9, 231, 269-70, 297, 305, 345; see also control
pro 17, 27, 165, 232, 471
probe 281, 282, 285, 381, 472
process nominal 367,370
processing 293
proform 47, 472
progressive
aspect 435
auxiliary 246, 435-6
participle 2, 34, 435-6
projection 67, 69, 94, 472; see also agreement, intermediate, maximal, minimal, split
Projection Principle 362, 472
promise 348
pronominal
determiner 45, 46, 143
non-anaphoric pronoun 101
noun 44
quantifier 44, 45, 189
pronoun 44-7, 473
D-pronoun 45, 46, 143
expletive 73
interrogative 189
N -pronoun/pronominal noun 44
personal 45, 143
Q-pronoun/pronominal quantifier 45, 189
relative 223; see also relative clause
proper noun/name 180, 233, 464
proposition 248, 435, 473
PRT see participial light verb
pseudo-cleft sentence 129, 131, 132, 473
Pullum 13

Q see question particle/quantifier
Q-feature 420
Q-pronoun 45, 189
quantifier 41-4, 473
existential/partitive 102, 103, 142
floating/stranding 137, 245, 255, 263, 310, 396, 453
generic 142,455
negative 103
null 140-4
prenominal 44
pronominal 44, 45, 189
universal 47, 103, 255, 396
quasi-argument 297, 305
question(s)
echo and non-echo 14, 189, 449
in Elizabethan English 159, 162
in present-day English 14-15
multiple wh-questions 199-202, 405-7
negative question 173, 176-7
particle (Q) 153
wh-in-situ question 189
wh-questions 196, 199-202
yes-no question 151, 175, 220-1
quickly 350
quirky case 138,439
quotative inversion 244-6
Radford 1, 32, 60, 70, 82, 86, 87, 144, 205, 207, 363, 417, 418
raising predicate/structure $268,352-4$
compared to control 268-74
Ramat 60
Randall 344
rapidity of language acquisition 11
Rappaport Hovav 355
recursion 69
reduced form 55, 474
R-expression 101
reference, arbitrary 111
referential expression 101, 474
reflexive 92-4, 109, 197, 310, 314, 394
Reintges 195
relations, syntactic 90-4
relative
appositive relative clause 233, 435
clause 192, 195, 223-34, 414, 474
free relative clause 233
operator 224
pronoun 195, 223, 233, 474
Relative Pronoun Spellout Condition 227, 230
restrictive relative clause 232
that clauses 228-34
Remerger Constraint 204, 205, 237, 396, 415
representation 474
LF/semantic 9, 196, 288
PF representation 9, 288
restrictions on choice of arguments/subjects 274, 338, 346
restrictive relative clause 232
resultative predicate 344
Reuland 9, 94
R-expression see Binding Principles
rich agreement morphology 164-6, 179, 475
Richards 194, 403, 405
Rickford 186
right $37,54,77,80$
Ritter 179
Rizzi 232, 321, 328, 329, 330, 332, 395, 424
Roberts 9, 164, 167, 181, 194, 206, 220, 392
Roeper 344, 370
Rohrbacher 164
role see theta-role
Romani 398
Romanian 367
Romero 244
Rooryck 19
root/root clause 90, 126, 475
Rosen 244
Ross 127, 195, 212, 217, 225, 414
Runner 194
Russian 60
Rymer 13
Sabel 218, 225
Saddy 401
Safir 18, 123, 292
Sag 213, 228
Saito 362
Sampson 13
S-analysis of clauses 71, 86, 103

Sardinian 257
Sauerland 244, 284
S-bar analysis of clauses 74
Schachter 125
Scholz 13
Schütze 415
scope 173,475
ambiguity 244
narrow scope 167,475
of infinitival to 169
of quantifier 243
wide scope 167, 476
Scots English 168
search (space) 293, 387
second person see person
second specifier see multiple specifier
see 121-4
Seeley 271
seem 266, 268-9, 274, 352-4
select/selection 58-9, 68, 476
auxiliary selection $256,297,349,352,437$
selectional feature/property $58-9,68,142,149$, 362, 476
self-correction 24
semantic
agreement 284
component 9, 117, 288, 382
interpretation 290
properties 2
representation 9, 196, 288
role see theta-role
semantics interface 143
sentence 71; see also clause
Seppänen 190
Shakespeare 122, 184, 192, 206, 236, 256, 476; see also Elizabethan English
shells
in noun phrases 367-72
in verb phrases 336-67
Shima 320
short verb movement 246
should 51, 68
Sigurðsson 138, 283, 304
simple sentence 4
simultaneous operations 305, 319, 387
singular 2, 34
Sinhala 206, 214
sister 74, 91, 476
small clause 123, 441
Smith xiii, 13, 173, 194, 329
Sobin 214, 336, 431
Sorace 257, 354
SOURCE theta-role 251, 476
Southern White American English 115
Spanish 257, 405-7, 409
Speas 244
spec-head relation see specifier
specifier 76-9, 477
-head relation 281, 305
of ADVP 82
of AP 81-2
of CP (spec-CP) 188-234, 394-401
of DP (spec-DP) 78-9, 215, 369-71, 414
of NegP 170-3
of NP 82, 178
of NumP 179, 371-2, 412
of PP 76-8
of QP 215
of root clause 232
of TP (spec-TP) 82-4, 243
of VP (spec-VP) 242, 243, 245, 339-67
of vP (spec-vP) 340-67, 391-4, 401-7, 409
multiple/second/additional specifier(s) 377 , 391, 463
specificity effect 405
speech systems 9
spellout 288, 477-81
discontinuous/split 193-5, 259, 262, 448
null $107,112,123,125,129,134,143,155$, 224-8, 232, 383
of complementiser 335
Spencer 60, 257
split
CP 327-36
projection 327-72, 477
spellout 193-5, 257, 259
VP 336-67
Sportiche 244, 403
stacked adjectives 42, 477
star 5
Stepanov 341
Stjepanović 206
Stockwell 125
Stowell 59, 75, 311
straight 37, 54
stranding 477-8
Constraint 216, 477-8
of preposition 212, 216, 397, 417-18
of quantifier $137,245,255,263,310,396$, 453
of reflexive 310
Strict Cyclicity Principle 173, 478
string 478
Stroik 340, 348
strong
affix/head triggering movement $153,328,364$
AUX-feature of T 168
genitive pronoun 46, 439
N-feature of Num 179
tense/T feature of C/Q 153, 176, 204
(V feature of) T in Elizabethan English 160, 164
structural case 439
structure
hierarchical 73
morphological 70
phonological 70
syntactic 9, 66-98
tests for 84-90
stylistic variation 216, 223, 478
subarray 408, 435-6
subject $3,72,78,134-40,241-74,441$, 478
Agreement Projection/AgrSP 363
case-marking of 284
in Belfast English 241-3
in situ 246
VP-Internal Subject Hypothesis 244-74
wh-subject questions 206-11, 239
see also null subject
subjecthood 139
subjunctive mood 478
substantive category $41,60,79,89$
substitution 39, 55, 87, 479
successive cyclic
affix lowering 173
A-movement 271, 321
head movement 163, 171
wh-movement 321, 389, 394-401
suffix 118,434
Suñer 245, 246, 405-7
superiority effect 201, 479
superlative $35,39,479$
Svenonius 283
syncretism 34, 170, 335-6, 479
syntactic
component 9
relations 90-4
representation 196, 474
structure 9, 66-98
syntax 1
tacit knowledge 7
tag (sentence) 49, 115, 120, 479-80
T (Tense constituent)
defective 316
feature composition of 316
in control clauses 316
in defective clauses 316
T-agreement 282, 292
Tallerman 405
Taraldsen 180
taxonomy 1
Ten Hacken xiii
tense 52, 480-4
affix 116-21, 160
auxiliary 48
copying 287
feature on subject 209
finite 52
-marker 52
non-finite 52, 311
particle 68
past 2, 34
phrase/projection 72
present 2, 34
terminal node 90
ternary-branching structure $71,337,346,350$, 480
testing structure 84-90
that 53, 55-6, 103, 136, 190, 292, 327-8, 334, 335, 389, 420
caseless nature of 292
deletion/null spellout of as 124, 125-6
spelled out as what 399
Thematic Hierarchy 252, 377
thematic role see theta-role
THEME theta-role 251, 476-80
there 123, 241, 256, 260, 272, 298-307, 366
double there structure 271
theta/ θ
criterion/ θ-criterion 252, 269, 480
marking 252-4
roles 250-4
role assignment 252-4
Uniform Theta Assignment Hypothesis (UTAH) 264
third person see person
Thomas 13
Thornton 398, 399, 429
thought systems 9
three-place predicate $4,336,481$
Tieken-Boon van Ostade 187
Tns affix see tense affix
to 49-52, 62, 68, 110, 168-70, 458
deletion/null counterpart of (\ddagger) 121-4
top-down 76
topic (structure)/topicalised
expression/topicalisation 329, 333, 481
Topic Drop 232
Topic Phrase 327-36
Torrego 208, 287, 305
tough 234
trace/trace theory 190, 290, 383, 481; see also copy
traditional grammar 1-6
transfer 293, 382, 383, 384, 388, 390, 392, 393
transitive item/structure $3,38,46,67,134,139$, $351,365,382-5,481-2$
clauses, agreement in 306-7
clauses, wh-movement in 401-7
complementiser 137
expletive structure 304
light verb 356-67
verb phrase 306, 356-67

Transitivity Phrase 362-7
Traugott 229
Travis 24, 163, 244
tree diagram 66, 67
Trotta 190
truncated null subject 27, 107
truncation 27, 107, 482
truth-functional equivalence 273
T-to-C movement 151-8
two-place predicate $4,348,482$
type of clause 190, 425
Tzotzil 414
UG see Universal Grammar
UG principles see principles
unaccusative structure/predicate 254-9, 297, 304, 308, 349-52, 367, 385, 409, 482
unary-branching structure 154
unbound anaphor 92, 482
uncountable noun 34, 42-3
unergative predicate/structure $256,348-9,351$, 482
ungradable adjective 36
Uniform Theta Assignment Hypothesis (UTAH) 264, 338, 483
uniformity (of chain) 205
uniformity of language acquisition 11
uninterpretable feature 287-91
Universal Grammar 6-10
Universal principles see principles
Universal quantifier 47, 255, 396
universality (as a criterion of adequacy) 8
unlabelled tree 95
unreduced form 55
unvalued feature 285-7, 295
Ura 403, 405, 429
Uriagereka 9, 13, 96, 218, 395
UTAH see Uniform Theta Assignment Hypothesis

Vainikka 18
Valois 371
valuation/value (of feature) 58, 284-7, 288, 295, 296, 483
variable 196, 424
verb $2,34,36,483$
causative 337
movement see V -to-T movement
short verb movement 246
see also auxiliary, main verb, light verb, predicate
verb movement see V-to-T movement
verb phrase 67, 69
Vergnaud 9, 143, 147
very 36, 81
Vijay-Shanker 139

Vikner 164, 181
visibility 197, 290, 314
Feature Visibility Convention 289, 301
vocative expression/nominal 144, 180, 483
voice
active/passive 260
auxiliary 48
VP adverb 343, 365, 483
vP adverb 484
VP idiom 247
VP-Internal Subject Hypothesis (VPISH) 244-74, 483
VP shells 336-67
V-to-T movement 158-62

Wakelin 186
wanna/wanta contraction 191, 270, 309
want 128, 132, 268-74
Watanabe 195
weak
affix/head 161, 330
genitive pronoun 46, 439
T in present-day English 164
unstressed pronoun 232
weather it 296
Welsh mutation 405
West Flemish 413
West Ulster English 255, 263, 396
Wexler 28, 398
what 399, 400
wh-agreement 420, 421
wh-copying 195, 214, 397
Whelpton 256
whether 220, 237, 423
null spellout of 232
wh-exclamatives 222-3
wh-expression 188, 220, 484
wh-feature on C 198-202
wh-in-situ question 189, 194, 206, 404
Wh-Island Constraint 225, 229, 484
wh-marking
of complementiser 399, 400, 420
of verb 403, 421
wh-movement $14,18,188-234,330-2$
as copying and deletion 190-7
multiple 199-202, 331, 405-7, 409
nature of 419-25
through intermediate spec-CP 388-91
through spec-vP 391-4, 401-7, 409
who/whom 211, 214, 223, 430
whose 215
Wh-Parameter 18, 30-2, 484
wh-percolation 215
wh-question 196
wh-subject question 206-11, 239
wh-word 14, 484
wide-scope modal 167
Williams 297
Willis 405
Wiltschko 44, 144
Wolfram 115
Woolford 244
word order 18,73
words, grammatical properties of 33-61

Xu 109

Yang 13, 73
yes-no question 151, 175, 220-1, 331, 423-4
Zagona 244
Zwart 206
Zwicky 190, 231

[^0]: Whatever evidence we do have seems to me to support the view that the ability to acquire and use language is a species-specific human capacity, that there are very deep and restrictive principles that determine the nature of human language and are rooted in the specific character of the human mind. (Chomsky 1972, p. 102)

