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Preface

The 7th Conference on Security and Cryptography for Networks (SCN 2010) was
held in Amalfi, Italy, during September 13-15, 2010. This biennial conference has
traditionally been held in Amalfi, with the exception of the fifth edition which
was held in nearby Maiori. This year the conference received the financial support
of the Department of “Informatica ed Applicazioni” and of the Faculty of Science
of the University of Salerno, Italy.

The wide availability of computer networks, and in particular of the global
Internet, offers the opportunity to perform electronically and in a distributed
way a wide range of transactions. Hence, cryptography and security assume
an increasingly important role in computer networks, both as critical enablers
of new functionalities as well as warrantors of the mechanisms’ soundness and
safety. The principal aim of SCN as a conference is to bring together researchers
in the above fields, with the goal of fostering cooperation and exchange of ideas
in the stunning Amalfi Coast setting.

The conference received 94 submissions—a record-high number for the SCN
conference series—in a broad range of cryptography and security areas, out of
which 27 were accepted for publication in these proceedings on the basis of qual-
ity, originality, and relevance to the conference’s scope. At least three Program
Committee (PC) members—out of 27 world-renowned experts in the conference’s
various areas of interest—reviewed each submitted paper, while submissions co-
authored by a PC member were subjected to the more stringent evaluation of
five PC members.

In addition to the PC members, many external reviewers joined the review
process in their particular areas of expertise. We were fortunate to have this
knowledgeable and energetic team of experts, and are deeply grateful to all of
them for their hard and thorough work, which included a very active discus-
sion phase—almost as long as the initial individual reviewing period. The paper
submission, review and discussion processes were effectively and efficiently made
possible by the Web-Submission-and-Review software, written by Shai Halevi,
and hosted by the International Association for Cryptologic Research (IACR).
Many thanks to Shai for his assistance with the system’s various features and
constant availability.

Given the perceived quality of the submissions, the PC decided this year to
give a Best Paper Award, both to celebrate the science and as a general way to
promote outstanding work in the fields of cryptography and security and keep
encouraging high-quality submissions to SCN. “Time-Specific Encryption,” by
Kenneth Paterson and Elizabeth Quaglia, was conferred such distinction.

Recent years have witnessed a rapid and prolific development of lattice-
and “learning with errors” (LWE)-based cryptographic constructions, given the
hardness and versatility of the underlying problems. The program was further
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enriched by the invited talk “Heuristics and Rigor in Lattice-Based Cryptogra-
phy” by Chris Peikert (Georgia Institute of Technology), a world authority on
the subject.

We finally thank all the authors who submitted papers to this conference;
the Organizing Committee members, colleagues and student helpers for their
valuable time and effort; and all the conference attendees who made this event
a truly intellectually stimulating one through their active participation.

September 2010 Juan A. Garay
Roberto De Prisco
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Martin Hirt ETH Zürich, Switzerland
Dennis Hofheinz Karlsruhe Institute of Technology, Germany
Ari Juels RSA Laboratories, USA
Kaoru Kurosawa Ibaraki University, Japan
Tal Malkin Columbia University, USA
John Mitchel Stanford University, USA
David Naccache ENS Paris, France
Antonio Nicolosi Stevens Institute of Technology, USA
Jesper Nielsen University of Aarhus, Denmark
Kobbi Nissim Microsoft ILDC and Ben-Gurion University,

Israel
Krzysztof Pietrzak CWI, The Netherlands
Christian Rechberger K.U. Leuven, Belgium
Vincent Rijmen K.U. Leuven, Belgium and TU Graz, Austria
Guy Rothblum Princeton University/IAS, USA
Berry Schoenmakers TU Eindhoven, The Netherlands
Martijn Stam EPFL, Switzerland
Vinod Vaikuntanathan IBM Research, USA



VIII Organization

Ivan Visconti Università di Salerno, Italy
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Time-Specific Encryption

Kenneth G. Paterson and Elizabeth A. Quaglia

Information Security Group,
Royal Holloway, University of London,

kenny.paterson@rhul.ac.uk, e.a.quaglia@rhul.ac.uk

Abstract. This paper introduces and explores the new concept of Time-
Specific Encryption (TSE). In (Plain) TSE, a Time Server broadcasts a
key at the beginning of each time unit, a Time Instant Key (TIK). The
sender of a message can specify any time interval during the encryp-
tion process; the receiver can decrypt to recover the message only if it
has a TIK that corresponds to a time in that interval. We extend Plain
TSE to the public-key and identity-based settings, where receivers are
additionally equipped with private keys and either public keys or iden-
tities, and where decryption now requires the use of the private key as
well as an appropriate TIK. We introduce security models for the plain,
public-key and identity-based settings. We also provide constructions for
schemes in the different settings, showing how to obtain Plain TSE us-
ing identity-based techniques, how to combine Plain TSE with public-key
and identity-based encryption schemes, and how to build schemes that
are chosen-ciphertext secure from schemes that are chosen-plaintext se-
cure. Finally, we suggest applications for our new primitive, and discuss
its relationships with existing primitives, such as Timed-Release Encryp-
tion and Broadcast Encryption.

1 Introduction

Time has always played an important role in communication. Information can
become useless after a certain point, sensitive data may not be released before
a particular time, or we may wish to enable access to information for only a
limited period of time. In this context, being able to specify during what time
interval a ciphertext can be decrypted by a receiver is a useful and interesting
property. In this paper, we introduce and develop a new cryptographic primitive
called Time-Specific Encryption (TSE) which addresses this problem.

More specifically, we consider a setting in which we have a semi-trusted Time
Server (TS). TS broadcasts a Time Instant Key (TIK) kt at each time unit or
“tick” of its clock, t, where 0 ≤ t ≤ T − 1. This TIK is available to all users, and
we implicitly assume that it contains a description of t. A sender can specify
any interval [t0, t1], where t0 ≤ t1, when encrypting a plaintext m to form a
ciphertext c. In Plain TSE, we wish to achieve the property that c can only be
decrypted by a receiver to recover m if the receiver is in possession of a TIK kt

for some t with t ∈ [t0, t1]. Notice that we cannot enforce the property that the
receiver can only decrypt during the decryption time interval (DTI) [t0, t1], since

J.A. Garay and R. De Prisco (Eds.): SCN 2010, LNCS 6280, pp. 1–16, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 K.G. Paterson and E.A. Quaglia

a receiver can always obtain an appropriate TIK and then use it at any time
later on. Achieving this stronger notion could be done using trusted hardware,
for example. Yet, as we discuss below, TSE has several intriguing applications
exploiting its defining property that a receiver must obtain a suitable TIK before
being able to decrypt.

We extend Plain TSE to the public-key and identity-based settings, where
receivers are additionally equipped with private keys and either public keys or
identities, and where decryption now requires the use of the relevant private key
as well as an appropriate TIK. This provides protection against a curious Time
Server, as well as ensuring that a ciphertext is decryptable only by a specified
party. We introduce security models for the plain, public-key and identity-based
settings, considering both chosen-plaintext and chosen-ciphertext adversaries.

We also provide constructions for schemes in the different settings. Firstly, we
build Plain TSE schemes by adapting ideas of [25,27] which themselves employ
identity-based and tree techniques. Secondly, we show how to combine Plain
TSE with public-key and identity-based encryption schemes to obtain chosen-
plaintext secure TSE schemes in the public-key and identity-based settings.
Thirdly, we show how to adapt the CHK transform [8] to the TSE setting, ob-
taining a generic construction for a chosen-ciphertext secure TSE scheme in the
public-key setting from a chosen-plaintext secure, identity-based TSE scheme.
Our focus is on providing generic constructions that are secure in the standard
model. Naturally, more efficient constructions and concrete schemes can be ob-
tained by working in the Random Oracle Model (ROM), and we sketch such
constructions where appropriate. In our closing section, we discuss possible ex-
tensions of our ideas and areas for future work.

1.1 Applications of TSE

TSE generalises Timed-Release Encryption (TRE), a concept first introduced in
[22]. In TRE, a user can only decrypt after a specified release time. Existing ap-
proaches [9,10,19,15,12] to achieving TRE also make use of a trusted Time Server
broadcasting time-specific keys, but suffer from the limitation that some back-up
mechanism must be provided in case the receiver misses a key broadcast by the
server. In this sense, TRE represents the special case of TSE in which the sender
can specify only intervals of the form [t, t]. Typically in the literature, it is assumed
that the Time Server (or some other agency) will make old keys available on a
public server. Clearly this may be inconvenient and would require additional in-
frastructure on top of the broadcast capability. TSE provides an elegant solution
to this problem: if the sender specifies an interval of the form [t, T −1] (where T −1
is the maximum time supported by the scheme) then a receiver can decrypt using
any TIK kt′ broadcast by the Time Server at time t′ ≥ t. We note that the use of
tree techniques to achieve this capability was sketched in [9,12], but without any
formal security analysis. TSE, then, provides a useful extension of TRE that can
be exploited in any of the many applications that have already been proposed for
TRE in the literature, including electronic auctions, key escrow, on-line gaming,
timed release of information such as press releases, and so on.
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However, TSE is more flexible than this in the range of applications that it
supports. For example, the encrypting party may specify an interval of the form
[0, t], meaning that a receiver can decrypt the ciphertext as soon as it is received
and a TIK has been obtained, but only up to time t. After this time, TIKs
issued by the time server will not help in decryption. Yet, a user might obtain a
useful TIK from some other user in the system, so this application of TSE only
makes sense in situations where users have a vested interest in not sharing TIKs
with one another, such as when users are in competition with one another. For
example, the ciphertext may encrypt a ticket for accessing a service that is valid
up to time t. More generally, TSE can be used to support any application in
which a user benefits from accessing plaintext in a timely manner, and where
the utility of a TIK becomes limited shortly after its broadcast time. We sketch
an example of such an application in the domain of entity authentication next.

Consider a typical time-stamp based network authentication protocol, in which
entities A and B share a symmetric key K and in which A sends B messages of
the form MACK(T ||B) where T is the current time (at A) and MACK denotes a
secure MAC algorithm using the key K. Such a protocol requires roughly synchro-
nised clocks, and B needs to allow a “window of acceptance” for values T in A’s
messages, to cater for any loss of accuracy in synchronisation and network delay.
In turn, this means that B needs to keep a log of recently received messages to
prevent replays by an attacker during the window. How can TSE help? Suppose
B generates a nonce N , encrypts it using a TSE scheme with an interval [t0, t1],
where t1 − t0 is equal to the width of a suitable window of acceptance (to cater
for network delay and clock drift between A and B), and broadcasts the result-
ing ciphertext. Now A’s ability to send a message of the form MACK(N ||B) to B
before time t1 is a proof that A obtained a TIK kt during the interval [t0, t1] and
decrypted to obtain the nonce N . Thus B obtains a proof of liveness of A within
a certain window of acceptance, so authenticating A to B. This basic protocol
can be extended in a number of ways. For example, B’s ciphertexts can be pre-
distributed to A, giving A a set of tokens which she can use to authenticate to B
during specified time intervals. We can also adapt the basic scheme to use pseudo-
randomly generated nonces, so saving state at B. We can modify it to provide key
transport, by replacing the MAC with an authenticated encryption primitive and
including a session key in A’s message. We can also add mutual authentication in
obvious ways. But what is notable about the protocol design is that we no longer
require synchronised clocks, and we have a window of acceptance for responses by
design. These features arise from the use of TSE.

1.2 Further Related Work

Range queries over encrypted data and related ideas: Shi et al. [25] proposed
schemes enabling multi-dimensional range queries over encrypted data (MRQED).
In the one-dimensional version of this primitive, data is associated with a single
value and is encrypted with respect to that value, while users are equipped with
keys enabling them to decrypt data whose values are in a given range. In contrast,
in TSE, encryption is performed with respect to a range, while the Time Server
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makes available keys specific to a particular time value. Thus, our notion of Plain
TSE is precisely equivalent to the notion of dual MRQED, introduced but not for-
malised by Shi et al. [25]. We note that [25] gives a construction which builds a dual
MRQED scheme from a normal MRQED scheme, but this seems to involve a dou-
bling of dimension and, therefore, a significant loss of efficiency, a problem from
which our constructions do not suffer. In addition, in our work, we give construc-
tions achieving non-selective security against chosen-ciphertext attackers,whereas
[25] only considers selective security notions and chosen-plaintext attackers in any
detail (and then in the MRQED setting rather than its dual). Moreover, we con-
sider plain, public-key and identity-based settings, whereas [25] only handles what
amounts to the plain setting. In work related to that of Shi et al., Srivatsa et al.
introduced [27] Trust-and-Identity Based Encryption (TIBE). Replacing “trust”
with time in TIBE, and ignoring the identity-based aspects, we recover a special
case of MRQED of dimension 1, but handling only intervals of the form [t, T − 1].
Another related idea is sketched in [4], where it is shown how to transform a hierar-
chical identity-based encryption scheme into an encryption system that can send
messages into the future. Translated into the language of this paper, this yields a
Plain TSE scheme that can only support intervals of the form [t, T − 1]. Unfortu-
nately, because of specific details of the construction used, this approach does not
seem capable of being extended to support more general intervals.

ABE and PE: TSE can be seen as arising from a special case of ciphertext-
policy Attribute-Based Encryption (ABE) [18,3], itself a special case of Predicate
Encryption (PE) [20], for a class of policies which express interval membership
and attributes which express specific times, and with the Time Server playing
the role of Attribute Authority. We note that most work on ABE and PE to
date, with the exception of [21], is limited to the “selective-attribute” case. In
the context of TSE, converting to a non-selective security model would incur a
cost of roughly O( 1

T 2 ) in the tightness of the security reduction. However, our
constructions for TSE already achieve fully adaptive security in the standard
model with a tight reduction to the security of the IBE scheme used in the
specific instantiation.

Broadcast Encryption: Broadcast Encryption (BE) is a cryptographic primitive
designed to address the issue of broadcasting a message to an arbitrary subset
drawn from a universe of users. Although conceptually opposites (in TSE the keys
are broadcast while the message is sent beforehand), a BE scheme can be used to
construct a Plain TSE scheme: assume the users in the BE scheme can be labeled
with elements from [0, T − 1], consider a DTI as the target subset of addressed
users in the BE encryption algorithm, and broadcast the private key for user
with label t at time t. The functionality of the algorithms and the security of the
schemes are preserved in this transformation. There are however some caveats
to this approach. First of all, to meet our TSE security requirement, we need
the BE scheme to be fully collusion resistant. This condition immediately rules
out many of the existing schemes. Furthermore, deploying BE schemes, as they
are described generically in [6] and [17], requires the specification of the target



Time-Specific Encryption 5

set (in our case, the DTI) as an input to the decryption algorithm, inherently
preventing the resulting Plain TSE scheme from having the DTI confidentiality
property. Finally, the advantages and shortcomings of BE over our approach
to the realisation of Plain TSE, as developed in Section 4.1, can be cast in a
framework of trade-offs between the sizes of public parameters, private keys and
ciphertexts, together with computational costs and strength of security achieved.
We give a more detailed analysis in the full version, illustrating the value of a
dedicated approach when realising Plain TSE.

Temporal access control: Significant related work in the symmetric key setting
exists in the area of cryptographically-enabled “temporal access control”, see for
example [14] and the references therein. In this line of work, a key is associated
with each time “point”, and a key assignment scheme is used to ensure that an
authorized user is able to derive keys for all the points contained in a designated
interval. Such schemes generally require the publication of rather large amounts
of information in order to achieve the desired functionality, but do allow efficient
derivation of keys associated with time points. In contrast, we use public-key
techniques, achieving small public parameters and greater flexibility in operation,
at the cost of increased computation.

2 Preliminaries

Throughout the paper we will consider time as a discrete set of time units,
regarding these as integers between 0 and T −1, where T represents the number
of time units supported by the system. We denote by [t0, t1], where t0 ≤ t1,
the interval containing all time units from t0 to t1 inclusive. Adversaries A
are probabilistic polynomial-time algorithms. Bits b are selected uniformly at
random from the set {0, 1}. We denote by PrA,S [Event] the probability that
Event occurs when an adversary A interacts with a scheme S in a specified
security game. By ¬Event we denote the complement of Event. In particular,
we denote by Succ the event that b′ = b in the games played in the following
sections. We will use the standard definitions of and security notions for public-
key encryption, identity-based encryption and signature schemes.

3 Definitions and Security Notions

3.1 Plain TSE

We start by providing the definition and the security models for the basic form
of Time-Specific Encryption, namely Plain TSE.

Definition 1. A Plain TSE scheme is defined by four algorithms and has as-
sociated message space MSP = {0, 1}l, ciphertext space CSP and time space
T = [0, T − 1]. The parties involved in the scheme are the Time Server (TS),
the sender (S) and a user (U). The four algorithms are as follows:
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Plain.Setup. Run by TS, this algorithm takes as input the security parameter
κ and T and outputs the master public key TS-MPK and the master secret key
TS-MSK.
Plain.TIK-Ext. Run by TS, this algorithm takes as input TS-MPK, TS-MSK,
t ∈ T and outputs the Time Instant Key (TIK) kt. This is broadcast by TS at
time t.
Plain.Enc. Run by S, this algorithm takes as input TS-MPK, a message m ∈
MSP and a Decryption Time Interval (DTI) [t0, t1] ⊆ T and outputs a cipher-
text c, broadcast by S to all users.
Plain.Dec. Run by U , this algorithm takes as input TS-MPK, a ciphertext
c ∈ CSP and a key kt and outputs either a message m or a failure symbol ⊥.

The correctness property requires that if Plain.TIK-Ext outputs kt on input
t ∈ [t0, t1] and c = Plain.Enc(TS-MPK, m, [t0, t1]), then
Plain.Dec(TS-MPK, c, kt) = m, and also that if t /∈ [t0, t1] then the decryption
algorithm returns ⊥.

We define a model for IND-CPA security of a Plain TSE scheme.

Definition 2. Consider the following game.
Setup. The challenger C runs Plain.Setup(κ,T) to generate master public key
TS-MPK and master secret key TS-MSK and gives TS-MPK to the adversary A.
Phase 1. A can adaptively issue TIK extraction queries to an oracle for any
time t ∈ T . The oracle will respond to each query with kt.
Challenge. A selects two messages m0 and m1 ∈ MSP and a time interval
[t0, t1] ⊆ T with the restriction that t /∈ [t0, t1] for all of the queries t in Phase
1. A passes m0, m1, [t0, t1] to C. C chooses a random bit b and computes c∗ =
Plain.Enc(TS-MPK,mb,[t0, t1]). c∗ is passed to A.
Phase 2. A continues to make queries to the TIK extraction oracle with the
same restriction as in the Challenge phase.
Guess. The adversary outputs its guess b′ for b.

A’s advantage in the above game is defined as AdvA(κ) =
∣
∣Pr[b′ = b] − 1

2

∣
∣.

Definition 3. We say that a Plain TSE scheme is IND-CPA secure if all
polynomial-time adversaries have at most negligible advantage in the above game.

We can extend this definition to address IND-CCA security by considering, in
addition, a Decrypt oracle that acts as follows. On input the pair (c, t), where c
is a ciphertext and t ∈ T , it passes t to the TIK extraction oracle, which will re-
spond with kt. The Decrypt oracle will then compute Plain.Dec(TS-MPK, c, kt)
and return either a message m or a failure symbol ⊥ to the adversary. The De-
crypt oracle can be adaptively issued queries (c, t) in both Phase 1 and Phase
2, but in the latter phase with the restriction that if c∗ and [t0, t1] are the chal-
lenge ciphertext and time interval, respectively, then the adversary cannot make
a decryption query (c, t) where c = c∗ and t ∈ [t0, t1]. This restriction prevents
the adversary from winning the game trivially.
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3.2 Public-Key TSE

We now define another version of TSE called Public-Key TSE (PK-TSE) in
which the sender S encrypts a message m to a particular receiver R who holds
a key-pair (pk, sk). The message m has an associated decryption time interval
[t0, t1] specified by S. R can decrypt if he has his private key sk and a Time
Instant Key (TIK) issued by TS between time t0 and time t1. We next provide
a more formal definition of PK-TSE.

Definition 4. A PK-TSE scheme is defined by five algorithms and has asso-
ciated message space MSP = {0, 1}l, ciphertext space CSP and time space
T = [0, T − 1]. The parties involved in the scheme are the Time Server (TS),
the sender (S) and the receiver (R). The five algorithms are as follows:
PK.Setup. Run by TS, this algorithm takes as input the security parameter κ
and T and outputs the master public key TS-MPK and the master secret key
TS-MSK.
PK.TIK-Ext. Run by TS, this algorithm takes as input TS-MPK,
TS-MSK, t ∈ T and outputs kt. This is broadcast by TS at time t.
PK.KeyGen. Run by R, this algorithm takes as input the security parameter κ
and outputs a key-pair (pk, sk).
PK.Enc. Run by S, this algorithm takes as input TS-MPK, a message m ∈
MSP, a time interval [t0, t1] ⊆ T and a public key pk and outputs a ciphertext
c ∈ CSP.
PK.Dec. Run by R, this algorithm takes as input TS-MPK, a ciphertext c ∈ CSP,
a key kt and a private key sk and outputs either a message m or a failure
symbol ⊥.

The correctness property requires that if kt is output by PK.TIK-Ext on input
t ∈ [t0, t1] and c = PK.Enc(TS-MPK, m, [t0, t1], pk) where (pk, sk) is output by
PK.KeyGen, then PK.Dec(TS-MPK, c, kt, sk) = m, and also that if t /∈ [t0, t1]
then the decryption algorithm returns ⊥.

To model the security of a PK-TSE scheme, we consider (as in [15]) the following
kinds of adversaries:

– A curious TS who holds TS-MSK and wishes to break the confidentiality of
the message.

– An intended but curious receiver who wishes to decrypt the message outside
of the appropriate decryption time interval.

We observe that security against an outside adversary (who is not the intended
recipient and does not know TS-MSK) trivially follows from security against the
two adversaries considered above. We also note that in Plain TSE there is only
one type of adversary, i.e. the curious user, since there is no specific receiver and
TS can trivially decrypt any message.

In defining security models for PK-TSE we consider a single-user setting. We
first define IND-CPA security against a curious TS.

Definition 5. Consider the following game, which we call GamePK-TS.
Setup. C runs PK.Setup(κ,T) to generate TS-MPK, TS-MSK, and runs
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PK.KeyGen(κ) to get a pair (pk, sk). C gives (TS-MPK,TS-MSK, pk) to the
adversary A.
Challenge. A selects two messages m0 and m1 ∈ MSP and a time interval
[t0, t1] ⊆ T . A passes m0, m1, [t0, t1] to C. C chooses a random bit b and com-
putes c∗ = PK.Enc(TS-MPK, mb, [t0, t1], pk). c∗ is passed to A.
Guess. The adversary outputs its guess b′ for b.

We can extend this definition to address IND-CCA security by considering, in
addition, a Decrypt oracle that on input the pair (c, t), where c is a ciphertext
and t ∈ T , returns either a message m or failure symbol ⊥ to the adversary.
The Decrypt oracle can be adaptively issued queries (c, t) before and after the
challenge phase, but with the obvious restriction that the adversary cannot make
queries of the form (c, t) where c = c∗ and t ∈ [t0, t1] after the challenge phase.

We now address IND-CPA security against a curious receiver.

Definition 6. Consider the following game, which we call GamePK-CR.
Setup. C runs PK.Setup(κ,T) to generate TS-MPK, TS-MSK, and runs
PK.KeyGen(κ) to get a pair (pk, sk). C gives (TS-MPK, pk, sk) to the adver-
sary A.
Phase 1. A can adaptively issue TIK extraction queries for any time t ∈ T . C
responds to each query with kt = KP.TIK-Ext(TS-MPK,TS-MSK, t).
Challenge. A selects two messages m0 and m1 ∈ MSP and a time inter-
val [t0, t1] ⊆ T with the restriction that t /∈ [t0, t1] for all of the queries t in
Phase 1. A passes m0, m1, [t0, t1] to C. C chooses a random bit b and computes
c∗ = PK.Enc(TS-MPK, mb, [t0, t1], pk). c∗ is passed to A.
Phase 2. A continues to make TIK extraction queries with the same restriction
as in the Challenge phase.
Guess. The adversary outputs its guess b′ for b.

A’s advantage in the above games is defined as AdvA(κ) =
∣
∣Pr[b′ = b] − 1

2

∣
∣.

We observe that this chosen-plaintext notion of security is sufficient to capture
all realistic attacks that can be mounted by a curious receiver, so that a chosen-
ciphertext notion of security is not required for curious receivers. See the full
version [23] for further discussion.

Definition 7. We say that a PK-TSE scheme is IND-CPATS secure if all
polynomial-time adversaries have at most negligible advantage in GamePK-TS.

Definition 8. We say that a PK-TSE scheme is IND-CPACR secure if all
polynomial-time adversaries have at most negligible advantage in GamePK-CR.

Definition 9. We say that a PK-TSE scheme is IND-CPA secure if it is both
is IND-CPATS and IND-CPACR secure.

3.3 Identity-Based TSE

We finally consider an ID-based version of TSE, called ID-TSE, in which the
sender encrypts a message m under the identity of a particular receiver. The mes-
sage m has an associated decryption time interval [t0, t1] specified by the sender.



Time-Specific Encryption 9

The receiver can decrypt if he holds the private key associated with his identity
(as issued by a (semi-)trusted authority TA) and a Time Instant Key (TIK)
issued by TS between time t0 and time t1. We provide a formal definition of
ID-TSE in the full version [23].

To model the security of an ID-TSE scheme we will consider adversaries that
interact with multiple users. We consider the following two types of adversaries:

– A curious TS who holds TS-MSK, and hence can derive TIKs for any time
t, and wishes to break the confidentiality of the message.

– A curious TA who holds ID-MSK, and hence can derive private keys for any
identity id, and wishes to break the confidentiality of the message.

We note that the latter adversary is more powerful than the natural analogue
of the curious receiver in the ID setting. Since we are mainly interested in using
ID-TSE as a building block to obtain PK-TSE schemes, we defer the formal
definitions of IND-CPA security to the full version.

4 Constructions for TSE Schemes

4.1 Plain TSE

Our first step towards building TSE schemes is to focus on how to achieve Plain
TSE. Our approach will make use of a binary tree of depth d, where we denote
with parent(x) and child(x) the standard notions of parent and child of a node x
in a tree. The input T to Plain.Setup, which represents the number of allowed
time units, will be of the form T = 2d. The root node of the tree is labelled with
∅ and the non-root nodes are labelled with binary strings of lengths between 1
and d, as illustrated for the case d = 3 in Figure 1. Hence each node is associated
with a binary string t0t1...tl−1 of length l ≤ d. In particular we will have that the
leaves of the tree are binary strings of length d labelled from 0...0 (on the left)
to 1...1 (on the right). Each leaf will represent a time instant t = Σd−1

i=0 ti2d−1−i

between 0 and T − 1.
We now define two particular sets of nodes.

– Path Pt to t. Given a time instant t = Σd−1
i=0 ti2d−1−i we construct the

following path Pt in the tree, where the last node is the leaf corresponding
to t:

∅, t0, t0t1, ..., t0...td−1.

– Set S[t0,t1] covering the interval [t0, t1]. S[t0,t1] is the minimal set of roots
of subtrees that cover leaves representing time instants in [t0, t1]. We will
call this the cover set for [t0, t1]. Such a set is unique, of size at most 2d, and
easily computed.

It is easy to see that Pt and S[t0,t1] intersect in a unique node if and only if
t ∈ [t0, t1]. This property will ensure that the correctness requirement holds for
the Plain TSE scheme that we will construct. The key idea, then, is to view
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Fig. 1. Example of binary tree of depth d = 3 used in our construction

the nodes of the tree as identities and make use of identity-based encryption
techniques to instantiate a Plain TSE scheme. Informally, the sender will encrypt
under the nodes in the cover set for the Decryption Time Interval (DTI), and
the TIK for time t will be the set of private keys associated to the nodes on the
path Pt to t.

More formally, we use an Identity-based Encryption (IBE) scheme I =
(Setup, Key-Ext, Enc, Dec) with message space MSP = {0, 1}l to construct X =
(Plain.Setup,Plain.TIK-Ext,Plain.Enc,Plain.Dec), a Plain TSE scheme
with the same message space, in the following way:
– Plain.Setup(κ, T ). Run Setup on input κ to obtain TS-MPK and the master
secret key TS-MSK. We set T = 2d, where d is the depth of the tree used in our
construction.
– Plain.TIK-Ext(TS-MPK, TS-MSK, t). Construct Pt to obtain the list of nodes
{∅, p1, ..., pd} on the path to t. Run Key-Ext algorithm on all nodes p in Pt to
obtain a set of private keys Dt = {dp : p ∈ Pt}. Return Dt (we implicitly
assume that t can be recovered from this set because Dt will be broadcast at the
particular time t).
– Plain.Enc(TS-MPK, m, [t0, t1]). Compute a list of nodes S[t0,t1]. For each s ∈
S[t0,t1] run Enc(TS-MPK, m, s), obtaining a list of ciphertexts CT [t0,t1] = (cp :
p ∈ S[t0,t1]). Output C = (CT [t0,t1], [t0, t1]).
– Plain.Dec(TS-MPK, C,Dt). Here C = (CT , [t0, t1]) denotes a list of cipher-
texts for the scheme I together with a time interval. If t /∈ [t0, t1] return ⊥.
Otherwise generate an ordered list of nodes S[t0,t1] and generate the set Pt; the
intersection of these sets is a unique node p. Obtain the key dp corresponding to
p from Dt. Run Dec(TS-MPK, cp, dp), where cp ∈ CT is in the same position in
the list CT as p is in S[t0,t1], to obtain either a message m or a failure symbol
⊥. Output the result.

For the above construction, the following result holds. The proof is in the full
version of the paper [23].
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Theorem 1. Let I be an IND-CPA secure IBE scheme. Then the Plain TSE
scheme X constructed from I as above is IND-CPA secure in the sense of Defi-
nition 3, and is correct.

Example: Consider d = 3 as in Figure 1. Suppose we wish to decrypt a mes-
sage that was encrypted using time interval [2, 6]. In the tree, these endpoints
will correspond to nodes with labels 010 and 110, respectively. We compute
S[2,6] = {01, 10, 110}. Suppose we obtain the TIK broadcast by TS at time 4
(corresponding to the leaf node labelled 100). This means that we obtain a list
of private keys for nodes on the path P4 from the root to 100. In particular, we
have the key corresponding to node 10, the unique intersection of P4 and S[2,6].
Hence, we are able to decrypt. We observe that for any time t outside of the
interval [2, 6], there is no intersection between Pt and S[2,6].

In general, ciphertexts in the Plain TSE scheme X consist of up to 2d cipher-
texts from the IBE scheme I, while private keys consist of at most d private
keys from I. The public parameters of X are the same size as those of I. The
cost of encryption for the scheme X is up to 2d times greater than its cost for
the scheme I, while decryption for X costs the same as for I. This compares
well with the naive solution of encrypting with a single private key to every time
instant in the interval, as it allows for shorter ciphertexts.

A variety of IBE schemes can be used to instantiate the above construction,
including Waters’ [28] and Gentry’s [16] schemes in the standard model, and the
Boneh-Franklin scheme [5] and the Sakai-Kasahara scheme (as analysed in [11])
in the ROM. Each of them has various advantages and disadvantages in terms
of efficiency and the sizes of public parameters and ciphertexts. For example,
Waters’ scheme has relatively large public parameters, compact ciphertexts, and
depends for its security on the Bilinear Diffie-Hellman Problem, while Gentry’s
scheme has small public parameters and ciphertexts, but its security depends
on a non-standard hardness assumption, the q-Truncated Decisional Augmented
Bilinear Diffie-Hellman Exponent (q-TDABDHE) problem.

A potentially more efficient approach would be to use a multi-recipient, sin-
gle key, ID-based KEM (MR-SK-IBKEM), as defined in [1], which would allow
encapsulation of the same key for multiple recipients in an efficient and secure
manner. Using an approach similar to that in [27], we can combine an MR-SK-
IBKEM with a (symmetric) Data Encapsulation Mechanism (DEM) to produce
an multi-recipient IBE scheme in a standard way [2]; if the underlying KEM
and DEM satisfy appropriate security notions (IND-CPA and FG-CPA security,
respectively), then the resulting multi-recipient IBE scheme will be IND-CPA se-
cure [2]. This primitive perfectly matches our requirement to be able to encrypt
the same message to all nodes in a cover set simultaneously, and it is easy to
see how to obtain IND-CPA secure Plain TSE from such a primitive. However,
current instantiations for IND-CPA secure MR-SK-IBKEMs are only known in
the ROM (see for example [1]). To the best of our knowledge, it remains an open
problem to find efficient instantiations that are secure in the standard model.
We recall that the scheme in [27] actually solves the dual of our problem and
can only handle intervals of the type [t, T − 1].
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4.2 IND-CPA Security

We now wish to address the problem of instantiating IND-CPA secure PK-TSE
and ID-TSE schemes. We begin with the PK-TSE case.

Let Π = (Gen,E,D) be a public-key encryption (PKE) scheme with message
space {0, 1}l. We will construct a PK-TSE scheme from a Plain TSE scheme X =
(Plain.Setup,Plain.TIK-Ext,Plain.Enc,Plain.Dec) with MSP = {0, 1}l

and Π in the following way:
– PK.Setup(κ, T ). Run Plain.Setup on the same input to obtain TS-MPK and
the master secret key TS-MSK.
– PK.TIK-Ext(TS-MPK, TS-MSK, t). Run Plain.TIK-Ext on input
(TS-MPK, TS-MSK, t) to obtain kt, broadcast by TS at time t.
– PK.KeyGen(κ). Run Gen(κ), which will output a key-pair (pk, sk).
– PK.Enc(TS-MPK, m, [t0, t1], pk). Pick a random r ∈ {0, 1}l and set m′ =
m⊕ r. Then run the algorithm Plain.Enc(TS-MPK, r, [t0, t1]) to obtain c0 and
E(pk, m′) to get c1. The ciphertext will be (c0, c1).
– PK.Dec(TS-MPK, (c0, c1), kt, sk). Parse c0 and c1. Run Plain.Dec on input
(TS-MPK, c0, kt) which will output either a message r or a failure symbol ⊥.
Run D(sk, c1) which will output either a message m′ or a failure symbol ⊥. If
either of the decryption algorithms returns ⊥, then output ⊥; otherwise output
m = r ⊕ m′.

Lemma 1. Let Π be an IND-CPA secure PKE scheme. Then the PK-TSE
scheme, constructed as above, is IND-CPATS secure.

A proof can be found in the full version [23]. We can prove the following result
in an analogous way.

Lemma 2. Let X be an IND-CPA secure Plain TSE scheme. Then the PK-TSE
scheme, constructed as above, is IND-CPACR secure. Moreover, if X is correct,
then so is the resulting PK-TSE scheme.

Hence, the following theorem holds.

Theorem 2. Let X be an IND-CPA secure Plain TSE scheme and Π be an
IND-CPA secure PKE scheme. Then the PK-TSE scheme, constructed as above,
is IND-CPA secure. Moreover, if X is correct, then so is the resulting PK-TSE
scheme.

To achieve IND-CPA security in the ID-TSE setting we can adopt an ap-
proach similar to the one used above to build a PK-TSE scheme, where in-
stead of a PKE scheme we employ in the obvious manner an IBE scheme
I = (Setup, Key-Ext, Enc, Dec). In this setting we obtain an analogous result:

Theorem 3. Let X be an IND-CPA secure Plain TSE scheme and I be an IND-
CPA secure IBE scheme. Then the ID-TSE scheme, constructed analogously to
the construction of the PK-TSE scheme above, is IND-CPA secure. Moreover,
if X is correct, then so is the resulting ID-TSE scheme.

In particular, we observe that if I is a selective-id IND-CPA secure IBE scheme,
then it can be shown that the resulting ID-TSE scheme is also secure in the
selective sense.
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4.3 IND-CCA Security

We will now address the problem of building IND-CCATS secure PK-TSE
schemes, using an approach similar to that of [8].

Suppose we have a selective-id IND-CPATS secure ID-TSE scheme I =
(TS-Setup, ID-Setup, ID.TIK-Ext, ID.Key-Ext, ID.Enc, ID.Dec). Let
MSP = {0, 1}l and IDSP = {0, 1}n be the message and the identity
space, respectively. We construct an IND-CCATS secure PK-TSE scheme Γ =
(PK.Setup, PK.TIK-Ext, PK.KeyGen, PK.Enc, PK.Dec). In the construction, we
use a signature scheme Σ = (G, Sign, Ver), whose generation algorithm G outputs
verification keys of length n. We construct the algorithms of Γ as follows:
– PK.Setup(κ, T ). Run TS-Setup(κ, T ) to get TS-MPK, TS-MSK.
– PK.TIK-Ext(TS-MPK, TS-MSK, t). To obtain TIK kt run ID.TIK-Ext on input
(TS-MPK, TS-MSK, t).
– PK.KeyGen(κ). Run ID-Setup(κ) to get (ID-MPK, ID-MSK), a key-pair.
– PK.Enc(TS-MPK, m, [t0, t1], ID-MPK). Run G(κ) and obtain (vk, sigk). Com-
pute c = ID.Enc(TS-MPK, ID-MPK, m, [t0, t1], vk) and
σ =Sign(sigk, c). The final ciphertext will be C = (vk, c, σ).
– PK.Dec(TS-MPK, C, kt, ID-MSK). Parse C as (vk, c, σ) and check if
Ver(vk, c, σ) = 1. If not, output ⊥. Otherwise, obtain skvk by running
ID.Key-Ext(ID-MPK, ID-MSK, vk), and decrypt c by running ID.Dec with in-
puts kt, skvk.

Theorem 4. Let I be a correct, selective-id IND-CPATS secure ID-TSE scheme
and Σ a strongly unforgeable one-time signature scheme. Then Γ , as constructed
above, is an IND-CCATS secure PK-TSE scheme.

We defer the proof of this theorem to the full version [23]. It is also easy to see
that the following result holds.

Theorem 5. Let I be a selective-id IND-CPATA secure ID-TSE scheme and Σ
a strongly unforgeable one-time signature scheme. Then Γ , as constructed above,
is an IND-CPACR secure PK-TSE scheme.

We can also use a variant of the more complex Boneh-Katz transform [7] to
construct PK-TSE schemes that are IND-CCA secure in the standard model.
The resulting schemes generally have improved efficiency. Details are omitted.

We discuss the problem of obtaining IND-CCA secure ID-TSE schemes in the
following section, where we discuss future work.

5 Extensions and Future Work

Various extensions of our TSE concept are possible. For example, we could con-
sider TSE schemes (in all three settings) that have the property of hiding the
decryption time interval of ciphertexts from adversaries. Our current construc-
tions do not offer this. We call such a property DTIC (Decryption Time Interval
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Confidentiality). It will be interesting to explore these properties in conjunc-
tion with extensions of key-privacy/recipient-anonymity in the public-key and
identity-based settings, to obtain enhanced security properties for TSE.

Another relevant problem is that of constructing TSE schemes allowing the
capability of opening the message outside of the decryption time interval, a
useful feature supporting break the glass policies. This extension has already
been considered in the setting of TRE [19,15].

Our focus in this paper has been on achieving IND-CCA security of PK-
TSE in the standard model. This leaves the problem of constructing IND-CCA
secure ID-TSE schemes, in either the standard model or the ROM. It would also
be useful to solve the open problem of constructing MR-SK-IBKEMs that are
provably secure in the standard model, in order to improve the efficiency of our
Plain TSE constructions.

Thinking more broadly, one can envisage the development of the wider concept
of Time-Specific Cryptography. This could include, for example, time-specific
signatures (where signatures can only be created within certain time intervals).
We believe there is much interesting work still to be done in this area.
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In addition to our general reduction, we show how to realize an imple-
mentation of our amortized protocol under the subgroup decision prob-
lem [2]. (We remark that in contrast with recent work of Lipmaa [16] on
the same topic, our database size does not grow with every update, and
stays exactly the same size.)
As sample corollaries to our main result, we obtain the following:

– First, we apply our private database modification protocol to an-
swer the main open question of [3]. More specifically, we construct a
public-key encryption scheme supporting PIR queries that allows ev-
ery message to have a non-constant number of keywords associated
with it, which is secure under the subgroup decision problem.

– Second, we show that one can apply our techniques to obtain more
efficient communication complexity when parties wish to increment
or decrement multiple cryptographic counters (formalized by Katz
et al. [15]).

We believe that “public-key encrypted” amortized database modification
is an important cryptographic primitive in its own right and will be useful
in other applications.

1 Introduction

The problem of private database modification was first studied in the context
of public-key encryption supporting private information retrieval (PIR) queries
by Boneh et al. [3]. The private database modification protocol of [3] requires
communication complexity O(

√
N) to modify (i.e., change a 0 bit into a 1 and

vice-versa) one bit of an N -bit database. Furthermore Ostrovsky and Skeith
showed in [17] that using currently known algebraic techniques (which will not
increase the database size after an update) with singly homomorphic encryption
or bilinear maps, one cannot obtain better communication complexity to modify
a single bit. Hence, we turn to the question of modifying multiple bits of the
database. Using repeated application of the protocol from [3], one can obtain
a private database modification protocol to modify L bits with communication
complexity O(L

√
N).

Lipmaa, in [16], also considered the question of amortizing the communica-
tion complexity of private database modification. However, his protocol has a
significant drawback. In [16], the size of the database increases with every update
made and after only O(

4√
N

log4 N
) bits have been updated in the database, Alice (the

owner of the database) needs to download the entire database and re-send a new
encrypted database, for the protocol to have efficient communication complexity
thereafter. We shall see a little later that in applications of the private database
modification protocol, this drawback is significant.

1.1 Main Result

Let Nβ (for constant 0 < β < 1) be the communication complexity of a pri-
vate database modification protocol for modifying 1 bit of an N -bit database.
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Our main contribution in this paper is a black-box construction of an amortized
protocol (from a protocol that modifies 1 bit) with communication complexity
Õ(NβL(1+α)(1−β)) when modifying L bits of the database (where 0 < α < 1 is
an arbitrary constant), without ever increasing the size of the database, regard-
less of the number of updates. Although we believe the amortized protocol for
database modification to be of independent interest, we also describe two results
that we obtain as corollaries of our main result.

1.2 Applications

Our first application is an answer to the main open question of [3] (resolving the
main drawback of their solution.) Recall that in [3], a private database modifica-
tion protocol was used to construct a public-key encryption scheme supporting
PIR queries. An illustrative example of this concept is that of web-based email.
Suppose that Alice stores her email on the server of a storage provider Bob (as is
the case for a Yahoo! or Hotmail email account, for example). Bob must provide
Alice with the ability to collect, retrieve, search and delete emails but at the same
time learn nothing about the contents of the email nor the search criteria used
by Alice. For example, a user might send an encrypted email to Alice (via Bob)
that is marked with the keyword “Urgent”. Bob should store this email without
knowing that a user sent an email marked as urgent. Later, Alice should have
the ability to retrieve all email messages marked with “Urgent” without Bob
knowing what search criteria Alice used. The goal was to obtain communication
efficient protocols for this task. This goal was accomplished by making use of a
protocol for private database modification in order to mark emails as contain-
ing certain keywords. However, in order to keep the communication complexity
of the protocol sub-linear, the authors of [3] put constraints on the number of
keywords that could be attached to a single message. In particular, this number
was forced to be a constant. We can directly apply our batch update protocol
to remove this constraint, allowing for non-constant numbers of keywords to be
associated to a single message (which may often be the case for large messages).
Note, that if we were to use a modification protocol in which the size of the
database increased with every update (such as the one in [16]), then Alice needs
to frequently download her entire email and send an updated database back to
Bob, so that further executions of the modification protocol can have efficient
communication complexity. This means that if for example, Alice does not check
her mail for a period of time, then users will no longer be able to mark messages
with keywords with efficient communication complexity. This defeats the entire
purpose of having an email system supporting oblivious collect, retrieve, search
and delete queries. Alice could simply achieve all these queries in an oblivious
manner when she downloads the entire database. Furthermore, [16] requires that
message senders be aware of a certain aspect of the state of the email database
(in particular, the number of layers of encryption) before they send a message
and perform updates to the database to mark the message with keywords. This
would appear to force an interactive protocol for message sending (even for the



20 N. Chandran, R. Ostrovsky, and W.E. Skeith III

case of updating a bit with a semi-honest server), which seems undesirable and
need not be the case (as shown in [3]).

A second use of our main result is a protocol for amortized updates of cryp-
tographic counters. Cryptographic counters, formalized by [15], allow a group of
participants to increment and decrement a public-key encrypted cryptographic
representation of a hidden numeric value, stored on a server, in such a way that
the server can not observe the value of the counter. The value of the counter can
then be determined only by someone with a private key. Cryptographic counters
can be used in several electronic voting protocols [5,1,6,7,18,8]. One can imagine
a situation in which parties would like to modify not one cryptographic counter
but several such counters. For example, there could be a total of N counters
and every party could wish to modify at most L of them. This could be seen
in situations where every voter must vote for at most L out of N candidates
and possibly also specify a ranking of the L selected candidates. We show how
to obtain a communication efficient protocol for batch cryptographic counters
(better than the batch protocol that is obtained through the trivial repetition
of existing protocols). Once again, we cannot use a modification protocol in
which the size of the database increases with every update. This is because of
the following reason. After every party updates the counters (or casts his or her
votes), the party holding the private key, must obtain the value of the counter
and send a new “updated” (re-encrypted) value to the server. Clearly, privacy
of the protocol would be lost here.

1.3 Our Techniques and High-Level Outline of Our Constructions

Our starting point are the techniques from Ishai, Kushilevitz, Ostrovsky and
Sahai [13] on batch codes. Before we explain the main ideas of our construction
(and in particular why batch codes do not apply directly) we need to give short
background on batch codes.

Recall that batch codes of [13] are used for encoding an N -bit database on
M different servers such that a user could read L bits of the N -bit database,
by reading at most t bits from every server. The goal is to minimize both the
total storage of the M servers as well as minimize t. At a high level, Ishai et al.,
make D copies of every bit and store each copy on a different server. To decide
the server on which the rth copy of a bit should be stored, they use an expander
graph for the encoding.

We note that we cannot apply the construction of Ishai et al., in our setting:
in the setting of Ishai et al., the problem is to read a bit of the (static) database,
and reading any of the D copies of the bit gives the correct value. However, while
writing a bit of the database, modifying one copy out of D copies does not yield
a correct solution and modifying all eliminates all the efficiency savings.

The setting in our main construction is as follows. Users wish to change L
0-bits of the database on the server, into 1-bits without the server knowing
which L bits were changed to 1. Additionally, Alice (the owner of the database)
wishes to change L 1-bits of the database on the server, into 0-bits without the
server knowing which L bits were changed to 0. We wish to obtain an amortized
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communication complexity for both these tasks. For solving this, we consider
other encodings of a bit of the database. One fruitful approach is to encode
every bit of the database through D bits such that the majority of the D bits
decodes to the bit in the database. The D bits that encode a bit will again be on
M different “virtual” databases. However, now in order to modify a bit in the
database, one needs to modify a majority of the copies of the bit. Unfortunately,
using a generic expander (as in [13]) the encoding does not allow us to enjoy the
property that a user reads the same number of bits from every virtual database.
However, it turns out that the careful use of lossless expanders for our encoding
achieves the desired savings. This requires us to prove that for every set of L
bits, one can modify a majority of each of the bits in the encoding by modi-
fying the same (small) number of bits on each virtual database. The solution
that we then obtain gives us an amortization on the communication complexity
when we modify a 0 bit into a 1 as well as vice-versa. Finally, we remark that
the recent work of Gentry on fully homomorphic encryption [9] could indeed be
used to achieve better asymptotic communication complexity under lattice as-
sumptions. However, as shown in [17], current algebraic techniques based on any
singly homomorphic encryption, or bilinear maps (which includes for example,
all known cryptosystems based on factoring and discrete logs) cannot achieve
communication better than O(

√
N). Furthermore, we note that the techniques

for amortizing communication given here are abstract and apply to any protocol
which privately updates single bits of a database. We stress that our amortized
protocol improves the communication complexity in all cases when the single
bit modification protocol uses any known cryptosystem based on factoring or
discrete logs.

Organization of the paper. We begin with a brief description of the private
database modification protocol of [3] in Section 2. In Section 3, we describe
our main result, the private database modification protocol for modifying L
bits with amortized communication complexity. In Section 4, we show how to
use the amortized private database modification protocol to obtain a public-
key encryption scheme supporting PIR queries with non-constant numbers of
keywords associated with each message. In Appendix B, we show how to apply
the amortized modification protocol to get an amortization of cryptographic
counters.

2 Background: Private Database Modification with
Sub-linear Communication

Consider the following problem. A server is holding a database of Alice’s, which
has been encrypted under her public key. Alice would like to allow her friends to
use her public key to update a bit (of their choice) in the database by commu-
nicating directly with the server. For concreteness, typically what will be meant
by “update” or “modify” is translation by a non-identity element in a group (as
in the [3] implementation). In some instances where the updates are made by
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Alice herself (who has knowledge of pieces of the database contents) the updates
can be designed to explicitly write any values of her choice. However all that
is required in most cases (where the parties know nothing of the database con-
tents) is that the new value be different than the previous (which is always the
case for non-identity element translation in a group). Alice requires the following
conditions:

1. The details of each modification are hidden from the server. That is, without
the private key, each transaction for an update is computationally indistin-
guishable from any another.

2. Her friends need only a “small” amount of communication (sub-linear in the
database size) in order to perform an update of a single bit.

For a database of size N , we’ll call a protocol for privately updating subsets of
L bits by Update(N, L), and protocols for updating a single bit will accordingly
be denoted by Update(N, 1). The first construction of an Update(N, 1) protocol
which satisfied the above requirements was developed in [3]. The [3] protocol
made use of a homomorphic cryptosystem that allows computation of polyno-
mials of total degree 2 on ciphertexts (due to Boneh et al. [2]). That protocol
has communication complexity O(

√
N) for updating a single bit.

Given only an Update(N, 1) protocol, an Update(N, L) protocol can be con-
structed simply by running Update(N, 1) L times sequentially, which will of
course come at a O(L

√
N) cost in communication complexity. Hence, if Ω(

√
N)

updates are to be made at once, the total communication becomes Ω(N), making
the scheme no better than various trivial privacy-preserving solutions1.

In this work, we present an oblivious database modification protocol that
amortizes the communication complexity of modifying L bits of the database.
Our Update(N, L) protocol is obtained using any protocol to modify a single bit,
in a black-box manner (for example the Update(N, 1) protocol from [3]).

3 Private Database Modification with Batches

In this section, we describe how one can amortize the communication complex-
ity when running a private database modification protocol to modify L bits. In
other words, let Update(N, 1) denote any protocol for private database modifi-
cation to modify 1 bit of an N -bit database and let the communication com-
plexity of Update(N, 1) be denoted by CN,1 = Nβ, for constant 0 < β < 1. Let
Update(N, L) denote a private database modification protocol to modify L bits
of an N -bit database and let the communication complexity of Update(N, L) be
denoted by CN,L. We construct a protocol for Update(N, L), such that CN,L =

1 E.g., the database could be encrypted under any homomorphic scheme and then
Alice’s friend could simply request the entire encrypted database, make the updates
using homomorphic encryption, re-randomize by translating with encryptions of the
identity, and send the resulting database back. A non-interactive version may also
be obtained just by communicating an Ω(N)-length vector of ciphertext in a homo-
morphic scheme.
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Õ(NβL(1+α)(1−β)), where 0 < α < 1 can be an arbitrary constant. We note
that, we can pick α such that (1 + α)(1 − β) < 1 and this ensures that the
communication complexity of our protocol < LCN,1 for sufficiently large values
of L.

We first begin with the description of our security game for privacy. We assume
a semi-honest adversary A that runs in probabilistic polynomial time (PPT).
Informally, a semi-honest adversarial server should not have any knowledge about
which L bits a user modified in the database (changed from 0 to 1). The security
game when Alice modifies L 1-bits in the database to 0-bits is exactly the same
(except that the protocol requires Alice to know the secret key of the encryption
scheme being used). The interface for Update(N, L) is described in Section 2.
The security game for privacy is defined through the two experiments (0 and 1)
below. Let Wb denote the probability with which A outputs 1 in Experiment b
for b = 0, 1.

1. In both experiments,

(a) The challenger picks the public key of the encryption scheme pk and
sends it to A.

(b) A sends an N -bit string denoting the database to the challenger.
(c) The challenger encrypts these N bits using pk and sends it to A.
(d) A picks 2 sets S0 and S1 ⊆ [N ], such that |S0| = |S1| = L, where at

every index in S0 and S1, the database contains a 0. Also, for every index
in S0 and S1, A specifies if the bit at that index must be changed to a
1 or not. Note that A can also choose to not change any bit to a 1; this
corresponds to the case when A does not change any bit in the database.

2. In Experiment b, the challenger runs Update(N, L) with A using Sb as input.
3. A outputs a bit 0 or 1.

Definition 1. We say that Update(N, L) is L-private, if for all semi-honest
PPT adversaries A, we have |W0 − W1| is negligible.

Let Update∗(N, 1) denote a private database modification protocol in which a
user runs the modification protocol but does not modify any bit of the database.
For example, Update∗(N, 1) could be defined just as Update(N, 1) of [3], but re-
placing the encryptions of characteristic vectors with encryptions of 0-vectors.

We first begin with some background on expanders in §3.1. In §3.2, we describe
our main construction.

3.1 Expander Graphs

Expanders are graphs that are sparse but highly connected. Expanders have had
several applications in computer science (see for example the survey of [12]). We
define expanders and lossless expanders below and refer the reader to [4,12,20,11]
for further details.
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Definition 2. A bipartite multi-graph with N = 2n left vertices and M = 2m

right vertices, where every left vertex has degree D = 2d, can be specified by a
function Γ : [N ] × [D] → [M ], where Γ (u, r) denotes the rth neighbor of vertex
u ∈ [N ]. For a set S ⊆ [N ], Γ (S) denotes the set of neighbors of S. That is,
Γ (S) = {Γ (x, y) : x ∈ S, y ∈ [D]}. Let |Γ (S)| denote the size of the set Γ (S).

Definition 3. A bipartite graph Γ : [N ] × [D] → [M ] is a (L, A) expander,
if for every set S ⊆ [N ], with |S| = L, we have |Γ (S)| ≥ A · L. Γ is a (≤
Lmax, A) expander if it is a (L, A) expander for every L ≤ Lmax. An expander
is unbalanced if M << N .

Definition 4. A (≤ Lmax, A) expander Γ : [N ] × [D] → [M ] is a (Lmax, ε)
lossless expander if A = (1 − ε)D.

3.2 Main Construction

Our solution, uses techniques from the work of Ishai et al. [13] on batch codes
and their applications. Ishai et al. considered the problem of encoding an N -bit
database on M different servers such that a user could read L bits of the N -bit
database, by reading at most t bits from every server. The goal is to minimize
the total storage of the M servers as well as minimize t.

The idea in Ishai et al. is as follows. Make D copies of every bit in the N -bit
database. The parameters D and M are picked such that Γ : [N ] × [D] → [M ]
is a (≤ Lmax, A) expander for some A > 1. Now, the ND bits are distributed
among the M servers according to the expander graph. In other words, the rth

copy of bit i ∈ [N ] of the database is stored in database Γ (i, r). Now one can
show that to read any L bits of the N -bit database (with L ≤ Lmax), one only
needs to read at most 1 bit from each of the M servers. So, by reading 1 bit
from each of the M servers, t is minimized. The bound on the total storage of
the M servers is obtained through the expansion property of Γ , thus satisfying
the other required property.

Note that [13], do not consider the problem of modifying bits of a database.
The encoding in [13] works because in order to read a bit from the N -bit
database, one only needs to read any copy of that bit. The encoding does not
directly apply in our setting as modifying 1 bit out of the D bits that encode a
bit does not result in a correct modification.

At a high level, our protocol for private database modification to modify Lmax

bits of an N -bit database is as follows. We encode every bit of the database
through D bits. The majority value of these D bits decodes to the original bit in
the database. The resulting ND bits from the encoding are distributed into M
“virtual” databases according to a (Lmax, ε) lossless expander graph Γ . Let the
number of bits in each of the M virtual databases be denoted by a1, a2, · · · , aM .

We will then show that to modify a majority of each of the bits in any set
of Lmax bits of the N -bit database, one only needs to modify at most 1 bit
from each of the M virtual databases. One can modify 1 bit from each of the
M virtual databases using Update(ai, 1) for all 1 ≤ i ≤ M . The bound on the
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communication complexity of the protocol will be obtained through the lossless
expansion property of Γ .

While reading a bit from the N -bit database, one reads all D bits that encode
this bit from the M virtual databases and takes the majority value. We first
describe how to create the virtual databases.

Creating Virtual Databases. Consider a (Lmax, ε) lossless expander Γ : [N ]×
[D] → [M ] as defined in §3.1. Let L = 2l and Lmax = 2lmax .

Every node u ∈ [N ] represents a bit in the database and the D = 2d neighbors
of the node u are the encoded bits of u. For bit u ∈ [N ], the rth bit of the encoding
of u is present in database Γ (u, r). To read the value of bit u ∈ [N ], one reads all
D bits of the encoding of u and takes the majority of these values as the value
of u. Hence, note that to modify bit u, one has to modify a majority of the bits
that encode u. Below, we show that this can be done by modifying at most 1 bit
in every virtual database.

By the lossless expansion property, first note that for all sets S ⊆ [N ] with
|S| = L ≤ Lmax, we have |Γ (S)| ≥ (1 − ε)LD. To modify bits from a set S, we
show that there is a strategy to modify at least (1 − 2ε)D bits of the encodings
of all the bits in S by modifying at most 1 bit in each of the virtual databases.

Lemma 1. Let Γ be a lossless expander as above. Then for every subset S ⊆ [N ]
where |S| = L ≤ Lmax, the number of nodes v ∈ [M ] that have exactly one
neighbor in S (v is then called a unique neighbor node with respect to S) is at
least (1 − 2ε)LD.

Proof. Let S ⊆ [N ] where |S| = L ≤ Lmax. Let x1 be the number of nodes
v ∈ [M ] that have exactly one neighbor in S and let x2 be the number of nodes
v ∈ [M ] that have at least 2 neighbors in S. Now, |Γ (S)| = x1 + x2 ≥ (1− ε)LD
(from the property of lossless expansion). Assume for contradiction that x1 <
(1 − 2ε)LD. That is, let x1 = (1 − 2ε − δ)LD for some δ > 0. This means, that
x2 = |Γ (S)| − x1 ≥ (ε + δ)LD. From counting the edges that originate out of S,
we have LD ≥ x1 + 2x2 ≥ (1 + δ)LD which cannot be true for δ > 0 and is a
contradiction. Hence, the lemma. �	
Lemma 2. Fix any set S ⊆ [N ] where |S| = L ≤ Lmax. Let gS(v) for all
v ∈ [M ], be a function such that gS(v) = NIL or gS(v) = u such that u ∈ S
and there exists r ∈ [D] such that Γ (u, r) = v. In other words, gS(v) is either
NIL or a neighbor of v in S. Let hS(u) = |g−1

S (u)| for all u ∈ S. That is, hS(u)
is the number of v ∈ [M ] such that gS(v) = u. There exists a polynomial time
computable function gS(·), such that hS(u) ≥ (1 − 2ε)D for all u ∈ S, and
furthermore the function gS(·) can be constructed in polynomial time for any
S ⊆ [N ].

Proof. We shall construct gS(·) as follows:

1. Let S′ = S. A node u ∈ S′ is satisfied if hS(u) ≥ (1 − 2ε)D.
2. For every node v ∈ [M ], let gS(v) = u if u is the only neighbor of v in S′.

Let H denote the set of nodes in S′ that are satisfied.
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3. Set S′ = S − H . If S′ is not empty, repeat Step 2, otherwise halt, setting
gS(v), for all unassigned nodes v, to NIL.

We will prove that at every iteration of the algorithm, at least one node in S′

is satisfied. This means the algorithm will halt in time O(L). In this case, every
node u ∈ S is satisfied and hence hS(u) ≥ (1− 2ε)D for all u ∈ S. Let |S′| = L′.
We will show that |H | > 0. Let |H | = h. Let l be the number of unique neighbor
nodes with respect to S′ in [M ]. We have that l ≥ (1 − 2ε)L′D (By Lemma 1).

Now, consider a satisfied node u ∈ S′. The number of unique neighbor nodes
with respect to S′ in [M ] that have their unique neighbor as u can be at most
D, as the degree of every node in [N ] is at most D.

Consider a node u ∈ S′ that is not satisfied. The number of unique neighbor
nodes with respect to S′ in [M ] that have their unique neighbor as u is strictly
less than (1−2ε)D. Otherwise, u would be satisfied. (This is because at no stage
of the algorithm did we assign gS(v) to be u when v was also a neighbor of a
node u′ ∈ S that was not already satisfied.)

Hence we have l < hD + (L′ − h)(1 − 2ε)D. Since l ≥ (1 − 2ε)L′D, we have
that hD + (L′ − h)(1 − 2ε)D > (1 − 2ε)L′D, which means h > 0. �	
We note that the above proof is similar in flavor to the proof of error correc-
tion in linear time encodable/decodable expander codes (Refer [19,4] for further
details.). Our protocol uses the specific lossless expander explicit construction
from [11]. We pick ε, such that 1 − 2ε > 1

2 . In other words, ε < 1
4 . We state the

theorem below.

Theorem 1. [11] For all constants α > 0, every N ∈ N, Lmax ≤ N , and ε > 0,
there is an explicit (Lmax, ε) lossless expander Γ : [N ] × [D] → [M ] with degree
D = O((log N)(log Lmax)/ε)1+1/α and M ≤ D2 ·L1+α

max. Moreover D is a power
of 2.

Protocol Description. Let Update(N, 1) denote any private database modifica-
tion protocol for modifying 1 bit of an N -bit database. We now describe our black-
box construction of private database modification protocol Update(N, Lmax) from
Update(N, 1).

1. Create M smaller databases according to lossless expander Γ from Theorem
1 and encode the bits of the database into the M smaller databases as
described earlier. Let size of database v ∈ [M ] be denoted by av.

2. To modify a set S ⊆ [N ] of bits of the database with |S| = Lmax, create
gS(v) as described in Lemma 2.

3. Run Update(av, 1) to modify bit gS(v) in database v for all databases v ∈
[M ]. If gS(v) = NIL, then run Update∗(av, 1) with database v.

Protocol Correctness and Security. Let Update(N, 1) denote a protocol for
privately modifying 1 bit of an N -bit database. The correctness of the protocol
Update(N, Lmax) follows trivially from Lemma 2 and from the correctness of the
Update(N, 1) protocol. The security is proven below.
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Theorem 2. If Update(N, 1) is 1-private, then Update(N, Lmax) is Lmax-private.

Proof. Lemma 2 shows that the number of bits we modify in each of the M
virtual databases is independent of the subset of Lmax bits we wished to mod-
ify in the original database. In particular, in each virtual database, we either
modify 1 bit by running Update(av, 1) or do not modify any bits by running
Update∗(av, 1). Now, since Update(av, 1) is 1-private, no adversary can distin-
guish between the case when we run Update(av, 1) and modify a bit and when
we run Update∗(av, 1). Hence, it follows by a simple hybrid argument that
Update(N, Lmax) is Lmax-private. �	

CommunicationComplexity. We now analyze the communication complexity
of protocol Update(N, Lmax). Let the communication complexity of Update(N, 1)
be CN,1 = Nβ for some constant 0 < β < 1. Note that if av is the number of bits in
the vth smaller database, then the communication complexity of Update(N, Lmax)
is CN,Lmax =

∑M
i=1 Cai,1. We have Cai,1 = aβ

i . We also have
∑M

i=1 ai = ND. Now,
Hölder’s inequality, states the following:

Let 1 ≤ p, q ≤ ∞ with 1
p + 1

q = 1. Let n be a positive integer. Then,

n∑

i=1

|xiyi| ≤ (
n∑

i=1

|xi|p) 1
p
( n∑

i=1

|yi|q) 1
q

for all (x1, x2, · · · , xn), (y1, y2, · · · , yn) ∈ R
n. In this inequality, let n = M , xi =

aβ
i for all 1 ≤ i ≤ M , yi = 1 for all 1 ≤ i ≤ M , p = 1

β and q = 1
1−β . Now, by

Hölder’s inequality, we get

M∑

i=1

|aβ
i | ≤ (

M∑

i=1

|ai|)β(
M∑

i=1

1)1−β

Now, since
∑M

i=1 ai = ND, it follows that CN,Lmax ≤ (ND)βM1−β . Next, setting
the parameters according to Theorem 1, we get the communication complexity
to be O(NβL

(1+α)(1−β)
max ( log N log Lmax

ε
)(2−β)(1+ 1

α )), where 0 < α < 1 is an ar-
bitrary constant. Now, we can pick α < β

1−β , giving us (1 + α)(1 − β) < 1.

Hence, we get CN,Lmax = Õ(NβL
(1+α)(1−β)
max ). We note that if we use the proto-

col of [3] for Update(N, 1), we have β = 1
2

and the communication complexity of
Update(N, Lmax) is Õ(

√
NL1+α

max).

Maintaining Consistencies over Different Values of Lmax. Note that if
we run Update(N, Lmax) when we wish to modify L bits in the database with
L < Lmax, then the communication complexity is not optimal as the commu-
nication complexity depends only on Lmax and not on L. For example, if we
have Lmax = O(

√
N) and CN,1 =

√
N , then running Update(N, Lmax) when

we want to modify L = O( 4
√

N) bits, will not be optimal. Update(N, Lmax) will
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then have communication complexity O(D3/2 4
√

N3+α), which is more than the
communication complexity when running Update(N, 1), O( 4

√
N) times.

Now, if we use different lossless expanders for the encoding depending on the
number of bits we wish to modify, then the encoding of each bit of the original
database will not be consistent. More specifically, since the degree of the graphs
are not uniform, we may not modify “enough” copies of a particular bit.

To overcome this difficulty, we pick W = O((log N)2/ε)1+1/α bits to encode
every bit and store them. Now, for all values of Lmax ≤ N , the corresponding
value of D is ≤ W . When we wish to modify Lmax bits of the original database, we
use the corresponding lossless expander with degree D. We repeat this protocol
�W

D � times using a different (disjoint) set of D bits of the encoding of every bit
in each iteration. Now, since in each execution we modify at least (1− 2ε)D bits
of the encoding of a bit, in total we will modify at least (1 − 2ε)W bits of the
encoding of every bit that we modify and hence the decoding of majority still
works. Furthermore, note that we do not increase the communication complexity
of the protocol.

We note that our protocols for modifying L < Lmax bits of the N -bit database,
do not attempt to hide the value of Lmax. Note that any protocol for modifying
bits of a database, will reveal an upper bound on the number of bits that are
modified. This is because, if we wish to hide the value of Lmax, then such a
protocol must be indistinguishable from a protocol where a user modifies all bits
of the N -bit database and this protocol, by an information theoretic argument,
must have communication complexity Ω(N). We assume that the bound, Lmax,
on the number of bits that we wish to modify in the database is public. Note
that for optimal communication complexity L must equal Lmax.

An Important Remark. In the context of the remote mail storage example, con-
sider a scenario in which Alice, the holder of the secret key wishes to update
some part of her own database (perhaps she would like to delete a recently read
message). In such a situation, the contents of the portion of the database to be
modified are known. Say, Alice wishes to modify L bits which maybe either 0 or
1. Alice will know the contents of the database, including that of the encoding
(she can learn this through an efficient PIR protocol). Now, the protocol de-
scribed above gives us an amortization on the communication complexity both
while marking messages with keywords as well as when removing marked key-
words (when deleting a message). This is because, each bit is encoded through
D bits and the majority of the D bits decode to the bit in the N -bit database.
Now, irrespective of whether we are changing a 0 bit into a 1, or vice-versa, it
will always suffice to modify at most a majority of the D copies of the bit.

Other Encodings. In addition to the majority encoding, other encodings can
also prove useful in this context. Rather than using a lossless expander and an
encoding where D bits encode a 0 or a 1 through the majority, one could encode
every bit through D bits where the sum (modulo 2) of the D bits determines
the encoded bit. Now, in order to modify a bit (either from 0 to 1 or vice-versa),
one only needs to modify any single bit out of the D bits and can then apply the
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results of [13] on batch codes more directly. This approach may be of particular
use when it is desirable for a party without the secret key to modify 1-bits back
to 0-bits (although this is not of utility in the main application of remote mail
storage).

4 Applications of Batch Protocols for Database
Modification to [3]

The protocol of [3] applies to a scenario that models a somewhat ideal internet-
based email service: all email messages are encrypted under the user’s public key,
yet the user can still perform the common tasks of searching for and retrieving
messages via keywords, erasing messages, etc., without revealing any information
to the service provider about the messages nor the keywords being searched for.
Furthermore, this can be done with “small” (i.e. sub-linear) communication.

The protocols will typically involve a message sender, receiver, and a storage
provider. We’ll use the following notational conventions to represent the various
parties: X will refer to a message sending party; Y will refer to the message receiv-
ing party (owner of the private key); S will refer to the server/storage provider.

The protocol of [3] accomplished the basic task outlined above, but in order
to maintain sub-linear communication complexity as well as to preserve the cor-
rectness of the protocol, several limitations were enforced. The most prominent
conditions needed were as follows:

1. The number of messages associated to a single keyword must be bounded by
a constant.

2. The number of keywords in use must be proportional to the number of
messages.

3. The number of keywords associated to a particular message must be bounded
by a constant.

We still enforce conditions 1 and 2 (which apply for the same technical rea-
sons regarding correctness) however using batch protocols for private database
modification, we show how to relax the third condition and allow non-constant
numbers of keywords to be associated with a single message. Clearly the protocol
of [3] cannot have this capability for a keyword set of size Ω(

√
N): The expected

number of bits one is required to update would similarly be Ω(
√

N), and
√

N ex-
ecutions of Update(N, 1) from [3] will yield Ω(N) communication complexity for
sending this single message, violating the requirement of maintaining sub-linear
communication.

Protocol Description

The details of the protocol are fairly straightforward. Let K, E ,D represent the
key generation, encryption and decryption algorithms, respectively, of a public
key cryptosystem that allows for the evaluation of polynomials of total degree 2
on ciphertext (e.g., [2]). Adopting the notation of [3], we’ll denote the maximum
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number of keywords that can be associated to a single message by θ. The pro-
tocol of [3] requires that this value in fact be constant. We will make no such
assumption on θ and demonstrate a protocol that satisfies the same definitions
of correctness and of privacy.

For brevity, we direct the reader to [3] for formal definitions of correctness
and privacy for such a protocol, and instead provide an intuitive summary here.
Roughly speaking, for integers λ, θ and a message database of N messages, a
public-key storage with keyword search is said to be (N, λ, θ)-correct if the pro-
tocol for retrieval of messages by keywords yields the appropriate results after
any sequence of executions of the message sending protocol, given that not more
than θ keywords are associated to a single message. The work of [3] presents a
public-key storage with keyword search that is (N, λ, θ)-correct where θ is a con-
stant, independent of N , and independent of the message size. Below, we extend
this protocol to maintain communication efficiency in the case of non-constant θ.
In order to simplify the description, we will present the protocol at a high level
and refer the reader to the work of [3] for details when needed. The protocol
consists of the following three algorithms.

KeyGen(s) — Run the key generation algorithm K of the underlying cryptosys-
tem to produce a public and private pair of keys.

SendX ,S(M, W ) — Sender X wants to send message M marked with the set of
keywords W to Y via S. X encrypts M and the keywords and then pro-
ceeds as in [3] in order to update the keyword-message association struc-
ture. However, rather than repeatedly applying Update(N, 1), X will use the
Update(N, θ) protocol described in §3.2 to efficiently perform the updates as
a batch. Note that in order to mark a message as having a only single key-
word, X is required to update Ω(log2 N) bits of the Bloom filter structure
that holds the keyword-message associations.

RetrieveY,S(w) — Y wishes to retrieve all messages associated with the keyword
w and optionally erase them from the server. This protocol consists of steps
similar to [3] in order to decrypt the locations of matching messages and
subsequently download and decrypt. However in the case where message
erasure is also performed, we will have Y execute Update(N, θ) from §3.2
with S, as opposed to repeated usage of Update(N, 1) (as found in [3]) which
allows us to handle non-constant numbers of keywords to be associated with
a single message.

Theorem 3. The Public-Key Storage with Keyword Search from the preceding
construction is (N, λ, θ)-correct according to the definition of [3].

Remark. The proof of the above theorem follows in much the same way as that
of [3]. However, there is a need for one remark on this subject. Recall that in [3]
it was required that only a constant number of messages were associated to a
particular keyword, since fixed-length buffers were needed to represent sets. As
mentioned, we have adopted this same requirement for much the same reason.
However, we would like to note that in a practical implementation of our pro-
tocol this may be harder to achieve since the increased number of keywords per
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message will naturally lead to more messages being associated with a particular
keyword. That is, if θ is large, it will generally not be possible to have every
message associated to θ keywords without exceeding λ messages associated to
some particular keyword. None the less, we emphasize that our protocol con-
forms to the very same definitions for correctness as that of [3]; it is just that
the antecedent will perhaps not come as easily.

We again leave the formal definitions of privacy for the sender and receiver
to [3] for the purposes of brevity. Roughly, they state that the sending and
receiving protocols do not reveal any information about the messages nor the
keyword associations to a computationally bounded adversary. This is phrased
via a standard indistinguishability condition.

Theorem 4. Assuming CPA-security of the underlying cryptosystem, the Public-
Key Storage with Keyword Search from the above construction is sender-private as
well as receiver-private, according to the definitions of [3].

Proof. This follows almost immediately from the privacy of the Update(N, 1)
protocol, Theorem 2 and the analogous theorem from [3]. �	
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A Appendix

A.1 Privacy Game for Batch Cryptographic Counters

The privacy for batch cryptographic counters with respect to server T (modified
from [15]) is given through the following two experiments 0 and 1. Let the batch
cryptographic counter protocol with N counters, where every party modifies at
most L counters, be denoted by Counter(N, L). Let Wb denote the probability
with which A outputs 1 in Experiment b for b = 0, 1.

1. In both experiments,
(a) The challenger picks the public key of the encryption scheme pk and

sends it to A. A plays the role of the server T here.
(b) A sends N values denoting the initial values of the N cryptographic

counters to the challenger.
(c) The challenger encrypts these N values using pk and sends it to A.
(d) A picks 2 sets S0 and S1 ⊆ [N ], such that |S0| = |S1| = L. Also, for

every index in S0 and S1, A denotes the value by which the counter in
the index must be incremented or decremented (A may also specify that
this counter not be changed).
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2. In Experiment b, the challenger runs Counter(N, L) with A using Sb as input.
3. A outputs a bit 0 or 1.

Definition 5. We say that Counter(N, L) is L-private with respect to server T
(run by A), if for all semi-honest PPT adversaries A, we have |W0 − W1| is
negligible.

The privacy of Transfer(x, y) with respect to party P and server T is defined
via standard definitions of two-party computation which guarantees that P does
not learn anything other than the final value of the counter and that T does not
learn anything.

B Application of Batch Protocols for Database
Modification to Cryptographic Counters

Cryptographic counters, formalized by Katz et al. [15], allow a group of partic-
ipants to increment and decrement a cryptographic representation of a hidden
numeric value privately. The value of the counter can then be determined by a
specific party only. More formally, there are a set of R parties, {P1, P2, · · · , PR}.
These parties wish to increment and decrement the value of a specific counter
C which is stored by a party T , assumed to be semi-honest. After they have
incremented/decremented the counter C, T must reveal the value of the counter
to a specific party denoted by P . T is semi-honest and is trusted not to collude
with P . At the same time, parties wish only the output of the counter to be
revealed to P . One can implement this protocol in the following way. Let P pick
a public/private key pair (pkP , skP ) of an additively homomorphic encryption
scheme over Zn with n larger than the maximum value of the counter. Let Pi

hold input xi. Let E(pk, m) denote the encryption of message m with public key
pk. Now, Pi sends E(pkP , xi) to T . Using the additive homomorphic property,
T computes E(pkP , ΣR

i=1xi) and sends the result to P who can then compute
ΣR

i=1xi.
Now, suppose there are N such counters C1, C2, · · · , CN that the parties wish

to update. Furthermore, assume that each user updates no more than L of
these N counters. No user Pi wishes to reveal to anyone, which of the counters
he/she modified. An example of this situation would be a voting protocol which
has several candidates (N candidates). Voters have to select L out of these N
candidates and rank them. Candidates are then selected according to a weighted
sum of their votes.

Now, let xi[1], · · · , xi[N ] denote the inputs (or weighted votes) held by Pi

(only at most L out of these values are non-zero). Using the solution described
above, Pi can send E(pkP , xi[1]), · · · , E(pkP , xi[N ]) to T . Using the additive ho-
momorphic property, T can compute E(pkP , ΣR

i=1xi[1]), · · · , E(pkP , ΣR
i=1xi[N ])

and send the result to P . However, this protocol has communication complexity
O(N) for every user Pi.

Let a cryptographic counter protocol between a user and server T , where
there are N counters and every party modifies at most L out of the N coun-
ters, be denoted by Counter(N, L). Let the protocol to transfer an encrypted
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value of the final counter value from the server T and user P be denoted by
Transfer(x, y), where x and y are inputs of T and P respectively. The pri-
vacy game for Counter(N, L) with respect to server T and the privacy game
for Transfer(x, y) with respect to party P and server T is given in Appendix A.1.
We do not focus on the other security requirements such as universal verifiabil-
ity and robustness ([15]). Universal verifiability informally means that any party
(including third parties) can be convinced that all votes were cast correctly and
that the tally was made correctly. Robustness informally means that the final
output can be computed even in the presence of a few faulty parties.

We now describe below two solutions for Counter(N, L) that have communi-
cation complexity O(

√
L1+αN poly-log N).

B.1 Protocol Using Lossless Unbalanced Expanders

This protocol, uses the private database modification protocol for modifying
L bits of an N -bit database from §3.2. We first note that the additively ho-
momorphic encryption scheme of [2] can be used to encrypt messages from a
polynomially large message space (of size n). Choose n such that n is greater
than the maximum value of the counter. Now, since the encryption scheme of [2]
is additively homomorphic, we can use this scheme in order to encrypt the value
of the counter. Every user Pi can update the counter by sending an encryption
of their input xi to T .

Now, we describe below how we can amortize the communication complexity
of this protocol. We use the (Lmax, ε) lossless expander Γ from Theorem 1.
The protocol requires the number of parties R to be less than 1

4ε . The protocol
Counter(N, L) is described below.

1. Encode every counter through D different counters. To decode, the simple
majority value of all values held in these D counters is the value of the
counter. Initially these D counters all hold an encryption of 0 under P ’s
public key according to the encryption scheme of [2].

2. Now, using the protocol from §3.2, each party Pi modifies (1 − 2ε) copies of
each of the L counters that he/she wishes to update.

Transfer(x, y): For each counter, T runs an efficient two-party computation
[21,10,14] with P to compute the simple majority value present in these counters
and returns the value to P . T ’s input x is all the D encrypted values of a counter
and P ’s input y is the secret key of the homomorphic encryption scheme.

Protocol Correctness, Security and Communication Complexity. We
have R < 1

4ε . We note that since each party modifies at least (1− 2ε)D copies of
every counter, after the first modification to a counter, at least (1− 2ε)D copies
of every counter hold the correct value. Now, after the second modification to
the counter at least (1−4ε)D copies of the counter hold the correct value and so
on. Since R < 1

4ε , after all parties have modified the counters, a majority of the
counters still hold the correct value of the counter and hence when evaluating the
simple majority of the value held in the counter (via the two-party computation
protocol between P and T ), the output obtained will be correct.
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Theorem 5. Counter(N, L) is L-private with respect to T according to the def-
inition given in §A.1.

Proof. This theorem follows from Theorem 2, that guarantees that T cannot tell
which of the L counters were modified. �	
Theorem 6. Transfer(x, y) is private with respect to P and T according to the
definition given in §A.1.

Proof. This theorem follows from the security of the two-party computation
protocol (that guarantees that P learns only the output value of the counter)
and that T does not learn the value of the counter. �	
The communication complexity of Counter(N, L) for every user is the same
as that in §3.2, that is O(

√
NL1+αpoly-log N) for some constant 0 < α <

1. Since, the server can run an efficient two-party computation protocol with
P , with inputs of size O(poly-log N) to compute the majority value of each
counter, the communication complexity of Transfer(x, y) is O(NpolyD) which is
O(Npoly-log N).

B.2 Protocol Using Unbalanced Expanders

We present a protocol for batch counters in which there is no restriction on the
number of parties R. Counter(N, L) is describe below.

1. Encode every counter as D different counters. To decode, compute the sum
of all these counters to obtain the value of the counter. Initially these D
counters all hold an encryption of 0 under P ’s public key according to [2].

2. To modify a counter, each party Pi modifies any 1 copy of each of the L
counters as follows:
(a) Following work from Ishai et al. [13], it follows that one can modify 1

out of the D bits that encode every bit in a set of Lmax bits of the
N -bit database by modifying at most 1 bit in each of the M virtual
databases. Using the explicit unbalanced expander from Guruswami et
al. [11], one can obtain the same communication complexity as in the
protocol described in §3.2. Here, we note that we do not require the
expander to be lossless, but only that it is unbalanced.

(b) Pi modifies one of the D different counters encoding every counter that
Pi wishes to modify. This modifies the value of the encoding as well (as
the encoding is simply a sum of all the counters).

(c) Again, in order to use the protocol with different values of Lmax, we store
more copies of each bit and use the same solution as described earlier in
§3.2.

Transfer(x, y): For each counter, the server (using the additive homomorphism
property of [2]) computes the decoding of the counter and returns the encrypted
value of the counter to P .

Protocol Correctness, Security and Communication Complexity. The
correctness and privacy of the protocol is easy to show. The communication com-
plexity of each user is the same as that in the protocol for database modification.
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Abstract. Exposure of a secret key is a significant threat in practice.
As a notion of security against key exposure, Dodis et al. advocated
key-insulated security, and proposed concrete key-insulated encryption
(KIE) schemes in which secret keys are periodically updated by using a
physically “insulated” helper key. For significantly reducing possibility of
exposure of the helper key, Hanaoka et al. further proposed the notion of
parallel KIE (PKIE) in which multiple helper keys are used in alternate
shifts. They also pointed out that in contrast to the case of the standard
KIE, PKIE cannot be straightforwardly obtained from identity-based en-
cryption (IBE). In this paper, we clarify that PKIE can be generically
constructed by using a new primitive which we call one-time forward
secure public key encryption (OTFS-PKE) and show that it is possible
to construct OTFS-PKE from arbitrary IBE or hierarchical IBE (with-
out degenerating into IBE). By using our method, we can obtain various
new PKIE schemes which yield desirable properties. For example, we can
construct first PKIE schemes from lattice or quadratic residuosity prob-
lems (without using bilinear maps), and PKIE with short ciphertexts
and cheaper computational cost for both encryption and decryption.

Keywords: key exposure, parallel key-insulated encryption, one-time
forward secure public key encryption, identity-based encryption.

1 Introduction

Background. Nowadays, there is a growing tendency for cryptographic systems
to be deployed on inexpensive, lightweight and mobile devices. In such a situa-
tion, a secret key is more casually and frequently used, and thus, both damage
and possibility of key exposure increase significantly.

Key-insulated cryptography, introduced by Dodis, Katz, Xu and Yung [13], is
a useful technique to mitigate the potential damage caused by key exposure. In a
key-insulated encryption (KIE) scheme, the lifetime of the system is divided into
discrete periods, and the pubic key remains fixed throughout the lifetime. Each
user keeps two kinds of secrets which are called user secret key and helper key.
The user secret key is used for decrypting ciphertexts, and the helper key is used
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for updating the user secret key. Since the user secret key is periodically updated
(without changing the public key), its exposure compromises only security during
its corresponding time period, and security of other time periods (including past
ones) are still maintained. Furthermore, the helper key is stored in a dedicated
device named helper, which is kept isolated from the network except when it is
used for updating the user secret key, and thus we can assume that possibility
of its exposure is very low.

The key-insulation paradigm is an effective solution to the key exposure prob-
lem. However, we also notice that it is not easy to simultaneously handle (1) re-
ducing damage by exposure of the user secret key, and (2) reducing possibility of
exposure of the helper key.Namely, ifwe update the user secret keymore frequently,
then exposure of the user secret key compromises security for only a shorter time
period. But, this also increases frequency of the helper’s connection to insecure en-
vironments, andhence increases the risk of helper key exposure.Note that exposure
of the helper key may compromise security of all time periods.

To address the above problem, Hanaoka, Hanaoka, and Imai [17] introduced
the concept of parallel key-insulated encryption (PKIE), where two (or more)
distinct helpers are alternately used to update the user secret keys. As indicated
in [17], PKIE allows frequent updating of the user secret key, and at the same
time reduces the risk of the helper key exposure. Namely, assuming that in some
time period, the user secret key is updated by using one of two helper keys, next
updating procedure cannot be carried out without using the other helper key.
Therefore, even if one of helper keys is exposed, its damage is still very limited.

Based on Boneh-Franklin identity-based encryption (IBE) scheme [7], Hanaoka
et al. [17] also proposed a concrete PKIE scheme (referred to as HHI scheme) in
the random oracle model [4]. Later, based on Boneh-Boyen IBE scheme [5], Libert,
Quisquater and Yung [22] further proposed another PKIE scheme (referred to as
LQY scheme) without using random oracles.

Libert et al. also pointed out an important fact that in contrast to the standard
KIE, it is not straightforward to construct PKIE from IBE. Actually, it has not
been known if it is possible to generically construct PKIE from any IBE or not,
and therefore, we cannot flexibly design PKIE schemes according to individual
system requirement.

Our Results. In this paper, we show that it is possible to generically con-
struct a PKIE scheme from an arbitrary IBE scheme, and give various useful
instantiations. Specifically, we first introduce a new primitive named one-time
forward secure public key encryption (OTFS-PKE), and then present a generic
construction of PKIE from OTFS-PKE. Furthermore, we present two generic
constructions of OTFS-PKE: one is from standard IBE, and the other is from
two-level hierarchical identity-based encryption (2-HIBE). We note that IBE can
be trivially obtained from 2-HIBE, but our generalization based on OTFS-PKE
yields more flexibility which results in a wider range of applications.

First examples of instantiations of our generic construction are PKIE schemes
from various assumptions. Namely, by converting lattice-based IBE schemes [15,
10, 23] into OTSF-PKE schemes, we immediately have PKIE schemes based on



38 G. Hanaoka and J. Weng

difficulty of lattice problems. These schemes can be considered as the first “post-
quantum” PKIE schemes. Similarly, based on the quadratic-residuosity-based
IBE schemes [11, 8], we can construct PKIE schemes from the same underlying
assumptions. These are the first PKIE schemes from a factoring-related problem.
We stress that all previously known PKIE schemes rely on pairings, thus the
above schemes are also the first PKIE schemes without pairings.

Second examples are PKIE schemes with better efficiency in comparison to
existing schemes (e.g. [22]) in some aspects. For instance, based on Boneh-
Boyen IBE [5], we can construct a new PKIE scheme with shorter ciphertexts
and cheaper computational cost for encryption and decryption. For another in-
stance, based on Boneh-Boyen-Goh HIBE [6], we can also construct a new PKIE
scheme which yields cheaper computation for helpers. This scheme is useful when
helpers are computationally weak devices (e.g. smart cards). Surprisingly, when
our Boneh-Boyen-based scheme is extended to support multiple helpers, its pub-
lic key size, ciphertext size, encryption cost and decryption cost are all constant
and independent with the number of helpers. This scheme can be viewed as a
(partial) solution to the open question left by Libert et al. in PKC’07.

Related Works. In their seminal paper, Dodis, Katz, Xu and Yung [13] pre-
sented generic constructions as well as direct constructions of KIE schemes.
Bellare and Palacio [3] proposed a new KIE scheme based on Boneh-Franklin
IBE scheme, and they also presented the generic construction of (non-strong key-
insulated) KIE from IBE. We remark that these generic constructions cannot be
applied to PKIE systems. Hanaoka et al. [18] studied KIE in the unconditional
settings, and proposed a dynamic and mutual KIE scheme.

Phan et al. [24] generalized the notion of PKIE and introduced a new paradigm
called key-insulated public key encryption with auxiliary helper. Weng et al. [28]
extended PKIE to identity-based scenarios, and proposed an identity-based PKIE
scheme without random oracles. However, the efficiency of their scheme also de-
grades with the number of helpers. Hanaoka et al. [19] introduced the paradigm of
hierarchial key-insulation, and presented the constructions of identity-based hier-
archial KIE. Weng et al. [29] introduced the notion of threshold key-insulation,
and proposed an identity-based threshold KIE scheme.

There exist some other related techniques to deal with the key exposure prob-
lem. Forward secure cryptography [1] can ensure that, exposure of the current
key does not render usages of previous keys insecure, but security of the future
periods is lost. Intrusion-resilient cryptography [20] strengths the key-insulated
security in the sense that, the system remains secure even after arbitrarily many
compromises of both helper key and user secret keys, as long as the compromises
are not simultaneous.

2 Preliminaries

2.1 Public Key Encryption

A public key encryption (PKE) scheme PKE = (KGen, Enc, Dec) consists of three
algorithms: The key generation algorithm (pk, sk)← KGen(λ), taking as input a
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security parameter λ, outputs a public/secret key pair (pk, sk). The encryption
algorithm C ← Enc(pk, M), on input a public key pk and a message M ∈ M,
outputs a ciphertext C. The decryption algorithm M ← Dec(sk, C), on input a
cipertext C and the secret key sk, outputs a plaintext M (or “⊥” if C is invalid).

Next, we review the definition of semantic security [16] for PKE, i.e. IND-ATK
[2,14,26] where ATK ∈ {CPA, CCA}. Let B be an adversary running in two stages
find and guess. Consider the following experiment:

ExpIND-ATK
B,PKE (λ):

[
(pk, sk)← KeyGen(λ); (M0, M1)← BOd(·)

find (pk); δ
$← {0, 1};

C∗ ← Enc(pk, Mδ); δ′ ← BOd(·)
guess (C∗, pk); return 1 if δ = δ′, or 0 otherwise

]
,

where Od(·) is a decryption oracle which for given C returns M ← Dec(sk, C)
if ATK = CCA, or “⊥” if ATK = CPA. It is required that |M0| = |M1|, and B
cannot issue the query Od(C∗).

We define A’s advantage as AdvIND-ATK
B,PKE (λ) =

∣
∣
∣Pr[ExpIND-ATK

B,PKE (λ) = 1]− 1
2

∣
∣
∣ .

Definition 1. We say that a PKE scheme is IND-CCA (resp. IND-CPA) secure,
if there exists no probabilistic polynomial time (PPT) adversary B who has ad-
vantage AdvIND-CCA

B,PKE (λ) (resp. AdvIND-CPA
B,PKE (λ)).

2.2 Hierarchical Identity-Based Encryption

An hierarchical identity-based encryption (HIBE) scheme consists of four algo-
rithms: The setup algorithm (param, msk) ← Setup(λ, l), run by the private
key generator (PKG), on input a security parameter λ and the maximum hi-
erarchy depth l, outputs the public parameters param and the master secret
key msk. The key extraction algorithm skID ← Extract(param, skID|k−1 , ID), on
input param, an identity ID = (ID1, · · · , IDk) of depth k ≤ l, and the secret key
skID|k−1 of the parent identity ID|k−1 = (ID1, · · · , IDk−1), outputs the secret key
skID for ID. The encryption algorithm C ← Enc(param, ID, M), on input param,
a message M ∈ M and an identity ID with a depth equal or less than l, outputs
a ciphertext C. The decryption algorithm m ← Dec(skID, C), on input a secret
key skID and a ciphertext C, outputs a plaintext M (or “⊥” if C is invalid).

Next, we review the semantic security for HIBE/IBE, i.e. IND-ID-ATK where
ATK = {CPA, CCA}. For an adversary A, we consider the following experiment:

ExpIND-ID-ATK
A,HIBE/IBE (λ):

[
(param, msk)← Setup(λ, l);

(M0, M1, ID
∗)←AOext(·),Od(·,·)

find (param); δ
$← {0, 1}; C∗←Enc(param, ID∗, Mδ);

δ′ ← AOext(·),Od(·,·)
guess (param, C∗); if δ = δ′ return 1 else 0

]
,

where Oext(·) is a key extraction oracle which for given ID returns skID ←
Extract(param, msk, ID), and Od(·, ·) is a decryption oracle which for given
(ID, C) returns M ← Dec(skID, C) if ATK = CCA, or “⊥” if ATK = CPA. It
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is required that |M0| = |M1|, A cannot submit ID∗ nor a prefix of ID∗ to oracle
Oext, and A cannot submit (ID∗, C∗) to oracle Od. We define A’s advantage as
AdvIND-ID-ATK

A,HIBE/IBE (λ) =
∣
∣
∣Pr[ExpIND-ID-ATK

A,HIBE/IBE (λ) = 1]− 1
2

∣
∣
∣ .

Definition 2. An HIBE/IBE scheme is said to be IND-ID-CCA (resp.
IND-ID-CPA) secure, if there exits no PPT adversary A who has non-negligible
advantage AdvIND-ID-CCA

A,HIBE/IBE (λ) (resp. AdvIND-ID-CPA
A,HIBE/IBE (λ)).

2.3 Parallel Key-Insulated Encryption

A PKIE scheme consists of the following algorithms:

– KeyGen(λ): The key generation algorithm, on input a security parame-
ter λ, outputs a public key pk, an initial user secret key usk0 and two
helper keys (mst1, mst0). Here usk0 is kept by the user, while mst1 and
mst0 are kept by the first and the second helper respectively. We write
(pk, usk0, (mst1, mst0))← KeyGen(λ).

– Δ-Gen(t, mstt mod 2): The helper key-update algorithm is run by the helpers
at the beginning of each period. On input a period index t and the corre-
sponding helper key mstt mod 2, it outputs an update key hskt for period t.
We write hskt ← Δ-Gen(t, mstt mod 2).

– Update(t, uskt−1, hskt): The user key-update algorithm is run by the user at
the beginning of each period. Taking as input a period index t, the user
secret key uskt−1 for period t−1 and the update key hskt, it returns the user
secret key uskt for period t. We write uskt ← Update(t, uskt−1, hskt).

– Enc(pk, t, m): The encryption algorithm takes as input the public key pk, a
period index t and a message m ∈M. It outputs a ciphertext CT. We write
CT← Enc(pk, t, m).

– Dec(uskt, CT): The decryption algorithm takes as input a ciphertext CT under
period index t, and the matching user secret key uskt. It outputs a plaintext
m (or “⊥” if CT is invalid). We write m← Dec(uskt, CT).

Key-insulated security. This security notion captures the intuition that, if
an adversary does not compromise the helper, exposure of the user secret keys
for some periods does not affect other periods; furthermore, if a single helper is
broken into while a given period t is exposed, only one other period adjacent to
t is exposed (recall that even strong key-insulated KIE schemes collapse in this
scenario). We refer to this security as IND-KI-ATK where ATK ∈ {CCA, CPA}.
For an adversary A, we consider the following experiment:

ExpIND-KI-ATK
A,PKIE (λ):

[
(pk, usk0, (mst1, mst0))← KeyGen(λ);

(m0, m1, t
∗)← AOu(·),Oh(·),Od(·,·)

find (pk); β
$← {0, 1};CT∗ ← Enc(pk, t∗, mβ);

β′ ← AOu(·),Oh(·),Od(·,·)
guess (pk, CT∗); return 1 if β = β′ or 0 otherwise

]
,

where Ou(·) is a user secret key oracle which for given a period index t returns
the user secret key uskt, Oh(·) is a helper key oracle which for given an index
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i ∈ {0, 1} returns the helper key msti, and Od(·, ·) is a decryption oracle which
for given (t, CT) returns m← Dec(uskt, CT) if ATK = CCA, or “⊥” if ATK = CPA.
It is mandated that |m0| = |m1| and the following requirements are satisfied: (1)
A cannot issue the user secret key query Ou(t∗); (2) A cannot issue both queries
Ou(t∗ − 1) and Oh(t∗ mod 2); (3) A cannot issue both queries Ou(t∗ + 1) and
Oh((t∗ + 1) mod 2); (4) A cannot issue both the helper key queries Oh(1) and
Oh(0); (5) if ATK = CCA, A cannot issue the decryption query Od(t∗, CT∗). We
define A’s advantage as AdvIND-KI-ATK

A,PKIE (λ) =
∣
∣
∣Pr[ExpIND-KI-ATK

A,PKIE (λ) = 1]− 1
2

∣
∣
∣ .

Definition 3. A PKIE scheme is said to be IND-KI-CCA (resp. IND-KI-CPA)
secure, if there exists no PPT adversary A who has non-negligible advantage
AdvIND-KI-CCA

A,PKIE (λ) (resp. AdvIND-KI-CPA
A,PKIE (λ)).

Strong key-insulated security. Key-insulated security can be further en-
hanced to cover the compromise of both helper keys. To define this secu-
rity notion, we first define the notion of strong-IND-KI-ATK security, where
ATK ∈ {CCA, CPA}. For an adversary A, we consider the following experiment:

Expstrong-IND-KI-ATK
A,PKIE (λ):

[
(pk, usk0, (mst1, mst0))← KeyGen(λ);

(m0, m1, t
∗)← AOd(·,·)

find (pk, mst1, mst0); β
$← {0, 1};CT∗ ← Enc(pk, t∗, mβ);

β′ ← AOd(·,·)
guess (pk, mst1, mst0, CT∗); return 1 if β = β′ or 0 otherwise

]
,

where Od(·, ·) is the same as in ExpIND-KI-ATK
A,PKIE (λ). It is mandated that |m0| =

|m1|, and if ATK = CCA then A cannot issue the query Od(t∗, CT∗). We define
A’s advantage as Advstrong-IND-KI-ATK

A,PKIE (λ) =
∣
∣
∣Pr[Expstrong-IND-KI-ATK

A,PKIE (λ) = 1]− 1
2

∣
∣
∣ .

Definition 4. A PKIE scheme is strong-IND-KI-CCA (resp. strong-IND-KI-CPA)
secure, if there exists no PPT adversary A who has non-negligible advantage
Advstrong-IND-KI-CCA

A,PKIE (λ) (resp. Advstrong-IND-KI-CPA
A,PKIE (λ)).

Definition 5. A PKIE scheme is strongly key-insulated secure under chosen-
ciphertext attack (resp. chosen-plaintext attack), if it is both IND-KI-CCA
secure (resp. IND-KI-CPA secure) and strong-IND-KI-CCA secure (resp.
strong-IND-KI-CPA secure).

3 Generic Construction of PKIE

3.1 Difficulties in Generic Constructions of PKIE

Dodis et al. [13] showed that an IBE scheme can be converted to a KIE scheme,
by viewing the period index as an “identity” and having the PKG as the helper.
However, Hanaoka et al. [17] pointed out that it is non-trivial to construct a
PKIE scheme from IBE systems. To illustrate the difficulties, two important
facts should first be kept in mind: On the one hand, according to the definition
of PKIE, only one (not both) of the helper keys are used to update the user
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secret key in each period. On the other hand, the user secret key should simulta-
neously contain the update keys generated by MSK0 and MSK1; otherwise, the
compromise of a single helper and some periods will harm other periods.

Next, let’s review a unsuccessful solution which was previously discussed by
Libert et al. [22]. To construct a PKIE scheme by combining two IBE schemes,
this solution uses the two PKGs to alternatively act as the helpers for even and
odd periods, taking the period indices as identities. For example, a user secret
key for an even period index t consists of uskt = (skt−1, skt), where skt−1 is the
secret key generated by the first PKG in the previous period for identity “t−1”,
and skt is the secret key generated by the second PKG in current period for
identity “t”. At first glance, such a solution appears to be feasible. Unfortunately,
this is not necessary true, since the user secret key for period t will be exposed
by corrupting periods t− 1 and t + 1. More specifically, uskt = (skt−1, skt) can
be derived by combining skt−1, picked from uskt−1 = (skt−2, skt−1), and skt,
picked from uskt+1 = (skt, skt+1).

The insecurity of the above solution lies in the fact that, the two components
generated by distinct PKGs can be individually extracted from the user secret
keys, which enables the adversary to assemble another user secret key. Based
on this observation, Libert et al. [22] pointed out an intuitive relation between
secure PKIE and a category of IBE systems whose key extraction algorithm
can be viewed as a signature supporting aggregation. Now, the user secret key
of the resulting PKIE scheme is the aggregation of two components generated
by distinct helpers, so that the individual component cannot be extracted. In
fact, both HHI scheme [17] and LQY scheme [22] follow this intuition. However,
both schemes are only concrete, and the aggregation property is not generally
satisfied in all IBE systems. Thus the above intuition cannot be utilized to
generic construction of PKIE from any IBE systems.

3.2 A New Primitive: One-Time Forward Secure Public Key
Encryption

To present our generic construction of PKIE, we first introduce a new primitive
named one-time forward secure public key encryption (OTFS-PKE). Like for-
ward secure public key encryption [21, 9], the lifetime of OTFS-PKE is divided
into distinct time periods, and the public key remains fixed throughout the life-
time. However, unlike forward secure public key encryption, the secret key in
OTFS-PKE can only be evolved once (this is the reason why we use the termi-
nology “one-time” to name this primitive), and then it needs to be regenerated.
For convenience, we shall use a bit flg ∈ {0, 1} to identify whether a secret key
of a given period can be evolved or not. Concretely, in the beginning of a period
t where t mod 2 = flg, the user regenerates a new secret key dt (refer to it
as evolvable secret key), which can be further evolved in the next period t + 1.
While for a period index t where t mod 2 = flg, the secret key dt is evolved from
the previous secret key, and cannot be further evolved (refer to it as an evolved
secret key). Formally, an OTFS-PKE scheme consists of five algorithms:
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– Setup(λ, flg): The setup algorithm takes as input a security parameter λ and
a bit flg ∈ {0, 1}. It returns a public key PK and a master key MK. We
write (PK, MK)← Setup(λ, flg). (Without loss of generality, we assume flg
is included in PK.)

– KeyGen(PK, MK, t): The key generation algorithm takes as input PK, MK
and a period index t where t mod 2 = flg. It outputs an evolvable secret
key dt for period t. We write dt ← KeyGen(PK, MK, t).

– Upd(PK, t, dt−1): The key update algorithm takes as input PK, a period
index t where t mod 2 = flg, and the evolvable secret key dt−1 of the pre-
vious period. It returns the evolved secret key dt for period t. We write
dt ← Upd(PK, t, dt−1).

– Enc(PK, t, M): The encryption algorithm takes as input PK, a period index
t and a message M ∈ M. It returns a ciphertext C (or “⊥” if C is invalid).
We write C ← Enc(PK, t, M).

– Dec(dt, C): The decryption algorithm takes as input the secret key dt and
a ciphertext C. It returns a message M (or “⊥” if C is invalid). We write
M ← Dec(dt, C).

The correctness of OTFS-PKE means that, for any M ∈ M and any periods t1
(where t1 mod 2 = flg) and t2 (where t2 mod 2 = flg), it holds that

Dec(KeyGen(PK, MK, t1), Enc(PK, t1, M)) = M,

Dec(Upd(PK, t2, KeyGen(PK, MK, t2 − 1)), Enc(PK, t2, M)) = M.

Next, we begin to define the formal semantic security for OTFS-PKE, and we
refer to it as IND-FS-ATK where ATK = {CCA, CPA}. For an adversary B, we
consider the following experiment:

ExpIND-FS-ATK
B,OTFS-PKE (λ):

[
flg← B(λ);(PK, MK)← Setup(λ, flg);

(M0, M1, t
∗)← BOke(·),Od(·,·)

find (PK); θ
$← {0, 1};C∗ ← Enc(PK, t∗, Mθ);

θ′ ← BOke(·),Od(·,·)
guess (PK, C∗); return 1 if θ = θ′ or 0 otherwise

]
,

where Oke(·) is a key-exposure oracle which on input index t returns dt ←
KeyGen(PK, MK, t) if t mod 2 = flg or dt ← Upd(PK, t, KeyGen(PK, MK, t−
1)) if t mod 2 = flg, and Od(·, ·) is a decryption oracle which on input (t, C)
returns m ← Dec(dt, C) if ATK = CCA, or “⊥” if ATK = CPA. It is mandated
that (1) |M0| = |M1|; (2) B cannot issue the key-exposure query Oke(t∗); (3)
If t∗ mod 2 = flg, B cannot issue the key-exposure query Oke(t∗ − 1); (4) If
ATK = CCA, B cannot issue the decryption query Od(t∗, C∗). We define B’s
advantage as AdvIND-FS-ATK

B,OTFS-PKE (λ) =
∣
∣
∣Pr[ExpIND-FS-ATK

B,OTFS-PKE (λ) = 1]− 1
2

∣
∣
∣ .

Definition 6. We say that an OTFS-PKE scheme is IND-FS-CCA (resp.
IND-FS-CPA) secure, if there exists no PPT adversary B who has non-negligible
advantage AdvIND-FS-CCA

B,OTFS-PKE (λ) (resp. AdvIND-FS-CPA
B,OTFS-PKE (λ)).
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KeyGen(λ): Given a security parameter λ,
1. choose a PKE scheme PKE and two OTFS-PKE schemes OTFS-PKE1 and OTFS-PKE0,
2. run (pk, sk)← PKE.KGen(λ), (PK1, MK1)← OTFS-PKE1.Setup(λ, 1),

(PK0, MK0)← OTFS-PKE0.Setup(λ, 0), d1,−1 ← OTFS-PKE1.KeyGen(PK1, MK1,−1),
d1,0 ← OTFS-PKE1.Upd(PK1, 0, d1,−1), d0,0 ← OTFS-PKE0.KeyGen(PK0, MK0, 0),

3. output pk = (pk, PK1, PK0), usk0 = (sk, d1,0, d0,0), mst1 = MK1 and mst0 = MK0.

Δ-Gen(t, mstt mod 2): To generate the update key hskt with the helper key mstt mod 2,
1. let i = t mod 2, and run di,t ← OTFS-PKEi.KeyGen(PKi, msti, t),
2. output the update key for period t as hskt = di,t.

Update(t, uskt−1, hskt): In period t, to update the user secret key from uskt−1 to uskt,
1. let i = t mod 2 and j = (t− 1) mod 2,
2. parse uskt−1 as (sk, di,t−1, dj,t−1) and hskt as di,t,
3. run dj,t ← OTFS-PKEj .Upd(PKj , t, dj,t−1), and return uskt = (sk, dj,t, di,t).
Enc(pk, t, m): In period t, to encrypt a message m under public key pk,
1. let i = t mod 2 and j = (t− 1) mod 2,
2. pick M ′, M ′

j
$←M, and set M ′

i = m⊕M ′
j ⊕M ′,

3. run C ← PKE.Enc(pk, M ′), Cj ← OTFS-PKEj .Enc(PKj , t, M
′
j),

Ci ← OTFS-PKEi.Enc(PKi, t, M
′
i),

4. return CT = (C, Cj , Ci).

Dec(CT, uskt): To decrypt a ciphertext CT with the matching user secret key uskt,
1. let i = t mod 2 and j = (t− 1) mod 2,
2. parse CT as (C, Cj , Ci) and uskt as (sk, dj,t, di,t),
3. run M ′ ← PKE.Dec(sk, C), M ′

j ← OTFS-PKEj .Dec(dj,t, Cj), M ′
i ← OTFS-PKEi.Dec(di,t, Ci),

4. return m = M ′ ⊕M ′
j ⊕M ′

i .

Fig. 1. Generic Construction of PKIE from OTFS-PKE and PKE

3.3 Generic Construction of PKIE from OTFS-PKE

Basic Idea. We first explain how to use two OTFS-PKE schemes to construct a
PKIE scheme with (non-strong) key-insulated security. We use two OTFS-PKE
schemes: OTFS-PKE1 with flg = 1 and OTFS-PKE0 with flg = 0. The master key
MK1 (resp. MK0) in OTFS-PKE1 (resp. OTFS-PKE0) acts as the helper key mst1
(resp. mst0) for the resulting PKIE scheme. In a given period t (let i = t mod 2
and j = (t − 1) mod 2), the user secret key is of the form uskt = (dj,t, di,t),
where di,t is an evolvable secret key directly generated by msti, and dj,t is an
evolved secret key evolved from dj,t−1, which is directly generated by mstj in the
previous period. In the next period t + 1, the helper key mstj generates a new
evolvable secret key dj,t+1, while di,t evolves into an evolved secret key di,t+1.
And hence the user secret key for period t + 1 is uskt+1 = (di,t+1, dj,t+1). Now,
unlike the unsuccessful solution mentioned in Section 3.1, even if both uskt−1 =
(di,t−1, dj,t−1) and uskt+1 = (di,t+1, dj,t+1) are corrupted, uskt = (dj,t, di,t) are
still uncorrupted, since it is impossible derive di,t from di,t+1 due to the “forward
security” of the OTFS-PKE scheme. This resulting PKIE scheme cannot achieve
the strong key-insulated security, since the corruption of both helper keys means
all the periods will be exposed. To achieve the strong key-insulated security, we
use an additional PKE scheme. Suppose the secret key of the PKE scheme is sk,
then the user secret key for period t is of the form uskt = (sk, dj,t, di,t). Now,
even if both of the helper keys are corrupted, the security of all the periods are
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still ensured, since sk is unknown to the adversary. The detailed construction is
shown in Figure 1.

Theorem 1. The PKIE scheme shown in Figure 1 is strongly key-insulated se-
cure under chosen-plaintext attack, if the underlying PKE scheme is IND-CPA-
secure and the underlying OTFS-PKE schemes are IND-FS-CPA-secure.

Note that the detailed proofs for all the theorems and lemmas in this paper will
be given in the full paper.

Chosen-ciphertext Security. In our generic PKIE scheme, the algorithm Enc
is a multiple encryption, and only achieves the chosen-plaintext security. Using
Dodis et al.’s technique [12], we can readily achieve the chosen-ciphertext security
for our scheme. Due to the space limits, we omit the details here.

3.4 Generic Constructions of OTFS-PKE

In this section, we first show that OTFS-PKE can be generically constructed
from any IBE scheme. Furthermore, we point out that it is also possible to
directly construct OTFS-PKE from any 2-HIBE without degenerating into IBE.

Construction of OTFS-PKE from IBE. In this subsection, we demonstrate
a generic construction of OTFS-PKE from arbitrary IBE.

Setup(λ, flg): Given a security parameter λ and a bit flg ∈ {0, 1},
1. run (param, msk)← IBE.Setup(λ), and return PK = (param, flg) and MK = msk.
KeyGen(PK, MK, t): To generate an evolvable secret key for period t (where t mod 2 = flg),
1. run skt ← IBE.Extract(PK, MK, t), skt+1 ← IBE.Extract(PK, MK, t + 1),
2. return dt = (skt, skt+1).

Upd(PK, t, dt−1): In period t where t mod 2 = flg, to generate an evolved secret key for period t,
1. parse dt−1 as (skt−1, skt), and return dt = skt.
Enc(PK, t, m): In period t, to encrypt a message m under public key PK,
1. run C ← IBE.Enc(PK, t, m),
2. return the ciphertext C.

Dec(dt, C): To decrypt a ciphertext C using secret key dt,
1. parse dt as dt = skt (if t mod 2 = flg) or dt = (skt, skt+1) (if t mod 2 = flg),
2. return m← IBE.Dec(skt, C).

Fig. 2. Generic Construction of OTFS-PKE from IBE

Our basic idea is as follows. We set the public parameter param and the
master secret key msk in the IBE scheme as the public key PK and the master
key MK in the OTFS-PKE scheme, respectively. In period t where t = flg, the
evolvable secret key is dt = (skt, skt+1), which consists of two secret keys for
identities “t” and “t + 1”. Encryption is only carried under identity “t”, and
hence the decryption only involves skt while skt+1 is merely used for evolution.
That is, in the next period, the secret key evolves to be dt+1 = skt+1, where skt

has been deleted. Observe that from dt+1 = skt+1, it is impossible to derive the
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decryption key skt in the previous secret key. Therefore, the security of period t
is still ensured even if the period t + 1 is exposed. Recall that this is exactly the
requirement for a secure OTFS-PKE scheme. Detailed construction is presented
in Figure 2.

Theorem 2. The OTFS-PKE scheme shown in Figure 2 is IND-FS-ATK se-
cure, if the underlying IBE scheme IBE is IND-ID-ATK secure, where ATK ∈
{CPA, CCA}.

Construction of OTFS-PKE from 2-HIBE. It is well known that forward
secure public key encryption can be obtained by using HIBE [9]. Therefore, our
next direction for designing OTFS-PKE is to directly use HIBE as a building
block. Since in the previous approach, we can also construct OTFS-PKE from
standard IBE (see Sec. 3.4), one might think that our HIBE-based construction
is not necessary. However, due to the difference between these two approaches,
there are concrete OTFS-PKE schemes with interesting properties which cannot
be obtained without using our HIBE-based construction (see Sec. 4.2). Thus, we
consider that HIBE-based construction is worth discussing despite of existence
of IBE-based one.

Setup(λ, flg): Given a security parameter λ and a bit flg ∈ {0, 1},
1. run (param, msk)← HIBE.Setup(λ, 2), and return PK = (param, flg) and MK = msk.
KeyGen(PK, MK, t): To generate an evolvable secret key for period t where t mod 2 = flg,
1. run skt ← HIBE.Extract(PK, MK, t), and return dt = skt.

Upd(PK, t, dt−1): In period t where t mod 2 = flg, to generate an evolved secret key for period t,
1. run sk(t−1,t) ← HIBE.Extract(PK, dt−1, (t− 1, t)), and return dt = sk(t−1,t).

Enc(PK, t, m): In period t, to encrypt a message m under public key PK,
1. if t mod 2 = flg, run C ← HIBE.Enc(PK, t, M); else run C ← HIBE.Enc(PK, (t− 1, t), M),
2. return the ciphertext C.
Dec(dt, C): To decrypt a ciphertext C using the secret key dt,
1. compute M ← HIBE.Dec(dt, C), and return M .

Fig. 3. Generic Construction of OTFS-PKE from 2-HIBE

Our basic idea is as follows. For a given 2-HIBE scheme, we have its public
parameter param and the master secret key msk as the public key PK and
the master key MK for the OTFS-PKE scheme, respectively. In the beginning
of a period t (where t mod 2 = flg), taking the index t as a one-level identity,
we use the master secret key msk to generate a secret key skt, which is viewed
as an evolvable secret key for period t. In the next period t + 1, we use skt to
generate a secret key sk(t,t+1) for the two-level offspring identity “(t, t+1)”. Here
sk(t,t+1) is viewed as an evolved secret key for period t + 1. Note that according
to the property of HIBE, from sk(t,t+1), it is impossible to derive the pervious
secret key skt. This is exactly the requirement for a secure OTFS-PKE scheme.
The encryption and decryption algorithms can be accordingly designed. Figure
3 gives our construction.
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Theorem 3. The OTFS-PKE scheme given in Figure 3 is IND-FS-ATK se-
cure, if the underlying HIBE scheme HIBE is IND-ID-ATK secure, where ATK ∈
{CPA, CCA}.

4 Instantiations of Our Generic Constructions

Previous section indicates that PKIE schemes can be generically constructed
from IBE or 2-HIBE. Thus, from existing IBE and HIBE schemes with specific
properties, we can construct PKIE schemes with a variety of features which
previous PKIE schemes cannot have. In this section, we show such instantiations.
There are mainly two kinds of instantiations: (1) constructions from various
assumptions, and (2) constructions with better efficiency in certain aspects.

4.1 Instantiations from Various Assumptions

As mentioned above, by using our generic construction, a PKIE scheme can
be immediately obtained from arbitrary IBE. This means that if there exists
an IBE scheme which is provably secure under some mathematical assumption,
then there also exists a PKIE scheme under the same assumption.

For example, based on the lattice-based IBE schemes [15, 10, 23], we can
construct PKIE schemes by assuming only difficulty of certain types of lat-
tice problems, e.g. the learning with error problem [27]. These are considered as
the first “post-quantum” PKIE schemes. Furthermore, based on the quadratic-
residuosity-based IBE schemes [11, 8], we can construct PKIE schemes under
the decisional quadratic residuosity assumption. These are considered as the
first PKIE schemes based on the factoring problem.

4.2 Efficient Instantiations from Pairings

For example, our IBE-based construction from Boneh-Boyen IBE [5] yields
shorter ciphertexts and cheaper cost for encryption and decryption. Furthermore,
our HIBE-based construction from Boneh-Boyen-Goh HIBE [6] yields cheaper
cost for Δ-Gen algorithm, and this is useful when a helper is a cheap device, e.g.
a smart card. It should be also noticed that in terms of computational cost for
Δ-Gen, our Boneh-Boyen-Goh-based scheme is more efficient than both the LQY
scheme and our Boneh-Boyen-based scheme, and this implies that our HIBE-
based generic construction is still useful despite of existence of our IBE-based
generic construction.

In the rest of this paper, we shall use the bilinear groups (G, GT ) with prime
order p ≥ 2λ, where λ is the security parameter, and there exists a bilinear map
e : G×G→ GT .

Efficient Instantiation from Boneh-Boyen IBE. LQY scheme is based on
Boneh-Boyen IBE scheme [5]. Interestingly, when our IBE-based generic con-
struction is instantiated with Boneh-Boyen IBE scheme, we can make use of its
algebraic property to obtain a PKIE scheme more efficient than LQY scheme.
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KeyGen(λ): Given a security parameter λ,

1. pick α′, α0, α1
$← Z∗

p, g, g2, h
$← G, and set g′ = gα′

2 , g1 = gα′+α0+α1 , mst1 = gα1
2 , mst0 = gα0

2 ,

2. pick a target collision-resistant hash function H : Z→ Z∗
p, and pick r1,0, r0,0, r0,1

$← Z∗
p,

3. set (a0,0, b0,0) =
(
mst1mst0 ·(gH(0)

1 h)r1,0+r0,0 , gr1,0+r0,0
)
, (a0,1, b0,1) =

(
mst0 ·(gH(1)

1 h)r0,1 , gr0,1
)
,

4. return pk = (g, g1, g2, h), usk0 = (g′, (a0,0, b0,0), (a0,1, b0,1)) and (mst1, mst0).
Δ-Gen(t, mstt mod 2): To generate the update key hskt with the matching helper key mstt mod 2,

1. let i = t mod 2, and pick ri,t, ri,t+1
$← Z∗

p,

2. set (âi,t, b̂i,t) =
(
msti · (gH(t)

1 h)ri,t , gri,t
)

and (âi,t+1, b̂i,t+1) =
(
msti · (gH(t+1)

1 h)ri,t+1 , gri,t+1
)
,

3. return hskt = ((âi,t, b̂i,t), (âi,t+1, b̂i,t+1)).

Update(t, uskt−1, hskt): In period t, to update the user secret key from uskt−1 to uskt,
1. let i = t mod 2 and j = (t− 1) mod 2,
2. parse uskt−1 as (g′, (aj,t−1, bj,t−1), (aj,t, bj,t)), and hskt as ((âi,t, b̂i,t), (âi,t+1, b̂i,t+1))
3. set ai,t = aj,t · âi,t, bi,t = bj,t · b̂i,t, ai,t+1 = âi,t+1 and bi,t+1 = b̂i,t+1,
4. return uskt = (g′, (ai,t, bi,t), (ai,t+1, bi,t+1)).
Enc(pk, t, m): In period t, to encrypt a message m ∈ GT under public key pk,

1. pick s
$← Z∗

p, and compute C1 = e(g1, g2)s ·m, C2 = gs, C3 = (gH(t)
1 h)s,

2. return CT = (C1, C2, C3).
Dec(uskt, CT): To decrypt a ciphertext CT with user secret key uskt,
1. let i = t mod 2, and parse uskt as (g′, (ai,t, bi,t), (ai,t+1, bi,t+1)), and CT as (C1, C2, C3),

2. return m← C1 · e(C3, bi,t)
e (C2, g′ · ai,t)

.

Fig. 4. Our Concrete PKIE Scheme Based on Boneh-Boyen IBE

Our concrete PKIE scheme consists of two Boneh-Boyen IBE systems with the
same the public parameters g, g2 and h. The master secret keys of the two systems
are mst1 = gα1

2 and mst0 = gα0
2 respectively, which act as the two helper keys for

the PKIE scheme and alternately update the user secret keys. It is worth noting
that, Boneh-Boyen IBE system has a distinguished aggregation property, i.e., a
product of secret keys for the same ID under different master keys also works as
the secret key for that ID under another master key (which is the product of these
underlying master keys). Based on this observation, we product the parameters
(i.e., gα1 and gα0) of the two systems into a single g1 = gα1+α0 (this parameter
will be further changed, which will be clear later). Also, two secret keys for the
same identity are aggregated into a single one. For example, in the initial user
secret key usk0, the secret key

(
mst1 ·(gH(0)

1 h)r1,0 , gr1,0
)
, generated by the master

secret key mst1 for identity “0”, and the secret key
(
mst0 · (gH(0)

1 h)r0,0 , gr0,0
)
,

generated by mst0 for identity “0”, are integrated into (a0,0, b0,0) =
(
mst1mst0 ·

(gH(0)
1 h)r1,0+r0,0 , gr1,0+r0,0

)
. Note that we do not use a PKE scheme to achieve

the strong key-insulated security. Instead, an element g′ = gα′
2 is included in

the user secret key, and the public parameter g1 is accordingly changed to be
g1 = gα′+α1+α0 . Figure 4 gives our detailed construction.

Theorem 4. The Boneh-Boyen-based PKIE scheme given in Figure 4 is
strongly key-insulated secure under chosen-plaintext attack, assuming the de-
cisional bilinear Diffie-Hellman (DBDH) assumption holds in groups (G, GT ).
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KeyGen(λ): Given a security parameter λ,
1. pick a collision-resistant hash function H : Z→ Z∗

p,

2. pick g, g2, f, h0, h1
$← G, α0, α1, α

′ $← Z∗
p. Set g1 = gα′+α0+α1 , g′ = gα′

2 , mst1 = gα1
2 , mst0 = gα0

2 ,

3. pick r1,0, r0,0
$← Z∗

p, and set (a1,0, b1,0) =
(
mst1 · (gH(−1)

1 fH(0)h1)r1,0 , gr1,0
)

and

(a0,0, b0,0, c0,0) =
(
mst0 · (gH(0)

1 h0)r0,0 , gr0,0 , f r0,0
)
,

4. return pk = (g, g1, g2, f, h0, h1), usk0 = (g′, (a1,0, b1,0), (a0,0, b0,0, c0,0)), mst1 and mst0.
Δ-Gen(t, mstt mod 2): To generate the update key hskt with the matching helper key mstt mod 2,

1. let i = t mod 2. Pick ri,t
$← Z

∗
p, and set (ai,t, bi,t, ci,t) =

(
msti · (gH(t)

1 hi)ri,t , gri,t , f ri,t

)
,

2. return hskt = (ai,t, bi,t, ci,t).
Update(t, uskt−1, hskt): In period t, to update the user secret key from uskt−1 to uskt,
1. let i = t mod 2 and j = (t− 1) mod 2,
2. parse hskt as (ai,t, bi,t, ci,t), and uskt−1 as (g′, (ai,t−1, bi,t−1), (aj,t−1, bj,t−1, cj,t−1)),

3. pick rj,t
$← Z∗

p, and set aj,t = aj,t−1 · cH(t)
j,t−1 · (gH(t−1)

1 fH(t)hj)rj,t and bj,t = bj,t−1 · grj,t ,
4. return uskt = (g′, (aj,t, bj,t), (ai,t, bi,t, ci,t)).

Enc(pk, t, m): In period t, to encrypt a message m under public key pk,
1. let i = t mod 2 and j = (t− 1) mod 2,

2. pick s
$← Z∗

p, and set C1 = e(g1, g2)s ·m, C2 = gs, C3 = (gH(t−1)
1 fH(t)hj)s and C4 = (gH(t)

1 hi)s,
3. return CT = (C1, C2, C3, C4).
Dec(uskt, CT): To decrypt a ciphertext CT with user secret key uskt,
1. let i = t mod 2, j = (t − 1) mod 2. Parse CT = (C1, C2, C3, C4), and uskt =

(g′, (aj,t, bj,t), (ai,t, bi,t, ci,t)).

2. return m← C1 · e(bj,t, C3) · e(bi,t, C4)
e (C2, g′aj,tai,t)

.

Fig. 5. Our Concrete PKIE Scheme Based on Boneh-Boyen-Goh 2-HIBE

Efficient Instantiation from Boneh-Boyen-Goh 2-HIBE. Based on
Boneh-Boyen-Goh 2-HIBE scheme, we here present an HIBE-based instantiation
of PKIE scheme, which is given in Figure 5. Our scheme consists of two HIBE
systems. To achieve the strong key-insulated security, we introduce an element
g′ = gα′

2 into the user secret key. To shorten the public key, we use the same
public parameters (g, g2, f) and integrate the parameters (gα′

, gα1 , gα0) into a
single gα′+α1+α0 . The resulting PKIE scheme is comparable with LQY scheme:
the same public key size, ciphertext size, encryption cost and decryption cost,
only with slight longer user secret keys and heavier cost for user key-updates.

Theorem 5. The above Boneh-Boyen-Goh-based PKIE scheme is strongly key-
insulated secure under chosen-plaintext attack, assuming the 2 decisional bilinear
Diffie-Hellman exponentiation (2-DBDHE) assumption holds in groups (G, GT ).

4.3 Extension: PKIE Scheme with n Helpers

In this section, we discuss how to extend our concrete PKIE scheme to obtain
a PKIE scheme with n helpers (n-PKIE for short). In such a scheme, these n
helpers are alternately used to update the user secret key. For example, in period
t, the helper with helper key mstt mod n is used to update the user secret key
from uskt−1 to uskt. While in the next period t+1, the helper key mst(t+1) mod n

will be used to update user secret key from uskt to uskt+1. Similarly to PKIE
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KeyGen(λ): Given a security parameter λ,

1. pick g, g2, h
$← G and α′, α0, · · · , αn−1

$← Z
∗
p, and set g′ = gα′

2 , g1 = gα′+
∑ n−1

i=0 αi ,
2. set msti = gαi

2 for i = 0 to n− 1,
3. pick a collision-resistant hash function H : Z→ Z

∗
p,

4. for k = 0 to n− 1,, compute a0,k =
( n−1∏

i=k

msti
) · (gH(k)

1 h
)

n−1∑

i=k

ri,k

and b0,k = g

n−1∑

i=k

ri,k

,

where ri,k
$← Z

∗
p for i = k, · · · , n− 1,

5. return pk = (g, g1, g2, h), usk0 = (g′, (a0,0, b0,0), · · · , (a0,n−1, b0,n−1)) and (mst0, · · · , mstn−1).

Δ-Gen(t, mstt mod n): To generate the update key hskt with the matching helper key mstt mod n,
1. let i = t mod n,
2. for k = t to t + n− 1, pick ri,k

$← Z
∗
p, and set âi,k = msti ·

(
g

H(k)
1 h

)ri,k , b̂i,k = gri,k ,
3. return hskt = ((âi,t, b̂i,t), · · · , (âi,t+n−1, b̂i,t+n−1)).
Update(t, uskt−1, hskt): In period t, to update the user secret key from uskt−1 to uskt,
1. let i = t mod n and j = (t− 1) mod n
2. parse uskt−1 as (g′, (aj,t−1, bj,t−1), · · · , (aj,t+n−2, bj,t+n−2)),

and hskt as ((âi,t, b̂i,t), · · · , (âi,t+n−1, b̂i,t+n−1)),
3. for k = t to t + n− 2, set ai,k = aj,k · âi,k, and bi,k = bj,k · b̂i,k.
4. set ai,t+n−1 = âi,t+n−1 and bi,t+n−1 = b̂i,t+n−1

5. return uskt = (g′, (ai,t, bi,t), · · · , (ai,t+n−1, bi,t+n−1)).

Enc(pk, t, m): In period t, to encrypt a message m under public key pk,

1. pick s
$← Z

∗
p, and compute C1 = e(g1, g2)s ·m, C2 = gs, C3 = (gH(t)

1 h)s,
2. return CT = (C1, C2, C3).
Dec(uskt, CT): To decrypt a ciphertext CT with the matching user secret key uskt,
1. parse CT as (C1, C2, C3), and uskt as (g′, (ai,t, bi,t), · · · , (ai,t+n−1, bi,t+n−1)),

2. return m← C1 · e(C3, bi,t)
e (C2, g′ · ai,t)

.

Fig. 6. n-PKIE Scheme Based on Boneh-Boyen IBE

systems, key-insulated security for an n-PKIE system captures the intuition that,
even if up to n−1 helpers are broken into while a given period t is exposed, only
one other period adjacent to t is exposed. Furthermore, the strong key-insulated
security ensures that, even if the n helpers are simultaneously corrupted, all the
periods are still secure. Formal definitions and security notions for n-PKIE is
given in the full paper.

Our PKIE scheme presented in Figure 4 can be naturally extended to an n-
PKIE scheme as presented in Figure 6. We here explain the meanings of the
subscripts used in the scheme. For the random numbers ri,k used in algorithms
KeyGen and Δ-Gen, its subscript k corresponds to the time period index, and i
corresponds to the index of the helper key msti. The subscripts in (ai,t, bi,t) and
(âi,t, b̂i,t) have the similar meanings.

4.4 Comparisons

In this section, we compare the efficiency of LQY scheme (which is the currently
known best scheme in the standard model) and our proposed PKIE schemes
in terms of communication overhead and computational cost. In Table 1, |G|
and |GT | denote the bit-length of an element in group G and GT respectively,
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Table 1. Efficiency comparisons between our concrete schemes and LQY schemes [22]

LQY PKIE [22] BB-based PKIE BBG-based PKIE LQY n-PKIE [22] BB-based n-PKIE
public key 6|G| 4|G| 6|G| (2n + 2)|G| 4|G|

user secret key 3|G| 5|G| 6|G| (n + 1)|G| (2n + 1)|G|
ciphertext 3|G|+ 1|GT | 2|G|+ 1|GT | 3|G|+ 1|GT | (n+1)|G|+1|GT | 2|G|+ 1|GT |

Δ-Gen 2tm + 1tr 2tm + 2tr 1tm + 2tr 2tm + 1tr ntm + ntr
Enc 2tm + 1tr + 1tT 1tm + 1tr + 1tT 2tm + 1tr + 1tT ntm + 1tr + 1tT 1tm + 1tr + 1tT
Dec 3tp 2tp 3tp (n + 1)tp 2tp

without RO? � � � � �

tr, tm, tT and tp denote the computational cost of one regular exponentiation in
G, one multi-exponentiation [25] in G, one regular exponentiation in GT and
one pairing in (G, GT ) respectively, and “without RO” denotes that the security
is proved without random oracles. We note that tm is approximately equal to
1.2tr due to the Pippenger algorithm [25].

We see that our Boneh-Boyen-based scheme is superior to other schemes in
many aspects (except for size of user secret key and computational cost for Δ-
Gen). In terms of computational cost for Δ-Gen, our Boneh-Boyen-Goh-based
PKIE scheme is superior to other schemes, and it is suitable for environments
where helpers are computationally weak. LQY scheme is superior to others in
terms of size of user secret key. In summary, we have three different PKIE
schemes with different advantages, and one can choose an appropriate one from
them according to each situation.

As to the extended schemes with n helpers, the advantage of our Boneh-Boyen-
based n-PKIE scheme over (the n-PKIE version of) LQY scheme becomes more
obvious. The public key size, ciphertext size, encryption cost and decryption
cost in the n-PKIE version of LQY scheme grows linearly with the number n
of helpers, while ours are independent of the number of helpers. Honestly, we
admit that our scheme still has the following limitations: the computation cost
in algorithm Δ-Gen is linear with the number of helpers, and its user secret key
size is about twice of LQY scheme.
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Abstract. LEX is a stream cipher based on the round transformation
of the AES block cipher, and it was selected for the final phase evalua-
tion of the eSTREAM project. LEX is 2.5 times faster than AES both
in software and in hardware. In this paper, we present a differential fault
attack on LEX. The fault model assumes that the attacker is able to flip
a random bit of the internal state of the cipher but cannot control the
exact location of the induced fault. Our attack requires 40 faults, and
recovers the secret key with 216 operations.

Keywords: LEX, stream cipher, AES, cryptanalysis, differential fault
analysis.

1 Introduction

The aim of the eSTREAM project was to stimulate work in the area of stream
ciphers. The call for primitives was released in 2004 and 34 proposals were sub-
mitted to the project. The competition was completed in 2008 and seven ciphers
were selected in the eSTREAM portfolio.

LEX [4] was one of the candidates of the eSTREAM final phase evaluation.
LEX is based on a design principle known as a leak extraction from a block
cipher. In this construction, the output key stream is extracted from parts of
the internal state of a block cipher at certain rounds (possibly after passing an
additional filter function). The extracted parts of the internal state need to be
selected carefully because leaking the wrong part of the state may endanger the
security of the cipher. The underlying block cipher of LEX is AES [7], and the
key stream is generated by extracting 32 bits from each round of AES in the
Output Feedback (OFB) mode. LEX has a simple and elegant structure and is
fast in software and hardware (2.5 times faster than AES).

There are two types of attacks against the security of cryptosystems: direct
attacks and indirect attacks. In direct attacks, the cryptanalyst targets to exploit
any theoretical weakness in the algorithm used in the cipher, and examples of
direct attacks include differential cryptanalysis [1] and linear cryptanalysis [13].
In indirect attacks, the attacker tries to obtain information from the physical im-
plementation of a cryptosystem, and aims to break the system by making use of
the gained information. Instances of indirect attacks include timing attacks [11],

J.A. Garay and R. De Prisco (Eds.): SCN 2010, LNCS 6280, pp. 55–72, 2010.
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power attacks [12] and fault attacks [6]. The concept of fault analysis was first
introduced by Boneh, DeMillo and Lipton [6] in 1996, and the attack was used to
target certain implementations of RSA and Rabin signatures by taking advan-
tage of hardware faults. Fault analysis was also used to attack block ciphers such
as DES [2]. It was showed in [10] that a fault attack is a powerful cryptanalytic
tool which can be employed to attack stream ciphers.

After LEX was submitted to the eSTREAM project, a few attacks against
this cipher have been proposed. The resynchronization of LEX is vulnerable to
a slide attack [15], and the attack needs 260.8 random IVs and 20,000 keystream
bytes generated from each IV. A generic attack, which requires 265.7 resynchro-
nizations, was published in [9]. A differential attack [8] can recover the secret key
of LEX in time of 2112 operations by using 236.3 bytes of key stream produced
by the same key (possibly under many different IVs). A related key attack was
shown in [14], and the attack requires 254.3 keystream bytes and can recover the
secret key with 2102 operations. These four proposed attacks on LEX belong to
direct attacks.

In this paper, we describe a differential fault attack on LEX. The fault model
assumes that the attacker can flip a random bit of the internal state of the
cipher and she can carry out the operation many times for the same internal
state. However, the attacker is not supposed to know the exact location of the
flipped bit. The proposed attack requires 40 faults and recovers the secret key
of LEX with 216 operations.

This paper is organized as follows. Section 2 describes the AES block cipher
and the LEX stream cipher. Section 3 provides the details of the differential fault
analysis of LEX. The paper is concluded in Section 4.

2 Descriptions of AES and LEX

We briefly describe the AES block cipher in Section 2.1. The LEX stream cipher
is described in Section 2.2. We provide the notations used throughout this paper
in Section 2.3.

2.1 The AES Block Cipher

The Advanced Encryption Standard [7] is a block cipher with a 128-bit block
length and supports key lengths of 128, 192 or 256 bits. For encryption, the input
is a plaintext and a secret key, and the output is a ciphertext. The plaintext is
first copied to a four-by-four array of bytes, which is called the state. After an
initial round key addition, the state array is transformed by performing a round
function 10, 12, or 14 times (for 128-bit, 192-bit or 256-bit keys respectively), and
the final state is the ciphertext. Each round of AES consists of the following four
transformations (the final round does not include the MixColumns operation).

– SubBytes (SB). It is a non-linear byte substitution that operates indepen-
dently on each byte of the state using a substitution table.

– ShiftRows (SR). The bytes of the state are cyclically shifted over different
numbers of bytes. Row i is shifted to the left i byte cyclicly, 0 ≤ i ≤ 3.
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– MixColumns (MC). It operates on the state column-by-column. The columns
are treated as polynomials and multiplied by a constant 4 × 4 matrix over
GF (28).

– AddRoundKey (ARK). A round key is added to the state by a simple bitwise
exclusive or (XOR) operation.

The AES round keys are derived from the cipher key by employing the key
schedule. The cipher key is first expanded into an expanded key. The round keys
are selected from this expanded key in the following way: the first round key
consists of the first Nb (the number of columns comprising the state) words, the
second one of the following Nb words, and so on. The expanded key is an array
of 4-byte words and is denoted by W [Nb ∗ (Nr +1)], where Nr is the number of
rounds. The first Nk (number of 32-bit words comprising the cipher key) words
contain the cipher key. All other words are defined recursively in terms of words
with smaller indices. The pseudocode for key expansion for 128-bit cipher keys
is shown below, where Key is the cipher key, SW (x) applies the substitution
operation to each byte of the word, RW (x) cyclically shifts the word to the left
8 bits, and Rcon is an array of predefined constants.

for(i = 0; i < Nk; i++)
W[i] = (Key[4*i],Key[4*i+1],Key[4*i+2],Key[4*i+3]);

for(i = Nk; i < Nb * (Nr + 1); i++)
temp = W[i-1];
if (i % Nk == 0)
temp = SW(RW(temp)) ^ Rcon[i/Nk];
W[i] = W[i-Nk] ^ temp;

2.2 The LEX Stream Cipher

Two versions of LEX, the original version [3] and the tweaked version [5], were
submitted to the eSTREAM project. We only provide the description of the
tweaked version in this paper. LEX uses the building blocks of the AES block
cipher. First, a standard AES key schedule for a secret 128-bit key K is per-
formed. Then, a given 128-bit IV is encrypted by a single AES encryption,
S = AESK(IV ). The 128-bit result S and the secret key K comprise a 256-bit
secret state of the stream cipher. Under the key K, S is repeatedly encrypted
in the OFB mode. In each round of the encryption, 32 bits are extracted from
the intermediate state to form the key stream. The positions of the extracted 32
bits are shown in Fig. 1. The IV is replaced after 500 encryptions and the secret
key is changed after 232 different IVs are used.

2.3 Notations

An AES intermediate state, as well as an AES round key, is represented as a
four-by-four array of bytes. A byte of an intermediate state is written as bi,j ,
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Fig. 1. The positions of the leak in the even and odd rounds

the corresponding faulty byte is denoted by b′i,j, and the difference of bi,j and
b′i,j is represented as Δbi,j , 0 ≤ i, j ≤ 3. A key byte of Round x is denoted by
Kx

i,j , 0 ≤ i, j ≤ 3. The symbol ? stands for an unknown byte. In all figures, a
keystream byte of LEX is surrounded by a circle.

3 The Differential Fault Analysis

The fault model used in this paper assumes that the attacker can flip a random
bit of the internal state of the cipher during the keystream generation and obtain
the corresponding faulty key stream. Another assumption is that the attacker can
reset the state back to its original status and repeat the fault injection process
many times. However, the attacker is not supposed to know the exact location
of the injected fault. Based on the fault model, we first describe a method to
determine the fault position and then we show that the attacker can recover the
secret key of LEX by analyzing the original and faulty key stream.

3.1 The Fault Position Determination Method

Since the attacker does not know the exact fault position in our fault model,
we need to determine the fault location first. The idea is that we can find out
the fault position by observing the changes of the key stream after the fault is
injected. We show that we can identify into which byte the random bit fault is
injected. We divide all possible cases into two categories. In the first category,
the fault is injected into the state after the MC or ARK transformation, and
in the second category, the fault is injected into the state after the SB or SR
transformation.

We use Fig. 2 to describe the position determination method. Suppose the
three-round diagram starts with an odd round, i.e., i is an odd number (we
can also do the analysis by using the same idea if i is an even number). The
keystream bytes are g0,0, g0,2, g2,0 and g2,2 in Round i, l0,1, l0,3, l2,1 and l2,3 in
Round i + 1 and s0,0, s0,2, s2,0 and s2,2 in Round i + 2.

1. Category 1. The fault is injected into the state after the MC or ARK trans-
formation. We only focus on cases where the fault is injected into the state
after the MC transformation, and we can use the same idea to analyze cases
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Fig. 2. The three-round diagram

where the fault is injected into the state after the ARK operation. Suppose
the fault is induced to the state after the MC transformation in Round i. We
further divide all possible cases of this category into four groups and each
group contains four bytes.
– Group 1. This group includes four bytes: f0,0, f2,0, f0,2 and f2,2.
– Group 2. This group has four bytes: f1,0, f2,1, f3,2 and f0,3.
– Group 3. This group comprises four bytes: f3,0, f0,1, f1,2 and f2,3.
– Group 4. This group consists of four bytes: f1,1, f3,1, f1,3 and f3,3.

The relation between the fault position and the changes of the keystream
bytes is summarized in Table 1. For example, if a fault is induced to f0,0 (see
the first entry of Group 1 in Table 1) in Fig. 2, we can see the change of g0,0

from the key stream in Round i. Since g0,0 is changed, h0,0, y0,0, j0,0, j1,0,
j2,0, j3,0, l0,0, l1,0, l2,0, l3,0 are changed in Round i + 1. However, we cannot
see the changes from the key stream in Round i + 1 because the keystream
bytes of this round are l0,1, l0,3, l2,1 and l2,3. In Round i+2, all 16 bytes are
changed after the MC transformation and we can see that all four keystream
bytes s0,0, s0,2, s2,0 and s2,2 are changed. The difference among Group 1,
Group 2, Group 3 and Group 4 is that the changes of the keystream bytes
in Round i and Round i + 1 take place at different positions.

2. Category 2. The fault is injected into the state after the SB or SR trans-
formation. We only concentrate on cases where the fault is injected into the
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Table 1. Four groups of fault positions

Group 1
Fault i i + 1 i + 2
f0,0 g0,0 None s0,0, s0,2, s2,0, s2,2
f2,0 g2,0 None s0,0, s0,2, s2,0, s2,2
f0,2 g0,2 None s0,0, s0,2, s2,0, s2,2
f2,2 g2,2 None s0,0, s0,2, s2,0, s2,2

Group 2
Fault i i + 1 i + 2
f1,0 None l0,3, l2,3 s0,0, s0,2, s2,0, s2,2
f2,1 None l0,3, l2,3 s0,0, s0,2, s2,0, s2,2
f3,2 None l0,3, l2,3 s0,0, s0,2, s2,0, s2,2
f0,3 None l0,3, l2,3 s0,0, s0,2, s2,0, s2,2

Group 3
Fault i i + 1 i + 2
f3,0 None l0,1, l2,1 s0,0, s0,2, s2,0, s2,2
f0,1 None l0,1, l2,1 s0,0, s0,2, s2,0, s2,2
f1,2 None l0,1, l2,1 s0,0, s0,2, s2,0, s2,2
f2,3 None l0,1, l2,1 s0,0, s0,2, s2,0, s2,2

Group 4
Fault i i + 1 i + 2
f1,1 None None s0,0, s0,2, s2,0, s2,2
f3,1 None None s0,0, s0,2, s2,0, s2,2
f1,3 None None s0,0, s0,2, s2,0, s2,2
f3,3 None None s0,0, s0,2, s2,0, s2,2

state after the SR transformation, and we can use the same idea to analyze
cases where the fault is injected into the state after the SB transformation.
Assume that the fault is induced to the state after the SR transformation in
Round i. We split all possible cases of this category into three groups.
– Group 5. This group has four bytes: e0,0, e1,0, e2,0 and e3,0.
– Group 6. This group is made up of four bytes: e0,2, e1,2, e2,2 and e3,2.
– Group 7. This group contains eight bytes: e0,1, e1,1, e2,1, e3,1, e0,3, e1,3,

e2,3 and e3,3.

The relation between the fault position and the changes of the keystream
bytes is described in Table 2. For instance, if a fault is injected into byte
e0,0 (see the first entry of Group 5 in Table 2) in Fig. 2, g0,0, g1,0, g2,0 and
g3,0 are changed and we can observe the changes of g0,0 and g2,0 from the
key stream in Round i. In Round i + 1, all 16 bytes are changed after the
MC transformation and we can see the changes of l0,1, l0,3, l2,1 and l2,3 from
the key stream. Similarly, all 16 bytes are changed starting from the SB
operation in Round i + 2, and we can see the changes of s0,0, s0,2, s2,0 and
s2,2 from the key stream.

By watching the changes of the keystream bytes listed in Table 1 and Table 2,
we can identify the fault position. In this paper we are only interested in cases
where a fault is injected into a byte which is listed in Table 1.

3.2 Recovering 4 Key Bytes of Round i + 2

We first show that we are able to recover the actual values of 12 bytes after the
SR transformation in Round i + 2 by using 8 faults. Then, we describe the idea
of recovering 4 key bytes of Round i + 2 by using the 12 known values.

We provide an observation which is used to identify the position of a faulty
byte in the MC transformation.

Observation 1. In the MixColumns transformation, for each 0 ≤ i ≤ 3, if we
know three out of four input differences (Δy0,i, Δy1,i, Δy2,i and Δy3,i) are zero
and one input difference is non-zero and we also know two output differences
(Δj0,i and Δj2,i), the two unknown output differences (Δj1,i and Δj3,i) and the
position and the difference of the non-zero input can be uniquely determined.
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Table 2. Three groups of fault positions

Group 5
Fault i i + 1 i + 2
e0,0 g0,0, g2,0 l0,1, l0,3, l2,1, l2,3 s0,0, s0,2, s2,0, s2,2
e1,0 g0,0, g2,0 l0,1, l0,3, l2,1, l2,3 s0,0, s0,2, s2,0, s2,2
e2,0 g0,0, g2,0 l0,1, l0,3, l2,1, l2,3 s0,0, s0,2, s2,0, s2,2
e3,0 g0,0, g2,0 l0,1, l0,3, l2,1, l2,3 s0,0, s0,2, s2,0, s2,2

Group 6
Fault i i + 1 i + 2
e0,2 g0,2, g2,2 l0,1, l0,3, l2,1, l2,3 s0,0, s0,2, s2,0, s2,2
e1,2 g0,2, g2,2 l0,1, l0,3, l2,1, l2,3 s0,0, s0,2, s2,0, s2,2
e2,2 g0,2, g2,2 l0,1, l0,3, l2,1, l2,3 s0,0, s0,2, s2,0, s2,2
e3,2 g0,2, g2,2 l0,1, l0,3, l2,1, l2,3 s0,0, s0,2, s2,0, s2,2

Group 7
Fault i i + 1 i + 2
e0,1 None l0,1, l0,3, l2,1, l2,3 s0,0, s0,2, s2,0, s2,2
e1,1 None l0,1, l0,3, l2,1, l2,3 s0,0, s0,2, s2,0, s2,2
e2,1 None l0,1, l0,3, l2,1, l2,3 s0,0, s0,2, s2,0, s2,2
e3,1 None l0,1, l0,3, l2,1, l2,3 s0,0, s0,2, s2,0, s2,2
e0,3 None l0,1, l0,3, l2,1, l2,3 s0,0, s0,2, s2,0, s2,2
e1,3 None l0,1, l0,3, l2,1, l2,3 s0,0, s0,2, s2,0, s2,2
e2,3 None l0,1, l0,3, l2,1, l2,3 s0,0, s0,2, s2,0, s2,2
e3,3 None l0,1, l0,3, l2,1, l2,3 s0,0, s0,2, s2,0, s2,2

⎛
⎜⎜⎜⎜⎜⎝

Δy0,i

Δy1,i

Δy2,i

Δy3,i

⎞
⎟⎟⎟⎟⎟⎠

MC−→

⎛
⎜⎜⎜⎜⎜⎝

Δj0,i

Δj1,i

Δj2,i

Δj3,i

⎞
⎟⎟⎟⎟⎟⎠

.

Suppose a fault is injected into a byte which is f0,3, f1,0, f2,1 or f3,2 (Group 2
in Table 1). We use Fig. 3 to demonstrate the progress. We establish a formula,
Formula (1), by using the input and out differences of the MC operation in
Round i + 1. We create another formula, Formula (2), with the input and out
differences of the MC transformation in Round i + 2.

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 Δy0,3

0 0 0 Δy1,3

0 0 0 Δy2,3

0 0 0 Δy3,3

⎞
⎟⎟⎟⎟⎟⎠

MC−→

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 Δj0,3

0 0 0 Δj1,3

0 0 0 Δj2,3

0 0 0 Δj3,3

⎞
⎟⎟⎟⎟⎟⎠

(1)

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 Δq0,3

0 0 Δq1,2 0

0 Δq2,1 0 0

Δq3,0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

MC−→

⎛
⎜⎜⎜⎜⎜⎝

Δr0,0 Δr0,1 Δr0,2 Δr0,3

Δr1,0 Δr1,1 Δr1,2 Δr1,3

Δr2,0 Δr2,1 Δr2,2 Δr2,3

Δr3,0 Δr3,1 Δr3,2 Δr3,3

⎞
⎟⎟⎟⎟⎟⎠

(2)

1. We use Formula (1) to decide the values of Δl1,3 and Δl3,3 by performing
the following steps. Since Δj0,3 is equal to Δl0,3 and Δj2,3 is equal to Δl2,3

(Δl0,3 and Δl2,3 can be calculated from the key stream), we know the values
of Δj0,3 and Δj2,3. In the fourth columns of the input and output, there are
5 known bytes (3 zero bytes, Δj0,3 and Δj2,3) and 3 unknown bytes (the
non-zero input byte, Δj1,3 and Δj3,3). Although we know there are three
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zero inputs and one non-zero input, we do not know the exact layout of
the four input bytes. We can determine the 2 unknown output bytes (Δj1,3

and Δj3,3) and the position and the difference of the non-zero input byte
by using Observation 1 (a similar method is described in [8], in which the
authors used 4 known bytes to calculate the values of 4 unknown bytes). In
Fig 3, we assume the faulty byte is f1,0. As Δl1,3 is equal to Δj1,3 and Δl3,3

is equal to Δj3,3, we know the values of Δl1,3 and Δl3,3.
2. In Formula (2), Δq3,0 and Δq1,2 can be deduced as follows.

(a) Because Δr0,0 is equal to Δs0,0 and Δr2,0 is equal to Δs2,0 (Δs0,0 and
Δs2,0 can be computed from the key stream), we know the values of Δr0,0

and Δr2,0. In the first columns of the input and output, there are 5 known
bytes (3 zero bytes, Δr0,0 and Δr2,0) and 3 unknown bytes (Δq3,0, Δr1,0

and Δr3,0). Here we know the positions of the three zero inputs and the
non-zero input (see the first column of the input in Formula (2)). The 3
unknown bytes can be deduced from the 5 known bytes.

(b) Similarly, there are 5 known bytes (3 zero bytes, Δr0,2 and Δr2,2) and
3 unknown bytes (Δq1,2, Δr1,2 and Δr3,2) in the third columns of the
input and output. The values of 3 unknown bytes can be computed by
making use of the 5 known bytes.

In Fig. 4, we know the values of Δo1,3 and Δo3,3 since we know Δq1,2 and Δq3,0

and the SR operation is just a permutation. Now we know the input differences

SB→

d0,0

d1,0

d2,0

d3,0

d0,1

d1,1

d2,1

d3,1

d0,2

d1,2

d2,2

d3,2

d0,3

d1,3

d2,3

d3,3

SR→

e0,0

e1,0

e2,0

e3,0

e0,1

e1,1

e2,1

e3,1

e0,2

e1,2

e2,2

e3,2

e0,3

e1,3

e2,3

e3,3

MC→

�

Round i

f0,0

f ′
1,0

f2,0

f3,0

f0,1

f1,1

f2,1

f3,1

f0,2

f1,2

f2,2

f3,2

f0,3

f1,3

f2,3

f3,3

ARK→

g0,0
��

��

g′
1,0

g2,0
��

��

g3,0

g0,1

g1,1

g2,1

g3,1

g0,2
��

��

g1,2

g2,2
��

��

g3,2

g0,3

g1,3

g2,3

g3,3

SB→

h0,0

h′
1,0

h2,0

h3,0

h0,1

h1,1

h2,1

h3,1

h0,2

h1,2

h2,2

h3,2

h0,3

h1,3

h2,3

h3,3

SR→

y0,0

y1,0

y2,0

y3,0

y0,1

y1,1

y2,1

y3,1

y0,2

y1,2

y2,2

y3,2

y0,3

y′
1,3

y2,3

y3,3

MC→

Round i + 1

j0,0

j1,0

j2,0

j3,0

j0,1

j1,1

j2,1

j3,1

j0,2

j1,2

j2,2

j3,2

j′0,3

j′1,3

j′2,3

j′3,3

ARK→

l0,0

l1,0

l2,0

l3,0

l0,1
��

��

l1,1

l2,1
��

��

l3,1

l0,2

l1,2

l2,2

l3,2

l′0,3
��

��

l′1,3

l′2,3
��

��

l′3,3

SB→

o0,0

o1,0

o2,0

o3,0

o0,1

o1,1

o2,1

o3,1

o0,2

o1,2

o2,2

o3,2

o′0,3

o′1,3

o′2,3

o′3,3

SR→

q0,0

q1,0

q2,0

q′3,0

q0,1

q1,1

q′2,1

q3,1

q0,2

q′1,2

q2,2

q3,2

q′0,3

q1,3

q2,3

q3,3

MC→

Round i + 2

r′0,0

r′1,0

r′2,0

r′3,0

r′0,1

r′1,1

r′2,1

r′3,1

r′0,2

r′1,2

r′2,2

r′3,2

r′0,3

r′1,3

r′2,3

r′3,3

ARK→

s′0,0
��

��

s′1,0

s′2,0
��

��

s′3,0

s′0,1

s′1,1

s′2,1

s′3,1

s′0,2
��

��

s′1,2

s′2,2
��

��

s′3,2

s′0,3

s′1,3

s′2,3

s′3,3

Fig. 3. Computing the values of Δl1,3, Δl3,3, Δq1,2 and Δq3,0
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ARK−→
Δl1,3

Δl3,3

SB−→
Δo1,3

Δo3,3

SR−→

Round i + 1 Round i + 2 Round i + 2

Δq3,0

Δq1,2

Fig. 4. Deducing the actual values of q1,2 and q3,0

(Δl1,3, Δl3,3) and the corresponding output differences (Δo1,3, Δo3,3) to the
SB operation, and we can deduce 4 actual values for o1,3, o′1,3, o3,3 and o′3,3

by using a lookup table, which contains all possible input differences and their
corresponding output differences of the SB operation. Here we encounter a 1-
in-2 situation: although we already have 4 actual values for o1,3, o′1,3, o3,3 and
o′3,3, we cannot distinguish the correct values (o1,3 and o3,3) from the faulty ones
(o′1,3 and o′3,3). To address this problem, we need one more fault injected into
f1,0 and repeat the above steps since the correct values will appear twice in both
keystream processing. After we get the actual values of o1,3, o′1,3, o3,3 and o′3,3,
we know the actual values of q1,2, q′1,2, q3,0 and q′3,0 after the SR operation. As
we know the actual values of l0,1, l0,3, l2,1 and l2,3 from the key stream, we know
the actual values of q0,1, q0,3, q2,1 and q2,3 after the SB and SR operations. So
far, we know the actual values of 6 bytes, q1,2, q3,0, q0,1, q0,3, q2,1 and q2,3, after
the SR transformation in Round i + 2:

⎛
⎜⎜⎝

? q0,1 ? q0,3

? ? q1,2 ?

? q2,1 ? q2,3

q3,0 ? ? ?

⎞
⎟⎟⎠ .

We use the same idea to recover the actual values of q0,0, q2,2, q1,0, q3,2, q2,0

and q0,2. The details are listed as follows.

1. We are able to obtain the actual values of q0,0 and q2,2 by using 2 faults
which are injected into f0,0, or f2,2. The procedure is shown in Appendix A.

2. We can recover the actual values of q1,0 and q3,2 by using 2 faults which are
induced on f0,1, f1,2, f2,3 or f3,0. The steps are described in Appendix B.

3. We can get the actual values of q2,0 and q0,2 by using 2 faults which are
injected into f0,2 or f2,0. The details are presented in Appendix C.

Since we now know the actual values of the 12 bytes after the SR transformation
in Round i + 2 in Fig. 5, we can compute the actual values of the first column
(r0,0, r1,0, r2,0 and r3,0) and third column (r0,2, r1,2, r2,2 and r3,2) of the MC
transformation. By XORing (r0,0, r0,2, r2,0, r2,2) with (s0,0, s0,2, s2,0, s2,2), we
finally recover 4 round key bytes: Ki+2

0,0 , Ki+2
0,2 , Ki+2

2,0 and Ki+2
2,2 .
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SR−→

q0,0

q1,0

q2,0

q3,0

q0,1

?

q2,1

?

q0,2

q1,2

q2,2

q3,2

q0,3

?

q2,3

?

MC−→

Round i + 2

r0,0

r1,0

r2,0

r3,0

?

?

?

?

r0,2

r1,2

r2,2

r3,2

?

?

?

?

ARK−→

s0,0
��

��

?

s2,0
��

��

?

?

?

?

?

s0,2
��

��

?

s2,2
��

��

?

?

?

?

?

K
i+2
0,0 K

i+2
0,2

K
i+2
2,0 K

i+2
2,2

Fig. 5. Recovering 4 key bytes

3.3 Retrieving 16 Key Bytes in Round i − 1, i, i + 1 and i + 3

By using the same techniques as described in Section 3.2, we can recover 16
(Ki−1

0,1 , Ki−1
0,3 , Ki−1

2,1 , Ki−1
2,3 , Ki

0,0, Ki
0,2, Ki

2,0, Ki
2,2, Ki+1

0,1 , Ki+1
0,3 , Ki+1

2,1 , Ki+1
2,3 ,

Ki+3
0,1 , Ki+3

0,3 , Ki+3
2,1 and Ki+3

2,3 ) more key bytes in Round i − 1, i, i + 1 and i + 3
(see Fig. 7) with 32 faults. The details of recovering these 16 key bytes are
provided as follows. We use Fig. 6 to describe the complete details.

3.3.1 Computing Ki−1
0,1 , Ki−1

0,3 , Ki−1
2,1 and Ki−1

2,3

1. Inject 2 faults into θ0,1 or θ2,3, and use these 2 faulty bytes to determine the
actual values of z0,1 and z2,3.

2. Induce 2 faults on θ0,2 or θ2,1, and employ these 2 faulty values to calculate
the actual values of z0,3 and z2,1.

3. Inject 2 faults into θ0,0, θ1,1, θ2,2 or θ3,3, and use these 2 faulty bytes to
decide the actual values of z1,3 and z3,1.

4. Induce 2 faults on θ0,2, θ1,3, θ2,0 or θ3,1, and employ these 2 faulty values to
find out the actual values of z1,1 and z3,3.

5. Apply the MC operation to (z0,1, z1,1, z2,1, z3,1) and (z0,3, z1,3, z2,3, z3,3) to
get the actual values of β0,1, β1,1, β2,1, β3,1, β0,3, β1,3, β2,3 and β3,3. XOR
β0,1 with λ0,1, β0,3 with λ0,3, β2,1 with λ2,1, and β2,3 with λ2,3 to recover
Ki−1

0,1 , Ki−1
0,3 , Ki−1

2,1 and Ki−1
2,3 .

3.3.2 Determining Ki
0,0, Ki

0,2, Ki
2,0 and Ki

2,2

1. Induce 2 faults on φ0,0 or φ2,2, and employ these 2 faulty values to compute
the actual values of e0,0 and e2,2.

2. Inject 2 faults into φ0,2 or φ2,0, and use these 2 faulty values to calculate the
actual values of e0,2 and e2,0.
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SB→

σ0,0

σ1,0

σ2,0

σ3,0

σ0,1

σ1,1

σ2,1

σ3,1

σ0,2

σ1,2

σ2,2

σ3,2

σ0,3

σ1,3

σ2,3

σ3,3

SR→

η0,0

η1,0

η2,0

η3,0

η0,1

η1,1

η2,1

η3,1

η0,2

η1,2

η2,2

η3,2

η0,3

η1,3

η2,3

η3,3

MC→

θ0,0

θ1,0

θ2,0

θ3,0

θ0,1

θ1,1

θ2,1

θ3,1

θ0,2

θ1,2

θ2,2

θ3,2

θ0,3

θ1,3

θ2,3

θ3,3

ARK→

μ0,0

μ1,0

μ2,0

μ3,0

μ0,1�

μ1,1

μ2,1�

μ3,1

μ0,2

μ1,2

μ2,2

μ3,2

μ0,3�

μ1,3

μ2,3�

μ3,3

SB→

ρ0,0

ρ1,0

ρ2,0

ρ3,0

ρ0,1

ρ1,1

ρ2,1

ρ3,1

ρ0,2

ρ1,2

ρ2,2

ρ3,2

ρ0,3

ρ1,3

ρ2,3

ρ3,3

SR→

α0,0

α1,0

α2,0

α3,0

α0,1

α1,1

α2,1

α3,1

α0,2

α1,2

α2,2

α3,2

α0,3

α1,3

α2,3

α3,3

MC→

φ0,0

φ1,0

φ2,0

φ3,0

φ0,1

φ1,1

φ2,1

φ3,1

φ0,2

φ1,2

φ2,2

φ3,2

φ0,3

φ1,3

φ2,3

φ3,3

ARK→

ψ0,0

ψ1,0

ψ2,0

ψ3,0

ψ0,1�

ψ1,1

ψ2,1�

ψ3,1

ψ0,2

ψ1,2

ψ2,2

ψ3,2

ψ0,3�

ψ1,3

ψ2,3�

ψ3,3

SB→

a0,0

a1,0

a2,0

a3,0

a0,1

a1,1

a2,1

a3,1

a0,2

a1,2

a2,2

a3,2

a0,3

a1,3

a2,3

a3,3

SR→

z0,0

z1,0

z2,0

z3,0

z0,1

z1,1

z2,1

z3,1

z0,2

z1,2

z2,2

z3,2

z0,3

z1,3

z2,3

z3,3

MC→

β0,0

β1,0

β2,0

β3,0

β0,1

β1,1

β2,1

β3,1

β0,2

β1,2

β2,2

β3,2

β0,3

β1,3

β2,3

β3,3

ARK→

λ0,0

λ1,0

λ2,0

λ3,0

λ0,1�

λ1,1

λ2,1�

λ3,1

λ0,2

λ1,2

λ2,2

λ3,2

λ0,3�

λ1,3

λ2,3�

λ3,3

SB→

d0,0

d1,0

d2,0

d3,0

d0,1

d1,1

d2,1

d3,1

d0,2

d1,2

d2,2

d3,2

d0,3

d1,3

d2,3

d3,3

SR→

e0,0

e1,0

e2,0

e3,0

e0,1

e1,1

e2,1

e3,1

e0,2

e1,2

e2,2

e3,2

e0,3

e1,3

e2,3

e3,3

MC→

f0,0

f1,0

f2,0

f3,0

f0,1

f1,1

f2,1

f3,1

f0,2

f1,2

f2,2

f3,2

f0,3

f1,3

f2,3

f3,3

ARK→

g0,0�

g1,0

g2,0�

g3,0

g0,1

g1,1

g2,1

g3,1

g0,2�

g1,2

g2,2�

g3,2

g0,3

g1,3

g2,3

g3,3

SB→

h0,0

h1,0

h2,0

h3,0

h0,1

h1,1

h2,1

h3,1

h0,2

h1,2

h2,2

h3,2

h0,3

h1,3

h2,3

h3,3

SR→

y0,0

y1,0

y2,0

y3,0

y0,1

y1,1

y2,1

y3,1

y0,2

y1,2

y2,2

y3,2

y0,3

y1,3

y2,3

y3,3

MC→

j0,0

j1,0

j2,0

j3,0

j0,1

j1,1

j2,1

j3,1

j0,2

j1,2

j2,2

j3,2

j0,3

j1,3

j2,3

j3,3

ARK→

l0,0

l1,0

l2,0

l3,0

l0,1�

l1,1

l2,1�

l3,1

l0,2

l1,2

l2,2

l3,2

l0,3�

l1,3

l2,3�

l3,3

SB→

o0,0

o1,0

o2,0

o3,0

o0,1

o1,1

o2,1

o3,1

o0,2

o1,2

o2,2

o3,2

o0,3

o1,3

o2,3

o3,3

SR→

q0,0

q1,0

q2,0

q3,0

q0,1

q1,1

q2,1

q3,1

q0,2

q1,2

q2,2

q3,2

q0,3

q1,3

q2,3

q3,3

MC→

i − 3

i − 2

i − 1

i

i + 1

i + 2

i + 3

r0,0

r1,0

r2,0

r3,0

r0,1

r1,1

r2,1

r3,1

r0,2

r1,2

r2,2

r3,2

r0,3

r1,3

r2,3

r3,3

ARK→

s0,0�

s1,0

s2,0�

s3,0

s0,1

s1,1

s2,1

s3,1

s0,2�

s1,2

s2,2�

s3,2

s0,3

s1,3

s2,3

s3,3

SB→

t0,0

t1,0

t2,0

t3,0

t0,1

t1,1

t2,1

t3,1

t0,2

t1,2

t2,2

t3,2

t0,3

t1,3

t2,3

t3,3

SR→

u0,0

u1,0

u2,0

u3,0

u0,1

u1,1

u2,1

u3,1

u0,2

u1,2

u2,2

u3,2

u0,3

u1,3

u2,3

u3,3

MC→

v0,0

v1,0

v2,0

v3,0

v0,1

v1,1

v2,1

v3,1

v0,2

v1,2

v2,2

v3,2

v0,3

v1,3

v2,3

v3,3

ARK→

γ0,0 �

γ1,0

γ2,0 �

γ3,0

γ0,1

γ1,1

γ2,1

γ3,1

γ0,2 �

γ1,2

γ2,2 �

γ3,2

γ0,3

γ1,3

γ2,3

γ3,3

Fig. 6. The seven-round diagram
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0,1
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2,1

K
i+1
0,3
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K
i+2
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K
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K
i+3
0,3

K
i+3
2,3

Fig. 7. The recovered key bytes
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3. Induce 2 faults on φ0,3, φ1,0, φ2,1 or φ3,2, and use these 2 faulty values to
decide the actual values of e1,2 and e3,0.

4. Inject 2 faults into φ0,1, φ1,2, φ2,3 or φ3,0, and employ these 2 faulty bytes
to determine the actual values of e1,0 and e3,2.

5. Apply the MC operation to (e0,0, e1,0, e2,0, e3,0) and (e0,2, e1,2, e2,2, e3,2)
to get the actual values of f0,0, f1,0, f2,0, f3,0, f0,2, f1,2, f2,2 and f3,2. XOR
f0,0 with g0,0, f0,2 with g0,2, f2,0 with g2,0, and f2,2 with g2,2 to retrieve the
actual values of Ki

0,0, Ki
0,2, Ki

2,0 and Ki
2,2.

3.3.3 Calculating Ki+1
0,1 , Ki+1

0,3 , Ki+1
2,1 and Ki+1

2,3

1. Inject 2 faults into β0,1 or β2,3, and use these 2 faulty bytes to decide the
actual values of y0,1 and y2,3.

2. Induce 2 faults on β0,3 or β2,1, and employ these 2 faulty bytes to compute
the actual values of y0,3 and y2,1.

3. Inject 2 faults into β0,0, β1,1, β2,2 or β3,3 and use these 2 faulty bytes to
determine the actual values of y1,3 and y3,1.

4. Induce 2 faults on β0,2, β1,3, β2,0 or β3,1, and employ these 2 faulty bytes to
calculate the actual values of y1,1 and y3,3.

5. Apply the MC transformation to (y0,1, y1,1, y2,1, y3,1) and (y0,3, y1,3, y2,3,
y3,3) to obtain the actual values of j0,1, j1,1, j2,1, j3,1, j0,3, j1,3, j2,3 and j3,3.
XOR j0,1 with l0,1, j0,3 with l0,3, j2,1 with l2,1, and j2,3 with l2,3 to recover
Ki+1

0,1 , Ki+1
0,3 , Ki+1

2,1 and Ki+1
2,3 .

3.3.4 Recovering Ki+3
0,1 , Ki+3

0,3 , Ki+3
2,1 and Ki+3

2,3

1. Use 2 faulty bytes which are j0,1 or j2,3 to determine the actual values of
u0,1 and u2,3.

2. Employ 2 faulty bytes which are j0,3 or j2,1 to retrieve the actual values of
u0,3 and u2,1.

3. Make use of 2 faulty bytes which are j0,0, j1,1, j2,2 or j3,3 to calculate the
actual values of u1,3 and u3,1.

4. Employ 2 faulty bytes which are j0,2, j1,3, j2,0 or j3,1 to compute the actual
values of u1,1 and u3,3.

5. Apply the MC operation to (u0,1, u1,1, u2,1, u3,1) and (u0,3, u1,3, u2,3, u3,3) to
get the actual values of v0,1, v1,1, v2,1, v3,1, v0,3, v1,3, v2,3 and v3,3. We can
retrieve Ki+3

0,1 , Ki+3
0,3 , Ki+3

2,1 and Ki+3
2,3 (see Fig. 7) by XORing v0,1 with γ0,1,

v0,3 with γ0,3, v2,1 with γ2,1, and v2,3 with γ2,3.

3.4 Deducing 10 More Key Bytes in Round i + 2

By employing the definition and the properties of the AES key schedule, we use
the 20 recovered key bytes to deduce 10 more key bytes in Round i+2 (see Fig. 8).
The steps of deducing these 10 key bytes are listed as follows, where SB−1 is the
inverse of the byte substitution transformation and Rconi represents the round
constant used to generate round key Ki.
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⇓
Round i − 1

K
i−1
0,1

K
i−1
2,1

K
i−1
0,3

K
i−1
2,3

Round i

Ki0,0

Ki2,0

Ki0,2

Ki2,2

Round i + 1

K
i+1
0,1

K
i+1
2,1

K
i+1
0,3

K
i+1
2,3

Round i + 2

K
i+2
0,0

K
i+2
2,0

K
i+2
0,2

K
i+2
2,2

Round i + 3

K
i+3
0,1

K
i+3
2,1

K
i+3
0,3

K
i+3
2,3

Round i

Ki0,1

Ki2,1

Ki0,3

Ki1,3

Ki2,3

Ki3,3

Round i + 1

K
i+1
1,3

K
i+1
3,3

Round i + 2

?

?

K
i+2
0,1

K
i+2
1,1

K
i+2
2,1

K
i+2
3,1

K
i+2
1,2

K
i+2
3,2

K
i+2
0,3

K
i+2
1,3

K
i+2
2,3

K
i+2
3,3

Fig. 8. The deduced key bytes

1. Deduce Ki+2
0,1 , Ki+2

2,1 , Ki+2
0,3 and Ki+2

2,3 .

Ki+2
0,1 = Ki+1

0,1 ⊕ Ki+2
0,0 ,

Ki+2
2,1 = Ki+1

2,1 ⊕ Ki+2
2,0 ,

Ki+2
0,3 = Ki+1

0,3 ⊕ Ki+2
0,2 ,

Ki+2
2,3 = Ki+1

2,3 ⊕ Ki+2
2,2 .

2. Calculate Ki+2
3,3 and Ki+2

1,3 .

Ki+3
2,1 = Ki+3

2,0 ⊕ Ki+2
2,1 = SB(Ki+2

3,3 ) ⊕ RCON i+3(2) ⊕ Ki+2
2,0 ⊕ Ki+2

2,1

= SB(Ki+2
3,3 ) ⊕ Rconi+3(2) ⊕ Ki+1

2,1 ,

Ki+2
3,3 = SB−1(Ki+3

2,1 ⊕ Rconi+3(2) ⊕ Ki+1
2,1 ),

Ki+3
0,1 = Ki+3

0,0 ⊕ Ki+2
0,1 = SB(Ki+2

1,3 ) ⊕ Rconi+3(0) ⊕ Ki+2
0,0 ⊕ Ki+2

0,1

= SB(Ki+2
1,3 ) ⊕ Rconi+3(0) ⊕ Ki+1

0,1 ,

Ki+2
1,3 = SB−1(Ki+3

0,1 ⊕ Rconi+3(0) ⊕ Ki+1
0,1 ).

3. Determine Ki+2
3,1 and Ki+2

1,1 .

Ki
0,3 = Ki−1

0,3 ⊕ Ki
0,2,

Ki
2,3 = Ki−1

2,3 ⊕ Ki
2,2,

Ki+1
2,1 = Ki+1

2,0 ⊕ Ki
2,1 = SB(Ki

3,3) ⊕ Rconi+1(2) ⊕ Ki
2,0 ⊕ Ki

2,1

= SB(Ki
3,3) ⊕ Rconi+1(2) ⊕ Ki

2,0 ⊕ Ki
2,0 ⊕ Ki−1

2,1

= SB(Ki
3,3) ⊕ Rconi+1(2) ⊕ Ki−1

2,1 ,



68 J. Huang, W. Susilo, and J. Seberry

Ki
3,3 = SB−1(Ki+1

2,1 ⊕ Rconi+1(2) ⊕ Ki−1
2,1 ),

Ki+2
3,1 = Ki

3,3 ⊕ Ki+2
3,3 ,

Ki+1
0,1 = Ki+1

0,0 ⊕ Ki
0,1 = SB(Ki

1,3) ⊕ Rconi+1(0) ⊕ Ki
0,0 ⊕ Ki

0,1

= SB(Ki
1,3) ⊕ Rconi+1(0) ⊕ Ki−1

0,1 ,

Ki
1,3 = SB−1(Ki+1

0,1 ⊕ Rconi+1(0) ⊕ Ki−1
0,1 ),

Ki+2
1,1 = Ki

1,3 ⊕ Ki+2
1,3 .

4. Decide Ki+2
3,2 and Ki+2

1,2 .

Ki
0,1 = Ki−1

0,1 ⊕ Ki
0,0,

Ki
2,1 = Ki−1

2,1 ⊕ Ki
2,0,

Ki+2
2,1 = Ki+2

2,0 ⊕ Ki+1
2,1 = SB(Ki+1

3,3 ) ⊕ Rconi+2(2) ⊕ Ki+1
2,0 ⊕ Ki+1

2,1

= SB(Ki+1
3,3 ) ⊕ Rconi+2(2) ⊕ Ki

2,1,

Ki+1
3,3 = SB−1(Ki+2

2,1 ⊕ Rconi+2(2) ⊕ Ki
2,1),

Ki+2
3,2 = Ki+1

3,3 ⊕ Ki+2
3,3 ,

Ki+2
0,1 = Ki+2

0,0 ⊕ Ki+1
0,1 = SB(Ki+1

1,3 ) ⊕ Rconi+2(0) ⊕ Ki+1
0,0 ⊕ Ki+1

0,1

= SB(Ki+1
1,3 ) ⊕ Rconi+2(0) ⊕ Ki

0,1,

Ki+1
1,3 = SB−1(Ki+2

0,1 ⊕ Rconi+2(0) ⊕ Ki
0,1),

Ki+2
1,2 = Ki+1

1,3 ⊕ Ki+2
1,3 .

In summary, we recover 14 key bytes of Round i + 2, and the 2 unknown key
bytes (Ki+2

1,0 and Ki+2
3,0 , represented by a question mark) can be determined by

exhaustive search with 216 operations.

4 Conclusions

We described a differential fault attack on LEX in this paper. We presented a
method to decide the fault position by observing the changes of the key stream
after a fault is injected. The attack makes use of the differential properties of the
AES round transformations, the AES key schedule properties and the structural
features of LEX. The proposed attack needs 40 faults and recovers the secret
key of LEX with 216 time complexity.

References

1. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer, Heidelberg (1993)

2. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)



Differential Fault Analysis of LEX 69

3. Biryukov, A.: A New 128-bit Key Stream Cipher LEX. ECRYPT stream cipher
project report 2005/013 (2005), http://www.ecrypt.eu.org/stream

4. Biryukov, A.: The Design of a Stream Cipher LEX. In: Biham, E., Youssef, A.M.
(eds.) SAC 2006. LNCS, vol. 4356, pp. 67–75. Springer, Heidelberg (2007)

5. Biryukov, A.: The Tweak for LEX-128, LEX-192, LEX-256. ECRYPT stream ci-
pher project report 2006/037 (2006), http://www.ecrypt.eu.org/stream

6. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the Importance of Checking Cryp-
tographic Protocols for Faults (Extended Abstract). In: Fumy, W. (ed.) EURO-
CRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

7. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

8. Dunkelman, O., Keller, N.: A New Attack on the LEX Stream Cipher. In: Pieprzyk,
J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 539–556. Springer, Heidelberg
(2008)

9. Englund, H., Hell, M., Johansson, T.: A Note on Distinguishing Attacks. In: Pre-
proceedings of State of the Art of Stream Ciphers workshop (SASC 2007), Bochum,
Germany, pp. 73–78 (2007)

10. Hoch, J.J., Shamir, A.: Fault Analysis of Stream Ciphers. In: Joye, M., Quisquater,
J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 240–253. Springer, Heidelberg (2004)

11. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman. In: Koblitz,
N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)

12. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. J. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

13. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

14. Mondal, M., Mukhopadhyay, D.: Related Key Cryptanalysis of the LEX Stream
Cipher (2010), http://eprint.iacr.org/2010/011

15. Wu, H., Preneel, B.: Resynchronization Attacks on WG and LEX. In: Robshaw,
M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 422–432. Springer, Heidelberg (2006)

A Calculating the Actual Values of q0,0 and q2,2

Assume a fault is induced on f0,0 or f2,2 (Group 1 in Table 1), and suppose the
faulty byte is f0,0. We create a formula, Formula (3), by employing the input and
out differences of the MC operation in Round i + 1. We build another formula,
Formula (4), with the input and out differences of the MC transformation in
Round i + 2. ⎛

⎜⎜⎜⎜⎜⎝

Δy0,0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

MC−→

⎛
⎜⎜⎜⎜⎜⎝

Δj0,0 0 0 0

Δj1,0 0 0 0

Δj2,0 0 0 0

Δj3,0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

(3)

⎛
⎜⎜⎜⎜⎜⎝

Δq0,0 0 0 0

0 0 0 Δq1,3

0 0 Δq2,2 0

0 Δq3,1 0 0

⎞
⎟⎟⎟⎟⎟⎠

MC−→

⎛
⎜⎜⎜⎜⎜⎝

Δr0,0 Δr0,1 Δr0,2 Δr0,3

Δr1,0 Δr1,1 Δr1,2 Δr1,3

Δr2,0 Δr2,1 Δr2,2 Δr2,3

Δr3,0 Δr3,1 Δr3,2 Δr3,3

⎞
⎟⎟⎟⎟⎟⎠

(4)
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1. In Formula (3), Δy0,0 can be computed from the key stream of Round i
by using the values of g0,0 and g′0,0. In the first columns of the input and
output, there are 4 known bytes (Δy0,0 and 3 zero bytes) and 4 unknown
bytes (Δj0,0, Δj1,0, Δj2,0 and Δj3,0). The 4 unknown bytes can be decided
by using the 4 known bytes. After Δj0,0, Δj1,0, Δj2,0 and Δj3,0 are decided,
we know the values of Δl0,0, Δl1,0, Δl2,0 and Δl3,0.

2. In Formula (4), Δr0,0 can be computed from the key stream of Round i + 2
by using the values of s0,0 and s′0,0. Similarly, we get the value of Δr2,0. In
the first columns of the input and output, there are 5 known bytes (Δr0,0,
Δr2,0 and 3 zero bytes) and 3 unknown bytes (Δq0,0, Δr1,0 and Δr3,0). We
get the values of Δq0,0, Δr1,0 and Δr3,0 by using the 5 known bytes. By using
the same method to analyze the third columns of the input and output, we
can deduce the values of Δq2,2, Δr1,2 and Δr3,2 by employing the 5 known
bytes (Δr0,2, Δr2,2 and 3 zero bytes).

3. We know Δo0,0 and Δo2,0 because Δq0,0 is equal to Δo0,0 and Δq2,2 is
equal to Δo2,0. Now we know the input differences (Δl0,0, Δl2,0) and the
corresponding output differences (Δo0,0, Δo2,0) to the SB operation, and we
can deduce 4 actual values for o0,0, o′0,0, o2,0 and o′2,0. Although we have
4 actual values for o0,0, o′0,0, o2,0 and o′2,0, we are not able to separate the
correct values (o0,0 and o2,0) from the faulty ones (o′0,0 and o′2,0). To overcome
this problem, we need one more fault induced on f0,0 and repeat the steps
mentioned above to make the correct values emerge twice. After knowing
the actual values of o0,0, o′0,0, o2,0 and o′2,0, we obtain the actual values of
q0,0, q′0,0, q2,2 and q′2,2 after the SR operation.

B Computing the Actual Values of q1,0 and q3,2

Suppose a fault is induced on a byte which is f0,1, f1,2, f2,3 or f3,0 (Group 3 in
Table 1). By using the input and out differences of the MC operation in Round
i + 1, we establish a formula, Formula (5). By employing the input and out
differences of the MC transformation in Round i + 2, we build another formula,
Formula (6). ⎛

⎜⎜⎜⎜⎜⎝

0 Δy0,1 0 0

0 Δy1,1 0 0

0 Δy2,1 0 0

0 Δy3,1 0 0

⎞
⎟⎟⎟⎟⎟⎠

MC−→

⎛
⎜⎜⎜⎜⎜⎝

0 Δj0,1 0 0

0 Δj1,1 0 0

0 Δj2,1 0 0

0 Δj3,1 0 0

⎞
⎟⎟⎟⎟⎟⎠

(5)

⎛
⎜⎜⎜⎜⎜⎝

0 Δq0,1 0 0

Δq1,0 0 0 0

0 0 0 Δq2,3

0 0 Δq3,2 0

⎞
⎟⎟⎟⎟⎟⎠

MC−→

⎛
⎜⎜⎜⎜⎜⎝

Δr0,0 Δr0,1 Δr0,2 Δr0,3

Δr1,0 Δr1,1 Δr1,2 Δr1,3

Δr2,0 Δr2,1 Δr2,2 Δr2,3

Δr3,0 Δr3,1 Δr3,2 Δr3,3

⎞
⎟⎟⎟⎟⎟⎠

(6)

1. In Formula (5), Δj0,1 can be computed from the key stream of Round i + 1
by using the values of l0,1 and l′0,1, and Δj2,1 can be computed from the
key stream of Round i + 1 by using the values of l2,1 and l′2,1. In the second
columns of the input and output, we employ Observation 1 and use the 5
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known bytes (Δj0,1, Δj2,1 and 3 zero input bytes) to decide the 2 unknown
output bytes (Δj1,1 and Δj3,1) and the position and the difference of the
non-zero input byte. Assume the recovered non-zero input byte is Δy2,1.

2. In Formula (6), Δr0,0 can be computed from the key stream of Round i + 2
by using the values of s0,0 and s′0,0. Similarly, we get the value of Δr2,0. In
the first columns of the input and output, we use the 5 known bytes (Δr0,0,
Δr2,0 and 3 zero bytes) to decide the 3 unknown bytes (Δq1,0, Δr1,0 and
Δr3,0). By using the same method to analyze the third columns of the input
and output, we can deduce the values of 3 unknown bytes (Δq3,2, Δr1,2 and
Δr3,2) by employing the 5 known bytes (Δr0,2, Δr2,2 and 3 zero bytes).

3. We know Δo1,1 and Δo3,1 because Δq1,0 is equal to Δo1,1 and Δq3,2 is
equal to Δo3,1. We now know the input differences (Δl1,1, Δl3,1) and the
corresponding output differences (Δo1,1, Δo3,1) to the SB operation, and we
can deduce 4 actual values for o1,1, o′1,1, o3,1 and o′3,1. Although we have 4
actual values for o1,1, o′1,1, o3,1 and o′3,1, we cannot distinguish the correct
values (o1,1 and o3,1) from the faulty ones (o′1,1 and o′3,1). To address this
issue, we need one more fault injected into f2,3 and repeat the above steps
to make the correct values appear twice in both keystream processing. After
knowing the actual values of o1,1, o′1,1, o3,1 and o′3,1, we know the actual
values of q1,0, q′1,0, q3,2 and q′3,2 after the SR operation.

C Deducing the Actual Values of q2,0 and q0,2

Assume a fault is injected into a byte which is f0,2 or f2,0 (Group 1 in Table 1),
and assume the faulty byte is f2,0. We create a formula, Formula (7), with the
input and out differences of the MC operation in Round i + 1. We establish
another formula, Formula (8), by employing the input and out differences of the
MC transformation in Round i + 2.

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 Δy2,2 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

MC−→

⎛
⎜⎜⎜⎜⎜⎝

0 0 Δj0,2 0

0 0 Δj1,2 0

0 0 Δj2,2 0

0 0 Δj3,2 0

⎞
⎟⎟⎟⎟⎟⎠

(7)

⎛
⎜⎜⎜⎜⎜⎝

0 0 Δq0,2 0

0 Δq1,1 0 0

Δq2,0 0 0 0

0 0 0 Δq3,3

⎞
⎟⎟⎟⎟⎟⎠

MC−→

⎛
⎜⎜⎜⎜⎜⎝

Δr0,0 Δr0,1 Δr0,2 Δr0,3

Δr1,0 Δr1,1 Δr1,2 Δr1,3

Δr2,0 Δr2,1 Δr2,2 Δr2,3

Δr3,0 Δr3,1 Δr3,2 Δr3,3

⎞
⎟⎟⎟⎟⎟⎠

(8)

1. In Formula (7), Δy2,2 can be computed from the key stream of Round i
by using the values of g2,0 and g′2,0. In the third columns of the input and
output, we use 4 known bytes (Δy2,2 and 3 zero bytes) to decide 4 unknown
bytes (Δj0,2, Δj1,2, Δj2,2 and Δj3,2). The values of Δl0,2, Δl1,2, Δl2,2 and
Δl3,2 are also decided.

2. In Formula (8), Δr0,0 can be computed from the key stream of Round i + 2
by using the values of s0,0 and s′0,0. Similarly, we get the value of Δr2,0 by
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using the values of Δs2,0 and Δs′2,0. In the first columns of the input and
output, we can use the 5 known bytes (Δr0,0, Δr2,0 and 3 zero bytes) to
decide the 3 unknown bytes (Δq2,0, Δr1,0 and Δr3,0). Similarly, we can use
the 5 known bytes (Δr0,2, Δr2,2 and 3 zero bytes) to decide the 3 unknown
bytes (Δq0,2, Δr1,2 and Δr3,2) in the third columns of the input and output.

3. We know Δo0,2 and Δo2,2 because Δq0,2 is equal to Δo0,2 and Δq2,0 is
equal to Δo2,2. We now know the input differences (Δl0,2, Δl2,2) and the
corresponding output differences (Δo0,2, Δo2,2) to the SB operation, and we
can deduce 4 actual values for o0,2, o′0,2, o2,2 and o′2,2. Although we have
4 actual values for o0,2, o′0,2, o2,2 and o′2,2, we cannot separate the correct
values (o0,2 and o2,2) from the faulty ones (o′0,2 and o′2,2). To overcome this
obstacle, we need one more fault injected into f2,0 and repeat the above steps
because the correct values will emerge twice in both keystream processing.
After knowing the actual values of o0,2, o′0,2, o2,2 and o′2,2, we know the actual
values of q0,2, q′0,2, q2,0 and q′2,0 after the SR operation.
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Abstract. In this paper, we discovered that RC4 can generate colliding
key pairs with various hamming distances, other than those found by
Matsui (with hamming distance one), and by Chen and Miyaji (with
hamming distance three). We formalized RC4 colliding key pairs into two
large patterns, namely, Transitional pattern and Self-Absorbing pattern,
according to the behavior during KSA. The colliding key pairs found in
the previous researches can be seen as either subsets of the Transitional
pattern or of the Self-Absorbing pattern. We analyzed both patterns and
clarified the relations among the probability of key collision, key length
and hamming distances which yield the colliding key pairs. Also we show
how to make use of the RC4 key collision patterns to find collisions of
RC4-Hash function which was proposed in INDOCRYPT 2006. Some
concrete experimental results (RC4-Hash collision and RC4 colliding key
pairs) are also given in this paper.

1 Introduction

The stream cipher RC4 is one of the most famous ciphers widely used in real world
applications such as Microsoft Office, Secure Socket Layer (SSL), Wired Equiva-
lent Privacy (WEP), etc. Due to its popularity and simplicity, RC4 has become a
hot cryptanalysis target since its specification was made public on the Internet in
1994 [5]. Various general weaknesses of RC4 have been discovered in some previ-
ous works including [6,7,8], etc. Another popular cryptanalysis direction of RC4
is in the WEP environment. Such works include [9,10,11,12], etc.

Our paper focuses on RC4 key collisions, especially the existence of secret key
pairs that generate the same initial states after key scheduling algorithm. This is
a serious flaw for a stream cipher from the cryptographic point of view, since two
encryptions will become the same under two different secret keys. The study of
“colliding keys” of RC4 can be dated back to 2000. Grosul and Wallach [1] first
pointed out that RC4 can generate near collisions when the key size is close to the
full 256 bytes. In [2] first colliding key pairs with hamming distance one were
discovered, where hamming distance one means that the two keys differ from
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each other at one position. Later in [3], other colliding key pairs with hamming
distance three were found. Note that these researches can also generate “near
colliding keys” of RC4, that generate initial states with small hamming distances
after key scheduling algorithm. In a sense, these researches mean that we can
control key scheduling algorithm. Recently, a new type of attack, which uses
such two initial states with small hamming distances, has been proposed [4].

In this paper, we further analyzed the RC4 colliding key behavior, and we
discovered that more colliding key pairs with various hamming distances exist in
RC4, in addition to the ones found in [2] and [3]. We also found that all currently
known RC4 colliding key pairs can be organized into two patterns, according to
the behavior during KSA. We analyze these two generalized patterns and for-
malize the RC4 key collisions. Collision probability is estimated, and we point
out that it is mainly affected by key length and hamming distances between the
two keys. By making use of the RC4 key collision, we can also find collisions for
RC4-Hash, which is built from RC4 [14] using KSA as a compression function.

Structure of the paper. In Section 2, we briefly describe the RC4 algorithm,
followed by some previous works on RC4 key collisions. Section 3 shows the
formalized RC4 colliding key patterns and how they work. The probability eval-
uation is given in Section 4, followed by the RC4-Hash Collisions in Section 5.
Some experimental results on RC4-Hash Collisions and RC4 key collisions are
given in Section 5 and Appendix.

2 Preparation

2.1 Description of RC4

The internal state of RC4 consists of a permutation S of the numbers 0, ..., N − 1
and two indices i, j ∈ {0, ..., N − 1}. The index i is determined and known to the
public, while j and permutation S remain secret. RC4 consists of two algorithms:
The Key Scheduling Algorithm (KSA) and the Pseudo Random Generator Algo-
rithm (PRGA). The KSA generates an initial state from a random key K of k
bytes as described in Algorithm 1. It starts with an array {0, 1, ..., N − 1} where
N = 256 by default. At the end, we obtain the initial state SN−1. Once the ini-
tial state is created, it is used by PRGA. The purpose of PRGA is to generate a
keystream of bytes which will be XORed with the plaintext to generate the cipher-
text. PRGA is described in Algorithm 2. In this paper, we focus only on KSA.

Algorithm 1. KSA
1: for i = 0 to N − 1 do
2: S[i]← i
3: end for
4: j ← 0
5: for i = 0 to N − 1 do
6: j ← j + S[i] + K[i mod l]
7: swap(S[i], S[j])
8: end for

Algorithm 2. PRGA
1: i← 0
2: j ← 0
3: loop
4: i← i + 1
5: j ← j + S[i]
6: swap(S[i], S[j])
7: keystream byte zi = S[S[i] + S[j]]
8: end loop
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2.2 Previous Research on RC4 Key Collisions

Three important previous studies on RC4 key collisions are [1], [2] and [3]. In [1],
the authors pointed out that it’s possible for two secret keys with length close
to 256 bytes to generate similar internal state after KSA, and thus they will
generate similar hundred byte output during PRGA. The reason for this is that
for two keys K1, K2, if we assume K1[i] = K2[i] except when i = t, then when
t is close to 255, the two internal states will be substantially similar. However,
this idea cannot generate strict key collisions, and this result only works for key
lengths close to 256.

In [2], RC4 key collision was first discovered. The key pattern is almost the
same as in [1], namely, two keys differ at only one byte position (K1[i] = K2[i]
except i = t) and the value difference is 1(K1[t] = K2[t] − 1). The intuition
behind the collision is that from the first time i touches the different position
t, the pattern ensures that there are always only two differences in the internal
state as the key scheduling process continues. The difference is absorbed when i
touches t for the last time. Please refer to [2] for the detailed description.

In [3], colliding key pairs with hamming distance three were first discovered.
The key pattern is totally different from [1] and [2], namely, K1[d] = K2[d] −
t, K1[d + 1] = K2[d + 1] + t, K1[d + t + 1] = K2[d + t + 1]− t. This key pattern
shows us a more flexible way in which the two keys can differ from each other.

3 Generalized RC4 Colliding Key Pairs

We found out that RC4 can generate many other colliding key pairs with different
key relations, other than those found in [2] and [3]. We formalize all the currently
known colliding key pairs into two patterns. We describe them in the following
section by first giving the key relations, and then explaining how the two keys
with these relations can achieve collisions.

3.1 Notation

– K1, K2: a secret key pair with some differences between them.
– S1,i, S2,i: S-Boxes corresponding to the secret key pair at time i.
– i, j1,i, j2,i: internal states of RC4. When j1,i = j2,i, we use ji to denote.
– d: the first index of the key differences.
– h: hamming distances between the two keys (number of different positions

where two keys differ from each other).
– k: the lengths (bytes) of the secret keys.
– n: the number of times the key differences appear during KSA.

n = � 256+k−1−d
k �.

– l1, ..., lh−1: the intervals between two consecutive key difference indices.
– l: interval between the first and last key difference indices, l =

∑h−1
i=1 li.

– Γ : the set of indices at which two keys differ from each other, |Γ | = h,
Γ = {γ1, ..., γh} and d = γ1.
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3.2 Transitional Pattern

Key relations in Transitional pattern: Let K2[i] = K1[i]+1, i ∈ Γ , namely,
two keys differ from each other at h places, and the value differences at these
positions all equal 1.

Transitional pattern has the property that after the first internal state differ-
ences are generated, which is due to the key difference, the internal state dif-
ferences are transferred to the later indices of the S-Box, and these differences
exist before the last key difference comes into play during KSA.

Figure 1 illustrates the case in which the secret keys are short, so they will
appear several times during KSA. When i first touches the key difference, j
difference and two S-Box differences are generated. Notice that Transitional
pattern requires that one j equal i. Thus the two S-Box differences generated
at the beginning are located next to each other, and meanwhile, we require that
S-Box value differences also be one. The dotted line area in the figure shows the
three internal state differences generated by the first key difference. The next two
j return to the same value, due to the effects of previous j difference (�) and one
S-Box difference(�). Meanwhile, the S-Box difference (�) is transferred to the
next key difference index, and this transfer will repeat each time when i touches
the next key difference index. The situation for the last appearance of the key is
a little bit different. In order to achieve collision, we require that the two S-Box
differences �, � be in consecutive positions just before the last key difference
index. The two S-Box differences are absorbed by each other and generate a j
difference(�). Finally, the last key difference is there to absorb the previous j
difference and the internal states become the same.

The colliding key pairs found in [2] demonstrate a special case of this pattern,
where the hamming distance between two keys can only be one (|Γ | = h = 1).
In our generalized Transitional pattern, two keys can have various hamming
distances as the probability allows. Here we give a more detailed example of
a 128-byte colliding key pair with hamming distance three, to show how key
collision can be achieved. Two keys differ from each other at indices 1, 4 and 8.

Fig. 1. Transitional Pattern
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Table 1. Transitional Pattern, h = 3, n = 2(k = 128)

Internal State Difference

i K1[i]/K2[i] j1,i/j2,i 0 1 2 3 4 5 6 7 8 ... 129 130 131 132 133 134 135 136

0 K1[0] * 1 2 Same
K2[0] = K1[0] * 1 2

1 K1[1] 1 1 2 j, S-Box
K2[1] = K1[1] + 1 2 2 1

2 K1[2] 4 1 2 S-Box
K2[2] = K1[2] 4 2 1

4 K1[4] 8 1 2 S-Box
K2[4] = K1[4] + 1 8 2 1

8 K1[8] 129 1 2 S-BoX
K2[8] = K1[8] + 1 129 2 1

129 K1[1] 132 1 2 S-Box
K2[1] = K1[1] + 1 132 2 1

132 K1[4] 135 1 2 S-Box
K2[4] = K1[4] + 1 135 2 1

134 K1[6] 1 1 2 S-Box
K2[6] = K1[6] 1 2 1

135 K1[7] 135 1 2 j
K2[7] = K1[7] 134 1 2

136 K1[8] * 1 2 Same
K2[8] = K1[8] + 1 * 1 2

The S-Box in Table 1 denotes the state after the swap. Notice that when
i = 134, the other S-Box difference should be swapped to the index 134, but not
necessarily from index 1, as shown in the example. The first S-Box difference
can be touched by j before 134, to be swapped to other positions. As long as
this S-Box difference appears in index 134 when i = 134, the pattern works.

3.3 Self-absorbing Pattern

In addition to the above Transitional pattern, we investigate that some of the
other RC4 colliding key pairs have the following properties: the internal state
differences are generated and absorbed within one key appearance, namely, the
differences will not be transferred to the later parts of the S-Box. We can further
divide this pattern into two sub-patterns, which are shown in Figures 2(a) and
2(b). Due to the self absorbing property, only one key appearance needs to be
illustrated, since the others are the same. The ones found in [3] show a special
case of Self-Absorbing pattern 1 (|Γ | = h = 3).

Key relations in Self-Absorbing pattern 1: K2[d] = K1[d] + t, K2[d + 1] =
K1[d + 1]− t and K2[i] = K1[i] + t for i ∈ Γ \ {γ1, γ2}. The value difference t is
the same for all h different positions.

Figure 2(a) illustrates the case of hamming distance 4 (h = 4) and t = 2.
The first key difference generates three internal differences (dotted line area).
In this illustration, the key value difference is t = 2, so the interval between
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(a) Self-Absorbing Pattern 1 (b) Self-Absorbing Pattern 2

Fig. 2. Self-Absorbing Pattern

two S-Box differences is also required to be t. The second key difference is there
to absorb the previous j difference. The third key difference makes the S-Box
difference(�) jump to the index just before the last key difference within this
key appearance. S-Box difference � should be swapped to the index two intervals
from � when i touches that index. Then when i touches the S-Box difference �,
two S-Box differences absorb each other and generate a j difference (solid line
area). Finally the last key difference is there to absorb the previous j difference,
so that the internal states become the same. Table 2 is one example of 128-byte
colliding key pair with hamming distance 4. Two keys differ from each other at
indices 1, 2, 3 and 8.

Key relations in Self-Absorbing pattern 2: K2[d] = K1[d] + t, K2[d +
1] = K1[d + 1] − t, K2[i] = K1[i] + t for i ∈ Γ \ {γ1, γ2, γh−1, γh}, K2[γh−1] =
K1[γh−1]− t

′
, K2[γh] = K1[γh] + t

′′
. For the previous h− 2 different positions,

the value difference t is the same. The last two value differences t
′
and t

′′
, which

are determined by the specific key values, can be different values other than t.
Self-Absorbing pattern 2 is almost the same as Self-Absorbing pattern 1, ex-

cept that in addition to using S-Box differences themselves, it also depends on
key differences to absorb the S-Box differences (shown in solid line area in Figure
2(b)) at the final stage. This will allow a more flexible way of how the key value
difference can vary, namely, the value difference can choose different values in-
stead of a fixed value, as in the Transitional pattern and Self-Absorbing pattern
1. Table 3 shows a 128-byte colliding key pair example with hamming distance
5. The two keys differ from each other at indices 1, 2, 3, 5 and 6.

4 Probability Evaluation

In this section, we evaluate the existence probabilities of RC4 colliding key pairs,
and give approximate statistics on the scale and distribution of these keys.

4.1 Transitional Pattern

From the previous analysis, we know that colliding key pairs have the property
that the key value difference is fixed at one, and the hamming distance can vary.
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Table 2. Self-Absorbing Pattern 1, h = 4, n = 2(k = 128)

Internal State Difference

i K1[i]/K2[i] j1,i/j2,i 0 1 2 3 4 5 6 7 8 ... 129 130 131 132 133 134 135 136

0 K1[0] * 1 3 Same
K2[0] = K1[0] * 1 3

1 K1[1] 1 1 3 j, S-Box
K2[1] = K1[1] + 2 3 3 1

2 K1[2] * 1 3 S-Box
K2[2] = K1[2] − 2 * 3 1

3 K1[3] 7 1 3 S-Box
K2[3] = K1[3] + 2 7 3 1

5 K1[5] 1 1 3 S-Box
K2[5] = K1[5] 1 3 1

7 K1[7] 7 1 3 j
K2[7] = K1[7] 5 1 3

8 K1[8] * 1 3 Same
K2[8] = K1[8] + 2 * 1 3

129 K1[1] 129 129 131 j, S-Box
K2[1] = K1[1] + 2 131 131 129

130 K1[2] * 129 131 S-Box
K2[2] = K1[2] − 2 * 131 129

131 K1[3] 135 129 131 S-Box
K2[3] = K1[3] + 2 135 131 129

133 K1[5] 129 129 131 S-Box
K2[5] = K1[5] 129 131 129

135 K1[7] 135 129 131 j
K2[7] = K1[7] 133 129 131

136 K1[8] * 129 131 Same
K2[8] = K1[8] + 2 * 129 131

We divide the whole process into three phases as shown in Figure 1, namely, the
starting phase (first appearance of the key), the ending phase (last appearance
of the key) and the repeating phase (middle repeating parts).

Starting Phase. First, before i touches d, j can not touch d or d + 1 with
probability (254

256 )d. When i touches d, j1 = d and j2 = d + 1 with probability
1

256 . For each of the other key difference indices, we will pay the probability
1

256 each, totally ( 1
256 )h−1. When i is between two consecutive key difference

indices, the pattern requires that j does not touch the later key difference in-
dex, otherwise i will never be able to touch the later S-Box difference again.
This will add (255

256
)l1−2(255

256
)l2−1 · · · (255

256
)lh−1−1(255

256
)k−l−1 = (255

256
)k−h−1 to the

total probability cost. Thus, the totally probability in the starting phase is
( 1
256 )h(254

256 )d(255
256 )k−h−1.

Repeating Phase. Key will appear n−2 times during the repeating phase. For
each key, the procedure is as follows. When i touches one key difference index,
1

256
probability will be paid, ( 1

256
)h in total. When i is between two difference

indices, it is not allowed to touch the later one (same as starting phase), this
will add probability (255

256 )k−h in the repeating phase. Thus, the probability that
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Table 3. Self-Absorbing pattern 2, h = 5, n = 2(k = 128)

Internal State Difference

i K1[i]/K2[i] j1,i/j2,i 0 1 2 3 4 5 6 ... 129 130 131 132 133 134

0 K1[0] * 1 3 Same
K2[0] = K1[0] * 1 3

1 K1[1] 1 1 3 j, S-Box
K2[1] = K1[1] + 2 3 3 1

2 K1[2] * 1 3 S-Box
K2[2] = K1[2] − 2 * 3 1

3 K1[3] 5 1 3 S-Box
K2[3] = K1[3] + 2 5 3 1

5 K1[5] 5 1 3 j
K2[5] = K1[5] − 2 1 1 3

6 K1[6] * 1 3 Same
K2[6] = K1[6] + 4 * 1 3

129 K1[1] 129 129 131 j, S-Box
K2[1] = K1[1] + 2 131 131 131

130 K1[2] * 129 131 S-Box
K2[2] = K1[2] − 2 * 131 129

131 K1[3] 133 129 131 S-Box
K2[3] = K1[3] + 2 133 131 129

133 K1[5] 133 129 131 j
K2[5] = K1[5] − 2 129 129 131

134 K1[6] * 129 131 Same
K2[6] = K1[6] + 4 * 129 131

one key appearance must pay is ( 1
256 )h(255

256 )k−h. Since the key will repeat n− 2
times, the total probability is ( 1

256 )h(n−2)(255
256 )(k−h)(n−2).

Ending Phase. We need probability ( 1
256 )h−1 for the key difference indices ex-

cept for the last one, and when i touches the index two intervals before the last
key difference, the other S-Box difference needs to be swapped here with proba-
bility 1

256 . When i touches the index before the last key difference, we need two
S-Box differences to swap with each other with probability 1

256 . And as in the re-
peating and starting phases, j can not touch the later key difference index when i
is between the two. In the ending phase, this probability can be easily calculated
as (255

256 )l1−1(255
256 )l2−1 · · · (255

256 )lh−1−1 = (255
256 )l−h+1. Thus the total probability in

the ending phase is ( 1
256 )h+1(255

256 )l−h+1. By multiplying the probabilities in the
three phases, we get the following theorem.

Theorem 1. The probability of two keys with relations in Transitional pattern
forming a colliding key pair, Prob(trans), is given as follows:

Prob(tran) =
(

1
256

)h×n+1 (
254
256

)d (
255
256

)(k−h)×(n−3)+l−h

≈ O

((
1

256

)h×n
)
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4.2 Self-absorbing Pattern 1

We only need to evaluate the probability of one key appearance, the other parts
just repeat the first key appearance procedure. The value difference t is the same
for all different positions in Self-Absorbing pattern 1.

Before i touches index d, we need Sd[d] + t = Sd[d + t] with probability
255
256×(254

256 )d−1+ 1
256 (Refer to [3] for the proof). When i touches d, we require jd =

d with probability 1
256 . Then for i between d+1 and d+ t−1, index d+ t should

not be touched with probability (255
256 )t−1. Then we need one of the differences

(� in Figure 2) to appear at indices Γ
⋃{γh−1}\{γ1, γ2, γ3, γh} when i touches

them, and j cannot touch the later key difference position when i is between the
consecutive two of them. The probability can be calculated in the same way as in
the repeating phase in Transitional pattern, namely, ( 1

256 )h−3(255
256 )l−t−h+3. Also

we need the S-Box difference (�) to be at position d + l− t− 1 and it cannot be
touched when i is between d + l− t and d + l− 1. So this will give us probability
1

256 (255
256 )t−1. Finally, when i touches index d + l− 1, we need jd+l−1 = d + l− 1

with probability 1
256 . By multiplying them together, we get the probability of one

key appearance ( 1
256 )h(255

256 )l+t−h+1(255
256 (254

256 )d−1 + 1
256 ). Raise this probability to

the power of n due to the n times appearance of the key during KSA, we get
the following theorem for the total probability of Self-Absorbing pattern 1.

Theorem 2. The probability of two keys with relations in Self-Absorbing pattern
1 forming a colliding key pair, Prob(self1), is given as follows:

Prob(self1) =
(

1
256

)h×n (
255
256

)n×(l+t−h+1)
(

255
256

(
254
256

)d−1

+
1

256

)n

≈ O

((
1

256

)h×n
)

4.3 Self-absorbing Pattern 2

Self-Absorbing pattern 2 behaves very similarly to Self-Absorbing pattern 1,
except at the final stage. Recall Figure 3, which shows that the S-Box differences
are absorbed by both key differences and S-Box itself. So in this pattern, we don’t
need the S-Box difference (�) to be t intervals from another difference (�) in the
final part. So we only need to cut off the probability for � to be transferred to
the corresponding position in the final stage in Self-Absorbing pattern 1, namely,
1

256 (255
256 )t−1. So the total probability for Self-Absorbing pattern 2 is as follows.

Theorem 3. The probability of two keys with relations in Self-Absorbing pattern
2 forming a colliding key pair, Prob(self2), is given as follows:
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Prob(self2) =
(

1
256

)(h−1)×n (
255
256

)n×(l−h)
(

255
256

(
254
256

)d−1

+
1

256

)n

≈ O

((
1

256

)(h−1)×n
)

We can conclude that the probabilities of both Transitional pattern and Self-
Absorbing patterns are mainly affected by hamming distance h and length of the
secret key. The probability decreases as the hamming distance h becomes larger
or the key length k becomes shorter (n becomes larger). Table 4 and 5 gives
the probability data for different key lengths and hamming distances according
to Theorems 1,2 and 3. According to the previous analysis, we know that Self-
Absorbing pattern 1 requires h ≥ 3, and Self-Absorbing pattern 2 requires h ≥ 5.

Table 4. Probabilities of colliding key
pairs in Transitional pattern

�����n(k)
h

1 2 3 4 5

8(32) 2−64 2−128 2−192 2−256 2−320

4(64) 2−32 2−64 2−96 2−128 2−160

2(128) 2−16 2−32 2−48 2−64 2−80

1(256) 2−8 2−16 2−24 2−32 2−40

Table 5. Probabilities of colliding key
pairs in Self-Absorbing pattern 1 (Self-
Absorbing pattern 2)

�����n(k)
h

3 4 5

8(32) 2−192(−) 2−256(−) 2−320(2−256)

4(64) 2−96(−) 2−128(−) 2−160(2−128)

2(128) 2−48(−) 2−64(−) 2−80(2−64)

1(256) 2−24(−) 2−32(−) 2−40(2−32)

5 Application to RC4-Hash Collisions

In INDOCRYPT 2006, a new hash function name “RC4-Hash” based on RC4 was
proposed. It followed the “wide pipe” hash function design principle proposed
by Lucks [13] and it was claimed to be as efficient as some widely-used hash
functions, such as SHA-family and MD-family, while also ruling out all possible
generic attacks against those famous hash functions. First hash collision was
found in [16] by exploiting the idea of Finney States [15]. We show in this section
that totally different from [16], collisions can also be found by making use of
previous key collision pattern. First we briefly describe the RC4-Hash algorithm,
and then we give the collision analysis. For a more detailed description of the
hash function, please refer to [14].

5.1 RC4-Hash

{0, 1}<264
denotes the set of all messages whose length is at most 264 − 1. l is

the output length of the RC4 hash function, 16 ≤ l ≤ 64. RC4-Hash function
can be described as {0, 1}<264 → {0, 1}8l.



Generalized RC4 Key Collisions and Hash Collisions 83

Padding Rule: pad(M) = bin8(l)||M ||1||0k||bin64(|M |) = M1|| · · · ||Mt, where
Mt is the last 512-bit block. bin64(|M |) is the 64-bit binary representation of the
number of bits of M . k is the least non-negative integer such that 8 + |M |+ 1 +
k + 64 ≡ 0 mod (512) and |Mi| = 512.

Iteration Phase: Let (S0, j0) = (SIV , 0) be an initial value. The compression
function C is invoked iteratively as follows:

(S0, j0)
M1→ (S1, j1)

M2→ · · · (St−1, jt−1)
Mt→ (St, jt)

where (S, j) X→ (S∗, j∗) denotes C((S, j), X) = (S∗, j∗).

Post-Processing: Let (St, jt) be the internal state after the classical iteration.
Compute St+1 = S0◦St and jt+1 = jt. Then compute HBGl(OWT (St+1, jt+1)).

C((S, j), X)
for i = 0 to 255

j ← j + S[i] + X [r(i)]
Swap(S[i],S[j]);

Return (S,j)

OWT ((S, j))
Temp1 = S
for i = 0 to 511

j ← j + S[i]
Swap(S[i], S[j])

Temp2 = S
S = Temp1 ◦ Temp2 ◦ Temp1
Return (S, j)

HBGl((S, j))
for i = 1 to l

j ← j + S[i]
Swap(S[i], S[j])
Out = S[S[i] + S[j]]

◦ denotes the composition of the permutations. Function r : [256] → [64] re-
orders the 64-bytemessage block. There are four r mapping functions(r0, r1, r2, r3)
corresponding to the four iterationprocesses for eachmessageblock. Inotherwords,
each message block is reordered three times (r0 is the identity permutation) during
one iteration process. Refer to appendices for SIV and ri.

5.2 Collisions for RC4-Hash Function

Let’s look at the iteration phase carefully. After message is padded, it is cut into
64-byte blocks, and each block is processed by the compression function C four
times. The compression function C is actually the KSA in RC4, and the input
message block can be seen as a 64-byte secret key, except for two differences.
First, the message block is reordered by using ri functions three times (instead
of using the same 64-byte key which appears 4 times during KSA) and second,
instead of the identity permutation used at the beginning of KSA, a shuffled S-
Box SIV is used as the initial S-Box. The similarities between the compression
function and KSA gave us the intuition that we could make use of the RC4 key
collision to find collisions for RC4-Hash. Now let’s take a look at how these two
differences can affect our search. In both Transitional pattern and Self-Absorbing
pattern, when i touches the first different position, we need Sd[d]+ t = Sd[d+ t].
This is very easy to achieve when the initial S-Box is an identity permutation (j
does not touch index d or index d + t before i touches index d). But still we can
make this happen with SIV (Several candidates are available by checking SIV

carefully, and we use one of them in the following example). For the transitional
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pattern, the reordering of the message will not have much effect on finding
collisions, because even though the different positions between the two messages
change three times, we do not have to pay extra probabilities because there
are no restrictions among these different message positions. Thus it works just
the same as finding key collisions in the Transitional pattern. However, there
are strict relations between the different positions in Self-Absorbing pattern
(Self-Absorbing pattern 1: K2[d] = K1[d] + t, K2[d + 1] = K1[d + 1] − t and
K2[i] = K1[i] + t for i ∈ Γ \ {γ1, γ2}), and the reordering of the message breaks
those relations at the later rounds in the compression function, thus making it
difficult to find a collision by using this pattern.

Here we give a concrete collision example by making use of the Transitional
pattern. Since the initial S-Box SIV is not an identity permutation, we need
to first make two consecutive indices have the value difference one. There are
several candidates we can use, by examining the SIV carefully, we choose to let
SIV [24] = 53 appear in index 27 when i touches it, and SIV [28] = 54 should
not be touched by j before. Then we have two values, 53 and 54, next to each
other at indices 27 and 28 when i touches index 27. The four iterations of the
64-byte message block during the compression function C can be seen as a KSA
procedure with a 64-byte key. Since the message will be reordered three times,
we need to check the mapping function ri to identify the different positions. Ac-
cording to the Transitional pattern, in order to achieve a collision, two messages
should differ from each other at index 27, and the value difference should be one.
According to r1, r2 and r3, the differences between two messages will appear at
indices 125, 179 and 213. After i touches 213, the two internal states become
the same. Figure 4 describes the above collision by using Transitional pattern
during one compression function C (63-byte message plus one padded byte).

From the above analysis, we know the complexity is equal to the key collision
complexity in Transitional pattern, which is approximately equal to O(( 1

256
)h×n).

In RC4-Hash with k = 64(n = 4), we can find a collision with the smallest com-
plexity O(232) when two messages have the smallest hamming distance h = 1.
Notice that our method results in higher complexity than in [16], where com-
plexity is O(29).

Here is the collision pair we found by using the RC4 key collision Transitional
pattern with one day computation on an Intel Core i7 CPU PC (only one core
was used). Messages and hash outputs are represented in Hexadecimal form. In
our example, we set the output length l to be 16 bytes.

Fig. 3. RC4-Hash collision using Transitional Pattern
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Message1(Message2): d8 4b be e4 ac c5 e3 c6 59 16 db b1 c2 7a de c2 62 5e
40 91 2c 7e de 4a f3 55 8b(8c) 2c 8f 96 f0 50 f7 54 78 3a 35 f5 ee 7e 76 72 35 83
0a e3 26 b5 06 7f 3b 1e b5 41 1c 1b ec 4e 80 c2 ba 64 9b

Hash Output: 76 54 b9 c6 65 f9 99 83 1b 66 c8 af 5f 0c 68 fa

5.3 Discussion

From the above analysis, we can see that the design of the compression function
by modifying KSA using SIV and mapping function ri cannot eliminate the
KSA collision property. Here we propose one method to mitigate the attack
by redesigning SIV carefully. Recall in the previous collision example, we need
two values with value difference one to be next to each other when i touches the
smaller one (Values 53 and 54 at indices 27 and 28 when i touches index 27). If we
can prevent this from happening, then we can eliminate the collision. That is to
say, if the index of value 54 is greater than 63 in SIV , our Transitional pattern will
not work. Generally speaking, design SIV satisfies |SIV [i]−1− (SIV [i] + 1)−1| ≥
64−MIN(SIV [i]−1, (SIV [i] + 1)−1) (Transitional pattern) for 0 < i < 64, where
v−1 denotes the index of value v. This will eliminate the collisions caused by the
RC4 key collision patterns we found.

6 Conclusion

In this paper, we have shown that RC4 can generate many other colliding key
pairs with various hamming distances. We analyzed the behavior of these col-
liding key pairs and formalized them into two patterns, which include the newly
discovered colliding key pairs we found, and also the ones found in previous re-
search. We further estimated the collision probabilities for all the RC4 colliding
key pairs, and clarified the relations among collision probability, key length and
hamming distance. Finally, we showed how the RC4 key collision patterns can
be used to find collisions for RC4-Hash which was proposed at INDOCRYPT
2006. We leave how to use the mitigating methods proposed in this paper and
[16] to construct secure RC4-Hash function as future work.
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A RC4-Hash (ri Functions and SIV )

r1 : 0, 55, 46, 37, 28, 19, 10, 1, 56, 47, 38, 29, 20, 11, 2, 57, 48, 39, 30, 21, 12, 3,
58, 49, 40, 31, 22, 13, 4, 59, 50, 41, 32, 23, 14, 5, 60, 51, 42, 33, 24, 15, 6, 61, 52,
43, 34, 25, 16, 7, 62, 53, 44, 35, 26, 17, 8, 63, 54, 45, 36, 27, 18, 9.

r2: 0, 57, 50, 43, 36, 29, 22, 15, 8, 1, 58, 51, 44, 37, 30, 23, 16, 9, 2, 59, 52, 45,
38, 31, 24, 17, 10, 3, 60, 53, 46, 39, 32, 25, 18, 11, 4, 61, 54, 47, 40, 33, 26, 19,
12, 5, 62, 55, 48, 41, 34, 27, 20, 13, 6, 63, 56, 49, 42, 35, 28, 21, 14, 7.

r3 : 0, 47, 30, 13, 60, 43, 26, 9, 56, 39, 22, 5, 52, 35, 18, 1, 48, 31, 14, 61, 44, 27,
10, 57, 40, 23, 6, 53, 36, 19, 2, 49, 32, 15, 62, 45, 28, 11, 58, 41, 24, 7, 54, 37, 20,
3, 50, 33, 16, 63, 46, 29, 12, 59, 42, 25, 8, 55, 38, 21, 4, 51, 34, 17.

SIV :
145, 57, 133, 33, 65, 49, 83, 61, 113, 171, 63, 155, 74, 50, 132, 248, 236, 218, 192,
217, 23, 36, 79, 72, 53, 210, 38, 59, 54, 208, 185, 12, 233, 189, 159, 169, 240, 156,
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184, 200, 209, 173, 20, 252, 96, 211, 143, 101, 44, 223, 118, 1, 232, 35, 239, 9,
114, 109, 161, 183, 88, 66, 219, 78, 157, 174, 187, 193, 199, 99, 52, 120, 89, 166,
18, 76, 241, 13, 225, 6, 146, 151, 207, 177, 103, 45, 148, 32, 29, 234, 7, 16, 19,
91, 108, 186, 116, 62, 203, 158, 180, 149, 67, 105, 247, 3, 128, 215, 121, 127, 179,
175, 251, 104, 246, 98, 140, 11, 134, 221, 24, 69, 190, 154, 253, 168, 68, 230, 58,
153, 188, 224, 100, 129, 124, 162, 15, 117, 231, 150, 237, 64, 22, 152, 165, 235,
227, 139, 201, 84, 213, 77, 80, 197, 250, 126, 202, 39, 0, 94, 42, 243, 228, 87, 82,
27, 141, 60, 160, 46, 125, 112, 181, 242, 167, 92, 198, 172, 170, 55, 115, 30, 107,
17, 56, 31, 135, 229, 40, 111, 37, 222, 182, 25, 43, 119, 244, 191, 122, 102, 21, 93,
97, 131, 164, 10, 130, 47, 176, 238, 212, 144, 41, 14, 249, 220, 34, 136, 71, 48,
142, 73, 123, 204, 206, 4, 216, 196, 214, 137, 255, 195, 26, 8, 51, 178, 2, 138, 254,
90, 194, 81, 245, 106, 95, 75, 86, 163, 205, 70, 226, 28, 147, 85, 5, 110.

B RC4 Colliding Key Pairs

B.1 Transitional Pattern, h=3, k=128. K1(K2)

71, 185(186), 1, 63, 192(193), 206, 161, 132, 114(115), 12, 69, 19, 160, 125,
44, 78, 26, 119, 59, 18, 200, 221, 130, 215, 157, 208, 205, 210, 165, 96, 99, 44, 68,
17, 146, 161, 227, 188, 123, 218, 172, 154, 100, 99, 92, 205, 235, 78, 179, 8, 5, 1,
142, 115, 31, 245, 151, 170, 140, 140, 104, 198, 128, 189, 145, 163, 42, 178, 113,
223, 135, 21, 243, 236, 90, 141, 70, 78, 96, 8, 200, 8, 161, 123, 112, 57, 190, 224,
179, 196, 41, 87, 24, 105, 231, 41, 84, 12, 139, 107, 82, 228, 130, 23, 148, 38, 196,
3, 238, 164, 2, 233, 22, 41, 182, 130, 201, 95, 211, 140, 11, 248, 189, 6, 109, 27,
92, 1.

B.2 Self-absorbing Pattern 1, h=4, k=128. K1(K2)

41, 215(217), 60(58), 197(199), 78, 163, 94, 159, 253(255), 76, 84, 228, 174,
159, 214, 86, 52, 146, 24, 235, 130, 98, 91, 117, 23, 44, 155, 55, 136, 46, 182, 76,
55, 200, 20, 25, 171, 59, 184, 240, 6, 178, 173, 29, 33, 126, 49, 151, 200, 185, 218,
219, 60, 188, 14, 49, 51, 215, 123, 58, 26, 222, 26, 96, 177, 14, 13, 175, 9, 90, 106,
179, 57, 183, 103, 183, 55, 51, 40, 163, 193, 93, 187, 151, 209, 145, 42, 10, 70,
166, 179, 136, 166, 206, 153, 21, 100, 241, 226, 120, 165, 74, 159, 125, 18, 14, 77,
151, 79, 129, 201, 19, 23, 109, 75, 14, 29, 96, 118, 87, 75, 225, 31, 28, 248, 126,
161, 148.

B.3 Self-absorbing Pattern 2, h=5, k=128. K1(K2)

222, 34(36), 98(96), 157(159), 174, 75(73), 231(235), 9, 221, 154, 135, 215,
175, 166, 27, 58, 91, 226, 252, 225, 7, 164, 124, 198, 65, 132, 222, 132, 205, 184,
196, 21, 86, 41, 124, 121, 115, 138, 108, 2, 26, 137, 55, 224, 46, 92, 109, 63, 15,
156, 104, 144, 101, 3, 41, 224, 98, 15, 185, 198, 152, 226, 148, 111, 2, 136, 35, 69,
159, 211, 250, 47, 130, 40, 200, 19, 97, 205, 250, 226, 34, 243, 45, 120, 86, 175,
52, 157, 145, 214, 138, 107, 182, 50, 247, 20, 121, 20, 144, 40, 172, 236, 150, 77,
196, 200, 158, 198, 44, 206, 73, 90, 169, 64, 152, 1, 82, 163, 192, 235, 246, 24,
121, 185, 234, 158, 48, 200.
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Abstract. The notion of indifferentiability, introduced by Maurer et al.,
is an important criterion for the security of hash functions. Concretely,
it ensures that a hash function has no structural design flaws and thus
guarantees security against generic attacks up to the proven bounds. In
this work we prove the indifferentiability of Grøstl, a second round SHA-3
hash function candidate. Grøstl combines characteristics of the wide-pipe
and chop-Merkle-Damg̊ard iterations and uses two distinct permutations
P and Q internally. Under the assumption that P and Q are random l-bit
permutations, where l is the iterated state size of Grøstl, we prove that
the advantage of a distinguisher to differentiate Grøstl from a random
oracle is upper bounded by O((Kq)4/2l), where the distinguisher makes
at most q queries of length at most K blocks. This result implies that
Grøstl behaves like a random oracle up to q = O(2n/2) queries, where n
is the output size. Furthermore, we show that the output transformation
of Grøstl, as well as ‘Grøstail’ (the composition of the final compression
function and the output transformation), are clearly differentiable from
a random oracle. This rules out indifferentiability proofs which rely on
the idealness of the final state transformation.

1 Introduction

Hash functions are a basic building block in cryptography. Formally, a hash
function maps a bit string of arbitrary length to an output string of fixed length,
H : Z

∗
2 → Z

l
2. An established practice in the design of hash functions is to

first construct a fixed input length compression function, e.g. f : Z
l
2 × Z

l
2 →

Z
l
2, and then iterate it to allow the processing of arbitrarily long strings. The

most popular iteration principle is the strengthened Merkle-Damg̊ard [12, 18]
design1. Common hash functions, such as members of the SHA and MD family,
incorporate the Merkle-Damg̊ard method in their design. However, recent attacks
on the widely used SHA-1 and MD5 [22, 23] have rendered these designs insecure.
This grim situation has triggered the launch of the SHA-3 competition [20] for
the selection of a new secure hash function algorithm by NIST (National Institute
of Standards and Technology). In the current second round of the competition,
14 candidates are under active evaluation.
1 Throughout, we will refer to it as the ‘Merkle-Damg̊ard design’.
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These 14 candidates use a wide variety of iterative modes. Some of the designs
still follow the basic Merkle-Damg̊ard iteration. Others either add new features
to it, or simply propose different constructions. Candidates from the latter two
classes include iterations based on the chop-Merkle-Damg̊ard [13], HAIFA [7],
wide-pipe [16] and Sponge [5] design strategies. The main advantage of the basic
Merkle-Damg̊ard construction is its collision security guarantee under the as-
sumption that the underlying compression function is collision resistant [12, 18].
Other important hash function security properties, such as second preimage and
preimage security are, however, not preserved by the Merkle-Damg̊ard itera-
tion [1]. Moreover, the extension attack shows that the Merkle-Damg̊ard hash
function is clearly differentiable from a monolithic random oracle [11].

A natural question that arises with the emerge of new iterative designs is to
identify the security properties achieved by these constructions. Other than the
classical collision, second preimage and preimage security properties, the indif-
ferentiability property has gained more recent attention due to the advancements
in the theoretical differentiability model of Maurer et al. [17] and their further
development in the context of hashing [11, 2, 9, 10]. Indifferentiability is an
important security criterion because it ensures that the hash function has no
structural design flaws in composition. Such a result provides a guarantee that
no generic attacks (attacks on the iteration which assume ideal behavior of the
underlying primitives) up to the proven bounds are possible.

In this work we analyze the indifferentiability of the Grøstl SHA-3 candi-
date [15]. Grøstl borrows characteristics mainly from the wide-pipe and the
chop-Merkle-Damg̊ard iterations: the iterated state is wider than the final hash
output, which classifies it as a type of a wide-pipe design. The iterative mes-
sage processing together with a final state truncation in Grøstl resemble the
chop-Merkle-Damg̊ard hash function with the added difference of an output
transformation before truncation. More concretely, Grøstl processes its inputs
by first calling the compression function f iteratively, then applying a final out-
put transformation to the state and finally truncating the result to the desired
output length. The compression function f is built out of two permutations P
and Q and the output transformation is designed on top of the permutation P .

1.1 Our Result

Indifferentiability results on hash functions can be obtained following several dif-
ferent approaches. One way to argue indifferentiability is to assume ideal behav-
ior of the first layer components (i.e., the underlying compression functions), and
prove the result for the concrete composition of interest [11, 10]. Dodis et al. [14]
relax the assumption on the internal compression functions from a random oracle
to preimage awareness. If a composition is preimage aware, which they show is
true for the Merkle-Damg̊ard iteration when the compression function is preim-
age aware itself, then they prove indifferentiability by assuming idealness only of
the final extra transformation. Both approaches turn out futile for the Grøstl hash
function: fixed points for the compression function can be found easily (as already
observed in [15]), and also the final output transformation is clearly differentiable
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from a random function. Even stronger, if we consider the composition of the final
compression function f and the output transformation (with and without trunca-
tion), which we refer to as ‘Grøstail’, then we prove that Grøstail is differentiable
from a random function. We do so by demonstrating an attack that tricks any
simulator for the indifferentiability of Grøstail in only three oracle queries. This
result indicates that Grøstail is highly non-random and therefore the results of
[14] could not be applied directly.

The next attempt for an indifferentiability proof for the Grøstl hash function
is to refine the level of modularity and to explore the second layer integral com-
ponents, i.e. the permutations P and Q. In a similar fashion, Coron et al. [11]
prove that the chop-Merkle-Damg̊ard construction with Davies-Meyer (DM) [21]
compression function is indifferentiable from a random oracle assuming an ideal
behavior from the block cipher underlying the DM function. While the Grøstl it-
eration is a type of a DM chop-Merkle-Damg̊ard construction, the latter result
cannot be applied here due to clear design differences, such as the presence of
an output transformation. Instead, to prove indifferentiability of the Grøstl hash
function we start from scratch by assuming ideal behavior of the underlying
permutations.

The proof is constructed following the indifferentiability theoretical framework
by [17]. We build a simulator for the permutations P and Q that is granted access
to a random oracle. The goal of the simulator is to answer its queries, such
that it is hard for a distinguisher to tell apart the interactions with the Grøstl
hash functions and truly random permutations from the ones with a random
oracle and the simulator. The simulator is also consistent with the outputs of
the random oracle. Although our proof is geared towards the concrete design
of the Grøstl hash function, we believe its underlying idea can be applied to
similar constructions of independent interest. We prove that the advantage of a
distinguisher to differentiate Grøstl from a random oracle is upper bounded by
O((Kq)4/2l), where the distinguisher makes at most q queries of length at most
K blocks to its oracles. Here, l is the iterated state size which, for Grøstl, is at
least twice as large as the output hash size n. Intuitively, this means that Grøstl
behaves like a random oracle up to q = O(2n/2) queries.

The JH [6], Keccak [4] and Shabal [8] SHA-3 second round candidates have
recently been also proved indifferentiable. All of them claim security beyond the
birthday bound (with respect to the output length n). In particular, JH is proven
indifferentiable up to O(q3/2l−m), and Keccak and Shabal up to O((Kq)2/2l−m)
where l is the size of the chaining value and m the number of message bits
compressed in one application of the compression function. We notice, however,
that this is an unfair comparison: JH, Keccak and Shabal have iterated state sizes
l of 1024, 1600 and 1408 bits, respectively, which are significantly larger than the
state size of Grøstl. For comparison, Keccak-256 is indifferentiable up to bound
O((Kq)2/2512), while our result implies that Grøstl-256 would be indifferentiable
up to O((Kq)4/21600), were Grøstl be designed to have the same state size as
Keccak. Such an adjustment would, however, decrease the efficiency.
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2 Preliminaries

For n ∈ N, where N is the set of natural numbers, let Z
n
2 denote the set of bit

strings of length n, (Zn
2 )∗ the set of strings of length a multiple of n and Z

∗
2 the

set of strings of arbitrary length. If x, y are strings, then x‖y is the concatenation
of x and y. If k, l ∈ N then 〈k〉l is the encoding of k as an l-bit string. If S is
a set, then x

$← S denotes the uniformly random selection of an element from
S. We let y ← A(x) and y

$← A(x) be the assignment to y of the output of a
deterministic and randomized algorithm A, respectively, when run on input x.
For a function f , by dom(f) and rng(f) we denote the domain and range of f ,
respectively. Abusing notation, by (x, y) ∈ f , we denote that x ∈ dom(f) and
y = f(x). A random oracle [3] is a function which provides a random output for
each new query. A random l-bit permutation is a function that is taken uniformly
at random from the set of all l-bit permutations. A random primitive will also
be called ‘ideal’.

2.1 Grøstl

On input of a message of arbitrary length, the Grøstl hash function Gr : Z
∗
2 → Z

n
2

outputs a digest of n bits, with n ∈ {224, 256, 384, 512} [15]. Grøstl is a type of a
wide-pipe design where the iterated state size l is significantly larger than the fi-
nal hash output. More concretely: for n = 224, 256, l = 512, and for n = 384, 512,
l = 1024. The Grøstl hash function makes use of the Merkle-Damg̊ard construc-
tion to process its inputs, then applies an output transformation on the state
value and finally truncates (chops) the result from l to n bits. The Grøstl com-
pression function f : Z

l
2×Z

l
2 → Z

l
2 is defined as f(h, m) = P (h⊕m)⊕Q(m)⊕h,

where P, Q : Z
l
2 → Z

l
2 are two l-bit permutations. Throughout, P and Q are

considered to be independent random permutations.
For a fixed initialization vector IVn the hash function Gr (see Fig. 1) processes

an arbitrary length message M as follows:

(M1, . . . , Mk) = pad(M),
h0 = IVn,

hi = f(hi−1, Mi) for i = 1, . . . , k,

hk+1 = P (hk)⊕ hk,

Gr(M) = chopl−n(hk+1),

where chopl−n(x) chops off the l− n rightmost bits of x, and the padding func-
tion pad is defined as pad(M) = M ′, with M ′ = M‖1‖0−|M|−65 mod l‖〈	(|M |+

Fig. 1. The Grøstl hash function Gr
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65)/l
〉64, parsed as a sequence of l-bit blocks. On input of a message M ′ ∈ (
Z

l
2

)∗,
the function depad(M ′) is defined as follows: if M ′ = pad(M) for some mes-
sage M , it outputs this M , otherwise it outputs ⊥. Observe that the output is
unique as the padding function is injective2. For an M ∈ (

Z
l
2

)∗, we denote by
Z(M) the set of all values m ∈ Z

l
2 that make (M, m) a valid padding. Formally:

Z(M) = {m ∈ Z
l
2 | depad(M‖m) �= ⊥}. Apart from the indifferentiability of the

Grøstl hash function, we also consider the Grøstail function F : Z
l
2 × Z

l
2 → Z

l
2,

a composition of the last compression function f with the final transformation
(i.e., Grøstail is the ‘tail’ of Grøstl):

F(h, m) = P (f(h, m))⊕ f(h, m). (1)

2.2 Indifferentiability

The indifferentiability framework introduced by Maurer et al. [17] is an extension
of the classical notion of indistinguishability. It proves that if a construction CG
based on an ideal subcomponent G is indifferentiable from an ideal primitive R,
then CG can replace R in any system.

Definition 1. A Turing machine C with oracle access to an ideal primitive G is
said to be (tD, tS , q, ε) indifferentiable from an ideal primitive R if there exists
a simulator S, such that for any distinguisher D it holds that:

Advpro
C,S(D) =

∣
∣
∣Pr

(
DCG ,G = 1

)
− Pr

(
DR,SR = 1

)∣
∣
∣ < ε.

The simulator has oracle access to R and runs in time at most tS. The distin-
guisher runs in time at most tD and makes at most q queries.

In the remainder, we refer to CG ,G as the ‘real world’, and to R,SR as the ‘sim-
ulated world’; the distinguisher D converses either with the real or the simulated
world and its goal is to tell both worlds apart. D can query both its ‘left oracle’
L (either C or R) and its ‘right oracle’ R (either G or S). In the remainder, R has
four interfaces, corresponding to forward and inverse queries to permutations P
and Q. These interfaces are denoted by RP , RP−1 , RQ, RQ−1 .

3 Differentiability of Grøstail

A recent result by Dodis et al. [14] prescribes how to prove indifferentiabil-
ity of hash functions by ways of preimage awareness. Loosely speaking, Dodis
et al. proved that if H : Z

∗
2 → Z

l
2 is a preimage aware hash function and

RO : Z
l
2 → Z

l
2 is a random function, then the composition RO ◦H is indifferen-

tiable from a random oracle. One might be tempted to consider this approach for
the indifferentiability analysis of Grøstl, i.e., by assuming that the output trans-
formation is a random oracle and then proving the Grøstl hash function (without
2 We stress that, for the purpose of the proof, injectivity is the only property required

from the padding function.
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the output transformation) to be preimage aware. However, the behavior of the
output transformation P (x) ⊕ x deviates significantly from a random function:
similarly to the Davies-Meyer construction [19], fixed points P (x) ⊕ x = x are
easy to compute by making the inverse query P−1(0) = x. A second attempt is
to go one step backwards in the iteration and view the last compression function
together with the output transformation, i.e., Grøstail (1), as a random function.
We show that this approach also fails since Grøstail is easily differentiable from
a random function.

Proposition 1. Let P, Q be two random l-bit permutations, let F be the Grøstail
compression function (1), and let RO : Z

l
2×Z

l
2 → Z

l
2 be a random function. For

any simulator S that makes at most q queries to RO, there exists a distinguisher
D that makes at most 3 queries to its oracle, such that Advpro

F,S (D) ≥ 1− q/2l.

Proof. Let S be any simulator that makes at most q queries to RO. We construct
a distinguisher D that with overwhelming probability distinguishes Grøstail from
a random function in 3 oracle queries. The distinguisher proceeds as follows.
First, it makes inverse queries x2 = RQ−1(0) and x1 = RP−1(x2). Then, it
makes a query to the left oracle to obtain y = L(x1 ⊕ x2, x2). If D converses
with (FP,Q, (P, Q)), then y = FP,Q(x1 ⊕ x2, x2) = P (x1) ⊕ x1 = x1 ⊕ x2. If
D converses with (RO, SRO), this equation holds only if the simulator can find
x1, x2 such that RO(x1 ⊕ x2, x2) = x1 ⊕ x2, i.e., only if the simulator can find a
fixed point for RO. As the probability for the simulator to find fixed points for
RO is upper bounded by q/2l, the advantage for D to distinguish, Advpro

F,S (D),
is lower bounded by 1− q/2l. ��
If the final truncation is included in Grøstail as well, a lower bound 1− q/2n can
be obtained similarly.

4 Indifferentiability of Grøstl

In this section, we present the main result of this paper: we show that the Grøstl
hash function is indifferentiable from a random oracle, under the assumption
that the underlying permutations P, Q are ideal. Intuitively, we demonstrate
that there exists a simulator such that no distinguisher can differentiate the real
world GrP,Q, (P, Q) from the simulated world RO, SRO, except with negligible
probability.

Theorem 1. Let P, Q be two random l-bit permutations, let Gr be the Grøstl
hash function (Sect. 2.1), and let RO be a random oracle. Let D be a distinguisher
that makes at most qL left queries of maximal length (K−1)l bits, where K ≥ 1,
qP right queries to P and qQ right queries to Q, and runs in time t. Then:

Advpro
Gr,S(D) ≤ 58(qP + (K + 1)qL)2(qQ + KqL)2

2l
, (2)

where S makes qS ≤ qP queries to RO and runs in time O(max{qP , qQ}4).
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The simulator S used in the proof mimics the behavior of random permutations
P and Q such that queries to S and queries to RO are ‘consistent’, which means
that relations among the query outputs in the real world hold in the simulated
world as well. To this end, the construction of the simulator is based on several
designing decisions. In what remains, the simulator used in the proof (Fig. 2) is
introduced and explained in more detail. Then, Thm. 1 is proven in Sect. 4.3.

4.1 Initialization of the Simulator

The simulator maintains two, initially empty, lists LP ,LQ that represent the
permutations it simulates. These lists consist of tuples (x, y) ∈ Z

l
2×Z

l
2, where y

denotes the (simulated) image of x under P or Q. Abusing notation, we denote
by dom(LP ) (resp. rng(LP )) the set of first (resp. second) elements in LP , and
similar for LQ. The simulator has four interfaces, denoted by SP , SP−1 , SQ, SQ−1 ,
and access to RO. Furthermore, the simulator maintains a graph (V, E), initially
({IV }, ∅). The edges e ∈ E are labeled by messages in Z

l
2: any (x1, y1) ∈ LP

and (x2, y2) ∈ LQ define an edge x1 ⊕ x2
x2−→ x1 ⊕ x2 ⊕ y1 ⊕ y2 in (V, E). Intu-

itively, an edge in (V, E) corresponds to an evaluation of the Grøstl compression
function f , and if there is a path IV

M1−→ s1
M2−→ · · · Mk−→ sk in (V, E), then

f(. . . f(f(IV, M1), M2) . . . , Mk) = sk. Abusing notation, we denote by s
M−→ t

that there is a path from s to t in (V, E) with the edges labeled by M ∈ (
Z

l
2

)∗.
We say that (V, E) contains colliding paths if there exists an s ∈ V such that

IV
M−→ s and IV

M ′−→ s are two paths in (V, E), for different M, M ′ ∈ (
Z

l
2

)∗.
Furthermore, by Vout, Vin we denote the set of vertices in V with an outgoing or

ingoing edge, respectively. Observe that if LP ,LQ are of size qP , qQ, respectively,
the sets Vout, Vin are of size at most qP qQ. By r(V ), we denote the set of all

‘rooted’ nodes in V , i.e.: r(V ) =
{
v ∈ V

∣
∣ ∃ M ∈ (

Z
l
2

)∗ such that IV
M−→ v

}
.

By construction, r(V ) ⊆ Vin. Finally, we introduce a specific subset of r(V ):

r̄(V ) =
{

v ∈ V
∣
∣ ∃ M ∈ (

Z
l
2

)∗ such that IV
M−→ v and depad(M) �= ⊥

}
.

For simplicity, V, r(V ) and r̄(V ) are updated by the simulator implicitly.

4.2 Intuition behind the Simulator

In this section we take a closer look at the simulator of Fig. 2 by starting with
an example. Consider the case that a node x is a member of both r̄(V ) and
dom(LP ). This means that (1) there exists an M such that IV

M−→ x and
depad(M) �= ⊥, and (2) there exists a y ∈ rng(LP ), such that y = SP (x). In
the real world (where the left oracle is the Grøstl hash function), these values
satisfy Gr(depad(M)) = chopl−n(x ⊕ y) by construction. If the simulator does
not answer its queries wisely, this equality would hold with negligible probability
in the simulated world. More generally, the simulator can guarantee that this
equation holds only if x is added to dom(LP ) after it was added to r̄(V ) (reflected
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in requirement R3 below)3. Maintaining consistency, however, becomes harder
when |r̄(V )| and |dom(LP )| increase. The idea behind the simulator is to answer
its queries such that it can control the growth of r(V ), and in particular the
growth of r̄(V ) as a subset of r(V ), while still maintaining consistency in its
answers. Intuitively, the simulator responds to its queries, such that the following
requirements are satisfied:

R1. There are no colliding paths in (r(V ), E). Observe that two different paths
to the same node may lead to distinguishability for D as the simulator can
be consistent with only one of the paths. This requirement is satisfied if
r(V ) is never increased with a node that has two incoming edges in the
updated4 graph;

R2. S increases r(V ) only if it is forced to do. In particular, r(V ) is never in-
creased with a node that has an outgoing edge in the updated graph. Ob-
serve that each path in (r(V ), E) leads to a potential node in r̄(V );

R3. S never increases r̄(V ) with a node in the updated dom(LP );
R4. S increases dom(LP ) with a node in r̄(V ) only if it is forced to. Observe

that in case of inverse queries to SP−1 , the simulator can avoid outputting
elements in r̄(V ). In forward queries to SP , the simulator may be forced to
increase r̄(V )∩ dom(LP ). In this case, it consults its oracle RO to generate
the answer.

The first two conditions are regarding the growth of r(V ), and the second two
concern the growth of r̄(V ) ∩ dom(LP ). We show how these conditions occur in
the description of the simulator in Fig. 2. We first consider requirements R1 and
R2, then we look at R3 and R4.

Restricting the growth of r(V )
Inverse queries. Consider an inverse query y1 to SP−1 . It is easy to see that
both R1 and R2 are satisfied if the simulator outputs its answer x1, such that
none of the newly added vertices {x1 ⊕ x2 | x2 ∈ dom(LQ)} to Vout is already
rooted. A similar observation holds for queries to SQ−1 . These requirements
translate to lines 3e and 4c in the description of the simulator in Fig. 2.

Forward queries. In forward queries to SP , SQ, the simulator may be forced to
increase r(V ). Consider a query x1 to SP , and consider any x2 ∈ dom(LQ) such
that x1⊕x2 ∈ r(V ). Then, the edge x1⊕ x2

x2−→ x1⊕ x2⊕ y1⊕ y2 will be added

3 Observe that RO(depad(M)) = chopl−n(LP (x) ⊕ x) should hold for IV
M−→ x. If

x ∈ dom(LP ) before it is added to r̄(V ), this means that LP (x) ⊕ x is fixed before
RO(depad(M)) is known.

4 This requirement should hold for the ‘updated’ graph, which can be seen as follows:
suppose the distinguisher makes a forward query x1 to SP such that x1⊕x2, x1⊕x′

2 ∈
r(V ) for different x2, x

′
2 ∈ dom(LQ), and both x1⊕x2⊕y1⊕y2 and x1⊕x′

2⊕y1⊕y′
2

are not in V yet. By construction, these nodes have zero incoming edges in the non-
updated (V, E), but it may accidentally be the case that these nodes are equal, in
which case they have two incoming edges in the updated graph.
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to (V, E) by construction. Denote by V ′ the multiset of updated nodes after the
query. Then, we require that x1 ⊕ x2 ⊕ y1 ⊕ y2 does not occur twice in V ′

in (in
order to establish R1), and moreover that it does not occur in V ′

out (in order to
establish R2). If we define Vnew = {x1⊕x′

2, x1⊕x′
2⊕ y1⊕ y′

2 | (x′
2, y

′
2) ∈ LQ} to

be the multiset of newly added nodes to V in the query to SP , both requirements
are satisfied if x1 ⊕ x2 ⊕ y1 ⊕ y2 �∈ V ∪ (Vnew\{x1 ⊕ x2 ⊕ y1 ⊕ y2}) holds for all
(x2, y2) ∈ LQ such that x1 ⊕ x2 ∈ r(V ). A similar condition can be derived for
queries to SQ. These requirements translate to lines 1k and 2e in the description
of the simulator in Fig. 2.

Restricting the growth of r̄(V ) ∩ dom(LP )
Inverse queries. As explained, S never increases r̄(V ) ⊆ r(V ) in inverse
queries. Hence, requirement R3 is naturally satisfied. Furthermore, R4 is guaran-
teed if queries to SP−1 are never answered with a node in r̄(V ). This requirement
translates to line 3c from Fig. 2.

Forward queries. First consider requirement R3. Let the distinguisher make
a query to SP or SQ, such that r̄(V ) gets increased. By construction and the
fact that requirement R2 is satisfied, this means that an edge x1 ⊕ x2

x2−→
x1 ⊕ x2 ⊕ y1 ⊕ y2 is added to (V, E), such that IV

M−→ x1 ⊕ x2 for some
M ∈ (

Z
l
2

)∗, and x2 ∈ Z(M). The simulator needs to be designed such that
the newly added value to r̄(V ), x1 ⊕ x2 ⊕ y1 ⊕ y2, is not a member of (the
updated) dom(LP ). This requirement translates to lines 1l and 2f in Fig. 2. Re-
quirement R4 is clearly not applicable to queries to SQ. Consider a query x1 to
SP , where x1 ∈ r̄(V ). Then, the simulator is forced to increase r̄(V )∩dom(LP ).
As x1 ∈ r̄(V ), there exists an M such that IV

M−→ x1 and depad(M) �= ⊥. The
output of the simulator needs to be consistent with its random oracle, such that
RO(depad(M)) = chopl−n(SP (x1) ⊕ x1). This requirement translates to lines
1b-1e in the description of the simulator in Fig. 2.

4.3 Proof of Thm. 1

Thm. 1 will be proven via a game-playing argument, where the games are used
to simulate one of the worlds (left or right). It is inspired by the proofs of [11],
but differs in several aspects. Let S be the simulator of Fig. 2, and let D be any
distinguisher that makes at most qL left queries of maximal length (K−1)l bits,
where K ≥ 1, qP right queries to P and qQ right queries to Q. Recall from Def. 1
that the goal is to bound:

Advpro
Gr,S(D) =

∣
∣
∣Pr

(
DGrP,Q,(P,Q) = 1

)
− Pr

(
DRO,SRO

= 1
)∣
∣
∣ . (3)

Game 1 (Fig. 3). The left oracle L1 of game 1 is a lazily-sampled random oracle,
and the four interfaces of the right oracle are the simulator of Fig. 2, except for
the inclusion of some failure conditions badi (i = 0, . . . , 4). In other words, we
have G1 = (RO, SRO), and in particular, Pr

(
DRO,SRO

= 1
)

= Pr
(DG1 = 1

)
.
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On query SP (x1):

1a if x1∈dom(LP ) ret y1 = LP (x1)

1b if x1∈ r̄(V ) for IV
M−→ x1 :

1c h ← RO(depad(M))

1d w
$← Z

l−n
2

1e y1 ← x1⊕ (h‖w)

1f if y1∈ rng(LP ) :

1g GOTO 1d

1h else y1
$← Z

l
2\rng(LP )

1i Vnew ← {x1⊕x′2, x1⊕x′2⊕y1⊕y′2 | (x′2, y′2)∈LQ} multiset

1j ∀ (x2, y2)∈LQ s.t. x1⊕x2∈r(V ) for IV
M−→ x1⊕x2 :

1k if x1⊕x2⊕y1⊕y2∈V ∪ (Vnew\{x1⊕x2⊕y1⊕y2}) or

1l
(

x2∈Z(M) and x1⊕x2⊕y1⊕y2∈dom(LP ) ∪ {x1}
)

:

1m GOTO 1b

1n ret LP (x1) ← y1

On query SQ(x2):

2a if x2∈dom(LQ) ret y2 = LQ(x2)

2b y2
$← Z

l
2\rng(LQ)

2c Vnew ← {x′1⊕x2, x′1⊕x2⊕y′1⊕y2 | (x′1, y′1)∈LP } multiset

2d ∀ (x1, y1)∈LP s.t. x1⊕x2∈r(V ) for IV
M−→ x1⊕x2 :

2e if x1⊕x2⊕y1⊕y2∈V ∪ (Vnew\{x1⊕x2⊕y1⊕y2}) or

2f
(

x2∈Z(M) and x1⊕x2⊕y1⊕y2∈dom(LP )
)

:

2g GOTO 2b

2h ret LQ(x2)← y2

On query S
P -1 (y1):

3a if y1∈ rng(LP ) ret x1 = L-1
P (y1)

3b x1
$← Z

l
2\dom(LP )

3c if x1∈ r̄(V ) :

3d GOTO 3b

3e ∀ x2∈dom(LQ) : if x1⊕x2∈r(V ) :

3f GOTO 3b

3g ret L-1
P (y1) ← x1

On query S
Q-1 (y2):

4a if y2∈ rng(LQ) ret x2 = L-1
Q (y2)

4b x2
$← Z

l
2\dom(LQ)

4c ∀ x1∈dom(LP ) : if x1⊕x2∈r(V ) :

4d GOTO 4b

4e ret L-1
Q (y2) ← x2

Fig. 2. The simulator S for P and Q used in the proof of Thm. 1

Game 2 (Fig. 3). Game 2 only differs from game 1 in the left oracle: L1

is replaced by a relay oracle L2 that simply passes the queries made by the
distinguisher to L1. The right oracle remains unchanged, and still queries the
subroutine L1. The distinguisher has identical views in G1 and G2. Formally, we
obtain Pr

(DG1 = 1
)

= Pr
(DG2 = 1

)
.

Game 3 (Fig. 4). Game 3 differs from game 2 in the fact that the left oracle L2

is replaced by the Grøstl hash function, which makes queries to the right oracle.
The right oracle itself remains unchanged, and still queries subroutine L1. It is
proven in Prop. 2 that, until bad :=

∨4
i=0 badi occurs in any of the two games,

both are identical. Formally, we obtain:
∣
∣Pr

(DG2 = 1
)− Pr

(DG3 = 1
)∣∣ ≤ Pr

(DG2 sets bad
)

+ Pr
(DG3 sets bad

)
.

Game 4 (Fig. 5). Game 4 differs from game 3 in the fact that the right oracle
does not query subroutine L1 anymore, but rather, it generates the outcomes it-
self. Concretely, in line 1c, h is now randomly sampled from Z

n
2 . The distinguisher

cannot notice the difference: as the padding rule is injective, in game 3 the right
oracle RP will never query its left oracle twice on the same value, and hence it
will always receive h

$← Z
n
2 . Formally, we obtain Pr

(DG3 = 1
)

= Pr
(DG4 = 1

)
.

Game 5 (Fig. 5). Game 5 only differs from game 4 in the fact that the GOTO-
statements are removed. In other words, game 5 and game 4 proceed identically
until bad occurs. As a consequence:

∣
∣Pr

(DG4 = 1
)− Pr

(DG5 = 1
)∣∣ ≤ Pr

(DG4 sets bad
)
.
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On query RP (x1):

1a if x1∈dom(LP ) ret y1 = LP (x1)

1b if x1∈ r̄(V ) for IV
M−→ x1 :

1c h ← L1(depad(M))

1d w
$← Z

l−n
2

1e y1 ← x1⊕ (h‖w)

1f if y1∈ rng(LP ) :

1g bad0 ← true

1h GOTO 1d

1i else y1
$← Z

l
2\rng(LP )

1j Vnew ← {x1⊕x′2, x1⊕x′2⊕y1⊕y′2 | (x′2, y′2)∈LQ} multiset

1k ∀ (x2, y2)∈LQ s.t. x1⊕x2∈r(V ) for IV
M−→ x1⊕x2 :

1l if x1⊕x2⊕y1⊕y2∈V ∪ (Vnew\{x1⊕x2⊕y1⊕y2}) or

1m
(

x2∈Z(M) and x1⊕x2⊕y1⊕y2∈dom(LP ) ∪ {x1}
)

:

1n bad1 ← true

1o GOTO 1b

1p ret LP (x1) ← y1

On query RQ(x2):

2a if x2∈dom(LQ) ret y2 = LQ(x2)

2b y2
$← Z

l
2\rng(LQ)

2c Vnew ← {x′1⊕x2, x′1⊕x2⊕y′1⊕y2 | (x′1, y′1)∈LP } multiset

2d ∀ (x1, y1)∈LP s.t. x1⊕x2∈r(V ) for IV
M−→ x1⊕x2 :

2e if x1⊕x2⊕y1⊕y2∈V ∪ (Vnew\{x1⊕x2⊕y1⊕y2}) or

2f
(

x2∈Z(M) and x1⊕x2⊕y1⊕y2∈dom(LP )
)

:

2g bad2 ← true

2h GOTO 2b

2i ret LQ(x2)← y2

On query R
P -1 (y1):

3a if y1∈ rng(LP ) ret x1 = L-1
P (y1)

3b x1
$← Z

l
2\dom(LP )

3c if x1∈ r̄(V ) :

3d bad3 ← true

3e GOTO 3b

3f ∀ x2∈dom(LQ) : if x1⊕x2∈r(V ) :

3g bad3 ← true

3h GOTO 3b

3i ret L-1
P (y1) ← x1

On query R
Q-1 (y2):

4a if y2∈ rng(LQ) ret x2 = L-1
Q (y2)

4b x2
$← Z

l
2\dom(LQ)

4c ∀ x1∈dom(LP ) : if x1⊕x2∈r(V ) :

4d bad4 ← true

4e GOTO 4b

4f ret L-1
Q (y2) ← x2

On query L1(M):

5a if M∈dom(H) ret h = H(M)

5b h
$← Z

n
2

5c ret H(M) ← h

On query L2(M):

6a ret h← L1(M)

Fig. 3. Game 1 (with the boxed statement removed) and game 2 (including the boxed
statement). In game 1, the distinguisher has access to L1, R

L1 . In game 2, the distin-
guisher has access to LL1

2 , RL1 .

Game 6 (Fig. 6). The left oracle of game 6 is the Grøstl algorithm, and the
four interfaces of the right oracle perfectly mimic two lazily-sampled random
permutations P and Q. In other words, we have G6 = (GrP,Q, (P, Q)), and thus
Pr

(DG6 = 1
)

= Pr
(
DGrP,Q,(P,Q) = 1

)
. The only difference between games 6 and

5 is in the forward queries to RP : in game 5, some queries to RP are answered
with uniform random samples from Z

l
2. Therefore, distinguishing game 6 from

game 5 is at least as hard as distinguishing a random permutation from a random
function. As RP will be queried at most qP + (K + 1)qL =: rP times, we obtain:

∣
∣Pr

(DG5 = 1
)− Pr

(DG6 = 1
)∣∣ ≤ r2

P

2l
.

As we have Pr
(DG2 sets bad

) ≤ Pr
(DG3 sets bad

)
= Pr

(DG4 sets bad
)
, we

conclude that (3) reduces to:

Advpro
Gr,S(D) ≤ r2

P

2l
+ 3 · Pr

(DG4 sets bad
)
. (4)

Game 7 (Fig. 7). Game 7 is used to simplify the computation of the probability
that DG4 sets bad. In game 7, the failure conditions for bad0, . . . ,bad4 of game
4 are rewritten into sets A0, . . . , A4. By the straightforward definition of A0, A3
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On query RP (x1):

1a if x1∈dom(LP ) ret y1 = LP (x1)

1b if x1∈ r̄(V ) for IV
M−→ x1 :

1c h ← L1(depad(M))

1d w
$← Z

l−n
2

1e y1 ← x1⊕ (h‖w)

1f if y1∈ rng(LP ) :

1g bad0 ← true

1h GOTO 1d

1i else y1
$← Z

l
2\rng(LP )

1j Vnew ← {x1⊕x′2, x1⊕x′2⊕y1⊕y′2 | (x′2, y′2)∈LQ} multiset

1k ∀ (x2, y2)∈LQ s.t. x1⊕x2∈r(V ) for IV
M−→ x1⊕x2 :

1l if x1⊕x2⊕y1⊕y2∈V ∪ (Vnew\{x1⊕x2⊕y1⊕y2}) or

1m
(

x2∈Z(M) and x1⊕x2⊕y1⊕y2∈dom(LP ) ∪ {x1}
)

:

1n bad1 ← true

1o GOTO 1b

1p ret LP (x1) ← y1

On query RQ(x2):

2a if x2∈dom(LQ) ret y2 = LQ(x2)

2b y2
$← Z

l
2\rng(LQ)

2c Vnew ← {x′1⊕x2, x′1⊕x2⊕y′1⊕y2 | (x′1, y′1)∈LP } multiset

2d ∀ (x1, y1)∈LP s.t. x1⊕x2∈r(V ) for IV
M−→ x1⊕x2 :

2e if x1⊕x2⊕y1⊕y2∈V ∪ (Vnew\{x1⊕x2⊕y1⊕y2}) or

2f
(

x2∈Z(M) and x1⊕x2⊕y1⊕y2∈dom(LP )
)

:

2g bad2 ← true

2h GOTO 2b

2i ret LQ(x2)← y2

On query R
P -1 (y1):

3a if y1∈ rng(LP ) ret x1 = L-1
P (y1)

3b x1
$← Z

l
2\dom(LP )

3c if x1∈ r̄(V ) :

3d bad3 ← true

3e GOTO 3b

3f ∀ x2∈dom(LQ) : if x1⊕x2∈r(V ) :

3g bad3 ← true

3h GOTO 3b

3i ret L-1
P (y1) ← x1

On query R
Q-1 (y2):

4a if y2∈ rng(LQ) ret x2 = L-1
Q (y2)

4b x2
$← Z

l
2\dom(LQ)

4c ∀ x1∈dom(LP ) : if x1⊕x2∈r(V ) :

4d bad4 ← true

4e GOTO 4b

4f ret L-1
Q (y2) ← x2

On query L1(M):

5a if M∈dom(H) ret h = H(M)

5b h
$← Z

n
2

5c ret H(M) ← h

On query L3(M):

6a (M′1, . . . , M′k) ← pad(M)

6b h0 ← IVn

6c for i = 1, . . . , k :

6d a← RQ(M′i)

6e b← RP (hi−1⊕M′i)
6f hi ← a⊕b⊕hi−1
6g d ← RP (hk)

6h h ← chopl−n(d⊕hk)

6i ret h

Fig. 4. Game 3. The distinguisher has access to LRL1
3 , RL1 .

and A4, it is clear that for i = 0, 3, 4, DG4 sets badi if and only if DG7 sets badi.
Now, suppose DG4 sets bad1. This means that for some (x2, y2) ∈ LQ such that
x1 ⊕ x2 ∈ r(V ) either one of the following two cases occurred:

y1 =

{
x1 ⊕ x2 ⊕ y2 ⊕ s, for some s ∈ V ∪ (Vnew\{x1 ⊕ x2 ⊕ y1 ⊕ y2}) ,

x1 ⊕ x2 ⊕ y2 ⊕ x′
1, for some x′

1 ∈ dom(LP ) ∪ {x1}.

By definition of A1, this means that y1 ∈ A1. In other words, DG7 sets bad1

if DG4 sets bad1. A similar observation holds for bad2. As a consequence,
Pr

(DG4 sets bad
) ≤ Pr

(DG7 sets bad
)
, and therefore (4) reduces to:

Advpro
Gr,S(D) ≤ r2

P

2l
+ 3 · Pr

(DG7 sets bad1 | ¬bad0

)
+ 3

4∑

i=0
i�=1

Pr
(DG7 sets badi

)
.

In the remainder, we concentrate on the computation of these probabilities.
Observe that the distinguisher makes at most qP + (K + 1)qL =: rP queries to
RP , RP−1 and qQ + KqL =: rQ queries to RQ, RQ−1 .
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On query RP (x1):

1a if x1∈dom(LP ) ret y1 = LP (x1)

1b if x1∈ r̄(V ) :

1c h
$← Z

n
2

1d w
$← Z

l−n
2

1e y1 ← x1⊕ (h‖w)

1f if y1∈ rng(LP ) :

1g bad0 ← true

1h GOTO 1d

1i else y1
$← Z

l
2\rng(LP )

1j Vnew ← {x1⊕x′2, x1⊕x′2⊕y1⊕y′2 | (x′2, y′2)∈LQ} multiset

1k ∀ (x2, y2)∈LQ s.t. x1⊕x2∈r(V ) for IV
M−→ x1⊕x2 :

1l if x1⊕x2⊕y1⊕y2∈V ∪ (Vnew\{x1⊕x2⊕y1⊕y2}) or

1m
(

x2∈Z(M) and x1⊕x2⊕y1⊕y2∈dom(LP ) ∪ {x1}
)

:
1n bad1 ← true

1o GOTO 1b

1p ret LP (x1) ← y1

On query RQ(x2):

2a if x2∈dom(LQ) ret y2 = LQ(x2)

2b y2
$← Z

l
2\rng(LQ)

2c Vnew ← {x′1⊕x2, x′1⊕x2⊕y′1⊕y2 | (x′1, y′1)∈LP } multiset

2d ∀ (x1, y1)∈LP s.t. x1⊕x2∈r(V ) for IV
M−→ x1⊕x2 :

2e if x1⊕x2⊕y1⊕y2∈V ∪ (Vnew\{x1⊕x2⊕y1⊕y2}) or

2f
(

x2∈Z(M) and x1⊕x2⊕y1⊕y2∈dom(LP )
)

:
2g bad2 ← true

2h GOTO 2b

2i ret LQ(x2)← y2

On query R
P -1 (y1):

3a if y1∈ rng(LP ) ret x1 = L-1
P (y1)

3b x1
$← Z

l
2\dom(LP )

3c if x1∈ r̄(V ) :

3d bad3 ← true

3e GOTO 3b

3f ∀ x2∈dom(LQ) : if x1⊕x2∈r(V ) :

3g bad3 ← true

3h GOTO 3b

3i ret L-1
P (y1) ← x1

On query R
Q-1 (y2):

4a if y2∈ rng(LQ) ret x2 = L-1
Q (y2)

4b x2
$← Z

l
2\dom(LQ)

4c ∀ x1∈dom(LP ) : if x1⊕x2∈r(V ) :

4d bad4 ← true

4e GOTO 4b

4f ret L-1
Q (y2) ← x2

On query L3(M):

5a (M′1, . . . , M′k) ← pad(M)

5b h0 ← IVn

5c for i = 1, . . . , k :

5d a← RQ(M′i)

5e b← RP (hi−1⊕M′i)
5f hi ← a⊕b⊕hi−1
5g d ← RP (hk)

5h h ← chopl−n(d⊕hk)

5i ret h

Fig. 5. Game 4 (including the boxed statements) and game 5 (with the boxed state-
ments removed). In both games, the distinguisher has access to LR

3 , R.

Pr
(DG7 sets bad0

)
. Consider the jth query to RP , 1 ≤ j ≤ rP . The probability

that bad0 is set in this query, badj
0, equals the probability that y1 hits A0.

But as y1 is taken uniformly at random from a set of size 2l, and A0 is of size
at most rP , badj

0 occurs with probability at most rP

2l . By the union bound,

Pr
(DG7 sets bad0

) ≤ r2
P

2l ;
Pr

(DG7 sets bad1 | DG7 sets ¬bad0

)
. Consider the jth query to RP , 1 ≤ j ≤

rP . The probability that bad1 is set in this query, badj
1, equals the prob-

ability that y1 hits A1. But as y1 is taken uniformly at random from a set
of size at least 2l − rP (because DG7 sets ¬bad0), and A1 is of size at most
rQ(2rP rQ + rP ), badj

1 occurs with probability at most rP rQ(2rQ+1)
2l−rP

. By the

union bound, Pr
(DG7 sets bad1 | DG7 sets ¬bad0

) ≤ r2
P rQ(2rQ+1)

2l−rP
;

Analogously, bad2 is set with probability at most r2
P rQ(2rQ+1)

2l−rQ
, bad3 with proba-

bility at most r2
P rQ(rQ+1)

2l−rP
, and bad4 with probability at most r2

P r2
Q

2l−rQ
. Concluding,

under the assumption that rP , rQ < 2l−1, we obtain:

Advpro
Gr,S(D) ≤ 58(qP + (K + 1)qL)2(qQ + KqL)2

2l
.
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On query RP (x1):

1a if x1∈dom(LP ) ret y1 = LP (x1)

1b y1
$← Z

l
2\rng(LP )

1c ret LP (x1) ← y1

On query RQ(x2):

2a if x2∈dom(LQ) ret y2 = LQ(x2)

2b y2
$← Z

l
2\rng(LQ)

2c ret LQ(x2)← y2

On query R
P -1 (y1):

3a if y1∈ rng(LP ) ret x1 = L-1
P (y1)

3b x1
$← Z

l
2\dom(LP )

3c ret L-1
P (y1) ← x1

On query R
Q-1 (y2):

4a if y2∈ rng(LQ) ret x2 = L-1
Q (y2)

4b x2
$← Z

l
2\dom(LQ)

4c ret L-1
Q (y2) ← x2

On query L3(M):

5a (M′1, . . . , M′k) ← pad(M)

5b h0 ← IVn

5c for i = 1, . . . , k :

5d a← RQ(M′i)
5e b← RP (hi−1⊕M′i)
5f hi ← a⊕b⊕hi−1
5g d← RP (hk)

5h h← chopl−n(d⊕hk)

5i ret h

Fig. 6. Game 6. The distinguisher has access to LR
3 , R.

This completes the proof of Thm. 1.

Proposition 2. Until bad occurs in game 2 or 3, both games are identical.
Formally: Pr

(DG2 = 1
∣∣ DG2 sets ¬bad

)
= Pr

(DG3 = 1
∣∣ DG3 sets ¬bad

)
.

Proof. We need to prove that the query outcomes in game 2 and 3 are identically
distributed, until the distinguisher sets bad in either one of the games. As the
right oracles of the games are the same, D can differentiate game 2 and 3 only if
it discovers any inconsistencies in the answers by the left oracles (L2 for game 2
and L3 for game 3), given any list of queries made by D to the right oracle. Recall
that LP ,LQ denote the query history to the right oracles RP , RQ, and (V, E)
the graph defined by these queries (cf. Sect. 4.1). Denote any query history to
Li (i = 2, 3) by L. Furthermore, denote by L̃P , L̃Q the set of queries to the
right oracles that are observed by the distinguisher5, and denote by (Ṽ , Ẽ) the
subgraph defined by these. We focus on the outcomes of the left oracle: we need
to prove that given the views L̃P , L̃Q, and given query history L, the outcomes
of new queries to the left oracle are identically distributed in game 2 and 3.
Concretely, for α ∈ Z

n
2 , we analyze the probability

Pr
(
Li(M) = α in Gi | L̃P , L̃Q,L; M �∈ dom(L); DGi sets ¬bad

)
. (5)

Define M ′ = (M ′
1, . . . , M

′
k) = pad(M) to be the padding of M . The query

Li(M) is called ‘evaluatable’ by L̃P , L̃Q if there exists an hk in r̄(Ṽ ) such that

IV
M ′−→ hk, and hk ∈ dom(L̃P ). We will show that for both games the following

holds: if Li(M) is evaluatable by L̃P , L̃Q, the query answer can be obtained
deterministically from this history. On the other hand, if it is not evaluatable
by L̃P , L̃Q, (5) holds with probability 1/2n only. In other words, this probability
is the same in both games i = 2, 3, which proves the claim that the answers by
L2, L3 are identically distributed.

For the purpose of the proof, we also consider evaluatability by LP ,LQ, which
is defined similarly as before. Observe that Hi(M) is evaluatable by LP ,LQ if it
is evaluatable by L̃P , L̃Q. We now analyze (5). First we consider the case Li(M)

5 In game 3, the right oracles RP , RQ are also queried in each call to the left oracle,
via lines 6d, 6e and 6g, but the distinguisher does not observe these queries.
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On query RP (x1):

1a if x1∈dom(LP ) ret y1 = LP (x1)

1b if x1∈ r̄(V ) :

1c h
$← Z

n
2

1d w
$← Z

l−n
2

1e y1 ← x1⊕ (h‖w)

1f if y1∈A0 :

1g bad0 ← true

1h GOTO 1d

1i else y1
$← Z

l
2\rng(LP )

1j if y1∈A1 :

1k bad1 ← true

1l GOTO 1b

1m ret LP (x1)← y1

On query RQ(x2):

2a if x2∈dom(LQ) ret y2 = LQ(x2)

2b y2
$← Z

l
2\rng(LQ)

2c if y2∈A2 :

2d bad2 ← true

2e GOTO 2b

2f ret LQ(x2)← y2

On query R
P -1 (y1):

3a if y1∈ rng(LP ) ret x1 = L-1
P (y1)

3b x1
$← Z

l
2\dom(LP )

3c if x1∈A3 :

3d bad3 ← true

3e GOTO 3b

3f ret L-1
P (y1)← x1

On query R
Q-1 (y2):

4a if y2∈ rng(LQ) ret x2 = L-1
Q (y2)

4b x2
$← Z

l
2\dom(LQ)

4c if x2∈A4 :

4d bad4 ← true

4e GOTO 4b

4f ret L-1
Q (y2)← x2

On query L3(M):

5a (M′1, . . . , M′k)← pad(M)

5b h0 ← IVn

5c for i = 1, . . . , k :

5d a← RQ(M′i)
5e b ← RP (hi−1⊕M′i)
5f hi ← a⊕b⊕hi−1
5g d← RP (hk)

5h h← chopl−n(d⊕hk)

5i ret h

A0 = rng(LP );

A1 =
⋃

(x2,y2)∈LQ

( {
x1 ⊕ x2 ⊕ y2 ⊕ s | s ∈ V ∪ (Vnew\{x1 ⊕ x2 ⊕ y1 ⊕ y2})

}∪
{

x1 ⊕ x2 ⊕ y2 ⊕ x′1| x′1 ∈ dom(LP ) ∪ {x1}
})

,

where Vnew = {x1 ⊕ x′2, x1 ⊕ x′2 ⊕ y1 ⊕ y′2 | (x′2, y′2) ∈ LQ} is a multiset;

A2 =
⋃

(x1,y1)∈LP

( {
x1 ⊕ x2 ⊕ y1 ⊕ s | s ∈ V ∪ (Vnew\{x1 ⊕ x2 ⊕ y1 ⊕ y2})

}∪
{

x1 ⊕ x2 ⊕ y1 ⊕ x′1| x′1 ∈ dom(LP )
})

,

where Vnew = {x′1 ⊕ x2, x′1 ⊕ x2 ⊕ y′1 ⊕ y2 | (x′1, y′1) ∈ LP } is a multiset;

A3 = r̄(V ) ∪ {x2 ⊕ s | x2 ∈ dom(LQ), s ∈ r(V )} ;

A4 = {x1 ⊕ s | x1 ∈ dom(LP ), s ∈ r(V )} .

Fig. 7. Game 7. The distinguisher has access to LR
3 , R.

is evaluatable by L̃P , L̃Q. Then we consider the case it is not evaluatable by
these views (but it may be evaluatable by LP ,LQ).

(1) Li(M) (i = 2, 3) is evaluatable by L̃P , L̃Q. In both games, this means

that there exists an hk in r̄(Ṽ ) such that IV
M ′−→ hk, and hk ∈ dom(L̃P ). By

Claim 2 below, there are no colliding paths and in particular the described
path M ′ is unique. Furthermore, due to Claim 3 below, hk had been added
to dom(L̃P ) in a forward query, after it was added to r̄(Ṽ ). Therefore, by
line 1c, we have RP (hk) = hk⊕ (h‖w), where h = L1(M). As a consequence,
L1(M), and thus L2(M) and L3(M), is fully determined by L̃P , L̃Q, which
means that the outcomes in game 2 and 3 are identically distributed;

(2) Li(M) (i = 2, 3) is not evaluatable by L̃P , L̃Q, but it is evaluatable
by LP ,LQ. This event is excluded for game 2 as (L̃P , L̃Q) = (LP ,LQ) in
this game. In game 3, LP ,LQ also includes queries made to the right oracle
via the left oracle L3. We will show, however, that (5) holds with probability
1/2n then. Similarly to case (1), there exists an hk in r̄(V ) ∩ dom(LP ) such



On the Indifferentiability of the Grøstl Hash Function 103

that IV
M ′−→ hk and RP (hk) = hk ⊕ (h‖w), where h = L1(M). But L3(M)

is not evaluatable by L̃P , L̃Q, which means that hk had been queried to RP

independently of L̃P , L̃Q. Furthermore, L3(M) is also independent of L.6

Concluding, (5) holds with probability 1/2n in this case;
(3) Li(M) (i = 2, 3) is not evaluatable by LP ,LQ. As a consequence, there

either exists no hk ∈ r̄(V ) such that IV
M ′−→ hk, or there exists such hk, but it

is no element of dom(LP ). For game 2, M �∈ dom(L) implies that M had not
been queried to L1 before (L1 is queried in lines 6a and 1c only). Therefore,
in this case L2(M) outputs a value h randomly sampled from Z

n
2 . For game

3, let j ≤ k be the maximal index such that IV = h0
M ′1−→ · · · M ′j−→ hj is a

path in (V, E). We consider the following cases:

(i) j = k. Then, there exists an hk ∈ r̄(V ) such that IV
M ′−→ hk, but as

L3(M) is not evaluatable, we have hk �∈ dom(LP ). In line 6h of the
oracle query of L3(M), RP (hk) will then be computed via lines 1b-1e:
RP (hk) = hk ⊕ (h‖w) for h

$← Z
n
2 . The outcome L3(M) thus equals

L3(M) = chopl−n(RP (hk)⊕ hk) = h. As a consequence, the outcomes
of L2 and L3 are identically distributed in this case;

(ii) j < k. Then, there exists a path IV → hj labeled by (M ′
1, . . . , M

′
j),

but (V, E) contains no edge hj → hj+1 labeled by M ′
j+1. By virtue

of Claim 2, in the (j + 1)th iteration of lines 6c-6f, a new node hj+1

will be added to r(V ) such that hj+1 was not rooted yet and there is
no outgoing edge from hj+1 in the updated graph. The same holds for
all subsequent iterations, and in particular hk will be newly added to
r̄(V ) in the kth iteration. Due to Claim 3, this newly added note is not
an element of dom(LP ) after this last round. Now, the same analysis
as in (3i) applies. ��

Claim 2. Suppose DGi sets ¬bad (for i = 2, 3). Consider a node s ∈ r(V ),
and a right oracle query in which an edge (s, t) will be added to (V, E). Denote
by (V ′, E′) the updated graph (after the query). Then, t has no incoming or
outgoing edge in (V ′, E′\{(s, t)}). As a consequence, after the execution of Gi,
the final graph contains no colliding paths.

Proof. In a right query to RP−1 or RQ−1 , none of the newly added edges have a
rooted node as starting point, by ¬(bad3 ∨ bad4) (lines 3f and 4c). Consider a
query x1 to RP , and let (V, E) be the graph before the query. An outgoing edge
from s ∈ r(V ) will only be added if s = x1 ⊕ x2 for some x2 ∈ dom(LQ). By
construction, the end node of the edge is x1 ⊕ x2 ⊕ y1 ⊕ y2 =: t. By line 1l and
¬bad1, we have (a) t �∈ V , (b) none of the newly added edges will leave from t
and (c) apart from (s, t), none of the newly added edges will arrive at t. As a

6 Observe that in game 3, L consists of pairs (M̄, h̄) such that h̄ = chopl−n(RP (h̄k)⊕
h̄k) for some h̄k ∈ r̄(V )∩ dom(LP ), where, by Claim 3, RP (h̄k) had been generated
via lines 1b-1e. As there are no colliding paths in (V, E) by Claim 2, hk differs from
all such h̄k’s, and in particular L reveals nothing about L3(M).
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consequence, t is an isolated node in (V ′, E′\{(s, t)}). A similar argument holds
for queries to RQ, by line 2e and ¬bad2.

We prove that the final graph contains no colliding paths by mathematical
induction. Before the first query is made, E = ∅ and hence no colliding paths
occur. Assume (V, E) contains no colliding paths and consider a right oracle
query. We can sequentially apply the above reasoning and discard all newly
added edges (s, t) for s ∈ r(V ), in order to observe that colliding paths in
(V ′, E′) imply colliding paths in (V, E). By the induction hypothesis, these do
not occur. ��
Claim 3. Suppose DGi sets ¬bad (for i = 2, 3). Consider a right oracle query
in which a node t will be added to r̄(V ). Then, t is no element of (the updated)
dom(LP ). Furthermore, r̄(V )∩dom(LP ) will only be increased in forward queries
to RP .

Proof. As a direct consequence of Claim 2, r̄(V ) will be increased only if an edge
x1 ⊕ x2

x2−→ x1 ⊕ x2 ⊕ y1 ⊕ y2 is added such that IV
M−→ x1 ⊕ x2 is a path in

(V, E), and x2 ∈ Z(M). Due to lines 1m and 2f, and by ¬(bad1 ∨ bad2), this
newly added node is not an element of (the updated) dom(LP ). Furthermore, an
inverse query to RP will never be answered with a node already in r̄(V ), by line
3c and ¬bad3, and therefore r̄(V ) ∩ dom(LP ) will only be increased in forward
queries to RP . ��
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Abstract. Gennaro et al. initiated the study of algorithmic tamper proof (ATP)
cryptography: cryptographic hardware that remains secure even in the presence
of an adversary who can tamper with the memory content of a hardware device.
In this paper, we solve an open problem stated in their paper, and also consider
whether a device can be secured against an adversary who can both tamper with
its memory and probe a few memory locations or wires at a time. Our results are
as follows:

– It is impossible to realize a secure cryptographic functionality with a per-
sonal identification number (PIN) where a user is allowed to make up to �
incorrect consecutive attempts to enter her PIN, with no total limit on incor-
rect PIN attempts. (This was left as an open problem by Gennaro et al.)

– It is impossible to secure a deterministic cryptographic device against an
adversary who is allowed to both tamper with the memory of the device and
probe a memory location; it is also essentially infeasible to secure it if the
adversary’s probing power is restricted to internal wires; it is impossible to
secure it against an adversary whose probing power is restricted to internal
wires, but who is also allowed to tamper with a few internal wires.

– By extending the results of Ishai et al., we show that a cryptographic de-
vice with a true source of randomness can withstand tampering and limited
probing attacks at the same time.

1 Introduction

In cryptography, we typically assume that an adversary launching an attack can nei-
ther probe bits of a secret key, nor tamper with it; the adversary may only obtain in-
put/output (i.e. black-box) access to a functionality it is trying to attack. However, in
practice, adversaries may attack a cryptographic device through other means. For ex-
ample, in a side-channel attack [AK96, AK97], an adversary can measure the power
consumption of the device [KJJ99, CRR03], timing of operations [Koc96], electromag-
netic radiation [AARR03], etc. Additionally, an adversary may tamper with the device’s
memory [BS97] or circuitry [SA03] and check the effect this might have on the device’s
computation.

There are several lines of work that place these attacks on theoretical foundations.
Gennaro et al. [GLM+04] defined security of a cryptographic functionality against an
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adversary who can tamper with the contents of a device’s memory, and showed how to
satisfy their definition. Ishai et al. [ISW03], in contrast, defined and realized security
for devices where an adversary can probe the memory of the device (more precisely,
wires of its circuit), and even fix some of the wires in a circuit under attack.

In this paper, we examine security under a combination of attacks described in these
previous papers. Intuitively, it would seem that it should be possible to combine the
positive results of the two lines of work and design a device that would withstand an
adversary who can both tamper with its memory and probe a few memory locations at
a time. Surprisingly, we show that a cryptographic functionality cannot withstand such
a combined attack, unless augmented with a true source of randomness. We give an
adversary who, given the ability to only probe one memory location at a time, and the
ability to tamper with the memory of a deterministic device, retrieves the entire secret
content of the device’s memory, even though the device may continuously update its
secret content (so the trivial attack that just probes memory locations one by one would
not work).

Related work. Gennaro et al. [GLM+04] considered the adversary who, in addition to
black-box access to a functionality he is trying to attack, also has the ability to tam-
per with the memory of this device. Their work was motivated by that of Biham and
Shamir [BS97] who showed how to break cryptographic schemes by having the mem-
ory of a device modified in a certain way. Gennaro et al. gave a definition of algorithmic
tamper-proof (ATP) security: this means that the device is programmed in such a way
that the underlying cryptographic functionality (e.g., a signature scheme) will remain
secure (e.g., existentially unforgeable) even in the presence of such an adversary. They
then showed that, unless a device has a self-destruct capability and can be initialized via
a trusted setup phase, this notion of security is unattainable. However, they also showed
that using self-destruct and trusted setup, it is possible to achieve ATP security.

Ishai et al. [ISW03] considered the adversary who, in addition to black-box access to
a circuit implementing a cryptographic functionality, could also probe individual wires
of this circuit (we call this a “memory probing adversary”). They showed, surprisingly,
that one could tolerate an adversary that probes up to some constant t wires at a time
using a transformed circuit where corresponding to every wire of the original circuit,
there are Θ(t) wires, each carrying a share of value of the original wire. Moreover,
every time such a circuit is invoked it can redistribute these shares, and so it can be
probed again, so over the lifetime of the circuit, the adversary can probe each wire
several times. This resharing does not require a continuous source of true randomness:
it can be done using a pseudorandom generator seeded by a random string that resides
in the circuit’s memory and also gets updated at every invocation. In a follow-up paper,
Ishai et al. [IPSW06] further extended this model to allow the adversary to tamper with
another c wires: to fix them temporarily or permanently. They showed that it was still
possible to have a circuit that withstood such an attack.

Micali and Reyzin [MR04] defined security for cryptographic primitives under side
channel attacks and show how to use these primitives; their side channel attack is
much more general than attacks that are known in the real world [AK96, Koc96,
KJJ99, AARR03, CRR03], and also more general than the probing attack of Ishai
et al. [ISW03]. In fact, the model of Ishai et al. [ISW03] is a special case of the
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Micali-Reyzin model. Micali and Reyzin do not, however, consider an adversary that
tampers with the device.

Recently Dziembowski, Pietrzak, and Wichs [DPW10], they also consider security
against the algorithmic tamper and probing adversaries. Their main technique is to con-
struct “non-malleable codes” against a certain class of tampering attacks. In the plain
model, their positive result holds for a smaller class of tampering functions that do mod-
ifications effecting each bit of the memory but independent of other bits. With a random
oracle, they are able to extend the results against a broader class of tampering functions,
yet the random oracle model is less desirable. We remark this does not contradict our
impossibility results since we consider the stronger adversaries who can perform any
polynomial-time computable tampering attacks in the plain model, where it is still open
that one can extend their positive results in this case.

Our contribution. Our first contribution in the ATP model is to resolve, in the negative,
the problem left open by Gennaro et al. of whether it was possible to realize a secure
cryptographic functionality with a personal identification number (PIN) where a user is
allowed to make up to � incorrect consecutive attempts to enter her PIN, with no total
limit on incorrect PIN attempts. (In contrast, Gennaro et al. showed that it was possible
to limit the total number of incorrectly entered PINs). Along the way, we also showed
that no ATP secure functionality can allow a user to change her PIN.

Next, we address the natural question of whether it is possible to achieve ATP secu-
rity even in the presence of a memory-probing adversary. Here we remark that suppose
the adversary can read all the contents in the memory by probing at one shot, then no
security can be achieved. Thus in our model of memory-probing adversary, we con-
sider a relaxation of the adversary’s power by restricting the number of bits she can
probe in a time. However, we do not limit the total number of bits (information) she can
gather over time. This approach is similar to the key leakage model where the leakage
is bounded at any moment but not over time.

Then, we give a definition of security for this scenario; our definition is a natural
generalization of the definition of Gennaro et al. Next, we show that no deterministic
circuit can achieve this notion of security: a memory-probing adversary who can also
tamper with the memory can retrieve the secret content of the device’s memory, even
if she can only probe a constant number (very small fraction of the memory) in any
moment.

Note that this impossibility applies to the circuit constructed by Ishai et al.: even
though their construction uses randomness, ultimately it is the pseudorandom generator
supplying it using a random seed in a deterministic fashion, hence their overall circuit
is deterministic. The difference is that they only allow up to a certain number of wires
to be tampered, while we consider the much more powerful tampering adversary of
Gennaro et al., who may apply any polynomial-time computable transformation to the
contents of a circuit’s memory.

We also consider a variation of the memory probing adversary: one who may not
probe memory cells, but only intermediate wires of the circuit. This is to model the
idea that perhaps memory cells can be invulnerable to probing. It turns out that such
an adversary is almost equally powerful: even though he is only explicitly allowed to
read up to a constant t wires of the circuit at a time, he can cause any deterministic
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circuit to behave in such a way that the contents of every wire in a particular invo-
cation of the circuit (other than the protected memory cells) will become exposed to
the adversary, i.e. the adversary can read all the wires at once. Due to impossibility
of obfuscation [BGI+01], this leads to insecurity. (On the other hand, since we cannot
reverse-engineer a circuit either, it does not necessarily imply that the secret content of
the circuit can be computed from this information.)

Finally, we also consider the adversary who is allowed to tamper with wires of a
circuit in addition to tampering with its memory and probing additional wires. Here,
even if we do not allow the adversary to probe memory cells, the adversary can still
retrieve the secret content of any deterministic circuit. Moreover, he can do it even if he
chooses the set of wires to probe and tamper with non-adaptively.

On the positive side, we show that the Ishai et al.’s randomized construction (i.e. the
one that uses true randomness, not a pseudorandom generator), in combination with the
Gennaro et al.’s construction, achieves ATP security in the face of the circuit probing
and tampering attack (but not memory probing). This is the best positive result we could
get: for any other scenario we showed negative results!

Having investigated into the models in both paper, we briefly describe the distinction
between those two: for the [GLM+04] model, the adversary can tamper with the whole
memory, but cannot do with the circuit. In [IPSW06] model, the adversary can partially
tamper and probe every part of the circuit, but cannot tamper with the whole memory
in a single clock cycle. Both models have positive results. It is natural to consider if we
can combine those models, to give the adversary more power, to see if positive results
still remain or where they get stuck.

We show, mostly, that security cannot be achieved under a combination of attacks, for
circuits without a source of true randomness. Under some conditions, the circuit with
such source can apply the previous techniques to achieve security against the combined
attacks. This is a separation for the models that shows a circuit with its randomness
stored vulnerably is strictly less secure than that with a source of true randomness.

2 Definitions

2.1 ATP Models

Following Gennaro et al., we consider a system with two components: (1) secret con-
tent, sc (containing some secret key, sk, randomness, and possibly state information),
and (2) a cryptographic algorithm implemented by a circuit C which uses the secret
content.

We say that the system implements a certain function F , if for any input a,C(sc, a)=
F (a). We say that C implements a keyed cryptographic functionality F (·, ·), if for every
key sk (from the appropriate domain) there exists a setting scsk of the secret data, such
that the system (C, scsk) implements the function F (sk, ·). An algorithm computing
scsk will be called a software setup algorithm. Finally, a device setup protocol imple-
menting F (·, ·) is a pair of algorithms. The first generates the algorithm C, possibly
with some additional state information to be passed to the second algorithm. The sec-
ond is a software setup algorithm: given input sk and C, and possibly an additional state
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information input, the algorithm generates an appropriate scsk. If the software setup al-
gorithm is stateful, we say that the device uses public parameters. We will consider
devices with efficient setup algorithms, and all the functionalities the devices compute
are polynomially-computable.

Consider C which implements some F (·, ·) (e.g., a signature algorithm). Gennaro
et al. defined a tampering adversary who can request two commands to be carried out:
Run(·) and Apply(·), and Setup.

– The command Run(a), invokes the cryptographic computation C using the soft-
ware content sc on input a. The output is the output of such computation, i.e.,
C(sc, a). For example, if the cryptographic algorithm is a signature then the output
is a signature on the message a using the secret key stored in sc.

– The command Apply(f) takes as input a function f , and modifies the software con-
tent sc to f(sc). From this point on, until a new Apply(f) is requested, all Run(a)
operations will use f(sc) as the new software content. f can be a probabilistic func-
tion. Note that the next invocation of Apply(f ′) would change f(sc) to f ′(f(sc)),
i.e. it does not apply f ′ to the original sc. There is no output for this command.

– The command Setup(sk) invokes the software setup algorithm, outputting sc such
that the device C(sc, ·) implements the function F (sk, ·).

The device may also have a self-destruct capability, called by the circuit C. If this
happens, every Run command from then on will always output ⊥.

As mentioned above, security of smartcards and other portable devices is one of the
motivations for considering this model. For convenience, throughout this paper we refer
to the system interchangeably as a “card” or a “device”.

In the tampering adversary model (referred to in the sequel as the ATP model and the
[GLM+04] model), the adversary only applies a polynomial-time computable transfor-
mation on the secret memory content sc without reading it directly. On the other hand,
the underlying hardware circuit C cannot be tampered with, and results of intermediate
computation steps cannot be eavesdropped.

In the following sections, we extend the [GLM+04] model to allow the adversary
to not only tamper with the circuit’s memory, but also to probe the circuit’s wires and
gates while the computation is going on, and to tamper with the individual wires in
the circuit. We get adversaries of different strengths by allowing various combinations
of these attacks. The memory probing adversary is allowed to read one bit at a time
of the secret content sc, in addition to being able to tamper with it through the Apply
command. The circuit probing adversary will be allowed to retrieve the contents of a
wire in the circuit during the execution of a Run command, in addition to being able
to issue Apply commands. The wire fixing adversary is allowed to fix a particular wire
of the circuit so that for the duration of the Run query it carries a particular bit. We
will formalize the definitions of these additional adversarial behaviors in the following
sections.

2.2 Memory-Probing Models

In this section, we consider the adversary by allowing the probing attacks on the mem-
ory. Besides Run, the adversary can probe several (a constant number of) cells in the
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memory once, after Run is finished. To formalize that, we make available to the adver-
sary the following capability: Let the memory content sc ∈ {0, 1}m be an m-bit string,
and T be a subset of {1, 2, . . . , m} The command ProbeMem(T ) returns the ith bit of
the secret content, sci for any i ∈ T .

If |T | = m, then we could never achieve security.Therefore, it is natural to limit the
size of probing by allowing |T | = t for a constant parameter (that does not grow with
m). The command ProbeMem can be executed at most once following an execution of
the Run command. We allow the adversary to change the set of indices it queries, T ,
adaptively.

2.3 Circuit-Probing and Circuit-Tampering Models

In this section, we consider another type of attacks: the adversary can tamper or probe the
circuit’s wires when Run is operating. To formalize that, we let the wires in the circuit be
labeled by W = {w1, w2, . . . , w�} for some �, and T be a subset of {w1, w2, . . . , w�}.

For the Circuit-Probing model, the adversary may issue the following command:

– The commands ProbeWire(T ) returns the values of the wires wi ∈ T .

For the Circuit-Tampering model, the adversary may issue the following commands:

– The commands ChangeWire(T, val) returns nothing but replaces the value in the
wire wi ∈ T with vali temporarily.

– The commands FixWire(T, val) returns nothing but replaces the value in the wire
wi ∈ T with vali permanently.

The adversary is able to apply any and only one of these commands per clock cycle
when the circuit is operating (Run is called.) Since this model inherits the results of
[IPSW06], it is reasonable for us to limit the size of T by setting |T | = t for some
constant parameter, as they did.

2.4 Combined ATP, Memory-Probing, Circuit-Tampering, Circuit-Probing
Models

In the following sections, we will consider a variety of combination of models. In
summary, section 4 considers the combination of ATP and Memory-Probing models;
section 5 considers the combination of ATP, Circuit-Probing, and Circuit-Tampering
models. The details will be explained in the sections respectively.

2.5 Security Definition

Here we give a general definition for the security of the circuit. This definition is an ex-
tension of the [GLM+04] definition: it gives the adversary a broader set of capabilities.

Definition 1. Define AIdeal be the set of adversaries that can only obtain the input-
output behavior of the device, and AModel be the set of adversaries that can perform
any attack defined in a particular Model (this Model can be a combination of attack
capabilities described above). Let C be a circuit that implements some functionality.
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We say C is Model-secure if there exists a probabilistic polynomial time simulator S
such that for any A ∈ AModel, the following two experiments are computationally in-
distinguishable:

1. SA ∈ AIdeal outputs a bit after interacting with C.
2. A ∈ AModel outputs a bit after interacting with C.

In the following sections, if we don’t specify the Model, we are referring to the model
discussed in that section.

3 New Impossibility Result in the ATP Model

Consider the following functionality for a signature device with a personal identifica-
tion number (PIN). The device has a public key pk, and its secret content sc contains
the corresponding sk and a personal identification code pin that must be entered for
the device to run properly. The idea is that a user Alice of the device would need to
remember a short PIN; if she loses the device and it falls into the adversary’s hands, the
adversary will still have to correctly guess the PIN before he can use it. We want a de-
vice that tolerates a few incorrect PIN attempts (since Alice may occasionally mistype
the PIN), but stops working after the number of incorrectly entered PINs exceeds a cer-
tain threshold α (a constant that is much smaller than all possible PINs). Gennaro et al.
showed that this is possible if we want to tolerate α as the total number of incorrectly
entered PINs, but left as an open problem the question of whether it was possible to
have a functionality that allowed any number of incorrectly entered PINs over the life
of the device, but would stop working if the number of consecutive incorrect PINs ex-
ceeds the threshold α. Here we show that this functionality (referred to in the sequel as
“signature with consecutive PIN protection”) cannot be ATP-secure. We also show that
we cannot achieve ATP security for the functionality that allows Alice to change her
PIN (referred to in the sequel as “signature with user changeable PIN”).

In the following theorems, we assume that the device computes a polynomial-time
function that on input PIN and the secret component outputs 1/0, denoting the validity
of the PIN. Also we assume that the PIN has a polynomial-size support.

Theorem 1. The signature with user changeable PIN functionality cannot be ATP se-
cure, even if a circuit can self-destruct, assuming the device implements a polynomial-
time change-pin function fChangePIN that on input (sc,NewPIN ,OldPIN ) outputs
a new valid secret component sc′, and the devices calls fChangePIN when the user
changes her PIN.

Proof. The adversary will take advantage of the existence of this function fChangePIN

in order to break the ATP security of the device. Recall that the adversary may specify,
as input to the Apply command, a polynomial-time computable function f . As a result
of Apply(f), our adversary will succeed in replacing the old PIN (which he does not
know) with a new PIN. For simplicity, the new PIN will be the all-zero string 0� where
� is the length of the PIN. As a result of Apply(f), the adversary will be able to use the
device from now on.
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This function f works as follows: for every possible PIN p, it runs the following
function fp: On input secret component sc of the device, fp first checks whether p is
the correct PIN, then it returns sc′ = fChangePIN (sc, 0�, p). Else fp returns sc. Since
f does this for every possible PIN p, we guarantee that in the end, sc will be modified
in the same way as if the user changed her PIN to 0�. f is polynomial-time, because
the PIN is a memorizable short number, for which all possibilities can be enumerated
in polynomial time (from the assumption). ��
Theorem 2. The signature with consecutive PIN protection functionality cannot be
ATP secure, even if a circuit can self-destruct, assuming the device implements a
polynomial-time reset function fResetPIN that on input sc, Input , pin outputs a valid
sc′ for the correct PIN, and every time every time the PIN is correctly entered, the
counter of consecutive errors is reset.

Proof. Our adversary will take advantage of the existence of this function fResetPIN in
order to come up with the function f to give as argument to the Apply command. As
a result of Apply(f), the counter for incorrect consecutive PIN attempts will be reset,
even though the adversary has not issued Run(Input , pin) for the correct PIN pin .

f will work as follows: for all possible PINs p, it will run the function fp. fp (sim-
ilarly to the proof of Theorem 1) works like this: on input (sc, Input), where Input is
any message in the message space of the signature scheme — for simplicity, let Input
be the all-zero message 0n. it first checks whether p is the correct PIN; if so, it returns
sc′ = fResetPIN (sc, Input , p); else, it returns sc.

Once again, since PIN is a memorizable short number, f can call every possible fp

in polynomial time. After Apply(f) is executed, the secret content is whatever it would
be after Run(Input , pin) is queried with the valid PIN pin . ��

4 Impossibility of Deterministic Circuits in the ATP-Memory-
Probing Model

Suppose that, after the circuit C executes a Run command, the secret contents sc always
remains unchanged, i.e. the same as before the Run command was executed. Then the
memory probing adversary can trivially learn the entire string sc by simply probing
each bit of sc one by one. Here we show that even if the circuit C updates sc before
completing the execution of Run, the memory probing adversary can still compute a
candidate sc′ that would correspond to the secret contents of the device for some time
period.

Let Cmem be the function that, on input sc and a outputs the updated version of sc,
the secret contents of the device’s memory left behind after Run(a) is executed. For a
particular a, let X0 = sc, Xi+1 := Nexta(Xi) be shorthand for Cmem(Xi, a). Let sc
and a be given; for i > 0, if the circuit is deterministic, each Xi is well-defined.

Theorem 3. A deterministic signature functionality cannot be ATP-Memory-Probing
secure, even if the circuit can self-destruct: there exists a polynomial-time adversary
that outputs Xi for some i.
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Proof. We prove the theorem by giving an adversary that attacks any device that
implements the signature functionality. The adversary will get some “useful” informa-
tion by probing some bits in the memory. The intuition is: the adversary takes advan-
tage of a polynomial-time computable function f that first identifies a good location to
probe, signals this location back to the adversary, and then conveys the secret content
in that particular location in the memory. To be more specific: for the memory con-
tents X0, X1, . . . , X� for some �, there is either a simple cycle or at least one bit of the
memory that has changes with enough regularity. For the former case, the adversary can
always fix the memory content to be the same and then probe it bit by bit. For the latter
one, the adversary can obtain this location (having changes with enough regularity) and
then transmit one Xt for some t through probing at this location.

Let us explain how this function conveys information and how the adversary receives
it with the following algorithms. Algorithm 5 describes the function f that the adversary
is going to use: f is parameterized by (r, aux , a). r is an integer that depends on how
many times the adversary has already modified the memory. aux is a string that depends
on what she is trying to do at this stage. a is the index of Nexta(sc) = Cmem(sc, a).
With the algorithm, we develop the following lemmas for the theorem.

Lemma 1. The adversarial function is a polynomial-time computable function.

Proof. Every step in the algorithm is clearly polynomial-time computable. We put a
more detailed proof in the full version of this paper.

Lemma 2. The adversary will find a sc′ that C(sc ′, ·) also implements a valid signa-
ture function as C(sc, ·) does.

Proof. We consider two cases, (1) there exists a cycle with length no greater than m3 +
3m on X0, X1, . . . , X�, where X0 = sc, Xi = Nexta(Xi−1), and � = m3 + 4m − r,
for some r ∈ [m]. (2) there doesn’t. For the first case, we let X0 be the start of the cycle;
otherwise the function will first return Xj , where Nexta(Xj) is the start of the cycle,
and then we go back to the case where X0 is the start of the cycle.

1. Suppose there exists a j < m3 + 4m < � such that Xj = X0 = sc, the adversarial
function will move the memory to Xj−1. After the device runs, it updates the mem-
ory from Xj−1 to Xj = X0 = sc, so the adversary will probe with the same mem-
ory contents (sc) in the first m rounds. Also, since m3 + 3m ≤ � = m3 + 4m − r
for r ∈ [m], the adversarial function will always find this cycle, and the memory
will always be X0 when the adversary probes it. Therefore the adversary will find
sc and construct C(sc, ·) as desired.

2. Suppose there doesn’t exist such small cycle, then the adversary will most likely
not get a good candidate after step 1. (Note: if she still does get one by luck, then she
will be very happy and doesn’t need the following procedure. The proof is done.)
Now, she is going to query “Is location k a good place to probe?” for every bit.
Since there doesn’t exist a cycle or a small cycle in X0, X1, . . . , Xl, we assume
X0, X1, . . . , Xm3+3m are distinct elements without loss of generality. Then the
adversary is going to ask which location is a good place to probe. Note: a good
location is the place which contains a lot of 0, 1 alternations. So the adversarial
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function can use those 0/1’s to convey sc′ when the adversary is probing such
location.

3. Now we want to prove there must be a good location to probe: if location i is not
the place to be probed, then the adversarial function will at most move from X0 to
X2 after “Give me 0” and “Give me 1”, since we can always find a two-bit string
in X0(i), X1(i), X2(i) that violates “01” (in any one of the eight combinations of
those three bits.) Thus, at each time when the third step of the function is run, there
are at least m3 distinct elements (i.e. X0, X1, . . . Xm3 , ) (for a bad location, we
waste at most three distinct elements. Thus, every time we have at least m3 +3m−
3m distinct elements.)

Since those elements are distinct, we have
∑j=m

j=1 |Xi(j)−Xi+1(j)| ≥ 1 for any

i = 1....m3 − 1. This implies
∑m3−1

i=0

∑j=m
j=1 |Xi(j) − Xi+1(j)| ≥ m3. This is a

finite summation and i, j are independent, so we can change the summation order

to get:
∑j=m

j=1

∑m3−1
i=0 |Xi(j) − Xi+1(j)| ≥ m3. According to the pigeon hole

principle, we must have some k such that
∑m3−1

i=0 |Xi(k) − Xi+1(k)| ≥ m3/m =

m2 > 5m+2. Note: diffk =
∑m3+4m−r

i=0 |Xi(k)−Xi+1(k)| ≥ ∑m3−1
i=0 |Xi(k)−

Xi+1(k)| ≥ 5m + 2− r. Thus we must have some k such that diffk > 5m + 2− r
for r = 0 or 1.

This implies in this case, there must exist a good location to probe. And the
adversary will get this one from the function f . After this location is obtained,
there are 5m alternations of 0/1 on this bit, and the adversarial function can easily
convey the message about sc′ through this bit. The remaining argument follows
straightforwardly with the algorithm ��

Remark 1. A natural question is: what can this attack do to a functionality with a PIN?
In such a functionality, the adversary must enter the correct PIN pin to run Run(a, pin).
Recall that we require the PIN to be an easily memorizable string, and so the number of
possible choices is not large. Therefore the adversary has a non-negligible probability
of guessing it correctly. Once she guesses the correct PIN, she can find out the secret
content sc′ using the attack above.

Remark 2. This result is not limited to the signature functionality; we used signatures
for concreteness. In fact, no deterministic testable (as defined by Gennaro et al.) func-
tionality can be ATP secure in the memory probing model.

5 Impossibility of Deterministic Circuits in the ATP-Circuit-
Probing-Tampering-Model

In this section, we are going to consider the model where the adversary can do the
probing attacks and tampering attacks on the wires. From the previous section, we have
already shown that if the adversary is able to read directly the memory cell (or read
from the wires that carry the content into the circuitry) then the deterministic circuit
can not achieve ATP security. Those impossibilities are still inherited here. Therefore,
we are going to consider further restrictions on the adversary.
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Algorithm 1. Description of the Adversary (Theorem 3)
1. Pick an arbitrary a from the message space in the signature scheme.

for i = 1 to m do
Let r = i, aux = ε, sc′ = ε.
Run consecutively Apply(fr,aux ,a), Run(a), and sc′ = sc′ ◦ ProbeMem({i}). I.e.
probe location i of the memory and then concatenate the outcome with sc′.

end for
Then we have a candidate sc′ from the bits we’ve probed.
Construct a circuit C(sc′, ·) and check if this circuit outputs validly for the signature
scheme as C(sc, ·) does.

2. if the constructed circuit does then
Output sc′

else
for i = 1 to m do

Let r = 0, aux =“Is location i a good place to probe?”◦“Give me 0”
Run Apply(fr,aux ,a), Run(a) and then ProbeMem({i}). .
Let r = 1, aux =“Is location i a good place to probe?”◦“Give me 1”
Run Apply(fr,aux ,a), Run(a) and then ProbeMem({i}).
If the outcomes of two consecutive probes are anything other than 01, then the ad-
versary knows this is not a good location to probe, so it continues. Otherwise, exit
for and let bit pb = i be the location to be probed.

end for
end if

3. Let str = ε
for i = 1 to m do

Let r = i, aux =“Location pb will be probed.”◦”I want bit i of the secret.” ◦”Bits
1, 2, . . . , i − 1 of the secret are str”
Run Apply(fr,aux ,a), Run(a), and b = ProbeMem({pb}). (Probe location pb, and get
the outcome b.)
Let str = str ◦ b (a concatenation.)

end for
Output str.

Before stating them, we first consider some motivations for intuitively understand-
ing. Suppose the adversary has some nano needles that can perform the probing and
tampering attacks on wires, but each needle occupies some areas and after placing the
needle, the adversary cannot change its position without damaging the original circuit.
Thus she should choose a small set of wires which she is going to attack in advance and
cannot change them adaptively. In this section, we show that even with the restrictions,
the adversary can destroy the ATP security. As a consequence, the adversary with even
stronger power that can attack wires adaptively can certainly destroy the ATP security.

Now we state the restrictions explicitly: the adversary needs to select a set of wires
to attack before the operation of the device. Note: every wire can be included in this
set, and once it is chosen, the adversary can only tamper or probe the wires in this
set. Also, after this set has been chosen, the adversary cannot change it. This is called
non-adaptive attacks.
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Algorithm 2. The adversarial function fr,aux ,a (Theorem 3)
On input sc do:

1. Compute X0, X1, . . . , X�, for � = m3 + 4m − r. Note: recall X0 = sc, Xi =
Nexta(Xi−1) as defined in the beginning in this section.

2. If aux = ε, then try to determine if the sequence of values {Xi} contains a cy-
cle:

If aux �= ε, goto Step 3: that is, the adversary already knows that there are no small
cycles.
Else, check for cycles with its length no greater than m3 + 3m: does there exist an 0 ≤
i < j ≤ � such that Xi = Xj , and j − i < m3 +3m, and Xi, Xi+1, . . . , Xj are distinct.

if NO (i.e. no cycle or there exists a cycle but the length is too large) then
Output X0.

else
consider two cases: (a) i > 0: output Xi (b) i = 0: output Xj−1.

end if
3. if aux contains the string “Location k will be probed.” then

go to Step 4. The adversary already knows which location to probe in the memory to
get useful information.

else
aux must contain the string “Is location k a good place to probe?” A good location to
probe is one where, as the value of sc changes over time, the bit stored at this memory
location keeps changing. Thus, if we want to communicate a bit b to the adversary, we
can do so by setting sc = Xi for some Xi whose kth bit is b.
Let S be the string obtained by concatenating the following bits: S = X1(k)◦X2(k)◦
· · · ◦ Xl(k) where Xi(j) means the j-th bit of Xi. Let diff k =

∑�
j=2 |Xj(k) −

Xj−1(k)|. I.e., diff k measures how many times the value stored at the kth memory
location changes as sc changes over time.
if diff k > 5m + 2 − r then

This is a good location, because diff k is high. This needs to be communicated back
to the adversary. We know that the adversary will be probing the kth memory loca-
tion to get the answer to this question, and therefore we do as follows:
consider the two cases:

(a) aux contains “Give me a 0” then let t + 1 be the smallest integer such that
Xt+1(k) = 0. Output Xt.

(b) aux contains “Give me a 1” then let t + 1 be the smallest integer such that
Xt+1(k) = 1. Output Xt.

else
k is a bad location.
consider the two cases:

(a) aux contains the string “Give me a 0” then if X1(k) = 1 output X0. If X1(k) =
0, and X2(k) = 1 output X1. Else if X1(k) = 0,and X2(k) = 0 output X0.

(b) aux contains the string “Give me a 1” then output X0.
end if

end if
4. The adversary will probe location k. Among the � possibilities for sc, X0, . . . , X�, find

Xt for a sufficiently large t, consistent with what the adversary already knows, and com-
municate a bit of Xt by making sure that this bit will be read off from location k. More
precisely:

aux must contain “Location k will be probed”, and “I want bit j of the secret.”, and “Bits
1, 2, . . . , j − 1 of the secret are s1, s2, . . . , sj−1.”
Find the least t ≥ m5−m3r such that the first j−1 bits of Xt are s1, s2, . . . , sj−1. Find
the least u such that Xu+1(k) = Xt(j). Output Xu.
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In the following, we are going to show the adversary only needs to attack a small
set of wires to destroy ATP security. Since the construction of the adversary and proofs
are similar to theorem 3, we only state the theorem here and leave the details including
the formalization of the model and proofs the full version of this paper for the curious
readers.

Theorem 4. A deterministic signature functionality cannot be ATP-Circuit-Probing-
Tampering secure in the non-adaptive model. That is: the adversary first sets the attack
range on the output wires of Ccheck and then will either disable the self-destruct func-
tion or find out some valid sc′.

Note: Ccheck is one part of the components in the circuit, which checks if the memory is
valid. The functionality is necessary for every cryptographic device. The precise model
can be found in the the full version of this paper.

Remark 3. Gennaro et al. showed there is no ATP secure achieved without self-destruct
functionality. Thus, if the adversary disables such functionality, she can retrieve the
secret content as the authors did in [GLM+04].

Remark 4. Since the signature functionality cannot be ATP secure under non-adaptive
model, it is clearly that it cannot withstand a stronger adversary which can do the adap-
tive attacks.

6 ATP-Circuit-Probing-Tampering Security from Encoded
Randomness Gates

In the previous sections, we see the limitations of deterministic circuits. Thus it seems
that the signals in the wires should be made independent of the memory content to de-
fend against probing attacks. And this is where randomness comes in handy. Intuitively,
one can think that randomness provides an independent and unpredictable shield that
hides each signal (using a secret sharing scheme [ISW03]) which the adversary cannot
manipulate by merely tampering with the memory content.

In this section, we consider circuits with a source of true randomness. For this model,
the previous results in [IPSW06, ISW03, GLM+04] work. After we rule out yet an-
other class of attacks that makes the circuit entirely vulnerable, we can combine the
techniques in those works to achieve ATP security in this new model.

Definition 2 (Randomness gate). A randomness gate is a gate with no input and one
output wire that emits a truly random bit each clock cycle.

Lemma 3. In the ATP-Circuit-Probing-Circuit-Tampering model, there exists an ad-
versary who, for any keyed cryptographic functionality, either discovers a valid secret
sc′, or determines all the values of all the internal wires corresponding to the execution
of the Run() command, even for circuits with randomness gates.

Proof (sketch). Let RG = {rg1, rg2, . . . , rgr} be the set of randomness gates used by
the circuit. Since the adversary can tamper with any internal wire, he can fix the output
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of every randomness gate. We must make sure that this does not cause the device to
self-destruct (for example, a device that remembers the randomness used in previous
invocation might detect that something suspicious is going on). To do that, once the
output of a randomness gate is fixed, the adversary must run the Apply() command
that will make a device that can store m bits of memory “fast-forward” far enough
into the future, using true randomness, so that it would no longer remember the fixed
randomness. Now the circuit becomes deterministic and we can use a similar attack in
the previous section. A formal description is deferred to the full version of this paper.

We see that if all randomness gates are vulnerable under tampering attacks, then the
circuit can be made deterministic. Thus, to defend against tampering attacks, we need
a more complex gadget: “encoded randomness gate,” as proposed in [IPSW06]. Let
the encoded randomness gate ERGk be an element that takes no input and produces a
string of output a k-bit string per clock cycle, 1k representing 1, 0k representing 0, and
others representing the invalid signal. The output distribution is Pr[ERGk = 1k] =
Pr[ERGk = 0k] = 1/2. The intuition for this gadget is that the adversary has little
probability to fix the entire output of a gadget before causing an invalid signal. From
the techniques in [IPSW06], we can design an implementation that if an invalid signal
is caused, then it will be passed to the whole circuit and erase the whole output and
memory content.

Theorem 5 (main result in [GLM+04]). Under the assumption of the existence of
strong universalunforgeable signaturescheme, thereexistsunforgeable signaturescheme
that achieves ATP security. That is, there exists a circuit C(sc, ·) that implements a sig-
nature functionality with secret content sc stored in the Memory and is ATP secure.

The main idea here is let sc = sc′◦σΠ(sc) where σ is a universal unforgeable signature
scheme and Π is the secret signing key of the card manufacturer, and sc′ contains the
signing key of the signature device. In brief, since σΠ(sc) can be only issued by the
manufacturer, the adversary is not able to produce it by himself, and thus she cannot
produce any other valid sc′ that will pass the verification process. The formal reduction
proof can be found in [GLM+04].

Next, we recall the main result of Ishai et al. By “registers” we mean a special com-
ponent of the circuit into which a portion of memory (and intermediate results of com-
putation steps) can be loaded at execution time.

Theorem 6 (main result in [IPSW06]). There exists a circuit C(·), using AND, OR,
NOT, and “encoded randomness gates,” with sc stored in its registers that implements
a signature functionality and achieves Circuit-Probing-Circuit-Tampering security.

Theorem 7 (combined result). Let m be the length of the secret content sc. There ex-
ists a circuit C(·), using AND, OR, NOT, “encoded randomness gates,” and Θ(m) “ro-
bust wires” which are invulnerable to probing attacks, with sc stored in its memory that
implements a signature functionality and achieves ATP-Circuit-Probing-Tampering
security.

The idea here is that the circuit first uses the robust wires to load the memory content to
the registers. Then during the execution, the device only uses the registers in the circuit
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for the memorization of internal states, etc. Finally, the circuit updates the memory
through the robust wires. Then Theorem 5 and Theorem 6 combine perfectly.
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Abstract. We study a problem of secure data storage on hardware that may leak
information. We introduce a new primitive, that we call leakage-resilient storage
(LRS), which is an (unkeyed) scheme for encoding messages, and can be viewed
as a generalization of the All-Or-Nothing Transform (AONT, Rivest 1997). The
standard definition of AONT requires that it should be hard to reconstruct a mes-
sage m if not all the bits of its encoding Encode(m) are known. LRS is defined
more generally, with respect to a class Γ of functions. The security definition
of LRS requires that it should be hard to reconstruct m even if some values
g1(Encode(m)), . . . , gt(Encode(m)) are known (where g1, . . . , gt ∈ Γ ), as
long as the total length of g1(Encode(m)), . . . , gt(Encode(m)) is smaller than
some parameter c.

We construct an LRS scheme that is secure with respect to Γ being a set
of functions that can depend only on some restricted part of the memory. More
precisely: we assume that the memory is divided in 2 parts, and the functions in
Γ can be just applied to one of these parts. We also construct a scheme that is
secure if the cardinality of Γ is restricted (but still it can be exponential in the
length of the encoding). This construction implies security in the case when the
set Γ consists of functions that are computable by Boolean circuits of a small
size.

We also discuss the connection between the problem of constructing leakage-
resilient storage and a theory of the compressibility of NP-instances.
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These, so-called side-channel attacks, are based on the fact that the adversary may
obtain some information about the internal data of the device by observing its running-
time [27], electromagnetic radiation [35,19], power consumption [28], or even sound
that the device is emitting [40] (see [34,32] for more examples of such attacks).

1.1 Memory Leakages — Previous Work

Over the last couple of years there has been a growing interest in the design of schemes
that already on the abstract level guarantee that their physical implementation is se-
cure against a large well-defined class of side-channel attacks (the pioneering paper in
this area was [30]). The main idea is to augment the standard security definition by al-
lowing the adversary to learn the value of a chosen by him leakage function g on the
internal data τ used by the cryptographic scheme. The results in this area can be catego-
rized according to the class of leakage functions g that the model covers. Some papers
consider very restricted classes (e.g. in [24] the model assumes that the adversary can
simply read-off some wires that represent the computation), while other ones consider
more general leakages—e.g. [1] allow the adversary to choose any function g that is
input-shrinking (i.e. such that |g(τ)| � |τ |).

Another popular paradigm is to assume that only computation leaks information, i.e.
the memory cells that do not take part in the computation (in a given time period) do not
leak any information. The first paper to state this assumption is [30] (where it is stated
as “Axiom 1”, page 283), and the other papers that use it are [17,33]. The schemes of
[17,33] are actually secure even if the total amount of information that leaks is greater
than the memory size (this is possible since the memory contents is evolving during the
computation). The other approach [1,31,25,12,11] is to assume that the memory may
simply leak information, independently on the computation performed.

It may be questioned if the “only computation leaks information” paradigm is really
relevant to the attack that the adversary can perform in real-life. In many situations mem-
ory may actually leak information, even if it is unaccessed. First of all, in modern com-
puter systems it is hard to guarantee that a given part of memory really never gets accessed
(for example the memory may be refreshed or moved to cache, etc.). Some practical at-
tacks on unaccessed memory were also demonstrated in [38]. More recently a class of
cold boot attacks relying on the data remanence property was presented in [20].

A natural question to ask is whether there exist methods for storing data securely in
the memory that may leak information. This is the main subject of this paper.

A relation to the Bounded-Retrieval Model. The idea to reason about the partial key
leakages by modeling them as input-shrinking functions originates from the Bounded-
Retrieval Model (BRM) [14,9,15,6,16,2] (that in turn was inspired by the Bounded-
Storage Model of Maurer [29]). Originally BRM was proposed as a method for pro-
tecting against computer viruses that may steal large amounts of data from the PCs: the
main idea of the BRM is to construct schemes where the secret key τ is large and to
assume that the adversary can retrieve the value of some input-shrinking function g of
τ . The main differences between this setting and the models for the side-channel attack
come from the fact that the keys in the BRM are huge and hence: (1) one has to design
scheme where the honest user does not need to frequently process the entire τ , and (2)
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one can allow that some part of τ leaks each time the scheme is used. Nevertheless in
[14] it was observed that BRM can be used to model the side-channel attacks.

1.2 Our Contribution

In this paper we introduce a new primitive, that we call leakage-resilient storage, which
can be viewed as a secure storage scheme in the model where the physical memory
may leak some side-channel information. A scheme like this consists of two poly-time
algorithms Encode and Decode, where the encoding algorithm Encode takes as input

a message m and produces as output a string τ
def= Encode(m), and the decoding al-

gorithm Decode is such that we always have Decode(Encode(m)) = m (observe that
these algorithms do not take as input any secret key).

Informally speaking, in the security definition we allow the adversary to adaptively
choose a sequence of leakage functions g1, . . . , gt, and learn the values of

g1(τ), . . . , gt(τ).

We require that the adversary, after learning these values, should gain essentially no
additional information on m (this is formalized using a standard indistinguishability
game, see Sect. 2 for details). We assume that the gi’s are elements of some fixed set Γ
(that will be a parameter in the definition). Obviously, the larger Γ , the stronger is our
definition, and we should aim at defining Γ in such a way that it covers all the attacks
the adversary can launch in real-life. All the Γ ’s that we consider in this paper contain at
least the set of functions that read-off the individual bits of τ , hence we need to require
that

t∑

i=1

|gi(τ)| < |τ | (1)

(as otherwise the functions gi could be chosen in such a way that (g1(τ), . . . , gt(τ)) =
τ ). This is essentially the input-shrinking property that, as discussed above, was already
used in the literature.

LRS can also be viewed as a generalization of the All-Or-Nothing Transform (AONT)
introduced in [37]. More precisely: AONT is a special case of LRS, where the leakage
functions are projections of the individual bits.

Obviously, if we go to the extreme and simply allow the adversary to choose any
(poly-time) functions gi that satisfy (1) then there is no hope for any security, since the
adversary could always choose g1 in such a way that it simply calculates Decode(τ)
and outputs some information about m (say: its first bit). Therefore Γ cannot contain
the Decode function, and hence, we need to restrict Γ in some way.

Note that the assumption that Γ is a restricted class of functions is actually very
realistic. In practice, the leakage functions need to be computationally “simple”: while
it is plausible that the adversary can read-off the individual bits, or learn their sum,
it seems very improbable that an attack based on measuring power consumption or
electromagnetic radiation can directly give information about some more complicated
functions of the secret bits.

In this paper we consider two natural choices of such Γ ’s and show LRS schemes
secure in these settings relying on deterministic extractors [43,4,7,8,5]. In Sect. 3.1 we
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describe a construction where each leakage function can depend only on some restricted
part of the memory: either because it consists of two separate blocks, or because it is
infeasible for the adversary to choose a function that depends on the memory cells that
are physically far from each other. In Sect. 3.2 we construct a scheme that is secure if
the cardinality of Γ is restricted (but still it can be exponential in |τ |). This construction
implies security in the case when the set Γ consists of functions that are computable
by Boolean circuits of a small size. Our construction is an adaptation of the technique
already used (in a different context) in [41,3].

The idea to model the leakages as functions from a small complexity class appeared
already in [17], and was recently used in an independent work by Faust et al. [18] (we
discuss the relationship between our work and [18] in Sect. 5. We also discuss (in Sect.
4) the connection between the problem of constructing leakage-resilient storage and a
theory of compressibility of NP-instances [23].

1.3 Preliminaries

Let Un be a random variable distributed uniformly over {0, 1}n. Given two random
variables X0, X1 with values in X , their statistical distance is defined as

Δ(X0; X1)
def=

1
2

∑

x∈X
|P [X0 = x] − P [X1 = x] |.

If X assumes values in {0, 1}n, then we let d(X) def= Δ(X, Un) be the statistical
distance1 between X and the uniform distribution over {0, 1}n. If d(X) ≤ ε we say

that X is ε-close to uniform. We also define Δ(X0; X1|Y ) def= Δ(X0, Y ; X1, Y ) and

d(X |Y ) def= Δ(X, Y ; Un, Y ).

The following was proven in [16].

Lemma 1 ([16]). Let A, B be random variables where A ∈ A. Then P [B = A] ≤
d(A|B) + 1/ |A|.

Given a random variable X ∈ X , the min-entropy of X is H∞(X) def= − log maxx∈X
P [X = x] .

We will use the following lemma whose proof appears in Appendix A.

Lemma 2. For every random variables X, Y and an event E we have

d(X |Y = y ∧ E) + P
[E] ≥ d(X |Y ). (2)

The proofs of the following lemmata appear in the full version of [16].

Lemma 3. Let A, B be two random variables and let φ be any function. Then d(A|B)≥
d(A|φ(B)).

1 We will overload the symbols Δ(·) and d(·) and sometimes apply them to the probability
distributions instead of the random variables.



Leakage-Resilient Storage 125

Lemma 4. Let A, B be independent random variables and consider a sequence V1,. . . ,
Vi of random variables, where for some function φ, Vi =φi(Ci)=φ(V1, . . . , Vi−1, Ci),
with each Ci being either A or B. Then A and B are independent conditioned on
V1, . . . , Vi, i.e. I(A; B|V1, . . . , Vi) = 0, where I denotes the Shannon’s information2.

We will also use the following standard fact whose proof appears in Appendix B.

Lemma 5. Let X be a random variable uniformly distributed over {0, 1}n, and let W
be a random variable that is independent on X . Let f : {0, 1}∗ → {0, 1}c. Then for
every k ∈ N we have

Py:=f(X,W ) [H∞(X |f(X, W ) = y) ≤ k] ≤ 2k+c−n. (3)

A family {hs}s∈S of functions hs : X → Y is called a collection of �-wise independent
hash functions if for every set {x1, . . . , x�} ⊆ X of � elements, and a uniformly random
S ∈ S we have that (hS(x1), . . . , hS(x�)) is distributed uniformly over Y�. Several
constructions of such functions exist in the literature. For example if GF (2n) is the
field with 2n elements, and for s = (s0, . . . , s�) ∈ GF (2n)�+1 and every n′ ≤ n we
define

hs(x) =

(
�∑

i=0

six
i

)

1...n′

(where z1...n′ denotes the set of n′ first bits of z) then {hs} is a collection of �-wise
independent hash functions.

We will also use the following lemma (proven in [3]):

Lemma 6 ([3]). Let Y be an n-bit random variable with H∞(Y ) ≥ k. Let H =
{hs}s∈S be a collection of �-wise independent hash functions hs : {0, 1}n → {0, 1}α

(for � ≥ 2). For at least 1 − 2−u fraction of s ∈ S, we have d(hs(Y )) ≤ ε for

u =
�

2
(k − α − 2 log(1/ε) − log � + 2) − α − 2. (4)

2 The Definition

Formally, a leakage-resilient storage (LRS) scheme is a pair Φ
def= (Encode, Decode),

where

– Encode is a randomized, efficiently computable function Encode : {0, 1}α →
{0, 1}β, and

– Decode is a deterministic, efficiently computable function Decode : {0, 1}β →
{0, 1}α.

Security of such a scheme is defined as follows. Consider the following game between
an adversary A and an oracle O (a similar game was used to define security of the
Forward-Secure Storage (FSS) [15], the main difference being that (1) FSS had a secret
key and (2) the FSS game had just one round)

2 In [16] this lemma is stated in terms of a Markov chain.
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1. The adversary chooses a pair of messages m0, m1 ∈ {0, 1}α and sends them to O.

2. O chooses a random bit b ∈ {0, 1} and sets τ
def= Encode(mb).

3. The following is executed t times, for i = 1, . . . , t:
(a) A selects a function gi : {0, 1}β → {0, 1}ci ∈ Γ , and sends it to O,
(b) O sends gi(τ) to A. We say that A retrieved ci bits from τ .

4. The adversary outputs b′. We say that he won the game if b = b′.

Such an adversary is called a (Γ, c, t)-adversary if
∑t

i=1 ci ≤ c. We say that Φ is
(Γ, c, t, ε)-secure if no (Γ, c, t)-adversary wins the game with probability greater than
1
2 + ε.3 We will drop t and say that Φ is (Γ, c, ε)-secure if the parameter t does not
matter, i.e. if no (Γ, c, t)-adversary wins the game with probability greater than 1

2 +
ε, for any t. Unless explicitly stated otherwise, we will assume that the adversary is
computationally-unbounded. In this case we assume that the adversary is deterministic.
This can be done without loss of generality, since the unbounded adversary can always
compute the optimal randomness. For an adversary A as above, let viewA denote the

vector of values that the adversary A retrieves from τ , i.e. viewA
def= (g1(τ), . . . , gt(τ)).

Note that |viewA| ≤ c.
As argued in the introduction, LRS can be viewed as a generalization of the All-Or-

Nothing Transform (AONT) introduced in [37] (see also e.g. [5] for a formal definition).
In our framework AONT is simply a (Γ↓, c, ε)-secure LRS, Γ↓ being a set of functions
gi that leak some bits of the memory, i.e. the functions that have a form gi(τ1, . . . , τβ) =
τi, where ε is equal to 0 if we consider perfectly-secure AONT, or is some negligible
value if we consider statistically-secure AONT.

2.1 A Weaker Definition

In our schemes, the encoding τ of a string m ∈ {0, 1}α is composed of two parts:
(1) the randomness τrand used to encode the message and (2) the result of the encoding
process, i. e. some value f(τrand) xored with the message m (where f is some publicly-
known function). More generally, one can assume that m is a member of some group
(G, +) and f has a type {0, 1}∗ → G. In this case the encoding of a message m is
(τrand, f(τrand) + m).

For the sake of the security proofs in this paper, we will consider a game that we
call a weak attack in which f(τrand) + m is hidden from the adversary, and the gi’s
are applied only to τrand. The adversary in this game will be called a weak adversary
and denoted Aweak , and we will say that the LRS scheme is weakly (Γ, c, t, ε)-secure if
d(f(τrand)|viewAweak

) ≤ ε, for any Aweak , where τrand is distributed uniformly over
{0, 1}n. We will say that Γ is robust if Γ is closed on the operation of fixing the second
part of the input, i.e. if for every g ∈ Γ and every z ∈ G we have that g′(x) := g(x, z)
is also a member of Γ . The following lemma shows that a weakly-secure scheme is also
secure according to the general definition.

Lemma 7. Let Γ be an arbitrary robust set as above. For any c, t and ε, if an encoding
scheme is weakly (Γ, c, t, ε)-secure then it is also (Γ, c, t, ε · 2α)-secure.

3 We say that Φ is non-adaptively (Γ, c, t, ε)-secure if the adversary wins the game with prob-
ability at most 1

2
+ ε, with the restriction that his choice of the functions gi is non-adaptive

(i.e. he has to choose all the gi’s in advance).
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Proof. Take some adversary A that wins the game described in Sect. 2 with some prob-
ability 0.5 + δ. We construct a weak adversary Aweak such that

d(f(τrand)|OutAweak
) = δ · 2−α, (5)

where OutAweak
is some value that is a function of viewAweak

(we will think of it as an
output of the adversary Aweak at the end of the execution). Therefore, by Lemma 3, we
will have that d(f(τrand)|viewAweak

) ≥ δ · 2−α. After showing this we will be done,
by setting δ := ε · 2α. The adversary Aweak works by simulating A. First, it chooses a
random string z ∈ {0, 1}α and it starts A. Let m0, m1 be the messages that A outputs.
Then, Aweak handles the requests issued by A in the following way. Recall that each
request of A is a function gi : {0, 1}n × {0, 1}α → {0, 1}ci that should be applied
to τ . Each time such a request is issued, the adversary Aweak constructs a request g′i
defined for every τrand as follows:

g′i(τrand) := gi(τrand, z).

(By the robustness of Γ we have that if gi ∈ Γ then also g′i ∈ Γ .) When the interaction
is over and A outputs b′, the adversary Aweak outputs OutAweak

:= z−mb′ . By Lemma
1 we have

P [OutAweak
= f(τrand)] ≤ 2−α + d(f(τrand)|OutAweak

). (6)

Now suppose that for some i ∈ {0, 1} the following event Ei occurred: z = mi +
f(τrand). In this case Aweak simply simulated the execution of A against the oracle O
with b = i. Since z is chosen uniformly hence P [E0] = P [E1] = 2−α. Therefore the
probability that b′ = b(= i) is equal to 0.5+δ. Moreover, in this case (i.e. when E0∪E1

occurred and b′ = b) we get that OutAweak
= mi + f(τrand) − mb′ , and therefore

OutAweak
= f(τrand). Hence we have

P [OutAweak
= f(τrand)] ≥ P [b = i | E0 ∪ E1] · P [E0 ∪ E1]

= (0.5 + δ) · 2−α+1

= 2−α + δ · 2−α+1.

Combining it with (6) we get (5). 
�

3 The Implementations

In this section we consider two types of leakage functions Γ , and show LRS schemes
secure against these Γ ’s relying on deterministic extractors [43,4,7,8,5]. In Sect. 3.1 we
describe a construction where each leakage function can depend only on some restricted
part of the memory: either because it consists of two separate blocks, or because it is
infeasible for the adversary to choose a function that depends from the memory cells
that are physically far from each other. In Sect. 3.2 we construct a scheme that is secure
if the cardinality of the set of functions that the adversary can choose is restricted.
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3.1 Memory Divided into Two Parts

Suppose that the encoding is stored on some physical storage device that consists of
two separate chips, i.e. the memory M is divided into two parts M0 and M1, and
each leakage function can be applied to one of the Mi’s separately. In other words,
the only restriction is that the adversary cannot choose leakage functions that depend
simultaneously on both M0 and M1. More precisely, take some β′ < β and let τ =
(τ0, τ1) where τ0 def= (τ1, . . . , τβ′), and τ1 def= (τβ′+1, . . . , τβ). Let Γ2 be the set of all
functions gi that “depend only on τ0 or τ1”, i. e. they have a form

gi(τ) = g′i(τ
0),

or
gi(τ) = g′i(τ

1)

(for some g′i). Of course, τ0 and τ1 do not need to be stored on two separate memory
chips, and it is enough that it is simply impossible for the adversary to compute any
function of τ0 and τ1 jointly. This may happen for example if τ0 and τ1 are stored on
one chip, but are physically far from each other. Observe also that the class Γ2 includes
all the functions g(·) that have communication complexity c (where c is the bound on
the total amount of bits that the adversary can retrieve). This includes for example the
function that computes sum of the bits in (τ0, τ1) (as long as c is at least logarithmic in
the length of (τ0, τ1)).

The construction. One may observe that this model is very similar to the one of the
two-party Intrusion-Resilient Secret Sharing (IRSS) of Dziembowski and Pietrzak (see
[16], Sect. 2.1). The main difference is that the scheme of [16] has an additional prop-
erty that the decoding function needs to access only small part of the encoded message.
Since we do not need this property here, we can use in our construction a standard tool
called two source extractors [7]. A function Ext : {0, 1}n × {0, 1}n → {0, 1}α is a
(k0, k1, ε)-two source extractor if it has the following property: for every two indepen-
dent random variables R0 and R1, such that H∞(R0) ≥ k0 and H∞(R1) ≥ k1 we

have that d(Ext(R0, R1)) ≤ ε. Let Φ2
def= (Encode2, Decode2). To encode a message

m ∈ {0, 1}α, we pick two n-bit strings R0 and R1 uniformly at random and we set

τ = Encode2(m) = (τrand, m
∗) def= (R0, R1, Ext(R0, R1) ⊕ m)

and we store R0 in the first part of the memory (M0), and (R1, Ext(R0, R1) ⊕ m) in
the second part (M1). To decode it suffices to evaluate

Decode2(R0, R1, m
∗) def= m∗ ⊕ Ext(R0, R1).

We have the following lemma.

Lemma 8. If Ext : {0, 1}n × {0, 1}n → {0, 1}α is a (k, k, ε)-two source extractor
then Φ2 is (Γ2, c, 2α · ε + 21+α+k+c−n)-secure.
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Proof. First we show that Φ2 is weakly secure against the adversary Aweak outlined
in Section 2.1 (with τrand = (R0, R1)) and then we use Lemma 7. Let Aweak be
an adversary that can apply the leakage functions gi only to τrand and denote with
viewAweak

= (g1(τrand), . . . , gt(τrand)) the view of the adversary after t queries to
the oracle O. We can now apply Lemma 4 (with A = R0, B = R1, φi = gi and
Vi = gi(τrand)4) and conclude that R0 and R1 are independent given viewAweak

, i.e.
I(R0; R1|viewAweak

) = 0. Moreover by Lemma 5 we know that for each i ∈ {0, 1}
Py:=viewAweak

[H∞(Ri|viewAweak
= y) ≤ k] ≤ 2k+c−n.

Thus with probability at least 1 − 21+k+c−n it happens that y = viewAweak
is such

that for both i ∈ {0, 1} we have H∞(Ri|viewAweak
= y) ≥ k. Let V denote the

corresponding event. We clearly have that

d(Ext(R0, R1)|viewAweak
= y ∧ V) ≤ ε.

Hence, by Lemma 2 we get that d(Ext(R0, R1)|viewAweak
) ≤ ε+P

[V]
=ε+21+k+c−n.

Combining it with Lemma 7 we get that Φ2 is (Γ2, c, 2α · ε+21+α+k+c−n)-secure. 
�

Instantiations. Several constructions [7,39,42,10,36] of a two-source extractor exist
in the literature, and can be used in our scheme. Let F be a finite field and denote with
ExtHad : F

n×F
n → F the inner product in F, denoted ExtHad(x, y) = 〈x, y〉. As shown

in [36], for any δ > 0, the function ExtHad is a (kHad, kHad, εHad)-two source extractor,
for kHad > (1/2 + δ)n log |F| and εHad = |F|(n+1)/2 2−kHad (this generalizes previous
results of Chor and Goldreich [7] and Vazirani [42]). Plugging it into the construction
described above we get the following LRS scheme ΦHad = (EncodeHad, DecodeHad)
for encoding messages m ∈ F:

EncodeHad(m) = (r0, r1, 〈r0, r1〉 + m)
DecodeHad(r0, r1, m

∗) = m∗ − 〈r0, r1〉. (7)

Observe that above, instead of using the xor we used the group operation in F. This is
ok, since, as explained in Sect. 2.1, one can transform a weakly-secure scheme into a
standard one by using any group operation (not necessarily xor). Using Lemma 8 we
get that ΦHad is (Γ2, c, |F| · εHad + |F|1−n 21+kHad+c).

3.2 Functions That Have Small Descriptions

The second case that we consider is when the only restriction on Γ is that it is a small
set of robust functions: |Γ | = 2v, where v is some parameter (that can be for example
quadratic in β). One way to look at this family is to fix some method to describe the
leakage functions as binary strings, and observe that the set of functions whose descrip-
tion has length v has exactly size 2v.

A natural example of such a Γ is a set of functions computable by Boolean circuits
of a fixed size (see e.g. [44] for an introduction to the complexity of Boolean circuits).

4 Clearly φi depends only on the values Vi that the adversary retrieved in the previous rounds.
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Recall that the size of a Boolean circuit is the number ρ of its gates. Each gate G can be
connected with two other gates (G1, G2) (and we can assume that G is an AND gate if
G1 �= G2, and it is a NOT gate otherwise). Hence, for each gate we can have at most
(ρ − 1)(ρ − 1) < ρ2 choices. Therefore there are at most (ρ2)ρ = ρ2ρ circuits of size
ρ. Thus the circuits of size ρ can be described using 2ρ log2 ρ bits.

Several natural functions can be computed by Boolean circuits of a small size (see
Sect. 3 of [44]). For example every symmetric function5 can be computed by a circuit
of a linear size (in its input).

Let Γv be any robust set of functions such that |Γv| = 2v. We will now construct
a (Γv, c, t, ε)-secure LRS. Let H = {hs : {0, 1}n → {0, 1}α}s∈S be a collection of
�-wise independent hash functions. The scheme is parameterized by a value s ∈ S. For

any s ∈ S let Φs
def= (Encodes, Decodes), being

Encodes(m) = (R, hs(R) ⊕ m),

where R ∈ {0, 1}n is random. Let

Decodes(R, d) = hs(R) ⊕ d.

We point out that also the above construction can be interpreted in terms of deterministic
extractors. Indeed, as shown in [41] (and in [3]), �-wise independent hash functions
are, with high probability, deterministic extractors for sources (with some min-entropy)
that can be generated by an efficient sampling algorithm or circuit of a small size.6

Stated in other words, an �-wise independent hash function can be viewed as a function
Ext : {0, 1}n → {0, 1}α with the following property: for every source R ∈ {0, 1}n

with min-entropy k which is samplable by a circuit of a small size, Ext(R) is close
to uniform with high probability. The same construction was also used by Dodis et al.
[13] in the context of AONT. Both [41] and [13] consider only the non-adaptive case.
Here we show that this scheme is secure in the context of leakage-resilient storage. The
following lemma states that with a good probability (over the choice of s ∈ S) the
scheme Φs is secure.

Lemma 9. Fix an arbitrary robust set Γv such that |Γv| = 2v. For a randomly chosen
s with probability at least 1− ξ we have that Φs is (Γv, c, t, 2α · ε+2α+k+c−n)-secure,
for any c, k, t, v, �, ε and ξ such that

ξ = 2tv− �
2 (k−α−2 log(1/ε)−log �+2)+α+2. (8)

In the lemma above k is a parameter, that in the proof will correspond to the min-
entropy of R conditioned on the view of the adversary. Observe that we have a trade-off
between 2α · ε + 2α+k+c−n and ξ (larger k increases the first term, and decreases the
second). The proof of this lemma is more involved and we present it in Sect. 3.2.1. Let
us first discuss this lemma for more concrete values of the parameters.

5 A function is symmetric if its output does not depend on the permutation of the input bits. For
example every function that just depends on the sum of the input bits is symmetric. See Sect.
3.4 of [44].

6 The approach used in [41] is orthogonal to the one used in [7]: in the latter setting, distributions
can be arbitrarily complex, but they have to satisfy a strong independence requirement; in the
former setting distributions have to be samplable but can involve arbitrary dependencies.
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Corollary 1. Fix an arbitrary robust set Γv such that |Γv| = 2v. For a randomly cho-
sen s with probability at least 1 − ξ we have that Φs is (Γv, c, t, 2−λ)-secure, for any
c, t, v, �, λ and ξ such that

ξ = 2tv− �
2 (n−c−3λ−4α−log �−1)+α+2. (9)

Proof. Set ε := 2−α−λ−1 and let k := n−λ− 1−α− c. Take Φs from Lemma 9. We
have that

2α · 2−α−λ−1 + 2α+k+c−n ≤ 2−λ−1 + 2−λ−1 ≤ 2−λ,

and
ξ = 2tv− �

2 ((n−λ−1−α−c)−α−2(α+λ+1)−log �+2)+α+2

which is equal to (9). 
�

Concrete values If we want to have security against circuits of size χn (for some con-
stant χ > 1) then the size of Γ is equal to 22χn log(χn). If we apply it t = ωn times
(for some constant ω < 1) then tv = 2χωn2 log(χn). To be more precise set λ := 24
and α := 128, and n := 1024. If we set χ := 10, ω := 3/25 then we can allow the
adversary to retrieve at most 180 bits by setting � = 278323. With these settings we get
ξ ≤ 4 · 10−12.
If we consider a non-adaptive scenario, in which the adversary chooses a single leakage
function (i.e. t = 1) and retrieves at most c bits7, then we obtain a better value for �: for
λ := 24, α := 128, n := 1024 and χ := 10, we can allow the adversary to retrieve at
most 180 bits by setting � = 2203. With these settings we get ξ ≤ 2 · 10−28.

Practical considerations The parameter s can be public. Therefore if ξ is negligible,
then for the real-life applications s can be just chosen once and for all by some trusted
party. For example, one can assume that s = H(0)||H(1)|| · · · , where H is some hash
function (this of course can be proven secure only in the random oracle model).

Alternatively, we could just assume that s is chosen independently each time Encodes

is calculated, and becomes a part of the encoding. In other words we could define

Encode′(m) def= (s, Encodes(m)) and Decode′(s, x) def= Decodes(x).

Of course, in this way the length β of encoding gets larger, and hence if Γv is a family
of circuits whose size ρ is some function of β, then v becomes much larger.

3.2.1 Proof of Lemma 9

We first show that Φs is weakly secure. Suppose that the adversary Aweak performs a
weak attack against Φs. Let R be distributed uniformly over {0, 1}n. Then we show
that for any ε > 0 and for at least 1 − ξ fraction of s ∈ S we have

d(hs(R)|viewAweak
) ≤ ε + 2k+c−n,

7 This is equivalent to consider an adversary who chooses t > 1 leakage functions in advance,
with the same total number of retrieved bits. Note that this scenario is theoretically weaker
than the adaptive one but it is useful from a practical point of view.
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where ξ is a function of t, v, �, k, α and ε as defined in (8). Consider some fixed adver-
sary Aweak . Let GoodAweak

denote the event that H∞(R|viewAweak
= y) ≥ k, where

y := viewAweak
. By Lemma 5 we get that P

[
GoodAweak

] ≤ 2k+c−n. On the other hand,
we have

H∞(R|viewAweak
= y,GoodAweak

) ≥ k.

Therefore, by Lemma 6 we get that

Ps [d(hs(R)|viewAweak
= y,GoodAweak

) ≥ ε] ≤ 2−u, (10)

where Ps means that the probability is taken over the choice of s ∈ S, and u is defined
in (4). From Lemma 2 we get that (10) implies that

Ps

[
d(hs(R)|viewAweak

) ≥ ε + P
[
GoodAweak

]] ≤ 2−u,

which implies that
Ps [d(hs(R)|viewAweak

) ≥ ε′] ≤ 2−u, (11)

where ε′ := ε+2k+c−n. Of course (11) holds just for a fixed adversary and to complete
the proof we need to give a bound on the value

max
Aweak

(Ps [d(hs(R)|viewAweak
) ≥ ε′]) . (12)

We will do it by applying a union-bound (over all Aweak ) to (11). However, since that
the total number of different adversaries Aweak is doubly-exponential in c,8 we cannot
do it in a straightforward way. Instead, we first observe that

max
Aweak

Ps [d(hs(R)|viewAweak
) ≥ ε′] = max

g1,...,gt

Ps [d(hs(R)|g1(R), . . . , gt(R)) ≥ ε′] .

(13)
Since each gi ∈ Γv, and |Γv| = 2v we get

max
Aweak

(Ps [d(hs(R)|viewAweak
) ≥ ε′]) ≤ (2v)t · 2−u = 2tv−u. (14)

This completes the proof, since now using Lemma 7 we are done. 
�

4 Connection with the Theory of Compressibility of NP-Instances

We believe that in general the idea to model the leakage as functions from some low
complexity class is worth investigating further, as it may lead to new applications of the
circuit lower bounds. Interestingly, this is probably the first scenario ever considered
in cryptography in which the computing power of the adversary is smaller than the
computing power of the users (during some part of the attack). A similar observation
was already made in [17] (footnote 3, page 295).

It may also be worth exploring some interesting connections between this area and
the theory of the compressibility of NP-instances of Harnik and Naor [23]. Informally,

8 This is because after retrieving ci bits in the ith round the adversary can choose 2v different
functions gi+1, hence in every round there are 2v·2ci .
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an NP-language L is compressible if every x ∈ {0, 1}∗ can be “compressed” to a much
shorter string compress(x) (where g is some poly-time function, and c = |compress
(x)| � |x|) such that an infinitely powerful machine M can determine if x ∈ L just
by looking at compress(x). Call this (PTIME,∞)-c-compressibility. As a natural
generalization of this concept, one can consider any (P0,P1)-compressibility (where
P0 and P1 are some complexity classes): in this setting we would require that g ∈ P0,
and the machine M operates in P1.

For simplicity in this section consider only the one-round LRS’s i.e. t = 1 (cf. game
in Sect. 2). Moreover, assume that the adversary is poly-time. Informally speaking what
we are looking for, when constructing a Γ -secure LRS Φ = (Encode, Decode) is a
class of problems that are not (Γ, PTIME)-c-compressible on average. More pre-
cisely, consider the language L of all valid encodings of some fixed message M . Of
course, if this language is (Γ, PTIME)-c-compressible with some probability ε then
Φ cannot be (Γ, c, 1, ε)-secure (as otherwise the adversary could just choose compress
to be his leakage function). We leave investigating these connections as a future research
direction.

5 Comparison with [18]

In an independent work Faust et al. [18] consider a problem of leakage-resilient compu-
tation. In their work, that can be viewed as an extension of the “private circuits” paper
of [24], they provide a formal definition of a circuit computation that is secure against
a class of leakages LTR (cf. Def. 1 of [18]), and for certain classes LTR, they construct
(Theorem 1, [18]) a generic transformation that, given any circuit C transforms it into
another circuit C′ that is secure against the leakages in LTR.

The main ingredient of their construction is a linear encoding scheme that is se-
cure against leakages in some class L. Linearity of the encoding means that the decod-
ing function can be expressed as Decode(x1, . . . , xβ) = r1x1 + · · · + rβxβ , where
r1, . . . , rβ are constants from some field. Their definition of an encoding scheme is
very similar to ours: essentially their p-adaptive (L, τ, ε)-leakage-indistinguishable en-
coding is the same as our (L, c, t, ε)-secure LRS scheme. The additional parameter τ ,
that they use indicates the running time of the adversary (that we do not consider in our
paper). On the other hand we use the parameter c, that indicates the total amount of bits
retrieved from the encoding, which is absent in [18].

We note that while the work of [18] has an obvious advantage over ours by con-
sidering not only secure storage, but also computation, our schemes cover different
(and possibly more realistic) classes of leakage functions. In particular, both of the ap-
proaches in our paper cover trivially the so-called Hamming weight attacks [26], where
the adversary is allowed to learn a sum of the bits, while the approach of [18] does not
cover them.
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A Proof of Lemma 2

Before showing this lemma let us first prove the following:

Lemma 10. For every random variable X and events E ,H we have

d(X |H) ≤ d(X |H ∧ E) + P
[E|H]

. (15)

Proof. It is enough to show that

Δ(PX|H; PX|H∧E) ≤ P
[E|H]

. (16)

After showing this we will be done, since from the triangle inequality we have

=d(X|H)︷ ︸︸ ︷
Δ(PX|H; UX ) ≤

=d(X|H∧E)︷ ︸︸ ︷
Δ(PX|H∧E ; UX )+Δ(PX|H; PX|H∧E),

where UX denotes the uniform distribution over X . Let F denote the set

{x : P [X = x|H] > P [X = x|H ∧ E ]} .

We have that the left-hand side of (16) is equal to

∑

x∈F
P [X = x|H] −

= P[X=x∧E|H]
P[E|H] ≥P[X=x∧E|H]

︷ ︸︸ ︷
P [X = x|H ∧ E ] . (17)

≤
∑

x∈F
P [X = x|H] − P [X = x ∧ E|H] (18)

=
∑

x∈F
P [X = x|H] −

∑

x∈F
P [X = x ∧ E|H] (19)

= P [X ∈ F|H] − P [(X ∈ F) ∧ E|H] (20)

≤ P
[E|H]

. (21)


�
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Proof (of Lemma 2). The right-hand side of (2) is equal to

∑

y

d(X |Y = y) · P [Y = y] , (22)

and the left-hand side of (2) is equal to

∑

y

(
d(X |(Y = y) ∧ E) + P

[E|Y = y
]) · P [Y = y] . (23)

To finish the proof it suffices to show that for every y we have

d(X |(Y = y) ∧ E) + P
[E|Y = y

] ≥ d(X |Y = y).

This follows directly from Lemma 10, with H being the event that Y = y. 
�

B Proof of Lemma 5

Proof. We prove that (3) holds for a fixed w. This clearly implies that (3) holds when
W is a random variable independent on X . Since |f(X, w)| ≤ c, hence the number of
all y’s is at most equal to 2c. Therefore the number of x’s for which there exists some y
such that

|x : f(x, w) = y| ≤ 2k (24)

holds is at most 2c+k. Hence the probability that for a random X we have that (24) holds
is at most 2c+k−n. Since clearly if (24) does not hold then H∞(X |f(X, w) = y) > k
we get that

Py:=f(X,w)(H∞(X |f(X, w) = y) ≤ k) ≤ 2c+k−n.

Thus we are done. 
�



Searching Keywords with Wildcards

on Encrypted Data�

Saeed Sedghi1, Peter van Liesdonk2,
Svetla Nikova1,3, Pieter Hartel1, and Willem Jonker1,4

1 Dept. EWI/DIES, University of Twente, Enschede, The Netherlands
s.sedghi@utwente.nl

2 Dept. Math. and Comp. Science, T.U. Eindhoven, Eindhoven, The Netherlands
p.p.v.liesdonk@tue.nl

3 Dept. ESAT/SCD-COSIC and IBBT, K.U. Leuven, Heverlee, Belgium
4 Philips Research Laboratories, The Netherlands

Abstract. A hidden vector encryption scheme (HVE) is a derivation of
identity-based encryption, where the public key is actually a vector over
a certain alphabet. The decryption key is also derived from such a vector,
but this one is also allowed to have “�” (or wildcard) entries. Decryption
is possible as long as these tuples agree on every position except where
a “�” occurs.

These schemes are useful for a variety of applications: they can be
used as a building block to construct attribute-based encryption schemes
and sophisticated predicate encryption schemes (for e.g. range or sub-
set queries). Another interesting application – and our main motivation
– is to create searchable encryption schemes that support queries for
keywords containing wildcards.

Here we construct a new HVE scheme, based on bilinear groups of
prime order, which supports vectors over any alphabet. The resulting ci-
phertext length is equally shorter than existing schemes, depending on a
trade-off. The length of the decryption key and the computational com-
plexity of decryption are both constant, unlike existing schemes where
these are both dependent on the amount of non-wildcard symbols asso-
ciated to the decryption key.

Our construction hides both the plaintext and public key used for
encryption. We prove security in a selective model, under the decision
linear assumption.

1 Introduction

With the growing popularity of outsourcing data to third-party data-centers (the
cloud), enhancing the security of such remote data is of increasing interest. In
an ideal world such data centers may be completely trustworthy, but in practice
they may very well be curious for your secrets. To prevent this all data should be
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encrypted. However, this directly results in problems of selective data retrieval.
If a data-center cannot read the stored information, it also cannot answer any
search queries.

Consider the following scenario about storage of health care records. Assume
that Alice wants to store her medical records on a server. Since these medical
records are highly sensitive, Alice wants to control the access to these records in
such a way that a legitimate doctor can only see specific parts. Now Alice either
has to trust the server to honestly treat her records, or she should encrypt her
records in such a way that specific information can only be found by specific
doctors.

Searchable encryption is a technique that addresses the mentioned problem.
In general we will consider the following public-key setting: Bob wants to send
a document to Alice, but to get it to her he has to store it on an untrusted in-
termediary server. Before sending he encrypts the document with Alice’s public
key. To make her interaction with the server easier he also adds some keywords
describing the encrypted document. These keywords are also encrypted, but in
a special way. Later, Alice wants to retrieve all documents from this server con-
taining a specific keyword. She uses her secret key to create a so-called trapdoor
that she sends to the server. Using this trapdoor the server can circumvent the
encryption of all the encrypted keywords that it has stored, but only just enough
to learn whether the encrypted keyword was equal to the keyword Alice had in
mind. If the server finds such a match it can return the encrypted document to
Alice.

In many applications it is convenient to have some flexibility when search-
ing, like searching for a subset of keywords or searching for multiple keywords
at once using a wildcard. Existing solutions address searching with wildcards
using a technique called hidden vector encryption (HVE) [7]. A HVE scheme
is a variation of identity-based encryption where both the encryption and the
decryption key are derived from a vector. Decryption can only be done if the
vectors are the same in every element except for certain positions, which we
call wildcard- or “don’t care”-positions. The relation with searchable encryption
comes by viewing a keyword as a vector of symbols. For every keyword Bob will
make a HVE encryption of a public message, using the keyword as a ‘public
key’. The trapdoor Alice sends to the server is actually a decryption key derived
from a keyword. The server can now try to decrypt the HVE encryptions; if
the decryption works the server can conclude that two keywords were the same,
except for the wildcard positions. Because of this relation this paper will focus
on the construction of a HVE scheme.

There have been quite a few proposals for HVE schemes, most notably
[3,7,14,16,18,22]. These schemes have in general two drawbacks: Firstly, most of
them are using bilinear groups of composite order, whereas the few schemes that
do use the more efficient bilinear groups of prime order [3,14,18] are only capable
of working with binary alphabets. Secondly, in all these schemes the size of the ci-
phertext is linear in the length of the vector it’s key is derived from. Thirdly, the
size of the decryption key grows linearly in the amount of non-wildcard symbols.
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This directly influences the number of computations needed for decryption. There-
fore, these schemes are inefficient for applications where the client wishes to query
for keywords that contain just a few wildcard values.

1.1 Related Work

Searchable data encryption was first popularized by the work of Song, Wagner
and Perrig [23]. They propose a scheme that allows a client to create both ci-
phertexts and trapdoors (resulting is a symmetric-key setting), while a server
can test whether there is an exact match between a given ciphertext and a trap-
door. Searchable encryption in the symmetric key setting was further developed
by [9,10,12,24] to enhance the security and the efficiency of the scheme. While
these schemes are useful when you want to backup your own information on a
server, the symmetric key makes them hard to use in a multi-user setting.

In [5], Boneh et. al. consider searchable encryption in an asymmetric setting,
called public key encryption with keyword search (PEKS). Here everybody can
create an encrypted keyword, but only the owner of the secret key can create a
trapdoor, thus making it relevant for multi-user applications. This setting has
been enhanced in [2,19]. The PEKS scheme has a very close connection to anony-
mous identity-based encryption as introduced in [6], This connection has been
studied more thoroughly by [1]. For this reason, most work (including ours) on
asymmetric searchable encryption has a direct use for identity-based encryption,
and vice versa. Improved IBE schemes useful for searchable encryption have been
proposed in [8,11,17,18].

These schemes are usable for equality search, i.e. a message can be decrypted
if the trapdoor keyword and the associated keyword of the message are the same.
In [13,20] the concept of attribute-based encryption is introduced. Here, multiple
keywords are used at encryption time, but a trapdoor can be made to decrypt
using (almost) any access structure. Both schemes lack the anonymity property
however, which makes them unusable for searchable encryption.

Adding anonymity results in schemes that offer so-called called hidden vector
encryption, introduced in [8,21]; in these schemes the trapdoor is allowed to have
wildcard symbols “�” that matches any possible keyword in the encryption, They
all use rather inefficient bilinear groups of a composite order. The same holds
for [16,22], which introduce inner product and predicate encryption. Finally, [14]
provides a solution for binary hidden-vector encryption that is based purely on
bilinear groups of prime order.

1.2 Our Results

Here, we propose a public-key hidden vector encryption (HVE) scheme, which
queries encrypted messages for keywords that contain wildcard entries.

Our contributions in comparison to previous HVE schemes are as follows:

– Our construction uses bilinear groups of prime order, while [7,21] use hard-
ness assumptions based on groups of composite order. Our scheme can also
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take keywords over any alphabet, unlike [3,14,18] that only take binary
symbols.

– The size of the decryption key and the computational complexity for de-
crypting ciphertexts is constant, while in earlier papers these grow linearly
in the number of non-wildcard entries of the vector.

– The size of the ciphertext is approximately limited to one group element for
every wildcard we are willing to allow (chosen at encryption time), where in
previous schemes the ciphertext needs one group element for every symbol
in the vector.

Our construction is proven to be semantically secure and keyword-hiding in the
selective-keyword model, assuming the Decision Linear assumption [4] holds.

The rest of the paper is organized as follows: in Section 2 we discuss the
security definitions we will use and the building blocks required. In Section 3 we
introduce our HVE and prove its security properties. In Section 4 we analyze
the performance of our scheme and compare it with previous results.

2 Preliminaries

Below, we review searchable data encryption, its relation to hidden vector en-
cryption and their security properties.. In addition we review the definition of
bilinear group and the Decision linear (DLin) assumption.

2.1 Searchable Data Encryption

Our ultimate goal is to provide a technique for searching with wildcards. As a
basis we will use the concept of public key encryption with keyword search as
introduced by Boneh et. al.[5]. Suppose Bob wants to send Alice an encrypted e-
mail m in such a way that it is indexed by some searchable keywords W1, . . . , Wk.
Then Bob would make a construction of the form

(Epk(m) ‖ Spk(W1) ‖ · · · ‖ Spk(Wk)) ,

where E is a regular asymmetric encryption function, pk is Alice’s public key, and
S is a special searchable encryption function. Alice can now – using her secret
key – create a trapdoor to search for emails sent to her containing a specific
keyword W̄ . The e-mail server can now test whether the searchable encryption
and the trapdoor contain the same keyword and forward the encrypted mail if
this is the case. During this process the server learns nothing about the keywords
used.

If the trapdoor-keyword is allowed to have wildcard keywords we can get a
much more flexible search. As an example, searching for the word ‘ba*’ results
in encryptions with ‘bat’, ‘bad’ and ‘bag’. We can also do range queries: ‘200*’
matches ‘2000’ up to ‘2009’ and ‘04/**/2010’ matches the whole of April in
2010. These and other applications were first studied in [7].
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Definition 1. A non-interactive public key encryption with wildcard keyword
search (wildcard PEKS) scheme consists of four probabilistic polynomial-time
algorithms (KeyGen, Enc, Trapdoor, Test):

– Setup(κ): Given a security parameter κ and a keyword-length L output a
secret key sk and a public key pk.

– Enc(pk, W ): Given a keyword W of length at most L characters, and the
public key pk output a searchable encryption Spk(W ).

– Trapdoor(sk, W̄ ): Given a keyword W̄ of length at most L characters con-
taining wildcard symbols � and the secret key sk output a trapdoor TW̄ .

– Test(SW , TW̄ ): Given a searchable encryption SW and a trapdoor TW̄ , return
‘true’ if all non-wildcard characters are the same or ‘false’ otherwise.

Such a scheme can typically be made out of a so-called hidden-vector encryption
scheme [7], using a variation of the new-ibe-2-peks transformation in [1]. If the
HVE is semantically secure, then the constructed wildcard PEKS is computa-
tionally consistent, i.e. it gives false positives with a negligible probability. If the
HVE is keyword-hiding, then the constructed wildcard PEKS does not leak any
information about the keyword used to make a searchable encryption.

2.2 Hidden Vector Encryption

Let Σ be an alphabet. Let � be a special symbol not in Σ. This star � will
play the role of a wildcard or “don’t care” symbol. Define Σ� = Σ ∪ {�}. The
public key used to create a ciphertext will be a vector W = (w1, . . . , wL) ∈ ΣL,
called attribute vector. Every decryption key will also be created from a vector
W̄ = (w̄1, . . . , w̄L) ∈ ΣL

� . Decryption is possible if for all i = 1...L either wi = w̄i

or w̄i = �.

Definition 2 (HVE). A Hidden Vector Encryption (HVE) scheme consists of
the following four probabilistic polynomial-time algorithms (Setup, Extract, Enc,
Dec):

– Setup(κ, Σ, L): Given a security parameter κ, an alphabet Σ, and a vector-
length L, output a master secret key msk and public parameters param.

– Extract(msk, W̄ ): Given an attribute vector W̄ ∈ ΣL
� and the master secret

key msk, output a decryption key TW̄ .
– Enc(param, W, M): Given an attribute vector W ∈ ΣL, a message M , and

the public parameters param, output a ciphertext SW,M .
– Dec(SW,M , TW̄ ): Given a ciphertext SW,M and a decryption key TW̄ , output

a message M ,

These algorithms must satisfy the following consistency constraint:

Dec
(
Enc(param, W, M), Extract(msk, W̄ )

)
= M

if wi = w̄i ∨ w̄i = � for i = 1 . . . L. (1)
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Security Definitions. Here, we define the notion of security for hidden vec-
tor encryption schemes. Informally, this security definition states that a scheme
reveals no non-trivial information to an adversary. In other words there is a sepa-
ration between semantic security – which formalizes the notion that an adversary
cannot learn any information about the message that has been encrypted – and
keyword hiding – which formalizes the notion that he cannot learn non-trivial
information about the keyword or vector used for encryption. These notions
are both integrated into our security definition. This definition uses the selective
model, in which the adversary commits to the encryption vector at the beginning
of the “game”.

Definition 3 (Semantic Security). A HVE scheme (Setup,Extract,Enc,Dec)
is semantically secure in the selective model if for all probabilistic polynomial-
time adversaries A, ∣∣

∣Pr
[
ExpA(κ) = 1

] − 1
2

∣∣
∣< ε(κ)

for some negligible function ε(κ), where ExpA(κ) is the following experiment:

– Init. The adversary A chooses an alphabet Σ, a length L and announces
two attribute vectors W ∗

0 , W ∗
1 ∈ ΣL, different in at least one position, that it

wishes to be challenged upon.
– Setup. The challenger runs Setup(κ, Σ, L), which outputs a set of public

parameters param and a master secret key msk. The challenger then sends
param to the adversary A.

– Query Phase I. In this phase A adaptively issues key extraction queries for
attribute vectors W̄ ∈ ΣL

� , under the restriction that w̄i �= w∗
0i and w̄i �= w∗

1i

for at least one w̄i �= �. Given an attribute vector W̄ the challenger runs
Extract(msk, W̄ ) which outputs a decryption key TW̄ . The challenger then
sends the TW̄ to A.

– Challenge. Once A decides that the query phase is over, A picks a pair of
messages (M0, M1) on which it wishes to be challenged and sends them to
the challenger. Given the challenge message (M0, M1) and the challenge at-
tribute vectors (W ∗

0 , W ∗
1 ), the adversary flips a fair coin ν ∈R {0, 1}, and in-

vokes the Enc(param, W ∗
ν , Mν) algorithm to output SW∗

ν ,Mν . The challenger
then sends SW∗

ν ,Mν to A.
– Query Phase II. Identical to Query Phase I.
– Output. Finally, the adversary outputs a bit ν′ which represents its guess

for bit ν. If ν = ν′ then return 1, else return 0.

Intuitively, this experiment simulates a worst-case scenario attack, where the ad-
versary has access to a lot of information: it knows that the challenge ciphertext
is either an encryption of M0 under W ∗

0 or an encryption of M1 under W1, all of
which are chosen by him. In addition, it is allowed to know any decryption key
that does not directly decrypt the challenge. Query phase I allows the adversary
to choose the challenge messages based on decryption keys it already knows.
Query phase II allows the adversary to ask for more decryption keys based on
the challenge ciphertext it received.
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If the encryption scheme would have a flaw and leak even a bit of information,
a smart adversary would choose the message and attribute vector in such a way
that this weakness would come to light. Thus the statement that no adversary
can do significantly better than guessing implies that the encryption scheme does
not leak information.

We wish to note that there is a stronger notion of security – the non-selective
model – where the adversary chooses W ∗

0 and W ∗
1 in the challenge phase. This

allows the adversary to make those dependent on the public parameters and on
known decryption keys. Creating a secure HVE in that setting is still an open
problem.

2.3 Bilinear Groups

Definition 4 (Bilinear Group). We say that a cyclic group G of prime order
q with generator g is a bilinear group if there exists a group GT and a map e
such that

– (GT , ·) is also a cyclic group, of prime order q,
– e(g, g) is a generator of GT (non-degenerate).
– e is an bilinear map e : G× G → GT . In other words, for all u, v ∈ G1 and

a, b ∈ Z∗
q, we have e(ua, vb) = e(u, v)ab.

Additionally, we require that the group actions and the bilinear map can be com-
puted in polynomial time. A bilinear map that satisfies these conditions is called
admissible.

Our scheme is proven secure under the Decision Linear assumption (DLin), which
has been introduced by [4]:

Definition 5 (Decision Linear Assumption). There exist bilinear groups G

such that for all probabilistic polynomial-time algorithms A,
∣∣
∣Pr

[A(G, g, ga, gb, gac, gd, gb(c+d))=1
] − Pr

[A(G, g, ga, gb, gac, gd, gr)=1
]∣∣
∣<ε(κ)

for some negligible function ε(κ), where the probabilities are taken over all pos-
sible choices of a, b, c, d, r ∈ Z∗

q.

Informally, the assumption states that given a bilinear group G and elements
ga, gb, gac, gd it is hard to distinguish h = gb(c+d) from a random element in
G. The Decision Linear assumption implies the decision bilinear Diffie-Hellman
assumption. The best known algorithm to solve the Decision Linear Problem is
to compute a discrete logarithm in G.

3 Construction

Before we present our scheme we will first explain the intuition behind it.
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3.1 Intuition

A common construction for encryption schemes is to hide a message using a
one-time pad construction, i.e. multiplying the message with a random session
key. In our HVE scheme we choose a session key based on all the elements
of the encryption-vector, while the decryption key contains the information to
cancel out the effect of symbols at unwanted wildcard-positions. Ciphertext and
decryption key together can thus recover the session key.

Suppose we have an encryption-vector W = (w1, . . . , wL) and a decryption-
vector W̄ = (w̄1, . . . , w̄L), both consisting of L elements. Let J = {j1, . . . , jn} ⊂
{1, . . . , L} denote the position of wildcards in the decryption key (i.e. J = {4, 5}
for ‘04/**/2010’). We now consider the polynomial

∏
j∈J (i − j) which equals

zero in all the wildcard positions. Now the following statement are equal:

wi = w̄i ∨ w̄i = � for i = 1 . . . L (2)

L∑

i=1

wi

∏

j∈J

(i − j) =
L∑

i=1
i/∈J

w̄i

∏

j∈J

(i − j), (3)

Given that we can expand
∏

j∈J (i−j) =
∑n

k=0 akik, where the ak are coefficients
only dependent on J , this is also equivalent with

n∑

k=0

ak

L∑

i=1

wii
k =

L∑

i=1
i/∈J

w̄i

∏

j∈J

(i − j). (4)

Practically we want to hide computations in the exponents of group elements.
So instead of wi we work with Uwi

i for some random group element Ui. Equation
(4) still holds if:

n∏

k=0

( L∏

i=1

Uwii
k

i

)ak =
L∏

i=1
i/∈J

U
w̄i

∏
j∈J (i−j)

i (5)

In the ciphertext we introduce new randomness that can only be removed if Eq.
(5) – and thus Eq. (2) – is true. For this to work we put pieces of this equation
in the ciphertext and in the decryption key, such that it can be evaluated at
decryption time. The whole right side is included in the decryption key The left
side of Eq. (5) can be computed using the following two sets of elements

– J is included with the decryption key, which allows for computation of all
the coefficients ak,

– for k = 1, . . . , n, the term
L∏

i=1

Uwii
k

i is included in elements of the ciphertext.

The ciphertext has to include n almost similar elements – only different in the
value for k – since it is infeasible to compute them from a single source. However,
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the amount of wildcards n used for decryption is unknown at decryption time.
The best we can do is choose an upper bound N to n and include N elements.
Choosing a small N results in smaller ciphertexts, but also in less flexibility when
creating decryption keys. Choosing N = L results in larger ciphertexts, but also
allows for the creation of decryption keys that consist of only wildcards.

We can reconstruct the coefficients ak of the polynomial
∏

j∈J (x − j) that
occurs in (4) by using Viète’s formulas:

an−k = (−1)k
∑

1≤i1<i2<...<ik≤n

ji1ji2 . . . jik
, 0 ≤ k ≤ n (6)

where n = |J |. If J is clear from the context we will write ai.
For instance when J = {j1, j2, j3} we get for the polynomial (x − j1)(x −

j2)(x − j3),

a3 = 1
a2 = −(j1 + j2 + j3)
a1 = (j1j2 + j1j3 + j2j3)
a0 = −j1j2j3

3.2 Construction

We are now ready to give our construction for a hidden vector encryption scheme.
Without loss of generality, we look at vectors of maximum length L over a fixed
alphabet Σ ⊂ Z∗

q . Other alphabets – like ASCII characters – can always be
mapped onto such a subset. In addition, we need to pick an upper bound N
to the number of wildcards that are allowed in a decryption vector. While this
upper bound can be equal to L, performance increases if N 
 L.

This construction allows for shorter vectors of a length � < L. Intuitively we’ll
pad these vectors with zeroes up to a length L, but in practice this padding can
be safely ignored in the computations.

Our scheme comprises of the following algorithms:

– Setup(κ, Σ, L): First, choose an upper bound N ≤ L to the number of wild-
card symbols in decryption vectors. Next, given security parameter κ:
1. Generate a bilinear group G of a large prime order q and choose a bilinear

map e : G × G −→ GT .
2. Pick L + 1 random elements V0, U1, ..., UL ∈R G.
3. Pick random exponents α, β1, β2, (x1, . . . , xN ) ∈R Zq.
4. Let Ω1 = e(g, V0)αβ1 and Ω2 = e(g, V0)αβ2 .
5. Let Vj = V

xj

0 for j = 1, . . . , N .
The public parameters are:

param =
((

V0, V1, . . . , VN

)
,
(
U1, . . . , UL

)
, gα, Ω1, Ω2, q, G, GT , e(·, ·)

)

The master secret key is msk =
(
α, β1, β2, (x1, . . . , xN )

)
.
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– Extract(msk, W̄ ): Let W̄ = (w̄1, . . . , w̄�) ∈ Σ�
�, where � ≤ L. Assume that W

contains n ≤ N wildcards which occur at positions J = {j1, . . . , jn}. Pick
a random s ∈R Zq and compute: s1 = β1 + s, s2 = β2 + s. By means of
Viète’s formulas ai for i = 1, . . . , n, first compute t =

∑n
k=0 xkak and then

the decryption key TW̄ (where x0 = 1):

TW̄ =

⎛

⎜
⎜
⎜
⎝

T0 = g
αs
t

T1 = V s1
0

∏�
i=1 U

s
t

∏n
k=1(i−jk)w̄i

i

T2 = V αs2
0

∏�
i=1 U

αs
t

∏n
k=1(i−jk)w̄i

i

J = {j1, . . . , jn}

⎞

⎟
⎟
⎟
⎠

.

– Enc(param, W, M): Let W = (w1, . . . , w�) ∈ Σ�, where � ≤ L and M ∈ GT

a message. Pick two random values r1, r2 ∈R Z∗
q . The ciphertext SW,M is:

SW,M =

⎛

⎜
⎜
⎜⎜
⎝

Ĉ = MΩr1
1 Ωr2

2 ,

⎛

⎜
⎜
⎜⎜
⎝

C0 =
(
V0

∏�
i=1 Uwi

i

)r1+r2

C1 =
(
V1

∏�
i=1 U i wi

i

)r1+r2

...
CN =

(
VN

∏�
i=1 U iN wi

i

)r1+r2

⎞

⎟
⎟
⎟⎟
⎠

,

(
gαr1

gr2

)

⎞

⎟
⎟
⎟⎟
⎠

.

– Dec(SW,M , TW̄ ): Given a decryption key TW̄ and a ciphertext SW,M , first
use J to compute Viète’s formulas ai i = 1, . . . , n, then decrypt the message
as:

M = Ĉ
e(T0,

∏n
k=0 Cak

k )
e(T1, gαr1)e(T2, gr2)

3.3 Correctness

We now show that the Dec algorithm indeed returns the correct message when
using a decryption key that should be able to decrypt a given ciphertext. Without
loss of generality we assume that the vectors contain l symbols and that there
are n wildcards at positions {j1, . . . , jn}. Then

e(T0,

n∏

k=0

Cak

k ) = e
(
g

αs∑n
m=0 xmam ,

n∏

k=0

V
ak(r1+r2)
k

)
e
(
g

αs∑n
m=0 xmam ,

n∏

k=0

�∏

i=1

U
ikakwi(r1+r2)
i

)

=
n∏

k=0

(
e(g, V0)

αs(r1+r2)xkak∑n
m=0 xmam

�∏

i=1

e(g, Ui)
αs(r1+r2)wiikak∑n

m=0 xmam

)

= e(g, V0)
αs(r1+r2)

∑n
k=0 xkak∑n

m=0 xmam

�∏

i=1

e(g, Ui)
αs(r1+r2)wi

∑n
k=0 ikak∑n

m=0 amxm

= e(g, V0)αs(r1+r2)
�∏

i=1

e(g, Ui)
αs(r1+r2)wi

∏n
k=1(i−jk)

∑n
m=0 amxm (7)
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where for (7) we use that
∑n

k=0 ikak =
∏n

k=1(i − jk).

e(T1, g
αr1) = e(V0, g)αr1s1 e

( �∏

i=1

U

s
∏n

k=1(i−jk)w̄i∑n
m=0 amxm

i , gαr1
)

= Ωr1
1 e(g, V0)αsr1

�∏

i=1

e(g, Ui)
αsr1

∏n
k=1(i−jk)w̄i∑n

m=0 amxm (8)

e(T2, g
r2) = e(V0, g)αr2s2 e

( �∏

i=1

U

αs
∏n

k=1(i−jk)w̄i∑n
m=0 amxm

i , gr2
)

= Ωr2
2 e(g, V0)αsr2

�∏

i=1

e(g, Ui)
αsr2

∏n
k=1(i−jk)w̄i∑n

m=0 amxm (9)

e(Tn+1, g
αr1)e(Tn+2, g

r2)=Ωr1
1 Ωr2

2 e(g, V0)αs(r1+r2)
�∏

i=1

e(g, Ui)
αs(r1+r2)w̄i

∏n
k=1(i−jk)

∑n
m=0 amxm

(10)

If the decryption key is valid, then wi = w̄i when i /∈ {j1, . . . , jn}. Thus

Ĉ
e(T0,

∏n
k=0 Cak

k )
e(T1, gαr1)e(T2, gr2)

=
MΩr1

1 Ωr2
2 e(T0,

∏n
k=0 Cak

k )
e(Tn+1, gαr1)e(Tn+2, gr2)

= M (11)

3.4 Semantic Security

Theorem 1. The hidden vector encryption scheme in Section 3 is semantically
secure in the selective model assuming that the Decision Linear assumption holds
in group G.

Proof. Suppose there exists a PPT adversary A that can break the selective
semantic security, i.e. A has an advantage in the experiment of Definition 3
larger than some non-negligible ε. We build an algorithm B that uses A to solve
the Decision Linear problem in G.

The challenger selects a bilinear group G of prime order q and chooses a
generator g ∈ G, the group GT and an efficient bilinear map e : G × G → GT .
Then the challenger picks four random values a, b, c, d ∈R Z

∗
q , computes Z0 =

gb(c+d) and chooses Z1 ∈R G. After flipping a fair coin ν ∈R {0, 1} the challenger
hands the tuple (g, ga, gb, gac, gd, Zν) to B. Algorithm B’s goal is to guess ν with
a better chance of being correct than 1

2 . In order to come up with a guess, B
interacts with adversary A in a selective semantic security experiment as follows:

Init. Adversary A chooses an alphabet Σ ⊂ Z∗
q , a length L and announces two

attribute vectors W ∗
0 ∈ Σ�0 , W ∗

1 ∈ Σ�1 , where �0, �1 ≤ L, which are different
in at least one position. B flips a coin μ ∈ {0, 1}. Let W ∗

μ =
(
w∗

1 , . . . , w∗
�μ

)
.
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Setup. B chooses an upper bound N ≤ L to the number of wildcard symbols.
Then B picks random values v0, u1, . . . , uL, x1, . . . , xN ∈R Z∗

q and sets

Vj = (gb)xjv0g−
∑ �μ

i=1 ijui for j = 0, . . . , N

Ui =

{
g

ui
w∗

i for i = 1 . . . �μ

gui for i = �μ + 1, . . . , L,

where x0 = 1. B picks σ1, σ2, σ3 ∈R Zq and computes Ω1 = e(ga, V0)σ1−σ2

and Ω2 = e
(
gσ3(ga)−σ2 , V0

)
. The public parameters are:

param =
((

V0, V1, . . . , VN

)
,
(
U1, . . . , UL

)
, ga, Ω1, Ω2, q, G, GT , e(·, ·)

)

The master secret key is implicitly given by

msk =
(
α = a, t1 = σ1 − σ2, t2 =

σ3

a
− σ2, (x1, . . . , xN )

)
.

Query Phase I. In this phase A adaptively issues key extraction queries. Each
time A queries for the decryption key of an attribute vector W̄ = (w̄1, . . . ,
w̄�) ∈ Σ�

�, consisting of � ≤ L symbols and n ≤ N wildcards at positions
J = {j1, . . . , jn}, algorithm B responds by computing

T0 = (ga)
σ2∑n

m=0 xmam ,

T1 = V σ1
0

�∏

i=1

U

σ2
∏n

k=1(i−jk)w̄i∑n
m=0 xmam

i ,

T2 = (gb)σ3v0g−σ3
∑ �μ

i=1 ui(ga)
σ2

∑�μ
i=1

ui
w∗

i

∏n
k=1(i−jk)w̄i

∑n
m=0 xmam

+
σ2

∑�
i=�μ+1 ui

∏n
k=1(i−jk)w̄i

∑n
m=0 xmam ,

which is basically a correct trapdoor for W̄ with s = σ2. B returns to A the
decryption key

TW̄ =
(
T0, T1, T2, J

)
. (12)

Challenge. Once A decides that the query phase is over, A picks a pair of
messages M0, M1 ∈ GT on which it wishes to be challenged. B computes
SW∗

μ ,Mμ by first computing

Ĉ = Mμ · e(gac, gb
)σ1v0 · e(gac, g

)(σ1−σ2)
∑ �μ

i=0 ui ·
e
(
ga, gd

)σ2
∑ �μ

i=0 ui · e(gb, gd
)σ3v0 · e(gd, g)σ3

∑ �μ
i=0 ui · e(ga, Zν

)σ2v0 (13)

and then computing C0 = Zv0
ν and Ck = Zxkv0

ν for k = 1, . . . , N . B sends
the challenge ciphertext

SW∗
μ ,Mμ =

(
Ĉ,

{
Ck

}N

k=0
,
(gac

gd

))
, (14)

to A. When ν = 0 this is actually a correct encryption of Mμ under W ∗
μ with

r1 = c and r2 = d.
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Query Phase II. In Query Phase II B behaves exactly the same as in Query
Phase I.

Output. Eventually, A outputs a bit μ′.

Finally, B outputs 1 if μ′ = μ and 0 if μ′ �= μ.
We will now analyze the probability of success for algorithm B. First, note

that if ν = 0, then B will behave correctly as a challenger to A. Thus, A will
have probability of 1

2 + ε of guessing μ. Next note that if ν = 1, then Zν is
random in G and SW∗

μ ,Mμ is independent from μ, thus A will have a probability
of 1

2 of guessing μ.
To conclude the proof we have
∣
∣
∣Pr

[B(G, g, ga, gb, gac, gd, gb(c+d)) = 1
] − Pr

[B(G, g, ga, gb, gac, gd, gr) = 1
]∣∣
∣

≥
∣
∣
∣Pr

[
ν = 0 ∧ μ′ = μ

] − Pr
[
ν = 1 ∧ μ′ = μ

]∣∣
∣

=
∣
∣
∣
1
2

Pr
[
μ′ = μ

∣
∣ ν = 0

] − 1
2

Pr
[
μ′ = μ

∣
∣ ν = 1

]∣∣
∣

=
1
2

∣
∣∣Pr

[
ExpA(κ) = 1

] − 1
2

∣
∣∣

≥1
2
ε,

which is non-negligible, contradicting the Decision Linear Assumption. �

4 Conclusion

We presented a new hidden vector encryption scheme which can work as a
wildcard searchable encryption scheme that is a more efficient than existing
schemes in some scenarios. The tables below summarize the efficiency of our
scheme when compared to other schemes. The scheme is proven selectively secure
in the sense of hiding the contents of the message and hiding the keywords
associated to the message. This is the same model as the one used in the other
schemes in the literature. A hidden vector encryption scheme that is secure in
the adaptive standard model is still an open problem, as is finding any other
construction for wildcard searchable encryption in that model.

Table 1 compares the performance of our scheme with existing searchable
encryption schemes from the point of view of memory requirement. It shows
that constructing the decryption key is more efficient than the existing schemes.
Moreover, since N is always less than � (depending on the application scenario),
the ciphertext can be constructed in a more efficient way.

Notation in this table: � is the length of the (ciphertext or decryption key)
vector, L is the maximum allowed number of entries in the ciphertext vector, n is
the amount of wildcard entries, N is the maximum allowed amount of wildcard
entries.
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Table 1. Ciphertext- and key-size of several HVE schemes

Size of Maximum
Size of Size of public allowed

Schemes ciphertext Decryption key parameters Wildcards

Boneh, Waters [7] 2� + 2 2(� − n) + 1 3L + 3 Arbitrary
Katz et al. [16]

Shi, Waters [22] � + 4 � − n + 3 4L + 2 Arbitrary

Iovino, Persiano [14] 2� + 2 � − n + 3 2L + 4 Arbitrary
Blundo et al. [3]

Nishide et al. [18] � + 2 � + 1 3L + 1 Arbitrary

This Work N + 4 3 L + N + 1 N

Table 2 compares the performance of our scheme with existing searchable
encryption schemes from the point of view of decryption cost. It shows that the
decryption cost in our scheme is constant and less than other schemes since only
three pairings is required for the decryption.

Notation in this table: � is the length of the (ciphertext or decryption key)
vector, and n is the amount of wildcard entries.

Table 2. Decryption speed of several HVE Schemes

Number of
pairings Order of Alphabet

Schemes for decryption bilinear group of entries

Boneh, Waters [7] and 2(� − n) + 1 Composite Arbitrary
Katz et al. [16]

Shi, Waters [22] (� − n) + 3 Composite Arbitrary

Iovino, Persiano [14] 2(� − n) Prime Binary
Blundo et al. [3]

Nishide et al. [18] � + 1 Prime Binary

This Work 3 Prime Arbitrary
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Abstract. In this paper, we propose a new threshold attribute-based
signcryption scheme secure in the standard model. The scheme provides
message confidentiality, and authenticity of a message in addition to
attesting the attributes of the sender. Such a property is useful in appli-
cations such as electronic card, digital prescription carrier devices, secure
and authentic email service, etc. Our scheme relies on the intractability
of the hashed modified decisional Diffie-Hellman and modified computa-
tional Diffie-Hellman assumptions, and is proven secure under adaptive
chosen ciphertext attack and chosen message attack security notions of
signcryption. Further, we achieve a tight reduction for both the security
notions in the standard model.

1 Introduction

Attribute-based cryptography has generated much interest in recent years. At-
tributed based systems allow security functionalities to be provided based on
‘attributes’ of users and not their individual identities. Attribute-based encryp-
tion (ABE) [30,15,5] can elegantly implement role based access control systems,
and Attribute Based Signatures (ABS) [16,32], provides a powerful way for users
to control their privacy: in signing a document the user can choose the subset of
their attributes that is relevant for the specific scenario (there are other proofs of
partial knowledge [10] methods that can be used to obtain a similar functionality,
but they are much more costly).

In a basic ABE system a user encrypts a message with a set of n attributes
such that users whose decryption key have at least t common attributes with the
ciphertext attribute set can decrypt the message. Such schemes, initially called
fuzzy identity-based encryption, were first proposed by Sahai and Waters [30]. In
basic ABS, a user can sign with a subset of their attributes and the verification
succeeds with any set of attribute that has at least t common attributes with the
signing attribute set. We refer to these systems as threshold attribute-based en-
cryption (t-ABE) and threshold attribute-based signatures (t-ABS), respectively,
names which we feel are more descriptive and more representative of the func-
tionality of each scheme.
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Combining ABE and ABS provides an attractive solution for complex autho-
rization and access control problems. For example, a HR manager wants to send
a confidential email to all employees of a particular department within an organi-
zation such that all employees of that concerned department can read and verify
the authenticity of the message against the HR manager’s attributes. Using ABS
together with an ABE provides a direct solution to this problem.

Signcryption systems [35] provide a more efficient way of providing secrecy
and authenticity for communication compared to using a signature and an en-
cryption schemes separately. Signcryption systems also provides an integrated
security model that is used to prove security of the combined functions. A natural
question is whether an attribute-based signcryption (ABSC) can be constructed
with substantial efficiency gain.

We consider threshold attribute-based signcryption (t-ABSC) systems that
allow a user to sign a message with an arbitrary subset ωs of their attribute, and
encrypt it with a set of attributes ωe such that a recipient whose attribute set has
an overlap of at least t with ωe can decrypt the message, and authenticity of the
signature can be verified against the claimed attribute set ωs. Although we only
discuss threshold policy, a similar question can be asked for more general policies.
We believe that the encryption component of the t-ABSC scheme presented in
this paper can be extended to allow for more general key policies.

1.1 Our Contribution

In this work, we define threshold attribute-based signcryption, which combines
the functionalities of attribute-based encryption and attribute-based signature,
present the security model for this new primitive, construct the first t-ABSC
scheme and prove its security in the standard model. The encryption component
of our construction is inspired by Sahai and Waters’ large universe construction
[30], whereas the signature component is a new efficient threshold attribute-based
signature scheme. The security of our scheme is based on the intractability of
the hashed modified version of the decisional bilinear Diffie-Hellman assumption
based on the assumptions in [18] and [1] and modified computational Diffie-
Hellman assumption.

When compared to the direct composition of an attribute-based encryption
scheme and an attribute-based signature scheme that results in a similar func-
tionality, our scheme enjoys the following advantages:

� Bandwidth Efficiency: The ciphertexts in our scheme require about half the
size of what would be needed in a straightforward combination of the most ef-
ficient attribute-based encryption and attribute-based signature schemes known
in the literature, without sacrificing any functionality or security. The size of the
public and private keys remain comparable.

� Chosen-Ciphertext Security: Most ABE schemes are proven secure only
against chosen-plaintext attack ([14] is the only exception), and obtain security
against chosen-ciphertext attack through the use of simulation-sound non-
interactive zero-knowledge proofs [29,31]. This method is very inefficient due to its
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reliance on a generic Karp reduction. Our scheme is proven secure against adaptive
chosen-ciphertext attack directly. We can obtain security against chosen-ciphertext
attack directly by adapting the techniques of Abdalla et al. [1].

� Tight Reduction: Our scheme has tight reductions for both indistinguishabil-
ity against adaptive chosen-ciphertext security and unforgeability against
chosen-message attack. Given adversaries against our scheme, we can construct al-
gorithms that solve the underlying computational assumption with εHmDBDH ≈
εCCA2 and εmCDH ≈ εCMA

nm
,1 where nm is the length of the message. This is similar

to other attribute-based encryption schemes when it comes to confidentiality, but
significantly tighter than for other attribute-based signature scheme [32,34].

� CCA-secure Attribute-Based Encryption: Since the signature component
of our signcryption scheme does not play a role in the proof of chosen-ciphertext
security, we can obtain a CCA-secure version of the Sahai-Waters scheme [30]
simply by removing the signature from the ciphertext.

� Short Attribute-Based Signature: Similarly, we can separate the signature
component of our scheme to obtain an attribute-based signature scheme with
shorter signature than any previous scheme and a tight security proof.

Our scheme is proven secure in the selective-set model, in which the adversary
has to commit to the attribute set which he wants to attack at the beginning of
the scheme. We note that such a scheme can be proven adaptively secure using
a technique similar to Boneh and Boyen [6], but the reduction is inefficient. This
is discussed in Section 4.5.

1.2 Related Work

Signcryption is a public key primitive [35] providing confidentiality and authen-
ticity for messages and motivated by the efficiency gain in computation and
communication when compared to applying encryption and signature separately.

A number of signcryption schemes in public key setting [3,33,27] and identity-
based setting [26,7,22,23,9,4] has been proposed. To the best of our knowledge
this is the first attribute-based signcryption system proposed in the literature.

Sahai and Waters introduced a new type of identity-based encryption called
fuzzy identity-based encryption [30] that allows the identity information to be
’fuzzy’ with motivating scenario being biometric information used for identities.
The main idea was to view an identity as a set of descriptive attributes such
that when a message is encrypted for an attribute set ωe, a user with private
key for the attribute set ω′ is able to decrypt if and only if ω′ and ωe have an
overlap of at least d attributes. We call this as threshold ABE.

Goyal et.al introduced key-policy ABE [15], which is an extension of fuzzy
identity-based encryption. The aim was to achieve higher expressiveness in de-
termining the group who can decrypt the message. In this system, a ciphertext
is encrypted under a set of attributes and the decryption successful if the access
1 Here, HmDBDH and mCDH stand for hashed modified decision bilinear Diffie-

Hellman problem and modified computational Diffie-Hellman problem.
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structure associated with a user’s private key is satisfied by the attribute set
attached to the ciphertext.

Bethencourt et al. presented the first ciphertext-policy ABE [5] which allows
senders to associate access structures with ciphertexts. A user can decrypt the
ciphertext if that user’s attribute in his decryption key satisfy the access struc-
ture attached to the ciphertext. Other notable ABE schemes are hierarchical
ABE [21], constant ciphertext ABE [13], distributed ABE [28], attribute-based
broadcast encryption [24,2] and multi-authority ABE [8].

Attribute-based signature (ABS) extends identity-based signature wherein a
signer is identified by a set of attributes instead of a single identity string. An
attribute-based signature attests a set of attributes held by a sender, and proves
to the verifier that the sender who holds the attribute set has endorsed the mes-
sage. Guo and Zeng proposed a key-policy ABS in [16] whose security relies on
the intractability of strong extended Diffie-Hellman assumption. In [32], a thresh-
old attribute-based signature construction for small attribute universe and large
attribute universe was proposed. Other notable ABS schemes include, attribute-
based ring signatures [20], fuzzy attribute-based signature [34], attribute-based
group signature [12,17] and policy-based ABS in generic model [25].

The rest of the paper is organized as follows: in Section 2 we present an overview
of threshold attribute-based signcryption, its security notions and mathematical
preliminaries. Section 3 presents our new signcryption construction, followed by
its security details, and Section 4 gives a few additional remarks on the scheme.
In Section 5, we provide an efficiency analysis of our scheme against direct com-
bination of t-ABE and t-ABS and in Section 6 presents the conclusion.

2 Model and Definitions

The goal in an attribute-based signcryption scheme is to achieve the combined
functionality of attribute-based encryption and attribute-based signature. We
first note that, contrary to identity-based schemes - in which the keys are tied
to the identity of a user, and where it is therefore natural for the decryption and
signature keys be generated at the same time and given together - it is possible
for users here to be given different rights for decryption and signature.

We enforce this by having the decryption (unsigncryption) key and signa-
ture keys generated by two distinct algorithms, and by requiring that the set of
encryption attributes Ue and the set of signature attributes Us be disjoint. In
practice, if an attribute, say student, should be allowed both as an encryption
attribute and a signature attribute, then this attribute will have two ‘repre-
sentations’, one (studente) used as an encryption-only attribute, and another
(students) used only for signature.

The algorithms uExtract and sExtract generate unsigncryption and signa-
ture keys respectively. Each algorithm takes a set of (encryption or signature
resp.) attributes and a threshold d and output a (unsigncryption or signature
resp.) key. The threshold d need not be the same from one execution to the next.



158 M. Gagné, S. Narayan, and R. Safavi-Naini

When a user wishes to signcrypt a message M given his signature key sks,ωσ,d

with encryption attributes ωe,2, he must first choose a subset ωs of ωσ of size d
which will be used to sign the message, and then applies the Signcrypt algo-
rithm with input M, ωe, ωs, sks,ωσ ,d.

The Unsigncrypt algorithm should be successful in decrypting a cipher-
text C with an unsigncrypt key sku,σμ,d if |ωe ∩ ωμ| ≥ d, where ωe is the set
of encryption attributes used to signcrypt the ciphertext, and if C contains a
valid signature with attributes ωs (the signature attributes used in C), assuming
threshold |ωs|. It is assumed here that the sets ωe and ωs should somehow be
encoded in the ciphertext.

Formally, a threshold attribute-based signcryption scheme consists of four
algorithms: Setup, sExtract, uExtract, Signcrypt and Unsigncrypt.

Setup: Given a security parameter 1k, the algorithm outputs the public system
parameters params and master secret key msk.

Key Generation:

sExtract: Given a set ωσ of signature attributes, a threshold d, and the
system master key msk as input, the algorithm outputs the private key
sks,ωσ,d.
uExtract: Given a set ωμ of encryption attributes, a threshold d, and the
system master key msk as input, the algorithm outputs the private key
sku,ωμ,d.

Signcrypt: Given a message M , public parameters params, encryption at-
tribute set ωe (attributes chosen by the sender for encryption), signing at-
tributes set ωs (sender’s attribute set against which the signature is verified)
and the sender’s secret key sks,ωσ ,d such that ωs ⊂ ωσ and |ωs| = d, the
Signcrypt algorithm produces a ciphertext C encrypted with attributes ωe

and signed with attributes ωs.
Unsigncrypt: The unsigncrypt algorithm takes as input the ciphertext C and

the private key sku,ωu,d. The algorithm can decrypt the encrypted message
if |ωe ∩ ωu| ≥ d, where ωe is the encryption attributes in C (note that this
condition is independent to signature verification since the verification is
performed against the signer’s attribute set), and verifies the signature on
the message against ωs. The signcryption either returns the message and
sender’s attributes, or returns ⊥.

2.1 Security Notions

Message Confidentiality. This attack scenario is modeled on the indistin-
guishability of ciphertext under a chosen-ciphertext attack in the selective at-
tribute model.

In this scenario, the adversary commits to a set of encryption attributes ω∗
e

which will be used to encrypt the challenge ciphertext. During the attack, the
2 In the signature key sks,ωσ,d, the s identifies the key as a signature key, ωσ is the set

of signature attributes with which the user is allowed to sign and d is the threshold
of the key.
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adversary can ask for the signing key of any signature attribute set and any
threshold, and any unsigncrypt key that would not allow him to trivially decrypt
the challenge ciphertext - that is, any encryption attribute set ωμ and threshold
d such that |ω∗

e ∩ ωμ| < d.
The adversary is also allowed to issue Unsigncrypt queries to obtain the un-

signcryption of any ciphertext under any key, with the exception that he cannot
ask for the unsigncryption of the challenge ciphertext with a key that could
trivially decrypt it.

It is not necessary for the adversary to make signcryption queries since he can
obtain the signature key for any signature attribute set, and therefore he can
signcrypt on his own.

Message confidentiality against adaptive chosen-ciphertext attacks is defined
using the following game between an adversary who attempts to break the
scheme and a challenger who provides the environment for the attack:

Commit: The adversary A selects a set of encryption attributes ω∗
e which will

be used to encrypt the challenge ciphertext, and returns ω∗
e to the challenger.

Setup: The challenger runs the Setup algorithm of the scheme and sends the
global system parameters to the adversary A.

Query Phase 1: The adversary adaptively makes a polynomial number of the
following queries, which must be answered by the challenger:
� sExtract: the adversary queries a signature attribute set ωs,i and a threshold
di. The challenger answers by running algorithm sExtract(msk, ωs,i, di).
� uExtract: the adversary queries an encryption attribute set ωu,i and a
threshold di, subject to |ωu,i ∩ ω∗

e | < di. The challenger answers by running
algorithm uExtract(msk, ωu,i, di).
� Unsigncrypt: the adversary queries a ciphertext C, encryption attribute
set ωu,i and a threshold di. The challenger answers by first computing
an sku,ωu,i,di = uExtract(ωu,i, di) and answers the query by running the
Unsigncrypt (C, sku,ωu,i,di) algorithm.
At the end of Phase 1, the adversary outputs two challenge messages M∗

0 , M∗
1 ,

a sender attribute set ω∗
s .

Challenge Phase: The challenger chooses a random bit b, computes the sig-
nature key sks,ω∗

s ,|ω∗
s | = sExtract(msk, ω∗

s , |ω∗
s |) and computes challenge

ciphertext C∗ = Signcrypt(params, ω∗
e , ω∗

s , sks,ω∗
s ,|ω∗

s |).
Query Phase 2: The adversary adaptively makes a polynomial number of

queries as in Query Phase 1, with the additional constraint that he is not
allowed to make an Unsigncrypt query (C∗, ωu, d) such that |ωu ∩ ω∗

e | ≥ d.
Response: The adversary outputs a bit b′ and wins the game if b′ = b.

The adversary’s advantage is defined to be Adv(A) = |Pr[b′ = b] − 1/2|.
Definition 1. We say that a threshold attribute-based signcryption scheme is in-
distinguishable against adaptive chosen ciphertext attack property under selective
attribute model (S-IND-t-ABSC-CCA2), if no polynomially bounded adversary
A has a non-negligible advantage in the above attack game.
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Ciphertext Unforgeability. This attack scenario is based on the definition
for existential unforgeability under a chosen-message attack.

The queries the adversary is allowed here are similar to the previous game,
except that the role of the signature and encryption attributes are switched. The
adversary can ask for the unsigncrypt key for any encryption attribute set and
any threshold (making unsigncrypt queries unnecessary), and can ask for the
signature key for any signature attribute set and threshold except for those that
would enable him to trivially produce a valid ciphertext.

The adversary is also allowed to issue Signcrypt queries to obtain a ciphertext
for any message, encryption and signature attribute sets.

The attack game for existential unforgeability property is defined as follows:

Commit: The adversary A selects a set of encryption attributes ω∗
s for which

he will try to forge a signature, and returns ω∗
s to the challenger.

Setup: The challenger runs the Setup algorithm of the scheme and sends the
global system parameter to the adversary A.

Query Phase 1: The adversary adaptively makes a polynomial number of the
following queries, which must be answered by the challenger:
� sExtract: the adversary queries a signature attribute set ωs,i and a threshold
di, subject to |ωs,i ∩ ω∗

s | < d. The challenger answers by running algorithm
sExtract(msk, ωs,i, di).
� uExtract: the adversary queries an encryption attribute set ωu,i and a
threshold di. The challenger answers by running algorithm uExtract(msk,
ωu,i, di).
� Signcrypt: the adversary queries a message M , encryption attribute set ωe,i

and signature attribute set ωs,i. The challenger answers by first computing
a signature key sks,ωs,i = sExtract(msk, ωs,i, |ωs,i|), and then returns the
ciphertext obtained by running Signcrypt(params, ωe,i, ωs,i, sks,ωs,i).

Forgery Phase: The adversary returns a ciphertext C∗ and an encryption at-
tribute set ω∗

e .
The adversary wins if the ciphertext is valid and was not obtained from a
Signcrypt query. That is Unsigncrypt(C∗, sku,ω∗

e
) = M �= ⊥ where sku,ω∗

e
=

uExtract(ω∗
e , |ω∗

e |) and A did not issue a query a Signcrypt query(M, ω∗
e , ω∗

s).

The adversary’s advantage is defined to be Adv(A) = Pr[A wins].

Definition 2. We say that a threshold attribute-based signcryption scheme is
existentially unforgeable against chosen-message attack in the selective attribute
model or (S-EUF-t-ABSC-CMA), if no polynomially bounded adversary A has
a non-negligible advantage in the above attack game.

As we can note that in the above game an adversary is allowed to query for
the private key of the receiver’s attribute set to whom the forged message is
presented in the attack game, this corresponds to insider-security for signature
unforgeability.
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2.2 Complexity Assumptions

Let G and GT be multiplicative groups of prime order q. Let Z
∗
q denote the set of

all non-zero integers modulo prime q. A bilinear map is a map ê : G×G → GT ,
satisfying the following properties.
- ê is bilinear, i.e. for all g, g1, g2 ∈ G and a, b ∈ Z∗

q , we have
- ê(ga

1 , gb
2) = ê(g1, g2)ab.

- ê is non-degenerate, i.e. given g1, g2 ∈ G \ 1, ê(g1, g2) �= 1.
- ê is efficiently computable.

Hashed Modified Bilinear Diffie-Hellman: Let H : GT → R be a hash func-
tion. Given the distributions (g, ga , ga2

, gb, gc, H(ê(g, g)abc)) and (g, ga, ga2
, gb,

gc, r), where a, b, c ∈R Z∗
q , r ∈R R, and g ∈ G, ê(g, g) ∈ GT . The hashed mod-

ified decisional bilinear Diffie-Hellman (HmBDH) problem is to distinguish the
two distributions.

We define the advantage ε of an adversary B in solving the modified decisional
bilinear Diffie-Hellman problem as,

Pr[B(G, GT , ê, q, g, ga, ga2
, gb, gc, H(ê(g, g)abc)) = 1]

− Pr[B(G, GT , ê, q, g, ga, ga2
, gb, gc, r) = 1],

where the probability is over randomly chosen a, b, c, r. We say that the modi-
fied decisional bilinear Diffie-Hellman assumption holds if ε is negligible for all
adversaries B.

This complexity assumption is inspired from the modified Decisional Bilinear
Diffie-Hellman assumption by Kiltz and Vahlis [18] and from the hashed Diffie-
Hellman assumption by Abdalla et al. [1]. We discuss this complexity assumption
in more details in Appendix A.

Modified Computational Diffie-Hellman: Given (g, ga, ga2
, gb) ∈ G, where

g is a generator of G and a, b ∈ Z∗
q , the modified computational Diffie-Hellman

problem is to compute gab.
We define the advantage ε of an adversary B in solving the modified decisional

bilinear Diffie-Hellman problem as, Pr[B(G, GT , ê, q, g, ga, ga2
, gb) = gab], where

the probability is over randomly chosen a, b. We say that the modified computa-
tional Diffie-Hellman assumption holds if ε is negligible for all adversaries B.

2.3 Collision-Resistant and Target Collision Resistant Hashing

Collision-resistant and target collision resistant (TCR) hash functions [11] are a
family of keyed hash functions. Let F = (HASHs)s∈{0,1}k be a family of keyed
hash functions for a security parameter k and with key s ∈ {0, 1}k. F is said
to be collision resistant if, for a hash function H = HASHs sampled at random
from the family, it is infeasible for an efficient adversary to find two distinct
values x �= y such that H(x) = H(y).

For target collision resistant hash functions, it should be infeasible for a poly-
nomial time adversary to find y such that y �= x and H(x) = H(y), given a
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randomly chosen element x and a randomly drawn hash function H. Let B de-
note a polynomial time adversary against TCR hash functions, we define the
advantage function of the adversary B as follows:

AdvTCR
H,B (k) = Pr[B finds a collision to H(x)]

H is said to be target collision resistant if the advantage function AdvTCR
H,B (k) is a

negligible function in k for all polynomial time adversaries B, given a randomly
chosen element x.

2.4 Message Authentication Codes

A message authentication code is a tuple of three algorithms (KeyGen,MAC,
Verify). KeyGen takes no input and generates a key, MAC takes a key and
a message of arbitrary length and outputs a tag, Verify takes a key, a message
and a tag and outputs a bit, 1 indicating that the tag is valid for the message,
0 indicating that is it invalid.

The security of a message authentication code is defined through a game in
which a key k is first chosen by running the KeyGen algorithm. The attacking
algorithm A is then given oracle access to MAC(k, ·) and Verify(k, ·), and A
succeeds in breaking the message authentication code if it can output a message-
tag pair (M, tag) such that Verify(k, M, tag) = 1 but A did not receive tag as
a response from its MAC oracle on input M .

3 t-ABSC Construction

In this section we present our threshold attribute-based signcryption construc-
tion. The security of our scheme is based on the intractability of the hashed
modified decisional bilinear Diffie-Hellman and modified computational Diffie-
Hellman assumptions.

Setup: Let n denote the maximum size of an attribute set. Let nm denote the
plaintext size. The public parameters params are:

(g, g1, h, t1, . . . , tn+1, u1, . . . , unm , u′, Y, H, H1, H2, MAC),

where ê : G×G → GT is a bilinear pairing function, s ∈R Z∗
q , g, g1, h, t1, . . .,

tn+1, u
′, u1, . . . , unm ∈R G, Y = ê(g, g1)s, H : GT → {0, 1}nm × Z∗

q ×KMAC

is a cryptographic hash function which satisfies the hashed mBDH assump-
tion, H1 : {0, 1}∗ → Z

∗
q is a target collision resistant hash function, H2 :

{0, 1}2nm → {0, 1}nm is a collision-resistant hash function and MAC is a
message authentication code. The master secret of the system is s.

We define two functions, T : Fq → G and W : {0, 1}nm → G that will be
used throughout our scheme. Let T (x) be the function defined by T (x) =
gxn

1

∏n+1
i=1 (tΔi,N (x)

i ), where Δi,N (x) =
∏

j�=i,j∈N
x−j
i−j is the Lagrange coefficient

for i ∈ Z∗
q , N is the set {1, . . . , n + 1}. Let W (hm) = u′ ∏nm

i=1 u
hm,i

i , where hm a

binary string of length nm consists of
−→
hm = (hm,1, hm,2, . . . , hm,nm).
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uExtract(ωe, d): The private key corresponding to a set of encryption attributes
ωe and threshold d is a set {Du,1i, Du,2i , Du,3i}i∈ωe computed as follows:
- Du,1i = (gf(i)

1 (T (i))ri)i∈ω, where ri ∈R Z
∗
q and f is a random polynomial

of degree d − 1 such that f(0) = s.
- Du,2i = gri .
- Du,3i = hri .

sExtract(ωs, d): The private key corresponding to a set of signature attributes
ωs and threshold d is a set {Ds,1i, Ds,2i}i∈ωs computed as follows:
- Ds,1i = (gf(i)

1 (T (i))ri)i∈ω, where ri ∈R Z∗
q and f is a random polynomial

of degree d − 1 such that f(0) = s.
- Ds,2i = gri .

Signcrypt(params, M, ωe, ωs, sks,ωσ , |ωs|): Here, ωe is a set of encryption at-
tributes, ωs is a set of signature attributes and sks,ωσ ,|ωs| is a signature key
with ωs ⊂ ωσ. The algorithm proceeds as follows:
- Choose random r, r′ ∈ Z

∗
q .

- Compute (h1, h2, h3) = H(Y r).
- Let t = H1(gr).
- Compute:

Z = gh2 · W (H2(M ||h1))r′ ·
∏

i∈ωs

(Ds,1i)
Δi,ωs (0).

- The signcryption of M is:

(ωe, ωs, g
r, {(T (i)ht)r}i∈ωe , M ⊕ h1, Z, {(Ds,2i)

Δi,ωs (0)}i∈ωs , g
r′

, tag),

where tag is the MAC of all preceding elements in the ciphertext under key
h3.

Unsigncrypt: Given a ciphertext C = (A1, A2, A3, (A4i)i∈ωe , A5, A6, (A7i)i∈ωs ,
A8, A9) and an unsigncryption key sku,ωmu,d the unsigncryption is performed
as follows:
- Chooses a subset S ⊂ (ωμ ∩ A1) containing d attributes. If no such subset
exists, output ⊥.
- Compute t = H1(A3).

- Compute Y ′ =
∏

i∈S

(
ê((D1i

Dt
3i

),A3)

ê(D2i
,A4i

)

)Δi,S(0)

.

- Compute (h1, h2, h3) = H(Y ′) and Z ′ = A6 · g−h2 .
- Test the following equation:

ê(g, Z ′) = Y · ê(A8, W (H2((A5 ⊕ h1)||h1)) ·
∏

i∈A2

ê(A7i , T (i)).

If it holds, and A9 is equal to the MAC of all preceding elements in the
ciphertext under key h3, output A5 ⊕ h1, otherwise, output ⊥.
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3.1 Security

Due to space restrictions, we only state the theorems describing the security of
our scheme. The proofs are given in the full version of this paper.

Theorem 1. Our signcryption scheme is S-IND-t-ABSC-CCA2-secure if the
hashed modified decisional bilinear Diffie-Hellman assumption is hard, if H1 is
a target-collision resistant hash function and MAC is a secure message authen-
tication code. More precisely, if there exists an algorithm A that attacks our
scheme, then we can construct algorithms B, B1 and C that have essentially the
same running time as A such that

AdvS−IND−t−ABSC−CCA2
A ≤ AdvmDBDH

B + AdvTCR
H1,B1

+ AdvUNF
MAC,C .

Theorem 2. Our signcryption scheme is S-EUF-t-ABSC-CMA-secure if the
modified computational Diffie-Hellman assumption is hard. More precisely, if
there exists an algorithm A that attacks our scheme, then we can construct al-
gorithms B and C that have essentially the same running time as A such that

AdvS−EUF−t−ABSC−CMA
A ≤ nm · AdvmCDH

B + AdvCR
H2,C.

4 Additional Remarks

4.1 CCA-Secure Attribute-Based Encryption

Since the signature part of our signcryption scheme plays no role in proving it
CCA secure, it is easy to obtain a CCA-secure attribute-based encryption scheme
from our signcryption scheme by simply removing the signature component. The
scheme is essentially a CCA-secure version of the Sahai-Waters large universe
construction of [30]. This scheme is given in full details in Appendix B.

4.2 Short Attribute-Based Signature

Similarly, we can separate the signature component of our signcryption scheme
to obtain a signature scheme whose signature are about half the size of previous
schemes [32,34]. It also has a much tighter security reduction than previous
schemes. The details of the scheme are in Appendix C.

4.3 Reducing the Number of Keys

We used two disjoint attribute universes for encryption and signature in order to
achieve the same functionality as the combination of an attribute-based encryp-
tion and an attribute-based signature scheme. However, since, in our scheme,
the private keys used for decryption and signature are essentially identical (one
more element is needed for decryption keys), it would be possible, in the event
that users are always given the same decryption and signature rights, to use
the same attributes (and same key generation algorithm) for both encryption
and signature, thereby reducing the number of private keys by half. This results
in a more complicated security model, which will be discussed in the complete
version of this paper.
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4.4 Arbitrary Monotone Access Structure for Encryption

For simplicity of exposition, and to preserve a certain symmetry between the ac-
cess policy used for encryption and signature, we limited the access policies used
for unsigncryption keys to threshold policies. However, we believe it should be
straightforward to extend our result to arbitrary monotone access structures by
splitting the master key msk using techniques similar to those of Goyal et al. [15].

4.5 A Note on Adaptive Security

Using a method similar to Boneh and Boyen [6], we can prove our scheme adap-
tively secure using a reduction that simply guesses the set of challenge attributes
at the beginning. While this reduction is rather inefficient - the probability of
correctly guessing the challenge set is 1/2N where N is the total number of at-
tributes used in the scheme - we note that when N is not too large, say N ≤ 500,
one could increase the order of the group to retain security and still obtain a
more efficient scheme than the adaptively secure scheme of Lewko et al. [19],
which requires the order of its group to be large enough to be hard to factorize.

5 Efficiency Analysis

We now compare the efficiency of our scheme against the combination of ABE
and ABS that provides the same functionality of authenticated encryption. The
comparison will be in terms of public parameter size, private key size, ciphertext
size, and computational cost for signcryption and unsigncryption. The result of
comparison is given in Table 1 below. It can be seen that the new scheme obtains
stronger security (CCA versus CPA) with shorter parameter sizes. In particular
using our scheme, the ciphertext size when a large number of attributes is used
for signcryption, results in a ciphertext with the length almost halved.

Let |G| and |GT | denote the size of the underlying group G and GT respectively
in bits, and τ is the size of the tag produced by the message authentication code.

In our t-ABSC scheme the public parameter size is (n + nm + 4)|G| + |GT |,
where n is the maximum size of an attribute set and nm is the size of the
messages. The private key size is dependant on the number of attributes held
by a user where 1 ≤ |ω| ≤ n. The private key size of our construction is at most
5n · |G|. The ciphertext size of our scheme depends on the number of attributes
used to signcrypt, i.e, |ωe| and |ωs|, where 1 ≤ |ωe| ≤ n and 1 ≤ |ωs| ≤ n
respectively. The ciphertext size in our scheme is at most (2n + 3)|G|+ nm + τ .

The number of exponentiations in group G to signcrypt is at most 2n+ d+3,
and additionally, we require on average nm

2 (at most nm) exponentiations in G

due to the function W (hm). The cost of unsigncrypt consists of 3d + 3 pairing
computations and d + nm

2 exponentiations in G.
In Table 1, n, nm denotes the maximum size of an attribute set (we can use for

extract/encrypt/sign), and length of the message/Hash output (H2) respectively.
The construction below use the encrypt-then-sign paradigm.
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Table 1. Scheme Efficiency

Schemes Params Private Ciphertext Security
Size Key Size Size Notion

Ours‡ (n + nm + 4)|G| + |GT | 5n|G| (2n + 3)|G| + nm + τ CCA2/CMA

ABE + ABS

[30]+[32] (n + nm + 7)|G| + |GT | 4n|G| (4n + 5)|G| + |GT | CPA/CMA

We compare our scheme with the combined system of threshold attribute-
based encryption (t-ABE) [30] and threshold attribute-based signature(t-ABS)
[32].The public parameter of this combined system is (|GT | + (n + nm + 7)|G|).
The signcrypted message size of the combined system is at most (4n + 5)|G| +
|GT |. The private key of the scheme is at most (4n) · |G|.

6 Conclusion

We introduced a threshold attribute-based signcryption in the standard model
which can be applied to sender identifiable applications wherein the authenticity
of message attests sender’s attributes. Our scheme can be extended to provide
sender privacy, wherein the sender is able to selective disclose his attributes while
preserving others. We presented a proof of security under the selective attribute
model against both adaptive chosen ciphertext attack and chosen message attack.
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A The Hashed Modified Biliear Diffie-Hellman
Assumption

The hashed Diffie-Hellman problem was first formally discuss by Abdalla et al.
in [1]. In this problem, the adversary is trying to distinguish between 〈g, ga, gb,
H(gab)〉 and 〈g, ga, gb, R〉, where a and b are random number between 1 and
the order of the group, and R is a random element in the range of the hash
function H . When H is the identity function, this is essentially the same as
the decisional Diffie-Hellman assumption, and when H is a cryptographic hash
function, the hashed Diffie-Hellman assumption is likely to be weaker than the
DDH assumption. In the best case, H is a function that extracts hard-core
bits, and then the hashed Diffie-Hellman assumption is equivalent to the CDH
assumption.

The modified bilinear Diffie-Hellman problem is similar to the traditional
bilinear Diffie-Hellman problem (or its decisional counterpart), except that in
addition to the elements ga, gbandgc, an adversary trying to compute ê(g, g)abc

(or trying to differentiate it from a random group element) is also given ga2
.

While this assumption is stronger than the BDH assumption, the additional
input to the adversary it not known to reduce the complexity of the problem.

Our hashed modified bilinear Diffie-Hellman assumption is a straightforward
adaptation of the hashed Diffie-Hellman assumption to the modified Decisional
Bilinear Diffie-Hellman problem of Kiltz and Vahlis [18].

For our scheme, we need the hash function H to be of the form H : GT →
{0, 1}nm × Z

∗
q × KMAC . Assuming that such a function H exists is not much
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stronger than assuming that the hash function has the form H ′ : GT → {0, 1}n

for some n since one could easily construct H by combining H ′ with a pseudo-
random number generator, using the output of H ′ as the seed to the PRNG.

B CCA-Secure Threshold Attribute-Based Encryption

The CCA-secure t-ABE scheme is obtained by removing the signature compo-
nent of our signcryption scheme.

Setup: Let n denote the maximum size of an attribute set. Let nm denote the
plaintext size. The public parameters params are:

(g, g1, h, t1, . . . , tn+1, Y, H, H1),

where ê : G×G → GT is a bilinear pairing function, s ∈R Z∗
q , g, g1, h, t1, . . .,

tn+1 ∈R G, Y = ê(g, g1)s, H : GT → {0, 1}nm × KMAC is a crypto-
graphic hash function which satisfies the hashed mBDH assumption and
H1 : {0, 1}∗ → Z

∗
q is a target collision resistant hash function. The master

secret of the system is s.

Let T (x) be the function defined by T (x) = gxn

1

∏n+1
i=1 (tΔi,N (x)

i ), where Δi,N (x) =
∏

j�=i,j∈N
x−j
i−j is the Lagrange coefficient for i ∈ Z

∗
q , N is the set {1, . . . , n + 1}.

Extract: The private key corresponding to a set of attributes ωe and threshold
d is a set {D1i , D2i , D3i}i∈ωe computed as follows:
- D1i = (gf(i)

1 (T (i))ri)i∈ωe , where ri ∈R Z
∗
q and f is a random polynomial

of degree d − 1 such that f(0) = s.
- D2i = gri .
- D3i = hri .

Encrypt: Given public parameters params, message M ∈ {0, 1}nm and at-
tribute set ωe, compute the ciphertext as follows:
- Choose a random r ∈ Z∗

q and compute (h1, h2) = H(Y r).
- Let t = H1(gr).
- The ciphertext for M is:

(ωe, g
r, {(T (i)ht)r}i∈ωe , M ⊕ h1, tag),

where tag is the MAC of all preceding elements in the ciphertext under key
h2.

Decrypt: Given a ciphertext C = (A1, A2, (A3i)i∈ωe , A4, A5) and an decryption
key skωmu,d the decryption is performed as follows:
- Chooses a subset S ⊂ (ωμ ∩ A1) containing d attributes. If no such subset
exists, output ⊥.
- Compute t = H1(A2).

- Compute Y ′ =
∏

i∈S

(
ê((D1i

Dt
3i

),A2)

ê(D2i
,A3i

)

)Δi,S(0)

.

- Compute (h1, h2) = H(Y ′).
- If A5 is equal to the MAC of all preceding elements in the ciphertext under
key h2, output A4 ⊕ h1, otherwise, output ⊥.
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The security theorem for this scheme is as follows.

Theorem 3. The encryption scheme above is S-IND-t-ABE-CCA-secure if the
hashed modified decisional bilinear Diffie-Hellman assumption is hard, if H1 is
a target-collision resistant hash function and MAC is a secure message authen-
tication code. More precisely, if there exists an algorithm A that attacks our
scheme, then we can construct algorithms B, B1 and C that have essentially the
same running time as A such that

AdvS−IND−t−ABE−CCA
A ≤ AdvmDBDH

B + AdvTCR
H1,B1

+ AdvUNF
MAC,C .

C Short Attribute-Based Signature

The signature scheme obtained by isolating the signature component of our
signcryption scheme.

Setup: Let n denote the maximum size of an attribute set. The public param-
eters params are:

(g, g1, t1, . . . , tn+1, u1, . . . , unm , u′, Y, H),

where ê : G × G → GT is a bilinear pairing function, g, g1, t1, . . ., tn+1, u
′,

u1, . . . , unm ∈R G, Y = ê(g, g1)s, s ∈R Z∗
q , H : {0, 1}∗ → {0, 1}nm is a

collision-resistant hash function. The master secret of the system is s.

We define two functions, T : Fq → G and W : {0, 1}nm → G that will be
used throughout our scheme. Let T (x) be the function defined by T (x) =
gxn

1

∏n+1
i=1 (tΔi,N (x)

i ), where Δi,N (x) =
∏

j�=i,j∈N
x−j
i−j

is the Lagrange coefficient

for i ∈ Z∗
q , N is the set {1, . . . , n + 1}. Let W (hm) = u′ ∏nm

i=1 u
hm,i

i , where hm a

binary string of length nm consists of
−→
hm = (hm,1, hm,2, . . . , hm,nm).

Extract(ωs, d): The private key corresponding to a set of attributes ωs and
threshold d is a set {Ds,1i , Ds,2i}i∈ωs computed as follows:
- Ds,1i = (gf(i)

1 (T (i))ri)i∈ω, where ri ∈R Z
∗
q and f is a random polynomial

of degree d − 1 such that f(0) = s.
- Ds,2i = gri .

Sign(params, M, ωs, sks,ωσ , |ωs|): Here, ωs is a set of signature attributes and
sks,ωσ,|ωs| is a signature key with ωs ⊂ ωσ. The algorithm proceeds as follows:
- Choose random r, r′ ∈ Z

∗
q .

- Compute (h1, h2, h3) = H(Y r).
- Let t = H1(gr).
- Compute:

Z = W (H(M))r′ ·
∏

i∈ωs

(Ds,1i)
Δi,ωs (0).

- The signature on M is:

(ωs, Z, {(Ds,2i)
Δi,ωs (0)}i∈ωs , g

r′
).
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Verify(params, M, σ): Given a message M and signature σ = (A1, A2,
(A3i)i∈ωA1

, A4) the verification is performed as follows:
- Test the following equation:

ê(g, A2) = Y · ê(A4, W (H(M) ·
∏

i∈A1

ê(A3i , T (i)).

If it holds, output 1, otherwise, output 0.

Theorem 4. The signature scheme above is S-EUF-t-ABS-CMA-secure if
the modified computational Diffie-Hellman assumption is hard and if H is a
collision-resistant hash function. More precisely, if there exists an algorithm
A that attacks our scheme, then we can construct algorithms B and C that
have essentially the same running time as A such that

AdvS−EUF−t−ABS−CMA
A ≤ nm · AdvmCDH

B + AdvCR
H,C .
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Abstract. AtAsiacrypt 2009,KurosawaandNojima showed a fully simu-
latable adaptive oblivious transfer (OT) protocol under the DDH assump-
tion in the standard model. However, Green and Hohenberger pointed out
that the communication cost of each transfer phase is O(n), where n is the
number of the sender’s messages. In this paper, we show that the cost can
be reduced to O(1) by utilizing a verifiable shuffle protocol.
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1 Introduction

1.1 Background

Adaptive oblivious transfer is a notion introduced by Naor and Pinkas in [12].
In the scheme, denoted by OTn

k×1, a receiver can obtain k messages, one after
the other, from a sender who has n messages in such a way that: (1) the sender
learns nothing on the receiver’s selection, and (2) the receiver only learns about
the k messages. The key applications of this type of OT are in patent searches,
oblivious search, medical databases etc.

The formal security definition for OT schemes capturing the above intuitions
gets evolved in the literature. Historically, in half simulation security [14], only
the sender security is defined via the real world/ideal world paradigm, while
the receiver security is formalized by a weaker notion. Many OT schemes in
the literature satisfy half simulation security, among which are [18, 3, 9, 11, 13].
However, there is a practical attack against schemes with half simulation security,
as realized in [11] and formally emphasized in [1].

To overcome the threat, in 2007, Camenisch, Neven, and shelat introduced
a stronger notion called “full simulation security” [1], in which both sender and
receiver security are defined via the real world/ideal world paradigm. They then
constructed a fully simulatable adaptive OTn

k×1 in the standard model, relying
on the q-strong Diffie-Hellman (q-sDH) and q-power decisional Diffie-Hellman
(q-PDDH) assumptions in bilinear groups. Camenisch, Neven, and shelat used
signatures as a key ingredient in their approach, which was originally taken
in [18] by Ogata and Kurosawa in the random oracle model.

J.A. Garay and R. De Prisco (Eds.): SCN 2010, LNCS 6280, pp. 172–181, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Table 1. Fully simulatable adaptive OT without random oracles

Scheme Assumption Comm. Cost
(each transfer)

Camenisch et al [1] q-strong DH and q-PDDH O(1)

Green-Hohenberger [6] q-hidden LRSW (UC secure) O(1)

Jarecki-Liu [8] q-DHI (RSA group) O(1)

Kurosawa-Nojima [10] DDH O(n)

Green-Hohenberger [7] decision 3-party DH (3DDH) O(1)

This work DDH O(1)

Subsequently, in 2008, Green and Hohenberger, again using signatures, showed
a universally composable scheme (and hence fully simulatable), relying on the
q-hidden LRSW assumption. In 2009, Jarecki and Liu [8], using pseudorandom
function as a component, presented a fully simulatable adaptive OT under the
decisional q-Diffie-Hellman inversion (q-DHI) assumption.

We stress that all the above schemes rely on dynamic assumptions (namely,
the q-based assumptions in Table 1 where q may depend on n, the number of mes-
sages in OT). In 2009, Kurosawa and Nojima [10] built a simple fully simulatable
adaptive OT under the DDH assumption. However, Green and Hohenberger [7]
pointed out that it has O(n) communication cost in each transfer phase which
is much larger than the other schemes. Green and Hohenberger [7] also also pro-
posed a fully simulatable adaptive OT under the decision 3-party Diffie-Hellman
(3DDH) assumption, with O(1) communication cost in each transfer phase.

1.2 Our Contribution

In this paper, we show a fully simulatable adaptive OT under the DDH as-
sumption such that each transfer requires only O(1) communication cost in the
standard model. (The initialization phase requires O(n) communication cost,
which is asymptotically minimal.) Note that the DDH assumption is a more
standard assumption than the 3DDH assumption on which the scheme of Green
and Hohenberger [7] relies. Furthermore our scheme does not use pairing, while
the scheme of Green and Hohenberger [7] does.

Our scheme is obtained by improving the scheme of Kurosawa and Nojima [10]
by using a verifiable shuffle protocol. To our knowledge, this is the first time that
shuffles are used in building OT protocols. In particular, we employ the shuffle
protocol of Neff [16, 17] in this paper. The technique helps greatly reducing
the communication cost of each transfer from O(n) in the Kurosawa-Nojima
scheme [10] to O(1) as in our proposal.

A comparison between schemes is given in Table 1, and a motivation behind
the usage of shuffles is postponed later in Sec.4.

Organization. We begin with some preliminaries in Sec.2, then introduce a
verifiable shuffle protocol for our OT construction in Sec.3. We describe our
proposal and prove its security in Sec.4.
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2 Preliminaries

We will work on a cyclic group G of prime order q, generated by an element g.
The symbol “ $← ” indicates a randomized process.

2.1 Assumption

The DDH assumption claims that for all PPT adversary A, the value

Advddh
G (A) =

∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎣b′ = b :

x, r
$← Zq; b

$←{0, 1};
T0 ← gxr; T1

$←G;
b′ $←A(g, gx, gr, Tb)

⎤

⎥
⎦− 1

2

∣
∣
∣
∣
∣
∣
∣

is negligible. The well-known ElGamal encryption, which has semantic security
under the DDH assumption, produces a ciphertext of a message M ∈ G as
(gr, M · (gx)r) for public key gx.

2.2 Zero-Knowledge Proof Systems

There exists an efficient 4-round zero-knowledge proof system for knowledge
(ZK-PoK) on the discrete log problem. It is obtained by applying the technique
of [4] to Schnorr’s identification scheme [19].

There also exists an efficient 4-round zero-knowledge proof system for mem-
bership (ZK-PoM) on DDH tuples (i.e., (g, gx, u, ux) ∈ G4). It comes from the
confirmation protocol of Chaum’s undeniable signature scheme [2].

2.3 Security of Adaptive k-Out-of-n Oblivious Transfer

We use almost the same presentation as [10], and consider a weak model of
universally composable (UC) framework as follows.

– At the beginning of the game, an adversary A can corrupt either a sender S
or a receiver R, but not both of them.

– A can send a message, denoted by Aout, to an environment Z after the end
of the protocol. However,A cannot communicate with Z during the protocol
execution. (This property makes the definitions weaker than standard UC
security.)

The ideal functionality of OTn
k×1 will be shown below. For a protocol Π = (S, R),

define the advantage of Z as

Adv(Z)def=
∣
∣
∣Pr(Z = 1 in the real world)− Pr(Z = 1 in the ideal world)

∣
∣
∣

where the real and ideal worlds are defined below.
In the ideal world of OTn

k×1, there are a few parties: the ideal functionality
Fadapt, an ideal world adversaryA′, and the environment Z. Also we have dummy
sender S′ and receiver R′. The parties behave as follows.
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Initialization phase

1. The environment Z sends (M1, . . . , Mn) to the dummy sender S′.
2. S′ sends (M∗

1 , . . . , M∗
n) to Fadapt, where (M∗

1 , . . . , M∗
n) = (M1, . . . , Mn) if S′

is not corrupted.

Transfer phase i = 1, . . . , k

1. Z sends σi to the dummy receiver R′, where 1 ≤ σi ≤ n.
2. R′ sends σ∗

i to Fadapt, where σ∗
i = σi if R′ is not corrupted.

3. Fadapt sends received to A′.
4. A′ sends b = 1 or 0 to Fadapt, where b = 1 if S′ is not corrupted.
5. Fadapt sends Ei to R′, where

Ei =
{

M∗
σ∗

i
if b = 1

⊥ if b = 0

6. R′ sends Ei to Z.

After the end of the protocol, A′ sends a message A′
out to Z. Finally Z outputs

1 or 0.
On the other hand, in the real world, the protocol Π = (S, R) is executed as

specified by its construction (thus without Fadapt). The environment Z and the
real world adversary A behave in the same way as above.

Definition 1. Protocol Π = (S, R) is secure against the sender (resp, receiver)
corruption if for any real world adversary A who corrupts the sender S (resp,
receiver R), there exists an ideal world adversary A′ who corrupts the dummy
sender S′ (resp, dummy receiver R′) such that for any poly-time environment Z,
the advantage Adv(Z) is negligible.

Definition 2. Protocol Π = (S, R) is a fully simulatable OTn
k×1 if it is secure

against the sender corruption and the receiver corruption.

3 Shuffle Protocol

3.1 Honest-Verifier ZK-PoM

Neff [16, Sec.5] showed a seven-round ZK-PoM on L where

L={(g, gc, X1,. . . , Xn, Xc
π(1),. . . , X

c
π(n) | c ∈ Zq, π is a permutation on {0, 1}n}

Note that we can extract π if we know c.
It is easy to see that (g, gc, X1, . . . , Xn, Xc

1 , . . . , X
c
n) is indistinguishable from

(g, gc, X1, . . . , Xn, R1, . . . , Rn) under the DDH assumption, where R1, . . . , Rn

are random elements of G. This implies that (g, gc, X1, . . . , Xn, Xc
π(1), . . . ,

Xc
π(n)) leaks no information on π computationally. Formalizing the intuition, Neff

proved that his proof system is honest-verifier computational zero-knowledge
under the DDH assumption. The communication cost for the proof system is
O(n).
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3.2 Any Verifier ZK-PoM

The above protocol (P, V ) of Neff is public coin. That is, V sends random ele-
ments of Zq to P . We can transform it into an any verifier ZK-PoM by having
V commit the random elements at the beginning of the protocol. (By using the
same technique, Goldreich and Kahan [5] showed a constant round ZK-PoM for
any NP language under the discrete log assumption. However, as a trade-off
against the generality, their protocol is very inefficient.)

For example, suppose that V sends a random t ∈ Zq to P in the first round
of (P, V ). Then we transform it as follows.

1. P sends a random h ∈ G to V .
2. V chooses random t0, r ∈ Zq, and computes

commit(t0, r) = gt0hr. (1)

He then send it to P .
3. P sends a random t1 ∈ Zq to V .
4. V reveals t0 and r.
5. If eq.(1) is not satisfied, then P aborts. Otherwise P and V locally compute

t = t0 + t1 mod q.

As a result, we obtain a constant round ZK-PoM on L with respect to any
verifier. It is computational zero-knowledge under the DDH assumption. The
communication cost is still O(n).

4 Proposed Adaptive OT under DDH Assumption

In this section, we show an efficient fully simulatable adaptive OTn
k×1 under the

DDH assumption. Each transfer phase needs only O(1) communication cost, and
the initialization phase requires O(n) communication cost.

The novelty of our protocol is that we use a shuffle protocol in the initialization
phase. Namely we use the ZK-PoM shown in Sec.3.2. A problem is that since it
is not a ZK-PoK, we cannot extract π from the prover. This problem is solved
by having the prover run the ZK-PoK in which P proves that she knows c of gc.
Then π can be extracted from c and (X1, . . . , Xn, Xc

π(1), . . . , X
c
π(n)).

4.1 Protocol

As a convention, if proofs or checks are not fulfilled, it is implicitly understood
that the protocol immediately stops.

Initialization Phase

1. The sender chooses (r1, . . . , rn, x) ∈ Zn+1
q randomly, and computes h = gx.
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2. For i = 1, . . . , n, the sender computes

Ci = (Ai, Bi) = (gri , Mi · hri),

where M1, . . . , Mn ∈ G.
3. The sender sends (h, C1, . . . , Cn).
4. The sender proves by ZK-PoK that he knows the secret key x.
5. The receiver chooses c ∈ Zq and sends C = gc. Then he proves in ZK-PoK

that he knows c.
6. The receiver chooses si ∈ Zq randomly and computes Xi = gsiAi for every

1 ≤ i ≤ n. He sends all Xi and then proves in ZK-PoK that he knows si for
every i.

7. (Shuffling) The receiver chooses a random permutation π on {1, . . . , n}. Then
he sends

(Y1, . . . , Yn)def=(Xc
π(1), . . . , X

c
π(n)).

He proves that there exist such π and c by using the ZK-PoM of Sec.3.2.
The communication cost is O(n).

The j-th Transfer Phase

1. The receiver obtains an index 1 ≤ σ ≤ n.
2. The receiver sends U = Yπ−1(σ).
3. The sender checks U ∈ {Y1, . . . , Yn} and sends V = Ux.
4. The sender proves that (g, h, U, V ) in ZK-PoM that it is a DDH-tuple.
5. Note

V = Ux = Y x
π−1(σ) = Xcx

π(π−1(σ)) = (gsσAσ)cx

so that V 1/c = (gsσAσ)x, and hence V 1/ch−sσ = Ax
σ. The receiver now

obtains Mσ via Bσ/Ax
σ.

The ZK-PoKs in the initialization phase are exactly the well-known Schnorr
proof [19]. The ZK-PoM in transfer phases can be implemented using Chaum’s
technique [2].

Relation with Kurosawa-Nojima [10]. In the scheme of Kurosawa and No-
jima [10], there are no steps 5-7 of shuffles in the initialization phase. Further-
more, their steps 2 and 3 in each transfer phase are as follows. First, U = Au for
random value u ∈ Zq and some A ∈ G, both chosen by the receiver. The receiver
is then required to persuade the sender that A = Aσ for some σ ∈ {1, . . . , n}.
Obviously, the receiver cannot reveal Aσ (since otherwise, σ is revealed as well).
Kurosawa and Nojima solved in [10] by mixing σ with other indexes in {1, . . . , n}.
Namely, they forced the receiver to prove in WI-PoK that he knows some u ∈ Zq

satisfying
U = Au

1 ∨ · · · ∨ U = Au
n.

The above WI-PoK, unfortunately, makes the communication cost of each trans-
fer become O(n).
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In order to have O(1) communication cost for each transfer phase, a possible
method is to move the above WI-PoK to the initialization phase. Certainly, since
the index σ of each transfer phase may be not chosen in advance, we move the
WI-PoKs (each costs O(n)) corresponding to all possible n indexes, so that the
communication cost of the initialization phase becomes O(n2). Moving further,
we mix the indexes by shuffling, and fortunately, by making use of existing
results [16], the cost is better reduced to O(n), which is asymptotically minimal
for the initialization phase.

4.2 Security

We now have the following theorems ensuring the security of our adaptive OT
protocol.

Theorem 1. The above adaptive OT protocol is secure against sender corrup-
tion under the DDH assumption.

Proof. For every real-world adversary A who corrupts the sender, we construct
an ideal-world adversary A′ such that the advantage Adv(Z) is negligible.

We will consider a sequence of games beginning from game G0, which is the
real world experiment, and proceed to the final game, which is the ideal world
experiment as in Sec.2.3. For each integer i, let

Pr(Gi) = Pr(Z = 1 in game Gi),

and denote Pr(Gi) ≈ Pr(Gj) when the two values are negligibly close.

Game G0: This is the real world experiment such that the sender is controlled
by the adversary A. By definition Pr(G0) = Pr(Z = 1 in the real world).

Game G1: This game is the same as the previous one except the following. In
the initialization phase, the receiver extracts x from A by using the knowledge
extractor of the ZK-PoK.

If it fails, then the protocol stops. Since the failure occurs with negligible
probability, we have Pr(G0) ≈ Pr(G1).

Game G2: This game is the same as game G1 except that, in the initialization
phase, the game uses the zero-knowledge simulators of the ZK-PoK at steps 5-7.
Since the protocol at step 7 is computational zero-knowledge under the DDH
assumption, and the others are perfect [4], we have Pr(G1) ≈ Pr(G2).

Game G3: This game is the same as the previous one except that in the initial-
ization phase, the receiver sends random (Y1, . . . , Yn) ∈ Gn to the sender.

We will prove Pr(G3) ≈ Pr(G2). Before that, let us state the following estab-
lished result.

Fact 2 (Naor, Reingold [15]). There exists a poly-time algorithm Q that, on
input (g, gc, X∗, Y ∗), outputs a random pair (X, Y ) ∈ G2 such that (g, gc, X, Y )
is a DDH tuple if and only if (g, gc, X∗, Y ∗) is.



Efficiency-Improved Fully Simulatable Adaptive OT 179

Lemma 3. Pr(G3) ≈ Pr(G2) under the DDH assumption.

Proof (of Lemma 3). By using Z and the corrupted sender A, we construct
a DDH distinguisher D as follows. On input (g, C = gc, X∗, Y ∗), D first runs
Q(g, C = gc, X∗, Y ∗) to generate the pairs (X1, Y1), . . . , (Xn, Yn).
D next runs Z which sends (M1, . . . , Mn) to A (the sender), and an index

σ to the receiver. A and the receiver run the initialization phase until step 4.
At step 5, D sends C = gc to A, and runs the simulator of the ZK-PoK on c.
At step 6, D sends the above (X1, . . . , Xn) to A, and runs the simulator of the
ZK-PoK on si(1 ≤ i ≤ n). At step 7, D sends the above (Y1, . . . , Yn) in random
order to A, and runs the zero-knowledge simulator of the shuffle protocol.
A and the receiver run the transfer phase as it is. Note that D can extract

the secret key from A, and hence extract M∗
i for all i (at the beginning), and D

(playing the receiver) sends M∗
i to Z if necessary.

Finally, A sends Aout to Z. The distinguisher D outputs what Z outputs.
One can see that if D’s input (g, C = gc, X∗, Y ∗) is a DDH tuple, then we are

in game G2; otherwise we are in game G3, finishing the proof.

Game G4: This game is the same as the previous one except the following. In
each transfer phases, the receiver chooses U randomly and distinctly from the
set {Y1, . . . , Yn}. Since the view of A is unchanged, we have Pr(G4) = Pr(G3).

Game G5: This game is the ideal world experiment in which an ideal-world
adversary A′ uses A as a black-box as follows.

1. A′ receives (M1, . . . , Mn) from Z, and sends (M1, . . . , Mn) to A.
2. A′ runs Game G4 with A, where A′ plays the role of the receiver. She can

do this because σ (which is the secret of the receiver) is not used in Game
G4.

3. In the initialization phase, A′ computes M∗
i = Bi/(Ai)x for all i by using x

(which is extracted in Game G1), and sends (M∗
1 , . . . , M∗

n) to Fadapt.
4. In each transfer phase, if A behaved in an acceptable way, then A′ sends

b = 1 to Fadapt. Otherwise A′ sends b = 0 to Fadapt.
5. Suppose that A sends Aout to Z at the end of the game. Then A′ sends
A′

out = Aout to Z.

We have Pr(G4) = Pr(G5), and by definition Pr(Z = 1 in the ideal world) =
Pr(G5). Summing up all above, we have Adv(Z) = |Pr(G0)− Pr(G5)| is negli-
gible as required. �	
Theorem 4. The above adaptive OT protocol is secure against receiver corrup-
tion under the DDH assumption.

Proof. For every real-world adversary A who corrupts the receiver, we construct
an ideal-world adversaryA′ such that the advantage of the environment Adv(Z)
is negligible.

We again consider a sequence of games G0, . . ., G6, where G0 is the real
world experiment of Sec.2.3, while G6 is the ideal world experiment. Again, let
Pr(Gi) = Pr(Z = 1 in game Gi).
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Game G0: In this game the receiver is controlled by the adversary A, and by
definition Pr(G0) = Pr(Z = 1 in the real world).

Game G1: This game is the same as game G0 except the following. In the
initialization phase, the sender extracts c and si by using the extractors of the
ZK-PoK.

If it fails, then the protocol fails. Since this failure occurs with negligible
probability, we have Pr(G1) ≈ Pr(G0).

Game G2: This game is the same as the previous one except the following. First
the sender extracts π by comparing (Xc

1 , . . . , X
c
n) and (Y1, . . . , Yn). Next in each

transfer phase, the sender extracts the index σ that A really used as follows.
A sends U such that U ∈ {Y1, . . . , Yn}. The sender searches the index ρ

satisfying U = Yρ. Recall U = Yπ−1(σ), so π−1(σ) = ρ, and hence σ = π(ρ).
Thus the sender can extract σ that A really used. Since the change is syntactic,
we have Pr(G2) = Pr(G1).

Game G3: This game is the same as the previous one except the following. In
each transfer phase, the sender computes V as (BσM−1

σ hsσ )c. Since the change
is syntactic, we have Pr(G3) = Pr(G2).

Game G4: This game is the same as the previous one except the following. In each
transfer phase, instead of running the ZK-PoM which proves that (g, h, U, V ) is a
DDH-tuple, the zero-knowledge simulator of the ZK-PoM is run so that Pr(G4) ≈
Pr(G3).

Game G5: This game is the same as the previous one except the following. In
the initialization phase, each Bi is a random element of G. It is easy to see that
Pr(G5) ≈ Pr(G4) under the DDH assumption.

Game G6: This game is the ideal world experiment in which an ideal-world
adversary A′ uses A as a black-box as follows.

1. A′ runs Game G5 with A, where A′ plays the role of the sender.
2. In each transfer phase, A′ sends σ which is extracted as in Game G2 to
Fadapt, and obtains Mσ. A′ then computes V as in Game G3.

3. Suppose that A sends Aout to Z at the end of the game. Then A′ sends
A′

out = Aout to Z.

We have by definition Pr(G6) = Pr(Z = 1 in the ideal world). Summing up all
above, we have Adv(Z) = |Pr(G0)− Pr(G6)| is negligible as required. �	
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Abstract. We consider a collection of related multiparty computation
protocols that provide core operations for secure integer and fixed-point
computation. The higher-level protocols offer integer truncation and com-
parison, which are typically the main performance bottlenecks in complex
applications. We present techniques and building blocks that allow to im-
prove the efficiency of these protocols, in order to meet the performance
requirements of a broader range of applications. The protocols can be con-
structed using different secure computation methods. We focus on solu-
tions for multiparty computation using secret sharing.

Keywords: Secure multiparty computation, secret sharing, secure
integer arithmetic, secure comparison.

1 Introduction

The aim of secure computation is to enable a group of mutually distrustful
parties to run a joint computation with private inputs. This goal is achieved
using cryptographic protocols that carry out the computation without revealing
the parties’ inputs and ensure that the output is correct.

Applications are found in various areas, including e-voting [10], auctions with
secret bids [12], benchmarking with confidential performance indicators [18], col-
laborative linear programming [25] and supply chain planning [3]. However, the
overhead of the cryptographic protocols makes secure computation much slower
than usual computation with public data. Improved solutions have emerged for
many primitives and application-specific tasks, but meeting the functional, se-
curity, and performance requirements of the applications is still a challenge.

In this paper, we focus on improving several related integer computation pro-
tocols that support and complement the protocols for fixed-point arithmetic
introduced in [6]. The higher level protocols provide accurate truncation (core
component for fixed-point arithmetic) and comparison (inequality and equality).
These operations are the main performance bottlenecks in complex applications
(e.g., multiparty linear programming).

The protocols can be instantiated using secret sharing [8] or homomorphic
encryption [9]. We focus on solutions based on secret sharing, semi-honest model,
and statistical privacy, which are more suitable for complex applications.
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Our contributions. We specify a collection of related protocols for several opera-
tions that determine the performance of secure integer and fixed-point computa-
tion, namely comparison and truncation. The protocols are based on few building
blocks and the same security model, and thus simplify the development of appli-
cations and the analysis of their complexity and security. The main goal of the
paper is to present techniques and building blocks that reduce the complexity of
these protocols in order to meet the requirements of a broader range of applica-
tions. We combine several approaches, improving the efficiency of data encoding
(adapted to data type), core tasks (generation of secret random values, inner
product), and the main building blocks (k-ary and prefix operations, bitwise
comparison). Moreover, we give building blocks for different trade-offs between
communication and round complexity, so that the protocols can be adapted to
applications and execution environment (network bandwidth and delay).

Related Work. We use standard techniques for multiparty computation based on
secret sharing, similar to [5,8,11,24,19,4]. Also, the protocols used for generating
shared random values and for share conversions rely on techniques proposed in
[7,13,14] in order to reduce the communication overhead. We take, however, a
more pragmatic approach, allowing more flexibility in the design of the protocols
and focusing on solutions that are more suitable for practical applications, while
[11,24] aim at achieving perfect privacy and constant round complexity. Protocols
with statistical privacy are often more efficient, while those with logarithmic
round complexity often have lower communication complexity.

There is a vast literature on secure integer arithmetic. Our approach is related
to a large pool of common techniques and protocols [24,11,19,20,15]. We develop
more efficient protocols for k-ary and prefix boolean functions, bitwise compari-
son, and other building blocks. Efficient but approximate truncation is given in
[2]; our protocols offer accurate truncation, required by fixed-point arithmetic.

2 Core Protocols

The protocols presented in Sections 3 and 4 are constructed using abstract prim-
itives that can be instantiated using secret sharing [8] or homomorphic encryp-
tion [9]. Solutions based on secret sharing are more efficient and suitable for
our target applications. Multiparty computation using secret sharing proceeds
as follows. Assume a group of n > 2 parties, P1, . . . , Pn, that communicate on
secure channels and run a computation where party Pi, i ∈ [1..n], has private
input xi and expects output yi. The parties use a linear secret sharing scheme
to create a distributed state of the computation where each party has a share of
each secret variable. The secret sharing scheme allows to compute with shared
variables and provides controlled access to secret values. Sub-tasks take on input
shared data and return shared data, and thus enable secure composition.

The protocols offer perfect or statistical privacy, meaning that the views of
protocol execution (all values learned by an adversary) can be simulated such
that the distributions of real and simulated views are perfectly or statistically
indistinguishable, respectively. Let X and Y be distributions with finite sample
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spaces V and W and Δ(X, Y ) = 1
2

∑
v∈V

⋃
W |Pr(X = v) − Pr(Y = v)| the

statistical distance between them. We say that the distributions are perfectly
indistinguishable if Δ(X, Y ) = 0 and statistically indistinguishable if Δ(X, Y )
is negligible in some security parameter. The core of the system consists of
protocols for secure arithmetic in a finite field F using Shamir secret sharing.
These protocols provide perfect privacy against a passive threshold adversary
that corrupts t out of n parties. In this model, the parties do not deviate from
the protocol and any t+1 parties can reconstruct a secret, while t or less parties
cannot distinguish it from uniformly random values in F. We assume |F| > n to
enable Shamir sharing and n > 2t for multiplication of shared values. We denote
[x]F a Shamir sharing of x in field F; if not specified, the field is Zq.

Complexity metrics. We use two metrics that reflect different aspects of the
interaction between parties. Communication complexity measures the amount
of data sent by each party. For our protocols, a suitable abstract metric is the
number of invocations of a primitive during which every party sends a share (field
element) to the others (Table 1). Round complexity is the number of sequential
invocations and is relevant for the network delay, independent of the amount of
data. Invocations that can be executed in parallel count as a single round.

Data representation. We consider secure computation with the following data
types: binary values, signed integers Z〈k〉 = {x̄ ∈ Z | − 2k−1 ≤ x̄ ≤ 2k−1 − 1},
and fixed-point rational numbers Q〈k,f〉 = {x̃ ∈ Q | x̃ = x̄ ·2−f , x̄ ∈ Z〈k〉}. These
data types are encoded in a field F as follows.

Logical values false, true and bit values 0, 1 are encoded as 0F and 1F , re-
spectively. F can be a small binary field F2m or prime field Zq. This encoding
allows secure evaluation of boolean functions using secure arithmetic in F.

Signed integers are encoded in Zq using the mapping fld : Z〈k〉 �→ Zq, fld(x̄) =
x̄ mod q, q > 2k. Secure arithmetic with signed integers is computed using se-
cure arithmetic in Zq: for any ā, b̄ ∈ Z〈k〉 and � ∈ {+,−, ·} we have ā � b̄ =
fld−1(fld(ā)� fld(b̄)); moreover, if b̄|ā then ā/b̄ = fld−1(fld(ā) · fld(b̄)−1).

A fixed-point rational number x̃ ∈ Q〈k,f〉 is encoded as an integer x̄ = x̃2f ∈
Z〈k〉 and mapped to Zq as described above; f and k are public parameters.
Secure fixed-point multiplication and division require q > 22k [6].

Encoding all data types in the same field Zq avoids share conversions and thus
simplifies the protocols. However, for larger q the running time can be reduced
by encoding binary values in small fields.

Notation. We distinguish different representations of a number as follows: we
denote x̃ a fixed-point rational number, x̄ the integer value of its fixed-point
representation, x the field element that encodes x̄ (and hence x̃), [x] a sharing of
x, and [x]i the share of party Pi. The notation x = (condition)? a : b means that
the variable x is assigned the value a when condition=true and b otherwise.

Secret random values. Suppose that the parties want to evaluate a function
with secret input [x]. The task can often be achieved more efficiently using
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Table 1. Complexity of core protocols

Protocol Rounds Inv.

[c]F ← [a]F + [b]F 0 0

[c]F ← [a]F[b]F 1 1

[c]F ← [a]Fb; [c]F ← [a]F + b 0 0

a← Output([a]F) 1 1

[z]← Inner([X]F, [Y ]F) 1 1

Protocol Rounds Inv.

[r]← PRandFld(F) 0 0

[r]← PRandInt(k) 0 0

[r]← PRandBit() 1 1 Zq

[r]← PRandBitL() 2 2 Zq1

c← MulPub([a], [b]) 1 1 Zq

Protocol Rounds Inv.

[r′′], [r′], [r′m−1], . . . , [r
′
0]← PRandM() 1 m Zq

[r]F28 , [r]← PRandBitD() 2 2 Zq1

[b]F28 ← BitZQtoF256([b]Zq ) 1 1 Zq

[b]Zq ← BitF256ToZQ([b]F28 , [r]F28 , [r]Zq ) 1 1 F28

the following technique. The parties jointly generate a shared random value [r],
compute [y] = [x] + [r] or [y] = [x][r], and reveal y. Then, they evaluate the
function using [x], [r], and y. We obtain Δ(x+ r, r) = 0 for x ∈ F and uniformly
random r ∈ F and Δ(xr, r) = 0 for x ∈ F\{0} and uniformly random r ∈ F\{0},
hence perfect privacy. This is similar to one-time pad encryption of x with key
r. Alternatively, for x ∈ [0..2k − 1] and random uniform r ∈ [0..2k+κ − 1] we
obtain Δ(x + r, r) < 2−κ, hence statistical privacy with security parameter κ
(only for addition). In this variant, taking q > 2k+κ avoids wraparound modulo
q when computing [x]+ [r] and simplifies certain protocols; the efficiency gain is
important (e.g., by eliminating a secure comparison) despite the larger shares.

A shared random integer r ∈ [0..2k+κ−1] with uniform distribution is usually
obtained by generating k + κ shared random bits b0, . . . , bk+κ−1 and computing
r =

∑k+κ−1
i=0 2ibi. However, statistical privacy is also achieved for distributions

that can be computed more efficiently and/or have particular properties: (1)
r =

∑
i ri, for uniformly random ri ∈ [0..2k+κ − 1]; (2) r = r′ + 2mr′′, where

r′ =
∑m−1

i=0 2ibi and r′′ =
∑

i ri, for uniformly random bi ∈ {0, 1} and ri ∈
[0..2k+κ−m − 1] (Annex A, Theorems 1, 2). We use the second construction for
protocols that need [r′] = [r mod 2m] and/or the binary representation of [r′].

Shared random values can be generated without interaction using Pseudo-
random Replicated Secret Sharing (PRSS) [7] and its integer variant RISS [13].
We define several protocols that use these techniques. PRandFld(F) generates
a uniformly random element of field F and PRandInt(k) a random integer r =
∑N

i=1 ri, for uniformly random ri ∈ [0..2k+κ−1] and N =
(
n
t

)
. PRandInt requires

a slightly larger modulus, q > 2k+κ+ν , ν = �log(N)�. MulPub([a], [b]) computes
the product of two shared field elements with public output as follows: the parties
generate a pseudo-random sharing of zero (PRZS [7]) for a polynomial of degree
2t; each party Pi computes a randomized product of shares [c]i = [a]i[b]i + [0]i;
then they exchange the shares and reconstruct c = ab. PRSS reduces the com-
plexity of these protocols by 1 round and 1 invocation. Protocol 2.1, PRandBit,
returns a shared random bit encoded in Zq. It combines the protocol RandBit
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in [11] and PRSS. Finally, Protocol 2.2, PRandM, generates the shared random
integers [r′] and [r′′] defined above, together with the shared bits of r′.

Protocol 2.1. [b]← PRandBit()

[r]← PRandFld(Zq);1

u← MulPub([r], [r]) ; // 1 rnd, 1 inv; repeat if u = 0, pr = 1
q2

v ← u−(q+1)/4 mod q; // square root; requires q mod 4 = 33

[b]← (v[r] + 1)(2−1 mod q);4

return [b];5

Protocol 2.2. ([r′′], [r′], [bm−1], . . . , [b0])← PRandM(k, m)

[r′′]← PRandInt(k + κ−m);1

foreach i ∈ [0..m− 1] do [bi]← PRandBit(q); // 1 rnd, m inv2

[r′]←∑m−1
i=0 2i[bi];3

return [r′′], [r′], [bm−1], . . . , [b0];4

Table 1 lists several protocols for generating shared random bits encoded in
small fields, F28 and Zq1 , q1 > 2κ+ν , and for bit-share conversions using RISS
[14]. PRandBitL generates a random bit shared in Zq1 and then converts its shares
to the target field Zq. PRandBitD uses a similar technique to generate a random
bit shared in both Zq and F28 . Bit-shares in Zq are used to construct a random
uniform integer, while bit-shares in F28 are used for binary computation.

Experiments with an implementation of the protocols [22] showed that these
techniques reduce significantly the running time for computation with large in-
tegers (or fixed-point numbers): PRandM allows to generate a minimum number
of shared random bits, while bit encoding in small fields reduces the communi-
cation complexity (smaller shares) as well as the computation complexity (the
exponentiation in PRandBit becomes expensive for log(q) ≈ log(u) > 256 bits).

We evaluate the complexity of the protocols assuming that all shared random
values are precomputed in parallel using the protocols listed in Table 1. Note
that the complexity of PRSS grows quite fast with n. A scalable solution is to
run the protocols on a small number of semi-trusted servers [7,12]. Our protocols
use PRSS only as an optimization for generating shared random values.

Inner product protocol. Given two shared vectors [X ] and [Y ], X, Y ∈ F
m,

the obvious method for computing the inner product, [z] =
∑m

i=1[X(i)][Y (i)],
requires m secure multiplications. We present a more efficient method, that
reduces the communication complexity to a single invocation. Assume Shamir
sharing for n parties with threshold t < n/2. Denote [X(i)]j , [Y (i)]j , i ∈ [1..m],
the input shares and [z]j the output share of party Pj . The protocol, called Inner,
proceeds as follows:

1. Party Pj , j ∈ [1..n], computes dj =
∑m

i=1([X(i)]j [Y (i)]j) and then shares dj

sending [dj ]k to party Pk, k ∈ [1..n].
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2. Party Pk, k ∈ [1..n], computes the share [z]k =
∑

j∈J λj [dj ]k, where J ⊆
[1..n], |J | = 2t + 1, and {λj}j∈J is the reconstruction vector for J .

The protocol is a generalization of the secure multiplication of Shamir-shared
field elements [16]. The proofs of correctness and security are similar.

Security. For a passive adversary that can corrupt t < n/2 parties, the protocols
presented in the following can leak information only in steps where they recon-
struct shared values. These values are of the form y = x+r, where x ∈ [0..2k−1]
is the secret and r is a random value constructed using PRandM as described
above. It follows from Theorem 2 (Annex A) that Δ(y, r) < 2−κ. Since the
sub-protocols provide perfect privacy or statistical privacy with the security pa-
rameter κ, we conclude that our protocols provide statistical privacy.

Security against an active adversary that can corrupt t < n/3 parties can be
achieved using several known methods. A variant of the protocols without PRSS
can use any extension of Shamir’s secret sharing to verifiable secret sharing (VSS)
and an associated multiplication proof (e.g., [16,1,8]). An efficient solution for a
variant that uses PRSS can be obtained based on the VSS and multiplication
proof in [7,13]. The evaluation of these approaches (in particular, of efficient
proofs for the inner product) is the subject of on-going work.

3 Integer Arithmetic and Comparison Protocols

Truncation (division by 2m). The purpose of the truncation protocols is to com-
pute �ā/2m + u, where ā ∈ Z〈k〉, m ∈ [1..k − 1], and u ∈ {0, 1}. The bit u
depends on the rounding method: u = 0 for rounding down, u = 1 for rounding
up, and u = (ā/2m − �ā/2m ≥ 0.5)? 1 : 0 for rounding to the nearest integer.
Truncation protocols are core components in secure fixed-point arithmetic. We
start by reviewing an efficient protocol introduced in [6].

Protocol 3.1, TruncPR, takes on input a secret-shared signed integer ā ∈ Z〈k〉
and a public integer m ∈ [1..k − 1], and returns a sharing of d̄ = �ā/2m + u,
where u ∈ {0, 1} is a random bit. The protocol rounds to the nearest integer
with probability 1− α, where α is the distance between ā/2m and that integer.

Protocol 3.1. [d]← TruncPR([a], k, m)

([r′′], [r′], [r′m−1], . . . , [r
′
0])← PRandM(k, m); // 1 rnd, m inv1

c← Output(2k−1 + [a] + 2m[r′′] + [r′]); // 1 rnd, 1 inv2

c′ ← c mod 2m;3

[d]← ([a]− c′ + [r′])(2−m mod q);4

return [d];5

Correctness: Recall that ā ∈ Z〈k〉 is encoded in Zq as a = ā mod q. Let b =
(2k−1+a) mod q, b′ = b mod 2m, and a′ = ā mod 2m. Observe that b ∈ [0..2k−1]
and b′ = a′ for any 0 < m < k. The protocol generates a random secret r =
2mr′′+r′, r ∈ [0..2k+κ+ν−1] as explained in Section 2, reveals c = (b+r) mod q =
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b + r, and then computes c′ = c mod 2m. From c′ = (b′ + r′) mod 2m it follows
that c′−r′ = b′−2mu = a′−2mu, where u ∈ {0, 1}. Step 4 computes d′ = (ā−a′+
2mu) mod q = (2m�ā/2m+ 2mu) mod q and then d = d′(2−m mod q) mod q =
(�ā/2m + u) mod q, hence d encodes �ā/2m + u. Observe that Pr(u = 1) =
Pr(r′ + a′ ≥ 2m), which implies the rounding property.

We extend the method used by TruncPR in order to compute ā mod 2m and
�ā/2m. The additional task is to determine u. Observe that u = (c′ < r′)?1 : 0
and can be computed using bitwise comparison. This task is achieved by the
protocol BitLT (Section 4). We split the computation in two parts: Protocol 3.2,
Mod2m, computes ā mod 2m and Protocol 3.3, Trunc, computes �ā/2m.

Protocol 3.4, Mod2, handles the case m = 1 (extracts the least significant
bit). Mod2 is an essential component of the protocols presented in Section 4.

Protocol 3.2. [a′]← Mod2m([a], k, m)

([r′′], [r′], [r′m−1], . . . , [r′0])← PRandM(k, m); // 1 rnd, m inv1

c← Output(2k−1 + [a] + 2m[r′′] + [r′]); // 1 rnd, 1 inv2

c′ ← c mod 2m;3

[u]← BitLT(c′, ([r′m−1], . . . , [r′0])) ; // Tables 3, 44

[a′]← c′ − [r′] + 2m[u];5

return [a′];6

Protocol 3.3. [d]← Trunc([a], k, m)

[a′]← Mod2m([a], k, m); // Table 51

[d]← ([a]− [a′])(2−m mod q);2

return [d];3

Protocol 3.4. [a0]← Mod2([a], k)

([r′′], [r′], [r′0])← PRandM(k, 1); // 1 rnd, 1 inv1

c← Output(2k−1 + [a] + 2[r′′] + [r′0]) ; // 1 rnd, 1 inv2

[a0]← c0 + [r′0]− 2c0[r′0];3

return [a0];4

Truncation with deterministic rounding to the nearest integer can be obtained
by adding to Protocol 3.3 the following steps: [v] ← LTZ([a′] − 2m−1, m) and
[e]← [d]+1−[v], where LTZ computes (a′ < 2m−1)? 1 : 0. However, this solution
is much more complex than TruncPR.

Integer division with public divisor. Truncation can be generalized in order to
obtain protocols that on input a shared ā ∈ Z〈k〉 and a public x ∈ [1..2k−1 − 1]
compute shares of the quotient �ā/x and the remainder ā mod x. Division can
better be handled by secure fixed-point arithmetic [6]. However, integer division
with public divisor is relatively simple, and sufficient for some applications [17].

Oneapproach is to adaptMod2mby replacing 2m withx.This generalizationwas
first observed in [17]. However, generating a secret r′ with uniform distribution in
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[0..x−1] instead of [0..2m−1] is more complex. Letm = �log(x)�. The method used
in [17] generates r′ ∈ [0..2m−1] from random bits and tests if r′ < x. This method
succeeds after 2m/x < 2 iterations on average, but the iterations include secure
comparisons and are expensive. Protocol 3.5, Mod, avoids the iterative search for r′

at the cost of replacing abitwise comparisonbyan integer comparison.Theprotocol
for computing the quotient is similar to Trunc.

Correctness: Let b = (2k−1+a) mod q and b′ = b mod x = ā mod x. The protocol
generates the secret random r = xr′′ + r′ with r′ ∈ [0..2m− 1], reveals c = b+ r,
and computes c′ = c mod x. Observe that r mod x = r′ mod x = r′ − xv, where
v = (r′ ≥ x)?1 : 0. Furthermore, c′ = (b′ + (r′ mod x)) mod x = (b′ + r′ −
xv) mod x, hence b′ = c′− r′ +xv+xu, where u = (c′ < r′−xv)?1 : 0. Choosing
r′ ∈ [0..2m − 1] instead of r′ ∈ [0..x− 1] preserves statistical privacy.

Protocol 3.5. [a′]← Mod([a], k, x)

m← �log(x)�;1

([r′′], [r′], [r′m−1], . . . , [r
′
0])← PRandM(k, m); // 1 rnd, m inv2

c← Output(2k−1 + [a] + x · [r′′] + [r′]); // 1 rnd, 1 inv3

c′ ← c mod x;4

[v]← 1− BitLT(([r′m−1], . . . , [r
′
0]), x); // Tables 3, 45

[u]← LTZ(c′ − [r′] + x[v], m); // Table 56

[a′]← c′ − [r′] + x([v] + [u]);7

return [a′];8

Inequality and equality. The family of secure integer comparison operators with
secret inputs and outputs (Table 2) can be constructed based on two primi-
tives: Protocol 3.6, LTZ([a], k), that computes (ā < 0)?1 : 0, and Protocol 3.7,
EQZ([a], k), that computes (ā = 0)?1 : 0, for ā ∈ Z〈k〉.

Table 2. Protocols for integer comparison

Op. Protocol Construction

a = 0 EQZ(a) Primitive

a < 0 LTZ(a) Primitive (sign of a)

a > 0 GTZ(a) GTZ(a) = LTZ(−a)

a ≤ 0 LEZ(a) LEZ(a) = 1− LTZ(−a)

a ≥ 0 GEZ(a) GEZ(a) = 1− LTZ(a)

Op. Protocol Construction

a = b EQ(a, b) EQ(a, b) = EQZ(a− b)

a < b LT(a, b) LT(a, b) = LTZ(a− b)

a > b GT(a, b) GT(a, b) = LTZ(b− a)

a ≤ b LE(a, b) LE(a, b) = 1− LTZ(b− a)

a ≥ b GE(a, b) GE(a, b) = 1− LTZ(a− b)

LTZ is based on the following remark: if ā < 0 then �ā/2k−1 = −1 and if
ā ≥ 0 then �ā/2k−1 = 0. Therefore, we can determine the sign of a secret integer
ā ∈ Z〈k〉 by computing [s] = −Trunc([a], k, k − 1).

EQZ starts by computing and revealing c = 2k−1 + a + r like the previous
protocols. Let c′ = c mod 2k and observe that c′ = r′ if and only if ā = 0. The
protocol computes z = (c′ = r′)? 1 : 0 =

∨k−1
i=0 (ci ⊕ r′i) using the k-ary OR

protocol KOr (Section 4). EQZ is similar to a protocol in [19].
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Protocol 3.6. [s]← LTZ([a], k)

[s]← −Trunc([a], k, k − 1); // Table 51

return [s];2

Protocol 3.7. [z]← EQZ([a], k)

([r′′], [r′], [r′k−1], . . . , [r
′
0])← PRandM(k, k); // 1 rnd, k inv1

c← Output(2k−1 + [a] + 2k[r′′] + [r′]); // 1 rnd, 1 inv2

(ck−1, . . . , c0)← Bits(c, k);3

foreach i ∈ [0..k − 1] do [di]← ci + [ri]− 2ci[ri];4

[z]← 1− KOr([dk−1], . . . , [d0]); // Tables 3, 45

return [z];6

4 Building Blocks

The performance of the protocols presented in the previous section is determined
by the complexity of the building blocks for bitwise operations. We discuss in
this section protocols for different trade-offs between communication and round
complexity, adapted to different types of application and execution environment.

Let A be a set and � : A×A → A an associative binary operator. We consider
the following two extensions: a k-ary operation computes p =

⊙k
i=1 ai; a prefix

operation computes pj =
⊙j

i=1 ai for j ∈ [1..k]. We focus here on multiplication
and simple boolean functions, especially OR and carry propagation.

4.1 Bitwise Operations with Logarithmic Round Complexity

For secure computation with large batches of parallel operations (e.g., large
numbers and/or large matrices in linear programming), we can improve the
performance by trading off a few rounds for low communication overhead.

Protocols with perfect privacy, low communication, and log(k) rounds can
be obtained by structuring the computation of k-ary and prefix operations as
shown in Fig. 1. The protocols for k-ary operations have minimum communica-
tion complexity. For prefix operations, the decision is less obvious, since optimal
communication complexity requires 2 log(k)− 1 rounds for 2k− log(k)− 2 invo-
cations. The structure in Fig. 1 offers a better trade-off.

Complexity is shown in Table 3, where KOpL and PreOpL are generic pro-
tocols for any binary operation computed in 1 invocation, while CarryOutL and
CarryAddL compute the carry bits for binary addition (prefix operation, details
in [22]). Note that these protocols work for any data encoding (Section 2), in
particular for bits encoded in small fields.

Protocol 4.1, BitLTL, is an efficient inequality test in log(k) rounds for bitwise
encoded integers a, b ∈ [0..2k − 1]. The protocol computes s = (a < b)? 1 : 0
with perfect privacy. We show the variant used in Section 3, where one integer
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Table 3. Complexity of log-rounds bitwise operations

Protocol Rounds Invocations (F)

[p]← KOpL([a1], . . . , [ak]) log(k) k − 1

[p1], . . . , [pk]← PreOpL([a1], . . . , [ak]) log(k) 0.5k log(k)

[c]← CarryOutL(ak, . . . , a1, [bk], . . . , [b1], c
′) log(k) 2k − 2

[ck], . . . , [c1]← CarryAddL(ak, . . . , a1, [bk], . . . , [b1]) log(k) k log(k)

[c]← CarryOutL([ak], . . . , [a1], [bk], . . . , [b1], c
′) log(k) + 1 3k − 2

[ck], . . . , [c1]← CarryAddL([ak], . . . , [a1], [bk], . . . , [b1]) log(k) + 1 k log(k) + k

[s]← BitLTL(a, [bk], . . . , [b1]) log(k) 2k − 2

a2 a3 a4 a5 a6 a7 a8a1

p2 p3 p4 p5 p6 p7 p8p1

a2 a3 a4 a5 a6 a7 a8a1

p

Fig. 1. K-ary (left) and prefix (right) operations in log(k) rounds (for k = 8)

is public. A solution using PreOrL and the algorithm in [11] is less efficient, since
it needs 0.5k log(k) invocations (or 2 log(k) rounds and 2k− log(k) invocations).

Correctness: Let d = 2k+a−b and dk+1, . . . , d1 its binary representation. Observe
that 0 < d < 2k+1 and dk+1 = (a − b < 0)? 0 : 1, hence s = 1 − dk+1. On the
other hand, 2k − b = b′ + 1, where b′ =

∑k
i=1 2i−1¬bi, and hence d = a + b′ + 1.

The protocol computes dk+1 using CarryOutL, for inputs a, b′, and carry-in set.

Protocol 4.1. [s]F ← BitLTL(a, [bk]F, . . . , [b1]F)

(ak, . . . , a1)← Bits(a, k);1

foreach i ∈ [1..k] do [b′i]
F ← 1− [bi]F;2

[s]F ← 1− CarryOutL(ak, . . . , a1, [b′k]F, . . . , [b′1]
F, 1) ; // Table 33

return [s]F;4

4.2 Bitwise Operations with Constant Round Complexity

For applications with many sequential operations, the running time is dominated
by the network delay (e.g., secure division by functional iteration). It is impor-
tant, therefore, to reduce the number of rounds of these operations, even at the
cost of larger amount of data. Furthermore, precomputation becomes an effective
method for reducing the running time, so another design goal is to shift com-
plexity to a precomputation phase. We present new protocols that meet these
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Table 4. Complexity of constant-rounds bitwise operations

Protocol Rounds Invocations (Zq)

[p1], . . . , [pk]← PreMulC([a1], . . . , [ak]) 2 3k − 1
After precomputation 1 k

[p1], . . . , [pk]← PreOrC([a1], . . . , [ak]) 3 5k − 1
After precomputation 2 2k − 1

[p]← KOrCL([a1], . . . , [ak]) 3 4 log(k)
After precomputation 2 log(k) + 1

[p1], . . . , [pk]← PreOrCS([a1], . . . , [ak]) 6 8k + 3
√

k

After precomputation 5 4k +
√

k

[p]← KOrCS([a1], . . . , [ak]) 2 3k − 1
After precomputation 1 k

BitLTC1(a, [bk], . . . , [b1]) 3 3k + 1
After precomputation 2 k + 1

BitLTC2(a, [bk], . . . , [b1]) 5 2k − 1
After precomputation 4 k + 1

goals, as well as methods to reduce the complexity of known protocols. Table 4
summarizes the complexity of the protocols discussed in this section. We show
the protocols for k-ary and prefix-OR; variants for AND can be obtained using
De Morgan’s laws. We refer to several known protocols as follows: PreMulC, for
prefix multiplication [4]; KOrCS and PreOrCS, for k-ary and prefix OR [11].

We begin with an important building block, PreMulC, that computes in
constant-rounds the prefix products [pj ] =

∏j
i=1[ai], j ∈ [1..k], where a1, . . . , ak

are non-zero elements of a field F. The protocol follows the method introduced
in [4]: the parties compute [mi] = [ri][ai][r−1

i−1], i ∈ [2..k] and [m1] = [r1][a1],
where ri are uniformly random in F; reveal mi; and then locally compute the
prefix products [pj ] = [r−1

j ]
∏j

i=1 mi = [r−1
j ][rj ][aj ][r−1

j−1] . . . [r2][a2][r−1
1 ][r1][a1].

Protocol 4.2. [p1], . . . , [pk]← PreMulC([a1], . . . , [ak])

foreach i ∈ [1..k] do parallel1

[ri]← PRandFld(F);2

[si]← PRandFld(F);3

ui ← MulPub([ri], [si]); // 1 rnd, k inv; repeat if ui = 0, pr = 2
|F|4

foreach i ∈ [1..k − 1] do parallel [vi]← [ri+1][si]; // k − 1 inv5

[w1]← [r1];6

foreach i ∈ [2..k] do [wi]← [vi−1](u−1
i−1 mod q);7

foreach i ∈ [1..k] do [zi]← [si](u−1
i mod q);8

foreach i ∈ [1..k] do parallel mi ← MulPub([wi][ai]); // 1 rnd, k inv9

[p1]← [a1];10

foreach j ∈ [2..k] do [pj ]← [zj ](
∏j

i=1 mi);11

return ([p1], . . . , [pk]);12
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The variant of prefix multiplication shown as Protocol 4.2 minimizes the num-
ber of rounds as follows: steps 1-8 (round 1) compute [w1] = [r1a1], [wi] =
[ri][ri−1]−1, i ∈ [2..k], and [zi] = [r−1

i ], i ∈ [1..k]; steps 9-11 (round 2) complete
the computation described above. The protocol gains 1 round with respect to
the obvious solution by computing in parallel risi and ri+1si. The first round
can be pre-computed.

The complexity of all the other protocols listed in Table 4 is evaluated assum-
ing that prefix multiplication is optimized as shown in Protocol 4.2, and shared
random values are pre-computed in parallel.

The protocol for k-ary symmetric boolean functions proposed in [11] has the
same complexity as PreMulC. We can reduce the complexity of k-ary OR (and
k-ary AND) from 3k to 4 log(k) invocations as shown in Protocol 4.3, KOrCL. In
particular, this reduces the complexity of the equality test EQZ. KOrCL is based
on the remark that

∨k
i=1 ai = 0 if and only if

∑k
i=1 ai = 0, which can be tested

more efficiently (like in EQZ), since
∑k

i=1 ai ≤ k.

Protocol 4.3. [e]← KOrCL([a1], . . . , [ak])

m← �log(k)�;1

([r′′], [r′], [r′m−1], . . . , [r
′
0])← PRandM(k, m); // 1 rnd, m inv2

c← Output(2m[r′′] + [r′] +
∑k

i=1[ai]); // 1 rnd, 1 inv3

(cm, . . . , c1)← Bits(c, m);4

foreach i ∈ [1..m] do [di]← ci + [ri]− 2ci[r′i];5

[e]← KOrCS([d1], . . . , [dm]); // 2 rnd, 2m− 1 inv6

return [e];7

Protocol 4.4, PreOrC, computes prefix-OR in 3 rounds, out of which 1 round
can be precomputed. PreOrC is more efficient (and much simpler) than the prefix-
OR protocol described in [11] (PreOrCS in Table 4).

Correctness: PreOrC computes the prefix products bi =
∏i

j=1(aj + 1) for i ∈
[1..k]. Observe that if aj = 0 for j ∈ [1..i] then bi = 1, otherwise bi is even.
Therefore, the complement of the least significant bit of bi is equal to

∨i
j=1 ai.

Protocol 4.4. [p1], . . . , [pk]← PreOrC([a1], . . . , [ak])

[b1], . . . , [bk]← PreMulC([a1] + 1, . . . , [ak] + 1); // 2 rnd, 3k − 1 inv1

[p1]← [a1];2

foreach i ∈ [2..k] do parallel3

[pi]← 1−Mod2([bi], k); // 2 rnd, 2k − 2 inv4

return [p1], . . . , [pk];5

We conclude this section with two constant-rounds variants of the protocol
for comparison of bitwise encoded integers. The protocol could be constructed
using PreOrC and the method in [11]. However, we can eliminate 2k invocations
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Protocol 4.5. [u]← BitLTC1(a, ([bk], . . . , [b1]))
foreach i ∈ [1..k] do [di]← ai + [bi]− 2ai[bi];1

([pk], . . . , [p1])← PreMulC([dk] + 1, . . . , [d1] + 1); // 2 rnd, 3k − 1 inv2

foreach i ∈ [1..k − 1] do [si]← [pi]− [pi+1];3

[sk]← [pk]− 1;4

[s]←∑k
i=1[si](1− ai);5

[u]← Mod2([s], k); // 2 rnd, 2 inv6

return [u];7

as shown in Protocol 4.5, BitLTC1. This algorithm is also more efficient than the
transformation proposed in [20], saving 1 round and k invocations.

Correctness: Step 1 determines the bit differences di = ai ⊕ bi and step 2 com-
putes the prefix products pi =

∏k
j=i(dj + 1) = 2

∑k
j=i dj for i ∈ [1..k]. Steps 3-4

compute si = pi − pi+1 = dipi+1 for i ∈ [1..k − 1] and sk = pk − 1 = dk. Steps
5-6 compute s =

∑k
i=1 si(1− ai) = dk(1− ak)+

∑k−1
i=1 si(1− ai) and extract the

least significant bit of s, denoted u. We distinguish the following cases:

– If a = b then di = 0, pi = 1, and si = 0 for i ∈ [1..k]. Therefore, s = 0 and
hence u = 0 = (a < b). Otherwise, a �= b and there exists m ∈ [1..k] such
that ai = bi for all i > m and am �= bm. Observe that (a < b) = bm = 1−am.

– If m = k then ak �= bk, dk = 1, pk = 2, sk = 1, and sk−1 = dk−1pk = 2dk−1;
for i ∈ [1..k − 2], si = dipi+1 = di2

∑ k
j=i+1 dj = 2di2

∑k−1
j=i+1 dj . It follows that

s = (1−ak)+2dk−1+2
∑k−2

i=1 di(1−ai)2
∑k−1

j=i+1 dj , hence u = 1−ak = (a < b).
– If m < k then for i ∈ [m + 1..k] we have ai = bi, di = 0, pi = 1, and

si = pi+1di = 0; if i = m then dm = 1, pm = 2, and sm = 1; for i ∈ [1..m−1],
si = dipi+1 = 2di2

∑k
j=i+1,j �=m dj . It follows that s = (1−am)+2

∑m−1
i=1 di(1−

ai)2
∑k

j=i+1,j �=m dj , hence u = 1− am = (a < b).

Protocol 4.6, BitLTC2, is a variant that reduces the communication complexity
by splitting the computation of the prefix products in 3 steps, at the cost of 2
additional rounds. We omit the correctness proof which is simple but lengthy.

Protocol 4.6. [u]← BitLTC2(a, ([bk], . . . , [b1]))

foreach i ∈ [1..k] do [di]← ai + [bi]− 2ai[bi];1

�← (k − 1)/2; // Assume that k is odd2

foreach i ∈ [1..�] do [ei]← ([d2i−1] + 1)([d2i] + 1); // 1 rnd, k/2 inv3

[e�+1]← [dk] + 1;4

([f�], . . . , [f1])← PreMulC([e�+1], . . . , [e2]); // 2 rnd, 3k/2 inv5

foreach i ∈ [1..�] do [gi]← ([ei]− 1)(1− a2i−1) + [d2i](a2i−1 − a2i);6

[s]← Inner(([f1], . . . , [f�]), ([g1], . . . , [g�])); // 1 rnd, 1 inv7

[s]← [s] + [dk](1− ak);8

[u]← Mod2([s], k); // 2 rnd, 2 inv9

return [u];10
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5 Conclusions

Comparison and truncation are the main performance bottlenecks of applications
that involve complex secure computation with integer and fixed-point rational
numbers. We focus in this paper on improved solutions for these tasks. We
propose efficient protocols for their building blocks, with complexity reduced by
a large margin with respect to known protocols. These building blocks are often
used in other secure computation tasks. Moreover, we give variants for different
trade-offs between communication and round complexity, and thus the protocols
can be adapted to applications and the communication network.

Table 5. Complexity of arithmetic and comparison protocols

Protocol Rounds Inv. (Zq)

Mod2mC1([a], k, m) 4 4m + 1
After prec. 3 m + 2

Mod2mC2([a], k, m) 6 3m + 1
After prec. 5 m + 3

Mod2mL([a], k, m) log(m) + 2 3m − 1
After prec. log(m) + 1 2m − 1

TruncPR([a], k, m) 2 m + 1
After prec. 1 1

Protocol Rounds Inv. (Zq)

LTZC1([a], k) 4 4k − 2
After prec. 3 k + 1

LTZC2([a], k) 6 3k − 2
After prep. 5 k + 2

LTZL([a], k) log(k) + 2 3k − 4
After prec. log(k) + 1 2k − 3

EQZC([a], k) 4 k + 4 log(k)
After prec. 3 log(k) + 2

Protocol Rounds Inv. Field

[s]← LTZL([a], k) 1 1 Zq

2 2k Zq1

log(k) + 1 2k − 3 F28

After precomputation 1 1 Zq

log(k) + 1 2k − 3 F28

Table 5 shows the complexity of the main protocols in Section 3. Mod2mC1,
Mod2mC2, and Mod2mL are variants of Mod2m constructed with the BitLT vari-
ants BitLTC1, BitLTC2, and BitLTL, respectively. The same naming convention
is used for LTZ, while EQZC is a variant of EQZ constructed with KOrCL.

Besides the usual setting with all data types encoded in the same field Zq, we
also show a variant of LTZL with bits encoded in small fields (F28 for BitLTL, Zq1

for random bit generation). This variant reduces the amount of data sent from
O(k2) bits to O(k) and thus scales up better for large integers (or fixed-point
numbers) and large batches of comparisons. Our measurements for secure linear
programming [22] showed that the running time of LTZL is reduced by a factor
of 1.6 for log(q) = 128 and 2.5 for log(q) = 320, κ = 48. On the other hand, using
PreOrC and LTZC1 instead of log-rounds protocols reduces the round complexity
of the fixed-point division protocol in [6] by 10 rounds (for signed dividend).

From a practical perspective, the comparison protocols (inequality and equal-
ity) listed in Table 5 are more efficient than the protocols in [19,24,20]. We note,
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however, that their work focuses on solutions with perfect privacy, while our pro-
tocols offer (only) statistical privacy. Reconciliating these goals, performance and
perfect privacy, and finding multiparty comparison and (accurate) truncation pro-
tocols with sub-linear complexity, remain open and challenging issues.

Acknowledgements. Part of this work was funded by the European Commission
through the grant FP7-213531 to the SecureSCM project.
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A Annex: Statistical Privacy

The protocols presented in the paper offer two notions of privacy: perfect and
statistical. Some of the protocols provide only statistical security in order to
achieve better efficiency. The difference between these notions is discussed below.

Definition 1. Let X and Y be two random variables, both taking values in some
finite set V . The statistical distance between X and Y is defined as

Δ(X ; Y ) =
1
2

∑

v∈V

|P(X = v)− P(Y = v)|. (1)

Intuitively, if Δ(X ; Y ) is small (or 0), then the distributions of X and Y are
statistically (resp. perfectly) indistinguishable. All our building blocks are based
on the following high-level idea. Let x be a random variable denoting a secret
integer. We first generate a random secret integer r in some range and reveal
f(x, r) for some function f . Let δ = Δ(r, f(x, r)). The type of security offered by
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the protocol depends on δ as follows: δ = 0 implies perfect security and δ ≤ c/2κ

(for some constant c) implies statistical security in security parameter κ.
Following are some basic results about statistical distance. Their proofs can

be found in Chapter 8 of [23].
We first show that if U is uniform on some finite set then the statistical

distance between X +U and U can be bounded by the size of the domain of U .

Lemma 1. Let M and K be positive integers with M ≤ K. Let X, U be random
variables in [0..M − 1], [0..K − 1] respectively such that U is uniform. Then
Δ(U ; X + U) ≤ (M − 1)/K and this bound is tight.

Proof. This is Lemma 1 in [21, Appendix A].

Remark 1. The result of Lemma 1 implies that Δ(U ; X + U) is small if M � K.
For instance, if one sets K = M2k, we see that the statistical distance between U
and X +U is less than 1/2k, hence approaches 0 exponentially fast as a function
of k. In other words, one can mask an integer value X from a bounded range
{0, . . . , M − 1} by adding a uniform random integer U from an enlarged range
{0, . . . , K − 1}. This way one can do one-time pad encryption with integers,
where X is the message, U is the one-time pad, and X + U is the ciphertext.

In Theorem 1, we show that this holds even if U is not uniform, but a sum of
uniform distributions. For this we will use the following lemmas.

Lemma 2. Let X and Y be random variable taking values in some finite set V
and let f : V → V ′ be some function mapping to some finite set V ′. It holds that

Δ(f(X); f(Y )) ≤ Δ(X ; Y ). (2)

Proof. This is Theorem 8.32 of [23].

Lemma 3. Let X,Y and Z be random values, where X and Z are independent
and Y and Z are independent, then

Δ((X, Z); (Y, Z)) = Δ(X ; Y ). (3)

Proof. This is Theorem 8.33 of [23].

Theorem 1. Let X ∈ [0..2k−1] and U be random variables and let U =
∑n

i=1 Ui

for some finite n, where each Ui is independent and uniform in [0..2k+κ − 1].
Then:

Δ(X + U ; U) < 2−κ. (4)

Proof. Let Ui ∈R [0..2k+κ− 1] for i = 1, . . . , n such that Ui is selected uniformly
and let and X ∈ [0..2k−1] be with unknown distribution. Let =

∑n
i=1 Ui. Lastly,

let f : [0..(n− 1)2k+κ− n + 1]× [0..2k(1 + 2κ)− 2]→ [0..2k(1 + n2κ)− n− 1] be
defined as f(x, y) := x + y. It follows that
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Δ(X + U ; U) = Δ(X +
n∑

i=1

Ui;
n∑

i=1

Ui) = Δ(X +
n−1∑

i=1

Ui + Un;
n−1∑

i=1

Ui + Un)

= Δ(f(
n−1∑

i=1

Ui, X + Un); f(
n−1∑

i=1

Ui, Un))

Lemma 2 ≤ Δ((
n−1∑

i=1

Ui, X + Un); (
n−1∑

i=1

Ui, Un))

Lemma 3 = Δ(X + Un; Un)

Lemma 1 ≤
2k − 1
2k+κ

< 2−κ.

Theorem 2 is an extension of Theorem 1 where U is constructed in a slightly
different manner.

Theorem 2. Let X ∈ [0..2k − 1] and U be random variables and let U = U ′ +
2k

∑n
i=1 U ′

i , where U ′ ∈R [0..2k − 1] and each U ′
i is uniform and independent in

[0..2κ − 1]. Then:
Δ(X + U ; U) < 2−κ. (5)

Proof. Let Un = U ′ + 2kU ′
n and Ui = 2kU ′

i for i = 1, . . . , n− 1. Observe that Un

is uniform in [0..2k+κ − 1], and Ui are independent. Also, let

f : [0..(n− 1)2k(2κ − 1)]× [0..2k(1 + 2κ)− 2]→ [0..2k(2 + n(2κ − 1))− 2]

be defined as
f(x, y) := x + y

Using the same method as in the proof of Theorem 1 we obtain:

Δ(X + U ; U) = Δ(X +
n∑

i=1

Ui;
n∑

i=1

Ui) = Δ(X +
n−1∑

i=1

Ui + Un;
n−1∑

i=1

Ui + Un)

= Δ(f(
n−1∑

i=1

Ui, X + Un); f(
n−1∑

i=1

Ui, Un))

Lemma 2 ≤ Δ((
n−1∑

i=1

Ui, X + Un); (
n−1∑

i=1

Ui, Un))

Lemma 3 = Δ(X + Un; Un)

= Δ(X + U ′ + 2kU ′
n; U ′ + 2kU ′

n)

Lemma 1 ≤
2k − 1
2k+κ

< 2−κ.
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Abstract. We introduce a protocol, that we call Human Key Agreement, that al-
lows pairs of humans to establish a key in a (seemingly hopeless) case where
no public-key infrastructure is available, the users do not share any common se-
cret, and have never been connected by any physically-secure channel. Our key
agreement scheme, while vulnerable to the human-in-the-middle attacks, is se-
cure against any malicious machine-in-the middle. The only assumption that we
make is that the attacker is a machine that is not able to break the Captcha puzzles
(introduced by von Ahn et al., EUROCRYPT 2003).

Our main tool is a primitive that we call a Simultaneous Turing Test, which is
a protocol that allows two users to verify if they are both human, in such a way
that if one of them is not a human, then he does not learn whether the other one
is human, or not.

To construct this tool we use a Universally-Composable Password Authenti-
cated Key Agreement of Canetti et al. (EUROCRYPT 2005).

1 Introduction

One of the main reasons why digital crime is so difficult to combat is the fact that
the attacks on digital devices are usually very easy to automatize and repeat for a large
number of times. This makes the design of secure digital systems a completely different
discipline than the design of physically-secure systems. Just observe that a physical
attack on a bank that has probability 0.1% of succeeding may be infeasible, while, an
electronic attack on a banking system that has the same probability of success may be
feasible and profitable for the attacker.

The observation that certain types of malicious behavior are profitable only if they
can be performed automatically and efficiently led to a construction of schemes where
at some point one of the users has to prove that he is a human. This type of a “proof
of being a human” was first proposed in [27], then independently discovered by [25],
and finally formalized, and put in a general framework in [37], where it was given a
name Completely Automated Public Turing test to tell Computers and Humans Apart
(Captcha). In short, a Captcha scheme is a puzzle that is easy to solve by a human and
hard to solve by a machine. The most common Captchas are computer-generated images
containing a short string of characters written in such a way that they are unreadable
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for a computer, and still effortlessly readable by a human. Other Captchas that were
proposed are based on: recognizing gender of a person on an image [27], understanding
facial expression on an image [27], speech recognition [27], recognizing animal pictures
[37], etc.

So far, Captcha schemes were mostly used as a method for preventing attacks in
which the adversary simply floods the victim with a large number of unwanted requests.
Examples of these include email spamming and automated posting to blogs, forums, on-
line polls, wikis, etc. [27,37]. Captchas are also used as a for thwarting the dictionary
attacks on the password-based systems. Examples include [12] and [31]. Also, some
manufacturers of home wifi routers recently started to use Captcha to prevent malicious
software from getting access to their machines by simply guessing a password [32].

In this paper we propose a new application of the Captcha schemes. We show how
Captchas can be used to construct a session key agreement between two humans that are
connected by an insecure link. Our protocol, that we call a Human Key Agreement works
in a (seemingly hopeless) case where no public-key infrastructure is available, and the
users do not share any common secret, have never been connected by any physically-
secure channel and do not even know each other personally (so they cannot, e.g., rec-
ognize each other’s voice). The only assumption that we make is that the attacker is a
machine that is not able to break the Captchas generated by the users.

1.1 Related Work

Captcha. Some work on Captchas was already described in Sect. 1. Both designing
and breaking Captcha schemes is subject of intensive and active research. One of the
interesting new research ideas in this field is the reCaptcha project [38], where the users
solving Captchas are helping to digitize old books by deciphering scanned words on
which the OCR methods failed. In this case Captcha consists of two images, (a) one
that the creator of Captcha can solve himself (this is needed to verify the answer), and
(b) one that is unreadable for him. The key point here is that the user who solves the
Captcha does not know which image is (a) and which is (b), and hence he has to provide
a solution for both.

Typically, the attacks on Captcha use the artificial intelligence methods (see e.g.
[22]). An interesting exception is a so-called a pornography attack, where the the
Captcha puzzles are forwarded to a pornographic web-site, and the web-site users
have to solve the Captcha before being allowed to view the web-site contents [39].
For more information and references on Captcha see e.g. the Captcha web-site [35], or
the wikipedia article [41].

Key agreement protocols. Key agreement protocols were introduced by Diffie and
Hellman in their seminal paper [14]. Informally, a key agreement protocol is a scheme
that allows two parties that initially do not share any secret to agree on a common key.
The protocol of [14] is secure only against an eavesdropping adversary, i.e. an adversary
that can passively listen to the messages exchanged between the parties, and is not
secure against a more powerful active adversary that fully controls the transmission (by
modifying, copyng, fabricating or destroying the messages). Such an active adversary
is also called a man-in-the middle. Subsequently, several methods of protecting against
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the active attacks were proposed. A common one is to add message authentication to
a passively-secure key agreement scheme. For example if the parties already share a
common key K , they can authenticate their messages using Message Authentication
Codes (see Sect. 3.1 for a definition). It may seem that the assumption that the parties
from the beginning share a key trivializes the problem. The main point, however, is that
such schemes allow to generate several fresh session keys from one long-term key K .
An advantage of this method is that it provides forward-security [15,19,2], i.e. even if
at some point the key K leaks to the adversary, the session keys generated in the past
remain secret.

Other popular methods for authenticated key agreement are based on the public-key
cryptography, or a trusted third party (for more on this, and for a general introduction
to the area of key agreement see e.g. [6]). The drawback of the PKI approach is that it
relays on a public-key infrastructure, that is usually non-trivial to set-up [17]. Using the
trusted third party is often impractical, since it requires the parties to be connected to a
party whom they both trust.

Some protocols are also based on the assumption that the agreeing parties share a
common password, which may not be chosen uniformly at random, but has to be hard
to guess for the adversary (we discuss it in more detail later). Yet another method,
called short string comparison, assumes that the agreeing parties, after the protocol
is completed, are able to securely compare, via a trusted channel if two short strings
are equal [36,29,24,9]. Such a comparison allows the parties to detect if the adversary
performed the man-in-the middle attack, by verifying if both parties have the same view
on the set of messages that were exchanged.

Secure pairing schemes. Secure device pairing is a term used in the systems security
community, referring to protocols whose goal is to establish a secret key between two
electronic gadgets (mobile phones, PCs, routers, headsets, cameras and media players,
etc.), usually connected with a wireless link. Hence, the meaning is similar to the term
key agreement described above, and in fact some of the key agreement protocols can be
directly used for pairing. The main difference is that the pairing protocols do not assume
any shared secrets, trusted parties, or PKI. Moreover, the interfaces of the devices are
often so constraint that they do not even permit the use of password protocols (since,
e.g., they lack a keyboard or a screen). These protocols usually rely on a human user
that is available to assist the pairing.

The first pairing protocol [34] was based on an assumption that a user can actually
connect the devices with a secure physical link. Later, several other schemes were pro-
posed. Several of them rely on a so-called “out-of-band” (OOB) channels, which are
channels whose security can be verified by the user. For example [3] uses an infrared
channel as OOB, and [33] uses human body as the communication medium. Some pro-
tocols use essentially the “short string comparison” method. For example the protocol
[30] requires the user to verify if the images (that are a graphical representations of the
“short strings”) displayed on both devices are the same. The protocol used in the Zfone,
a secure VoIP system (see [42]), requires the users to read out to each other short strings,
and to compare them (another example of such a protocol is [43]). The security of this
system of course relies on the fact that the users can recognize each other’s voice. For
more examples of the pairing protocols see e.g. [23].
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2 Our Contribution: Human Key Agreement

In this section we describe the Human Key Agreement protocol. Informally speaking
that, our protocol, while vulnerable to the “man-in-the middle” attacks, is secure against
the “machine-in-the-middle” attacks (i.e.: an attack in which the adversary in not a
human). Moreover, the protocol will be designed in such a way that using a human-in-
middle attack, will be very expensive, since it will require the adversary to use humans
to constantly monitor the network, solving a large number of Captcha puzzles.

Consider a decentralized protocol for remote communication between the humans.
For example, think of an internet instant messaging system, like XMPP1, or in general,
any system where pairs of humans need to establish secure connection. How can the
users of such a protocol establish session keys in a way that is secure against the man-
in-the-middle attacks, when the the Public-Key Infrastructure is not available? None
of the methods described in Sect. 1.1 seems to be applicable in this case. It is usually
infeasible for the users to meet in person in order to establish a shared secret password.
Sometimes they do not know each other well, so they cannot recognize each other’s
voice, and hence they cannot use the “short string comparison” method used in the
VoIP protocols [42,43] (another reason may be that the voice link may simply not be
available). Relying on a trusted server may also be a bad idea, as reported recently in the
media [40]. Therefore, the adversary that controls the network can freely monitor, store
and analyze all the messages that are transmitted by the users (as described in [40]).

Our Human Key Agreement permits the users to significantly increase security of
their communication in this situation. The security of our protocol is based on the diffi-
culty of solving the Captcha puzzles by a machine. More precisely the key established
between each pair of participants will remain secret assuming that the adversary did not
solve the Captcha puzzles that the users generated during the execution of the protocol.
In addition, our protocol will be forward-secure, which means that, in order to break the
security, the adversary will have to solve the Captcha puzzles during the execution of
the protocol (solving the Captchas after the protocol is completed does not help him).
Therefore the adversary will have to employ a significant amount of human power in
order to decrypt users communication. Although, of course, this does not prevent him
from targeting a concrete user, or a pair of users (if he is willing to spend some of
his human time), at least it makes it very expensive to monitor and analyze the whole
communication in the network. In some sense this is similar to the method based on
voice recognition [42], since also there a very determined adversary may actually able
to break the security, by using a voice mimic attack [43].

The details of the model are a little bit tricky, and we start with presenting them in a
very informal way. Consider two parties, Alice (A) and Bob (B), that want to establish
a secure connection. Intuitively, our protocol should satisfy the following requirements:

Requirement 1. If the adversary is passive the protocol is completely secure, even
against a human-adversary.

1 XMPP stands for Extensible Messaging and Presence Protocol. It was formerly named
Jabber. For more on XMPP see e.g. a wikipedia article http://en.wikipedia.
org/wiki/Extensible_Messaging_and_Presence_Protocol
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Requirement 2. If the adversary is performing a machine-in-the middle attack then
this attack will be detected by the users.

Therefore, of course, an active machine-adversary will always be able to prevent the
parties from establishing a secure key, but he will not be able to convince the players
that the key is secure, while it is not.

It is easy to observe that in order to satisfy Req. 1 both users themselves have to use
the fact that they are humans, and demonstrate, during the execution of the protocol,
their ability to solve the Captcha puzzles. This is because otherwise a machine-attacker
would be completely indistinguishable from the honest users. On the other hand, solving
a Captcha each time the protocol is executed would be very cumbersome. Therefore the
protocol will have two modes: a secure one (during which the users have to solve the
Captcha puzzles) and both Req. 1 and 2 hold, and a normal one, where only Req. 1
holds.

The secure mode will only be activated if the users need to transmit some secret
information, and otherwise they will use the normal mode. More precisely, each user
P ∈ {A, B} will be able to decide if he wants to establish a secure connection, or not,
by setting his flag humanP := 1, or humanP := 0, resp. The secure mode will be
used only if humanA ∧ humanB = 1.

Described this way, it may look like the protocol could actually deteriorate users’
security, as the fact that one of the users wants to establish a secure connection could
be a signal to the adversary that the user has some secret to hide (and in this case he
could quickly call a human to help him solving the Captcha). Thus we introduce the
third security condition:

Requirement 3. A machine-adversary is not able to learn the values of humanA and
humanB . Moreover the values of humanA and humanB are forward-secret in a
sense, that the adversary, in order to learn those values, needs to solve the Captcha
puzzles during the execution of the protocol.

The reason why the users may be interested in forward-secrecy of humanP is that
the fact that some pair of users used the secure mode, could draw the attention of the
adversary to them, and hence he could use a human-attacker against them next time
when they execute the key-agreement protocol. For this reason, the users should be
advised to always encrypt their communication with the secret key that they established,
no matter if they are in the secure mode or not (since otherwise they would reveal the
values to the adversary). Moreover, if humanP = 1 and humanA ∧ humanB = 0
then P should not interrupt the session (since it could give to the adversary information
about the value of humanP ). The only thing that he has to keep in mind is not to send
any secret information in such a session.

Req. 3 implies that the computation of humanA ∧ humanB has to be done in
a “covert” way. In particular the parties cannot just send to each other their values
humanA and humanB , and in general none of them can send it to anyone who did not
first prove to him that he is human (since the communication is not authenticated, and
one never knows to him he is really talking).

A natural idea for a solution is as follows: let Alice reveal to Bob that humanA = 1
only if Bob proves to her that he is human. If we apply this in a naive way, then of course
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we enter a loop, since in turn Bob will be willing to prove this only if Alice proves to
him that she is human. Fortunately, it turns out that we can construct a protocol in which
Alice and Bob prove to each other that they are human simultaneously, i.e. they will
prove to each other that they are human, in such a way that if one of them is not a human,
he will not learn if the other party is a human or not. We call this a Simultaneous Turing
Test2 Moreover, also this proof will be forward-secure in the sense, that an adversary
that solves the Captcha puzzles after the protocol was completed, will not have any
information about the inputs humanA and humanB . The main tool that we use is
called Universally-Composable Password Based-Key Exchange (see Sect. 3.4 for more
on this).

While from this description it may seem that our protocol is very complicated, the
good news is that in fact from the user point of view the execution of the protocol
is quite simple. In particular, each of the users will need to solve the Captcha puzzle
only once, during the Simultaneous Turing Test, and the rest of the protocol will be
fully automatic. Our protocol may be implemented in the following way. When the
users start communicating, each of them has an option to choose a “secure connection”
(by pressing some button in his interface, say). In this case his client shows him a
Captcha sent from the other user, and the user has 1 minute, say, to solve it. If also the
other user solved the Captcha then the client displays an information “secure connection
established”, and otherwise it says “insecure connection”. The user of course does not
know if it is because the other user has not chosen “secure connection”, or because the
adversary interfered in the transmission, but this is unavoidable in our model.

The option to switch to the secure mode may be permanently available for the users
(i.e. the clients can, invisibly for the users, execute the key agrement scheme every
minute, say). Of course, the users should not explicitly say (over an insecure link) that
they want to establish a secure connection, since it would violate Req. 3. The user
can, however, indicate it in some non-explicit way, hoping that the other player will
understand it, but an inattentive adversary will not.

One of the possible weaknesses of this model is that it does not distinguish between
a user that makes an error while solving Captcha, and an adversary. Fortunately, we
have an extended version of the protocol (see Sect. 4.5), where the user has a right to a
couple of tries when solving Captcha.

3 Tools

3.1 Message Authentication Codes

Message Authentication Codes (MAC s) is a tool for guaranteeing integrity of commu-
nication between two paries that share a key. An introduction to MACs and a complete

2 In some sense this is similar in spirit to the problem of secure two-party computation of a
conjunction. Recall that a secure evaluation of a two-party function f : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ is a protocol that allows Alice and Bob to learn f(xAlice, xBob) without revealing to
each other their respective inputs xAlice and xBob. This means in particular that if f is a con-
junction of two bits then the following security guarantee holds for both P ∈ {Alice, Bob}:
if xP = 0 then P will not know if the input of the other party was 0 or 1. See e.g. [13] for an
introduction to this area.
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security definition can be found, e.g., in [20]. We will use a following definition of
MACs. MAC is a pair of algorithms (Tag ,Vrfy), such that Tag takes as an input a ran-
dom secret key S ∈ {0, 1}k and a message M ∈ {0, 1}∗. It outputs an authentication
tag TagS(M). We require that always VrfyS(M,TagS(M)) = 1. It is secure against
chosen-message attack if any polynomial probabilistic time adversary (taking as input
1k) has negligible3 (in k) chances of producing a pair (M, T ) such that VrfyS(M, T ) =
1, even after seeing an arbitrary number of pairs (M1,TagS(M1)), (M2,TagS(M2)). . .
(where M �∈ {M1, M2, . . .)) and even whenM1, M2,. . . were adaptively chosen by the
adversary.

In our construction we will use a special type of MACs, that have the following
non-standard feature: informally, it should be infeasible to discover if two tags were
computed with the same key. More precisely, we require that for S0, S1 ∈ {0, 1}k

chosen uniformly at random, and for any M0 �= M1 no polynomial-time adversary that
knows TagS0

(M0) can distinguish between TagS0
(M1) (i.e. M1 encrypted with the

same key) and TagS1
(M1) (i.e. M1 encrypted with a fresh key). This can be formalized

as follows: for every polynomial-time machine A and every M0 and M1 we have that

|P (A(TagS0
(M0),TagS0

(M1) = 1)
)

−P
(A(TagS0

(M0),TagS1
(M1) = 1)

) |
is negligible.

(1)

The standard definition of MACs does not guarantee this. This is because the definition
of MACs does not require that no information about the key leaks to the adversary. For
example, it may be possible that a MAC is secure, but the first 10 bits of S can be
computed from TagS(M) (and hence it can be easily checked if two tags were com-
puted with the same key). Luckily, concrete examples of MACs satisfy this extended
definition. One example is the standard construction of a MAC from a pseudorandom
function (cf. e.g. [20], Sect. 4.4). Recall, that a pseudorandom function (which is es-
sentially the same as a block-cipher) is a function f that takes as input some key S,
and a (fixed-length) block M and outputs a ciphertext C = fS(M) of the same length.
Informally speaking, the security of the pseudorandom functions is defined as follows:
for every sequence of blocks M1, . . . , Mt the string fS(M1), . . . , fS(Mt) should be
indistinguishable from random (even is the blocks M1, . . . , Mt are chosen adaptively
by the adversary). It is easy to see that a function Tagprf

S (M) = fS(M) (with Vrfyprf

defined in a straightforward way) is a secure MAC that works on messages of fixed
length. It can be extended to work on messages of arbitrary length by first hashing a
message with a collision-resistant hash function H , and then applying f , i.e. setting
Tagprf ,H

S (M) := fS(H(M)) (this method is called hash-and-authenticate, cf. [20]).
The reason why for any polynomial-time A the scheme Tagprf satisfies (1) is that,

from the definition of a pseudorandom function, both Tagprf
S0

(M0),Tagprf
S0

(M1) and

Tagprf
S0

(M0),Tagprf
S1

(M1) are indistinguishable from random strings, and hence, obvi-

ously, they are indistinguishable from each other. The same holds for Tagprf ,H .

3 A f : N → R function is negligible in k if for every c ≥ 1 there exists k0 such that for every
k ≥ k0 we have |f(k)| ≤ k−c.
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3.2 Key Agreement

Key Agreement is a scheme that allows two parties, Alice and Bob, that initially share
no secret, to establish a common key. For simplicity, in this paper we restrict ourselves
to one-round key agreement protocols. Hence, for us a key agreement protocol is a
triple of randomized interactive algorithms (KAAlice,KABob,KAKey). Let rAlice and
rBob denote the respective random inputs of the players. In the first step each algo-
rithm P ∈ {Alice, Bob} sends to the other one a message mP = KAP (rP ). Then,
Alice calculates her output KAlice = KAKey(rAlice, mBob) and Bob calculates his
output KBob = KAKey(rBob, mAlice). We require that always KAlice = KBob. Security
of (Alice, Bob) is defined in the following way: for any polynomial time adversary
that can see mAlice and mBob the key KAlice should be indistinguishable from a ran-
dom string of the same length. Of course, if the adversary is active, then he can cause
KAlice �= KBob, or KP = error (for P ∈ {Alice, Bob}).

An example of a key agreement protocol is the protocol of Diffie and Hellman [14].
Let G be a cyclic group, and let g be its generator. The protocol works as follows: each
user P selects a random exponent rP ∈ Z|G|, calculates mP := grP and sends it to
the other player. Then, each player calculates K := (mP )rP . The protocol is correct,
since (grAlice)rBob = (grBob)rAlice . The protocol is secure under a so-called Decisional
Diffie-Hellman Assumption in (G, g). See, e.g., [20] for more on this.

Authenticated Key Agreement (AKA) is a protocol between Alice and Bob that share
a common key K that allows them to generate a fresh session key. It can be constructed
from the Key Agreement Scheme described, by asking both users to authenticated their
messages with a MAC (using the key K). In our construction we will need a stronger
version of this notion, that we call a Covert-AKA. This is described below.

3.3 Covert-AKA

As a building-block for our main construction we introduce a scheme that we call
Covert-AKA. It is a protocol between Alice and Bob. The players have as input two
keys skA and skB . The protocol is executed either with skA = skB (this is called the
“equal keys” case), or with skA independent from skB (this is called the “independent
keys” case). The properties of the protocol are as follows. If the adversary is passive,
then

– in the “equal keys” case both parties output the same output: (secure, K),
– in the “independent keys” case both parties output (normal, K).

If the adversary is active then

– in the “equal keys”case he can cause each party (independently) to output (normal,
K ′) (for some K ′, that can be different for both parties), or error

– in the “independent keys” case he can cause each party (independently) to output
error .

The security conditions are as follows: (1) no polynomial-time adversary that attacks
the protocol (even actively) can distinguish between the “equal keys” and “independent
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keys” case, and (2) whenever one of the parties outputs (secure, K), the key K is
indistinguishable from random, for a polynomial-time adversary.

Covert-AKA can be implemented in a similar way to the normal AKA, namely both
players execute a passively secure key agreement, authenticating their messages in with
the keys skA and skB , resp. The complete protocol is presented on Fig. 1.

Obviously, if skA = skB then the players just executed a normal authenticated key
agreement, and hence whenever the adversary tampers with the messages he can cause
the parties to output (normal, K ′) (by tampering just with the tag), or error (by, e.g.,
destroying the whole message). If the keys are independent then obviously the verifi-
cation of the tag will fail.4 Therefore the adversary cannot force any parties to output
secure. Moreover, if he is passive, then both parties will always output (normal, K).

Observe, that if the players use a standard MAC scheme for authentication, then
the adversary that observes the transcript can in principle see if the keys are equal or
independent, since, as explained in Sect. 3.1 a MAC does not even need to hide the
entire key. Hence, we use Tagprf constructed in Sect. 3.1, that has exactly the property
that the adversary, after seeing the messages mAlice and mBob, and the Tags on them,
cannot distinguish (with a non-negligible advantage) if they were authenticated with the
same key, or two independent keys.

Alice Bob

mAlice := KAAlice(rAlice) mBob := KABob(rBob)

tAlice := Tagprf
sk (Alice,mAlice) tBob := Tagprf

sk (Bob,mBob)
((Alice,mAlice),tAlice)−−−−−−−−−−−−−−→

((Bob,mBob),tBob)←−−−−−−−−−−
if KAKey(rAlice,mBob) = error

then output error

otherwise:

if Vrfyprf
sk ((Bob,mBob), tBob) = 1

then output
(secure,KAKey(rAlice,mBob))

otherwise output
(normal,KAKey(rAlice,mBob)).

if KAKey(rBob,mAlice) = error
then output error

otherwise:

if Vrfyprf
sk ((Alice,mAlice), tBob) = 1

then output
(secure,KAKey(rBob,mAlice))

otherwise output
(normal,KAKey(rBob,mAlice)).

Fig. 1. The Covert-AKA scheme. (KAAlice,KABob,KAKey) is the passively secure key agree-
ment from Sect. 3.2. Tagprf is the Message Authentication Code from Sect. 3.1.

3.4 Universally-Composable Password Authenticated Key Exchange

As briefly mentioned in Sect. 1.1 there exist key-agreement protocols, where it is enough
that the users share a password. Such schemes, introduced in [5], are called Password
Authenticated Key Exchange protocols. The main difference between a password, and
a cryptographic key is that the latter is usually assumed to have a unform distribution

4 Actually, here we really need the assumption that the keys are independent, since otherwise the
adversary could in principle be able to exploit the correlations between the keys, and launch a
related-key attack.
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over some set {0, 1}m, and the distribution of the former can be very far from uniform
over {0, 1}m, e.g., it can be known to the adversary that the password is a word from
a dictionary. It is particularly important that such schemes offer protection against the
off-line password guessing attacks, i.e. the attacks, where the adversary can perform an
exhaustive search for a correct password, after he saw the transcript of the communica-
tion. The design of such schemes attracted a considerable interest [4,7,26,18,28,21,8]
during the last two decades, and has proven to be a challenging task. It has even been
non-trivial to come up with the right security definitions. For example, most of the defi-
nitions made an unrealistic assumption that the passwords are chosen according to some
pre-determined distribution, and that the passwords between different pairs of parties
are chosen independently.

In this paper we will use a very strong version of such a protocol, called Universally-
Composable Password Authenticated Key Exchange (UC PAK), defined and constructed
in [11]. Its definition follows the Universal Composability (UC) paradigm of Canetti
[10]. There is no space here for a general introduction to the UC framework. Let us
just highlight that in the UC framework a protocol Π is defined secure with respect
to an ideal functionality F which it is supposed to “emulate”. The security definition
guarantees that if another protocol uses Π as a subroutine one can simply replace each
call to Π with a call to F . This holds if the protocols are executed in an arbitrary way,
and even if several instances of the same protocol are executed concurrently. To achieve
this strong property the security definition has to take into account that the inputs of
the honest parties can be chosen in an arbitrary way. This is modeled by introducing a
machine called environment Z that is responsible for choosing the inputs.

The ideal functionality of the UC PAK appears in [11]. Informally, the main security
guarantees of the UC PAK are as follows. Suppose that the parties are Alice and Bob,
each of them holding a password πAlice, and πBob, resp. At the end of the execution
both parties obtain either

1. the same uniformly-random session key sk — if πAlice = πBob and the adversary
did not attempt to compromise the session,

2. two different uniformly-random keys skAlice and skBob (resp.), chosen indepen-
dently — if πAlice �= πBob or the adversary attempted to compromise the session,

The adversary can compromise the session either by guessing a password (he has a right
to one such guess), or by corrupting one of the parties. In both cases he has a right to
choose the keys that the parties receive. Unless the adversary compromised the session,
the only information that he obtains is the fact the the parties executed the protocol.
He does not even learn what was the output of the protocol, i.e. if the parties agreed
on the same key sk (Case 1 above) or if each of them received a different key chosen
independently (Case 2). We will use this property in our construction.5

An important feature of the UC framework is that the inputs of the users (in this case:
πAlice and πBob) are chosen by the environment Z and hence, for example, it may be
the case that πAlice and πBob, although not equal, are in some way correlated. In reality
some correlation like this is not an unusual case, since it happens, for example, if a user

5 In [11] the authors say that they are not aware of any application where this is needed. In fact,
it may the first application when this feature is used.
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mistypes his password. Another useful feature of the UC PAK is that it provides the
forward-security, in other words, guessing the password after the session was completed
does not give the adversary any additional information.

The first UC PAK was constructed in [11], and proven secure in the common refer-
ence string model under the standard number-theoretic assumptions. In [1] the authors
prove (in the random oracle model) that one of the existing, more efficient protocols [8]
is also UC-secure.

4 The Construction

4.1 Modeling Captchas

It is non-trivial to model Captcha in a proper way. We define a captcha scheme to be a
pair (G, H), where G is a randomized algorithm called a captcha generator that takes as
input a string x ∈ {0, 1}∗ and outputs a captcha G(x), and H is a solution function such
that we always have H(G(x)) = x. We say that (G, H) is secure if for every poly-time
adversary A and for x chosen uniformly at random from {0, 1}m we have that

|P (A(G(x)) = x)| is negligible in m. (2)

Our model is inspired by [12], the main difference being that we explicitly assume that
for any solution x one can efficiently generate the Captcha puzzles that have x as their
solution (by calculating y := G(x)). This makes the description of our protocol a bit
simpler, and it also excludes the Captchas where the creator of the puzzle does not know
the entire solution to it (an example of such a system is the reCaptcha scheme described
in Sect. 1.1). In fact, our protocol works only with the Captchas where the complete
solution is known to its creator. Observe that we do not assume anything about the
non-malleability of the Captcha puzzles, i.e. it may be possible for the adversary that
knows some puzzle z = G(x) to produce (without decoding x) a puzzle that z′ such
that H(z′) is in some way related to x. This corresponds to the real-life situation, where
the Captcha puzzles are indeed malleable (for example, removing the first letter from
a graphical representation of a text may be easy, even if the whole text is unreadable.
Observe also, that the only thing that we require in (2) is that the whole solution x is
hard to compute, and a Captcha scheme may satisfy our definition even if some part of
x is not hidden from the adversary.

To make our model more realistic, we could relax this definition a little bit and re-
quire that the probability in (2) is smaller than some p(m) (where p is a function that
would be a parameter in the definition, and could be non-negligible). We do not do it
since it would complicate our exposition.

A subtle point is how to model the human adversary. As explained in Sect. 2 the
adversary can always break the security of some sessions if he uses a human to solve
the Captchas, and an important property of our scheme is that only those sessions get
broken. Therefore, we need somehow to capture the fact that an adversary “used a
human” in some session. To do it, we introduce a captcha oracle ΩG,H , which is a
machine that accepts requests
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– captcha(x) – in this case the oracle replies with G(x),
– solve(y) — in this case the oracle replies with H(y).

In this way we will be able to attach a formal meaning to the expression: “the adversary
broke a Captcha of a user Pi”: we will say it if the user sent a solve(y) request to the or-
acle, where y was an output of G(x) and x was captcha(x) was sent to the oracle by Pi.
Since we did not assume that Captchas are non-malleable, the adversary could of course
“cheat” and send a solve request with a slightly modified y, to circumvent this defini-
tion. In order to prevent it, we require that the adversary is only allowed to send solve(y)
queries for those y’s that in the past were produced as output by the oracle in a response
to a captcha(x) query. This restriction may look quite arbitrary, but it is hard to think
about any alternative. Observe that, since the Captchas are malleable, in principle there
can exist a way to combine several Captchas y1 = captcha(x1), . . . , yt = captcha(xt)
into one “super-Captcha” whose solution would solve all y1, . . . , yt. Therefore to rea-
son formally about it, we would somehow need to be able to measure the “amount of
human work” that the adversary invested into breaking the protocol. Since the goal of
this paper is to present the protocol, not to introduce a new formal model, we do not
investigate it further.

4.2 An Informal Description of the Human Key Agreement Protocol

The high-level description of the model was already presented in Sect. 2. Before defin-
ing it formally we give an informal description of the protocol. Recall that the key point
of the protocol is the Simultaneous Turing Test, which is a procedure that allows two
parties to test if they are both human, in such a way that if one of them is not human he
will not learn whether the other is human or not. Before defining the model formally,
we provide an informal description of the protocol. Consider two players, Alice and
Bob, holding inputs humanAlice and humanBob, resp., where for P ∈ {Alice, Bob}
we have humanP = 1 if and only if the player P wants to use the secure mode (and
hence is willing to solve Captchas).

At the beginning Alice and Bob select randomly two strings xAlice and xBob, resp.
Then each of them creates a Captcha whose solution is the string that he has chosen, i.e.
Alice calculates yAlice := captcha(xAlice) and Bob calculates yBob := captcha(xBob).
Afterwards, they send to each other, over an insecure link, the values yAlice and yBob, to-
gether with their identities (Alice and Bob), and a bit indicating their roles in the proto-
col (Alice sends 0 and Bob sends 1). Now, Alice does the following: if humanAlice = 1
then she solves the Captcha yBob, and sets x′

Bob := solve(yBob), and otherwise she sets
x′
Bob to be equal to some default value ((0, . . . , 0), say). Bob does a symmetric thing,

i.e. he solves yAlice if and only if humanBob := 1, setting x′
Alice := solve(yB) and

setting x′
Alice := (0, . . . , 0). Denote πAlice = (xAlice, x

′
Bob) and πBob = (x′

Alice, xBob).
Now, observe that if the adversary did not disturb the communication then we have

that πAlice = πBob if and only if humanAlice = humanBob = 1. If this is the case then
we will denote the value of humanAlice(= humanBob) with πAlice,Bob. If the adversary
did disturb the communication then he can always cause (xAlice, x

′
Bob) �= (x′

Alice, xBob),
just by modifying one of the Captchas that were sent over the insecure network, but as
long as he is not a human it is infeasible for him to cause (xAlice, x

′
Bob) = (x′

Alice, xBob),
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if humanAlice �= 1, or humanBob �= 1, since to do this he would need to solve a
Captcha himself.

Observe also that a machine-adversary has negligible chances of deciphering xAlice

and xBob, and hence, if humanAlice = humanBob = 1 then the value of πAlice,Bob is
hidden from him. Moreover, observe that until this point the players did not send to
each other the Captcha solutions, and hence the values of humanP remain secret.

In the second phase, the players execute a UC PAK with Alice setting her password
to (Alice, Bob, πAlice), and Bob setting his password to (Alice, Bob, πBob). From the
properties of UC PAK if πAlice = πBob and the execution of the protocol was not
disturbed actively by the adversary, then the parties will agree on a common key sk .
If πAlice �= πBob then the parties will receive two independent and uniformly-chosen
keys sk and sk ′. The adversary can cause the same effect by actively disturbing the
communication during the execution of PAK. The important thing is, however, that he
does not get any information about the inputs πAlice and πBob, which in turn implies
that, no matter what his actions are, he does not know the inputs humanAlice and
humanBob. Hence, after the second phase the players either share the same key sk , or
have to independent keys skAlice and skBob, resp. Now:

– If skAlice �= skBob (which happened either because humanAlice ∧ humanBob = 0,
or because the adversary disturbed the communication), then the users will generate
a new fresh key for communication. Of course this key will be secure only against
a passive adversary (since the users do not share any secret)

– If the users share the same key (i.e. skAlice = skBob) then they can use this key to
establish a common session key, using an authenticated key agreement.

Of course, the adversary should not be able to distinguish which was the case (since it
would give him information about humanAlice ∧ humanBob). Here we use the Covert-
AKA (see Sect. 3.3), that is constructed exactly for this purpose: it allows Alice and
Bob, that have keys keys skA and skB , resp. to establish a common key. If skA = skB

then it is a normal AKA, if skA and skB are independent, then it is a passively secure
key agreement. The users are notified which was the case, while the adversary does not
know it. The Human Key Agreement protocol is depicted on Fig. 2.

4.3 A Formal Model

In this section we present a formal definition of our model. An important point is that
we have to take into account that several players may execute the protocol concurrently.
Since in our model the adversary fully controls the network, we cannot prevent him
from hijacking a message that some player Pi to sent to Pj , and forwarding it to some
other Pk. Therefore, the players, during the execution of the protocol have to exchange
their identities. Of course, if Pk is malicious then he can falsely claim to be Pi (we
cannot prevent it). So, from the point of view of Pi the security guarantee is as follows:
he knows that either he is talking to Pj , or he is talking to some malicious human
(since an honest Pk would reveal to him that his identity is Pk, not Pj). Hence, in our
model there is no difference between a malicious participant, and a human-adversary.
Therefore, for simplicity, we assume that all the players are honest.
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Alice Bob

Phase 1 selects a random xAlice selects a random xAlice

computes yAlice := captcha(xAlice) computes yBob := captcha(xBob)
(Alice,yAlice,0)−−−−−−−−−→
(Bob,yBob,1)←−−−−−−−

if humanAlice = 1 then
set x′

Bob := solve(yBob)
otherwise

set x′
Bob := (0, . . . , 0).

if humanBob = 1 then
set x′

Alice := solve(yAlice)
otherwise

set x′
Alice := (0, . . . , 0).

set πAlice := (Alice, Bob, xAlice, x
′
Bob) set πBob := (Alice, Bob, x′

Alice, xBob)

Phase 2 πAlice−−−−→ πBob←−−−
UC PAK

skAlice←−−−− skBob−−−→

Phase 3 skAlice−−−−→ skBob←−−−
Covert
AKA

outAlice←−−−−− outBob−−−−→

Output (Bob, 0, outAlice) Output (Alice, 1, outBob)

Fig. 2. The Human Key Agreement Protocol. Each outP is equal to (secure, K), (normal, K)
or error . The reason why Alice outputs (Bob, 0, outAlice) instead of just outputting outAlice is
required by the formal model (that we define in Sect. 4.3) to make sure that the parties have a
consistent view on who started the protocol, and what is the identity of the other party.

Other simplifying assumption that we make is that we will consider only two variants
of the adversary: passive or active — in principle the adversary could passively attack
some pairs of users, and actively attack the others, but modeling if formally would just
complicate the presentation.

We also assume that the each user Pi decides at the beginning of the protocol if he
wants to connect securely to all the other users (by setting his flag humani := 1). We
in fact assume that humani = 1 with probability 1/2. This choice is made just not to
make the mode too complicated. In fact, our protocol is secure also secure if the users
can decide adaptively during the execution of the protocol that to which users they want
to connect securely, and to which not.

The adversary in our model is very powerful: he fully controls the network, and
he can initiate the sessions between the players by sending request start(Pi, Pj , role)
(where role is a bit indicating which party initiates the protocol). For simplicity, we
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assume that each pair of users generates the key at most one with the same roles (hence,
at most twice in total).

Formally, a Human Key Agreement protocol is a set of players P = {P1, . . . , Pn}
represented as interactive randomized machines. An adversary is a randomized poly-
time interactive machine. The adversary may be passive or active. Let 1m be a security
parameter that all the players and the adversary take as input. At the beginning each
player Pi selects a random bit humani ∈ {0, 1}. Each player Pi is allowed to send to
the oracle ΩG,H the captcha queries. If humani = 1 then Pi is also allowed to send
to the oracle the solve queries. The adversary can send to the oracle captcha and solve
queries, with the restriction that he can only send a query solve(y), if some player Pi

received y as a response to his captcha query. In this case we say that the adversary
solved a captcha of Pi.

The players start executing the protocol. The execution is divided into rounds. At the
beginning of the execution the players are idle. During the execution the players just
wait for the requests from the adversary. The adversary can wake up each Pi by sending
to it a requests start(Pi, Pj , role), where Pj ∈ P and role ∈ {0, 1}. We assume that
A never sends twice the same message start(Pi, Pj , role). If the adversary is passive
then whenever he sends a request start(Pi, Pj , 0) to some Pi in the same round he
also sends start(Pj , Pi, 1) to some Pj . After Pi receives a start(Pi, Pj , role) request
it wakes up and starts interacting with Pj (we say that Pi starts a session with Pj), for
a number of rounds. At the beginning of each round Pi can issue a pair (Pj , m) and
m ∈ {0, 1}∗. These values are passed to the adversary. If the adversary is passive then
he has to deliver m to Pj , i.e. he has to send a pair (m, Pi) to Pj . If the adversary is
active he can also prevent m from reaching Pj , modify it, send it to someone else, or
fabricate new messages. At the end of the interaction Pi outputs one of the following
values (suppose Pi was woken up by a start(Pi, Pj , role) message):

– (Pj , role, (secure, Ki,j)), where key Ki,j ∈ {0, 1}m,
– (Pj , role, (normal, Ki,j)), where key Ki,j ∈ {0, 1}m,
– a message (Pj , role, error ).

After producing the output Pi enters again the idle mode (we say that Pi ended the
session), and waits for the next start message from the adversary. At some point the
adversary sends to every player Pi a message end which causes the players to terminate,
and a post-execution game starts. During this game the adversary can start interacting
with an oracle ΩG,H . In particular, he can issue solve requests to the oracle. For every
Pi the adversary outputs humanA

i . We say that the protocol human-hiding if for every
Pi such that the adversary did not solve Pi’s captcha before the protocol terminated, the
probability that humanA

i = humani is at most 1/2 + ε(m), where m is negligible.
For each Ki,j that was output by some of the players during the execution of the

protocol a random bit b ∈ {0, 1} is selected, and the following is calculated and sent to
the adversary:

K ′ =
{

Ki,j if b = 0
uniformly random K ∈ {0, 1}m otherwise.

The adversary outputs bA ∈ {0, 1}. We say that he distinguished Ki,j from random
if b = bA. We say that the Ki,j-session key is secret if the probability (taken over the



How to Pair with a Human 215

randomness of the adversary and the players) that the adversary distinguishes the Ki,j

from random is at most 1/2 + ε(m), where ε is negligible. We say that (π, ΩG,H) is
secure if both following conditions holds

– if the adversary is passive then at the end of a session between Pi and Pj player
Pi outputs (Pj , 0, (secure, Ki,j)), and player Pj outputs (Pi, 1, (secure, Ki,j)).
Moreover, the key Ki,j is secret.

– if the adversary is active then whenever some Pi outputs (Pj , role,
(secure, Ki,j)), and the adversary did not solve Pi’s captcha during the session
that led to producing this output, then:
• with overwhelming probability in the same round Pj outputs (Pi, role,

(secure, Ki,j)), or (Pi, role, error), and
• the key Ki,j is secret.

Moreover, the protocol has to be human-hiding.

4.4 The Implementation

The implementation was already discussed informally in Sect. 4.2, and depicted on
Fig. 2). We now present our protocol in the framework from Sect. 4.3. To make our
description consistent with the description in Sect. 4.2 we call the two parties Alice and
Bob, instead of Pj and Pj .

The Human Key Agreement protocol

1. Alice receives start(Alice, Bob, 0) message, and Bob receives start(Bob, Alice,
1) message,

2. Alice generates a random xAlice ∈ {0, 1}m and asks the oracle to compute yAlice =
captcha(xAlice). She sends (Alice, yAlice, 0) to Bob.

3. Bob generates a random xBob ∈ {0, 1}m and asks the oracle to compute yBob =
captcha(xBob). He sends (Bob, yBob, 1) to Alice.

4. If humanAlice = 1 then after receiving this message Alice asks the oracle to
compute x′

Bob = solve(xBob) (in this case x′
Bob = xBob)). Otherwise Alice sets

x′
Bob := 0m.

She sets πAlice = (Alice, Bob, xAlice, x
′
Bob).

5. If humanBob = 1 then after receiving this message Bob asks the oracle to com-
pute x′

Alice = solve(xAlice) (in this case x′
Alice = xAlice)). Otherwise Bob sets

x′
Alice := 0m.

He sets πBob = (Alice, Bob, x′
Alice, xBob).

6. Alice and Bob execute the UC PAK protocol setting their passwords to πAlice and
πBob, resp.

7. Alice and Bob execute the Covert-AKA protocol, let outAlice and outBob be their
respective outputs. Then, Alice outputs (Bob, 0, outAlice) and Bob outputs (Alice,
1, outBob).

The following lemma will be proven in the full version of this paper.

Lemma 1. The Human Key Agreement protocol constructed above is secure.
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4.5 Extensions

One of the common problems with Captcha is that even the human users often fail to
solve them correctly. In the protocol presented above, unfortunately, the user cannot
distinguish between the case when the other user made a mistake solving Captcha, or
the case when he is talking to a malicious machine. In the extended version of this
paper [16] we show how to extend our protocol in such a way that it permits the user to
attempt to solve the Captchas t times.

References

1. Abdalla, M., Catalano, D., Chevalier, C., Pointcheval, D.: Efficient two-party password-based
key exchange protocols in the uc framework. In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS,
vol. 4964, pp. 335–351. Springer, Heidelberg (2008)

2. Anderson, R.: Two remarks on public key cryptology. Technical report, University of Cam-
bridge, Computer Laboratory, Technical report (2002)

3. Balfanz, D., Smetters, D.K., Stewart, P., Chi Wong, H.: Talking to strangers: Authentication
in ad-hoc wireless networks. In: NDSS. The Internet Society (2002)

4. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure against dic-
tionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 139–155.
Springer, Heidelberg (2000)

5. Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocols secure
against dictionary attacks. In: IEEE Security and Privacy, pp. 72–84 (May 1992)

6. Boyd, C.A., Mathuria, A.: Protocols for Key Establishment and Authentication. Springer,
New York (2003)

7. Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated key exchange
using diffie-hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 156–
171. Springer, Heidelberg (2000)

8. Bresson, E., Chevassut, O., Pointcheval, D.: Security proofs for an efficient password-based
key exchange. In: ACM Conference on Computer and Communications Security, pp. 241–
250 (2003)

9. Cagalj, M., Capkun, S., Hubaux, J.P.: Key agreement in peer-to-peer wireless networks. Pro-
ceedings of the IEEE 94(2), 467–478 (2006)

10. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols.
In: FOCS, pp. 136–145 (2001), Extended version avaialble at
http://eprint.iacr.org/2000/067

11. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.D.: Universally composable
password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 404–421. Springer, Heidelberg (2005)

12. Canetti, R., Halevi, S., Steiner, M.: Mitigating dictionary attacks on password-protected lo-
cal storage. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 160–179. Springer,
Heidelberg (2006)

13. Cramer, R.: Introduction to secure computation. In: Damgård, I.B. (ed.) EEF School 1998.
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Abstract. The Canetti–Krawczyk (CK) and extended
Canetti–Krawczyk (eCK) security models, are widely used to pro-
vide security arguments for key agreement protocols. We discuss
security shades in the (e)CK models, and some practical attacks
unconsidered in (e)CK–security arguments. We propose a strong
security model which encompasses the eCK one. We also propose a
new protocol, called Strengthened MQV (SMQV), which in addition to
provide the same efficiency as the (H)MQV protocols, is particularly
suited for distributed implementations wherein a tamper–proof device is
used to store long–lived keys, while session keys are used on an untrusted
host machine. The SMQV protocol meets our security definition under
the Gap Diffie–Hellman assumption and the Random Oracle model.

Keywords: authenticated key agreement, practical vulnerability,
strengthened eCK model, SMQV.

1 Introduction

Much of recent research on key agreement deals with provably secure key ex-
change. Since this approach was pioneered by Bellare and Rogaway [1], differ-
ent models were proposed [3,5,30,7,13,16]. Among these models, the Canetti–
Krawczyk (CK) [7] and extended Canetti–Krawczyk (eCK) [16] models (which
are incomparable [10,33]) are considered as “advanced” approaches to capture se-
curity of key agreement protocols; and security arguments for recent protocols are
usually provided in the (e)CK models.

Broadly, a security model specifies, among other things, what constitutes a se-
curity failure, and what adversarial behaviors are being protected against. The
aim is that a protocol shown secure, in the model, confines to the minimum the
effects of the considered adversarial behaviors. In the CK and eCK models, ses-
sion specific information leakages are respectively captured using reveal queries on
session states and ephemeral keys, which stores session specific information; the
adversary is supposed to interact with parties, and to try to distinguish a session
key from a randomly chosen value. A protocol is secure if an adversary controlling
communications between parties, cannot distinguish a session key from a random
value, unless it makes queries which overtly reveal the session key.
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Unfortunately, adversaries do not always behave as expected. When leakages
on intermediate results in computing session keys are considered, (e)CK–secure
protocols often fail in authentication; and the widely accepted principle that an
attacker should not be able to impersonate a party, unless it knows the party’s
static key is not achieved. This makes clearly desirable a security model, which
captures intermediate results leakages resilience, in addition to the security at-
tributes considered in the (e)CK models.

From [29], we have a hybrid security definition, which considers leakages on in-
termediate results; however the model cannot be shown to encompass the CK or
eCK models. In addition, the security definition from [29] considers intermediate
results and ephemeral key leakages in separate settings. In this paper, we pro-
pose a strong security definition, the strengthened eCK (seCK) model, which
encompasses the eCK model, and considers leakages on intermediate results
in computing session keys. We also propose a new protocol called Strengthe-
ned MQV (SMQV). The SMQV protocol provides the same efficiency as the
(H)MQV protocols [17,13]. In addition, because of its resilience to intermedi-
ate results leakages, SMQV is particularly suited for implementations using a
tamper–resistant device, to store the static keys, together with a host machine
on which sessions keys are used. In such SMQV implementations, the non–idle
time computational effort of the device can be securely reduced to few non–costly
operations.

This paper is organized as follows. In section 2 we discuss security shades in
the (e)CK models. The protocol P [23] is described as an example of protocol
that is formally CK–secure, but practically insecure, unless session identifiers
are added with further restrictions. We also discuss the vulnerability of the
NAXOS type protocols to ephemeral Diffie–Hellman (DH) exponent leakages.
In section 3 we present the strengthened eCK (seCK) model. In section 4, we
describe the SMQV protocol, which meets the seCK security definition, and its
building blocks. We conclude in section 5.

The following notations are used in this paper: G denotes a multiplicatively
written cyclic group of prime order q generated by G, |q| is the bit length of q;
G∗ is the set of non–identity elements in G. For X ∈ G, the lowercase x denotes
the discrete logarithm ofX in baseG. The identity of a party with public keyA is
denoted Â (Â is supposed to contain A). If Â �= B̂, we suppose that no substring
of Â equals B̂. H is a λ–bit hash function, where λ is the length of session keys,
and H̄ is a l–bit hash function, where l = (�log2 q�+1)/2. The symbol ∈R stands
for “chosen uniformly at random in.” The Computational Diffie–Hellman (CDH)
assumption is supposed to hold in G; namely, given U = Gu and V = Gv with
U, V ∈R G∗, computing CDH(U, V ) = Guv is infeasible.

2 Practical Limitations in the (e)CK Models

In this section, we discuss security shades in the (e)CK models, and the related
unconsidered attacks. (Please, refer to [10,33] for outlines and comparisons of
the CK and eCK models, or [7,16] for details.)
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Practical Inadequacy of the CK Matching Sessions Definition. In the CK model,
two sessions with activation parameters (P̂i, P̂j , s, role) and (P̂j , P̂s, s′, role′) are
said to be matching if they have the same identifiers (s = s′). The requirement
about the identifiers (id) used at a party is that “the session id’s of no two KE
sessions in which the party participates are identical” [7]. Session identifiers may,
for instance, be nonces generated by session initiators and provided to the peers
through the first message in the protocol. In this case, when each party stores
the previously used identifiers and verifies at session activation that the session
identifier was not used before, the requirement that a party never uses the same
identifier twice is achieved.

Protocol 1. The protocol P
I) At session activation with parameters (Â, B̂, s), Â does the following:

(a) Create a session with identifier (Â, B̂, s, I).
(b) Choose x ∈R [1, q − 1].
(c) Compute X = Gx and tA = H2(Ba, I, s, Â, B̂,X).
(d) Send (B̂, Â, s,X, tA) to B̂.

II) At receipt of (B̂, Â, s,X, tA), B̂ does the following:
(a) Verify that X ∈ G∗.
(b) Create a session with identifier (B̂, Â, s,R).
(c) Compute σ = Ab and verify that tA = H2(σ, I, s, Â, B̂,X).
(d) Choose y ∈R [1, q − 1].
(e) Compute Y = Gy, tB = H2(σ,R, s, B̂, Â, Y ), and K = H(Xy, X, Y ).
(f) Destroy y and σ, and send (Â, B̂, s, I, Y, tB) to Â.
(g) Complete (B̂, Â, s,R) by accepting K as the session key.

III) At receipt of (Â, B̂, s, I, Y, tB), Â does the following:
(a) Verify the existence of an active session with identifier (Â, B̂, s, I).
(b) Verify that Y ∈ G∗.
(c) Verify that tB = H2(Ba,R, s, B̂, Â, Y ).
(d) Compute K = H(Y x, X, Y ).
(e) Destroy x, and complete (Â, B̂, s, I), by accepting K as the session key.

Unfortunately, when a party, say B̂, has no mean to be aware of the sessions
initiated at the other parties, and intended to it, apart from receiving the ini-
tiator’s message, the CK model insufficiently captures impersonations attacks.
Consider, for instance, Protocol 1 (wherein H and H2 are digest functions); it
is from [23], and is CK–secure under the Gap Diffie–Hellman assumption [20]
and the Random Oracle (RO) model [2]. As the session state is defined to be the
ephemeral DH exponent1, while the protocol P is (formally) CK–secure, its prac-
tical security is unsatisfactory, unless session identifiers are added with further
1 [23] does not specify the information contained in a session state. But, since the

adversary controls communications between parties, we do not see another non–
superfluous definition of a session state, with which Protocol P can be shown CK–
secure; as the protocol is insecure if the session state is defined to be σ = Ab.
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restrictions. If session identifiers are nonces generated by initiators, the proto-
col P practically fails in authentication. As an illustration, consider Attack 1,
wherein the attacker impersonates Â, exploiting a knowledge of an ephemeral
DH exponent used at Â.

Attack 1. Impersonation Attack against P using ephemeral DH exponent leakage

I) At the activation of a session (Â, B̂, s, I), the attacker A does the following:
(a) Intercept Â’s message to B̂ (B̂, Â, s,X, tA).
(b) Perform a session SesssionStateReveal query on (Â, B̂, s, I) (to obtain x).
(c) Send (Â, B̂, s, I, 1̄, 0|q|) to Â, where 1̄ is the identity element in G and 0|q| is the

string consisting of |q| zero bits (as 1̄ �∈ G∗, Â aborts the session (Â, B̂, s, I)).
II) When A decides later to impersonate Â to B̂, it does the following:

(a) Send (B̂, Â, s,X, tA) to B̂.
(b) Intercept B̂’s message to Â (Â, B̂, s,I, Y, tB).
(c) Compute K = H(Y x,X, Y ).
(d) Use K to communicate with B̂ on behalf of Â.

The attacker makes B̂ run a session and derive a key with the belief that its peer
is Â; in addition, the attacker is able to compute the session key that B̂ derives;
in practice, this makes the protocol fail in authentication.

The capture of impersonation attacks based on ephemeral DH leakages is in-
sufficient in the CK–model, unless the matching sessions definition is added with
further restrictions. The reason is that (in a formal analysis) an attackerA can-
not use the session at B̂ (in which it impersonates Â) as a test session, since
the matching session is exposed, while there is no guarantee that (in practice)
B̂ would not run and complete such a session. If matching sessions are defined
using matching conversations, it becomes clear that Protocol P is formally and
practically insecure. Indeed, in this case, a leakage of an ephemeral DH exponent
in a session allows an attacker to impersonate indefinitely the session owner to
its peer in the exposed session.

On the NAXOS Transformation. In the eCK model [16], the ephemeral key of a
session is required to contain all session specific information; and all computa-
tions performed to derive a session key have to deterministically depend on the
ephemeral key, static key, and communication received from the peer.

The design and security arguments of many eCK secure protocols, among
which CMQV [32], NAXOS(+, –C) [16,19,23], and NETS [18], use the NAXOS
transformation [16], which consists in defining the ephemeral DH exponent as
the digest of a randomly chosen value and the static private key (of the session
owner), and (unnaturally) destroying it after each use. The ephemeral key is
then defined to be the random value. However, from a practical perspective, it
seems difficult to see how the NAXOS transformation prevents leakages on the
ephemeral DH exponents. And, in any environment, which does not guarantee
that leakages on DH exponents cannot occur, the NAXOS type protocols security
is at best unspecified.
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Consider, for instance, Protocol 2, it is from an earlier version2 of [10]. If the
ephemeral keys are defined to be rA and rB (as in the NAXOS security argu-
ments [16]) and the signature scheme is secure against chosen message attacks,
Protocol 2 can be shown eCK–secure.

Protocol 2. Signed Diffie–Hellman using NAXOS transformation

I) The initiator Â does the following:
(a) Choose rA ∈R [1, q− 1], compute X = GH1(rA,a), and destroy H1(rA, a).
(b) Compute σA = SigÂ(B̂,X).
(c) Send (B̂,X, σA) to B̂.

II) B̂ does the following:
(a) Verify that X ∈ G∗.
(b) Verify that σA is valid with respect to Â’s public key and the message

(B̂,X).
(c) Choose rB ∈R [1, q − 1], compute Y = GH1(rB ,b), and destroy H1(rB , b).
(d) Compute σB = SigB̂(Y, Â,X).
(e) Send (Y, Â,X, σB) to Â.
(f) Compute K = H2(XH1(rB ,b)).

III) Â does the following:
(a) Verify that Y ∈ G∗.
(b) Verify that σB is valid with respect to B̂’s public key and the message

(Y, Â,X).
(c) Compute K = H2(Y H1(rA,a)).

IV) The shared session key is K.

The protocol is however insecure if the ephemeral keys are defined to con-
tain the ephemeral DH exponents. As an adversary which (partially3) learns
H1(rA, a) in a session initiated at Â with peer B̂, can indefinitely impersonate
Â to B̂. For this purpose, the attacker replays to B̂ Â’s message in the session
in which H1(rA, a) leakage happened (namely (B̂,X, σA)), and computes the
session key that B̂ derives, using H1(rA, a) and the ephemeral public key Y
from B̂.

3 Stronger Security

In this section, we describe the strengthened eCK model, which considers leak-
ages on intermediate results (the values a party may need to compute between
2 http://eprint.iacr.org/cgi-bin/versions.pl?entry=2009/253,

version 20090625.
3 If an adversary partially learns H1(rA, a), it recovers the remaining part, using

Shanks’ baby step giant step algorithm [31] or Pollard’s rho algorithm [31], if the
bits it learns are the most significant ones, or tools from [11] if the leakage is on
middle–part bits; recovering H1(rA, a) from partial leakage requires some extra com-
putational effort.
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messages or before a session key), encompasses the eCK model [16], and provides
stronger reveal queries to the attacker.

A common setting wherein key agreement protocols are often implemented is
that of a server used together with a (computationally limited) tamper–resistant
device, which stores the long–lived secrets. In such a setting, safely reducing the
non–idle time computational effort of the device, is usually crucial for imple-
mentation efficiency. To reduce the device’s non–idle time computational effort,
ephemeral keys can be computed on the device in idle–time, or on the host
machine when the implemented protocol is ephemeral DH exponent leakage re-
silient.

In many DH protocols, (C, FH, H)MQV–C [17,32,28,13,14] and NAXOS(+,
–C) [19,23,16], for instance, the computation of the intermediate results is more
costly than that of the ephemeral public key. For these protocols, implementa-
tions efficiency is significantly enhanced when the ephemeral keys are computed
on the device, while the intermediate results, which require expensive on–line
computations and session keys are computed on the host machine. Unfortunately
the security of the (e)CK–secure protocols, when leakages on the intermediate
results are considered is at best unspecified. A security definition which captures
attacks based on intermediate result leakages is clearly desirable. The model we
propose captures such attacks, together with the attacks captured in the (e)CK
models.

Session. We suppose n � L(|q|) (for some polynomial L) parties P̂i=1,··· ,n sup-
posed to be probabilistic polynomial time machines and a certification authority
(CA) trusted by all parties. The CA is only required to verify that public keys
are valid ones (i.e., public keys are only tested for membership in G∗; no proof of
possession of corresponding private keys is required). Each party has a certificate
binding its identity to its public key. A session is an instance of the considered
protocol, run at a party. A session at Â (with peer B̂) can be created with pa-
rameter (Â, B̂) or (B̂, Â,m), where m is an incoming message, supposed from B̂;
Â is the initiator if the creation parameter is (Â, B̂), otherwise a responder. At
session activation, a session state is created to contain the information specific
to the session. Each session is identified with a tuple (P̂i, P̂j , out, in, ς), wherein
P̂i is the session holder, P̂j is the intended peer, out and in are respectively the
concatenation of the messages P̂i sends to P̂j , or believes to be from P̂j , and
ς is P̂i’s role in the session (initiator or responder). Two sessions with identi-
fiers (P̂i, P̂j , out, in, ς) and (P̂ ′j , P̂ ′i , out′, in′ς ′) are said to be matching if P̂i = P̂ ′i ,
P̂ ′j = P̂ ′j , ς �= ς ′, and at completion in = out′ and out = in′.

For the two–pass DH protocols, each session is denoted with an identifier
(Â, B̂,X, �, ς), where Â is the session holder, B̂ is the peer, X is the outgoing
message, ς indicates the role of Â in the session (initiator (I) or responder (R)),
and � is the incoming message Y if it exists, otherwise a special symbol meaning
that an incoming message is not received yet; in that case, when Â receives the
public key Y, the session identifier is updated to (Â, B̂,X, Y, ς). Two sessions with
identifiers (Â, B̂,X, Y, I) and (B̂, Â, Y,X,R) are said to be matching. Notice
that the session matching (B̂, Â, Y,X,R) can be any session (Â, B̂,X, �, I); as
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X,Y ∈R G∗, a session cannot have (except with negligible probability) more
than one matching session.

Adversary and Security. The adversary A, is a probabilistic polynomial time
machine; outgoing messages are submitted to A for delivery (A decides about
messages delivery). A is also supposed to control session activations at each
party via the Send(P̂i, P̂j) and Send(P̂j , P̂i, Y ) queries, which make P̂i initiate
a session with peer P̂j , or respond to the (supposed) session (P̂j , P̂i, Y, �, I). We
suppose that the considered protocol is implemented at a party following one of
the approaches hereunder. We suppose also that at each party an untrusted host
machine is used together with a tamper–resistant device. Basing our model on
these implementation approaches does not make it specific; rather, this reduces
the gap that often exists between formal models and practical security. Such
modeling techniques, which take into account hardware devices and communi-
cation flows between components, were previously used in [6].

Approach 1. In this approach, the static keys are stored on the device (a
smart–card, for instance) the ephemeral keys are computed on the host
machine, passed to the smart–card together with the incoming public keys;
the device computes the session key, and provides it to the host machine
(application) for use. The information flow between the device and the
host machine is depicted in Figure (1a). This implementation approach
is safe for eCK–secure protocols when ephemeral keys are defined to be
ephemeral DH exponents, as a leakage on an ephemeral DH exponent does
not compromise the session in which it is used. In addition, when an attacker
learns a session key, it gains no useful information about the other session keys.

Approach 2. Another approach, which has received less attention in the formal
treatment of DH protocols, is when the ephemeral keys, and top level inter-
mediate results are computed on the device, and the host machine is provided
with some intermediate results IR with which it computes the session key. As
the computation of the intermediate results is often more costly than that of
the ephemeral public keys, implementation efficiency is often significantly en-
hanced using this approach. Naturally, this comes with the requirement that
leakages on the intermediate results should not compromise any unexposed
session. Namely, an adversary may have a malware running on the host ma-
chine at a party, and learn all values computed or used at the party, except
those stored in the party’s tamper–proof device; this should not compromise
any unexposed session.

We define two sets of queries, modeling leakages that may occur on either im-
plementation approaches. We consider leakages on ephemeral and static private
keys, and also on any intermediate (secret) value which evaluation requires a se-
cret information. As the adversary can compute any information which evaluation
requires only public information, considering leakages on such data is superfluous.
In Set 1, which models leakages in the first implementation approach, the fol-
lowing queries are allowed.
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Host Machine

Card Reader Smart–Card

x, X, Y, B̂

x, X, Y, B̂ a, Â

· · ·
K

K

Host Machine

Card Reader Smart–Card

Y, B̂

Y, B̂ x, X, a, Â

· · ·
IR

IR

Fig. 1. Implementation Approaches

– EphemeralKeyReveal(session): this query models leakages on ephemeral DH
exponents.

– CorruptSC(party): this query models an attacker which (bypasses the eventual
tamper protection mechanisms on the device, and) gains read access to the
device’s private memory; it provides the attacker with the device owner’s
static private key.

– SessionKeyReveal(session): when the attacker issues this query on an already
completed session, it is provided with the session key.

– EstablishParty(party): with this query, the adversary registers a static key on
behalf of a party; as the adversary controls communications, from there the
party is supposed totally controlled by A. A party against which this query
is not issued is said to be honest.

In Set 2, which models leakages on the second implementation approach, the
following queries are allowed; the definitions remain unchanged for queries be-
longing also to Set 1.
– For any node in the intermediate results, which computation requires a secret

value, a reveal query is defined to allow leakage on the information computed
in this node. These queries models leakages that may occur on intermediate
results in computing session keys.

– SessionKeyReveal(session).
– EstablishParty(party).
– CorruptSC(party).
Before defining the seCK security, we define the session freshness notion. Test
queries can only be performed on fresh sessions.

Definition 1 (Session Freshness). Let Π be a protocol, and Â and B̂ two
honest parties, sid the identifier of a completed session at Â with peer B̂, and
sid′ the matching session’s identifier. The session sid is said to be locally exposed
if one of the following holds.
– A issues a SessionKeyReveal query on sid.
– The implementation at Â follows the first approach and A issues an Ephemer-

alKeyReveal query on sid and a CorruptSC query on Â.
– The implementation at Â follows the second approach and A issues an inter-

mediate result query on sid.
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The session sid is said to be exposed if (a) it is locally exposed, or (b) its
matching session sid′ exists and is locally exposed, or (c) sid′ does not exist and
A issues a CorruptSC query on B̂. An unexposed session is said to be fresh.

Our session freshness conditions match exactly the intuition of the sessions one
may hope to protect. In particular, it lowers (more than in the eCK model) the
necessary adversary restrictions for any reasonable security definition. Notice
that only the queries corresponding to the implementation approach followed by
a party can be issued on it.

Definition 2 (Strengthened eCK Security). Let Π be a protocol, such that
if two honest parties complete matching sessions, then they both compute the
same session key. The protocol Π is said to be seCK–secure, if no polynomially
bounded adversary can distinguish a fresh session key from a random value,
chosen under the distribution of session keys, with probability significantly greater
than 1/2.

Forward Secrecy. As shown in [13], no two–pass key exchange protocol can
achieve forward secrecy4. Indeed, our security definition captures weak forward
secrecy, which (loosely speaking) is: any session established without an active
involvement of the attacker remains secure, even when the implicated parties
static keys are disclosed. The seCK security definition can be completed with
the session key expiration notion [7] to capture forward secrecy. Although the
protocol we propose can be added with a third message, and yield a protocol
which (provably) provides forward secrecy, in the continuation, we work with the
security definition without forward secrecy, and focus on two–pass DH protocols.

Relations between the seCK and eCK models. In the eCK model, an adversary
may compromise the ephemeral key, static key, or session key at a party, inde-
pendently of the way the protocol is implemented. The seCK model considers an
adversary which may (have a malware running at a party’s host machine and)
learn all information at the party, except those stored in a tamper–resistant
device. The seCK approach seems more prevalent in practice, and reduces the
gap that often exists between formal arguments and practical implementations
security.

The eCK and seCK session identifiers and matching sessions definitions are
the same. When the adversary issues the CorruptSC query at a party, it is pro-
vided with the party’s static key; the CorruptSC query is the same as the eCK
StaticKeyReveal query. For a session between two parties, say Â and B̂, following
the first implementation approach, the seCK session freshness definition reduces
to the eCK freshness. By assuming that all parties follow the first implementa-
tion approach, the seCK–security definition reduces to the eCK one; the seCK
model encompasses the eCK one.

Proposition 1. Any seCK–secure protocol is also an eCK–secure one.
4 Some authors, [13] for instance, use the term ‘perfect forward secrecy’, but we prefer

‘forward secrecy’ to avoid a confusion with (Shannon’s) ‘perfect secrecy’.
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The seCK model also separates clearly from the eCK model. The eCK model does
not consider leakages on intermediate results; and this makes many of the eCK
secure protocols insecure in the seCK model. For instance, in the CMQV protocol
(shown eCK–secure), an attacker which learns an ephemeral secret exponent in
a session, can indefinitely impersonate the session owner; the same holds for the
(H)MQV(–C) protocols [28,29]. It is not difficult to see that NAXOS cannot
meet the seCK security definition. The protocols 1 and 2 from [12, pp. 6, 12]
(shown eCK–secure) fail in authentication when leakages one the intermediate
results are considered. Indeed an attacker, which learns the ephemeral secret
exponents s1 = x+a1 and s2 = x+a2 in a session at Â (see the steps 2 and 3 of
the protocols 1 and 2 [12]), can indefinitely impersonate Â to any party. Notice
that the attacker cannot compute Â’s static key from s1 and s2, while it is not
difficult to see that leakages on s1 (or s2) and the ephemeral key, in the same
session imply Â’s static key disclosure.

The seCK model is practically stronger than the CK model [7]. Key Compro-
mise Impersonation resilience, for instance, is captured in the seCK model while
not in CK model. As shown in [9], and illustrated in section 2 with Protocol P ,
the CK model is enhanced when matching sessions are defined using match-
ing conversations. In addition, the seCK reveal query definitions go beyond the
usual CK session state definition (ephemeral DH exponents). Compared to the
CKHMQV model5 [13], the reveal query definitions are enhanced in the seCK
model to capture attacks based on intermediate result leakages. In the HMQV
security arguments [13, subsection 7.4], the session state is defined to contain
the ephemeral DH exponent6; the HMQV protocol does not meet the seCK–
security [28,29].

4 The Strengthened MQV Protocol

In this section, we present the strengthened MQV protocol, and its building
blocks, to show that the seCK security definition is useful, and not limiting; as
seCK–secure protocols can be built with usual building blocks. We start with the
following variants of the FXCR and FDCR signature schemes [28]. The security
of the FXCR–1 and FDCR–1 schemes can be shown with arguments similar to
that of the FXCR and FDCR schemes [28,29].

Definition 3 (FXCR–1 Signature). Let B̂ be a party with public key B ∈ G∗,
and Â a verifier; B̂’s signature on a message m and challenge X provided by Â
5 CKHMQV is the variant of the CK model in which the HMQV security arguments

are provided; however, it seems that the aim of [13] was not to propose a new model,
as it refers to [7] for details [13, p. 9], and considers its session identifiers and match-
ing sessions definition (which make the CK and CKHMQV models incomparable) as
consistent with the CK model [13, p. 10]. See [10] for a comparison between the
CKHMQV and (e)CK models.

6 In [13, subsection 5.1], the session state is defined to contain the ephemeral public
keys, but this definition is superfluous, as the adversary controls communications
between parties.
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(x ∈R [1, q−1] is chosen and kept secret by Â) is SigB̂(m,X) = (Y,XsB ), where
Y = Gy, y ∈R [1, q− 1] is chosen by B̂, and sB = ye+ b, where e = H̄(Y,X,m).
And, Â accepts the pair (Y, σB) as a valid signature if Y ∈ G∗ and (Y eB)x = σB.

Proposition 2 (FXCR–1 Security). Under the CDH assumption in G and
the RO model, there is no adaptive probabilistic polynomial time attacker, which
given a public key B, a challenge X0 (B,X0 ∈R G∗), together with hash-
ing and signing oracles, outputs with non–negligible success probability a triple
(m0, Y0, σ0) such that:
(1) (Y0, σ0) is a valid signature with respect to the public key B, and the

message–challenge pair (m0, X0); and
(2) (Y0, σ0) was not obtained from the signing oracle with a query on (m0, X0).

Definition 4 (FDCR–1 Scheme). Let Â and B̂ be two parties with public
keys A,B ∈ G∗, and m1,m2 two messages. The dual signature of Â and B̂ on
the messages m1,m2 is DSigÂ,B̂(m1,m2, X, Y ) = (XdA)ye+b = (Y eB)xd+a,
where X = Gx and Y = Gy are chosen respectively by Â and B̂, d = H̄(X,Y,
m1,m2), and e = H̄(Y,X,m1,m2).

Proposition 3 (FDCR–1 Security). Let A = Ga, B,X0 ∈R G∗ (A �= B).
Under the RO model, and the CDH assumption in G, given a,A,B,X0, a mes-
sage m10 , a hashing oracle, together with a signing oracle (simulating B̂’s role),
no adaptive probabilistic polynomial time attacker can output, with non–negligible
success probability a triple (m20 , Y0, σ0) such that:
(1) DSigÂ,B̂(m10 ,m20 , X0, Y0) = σ0; and
(2) (Y0, σ0) was not obtained from the signing oracle with a query on some

(m′1, X ′) such that X0 = X ′ and (m′1,m′2) = (m10 ,m20 ), where m′2 is a
message returned at signature query on (m′1, X ′); (m10 ,m20 ) denotes the
concatenation of m10 and m20 .

The strengthened MQV protocol follows from the FDCR–1 scheme; a run of
SMQV is as in Protocol 3. The execution aborts if any verification fails.

The shared secret σ is the FDCR–1 signature of Â and B̂, on challenges X,Y
and messages Â, B̂ (the representation of Â and B̂’s identities). The parties
identities and ephemeral keys are used in the final digest computation to make
the key replication resilience security attribute immediate (and also to avoid
unknown key share attacks). A run of SMQV requires 2.5 times a single expo-
nentiation (2.17 times a single exponentiation when the multiple exponentiation
technique [21, Algorithm 14.88] is used); this efficiency equals that of the remark-
able (H, FH)MQV protocols. SMQV provides all the security attributes of the
(C, H)MQV protocols, added with ephemeral secret exponent leakage resilience.

Moreover, suppose an implementation of SMQV or (C, H)MQV using an un-
trusted7 host machine together with a device; and suppose that the session
keys are used by some applications running on the host machine, and that
7 There are many reasons for not trusting the host machine: bogus or trojan software,

viruses, etc.
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Protocol 3. The Strengthened MQV Protocol

I) The initiator Â does the following:
(a) Choose x ∈R [1, q − 1] and compute X = Gx.
(b) Send (Â, B̂,X) to the peer B̂.

II) At receipt of (Â, B̂,X), B̂ does the following:
(a) Verify that X ∈ G∗.
(b) Choose y ∈R [1, q − 1] and compute Y = Gy.
(c) Send (B̂, Â, Y ) to Â.
(d) Compute d = H̄(X,Y, Â, B̂) and e = H̄(Y,X, Â, B̂).
(e) Compute sB = ye+ b mod q and σ = (XdA)sB .
(f) Compute K = H(σ, Â, B̂,X, Y ).

III) At receipt of (B̂, Â, Y ), Â does the following:
(a) Verify that Y ∈ G∗.
(b) Compute d = H̄(X,Y, Â, B̂) and e = H̄(Y,X, Â, B̂).
(c) Compute sA = xd+ a mod q, and σ = (Y eB)sA .
(d) Compute K = H(σ, Â, B̂,X, Y ).

IV) The shared session key is K.

the ephemeral keys are computed on the device in idle–time. This idle–time
pre–computation seems common in practice [27] (and possible in both the (C,
H)MQV and SMQV protocols). But, as (C, H)MQV is not ephemeral secret ex-
ponent leakage resilient [28,29], the ephemeral secret exponents (sA = x+ da or
sB = y+eb) cannot be used on the untrusted host machine. The exponentiation
σ = (Y Be)sA = (XAd)sB has to be performed on the device in non idle–time. In
contrast, for SMQV, σ = (Y eB)sA = (XdA)sB can be computed on the host ma-
chine, after the ephemeral secret exponent is computed on the device. Because
the session key is used on the host machine, and a leakage of only the ephemeral
secret exponent, in a SMQV session, does not compromise any other session;
there is no need to protect the ephemeral secret exponent more than the session
key. In SMQV, the non–idle time computational effort of the device reduces to
few non–costly operations (one integer addition, one integer multiplication, and
one digest computation), while for (C, H)MQV at least one exponentiation has
to be performed on the device in non idle–time.

Table 1 summarizes the comparisons between SMQV and some other DH proto-
cols. All the security reductions are performed using the Random Oracle model [2];
incoming ephemeral keys are validated8. KEA1 stands for “Knowledge of Expo-
nent Assumption” [4], CDH and GDH stand respectively for “Computational DH”
and “Gap DH” assumptions [25]. The ‘A’, ‘D’, ‘E’, and ‘M’ stand respectively for
integer addition, digest computation, exponentiation, and integer multiplication.
The NC column indicates the naive count efficiency (i.e., without optimizations
from [21, Algorithm 14.88] and [24]); NICE 1 and NICE 2 indicate the non–idle
8 Ephemeral key validation is voluntarily omitted in the HMQV design [13], but the

HMQV protocol is known to be insecure if ephemeral keys are not validated [22].
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Table 1. Security and Efficiency Comparison between SMQV and other DH protocols

Protocol Security Assumptions NC NICE 1 NICE 2

CMQV [32] eCK GDH 3E 1E 1E
FHMQV [29] CKFHMQV GDH 2.5E 1E 1D + 1A + 1M
HMQV [13] CKHMQV GDH, KEA1 2.5E 1E 1E
MQV [17] – – 2.5E 1E 1E
NAXOS [16] eCK GDH 4E 3E 3E
NAXOS–C [23] ceCK GDH 4E 3E 3E
SMQV seCK GDH 2.5E 1E 1D + 1A + 1M

time computational effort of the device in the two approaches (when ephemeral
keys are computed in idle–time).

The MQV protocol has no security reduction9. The FHMQV security ar-
guments are provided in a model which considers intermediate results and
ephemeral key leakages in two separate settings; the model implicitly assumes
that all parties follow the same implementation approach, and cannot be shown
to encompass the CK or eCK models. In contrast, the seCK model considers
also the security of sessions between parties following different implementation
approaches, and its matching sessions definition makes it encompass the eCK
model. The CMQV and NAXOS protocols are shown eCK–secure, they both use
the NAXOS transformation.

The NAXOS–C security arguments are provided in a variant of the eCK
model, called combined eCK model (ceCK) [23], geared to the post–specified
peer model. In the post10 model, the identity of a peer may be unknown at
session activation (it is learned during the protocol execution). It is worthwhile
to mention that, the separation between the pre and post models security is
unclear. The protocol P claimed secure in the pre model, and not executable
in the post model (unless “modified in a fundamental way”) [23, section 3.1], is
insecure in the pre model, if the considered security model is strong enough. The
HMQV protocol is executable in the post model, but claimed insecure (in the
post– model). In fact, the proposed attack [23, section 3.2] cannot be performed
in practice; not because it requires an important on–line computational effort
(260 operations, when the order of G is a 160–bit prime), but since the step (2.c) of
the attack cannot be performed without changing the M̂ found at the step (2.b).
In practice, M̂ (is a certificate, and) is defined to contain M (which is provided
to the certification authority at certificate issuance), and when M is changed,

9 We are aware of [15], which shows that (under the RO model and the CDH assump-
tion) the MQV variant wherein d and e are computed as H̄(X) and H̄(Y ), is secure
in a model of their own design. Notice that, for this variant, an attacker which finds
x0 ∈ [1, q− 1] such that H̄(Gx0) = 0, can impersonate any party to any other party.
Finding such an x0 requires O(2l) digest computations.

10 The terms ‘pre–specified peer’ and ‘post–specified peer’ are respectively shortened
to ‘pre’ and ‘post’.
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so is M̂ (notice also that changing M requires another certificate issuance); and
then, after the step (2.c) of the attack, the claimed equality between H̄(X, M̂)
and H̄(X, B̂) does not hold. For the Σ0 protocol, secure in the post model, while
insecure in the pre one [23, section 3.3], the model in which it is shown secure
in the post model [8] is not strong enough. It is not difficult to see, for instance,
that the Σ0 protocol is both eCK and ceCK insecure.

The SMQV protocol provides more security attributes than the NAXOS(+,
–C), (C, H)MVQ protocols, in addition to allow particularly efficient implemen-
tations, in environments wherein a tamper proof device is used to store private
keys.

Proposition 4. Under the GDH assumption in G and the RO model, the SMQV
protocol is seCK–secure.

The reductionist security arguments are lengthy, and hence is omitted. The full
security analysis of SMQV can however be found in the extended version of this
paper — report 2010/237 in the Cryptology ePrint Archive.

5 Concluding Remarks

We discussed security shades in the (e)CK moddels. We illustrated the limita-
tions of the CK matching sessions definition; and the insecurity of the NAXOS
type protocols when leakages on ephemeral DH exponents are considered. We
proposed a new security model, the strengthened eCK model, which encompasses
the eCK one, and practically captures the security attributes considered in the
CK model. We proposed the Strengthened MQV protocol, which in addition to
provide the same efficiency as the (H)MQV protocols, is particularly suited for
distributed implementation environments using an untrusted host machine and
a tamper–resistant device; in such an environment, the non–idle time computa-
tional effort of the device, in a SMQV implementation, reduces to few non–costly
operations.

In a forthcoming stage, we will be interested in the enhancement of exist-
ing protocols to meet the seCK security definition, and the extension of the
strengthened eCK model to consider a wider class of attacks.
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Abstract. In this work, we consider Authentication and Key Agreement
(AKA), a popular client-server Key Exchange (KE) protocol, commonly
used in wireless standards (e.g., UMTS), and widely considered for new
applications. We discuss natural potential usage scenarios for AKA, at-
tract attention to subtle vulnerabilities, propose a simple and efficient
AKA enhancement, and provide its formal proof of security.

The vulnerabilities arise due to the fact that AKA is not a secure KE
in the standard cryptographic sense, since Client C does not contribute
randomness to the session key. We argue that AKA remains secure in
current deployments where C is an entity controlled by a single tamper-
resistant User Identity Module (UIM). However, we also show that AKA
is insecure if several Client’s devices/UIMs share his identity and key.

We show practical applicability and efficiency benefits of such multi-
UIM scenarios. As our main contribution, we adapt AKA for this setting,
with only the minimal changes, while adhering to AKA design goals, and
preserving its advantages and features. Our protocol involves one extra
PRFG evaluation and no extra messages. We formally prove security
of the resulting protocol. We discuss how our security improvement al-
lows simplification of some of AKA security heuristics, which may make
our protocol more efficient and robust than AKA even for the current
deployment scenarios.

1 Introduction

This work is positioned at the intersection of engineering security and cryptog-
raphy. We present a security enhancement of an existing heavily deployed pro-
tocol (AKA – Authentication and Key Agreement), and analyze it with formal
cryptographic tools. We aim this paper for both crypto and security audiences.
Therefore, we use the existing AKA notation and some of the corresponding pre-
sentation style and, at the same time, we abstract away non-essential protocol
details and follow cryptographic formalisms. The result and discussion of the
paper is self-contained; standards documents and protocols referenced in this
work help put the paper in context for security reader, but are not required for
understanding.

� Full version of this paper appears in ePrint archive [8].

J.A. Garay and R. De Prisco (Eds.): SCN 2010, LNCS 6280, pp. 235–252, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



236 V. Kolesnikov

Establishment and maintenance of authenticated secure channels is the most
used fruit of cryptography today. In particular, wireless and cellular communi-
cations critically rely on secure (wired and wireless) channels to exercise control
over the network, access, accounting, etc.

In this work, we consider use scenarios (and their security consequences) of
one of the most popular wireless protocols – AKA. (Our entire discussion corre-
spondingly applies to AKA-derivative protocols, such as EAP-AKA [4].)

3GPP AKA [2], built as a security enhancement of GSM AKA, is a modern
efficient KE protocol, which is based on pre-shared secret key (PSK). It is widely
deployed today in GSM and other cellular networks, and is considered for a
variety of additional applications.

For logistical reasons (e.g., cellular telephone roaming), there are three players
in the protocol: the user, user’s home environment (HE), and the (visited) serving
network (SN). AKA allows SN to authenticate and exchange keys with the user,
without ever being given the user’s key. Instead, one-time authentication vectors
(AV) are issued to SN by the HE. All communication and computation in AKA is
very efficient thanks to the use of symmetric-key cryptography. However, because
of the complexities of existing SN-to-HE protocols and associated delays, the
AVs cannot be retrieved on-demand, are delivered in batches, and, in particular,
cannot depend on user-generated nonces1.

1.1 Related Work

The AKA protocol is proposed and used by the 3rd Generation Partnership
Project (3GPP) [2]. EAP-AKA [4], an IETF RFC, is a wrapper around the
AKA cryptographic core, to allow for a standard EAP interface to the AKA
protocol.

AKA has been extensively debated and scrutinized by the standards bodies,
and, less so, in academic research. 3GPP published a technical report [3] con-
taining an (enhanced) BAN-logic [5] proof of security. However, this proof does
not operate with rigorous complexity-theoretic notions, and protocol specifica-
tion contains occasional imprecise security statements, some of which we note in
this paper. We note that no serious security vulnerabilities have been discovered
in AKA.

In [13], the authors consider a simple Man-in-the-Middle attack that allows an
attacker (a “false base station” in their terminology) to redirect the traffic from a
legitimate Serving Network to a Serving Network of his choice. The attack relies
on the fact, that AV’s issued by User’s service provider do not cryptographically
bind the ID of the Serving Network to which they are issued. The solution of
[13] is to do so. We note that this security issue is different from what we are
considering in this work.

1 Observe the time it takes to switch on a mobile phone first time after landing in a new
country versus switching it on for a second time. In the first case, the authenticators
are retrieved from HE. In the second case, they are already cached at the visited SN.
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1.2 Our Contributions

In this work, we consider the AKA key exchange protocol. We present a simple
and intuitive argument of security of the cryptographic core of AKA in the case
when Client C is an entity, controlled by a single User Identity Module (UIM), a
tamper-resistant hardware token storing the key and performing KE. We identify
the logical steps that rely on the single-UIM assumption.

We then argue that in many settings it is natural, convenient and more efficient
to allow for multiple UIMs, issued to the same user, to share the secret key. We
show that AKA is insecure in the above scenario with multiple UIMs sharing
the key2.

Finally, as our main contribution, we show a simple amendment to AKA
that closes this vulnerability, and results in a secure key exchange protocol,
which we formally prove. The idea of the proposed modification is to require
the client to contribute randomness to the resulting session key. We stress that
our modification adheres to the design requirements of AKA, and preserves the
underlying data flow structure and patterns, and trust model, which is critical in
today’s deployment scenario. In particular, no extra communication with Home
Environment is required, and batching of authenticators AV is possible (actually
is simplified and improved). We discuss how this low-cost amendment (one extra
PRFG evaluation and no extra messages) adds robustness, allows new usage
scenarios, simplifies complicated AKA nonce generation heuristics, prevents UIM
cloning attacks, etc.

1.3 Outline

We start, in §2, with presenting in detail the AKA protocol, and argue its security
(in the case when each client is controlled by a corresponding single UIM).
Then, in §3, we discuss the benefits of having several UIMs contain Client C’s
identity and credentials, and show AKA vulnerability in this case. We present
our enhanced version of AKA KE protocol in §4, discuss its advantages and
sketch a proof. For the lack of space, its formal proof of security is presented in
the full version [8]. Finally, we conclude in §5.

2 The AKA Protocol

In this section we present in detail the cryptographic core of the AKA protocol.
See Fig. 1 for the players and flow, and Fig. 2 and Fig. 3 for the precise message
description.

Notation. For readability, we will introduce and use standard cryptographic KE
notation. However, our presentation is based on [2]; therefore, for the benefit of

2 This scenario is not explicitly disallowed in AKA specification, although the single-
UIM setting appears to be implicit in the standards groups. Our discussion of the
attacks thus serves to popularize this knowledge and attract attention of potential
AKA adopters.
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Table 1. Glossary of terms and abbreviations

UIM (User Identity Module) – tamper-proof token PSK (Pre-shared secret key)
AV (Authentication Vector) – auth. data given to S SN (Serving Network) – server S
HE (Home Environment) – key server KS MS (Mobile Station) – client C

Fig. 1. AKA Flow (HELLOs and other details omitted. See §2 for notation.)

the security reader, we will include its notation for the ease of cross-reference.
In particular, the diagrams are presented with notation of [2]. For reference, we
provide a glossary of terms and abbreviations we use and their correspondence.

2.1 Players, Credentials, and Communication Flow

Players. There are three participants in AKA:

1. Client C (i.e., mobile phone, called Mobile Station (MS) in [2] and Peer in
[4]) is the party initiating the exchange. In the wireless context, C is usually
a MS requesting to be authenticated and granted access to a resource. C
possesses a secret key k which is the basis for authentication.

2. Key Server (KS) (called Home Environment (HE) in [2]). This player is C’s
server (in the wireless context, it is the service provider), who had issued
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C’s key k (usually on a secure User Identity Module (UIM)), and securely
stores k. Key Server does not directly exchange keys or authenticate C, but
facilitates this process by giving one-time credentials to Server (described
next).

3. Server S(called Serving Network (SN) in [2]) is the party who directly inter-
acts with and establishes a secure channel with the Client C. In the wireless
context, S grants C access to resource (network visited while roaming). As
noted, C’s credentials (i.e. key k) is not issued by S, and are unknown to
him. Instead, S receives (possibly batched) one-time authentication vectors
AV from Key Server.

Credentials. Key exchange in AKA is based on Pre-shared Secret Key (PSK) k.
The key is issued by Key Server to client C; thus both KS and C have k. We
stress that the server S does not have access to k; instead he receives (as needed,
possibly batched) one-time authentication vectors AV from Key Server, which
allows S and C to mutually authenticate and share a session key.

Trust Relationships. Server and Key Server trust each other and are assumed to
have established a secure channel. We do not discuss how authentication vectors
are delivered to S; we assume this is done in a timely and secure manner. S and
C, on the other hand, do not a priori trust each other; it is the goal of KE to
establish a secure channel only if parties possess matching credentials.

Data Flow. Upon client’s initiation of KE, S contacts KS and obtains the au-
thentication vector AV (usually, he would have done this in advance). AV (for-
mally presented in the next section), is a vector, consisting of a challenge for
C, an expected response, auxiliary security data, and session keys to be used in
case of successful authentication. AV’s cannot be reused; to enable multiple lo-
gins, KS sends several AV’s, indexed by the sequence number. (It is critical that
S contacts KS as infrequently as possible, due to unacceptable (minutes-long)
delays in current deployments. This imposes a rigid requirement on communica-
tion patterns; in particular, Client-generated messages (e.g., nonce) cannot be
forwarded to KS.)

S then sends AV’s challenge (consisting of a random nonce RAND and its
authenticator AUTN) to C. C uses AUTN and his key k to confirm that the
challenge indeed came from KS. If so, C computes the session keys, computes
and sends back response RES, and is ready to securely communicate with S. S
receives C’s response and compares it with expected response XRES, which was
sent by KS as part of AV. If RES=XRES, S uses session keys received as part of
AV for communication with C.

We do not discuss error handling and other lower level details.

2.2 Authentication and Session Key Derivation

In this section, we present in detail the contents of the exchanged messages, and
informally argue the security of AKA in the case when each C is a single entity,
such as a securely issued UIM.
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Fig. 2. AKA Authentication Vector

Fig. 3. AKA Client Derivation

As mentioned above, we do not discuss the security of the channel between KS
and S; we assume that the adversary cannot read or interfere with this channel.
We concentrate on the channel in control of the adversary – the network (or air)
connecting S and C.

Construction of messages referred to in Fig. 1 and discussed in §2.1, are dis-
cussed below and graphically shown on Fig. 2 and Fig. 3.
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AV is computed as follows.
First, KS generates a fresh sequence number SQN and a random challenge

RAND3. SQN is used to keep track of the usage of the one-time AVs, and to help C
detect and reject replays. SQN need not be sequential; [2] discusses (somewhat in-
volved) selection strategies which allow efficient tracking and re-synchronization
in case of failures, which is beyond the scope of this paper. AMF, the Authentica-
tion Management Field, is used to select technical parameters, such as timeout
values; its use is not relevant for our analysis of the core of AKA.

Then, XRES, CK, IK, AK, AUTN and MAC are derived from PSK k, SQN,
RAND, and AMF using message authentication functions f1, f2 and key deriva-
tion functions f3, ..., f5. We note that security properties of f1, ..., f5 are stated
insufficiently formally in [2]4. For simplicity, we assume stronger properties of
f1, ..., f5, namely that they are pseudorandom. One can think of these functions
as AES evaluated on the argument prefixed with the index of the function,
e.g. fi(x) = AES(i, x). Following the existing notation, we keep the functions
f1, ..., f5 in our presentation.

The derivation proceeds as follows (illustrated on Fig. 2).

– message authentication code MAC
MAC= f1k

( SQN || RAND || AMF )
– an expected response

XRES= f2k
(RAND)

– cipher key
CK= f3k

(RAND)
– integrity key

IK= f4k
(RAND)

– anonymity key
AK= f5k

(RAND)
– authentication token

AUTN = SQN ⊕ AK || AMF || MAC

Here, CK and IK are the keys to be used in the event of successful authentication.
The use of AK is optional, and when its generating function f5 is non-zero, AK
is used for hiding the sequence number. We do not consider this option, and set
f5 = 0, as it is not relevant to the security of AKA core.

Finally, authentication vector AV is the concatenation
AV = RAND || XRES || CK || IK || AUTN.

3 In [2], depending on the occurrence in text, RAND is required to be either “ran-
dom” or “unpredictable”. We note that actually a weaker requirement of freshness
is sufficient when derivation functions fi are pseudorandom (e.g., AES).

4 In particular, message authentication function f2, used in the computation of XRES,
is allowed to be truncated. We note that, depending on the MAC function, truncation
may completely remove its security properties. This is because standard definition
of MAC allow for portions of the MAC output to be irrelevant (e.g. always set to 0).
Clearly, truncating MAC, leaving only the predictable zeros allows for easy MAC
forgery.
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Client’s computation. C receives5 RAND and AUTN = SQN || AMF || MAC.
(Recall, AMF is not essential for AKA core security). Since C has possession of
the same PSK k that was used in the derivation of AV, C is able to derive the
respective values: response RES, CK, IK, and expected MAC XMAC, as shown
on Fig. 3. Then C verifies that the received MAC equals to expected MAC
(MAC= XMAC) and checks that the sequence number SQN is within the expected
(heuristically specified) range. If the checks pass, C sends his final response RES
to S, considers that AKA succeeded, and starts using CK and IK that he derived.

Server’s computation. S receives C’s response RES; if RES = XRES, S considers
that AKA succeeded, and starts using CK and IK that he received from KS.

This completes the description of the cryptographic core of the AKA key
exchange.

Security Argument. We present an intuitive argument of security of AKA
in the case when each C is a single entity, such as a securely issued UIM. This
informal analysis also serves the purpose of identifying the logical steps that
use the single-UIM assumption. For simplicity, we assume that each function fi

used is pseudorandom. The analysis of the actual AKA, which relies on MAC,
is almost identical.

We proceed with the message flow of AKA, and first consider C and his ac-
tions. Consider the case when C accepts. (Otherwise C simply aborts without
outputting anything, and, as is easy to see, the adversary A cannot gain from
this. The only information leaked to A here is the pattern of failures, which he
can predict by himself based on the messages he delivers to C.) We first observe
that the adversary A cannot have obtained from KS, S or C two vectors AV with
the same RAND but different SQN. Since C accepted, C must have verified the
freshness of SQN (that is that C had not received AV with this SQN before6). We
can now see that RAND received by C is fresh and indeed generated by KS in the
AV with SQN7. That is, with overwhelming probability, this RAND had not been
used by KS in other AV’s, and it is not replayed8 or forged by the adversary A.
This follows from the unforgeability of PRF (or MAC, if we assume f1 is a secure
MAC, as is done in [2]). Indeed, suppose to the contrary, C accepted a RAND,
SQN pair delivered by A which was not generated by KS. Then A must have
broken the PRF/MAC property of f1, by generating a MAC on a new message,
since C must have verified and accepted MAC.

5 Recall we considering the case when AK = 0.
6 Here is where the assumption of a single instance of C is critical. If C is allowed to

be instantiated, e.g., on two devices, freshness cannot be guaranteed.
7 We are also guaranteed that the AMF received by C was generated by KS in the

same AV as RAND and SQN. However, we are not addressing the AMF issues in this
work, and will not discuss this further.

8 Here the assumption of a single instance of C comes in again. If C is allowed to be
instantiated, e.g., on two devices, then replays are possible, since both devices will
accept the same sequence number SQN.
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At this point, we know that S and C share the same RAND. Thus RES = XRES
and S and C compute the same IK and CK. Further, RAND is fresh9, that is, A
had not seen fik

(RAND). Then, even though A knows RAND, learning anything
about XRES= f2k

(RAND) or CK= f3k
(RAND) or IK= f4k

(RAND), implies that A
can break the pseudorandomness properties of fi (is thus considered impossible).

Now C computes and sends out RES = f2k
(RAND). Both C and S had agreed

on random and unknown to A session keys. Now, the most damage A can do is
interfere with the delivery of RES to S, preventing the establishment of the secure
channel. However this is not considered a vulnerability in KE, since the same
effect can be achieved, e.g., by A simply jamming the communication channels.

Security Proof. We note that the above security argument can be transformed
into a formal proof of security. There are two things that need to be done. First,
we need to give a definition of security in the setting with a single-UIM client.
Such definition can be derived from existing KE definitions (e.g., [11,6,7,10]) by
carefully restricting instance creation in the ideal worlds (simulation-based) or
the games (indistinguishability-based) of the definitions. Then, we can transform
our argument into a proof based on the proposed definition. We defer these
technically involved steps as future work.

3 Multi-UIM Setting and AKA Vulnerabilities

We start with justifying the setting where the client C would possess several
devices provisioned with the same PSK (let’s call it the multi-UIM setting).

Today, service providers aim to engage the customers as much as possible,
and offer bundled services, such as triple play (phone, internet, TV). It is easy
to imagine that the next step is to allow customers to have a number of devices,
such as laptop, phone, camera, etc., to use the service.

We first observe that it is convenient to decouple the user (i.e. subscriber)
from the device (as done, e.g., by GSM and the WiMAX Forum [1]). This allows
attractive business scenarios, where one customer may have several subscriptions,
and use several devices (e.g., laptop, phone, camera, etc. in case of WiMAX).
The convenience factor for the user is that the devices are all linked in one plan,
and the service is not linked to the device, but rather to the subscriber identity.
A person should be able, e.g., to borrow or buy a new device, plug in his UIM
card, and use it. The devices often need to be “swappable”, as is done today
with the removable UIM cards. The UIM cards should not be tied to the type
of service (TV, phone, etc.), but should be interchangeable and mainly serve to
authenticate the customer.

In cases as above, it may be convenient (although, of course, not absolutely
necessary) to employ multi-UIMs (i.e., UIMs issued to the same C and initialized
with the same PSK). Issuing several identical UIM cards to the customer is
convenient to the user and the service provider, and it brings significant efficiency
gains, as described next.
9 Again, provided that C is instantiated on a single device, and the adversary A thus

did not replay the AV.



244 V. Kolesnikov

Convenience and efficiency gains with multi-UIM. Clearly, this ensures
the swappability as described above, and the associated convenience for the
customer. We note that this feature can be emulated by issuing UIMs with
different keys, and KS linking them to the customer’s account and keeping track
of all the keys. This is a feasible replacement, which, however, comes at a cost.
Firstly, KS must keep track of and securely store a much larger number of keys
(a factor of 5 to 10 in the near future, depending on the average number of
devices per user). Secure storage is expensive, and this is a significant penalty.
Further, generating and delivering batched AV is much more convenient with
the multi-UIMs, since any of the AV’s generated for the customer would work.
In contrast, if each of customer’s UIMs has a separate key, a separate AV must
be requested and delivered to S, causing latencies, additional network load, and
increased S storage.

3.1 Multi-UIM Vulnerabilities of AKA

As already noted, in AKA, C does not contribute randomness to the resulting
session key, and instead relies on the freshness of SQN, which can only be guar-
anteed if PSK k is stored securely on a UIM and only a single UIM is issued
per customer identity. At the same time, as discussed above, employing multiple
UIMs keyed with the same PSK k is often convenient and more efficient.

Because AKA Client contributes no randomness, the session key is entirely
determined by the RAND (and its authenticator AUTN) sent by server. We now
show two simple attacks on AKA deployment in the multi-UIM scenario, i.e. if
there are two instances (e.g., devices) of C using the same PSK.

Denote by C1 and C2 the two instances/devices of C sharing the same PSK k.

Attack scenario 1. C1 and C2 both wish to connect to the network. C1 initiates
the exchange, and, as prescribed by AKA, S sends RAND, AUTN to C1, which
C1 receives, and the adversary A overhears. C2 initiates the exchange, which A
blocks from S. Instead, A replays the RAND, AUTN message to C2. At this time,
both devices C1 and C2 derive the same session keys CK,IK, but they both think
they are talking to S. Carefully forwarding (presumably secured) messages sent
between the two devices and the server may allow A to create unintended trans-
actions on C’s account. For example, if the transaction performed on C1 involves
a debit on the account maintained by C1’s UIM, the adversary A replaying this
transaction to C2 (possible, since C2 has the same session key as C1) may effect
a corresponding debit on C2’s UIM – clearly an unintended transaction and a
successful attack.

Attack scenario 2. The above attack is strengthened if the adversary A borrows
(or captures or remotely compromises) one of C’s devices containing the PSK
k (say, C2). By good engineering practices, PSK k is securely stored on UIM,
which it never leaves. Thus, with k unavailable to A a secure system should
guarantee that the compromised device C2 should not help A compromise other
devices (e.g., C1) or their sessions.
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Not so with using AKA in this scenario. Indeed, the session keys produced by
the UIM are exported into the main memory of the device, which A can exploit
by performing an attack similar to described above. A simply overhears RAND,
AUTN destined to C1, and forwards it to the UIM in his control. As prescribed
by AKA, A’s UIM will generate and export to the device session keys CK,IK,
which are the same keys generated on C1. Clearly, the adversary A is now in
control of the (presumably) secure session established between S and C1.

We stress that this attack is especially dangerous if user’s devices have differ-
ent degrees of confidence. Then, the attacker, by remotely hacking an unimpor-
tant and weakly protected device, such as child’s laptop, may gain access to a
high-confidence device on the same account, such as parent’s smart phone.

4 Secure Multi-UIM AKA

In this section we present our main contribution – a simple and efficient AKA
security enhancement for the multi-UIM case. We formally prove security of
our protocol; in particular, we close the multi-UIM vulnerability. The idea of
the enhancement is to have the client C’s UIM(s) generate and contribute their
randomness to the session key, in a way that preserves AKA message flow.

The most natural (and sufficient!) method to do it is to use the already es-
tablished CK,IK as intermediate keys only, and derive the session keys based on
randomness sampled by UIM. For example the actual session keys could be CK’
= fCK(RANDC), IK’ = fIK(RANDC), where RANDC ∈R {0, 1}n is sampled by
UIM. Now, C could simply send RANDC to S to enable server-side derivation.
We note that it is critical that UIM never exports to the device anything other
than the final session keys.

Intuitively, security now holds since only the parties who possess CK,IK are
able to derive the session key by evaluating the prescribed derivation function
keyed with CK,IK on argument RANDC. These parties are the (authorized) C
(his UIM sampled RANDC and evaluated on it), and S, who is given CK,IK by
KS. The adversary A is not able to compute session keys CK’,IK’, even if he
compromised C’s additional devices, since UIMs of these devices only evaluate
derivation functions on the arguments they (UIM’s) sample themselves.

Next, we present our protocol in detail, and give intuition for its security. For
the lack of space, we present a formal proof of security in the full version [8].

4.1 The Formal Multi-AKA Protocol

The protocol, informally presented above, demonstrates the step that we need to
take to achieve security in the multi-UIM setting. This protocol can be naturally
simplified and optimized, which we do in this section. Importantly, we keep the
message structure, efficiency, and features of the original AKA protocol.

We observe that there is no need to include two derived keys (CK,IK) into AV.
One derivation key KD computed from PSK k and RAND is sufficient to derive
CK and IK to be used in the (now secure) session. One simple optimization we
perform is using just one key KD in place of CK,IK in AV.
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Fig. 4. Multi-AKA Authentication vector

Let f1, F, F1, F2 be pseudorandom function generators, such as AES10.

Protocol 1. Multi-AKA

1. As follows from the above discussion and examples, in Multi-AKA, KS will
not send the session keys CK,IK to S in the AV. Instead, KS will send to S
the session derivation key KD, which is derived from PSK k and the AV’s
randomness RAND: KD = Fk(RAND). MAC is computed by KS as before:
MAC= f1k

(SQN || RAND || AMF ). XRES is omitted since S will compute it
itself based on KD and C’s randomness. AUTN is computed as before (AUTN
= SQN || AMF || MAC)11, and AV is set to AV = RAND || KD || AUTN. This
step is illustrated on Fig. 4.

2. Upon C’s request for authentication, S forwards RAND and AUTN to C.
C verifies MAC as in AKA, and, if successful, proceeds as follows. First, it
computes his version of the derivation key KD = Fk(RAND). Then C samples
random RANDC and computes RES = FKD(RANDC). C also computes CK=
F1KD(RANDC), and IK= F2KD(RANDC). Then C sends RANDC and RES
to S and is ready to communicate over a channel secured by session keys
CK,IK. This step is illustrated on Fig. 5.

10 As already discussed above, these functions can either be different functions, or
the same function such as AES. In the latter case, we must ensure differentiation
of the evaluation of the functions, e.g. by prepending the (AES) argument with a
function-unique prefix.

11 Recall, we set AK = 0.
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Fig. 5. Multi-AKA Client Computation

Fig. 6. Multi-AKA Server Computation
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3. Upon receipt from C the pair RANDC and RES, S proceeds as follows. He first
computes XRES= FKD(RANDC), and checks that XRES= RES. If so, S derives
(and uses) the session keys CK= F1KD(RANDC), and IK= F2KD(RANDC).
This step is illustrated on Fig. 6.

Remark: All actions of C are performed on a UIM, and only the resulting keys
CK,IK are exported outside of the UIM.

4.2 Security Argument and Claim

The security proof of Multi-AKA is actually simpler than that of AKA presented
above in §2.2. The main reason is that with both S and C contributing random-
ness to session keys, message replays don’t matter, since they always result in
the generation of unrelated keys, which cannot help the adversary A in attacking
other sessions.

We proceed with the message flow of Multi-AKA, and first consider C and his
actions. Consider the case when C accepts (otherwise C simply aborts without
outputting anything, and, as is easy to see, the adversary A cannot gain from
this. The only information leaked to A here is the pattern of failures, which he
can predict by himself based on the messages he delivers to C.) We first observe
that S cannot have received from KS two vectors AV with the same RAND
but different SQN (this is because the probability of collision of two randomly
sampled RAND values is negligible). Therefore, there cannot be two instances of
S that generated the same KD. We note that A can cause different instances of
C (e.g., C1 and C2) to generate the same KD simply by replaying S’s message.
However, it is easy to see that even in the case when A controls one of client’s
instances (say, C1), the session keys CK,IK output by C2 cannot be predicted by
A, due to the security (namely, pseudorandomness) properties of the function
used to generate the keys. This also means that A cannot arrange for secure
channels between unintended parties (e.g., as in our attacks in §3.1, where S
shared session key with two clients). Here, it is critical that UIMs do not export
intermediate keys (KD) into the main memory of the device12.

Similarly, A cannot learn server keys or mismatch server secure channels (e.g.,
as in our attacks in §3.1). This is because, firstly, intermediate keys KD generated
by any player are unpredictable to A. Further, as noted above, no two servers use
the same KD, and thus replaying client’s response to S will cause a verification
failure.

Above discussion leads to the following theorem:

Theorem 1. Protocol 1 (Multi-AKA) is a secure key exchange protocol. In par-
ticular, it remains secure if the adversary A corrupts one or more of C’s instances
(devices), but does not get access inside the UIM executing the protocol.

We approach the proof of Theorem 1 as follows. First, we further abstract
away the non-essential messages and concepts and leave only the core message
12 If in fact KD was exported, then A could trivially compute the session key established

by C2: CK= F1KD(RANDC).
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exchange. Then we recall a KE definition (derived from a more general defini-
tion of [10]), and prove security of the abstracted protocol with respect to that
definition. Finally, it is easy to see that this implies the statement of Theorem 1.

For the lack of space, we present a formal proof of security in the full
version [8].

4.3 Practical Implications and Considerations

We mention several practical implications of our proposed protocol. First, we
do not use SQN at all. This means that (at least some of) the complicated
heuristics associated with the state maintenance can be avoided or simplified.
Further, the persistent AKA problem of UIM cloning goes away in the following
sense. Of course, a cloned UIM would be able to access the resource as well as
the legitimate UIM, however, he would not be able to mount man-in-the-middle
attacks on the legitimate UIM’s connection.

Revocation. At the first glance, the issue of revocation would become signif-
icantly more complex, since all of C’s UIMs share the same key. However, this
does not appear to pose any problems, for the following reasons. One revocation
solution can use broadcast encryption techniques, and, upon C’s request, simply
update the keys of legitimate UIMs, while excluding the stolen ones. We note,
that this would require each UIM storing a small number of keys, depending
on the maximum number of user’s devices. Other solutions could use out-of-
band secure channel (e.g., telephone conversation with an agent or a separately
protected web control page) to obtain PIN(s) required to refresh the keys of
the authorized UIMs. During refresh, short authenticated string (SAS)-based
techniques [12] may prove helpful.

4.4 Performance

As it is easy to see, the costs of added security that we propose are negligible.
The final tally would depend on the exact instantiations, but our core protocol
has only one (1) additional PRFG evaluation by S, as he now needs to compute
XRES himself (however, this offloads the corresponding operation on KS). We
do not further calculate these costs, since they are negligible compared to AKA
communication costs, in terms of energy consumption and time.

5 Conclusion

We considered a widely used AKA protocol and the issue of its reliance on
the uniqueness of the tamper-resistant module, UIM, holding user’s key. We
presented the intuition for security of AKA in this setting. We noted that issuing
multiple UIMs to the user, all of which hold the same user’s key is appealing for
UIM interchangeability, and allows for protocol efficiency improvement, such as
better reuse of authenticating data and reduction of required secure storage.

As AKA turns out to be insecure in this setting, we presented a security
enhancement of AKA, along with a formal proof of security. Our protocol has
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negligible performance premium, and is more robust than AKA, while adhering
to AKA design goals. Its robustness offers avenues for simplifications of AKA
heuristics. We believe our protocol may be a worthy upgrade for AKA and a
candidate for more general scenarios.

Acknowledgements. I would like to thank anonymous reviewers of this paper for
many valuable comments, and Simon Mizikovsky for our initial AKA discussion.
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A Definition of Security of KE

In this section, we present the definition of security we use in our proofs. This
definition is a natural adaptation (actually, simplification) of the definitions of
Kolesnikov and Rackoff [9,10]. The latter definitions consider a substantially
more general setting of multi-factor authenticated KE, where parties possess
both long and short keys (e.g. PSK and passwords). The definitions of [9,10]
have the graceful degradation property, that is, a compromise of some of the
keys results in the security level accorded by the remaining key(s). Naturally
(also indirectly implied in [9,10]), omitting the use of short keys results in the
definition for our setting.

While one can use one of several KE definitions, we found game-based def-
inition to be the simplest to use. For completeness and the formalization of
discussion, we now present the adapted definition that we will use.

We denote by CS
i the i-th instance of client C who wants to talk to (some

instance of) server S. SC
j is defined symmetrically.

KE definitions rely on the notion of partners to specify what constitutes an
attack. Informally, two instances of players are partners, if they establish a secure
channel. Syntactically, we define partners as follows.

Definition 1. We say that an instance CS
i of a client C and an instance SC

j of
a server S are partners, if they have output the same session id sid.

Session id sid is an additional (somewhat artificial) output of KE, which need
not be used in real execution, but which is needed for syntactic manipulations
in the proof. We omit the detailed discussion of the need of sid and refer the
interested reader to literature, e.g., [9,10] for additional information.

We start by presenting the KE game, which model attacks of a real-life adver-
sary. Recall, we do not address the security aspects of the server (SN in AKA)
receiving the authenticating credentials from the key server KS; we assume this
is done in a secure manner, e.g. using pre-established channels.

Game KE. An honest server S is created. Adv then runs players by executing
steps 1-6 multiple times, in any order:

1. Adv creates an honest client C. C is registered with S, and a randomly
chosen key is set up and associated with C. Only one honest client can be
created.

2. Adv creates a corrupt client Bi. A randomly chosen key is set up and asso-
ciated with Bi.

3. Adv creates an instance Ci of the honest client C. Ci is given (secretly from
Adv) as input the key associated with C.

4. Adv creates an instance Sj of the honest server S. Sj is given (secretly from
Adv) as input the partner client’s key13.

13 Other authenticating credentials may be given instead, such as KD in the AKA
setting.
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5. Adv delivers a message m to an honest party instance. The instance imme-
diately responds with a reply (by giving it to Adv) and/or, terminates and
outputs the result (a sid and either the session key, or the failure symbol ⊥)
according to the protocol. Adv learns only the sid part of the output.

6. Adv “opens” any successfully completed and checked honest instance – then
he is given the session key output of that instance.

Then Adv asks for a challenge on an instance of an honest player.
The challenge of instance SC

j of the server S is handled as follows. SC
j , who

has been instantiated to talk to the honest client C, must have completed and
output a session key. The challenge is, equiprobably, either the key output by
SC

j or a random string of the same length. Adv must not have opened SC
j or a

partner of SC
j , and is not allowed to do it in the future.

The challenge of instance CS
j of the client C is handled symmetrically.

Then Adv continues to run the game as before (execute steps 2-6). Finally,
Adv outputs a single bit b which denotes Adv’s guess at whether the challenge
string was random. Adv wins if he makes a correct guess, and loses otherwise.
Adv cannot “withdraw” from a challenge, and must produce his guess.

The above game is almost sufficient for security definition. The only remaining
technical aspect is the enforcement of non-triviality. We need to prevent improper
partnering (e.g. players unnecessarily outputting same sid). Recall, Adv is not
allowed to challenge parties whose partner has been opened; SID ensures that
Adv is not unfairly restricted. We handle this by introducing the following game.

Game SID is derived from game KE by adjusting the win condition. Adv does
not ask for (nor answers) the challenge. Adv wins if any two honest partners
output different session keys.

Note, SID allows for one (or both) of the partners to output a failure symbol.
Adv only wins if two successfully completed parties output different session keys.

We are now ready to present the definition.

Definition 2. We say that a key exchange protocol Π is secure, if for every
polytime adversaries Adv1, Advsid playing games KE and SID, their probabil-
ities of winning (over the randomness used by the adversaries, all players and
generation algorithms) is at most only negligibly (in security parameter n) better
than:

– 1/2, for KE,
– 0, for SID.



Authenticated Key Agreement with Key Re-use in the
Short Authenticated Strings Model

Stanisław Jarecki and Nitesh Saxena

1 University of California, Irvine
2 Polytechnic Institute of New York University

Abstract. Serge Vaudenay [20] introduced a notion of Message Authentication
(MA) protocols in the Short Authenticated String (SAS) model. A SAS-MA pro-
tocol authenticates arbitrarily long messages sent over insecure channels as long
as the sender and the receiver can additionally send a very short, e.g. 20 bit, au-
thenticated message to each other. The main practical application of a SAS-MA
protocol is Authenticated Key Agreement (AKA) in this communication model,
i.e. SAS-AKA, which can be used for so-called “pairing” of wireless devices.
Subsequent work [9,12,10] showed three-round SAS-AKA protocols. However,
the Diffie-Hellman (DH) based SAS-AKA protocol of [10] requires choosing
fresh DH exponents in each protocol instance, while the generic SAS-AKA con-
struction given by [12] applies only to AKA protocols which have no shared state
between protocol sessions. Therefore, both prior works exclude the most efficient,
although not perfect-forward-secret, AKA protocols that re-use private keys (for
encryption-based AKAs) or DH exponents (for DH-based AKAs) across multiple
protocol sessions.

In this paper, we propose a novel three-round encryption-based SAS-AKA
protocol, using non-malleable commitments and CCA-secure encryption as tools,
which we show secure (but without perfect-forward secrecy) if each player re-
uses its private/public key across protocol sessions. The cost of this protocol is
dominated by a single public key encryption for one party and a decryption for
the other, assuming the Random Oracle Model (ROM). When implemented with
RSA encryption the new SAS-AKA protocol is especially attractive if the two
devices being paired have asymmetric computational power (e.g., a desktop and
a keyboard).

1 Introduction

Serge Vaudenay [20] introduced a notion of a message authentication protocol (MA)
based on so-called short authenticated strings (SAS). Such a protocol allows authenti-
cating messages of arbitrary sizes (sent over insecure channel) making use of an auxil-
iary channel which can authenticate short, e.g. 20-bit, messages. It is assumed that an
adversary has complete control over the insecure channel, i.e., it can eavesdrop, delay,
drop, replay, inject and/or modify messages, while the only restriction on the auxil-
iary channel is that the adversary cannot modify or inject messages on it, but it can
eavesdrop, delay, drop, or replay them. Crucially, no other infrastructure assumptions
are made, i.e. the players do not share any keys or passwords, and there is no Pub-
lic Key Infrastructure they can use. The only leverage for establishing security is this
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bandwidth-restricted, public but authenticated “SAS channel” connecting every pair of
players.

The primary application of SAS-MA protocols is to enable SAS-based authenticated
key agreement (SAS-AKA) between devices with no reliance on key pre-distribution or
a public-key infrastructure. A perfectly fitting and urgently needed application of SAS-
AKA protocols is establishing secure communication channels between two devices
communicating over a publicly-accessible medium (such as Bluetooth, WiFi), which
in addition can also send short authenticated messages to each other (and are hence
equipped with a SAS channel), given some amount of manual supervision or involve-
ment from the users. (This problem is referred to as “device pairing” in the systems
literature.) Implementations of such SAS channels have been proposed for a variety of
device types, assuming various user interfaces and different type of manual supervi-
sion. In the simplest example of two cell-phones, phone owners can be asked to type a
20 bit string (6 digits) displayed by one phone into the keypad of the other. The systems
proposed in [19,1,14,7,16,18,13] show that the same effect can be accomplished with
more primitive devices (e.g., with no keypads) or with less user involvement (e.g. rely-
ing on sound, blinking LED lights, cameras on the phones, etc). In all of these schemes,
it is desirable to have SAS-AKA protocols which are inexpensive both in computation
and communication, since the underlying devices might have limited computation and
battery power, and which provably achieve an optimal 2−k+ ε bound on the probability
of adversary’s attack given a k-bit SAS channel, where ε is a negligible factor in the
security parameter independent of k. The SAS-AKA protocol we propose in this paper
significantly improves upon the first goal compared to the previous work, at the expense
of achieving a slightly weaker bound on adversary’s attack, namely 2−k+1+ ε.

1.1 Prior Work on SAS-MA Protocols

Following [20,12], we refer to a bi-directional message authentication protocol in the
SAS model as SAS-MCA, which stands for “message cross-authentication”. Note that
two instances of a SAS-MA protocol run in each direction always yield such SAS-MCA
scheme, but at twice the cost of the underlying SAS-MA scheme. A straightforward so-
lution for a SAS-MCA was suggested by Balfanz, et al. [1]: Devices A and B exchange
the messages mA, mB over the insecure channel, and the corresponding hashes H(mA)
and H(mB) over the SAS channel. Although non-interactive, the protocol requires H to
be a collision-resistant hash function and therefore it needs at least 160 bits of the SAS
bandwidth in each direction. Pasini and Vaudenay [11] showed a non-interactive proto-
col which weakens the requirement on the hash function to weak (i.e. second-preimage)
collision resistance, and reduces the SAS bandwidth to 80-bits. The ’MANA’ protocols
in Gehrmann et al. [6] reduce the SAS bandwidth to any k bits while assuring the 2−k

bound on attack probability,1 but these protocols require a stronger assumption on the
SAS channel, namely the adversary is assumed to be incapable of delaying or replaying

1 Formally, by “2−k bound on attack probability” we mean that the probability that any ad-
versary that runs in time polynomial in a security parameter n, which is independent of the
SAS-bandwidth k, succeeds against a single instance of the protocol is upper-bounded by
2−k+ ε(n), where ε(n) is negligible in n.
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Pi(m) Pj

Pick Ri ← {0, 1}k
(c, d)← com([m|Ri])

m,c �� Pick Rj ← {0, 1}k
Rj��
d ��

SAS = Ri ⊕Rj
SAS �� [m|Ri]← open(c, d)

Output (Pi, m) if SAS = Ri ⊕Rj

Fig. 1. V-MA : unidirectional SAS-MA authentication (Pi to Pj) of Vaudenay [20]

the SAS messages, which in practice requires synchronization between the two de-
vices, e.g. one device never abandons one session and restarts another session without
the other device also doing the same.

In [20], Vaudenay presented the first SAS-MA scheme, called V-MA and depicted
in Figure 1, with the analysis that bounds the attack probability by 2−k for a k-bit
SAS channel. In [20] this protocol is shown secure under the assumption that the com-
mitment scheme satisfies what Vaudenay refers to as “extractable commitment”, and
subsequently [9] pointed out that this proof goes through under the more standard and
possibly weaker assumption of a non-malleable commitment. The bi-directional SAS-
MCA protocol presented in [20] results from running two instances of the V-MA pro-
tocol, one for each direction, but with each player Pi/j using the same challenge Ri/j

in both protocol instances. This SAS-MCA scheme requires 4 communication rounds
over the insecure channel and was shown to give a 2−k security bound.

In subsequent work, Laur, Asokan, and Nyberg [9,10] and Pasini and Vaudenay [12]
independently gave three-round SAS-MCA protocols. Both schemes are modifications
of the V-MA protocol of Figure 1, and both employ (although differently) a universal
hash function in computation of the SAS message. Both of these protocols make just
a few symmetric key operations if the commitment scheme is implemented using a
cryptographic hash function modeled as a Random Oracle. Both protocols claim the
2−k security bound at least in the ROM model, although the scheme of [9,10] was
analyzed only in a “synchronized” setting where the same pair of players never execute
multiple parallel protocol instances with each other2 (see Theorem 3, Note 5 of [10]).

1.2 Prior Work on SAS-AKA Protocols

Pasini and Vaudenay [12] argue that one can construct a 3-round SAS-based key agree-
ment protocol (SAS-AKA), from any 3-round SAS-based message cross-authentication
protocol (SAS-MCA) like the SAS-MCA protocol presented in [12], and any 2-round

2 While in practice it might be the case that a pair of players is not supposed to execute several
protocol instances concurrently, a man-in-the-middle can cause that several instances of the
protocol between the same pair of players are effectively alive, if he manages to force one
device to time-out and start a new session while the other device is still waiting for an answer.
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key agreement scheme (KA) which is secure over authenticated links, e.g. a Diffie-
Hellman or an encryption-based KA scheme. The idea is to run the 2-round KA pro-
tocol over an insecure channel, and authenticate the two messages m1, m2 produced
by the KA protocol using the SAS-MCA protocol. (To achieve a 3-round SAS-AKA
protocol, the KA messages m1, m2 are piggybacked with the SAS-MCA protocol mes-
sages.) This compilation is significantly different from the standard compilation from
a protocol secure over authenticated links to a protocol secure over insecure channels,
which works by running a separate unidirectional message-authentication sub-protocol
(MA) for each message of the underlying protocol, e.g. as in Canetti and Krawczyk’s
MA + KA → AKA compilation in [4]. If the SAS-MA authentication protocol has k
rounds then this compilation would result in a 2k-round SAS-AKA scheme, because
the responder cannot, in general, send the second KA message m2 before successful
completion of the SAS-MA sub-protocol that authenticates the first KA message m1.
In contrast, to achieve a (k + 1)-round SAS-AKA protocol, the compilation given in
[12] prescribes that the second message of the KA protocol, m2, is sent by the respon-
der straight away, i.e. on the basis of the first KA message m1, which at this moment
has not been authenticated yet.

The compilation of Pasini and Vaudenay does result in secure 3-round SAS-AKA
schemes, but only when it utilizes a KA scheme which does not keep shared state be-
tween different instances of the KA protocol run by the same player. (This was indeed
the implicit assumption taken by the proof of security for this compilation given in [12].)
Moreover, such SAS-MCA + KA→ SAS-AKA compilation cannot be applied to KA
schemes which do share state between instances. For a simple counter-example, con-
sider a 2-round KA protocol secure in the authenticated links model, which is amended
so that (1) the computed session key is sent in the last message encrypted using re-
sponder Pj ’s long term public key pkij chosen for a particular initiator Pi, and (2)
the responder Pj reveals the corresponding private key skij if the initiator Pi’s first
message is a special symbol which is never used by an honest sender. Such protocol
remains secure in the authenticated links model (in the static corruption case), because
only a dishonest sender Pi can trigger Pj to reveal skij . However, this protocol is inse-
cure when compiled using the method above, because when Pj computes its response
it does not know if the message sent by Pi is authentic, and thus a man-in-the-middle
adversary can trigger Pj to reveal skij by replacing Pi’s initial message in the KA
protocol with that special symbol. This way the adversary’s interference in a single pro-
tocol session leads to revealing the keys on all sessions shared between the same pair
of players, and thus the compiled protocol is not a secure SAS-AKA. (We elaborate on
this counter-example in more detail in Appendix A.)

Independently, Laur and Nyberg also proposed a SAS-AKA protocol [10], based on
their own SAS-MCA protocol [9]. In this (Diffie-Hellman based) SAS-AKA protocol,
the Diffie-Hellman exponents are picked afresh in each protocol instance, and so this
protocol also does not support key re-use across multiple sessions.

1.3 Limitations of SAS-AKA Protocols Without Key Re-use

The key agreement protocols that do not share state between sessions, and thus in par-
ticular do not allow for re-use of private keys, are by definition Perfect-Forward Secret
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(PFS) but they are also significantly more expensive than non-PFS key agreement pro-
tocols. Specifically, the standard Diffie-Hellman PFS KA requires two exponentiations
per player, while the encryption-based PFS KA requires generation of a (public,private)
key pair and a decryption operation by one player, and a public key encryption by
the other player. These are also the dominant costs of the corresponding SAS-AKA
schemes implied by the above results of [9,12]. In contrast, the non-PFS Diffie-Hellman
with fixed exponents costs only one exponentiation per player, and the encryption-based
KA costs one decryption for one player and one encryption for the other. Note that in
practice the efficiency of the non-PFS KA schemes often takes precedence over the
stronger security property offered by perfect forward secret KA schemes. For example,
even though SSL supports PFS version of Diffie-Hellman KA, almost all commercial
SSL sessions run the non-PFS encryption-based KA using RSA encryption, since this
mode offers dramatically faster client’s time (and twice faster server’s time). Also, just
as the asymmetric division of work in the RSA-encryption based key agreement was
attractive for the SSL applications, the same asymmetric costs in the RSA-encryption
based SAS-AKA could be attractive for “pairing” of devices with unequal computa-
tional power, e.g. a PC and a keyboard, a PC and a cell-phone, or a cell-phone and an
earset speaker.

Other applications could also benefit from SAS-AKA protocols which allow for re-
use of public keys across multiple protocol sessions. One compelling application is in
secure initialization of a sensor network [17]. Sensor initialization can be achieved by
the base station simultaneously executing an instance of the SAS-AKA protocol with
each sensor. However, since the number of sensors can be large, generating fresh (RSA
or DH) encryption keys per protocol instance would impose a large overhead on the
base station. An encryption-based SAS-AKA protocol with re-usable public key would
be especially handy because it would minimize sensors’ computation to a single RSA
encryption, and the base station would pick one RSA key pair and then perform one
RSA decryption per each sensor. Another application where key re-use in SAS-AKA
offers immediate benefits is protection against so-called “Evil Twin” attacks in a cyber-
cafe, where multiple users run SAS-AKA protocols to associate their devices with one
central access point [15].

1.4 Our Contributions

In this work, we present a provably secure and minimal cost SAS-AKA scheme which
re-uses public key pairs across protocol sessions and thus presents a lower-cost but
non-PFS alternative to the perfect-forward secret SAS-AKA protocols of [10,12]. Our
SAS-AKA relies on a non-malleable commitments just like the SAS-AKA schemes of
[20,9,12], but unlike the previous schemes it is built directly on CCA-secure encryption,
and it relies on encryption not just for key-establishment but also for authentication se-
curity. As a consequence, the new SAS-AKA is somewhat simpler than the previous
SAS-AKA’s which were built on top of the three-round SAS-MCA’s of [9,12], and in
particular it does not need to use universal hash functions. However, the most impor-
tant contribution of the new SAS-AKA scheme is that it remains secure if each player
uses a permanent public key, and hence shares a state across all protocol sessions it
executes. This leads to two minimal-cost 3-round non-PFS SAS-AKA protocols where
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the same public/private key pair or the same Diffie-Hellman random contribution is
re-used across protocol instances. Specifically, when instantiated with the hash-based
commitment and the CCA-secure OAEP-RSA, this implies a 3-round SAS-AKA pro-
tocol secure under the RSA assumption in ROM, with the cost of a single RSA encryp-
tion for the responder and a single RSA decryption for the initiator. When instantiated
with the randomness-reusing CCA-secure version of ElGamal [3] this implies a 3-round
SAS-AKA protocol secure under the DH assumption in ROM, with the cost of one ex-
ponentiation per player. In other words, the costs of the SAS-AKA protocols implied
by our result are (for the first time) essentially the same as the costs of the correspond-
ing basic unauthenticated key agreement protocols. By contrast, previously known PFS
SAS-AKA protocols require two exponentiations per player if they are based on DH
[12,10] or a generation of fresh public/private RSA key pair for each protocol instance
if the general result of [12] is instantiated with an RSA-based key agreement.

We note that the SAS-MCA/AKA protocol we show secure is very similar to the
SAS-AKA protocols of [20,9,12], and it is indeed only a new variant of the same three-
round commitment-based SAS-MA protocol analyzed in [20], which also forms a start-
ing point for protocols of [9,12]. However, prior to our work there was no argument
that such SAS-AKA scheme remains secure when players re-use their public/private
key pairs across multiple sessions. Moreover, as we explain above, it is unlikely that
such result can be proven using a modular argument similar to the one used by [12]
for KA protocols that do not keep state between protocol instances, which is also why
our analysis of the proposed protocol proceeds “from scratch” rather than proceed-
ing in a modular fashion based on already known properties of Vaudenay’s SAS-MA
scheme. Secondly, our analysis shows that the SAS-AKA protocol can be simpler than
even a standard encryption-based KA protocol executed over the 3-round SAS-MCA
protocol of [9] or [12]. In fact, our protocol consists of a single instance of the basic
unidirectional SAS-MA scheme of [20], shown in Figure 1, which authenticates only
the initiator’s message, but this message includes the initiator’s (long-term) public key,
which the responder uses to encrypt its message. It turns out that this encryption not
only transforms this protocol to a SAS-AKA scheme but also authenticates responder’s
message, thus yielding not just a cheaper but also a simpler three-round SAS-AKA
protocol.

Paper Organization. Section 2 contains our cryptographic tools. Section 3 contains the
communication and adversarial models for SAS-MCA and SAS-AKA protocols. We
propose our SAS-MCA / SAS-AKA protocol in Section 4. In the same section we argue
that this protocol is a secure SAS-MCA scheme, but for lack of space we relegate the
(very similar) argument that this protocol is also a secure SAS-AKA scheme protocol)
to the full version of this paper [8].

2 Preliminaries

Public Key Encryption. A public key encryption scheme is a tuple of algorithms
(KeyGen, Enc, Dec), where KeyGen on input of a security parameter produces a pair
of public and secret keys (pk, sk), Encpk(m) outputs ciphertext c for message m, and
Decsk(c) decrypts m from c = Encpk(m). In the SAS-MCA/AKA protocol construc-
tion, the encrypted messages come from a special space Mm = {[m|R] s.t. R ∈
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{0, 1}k} where m is some (adversarially chosen) string. Since this message space con-
tains 2k elements, a chosen-ciphertext secure encryption ensures that an adversary who
is given an encryption of a random message in this space can predict this message with
probability at most negligibly higher than 2−k. Namely, the following is a simple fact
about CCA-secure encryption.

Fact 1. If an encryption scheme is (T, ε)-SS-CCA then for every T -bounded algorithm
A and every m,

Pr[ADecC
sk(·)(pk, C) = m̂ | (pk, sk)← KeyGen, m←Mm,

C ← Encpk(m)] ≤ 2−k + ε

where DecC
sk(·) is a decryption oracle except it outputs⊥ on C.

Commitment Schemes. Similarly to the SAS-channel message authentication pro-
tocols given before by [20,9,12], the protocols here are also based on commitment
schemes with some form of non-malleability. In fact, the assumption on commitment
schemes we make is essentially the same as in the SAS-MCA protocols of [20,12], but
we slightly relax (and re-name) this property of commitment schemes here, so that, in
particular, it is satisfied by a very efficient hash-based commitment scheme in the ROM
model for a hash function.

The commitment scheme consists of following three functions: gen generates a
public parameter Kp on input a security parameter, comKp(m), on input of message
m, outputs a pair of a “commitment” c and “decommitment” d, and openKp

(c, d), on
input (c, d), either outputs some value m′ or rejects. This triple of algorithms must
meet a completeness property, namely for any Kp generated by gen and for any m,
if (c, d) is output by comKp(m) then openKp

(c, d) outputs m. We assume a common
reference string (CRS) model, where a trusted third party generates the commitment
key Kp and this key is then embedded in every instance of the protocol. Therefore, we
will use a simplified notation, and write com(m) and open(c, d) without mentioning
the public parameter Kp explicitly. For simplicity of notation in the SAS-MCA/AKA
protocols, we sometimes use m2 ← open(m1, c, d) do denote a procedure which first
does m ← open(c, d) and then compares if m is of the form m = [m1|m2] for the
given m1. If it is, the modified open procedure outputs m2, and otherwise it rejects.

Non-Malleable Commitment Scheme. In our protocols, we use the same notion of
non-malleable commitments as in [9], adopted from [5]. An adversary is a quadruple
A = (A1,A2,A3,A4) of efficient algorithms interacting with Challenger. (A1,A2,A3)
represents an active part of the adversary that creates and afterwards tries to open related
commitments andA4 represents a distinguisher. Challenger is initialized to be in either
of two environments, called “World0” and “World1”. A succeeds if A4 can distinguish
between these two environments World0 and World1.

Challenger first runs gen to produce Kp and sends it to A1. A1 outputs a mes-
sage space M along with state σ and sends it back to Challenger. Challenger picks
two messages m0 and m1 at random from M and computes a challenge commit-
ment (c, d) = comKp(m1) and sends c it to A2. A2 in turn responds with a com-
mitment c∗. Challenger aborts if any c∗ = c, and otherwise sends d to A3. Now, A3
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must output a valid decommitment d∗. Challenger computes y∗ = openKp
(c∗, d∗). If

y∗ =⊥, then A is halted. Finally, in the environment World0, Challenger invokes A4

with inputs (m0, y
∗), whereas in World1, it invokes A4 with inputs (m1, y

∗). A com-
mitment scheme is (T, ε)-NM (non-malleable) iff for any t time adversary A it holds
that AdvNM

com(A) = |Pr[A4 = 1|World1]− Pr[A4 = 1|World0]| ≤ ε.
For notational convenience, we use a specialization of this non-malleability notion

to message spaceMm = {[m|R] s.t. R ∈ {0, 1}k}, which our SAS-MCA/AKA pro-
tocol deals with, and to a particular simple type of tests which our reductions use
to distinguish between the two distributions above. Namely, we say that the commit-
ment scheme is (T, ε)-NM if for every T -limited adversaryA = (A1,A2,A3), it holds
that Pr[m∗ ⊕ m = σ | KP ← gen; (m, s) ← A1(KP ); m ← Mm; (c, d) ←
comKP (m); (c∗, σ)← A2(c, s); d∗ ← A3(c, d, s); m∗ = openKP

(c∗, d∗)] ≤ 2−k + ε
Note that a (T, ε)-NM commitment scheme can be created from any (T, ε)-SS-CCA

encryption scheme (KeyGen, Enc, Dec) [5]. The (Ks, Kp) is a private/public key pair
(sk, pk) of the encryption scheme. compk(m) picks a random string r and outputs
c = Encpk(m; r) and d = (m, r), where Encpk(·; r) denotes the (randomized) en-
cryption procedure with randomness r. Procedure openpk(c, (m, r)) outputs m if c =
Encpk(m; r) and ⊥ otherwise.

Non-Malleable Commitment in the Random Oracle Model (ROM). One can make
a fast and simple commitment scheme using a hash function H : {0, 1}∗ → {0, 1}l′
modeled as a random oracle, where the adversary’s advantage in the NM-Security game
can be set arbitrarily low at very little cost. Generator gen in this scheme is a null
procedure, com(m) picks r ∈ {0, 1}l and returns c = H(m, r) and d = (m, r),
open(c, (m, r)) returns m if c = H(m, r) and ⊥ otherwise. This scheme is (T, ε)-
NM for ε = qH2−l + q2

H2−l′ , where qH is the number of H-function queries that
can be made by a T -bounded adversary A. This is because the probability that A2

learns anything about the value committed by the challenger is qH2−l because the only
informationA2 can get on m chosen by the challenger is by querying hash function H
for some m ∈ M and r used by the challenger, but the probability thatA hits the same
r as the challenger is bounded by qH2−l. Moreover, the probability that A3 is able to
decommit to more than one value is bounded by q2

H2−l′ , because this is the probability
that within qH queries to H, the adversary gets a pair of values which collide.

3 Communication and Adversarial Model

3.1 Network and Communication Setting

We consider the same model as in [20,9,12], but we explicitly cast it in the
multi-player/multi-session world. In other words, we consider a network consisting
of n players P1, · · · , Pn. Each ordered pair of players (Pi, Pj) is connected by two
unidirectional point-to-point communication channels: (1) an insecure channel, e.g. in-
ternet or a Bluetooth or a WiFi channel, over which an adversary has complete control
by eavesdropping, delaying, dropping, replaying, and/or modifying messages, and (2)
a low-bandwidth out-of-band authenticated (but not secret) channel, referred to as a
SAS channel from here on, which preserves the integrity of messages and also provides
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source and target authentication. In other words, on the insecure channel, an adversary
can behave arbitrarily, but it is not allowed to modify (or inject) messages sent on the
SAS channel (which we’ll call SAS messages for short), although it can still read them,
as well as delay, drop, or re-order them.

3.2 SAS-MCA and Its Security

Our security model follows the Canetti-Krawczyk model for authenticated key ex-
change protocols [4], and the earlier work of [2], which allows modeling concurrent
executions of multiple protocol instances. While in practice it will very often be the
case (e.g. in the device pairing application) that a single player is not supposed to ex-
ecute several protocol instances concurrently, a man-in-the-middle can cause that sev-
eral instances of the protocol between the same pair of players are effectively alive, if
he manages to force device A to time-out and start a new SAS-AKA protocol session,
while device B is still waiting for an answer. In this case the adversary can choose
which messages to forward to device B among the messages sent on the different ses-
sions started by device A.

A SAS-MCA protocol is a “cross-party” message authentication protocol, executed
between two players Pi and Pj , whose goal is for Pi and Pj to send authenticated
messages to one another. We denote the τ -th protocol instance run by a player Pi as
Πτ

i , where τ is a locally unique index. The inputs of Πτ
i are a tuple (roleτ

i , Pj , m
τ
i )

where roleτ
i designates Pi as either the initiator (“init”) or a responder (“resp”) in this

instance of the SAS-MCA protocol, Pj identifies the communication partner for this
protocol instance, i.e. it identifies a pair of SAS channels (Pi → Pj) and (Pi ← Pj)
with an entity (Pj) with whom Pi’s application wants to communicate, and mτ

i is the
message to be sent to Pj in this session. With each session Πτ

i there is associated a
unique string sidτ

i , which is a concatenation of all messages sent and received on this
session, including the messages on the SAS channel. We denote input Pj on session
Πτ

i as Peer(Πτ
i ). We say that sessions Πτ

i and Πη
j executed by two different players

are matching if Peer(Πτ
i ) = Pj , Peer(Πη

j ) = Pi, and roleη
j �= roleτ

i . We say that
the sessions are partnered if they are matching and their messages are properly ex-
changed between them, i.e. sidτ

i = sidη
j . By the last requirement, and by inclusion

of random nonces in the protocol, we ensure that except of negligible probability each
session can be partnered with at most one other session. The output of Πτ

i can be either
a tuple (Peer(Πτ

i ), mτ
i , m̂τ

i , sidτ
i ), for some m̂τ

i , or a rejection. Similarly, Πη
j can ei-

ther output (Peer(Πη
j ), mη

j , m̂η
j , sidη

j ) or reject. The SAS-MCA protocol should satisfy
the following correctness condition: If sessions Πτ

i and Πη
j are partnered then both

sessions accept and output the messages sent by the other player, i.e. m̂τ
i = mη

j and
m̂η

j = mτ
i .

We model the security of a SAS-MCA protocol via a following game between the
challenger performing the part of the honest players P1, ..., Pn, and the adversary A.
We consider only the static corruption model, where the adversary does not adaptively
corrupt initially honest players. The challenger and the adversary communicate by ex-
changing messages as follows: At the beginning of the interaction, the challenger ini-
tializes the long-term private state of every player Pi, e.g. by generating a public/private
key pair for each player. In the rest of the interaction, the challenger keeps the state of
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every initialized protocol instance and follows the SAS-MCA protocol on its behalf.
A can trigger a new protocol instance Πτ

i on inputs (role, Pj , m) by issuing a query
launch(Πτ

i , role, Pj , m). The challenger responds by initializing the state of session
Πτ

i and sending back to A the message this session generates. If A issues a query
send(Πτ

i , M ) for any previously initialized Πτ
i and any M , the challenger delivers

message M to session Πτ
i and responds by following the SAS-MCA protocol on its

behalf, handing the response of Πτ
i on M to A. However, if Πτ

i outputs a SAS mes-
sage, the challenger hands this message to A and adds it to a multiset SAS(i, j), for
Pj = Peer(Πτ

i ), which models the unidirectional SAS channel from Pi to Pj , de-
noted SAS(Pi → Pj). A can issue a SAS-send(Πτ

j , M ) query for any message M in
set SAS(i, j), where Pi = Peer(Πτ

j ). The challenger then removes element M from
SAS(i, j) and delivers M on the SAS(Pj → Pi) channel to Πτ

i . This models the fact
that the adversary can see, stall, delete, and re-order messages on each SAS(Pi → Pj)
channel, butA cannot modify, duplicate, or add to any of the messages on such channel.

We say that A wins in attack against SAS-MCA if there exists session Πτ
i which

outputs (Pj , mi, mj , sid) but there is no session Πη
j which ran on inputs (∗, Pi, mj).

In other words, if Πτ
i outputs a message mj as sent by Pj but Pj did not send mj to

Pi on any session. We call a SAS-MCA protocol (T, ε)-secure if for every adversary
A running in time T , A wins with probability at most ε. Note that in the SAS-MCA
game the adversary can launch multiple concurrent sessions among every pair of play-
ers. To make our security results concrete in the multi-player setting, we will consider
an (n, τt, τc)-attacker A against the SAS-MCA protocol, where the above game is re-
stricted to n players Pi, at most τt total number of sessions per player, and at most τc

sessions that can be concurrently held by any pair of players, i.e. SAS(i, j) ≤ τc for all
i, j. We note that the τc bound is determined by how long the adversary can lag the SAS
messages, how many sessions he can cause to re-start at one side, and how long he can
keep alive a session waiting for its SAS message on the other side. In many applications
it will be rather small, but it is important to realize that in many applications it is greater
than 1.

3.3 SAS-AKA and Its Security

SAS-AKA is an Authenticated Key Agreement (AKA) protocol in the SAS model. The
inputs to the protocol are as in the SAS-MCA but with no messages. Each instance Πτ

i

outputs either a rejection or a tuple (Peer(Πτ
i ), K, sid), where K is a fresh, authenti-

cated, and secret key which Pi hopes to have shared with Pj = Peer(Πs
i ), and sid is a

locally unique session id. An SAS-AKA scheme protects the secrecy of keys output by
honest players on sessions involving other uncorrupted player. The correctness prop-
erty for a SAS-AKA protocol is that if two sessions Πτ

i and Πη
j are partnered then both

sessions accept and output the same key Kτ
i = Kη

j .
We model security of the SAS-AKA protocol similarly as in the SAS-MCA case,

by an interaction between the (n, τt, τc)-attackerA and the challenger that operates the
network of n players P1, ..., Pn. In this game, however, the challenger has a private
input of bit b. The rules of communication model between the challenger and A and
the set-up of all honest players are the same as in the SAS-MCA game above, and the
challenger services A’s requests launch, send, and SAS-send in the same way as in
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the SAS-MCA game, except that there’s no message in inputs to the launch request. In
addition,A can issue a query of the form reveal(Πτ

i ) for any Πτ
i , which gives him the

key Kτ
i output by Πτ

i if this session computed a key, and a null value otherwise. Finally,
on one of the sessions Πτ

i subject to the constraints specified below, the adversary can
issue a Test(Πτ

i ) query. If Πτ
i has not completed, the adversary gets a null value.

Otherwise, if b = 1 thenA gets the key Kτ
i , and if b = 0 thenA gets a random bitstring

of the same length. The constraint on the tested session Πτ
i is that the adversary issues

no reveal(Πτ
i ) query and no reveal(Πη

j ) query for any Πη
j which is partnered with

Πτ
i . After testing a session, the adversary can then keep issuing the launch, send,

SASsend and reveal commands, except it cannot reveal the tested session or a session
that is partnered with it. Eventually A outputs a bit b̂. We say that an adversary has
advantage ε in the SAS-AKA attack if the probability that b̂ = b is at most 1/2+ ε. We
say that the SAS-AKA protocol is (T, ε)-secure if for all A’s bounded by time T this
advantage is at most ε.

We note that the above model includes only static corruption patterns. Indeed, the
protocols we present here do not have perfect forward secrecy, since we are interested in
provable security of minimal-cost AKA protocols in which players re-use their private
key material across all protocol sessions.

4 Encryption-Based SAS Message Authentication Protocol

In this section, we present a novel 3-round encryption-based bidirectional SAS-MCA
protocol denoted Enc-MCA. The protocol is depicted in Figure 2. It runs between the
initiator Pi, who intends to authenticate a message mi, and the responder Pj , who in-
tends to authenticate a message mj . (SKi, PKi) denotes Pi’s private/public key pair
of an IND-CCA encryption scheme, which w.l.o.g. we assume to be permanent. The
protocol assumes the CRS model where the instance KP of the CCA-Secure commit-
ment scheme is globally chosen. The protocol is based on the unidirectional message-
authentication V-MA protocol of Vaudenay [20], Figure 1. The only difference is that
Pi adds to its message mi its public key PKi and a random nonce si ∈ {0, 1}l, and the
responder Pj sends its randomness Rj encrypted under PKi, together with its message
mj and a random nonce sj ∈ {0, 1}l. In other words, Pi sends (mi, si, PKi) along
with a commitment ci to (mi, si, PKi, Ri) where Ri is a random k-bit bitstring. Pj

replies with an encryption of mj , sj , and a random value Rj ∈ {0, 1}k. Finally Pi

sends to Pj its decommitment di to ci, and Pi and Pj exchange over the SAS channel
values SASi = Ri⊕Rj , where Pi obtains Rj by decrypting ej , and SASj = Ri⊕Rj ,
where Pj obtains Ri by opening the commitment ci. The players accept if the SAS
values match, and reject otherwise. Pi and Pj also output session identifiers sidi and
sidj , respectively, which are outputs of a collision-resistant hash function H on the con-
catenation of all messages sent (received resp.) and received (sent resp.) on this session,
including the messages on the SAS channel. (This is done only for simplicity of security
analysis: In fact the same security argument goes through if sidi = sidj = [si|sj ].) The
following theorem states the security of this protocol against an (n, τt, τc)-adversary:
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Enc-MCA Protocol
(We denote as v̂ the value received by Pi/Pj if the value sent by Pj/Pi is denoted as v.)

Pi(Pj , (SKi, PKi), mi, init) Pj(Pi, mj , resp)

Pick Ri ∈ {0, 1}k , si ∈ {0, 1}l Pick Rj ∈ {0, 1}k , sj ∈ {0, 1}l

(ci, di)← com([mi|si|PKi|Ri])
mi,si,PKi,ci ��

ej�� ej = Enc ˆPKi
([mj |sj |Rj ])

[m̂j |ŝj |R̂j ]← DecSKi(êj)
di �� R̂i ← open([m̂i|ŝi| ˆPKi], ĉi, d̂i)

SASi = Ri ⊕ R̂j

SASi �� SASj = R̂i ⊕Rj

sidi = H(mi, si, PKi, ci, êj ,
SASj�� sidj = H(m̂i, ŝi, ˆPKi, ĉi, ej ,

di, SASi, ˆSASj) d̂i, ˆSASi, SASj)

Output (Pi, mi, m̂j , sidi) if Output (Pj , mj , m̂i, sidj ) if
SASj = Ri ⊕ R̂j SASi = R̂i ⊕Rj

Enc-AKA Protocol
The protocol follows Enc-MCA with mi set to null and mj = K, for random K ∈ {0, 1}l

chosen by Pj . If its SAS test passes player Pj , resp. Pi, outputs mj [= K], resp. m̂j .

Fig. 2. Encryption-based SAS-MCA protocol (Enc-MCA) and SAS-AKA protocol (Enc-AKA)

Theorem 1 (Security of Enc-MCA). If commitment scheme is (TC , εC)-NM and en-
cryption scheme is (TE , εE)-SS-CCA, then the Enc-MCA protocol is (T, p)-secure
against (n, τt, τc)-attacker for p ≥ 2nτtτc(2−k+max(εC , εE)) and T ≤ min(TC , TE)
−μ, for a small constant μ.

Note on the Security Claim and the Proof Strategy. The nτtτc2−k security bound would
be optimally achievable in the context of (n, τt, τc)-adversary because this is the prob-
ability, for nτtτc � 2−k, that the k-bit SAS messages are equal on some two matching
sessions, even though the adversary substitutes sender’s messages on every session,
since there are nτt sessions, each of which can succeed if the SAS message it requires
to complete is present among τc SAS messages produced by the sessions concurrently
executed by its peer player. We note that if adversary’s goal is to attack any particular
player and session, the same theorem applies with values n = τt = 1.

However, the security bound nτtτc2−k+1 we show is factor of 2 away from the opti-
mal. This factor is due to the fact that the reduction has to guess whether the adversary
essentially attacks the encryption or the commitment tool used in our protocol. This
also accounts for the essential difference between our proof and those of [9,12]. Even
assuming the simplest n = τt = τc = 1 case, there are several patterns of attack, corre-
sponding to three possibilities for interleaving messages and other decisions the adver-
sary can make (in our case the crucial switch is whether or not the adversary modifies the
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initiator’s payload m, s, PK). For each pattern of attack, we provide a reduction, which
given an attack that breaks the SAS-MCA/AKA scheme with probability 2−k+ε, condi-
tioned on this attack type being chosen, attacks either the commitment or the encryption
scheme with probability ε. While some of these component reductions are identical to
those shown for the same underlying SAS-MA protocol by Vaudenay in [20], others are
different e.g. because they attack the encryption scheme. However, it is not clear how
to use such reductions to show any better security bound than q ∗ 2−k where q is the
number of such attack cases. Fortunately, we manage to group these attack patterns into
just two groups, with two reductions, the first translating any attack in the first group
into an encryption attack, the second translating any attack in the second group into a
commitment attack. Crucially, both reductions are non-rewinding, and hence they are
security-preserving. However, faced with an adversary which adaptively decides which
group his attack will fall in we still need to guess which reduction to follow, hence the
bound on attacker’s probability we show for our SAS-MCA/AKE scheme is a factor of
2 away from the optimal.

Proof: We prove the above by showing that if there exists (n, τt, τc)-adversaryAwhich
can attack the proposed protocol in time T < min(TC , TE) − μ and probability p >
2nτtτc(2−k +max(εC , εE)), then there exists either a T +μ < TC adversaryBC which
breaks NM security of the commitment scheme with probability better than 2−k+εC , or
there exists a T+μ < TE adversaryBE which wins the SS-CCA game for the encryption
scheme with probability better than 2−k + εE . A succeeds if it can find a player Pi

and a session Πs
i with a peer party Pj , such that Πs

i accepts message m̂j
(s) but the

adversary never launches an instance of Pj on message m̂j
(s). To achieve this A in

particular has to route to Πs
i a SAS message SASj

(s′) originated by some session Πs′
j

s.t. Peer(Πs′
j ) = Pi. By inspection of the protocol, Πs

i accepts only if Ri
(s) ⊕ R̂

(s)
j =

R̂
(s′)
i ⊕Rj

(s′), or equivalently, SASi
(s) = SASj

(s′). Note that this condition must hold
regardless whether the attacked session Πs

i is an initiator or a responder. This allows us
to simplify the notation and in the remainder of the proof we assume Πs

i is the initiator,

Πs′
j is the responder, and we assume that either m̂

(s)
i �= mi

(s) or m̂
(s′)
j �= mj

(s′).
In Figure 3 we show adversary’s interactions as a man in the middle between Πs

i and
Πs′

j . Note thatA can control the sequence in which the messages received by these two
players are interleaved, and A has a choice of the following three possible sequences:

Pi(Π
s
i ) A Pj(Π

s′
j )1

mi,PKi,ci �� 5
m̂i, ˆPKi,ĉi ��

2
êj�� 6

ej��

3
di �� 7

d̂i ��

4
SASi �� 8

SASj��

Fig. 3. Adversarial Behavior in the Enc-MCA protocol
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Interleaving pattern I : (1 ≺ 5 ≺ 6 ≺ 2 ≺ 3 ≺ 4 ≺ 7 ≺ 8)
Interleaving pattern II : (1 ≺ 5 ≺ 6 ≺ 7 ≺ 8 ≺ 2 ≺ 3 ≺ 4)

Interleaving pattern III : (1 ≺ 2 ≺ 3 ≺ 4 ≺ 5 ≺ 6 ≺ 7 ≺ 8)

In each of these three message interleaving patterns we consider two subcases, de-
pending on whether the pair (m̂i, ˆPKi) that the adversary delivers to Πs′

j in message
#5 (see Figure 3) is equal to (m,

iPKi) that Πs
i sends in message #1.

We denote the event that adversary succeeds in an attack as AdvSc, the event that
(m̂i, ˆPKi) = (mi, PKi) and that the attack succeeds as SM, the event that (m̂i, ˆPKi)
�= (mi, PKi) and that the attack succeeds as NSM, and we use Int[1], Int[2], Int[3] to
denote events when the adversary follows, respectively, the 1st, 2nd, or 3rd message
interleaving pattern. We divide the six possible patterns which the successful attack
must follow into the following two cases:

Case1 = NSM ∨ (AdvSc ∧ Int[2]) & Case2 = SM ∧ (Int[1] ∨ Int[3])
We construct two reduction algorithms, BC and BE , attacking respectively the NM

property of the commitment, and the SS-CCA property of the encryption scheme used
in the Enc-MCA protocol. Both BC and BE use the Enc-MCA attacker A as a black
box, and both reductions have only constant computational overhead which we denote
as μ, hence both BC and BE run in time at most T − μ < min(TC , TE). We show that
if Pr[Case1] ≥ p/2 then BC wins the NM game with probability greater than 2−k + εC ,
and if Pr[Case2] ≥ p/2 then BE wins the SS-CCA game with probability greater than
2−k + εE . This will complete the proof because AdvSc = Case1∪Case2, and therefore
if Pr[AdvSc] = p then either Pr[Case1] ≥ p/2 or nτtτc) or Pr[Case2] ≥ p/2.

Both BC and BE proceed by first guessing the sessions Πs
i and Πs′

j involved in
A’s attack. The probability that the guess is correct is at least 1/nτtτc because A runs
at most nτt sessions and each session can have at most τc concurrently running peer
sessions. Since the probability of a correct guess is independent of adversary’s view, for
either i = 1 or i = 2, the probability that the guess is correct and Casei happens is at
least p/2 ∗ 1/nτtτc > 2−k + max(εC , εE). We show that if i = 1 then BC wins in the
NM game, and hence its probability of winning is greater than 2−k + εC , and if i = 2
then BE wins the SS-CCA game, and hence its probability of winning is greater than
2−k + εE .

It remains for us to construct algorithms BC and BE with the properties claimed
above. Algorithm BC , depending on the behavior of A, executes one of the three sub-
algorithms, BC[i] for i = 1, 2, 3. These three algorithms correspond to three cases of
message interleaving by the adversary. For lack of space we relegate these reductions to
the full version [8], but each of these reductions are attacks the non-malleability of the
commitment scheme, so each of them is essentially the same as the reduction given by
Vaudenay [20] for the corresponding message interleaving pattern for the underlying
MCA protocol. More specifically:

If (m̂i, ŝi, ˆPKi) �= (mi, si, PKi) and A chooses interleaving pattern I or III, then
BC executes sub-algorithms, respectively, BC[1] and BC[3].
If A chooses interleaving pattern II, BC executes BC[2].
Otherwise, i.e. if A sends (m̂i, ŝi, ˆPKi) = (mi, si, PKi) andA follows patterns I
or III, BC fails.
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Similarly, based on the behavior ofA, algorithmBE executes one of two sub-algorithms
BE[i] for i = 1, 2. In contrast to the original MCA protocol of Vaudenay, these two
reductions attack CCA security of encryption. We show reduction BE[1] in Figure 4.
For lack of space we relegate reduction BE[2] to the full version [8], but it is easy to
reconstruct given the message interleaving pattern it involves, and it is similar to BE[1].
The BE algorithms proceeds in one of the following ways:

If (m̂i, ŝi, ˆPKi) = (mi, si, PKi) and A chooses interleaving pattern I, BE exe-
cutes BE [1].
If (m̂i, ŝi, ˆPKi) = (mi, si, PKi) and A chooses interleaving pattern III, BE exe-
cutes BE [2].
Otherwise, i.e. ifA sends (m̂i, ŝi, ˆPKi) �= (mi, si, PKi) orA follows interleaving
pattern II, BE fails.

Note that if (m̂i, ŝi, ˆPKi) �= (mi, si, PKi) thenA essentially attacks the V-MA proto-
col of Vaudenay, because pair (mi, PKi) in the Enc-MCA protocol plays a role of the
message in the V-MA protocol, so this event in the Enc-MCA protocol is equivalent to
Pj accepting the wrong message in the V-MA protocol. Therefore, the three reduction
(sub)algorithms BC[1], BC[2], and BC[3], essentially perform the same attacks on the
NM game of the commitment scheme as the corresponding three reductions given by
Vaudenay for the V-MA protocol. The only difference is that our reductions put a layer
of encryption on the messages sent by Pj , as is done in our protocol Enc-MCA. As
in Vaudenay’s reductions, the NM game needs to be extended so that the challenger,
at the end of the game sends to the attacker the decommitment d corresponding to the
challenge commitment c. Since this happens after the attacker sends its R, the difficulty
of the NM game remains the same. However, if the BC reduction gets the decommit-
ment d from the NM challenger, the reduction can complete the view of the protocol
to A, which makes it easier to compare the probability of A’s success with the proba-
bility of success of BC . We refer the reader to the full version [8] for the specification
of these three subcases of the reduction to an NM attack. An important feature of these
algorithms is that each of these sub-cases of the BC reduction at first follows the same
protocol with the NM challenger, and that BC can decide which path to follow, namely
whether to switch to sub-algorithm BC[1,2] or BC[3], based on the first message it re-
ceives from A. Specifically, BC switches to BC[3] if A first sends message êj , and
otherwise BC follows BC[1,2]. Similarly, in the latter case, BC switches to either BC[1]
or BC[2] based on A’s next response. Therefore these three algorithms are really just
three subcases of a single reduction algorithm BC . By inspection of these three subcases
one can conclude that BC wins in its non-malleability attack game with probability at
least Pr[Case1].

Similarly algorithm BE at first follows the same algorithm and then can dispatch
into BE [1] or BE[2] depending on adversary’s messages. By inspection of these two
subcases one concludes that BE wins in its CCA attack game with probability at least
Pr[Case2], which ends the proof.

Encryption-based SAS Authenticated Key Agreement Protocol. The SAS-AKA protocol
Enc-AKA based on the Enc-MCA protocol is just an instance of Enc-MCA where Pi’s
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BE [1] SS-CCA Challenger
mi,mj �� Ri ← {0, 1}k PKi�� (SKi, PKi)← KeyGen

si ← {0, 1}l
mi,si,PKi,ci�� (ci, di)← com(

[mi|si|PKi|Ri])

m̂i,ŝi, ˆPKi,ĉi �� Fail if (m̂i, ŝi, ˆPKi) Rj ← {0, 1}k
�= (mi, si, PKi)

mj �� sj ← {0, 1}l
ej�� ej�� ej ← EncPKi([mj |sj |Rj ])
êj �� Fail if êj �= ej

êj �� [m̂j |ŝj |R̂j ]← DecSKi(êj)

di,SASi�� SASi ← Ri ⊕ R̂j

m̂j ,ŝj ,R̂j��

d̂i �� R̂i ← open([m̂i

|ŝi| ˆPKi], ĉi, d̂i)
R̂j⊕R̂i⊕Ri �� Success if Rj =

R̂j ⊕ R̂i ⊕Ri

SASj�� SASj ← R̂i ⊕Rj

Fig. 4. Construction of BE [1] ((mi, si, PKi) = (m̂i, ŝi, ˆPKi), interleaving case I)

message mi is set to null and Pj’s message mj is a fresh random key which Pj picks
for each session, as shown in Figure 2. For lack of space we relegate the proof of the
following theorem to the full version [8], but it is very similar to the proof of security
of the Enc-MCA protocol given above.

Theorem 2 (Security of Enc-AKA). If commitment scheme is (TC , εC)-NM and en-
cryption scheme is (TE , εE)-SS-CCA, then the Enc-AKA protocol is (T, p)-secure
against (n, τt, τc)-attacker for p ≥ 2nτtτc(2−k + max(εC , εE) and T ≤ min(TC , TE)
−μ, for a small constant μ.
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A On the General Compilation Theorem of Pasini-Vaudenay

We claim that the general composition theorem given by Pasini and Vaudenay [12] for
transforming KA protocols to SAS-AKA protocols given any SAS-MCA scheme, can-
not be applied in general to KA schemes which share state between sessions. The theo-
rem of [12] constructs a SAS-AKA protocol by running any 2-round (non-authenticated)
KA protocol and then inputting the two messages generated by this KA, mi of the ini-
tiator Pi and mj of the responder Pj , into a SAS-MCA protocol, where Pi goes first,
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and mj is possibly based on mi. Known 3-round SAS-MCA protocols allow the respon-
der’s message mj to be picked in the second round, and thus this compilation creates a
4-round SAS-AKA from 2-round KA and 3-round SAS-MCA. Note that at the time Pj

computes his response mj , following the algorithm of the KA protocol on the received
message mi, the message mi is not yet authenticated by Pj . If the KA protocol does
not share state between sessions, having Pj compute mj on adversarially-chosen m̂i

can endanger only the current session, and since the SAS-MCA subprotocol will let Pj

know that m̂i was not sent by Pi, Pj will reject this session.
However, if Pj keeps a shared state between sessions then the information Pj re-

veals in mj , computed on unauthenticated message m̂i, could potentially reveal some
secret information that endangers all other sessions of player Pj , or at least all other ses-
sions between Pj and Pi. It’s easy to create a contrived example of a Key Agreement
protocol which is secure in the static adversarial model when implemented over authen-
ticated channels but yields an insecure SAS-AKA protocol when implemented with a
SAS-MCA scheme in this fashion. For example, take any Key Agreement protocol,
KA, secure over authenticated links, let each player Pj keep an additional long-term
secret sj and compute a per-partner secret kij = Fsj (< Pi >) where F is a PRF. If
the initiator’s message mi contains a special symbol ⊥, Pj sends mj = kij to Pi in
the open. Otherwise, Pj follows the KA protocol to compute its response mj , except
that it attaches to it the resulting session key encrypted with a symmetric encryption
scheme under kij . In the authenticated link model, and considering a static adversary,
an honest player never sends the ⊥ symbol. If the encryption is secure, encrypting the
session key does not endanger its security. Also, if F is a PRF then learning values of
the F function under indices corresponding to the corrupt players does not reveal any
information about the values of F on indices corresponding to the honest players. On
the other hand, this protocol is an insecure SAS-AKE protocol, because an adversary
can inject message m̂i =⊥ on the insecure channel on behalf of any player Pi, and
since Pj will reply with ki, this allows the attacker to compute the keys for all sessions,
past and future, between Pj and Pi.

This counter-example relies on an admittedly artificial KA protocol with shared ses-
sion state where interference with a single session between a pair of players trivially
reveals the keys on all sessions between the same players. Still, this does show that the
compilation technique of [12] can apply only to KA protocols with no shared state. Of
course while this general compilation does not apply, a combination of any particular
SAS-MCA protocol and a KA scheme with shared state can still be shown secure, and
that, with some simplifications to the SAS-MCA protocol of Vaudenay [20] made in
the process, is exactly what we show in this paper.
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Abstract. Kleptography deals with employing and generating cryp-
tographically secure covert channels as threats to unscrutinized (e.g.,
tamper-proof) cryptosystems and their applications. A prototypical ex-
ample is a cryptosystem (or a protocol message employing a cryptosys-
tem) where a cryptogram field (e.g., a public key, an encrypted message,
a signature value) hosts an “inner cryptographic field” that is invisible
(in the sense of indistinguishability) to all but the attacker, yet it is
a meaningful ciphertext to the attacker (who is the designer/producer
of the cryptosystem). The technical goal of Kleptography has been to
identify “inner fields” as a way to embed cryptographic values in small
bandwidth channel/sub-cryptogram inside a hosting system (RSA, DH
based systems, etc.)

All asymmetric backdoors to date, that seamlessly embed an inner
subliminal crypto field inside a hosting cryptographic value needed ran-
dom oracle assumptions. This was used to make the inner value look
“almost uniformly random” as part of its hosting random field. It was
open whether the need for a random oracle is inherent, or, positively put:
is there an algebraic cryptographic ciphertext that is embeddable inside
another algebraic cryptographic field “as is”? In this work we achieve this
goal for small bandwidth fields. To this end we present a new information
hiding primitive that we call a “covert key exchange” that permits prov-
ably secure covert communications. Our results surpass previous work
since: (1) the bandwidth that the subliminal channel needs is extremely
small (bit length of a single compressed elliptic curve point), (2) the er-
ror probability of the exchange is negligible, and (3) our results are in
the standard model. We use this protocol to implement the first klepto-
graphic (i.e., asymmetric) backdoor in the standard model in RSA key
generation and point at other applications. Key properties of the covert
key exchange are that (1) both Alice’s message to Bob and their shared
secret appear to all efficient algorithms as uniformly random strings from
{0, 1}k+1 and {0, 1}M , respectively (this is needed for the embedding),
and (2) the fastest adversaries of the exchange run in time exponential
in k, based on current knowledge (they have to solve DL over e-curves).
We achieve this in the standard model based on the ECDDH assumption
over a twisted pair of e-curves.
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1 Introduction

Advances in information hiding reveal new threats by parties (e.g., hardware
manufacturers, system designers) and uncover trust-related issues in systems. In-
formation hiding in cryptographic algorithms/ protocols, fundamentally requires
embedding one cryptographic primitive inside another. Often, kleptographic de-
sign is perhaps more demanding than simple cryptosystems (one has usually
to prove security of two cryptosystems: one inside the other). In particular, it
requires a random element in one cryptosystem to host, as a random substring,
an element from another cryptographic primitive, and do so in a hidden (indis-
tinguishable) fashion.

For example, an kleptographic backdoor in RSA key generation has been
shown that works for a wide-range of RSA keys (e.g., 768 bits and above) with
a complete proof given in [26]. However, the result relies on the random oracle
model and ECDDH, thus it does not tell us about an algebraic embedding of
a backdoor directly inside an RSA modulus, and is not a “direct relationship”
between two algebraic cryptographic distributions. Another example is a highly
space-efficient public key stegosystem [17]. But, it relies on the less conventional
“Oracle Diffie-Hellman” assumption, which again does not imply feasibility based
on a more general assumption such as DDH.

A new approach is needed to advance the state-of-the-art in areas like these,
so that we may understand better the direct embedability relationships between
algebraic primitives and natural cryptographic assumptions about them (so we
get proofs that are not in an idealized world).

Here, we show a new method for the task of “hidden embedding”. In our
key exchange, the approach balances the entropy in Alice’s message to Bob
against that of their resulting shared secret, and it permits Alice’s message to
be subliminally embedded (in a provably indistinguishable sense) and at the
same time their shared secret is ready for direct use (no entropy extraction
needed). We call the approach “entropy balancing.” We further say that such
an exchange is covert since Alice’s trapdoor value looks like a random bit string.
This problem is strictly more demanding than simply requiring that one value
in the exchange, e.g. the shared secret, appear as a uniformly random bit string.

To make things even more difficult, a covert key exchange is often conducted
through a subliminal channel having narrow bandwidth (e.g., in kleptography).
First, this implies that if the channel is inside a hosting distribution, one can first
determine a random choice of its wishes and can nevertheless sample the hosting
distribution (which is a prime property of subliminal channels). Second, the small
size necessitates a space-efficient key exchange (e.g., using elliptic curve crypto
with point compression). To put it another way, whereas in many cryptographic
applications space-efficiency is merely a convenience or an “added benefit”, in
information hiding space-efficiency is often a mandatory design requirement (this
is the case in the asymmetric backdoors that we present).

Our complete covert key exchange solution relies on the traditional ECDDH
problem in the following sense. We use a twisted pair of elliptic curves that
exhibit the following distinguishing characteristic. In one curve the Weierstrass
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coefficient b is a quadratic residue whereas in the other curve this coefficient is
a quadratic non-residue. Both curves in the twist have prime order and half of
the upper order bits of p are binary 1s. As we show, an adversary that breaks
our scheme is able to solve ECDDH on at least one of these two types of curves.

We employ the notion of entropy balancing to provide the following contri-
butions: (1) space-efficient covert key exchange as our building block. We prove
the security of the exchange in the standard model using only the traditional
ECDDH assumption (as opposed to a newer assumption such as oracle DH).
Note that Alice’s message size is optimized provided that ECDDH is expo-
nentially hard on both curves in the twist. (2) Kleptographic attack on RSA
key generation. This was the first and most researched kleptographic problem,
and we give the first complete solution in the standard model. (3) Public key
stegosystem secure against chosen plaintext attacks based on ECDDH. (4) We
also give the first asymmetric backdoor in SSL in the standard model such that:
(a) the backdoor is in effect in each session with overwhelming probability, and
(b) there is no state-information for the backdoor stored across sessions (i.e., no
key-exposure between sessions).

Organization: In Section 2 we present related work and background material
on twisted elliptic curves. The definition of a covert key exchange is presented in
Section 3 and a construction for it is given in Section 4. In Section 5 we present
our applications. ECDDH is reviewed in Appendix A. The Twisted Decision
Diffie-Hellman (TDDH) problem is reviewed in Appendix B. We prove that the
key exchange is complete (i.e., terminates in agreement) in Appendix C. The
security proofs for the key exchange are given in Appendix D.

2 Background

The background material spans results on key exchange protocols, and asym-
metric backdoors in RSA key generation. We review the works in these areas
that closely relate to the applications that we present.
Entropy extraction in key exchanges: Previous work has solved the problem of
conducting a key exchange in which the shared secret is a uniformly random
binary string. The leftover hash lemma [12] was used to derive symmetric keys
properly from a Diffie-Hellman shared secret [7]. In other words, the symmetric
key bits are drawn independently using the uniform distribution. An algebraic
approach based on a twisted pair of curves was used to derive a shared secret
that is a uniformly random binary string [2]. Related work is [9] that presents
a secure hashed Diffie-Hellman transform over a non-DDH group G (a group
in which DDH does not hold). Gennaro et al showed that for the hashed DH
transform to be secure it is sufficient that G contain a sufficiently large Decision
Diffie-Hellman subgroup. Note that unlike the above cases, entropy balancing
has the stronger requirement that one of the key exchange messages that is sent
in the clear must also be a random binary string. This notion applies to various
information hiding applications and we concretely implement this notion in the
form of a covert key exchange protocol.
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Asymmetric Backdoors in SSL: An asymmetric backdoor in the Secure Sock-
ets Layer (SSL)1 was shown in [10]. The constructions are heuristic in nature
and there are no formal security arguments made. Recent work on the problem
also includes [11] that presents general attack ideas. Again, no formal security
arguments are made in these works.

An asymmetric backdoor in SSL was presented in [27] that employs Kaliski’s
elliptic curve pseudorandom bit generator [14]. The construction is based on
a key exchange and is proven secure under ECDDH in the standard model.
However, key agreement fails with probability very close to 1/2 and this causes
the backdoor in SSL to fail to take effect in each session with probability very
close to 1/2. However, an extension to the backdoor attack is shown that retains
state information across SSL connections (chaining), and the expectation is that
the backdoor will remain in effect after the first few SSL sessions. The two
problems with the approach are that: (1) completeness of the backdoor is not
assured in the first few exchanges, and (2) there is key-exposure in the state
information that is stored in the backdoor. We solve these problems.

Asymmetric backdoors in RSA key generation: The notion of an asymmetric
(kleptographic) backdoor was introduced in [24,25] along with the first asym-
metric backdoor in RSA key generation. The backdoor employs a well-known
subliminal channel [21,22] in composites [16,5] to leak the private key. An asym-
metric backdoor can only be used by the designer that plants it, even when the
full specification of the backdoor is public (confidentiality property). It is ap-
plicable in black-box implementations in which the implementation is private.
This is relevant, for example, in obfuscated software or tamper-proof hardware
or open source code that no one scrutinizes!

An asymmetric backdoor attack is known as a secretly embedded trapdoor
with universal protection (SETUP). The embedded trapdoor is the public key of
the (malicious) designer. The attack revolves around a reference key generator
that has no backdoor (it is a typical public specification of the key generator).
An RSA key generation SETUP must satisfy the indistinguishability property.
This holds when the ensemble corresponding to the key pair that is output by
the backdoor key generator is polytime indistinguishable from the ensemble cor-
responding to the key pair that is output by the reference key generator. So,
RSA key pairs with the backdoor are indistinguishable from key pairs without
the backdoor. A secure SETUP satisfies both the confidentiality and indistin-
guishability properties.

Crépeau and Slakmon presented backdoor designs for RSA key generation in
[4]. These designs emphasized speed and were symmetric backdoors as opposed to
being asymmetric since the constructions assume that a secret key remains hidden
even after reverse-engineering (i.e., when the backdoor is layed bare). The paper
presents an approach that is intended to work even when Lenstra’s composite gen-
eration method is used [16]. The authors made an important observation in RSA
key generation backdoor design, namely, that by using Coppersmith’s algorithm

1 Freier, Karlton, and Kocher, Internet Draft “The SSL Protocol Version 3.0,” Network
Working Group, Nov. 18, 1996.
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[3], the amount of information that needs to be leaked is small. In more detail, it
is sufficient for the backdoor key generator to leak the upper half of the bits of the
RSA prime p instead of (nearly) the whole prime. We employ this observation.

A recent asymmetric backdoor in RSA key generation was proposed that uti-
lizes a twisted pair of binary curves [26]. The backdoor key generator was shown
to be secure in the random oracle model under the ECDDH assumption. The
backdoor we present, on the other hand, does not use the random oracle model.
Note that from a basic research point of view, asymmetric backdoor designs are
not merely a warning to users, but represent also properties of cryptographic
mechanisms, thus our result establishes a purely algebraic relationship between
the two cryptographic distributions.

We point out that straightforward Diffie-Hellman (DH) [6] using twisted
curves does not solve our problem of implementing a space-efficient covert key
exchange. The space-efficiency of ECDH is not the problem, since points can be
compressed. However, the problem is making Alice’s message to Bob and their
shared secret appear as random binary strings. To solve this, the curves could
be, e.g. binary or over IFp with p being a large prime with the upper half of the
bits of p being 1. In both cases, a properly chosen twist has the property that
a random encoded (compressed) point on it looks like a random binary string.
In such a solution, Alice chooses a curve in the twist randomly2 and uses it for
a DH key exchange. The problem is that Alice’s trapdoor value to Bob will be
on one of the two curves and their shared secret will be on the same curve. This
correlation causes the solution to fail to solve the problem.

Indeed this key exchange problem was addressed in [27]. As noted, this idea
causes Bob to fail to learn the shared secret with probability very close to 1/2.
The partial covert key exchange solution in [27] is therefore ill-suited for a back-
door in RSA key generation since the backdoor would only take effect with
probability very close to 1/2 when a key pair is generated. This is a serious
problem since RSA keys are typically generated infrequently (sometimes once
every couple of years). It also appears undesirable as a basis for an elliptic curve
public key stegosystem since it is not clear how to preserve space-efficiency given
that the exchange is prone to fail. In this paper we solve these issues.

2.1 Notation and Conventions

Elliptic Curves: An elliptic curve Ea,b(IFp) is defined by the simplified Weier-
strass equation y2 = x3 + ax + b where a, b ∈ IFp satisfy 4a3 + 27b2 �≡ 0 mod
p. Let #Ea,b(IFp) denote the number of points on the curve Ea,b(IFp). Let O
denote the point at infinity on Ea,b(IFp). We use uppercase to denote a point
on an elliptic curve and lowercase to denote a scalar multiplier. So, xG denotes
scalar multiplication. Recall that 0G = O, 1G = G, 2G = G+G, and so on.

In our review of Kaliski’s work in [14] (and in particular his Lemma 6.6
that covers embedding using twisted curves) we use his notation Ea,b(IFp) and
Ea′,b′(IFp). However, we do not use this convention in our constructions. We

2 In accordance with the number of points on each curve.
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define E0(IFp) = Ea,b(IFp) and E1(IFp) = Ea′,b′(IFp). This lets us select between
the two curves using a single bit, which we do often. We also define ri = #Ei(IFp)
to be the number of points on curve Ei(IFp) for i = 0, 1. Let Oi be the point at
infinity on Ei(IFp) for i = 0, 1.
String Operations: If α is a bit string then |α| denotes the length in bits of α.
However, if S is a set then |S| denotes the cardinality of S. Let α||β denote
the concatenation of strings α and β. Let LSB(α) be a function that returns the
least significant bit of bit string α. Let ⊕ denote the infix bitwise exclusive-or
operator that operates on two bit strings of equal length. α >> b denotes the
following string operation. The string α is returned but with the rightmost b bits
removed from α (this is right shifting).
Selection and Assignment: We use s ∈R S to denote the selection of an element
s uniformly at random from set S. However, unless otherwise stated, an element
that is selected randomly is selected using the uniform distribution. The symbol
← is used for assignment.
Integers vs. Strings: We are careful to treat integers as separate from bit strings.
This is to avoid ambiguities that can result from the presence/absence of lead-
ing zeros. This is of particular importance in information hiding since the rep-
resentation of information must be carefully controlled. We define algorithm
StrToInt(xs) to take as input a bit string xs and return the integer x corre-
sponding to xs in base-2. We define algorithm IntToStr(x) to take as input a
non-negative integer x and return the bit string xs corresponding to x in base-2
(so the most significant bit is always 1, unless x = 0 in which case the output is
xs = 0). We define algorithm Format as follows.

Format(x, �):
1. xs ← IntToStr(x)
2. if (|xs| > �) then output 0� else output 0�−|xs|||xs

Flow Control: We use logical indentation to show the body of if statements,
for loops, and so on. Also, an algorithm that terminates early uses the keyword
halt in order to terminate.

2.2 Elliptic Curve Background

Twists using the general class of elliptic curves over IFp were studied by Kaliski
[13,14,15]. Below we give Lemma 6.5 and Definition 6.1 from [14].

Lemma 1. Let β �= 0 be a quadratic nonresidue in the field IFp and let Ea,b(IFp)
be an elliptic curve. Then for every value x, letting y =

√
x3 + ax+ b:

1. If y is a quadratic residue, then the points (x,±y) are on the curve Ea,b(IFp).
2. If y is a quadratic nonresidue, then (βx,±

√
β3y) are on Eaβ2,bβ3(IFp).

3. If y = 0, then the point (x, 0) is on the curve Ea,b(IFp) and the point (βx, 0)
is on the curve Eaβ2,bβ3(IFp).
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A corollary to this lemma is that the number of points on the two curves is
2p+ 2, two points for each value of x and two identity elements.

Definition 1. Let Ea,b(IFp) be an elliptic curve of parameter k (i.e., p is k bits
long) and let β be a quadratic nonresidue modulo p. A twisted pair Ta,b,β(IFp) of
parameter k is the union of the elliptic curves Ea,b(IFp) and Eaβ2,bβ3(IFp).

A twist may be a multiset, since Ea,b(IFp) and Eaβ2,bβ3(IFp) may intersect.
Below we review algorithms from [27] (which are built on [14]) that en-

code/decode points using fixed-length bit strings. Fact 1 is from [14]. The input
P to Encode is a point originating on Ec where c ∈ {0, 1}. Decode outputs (P, c)
where P resides on Ec where c ∈ {0, 1}. XT , X−1

T,even, and X−1
T,odd are defined in

[14]. Encode(Ta,b,β(IFp), P, c) = Format(XT [Ta,b,β(IFp)](P, c), k + 1).

Decode(Ta,b,β(IFp), Ps):
1. set ysgn← LSB(Ps) and set α← StrToInt(Ps)
2. if (ysgn = 0) then output (P, c)← X−1

T,even[Ta,b,β(IFp)](α) and halt

3. output (P, c)← X−1
T,odd[Ta,b,β(IFp)](α)

Fact 1. Let Ta,b,β(IFp) be a twisted pair. Encode is a polynomial time com-
putable, probabilistic polynomial time invertible mapping between the set of
points on the twisted pair Ta,b,β(IFp) and all (k + 1)-bit strings corresponding
to the integers in the set {0, ..., 2p+ 1} padded with leading zeros as necessary.
The inverse function of Encode is Decode.

3 The Covert Key Exchange

The covert key exchange protocol, denoted by Φ1, is an implementation of the no-
tion of entropy balancing for secret embeddings. The covert key exchange uses a
twisted pair of curves over IFp where p is a k-bit prime. Informally,when we say that
the covert key exchange is space-efficient what we mean is that the following prop-
erties hold: (1) Alice’s message to Bob in the exchange is k+1 bits long and (2) the
best known cryptanalytic algorithms against the exchange (confidentiality break-
ing/distinguishing) run in time exponential in k. Currently, the fastest knownalgo-
rithm for solving ECDDH for curve Ea,b(IFp) runs in time O(

√
#Ea,b(IFp)) when

#Ea,b(IFp) is prime. It is from this that (2) holds based on current knowledge.
This enables Alice to send a small key exchange message to Bob (in the hundreds
of bits rather than in the thousands for an algorithm based on DL over a finite field
or factoring), based on the state-of-the-art. Property (2) is mandatory to achieve
the degree of space-efficiency that we desire (so it is part of the definition below
that concretely defines the setting of the key exchange and its constraints).

Definition 2. Let τ = (Ta,b,β(IFp), G0, G1) be agreed upon system parameters
where |p| = k, let M ≤ 104 be a constant, let Tτ,Φ1 denote the probability ensem-
ble corresponding to all possible (Y0,1, ..., Y0,M , Y1,1, ..., Y1,M ,mA,mk) resulting
from Φ1 and the probability distribution over them resulting from Φ1, let Tτ,U
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denote E0(IFp)M ×E1(IFp)M ×{0, 1}k+1×{0, 1}M and the uniform distribution
over it, and let Alice and Bob be probabilistic polytime algorithms. If in a 2-round
protocol Φ1 between Alice and Bob, Bob sends (Y0,1, ..., Y0,M , Y1,1, ..., Y1,M ) to Al-
ice where Yi,j ∈R Ei(IFp) for i = 0, 1 and j = 1, 2, ...,M (Bob knows the discrete
logs xi,j of the Yi,j), and Alice generates a (k+ 1)-bit message mA and a M -bit
shared secret mk, and sends mA to Bob, and

1. (completeness) using mA and private information (the xi,j) Bob computes
mk with a probability that is overwhelming (in k), and

2. (security) the fastest algorithm that distinguishes ensemble Tτ,Φ1 from ensem-
ble Tτ,U with an advantage that is non-negligible (in k) runs in exponential
time (2εk for a constraint ε > 0),

then Φ1 is a k-secure space-efficient covert key exchange.

The upper bound on M is somewhat arbitrary (104 is simply large enough for
practical use). Security implies covertness since it establishes that mA appears
as a uniformly random (k + 1)-bit string. It also implies confidentiality since it
establishes that mk appears as a uniformly random M -bit string.

4 Key Exchange Construction

Alice and Bob agree on TDDH parameters τ . For our reductions to hold and
our applications to be secure, they should generate τ using IG1 (see Appendix
B for a review of TDDH) where IG1 adheres to the following list of constraints.

1. The prime p in τ is of the form p = 2k − δ where δ satisfies 1 ≤ δ <
√

2k.
The value δ may be randomly chosen until p of this form is generated.

2. The curves E0(IFp) and E1(IFp) have prime order. So, r0 and r1 are prime.
3. To prevent the attack on prime-field-anomalous curves [19,20,23], it is re-

quired that r0, r1 �= p.
4. To prevent the Weil and Tate pairing attacks [18,8], it is required that r0

does not divide pν − 1 for ν = 1, 2, 3... up to, say, 20. The same holds for r1.
5. More generally, E0(IFp) and E1(IFp) must provide suitable settings for the

ECDDH problem.

From Subsection 2.2 it is the case that r0 + r1 = 2p + 2. We define Sa,b,β,p as
follows.
Sa,b,β,p =

{s : P ∈ E0(IFp), s = Encode(Ta,b,β(IFp), P, 0)}⋃
{s : P ∈ E1(IFp), s = Encode(Ta,b,β(IFp), P, 1)}

4.1 Intuition Behind the Covert Exchange

By glossing over some details and omitting others, it is possible to describe the
covert key exchange algorithm at a high-level. We do so here.
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Bob generates 2M public keys. Half are points on one curve in the twist and
half are on the other. He gives these to Alice. It is her job to generate both her
trapdoor value to Bob and their shared secret. Given her trapdoor value he will
with overwhelming probability compute their shared secret using his 2M private
keys.

Alice chooses one of the curves to use randomly. In this choice, the curves are
selected in direct proportion to the number of points on them. So, the curve in
the twist with the most points is slightly more likely than the other. Let the
curve she selects be denoted by Eu(IFp) where u ∈ {0, 1}. She generates a scalar
multiplier k1 randomly for this curve and computes her key exchange value to
Bob using it. She then generates M shared secrets using k1 and the M public
keys of Bob on Eu(IFp). She Kaliski encodes them and concatenates the least
significant bits of the M encodings together. The resulting string is their shared
secret.

We defer to the proofs why the shared secret appears independently random
and uniformly distributed. The method that Bob uses to compute the shared
secret can be inferred from the above.

4.2 Key Exchange Protocol Φ1

We define SelCurve(Ta,b,β(IFp)) to be a randomized algorithm that outputs 0
with probability r0

2p+2 and 1 with probability r1
2p+2 . Algorithm DeriveBit and

algorithm FillGap are used in the key exchange.

DeriveBit(Ta,b,β(IFp), P ):
Input: point P on twist Ta,b,β(IFp)
Output: b ∈ {0, 1}
1. if (P ∈ E0(IFp)) then c← 0 else c← 1
2. if (P = Oc) then output b ∈R {0, 1} and halt
3. output b← LSB(ψs) where ψs ← Encode(Ta,b,β(IFp), P, c)

FillGap(Ta,b,β(IFp)):
Input: twist Ta,b,β(IFp)
Output: (y, s1, s2) ∈ {0, 1} × {0, 1}k+1 × {0, 1}M
1. choose μ ∈R {0, 1}k+1

2. if (μ /∈ Sa,b,β,p) then
3. choose ψ ∈R {2p+ 2, 2p+ 3, ..., 2k+1 − 1}

and s2 ∈R {0, 1}M
4. compute s1 ← Format(ψ, k + 1),

output (1, s1, s2), and halt
5. output (0, 0k+1, 0M )

We refer to the following as protocol Φ1. The value M ≤ 104 is a constant.

Step 1: Bob chooses xi,j ∈R {0, 1, 2, ..., ri − 1} and computes Yi,j ← xi,jGi for
i = 0, 1 and j = 1, 2, ...,M . Bob sends (Y0,1, ..., Y0,M , Y1,1, ..., Y1,M ) to Alice.

Step 2: Alice sends the key exchange message mA to Bob where
(mA,mk)← ExchAlg1(τ, Y0,1, ..., Y0,M , Y1,1, ..., Y1,M ).
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ExchAlg1(τ, Y0,1, ..., Y0,M , Y1,1, ..., Y1,M ):
Input: TDDH parameters τ , points Yi,j on

Ei(IFp) for i = 0, 1, j = 1, 2, ...,M
Output: (mA,mk) ∈ {0, 1}k+1 × {0, 1}M
1. (y, s1, s2)← FillGap(Ta,b,β(IFp))
2. if (y = 1) then output (s1, s2) and halt
3. u← SelCurve(Ta,b,β(IFp))
4. choose k1 ∈R ZZru and compute U ← k1Gu

5. mA ← Encode(Ta,b,β(IFp), U, u)
6. for j = 1 to M do:
7. compute Pj ← k1Yu,j and

bj ← DeriveBit(Ta,b,β(IFp), Pj)
8. set mk ← bM ||bM−1||...||b1 and output (mA,mk)

Step 3: Bob receives the message mA from Alice. Bob computes
Recover(Ta,b,β(IFp),mA, x0,1, ..., x0,M , x1,1, ..., x1,M ), thereby obtaining (t,mk).

Recover(Ta,b,β(IFp),mA, x0,1, ..., x0,M , x1,1, ..., x1,M ):
Input: twist Ta,b,β(IFp), mA ∈ {0, 1}k+1,

xi,j ∈ ZZri for i = 0, 1, j = 1, 2, ...,M
Output: (t,mk) ∈ {0, 1} × {0, 1}M
1. if (mA /∈ Sa,b,β,p) then output (0, 0M ) and halt
2. (U, u)← Decode(Ta,b,β(IFp),mA)
3. for j = 1 to M do:
4. compute Pj ← xu,jU and

bj ← DeriveBit(Ta,b,β(IFp), Pj)
5. set mk ← bM ||bM−1||...||b1 and output (1,mk)

We define failure of protocol Φ1 to be a condition in which any of the following
occur:

1. mA ∈ Sa,b,β,p and the decoding of mA is on Eu(IFp) and ∃ j ∈ {1, 2, ...,M}
such that Yu,j = Ou.

2. mA ∈ {0, 1}k+1 \ Sa,b,β,p.
3. mA ∈ Sa,b,β,p and the decoding of mA is O0 or O1 (i.e., ExchAlg1 chooses
k1 = 0).

The rationale behind this definition is as follows. These are the conditions that
cause one or more bits of mk to be derived directly from a fair coin flip. So, Bob
cannot be certain that he receives mk correctly in these cases.

An alternate definition is of course possible. For example, we could define
success as the raw probability that Bob decides on an mk that is the same as the
mk that Alice selected (Bob may have to guess 1 or more bits). However, we have
decided to use a definition of success that measures Bob’s certainty regarding
his computation of mk.

The following Lemma is proven in Appendix C where the definition of a
negligible function is reviewed.
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Lemma 2. (completeness) Failure occurs in protocol Φ1 with a probability that
is negligible in k.

In our failed attempts at designing the exchangewe found that the following seemed
to occur:when we succeeded in removing the bias inmA, the constructionwould in-
troduce bias intomk in the process, and vice-versa. The two are inextricably linked.
ExchAlg1 succeeds in balancing the entropy in mA and mk in the sense that they
are both random binary strings. This is the origin of our terminology.

We prove Theorem 1 in Appendix D. Theorem 1 establishes Property 2 of
Definition 2.

Theorem 1. (security) The ECDDH problem over (E0(IFp), G0) or ECDDH
over (E1(IFp), G1) polytime reduces to the problem of distinguishing Tτ,Φ1 from
Tτ,U with an advantage that is non-negligible (in k).

Lemma 2 establishes property 1 of Definition 2. So, Lemma 2 and Theorem 1
imply Theorem 2.

Theorem 2. If ECDDH requires exponential time (in k) on (E0(IFp), G0) and
(E1(IFp), G1) then Φ1 is a k-secure space-efficient covert key exchange.

The above theorem is proven in the appendix. The proof establishes that the
exchanged value from Alice is random and that the key established is random and
hard to compute to any polynomial time adversary (under the proper decisional
DH assumption). The basic intuition of the proof idea is that the exchanged
value is random and then the decisional assumption implies that the resulting
shared secret is indistinguishable from a random value in the target group, and
therefore the shared key extracted itself should not help distinguishing between
them and thus is indistinguishable from a pseudorandomly chosen value and
thus from a randomly chosen value.

5 Applications

Kleptographic RSA key generation in the standard model: The following describes
how to build an asymmetric backdoor in RSA key generation in which the RSA
public exponent e can be fixed for all users. The attacker Bob places his public
key (Y0,1, ..., Y0,M , Y1,1, ..., Y1,M ) in Alice’s key generation device. Key genera-
tion performs Alice’s side of the covert key exchange. The shared secret mk is
embedded in the upper order bits of the RSA prime p being generated. The
corresponding key exchange value mA is encoded in the upper order bits of the
RSA modulus being generated. Under this constraints an otherwise random pub-
lic composite is chosen. The attacker obtains Alice’s public key from a public
channel (e.g., CA, a certificate, etc.). He extracts mA and uses his private key to
compute mk. Using this and Coppersmith’s factoring algorithm [3], he factors
the public modulus.

The security adheres to the notion of a SETUP (secretly embedded trapdoor
with universal protection). It can be shown that indistinguishability holds pro-
vided ECDDH is hard on both curves in the twist. Confidentiality can be shown
under this and the assumption that integer factorization is hard.



282 A. Young and M. Yung

Public Key Stegosystem: The stegosystem construction is a straightforward
implementation of ElGamal based on the covert key exchange. The primary dif-
ference between this version of the ElGamal and traditional implementations
(ECC and otherwise) is that we exclusive-or the plaintext with the shared se-
cret. Informally, the indistinguishability property dictates that a ciphertext must
appear as a fixed-length bit string, where the bits appear as fair coin tosses. We
can show that this holds provided ECDDH is hard on both curves in the twist.
Furthermore, we can show that if ECDDH is hard on both curves in the twist
then the stegosystem is semantically secure against chosen plaintext attacks.

Kleptographic backdoor in SSL: It is well-known that the 28 byte hello nonce
in SSL is a subliminal channel that is visible in the clear to passive eavesdroppers
on the network. The client sends such a nonce to the server and vice-versa. The
pre-master secret is 48 bytes and it contains a 46 byte nonce. The pre-master
secret nonce is chosen by the client and is sent securely to the server. Knowledge
of the two hello nonces and the pre-master secret nonce implies the ability to
eavesdrop on the SSL session.

We build an asymmetric backdoor into the client in the SSL protocol. Let
k = 223 and M = 368 for the covert key exchange. The attacker Bob places his
elliptic curve public key (Y0,1, ..., Y0,M , Y1,1, ..., Y1,M ) into Alice’s SSL client.

When Alice initiates an SSL session with a server, the asymmetric back-
door takes over the generation of the client hello nonce and the pre-master
secret nonce. The backdoor runs ExchAlg1(τ, Y0,1, ..., Y0,M , Y1,1, ..., Y1,M ) to ob-
tain (mA,mk). It sets the hello nonce to be mA and the pre-master secret nonce
to be mk.

Bob passively eavesdrops on the SSL session. He learns both hello nonces since
he sees them in the clear. He sets mA to be Alice’s hello nonce. Bob then runs
Recover and obtains mk. He is then able to decipher the SSL session.

We note that this attack is a perfect example of the power of our covert key
exchange primitive (of Section 4). This is because: (1) the subliminal channel is
extremely narrow, a mere 224 bits, and therefore space-efficiency is an obvious
requirement, and (2) the kleptographic application is incredibly simple. Observe
that the host distribution over (hello nonce,pre-master secret nonce) is exactly
the uniform distribution over {0, 1}224× {0, 1}368. It is not likely to get simpler
than this.

For security note that the indistinguishability and confidentiality properties
of the asymmetric backdoor in SSL follow from Theorem 1. It is therefore a
provable asymmetric backdoor on top of a secure subliminal channel.
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A Review of ECDDH

A group family denoted by G is a set of finite cyclic groups G = {Ea,b(IFp)}
where each group has prime order. Let IG0 be an instance generator for G that
on input k (in unary) generates (Ea,b(IFp), G) where Ea,b(IFp) is from G, G is
a generator of Ea,b(IFp), and r = #Ea,b(IFp). The ECDDH assumption is that
no polytime algorithm A0 exists for G. We define the superpolynomial ECDDH
assumption to be that no superpolynomial time algorithm A0 exists for G.

Definition 3. An ECDDH algorithm A0 for G satisfies, for some fixed α > 0
and sufficiently large k:

|Pr[A0(Ea,b(IFp), G, aG, bG, abG) = 1] − Pr[A0(Ea,b(IFp), G, aG, bG, cG) = 1]| > 1
kα

The probability is over the random choice of (Ea,b(IFp), G) according to the
distribution induced by IG0(k), the random choice of integers a, b, c satisfying
0 ≤ a, b, c ≤ r − 1, and the bits used by A0.

We now review the ECDDH randomization method from [1] adapted for the case
of elliptic curves. Let the (Ea,b(IFp), G,X ,Y,Z) be an ECDDH problem instance.
Algorithm f chooses scalars u1, u2, v randomly satisfying the inequality 0 ≤
u1, u2, v ≤ r − 1. The function f(Ea,b(IFp), G,X ,Y,Z) outputs (vX +
u1G,Y + u2G, vZ + u1Y + vu2X + u1u2G).

B Review of Twisted DDH

We now review the twisted DDH problem that is covered in [27]. Let TWk be
the set of all twists of parameter k in which both groups (curves) in each twist
have prime order. Let IG1 be an instance generator for TWk that on input the
value k (in unary) generates τ = (Ta,b,β(IFp), G0, G1) where G0 is a generator of
E0(IFp) and G1 is a generator of E1(IFp) (these curves are defined in Subsection
2.1). Our results in this paper require that IG1 generate TDDH parameters in
accordance with Section 4.
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Definition 4. A TDDH algorithm A1 for TWk satisfies, for some fixed α > 0
and sufficiently large k:

|Pr[A1(τ, (a0G0, b0G0, a0b0G0), (a1G1, b1G1, a1b1G1)) = 1] −
Pr[A1(τ, (a0G0, b0G0, c0G0), (a1G1, b1G1, c1G1)) = 1]| > 1

kα

The probability is over the random choice of τ according to the distribution in-
duced by IG1(k), the random choice of a0, b0, c0 ∈ {0, 1, ..., r0 − 1}, the random
choice of a1, b1, c1 ∈ {0, 1, 2, ..., r1 − 1}, and the bits used by A1.

The twisted DDH assumption (TDDH) is that no such polytime A1 exists for
TWk. The superpolynomial TDDH assumption is that no such superpolynomial
time A1 exists for TWk.

Theorem 3 is straightforward to show. Being able to compute ECDDH for
just one of the two curves in the twist breaks TDDH.

Theorem 3. The TDDH problem polytime reduces to the ECDDH problem over
(E0(IFp), G0) or the ECDDH problem over (E1(IFp), G1).

Theorem 4. The ECDDH problem over (E0(IFp), G0) or the ECDDH problem
over (E1(IFp), G1) polytime reduces to TDDH.

Proof. Suppose there exists a distinguisher D that solves TDDH. Both E0(IFp)
and E1(IFp) are as defined in Subsection 2.1. Let the values t0 and t1 be ECDDH
problem instances where ti = (Ei(IFp), Gi, Xi, Yi, Zi) for i = 0, 1.

M0(E0(IFp), G0, X0, Y0, Z0):
1. u0 ← f(E0(IFp), G0, X0, Y0, Z0)
2. generate a random 3-tuple u1 over (E1(IFp), G1)
3. output (τ, u0, u1)

M1(E1(IFp), G1, X1, Y1, Z1):
1. u1 ← f(E1(IFp), G1, X1, Y1, Z1)
2. generate a random DH triple u0 over (E0(IFp), G0)
3. output (τ, u0, u1)

Clearly M0 and M1 run in time polynomial in k. Let Si,DH be the set of all DH
triples over (Ei(IFp), Gi) for i = 0, 1. Let Si,T be the set of all 3-tuples over
(Ei(IFp), Gi) for i = 0, 1.

Without loss of generality we may suppose that the TDDH distinguisher D
outputs 1 with advantage δ1 in k when both 3-tuples are DH triples and 0 with
advantage δ0 in k when both 3-tuples are random 3-tuples, where δ1 and δ0 are
non-negligible. Observe that a slightly less powerful distinguisher can be used to
construct D, e.g., one in which δ1 is non-negligible but δ0 is negligible.

Consider the case that v0 ∈R S0,DH and v1 ∈R S1,T . There are 3 cases:

Case 1: Consider the case that D(τ, v0, v1) outputs 0 with probability 1/2±γ(k)
where the function γ is negligible. Let d← D(M0(E0(IFp), G0, X0, Y0, Z0)). M0 gen-
erates u1 to be a random 3-tuple over (E1(IFp), G1). Suppose that (X0, Y0, Z0)
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is a DH triple. Then by the correctness of f, u0 is a random DH triple. So,
in this case d = 0 with probability 1/2 ± γ(k) (negligible advantage). Suppose
that (X0, Y0, Z0) is not a DH triple. Then by the correctness of f, u0 is a ran-
dom 3-tuple. So, d = 0 with probability 1/2 + δ0(k) (non-negligible advantage).
There is a polynomial time observable difference in behavior here. Therefore,
D(M0(E0(IFp), G0, X0, Y0, Z0)) solves the ECDDH problem over (E0(IFp), G0).

Case 2: Suppose that D(τ, v0, v1) outputs 0 with probability 1/2 − δ2(k) and
1 with probability 1/2 + δ2(k) where the value δ2 is non-negligible. Let d ←
D(M0(E0(IFp), G0, X0, Y0, Z0)). Machine M0 generates u1 to be a random 3-tuple
over (E1(IFp), G1). Suppose that (X0, Y0, Z0) is a DH triple. Then by the cor-
rectness of f, u0 is a random DH triple. So, in this case d = 1 with probability
1/2+δ2(k). Suppose that (X0, Y0, Z0) is not a DH triple. Then by the correctness
of f, u0 is a random 3-tuple. So, d = 0 with probability 1/2 + δ0(k). Therefore,
D(M0(E0(IFp), G0, X0, Y0, Z0)) solves ECDDH over (E0(IFp), G0).

Case 3: Suppose that D(τ, v0, v1) outputs 0 with probability 1/2 + δ3(k) and
1 with probability 1/2 − δ3(k) where the value δ3 is non-negligible. Let d ←
D(M1(E1(IFp), G1, X1, Y1, Z1)). Algorithm M1 generates u0 to be a random DH
triple over (E0(IFp), G0). Suppose that (X1, Y1, Z1) is a DH triple. Then by the
correctness of f, u1 is a random DH triple. So, in this case d = 1 with probability
1/2+δ1(k). Suppose that (X1, Y1, Z1) is not a DH triple. Then by the correctness
of f, u1 is a random 3-tuple. So, d = 0 with probability 1/2 + δ3(k). Therefore,
D(M1(E1(IFp), G1, X1, Y1, Z1)) solves ECDDH over (E1(IFp), G1).

It follows that Theorem 5 holds (equivalence).

Theorem 5. TDDH is polytime equivalent to ECDDH over (E0(IFp), G0) or
ECDDH over (E1(IFp), G1)

C Completeness Proof

Definition 5. ν is a negligible function if for every constant c ≥ 0 there exists
an integer kc such that ν(k) < 1

kc for all k ≥ kc.

The following is the proof of Lemma 2, namely, that failure occurs in Φ1 with a
probability that is negligible in k.

Proof. Let p1(k) denote the success probability of protocol Φ1 having security
parameter k. Let kc be 64 (see Definition 5). p1(k) =

( r0−1
r0

)M ∗ 1 ∗ 2p+2
2k+1

r0
2p+2

r0−1
r0

+ 1 ∗ ( r1−1
r1

)M 2p+2
2k+1

r1
2p+2

r1−1
r1

p1(k) = ( r0−1
r0

)M r0−1
2k+1 + ( r1−1

r1
)M r1−1

2k+1

Hasse showed that |#Ea,b(IFp)− (p+ 1)| ≤ 2
√
p for an elliptic curve Ea,b(IFp).

So, ru − 1 ≥ p− 2
√
p for u = 0, 1.
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p1(k) ≥ (( r0−1
r0

)M p−2
√

p

2k+1 + ( r1−1
r1

)M p−2
√

p

2k+1 ) = p−2
√

p

2k+1 (( r0−1
r0

)M + ( r1−1
r1

)M )

From the Binomial Theorem it follows that,

(− 1
ru

+ 1)M = 1− M
ru

+
∑M

�=2

(
M
�

)
(− 1

ru
)�

Observe that if M is even, then the last term in the summation above is positive.
So, we can get rid of it and use an inequality. So, let L = M if M is odd and set
L = M − 1 if M is even. Then,

(− 1
ru

+ 1)M ≥ 1− M
ru

+
∑L

�=2

(
L
�

)
(− 1

ru
)�

(− 1
ru

+ 1)M ≥ 1− M
ru

+
∑L−1

2
�=1 ( 1

ru
)2�

(
L
2�

)
(1− 1

ru

L−2�
2�+1 )

Since M ≤ 104 and k ≥ kc = 64 it follows from Hasse’s Theorem that the term
1− 1

ru

L−2�
2�+1 > 0 for u = 0, 1 and � = 1, 2, ..., (L− 1)/2. So,

(− 1
ru

+ 1)M ≥ 1− M
ru

Recall that p = 2k − δ and 1 ≤ δ <
√

2k. So, p − 2
√
p > 2k − 3 ∗ 2k/2. Since

r0, r1 > p− 2
√
p,

p1(k) ≥ p−2
√

p

2k+1 (2− 2M
p−2

√
p
) > 2k−3∗2k/2

2k+1 (2− 2M
p−2

√
p
) = (1− 3

2k/2 )(1 − M
p−2

√
p
)

It follows from Definition 5 that the failure probability is negligible in k.

D Security Proof

Algorithm f1 chooses scalars u1, u2, v randomly satisfying the inequality 0 ≤
u1, u2, v ≤ r−1. However, unlike f, algorithm f1 gives the additional output u2.
f1(Ea,b(IFp), G,X ,Y,Z) = (vX +u1G,Y +u2G, vZ +u1Y + vu2X +u1u2G, u2)
Algorithm f2 chooses scalars u1, v randomly satisfying the inequality 0 ≤ u1, v ≤
r − 1. Algorithm f2(Ea,b(IFp), G,X ,Y,Z, u2) returns the following tuple (vX +
u1G,Y + u2G, vZ + u1Y + vu2X + u1u2G).

Let (X,Y, Z) = f2(Ea,b(IFp), G,X ,Y,Z, u2). We partition the set of possible
inputs to f2 into two sets, DH triples and non-DH triples.

Suppose that (X ,Y,Z) is a DH triple. Let X = xG, Y = yG and Z = xyG.
So, X = (vx + u1)G, Y = (y + u2)G, and,

Z = (vxy + u1y + vu2x+ u1u2)G = (vx + u1)(y + u2)G

It follows that (X,Y, Z) is (X ,Y,Z) transformed as follows. The scalar y is
replaced by y+u2 and the scalar x is replaced by the random scalar vx+u1. So,
(X,Y, Z) is a DH triple. We say that such a DH triple is a one-scalar randomized
DH triple of (X ,Y,Z).

Now suppose that (X ,Y,Z) is not a DH triple. Then X,Z ∈R Ea,b(IFp). This
claim needs justification. Let Z = zG. Observe that z = xy + c for some scalar
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c > 0. So, Z = (vx + u1)(y + u2)G + v(cG). Define X ′ = (vx + u1)G, Y ′ =
(y + u2)G, and Z ′ = (vx+ u1)(y + u2)G. Then (X,Y, Z) = (X ′, Y ′, Z ′ + v(cG))
and cG is a generator since c > 0.

We now consider an “exchange” Φ2 in which Bob really has no hope of re-
covering mk (we will show why later on). Let Φ2 be the same as Φ1 except that
ExchAlg1 is replaced with ExchAlg2.

ExchAlg2(τ, Y0,1, ..., Y0,M , Y1,1, ..., Y1,M ):
Input: TDDH parameters τ , points Yi,j on

Ei(IFp) for i = 0, 1, j = 1, 2, ...,M
Output: (mA,mk) ∈ {0, 1}k+1 × {0, 1}M
1. (y, s1, s2)← FillGap(Ta,b,β(IFp))
2. if (y = 1) then output (s1, s2) and halt
3. u← SelCurve(Ta,b,β(IFp))
4. choose k1 ∈R ZZru and compute U ← k1Gu

5. mA ← Encode(Ta,b,β(IFp), U, u)
6. for j = 1 to M do:
7. choose Pj ∈R Eu(IFp) and compute

bj ← DeriveBit(Ta,b,β(IFp), Pj)
8. set mk ← bM ||bM−1||...||b1 and output (mA,mk)

Lemma 3. In algorithm ExchAlg2, mA ∈R {0, 1}k+1.

Proof. Consider the operation of ExchAlg2. Let s be any string in {0, 1}k+1 \
Sa,b,β,p. Then it follows from the definitions of algorithm FillGap and algorithm
Format that Pr[mA = s] = 2δ−2

2p+2
1

2δ−2
. Let P be any point on Eu(IFp). Then it

follows from the definitions of FillGap, SelCurve, and Encode that the proba-
bility that mA is the Kaliski encoding of P is 2p+2

2k+1
ru

2p+2
1
ru

. It follows that each
string contained in {0, 1}k+1 is selected by ExchAlg2 and output as mA with
probability 1

2k+1 .

Fact 1: The following is from the Group Law for Ea,b(IFp) when the prime
p �= 2, 3. Negatives: If P = (x, y) ∈ Ea,b(IFp) then (x, y) + (x,−y) = O. The
point (x,−y) is denoted by −P and is referred to as the negative of P . So, −P
is in fact a point on Ea,b(IFp). It is also the case that −O = O.

Lemma 4. If #Ea,b(IFp) is odd then there are no points with an ordinate of
zero on Ea,b(IFp).

Proof. Let f(x) = x3 + ax + b with coefficients in IFp. It is well-known that
f(x) = 0 has 0 solutions, 1 solution x1, or 3 solutions x2, x3, x4 in IFp. We
consider these 3 cases in turn.
Case 1: There are 0 solutions. Let S = Ea,b(IFp)\{O}. Then |S| = #Ea,b(IFp)−1.
From Fact 1, all points in S have the following property: (x, y) ∈ S ⇔ (x,−y) ∈
S with (x, y) �= (x,−y). We now make a partitioning argument. Consider the
following two sets.

S0 = {(x, y) : (x, y) ∈ S, y < p/2} S1 = {(x, y) : (x, y) ∈ S, y > p/2}
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Clearly S = S0

⋃
S1, S0

⋂
S1 = ∅, and |S0| = |S1|. So, |S| = 2|S0|. It follows

that |S| is even, therefore #Ea,b(IFp) is odd. This supports our claim.
Case 2: There is one solution x1 and therefore (x1, 0) is the only point on
Ea,b(IFp) with an ordinate of zero. Let S = Ea,b(IFp) \ {O, (x1, 0)}. Then |S| =
#Ea,b(IFp)−2. From Fact 1, all points in S have the following property: (x, y) ∈
S ⇔ (x,−y) ∈ S with (x, y) �= (x,−y). Using the partitioning argument it
follows that |S| is even and therefore #Ea,b(IFp) is even.
Case 3: The integers x2, x3, x4 are solutions to f(x) = 0 and therefore the points
(x2, 0), (x3, 0), (x4, 0) are the only points with an ordinate of zero on Ea,b(IFp).
Let S = Ea,b(IFp) \ {O, (x2, 0), (x3, 0), (x4, 0)}. Then |S| = #Ea,b(IFp)− 4. By a
similar argument, #Ea,b(IFp) is even.

Lemma 5. For u = 0, 1, the ordered execution of, Pj ∈R Eu(IFp), followed by
bj ← DeriveBit(Ta,b,β(IFp), Pj) causes bj to be a fair coin flip.

Proof. Let u be any element in {0, 1}. Since ru is odd it follows from Lemma
4 that there are no points with an ordinate of zero on Eu(IFp). So, aside from
the point at infinity, if (x, y) ∈ Eu(IFp) then (x,−y) ∈ Eu(IFp) where y �= 0. It
follows from the definition of Kaliski’s XT function that Eu(IFp)\{Ou} contains
exactly ru−1

2 points with Kaliski encodings that have an LSB of 0. Similarly,
Eu(IFp) \ {Ou} contains exactly ru−1

2 points with Kaliski encodings that have
an LSB of 1. DeriveBit returns a fair coin flip on input Ou. So, Pr[bj = 1] =
ru−1

2
ru

+ 1
ru

1
2 = 1

2 .

Lemma 6. In algorithm ExchAlg2, mk ∈R {0, 1}M .

Proof. Consider algorithm FillGap. Clearly, Pr[μ /∈ Sa,b,β,p] = 2δ−2
2k+1 . If μ /∈

Sa,b,β,p then it follows from the definition of FillGap that s2 = mk is chosen
randomly from {0, 1}M . Also, Pr[μ ∈ Sa,b,β,p] = 2p+2

2k+1 . If μ ∈ Sa,b,β,p then from
Lemma 5, ExchAlg2 chooses mk ∈R {0, 1}M . Either μ ∈ Sa,b,β,p or not and in
both cases it follows that mk ∈R {0, 1}M .

Algorithm InstTrans transforms an input TDDH problem instance into a tuple
that looks like it is from Φ1 or from Φ2. InstTrans is used in several proofs in
this paper.

InstTrans(τ, t0, t1):
Input: TDDH problem instance (τ, t0, t1) where

ti = (X (i),Y(i),Z(i)) are points on Ei(IFp) for i = 0, 1
Output: (τ, Y0,1, ..., Y0,M , Y1,1, ..., Y1,M ,mA,mk)
1. (y, s1, s2)← FillGap(Ta,b,β(IFp))
2. if (y = 1) then
3. choose Yi,j ∈R Ei(IFp) for i = 0, 1, j = 1, 2, ...,M
4. (mA,mk)← (s1, s2)
5. halt with (τ, Y0,1, ..., Y0,M , Y1,1, ..., Y1,M ,mA,mk)
6. u← SelCurve(Ta,b,β(IFp))
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7. (X,Y, Z, u2)← f1(Eu(IFp), Gu,X (u),Y(u),Z(u))
8. mA ← Encode(Ta,b,β(IFp), Y, u)
9. for j = 1 to M do:
10. (Xj , Yj , Zj)← f2(Eu(IFp), Gu,X (u),Y(u),Z(u), u2)
11. set Yu,j ← Xj and choose Y1−u,j ∈R E1−u(IFp)
12. set Pj ← Zj and bj ← DeriveBit(Ta,b,β(IFp), Pj)
13.mk ← bM ||bM−1||...||b1
14. output (τ, Y0,1, ..., Y0,M , Y1,1, ..., Y1,M ,mA,mk)

Lemma 7. TDDH polytime reduces to the problem of distinguishing Tτ,Φ1 from
Tτ,Φ2 with an advantage that is non-negligible (in k).

Proof. Suppose there exists an algorithm D that distinguishes Tτ,Φ1 from Tτ,Φ2

with an advantage that is non-negligible in k. Consider the polytime (in k)
algorithm InstTrans that takes as input a problem instance (τ, t0, t1) for TDDH.

Suppose that both t0 and t1 are DH triples. From the correctness of f1 and
f2, the (Xj , Yj , Zj) for j = 1, 2, ...,M in algorithm InstTrans are all one-scalar
randomized DH triples of the input Diffie-Hellman triple (X (u),Y(u),Z(u)) where
u ∈ {0, 1} is selected using SelCurve in algorithm InstTrans. So, the output of
algorithm InstTrans given by the tuple (τ, Y0,1, ..., Y0,M , Y1,1, ..., Y1,M ,mA,mk)
is drawn from the same set and probability distribution as in Φ1.

Suppose t0 and t1 are not DH triples. From the correctness of f1 and f2,
(Xj , Zj) ∈R Eu(IFp) × Eu(IFp) for j = 1, 2, ...,M . So, the output of algorithm
InstTrans given by the tuple (τ, Y0,1, ..., Y0,M , Y1,1, ..., Y1,M ,mA,mk) is drawn
from the same set and probability distribution as in Φ2.

Therefore, D(InstTrans(τ, t0, t1)) solves TDDH.

Let protocol Φ3 be the same as protocol Φ2 except that algorithm ExchAlg2 is
replaced with algorithm ExchAlg3.

ExchAlg3(τ, Y0,1, ..., Y0,M , Y1,1, ..., Y1,M ):
Input: TDDH parameters τ , points Yi,j on

Ei(IFp) for i = 0, 1, j = 1, 2, ...,M
Output: (mA,mk) ∈ {0, 1}k+1 × {0, 1}M
1. choose mA ∈R {0, 1}k+1 and mk ∈R {0, 1}M
2. output (mA,mk)

Lemma 8. Tτ,Φ2 is perfectly indistinguishable from Tτ,Φ3 .

Lemma 9. TDDH polytime reduces to the problem of distinguishing Tτ,Φ1 from
Tτ,U with an advantage that is non-negligible (in k).

Lemma 8 follows from Lemmas 3, 6. But, Tτ,U = Tτ,Φ3 . So, lemmas 7 and 8 give
Lemma 9. Theorem 5 and Lemma 9 imply Theorem 1.
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Abstract. This paper shows some efficient and provably-secure convert-
ible undeniable signature schemes (with both selective conversion and all
conversion), in the standard model and discrete logarithm setting. They
further satisfy unambiguity, which is traditionally required for anony-
mous signatures. Briefly, unambiguity means that it is hard to generate
a (message, signature) pair which is valid for two different public-keys. In
other words, our schemes can be viewed as anonymous signature schemes
as well as convertible undeniable signature schemes. Besides other appli-
cations, we show that such schemes are very suitable for anonymous
auction.

Keywords: Undeniable signatures, selective/all conversion, anonymous
signatures, discrete logarithm, standard model.

1 Introduction

1.1 Background

Undeniable Signatures. Almost twenty years ago, Chaum and van Antwer-
pen [10] introduced the concept of undeniable signature (US) scheme, where a
signature is not publicly verifiable, which is in contrast to ordinary signature
schemes. The verification of an undeniable signature requires the cooperation
of the signer through the zero-knowledge confirmation protocol (for validity of
signatures) and zero-knowledge disavowal protocol (for invalidity of signatures).
A mandatory property of a US scheme thus is invisibility, namely without inter-
acting with the signer, it is hard to decide whether a signature is valid or not.
Also, it is worth noting that either the confirmation or disavowal protocol must
be successful if the signer is honest; and the case both protocols fail formally
implies that the signer is not cooperating (or cheating).

Undeniable signature is useful when we sign on sensitive data such as software
[5], electronic cash [6, 34, 11], confidential business agreement [12]. There have
been a wide range of research on the concept [5, 9, 12, 30, 18, 25, 26, 23, 27, 39, 29,

J.A. Garay and R. De Prisco (Eds.): SCN 2010, LNCS 6280, pp. 291–308, 2010.
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28, 24], to list just a few. Most of the papers are in the random oracle model,
with (even arbitrary) short signatures [29], or extensive security consideration of
a classical scheme [30]. In the standard model, the first efficient proposal is that
of Laguillaumie and Vergnaud [27] (but relying on a non-standard and strong
assumption for invisibility).

In order to link undeniable signature to regular signature, Boyar et al [5] pro-
posed the concept of conversion. In all conversion, the signer releases a piece of
information so that all issued undeniable signatures can be publicly-verifiable. In
selective conversion, the signer publishes a piece of information so that a single
undeniable signature is publicly-verifiable. The paper [5] gave a generic con-
struction of US scheme with selective and all conversion from one-way function,
but the construction is not practical. Note that selectively-convertible undeni-
able signature schemes play a central role in fair payment protocols [6], so the
more efficient the former is, the more practical the latter can be realized. For
more applications, the readers may find in [12, 5]. We also note that the above
mentioned work of Laguillaumie and Vergnaud [27], while producing very short
signatures (of about 170 bits), does not support any kinds of conversion.

In an attempt to realize practical US schemes with conversions, Damgard and
Pedersen [12] proposed two dlog-based schemes, but they could not formally
prove the invisibility of their schemes, and just conjectured on it. Recently,
another attempt was made by Yuen et al [39] using pairings, but their scheme
suffers from a big (exponential) loss factor in security reduction, so that the
signer is only able to produce very few (less than 128) signatures. The scheme
in [39] is claimed to satisfy invisibility, but in the full version of this paper [33],
we point out that the claim is incorrect. More recently, El Aimani [13] proposed
some generic approaches for building efficient undeniable signature schemes, but
with no selective conversion. In the full version [16] of [13], El Aimani claims
selective conversion property, but we observe that the claim is correct only if the
signer is honest.

However, there exists no convertible undeniable signature scheme which sat-
isfies unambiguity which will be explained below.

Anonymous Signatures. The concept is proposed by Yang et al [38] (at PKC
’06), and has further study in [17,1,40,35]. Anonymous signatures and undeniable
signatures share the same goal of ensuring anonymity (implied by invisibility in
this paper) by not revealing the link between signatures and public-keys. How-
ever, compared to undeniable signature schemes, anonymous signature schemes
do not necessarily have confirmation/disavowal protocols; and yet they have one
more security notion called unambiguity.

To explain more about anonymous signatures, let us recall its typical appli-
cation suggested in all previous works, which is anonymous auction where Alice
(with pkA) wishes to place a bid with value bidA. She wants to be able to claim
the bid as hers in case it wins, but otherwise wishes to remain anonymous. The
natural solution is to provide, at bidding time, the values bidA, pkA, as well as
her anonymous signature of bidA. Later, when the result is announced, and if
Alice has won, she can release the relevant opening information to claim her bid.
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We however observe that the above usage of anonymous signatures in auction
may cause trouble, which is overlooked by previous works. Imagine a situation
in which Alice has won, but refuses to provide the opening information. The
natural solution for the auctioneer is to choose the second-highest bidB of Bob
as the winning bid. The real trouble now is that, if Alice and Bob cooperate,
they will win every auction! Alice places the highest bid just after Bob, and then
refuses to open her signature on the bid, so that Bob will be the winner. This is
clearly unfair to other players in the auction. All existing works on anonymous
signatures have not noticed the situation that either the winner refuses to open,
or there is cooperation between two users1.

To overcome the above trouble, we then suggest that one should use undeni-
able signature schemes with selective conversion in anonymous auction, provided
that they meet all security notions of anonymous signatures. Alice then cannot
deny her signature of the bid anymore, since the auctioneer can execute the
confirmation and disavowal protocols to check.

Let us now explain the unambiguity notion [1] (aka, unpretendability [35]). It
intuitively ensures that if Alice has won, and releases the opening information to
claim her bid, then no one else can claim that bid. Previously, unambiguity was
not considered as a security notion for undeniable signature schemes. However,
to serve in the context of anonymous auction as we suggested above, undeniable
signature schemes must satisfy unambiguity.

1.2 Our Contribution

We propose two convertible undeniable signature schemes satisfying anonymity,
called SCUS1 and SCUS2. They have the following properties.

– The schemes support both selective and all conversion. Moreover, they enjoy
formally-proven security in the standard model, relying on the strong Diffie-
Hellman (sDH) and the decision linear (DLIN) assumption. Their confirma-
tion and disavowal protocols are of (minimal) four moves2.

– The signature size is about 70 + 3 · |q| (resp, 4 · |q|) bits for SCUS1 (resp,
SCUS2) where |q| ≈ 170. The piece of information for all conversion is of 2·|q|
bits for both schemes. For each selective conversion, the piece of information
is also 2 · |q| bits if we accept stateful signers; otherwise, we employ the NIZK
proof of Groth and Sahai [20], and need to release a few more bits.

1 Interestingly, we find that what we discuss for anonymous auction still applies in
principle to Yahoo auction in Yapan. Namely, in the Yahoo auction, if two identities
(e.g., of one person) cooperate in the way we have described, they will have advan-
tages over ones proceeding honestly. The point is in the Yahoo auction, the winning
identity can easily deny contacting the seller for paying process, making the seller
to choose the identity with second-highest bid as the winner.

2 We remark that the 3-move scheme of Kurosawa and Heng [24] is insecure, as
shown by Ogata et al in [30] (Sect.V.D, page 2013), who furthermore point out that
any 3-move (HVZK) confirmation/disavowal protocols are not secure against active
attacks.
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– Both SCUS1 and SCUS2 additionally meet the unambiguity notion, under the
discrete log assumption. Therefore, they can be used in anonymous auction to
detect the winner in case she refuses to open (namely, convert) her signature.
It is worth noting that it is unknown whether previous undeniable signature
schemes with selective conversion have this additional property.

Above, the scheme SCUS1 produces shorter signatures than SCUS2, but the
public key of SCUS1 (of 170 · |q| bits) is much longer than that of SCUS2 (of
12 · |q| bits). Choosing which one to use thus depends on specific applications.

Let us now look at the ways to obtain the above results. We first focus on the
ideas behind SCUS1.

Sign-then-Encrypt Paradigm. We re-utilize an elegant paradigm introduced
by Damgard and Pedersen [12] in which the undeniable signature σ of a message
m is of the form σ = Encryptpk2

(Signsk1
(m)), where Encrypt and Sign are re-

spectively some regular encryption and signature scheme. For all conversion, the
signer publishes the secret key sk2 of the encryption scheme, so that everyone
can decrypt σ to get the regular signature Signsk1

(m) and then check its validity.
For selective conversion, the signer releases the regular signature Signsk1

(m).
Some difficulties when using the above paradigm are: (1) designing efficient

zero-knowledge confirmation and disavowal protocols, (2) proving the invisibility
of the designed scheme, and (3) releasing Signsk1

(m) in a provable way (that it is
the signature encrypted in σ). Damgard and Pedersen [12] have overcome (1) but
not (2). For (3), they suggested a method of storing all randomness previously
used in signing. We suggest another method by using the efficient NIZK proof
of Groth and Sahai [20], as seen later.

To overcome (1) (and (3) in an efficient way), one needs to properly choose
simple (but-secure-enough) ingredients. To design SCUS1, we choose the Generic
Bilinear Map (GBM) signature [21] and the linear encryption [3] (LE) scheme.
A GBM signature on m is of the form (s, ρ = H(m)1/(x+s)) for a random s, a
standard model hash function H and the secret key sk1 = x. We use the LE
scheme to encrypt ρ in the ciphertext (u1 = gr1

1 , u2 = gr2
2 , u3 = ρ · gr1+r2) for

randomness r1, r2. The undeniable signature σ = (s, u1, u2, u3).
Intuitively, σ seems random-like, unrelated to m, (and thus invisible) because

s is random and (u1, u2, u3) is random-like under the decision linear assumption.
However, the scheme is in fact not invisible. The reason is in the malleability
of LE scheme. In particular, if σ = (s, u1, u2, u3) is valid on a message m (resp,
σ is random), then σ′ = (s, u1g

α
1 , u2g

β
2 , u3g

α+β) is also valid on m (resp, σ′ is
random) for adversarily-chosen randomness α and β. The fact causes a simple
attack on the invisibility of (m, σ) as follows: the adversary first asks the signer
for converting (m, σ′), so that it knows the validity of the pair, and hence it
also is aware of whether the corresponding (m, σ) is valid. (See Definition 3 for
a formal definition on invisibility, which also contains some new insights.)

Fortunately, we can overcome the above attack as follows: we authenticate
the randomness r1, r2 by signing on u1 and u2. In our proposed SCUS1 scheme
(in Sect.4), the values (u1 = gr1

1 , u2 = gr2
2 ) are generated first, then the GBM

signature on m, u1, u2 is created:
(
s, ρ = H(m ‖ u1 ‖ u2)1/(x+s)

)
. After all,
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set u3 = ρ · gr1+r2 and let the undeniable signature σ = (s, u1, u2, u3). With
the authentication on the randomness, the adversarily-formed σ′ above becomes
invalid regardless of whether σ is valid on m, so that the validity of σ′ cannot be
used to decide that of σ. We succeed in proving the invisibility of our proposed
scheme in Theorem 6.

On Confirmation and Disavowal Protocol. Now we give ideas on con-
structing the confirmation and disavowal protocol for SCUS1. To confirm

(
m, σ =

(s, u1, u2, u3)
)
, the signer needs to prove for secrets x1(= dlogg1

g), x2(= dlogg2
g),

and x:
u3

ux1
1 ux2

2

= H(m ‖ u1 ‖ u2)
1

x+s .

Namely, the LE decryption of (u1, u2, u3) gives the GBM signature on m, u1, u2.
Or equivalently,

ux
3 · u−x1(x+s)

1 · u−x2(x+s)
2 = H(m ‖ u1 ‖ u2) · u−s

3 ,

which is a proof of representation of public value H(m ‖ u1 ‖ u2) · u−s
3 , and can

be realized by standard techniques, using constant moves.
Now we turn to the disavowal protocol. Given

(
m, σ = (s, u1, u2, u3)

)
, the

signer needs to prove for secrets x1, x2, x:

u3

ux1
1 ux2

2

�= H(m ‖ u1 ‖ u2)
1

x+s ,

or equivalently,

ux+s
3 · u−x1(x+s)

1 · u−x2(x+s)
2 ·H(m ‖ u1 ‖ u2)−1 �= 1.

Employing the technique of Camenisch and Shoup [8], we choose r
$← Zq and set

U =
(
ux+s

3 · u−x1(x+s)
1 · u−x2(x+s)

2 ·H(m ‖ u1 ‖ u2)−1
)r

.

The signer sends U to the verifier, who checks that U �= 1. Then both execute
a proof of representation of U , where the signer holds the secrets r, x, x1, x2.
The zero-knowledge protocol can also be accomplished via standard techniques,
also using constant moves. Moreover, since we will work on a pairing group, the
disavowal protocol can be made non-interactive, again thanks to the NIZK proof
of Groth-Sahai [20], interestingly yielding a way to efficiently “convert” (namely,
make publicly-verifiable) even invalid signatures.

More Schemes. The above ideas work well if we replace the GBM signature by
the signature of Boneh and Boyen [2], which is of the form (s, g1/(x+H(m)+ys)

0 ) for
random s ∈ Zq, g0 ∈ G, and secret signing key x, y. The replacement creates our
SCUS2 described in Sect.5. Furthermore, in the random oracle model, one can
use the BLS signature [4] so that the unforgeability of the resulting undeniable
signature scheme relies on the CDH assumption in bilinear group. We do not
explicitly consider the random oracle scheme in this paper.
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More Related Works. Subsequent to a preliminary version of this work [33]
on the Eprint, Schuldt, Matsuura [37], and Huang, Wong [22] have suggested
some other schemes with interesting additional properties. Both works indicate
that, if using NIZK proofs in undeniable signatures, the common reference string
must be legitimately set up (say, by a trusted party like the CA in PKI). Unfortu-
nately, the scheme of Huang and Wong [22] turned out not satisfying anonymity,
as shown in [37]. The scheme of [37], while relying on a more standard assump-
tion, produces longer signatures (or public keys) than the ones in this paper.
Both works [37, 22] do not consider unambiguity.

Independently with us, El Aimani [14] also discovered the usage of the NIZK
of Groth and Sahai [20] in the context of confirmer signatures. The sign-then-
encrypt approach is also used to build confirmer signatures in [15] in an abstract
manner. As a trade-off to its generality, the construction in [15] has to employ
the cut-and-choose technique for the confirmation and disavowal protocols, and
hence the protocols are not of constant rounds (say, 80 rounds to reach 2−80

soundness error). In contrast, we take a concrete approach in this paper, resulting
in schemes with minimal 4-round protocols.

The above sign-then-encrypt paradigm has also been successfully re-used in [32]
in the RSA-based setting, creating RSA-based US schemes supporting (selective
and all) conversions, with signatures of (80+2 ·1024) bits, converters of 1024 bits,
while the securities rely on the strong RSA assumption and the decisional N -th
residuosity (DNR) assumption in the standard model. Note that the RSA-based
schemes give longer signatures than dlog-based schemes, as usual.

2 Syntax and Definitions

We begin with the syntax of selectively-convertible undeniable signature (SCUS
for short) schemes. We focus on the syntax of schemes with selective conversion
here and do not explicitly describe the syntax of all conversion since the latter
is very simple in our proposals.

Definition 1 (SCUS scheme). A selectively-convertible undeniable signature
scheme SCUS = (KeyGen, Usign, Convert, Verify, Confirm, Disavowal) consists of
four algorithms and two protocols whose descriptions are as follows.

– KeyGen(1κ) → (pk, sk): This algorithm generates the public key pk and the
secret key (signing key) sk for user.

– USign(sk, m) → σ: Using the secret key sk, this algorithm produces a sig-
nature σ on a message m.

– Convert(sk, m, σ) → cvt/ ⊥: Using sk, this algorithm releases a converter
cvt if the message-signature (m, σ) pair is valid, enabling everyone to check the
validity of the pair. If the pair is invalid, the output of the algorithm is ⊥.3

3 Note that only valid undeniable signatures can be converted, and the signer has no
responsibility to convert ill-formed ones. These properties are natural, and sufficient
enough for application (e.g., [6]). However, we note in our proposed schemes, the
signer can even “convert” invalid signatures by making the disavowal protocol non-
interactive (via Groth-Sahai result [20], as seen later).
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– Verify(pk, m, σ, cvt) → 0/1: Using the converter cvt, everyone can check the
validity of (m, σ) by this algorithm.

– Confirm: This is a protocol between the signer and a verifier, on common in-
put (pk, m, σ), the signer with sk proves that (m, σ) is a valid message-signature
pair in zero-knowledge.

– Disavowal: This is a protocol between the signer and a verifier, on common
input (pk, m, σ), the signer with sk proves that (m, σ) is an invalid message-
signature pair in zero-knowledge.

Definition 2 (Unforgeability and strong unforgeability of SCUS). A
selectively convertible undeniable signature scheme SCUS is said to be existential
unforgeable under adaptive chosen message attack if no poly-time forger F has
a non-negligible advantage in the following game: at the beginning, F is given
the public key pk. Then F is permitted to issue a series of queries shown below.

– Signing queries: F submits a message m to the signing oracle and receives a
signature σ on m. These queries are adaptive, namely the next query can depend
on the answers of previous ones.

– Convert queries: F submits a message-signature pair (m, σ) to the convert
oracle, and receives a converter cvt. These queries are also adaptive.

– Confirmation/disavowal queries: F submits a message-signature pair of the
form (m, σ) to the confirmation/disavowal oracle. We will consider active attack,
where the oracle first checks the validity of (m, σ). If it is a valid pair, the oracle
returns 1 and executes the confirmation protocol with F (acting as a cheating
verifier). Otherwise, the oracle returns 0 and executes the disavowal protocol
with F .

At the end of the game, F outputs a pair (m∗, σ∗). In the definition of un-
forgeability, the forger F wins the game if the pair (m∗, σ∗) is a valid message-
signature pair, and m∗ has never been queried to the signing oracle. The advan-
tage of F is defined to be Advforge

SCUS (F) = Pr[F wins].
In the definition of strong unforgeability, the only different point is that (m∗, σ∗)

does not coincide with any (m, σ) at signing queries. We denote F ’s advantage in
this case by Advsforge

SCUS (F) = Pr[F wins].

The notion of invisibility intuitively ensures that no-one (without contacting the
signer) can tell whether a message-signature pair is valid or not, and is formally
given below. We note that this definition is new to this work.

Definition 3 (Strong invisibility). A selectively-convertible undeniable sig-
nature scheme SCUS satisfies strong invisibility under adaptive chosen message
attack if no poly-time distinguisher D has a non-negligible advantage in the fol-
lowing game. At first, KeyGen(1κ) → (pk, sk), and then D is given the public
key pk. Then D is permitted to issue a series of queries: signing queries, convert
queries, confirmation/disavowal queries, as in Definition 2.

At some point, D outputs an arbitrary message m∗, and requests a challenge
signature σ∗ on m∗. The challenge signature σ∗ is generated based on a hidden bit
b. If b = 0, then σ∗ is generated as usual using the signing algorithm; otherwise σ∗
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is chosen randomly from the signature space of the scheme (which only depends
on the security parameter κ, and not on pk, sk).

The distinguisher D may additionally issue signing queries, convert queries,
confirmation/disavowal queries with the only restriction that no confirmation/di-
savowal query and convert query (m∗, σ∗) are allowed.

At the end, D outputs a bit b′ as the guess for b. The distinguisher wins
the game if and only if b′ = b and its advantage is defined as Advinv

SCUS(D) =
|Pr[b′ = b]− 1/2|.
Remarks 1. Above, there are some subtleties. First, we do allow the distin-
guisher to submit convert queries of the form (m∗, σ) with σ �= σ∗.

Second, D can make signing query m∗, even in multiple times, even before and
after the challenge query. Intuitively, a scheme meeting the definition enables the
signer to sign on the same message many times without any loss in invisibility,
so that the scheme is very suitable and easy to use at least in licensing software,
which is one of the main applications, where one piece of software may be signed
many times. This second subtlety makes our definition differ from and stronger
than previous ones (say, that of [30]). A scheme meeting the (weak) definition
as in [30] can be turned into another one satisfying our definition by ensuring
that the signing messages are pairwise different (via randomness, the time when
signing, etc).

Similarly to the second point above, we believe that strong unforgeability is very
suitable for undeniable signature schemes, especially in the context of licensing
software. Our proposals fortunately meet these strong notions of security.

Another security notion for undeniable signatures is anonymity, intuitively
ensuring that given a message-signature pair, it is hard to know who produces
the pair. As pointed out in [18], invisibility implies anonymity if all signers share
a common signature space, a condition fulfilled by our proposals. We thus focus
on invisibility in the rest of this paper.

Definition 4 (Standard signature schemes). A signature scheme S = (Kg,
Sign, Vrf) is as follows. On input 1κ, the key generation algorithm Kg produces
the public key pk and the secret signing key sk. On input sk and a message m,
the signing algorithm Sign produces a signature σ, which is publicly-verifiable
using the verification algorithm Vrf on input pk and σ.

The unforgeability under chosen message attack (uf-cma security) of a sig-
nature scheme S is defined essentially the same as that of SCUS in Definition
2, except that the forger F against S only issues signing queries. We denote
the advantage of F by Advuf−cma

S (F) = Pr[F wins]. The strong unforgeability
(suf-cma security) is defined in a similar manner and we have the advantage
Advsuf−cma

S (F) = Pr[F wins].

3 Preliminaries

Pairing Group. We call PG = (G, GT , q = |G|, g, ê : G × G → GT ) a pairing
group if G and GT are cyclic groups of prime order q, where the bit length
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|q| = κ ≈ 170. The element g is a generator of G, and the mapping ê satisfies
the following properties: ê(g, g) �= 1, and ê(ga, gb) = ê(g, g)ab.

Dlog Assumption. The assumption claims that, given PG as above, and for all
poly-time adversary A, Advdlog

G,PG
(A) = Pr[h = gx : g, h

$←G; x $←A(g, h, PG)]
is negligible.

Decision Linear Assumption. Given a pairing group PG, the assumption, first
formalized in [3], asserts that the following advantage of a poly-time adversary
A is negligible in the security parameter κ.

Advdlin
G (A) =

∣
∣
∣
∣∣
∣
∣
Pr

⎡

⎢
⎣b′ = b :

α, β, γ
$← Zq; g1, g2, g3

$←G;
T0 ← gα+β

3 ; T1 ← gγ
3 ; b $← {0, 1};

b′ $←A(PG, g1, g2, g3, g
α
1 , gβ

2 , Tb)

⎤

⎥
⎦− 1

2

∣
∣
∣
∣∣
∣
∣
.

Known Dlog-Based ZKIP. We use known techniques for proving statements
about discrete logarithms, such as (1) proof of knowledge of discrete logarithm
[36]; (2) proof of knowledge of an element representation in a prime order group
[31]; and the ∧ proof of (1) and (2). (The ∧ proof is easily designed by choosing
the same challenge while asking the prover to prove both (1) and (2) in parallel.)
These proofs need four moves to become zero-knowledge.

When referring to the proofs above, we use the following kind of notation. For
instance, PoK{(x1, x2): y = gx1 ∧ U = ux1

1 ux2
2 } denotes a zero-knowledge proof

of knowledge of x1 and x2 such that y = gx1 and U = ux1
1 ux2

2 . All values except
(x1, x2) are assumed to be known to the verifier.

Known NIZK Proof. We utilize the non-interactive zero-knowledge (NIZK)
proof for proving that a system of equations of the form g0 = Πm

j=1g
Xj

j , over
a group G (with pairing as above) is satisfiable, where Xj are variables and
g0, . . . , gm are constants in G. This is derived from the result of Groth and
Sahai [20]. We will mention more about the NIZK proofs later.

4 Our Proposed SCUS1

In this section, we describe our first selectively convertible undeniable signature
(SCUS) scheme and analyze its securities.

4.1 Building Blocks

We first need the following ingredients, which operate on a common pairing
group PG = (G, GT , q = |G|, g, ê : G×G→ GT ). The pairing group is implicitly
included in the public keys of the following schemes.

Generic Bilinear Map Signature Scheme GBM [21]. The signature scheme
GBM = (GBM.Kg, GBM.Sign, GBM.Vrf) is briefly recalled with some minor mod-
ifications as follows.
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GBM.Kg(1κ): Generate x
$← Zq, X ← gx, and H : {0, 1}∗ → G. Return the

verifying key pk1 = (X, H, η) where η = 70 and the signing key sk1 = x. (The
public key size |pk1| ≈ 162 · log2 q bits, according to the estimation in [21],
due to the concrete description of H .)

GBM.Sign(sk1, m ∈ {0, 1}∗): s
$← {0, 1}η, ρ← H(m)

1
x+s ∈ G. Return (s, ρ) ∈

{0, 1}η ×G as the signature on m.

GBM.Vrf
(
pk1, m, (s, ρ)

)
: Check that (s, ρ) ∈ {0, 1}η × G and ê(ρ, X · gs) =

ê(H(m), g). Return 1 if all checks pass, else return 0.

The signature scheme is known to be strongly unforgeable (suf-cma secure) under
the strong Diffie-Hellman assumption. To be complete, the proof given in [21] is
for the uf-cma case, but holds even for suf-cma security.

Linear Encryption [3]. The linear encryption scheme LE= (LE.Kg, LE.Enc,
LE.Dec) is as follows.

LE.Kg(1κ): Generate x1, x2
$← Zq and set g1 ← g1/x1 , g2 ← g1/x2 . Return the

public key pk2 = (g1, g2) and the secret key sk2 = (x1, x2).

LE.Enc(pk2, m ∈ G): Choose r1, r2
$← Zq and set u1 ← gr1

1 , u2 ← gr2
2 , u3 ←

m · gr1+r2 . Return (u1, u2, u3) as the ciphertext of m.

LE.Dec
(
sk2, (u1, u2, u3)

)
: Return u3/(ux1

1 ux2
2 ).

The scheme is ind-cpa-secure under the decision linear assumption [3].

4.2 The Scheme SCUS1

The scheme is described as follows.

KeyGen(1κ): Run GBM.Kg(1κ) and LE.Kg(1κ) to get (pk1, sk1) and (pk2, sk2).
Return the public key pk = (pk1, pk2) and the signing key sk = (sk1, sk2).

USign(sk, m): First, generate r1, r2
$← Zq, and set u1 ← gr1

1 , u2 ← gr2
2 ,

and m = m ‖ u1 ‖ u2. Next, sign on m to get
(
s, ρ = H(m)

1
x+s

) $←
GBM.Sign(sk1, m). Then, encrypt ρ in the ciphertext (u1, u2, u3 = ρ · gr1+r2).
Return the undeniable signature σ = (s, u1, u2, u3).

Convert(sk, m, σ): Parse σ as (s, u1, u2, u3) ∈ {0, 1}η × G3, and let ρ ←
u3/(ux1

1 ux2
2 ). If (s, ρ) is not a GBM signature on m ‖ u1 ‖ u2 then return

⊥. Otherwise, return the converter (ρ, π) ∈ G × G12, where π is a NIZK
proof proving (with secrets x1, x2):

g = gx1
1 , g = gx2

2 , u3/ρ = ux1
1 ux2

2 . (1)

Such a NIZK proof π can be efficiently created using the result of Groth and
Sahai [20]. See the full version [33] for the concrete description of π.

Another method of converting, inspired by Damgard and Pedersen [12],
is to store the randomness r1, r2 used in signing and later release them as
converter. Then, everyone can check u1 = gr1

1 , u2 = gr2
2 and compute ρ as

u3/gr1+r2 .
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To do all conversion, release sk2 = (x1, x2) so that everyone can compute
ρ = u3/(ux1

1 ux2
2 ) and then check whether (s, ρ) is a valid GBM signature on

m ‖ u1 ‖ u2. Note that in this case, our proposal becomes a regular signature
scheme equivalent to the GBM scheme.
Verify(pk, m, σ, cvt): Parse σ as (s, u1, u2, u3) ∈ {0, 1}η×G3 and cvt as (ρ, π) ∈
G×G12. Return 1 (meaning, valid) if π is a valid proof of the equations (1),
and (s, ρ) is a valid GBM signature on m ‖ u1 ‖ u2. Otherwise return 0. (We
omit details when cvt = (r1, r2).)
Confirm: On common input pk, (m, σ), the signer and the verifier execute

PoK
{
(x, a, b) :ga

1 =(Xgs)−1 ∧ gb
2 = (Xgs)−1 ∧ ux

3ua
1u

b
2 =H(m‖u1 ‖u2)u−s

3

}
.

Intuitively, the equations first show that a = −x1(x + s) and b = −x2(x + s)
where x = dlogg(X), x1 = dlogg1

g and x2 = dlogg2
g. With the values a, b, the

final equation is equivalent to u3/(ux1
1 ux2

2 ) = H(m ‖ u1 ‖ u2)1/(x+s). Since
u1, u2 ∈ G, a cyclic group, there exist r1, r2 such that u1 = gr1

1 and u2 = gr2
2 ,

and thus ux1
1 = gr1 , ux2

2 = gr2 . Hence, u3 = H(m ‖ gr1
1 ‖ gr2

2 )1/(x+s) · gr1+r2 ,
showing that σ = (s, u1, u2, u3) is indeed produced by USign on m. The
zero-knowledge proof of knowledge can be implemented using known ZKIPs
described in Sect. 3.

In the above PoK, the signer must also prove the knowledge of the secret
key corresponding to the public key, namely (x, x1, x2) satisfying gx = X, g =
gx1
1 = gx2

2 . We omit these types of conditions hereafter in all PoKs for clarity.
Disavowal: On common input pk, (m, σ), the signer sends a value U �= 1 to
the verifier, and both execute

PoK
{

(c, d, f, r) : gc(X−1g−s)r = gd
1(Xgs)r = gf

2 (Xgs)r = 1

∧ U = uc
3 · ud

1 · uf
2 ·H(m ‖ u1 ‖ u2)−r

}
.

Intuitively, the equations of the first line give us c = r(x+s), d = −rx1(x+s),
and f = −rx2(x + s). Substituting these values to the second line equation
and noting that U �= 1 show u3/(ux1

1 ux2
2 ) �= H(m ‖ u1 ‖ u2)1/(x+s), and thus

(m, σ) is invalid. The disavowal protocol is also implemented using known
ZKIPs or NIZK proof in Sect. 3. Note that the NIZK proof for the disavowal
protocol gives a way to “convert” (namely, make publicly-verifiable) invalid
signatures.

Above, if the confirmation protocol fails, then the disavowal protocol is run. If
both fails, we conclude that the signer is cheating (or not cooperating). We now
consider securities of SCUS1, which are ensured by the following theorems.

Theorem 5 (Strong unforgeability). The proposed SCUS1 scheme is strongly
unforgeable if the signature scheme GBM is suf-cma-secure. Moreover, given a
forger F against SCUS1, there exists another forger F ′ against the GBM signature
scheme such that

Advsforge
SCUS1

(F) ≤ Advsuf−cma
GBM (F ′),
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T(F ′) = O(qconf/dis) ·T(F),

where qconf/dis is the total number of confirmation/disavowal queries F made,
and T expresses the running time.

Proof. Given in [33].

Theorem 6 (Strong invisibility). The SCUS1 scheme satisfies strong invis-
ibility. Moreover, given a distinguisher D against SCUS1, there exist an Adlin

against the decision linear assumption, and a forger F against SCUS1 such that

Advinv
SCUS1

(D) ≤ Advdlin
G (Adlin) + Advsforge

SCUS1
(F),

T(Adlin) = O(qconf/dis) ·T(D), and T(F) ≈ T(D),

where T expresses the running time, and qconf/dis is the total number of confir-
mation/disavowal queries D makes.

Proof. We proceed in games as follows.

Game 0: This is exactly the definitional game as in Definition 3. Let Wi (i = 0, 1)
be the event that the distinguisher D wins in Game i, we have Advinv

SCUS1
(D) =

Pr[W0] by definition.

Game 1: This game is the same as Game 0, except that we consider the following
distinguisher: D never issues a convert or confirmation/disavowal query (m, σ)
satisfying (1) the pair is valid (namely, ⊥ or 0 was not returned), and (2) the
pair is different from all previously-issued message-signature pairs at the signing
oracle.

Obviously, if D (in Game 0) issues the pair (m, σ) as above, then we can use
(m, σ) as a forgery (in the strong sense) of the SCUS1 scheme. More precisely, we
can use D to build a forger F against SCUS1 with T(F) ≈ T(D). Thus, Game
0 and Game 1 are indistinguishable thanks to the strong unforgeability of the
scheme, and hence

|Pr[W0]− Pr[W1]| ≤ Advsforge
SCUS1

(F).

Using the distinguisher D in Game 1, we now build an adversaryAdlin against
the decision linear assumption on G satisfying Pr[W1] ≤ Advdlin

G (Adlin). Note
that

Advinv
SCUS1

(D) = Pr[W0] ≤ Pr[W1] + Advsforge
SCUS1

(F)

≤ Advdlin
G (Adlin) + Advsforge

SCUS1
(F),

which completes the proof. Thus the rest is devoted to constructing such Adlin.
The input of Adlin is (PG, g1, g2, g, gα

1 , gβ
2 , Tb), where T0 = gα+β and T1 = gγ

for α, β, γ
$← Zq. The adversary Adlin itself sets up the keys for GBM signa-

ture scheme: sk1 = x
$← Zq and pk1 = (gx, H, η = 70); and generates a sim-

ulated crs and a trapdoor t for the NIZK of the equations (1). Then Adlin
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gives pk = (pk1, g1, g2, crs) to D and begins to simulate the environment for the
distinguisher as follows:

– Signing query m: Adlin chooses the randomness r1, r2
$← Zq and s

$←{0, 1}η,
and computes ρ ← H(m ‖ u1 ‖ u2)1/(x+s) where u1 = gr1

1 and u2 = gr2
2 . It

then lets u3 ← ρ · gr1+r2 and returns σ = (s, u1, u2, u3) to D as the undeniable
signature on m. The adversary Adlin internally keeps a record of the values ρ,
and also lets Q ← Q ∪ {(m, σ)} for later use, where Q is an initially empty set
of message-signature pairs appeared so far.
– Convert query (m, σ): If (m, σ) ∈ Q then return the corresponding recorded
ρ and a simulated NIZK proof πsim (of the equations (1)) produced by using
the trapdoor t. If (m, σ) �∈ Q then return ⊥ to D. The reasoning behind this
simulation is that if (m, σ) �∈ Q then the pair must be invalid since we are in
Game 1.
– Confirmation/disavowal query (m, σ): Like the simulation for convert query
above, if (m, σ) ∈ Q then return 1 and run the confirmation protocol with D;
otherwise return 0 and run the disavowal protocol. The protocols are simulatable
using the rewinding technique [19] since they are zero-knowledge.

– Challenge query m∗: Let u∗
1 ← gα

1 and u∗
2 ← gβ

2 . Choose s∗ $← {0, 1}η and
then compute ρ∗ ← H(m∗ ‖ u∗

1 ‖ u∗
2)

1/(x+s∗) and u∗
3 ← ρ∗ · Tb. Return σ∗ =

(s∗, u∗
1, u

∗
2, u

∗
3) to D.

Note that if b = 0 then Tb = T0 = gα+β , so that σ∗ is a valid undeniable sig-
nature on m∗. If b = 1 then Tb = T1 = gγ is a random value over G independent
of the other values, so that σ∗ is also randomly distributed over the signature
space {0, 1}η ×G3.

At the end, the distinguisher D outputs a bit b′ as a guess of the hidden bit b.
The adversary Adlin in turn outputs b′. The advantage of Adlin is exactly the
probability D wins in Game 1, namely Advdlin

G (Adlin) = Pr[W1]. The running
time of Adlin is O(qconf/dis) times that of D due to the rewinding.

5 Our Proposed SCUS2

In this section, we describe our second scheme SCUS2, which is also secure un-
der the same assumptions as those of SCUS1. The scheme SCUS2 uses the Boneh-
Boyen [2] signature scheme as a component. We first recall the Boneh-Boyen signa-
ture scheme, basing on a pairing group PG = (G, GT , q = |G|, g, ê : G×G→ GT ).

Boneh-Boyen Signature Scheme. The (standard) signature scheme BB =
(BB.Kg, BB.Sign, BB.Vrf) is as follows.

BB.Kg(1κ): Generate g0
$←G, x, y

$← Zq, u ← gx, v ← gy, z = ê(g0, g), and
a target collision hash H : {0, 1}∗ → Zq. Return the verifying key pk1 =
(g0, u, v, z, H) and the signing key sk1 = (x, y).

BB.Sign(sk1, m): s
$← Zq, ρ← g

1
x+H(m)+ys

0 ∈ G. Return (s, ρ) ∈ Zq ×G as the
signature on m.
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BB.Vrf
(
pk1, m, (s, ρ)

)
: Check that (s, ρ) ∈ Zq×G and ê

(
ρ, u · gH(m) · vs

)
= z.

Return 1 if all checks pass, else return 0.
It was proven in [2] that the above signature scheme is suf-cma-secure under the
strong Diffie-Hellman assumption.
Our Proposal SCUS2. The scheme, whose security analysis is given the full
version [33], is described as follows.

KeyGen(1κ): Run BB.Kg(1κ) and LE.Kg(1κ) to get (pk1, sk1) and (pk2, sk2).
Return the public key pk = (pk1, pk2) and the signing key sk = (sk1, sk2).

USign(sk, m): First, generate r1, r2
$← Zq, and set u1 ← gr1

1 , u2 ← gr2
2 ,

and m = m ‖ u1 ‖ u2. Next, sign on m to get
(
s, ρ = g

1
x+H(m)+ys

0

) $←
BB.Sign(sk1, m). Then, encrypt ρ in the ciphertext (u1, u2, u3 = ρ · gr1+r2).
Return the undeniable signature σ = (s, u1, u2, u3).
Convert(sk, m, σ): The same as that of SCUS1, except now checking whether
(s, ρ) is a BB signature or not. Also, for all conversion, release sk2 = (x1, x2),
so that our proposal becomes a regular signature scheme equivalent to the
BB scheme.
Verify(pk, m, σ, cvt): The same as that of SCUS1, except now checking whether
(s, ρ) is a valid BB signature or not.
Confirm: On common input pk, m, σ = (s, u1, u2, u3), the signer and the
verifier execute

PoK
{
(a, b, c) : ga = uvs ∧ gb

1 = gc
2 =

(
uvsgH(m‖u1‖u2)

)−1

∧ ua
3u

b
1u

c
2 = g0u

−H(m‖u1‖u2)
3

}
.

The first three equations show a = x+ys, b=−x1 (x+H (m ‖ u1 ‖ u2) + ys),
and c = −x2 (x + H (m ‖ u1 ‖ u2) + ys), where x1 = dlogg1

g and x2 =
dlogg2

g. With the values a, b, c, the final equation is equivalent to u3/(ux1
1 ux2

2 )

= g
1/(x+H(m‖u1‖u2)+ys)
0 , showing that (m, σ) is valid. The zero-knowledge

proof of knowledge can be implemented using known ZKIPs or NIZK proofs
described in Sect. 3.
Disavowal: On common input pk, m, σ = (s, u1, u2, u3), the signer sends a
value U �= 1 to the verifier, and both execute

PoK
{

(d, e, f, r) : gd(ugH(m‖u1‖u2)vs)−r = 1 ∧ ge
1(ugH(m‖u1‖u2)vs)r = 1

∧ gf
2 (ugH(m‖u1‖u2)vs)r = 1 ∧ U = ud

3 · ue
1 · uf

2 · g−r
0

}
.

Intuitively, the first three equations give us d = r(x + H(m ‖ u1 ‖ u2) + ys),
e = −rx1(x + H(m ‖ u1 ‖ u2) + ys), and f = −rx2(x + H(m ‖ u1 ‖
u2) + ys). Substituting these values to the last equation and noting that
U �= 1 show u3/(ux1

1 ux2
2 ) �= g

1/(x+H(m‖u1‖u2)+ys)
0 , and thus (m, σ) is invalid.

The disavowal protocol is also implemented using known ZKIPs or NIZK
proof in Sect. 3.
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6 SCUS1,2 as Anonymous Signature Schemes

The security notions for an anonymous signature scheme are unforgeability,
anonymity, and unambiguity. The former two notions are met by SCUS1 and
SCUS2, as seen in the previous sections. The last notion, unambiguity, intu-
itively ensures that if one signer releases a converter to convert a signature, then
nobody else can convert that signature. We formalize the notion as follows.

Definition 7 (Unambiguity). A scheme SCUS satisfies unambiguity if for any
poly-time adversary A,

Advunamb
SCUS (A) def= Pr

⎡

⎢
⎣

(pkA, skA) $← KeyGen(1κ), (pkB, skB) $← KeyGen(1κ)
(mA, mB, σ, cvtA, cvtB) $←A(pkA, skA, pkB, skB)

Verify(pkA, mA, σ, cvtA) = Verify(pkB , mB, σ, cvtB) = 1

⎤

⎥
⎦

is negligible in the parameter κ.

If the adversary chooses cvtA randomly and lets mA = mB, the above definition
essentially becomes that of Saraswat and Yun [35]. On the other hand, the
difference with Bellare and Duan [1] is that we require the users indeed hold
secret keys corresponding to their public keys (which can be done via efficient
zero-knowledge proofs of knowledge). Ours is stronger than [35], weaker than [1].
It is however worth noting that since our schemes are also undeniable signature
ones, requiring knowledge of valid secret keys is normal; since otherwise a signer
creates a fake pair (sk′, pk) (e.g., unrelated values), then all signatures become
invalid with respect to pk, so the signer obviously can deny signatures he himself
produced.

We now consider the schemes SCUS1 and SCUS2, and let the converters of
the schemes be the randomness of the LE scheme.

Theorem 8. The schemes SCUS1 and SCUS2 (releasing randomness for selec-
tive conversion) satisfy unambiguity, under the discrete-log assumption. In par-
ticular, for any adversary A, there is an adversary B such that

Advunamb
SCUS1,2

(A) ≤ Advdlog
G (B),

T(B) ≈ T(A).

The full proof is given in [33], but the intuition is as follows. From the input g, h
of B, we set up the keys (pkA, skA) in base g, and (pkB , skB) in base h and run
A. Any ambiguity will lead to the value dlogg(h), against the dlog assumption.

Above, we only consider schemes releasing randomness as selective convert-
ers. It is interesting to ask whether our schemes with NIZK converters satisfy
unambiguity or not. They seem to meet the notion, but we unfortunately cannot
prove, so leaving it as an open problem.
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Abstract. Aggregate message authentication codes, as introduced by
Katz and Lindell (CT-RSA 2008), combine several MACs into a sin-
gle value, which has roughly the same size as an ordinary MAC. These
schemes reduce the communication overhead significantly and are there-
fore a promising approach to achieve authenticated communication in
mobile ad-hoc networks, where communication is prohibitively expen-
sive. Here we revisit the unforgeability notion for aggregate MACs and
discuss that the definition does not prevent “mix-and-match” attacks in
which the adversary turns several aggregates into a “fresh” combination,
i.e., into a valid aggregate on a sequence of messages which the attacker
has not requested before. In particular, we show concrete attacks on the
previous scheme.

To capture the broader class of combination attacks, we provide a
stronger security notion of aggregation unforgeability. While we can pro-
vide stateful transformations lifting (non-ordered) schemes to meet our
stronger security notion, for the statefree case we switch to the new no-
tion of history-free sequential aggregation. This notion is somewhat be-
tween non-ordered and sequential schemes and basically says that the ag-
gregation algorithm is carried out in a sequential order but must not de-
pend on the preceding messages in the sequence, but only on the shorter
input aggregate and the local message. We finally show that we can build
an aggregation-unforgeable, history-free sequential MAC scheme based
on general assumptions.

1 Introduction

Aggregate message authentication codes [5] allow the aggregation of multiple
MACs, generated by different senders for possibly different messages, such that
the aggregate has the same size as a single MAC. These MACs are especially
suited for settings involving resource-constrained devices like mobile ad-hoc net-
works (MANET). Thereby, the communication is very power-consuming and
asymmetric primitives like signatures are prohibitively expensive due to the lim-
ited computational power of the devices. In this case, verification of an aggre-
gated tag can be carried out by any receiver that shares all secret keys with the
participating senders, e.g., a base station collecting data from the sensors.
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Security Revisited. The unforgeability notions for aggregate MACs follow the
known principle for aggregate signature schemes [2]. Basically, it states that
an adversary, who controls all aggregating parties except for a single signer,
cannot create a valid aggregate for a “fresh” set of messages. Here a set is
considered fresh if the designated signer is in this set but has not signed the
message before. In other words, the unforgeability of the aggregation scheme is
tied to the unforgeability of individual messages.

Aggregation, however, is about combining data, and protection of individual
messages may not be sufficient in all settings: deleting parts, re-ordering entries,
extending or recombining aggregates to a new valid aggregate may be serious
threats for applications. We illustrate our idea with a simple (sequential) network
of nodes

N1 −→ N2 −→ N3 −→ N4.

The aggregation scheme should be used to authenticate routing paths, where Ni

only accepts input from Ni−1, augments the aggregate-so-far by a MAC of its
own identity before forwarding the new aggregate to Ni+1. Then, if one is able
to delete for example N2’s contribution from the aggregate, one obtains a valid
authentication of an invalid route N1 → N3 → N4. According to the definition
of [5], however, the above attack does not constitute a security breach, as no
individual MAC has been forged. We discuss similar, concrete attacks of this
“mix-and-match” type on the aggregate MAC scheme due to Katz and Lindell
[5] in Appendix A.

Aggregation Unforgeability. To cover advanced attacks as discussed above, we in-
troduce our stronger security notion of aggregation unforgeability. The attacker’s
mode of operation is similar to the definitions of [5], i.e., it can make aggrega-
tion queries for messages of its choice and should eventually produce a forgery.
However, in order to capture attacks on combinations, like the mix-and-match
attacks above, our attacker faces multiple honest signers, instead of only a single
signer as in all previous works.1

Our main modification is the notion of “freshness” for the adversary’s forgery
attempt. More precisely, we define a “minimal” closure set of all trivial message
combinations for which the adversary can easily assemble a valid aggregate out
of the data in the attack. For example, the closure contains any message set
from an aggregation query but where the adversary trivially adds messages au-
thenticated by corrupt parties. Every message set not appearing in this closure
is then declared as fresh. Unlike previous definitions the forgery combination in
the mix-and-match attack above is still fresh according to this definition.

History-Free Sequential Aggregation. It is not known how and if our general se-
curity models can be satisfied; even if we make the excessive assumption of some

1 It is tempting to assume that playing against a single honest user would suffice by a
standard guessing strategy. However, the mix-and-match attack shows that we may
not exploit a weakness in the tagging algorithm, but rather take advantage of the
aggregation of tags by several honest parties or of the structure of the aggregate
itself.
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shared and synchronized information between the nodes, like a counter, we show
that we can only achieve a slightly weaker version. Yet, the discussion still shows
the limitations of current schemes and we can transfer the main ideas to the im-
portant case of sequential aggregation where, e.g., a sensor receives some data,
performs some operation, and forwards the new data to the next node. With the
corresponding adaptations of our security notion —and noting that the attacks
above are in fact carried out in the sequential setting— it follows that our secu-
rity guarantees also go beyond the current models for sequential schemes.

Yet, we even consider a stronger model than pure sequential aggregation. Re-
call that the proposal of Katz and Lindell supports the aggregation of the data
independently of the order of the parties and the aggregating algorithm is key
less. The gist of known non-sequential schemes is that the aggregation algorithm
computes the new data without inspection of previous messages. To preserve
as much of this idea for sequential aggregate MACs we introduce the notion of
history-free aggregation where the aggregation only depends on the aggregate-
so-far and the local message. It is clear that the previous aggregate enters the
computation and that this value itself carries (more or less explicit) information
about previous messages. Due to the size restriction for aggregates, though, this
information is limited. In this sense it is understood that history-free schemes
only deny explicit access to previous messages. History-free sequential aggrega-
tion is a desirable goal from an efficiency point of view. It allows for example
incremental compression of the message sequence without local decompression
for each aggregation. This property is especially worthwhile for cases of MANETs
where each computation effects on the battery life of the nodes.

In the history-free sequential case we provide solutions meeting our high
standards. Our secure construction is based on any pseudorandom permutation
(PRP) like AES. The idea here is to carefully chain the tags. In each aggregation
step one basically computes a CBC-MAC of the current message concatenated
with the previous tag (where we need the properties of the PRP only in the last
mixing step). Hence, each aggregation step essentially requires the computation
of a MAC plus one invocation of a PRP.

Related Work. Most works about secure aggregation follow the security model
of Boneh et al. [2] and Lysyanskaya et al. [6]. The only exception is the recent
work by Boldyreva et al. [3] which sketches a possible stronger security notion
covering attacks on sequential schemes in which the adversary outputs a prefix of
some aggregation query (and then possibly appends further iterations of corrupt
players). But their model does not discuss more advanced attacks like “gluing”
together aggregates, nor do they provide provably secure solutions for their model,
whereas we show how to make schemes secure against very powerful attacks.

We note that the notion of sequential aggregate signed data, recently pro-
posed by Neven [7], also aims at efficiency gains, but focuses on communication
complexity instead of computational complexity. For such sequential aggregate
signed data only the aggregate (being of roughly the same size as the messages)
is passed to the next round. However, according to the definition this aggregate
allows to recover the previously signed messages and Neven’s solution indeed
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extracts all these messages for each aggregation step. In this sense, his solution
is therefore still not history-free, unlike our construction for MACs.
Organization. In Section 2 we recall the notion of aggregate MACs. We introduce
our model for aggregation unforgeability in Section 3. For our constructions we
switch to the (history-free) sequential case in Section 4. There, we define history-
free sequential aggregate MACs, discuss aggregation unforgeability in this case
and finally we present our construction based on the general assumptions.

2 Non-sequential Aggregation of MACs

Roughly speaking, an aggregate MAC is a single tag, called the aggregate, of
q different users on q different messages such that the aggregate has nearly the
same size as an ordinary tag. The well known definition of MACs and their
security are given in Appendix B.

2.1 Definition

Definition 1 (Aggregate MACs). An aggregate message authentication code
Agg = (KGen, Mac, Vf, Agg, AVf) is a tuple of efficient algorithms such that:

Key Generation. The algorithm KGen takes the security parameter 1λ and
returns for a particular sender a pair (skid, id) where skid is a key and id is
an identifier.

Authentication, Mac Verification. Mac and Vf are defined as in a standard
message authentication scheme.

Aggregation.Upon input of two sets of message/identifier pairs M1={(m1
1, id

1
1),

. . . , (m1
�1

, id1
�1

)} and M2 = {(m2
1, id

2
1), . . . , (m

2
�2

, id2
�2

)} and associated tags σ1

and σ2, algorithm Agg outputs a new tag σ.
Aggregate Verification. Algorithm AVf accepts as input a set of key/identifier

pairs sk = {(sk1, id1), . . . , (skt, idt)}, a set of message/identifier pairs M =
{(m1, id

′
1), . . . , (m�, id

′
�)} and a tag σ. This algorithm returns a bit.

An aggregate message authentication scheme is complete if the following condi-
tions hold:

– For any λ ∈ N, any (skid, id) ← KGen(1λ), any message m ∈ Mλ, we have
Vf(skid, m, Mac(skid, m)) = 1.

– Let M1 and M2 be two sets of message/identifier pairs with M1 ∩M2 = ∅,
let sk1 as well as sk2 be a set of keys, and let M = M1 ∪ M2 and
sk = sk1 ∪ sk2. If AVf(sk1, M1, σ1) = 1 and AVf(sk2, M2, σ2) = 1 then
AVf(sk, M, Agg(M1, M2, σ1, σ2)) = 1.

2.2 Security Model and an Instantiation

The security model for aggregate MACs is closely related to the one for ag-
gregate signatures [2]. The only technical difference results from the shared-key
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setting. Here, an adversary has access to two different oracles. The first ora-
cle, the corruption oracle Corrupt(sk, ·), returns on input id the corresponding
secret key skid. The second oracle OMac(sk, ·) allows the adversary to compute
MACs for messages and keys of its choice. This oracle is initialized with a set of
keys sk = ((sk1, id1), . . . , (sk�, id�)) and takes as input a message/identifier pair
(m, id), it returns σ ← Mac(skid, m). The adversary is successful if it outputs
a set of message/identifier pairs M = {(m1, id1), . . . , (m�, id�)} and valid tag σ
such that there exists at least one pair (mi∗ , idi∗) ∈ M where idi∗ has not been
corrupted, nor has A queried the MAC oracle on input (mi∗ , idi∗).

Definition 2 (Unforgeability). An aggregate message authentication code
scheme Agg = (KGen, Mac, Vf, Agg, AVf) is unforgeable if for any efficient al-
gorithm A the probability that the experiment AggForgeAgg

A evaluates to 1 is neg-
ligible (as a function of λ), where

Experiment AggForgeAgg
A (λ)

(sk1, id1), . . . , (skt, idt)← KGen(1λ)
sk← ((sk1, id1), . . . , (skt, idt))
(M, σ)← ACorrupt(sk,·),OMac(sk,·)(id1, . . . , idt)
!Return 1 iff AVf(sk, M, σ)=1 and there exists a pair (mi∗ ,idi∗)∈M such that

A never queried Corrupt about idi∗andA never invoked OMac on input (mi∗ ,idi∗).

Instantiation According to Katz-Lindell. The authors also proposed the following
provably secure construction, which we call XOR-AMAC. The aggregate message
authentication code scheme simply computes XOR of all tags.

Construction 1. Let MAC = (KGen, Mac, Vf) be a deterministic message au-
thentication code and define Agg = (KGenKL, MacKL, VfKL, AggKL, AVfKL) through
the following algorithms:

Key Generation. Algorithm KGenKL(1λ) executes for each user independently
the key generation algorithm of the underlying MAC scheme sk ← KGen(1λ)
and picks an identifier id← {0, 1}λ at random. It returns the pair (skid, id).

Authentication, Verification. Defined as in the underlying mac scheme.
Aggregation. Upon input two sets M1 and M2 of message/identifier pairs and

two tags σ1 and σ2 the algorithm outputs σ = σ1 ⊕ σ2.
Aggregate Verification. AVfKL takes as input a set of keys sk=((sk1, id1), . . . ,

(sk�, id�)), a set M = {(m1, id
′
1), . . . , (m�, id

′
�)} of message/identifier pairs,

and a tag σ. This algorithm AVfKL computes σ′ =
⊕�

i=1 Mac(skidi
, mi) and

outputs 1 if and only if σ′ = σ.

3 Aggregation Unforgeability for Non-sequential MACs

In this section we first address the non-ordered case of aggregation. As discussed
in the introduction, we introduce a security model that captures the broad class
of mix-and-match attacks. It is clear that simple countermeasures like prepend-
ing the identifier of the user do not prevent theses attacks. Another approach
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might be to let the sender choose a nonce and have each intermediate user sign
this nonce together with the message. The receiver only accepts aggregates for
fresh nonces. This approach has some disadvantages, though. First, if the party
choosing the nonces is controlled by the adversary, then a nonce may re-appear
for several MAC generations.2 Secondly, ad-hoc networks are highly dynamic.
Thus, a node may receive an aggregate more than once (due to undesired loops in
the route). Another disadvantage is that the receivers have to keep state. Similar
arguments hold also for timing-based or counter-based solution. Nevertheless, we
show in Appendix C a counter-based solution.

3.1 Security Model

We propose a stronger definition of unforgeability which we call aggregation-
unforgeability. It follows the idea that the adversary is considered successful if he
manages to find a valid aggregate for a message set which is not a straightforward
combination of previous queries (or aggregates augmented by contributions of
corrupt parties).

Regarding aggregate MACs, the main difference to the previous model is
manifested in the fact that we grant the adversary in our model an additional
aggregation oracle returning aggregates for sets of messages. The aggregation
oracle, denoted by OAgg, is initialized with the key/identity pairs (ski, idi) of all
parties, takes as input a set of message/identifier pairs {(M1, id1), . . . , (Mk, idk)}
and returns an aggregate MAC σ for these data. We remark that the aggregation
oracle only aggregates for honest parties, i.e., where the corresponding keys were
not corrupted by the adversary; for corrupted parties the adversary must later
add the values himself.

To express that the final output of the adversary is not a trivial combination
of the results of the queries, we define a closure of the queries that contains all
of these trivial combinations. For this definition we need the following notations.
By QMac we denote the set of queries of the adversary to the OMac oracle, by
QAgg the set of queries to the aggregation oracle OAgg, and by QCor the set of
corruption queries. As a very basic example consider the classical unforgeability
notion of MACs (one party only). Then the sets QAgg and QCor are empty and
QMac contains exactly the queries to the MAC oracle. Here, trivial attacks are
those where the adversary’s forgery is for one of the previously queried messages
from QMac, i.e., the closure consists exactly of the queried messages.

In the case of aggregation the adversary can assemble more trivial message
sets from its data. For example, if the adversary has obtained the aggregated
MAC for a pair of messages and identities id1, id2, and knows the MAC for
a third honest party id3, then it can run the public aggregation algorithm to
derive a valid MAC for the three messages. Analogously, the adversary can add
corrupt parties easily by computing individual MACs for these parties and then
aggregating them to a previous result. Our definition follows this idea, basically

2 Note that letting each party choose a nonce and append it to the aggregate would
lead the idea behind aggregation ad absurdum.
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saying that the closure of all trivial combinations contains aggregation queries
to which we add individual MAC queries and corrupt parties as well as further
aggregation queries.

Consider as an instructive example a sensor network monitoring temperature
differences, where deviations of 2◦F between adjacent sensors would trigger an
alarm. Suppose for simplicity that the network only consists of two nodes, one
(called ’master’) being closer to the base station and forwarding the data from the
other node (called ’slave’) to the station. When using an aggregation scheme the
master sensor receives an aggregate for a temperature from the slave, “inserts”
its authentication data for its temperature and forwards the temperatures and
the new aggregate to the base.

If the adversary sees the aggregated MACs to the innocuous measurements
(70◦F, 70◦F), (69◦F, 70◦F), and (70◦F, 71◦F), then

QAgg =
{{(70, id1), (70, id2)}, {(69, id1), (70, id2)}, {(70, id1), (71, id2)}

}

for identities id1 = ’slave’ and id2 = ’master’. Assume that there is a third party
id3 which is honest and for which the adversary has obtained an individual MAC
QMac = {(65, id3)} and that there is no corrupt party, QCor = ∅. Then the closure
would be

Closure(QMac, QAgg, QCor)

=
{{(65, id3)},

{(70, id1), (70, id2)}, {(69, id1), (70, id2)}, {(70, id1), (71, id2)},
{(69, id1), (70, id1), (70, id2)}, {(70, id1), (70, id2), (71, id2)},
{(70, id1),(70, id2),(65, id3)},{(69, id1),(70, id2), (65, id3)},{(70, id1), (71, id2),(65, id3)},
{(69, id1), (70, id1), (70, id2), (71, id2)}, . . .

}

Note that we do not treat sets where an identity appears multiple times in any
special way. However, such forgery attempts can be easily thwarted by hav-
ing the verifier check that all identities are distinct. We remark that the pair
{(69, id1), (71, id2)} is not a member of the closure (containing only the three
originally queries as entries with two elements), but for which the adversary
can for example in the Katz-Lindell scheme easily obtain a valid aggregate by
adding the aggregates for the three measurements. The aggregate for this pair,
even though not forging an individual MAC, would nonetheless trigger an alarm
because of the temperature distance.

Definition 3 (Closure of A’s queries). The closure Closure of A’s queries
QMac, QAgg and QCor is defined as

Closure(QMac, QAgg, QCor) =
{

⋃

MA∈A

MA ∪ MM ∪ MC

∣
∣
∣
∣ A ⊆ QAgg, MM ⊆ QMac, MC ⊆ ⋃

id∈QCor

{(m, id) |m ∈ Mλ}
}

with Mλ denoting the message space for the security parameter λ.
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With our definition of the closure we get the following definition for aggregation-
unforgeable MAC schemes.

Definition 4. An aggregate message authentication code scheme Agg = (KGen,
Mac, Vf, Agg, AVf) is aggregation-unforgeable if for any efficient algorithm A
the probability that the experiment AggForgeAgg

A evaluates to 1 is negligible (as a
function of λ), where

Experiment AggForgeAgg
A (λ)

(sk1, id1), . . . , (skt, idt)← KGen(1λ)
sk← ((sk1, id1), . . . , (skt, idt))
(M, σ)← ACorrupt(sk,·),OMac(sk,·),OAgg(sk,·)(id1, . . . , idt)
Return 1 iff AVf(sk, M, σ) = 1 and M 	∈ Closure(QMac, QAgg, QCor).

3.2 Relationship to the Model of Katz-Lindell

We first prove formally the fact that aggregation-unforgeability implies unforge-
ability. Then we separate the notion by showing that the aggregate MAC scheme
shown in Construction 1 is aggregation-forgeable.

Proposition 1. Every aggregation-unforgeable message authentication code is
also unforgeable.

Proof. Let Agg = (KGen, Mac, Vf, Agg, AVf) be an aggregation-unforgeable mes-
sage authentication scheme. Suppose towards contradiction that there exists an
adversary A breaking security of Agg. Then we show how to build an algorithm
B against aggregation-unforgeability. This algorithm executes a black-box simu-
lation of A and answers each oracle query with its own oracles. Finally, A stops,
outputting a pair (M, σ) which B returns as its forgery.

Algorithm B performs a perfect simulation from A’s point of view, and since
A is efficient B is also efficient. To see that the forgery is valid, note that QAgg

is empty because A performs the aggregation queries locally. Recall that A only
succeeds if there exists at least one pair (midi∗ , idi∗) ∈ M such that A never
queried Corrupt about idi∗ and never invoked OMac on (midi∗ , idi∗). Thus, the
forgery is not in the closure and B succeeds whenever A returns a valid forgery.


�
In the following we separate the notions showing that Construction 1 is
“aggregation-forgeable”. The basic idea follows the example that we discussed in
the previous section and is that A successfully recombines real subsets of queries
to the AMac oracle. Thus, A’s answer M is a set which contains has never been
sent to the oracle OAgg.

Proposition 2. If there exists a deterministic message authentication code where
the message-space Mλ contains at least four distinct messages, then the aggre-
gate message authentication code defined in Construction 1 is not aggregation-
unforgeable.
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Proof. The adversary A forging the aggregate MAC (cf. Definition 4) gets as
input (id1, . . . , idt) and works as follows: It first picks two identifiers at random
from the list, (id1, id2), chooses randomly four messages m1, m2, m3, m4 ←Mλ

and sets M1 ← ((m1, id1)(m2, id2)), M2 ← ((m1, id1)(m3, id2)) and, M3 ←
((m4, id1)(m2, id2)). This algorithm then invokes the aggregation oracle three
times:

σ1 ← OAgg(sk, M1) and σ2 ← OAgg(sk, M2) and σ3 ← OAgg(sk, M3).

It returns (M, σ)← (((m4, id1), (m3, id2)), (σ1 ⊕ σ2 ⊕ σ3)).
For the analysis it is easy to see that A is efficient. The forgery is valid since

σ = σ1 ⊕ σ2 ⊕ σ3 = OAgg(sk, M1)⊕ OAgg(sk, M2)⊕ OAgg(sk, M3)
= Mac(skid1 , m1)⊕Mac(skid2 , m2)⊕Mac(skid1 , m1)⊕Mac(skid2 , m3)
⊕Mac(skid1 , m4)⊕Mac(skid2 , m2)

= Mac(skid1 , m4)⊕Mac(skid2 , m3)

holds. Furthermore A neither queried the corruption oracle, nor invoked
OAgg(sk, ·) on the tuple ((m4, id1), (m3, id2)). 
�

4 History-Free Sequential Aggregate MACs

In this section we introduce the notion of history-free sequential aggregation
and adapt the desired security model of aggregation-unforgeability to the new
scenario. We then present our sequential aggregate MAC scheme based on an
underlying deterministic MAC.

4.1 Definition of Sequential Aggregate MACs

In an aggregate MAC scheme the tags are computed independently by each
sender and are then combined into a single aggregate tag. Therefore, the ag-
gregation can be performed even by an unrelated party since the process does
not require knowledge of the secret keys. In contrast, in a sequential aggregate
MAC schemes the authentication and aggregation is a combined operation. Each
sender gets as additional input an aggregate-so-far σ′ and transforms that tag
into a new aggregate σ which includes the authentication of a message of his
choice. We write M ||(m, id) for the resulting sequence of message-identifier pairs
(where the pair (m, id) is appended to the previous pairs).

Definition 5. A sequential aggregate message authentication code scheme is a
tuple of efficient algorithms SAGG = (SKGen, Mac, Vf, SMac, SVf) such that

Key generation. SKGen takes as input the security parameter 1λ and returns
a key skid together with an identity id.

Authentication, Verification. Defined as in a standard MAC scheme.



318 O. Eikemeier et al.

Aggregate Tagging. Algorithm SMac accepts as input a key skid, a message
m ∈ Mλ, an aggregate-so-far tag σ′ and a sequence of message/id pairs
M =
((m1, id1), . . . , (mt, idt)). It outputs a new aggregate MAC σ.

Verification algorithm. SVf takes as input a set of keys sk = {skid1 , . . . , skid�
},

a tuple of messages/identifier pairs M = ((m1, id1), . . . , (mt, idt)) as well as
an alleged sequential aggregate tag σ and outputs a bit.

A sequential aggregate MAC scheme is complete if

– (Single-MAC Correctness) For any pair (skid, id)← SKGen(1λ), any message
m ∈Mλ and any σ ← Mac(skid, m), it holds that Vf(skid, m, σ) = 1.

– (Aggregation Correctness) For all pairs (skid, id)← SKGen(1λ), all messages
m ∈Mλ, for any set of message/identifier pairs M ={(m1, id1),. . . , (m�, id�)}
(where (mi, idi) ∈ Mλ × {0, 1}λ for all i = 1, . . . , �), any set of keys sk
and any tag σ′ ∈ Rλ with SVf(sk, M, σ′) = 1 we require that for all σ ←
SMac(skid, m, σ′, M) it holds that SVf((sk||skid), M ||(m, idid), σ) = 1.

A common approach to build sequential aggregate signature schemes is to verify
the validity of an received aggregate-so-far before computing the new aggregate.
Often, the aggregation algorithm even includes the previous messages in its
computations. In the private key setting, however, verification of the aggregate
may not be possible as nodes do not share all keys. Moreover, compared with
non-sequential schemes, where the aggregation process does not depend on the
previous messages, this is a main drawback of sequential schemes (especially
from an efficiency point of view). The idea of history-free sequential aggregation
is to overcome that restriction by requiring that the aggregation only depends
on the aggregate-so-far and the local message.

Definition 6 (History Freeness). A sequential aggregate message authentica-
tion scheme SAGG = (SKGen, Mac, Vf, SMac, SVf) is called history-free if there
exists an efficient algorithm SMachf such that SMachf(·, ·, ·) = SMac(·, ·, ·, M) for
all M .

In the sequel we often identify SMachf with SMac and simply omit M from the
input of SMac.

4.2 Security Model

A sequential aggregate MAC is called aggregation-unforgeable, if any efficient
adversary A succeeds in the following two-phase experiment only with negligi-
ble probability. In the first phase, the adversary has access to a corrupt oracle
Corrupt, and can obtain the secret keys of senders of his choice. As soon as A
queries its sequential aggregate MAC oracle SeqAgg, the corruption phase has
ended and the adversary A is not allowed to query the
corrupt oracle again. The sequential aggregate MAC oracle SeqAgg takes as
input a set sk = (skid1 , . . . , skid�

), an aggregate-so-far tag σ′, an ordered set



History-Free Aggregate Message Authentication Codes 319

M = {(m1, id1), . . . , (mq, idq)} of message identifier pairs and returns a (sequen-
tially ordered) tag σ.

Before proposing the formal security model, we define the closure of all trivial
combinations. We denote by QSeq the set of all query/answer tuples ((M, σ′), σ)
that occur in A’s interaction with the SeqAgg oracle and by QCor we denote the
set of all identities’ that were queried to the Corrupt oracle.

We stress that in the context of sequential aggregate MACs given the adver-
sary access to a MAC oracle is redundant. Each query to a (single) MAC oracle
can easily simulated by calling the sequential aggregate oracle with the empty
tag σ∅. Thus, the definition of the closure does not need the set QMac of queries
and responses from the MAC oracle (since this set in contained in QSeq).

Definition 7 (Sequential Closure of A’s queries). Let M be a set of mes-
sage/identifier pairs, let QCor and QSeq be the sets corresponding to the different
oracle responses and let m∅ (σ∅) be the empty message (empty tag, respectively).
Let TrivialQSeq,QCor be a recursive function of trivial combinations defined as

TrivialQSeq,QCor
(M, σ) := {M} ∪

⋃

((σ,M ′),σ′)∈QAgg

TrivialQSeq,QCor
(M ||M ′, σ′)

∪
⋃

∀m̄,σ̄
∧idi∈QCor

TrivialQSeq,QCor
(M ||(m̄, idi), σ̄) .

We can now define the closure Closure of A’s queries QAgg and QCor by recursively
generating the trivial combinations starting from the empty message m∅ and
empty tag σ∅ as described above:

Closure(QAgg, QCor) := {TrivialQSeq,QCor
(m∅, σ∅)}.

With the definition of the sequential closure, we propose the following security
model for sequential aggregate MACs.

Definition 8. A sequential aggregate message authentication code scheme
SAGG = (SKGen, Mac, Vf, SMac, SVf) is aggregation-unforgeable if for any ef-
ficient algorithm A (working in mode cor, for) the probability that the experi-
ment SeqForgeAgg

A evaluates to 1 is negligible (as a function of λ), where

Experiment SeqForgeAgg
A (λ)

(sk1, id1), . . . , (skt, idt)← SKGen(1λ)
sk← ((sk1, id1), . . . , (skt, idt))
st← ACorrupt(sk,·)(cor, id1, . . . .idt) // it is understood that A keeps state st
(M, σ)← ASeqAgg(sk,·,·)(for, st, id1, . . . , idt)
Return 1 iff idi 	= idj for all i	= j and SVf(sk, M, σ) = 1 and

M 	∈ Closure(QAgg, QCor).

Note that in the definition above the adversary A running in mode for has
only access to the sequential aggregate MAC oracle an not to a tagging oracle
Mac. We argue that this is redundant since the attacker is allowed to invoke
SeqAgg on tags of its choice. Thus, A can query SeqAgg on arbitrary messages
m together with the empty tag σ∅ and yields an ordinary tag for m.
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5 Construction of History-Free Sequential MACs

The idea behind our construction is as follows. We again use a “chaining” ap-
proach in which we let the next aggregating party (with identity id) compute
the next tag over its own message M ∈ {0, 1}∗ and over the previous tag
σ′. That is, τ ← Mac(sk, M‖σ′) for the deterministic algorithm Mac(sk, ·) :
{0, 1}∗ → {0, 1}λ. To preserve the order of the aggregating parties we let each
party prepend its own identity id to the resulting tag σ ← id‖τ . Thus, the next
party essentially computes a MAC for its own message, the identity of the previ-
ous party and the previous tagging result. Formally, prepending id enlarges the
tag, yet in most applications the identity of the sending party is known anyway
and does not need to be included explicitly.

Proving the security of the above approach leads to some difficulties. Namely,
the adversary could potentially gain information from the final tag about an
intermediate value, and could thus easily “shorten” such aggregation chains. To
prevent this we assume that MAC itself is pseudorandom, ensuring that no such
information is leaked.

We also need a special property of the MAC allowing us to “go backwards”
in a chain: assume that an adversary successfully outputs a forged sequence
by predicting one of the intermediate MACs correctly. Then, in order to break
the security of the underlying MAC, we need to be able to undo the MAC
computations afterwards and to access the intermediate MAC values. We add
this partial inversion property as an requirement to the (pseudorandom) MAC
and show that standard constructions like CMAC have this property and that
one can easily build such MACs from pseudorandom permutations.

5.1 Properties of the MAC

Recall that we need two properties of the underlying MAC in order to make our
construction work: pseudorandomness and partial inversion:

Definition 9 (Pseudorandom MAC). A det. message authentication code
MAC = (KGen, Mac, Vf) is pseudorandom (or a pseudorandom function) if for
any efficient algorithm D the value

∣
∣
∣Prob

[
DMac(sk,·)(1λ) = 1

]
− Prob

[
Df(·)(1λ) = 1

]∣
∣
∣

is negligible, where the probability in the first case is over D’s coin tosses and
the choice of sk ← KGen(1λ), and in the second case over D’s coin tosses and
the choice of the random function f : {0, 1}∗ → {0, 1}λ.
A pseudorandom function is called a pseudorandom permutation if it is also a
permutation. Note that pseudorandom MACs are unforgeable, too.

Definition 10 (Partial Inversion). A deterministic message authentication
code MAC = (KGen, Mac, Vf) is partially invertible if there exists an efficient
algorithm PartInv which, for any security parameter λ ∈ N, any key sk ←
KGen(1λ), any M = M ′||m for some m ∈ {0, 1}λ, and any σ ∈ {0, 1}λ, on
input (sk, M ′, σ) returns a string m ∈ {0, 1}λ such that Mac(sk, M ′‖m) = σ.
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In the following we present two efficient constructions satisfying the definition
of partial inversion. The first construction is CMAC (a security proof is given
by Iwata and Kurosawa under the name OMAC in [4]) which can be used for
messages of fixed block length. The reason for not using CMAC for arbitrary
input-lengths is that the desired block may not be aligned to the final λ bits.
The second construction uses a pseudorandom permutation and is applicable for
messages of variable length.

A Solution Based on CMAC. If the length of the message/identifier pair is a
positive multiple of the block size, then CMAC can be used as the underlying
(pseudorandom) message authentication code (when a pseudorandom permuta-
tion PRP lies underneath). We first review CMAC briefly and show then that
CMAC supports partial inversion.

The key generation algorithm of CMAC generates a pair of keys sk, sk1 where
sk1 is derived from sk.3 In order to compute a tag, the tagging algorithm takes as
input a message M = m1|| . . . ||mk ∈ {0, 1}k·λ and two keys sk, sk1. It computes

ci ← PRP(sk, mi ⊕ ci−1) for i = 1, . . . , k − 1 (where c0 = 0λ) ,

and outputs the final tag as σ ← PRP(sk, ck−1 ⊕ sk1 ⊕mk). Unforgeability and
pseudorandomness follow from the security of CMAC for aligned inputs.

Lemma 1. CMAC is partially invertible.

Proof. In the following we describe the algorithm PartInv which takes as input
a message M ′ = m1, . . . , mk−1 (consisting of k − 1 blocks m1, . . . , mk−1 of λ
bits each) a pair of keys (sk, sk1), and a tag σ. In the first step, this algorithm
emulates the iteration of CMAC but omitting the last step, ci ← PRP(sk, mi ⊕
ci−1) for i = 1, . . . , k − 1. Algorithm PartInv then decrypts the received tag
τ ← PRP−1(sk, σ) and returns m← ck−1 ⊕ sk1⊕ τ . It is clear that this recovers
an appropriate value m. 
�

A General Solution. In the following let M = M ′‖m ∈ Mλ be a message whose
block length is not a positive multiple of the block size. We then present a suitable
MAC scheme based on general assumptions. The main idea of the construction is
to execute (the underlying deterministic) tagging algorithm τ ← Mac(sk, M ′) on
the first part M ′ of the message M and to compute a pseudorandom permutation
on the value τ ⊕m.

Construction 2. Let MAC = (KGen, Mac, Vf) be a deterministic message au-
thentication code and PRP(·, ·) be a pseudorandom permutation (where Mac for
security parameter λ produces λ-bit outputs and PRP is also over λ-bits for se-
curity parameter λ). We define the procedures CKg, CTag and CVf as follows:

3 Note that CMAC deduces two keys sk1 and sk2 from sk. As in this construction the
second key sk2 is not required, we omit it here.
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KeyGen. The key generation algorithm CKg(1λ) generates a keysk←KGen(1λ),
chooses a key kPRP ∈ {0, 1}λ at random and returns (sk, kPRP).

Tagging. CTag((sk, kPRP), M) takes a message M = M ′‖m with M ′ ∈ {0, 1}∗
and m ∈ {0, 1}λ as well as a key pair sk, kPRP. It computes τ ← Mac(sk, M ′)
and returns the value PRP(kPRP, τ ⊕m).

Verification. The algorithm CVf((sk, kPRP), M, σ) returns to 1 iff CTag((sk,
kPRP), M) = σ, otherwise 0.

Note that we do not claim to be able to recover the full message M‖σ′ from a
MAC τ ← Mac(sk, M‖σ′), but it suffices that we recover σ′ given sk, M and
σ. The following theorem proves formally the security and the partial inversion
property of the construction.

Theorem 3. If MAC = (KGen, Mac, Vf) is an unforgeable message authentica-
tion code and PRP is a pseudorandom permutation, then Construction 2 is a
pseudorandom, partially invertible message authentication code.

We proof this theorem through the following two proposition, first showing that
the resulting MAC scheme is secure and second its partial inversion.

Proposition 3. If MAC = (KGen, Mac, Vf) is an unforgeable message authen-
tication code and PRP is a pseudorandom permutation, then Construction 2 is
pseudorandom.

The proof idea is to apply the well-known result that the composition of a
(computational) almost universal function and a pseudorandom function remains
pseudorandom (see, for example, [1]). This clearly yields a secure MAC. Hence,
for our construction it suffices to show that the “inner” part of our MAC al-
gorithm is computational almost universal. Before stating this result, we give a
formal definition of computational almost universal MACs.

Definition 11. A message authentication code MAC is called computational
almost universal (cAU) if for any efficient algorithm A the probability that ex-
periment cAU evaluates to 1 is negligible (as a function of λ), where

Experiment cAUMAC
A (λ)

sk ← KGen(1λ)
(M1, M2)← A(1λ)
Return 1 iff M1 	= M2 and Mac(sk, M1) = Mac(sk, M2).

Lemma 2. For an unforgeable deterministic message authentication codes
MAC′ = (KGen′, Mac′, Vf′) the algorithm Mac′(sk, M ′) ⊕ m for M = M ′||m
is computational almost universal (for key generation sk← KGen′(1λ)).

Proof. To prove this lemma first consider the case that we have M ′
1 = M ′

2 for
a successful adversarial output M1 = M ′

1||m1, M2 = M ′
2||m2. Then it must

hold that m1 	= m2, implying that Mac′(sk, M ′
1)⊕m1 	= Mac′(sk, M ′

2)⊕m2 for
the deterministic algorithm Mac′. Hence assume from now on that there exists
an algorithm A breaking the almost universal property of the MAC scheme
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proposed in Construction 2 with noticeable probability for M ′
1 	= M ′

2. We then
build an algorithm B, against the underlying MAC scheme MAC′, which executes
A in a black-box way and works as follows. B gets as input the security parameter
1λ, has access to an tagging oracle Mac(sk, ·) and initiates A on input 1λ. At
the end of the simulation A outputs two messages M1 = M ′

1||m1, M2 = M ′
2||m2.

B invokes its MAC oracle Mac(sk, ·) on M ′
1 and gets σ′

1 and outputs (M ′
2, σ

′
1 ⊕

m1 ⊕m2).
For the analysis note that B is efficient since A is efficient. Furthermore,

given that A produces a collision M1, M2 with M ′
1 	= M ′

2, adversary B succeeds
in producing a forgery for a new message since it queries its oracle only once
about M ′

1 	= M ′
2 and the derived tag is obviously valid. 
�

Concerning partial inversion, we have:

Proposition 4. The message authentication code defined in Construction 2 is
partially invertible.

Proof. The construction supports partial inversion: The algorithm PartInv takes
as input a pair of keys (sk, kPRP), a string M ′ and a tag σ. It computes τ ←
Mac(sk, M ′), c← PRP−1(kPRP, σ) and returns m← τ ⊕ c. It is now easy to see
that this output is valid. 
�

5.2 Construction

Construction 4. Let MAC = (KGen, Mac, Vf) be a deterministic MAC. Let
SAM = (SeqKg, SeqAgg, SeqAggVf) be as follows:

Key Generation. The key generation algorithm SeqKg takes as input the se-
curity parameter 1λ, picks an identifier at random id ∈ {0, 1}λ, executes the
key generation algorithm of the underlying MAC scheme sk ← KGen(1λ)
and returns the pair (sk, id).

Sequential Aggregation. The algorithm SeqAgg(sk, M, id, σ′) takes as input
a private key sk, a message M ∈ {0, 1}∗, and a (sequentially aggregated)
tag σ′. It executes the underlying tagging algorithm τ ← Mac(sk, M‖σ′) and
outputs σ ← id‖τ . (For σ0 = ∅ simply run the MAC algorithm on M only.)

Aggregate Verification. The input of algorithm SeqAggVf is a sequence of
keys sk = (sk1, . . . , sk�), a tag σ and sequences M = (M1, . . . , M�) and id =
(id1, . . . , id�) of messages and identifiers. If any key in sk appears twice then
return 0. Otherwise compute for i = 1, . . . , �, σi ← idi‖Mac(ski, Mi||σi−1) ,
with σ0 ← ∅. Return 1 iff σ� = σ, otherwise 0.

The following theorem captures the security of our construction:

Theorem 5. If MAC = (KGen, Mac, Vf) is a pseudorandom, partially invertible
message authentication code then Construction 4 is a history-free, aggregation-
unforgeable sequential aggregate message authentication code scheme.

More precisely, we show that, letting t be the number of parties and Q denote
the number of aggregation queries, each of L message-identity pairs at most,
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target sequence

Fig. 1. Example of a target sequence. Shaded circles denote corrupt parties and boxes
correspond to aggregation queries such that the input/output aggregates (small filled
circles) are known by the adversary.

the probability that an adversary breaks the aggregate MAC scheme is bounded
from above by 3t(Q + 1)2L2 times the probability of breaking the underlying
MAC, plus the advantage of breaking the pseudorandomness of the MAC (in
both cases with comparable running time).

The idea of our proof is as follows. When the adversary eventually outputs a
forgery attempt there must be a subsequence which is not assembled out of seen
values or values of corrupt parties. In particular, this target sequence contains only
values of honest parties (see Figure 1). We first show that there are no collisions
among aggregates output by honest parties (else one could use this collision to
forge MACs). It follows that this target sequence cannot be a suffix of an aggrega-
tion query because the identity in the forgery attempt must be different from the
identity in the corresponding aggregation query (else we would have found a col-
lision when entering the target sequence). The target sequence cannot be a prefix
of a previous aggregation query because the pseudorandomness of the MAC hides
all information about aggregates in a chain. Hence, the target sequence must be
“fresh”, implying that one must be able to forge the underlying MAC.

The formal proof that the construction is indeed secure is given in the full
version.
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A Mix-and-Match Attacks on the Katz-Lindell Scheme

In this section we discuss several attack strategies against the Katz-Lindell [5]
aggregate MAC scheme. Note that our attacks do not contradict the security
results in [5], because the scheme has only been designed to meet the relaxed
unforgeability notion.

The aggregation step in the Katz-Lindell scheme is rather simple: the aggrega-
tion algorithm computes the exclusive-or over all (deterministically computed)
tags resp. in our routing example of four nodes N1 → N2 → N3 → N4, node Ni

adds its MAC for message Mi to the current aggregate value.
Deletion Attack. Given the replies

σ1 = Mac(sk1, M1)⊕Mac(sk2, M2)⊕Mac(sk3, M3), σ2 = Mac(sk2, M2)

to two aggregation queries for message sets {M1, M2, M3}, and {M2}, where
each message Mi is given to node Ni, the adversary is able to delete the element
σ2 = Mac(sk2, M2) from the aggregate:

σ∗
1 = σ1 ⊕ σ2 = Mac(sk1, M1)⊕Mac(sk3, M3)

and obtains a valid “fresh” aggregate on the set (on the invalid route N1 → N3)
{M1, M3}.
Re-Ordering Attack. Given the replies

σ1 = Mac(sk1, M1)⊕Mac(sk2, M2), σ2 = Mac(sk1, M3)⊕Mac(sk2, M2),
σ3 = Mac(sk1, M1)⊕Mac(sk2, M4)

to three aggregation queries for message sets {M1, M2}, {M2, M3} and {M1, M4},
the adversary is able to compute a valid aggregate

σ∗ = σ1 ⊕ σ2 ⊕ σ3 = Mac(sk1, M3)⊕Mac(sk2, M4)

for the set {M3, M4}.
Extension Attack. Given the replies

σ1 =Mac(sk1, M1)⊕Mac(sk2, M2)⊕Mac(sk3, M3) σ2 = Mac(skA, MA)⊕Mac(skB , MB)

to the aggregation queries for message sets {M1, M2, M3} and {MA, MB}, the
adversary is able to extend the aggregate:
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σ∗
3 = σ1⊕σ2 = Mac(sk1,M1)⊕Mac(skA,MA)⊕Mac(sk3,M3)⊕Mac(skB ,MB)⊕Mac(sk2,M2)

and obtains a valid “fresh” aggregate on the set (on the route) {M1, MA, M3, MB,
M2} (for arbitrary MA, MB).

Recombination Attack. Given the replies

σ1 = Mac(sk1, M1)⊕Mac(sk2, M2)⊕Mac(sk3, M3),
σ2 = Mac(sk2, M2)⊕Mac(sk3, M3)⊕Mac(sk4, M4),

and
σ3 = Mac(sk3, M3)⊕Mac(sk4, M4)⊕Mac(sk5, M5),

to the aggregation queries for message sets {M1, M2, M3}, {M2, M3, M4}, and
{M3, M4, M5}, the adversary is able to recombine the aggregate,

σ∗ = σ1 ⊕ σ2 ⊕ σ3 = Mac(sk1, M1)⊕Mac(sk5, M5)⊕Mac(sk3, M3),

and obtains a valid “fresh” aggregate on the set (on the route) {M1, M5, M3}.
Note also that, if we assume Ni only accepts input from Ni−1 then replay at-

tacks do not necessarily help, because the adversary can never send a previously
obtained tuple {M1, M2} to the node N4.

B Preliminaries: MACs and Their Security

Definition 12 (Message Authentication Codes). A message authentica-
tion code scheme MAC = (KGen, Mac, Vf) is a triple of efficient algorithms where

Key Generation. KGen(1λ) gets as input the security parameter 1λ and re-
turns a key sk.

Authentication. The authentication algorithm σ ← Mac(sk, m) takes as input
the key sk, a message m from a message space Mλ and returns a tag σ in
a range Rλ.

Verification. Vf(sk, m, σ) returns a bit.

It is assumed that the scheme is complete, i.e., for all sk ← KGen(1λ), any
m ∈Mλ, and any σ ← Mac(sk, m) we have Vf(sk, m, σ) = 1.

A message authentication code is called deterministic if the tagging algorithm
is deterministic. A deterministic MAC is called canonical if the verification al-
gorithm recomputes the tag for a given message and checks that it matches the
given one. Unforgeability demands that it is infeasible to produce a valid tag for
a new message:

Definition 13 (Unforgeability). A message authentication codeMAC=(KGen,
Mac, Vf) is (t, qt, qv, ε)-unforgeable under chosen message attacks (EU-CMA)
if for any algorithm A running in time t the probability that the experiment
ForgeMAC

A evaluates to 1 is at most ε(λ), where
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Experiment ForgeMAC
A (λ)

sk ← KGen(1λ)
(m∗, σ∗)← AMac(sk,·),Vf(sk,·,·)(1λ)
Return 1 if, at some point, A makes a query m∗, σ∗ to Vf such that

Vf(sk, m∗, σ∗) = 1 and A has never queried Mac(sk, ·) about m∗ before.

and A makes at most qt queries to oracle Mac and at most qv queries to oracle
Vf. The probability is taken over all coin tosses of KGen, Mac, Vf and A.

C Counter-Based Aggregation-Unforgeable Schemes

In this section we show that, assuming the existence of a shared counter, we
can lift non-ordered aggregate schemes that are unforgeable in the classical
sense to achieve a stronger security requirement. However, even such an as-
sumption only allows to prevent some of the mix-and-matching attacks dis-
cussed in the introduction, but not attacks aiming to erase subsets of pre-
viously queried aggregates. Thus, we introduce a slightly weaker definition of
aggregation-unforgeability by considering forgeries that consist of those subsets
as trivial. This corresponds to the case that the adversary can remove contri-
butions of honest parties from valid aggregates. Recall that the adversary can
query an aggregation oracle, denoted by OAgg, which takes the key/identity
pairs (ski, idi) of all honest parties (provided by the system) and a set of mes-
sage/identity pairs M = {(m1, id1), . . . , (mk, idk)} (chosen by the adversary).
The oracle returns an aggregate MAC σ for these data.

To mark subsets of aggregation queries as trivial, we include all message sets
that are subsets of queried aggregates into the closure:

Closure∗(QAgg, QCor) =
{

⋃

MA∈A

MA ∪
⋃

M∗
A⊆A∗

M∗
A ∪ MC

∣
∣
∣
∣

A∗ ∈ QAgg, A ⊆ QAgg, MC ⊆
⋃

id∗∈QCor

{(m, id∗) |m ∈Mλ}
}

.

We now show how to construct an aggregate tag scheme that is aggregation-
unforgeable with respect to the weaker definition.

Given an aggregate MAC scheme Agg = (KGen, Mac, Vf, Agg, AVf) that is un-
forgeable according to the definition of Katz and Lindell [5] we can derive a
counter-based aggregate tag scheme that achieves our stronger security require-
ment of aggregation-unforgeability. To this end, we augment the aggregate tag
scheme as follows:

– KGen and AVf remain unchanged
– Mac∗(sk, m) queries Mac on the string m∗ = (count, m) where count is a

synchronized counter shared between all signing parties. It outputs σ∗ =
(count, σ) with σ ← Mac(sk, (count, m)) and updates the counter.
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– Agg∗(M, σ) parses σ as {(count1, σ1), . . . , (count�, σ�)} and stops with output
⊥ if the counter values differ. Else, it computes σ ← Agg(M∗, {σ1, . . . , σ�})
for m∗

i = (count, mi) and outputs σ∗ = (count, σ).
– AggVf∗(sk, M, (count, σ)) sets M∗ = {(count, m1), . . . , (count, m�)} for M =
{m1, . . . , m�} and outputs AggVf(sk, M∗, σ).

Prepending a unique counter value to the messages in each signing request pre-
vents the adversary from recombining several aggregates into a new one, as
the verification algorithm first checks that all messages carry the same counter
value. Recall that the strength of the adversary in our security model stems
from granting an aggregation oracle and considering non-trivial recombinations
of aggregates as valid forgeries. However, if the adversary tries to exploit the
potential of recombining aggregates into fresh ones, he has to ensure that all
counter values are equal. Hence, the adversary can at most delete messages from
aggregates or add values by corrupt parties.

More formally, assume that the adversary eventually outputs a valid forgery
for message set M and tag (count, σ). Suppose that there is at least one honest
party in the corresponding set (else the attempt is trivially in the closure). If the
set of augmented messages (count, mi) contains a value previously not tagged by
an honest party, then the security follows from the (basic) unforgeability notion
of the underlying scheme.

Hence, suppose all pairs (count, mi) for honest parties have been tagged be-
fore. Since each counter value is used only once, there is a unique aggregation
query where tags for these pairs have been computed. It follows that the forgery
attempt only contains a subset of this query (and possibly additional contribu-
tions by corrupt players). But then the attempt is in the closure.
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Abstract. Lattice reduction is known to be a very powerful tool in modern crypt-
analysis. In the literature, there are many lattice reduction algorithms that have
been proposed with various time complexity (from quadratic to subexponential).
These algorithms can be utilized to find a short vector of a lattice with a small
norm. Over time, shorter vector will be found by incorporating these methods. In
this paper, we take a different approach by presenting a methodology that can be
applied to any lattice reduction algorithms, with the implication that enables us to
find a shorter vector (i.e. a smaller solution) while requiring shorter computation
time. Instead of applying a lattice reduction algorithm to a complete lattice, we
work on a sublattice with a smaller dimension chosen in the function of the lattice
reduction algorithm that is being used. This way, the lattice reduction algorithm
will be fully utilized and hence, it will produce a better solution. Furthermore,
as the dimension of the lattice becomes smaller, the time complexity will be bet-
ter. Hence, our methodology provides us with a new direction to build a lattice
that is resistant to lattice reduction attacks. Moreover, based on this methodol-
ogy, we also propose a recursive method for producing an optimal approach for
lattice reduction with optimal computational time, regardless of the lattice reduc-
tion algorithm used. We evaluate our technique by applying it to break the lattice
challenge1 by producing the shortest vector known so far. Our results outperform
the existing known results and hence, our results achieve the record in the lattice
challenge problem.

Keywords: Geometry of numbers, Lattice reduction, Hermite factor, Recursive
reduction.

1 Introduction

Lattice reduction algorithms have been proposed to solve or approximate the shortest
vector problem. In the literature, it has been demonstrated that many cryptosystems can
be cryptanalyzed successfully using lattice reduction algorithms. Some of the historical
examples include the following2.
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Knapsack Cryptosystems
In 1978, Merkle and Hellman [43] proposed the first public key cryptosystem based on
an NP-hard problem, namely the knapsack problem. This is the first practical public
key cryptosystem which is the concrete construction of the proposed seminal notion of
public key cryptography by Diffie and Hellman [26]. Unfortunately, Merkle-Hellman’s
first proposition was attacked severely and broken using two different methods: the first
attack on the trapdoor itself that was proposed by Shamir [67,68] and the second at-
tack on the knapsack problem using lattice theory that was proposed by Adleman [2].
In 1985, Lagarias and Odlyzko [39] proposed a general attack against knapsack cryp-
tosystems using a lattice reduction algorithm. Their attack does not incorporate the
weakness on the trapdoor itself, rather than only using the fact that the knapsack prob-
lems produced are generally weaker that a random one. This result was subsequently
improved in [25,24,66,58]. Nevertheless, some improvements of knapsack cryptosys-
tems were also proposed (e.g. [16,57]). We refer the reader to [56] for these two faces of
knapsack cryptology. Despite many variants that have been proposed in the literature,
as mentioned in [55], the knapsack cryptosystem proposed by Okamoto, Tanaka and
Uchiyama in 2000 [57] seems to be the only remaining secure knapsack cryptosystem.

SVP-based Cryptosystems
In 1996, Ajtai and Dwork [8] proposed the first lattice cryptosystem where its secu-
rity is based on a variant of the Shortest Vector Problem (SVP). This cryptosystem
received wide attention due to a surprising security proof based on worst-case assump-
tions. Nonetheless, this cryptosystem is merely a theoretical proposition and it cannot
be used in practice. Furthermore, Nguyen and Stern presented a heuristic attack against
this cryptosystem [54]. Until then, this initial proposition has been improved [29,14,38]
and this result has inspired other cryptosystems based on SVP [60,61,6]. These cryp-
tosystems are based on SVP and are naturally concerned by lattice reduction algorithm.

CVP-based Cryptosystems
There exists a heuristic way introduced by Kannan [36] to solve CVP (Closest Vec-
tor Problem) using a lattice reduction algorithm that was originally proposed to solve
SVP, namely the embedding method. Instead of solving CVP, we solve SVP in a dif-
ferent lattice. Finding the closest vector of v in LB can be done by solving the short-

est vector of LB′ with B′ =
(

B 0
v 1

)
. This method has been successfully applied by

Nguyen [50] to develop his first attack against GGH cryptosystem and it seems prac-
tically the best way to attack a CVP-based cryptosystem. In 1997, Goldreich, Gold-
wasser and Halevi (GGH) [30] proposed an efficient way to use lattice theory to build a
cryptosystem inspired by McEliece cryptosystem [42] and based on the Closest Vector
Problem (CVP). Their practical proposition of a cryptosystem was attacked and broken
severely by Nguyen in 1999 [50]. Nonetheless, the general idea is still viable. Until
then, the other propositions were made using the same principle [27,44,59].

After the first Nguyen’s attack [50], utilization of the initial GGH proposition re-
quires lattices with a big dimension (> 500), to ensure its security. Consequently, the
computation of the closest vector even with a “good basis” becomes very expensive. In
2000, Fischlin and Seifert [27] proposed a very intuitive way to build lattices with good
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basis which can solve the closest vector problem. They used a tensor product of lattice
to obtain a divide and conquer approach to solve CVP. In 2001, Micciancio [44] pro-
posed some major improvements of the speed and the security of GGH. In this scheme,
the public key uses a Hermite Normal Form (HNF) for the “bad” basis. The HNF ba-
sis is better to answer the inclusion question and it also seems to be more difficult to
transform to a “good basis” compared to another basis. In 2003, Paeng, Jung and Ha
[59] proposed to use some lattices built on a polynomial ring. However, in 2007, Han,
Kim, and Yeom [32] used lattice reduction to cryptanalyze this scheme. Their attack can
successfully recover the secret key even in a huge dimension (> 1000) and make the
Paeng-Jung-Ha scheme [59] unusable. However, there exists a secure (and yet ‘unbro-
ken’) cryptosystem using polynomial representation, namely the NTRU cryptosystem,
for N th degree truncated polynomial ring units. NTRU was originally proposed in 1998
by Hoffstein, Pipher and Silverman [34]. Even this cryptosystem was not modelled ini-
tially as a GGH-type cryptosystem, it can actually be represented as one. This has been
useful specially for analyzing its security [23].

RSA
In 1996, Coppersmith [20] presented some methods to attack RSA [62] in a special
case using lattice reduction. Similar method has been proposed to attack RSA with low
exponent [11], RSA with short padding [22] and to factor the RSA public key with or
without knowing any partial information [21,12].

Our Contribution
In this paper, we present a methodology that can be applied to any lattice reduction
algorithms. Our methodology will enable us to find a shorter vector (i.e. a smaller so-
lution) while requiring shorter computation time. The idea of our methodology is as
follows. Instead of applying a lattice reduction algorithm to a complete lattice, we work
on a sublattice with a smaller dimension obtained in the function of the lattice reduc-
tion algorithm that is being used. This way, the lattice reduction algorithm will be fully
utilized and hence, it will produce a better solution. Furthermore, as the dimension of
the lattice becomes smaller, the time complexity will be better. Hence, our methodol-
ogy provides us with new direction to build a lattice that is resistant to lattice reduction
attacks. Moreover, we also propose a recursive method for producing an optimal ap-
proach for lattice reduction with optimal computational time, regardless of the lattice
reduction algorithm used. We evaluate our technique by applying it to break the lattice
challenge by producing the shortest vector known so far. Our results outperform the
existing known results and hence, our results achieve the record in the lattice challenge
problem.

Organization of the Paper
The paper is organized as follows. In the next section, we will recall definitions, prop-
erties, problems and algorithms of lattice theory required throughout this paper. In
Section 3, we will present our methodology. In Section 4, we will present our recur-
sive reduction, followed by analysis of practical tests in Section 5. Finally, Section 6
concludes the paper by showing some results and future works.
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2 Lattice Theory

In this section, we will review some concepts of the lattice theory that will be used
throughout this paper. For a more complex account, we refer the readers to [45,46].

2.1 Basics of Lattice Theory

The lattice theory, also known as the geometry of numbers, has been introduced by
Minkowski in 1896 [49]. A complete discussion on the basic of lattice theory can be
found from [15,41,19].

Definition 1 (Lattice). A lattice L is a discrete sub-group of R
n, or equivalently the

set of all the integral combinations of d ≤ n linearly independent vectors over R.

L = Z b1 + · · · + Z bd, bi ∈ R
n.

B = (b1, ..., bd) is called a basis of L and d, the dimension of L, noted dim(L).
We will refer LB as a lattice of basis B.

Definition 2 (Full-rank Lattice). Let L ⊂ R
n be a lattice. If its dimension d is equal

to n then the lattice L is called full-rank.

Theorem 1 (Determinant). Let L be a lattice. There exists a real value, denoted as
det(L), such that for any basis B of L, we have det(L) =

√
det (BBT ). det(L) is

called the determinant of L.

For a given lattice L, there exists an infinite number of basis. However, the Hermite
Normal Form basis (Definition 3) is unique [17].

Definition 3 (HNF). Let L be an integer lattice of dimension d and H ∈ Z
d,n be a

basis of L. H is a Hermite Normal Form basis of L if and only if

∀1 ≤ i, j ≤ d Hi,j

⎧⎨
⎩

= 0 if i > j
≥ 0 if i ≤ j
< Hj,j if i < j

The HNF basis can be computed from a given basis in a polynomial time [37]. For
efficient solutions, we refer the readers to [47].

The lattice theory problem is based on distance minimization. The natural norm used
in lattice theory is the euclidean norm.

Definition 4 (Euclidean norm). Let w be a vector of R
n. The euclidean norm is the

function ‖.‖ defined by ‖w‖ =
√

< w, w > =
√

wwT =
√∑n

i=1 w2
i .

Using a norm, we can define some other invariants that are crucial in lattice theory.

Definition 5 (Successive Minima). Let L be a lattice and an integer i. The ith Succes-
sive Minima, denoted as λi, is the smallest real number such that there exist i non zero
linear independent vector v1, . . . , vi ∈ L with ‖v1‖, . . . , ‖vi‖ ≤ λi.
If i = 1, to find such v1 is called the Shortest Vector Problem (SVP).
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The determinant and the successive minima of a lattice are connected by an important
theorem as follows.

Theorem 2 (Minkowski [49]). Let d ∈ N
+. There exists a smallest real, γd, such that

for any lattice L of dimension d, λ1(L) ≤ √
γd det(L)1/d. γd is called the Hermite

Constant.

The exact value of the Hermite constant is only known for 1 ≤ d ≤ 8 and d = 24.
However, some upper bound are known γd ≤ 1 + d

4 . We refer to [18] for a better
numerical upper bound and to [48,19] for a lower and an upper asymptotical bounds.

2.2 Lattice Reduction Algorithms

Theorem 3 (Ajtai [4]). SVP is NP-Hard under randomized reductions.

In 2007, Hanrot and Stehle [33] gave the best known deterministic algorithm to solve
SVP in time O(d

d
2e ) where d is the dimension: they used the algorithm proposed by

Kannan in 1983 [35] and improved the anlaysis of the worst-case complexity. In 2007,
Blömer and Naewe [10] proposed the best known probabilistic algorithm to solve SVP
in time (2 + 1

ε )d. It is an improvement of the initial proposition of Ajtai, Kumar, and
Sivakumar in 2001 [9].

As SVP is NP-hard, a relaxation factor has been introduced in the initial SVP to be
able to propose and evaluate the quality of polynomial algorithms.

Definition 6 (Hermite-SVP). Let L be a lattice of dimension d and α ∈ R+ be a real
positive number. Then, the Hermite-SVP is to find a vector u ∈ L such that 0 < ‖u‖ ≤
α det(L)1/d. α is called the Hermite Factor.

Theorem 2 ensures a solution for Hermite-SVP if α ≥ √
γd.

In 1982 Lenstra, Lenstra and Lovasz [40] proposed a powerful polynomial algorithm,
known as the LLL algorithm, which solve Hermite-SVP for a Hermite factor αLLL =(

4
3

) d−1
4 . However, in practice LLL seems to be much more efficient [53]. In addition, a

lot of improvements have been proposed on LLL to obtain a better approximation factor
and/or a better time complexity. For the recent result on LLL, refer to [52,65].

In 1987, Schnorr [63,64] proposed a method which can be seen as a generalization of
LLL, known as LLL with deep insertion (DEEP) and Block Korkin-Zolotarev (BKZ).
BKZ allows some exponential computations but only on some block. The length k of
the block itself is a parameter. LLL can been seen as BKZ with block length of k = 2,
whereas the Kannan method can be seen as a BKZ with block length of k = d. BKZ−k

solves Hermite-SVP for αBKZ−k =
√

γk
1+

√
d−1
k−1 in theory but the BKZ variant used

in practice are difficult to evaluate. Theoretically, DEEP has no best upper bound (cf.

LLL), αDEEP−k =
(

4
3

) d−1
4 .

BKZ is a very powerful way to attack a cryptosystem and it can be extended to
provide a level of security with the block length needed to break a cryptosystem. In [50],
Nguyen has successfully broken GGH cryptosystem of dimension 200, 250, 300 using
a BKZ-20 and a GGH cryptosystem of dimension 350 using a BKZ-60.
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In a recent work [28], Gama and Nguyen presented some tests showing that all of
the existing methods seem to solve Hermite-SVP with an average hermite factor α of
the form

α = bcd. (1)

They also showed that the difference between the theoretical and the practical Hermite
factor is huge. We review here those estimations of α = bcd for different lattice reduc-
tion algorithms:

– For LLL, we have c ∼ 1.0219 < 1.0754.
– For BKZ-20, we have c ∼ 1.0128 < 1.0337.
– For BKZ-28, we have c ∼ 1.0109 < 1.0282.
– For DEEP-50, we have c ∼ 1.011 < 1.0754.

To compare all of these methods practically, Buchmann, Lindner and Rückert [13] pro-
posed a benchmark of lattices created following the paper of Ajtai [3]. Those lattices,
denoted as Lm,n,q , are characterized using 3 parameters m, n, q. Their basis are as
follows

(
qI 0
A I

)

with I the identity matrix and A ∈ Z
m−n,n a random matrix. The dimension is

dim(Lm,n,q) = m and the determinant is det(Lm,n,q) = qn.
Those lattices are created such that there exists a vector v ∈ L such that 0 <

‖v‖ ≤ √
m. Finding such a vector is the goal of the challenge. However, to find a

vector with a norm strictly smaller that q is already difficult3. The results of the short-
est vector respecting this second condition are presented in the challenge web page
http://latticechallenge.org/. There exists a challenge for each dimension with interval
25 between 200 and 2000. However, solutions are accepted only for challenges bigger
that 500 (which correspond more to useful dimensions for cryptography).

Remark 1 (Random Lattice). The lattice proposed in this challenge can not be con-
sidered as random lattice. Ajtai lattices [3] are lattices for which the solution of SVP
implies a solution of SVP in all lattices of a certain smaller dimension. This means that
the lattice reduction algorithm solving SVP on those lattice can solve even the worst
case of SVP lattices.

Random lattice is a complex notion [5,31,7]. Goldstein and Mayer’s characterization
of random lattices [31] allows to create random lattices for experiment for example [53].
We will use the same method in our practical section (Section 5) to evaluate our method
in the case of random lattices. Practically to respect those criteria, we will create random
lattices as Lm,n,q with n = 1 and q prime.

3 A Methodology for Lattice Reduction

In this section, we do not propose an algorithm for lattice reduction but rather a method-
ology applicable to all lattice reduction algorithms with the impact of improving quality
and timing of those algorithms.

3 We note that there exist already some obvious vectors with this norm.
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Methodology

Let A be an algorithm solving Hermite-SVP for a lattice L of dimension d with a
Hermite Factor α = bcd. This means that this algorithm A will find a vector v ∈ L
such that 0 < ‖v‖ ≤ bcd det(L)1/d.

The main idea of this methodology can be explained simply in three points as follows.

1. Find d′ such that bcd′
det(L)1/d′

is minimal.
2. Choose a sublattice L′ ⊆ L such that det(L′) ≤ det(L) and dim(L′) = d′.
3. Apply A on L′.

This simple methodology provides several advantages as follows.

a) The quality of the result will be better as α det(L)1/d′
will be smaller.

b) The time and space used will be smaller as d′ ≤ d.

How to Choose a Sublattice L′ ⊆ L
Prior to explaining how to pick d′, firstly we develop a simple way to build a sublat-
tice L′ ⊆ L such that det(L′) ≤ det(L) and dim(L′) = d′. For simplicity, we deal
here with a full-rank integer lattice. Nonetheless, this method can be easily modified to
accommodate non full-rank and/or non integer lattices.

The first general way is to build a lattice generated by

U =

⎛
⎜⎜⎜⎜⎜⎝

u1 0 · · · 0 0
0 u2 · · · 0 0
...

. . .
...

0 0 · · · ud−1 0
0 0 · · · 0 ud

⎞
⎟⎟⎟⎟⎟⎠

where ui = {0, 1} and
∑d

i=1 ui = d′. To create L′, we intersect4 L and LU , L′ =
L ∩ LU .

As det(LU ) = 1 and dim(LU ) = d′, we obtain dim(L′) = d′ and det(L′) ≤
det(L)5.

Another simple and practical way is to build the Hermite Normal Form basis of L,
and use only the d′ last vectors of L as a basis of L′. Moreover, as all of those vectors
will start with zero, we can eventually use only the d′ last columns to accelerate some
computations. We will need to re-transform the vector to the correct length once the
reduction is completed. This method can be generalized using any permutation of the
Hermite Normal Form Basis.

How to Find an Optimal d′ for a Given Lattice Reduction Algorithm

In this situation, suppose we have a given algorithmA solving Hermite-SVP for a lattice
L of dimension d with a Hermite Factor α = bcd. This means that this algorithm A will
find a vector v ∈ L such that 0 < ‖v‖ ≤ bcd det(L)1/d.

4 We refer to [45], for the polynomial technique to intersect two lattices.
5 det(L′) will be a factor of det(L) × det(LU ) = det(L).
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We would like to find d′ such that bcd′
det(L)1/d′

is minimal or equivalently log(b) +
d′ log(c) + log(det(L))

d′ is minimal. To find the minimum value of the function f(d′) =
log(b) + d′ log(c) + log(det(L))

d′ , we compute its derivative f ′(d′) = log c − log det(L)
d′2

and find d′ such that f ′(d′) = 0.

log(c) − log(det(L))
d′2

= 0

log(c) =
log(det(L))

d′2

d′2 =
log(det(L))

log(c)

Finally, we obtain that the best evaluated d′ as

d′ =

√
log(det(L))

log(c)
. (2)

How to Choose Optimally d′ to Find a Vector with a Given Norm

In this situation, suppose we have a given lattice in which we want to find a short
vector v with a given norm ‖v‖. Hence, we need an algorithm and a sublattice such that
‖v‖ = bcd′

det(L)1/d′
.

In this case, we want to maximize c and therefore, we will use the quicker lattice reduc-
tion algorithm.

cd′
=

‖v‖
b det(L)1/d′

c =
( ‖v‖

b det(L)1/d′

)1/d′

. (3)

We can apply an equivalent method.

log(c) =
log(‖v‖) − log(b)

d′
− log(det(L))

d′2

To find the maximum of the function g(d′) = log(‖v‖)
d′ − log(det(L))

d′2 , we need to evaluate
its derivative as follows

g′(d′) = − log(‖v‖) − log(b)
d′2

+ 2d
log(det(L))

d′4

g′(d′) = − log(‖v‖) − log(b)
d′2

+ 2
log(det(L))

d′3

and find d′ such that g′(d′) = 0.

− log(‖v‖) − log(b)
d′2

+ 2
log(det(L))

d′3
= 0
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log(‖v‖) − log(b)
d′2

= 2
log(det(L))

d′3

log(‖v‖) − log(b) = 2
log(det(L))

d′

Finally, we obtain the best evaluated d′ for a maximal c as follows

d′ = 2
(

log(det(L))
log(‖v‖) − log(b)

)
. (4)

Practically, we can ignore log(b).
This result is important as it demonstrates which are the most difficult lattices for a

given bound. Consequently, this result has a great impact on lattice based cryptography.

4 Recursive Lattice Reduction

When attempting to reduce lattices using the two previous methods, some knowledge on
the lattices are required, as well as some knowledge on the lattice reduction algorithm.
Nevertheless, these knowledge may be imprecise or even missing. For instance, a small
error on c can have a huge implication on d′. Henceforth, in this section, we will propose
a new technique that incorporates sublattices without requiring any prior knowledge.

Let A be an algorithm solving Hermite-SVP for a lattice L. We use a recursive
reduction method as follows.
The main idea of this technique can be explained as follows.

1. Choose d sublattices Li such that L1 ⊂ · · · ⊂ Li · · · ⊂ Ld = L and dim(Li) = i.
2. L1 is already reduced.
3. To reduce each Li+1, apply A to Li+1 ∪ Li where Li has already been reduced6.

This technique incorporates the work that has been performed to reduce the previous
sublattice, and hence, it simplifies the reduction of the lattice. This will allow reduction
on Ld′ where d′ is optimal, by trying all the possible dimensions without any extra
timing cost. We will demonstrate this in our practical test in Section 5 where this method
will improve the time complexity, using time computation whenever appropriate.

5 Practical Test

In this section, we present some tests that have been conducted using NTL5.5.2 and
GMP4.3.1 libraries [69,1]. We used random lattices that are built according to the defi-
nition [31] as used in [53,28] (Remark 1). However, there is no definition for a random
basis of a given lattice.

Figure 1 demonstrates some results using ‘random’ bases that are built with some
techniques similar to [30]7. Each curve represents an average of 10 tests. The determi-
nant is always equivalent to have a proper comparison; only the dimension changes.

6 Lattice reduction on a lattice corresponds to lattice reduction on its basis.
7 We multiplied the hermite normal form basis of the lattice by a random unimodular matrix.
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Fig. 1. Result and estimation for LLL and BKZ20

We observed that even if the estimation is not always correct due to the absence of b
in its computation, the estimation of the best dimension to use is correct.

After conducting some tests, we observed that instead of using ‘random’ bases, HNF
bases (Definition 3) produce better timing results and avoid the problem to produce a
worse result in a bigger dimension as shown in Figure 1. However, the use of HNF basis
will still be consistent with the estimation of the best dimension to use (Figure 2).

Figure 2 shows that the recursive reduction will also be consistent with the best
dimension to use. Figure 2 clearly demonstrates that the results obtained with the three
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Fig. 3. Time in seconds for BKZ28

different methods are close to each other. However, the main difference is in the timing
as shown in Figure 3.

Figure 3 demonstrates that the cost of the recursive method is just a bit higher than
the HNF basis if the estimation is correct. However, if the estimation is not precise or
unknown, then the non-recursive method will have to do a complete lattice reduction
again. In contrast, the recursive method does not need to do so.
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Fig. 4. Result, estimation and time in seconds for DEEP50 with recursive reduction on
challenge-650

To finish this section, we present a test performed on lattice of the challenge
http://latticechallenge.org/.

Figure 4 demonstrates that the time grows for the recursive reduction only when the
quality is improved, and therefore computation is optimally used.

It appears at the end of these practical tests that the recursive technique clearly out-
performs the classic application of lattice reduction algorithms, even with a good knowl-
edge of the lattice reduction tool itself. It really simplifies lattice reduction operations
as it can be used even if the dimension is not optimal.
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6 Conclusion

In this paper, we presented further analysis of lattice reduction algorithms, by present-
ing a methodology. This methodology offers different consequences, namely better uti-
lization of these algorithms and better level of security of cryptosystems based on or
connected to lattices. Using our recursive lattice reduction, we obtained new results in
http://latticechallenge.org/ that outperform the previously known results.

Table 1 presents the results we have performed so far on the lattice challenge and
outperformed all the previous one. This has been possible only due do the recursive
reduction as we have used some reduction techniques (DEEP60,DEEP70, BKZ30, . . . )
where the estimation is unknown and very difficult to produce with the precision re-
quired for such huge lattices.

Table 1. Lattice Challenge Result

Challenge Previous Best Result Recurcive Reduction Result
500 25.8457 25.2587
525 35.6651 30.7409
550 39.7995 38.2884
575 50.7149 42.7083
600 57.2975 52.0096
625 61.8061 59.4138
650 69.4478 66.7158
675 82.6015 80.0937
700 89.4315 89.3924
725 103.7208 100.8960
750 - -
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10. Blömer, J., Naewe, S.: Sampling methods for shortest vectors, closest vectors and successive
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Abstract. We propose a concurrently secure, identity-based identifi-
cation scheme from lattices. It offers adaptive-identity security in the
standard model, quasi optimal online performance, optimal leakage re-
silience, and its security is based on mild worst-case assumptions in ideal
lattices. Our scheme uses an ideal-lattice interpretation of the Bonsai
tree concept in lattices (EUROCRYPT 2010), which we call convoluted
Bonsai trees. It allows us to build an identity-based identification scheme
in a new “static identity” model that is weaker than the standard “adap-
tive identity” model. We show that both models are equivalent under the
existence of Chameleon hash functions.

Keywords: Lattice cryptography, identification, identity-based cryptog-
raphy, security model.

1 Introduction

Identification schemes are one of the most important primitives in modern cryp-
tography because typical e-business or e-government applications essentially rely
on secure online access control. Their importance is likely to grow in the future
as more and more everyday tasks and processes are computerized. With identity-
based identification schemes (IBI), motivated by Shamir [Sha84], one can get rid
of public-key infrastructures, which are unfavorable in today’s widespread de-
centralized networks. The public key is replaced with a unique identifier string,
such as an e-mail address, and the secret key is “extracted” by a trusted party
for this identifier. In hierarchical identity-based identification (HIBI), motivated
by Gentry and Silverberg [GS02], this concept is generalized so that each party
can act as a key extraction authority for its subordinates. Thus, this concept per-
fectly models organizational structures in, e.g., a company. Currently, we mainly
use schemes based on the factoring or discrete logarithm problem.

Our current knowledge suggests that alternatives for the post-quantum era can
be based on the hardness of the decoding problem in error correcting codes, on
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the hardness of solving non-linear multivariate equation systems, or on the hard-
ness of lattice problems. Refer to [BBD08] for an overview of each field. Basically,
all three alternatives rely on the hardness of certain average-case problems and,
at first, it is unclear how to generate hard instances of these problems. More
precisely, we always need to know a “hard” distribution of keys that admits
efficient key generation. Unlike with multivariate or code-based cryptography,
lattice-based constructions have a built-in “trust anchor” in the form of Ajtai’s
worst-case to average-case reduction [Ajt96]. This reduction is even stronger
than a random self reductions in, e.g., the discrete logarithm problem. It states
that solving a certain average-case problem, which is relevant in cryptography,
implies a solution to a related worst-case problem in all lattices. Although this
may sound purely theoretical, it is of great practical value as keys that are chosen
uniformly at random already provide worst-case security guarantees. The hard-
ness of this underlying worst-case problem is also plausible as the best known
algorithm to solve it requires exponential time [AKS01, MV10].

It is well-known that identity-based identification schemes can be realized
in the standard model with a so-called certification approach due to Bellare,
Neven, and Namprempre [BNN09] but these generic, black-box constructions
require a certain computational and bandwidth overhead. The only known direct
constructions, which are conjectured to resist quantum computer attacks, are
the code-based scheme of Cayrel, Gaborit, Galindo, and Girault [CGGG09] and
the lattice-based scheme of Stehlé, Steinfeld, Tanaka, and Xagawa [SSTX09].
However, both are only provably secure in the random oracle model and the
code-based scheme merely resists passive attacks, where the adversary may not
interact with the secret-key holder before his or her impersonation attempt.
Another approach is using identity-based signature schemes, e.g., the lattice-
based construction due to Rückert [Rüc10], in a challenge-response protocol
for identification. This, however, would make the online phase significantly less
efficient compared to the solution in this paper.

Therefore, we fill a gap with our proposal, as it is the first direct construction of
an adaptive-identity secure identity-based identification scheme that is secure un-
der active attacks without random oracles. We modify the identification scheme
of Lyubashevsky [Lyu08a, Lyu08b] to support key extraction via an ideal-lattice
interpretation of the Bonsai tree principle, originally due to Cash, Hofheinz,
Kiltz, and Peikert [CHKP10]. Our changes make it necessary to re-prove the
security of the protocol and we provide a simpler, more modular proof than the
one in [Lyu08b] by exploiting the Reset Lemma of Bellare and Palacio [BP02].
This modification also makes the reduction a little tighter. The resulting IBI of-
fers quasi-linear efficiency with respect to secret identification keys, public keys,
bandwidth, and computation. The only exception from this quasi-optimality is
the quasi-quadratic master public key and the quasi-quadratic complexity of
the secret-key extraction procedure. Boyen [Boy10] improves the construction in
[CHKP10] to allow for smaller lattice dimensions at the expense of a stronger
assumption. We believe that the technique can be adapted for our setting to
extract secret identification keys in a smaller dimension.
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We also introduce a new, intermediary security model that is akin to the
static message attack model for ordinary signatures (SMA), which is sometimes
also referred to as “weak unforgeability”. It is well-known that such SMA secure
schemes are easier to realize than full CMA secure schemes. We demonstrate
that the same holds for identity-based “authentication-type” schemes, e.g., for
IBI or identity-based signatures. Therefore, we show a generic conversion from
static-identity attack security to full adaptive-identity security of identity-based
identification schemes. This transformation carries over to identity-based signa-
ture schemes and also holds in the hierarchical setting. This transformation does
not hold in identity-based encryption-type schemes because the message flow is
reversed. For our transformation, it is crucial that the secret key holder can send
a message to the public key holder. In encryption schemes, this is not possible.
In signature and identification schemes, however, this is exactly what happens.

With our new model, we greatly simplify the security proofs for direct con-
structions because the simulator has access to all secret-key extraction queries
before the actual simulation and it can therefore “rig” the public key accordingly.

Furthermore, as an aside, our identification scheme is leakage-resilient, sup-
porting a per-identity leakage of a (1−o(1)) fraction of the identities’ secret keys
in a model that is inspired by Katz and Vaikuntanathan [KV09].

Organization. After some basic facts about identity-based identification schemes,
we introduce our weaker, static-identity security model in Section 2. There, we
also provide the necessary background about lattices and Chameleon hash func-
tions. In the next section, Section 3, we explain how static-identity security
implies adaptive-identity security if Chameleon hash functions exist. Then, we
demonstrate how to construct an identity-based identification scheme from lat-
tices in the weaker model in Section 4. We then conclude the paper in Section
5 and prove additional, supporting lemmas and a result concerning leakage-
resilience in the full version.

2 Preliminaries

With n, we always denote the security parameter. The joint execution of two
algorithms A and B in an interactive protocol with private inputs x to A and
y to B is written as b ← 〈A(x),B(y)〉, where b is the result of the interaction.
Accordingly, 〈A(x),B(y)〉k means that the interaction can take place up to k
times. The statement x←$X means that x is chosen uniformly at random from
the finite set X . When X is an algorithm, it means that X is probabilistic.
Recall that the statistical distance of two random variables X, Y over a discrete
domain D is defined as Δ(X, Y ) = 1/2

∑
a∈D |Prob[X = a] − Prob[Y = a] |.

A function is negligible if it vanishes faster than 1/p(n) for any polynomial p.
All logarithms are base 2, we identify {1, . . . , k} with [k], and {a1, . . . , ak} with
{ai}k1 . With ω, Ω,O we denote the usual Landau symbols for asymptotic growth
and Õ is like O but it hides poly-logarithmic terms. The concatenation of strings,
vectors, matrices (column-wise) is done with the operator || and a � b means
that b = a||c for some, possibly empty, string c.
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2.1 Identity-Based Identification

An ID-based identification scheme IBI comprises a triple (Kg, Extract, Protocol) of
algorithms: The master-key generator Kg outputs a master secret key msk and a
master public key mpk; the key extraction algorithm Extract uses msk to generate
a secret key skID for a given identity ID; and the identification protocol Protocol
is a joint execution of a prover PID(mpk, ID, skID) and a verifier V(mpk, ID), where
V outputs 1 iff P could identify itself correctly.

The security model for identity-based identification [Sha84] was first formal-
ized by Kurosawa and Heng [KH05] and it is also discussed in the recent work of
Bellare, Neven, and Namprempre [BNN09]. Security is proven against concur-
rent identity-based impersonation under adaptive identity attacks as described
in the adapt-id-imp-ca experiment in Figure 1, where the adversary (imperson-
ator) I∗ works in two modes: verify and impersonate. In mode verify it has access
to mpk, to a secret key extraction oracle Extract and to provers PID for arbitrary
identities ID. At some point, it selects a target identity ID∗, which it tries to
impersonate in the second phase. In mode impersonate, I∗ has access to provers
and secret keys for all identities different from ID∗ and it is supposed to convince
a verifier that it knows the secret key for ID∗. Obviously, the secret key for ID∗

must not have been among the queries to the extraction oracle in the first phase.
Also, note that I∗ is allowed to keep a state st verify. The usual security notions
for identification schemes, passive (pa), active (aa), and concurrent (ca) apply
as well and the experiments can be easily changed to cover these attacks.

In Figure 1, we also propose a relaxed security model, called security against
concurrent identity-based impersonation under static identity attacks (stat-id-
imp-ca). The model gives I∗ significantly less power as the adversary has to
submit all identities (distinct) to the oracle Extract before seeing the master
public key. It then receives the extracted secret keys together with mpk. The
remaining experiment stays unchanged. This new security model is reminiscent
of that for weak unforgeability, or unforgeability under static message attacks,
of digital signatures. Via a black-box transformation in Section 3, we show that
both models are equivalent if Chameleon hash functions (cf. Section 2.3) exist.
This transformation in conjunction with our simplified model enables much sim-
pler designs for identity-based identification and it is also applicable to identity-
based signature schemes. The resulting schemes are potentially more efficient
and their security proofs are greatly simplified because one can prepare for all
key extraction queries before handing over the master public key.

Experiment Expadapt-id-imp-ca
I∗,IBI (n)

(msk, mpk)←$IBI.Kg(1n)

(ID∗, st verify)←$I∗〈PID,·〉∞,Extract(msk,·)(verify, mpk)

Let {IDi}�1 be the ID’s queried to Extract.

b←$〈I∗〈P�=ID∗ ,·〉∞,Extract�=ID∗ (msk,·),V〉((impersonate, st verify), ID∗)
Return b

Experiment Expstat-id-imp-ca
I∗,IBI (n)

(ID1, . . . , ID�, st find)←$I∗(find) for distinct IDi

(msk, mpk)←$IBI.Kg(1n)
ski←$Extract(msk, IDi) for i ∈ [�]

(ID∗, st verify)←$I∗〈PID,·〉∞(verify, mpk, {ski}�1 , st find)

b←$〈I∗〈P�=ID∗ ,·〉∞ ,V〉((impersonate, st verify), ID∗)
Return 1 iff b = 1 ∧ ID∗ �∈ {IDi}�1

Fig. 1. Security experiments for identity-based identification



Adaptively Secure Identity-Based Identification 349

All definitions easily carry over the the hierarchical setting [GS02], where
identities can be concatenated to describe a subordinate identity and its relation
in an organizational structure. Here, every entity can act as a key extraction
authority for its subordinates.

2.2 Lattices

A lattice in R
n is a discrete set Λ = {∑d

i=1 xi bi |xi ∈ Z}, where b1, . . . ,bd

are linearly independent over R
n. The matrix B = [b1, . . . ,bd] is a basis of the

lattice Λ and we write Λ = Λ(B). The dimension of the lattice is d. The main
computational problem in lattices is the (approximate) shortest vector problem
(SVPp), where an algorithm is given a description, a basis, of a lattice Λ and is
supposed to find the shortest vector v ∈ Λ \ {0} with respect to a certain �p

norm (up to an approximation factor). More precisely, find a vector v ∈ Λ\ {0},
such that ‖v‖p ≤ γ ‖w‖p for all w ∈ Λ\{0} for an approximation factor γ ≥ 1.

In this work, we are interested in a special family of lattices related to ideals in
the ring R = Zq[X ]/〈g〉, where q is prime and Zq = {−(q− 1)/2, . . . , (q− 1)/2}.
We focus on g = Xn + 1 and n = “power of two” for efficiency reasons but
it may be replaced with any irreducible polynomial over Z. Then, our scheme
and the analysis become only slightly more involved. We identify f ∈ R with its
coefficient vector f = (f0, . . . , fn−1) ∈ Z

n
q . Furthermore, we denote elements of

the R-module Rm with â = (a0, . . . , am−1) or directly with (a0, . . . , amn−1) ∈
Z

mn
q . Consequently, we define ‖f‖∞ = ‖(f0, . . . , fn−1)‖∞ for f ∈ Z[X ]. A lattice

corresponds to an ideal I ⊂ R if and only if every lattice vector is the coefficient
vector of a polynomial in I. The SVP problem easily translates to ideal lattices,
where we call it ideal-SVPp (ISVPp).

The average-case hardness assumption for our construction relies on the prob-
lem finding short vectors in the kernel of the family H(R, m) of module homo-
morphisms hâ∈Rm : Rm → R, x̂ �→ h(â, x̂) = â� x̂ =

∑m−1
i=0 aixi, when restricting

the domain to D′ ⊂ R, i.e., restricting the coefficients in the input vector to
[−2d, 2d] ∩ Z.1 This problem can be stated as a short vector problem in the
lattice Λ⊥

R(â) := {x ∈ Z
mn : Ax ≡ 0 (mod q)}, where A is structured and

represents the multiplication � mod g. Hence, ideal lattices of the form Λ⊥
R(â)

are a special case of q-ary lattices Λ⊥
q (A) := {x ∈ Z

mn : Ax ≡ 0 (mod q)},
where A is unstructured and chosen from Z

n×mn
q .

The main average-case problem is the following collision problem.

Definition 1 (Collision Problem [LM06]). The problem Col(H(R, m), D)
asks to find a distinct pair (x̂, x̂′) ∈ Dm × Dm such that h(x̂) = h(x̂′) for
h←$H(R, m).

Obviously, the function is linear over Rm, i.e., h(a(x̂ + ŷ)) = a(h(x̂) + h(ŷ)) for
all a ∈ R, x̂, ŷ ∈ Rm. In addition, solving Col(H(R, m), D) implies being able
to solve ISVP∞ in every lattice that corresponds to an ideal in R.

1 For better readability, we use both notations hâ(·) and h(â, ·).
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Theorem 1 (Worst-case to Average-case Reduction, [LM06, Theorem
2]). Let D = {f ∈ R : ‖f‖∞ ≤ d}, m > log(q)/ log(2d), and q ≥ 4dmn

√
n log(n).

An adversary C that solves the Col(h, D) problem, i.e., finds distinct preimages
x̂, ŷ ∈ Dm such that h(x̂) = h(ŷ), can be used to solve ISVP∞ with approximation
factors γ ≥ 16dmn log2(n) in the worst case.

2.3 Chameleon Hash Functions

Krawczyk and Rabin [KR00] proposed Chameleon hashes to be collision-resistant
hash functions with a trapdoor and the following properties. 1) The function
C : D × E → R is chosen from a family C of Chameleon hashes along with a
secret trapdoor C−1. 2) The output distribution is indistinguishable from uni-
form. 3) In order to sample from the distribution (d, e, C(d, e)) ∈ D × E × R,
we can do one of two things. Either we run C on the given document d and a
randomness e ∼ Δ(E) from an efficiently samplable distribution Δ over E, or
we apply an inversion algorithm e ← C−1(d, r) on a given image r ∈ R and a
target document d ∈ D. Thus, we obtain a randomness e such that C(d, e) = r.
The resulting distributions are indistinguishable. We will require statistical in-
distinguishability to facilitate a simpler proof in Section 3. Note that whenever
we need the Chameleon hash to map to a certain range �= R, we can compose
it with an arbitrary collision resistant hash function. As for their realization,
Krawczyk and Rabin claim in [KR98] that Chameleon hash functions exist if
there are claw-free trapdoor permutations. Interestingly, they can be easily im-
plemented with the lattice-based trapdoor function in [GPV08] as observed in
[CHKP10].

3 From stat-id-imp-ca to adapt-id-imp-ca

To simplify the construction of (hierarchical) ID-based identification schemes,
we propose a generic, black-box transformation from static-identity security to
adaptive-identity security. The transformation is reminiscent of a generic trans-
formation from static message secure digital signature schemes to adaptively
chosen message secure schemes as both involve Chameleon hash functions.

In principle, our transform works for all authentication-type ID-based cryp-
tography, e.g., ID-based identification or signatures. For encryption this does not
work because there is no message-flow from the secret-key holder to the public-
key holder. In other words, the encrypter cannot derive the recipients identity
as it does not know the randomness for the Chameleon hash.

Suppose we have a scheme IBIstat = (Kg, Extract, Protocol) that is secure
against static identity attacks, we show how to construct a scheme IBIadapt =
(Kg, Extract, Protocol) that is secure against adaptive identity attacks if there is
a family of Chameleon hash functions C. Notice that the inversion algorithm C−1

is not used in the actual scheme, it is merely necessary to simulate the extraction
oracle in the security proof.
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Prover P(mpk, ID, (sk, e)) Verifier V(mpk, ID)

I ← C(ID, e)
e−−−−−−−−−−−→ I ← C(ID, e)

←−−−−−−−−−−−
IBIstat.P(mpk, I, sk)

IBIstat.Protocol−−−−−−−−−−−→ IBIstat.V(mpk, I)

Fig. 2. Identity-based identification protocol for IBIadapt

Master-key Generation. Kg(1n) runs (msk′, mpk′) ← IBIstat.Kg(1n) and se-
lect a Chameleon hash function (C, C−1)←$C(1n). It returns (msk, mpk) ←
(msk′, (mpk′, C)).

Key Extraction. Extract(msk, ID). The algorithm selects e ∼ Δ(E) and com-
putes I ← C(ID, e). Then, it computes the secret key for I by calling
sk← IBI.Extract(msk, I) and returns the pair (e, sk).

Identification Protocol. Whenever a prover P wants to prove its identity ID
to a verifier V , both parties act as per the protocol in Figure 2.

We show a reduction that proves adaptive identity security of IBIadapt under
two assumptions. First, the underlying IBIstat needs to be secure under static
identity attacks. Second, the employed Chameleon hash function needs to be
collision resistant. Notice that the reduction is property preserving with regard
to the identification scheme, i.e., security under passive, active, and concurrent
attacks is preserved under the reduction.

Theorem 2 (Adaptive Identity Security). Suppose Chameleon hash func-
tions exist. IBIadapt is secure under adaptive identity queries in the imp-{pa, aa,
ca} sense if IBIstat is secure under static identity attacks in the same sense.

Proof. First of all notice that Chameleon hash functions ensure that there is no
efficient adversary that can reuse a given secret key sk for a particular identity
ID to impersonate a different identity ID∗. Such an adversary refutes the colli-
sion resistance of the family C of Chameleon hash functions. The reduction is
straightforward. Therefore, we focus on the simulation against an impersonator
I∗ that does not exploit any weakness in the Chameleon hash function. Suppose
that the adversary makes at most Q queries to the extraction oracle.

Setup. On input mpk, the simulator chooses a Chameleon hash function and
its trapdoor (C, C−1)←$C(1n). It prepares a set of random identity strings
I1, . . . , IQ←$R. Afterwards, the simulator calls its external extraction oracle
IBIstat.Extract to obtain the corresponding secret keys sk1, . . . , skQ and sets
up a counter ı← 0. It runs I∗ on input (mpk, C).

Extraction Queries. Whenever I∗ queries an identity ID to its extraction
oracle, the internal counter ı is incremented and the reduction calls e ←
C−1(ID, Iı). It returns (e, skı).

Prover Queries. The simulator runs the protocol in Figure 2, by using its
external prover oracle.
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Impersonation Attempt. At some point, I∗ outputs a challenge identity ID∗,
which has not been queried to the extraction oracle before. After that, the
extraction oracle answers ⊥ when queried with ID∗. When the adversary
instantiates a verifier to prove its identity ID∗ with randomness e∗, the sim-
ulation forwards all messages to and from its external verifier oracle for
I∗ = C(ID∗, e∗).

The environment of I∗ is perfectly simulated if the input-output relation of C
can be sampled perfectly. The extraction oracle in the simulation was never
called with ID∗, so the simulation never called the external oracle with identity
I∗ = C(ID∗, e∗) (but with negligible probability). If I∗ is successful in the im-
personation attempt, so is the simulator in the experiment Expadapt-id-imp-ca

I∗,IBI . ��
This transformation can be adapted to work in the hierarchical setting. There,
an is identity prefixed with superordinate identities. In the transformation, one
simply splits the entire string into sub-identities and computes a Chameleon
hash for each of them. The reduction is somewhat looser than in Theorem 2
as the simulator has to prepare identities on all � levels in the hierarchy. In
consequence, the reduction only works when � = Õ(1).

4 A Construction without Random Oracles

In this section, we show how to instantiate our new static-identity model from
lattices. Our construction builds upon Lyubashevsky’s identification scheme. By
using the Bonsai-tree technique [CHKP10] in the setting of ideal lattices, we
show how to realize secret key extraction in the standard model.

The required lattice-based tools are introduced in Section 4.1 and our main
construction is in Section 4.2. An additional discussion of leakage-resilience will
appear in the full version. For each aspect, we prove a main theorem. Supporting
lemmas are stated before the theorems and proven in the full version.

4.1 Convoluted Bonsai Trees

For our main construction, we require a certain toolbox for lattices that goes by
the name of “Bonsai trees”. In [CHKP10], such a toolbox is constructed from q-
ary lattices to implement lattice-based signatures in the standard model as well
as identity-based encryption. The authors also point out that Bonsai trees from
more efficient ideal lattices seem possible. We confirm this observation by making
it explicit, based on a family of trapdoor functions in ideal lattices. Notice that
our main construction can be instantiated from q-ary lattices as well and that
ideal lattices are merely necessary to achieve quasi-linear efficiency. In addition,
making the notion of ideal Bonsai trees explicit may be of independent interest.

Preimage-samplable Trapdoor Functions. Gentry et al. [GPV08] introduce a
family of preimage samplable functions GPV = (TrapGen, Eval, SamplePre) on
lattices, which was later on adapted to ideal lattices by Stehlé et al. [SSTX09].
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Its parameters q, m, L̃, s = ω(
√

log(n))L̃ are functions of n. We define the set
Dd := {x ∈ R \ {0} : ‖x‖∞ ≤ d} for d > 0.

The algorithm TrapGen(1n) outputs a public description â ∈ Rm for the
lattice Λ⊥

R(â) together with a secret trapdoor T ∈ Z
mn×mn,

∥
∥
∥T̃

∥
∥
∥ = maxi=1,...,mn

{∥∥t̃i

∥
∥

2
} ≤ L̃, where T̃ is the Gram-Schmidt orthogonalization of T. Evaluation

of the trapdoor function hâ : Rm → R is performed by the convolution product
Eval(â, x̂) = â � x̂. The inversion algorithm SamplePre(T, s, Y) samples from
the set of preimages {x̂ ∈ Dm

d : h(â, x̂) = y} for any d = sω(
√

log(mn)). By
construction, the function compresses the input and therefore admits collisions,
but they are hard to find unless finding short vectors in ideal lattices is easy.

The following proposition is our adaptation of [GPV08] for ideal lattices.

Proposition 1. Given a basis T for Λ⊥
R(â) with

∥
∥
∥T̃

∥
∥
∥ ≤ T̃ and a Gaussian

parameter s = ω(
√

log(n))L̃, there is a polynomial-time algorithm SamplePre
that, for any Y ∈ R, outputs x̂ ∈ Rm with Eval(â, x̂) = Y and x̂ ∈ Dd for d =
sω(

√
log(mn)) with overwhelming probability. Furthermore, x̂ has a conditional

min-entropy of ω(log(n)), conditioned on h(â, x̂) = Y.

Bonsai Trees from Ideal Lattices. We explicitly describe the functionalities of
Bonsai trees in the language of ideal lattices. A central ingredient is the work
of Stehlé et al. [SSTX09] because they show how to generate an ideal lattice
together with a basis of short vectors of that lattice.

The notion of Bonsai trees on lattices is an analogy to arboriculture. An ar-
borist always starts with a certain amount of undirected, i.e., random, natural
growth that he cannot control. Then, he applies his tools and starts cultivating
individual branches to achieve the desired looks via directed growth. The arborist
is successful if the resulting tree still looks sufficiently natural to the observer.
Once cultivated, a branch can easily be extended to form more directed growth
without too much additional care. Instead of extending directed growth, the ar-
borist can also generate randomized offsprings, which can be given to another
arborist that can easily cultivate them by extending growth. The offsprings hide
the first arborist’s work and the employed techniques. We formalize these con-
cepts in the context of ideal lattices. A (binary) bonsai tree is generated out of a
root â� and branches b̂

(b)
i ∈ Rmi , b ∈ {0, 1}, i ≤ k ≤ poly(n), that are statistically

close to uniform. The entire tree is the set {â�||b̂(x1)
1 || · · · ||b̂(xk)

k : x ∈ {0, 1}≤k}.
The core of the Bonsai-tree technique is that we can append two vectors of poly-
nomials â ∈ Rm1 and b̂ ∈ Rm2 to form ĉ = â||b̂ ∈ Rm1+m2 . Now, knowing
a solution x̂ ∈ Rm1 to the equation â ⊗ x̂ ≡ 0 ∈ R, we immediately obtain a
solution ŷ ∈ Rm1+m2 to the equation ĉ � ŷ ≡ 0 by setting ŷ = x̂||0̂ ∈ Rm1+m2

with ‖x̂‖ = ‖ŷ‖ for any norm. To see this, we directly apply the definition of �
and obtain ĉ � ŷ = â � x̂ + b̂ � 0̂ = 0.

Proposition 2 (Directed Growth). Let n, σ, r ∈ N>0, q = q(n) ≥ 3 be a
prime, f ∈ Z[X ] be monic and irreducible over Z. Let R = Zq[X ]/ 〈f〉. There
is a polynomial time algorithm ExtLattice(â, m) that, given a uniformly random
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â ∈ Rm1 , m = m1 + m2 ≥ (�log(q)� + 1)(σ + r), m1 ≥ σ, generates b̂ ∈ Rm2

with m2 = m − m1 together with a basis S = [ŝ1, . . . , ŝm] ∈ Rm×m such that
(â||b̂) � ŝi ≡ 0 for i ∈ [m].

Let f =
∏

i≤t fi be the factorization of f over Zq. The algorithm succeeds with
probability ≥ 1 − p(n), where p(n) = 1 −∏

i≤t(1 − q− deg(fi)σ). When it does,

we have 1. Δ(â||b̂, unif(Rm)) ≤ p + m
2

√
∏

i≤t

(
1 + q

3r

deg(fi)
)
− 1; 2. ‖S‖ ≤ L =

√
2
√

n(9r + σ); 3.
∥
∥
∥S̃

∥
∥
∥ ≤ L̃ ≤ L.

The proposition follows [SSTX09, Theorem 3.1].
Given f = Xn +1 and a prime q ≡ 3 mod 8, we know that f splits into f1f2 for

fi = Xn/2 + ziX
n/4 − 1, zi ∈ Zq. This seems to be the best choice for q as the

success probability and the uniformity of the output in Proposition 2 depend on
f having only a small number of factors. But, even if f splits completely over Zq,
it is still possible to find suitable (larger) parameters r, σ. For our choice of q,
we can set σ = 1 and r = �log3(q) + 1� and repeat the process when it fails.

The interpretation in terms of arboriculture is generating “directed growth”
out of “undirected growth” because one starts with some random growth â and
cultivates a branch â||b̂ along with a trapdoor S, which is the arborist’s journal or
a trace of his work. However, the observer cannot distinguish undirected growth
from directed growth.

Proposition 3 (Extending Control). There is a polynomial time algorithm
ExtBasis(T, ĉ = â||b̂) that takes a basis S of Λ⊥

R(â) and an extension ĉ with
Rm1 � â � ĉ ∈ Rm1+m2 as input. If â generates R, the algorithm outputs a
basis T′ for Λ⊥

R(ĉ) with
∥
∥
∥T̃′

∥
∥
∥ =

∥
∥
∥T̃

∥
∥
∥.

The proposition is an adaptation of the respective proposition for q-ary lattices.

The resulting trapdoor is
(

S V
0 Im2

)

, where the columns v̂i of V ∈ Rm2×m2 are

arbitrary (not necessarily short) solutions of the equations â � v̂i ≡ −bi.
Whenever trapdoor delegation is required, one cannot simply use extending

control and hand over the resulting basis as it leaks information about the origi-
nal trapdoor. Here, we can use tree propagation to obtain a randomized offspring
with a new, random trapdoor.

Proposition 4 (Randomizing Control). On input a basis T of the lattice
Λ⊥

R(â) of dimension m and a Gaussian parameter s ≥
∥
∥
∥T̃

∥
∥
∥ ω(

√
log(n)), the

polynomial time algorithm RandBasis(T, s) outputs a basis T′ of Λ⊥
R(â) with∥

∥
∥T̃′

∥
∥
∥ ≤ s

√
m. The basis is independent of T in the sense that for any two bases

T0,T1 of Λ⊥
R(â) and s ≥ max{

∥
∥
∥T̃0

∥
∥
∥ ,

∥
∥
∥T̃1

∥
∥
∥}ω(

√
log(n)), RandBasis(T0, s) is

within negligible statistical distance of RandBasis(T1, s).

The proposition is a direct adaptation of the randomizing control algorithm in
[CHKP10]. A more efficient alternative is in [Pei10].
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For that concept to be used later on, we require a method of transforming a
full-rank set of vectors in a lattice into a basis.

Proposition 5 (Full-rank Set to Basis [MG02, Lemma 7.1]). Let Λ =
Λ(B) be a lattice generated by the basis B ∈ Z

m×m. There is a polynomial time
algorithm ToBasis(S,B) that takes as input a full-rank set of lattice vectors S with
S ⊂ Λ(B) and a basis B. It outputs a basis T of Λ with 1. ‖T‖ ≤ √mn/2 ‖S‖;
2.

∥
∥
∥T̃

∥
∥
∥ ≤

∥
∥
∥S̃

∥
∥
∥.

The idea is to use the oblivious sampler for lattices [GPV08, Pei10] to sample mn
linearly independent vectors using the set T as input. The result is a full-rank set
of lattice vectors S that does not reveal any information about T. The final step
entails calling ToBasis(S, HNF(T)) to obtain a basis. HNF is the unique Hermite
normal form of T, which is necessary to make the input to ToBasis completely
independent of T.

4.2 Our Construction

We construct a lattice-based identity-based identification scheme. It is secure in
the standard model under a worst-case assumption in ideal lattices and its time
and space complexity is quasi-optimal, i.e., Õ(n), in the online phase. The road
map for this section is as follows: We describe the 3-move identification scheme
IBI, including an informal description of the protocol. Then, we prove complete-
ness and soundness in the static-identity attack model. Full, adaptive-identity
security is established by the generic construction in Section 3. Proving com-
pleteness is non-trivial as we need to address an inevitable completeness defect.
In the course of the discussion, we show that it neither harms security nor effi-
ciency. In particular, the protocol remains statistically witness-indistinguishable
and sound unless the collision problem Col(H(R, m), D) is easy. Thus, security
can be based on the worst-case hardness of the ISVP.

Observe that the scheme requires lots of parameters that need to be carefully
worked out. Their definition in Table 1 will be justified later in the analysis.

Informal Description. We give a detailed, slightly informal description of the
protocol Steps 1-4 in Figure 3. For each step, we need a set of carefully chosen
parameters from Table 2 to achieve completeness and security.

Basically, the protocol follows the structure of the 3-move identification scheme
in [Lyu08a, Lyu08b], which provides a witness-indistinguishable proof of knowl-
edge. The prover proves knowledge of ŝ ∈ Dm

s such that h(â, ŝ) = S with (â, S)
being the public key.

In the first step, the prover P selects the randomness ŷ←$D
m
y for this protocol

run, where m depends on the size of the identity space. Then, P commits to ŷ by
sending Y = h(âID, ŷ) to the verifier V . The key âID to h is unique for each identity
ID ∈ {0, 1}λ and it can be computed from the master public key (â�,

〈
b̂
〉

, S).
In the second step, V challenges P with a challenge c from the set Dm

c .
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Table 1. Parameters the identity-based identification scheme IBI

Parameter Value Asymptotic bound

R Zq[X]/ 〈Xn + 1〉, q prime -

n power of 2 -

m1, σ 1 O(1)

r 	log3(q) + 1
 Õ(1)

m2 	log(q)
 (σ + r) + r Õ(1)

m m1 + (λ + 1)m2 Õ(λ)

Ds {f ∈ R : ‖f‖∞ ≤ L̃ω(
√

log(m)) =: ds} Õ(
√

n)

Dc {f ∈ R : ‖f‖∞ ≤ 1 =: dc} O(1)

φ positive integer constant ≥ 1 O(1)

Dy {f ∈ R : ‖f‖∞ ≤ φmn2ds =: dy} Õ(n2√n)

G {f ∈ R : ‖f‖∞ ≤ dy − ndsdc =: dG} Õ(n2√n)

D {f ∈ R : ‖f‖∞ ≤ dG + ndsdc =: dD} Õ(n2√n)

q (prime) ≥ 4mn
√

n log(n)dD Θ̃(n4)

The table defines all parameters for our scheme. The parameters σ, r, L̃, m1, m2 are as
per Proposition 2. The constant φ governs the completeness error and λ is the bit length
of the identities. The third column contains the asymptotic growth for the respective
norm bound or parameter with respect to the main security parameter n.

The third step entails the computation of the response ẑ and checking whether
it falls into a safe set Gm of responses. If the coefficients of ẑ fall outside G, the
protocol has to be restarted to ensure witness indistinguishability. Otherwise, ẑ
is sent to the verifier.

Finally, the verifier performs the actual verification in the fourth step. It in-
volves testing that the coefficients of ẑ are within the correct interval and that the
prover has used a correct secret key ŝID, such that h(âID, ŝ) = S, when computing
ẑ. This last check is possible due to the linearity of h.

Concerning the abort (ẑ ← ⊥) in Step 3, we will show that it happens with
probability at most 1− e−1/φ if the set of Dy is set up properly.

Now, we explain how the secret key ŝID is extracted for a given identity ID.

Let â� be the root of a Bonsai tree and let
〈
b̂
〉

=
{

(b̂(0)
i , b̂

(1)
i )

}λ

1
be the set

of branches. Each identity ID = ID1|| . . . ||IDλ defines a unique path âID :=
â�||b̂(ID1)

1 || . . . ||b̂(IDλ)
λ in the tree. Given a trapdoor S for the master lattice

Λ⊥
R(â�), we can find short vectors in the coset {x̂ : h(âID, x̂) ≡ S} of any su-

per lattice Λ⊥
R(âID). The short elements of the coset correspond ŝID.
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Prover P(â�,
〈
b̂
〉

, S, ID, ŝID) Verifier V(â�,
〈
b̂
〉

, S, ID)

1 ŷ←$D
m
y

Y← h(âID, ŷ)
Y−−−−−−−−−−−→

2
c←−−−−−−−−−−− c←$Dc

3 ẑ← ŝIDc + ŷ
If ẑ �∈ Gm

ẑ← ⊥ (abort)

4
ẑ−−−−−−−−−−−→ If ẑ �∈ Gm ∨ h(âID, ẑ) �= Sc + Y

return 0
Else return 1

Fig. 3. Identity-based identification protocol

The Bonsai trees allow the simulation of the extraction oracle for a polynomial
number of identities in the security proof, while the attacked identity is likely
to overlap only with branches of uncontrolled growth. There, the simulator will
embed the challenge.

The simulation of the provers will be possible by using a single secret key
ŝ ∈ Rm1+m2 , such that h(â�, ŝ) = S, for all identities. The individual provers
only need to pad ŝ with λm2 zero polynomials to make the objects compati-
ble. The witness indistinguishability hides this deviation. Thus, we demonstrate
that sampling from a coset of Λ⊥

R instead of from the lattice itself seems to be
much more versatile. A related technique was used in [Rüc10] to achieve strongly
unforgeable signatures from lattices in the standard model.

Master-key Generation. Let the parameters q, f, L̃, m1, m2 be as per Propo-
sition 2 and let d = sω(

√
log(nm1 + (λ + 1)nm2)) for a Gaussian parameter

s ≥ L̃ω(
√

log(n)). These parameters may be excluded from the public key
as they are the same for all users. Use ExtLattice to generate a description
â� ∈ Rm1+m2 of the master lattice Λ⊥

R(â�) together with a trapdoor S� such

that
∥
∥
∥S̃�

∥
∥
∥ ≤ L̃. Furthermore, generate the sets 〈b̂〉 :=

{
(b̂(0)

i , b̂
(1)
i )

}λ

1
of ran-

dom elements in Rm2 . Then, the algorithm chooses S←$R. Finally, output
the secret key S� and the public key (â�, 〈b̂〉, S).

Key Extraction. On inputS�, ID ∈ {0, 1}∗, we define themodule element âID :=
â�||b̂(ID1)

1 || · · · ||b̂(IDλ)
λ ∈ Rm1+m2+λm2 . The algorithm samples ŝ1, . . . , ŝλ via

SampleDom(s) and calls ŝ0 ← SamplePre(S�, s, S−∑λ
i=1 b̂

(IDi)
i � ŝi).

The output is ŝID ∈ Dm
s with overwhelming probability. In the event that

ŝID �∈ Dm
s , the algorithm re-samples ŝ0.

Identification Protocol. See Figure 3. Let g(n) = ω(log(n)). Upon an abort,
the protocol is repeated, at most g(n) times.

Notice that our scheme can be also be adapted to support a hierarchy of identi-
ties, each acting as the key extraction authority for its subordinates. Thus, each
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user receives a secret key, a trapdoor for a super lattice, that can be used to
generate the secret key for the identification scheme. This adaptation involves
adding more layers to the Bonsai tree and applying RandBasis during basis del-
egation to prevent leaking information about the master trapdoor.

Completeness of IBI is a non-trivial issue due to the eventual restarts and the
many parameters involved. The next lemma ensures that the number of restarts
is small, effectively constant.

Lemma 1. Let k = Ω(n), a,b ∈ Z
k with arbitrary a ∈ {v ∈ Z

k : ‖v‖∞ ≤ A}
and random b←${v ∈ Z

k : ‖v‖∞ ≤ B}. Given B ≥ φkA for φ ∈ N>0, we have
Prob

b
[‖a− b‖∞ ≤ B −A] > 1

e1/φ − o(1).

The multiplication of two polynomials modulo Xn + 1 plays a major role in
the analysis. Therefore, we need the following lemma, which is a special case of
[Lyu08b, Lemma 2.8].

Lemma 2. For any two polynomials a, b ∈ R, we have ‖ab mod (Xn + 1)‖∞ ≤
n ‖a‖∞ ‖b‖∞.

Theorem 3 (Completeness). The scheme IBI is complete.

Proof. For all honestly generated master-key pairs (S�, (â�,
〈
b̂
〉

, S)), and all

identities ID ∈ {0, 1}λ, the key extraction algorithm outputs a secret key
ŝID = ŝ0|| . . . ||̂sλ ∈ Dm

s with h(âID, ŝID) ≡ h(â�, ŝ0) +
∑λ

i=0 h(b̂(IDi)
i , ŝi) ≡ S −

∑λ
i=0 h(b̂(IDi)

i , ŝi)+
∑λ

i=0 h(b̂(IDi)
i , ŝi) ≡ S and ‖ŝID‖∞ ≤ ds for ds = sω(

√
log(m))

and s = L̃ω(
√

log(n)) according to Proposition 1.
For all challenges c ∈ Dc and all random coins ŷ ∈ Dm

y , we have ‖ẑ‖∞ =
‖ ˆsIDc + ŷ‖∞ ≤ dy−n ‖ ˆsID‖∞ ‖c‖∞ = dy−n = dG with probability ≥ e−1/φ−o(1)
because of Lemma 2 and Lemma 1 (k = mn, A = ndsdc, B = dy). Hence, the
verifier accepts because h(âID, ẑ) = h(âID, ŝID)c + h(âID, ŷ) = Sc + Y.

Repeating the protocol ω(log(n)) times in parallel establishes completeness.
In practice, a small and constant number e1/φ of retries is sufficient. ��
Observe that in any case, all operations (including eventual restarts) in IBI.Protocol

have Õ(n) complexity and that private keys, public keys, protocol messages, as well
as the master public key have size Õ(n). The only exceptions from this optimality
are the master secret key size,which is Õ(n2) bits, and the key extraction algorithm
Extract, which requires Õ(n2) bit operations. Fortunately, the online phase merely
requires quasi-linear operations and a quasi-linear bandwidth.

4.3 Security

Since the function family H(R, m) compresses the domain Dm
s , it is easy to show

that all secret keys collide with at least one other secret key.

Lemma 3. Let m1 and m2 as per Proposition 2, m ≥ m1 + m2, hâ ∈ H(R, m),
and S ∈ R. For every ŝ ∈ Dm

s , there is a second ŝ′ ∈ Dm
s \ {ŝ} with h(â, ŝ) =

h(â, ŝ′) = S (with overwhelming probability).
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The next lemma establishes witness indistinguishability of the protocol. Wit-
ness indistinguishability ensures that the malicious verifier cannot distinguish
whether the prover uses one of two possible secret keys ŝ, ŝ′ ∈ h−1

â (S) ∩Dm
s .

Lemma 4. Let m1 and m2 as per Proposition 2, m ≥ m1 + m2, hâ ∈ H(R, m),
and S ∈ R. For every distinct ŝ, ŝ′ ∈ Dm

s with h(â, ŝ) = S = h(â, ŝ′), the resulting
protocol views (Y, c, ẑ) and (Y′, c, ẑ) are statistically indistinguishable.

Using lemmas 3 and 4, we can exploit witness indistinguishability to simulate
all provers with a single secret key ŝ and at the same time expect the adversary
to use a different secret key ŝ′ with non-negligible probability. Then, we use the
Reset Lemma to extract this knowledge to break the collision problem.

Since the protocol is witness-indistinguishable, we can securely use parallel
composition of multiple independent instances.

Theorem 4 (Soundness). IBI is secure in the stat-id-imp-ca model if the col-
lision problem Col(H(R, m), D) is hard.

Proof. The core idea of the proof is that we can simulate all provers with a single
secret key ŝ = ŝ�||0̂|| . . . ||0̂ ∈ Rm1+m2+λm2 , where â� � ŝ� ≡ S, which can be
prepared during the simulation.

Extraction queries can be prepared in the static identity attack model. We
can prepare the set

〈
b̂
〉

so that we know a trapdoor for certain branches of
the tree, while others are embedded with the external challenge from the colli-
sion problem. These “rigged” branches correspond to the target identity in the
impersonation attempt of the adversary with non-negligible probability.

During this phase of the attack, we run the knowledge extractor of the under-
lying proof of knowledge to obtain ŝ′ �= ŝ. Hence, we solve the collision problem.

Setup. The reduction receives the input â = â�||û(0)
1 ||û(1)

1 || · · · ||û(0)
λ ||û(1)

λ ∈
Rm1+(2λ+1)m2 together with the parameters n, q, m = m1 + m2, and the
norm bound ν. It invokes I∗(find) to obtain distinct ID1, . . . , IDqE ∈ {0, 1}n.
Let 〈π〉 := {πi}p1 be the set of all strings π ∈ {0, 1}λ such that π �� IDj for
j ∈ {1, . . . , qE} and πi �� πj for all distinct pairs (πi, πj) in 〈π〉. The set 〈π〉
contains at most λqE elements. Now, randomly select an element π←$ 〈π〉,
which represents the challenge subtree. Let |π| = lπ. Setup of the public key:
– b̂

(πi)
i ← û

(0)
i for i = 1, . . . , lπ;

– b̂
(b)
i ← û

(b)
i for b ∈ {0, 1} and i = lπ + 1, . . . , λ;

– b̂1−πi

i and Si via ExtLattice(â�||b̂(π1)
1 || · · · ||b̂(πi−1)

i−1 , m2) for i = 1, . . . , lπ.

For the trapdoors, we have
∥
∥
∥S̃i

∥
∥
∥ ≤ L̃. Use SampleDom with s = ω(

√
log(n))L̃

to sample an element ŝ ∈ Rm1+m2 and compute S← h(â�, ŝ). For each identity
I(i) = IDi, let j be the smallest index with I

(i)
j �= πj . Since

∥
∥
∥S̃i

∥
∥
∥ ≤ L̃, we let

s = ω(
√

log(n))L̃ and compute the secret key ŝi ← SamplePre(ExtBasis(Sj ,

âI(i)), s, S). The public key comprises Â�, S, and
〈
b̂
〉

:=
{

(b̂(0)
i , b̂

(1)
i )

}λ

1
and

the reduction returns the public key and the list of secret keys to I∗.
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Prover Queries. I∗(verify) may challenge the reduction with any identity ID.
The simulator acts as per the protocol in Figure 3 but uses the same secret
ŝ for all identities.

Impersonation Attempt. At some point, I∗ outputs a challenge identity ID∗,
which has not been queried to the extraction oracle before. After that, the
extraction oracle answer ⊥ when queried with ID∗. After the algorithm
I∗(impersonate) submits a commitment Y, it is challenged with a random
c1←$Dc, and outputs ẑ1. Then, the reduction rewinds I∗ to the end of Step
1 and challenges the adversary with a fresh c2←$Dc \ {c1} to obtain the
answer ẑ2. The reduction suitably rearranges and pads (with 0̂) the pair
(ẑ1− ŝc1, ẑ1− ŝc2) and outputs the result as its solution to the problem Col.

Analysis. First of all, observe that mpk in the simulation is statistically indistin-
guishable from mpk in the real scheme. Furthermore, note that the simulator can
answer all extraction queries correctly because it knows a trapdoor for a prefix
of all requested identities. As for the prover queries, we require that the proto-
col is witness indistinguishable w.r.t. the secret key (Lemma 4). Let us assume
that the reset during I∗’s impersonation attempt yields another valid response
without aborting. Then, we certainly have h(â, ẑ1 − ŝc1) = Y = h(â, ẑ2 − ŝc2)
with max{‖ẑ1 − ŝc1‖∞ , ‖ẑ2 − ŝc2‖∞} ≤ dG + ndsdc = dD. What is left to show
is that ẑ1 − ŝc1 �= ẑ2 − ŝc2. Lemma 3 guarantees the existence of at least two
distinct valid secret keys ŝ and ŝ′. Now, for one of them, we obtain a valid colli-
sion. Assuming the contrary, ẑ1 − ŝc1 = ẑ2 − ŝc2 and ẑ1 − ŝ′c1 = ẑ2 − ŝ′c2 yields
c1(̂s′ − ŝ) = c2(̂s′ − ŝ) and therfore (c1 − c2)(̂s′ − ŝ) = 0̂. This only holds if ŝ′ = ŝ
because max{‖ŝ‖∞ , ‖ŝ′‖∞} ≤ q/2 and Z[X ]/ 〈Xn + 1〉 is an integral domain.

Thus, with probability ≥ 1/2, the simulator can use I∗’s output to solve
Col(H(R, m), D). Concerning the success probability of the reset, assume that
I∗ is successful with non-negligible probability ε(n). Then, I∗ is successful with
non-negligible probability ≥ (ε(n) − 1/ |Dc|)2 by the Reset Lemma [BP02] in
the second run. Then, we need to account for the inherent completeness defect,
which makes the second run abort with probability ≤ (1 − e−1/φ). All in all,
the success probability of the simulator against the collision problems stays non-
negligible if ε(n) is non-negligible. ��

5 Conclusions

Using a new, weaker security model for identity-based identification and a generic
transformation to full security, we have shown how to construct an identity-based
identification scheme from lattices that is secure against concurrent imperson-
ation and adaptive-identity attacks in the standard model. Via a worst-case to
average-case reduction, it is provably as hard to break as certain worst-case
lattice problems in ideal lattices. Our scheme offers quasi-optimal performance
and it is leakage-resilient in an almost optimal sense. Therefore, we expect our
construction to withstand even subexponential-time and quantum computers
attacks, as well as limited side-channel attacks against the secret key.
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Abstract. The Fiat-Shamir (FS) transform is a popular tool to produce
particularly efficient digital signature schemes out of identification pro-
tocols. It is known that the resulting signature scheme is secure (in the
random oracle model) if and only if the identification protocol is secure
against passive impersonators. A similar results holds for constructing
ID-based signature schemes out of ID-based identification protocols.

The transformation had also been applied to identification protocols
with additional privacy properties. So, via the FS transform, ad-hoc
group identification schemes yield ring signatures and identity escrow
schemes yield group signature schemes. Unfortunately, results akin to
those above are not known to hold for these latter settings and the secu-
rity of the resulting schemes needs to be proved from scratch, or worse,
it is often simply assumed.

In this paper we provide the missing foundations for the use of the FS
transform in these more complex settings. We start with defining a formal
security model for identity escrow schemes (a concept proposed earlier
but never rigorously formalized). Our main result constists of necessary
and sufficient conditions for an identity escrow scheme to yield (via the
FS transform) a secure group signature schemes. In addition, using the
similarity between group and ring signature schemes we give analogous
results for the latter primitive.

1 Introduction

Background. A canonical identification scheme is a three-move two-party pro-
tocol: the prover first sends a commitment Cmt to the verifier, the verifier picks
and returns a random string Ch as a challenge. After receiving the challenge,
the prover outputs a response Rsp which is derived from the commitment, the
challenge, and the secret of the prover. The verifier checks that the resulting
transcript (Cmt,Ch,Rsp) satisfies a certain property, in which case we say
that the transcript is accepting and the verifier outputs one, otherwise the ver-
ifier outputs zero. The Fiat-Shamir transform [16] takes as input a canonical
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identification protocol and produces a digital signature scheme. The transform
essentially removes the interaction in such protocols, and in doing so it involves
an arbitrary message M . This results in the following signing algorithm. To sign
a message M the signer computes the commitment Cmt as the prover does in
the identification scheme, then hashes Cmt and the message M using a hash
function H to obtain a challenge Ch = H(Cmt||M). The signer finally com-
putes a response Rsp according to the underlying identification protocol. The
resulting signature is (Cmt,Rsp). To verify the signature, one recomputes Ch

as H(Cmt||M) and verifies that the transcript (Cmt,Ch,Rsp) is an accepting
identification transcript.

The transform is particularly popular since it yields some of the most efficient
digital signature schemes known to date. Unsurprisingly, the transformation had
been extensively studied. There are negative results that explain the difficulty of
instantiating the hash function used in the transformation in a way that ensures
the security of signature scheme in the standard model [15,17]. Also, there are
positive results relating the security of the underlying identification protocol to
that of the resulting signature scheme in the random oracle model [1,19,20]. The
best known such result is due to Abdalla et al. [1] who prove that the resulting
signature scheme is secure in the random oracle model, if and only if the starting
identification protocol is secure against passive impersonators. An important
consequence of such general results is that they entail modular security proofs
for signature schemes. First, prove the security of the identification protocol (this
step is sometimes quite simple – for example it may immediately follow from
existing known result, e.g. the identification protocol being honest-verifier zero-
knowledge). Then conclude, via the general result, the security of the signature
scheme. This path was advocated and used by Bellare, Namprempre, and Neven
in a later paper where they prove (among other results) the soundness of the FS
transform when applied to ID-based identification schemes to obtain ID-based
signature schemes [7].

The Fiat-Shamir transform had been used as a design tool in other contexts
where canonical three-move identification protocol occur. Notable examples in-
clude the construction of group signature schemes out of group identification
schemes and the constructionof ring signature schemes outof ad-hoc group identifi-
cation. Unfortunately, unlike for digital signatures [1] no results formally relate the
security of the underlying group/ad-hoc group identification scheme with that of
the resulting group/ring signature scheme. In this cases, e.g. [2,3,4,5,10,11,12,13],
the security of the signature scheme needs to be proved from scratch. Unfortu-
nately, it is simply assumed that the transformation “works”. In this paper we in-
vestigate the use of the transform in the construction of group and ring signature
schemes. We detail our results next.
Our results. We start by formalizing the notion of group identification (or
identity-escrow). The primitive had been proposed by Kilian and Petrank [18]
but its security had never been rigorously defined. Recall that an identity escrow
scheme allows users to (interactively) prove membership in a group in a way that
hides their individual identities. In case of misuse however, anonymity can be
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revoked by a group opener who is in possession of a secret opening key. Such
schemes are therefore the interactive counterpart of group signature schemes.
We take advantage of progress on security models for group signatures [6,9] and
adapt existing security notions for this primitive to group identification. Our
models consider the case of monotonic dynamic groups (where users can be added
to the group by a group manager). We define three distinct security notions.
Two notions refer to adversaries that attempt to impersonate group members
and here we distinguish between impersonators that frame other honest group
members, and impersonators who produce transcripts that cannot be traced.
By analogy with the corresponding notions in group signatures the resulting
notions are non-frameability and traceability. A third requirement, anonymity
demands that executing the identification protocols hides the user identity: an
adversary is not able to tell apart runs of the identification protocol of different
users. Finally, we also formalize as a game the correctness of group identification
schemes. We give the details of the models for the case of passive adversaries
(adversaries that only observe executions of the identification protocols of honest
parties, but are not allowed to interact with them). Furthermore, the models are
for canonical identification schemes (schemes where the identification protocol
has the three-move structure outlined at the beginning of the introduction).
We make these restrictions for simplicity: our theorems are only for canonical
identification protocols and relate the security of the resulting group signature
scheme with that of the underlying identification protocol under passive attacks.
Nevertheless, the extension of our definitions to arbitrary group identification
schemes and active adversaries is immediate.

Our main result is that the group signature obtained via the FS transform
from a canonical identity-escrow scheme is correct, anonymous, traceable, and
non-frameable if and only if the underlying group identification is, respectively,
correct, anonymous, traceable, and non-frameable under passive (i.e., eavesdrop-
ping only) attacks.

Our theorem yields group signature schemes that meet the strongest possible
notion of security. However, the literature for group signatures contains a large
number of variations on this security model. The reason is that weaker, but still
quite reasonable security requirements often allow for significantly more efficient
schemes. Examples of restrictions include considering static groups, merging the
group opener and the group manager, or disallowing the adversary to ask open-
ings of arbitrary transcripts. These weaker notions are usually obtained by simply
imposing restrictions on how the adversary interacts with the oracles defining
the security game. In the reduction that proves our main theorem we show how
to build an adversary against the underlying group identification scheme out of
an adversary for the resulting group signature scheme. In this reduction, the
restrictions that the former adversary has on using his oracles translate into
similar restrictions on how the latter adversary is allowed to use his own oracles.
We therefore obtain analogue versions of our result that relates correspondingly
weaker notions of group identification and group signatures by observing how
the restrictions between the two settings translate through our reduction.
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We take advantage of the similarities between group and ring identifica-
tion/signature schemes and extend our results to this latter primitive. In this
extended abstract we give the theorem that we prove but leave the details for
the full version.

In the full version of the paper we also investigate the use of the FS transform
to obtain ring signature schemes out of ad-hoc group identification schemes.
Notation. We end this introduction by covering some basic notation which will
be used throughout this paper. If S is a set then s← S means that s is selected
uniformly at random from S. Let A(·, · · · , ·; R) be a randomized algorithm with
coins R, then y ← A(x1, . . . , xn R) means on input of x1, . . . , xn and coins R, the
value y is the unique output of the algorithm. The notation y ← A(x1, . . . , xn) is
shorthand for first selecting a random R and then setting y ← A(x1, . . . , xn; R).
We let Coins(A) denote the space which R is drown from for the algorithm A.
An algorithm A run on input x1, . . . , xn with access to oracles O1, . . . ,Om will
be denoted by A(x1, . . . , xn : O1, . . . ,Om), so as to avoid too many superscripts
and subscripts.

2 Group Identification Schemes

In this section we formalize group identification schemes. These schemes were
introduced by Kilian and Petrank [18] under the name identity escrow schemes.
We use these two names interchangeably.
Syntax. Group identification schemes allow a user to prove membership in
a group in such a way that his personal identity is protected. Using special
secret keys, a group manager can add users whereas a group opener can revoke
anonymity of any identification transcript. Since group identification schemes are
the interactive counterparts of group signature schemes we make use of progress
in the formalization of the latter concept. In particular, we follow the model
proposed by Bellare, Shi, and Zhang [9].

A group identification scheme is given by the tuple of algorithms GID =
(GKgGID, UKgGID, JoinGID, IssGID, (PGID, VGID), OpenGID, JudgeGID), where
the functionality of these algorithms is as follows:

– GKgGID: A setup program running a probabilistic key generation algorithm.
It takes a security parameter 1k and outputs the secret-public key pair
(gmsk, gmpk) for the group managerM, and a secret key osk for the opener
Op. The key gmpk is the public key for the group.

– UKgGID: This is a probabilistic algorithm to generate user public/private
key pairs. When run by user i, on input of 1k, this outputs a user’s key pair
(ski, pki).

– (JoinGID, IssGID): This is an interactive protocol between a new group mem-
ber i and the group managerM. Each of the algorithms take as input a state
and produce a new state plus a decision {accept, reject, cont}. The initial state
of JoinGID is the private key of the user ski, whilst that of IssGID is gmsk and
the public key of the user. If the issuer group manager (running IssGID) ac-
cepts then the final output is assigned to Infi (where i is the index/identity
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of the user). This is information that is to be passed to the group opener
(who will later use it to open transcripts produced by user i). If the user i
accepts then the final state of JoinGID is assigned to gski.

– (PGID, VGID): An interactive protocol between a prover and a verifier. The
prover’s input a value gski, whereas the verifier’s input is gmpk.

– OpenGID: A deterministic algorithm, on input of a transcript T of the
(PGID, VGID) protocol, the values Inf∗ and the opening key osk. The al-
gorithm outputs a pair (i, τ), where i ≥ 0. If i = 0 then the algorithm is
claiming that no group member was authenticated using the transcript T ,
when i ≥ 1 the algorithm is claiming that the group member with identity i
was the prover in the transcript T . In the latter case the value τ is a proof
of this claim.

– JudgeGID: This algorithm takes as input gmpk, an integer j, the public key
pkj , a transcript T and a proof τ . It’s goal is to check whether τ is a proof
that j produced T .

The above syntax is for general group identification scheme. Our results are for
a special class of such schemes which we call (following [1]) canonical. For ease of
exposition we give the security definition for group identification schemes for these
class of schemes. The extension to general group identification is immediate.

Canonical Group Identification Scheme. A canonical group identification
scheme is a group identification schemeas above, except thatnowthe (PGID, VGID)
protocol is given by a three-move protocol of the commit-challenge-response vari-
ety. In the first move the prover sends a commitment Cmt to verifier, the verifier
then responds with a random string Ch ∈ {0, 1}c as the challenge. Then the prover
outputs a response Rsp which is derived from the commitment Cmt, the challenge
Ch and their key gski. Finally, the verifier verifies the response and outputs a final
decision to decide whether i is in the authorized group. In this case a transcript of
the execution is given by T = (Cmt,Ch,Rsp). The verifier algorithm is then of
the simplified form VGID(T ) and it returns a single value in {0, 1}.
Security of Canonical Group Identification Scheme. Following the
treatment of [9] for group signatures we present notions of security, which we call
anonymity, traceability and non-frameability for canonical group identification
schemes. All our security models are for passive adversaries: while the adver-
sary can obtain transcripts of the identification protocol run by honest users,
he cannot directly interact with these users playing the role of the verifier. As
explainer earlier, we focus on this setting since our theorems require security in
this weaker sense. The extension of the definitions to active adversaries who can
also interact with honest users is immediate.

Our definition use a set of oracles which we define in Figure 1. All oracles (and
the underlying experiments) maintain the following global variables: a set HU of
honest users, a set CU of corrupted users and a set TL of transcripts, all of which
are assumed to be initially empty. Figure 1 shows what and how these oracles
work in detail. Informally, the adversarial abilities that these oracles model are
as follows.
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– AddU(i): The adversary can use this oracle to add an honest user i to the
group.

– CrptU(i, pk): The adversary can create a corrupt user i and set the users
public key to pk.

– SndToI(i, M): The adversary can use this oracle to engage as a corrupt user
in a group-join protocol with the honest, Iss-executing issuer.

– SndToU(i, M): This oracle models the situation that the adversary has cor-
rupted the issuer. The adversary can use this oracle to engage in the group-
join protocol with the honest, Join-executing user.

– USK(i): The adversary can call this oracle and obtain both the private secret
key and group signing key of an honest user i.

– Exec(i): This oracle allows the adversary to obtain transcripts of runs of the
identification protocol between the honest prover i and an honest verifier.

– CHb(i0, i1): This oracle is a left-right oracle for defining anonymity. The
adversary sends a couple of honest identities (i0, i1) to the oracle and gets
back a transcript T of the identification protocol executed by user ib.

– Open(T ): The adversary can query this oracle to obtain the output of the
opening algorithm on T , as long as T was not returned as a response to the
CHb oracle.

Using these oracles we can now define our security and correctness notions for
canonical group identification scheme. We note that we only require security
under passive attacks for our application, i.e. the attacker can obtain valid tran-
scripts, but is not able to interact with individual provers. Hence, security is
defined for this restricted notion of attack, the generalisation to active attacks
is obvious. We also assume that the adversary is not able to read or write the
table Inf∗ which the opener uses to identify provers (this corresponds to the
RReg and WReg oracles of [9]). This is purely for syntactic convenience, and
this assumption can be removed in the standard way. We do not describe this
in detail. To know the detail, please refer to [9].

Correctness. We require that transcripts produced by honest users are ac-
cepted by the verifiers, and that the opening algorithm correctly identifies the
user that produced a transcript. To formalise this we associate to the group
identification scheme GID, any adversary A and any k ∈ N the experiment
Expcorr

GID,A(k) defined in Figure 2 where the adversary may want to make a valid
transcript cannot be accepted by the verifiers, or make opener cannot correctly
identify the prover, or let the proof τ cannot be correctly judge. We define

Advcorr
GID,A(k) = Pr[Expcorr

GID,A(k) = 1],

and we say that the scheme is correct if Advcorr
GID,A(k) = 0 for all adversaries A

and all k ∈ N.

Anonymity. Let A be an adversary performing anonymity experiment given in
Figure 2 for b ∈ {0, 1}. The goal of the adversary is to determine which of two
identities has engaged in a run of the identification protocol. In this experiment,
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AddU(i) :

– If i ∈ HU ∪ CU then return ⊥.
– HU← HU ∪ {i}.
– (ski, pki)← UKg(1k).
– deci ← cont, gski ←⊥.
– Sti

J ← (gmpk, pki, ski).
– Sti

I ← (gmpk, gmsk, pki), MJ ←⊥.
– (Sti

J , MI , deci)← JoinGID(§iJ , MJ).
– While (deci = cont) do
• (Sti

I , MJ , deci)← IssGID(Sti
I , MI , deci).

• If deci = accept then Infi ← Sti
I .

• (Sti
J , MI , deci)← JoinGID(Sti

J , MJ).
– gski ← StJ .
– Return ski.

SndToI(i, M):

– If i �∈ CU then return ⊥.
– (Sti

I , M ′, deci)← IssGID(Sti
I , M, deci).

– If deci = accept then Infi ← Sti
I .

– Return M ′.

SndToU(i, M):

– If i �∈ HU then
• HU← HU ∪ {i}.
• (ski, pki)← UKg(1k).
• gski ←⊥, M ←⊥.
• Sti

J ← (gmpk, pki, ski).
– (Sti

J , M ′, deci)← JoinGID(Sti
J , M)

– if deci = accept then gski ← Sti
J .

– Return (M ′, deci).

CHb(i0, i1):

– If i0 �∈ HU or gski0
=⊥ then return ⊥.

– If i1 �∈ HU or gski1
=⊥ then return ⊥.

– T ← Exec(ib).
– TL← TL ∪ {T }.
– Return T .

CrptU(i, pk):

– If i ∈ HU ∪ CU then return ⊥.
– CU← CU ∪ {i}.
– pki ← pk.
– deci ← cont
– Sti

I ← (gmpk, gmsk, pki).
– Return 1.

USK(i):

– If i �∈ HU then return ⊥.
– Return (gski, ski).

Open(T ):

– If T ∈ TL then return ⊥
– Return OpenGID(T , osk, Inf∗).

Exec(i):

– If i �∈ HU or gski =⊥ then return ⊥.
– R← Coins(PGID).
– Cmt← PGID(gski; R).
– Ch← {0, 1}c.
– Rsp← PGID(gski,Cmt,Ch, R).
– T ← (Cmt,Ch,Rsp).
– Return T .

Fig. 1. Oracles defining security for canonical group identification schemes

the adversary can access the SndToU, CrptU, USK, and Open oracles to get some
state information. The adversary uses queries to the CHb oracle to determine the
hidden bit b and hence break the anonymity of GID. We define

Advanon
GID,A(k) =

∣
∣Pr[Expanon-1

GID,A(k) = 1]− Pr[Expanon-0
GID,A(k) = 1]

∣
∣ .

and we say that the scheme has anonymity if Advanon
GID,A(k) is a negligible function

of k for any polynomial time adversary A.
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Experiment Expcorr
GID,A(k)

– (gmpk, gmsk, osk)← GKgGID(1k).
– CU, HU← ∅.
– i← A(gmpk : AddU(·)).
– If i�∈ HU then return 0.
– If gski =⊥ then return 0.
– T ← Exec(i).
– If VGID(gmpk, T ) = 0 then return 1.
– (j, τ )← OpenGID(T , osk, Inf∗).
– If i�= j then return 1.
– If JudgeGID(gmpk, i, pki, T , τ ) = 0 then return 1.
– Return 0.

Experiment Expanon-b
GID,A(k)

– (gmpk, gmsk, osk)← GKgGID(1k).
– CU, HU, TL← ∅.
– d← A(gmpk, gmsk : SndToU(·, ·), CrptU(·, ·), USK(·), Open(·), CHb(·, ·)).
– Return d.

Experiment Exptrace
GID,A(k)

– (gmpk, gmsk, osk)← GKgGID(1k).
– CU, HU← ∅.
– (Cmt, state)← A1(gmpk, osk : AddU(·), SndToI(·, ·), CrptU(·, ·), USK(·)).
– Ch← {0, 1}c.
– Rsp← A2(Ch, state : AddU(·), SndToI(·, ·), CrptU(·, ·), USK(·)).
– T ← (Cmt,Ch,Rsp).
– If VGID(gmpk, T ) = 0 then return 0.
– (i, τ )← OpenGID(T , osk, Inf∗).
– If i = 0 or JudgeGID(gmpk, i, pki, T , τ ) = 0 then return 1.
– Return 0.

Experiment Expnon-frame
GID,A (k)

– (gmpk, gmsk, osk)← GKgGID(1k).
– CU, HU← ∅.
– (Cmt, state)← A1(gmpk, gmsk, osk : SndToU(·, ·), CrptU(·, ·), USK(·), Exec(·)).
– Ch← {0, 1}c.
– (Rsp, i, τ )← A2(Ch, state : SndToU(·, ·), CrptU(·, ·), USK(·), Exec(·)).
– T ← (Cmt,Ch,Rsp).
– If VGID(gmpk, T ) = 0 then return 0.
– If the following are all true then return 1 else return 0.
• JudgeGID(gmpk, i, pki, T , τ ) = 1 and i ∈ HU and gski �=⊥.
• A did not query USK(i) and T was not produced by Exec(i).

Fig. 2. Security experiments for canonical group identification schemes
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Traceability. Let A be an adversary, running in two stages, performing the
traceability experiment given in Figure 2. The goal of the adversary is to produce
a transcript that is either declared by the opener to be un-openable, or the opener
believes they have identified the opener but they cannot produce a valid proof
of this. In this experiment, the adversary can first access the AddU, SndToI,
CrptU, USK oracles to obtain state information and then output a commitment
Cmt. After the verifier has outputted the challenge Ch, the adversary queries
the above oracles and finally outputs a response Rsp associated with Cmt and
Rsp. The transcript T is (Cmt,Ch,Rsp). We define

Advtrace
GID,A(k) = Pr[Exptrace

GID,A(k) = 1],

and we say that the scheme has traceability if Advtrace
GID,A(k) is a negligible function

of k for any polynomial time adversary A.

Non-Frameability. Let A be an adversary, also running in two stages, per-
forming the non-frameability experiment given in Figure 2. The goal of the ad-
versary is to output a new transcript which the judge will accept as belonging to
an honest user i, where i did not produce this transcript. In this experiment, the
adversary can first access the SndToU, CrptU, USK and Exec oracles to obtain
state information and it then outputs a commitment Cmt. After the verifier
has outputted the challenge Ch, the adversary queries the above oracles and
finally outputs a response Rsp associated with Cmt and Rsp. The transcript T
is (Cmt,Ch,Rsp). We define

Advnon-frame
GID,A (k) = Pr[Expnon-frame

GID,A (k) = 1],

and we say that the scheme has non-frameability if Advnon-frame
GID,A (k) is a negligible

function of k for any polynomial time adversary A.
Model Variations. Our main results relate the security of group signature
schemes with the security of the group identification schemes from which they
are obtained via the FS transform. The notions that we use are those defined
above.

The group signature literature contains other, still reasonable security notions
that we weaker. Our results extend to this setting. Via the FS transform one
obtains group signature schemes that satisfies weaker notions of security from,
correspondingly weakend group identification schemes. Below we sketch these
weaker notions by analogy with those for group signatures.

First we note that the above definitions capture the notion of dynamic groups.
In the case of a static groups we may have no UKgGID algorithm and no
(JoinGID, IssGID) protocol for joining a group. Instead, the generation of user
secret keys gski is assumed to be done by the setup algorithm GKgGID, and
is done once and for all on system setup. The experiments then need to be
altered slightly in the obvious way, mainly to remove adversarial calls to the
AddU, SndToU and SndToI oracles. In analogy with the definitions from [6] in
many schemes the openers secret key osk is identical to the group managers se-
cret key gmsk. We say that such system have an opener-manager. In another
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variant, also considered in [6], the algorithm OpenGID does not output a proof
of correctness of the opening (to be verified by a judge) but simply outputs the
identity i. These are schemes with non-verified opening. Again the security exper-
iments need to be slightly modified with respect to how OpenGID and JudgeGID

work, since there is now no proof and so no need of the JudgeGID algorithm.
Finally, a scheme which does not allow the adversary to query the opening

oracle in the anonymity experiment is said to be weakly secure, or simply CPA
secure. One can think of the identity information within the transcript used by
the opener as an encryption of this identity. Thus giving the adversary access or
not to the opening oracle is akin to giving access to a decryption oracle in the
security model for encryption schemes – hence the name.

3 Group Signature Schemes

In this section we describe the syntax and security notions for group signature
schemes. The presentation follows closely [9], which also served as guidance for
our model for group identification schemes. As such, there is a lot of commonality
between the two presentations so we only stress the main differences.
Syntax. A group signature scheme is given by a tuple of algorithms: GS =
(GKgGS , UKgGS , JoinGS , IssGS , GSig, GVf, OpenGS , JudgeGS). The functionality
the algorithms GKgGS , UKgGS , JoinGS and IssGS is identical to those for the group
identification schemes considered earlier. What is different is that the prover
and verifier interactive algorithms are replaced with a signing algorithm GSig
and a verification algorithm GVf. The syntax demanded from the algorithms for
opening and judging OpenGS and JudgeGS is slightly modified to take this into
account. Specifically:

– GSig: Is a probabilistic signing algorithm taking input a group signing key
gski and a message m, returning a signature σ.

– GVf: Is a deterministic verifying algorithm which takes input the group pub-
lic key gmpk, a group signature σ a message m. It then returns a Boolean
decision to demonstrate whether the group signature is accepted or rejected.

– OpenGS : This is as before except it takes as input a message and a signature
instead of a transcript.

– JudgeGS : Again, this is as before except it takes as input a message and a
signature instead of a transcript.

Security notions. The games that define correctness, anonymity, traceabil-
ity and non-frameability for group signature schemes are essentially the non-
interactive versions of the games we have defined for identification schemes. The
schemes make use of a modified set of oracles. The modifications are as follows:

The oracles used by the adversary are changed from that for canonical group
identification schemes in the following ways:

– Open(σ, m): This oracle takes as input a signature σ and a message m and
returns the result of running the opening algorithm (i.e. the identity of the
user plus the associated proof).
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– CHb(i0, i1, m): This oracle is a left-right oracle for defining anonymity. The
adversary sends a couple of honest identities (i0, i1) and a message m to
the oracle and gets back a signature σ of the signature scheme executed by
signer ib. In addition, in CHb and the game for anonymity we replace the list
of transcripts TL by a list of signatures SL issued by the oracle CHb.

– Sign(i, m): This oracle allows the adversary to obtain signatures of the sig-
nature scheme executed by a valid group member. This oracle takes as input
the identity of the group member i and message m, and finally outputs a
group signature of the member i.

The changes in games account for the fact that we replace identification with
signing. In addition, we are only concerned with schemes secure in the random
oracle model (as those obtained via the FS transform) so the algorithms and the
adversary have access to oracle H defined in the standard way. Specifically, the
oracle H(·) maintains an internal list, H-List, of pairs (x, h) with the meaning
that h was the answer that the oracle returned when it was previously queried
with input x. When H receives an input x, it then returns h if (x, h) in H-List.
Otherwise, it selects a random h ∈ {0, 1}c, adds the entry (x, h) to H-List, and
returns h.

The formal games for security are in Figure 3, with the associated advantage
functions being defined in the obvious manner.

As for group identification, one can define weaker notions of security for group
signature schemes by appropriate restrictions and syntactic modifications. The
standard examples from the literature include moving to static groups, CPA
security, non-verified opening and schemes with an opener-manager.

4 From Group Identification to Group Signature Schemes

In this section we formally define the Fiat-Shamir transform for group signature
and prove that it leads to secure schemes.
The Fiat-Shamir transform. The Fiat-Shamir transform for standard digi-
tal signature schemes works if the underlying identification protocol is such that
the first message (the commitment) has sufficient entropy. To make the transfor-
mation applicable to a larger class of identification protocols, one workaround is
to “artificially” append a random string to the commitment. Abdalla et al. [1]
call this the extended Fiat-Shamir transform. We adapt this more general trans-
formation to the setting of group identification/signatures. Similarly to [1], our
security results would then subsume the case when the commitment of the orig-
inal scheme has sufficient entropy.

The transformation essentially removes the interaction in the identification
protocol of the group identification scheme, very much like it does when applied
to standard identification protocols.

Let GID = (GKgGID, UKgGID, JoinGID, IssGID, (PGID, VGID), OpenGID,
JudgeGID) be a canonical group identification scheme, and s : N → N be a
function which defines a seed length s(k) given the security parameter k. We
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Experiment Expcorr
GS,A(k)

– (gmpk, gmsk, osk)← GKgGS(1k).
– CU, HU← ∅.
– (i, m)← A(gmpk : AddU(·)).
– If i�∈ HU then return 0.
– If gski =⊥ then return 0.
– σ ← GSig(gski, m).
– If GVf(gmpk, σ, m) = 0 then return 1.
– (j, τ )← OpenGS(σ, m, osk, Inf∗).
– If i�= j then return 1.
– If JudgeGS(gmpk, i, pki, σ, m, τ ) = 0 then return 1.
– Return 0.

Experiment Expanon-b
GS,A (k)

– (gmpk, gmsk, osk)← GKgGS(1k).
– CU, HU, SL← ∅.
– d← A(gmpk, gmsk : H(·), SndToU(·, ·), CrptU(·, ·), USK(·), Open(·), CHb(·, ·)).
– Return d.

Experiment Exptrace
GS,A(k)

– (gmpk, gmsk, osk)← GKgGS(1k).
– CU, HU← ∅.
– (σ, m)← A(gmpk, osk : H(·), AddU(·), SndToI(·, ·), CrptU(·, ·), USK(·)).
– If GVf(gmpk, σ, m) = 0 then return 0.
– (i, τ )← OpenGS(σ, m, osk, Inf∗).
– If i = 0 or JudgeGS(gmpk, i, pki, σ, m, τ ) = 0 then return 1.
– Return 0.

Experiment Expnon-frame
GS,A (k)

– (gmpk, gmsk, osk)← GKgGS(1k).
– CU, HU← ∅.
– (σ, m, i, τ )← A(gmpk, gmsk, osk : H(·), SndToU(·, ·), CrptU(·, ·), USK(·), Sign(·)).
– If GVf(gmpk, σ, m) = 0 then return 0.
– If the following are all true then return 1 else return 0.
• JudgeGS(gmpk, i, pki, σ, m, τ ) = 1 and i ∈ HU and gski �=⊥.
• A did not query USK(i) and σ was not produced by a call to Sign(i, m).

Fig. 3. Security experiments for group signature schemes

select a hash function H : {0, 1}∗ → {0, 1}c at random from the set of all maps
{0, 1}∗ → {0, 1}c, where c is the bit length of the challenge Ch in the canonical
group identification scheme we will be using. From these we construct a group sig-
nature scheme GS = (GKgGS , UKgGS , JoinGS , IssGS , GSig, GVf, OpenGS , JudgeGS)
as follows. We let GKgGS = GKgGID, UKgGS = UKgGID, JoinGS = JoinGID and
IssGS = IssGID. The functions GSig, GVf, OpenGS and JudgeGS are defined as in
Figure 4. We call the resulting group signature scheme FS(GID).
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GSig(gski, m):

– RP ← Coins(PGID).
– Cmt← PGID(gski; RP ).
– R← {0, 1}s(k).
– Ch← H(R‖Cmt‖m).
– Rsp← PGID(gski,Cmt,Ch, RP ).
– σ ← (R,Cmt,Rsp).
– Return σ.

GVf(gmpk, σ, m):

– Parse σ as (R,Cmt,Rsp).
– Ch← H(R‖Cmt‖m).
– T ← (Cmt,Ch,Rsp).
– Return VGID(gmpk, T ).

OpenGS(σ, m, osk, Inf∗):

– Parse σ as (R,Cmt,Rsp).
– Ch← H(R‖Cmt‖m).
– T ← (Cmt,Ch,Rsp).
– Return OpenGID(T , osk, Inf∗).

JudgeGS(gmpk, i, pki, σ, m, τ ):

– Parse σ as (R,Cmt,Rsp).
– Ch← H(R‖Cmt‖m).
– T ← (Cmt,Ch,Rsp).
– Return JudgeGID(gmpk, i, pki, T , τ ).

Fig. 4. Construction of a group signature scheme from a group identification scheme

Security results. Since the security of the resulting group signature schemes
relies on the entropy of the commitment we recall the necessary notion. Security
of the above construction relies on the random oracle model. In addition it relies
on the values of the constants s(k) and c. In particular the associated min-
entropy, defined below, of the commitment generated by the prover needs to be
large enough.

Definition 1 (Min-Entropy of Commitments). Let GID be a canonical
group identification scheme. Let k ∈ N and (ski, pki) be the key pair generated
by key generation algorithm UKgGID on input of 1k. We denote by C(ski) =
{

Cmt = PGID(ski, RP )
}

be the set of all possible commitments associated with
ski. We define the maximum probability that a commitment takes on a particular
value via

α(ski) = max
Cmt∈C(ski)

{

Pr
[

PGID(ski, RP ) = Cmt : RP ← Coins(PGID)
]}

.

Then the min-entropy function associated with GID is defined as follows:

β(k) = min
ski

{

log2

(
1

α(ski)

)}

where minimum is taken over all key pairs (ski, pki) generated by UKgGID(1k).
We say that GID is non-trivial if β(·) = ω(log(·)) is super-logarithmic.

Our results show a tight connection between the security of the underlying group
identification schemes and the group signature scheme obtained via the FS trans-
form. If the starting group signature scheme is secure (it has the four properties
that we have defined earlier), then the resulting group signature scheme is also
secure. This result is captured by the following theorem.
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Theorem 1. (Secure GID ⇒ secure GS) Let GID be a canonical group identi-
fication scheme and GS = FS(GID). If GID has the properties of correctness,
anonymity, traceability and non-frameability under passive attacks, then GS also
has the above properties.

We also show that security against passive adversaries for the underlying group
identification scheme is also necessary. Specifically, we have the following
theorem.

Theorem 2. (Secure GID ⇐ secure GS) Let GID be a canonical group iden-
tification scheme and GS = FS(GID). If GS has the properties of correctness,
anonymity, traceability and non-frameability, then GID is correct, anonymous,
traceable and non-frameable under passive attacks.

Model variations. As remarked earlier different authors have used differ-
ent notions of security for group signature schemes. Each of these different no-
tions is obtained by appropriate restrictions on the powers of the adversary in
the standard security games. Unsurprisingly for both group identification and
signature schemes, the restrictions are essentially the same (modulo the parts
that are different). For example, in both cases, CPA-security is obtained by
not providing the adversary with an oracle for opening transcripts and signa-
tures, respectively. Since this is true for all of the oracles which our reductions
preserve essentially unchanged, our proofs easily extend to these variations in
models. Specifically, we have the following: If X is one of the properties in the
set {correctness, anonymity, traceability, non-frameability, CPA-secure, CCA-secure}
then, if GID has property X, then GS = FS(GID) has property X. This is true
for both static and dynamic groups.

5 Proof of the Construction

5.1 Proof of Theorem 1

The concept of our proof for Theorem 1 is as follow: if GS = FS(GID) is
insecure (i.e., there exists an algorithm A which can break the security of GS
with non-negligible advantage), then there exists a algorithm B which can break
the security of GID with non-negligible advantage. We now prove Theorem 1
via Lemma 1 to Lemma 4. The proofs for the following Lemmas can be found
in the full version of the paper.

Lemma 1. Let GID be a group identification scheme and GS = FS(GID). Let
A be an adversary attacking the correctness of the group signature in the random
oracle model. Then there is an adversary B against the correctness of GID such
that Advcorr

GID,B ≥ Advcorr
GS,A.

Lemma 2. Let GID be a group identification scheme and GS = FS(GID). Let
s(·) be a seed length and β(·) be the min-entropy function associated with GID.
Let A be an adversary attacking the anonymity of the group signature in the
random oracle model, making qh hash-oracle queries. Then there is an adversary
B against the anonymity of GID such that Advanon

GID,B ≥ Advanon
GS,A − qh

2s(k)+β(k) .
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Lemma 3. Let GID be a group identification scheme and GS = FS(GID). Let
s(·) be a seed length and β(·) be the min-entropy function associated with GID.
Let A be an adversary attacking the traceability of the group signature in the
random oracle model, making qh hash-oracle queries. Then there is an adversary
B against the traceability of GID such that Advtrace

GID,B ≥ Advtrace
GS,A − qh

2s(k)+β(k) .

Lemma 4. Let GID be a group identification scheme and GS = FS(GID). Let
s(·) be a seed length and β(·) be the min-entropy function associated with GID.
Let A be an adversary attacking the non-frameability of the group signature in
the random oracle model, making qh hash-oracle queries and qs signature oracles.
Then there is an adversary B against the non-frameability of GID such that
Advnon-frame

GID,B ≥ Advnon-frame
GS,A (k)− 1

qh
· qs(qh+qs−1)

2s(k)+β(k) .

By combining Lemmas 1, 2, 3 and 4, Theorem 1 is proved.

5.2 Proof of Theorem 2

The idea behind the proof for Theorem 2 is as follow: if GID is insecure
(i.e., there exists an algorithm A which can break the security of GID with
non-negligible advantage), then there exists a algorithm B which can break the
security of GS = FS(GID) with non-negligible advantage. We now prove The-
orem 2 via Lemma 5 to Lemma 8. Again we leave the proofs of these Lemmas
to the full version of the paper.

Lemma 5. Let GID be a group identification scheme and GS = FS(GID). Let
A be an adversary attacking the correctness of the group identification in the
random oracle model. Then there is an adversary B against the correctness of
GS such that Advcorr

GS,B ≥ Advcorr
GID,A.

Lemma 6. Let GID be a group identification scheme and GS = FS(GID). Let
A be an adversary attacking the anonymity of the group identification. Then there
is an adversary B against the anonymity of GS such that Advanon

GS,B ≥ Advanon
GID,A.

Lemma 7. Let GID be a group identification scheme and GS = FS(GID). Let
A be an adversary attacking the traceability of the group identification. Then
there is an adversary B against the traceability of GS such that Advtrace

GS,B ≥
Advtrace

GID,A.

Lemma 8. Let GID be a group identification scheme and GS = FS(GID).
Let A be an adversary attacking the non-frameability of the group identifica-
tion. Then there is an adversary B against the non-frameability of GS such that
Advnon-frame

GS,B ≥ Advnon-frame
GID,A .

By combining Lemmas 5, 6, 7 and 8, Theorem 2 is proved.

6 From Ad-Hoc Group Identification to Ring Signatures

An ad hoc group identification scheme is an identification protocol in which
a prover can anonymously prove she is a valid number of an ad hoc group.
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Based on the underlying PKI, arbitrary ad hoc groups of a user population
can be formed without the help of a group manager. In [14], the authors give
a formal model of an ad hoc identification scheme which is a six-tuple of al-
gorithms (Setup, Register, Make-GPK, Make-GSK, Anon-IDP, Anon-IDV). However,
in this paper, we slightly modify the notations of the model of [14] in order to
suit with the model and notations of our ring signature RS.

An ad hoc group identification scheme is given by the tuple of algorithms
AHID = (UKgAHID, GPKgAHID, GSKgAHID, (PAHID, VAHID)). The func-
tionality of these algorithms is as follows:

– UKgAHID: This is a probabilistic algorithm to generate user public/private
key pairs. When run by user i, on input of 1k, this outputs a user’s key pair
(ski, pki).

– (GPKgAHID, GSKgAHID): The ad hoc group public key generation algo-
rithm and the ad hoc group secret key generation algorithm. The algorithm
GPKgAHID is a deterministic algorithm which combines a set of user public
keys S into a single ad hoc group public key gpk. The deterministic algo-
rithm GSKgAHID takes as input a user secret/public key pair (ski, pki) and
a set of user public keys S, it outputs an ad hoc group secret key gski which
associates with the ad hoc group public key gpk.

– (PAHID, VAHID): An interactive protocol between a prover and a verifier.
The prover’s input is a value gski, whereas the verifier’s input is gpk.

As before we shall focus purely on canonical ad hoc group identification schemes,
where the (PAHID, VAHID) protocol is given by three-move protocol of the
commit-challenge-response variety.

In the full version we present a security model for such ad-hoc group identifi-
cation schemes, and an analogous model for ring signatures. We then formalise
the construction of ring signatures from ad-hoc group identification schemes via
the Fiat–Shamir transform. Finally, an analogous theorem to the earlier one can
be proved, namely:

Theorem 3. Let AHID be a canonical ad-hoc group identification scheme and
RS = FS(AHID). The derived ring signature scheme RS has the proper-
ties of correctness, anonymity and unforgeability against chosen-message attacks
if and only if AHID has the properties of correctness, anonymity, and non-
impersonation under passive attacks.
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Abstract. Group signatures allow group members to anonymously sign mes-
sages in the name of a group such that only a dedicated opening authority can
reveal the exact signer behind a signature. In many of the target applications, for
example in sensor networks or in vehicular communication networks, bandwidth
and computation time are scarce resources and many of the existent construc-
tions simply cannot be used. Moreover, some of the most efficient schemes only
guarantee anonymity as long as no signatures are opened, rendering the opening
functionality virtually useless.

In this paper, we propose a group signature scheme with the shortest known
signature size and favorably comparing computation time, whilst still offering
a strong and practically relevant security level that guarantees secure opening
of signatures, protection against a cheating authority, and support for dynamic
groups. Our construction departs from the popular sign-and-encrypt-and-prove
paradigm, which we identify as one source of inefficiency. In particular, our pro-
posal does not use standard encryption and relies on re-randomizable signature
schemes that hide the signed message so as to preserve the anonymity of signers.

Security is proved in the random oracle model assuming the XDDH, LRSW
and SDLP assumptions and the security of an underlying digital signature scheme.
Finally, we demonstrate how our scheme yields a group signature scheme with
verifier-local revocation.

Keywords: Group signatures, pairings, group signature security definition.

1 Introduction

Group signatures, introduced in 1991 by Chaum and van Heyst [18], allow members
of a group to anonymously sign messages on behalf of the whole group. For example,
they allow an employee of a company to sign a document in such a way that the verifier
only learns that it was signed by an employee, but not by which employee. Group mem-
bership is controlled by a Group Manager, who can add users (called Group Members)
to the group. In addition, there is an Opener who can reveal the identity of signers in
the case of disputes. In some schemes, such as the one we propose, the tasks of adding
members and revoking anonymity are combined into a single role. In the systems pro-
posed in [3,15,33], group membership can be selectively revoked, i.e., without affecting
the signing ability of the remaining members.
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Security notions. Since 1991 a number of security properties have been developed
for group signatures including unforgeability, anonymity, traceability, unlinkability, and
non-frameability. In 2003 Bellare, Micciancio, and Warinschi [4] developed what is now
considered the standard security model for group signatures. They propose two security
properties for static groups called full anonymity and full traceability and show that these
capture the previous security requirements of unforgeability, anonymity, traceability,
and unlinkability. Bellare, Shi, and Zhang [7] extended the notions of [4] to dynamic
groups and added the notion of non-frameability (or exculpability), by which the Group
Manager and Opener together cannot produce a signature that can be falsely attributed
to an honest Group Member.

Boneh and Shacham [10] proposed a relaxed anonymity notion called selfless ano-
nymity where signers can trace their own signatures, but not those of others. This weak-
ening, however, leads to the following feature: if a group member signed a message
but forgot that she signed it, then she can recover this information from the signature
itself. Other schemes [9,11,12] weaken the anonymity notion by disallowing opening
oracle queries, providing only so-called CPA-anonymity. This is a much more serious
limitation: in practice it means that all security guarantees are lost as soon as a single
signature is opened, thereby rendering the opening functionality virtually useless. As
we’ve witnessed for the case of encryption [8], CCA2-security is what can make it into
practice.

In this work, we consider a hybrid between the models of [7] and [10] that combines
the dynamic group setting and the non-frameability notion of [7] with the selfless ano-
nymity notion and the combined roles of Group Manager and Opener of [10]. We stress
however that we prove security under the practically relevant CCA2-anonymity notion,
rather than the much weaker CPA-anonymity notion. Yet still, our scheme compares
favourably with all known schemes that offer just CPA-anonymity.

Construction paradigms. Many initial group signature schemes were based on the
Strong-RSA assumption [2,3,15]. In recent years the focus has shifted to schemes based
on bilinear maps [9,10,16,25,32], which are the most efficient group signatures known
today, both in terms of bandwidth and computational efficiency.

Most existing group signature schemes follow the construction paradigm where a
group signature consists of an anonymous signature, an encryption of the signer’s iden-
tity under the Opener’s public key, and a non-interactive zero-knowledge (NIZK) proof
that the identity contained in the encryption is indeed that of the signer. While very use-
ful as an insight, this construction paradigm seems to stand in the way of more efficient
schemes. In this paper, we depart from the common paradigm and construct a group
signature scheme that consists solely of an anonymous signature scheme and a NIZK
proof, removing the need to encrypt the identity of the signer. We thereby obtain the
most efficient group signature scheme currently known, both in terms of bandwidth and
computational resources (see Section 6).

It is surprising that we can do without a separate encryption scheme, given that group
signatures as per [4] are known to imply encryption [1]. This implication however does
not hold for group signatures with selfless anonymity, giving us the necessary slack to
construct more efficient schemes while maintaining a practically relevant security level.
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Our scheme. In our construction each Group Member gets a Camenisch-Lysyanskaya
(CL) [16] signature on a random message as a secret key. To produce a group signa-
ture, the Group Member re-randomizes this signature and produces a NIZK proof that
she knows the message underlying the signature. The novel feature is that the Opener
(alias Group Manager) can use information collected during the joining phase to test
which user created the signature, without the need for a separate encryption.1 A dis-
advantage is that opening thereby becomes a linear operation in the number of Group
Members. Since opening signatures is a rather exceptional operation and is performed
by the Group Manager who probably has both the resources and the commercial interest
to expose traitors, we think that this is a reasonable price to pay.

CL signatures and NIZK proofs have been combined before to produce “group-like”
signatures, most notably in the construction of pairing-based DAA schemes [13,20,21].
DAA schemes are not genuine group signatures, however, as there is no notion of an
Opener.

Finally, we note that from a certain class of group signature schemes as per our
definitions (that includes our scheme), one can build a group signature scheme with
verifier-local revocation (VLR) [10]. Such a scheme allows verifiers to check whether
a signature was placed by a revoked group member by matching it against a public
revocation list. The converse is not true, i.e., a VLR scheme does not automatically
yield a group signature as per our definitions, as it does not provide a way to open
individual signatures (rather than revoking all signatures by one signer). We refer to
Section 3.2 for details.

2 Preliminaries

Notation. If S is a set, we denote the act of sampling from S uniformly at random
and assigning the result to the variable x by x← S. If S consists of a single element
{s}, we abbreviate this to x← s. We let {0, 1}∗ and {0, 1}t denote the set of binary
strings of arbitrary length and length t respectively, and let ε denote the empty string.
If A is an algorithm, we denote the action of obtaining x by invoking A on inputs
y1, . . . , yn by x← A(y1, . . . , yn), where the probability distribution on x is determined
by the internal coin tosses of A. We denote an interactive protocol P as P = (P0, P1).
Executing the protocol on input in0 and in1, resulting in the respective output out0 and
out1, we write as 〈out0; out1〉 ← 〈P0(in0);P1(in1)〉. If arr is an array or list we let
arr[i] denote the ith element in the array/list.

Digital Signature Scheme. We will use a digital signature scheme consisting of three
algorithms, namely a key generation algorithm DSKeyGen, a signing algorithm DSSign,
and a signature verification algorithm DSVerify. In our setting the key generation will
be executed between a user and a certification authority (CA). It might be an interactive
algorithm leading to the user getting a secret key sk and the CA as well as the user get

1 If the random messages were known to the Group Manager, he could open group signatures
simply by verifying the re-randomized signatures against the issued random messages. To
achieve non-frameability, however, the random message is only known to the Group Member,
so opening in our scheme is slightly more involved.
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the public key pk corresponding to the secret key. The signing algorithm accepts a se-
cret key sk and a message m as input and returns a signature σ̄ ← DSSign(sk,m). The
signature is constructed such that the verification algorithm upon input a message m′,
a public key pk, and a signature σ̄ returns DSVerify(pk,m′, σ̄), which is true if both
m′ ≡ m, and sk corresponds to pk and false otherwise. The signature scheme must
satisfy the notion of unforgeability under chosen-message attacks [28].

Number-Theoretic Background. Our construction will make extensive use of asym-
metric pairings on elliptic curves. In particular we will use the following notation, for a
given security parameter η,

– G1, G2 and GT are cyclic groups of prime order q = Θ(2η).
– We write the group operations multiplicatively, and elements in G1 will generally

be denoted by lower case letters, elements in G2 by lower case letters with a “tilde”
on them, and elements in Zq by lower case Greek letters.

– We fix a generator g (resp. g̃) of G1 (resp. G2).
– There is a computable map ê : G1 ×G2 → GT with the following properties:
• For all x ∈ G1, ỹ ∈ G2 and α, β ∈ Zq we have ê(xα, ỹβ) = ê(x, ỹ)αβ .
• ê(g, g̃) �= 1.

Following [27] we call a pairing of Type-1 if G1 = G2, of Type-2 if G1 �= G2 and
there exists a computable homomorphism ψ : G2 → G1, and of Type-3 if G1 �= G2

and no such homomorphism exists. In addition, in [19,31] a further Type-4 pairing is
introduced in which G2 is a group of order q2, namely the product of G1 with the G2

used in the Type-3 pairing setting. In practice Type-3 pairings offer the most efficient
implementation choices, in terms of both bandwidth and computational efficiency.

Associated to pairings are the following computational assumptions, which we shall
refer to throughout this paper:

Assumption 1 (LRSW). With the notation above we let x̃, ỹ ∈ G2, with x̃ = g̃α,
ỹ = g̃β . Let Ox̃,ỹ(·) be an oracle that, on input of a value μ ∈ Zq , outputs a triple
A = (a, aβ , aα+μαβ) ∈ G3

1 for a randomly chosen a ∈ G1. Then for all probabilistic
polynomial time adversaries A, the quantity ν(η), defined as follows, is a negligible
function:

ν(η) := Pr[α← Zq;β ← Zq; x̃← g̃α; ỹ ← g̃β; (μ, a, b, c)← AOx̃,ỹ(·)(x̃, ỹ) :

μ /∈ Q ∧ a ∈ G1 ∧ b = aβ ∧ c = aα+μαβ ]

where Q is the set of queries passed by A to its oracle Ox̃,ỹ(·).
This assumption was introduced by Lysyanskaya et al. [29], in the case G = G1 = G2

for groups that are not known to admit an efficient bilinear map. The authors showed
in the same paper, that this assumption holds for generic groups, and is independent
of the decisional Diffie-Hellman (DDH) assumption. However, it is always applied in
protocols for which the groups admit a pairing, and the above asymmetric version is the
version that we will require.
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Assumption 2 (XDDH; SXDH). We say XDDH to hold in the pairing groups if DDH
is hard in G1, i.e., if given a tuple (g, gμ, gν , gω) for μ, ν ← Zq it is hard to decide
whether ω = μν mod q or random. We say SXDH holds if DDH is hard in both G1

and G2.

Note that neither XDDH nor SXDH hold in the case of Type-1 pairings. For the others
types of pairings XDDH is believed to hold, and only for Type-3 pairings SXDH is
believed to hold.

To demonstrate the non-frameability of our scheme we require an additional assump-
tion, which we call the symmetric Discrete Logarithm Assumption (SDLP).

Assumption 3 (SDLP). Given the tuple (gμ, g̃μ) ∈ G1 × G2 computing μ is a hard
problem.

This is a non-standard assumption which, however, implicitly underlies many asym-
metric pairing versions of protocols in the literature that are described in the symmetric
pairing setting only. Note that the input to the SDLP problem can always be checked to
be a valid input, as given (h, h̃) one can always check whether ê(g, h̃) = ê(h, g̃).

CL Signatures. Our group signature scheme is based on the pairing-based Camenisch-
Lysyanskaya (CL) signature scheme [16] (Scheme A in their paper), which is provably
secure under the LRSW assumption. The scheme assumes three cyclic groups G1, G2,
and GT of prime order q = Θ(2η), with a pairing ê : G1 × G2 → GT , and two
generators g ∈ G1 and g̃ ∈ G2.

The secret key of the CL signature scheme consists of α, β ← Zq and the public key
is defined as (x̃, ỹ)← (g̃α, g̃β) ∈ G2

2. Computing a signature s ∈ G3
1 on a messagem ∈

Zq is done by choosing a← G1, calculating b← aβ and c← aα+mαβ , and setting
s← (a, b, c). Finally, a tuple (a, b, c) ∈ G3

1 is a valid signature on a message m ∈ Zq

if both ê(a, x̃) = ê(b, g̃) and ê(a, x̃) · ê(b, x̃)m = ê(c, g̃) hold.

Theorem 1 ([16]). The CL signature scheme A is existentially unforgeable against
adaptive chosen message attacks [28] under the LRSW assumption.

CL signatures are re-randomizable, i.e., given a valid signature (a, b, c) ∈ G3
1 on a

message m, the signature (ar, br, cr) ∈ G3
1 will also be valid for any r ∈ Z∗

q . This
re-randomization property is central to our new group signature scheme.

Sigma Protocols. We will use a number of protocols to prove knowledge of discrete
logarithms (and, more generally, of pre-images of group homomorphisms) and prop-
erties about them. This section recaps some basic facts about such protocols and the
notation we will use.

Let φ : H1 → H2 be a group homomorphism with H1 and H2 being two groups of
order q and let y ∈ H2. We will use additive notation for H1 and multiplicative nota-
tion for H2. By PK{(x) : y = φ(x)} we denote the Σ-protocol for a zero-knowledge
proof of knowledge of x such that y = φ(x) [14,17]. Σ-protocols for group homo-
morphisms are three-move protocols where the prover chooses rnd← H1 and sends
Comm← φ(rnd) to the verifier; the verifier sends back a random Cha← H1; the prover
then sends Rsp = rnd− Cha · x; and the verifier checks that φ(Rsp)φ(x)Cha = Comm.
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It is well-known that basic Σ-protocols for group homomorphisms are honest-verifier
zero-knowledge proofs of knowledge of the pre-image of the group homomorphism.
There is a number of different ways to turn any honest-verifierΣ-protocol into a proto-
col that is full zero-knowledge with perfect simulation and negligible soundness error
(e.g., [22,24]). We denote the full zero-knowledge variant of a Σ-protocol PK {. . .} as
FPK{. . .}.

The well-known Schnorr identification protocol is the special case PK{(x) : y =
gx}, i.e., φ(x) = gx where g is a generator of a subgroup of order q of Zp. Let φ1 :
H1 → H2 and φ2 : H1 → H2. We often write y1 = φ1(x1) ∧ y2 = φ2(x2) to
denote φ(x1, x2) := (φ1(x1), φ2(x2)) or y1 = φ1(x) ∧ y2 = φ2(x) to denote φ(x) :=
(φ1(x), φ2(x)).

The “signature” variant of a Σ-protocol is obtained by applying the Fiat-Shamir
heuristic [26] to the above Σ-protocol. We denote such a “signature-proof-of-
knowledge” on a message m ∈ {0, 1}∗ by, SPK{(x) : y = φ(x)}(m). That is,
when we say that Σ ← SPK{(x) : y = φ(x)}(m) is computed, we mean that
a random rnd← H1 is chosen and the pair Σ ← (Cha,Rsp) is computed where
Cha← H(φ‖y‖φ(rnd)‖m), Rsp← rnd − Cha · x and H : {0, 1}∗ → Zq is a suit-
able hash function. Note that Σ ∈ Zq ×H1. We say that Σ = (Cha,Rsp) is valid with
respect to y and φ if Cha = H(φ‖y‖yChaφ(Rsp)‖m) holds; typically y and φ will be
clear from the context and we will just say that “Σ is valid.” We further note that a
unique specification of the statement (e.g., (x) : y = φ(x)) that SPK “proves” needs
to be included as an argument to the hash function, i.e., here φ‖y, where φ stands for
the description of the whole algebraic setting. In the random oracle model [6], one can
use the forking lemma [30,5] to extract the secrets from these SPKs if correct care is
taken that the prover can indeed be efficiently rewound. Moreover, in the random ora-
cle model one can simulate SPKs for unknown secrets by choosing Cha,Rsp ← Zq at
random and programming the random oracle so thatH(φ‖y‖yChaφ(Rsp)‖m) = Cha.

3 Definitions

As mentioned in the Introduction, we propose a notion that builds a hybrid between
[7] and [10]. Consequently, our definitions describe a dynamic group signature scheme
with a combined role of Group Manager and Opener that obtains selfless anonymity,
traceability, and non-frameability.

3.1 Syntax

A group signature scheme consists of a set of users with a unique index i who can
produce signatures on behalf of the group. Initially users must interact with a trusted
party to establish a public key pair. Users can become Group Members via an interaction
with the Group Manager. After the interaction the user obtains a secret signing key that
she can use to produce signatures on behalf of the group. The Group Manager obtains
a piece of information that he can later use to identify signatures created by the user.
In addition, both parties obtain some piece of publicly available information, which
certifies the fact that the particular user has joined the group.
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As remarked earlier, in our models we put more trust in the Group Manager by
requiring that he is also in charge of opening signatures. The syntax that we require is
as follows.

Definition 1. A group signature scheme GS extended by a PKI is given by a tuple

(GSetup,PKIJoin, (GJoinU ,GJoinM ),GSign,GVerify,GOpen,GJudge)

where:

1. GSetup is a setup algorithm. It takes as input a security parameter 1η and produces
a tuple (gpk , gmsk), where gpk is a group public key and gmsk is the Group
Manager’s secret key. To simplify notation we assume that gmsk always includes
the group public key. Note that the group public key contains system parameters,
which need to be checked by all entities not involved in there generation.

2. PKIJoin is an algorithm executed by a user to register with a certification authority
(CA). It takes as input the index of the user i and the security parameter 1η. The
output of the protocol is the key pair (usk[i],upk[i]) consisting of user secret key
and user public key or ⊥ in case of a failure. The user public key upk[i] is sent to
the CA, who makes it available such that anyone can get an authentic copy of it.

3. GJoin = (GJoinM ,GJoinU ) is a two-party interactive protocol used to add new
users to the group. The input for the user is (i,usk[i], gpk), i.e., the index of the
user, the user secret key, and the group public key. The input for the Group Man-
ager is (i,upk[i], gmsk), i.e., the user index, the user public key, and the Group
Manager’s secret key.

As a result of the interaction, the user obtains her group signing key gsk[i], and
the Group Manager obtains some registration information reg[i] (which will later
be used to trace signatures of i). If the protocol fails, the output of both parties is
set to ⊥.

4. GSign is the algorithm users employ to sign on behalf of the group. It takes as
input an individual user signing key gsk[i] and the message m ∈ {0, 1}∗ to be
signed, and outputs a signature σ. We write σ ← GSign(gsk[i],m) for the process
of obtaining signature σ on m with secret key gsk[i].

5. GVerify is the signature verification algorithm. It takes as input (gpk ,m, σ), i.e.,
the group public key, a message and a group signature, and returns 0 if the signature
is deemed invalid and 1 otherwise.

6. GOpen is the algorithm for opening signatures. It takes as input (gmsk ,m, σ, reg),
i.e., the Group Manager’s secret key, a message, a valid group signature on the
message, and the registration information table reg, and returns a user index i ∈
[n] and a proof π that user i produced signature σ, or it returns ⊥, indicating that
opening did not succeed.

We assume that the opening algorithm, before outputting (i, π), always checks
that the user i is registered, i.e., that reg[i] �= ⊥, and that the proof π passes the
judging algorithm (see the next item). If either of these checks fails, the opening
algorithm outputs ⊥.

7. GJudge is the judging algorithm. It takes as input a message m, a group signature
σ on m, the group public key gpk , a user index i, the user public key upk[i], and a
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proof π and outputs 1 or 0, expressing whether the proof shows that user i created
signature σ or not.

We assume that the judging algorithm verifies the signature using the GVerify
algorithm on input gpk , m, and σ.

3.2 Security Notions

In this section we give the security definitions that we require from group signature
schemes. We describe the oracles that are involved in our definitions, as well as the
restrictions that we put on their uses. These oracles use some shared global state of the
experiments in which they are provided to the adversary. In particular, at the time of
their use, the sets of honest and corrupt users are defined. Also the oracles have access
to the global information contained in upk. For honest users the oracles have access to
gsk and if the Group Manager is uncorrupted they also have access to reg. We assume
that at the beginning of the execution, the content of each entry in these arrays is set to
⊥ (uninitialized).

We consider a setting with n users divided (statically) into setsHU and DU of hon-
est and dishonest users, respectively. Even though our definitions appear to consider
static corruptions only, one can easily see (by taking an upper bound on the number of
users for n and guessing the indices of “target” users upfront) that they actually imply
security in the dynamic case. However, the latter comes at the cost of losing a factor n
in reduction tightness for traceability and non-frameability, and of n2/2 for anonymity.
For some notions the adversaryA is actually a pair of algorithms (A0,A1); we implic-
itly assume that A0 can pass state information to A1. Our security notions make use of
the following oracles:

– Ch(b, ·, ·, ·) is the challenge oracle for defining anonymity. It accepts as input a
triple formed from two identities i0, i1 ∈ HU and a message m, and returns a
signature σ∗ ← GSign(gsk[ib],m) under the signing key of user ib, where b is a
parameter of the experiment. This oracle can only be called once.

– SetUPK(·, ·) takes an input the index of a user i ∈ DU and a value upk. If reg[i] ≡
⊥ it sets the user’s public key upk[i]← upk. The oracle can only be called before
user i joins the group.

– GJoinUD(·) is an oracle that takes as input an honest user index i ∈ HU and exe-
cutes the user side of the join protocol for i, i.e., GJoinU (i,usk[i], gpk ). The local
output of the protocol is stored in gsk[i]. This oracle can be used by an adversary
to execute the registration protocol with an honest user, the adversary playing the
role of the Group Manager (when the latter is corrupt).

– GJoinDM (·) is an oracle that takes as input the index of a corrupt user i ∈ DU
and simulates the execution of the join protocol for the (honest) Group Manager,
i.e., GJoinM (i,upk[i], gmsk). The local output of the protocol is stored in reg[i].
This oracle can be used by an adversary to execute the registration protocol with
the (honest) Group Manager on behalf of any corrupt user.

– GSign(·, ·) accepts as input pairs (i,m) ∈ HU ×{0, 1}∗ and obtains a signature on
m under gsk[i] if the user is not corrupt, and its signing key is defined.
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– GOpen(·, ·) accepts as input a message-signature pair (m,σ) and returns the re-
sult of the function call GOpen(gmsk ,m, σ, reg). The oracle refuses to open the
signature attained through a call to the Ch oracle, i.e., σ ≡ σ∗.

Note that, depending on the precise group signature scheme, the oracles GJoinUD(·)
and GJoinDM (·) may require multi-stages, i.e., interaction between the oracle and the
adversary to complete the functionality. If this is the case we assume that these stages
are executed by the adversary in a sequential order, as if the oracles are a single stage.
Thus, we do not allow the adversary to interleave separate executions of the GJoin
protocol, or execute multiple of them in parallel.

Correctness. We define the correctness of a group signature scheme GS through a game
in which an adversary is allowed to requests a signature on some message by any of the
honest players. The adversary wins if either (1) the resulting signature does not pass the
verification test, (2) the signature is opened as if it were produced by a different user,
or (3) the proof produced by opening the signature does not pass the judging algorithm.
The experiment is detailed in Figure 1. We say that GS is correct if for any adversary
Pr[Expcorr

GS,A(η) = 1] is 0.

Anonymity. Anonymity requires that group signatures do not reveal the identity of the
signer. In the experiment that we consider, the adversary controls all of the dishonest
users. The adversary has access to a challenge oracle Ch(b, ·, ·, ·), which he can call
only once with a triple (i0, i1,m), where i0 and i1 are the indices of two honest signers,
and m is some arbitrary message. The answer of the oracle is a challenge signature
σ∗ ← GSign(gsk[ib],m). During the attack the adversary can (1) add corrupt users to
the group of signers (via the SetUPK(·, ·) and GJoinM (·) oracles), (2) require signatures
of honest users on arbitrary messages via the GSign oracle, and (3) require opening of
arbitrary signatures (except the signature σ∗ obtained from the challenge oracle) via the
GOpen oracle. The experiment is described in Figure 1. For any adversary that obeys
the restrictions described above we define its advantage in breaking the anonymity of
GS by

Advanon
GS,A(η) = Pr[Expanon-1

GS,A (η) = 1]− Pr[Expanon-0
GS,A (η) = 1]

We say that the scheme GS satisfies the anonymity property if for any probabilistic
polynomial-time adversary, its advantage is a negligible function of η.

Traceability. Informally, traceability requires that no adversary can create a valid sig-
nature that cannot be traced to some user that had already been registered. We model
the strong but realistic setting where all of the signers are corrupt and work against the
group manager. In the game that we define, the adversary can add new signers using ac-
cess to the GJoinDM oracle and can request to reveal the signers of arbitrary signatures
via the GOpen oracle. The goal of the adversary is to produce a valid message-signature
pair (m,σ) that cannot be opened, i.e., such that the opening algorithm outputs ⊥. For
any adversary A we define its advantage in breaking traceability of group signature
scheme GS by:

Advtrace
GS,A(η) = Pr[Exptrace

GS,A(η) = 1]

We say that GS is traceable if for any probabilistic polynomial-time adversary, its ad-
vantage is a negligible function of the security parameter.
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Expcorr
GS,A(η)
HU ← {1, . . . , n} ; DU ← ∅
(gpk , gmsk)← GSetup(1η)
For i ∈ HU

(usk[i], upk[i])← PKIJoin(i, 1η)
〈reg[i]; gsk[i]〉 ← 〈GJoinM (i,upk[i], gmsk);GJoinU (i,usk[i], gpk)〉

(i, m)← AGSign(·,·),GOpen(·,·)(gpk)
If i �∈ HU then return 0
σ ← GSign(gsk[i], m)
If GVerify(gpk , m, σ) = 0 then return 1
(j, π)← GOpen(gmsk , m, σ, reg)
If i �= j or GJudge(m,σ, gpk , i,upk[i], π) = 0 then return 1
Return 0

Expanon-b
GS,A (η)
DU ← A0(1

η)
HU ← {1, . . . , n} \ DU
(gpk , gmsk)← GSetup(1η)
For i ∈ HU

(usk[i], upk[i])← PKIJoin(i, 1η)
〈reg[i]; gsk[i]〉 ← 〈GJoinM (i,upk[i], gmsk);GJoinU (i,usk[i], gpk)〉

b′ ← ACh(b,·,·,·),SetUPK(·,·),GJoinDM (·),GSign(·,·),GOpen(·,·)
1 (gpk)

Return b′

Exptrace
GS,A(η)
DU ← {1, . . . , n} ; HU ← ∅
(gpk , gmsk)← GSetup(1η)

(m, σ)← ASetUPK(·,·),GJoinDM (·),GOpen(·,·)(gpk)
If GVerify(gpk , m, σ) = 1 and GOpen(gmsk , m, σ, reg) = ⊥ then return 1
Else return 0

Expnf
GS,A(η)

(DU , gpk)← A0(1
η)

HU ← {1, . . . , n} \ DU
For i ∈ HU

(usk[i], upk[i])← PKIJoin(i, 1η)

(i, m, σ, π)← ASetUPK(·,·),GJoinUD(·),GSign(·,·)
1 (1η)

If i �∈ HU or GVerify(gpk , m, σ) = 0 then return 0
If σ was oracle output of GSign(i, m) then return 0
If GJudge(m,σ, gpk , i,upk[i], π) = 0 then return 1
Return 0

Fig. 1. Experiments for defining the correctness and security of a group signature scheme. The
particular restrictions on the uses of the oracles are described in Section 3.2.

Non-Frameability. Informally, non-frameability requires that even a cheating Group
Manager cannot falsely accuse an honest user of having created a given signature. We
model this property through a game that closely resembles that for traceability. The
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difference is that the adversary has the Group Manager’s secret key (who is corrupt).
During his attack the adversary can require honest users to join the group via the oracle
GJoinUD, and can obtain signatures of honest users through oracle GSign. The goal of
the adversary is to produce a signature and a proof that this signature was created by an
honest user (who did not actually create the signature). For any adversary A we define
its advantage against non-frameability of group signature scheme GS by

Advnf
GS,A(η) = Pr[Expnf

GS,A(η) = 1]

We say that scheme GS is non-frameable if for any probabilistic polynomial-time ad-
versary, its advantage is a negligible function of η.

Remarks. The security definitions that we present depart from the more established
ones in several ways that we describe and justify now. First, we repeat that even though
our definitions appear to consider static corruptions only, they imply security in a dy-
namic setting.

Second, we borrow the selfless anonymity notion from [10] that departs from the one
of [4] in that it does not allow the adversary access to the signing keys of the two signers
involved in the query to the challenge oracle. Thus, we cannot grant the adversary access
to the secret information of any honest user. This is a natural, mild restriction which, as
discussed in the introduction, may lead to significantly more efficient schemes.

Third, our notion of traceability seems different than the notion of traceability of [4].
Indeed, according to our definition an attacker that creates a signature that opens as
some honest identity is not considered an attack! We look at this scenario as a framing
attack, however, and it is therefore covered under our non-frameability notion, a notion
that was not modeled in [4].

Fourth, a detailed comparison of our security notion with the notion of [7] reveals
that we do not provide a read and write oracle for the registration table reg. This follows
from the fact that we combine the Group Manager with the opening authority. Thereby,
the entities cannot be corrupted individually, thus, the adversary has either full access
(i.e., when the Group Manager is corrupted) or he does have no access.

Group Signatures with Verifier-Local Revocation. Let us discuss the relation of our
scheme and definition with the group signature scheme with verifier-local revocation
by Boneh and Shacham [10]. They define a group signature scheme with verifier-local
revocation (VLR) as a scheme that has the additional feature of a revocation list. Es-
sentially, VLR-verification of a group signature contains, in addition to the signature
verification as described before, a check for each item in the revocation list whether
or not it relates to the group signature at hand. If it does, then the signature is deemed
invalid.

The scheme and definitions of Boneh and Shacham (1) do not have an open (or
tracing) procedure and (2) assume that the group manager is fully trusted. The latter
makes sense because if there is no open procedure, it is not possible to falsely blame
a user for having produced a specific group signature. However, Boneh and Shacham
point out that any VLR scheme has an implicit opening algorithm: one can make a
revocation list consisting of only a single user and then run the VLR group signature
verification algorithm. Thus, the verification fails only in the case where the user who



392 P. Bichsel et al.

generated the signature is (the only) entity in the revocation list, which leads to her
identification. This shows that we can convert a VLR-scheme into a group signature
scheme with an Opener, however, we stress that the obtained scheme does not satisfy
non-frameability.

We now point out that the opposite direction also works: for a sub-class of group sig-
nature schemes according to our definition one can construct a group signature scheme
with verifier local revocation. The subclass is the schemes for which the GOpen algo-
rithm takes as input (gpk ,m, σ, reg) instead of (gmsk ,m, σ, reg) as per our definition
(i.e., it does not need to make use of the group manager’s secret key). We note that
the scheme we propose in this paper falls into this sub-class. Now, the idea for obtain-
ing a VLR group signature scheme is as follows. The new key generation consists of
the GSetup, PKIJoin, and (GJoinU ,GJoinM ) where the group manager runs the users’
parts as well and then just hands them their keys. The VLR group signing algorithm is
essentially GSign. To revoke user i, the group manager adds reg[i] to the revocation
list. Finally, the VLR-verification consist of GVerify and GOpen, i.e., it accepts a sig-
nature if GVerify accepts and if GOpen fails for all entries reg[i] in the revocation list.
The security notions for VLR group signatures, namely selfless anonymity and trace-
ability, follow from our notions of anonymity and traceability for group signatures. We
do not give the precise formulation, but we note that a security model for VLR dynamic
group signatures follows by combining our dynamic security model above, with the
static VLR model from [10]. We also note that VLR group signatures do not provide
forward-anonymity: a new revocation list can also be used on old signatures.

4 Our Group Signature Scheme

Overview of Our Scheme. Our group signature scheme is based on two special prop-
erties of CL signatures, namely on their re-randomizability and on the fact that the
signature “does not leak” the message that it authenticates. Intuitively, a user’s group
signing key is a CL signature on a random message ξ that only the user knows. To
create a group signature for a message m, the user re-randomizes the CL signature and
attaches a signature proof of knowledge of ξ on m.

If non-frameability were not a requirement, we could simply let the Group Manager
choose ξ, so that he can open group signatures by checking for which of the issued val-
ues of ξ the re-randomized CL signature is valid. To obtain non-frameability, however,
the Group Manager must not know ξ itself. Hence, in our scheme ξ is generated jointly
during an interactive GJoin protocol between the user and the Group Manager. Essen-
tially, this protocol is a two-party computation where the user and the Group Manager
jointly generate ξ, a valid CL signature on ξ, and a key derived from ξ that allows the
Group Manager to trace signatures, but not to create them.

System Specification. We now present the algorithms that define our efficient group
signature scheme. We assume common system parameters for a given security param-
eter η. Namely, we assume that an asymmetric pairing is fixed, i.e., three groups G1,
G2, GT of order q > 2η with an efficiently computable map ê : G1 × G2 → GT , to-
gether with generators g and g̃ of G1 and G2, respectively. Further, two hash functions
H : {0, 1}∗ → Zq , G : {0, 1}∗ → Zq are defined.
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GSetup(1η): The Group Manager chooses random α, β ← Zq , and computes x̃← g̃α

and ỹ ← g̃β . It then sets the group public key of the scheme to gpk ← (x̃, ỹ) and
the group secret key to gmsk ← (α, β).

PKIJoin(i, 1η): The CA certifies public keys of a digital signature scheme as defined
in Section 2. The user generates (upk[i],usk[i])← DSKeyGen(1η) and sends
upk[i] to the CA for certification.

GJoin = (GJoinM (i,upk[i], gmsk),GJoinU (i,usk[i], gpk)): When a user i wants to
join the group, she must have already run the PKIJoin algorithm. Then she runs the
following protocol with the Group Manager. We assume that this protocol is run
over secure channels and, for simplicity, that the parties only run one instance at a
time. We also assume that if a verification for a party fails, the party informs the
other party about the failure and the protocol is aborted.
1. The Group Manager chooses a random κ← Zq , computes t← G(κ), and

sends t to the user.
2. The user i chooses τ ← Zq , computes s← gτ , r̃ ← x̃τ , k ← ê(g, r̃), as well

as σ̄ ← DSSign(usk[i], k), sends (s, r̃, σ̄) to the Group Manager and executes
FPK {(τ) : s = gτ ∧ r̃ = x̃τ} with the Group Manager.

3. The Group Manager uses DSVerify(upk[i], ê(g, r̃), σ̄) to verify the signature.
If it verifies correctly he computes z ← s·gκ and w̃ ← r̃ ·x̃κ, stores (w̃, r̃, κ, σ̄)
in reg[i], chooses ρ← Zq , computes a← gρ, b← aβ , and c← aα ·zραβ , and
sends (a, b, c, κ) to the user. In addition, he executes

FPK{(α, β, ρ, γ) : c = aαzγ ∧ a = gρ ∧ x̃ = g̃α ∧ ỹ = g̃β ∧ 1 = bα/gγ}
with her, where γ = ραβ. Note that this proof allows the user to verify that
α, β �= 0.

4. The user computes ξ ← τ + κ mod q, and checks whether t = G(κ). She also
verifies ê(a, ỹ) = ê(b, g̃) and, if the verification is successful, stores the entry
gsk[i]← (ξ, (a, b, c)).

Remarks: The value of ω stored in reg[i] allows the Opener to identify a user
within the group signature scheme. In addition, the Opener can provably attribute
this ω to k = ê(g, r̃). Consequently, a group signature can be provably attributed
to k. By the unforgeability of the external signature scheme, the signature on k
allows to attribute a group signature to a user public key upk[i]. Furthermore,
the FPK protocol that the Group Manager and the user execute in Step 3 of the
protocol indeed proves that c was computed correctly w.r.t. a, b, x̃, and ỹ. To this
end, note that because of ê(a, ỹ) = ê(b, g̃), we know that b = aβ and thus b = gβρ.
Subsequently, from 1 = bα/gγ we can conclude that γ = ραβ and hence that c
was computed correctly by the Group Manager.

GSign(gsk[i],m): Let a user i with signing key gsk[i] = (ξ, (a, b, c)) sign the mes-
sage m. She first re-randomizes the signature by choosing ζ ← Zq and computing
d← aζ , e← bζ , and f ← cζ , and then computes the SPK

Σ ← SPK{(ξ) :
ê(f, g̃)
ê(d, x̃)

= ê(e, x̃)ξ}(m)

proving that she knows the “message” for which (d, e, f) is a valid CL-signature.
Finally, she outputs σ ← (d, e, f,Σ) ∈ G

3
1 × Z

2
q as the group signature on m.
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GVerify(gpk ,m, σ): To verify a signature σ = (d, e, f,Σ) on the message m, the veri-
fier first checks that ê(d, ỹ) = ê(e, g̃), where g̃, ỹ are retrieved from gpk . Secondly,
the verifier checks that the proof Σ is valid. If either of the checks fail, output 0;
otherwise output 1.

GOpen(gmsk ,m, σ, reg): Given signature σ = (d, e, f,Σ) onm, the Group Manager
verifies the signature using GVerify. Then, for all entries reg[i] = (w̃i, r̃i, κi, σ̄i)
he checks whether ê(f, g̃) = ê(d, x̃) · ê(e, w̃i) holds. For the w̃i where the equation
holds, the Group Manager retrieves κi and σ̄i, computes ki ← ê(g, r̃i) and the SPK

Π ← SPK{(w̃i, κi) :
ê(f, g̃)
ê(d, x̃)

= ê(e, w̃i) ∧ ki =
ê(g, w̃i)
ê(g, x̃)κi

} ,

and outputs (i, π = (ki, σ̄i, Π)).
Note that φ(w̃) := (ê(e, w̃), ê(g, w̃)) is a group homomorphism from G2 to GT ×
GT and therefore π can be obtained from applying the Fiat–Shamir transform to the
underlyingΣ-protocol as discussed earlier. Also note that the opening operation is
linear in the number of users in the system, but we consider this reasonable as in
most practical applications opening is a rather exceptional operation performed by
a resourceful Group Manager.

GJudge(gpk ,m, σ, i,upk[i], π): The signature of the external signature scheme is ver-
ified using the signature verification algorithm DSVerify(upk[i], k, σ̄). If the signa-
ture verifies, use input gpk , m, σ = (d, e, f,Σ), and π, to output 1 if algorithm
GVerify(gpk ,m, σ) = 1 and Π is valid. Otherwise output 0.

Remarks. Following the explanations in Section 3.2, we can build a VLR scheme as
follows. Transformation of the key generation and the signing algorithm are straight-
forward. To revoke a user i, the Group Manager publishes the corresponding entry w̃i

from reg[i] to the revocation list rlist. Finally, we modify the GVerify algorithm so
that it checks not only that ê(d, ỹ) = ê(e, g̃) and the proofΣ is valid, but also whether

ê(f, g̃) = ê(d, x̃) · ê(e, w̃i)

for any entry w̃i in rlist. If this is the case, it rejects the signature. Thus, the verifier
performs what has been a part of the tasks of the Opener in our basic group signature
scheme.

5 Security Results

Verifying our scheme’s correctness is not hard from its description (and the comments
we made there). We now present our results that the scheme satisfies our anonymity,
traceability, and non-frameability requirements. Proofs of the following theorems can
be found in the full version of the paper.

Theorem 2. In the random oracle model the group signature scheme is anonymous
under the XDDH and the SDLP assumptions.
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Theorem 3. In the random oracle model the group signature scheme is traceable under
the LRSW assumption.

Theorem 4. In the random oracle model the group signature scheme is non-frameable
under the SDLP assumption and the unforgeability of the underlying digital signature
scheme.

Security of our scheme as a VLR group signature scheme, in the random oracle model,
follows from the above theorems.

6 Comparison with Previous Schemes

We compare efficiency of several schemes with respect to (1) signature size, (2) com-
putational costs of signature generation, and (3) computational costs of signature ver-
ification. We denote the computational cost with the following type of expression
1 · P 2 + 2 · P + 3 · G2

T + 1 · G1, which stands for one product of two pairing values,
two pairings, three multi-exponentiations in GT with two terms, and one exponentiation
in G1.

We now compare our scheme with the current best schemes w.r.t. signature length.
We only consider pairing-based schemes as RSA-based schemes need much larger
groups to attain the same security level. Consequently, we can focus on just a small
number of schemes.

– The CL scheme from [16] shares many similarities with our own. The basic security
is based on the LRSW and the DDH assumption in GT . The basic construction
is in the case of Type-1 pairings, and combines the CL-signature scheme with a
Cramer-Shoup encryption, where the latter creates the main divergence from our
scheme. Translating the construction to the Type-2 or Type-3 setting we obtain a
more efficient construction based on the LRSW and the XDDH assumption.

– The DP scheme of Delerablée and Pointcheval [25] is based on the XDDH assump-
tion and q-SDH. It is shown to provide full-anonymity under the XDDH assumption
w.r.t. the so-called CCA attack, which is achieved by combining two ElGamal en-
cryptions. The scheme is also shown to provide full-traceability under the q-SDH
assumption.

– The BBS group signature scheme [9] is similar to the DP scheme [25]. However, it
provides full-anonymity under the DLIN assumption only w.r.t. the so-called CPA
attack (i.e., the adversary is not allowed to make any Open oracle queries). As we
strive to provide a comparison between systems that have similar security guaran-
tees, we consider a variant of the BBS scheme that we call BBS* and describe in
Section 7.

We summarize the efficiency discussion in Table 1. Note that all schemes provide ano-
nymity w.r.t. the CCA attack, are based on the random oracle model, and provide strong
exculpability. As pointed out in the discussion before, they use slightly different under-
lying assumptions, namely q-SDH or LRSW. A further difference is that our scheme,
as opposed to the schemes we compare against, combines Group Manager and Opener
into one entity.
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Table 1. Comparison of signature lengths, signature generation costs and signature verification
costs. Note that we change the computation of the hash in the SPK to reduce the number of
computations. For our scheme the changes simplify the security proof.

Scheme Size of Sig. Sign Cost Verification Cost

G1 Zq G
5
T G

3
T G

2
T GT G

2
1 G1 P 2 P G

3
T G

2
2 G

4
1 G

3
1 G

2
1 G1

Ours 3 2 1 3 2 1 1
CL 7 4 1 1 11 2 1 2 2 1
DP 4 5 1 1 6 1 1 1 1 2

BBS* 4 5 1 3 5 1 1 1 4

Table 1 shows that our scheme compares favourably with the other schemes, es-
pecially in the signature length and the signature generation operation. In particular, it
reduces the signature size by almost a factor of two. Comparing verification costs shows
all schemes on an approximately equal level. Note that short signatures and small sig-
nature computation costs are particularly interesting as there are many scenarios where
the group signature has to be generated and communicated by a resource constrained
device.

7 Sketch of BBS*

This variant of the BBS group signature scheme is based on remarks by Boneh et
al. [9] (general scheme and non-frameability) and [32] (CCA anonymity). In partic-
ular, the variant we consider attains exculpability by an interactive protocol between
Group Manager and user for the joint computation of a triple (Ai, xi, yi) such that
Axi+γ

i hyi = u. Here yi is secret to the user, γ is the Group Manager’s secret, and
u, h ∈ G1 are public parameters. Given all schemes we compare are secure un-
der XDDH, we employ standard Cramer-Shoup encryption [23] instead of the linear
Cramer-Shoup encryption proposed by Shacham [32].

In more detail, the setup and key generation algorithms produce u, v ← G1 and
c← uχ1vχ2 , d← uμ1vμ2 , as well as e← vι. As a result of the join protocol, each
user gets a tuple (Ai, xi, yi) fulfilling Axi+γ

i hyi = u and the Group Manager uses his
secret γ to compute w ← vγ . The group public key consists of (u, v, c, d, e, h, w) and
the secret key of the Opener contains (χ1, χ2, μ1, μ2).

To sign a message, user i chooses r ← Zq , δ ← r · xi, and computes T1 ← ur,
T2 ← vr, T3 ← erAi, T4 ← crdrH(T1,T2,T3). Moreover, she computes the proof

Σ ← SPK{(r, xi, δ, yi) : T1 = ur ∧ T2 = vr ∧ T4 = crdrH(T1,T2,T3)∧

1 = T xi
1 u−δ ∧ ê(u, v)

ê(T3, w)
=
ê(T3, v)xi ê(h, v)yi

ê(e, w)r ê(e, v)δ
} ,

and outputs the signature σ ← (T1, T2, T3, T4, Σ).
The verification of a signature consists of checking the validity of the proofΣ. Open-

ing a signature can be performed by the Opener using his secret key to decrypt the
Cramer-Shoup encryption of the value Ai.



Get Shorty via Group Signatures without Encryption 397

Acknowledgements

The work described in this paper has been supported in part by the European Com-
mission through the ICT programme under contract ICT-2007-216676 ECRYPT II and
ICT-2007-216483 PRIMELIFE. The fourth author was supported by a Royal Society
Wolfson Merit Award and a grant from Google. All authors would like to thank the
referee’s of a prior version of this paper.

References

1. Abdalla, M., Warinschi, B.: On the minimal assumptions of group signature schemes. In:
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22. Cramer, R., Damgård, I., MacKenzie, P.D.: Efficient zero-knowledge proofs of knowl-
edge without intractability assumptions. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS,
vol. 1751, pp. 354–372. Springer, Heidelberg (2000)

23. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes se-
cure against adaptive chosen ciphertext attack. SIAM Journal on Computing 33(1), 167–226
(2003)
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Abstract. Group signatures is a powerful primitive with many practi-
cal applications, allowing a group of parties to share a signature func-
tionality, while protecting the anonymity of the signer. However, despite
intensive research in the past years, there is still no fully satisfactory
implementation of group signatures in the plain model. The schemes
proposed so far are either too inefficient to be used in practice, or their
security is based on rather strong, non-standard assumptions.

We observe that for some applications the full power of group signa-
tures is not necessary. For example, a group signature can be verified by
any third party, while in many applications such a universal verifiability
is not needed or even not desired. Motivated by this observation, we pro-
pose a notion of group message authentication, which can be viewed as a
relaxation of group signatures. Group message authentication enjoys the
group-oriented features of group signatures, while dropping some of the
features which are not needed in many real-life scenarios. An example
application of group message authentication is an implementation of an
anonymous credit card.

We present a generic implementation of group message authentication,
and also propose an efficient concrete implementation based on standard
assumptions, namely strong RSA and DDH.

1 Introduction

A typical sequence of events in an offline credit card purchase is as follows: A card
holder authenticates himself using his card and leaves a receipt of purchase to
the merchant. The merchant then gives the receipt to the bank and the bank
transfers money from the card holder’s account to the merchant’s account.

A natural way to improve the security of this scheme is to use smartcards and
let a smartcard digitally authenticate each purchase transaction on behalf of the
card holder. Message authentication can be achieved using a digital signature
scheme. A drawback of this approach, and also of the original scheme, is that it
reveals the identity of the card holder to the merchant.

Chaum and van Heyst [9] introduced group signatures to resolve this, and
other similar privacy problems. When using a group signature scheme the sig-
natures computed by different signers are indistinguishable, i.e., they provide
� Work done in part at ETH Zurich. The full version of this paper is available on

Cryptology ePrint Archive [29].

J.A. Garay and R. De Prisco (Eds.): SCN 2010, LNCS 6280, pp. 399–417, 2010.
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unlinkability and anonymity within the group of signers. On the other hand a
special party, called the group manager, has the ability to open any valid signa-
ture and identify the signer. In the application described above, the bank would
play the role of the group manager and each credit card would use a unique
signing key. This solution still reveals the correspondence between purchases
and card holders to the bank, but in practice this is not a serious problem. Not
only would customers leave a bank if it did not treat customer information care-
fully, but in most countries banks are required to do so by law and they are
typically under supervision of some authority.

In principle, group signatures can be constructed under general assumptions [3],
but these constructions are prohibitively inefficient for practical purposes. There
are efficient schemes, e.g., Ateniese et al. [1] or Boyen and Waters [5], but the se-
curity of these schemes rests on non-standard pairing-based assumptions, which
are still controversial in the cryptographic community. There are also efficient and
provably secure realizations of group signatures in the random oracle model, e.g.,
the scheme given by Camenisch and Groth [6], but the random oracle model is
not sound [7]. Thus, a proof of security in this model does not necessarily imply
that the scheme is secure when the random oracle is instantiated by an efficiently
computable function.

To summarize, despite intensive research there is still no efficient group sig-
nature scheme provably secure in the plain model under standard assumptions.
This motivates the study of relaxed notions for special applications of group
signatures that allows for a simpler solution.

A closer look at our motivating anonymous credit cards problem reveals that
group signatures provide several features that are not essential in this setting:

– Signatures are publicly verifiable, while in our setting only the merchant and
the bank must be able to verify the authenticity of a transaction, as no other
party even receives a signature.

– Group signatures are non-interactive. This is crucial for the bank, since it
may receive a large number of transactions from the numerous senders. How-
ever, in many applications it is not essential that the merchant is able to
verify the authenticity of a transaction without interacting with the sender.

– Although there are exceptions, it is typically required from a group signature
scheme that the group manager is unable to frame signers, i.e., he cannot
compute signatures on their behalf. This property is not essential in a credit
card system, since the bank is trusted to manage all the transactions properly
anyway, and would quickly lose all customers if it framed a few of them.

Contributions. Our main contribution is threefold:

– Motivated by our observation that in some classical applications of group
signatures a fully blown group signature scheme is not really needed, we
formalize a relaxed notion that we call group message authentication.

– We give a generic construction of a group message authentication scheme
that satisfies our relaxed security definitions.
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– We instantiate the generic construction efficiently and in a provably secure
way in the plain model under the decision Diffie-Hellman assumption and
the strong RSA assumption.

Thus, for an important special case of the original motivating application of
group signatures we give the first fully satisfactory solution. We also give the
first reduction of the security of the Cramer-Shoup cryptosystem with labels over
a cyclic group of composite order to its security over each subgroup. A direct
proof can be achieved by adapting the original proof due to Cramer and Shoup
(cf. [26]), but we think our analysis is of independent interest.

In group signatures in the random oracle model (cf. [6]), the signer encrypts
a token and gives a non-interactive Fiat-Shamir [15] proof, with the message
as a prefix to the hashfunction, that the ciphertext was formed in this way.
It is tempting to conclude that if we skip the Fiat-Shamir transform, we get
a secure group message authentication scheme, but this does not work, since
the random oracle is used for three purposes: (a) to embed the message and
provide unforgeability, (b) to prove that a ciphertext contains a token, and (c)
to prove knowledge of an encrypted valid token and thereby provide the CCA2-
like security needed in group signature schemes. One can use a CCA2-secure
cryptosystem to avoid (c), but without the Fiat-Shamir proof there is nowhere to
embed the message. We could (along the lines of [3]) encrypt a standard signature
of the message along with the signer’s public key and a certificate thereof, but
no efficient proof that a plaintext has this form is known. We instead use a
CCA2-secure cryptosystem with labels and embed the message in the label.

Even taken as a group signature scheme (using Fiat-Shamir to eliminate in-
teraction), our construction is novel and, interestingly, its security holds in the
plain model where the group manager plays the role of the verifier, i.e., he can
detect signatures forged due to the failure of Fiat-Shamir heuristic.

Related Work. In addition to the intensive work on group signatures men-
tioned above, there has been substantial interest in other aspects of group-
oriented cryptography.1 In particular, many researchers have explored numerous
variations of group signatures with additional properties such as: traceable sig-
natures [21], multi-group and subgroup signatures [2,24], or hierarchical group
signatures [33]. In contrast to these various extensions of group signatures, group
message authentication is actually a relaxation of group signatures.

Another related primitive is identity escrow [23], which applies key-escrow
ideas to the problem of user identification. In contrast to group signatures or
group message authentication, identity escrow does not allow any form of signing
a message. More precisely, identity escrow employs an identity token that allows
the holder to anonymously authenticate itself as a member of a group, but it
does not allow the holder to sign any messages. Furthermore, identity escrow
introduces an additional party, escrow agent, and requires separability: the agent
remains dormant during normal operation of the identification system, and is
1 In independent work, Laur and Pasini [25] use the term “group message authentica-

tion” in a different context.
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“woken up” only when there is a request to revoke anonymity. This feature
and the requirement of resistance to impersonation imply that not every group
signature scheme can be used as an identity escrow scheme.

Other notions related to group message authentication include designated
verifier signatures [20] and designated confirmer signatures [8]. Recently, Kiayias
et al. [22] and Qin et al. [30] proposed a group-oriented notion of cryptosystems.

Notation. We denote the set {j, j + 1, j + 2, . . . , k} of integers by [j, k]. We
write: ZN for the integers modulo N , Z

∗
N for its multiplicative group, and SQN

for the subgroup of squares in Z
∗
N . We say that a prime q is safe if (q − 1)/2 is

prime. We use n as our main security parameter and say that a function ε(n) is
negligible if for every constant c, ε(n) < n−c for every sufficiently large n. We
say that the probability of an event is overwhelming if it is at least 1 − ε(n),
where ε(n) is negligible. Given a public key cpk of a cryptosystem we denote
the plaintext space by Mcpk , the ciphertext space by Ccpk , and the randomizer
space by Rcpk . We use PT to denote the set of deterministic polynomial time
algorithms, PPT the set of probabilistic polynomial time algorithms, and IPPT
the set of interactive, probabilistic polynomial time algorithms (sometimes with
oracles). Given P, V ∈ IPPT, we denote by 〈P (w), V (z)〉(x) the output of V
when executed on input (z, x) and interacting with P on input (w, x). We write
V [[(Pi(wi))i∈[1,k]]] when V interacts over separate communication tapes with k
copies of Pi(wi) running on inputs w1, . . . , wk respectively, i.e., it has “oracle
access” to these machines.

2 Group Message Authentication Schemes

To avoid confusion with group signatures and related notions we refer to the par-
ties in a group message authentication (GMA) scheme as the receiver, proxies,
and senders, and we say that a sender computes an authentication tag. Compared
to a group signature scheme the role of the receiver is similar to the group man-
ager. It can verify and open an authentication tag, but in a GMA scheme it may
need its secret key also to verify a tag. Thus, we combine these two operations
into a single checking algorithm that outputs an identity if the authentication
tag is valid, and outputs ⊥ otherwise. The role of a sender is similar to a signer,
except that when it hands an authentication tag to a proxy, it also executes an
interactive authentication protocol that convinces the proxy that the receiver will
accept it. The role of a proxy corresponds to the holder of a signature, except
that it can not hand the signature to anybody but the receiver.

Definition 1 (Group Message Authentication Scheme). A group message
authentication scheme consists of four algorithms (RKg, AKg, Aut, Check) and a
protocol πa, associated with a polynomial �(·):
1. A receiver key generation algorithm RKg ∈ PPT, that on input 1n outputs a

public key pk and a secret key sk.
2. An authentication key generation algorithm AKg ∈ PPT, that on input 1n, a

receiver key sk, and an integer i ∈ [1, �(n)] outputs an authentication key ak i.
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3. An authentication algorithm Aut ∈ PPT, that on input a public receiver
key pk , an authentication key ak i, and a message m ∈ {0, 1}∗ outputs an
authentication tag σ.

4. A checking algorithm Check ∈ PT, that on input the secret receiver key sk,
a message m ∈ {0, 1}∗, and a candidate authentication tag σ, outputs an
integer i ∈ [1, �(n)] or ⊥.

5. An interactive 2-party authentication protocol πa = (Pa, Va) ∈ IPPT2, such
that the output of the verifier Va is a bit.

For every n ∈ N, every (pk , sk) ∈ RKg(1n), every integer i ∈ [1, �(n)], every
authentication key ak i ∈ AKgsk (1n, i), every message m ∈ {0, 1}∗, and every
r ∈ {0, 1}∗ the following holds: if σ = Autaki,r(pk , m), then Checksk (m, σ) = i
and the probability Pr[〈Pa(ak i, r), Va〉(pk , m, σ) = 1] is overwhelming.

2.1 Definition of Security

Conceptually, the security requirements of a GMA scheme must guarantee: that
authentication tags are indistinguishable, that it is infeasible to forge an authen-
tication tag, that the receiver can always trace the sender, and that the proxy is
never convinced that an invalid authentication tag is valid. We formalize these
properties with two experiments similarly as is done in [3] for group signatures.

Experiment 1 (Anonymity, Expanon−b
GMA,A(n)).

(pk , sk)← RKg(1n) // receiver key

ak i ← AKgsk (1n, i) for i ∈ [1, �(n)] // auth. keys

(m, i0, i1, state)← AChecksk (·,·)(pk , ak1, . . . , ak �(n)) // choose ids

σ ← Autakib
,r(pk , m), with random r ∈ {0, 1}∗ // challenge

d← 〈Pa(ak ib
, r), AChecksk (·,·)(state)〉(pk , σ, m) // guess

If the Checksk (·, ·)-oracle was never queried with (m, σ), then output d,
otherwise output 0.

Anonymity. We define one experiment for each value of b ∈ {0, 1} and then
require that the distributions of the two experiments are close. The adversary is
given the receiver’s public key and all authentication keys. Then it chooses two
identities of senders and a message, and hands these to the experiment. The bth
experiment chooses the bth of the identities and computes an authentication tag
of the given message using the authentication key of this identity. Then it hands
the authentication tag to the adversary and executes the authentication protocol
on behalf of the chosen identity. Finally, the adversary must guess which of the
two authentication keys was used to authenticate the message and execute the
authentication protocol. During the experiment the adversary also has access to
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a checking oracle to which it may send any query, except the challenge message-
and-authentication tag pair.2

Definition 2 (Anonymity). A group message authentication scheme GMA is
anonymous if ∀A ∈ IPPT the following expression is negligible

|Pr[Expanon−0
GMA,A(n) = 1]− Pr[Expanon−1

GMA,A(n) = 1]| .

Experiment 2 (Traceability, Exptrace
GMA,A(n)).

(pk , sk)← RKg(1n) // receiver key

ak i ← AKgsk (1n, i) for i ∈ [1, �(n)] // auth. keys

Define ak (i) =
{

ak i if i ∈ [1, �(n)]
⊥ otherwise // auth. key oracle

(m, σ, state)← Aak(·),Checksk (·,·)[[(P+
a (pk , ak i))i∈[1,�(n)]]](pk ) // forge auth. tag...

d← 〈Aak(·),Checksk (·,·)(state), Va〉(pk , m, σ) // ..or authenticate

// an invalid tag

Let C be the set of queries asked by A to the ak(·)-oracle. If Checksk (m, σ) ∈
[1, �(n)] \ C and P+

a has never output σ, or if Checksk (m, σ) = ⊥ and d = 1,
then output 1, otherwise output 0.

Traceability. The adversary is given the receiver’s public key, and during the
experiment it has access to a checking oracle, it may interact with honest senders,
and it may corrupt any sender to acquire its authentication key. To succeed, the
adversary must either forge an authentication tag that checks to the identity of
an uncorrupted sender, or it must output an authentication tag that checks to
⊥ and convince the honest verifier of the authentication protocol that the tag
checks to an identity.3

Denote by P+
a ∈ IPPT the machine that accepts (pk , ak i) as input and re-

peatedly waits for messages on its communication tape. Given an input (Aut, m)
on its communication tape P+

a computes and outputs σ = Autaki,r(pk , m), and
then executes Pa on common input (pk , m, σ) and private input (ak i, r). In the
traceability experiment the adversary has “oracle access” to several copies of
P+

a . We stress that although the “oracle access” to each copy P+
a running on

some input (pk , ak i) is sequential by the definition of P+
a , the adversary may

2 No oracle for authentication or running the authentication protocol is needed, since
the adversary can simulate these using the authentication keys ak1, . . . , ak �(n). A
standard hybrid argument then shows that it suffices to consider a single invokation
of the authentication protocol as in the definition.

3 Traceability could alternatively be formalized by two separate experiments, where
each experiment captures one type of attack, but we think this is less natural.
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interact concurrently with different copies.4 This is essential for the definition to
be realistic, as we can not assume that different senders are aware of each other.

Definition 3 (Traceability). A group message authentication scheme GMA is
traceable if for ∀A ∈ IPPT the probability Pr[Exptrace

GMA,A(n) = 1] is negligible.

Definition 4 (Security). A group message authentication scheme GMA is se-
cure if it is anonymous and traceable.

We stress, that while the new notion is related to variants of group signatures,
it is essentially different from previous work. In particular, in contrast to vari-
ous enhancements of group signatures, like traceable signatures [21] or identity
escrow [23] (cf. Sect. 1), group message authentication it is a relaxation of group
signatures, aiming at typical applications, and improved efficiency and security.

3 Tools

To construct the algorithms of the group message authentication scheme we use
two basic primitives: a bounded signature scheme secure against chosen message
attacks and a CCA2-secure cryptosystem with labels. The authentication pro-
tocol is loosely speaking a “zero-knowledge proof”, but we use relaxed notions
that allows efficient instantiation.

Bounded Signature Schemes. Each sender in a GMA scheme is given a
unique authentication key that it later uses to authenticate messages. In our
construction an authentication key is a signature of the identity of the holder,
but a fully blown signature scheme is not needed. Note that standard signature
schemes can be used to sign any message from an exponentially large space of
strings, but in our setting we only need to sign a polynomial number of different
integers. We call a signature scheme with this restriction bounded.

Definition 5 (Bounded Signature Scheme). A bounded signature scheme
consists of three algorithms (SKg, Sig, Vf) associated with a polynomial �(n):

1. A key generation algorithm SKg ∈ PPT, that on input 1n outputs a public
key spk and a secret key ssk.

2. A signature algorithm Sig ∈ PPT, that on input a secret key ssk and a
message m ∈ [1, �(n)] outputs a signature s.

3. A verification algorithm Vf ∈ PT, that on input a public key spk, a message
m ∈ [1, �(n)], and a candidate signature s, outputs a bit.

For every n ∈ N, every (spk , ssk) ∈ SKg(1n), every message m ∈ [1, �(n)], and
every s ∈ Sigssk (m), it must hold that Vfspk (m, s) = 1.

The standard definition of security against chosen message attacks (CMA) [19]
is then directly applicable. The existence of an ordinary signature scheme clearly
implies the existence of a bounded one.
4 This is a benign form of concurrency, since each copy of P+

a executes using its own
independently generated private input (only the public inputs are dependent). Thus,
our setting is the sequential setting in disguise.
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Cryptosystems With Labels. Cryptosystems with labels were introduced by
Shoup and Gennaro [31]. The idea of this notion is to associate a label with
a ciphertext without providing any secrecy for the label. One simple way of
constructing such cryptosystems is to append to the plaintext before encryption
a collision-free hash digest of the label, but there are simpler constructions in
practice. As a result, the input to the cryptosystem is not only a message, but
also a label, and similarly for the decryption algorithm. Below we recall the
definition, with a small modification — in the standard definition the decryption
algorithm outputs only the message, without the label. Clearly, this is a minor
modification, but we need it to allow certain joint encodings of the label and
message in the analysis.

Definition 6 (Public Key Cryptosystem With Labels [31]). A public key
cryptosystem with labels consists of three algorithms (CKg, Enc, Dec):

1. A key generation algorithm CKg ∈ PPT, that on input 1n outputs a public
key cpk and a secret key csk.

2. An encryption algorithm Enc ∈ PPT, that on input a public key cpk , a label
l, and a message m ∈ Mcpk outputs a ciphertext c.

3. A decryption algorithm Dec ∈ PT, that on input a secret key csk, a label l,
and a ciphertext c outputs the label and a message, (l, m) ∈ {0, 1}∗×Mcpk ,
or ⊥.

For every n ∈ N, every (csk , cpk ) = CKg(1n), every label l ∈ {0, 1}∗, and every
m ∈Mcpk it must hold that Deccsk(l, Enccpk (l, m)) = (l, m).

Security against chosen ciphertext attacks is then defined as for standard cryp-
tosystems except for some minor changes. In addition to the challenge messages,
the adversary outputs a label to be used in the construction of the challenge
ciphertext c. The adversary may also ask any query except the pair (l, c).

Experiment 3 (CCA2-Security With Labels [31], Expcca2−b
CSL,A (n)).

(cpk , csk)← CKg(1n)
(l, m0, m1, state)← ADeccsk (·,·)(choose, cpk)

c← Enccpk (l, mb)

d← ADeccsk (·,·)(guess, state, c)

If Deccsk (·, ·) was queried on (l, c), then output 0, otherwise output d.

Definition 7 (CCA2-Security). Let CSL denote a public key cryptosystem
with labels. We say that the cryptosystem CSL is CCA2-secure if for every ad-
versary A ∈ PPT the quantity

∣∣Pr[Expcca2−0
CSL,A (n) = 1]− Pr[Expcca2−1

CSL,A (n) = 1]
∣∣ is

negligible.
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A Relaxed Notion of Computational Soundness. Another tool used in
our constructions, allowing for more efficient protocols, is a relaxed notion of
soundness. In contrast to the standard (computational) soundness [18,28], we do
not require that the protocol is sound for all inputs, but only when a part of the
input is chosen according to a specific distribution, and the rest of the input is
chosen by the adversary. Such a relaxation allows to capture scenarios where it
is safe to assume that some parameters are chosen according to some prescribed
distribution. For example, a bank will usually pick faithfully the keys guarding
its transactions. A similar notion (without the oracle) has been used implicitly in
several papers and is sometimes called a “computationally convincing proof”, see
e.g., [13]. In fact, non-interactive computationally sound proofs may be viewed
as an instance of this notion.

Definition 8 ((T, O)-Soundness). Let T ∈ PPT and let O ∈ PT be an oracle.
Define a random variable (t1, t2, t3) = T (1n). A 2-party protocol (P, V ) ∈ IPPT×
IPPT is (T, O)-sound for language L if for every instance chooser I ∈ PT and
prover P ∗ ∈ PT the following holds: If (y, z) = IO(t3,·)(t1, t2) and x = (t1, y),
then Pr[x �∈ L ∧ 〈PO(t3,·)∗(z), V 〉(x) = 1] is negligible.

In the above definition we use generic names T, I, O and t1, t2, t3, y, z to de-
note abstractly the involved algorithms and the information exchanged between
them. The actual meaning and function of these parameters depends on a con-
crete scenario. For example, in the context of group message authentication
algorithm T generates keys for both a signature scheme and a public-key en-
cryption scheme, algorithm O computes signatures, and the parameters t1, t2, t3
correspond to public and secret keys generated faithfully by the receiver (bank)
using algorithm T : t1 denotes (signature and encryption) public keys, t2 denotes
encryption secret key, and t3 denotes signature secret key (cf. Construction 1).
Obviously, if a protocol is sound in the standard sense, it is (T, O)-sound for
any T, O. In a slight abuse of notation, we write (X, O)-sound also when X is a
polynomially samplable random variable.

A Relaxed Notion of Computational Zero-Knowledge. Recall that a
protocol is zero-knowledge if it can be simulated for every instance. Goldreich
[17] introduced the notion of uniform zero-knowledge to capture the fact that
for uniform adversaries it is sufficient to require that no instance for which the
protocol leaks knowledge can be found. Wikström [36] generalized this idea to
capture settings where the choice of instance is somehow restricted by an in-
stance compiler F and randomized by some sampling algorithm T out of control
of the adversary. We generalize Wikström’s definition. As in the case of relaxed
computational soundness, we use generic names T, I, O, F and t1, t2, y, z to de-
note the involved algorithms and the information exchanged between them. In
the concrete context of group message authentication these names gain concrete
meaning, e.g., T is a key generation algorithm of a public-key cryptosystem, O
is a decryption oracle, and t1, t2 denote the public and secret keys, respectively,
generated faithfully by the receiver using algorithm T (cf. Construction 1).
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A sampling algorithm T outputs a sample t = (t1, t2). The first part, t1, is
given to an instance chooser I which outputs a tuple (y, z), where y influences
the choice of instance x, and z is an auxiliary input. An instance compiler F
takes (t1, y) as input and forms an instance (x, w) according to some predefined
rule. A protocol is said to be (T, F, O)-zero-knowledge, for some oracle O, if for
every malicious verifier V ∗ and every constant c > 0 there is a simulator M such
that for every instance chooser I as above no distinguisher D can distinguish
a real view of V ∗ from the view simulated by M with advantage better than
n−c, when all of these machines have access to the oracle O(t2, ·). Thus, the
algorithms T , F , and O represent a class of environments in which the protocol
remains zero-knowledge in the ε-zero-knowledge sense of Dwork, Naor, and Sahai
[14]. We use the following experiment to define our notion formally.

Experiment 4 (Zero-Knowledge, Exp
(T,F,O)−zk−b
π,R,I,V ∗,M,D(n)).

(t1, t2)← T (1n)
(y, z)← IO(t2,·)(1n, t1)
(x, w)← F (t1, y)

d←
{

DO(t2,·)(x, z, 〈P (w), V ∗O(t2,·)(z)〉(x)) if b=0
DO(t2,·)(x, z, MO(t2,·)(z, x)) if b=1

If R(x, w) = 0 or if the output of V ∗
a or M respectively does not contain the

list of oracle queries as a postfix, then output 0, otherwise output d.

The requirement that the list of queries made is output is quite natural. It
captures that the simulator should not be able to ask more queries, or more
powerful queries than the real verifier.

Definition 9 ((T, F, O)-Zero-Knowledge). Let π = (P, V ) be an interactive
protocol, let T ∈ PPT be a sampling algorithm, let F ∈ PT be an instance
compiler, let O ∈ PT be an oracle, and let R be a relation. We say that π is
(T, F, O)-zero-knowledge for R if for every verifier V ∗ ∈ PPT and every constant
c > 0 there exists a simulator M ∈ PPT such that for every instance chooser
I ∈ PPT and every distinguisher D ∈ PPT:∣∣∣Pr[Exp

(T,F,O)−zk−0
π,R,I,V ∗,M,D(n) = 1]− Pr[Exp

(T,F,O)−zk−1
π,R,I,V ∗,M,D(n) = 1]

∣∣∣ < n−c .

In our security proof we exploit that a protocol that satisfies the definition can
be simulated polynomially many times sequentially, where the instance chooser
chooses a new common and private input for each execution (see [29] for details).

4 A Generic Construction

The idea of our GMA scheme is simple. The group manager generates a key pair
(spk , ssk) of a bounded signature scheme BSS = (SKg, Sig, Vf), and a key pair
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(cpk , csk) of a CCA2-secure cryptosystem with labels CSL = (CKg, Enc, Dec).
The ith user is given the authentication key ak i = Sigssk (i). To compute an
authentication tag σ of a message m, the user simply encrypts its secret key
using the message m as a label, i.e., he computes σ = Enccpk (m, ak i).

We assume that SKg is implemented in two steps SKg1 and SKg2: on input 1n

the algorithm SKg1 outputs a string spk1, that is given as input to SKg2, which in
turn outputs a key pair (spk , ssk), where spk = (spk1, spk2). We also assume that
CKg can be divided into CKg1, and CKg2 in a similar way and that CKg1(1n) is
identically distributed to SKg1(1

n). Note that any pair of a signature scheme and
a cryptosystem can be viewed in this way by letting SKg1(1n) = CKg1(1n) = 1n.
This allows the signature scheme and the cryptosystem to generate dependent
keys which share algebraic structure.

Construction 1 (Group Message Authentication Scheme GMA). Given a
polynomial �(n), a bounded signature scheme BSS=((SKg1, SKg2), Sig, Vf) asso-
ciated with �(n), and a cryptosystem with labels CSL=((CKg1, CKg2),Enc,Dec),
the group message authentication scheme GMA = (RKg, AKg, Aut, Check, πa) is
constructed as follows:

Receiver Key Generation. On input 1n the algorithm RKg computes spk1 =
SKg1(1n), (spk , ssk) = SKg2(spk1), and (cpk , csk) = CKg2(spk1), where spk1

is a prefix of both spk and cpk , and outputs (pk , sk) = ((cpk , spk), (csk , ssk)).
Authentication Key Generation. On input (1n, sk , i) the algorithm AKg outputs

an authentication key ak i = Sigssk (i).
Authentication Algorithm. On input (pk , ak i, m) the algorithm Aut outputs the

authentication tag σ = Enccpk(m, ak i).
Checking Algorithm. On input (sk , m, σ) the algorithm Check returns the

smallest5 i ∈ [1, �(n)] such that Vfspk (i, Deccsk (m, σ)) = 1 or ⊥ if no such i
exists.

Authentication Protocol. Let Ra denote the relation consisting of pairs
((pk , m, σ), (ak i, r)), s.t. Vfspk (i, ak i) = 1 and σ = Enccpk(m, ak i, r), and let
La denote the language corresponding to Ra, i.e.,
La = {x : ∃y s.t. (x, y) ∈ Ra} are the honestly encrypted valid tags.
Let FEnc ∈ PT take as input a tuple (cpk , (s, m, i, s′, r)). First FEnc

computes (spk , ssk) = SKg2(cpk , s) and ak i = Sigssk (i, s′), where s resp. s′

specify the randomness6 to be used by SKg2 resp. Sigssk . If i ∈ [1, �(n)] holds,
then the oracle FEnc outputs (((cpk , spk), m, Enccpk (m, ak i, r)), (ak i, r)),
and otherwise it outputs ⊥.

The authentication protocol πa must be overwhelmingly complete,
(CKg, FEnc, Dec)-zero-knowledge for Ra, and (((cpk , spk ), csk , ssk), Sig)-
sound for the language La.

Proposition 1. The construction GMA associated with a polynomial �(n) is
a group message authentication scheme. If CSL is CCA2-secure, and if BSS
associated with �(n) is CMA-secure, then GMA is secure.
5 In our concrete instantiation at most one index i has this property.
6 Note that requiring explicit randomness as input ensures that the signature public

key spk and the signature ak i are correctly formed.
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A proof is given in [29], but we outline the main ideas of the proof here. The
functional property of the scheme is clear by inspection. For anonymity and
traceability we argue as follows.
Anonymity. The idea of the proof is to turn a successful adversary A in the
anonymity experiment into a successful adversary A′ against the CCA2-security
of the cryptosystem CSL. We do this in two steps:

1. We replace the invokation of the authentication protocol πa in the anonymity
experiment by a simulation. Due to its (CKg, FEnc, Dec)-zero-knowledge prop-
erty this changes the success probability of the adversary by an arbitrarily
small amount. This allows simulation of the experiment without using the
secret key of the cryptosystem.

2. We construct a new adversary A′ that simulates the modified experiment and
breaks the CCA2-security of the cryptosystem. When A outputs (m, i0, i1),
A′ hands (m, ak i0 , ak i1) to its CCA2-experiment and forwards the challenge
ciphertext σ it receives as a challenge authentication tag to A. All checking
queries are computed by A′ using its decryption oracle, and A′ outputs the
result of the simulated modified experiment. Thus, when A guesses correctly
in the anonymity experiment, A′ guesses correctly in the CCA2-experiment.

Traceability. The idea of the proof is to turn a successful attacker A against the
traceability of GMA into a successful attacker A′ against the CMA-security of
the bounded signature scheme BSS. We do this in four steps:

1. We replace each invokation of Pa by a simulation. Due to the
(CKg, FEnc, Dec)-zero-knowledge of πa and the sequential composition lemma
[29] this changes the advantage of the adversary by an arbitrarily small
amount.

2. We replace the authentication tags computed by P+
a by encryptions of 0.

This only reduces the advantage of A negligibly, since CSL is CCA2-secure.
The CCA2-security is essential for this argument, since we must be able to
simulate the Checksk (·, ·)-oracle to A without the secret decryption key csk .

3. We use the (((cpk , spk ), csk , ssk), Sig)-soundness of πa to argue that the
probability that A convinces the honest verifier Va that an invalid authenti-
cation tag is valid is negligible.

4. We show that the adversary in the modified traceability experiment can be
used to break the CMA security of the bounded signature scheme. To see
this, note that in the modified experiment we may postpone the computation
of any authentication key ak i until the adversary requests it, and to be
successful in the modified experiment, A must produce an authentication
tag that checks to an uncorrupted sender, i.e., A must produce an encrypted
forged bounded signature of a sender’s identity, and the simulator holds the
secret decryption key.

5 An Efficient Instantiation

We give an efficient instantiation of the above generic scheme and prove its
security under the strong RSA assumption and the decision Diffie-Hellman
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assumption.The strongRSA assumption says that given a modulus N = pq, where
p and q are random safe primes of the same bit-size, and a random g ∈ SQN , it is
infeasible to compute (g′, e) such that (g′)e = g mod N and e �= ±1. Let Gq be a
prime order q subgroup of Z

∗
N generated by g such that log q = O(log N), i.e., the

subgroup has “large order”. The decision Diffie-Hellman (DDH) assumption for
Gq says that if a, b, c ∈ Zq are randomly chosen, then it is infeasible to distinguish
the distributions of (g, ga, gb, gab) and (g, ga, gb, gc), where we compute modulo N
(cf. full version [29] for formal definitions).

5.1 A Bounded Signature Scheme

We construct a bounded signature scheme BSSrsa = (SKgrsa, Sigrsa, Vfrsa, �(n))
for every polynomial �(n), that some readers may recognize as a component
of several cryptographic constructions based on the strong RSA-assumption.
Denote by np an additional security parameter, whose value is determined by
the authentication protocol.

Construction 2 (Bounded Signature Scheme BSSrsa).

Key Generation. On input 1n the algorithm SKgrsa
1 , i.e., the first step of the key

generator, picks two random n/2-bit safe primes p and q, then defines and
outputs spk1 = N = pq. The key generator SKgrsa

2 on input spk1 picks a
random g′ ∈ SQN , and defines g = (g′)2

∏ �(n)
i=1 ρi , where ρi is the ith positive

prime integer larger than 2np with ρi = 3 mod 8. This allows for computing
roots of g, as required for the computation of signatures (see next step).
Finally SKgrsa

2 outputs the key pair (spk , ssk) = ((N, g), g′).
Signature Algorithm. On input a secret key ssk and a message m ∈ [1, �(n)],

the signature algorithm Sigrsa computes ω = g1/(2ρm) mod N and outputs
ω. More precisely, ω is computed as (g′)

∏ �(n)
i=1,i�=m

ρi mod N .
Verification Algorithm. On input a public key spk , a message m ∈ [1, �(n)], and a

candidate signature ω, the verification algorithm Vfrsa verifies that |ρm| > 2
and ω2ρm = g mod N or ω−2ρm = g mod N .

Equivalently, we could define the keys of BSSrsa as (spk , ssk) = ((N, g), (p, q)),
where g ∈ SQN is picked at random. Then to compute a signature on a message
m we would just compute the 2ρm-th root of g modulo N directly, using the
factorization of N . This would give exactly the same functionality and the same
distribution of the signatures, but would not fit our framework with the two-step
key generation, which is why we present the above variant. A simple proof of
the proposition below, following older work [12,16], is given in [29].

Proposition 2. For every polynomial �(n), the scheme BSSrsa is a CMA-secure
bounded signature scheme under the strong RSA assumption.

5.2 A Cramer-Shoup Cryptosystem

The original cryptosystem of Cramer and Shoup [11] was given over a group
of prime order, but this is not essential. We may view the key generation as
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consisting of first choosing a group with a generator and then running the key
generation of the cryptosystem as described in [11] using these parameters. De-
note by nr an additional security parameter such that 2−nr is negligible.

Construction 3 (Cramer-Shoup Cryptosystem CSLcs in SQN).

Key Generation. On input 1n, the first key generator CKgcs
1 runs exactly as

SKgrsa(1n), and outputs N , i.e., a product of two random safe primes. The
group is defined as the group SQN of squares modulo N . The second key
generator CKgcs

2 is the original key generator of Cramer and Shoup with
some minor modifications. It chooses g1, g2 ∈ SQN and z, x1, x2, y1, y2 ∈
[0, N2nr ] randomly, and computes h = gz

1 , c = gx1
1 gx2

2 , and d = gy1
1 gy2

2 .
Then a collision-free hash function H : {0, 1}∗ → [0,

√
N/2] is generated and

(cpk , csk) = ((N, H, g1, g2, h, c, d), (z, x1, x2, y1, y2)) is output.
Encryption. On input a public key cpk , a label l ∈ {0, 1}∗, and a message

m ∈ SQN , the encryption algorithm Enccs chooses a random r ∈ [0, N2nr ]
and outputs (u1, u2, e, v) = (gr

1, g
r
2 , h

2rm, crdrH(l,u1,u2,e)).
Decryption. On input a secret key csk , a label l ∈ {0, 1}∗, and a ciphertext

(u1, u2, e, v), the decryption algorithm Deccs checks if

u2x1
1 u2x2

2 (uy1
1 uy2

2 )2H(l,u1,u2,e) = v2 .

If so, it outputs eu−2z
1 and otherwise it outputs ⊥.

We view (u1, u2, e, v) and (u′
1, u

′
2, e

′, v′) as encodings of the same ciphertext if
(u1, u2, e) = (u′

1, u
′
2, e

′) and v2 = (v′)2. A maliciously constructed, but valid,
ciphertext may have u1, u2, e �∈ SQN , but this is not a problem as explained in
the proof of the proposition [29].

Proposition 3. The cryptosystem CSLcs is CCA2-secure under the decision
Diffie-Hellman assumption.

5.3 An Efficient Authentication Protocol

Given our implementations of a bounded signature scheme and of a cryptosystem
with labels, the authentication protocol boils down to convincing the proxy that
the plaintext of a Cramer-Shoup ciphertext is a non-trivial root. The basic idea
is to first show that the ciphertext is valid, i.e., that the ciphertext (u1, u2, e, v)
satisfies u2x1

1 u2x2
2 (uy1

1 uy2
2 )2H(m,u1,u2,e) = v2, and then show that (u1, e) is on

the form (gr
1 , h

2rω) for some 2ρth root ω. The latter is equivalent to showing
that (u2ρ

1 , e2ρ/g) is on the form (gs
1, h

2s), for some |ρ| ≥ 3. Standard methods
for proofs of logarithms over groups of unknown order, e.g. [4], could be used
to construct a protocol for the above, but that would give an unnecessarily
costly solution, involving an additional independently generated RSA-modulus
and generators. We exploit the relaxed notions of soundness and zero-knowledge
to significantly reduce this cost. We use a joint RSA-modulus of the cryptosystem
and signature scheme to avoid the need for additional RSA-parameters, i.e.,
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soundness holds even given a signature oracle. Our simulation of an interaction
is indistinguishable from a real interaction only over the randomness of the public
keys of the cryptosystem, but even given a decryption oracle. We identify which
exponents need to be extracted to prove soundness and settle for existence of
the other exponents, i.e., the witness is only partly extractable using standard
rewinding techniques. Finally, we use special tricks, e.g., we use exponents of the
form (ρ − 3)/8 to avoid proving that |ρ| ≥ 3 using an interval proof [4].

Below we give an explicit protocol and state its security properties. Let nr

and nb be additional security parameters such that 2−nr and 2−nb are negligible,
and 2nb <

√
N/2. Choose some np such that np > nb + nr. Denote by GQ a

subgroup of Z
∗
P with generator G of prime order Q for some prime P , where

log Q = n.

Protocol 1 (Authentication Protocol).
common input: cpk = (N, H, g1, g2, h, c, d), g∈SQN , m∈{0, 1}∗, u1, u2, e, v∈Z

∗
N .

private input: ρ > 2np such that ρ = 3 mod 8, ω, and r ∈ [0, N2nr ] such that
ω2ρ = g mod N and (u1, u2, e, v) = Enccs

cpk(m, ω, r).

Set û1 = u2
1, ê = e2, û2 = u2

2, v̂ = v2, and f = (cdH(m,u1,u2,e))2.

1. Va picks a random X ∈ ZQ, hands Y = GX to the Pa, and proves the
knowledge of X using the zero-knowledge proof of knowledge of a logarithm
from [10].

2. Pa chooses bPa ∈ [0, 2nb − 1], R ∈ ZQ, s, k ∈ [0, 2n+nr − 1], lr, ls, lk ∈
[0, 2n+nb+2nr − 1], lρ ∈ [0, 2np+nb+nr − 1], and lt ∈ [0, 2n+2nb+3nr − 1] ran-
domly and hands to Va:

C = GbPa Y R, (α1, α2, β) = (glr
1 , glr

2 , f lr), (δ1, δρ) = (glt
1 , hlt),

(γ1, γρ , γ) = (gls
1 û

2lρ
1 , hls êlρ , glk

1 g
lρ
2 ), and

(ν1, νρ , ν) = (gs
1û

(ρ−3)/8
1 , hse(ρ−3)/8, gk

1g
(ρ−3)/8
2 ) .

3. Va chooses bVa ∈ [0, 2nb − 1] randomly and hands it to Pa.
4. Pa sets b = bPa ⊕ bVa , and hands (bPa , R, ar, as, ak, aρ , at) to Va, where

ar = 2rb + lr aρ = ((ρ − 3)/8)b + lρ

(as, ak) = (2sb + ls, kb + lk) at = (16s + 4rρ)b + lt .

5. Va first checks if C
?= GbPa Y R, bPa ∈ [0, 2nb−1], and aρ ∈ [0, 2np+nb+nr−1].

Then it sets ν̂1 = ν2
1 and ν̂ρ = ν2

ρ , ν̃1 = ν̂8
1 û6

1, ν̃ρ = ν̂8
ρ ê3, and b = bPa ⊕ bVa ,

and checks that

(ûb
1α1, û

b
2α2, v̂

bβ) ?= (gar
1 , gar

2 , far)

(ν̂b
1γ1, ν̂

b
ργρ , νbγ) ?= (gas

1 û
2aρ

1 , has êaρ , gak
1 g

aρ

2 )(
ν̃b
1δ1, (ν̃ρ/g)bδρ

) ?= (gat
1 , hat) .
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Proposition 4. The authentication protocol (Protocol 1) is overwhelmingly
complete, (CKgcs, FEnccs , Deccs)-zero-knowledge for the relation Ra, and
(((cpk , spk ), csk , ssk), Sig)-sound for the language La, under the strong RSA
assumption and the decision Diffie-Hellman assumption.

Proposition 4 is proved the full version of this paper [29]. It seems impossi-
ble to prove that the protocol is zero-knowledge, since the pair (ν1, νρ) may
be viewed as an El Gamal ciphertext of part of the witness, namely g

1
8− 3

8ρ ,
using a public key h which is part of the common input. Hence it is conceiv-
able that the auxiliary input contains sufficient information to check if this is
the case, without allowing any simulator to produce a correct view. The proto-
col is only sound as long as no adversary can reduce modulo the order of the
group SQN .

5.4 Efficiency of the Concrete Scheme

An authentication tag requires 5 exponentiations to compute and 6 exponen-
tiations to verify. Unique prefixes of authentication keys can be tabulated to
speed up identification. The authentication protocol requires 7 rounds, since the
subprotocol from [10] requires 4 rounds, but this can be reduced to 5 rounds by
interlacing the last two rounds of the subprotocol with the first rounds of the
main protocol. For practical parameters, n = 1024 and nr = 30, nb = 50, and
np = 85 the complexity of the prover and verifier in the authentication protocol
corresponds to 19 and 17 exponentiations [29].

Furthermore, the complexity of our scheme can be reduced by using standard
techniques such as simultaneous exponentiation and fixed-base exponentiation
[27], but for typical applications this is not practical for the sender. A simpler
way to reduce complexity of a sender is to pre-compute most exponentiations in
an offline phase. It is immediate that this reduces the complexity in the online
phase to less than one exponentiation. This approach is feasible even on weak
computational devices.

The protocol can also be simplified in an other direction by letting the re-
ceiver choose the commitment parameters G and Y to be used by all parties.
This reduces the number of rounds to 3, and also decreases the number of ex-
ponentiations by 6 for the prover and 7 for the verifier. However, it seems hard
to abstract this version in a natural way and keep the description of the generic
scheme reasonably modular. Hence, to keep the exposition clear we have chosen
not to present the most efficient solution.

6 Conclusion

We remind the reader that performing an exponentiation in a bilinear group
used for the provably secure group signature schemes corresponds to roughly 6-8
modular exponentiations for comparable security levels. Thus, our scheme is in
fact competitive with these schemes, but under a better understood assumption.
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The standard group signature schemes, analyzed in the random oracle model,
clearly out-perform our scheme, but the random oracle model is not sound [7].
This is sometimes considered a purely theoretical nuisance, but we think that
the recent attacks on hashfunctions, e.g., the collision-attacks on SHA-1 of Wang
[34], show that even in practice it is prudent not to model a hashfunction as a
random function.

Furthermore, the strong RSA assumption is arguably the most trusted as-
sumption under which a provably secure ordinary signature scheme is known to
exist with sufficiently low complexity for practical use, and the decision Diffie-
Hellman assumption is the most studied assumption used in practice for public
key cryptography.

In this work we have formalized the new notion of group message authen-
tication, which relaxes some of the requirements of group signatures and has
applications to anonymous credit cards, and we have constructed a provably
secure scheme under the above two assumptions.
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Fast Secure Computation of Set Intersection

Stanis�law Jarecki and Xiaomin Liu
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Abstract. A secure set intersection protocol between sender S and re-
ceiver R on respective inputs X and Y s.t. |X|, |Y | ≤ n, allows R to learn
X ∩ Y while S learns nothing about R’s inputs. In other words it is a
secure computation of functionality Fn×n

SI : (X, Y )→ (⊥, X ∩Y ) on sets
of size at most n. A variant we call adaptive set intersection implements
an interactive version of this functionality, which on senders S’s input
X allows the receiver R to adaptively make up to n queries yi and learn
whether or not yi ∈ X.

We show that a simple protocol using |X|+ 4|Y | modular exponentia-
tions and one round of interaction is a secure computation of the adaptive
set intersection functionality against malicious adversaries in the Random
Oracle Model (ROM) under a One-More Gap Diffie-Hellman (OMGDH)
assumption, i.e. assuming the One-More Diffie-Hellman problem is hard
even when the DDH problem is easy. Even though the protocol has only
a single round, the corresponding ideal functionality is adaptive because
receiver’s queries are efficiently extractable only eventually, rather than
during protocol execution. However, under the OMGDH assumption in
ROM the set of queries any efficient receiver can make is committed at the
time of protocol execution, and hence no efficient adversary can benefit
from the adaptive feature of this functionality.

Finally we show that this protocol easily extends to Set Intersection
with Data Transfer, which is equivalent to the “Keyword Search” prob-
lem, where sender S associates each item xi in X with a data entry di,
and R learns all (xi, di) pairs such that xi ∈ Y .

1 Introduction

Secure Protocol for Computing Set Intersection and Extensions. Secure compu-
tation of set intersection (or secure evaluation of a set intersection function) is a
protocol which allows two parties, sender S and receiver R, to interact on their
respective input sets X and Y in such a way that R learns X ∩ Y and S learns
nothing. Secure computation of set intersection has numerous useful applica-
tions: For example, medical institutions could find common patients without
learning any information about patients that are not in the intersection, differ-
ent security agencies could search for common items in their databases without
revealing any other information, the U.S. Department of Homeland Security can
quickly find if there is a match between a passenger manifest and its terrorist
watch list, etc.

A natural extension of the set intersection problem which seems useful in
any such application is what we call Set Intersection with Data Transfer, which
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allows the sender to associate each item xi in its set X with a data entry di
(e.g. the medical records of a given patient, the dossier the security agency holds
for a suspect, etc), and the receiver with input set Y learns not only all xi’s
s.t. xi ∈ Y , but also the data entries di associated with these matching xi’s.
Note that an adaptive version of this problem, where the receiver can query the
sender on adaptively chosen items yj , and each time learns if there exists xi ∈ X
s.t. xi = yj , and if so it learns the associated entry di, was introduced as the
“Oblivious Keyword Search” problem in [FIPR05, OK04], or “Private Matching”
in [FNP04], and it is also sometimes called “Keyword OT” (or “Keyword PIR”),
since it is a generalization of Oblivious Transfer to oblivious access of sender’s
data entries using associated keywords rather than indexes.

Prior Work on Set Intersection Protocols. Apart of generic results on two-party
secure computation (or secure function evaluation), the first special-purpose pro-
tocol for secure computation of set intersection appeared in [EGS03]. It was
shown secure against honest-but-curious adversaries under the DDH assump-
tion in ROM, and if only R gets the output then the total computation cost of
this protocol is |X |+ 2|Y | modular exponentiations.

In the standard model, i.e. without recourse to ROM, Freedman et al. [FNP04]
showed a protocol based on oblivious polynomial evaluation secure against honest-
but-curious adversaries at the cost of O(n log logn) exponentiations, for |X | and
|Y | bounded by n. Modifications of this protocol secure against malicious adver-
saries appeared in several recent papers, by [CZ09], [DSMRY09], and [HN10], at the
cost of increasing the protocol bandwidth to O(n2) group elements and computa-
tion to O(n2) exponentiations in the case of [CZ09], O(nk2 log2(n)) and
O(n2k2 log2(n)) respectively in [DSMRY09], and O(nt) and O(n(t + log logn))
respectively in [HN10], whereX,Y ⊂ {0, 1}t, all secure under DDH.

Another approach for secure computation of set intersection was proposed in
[FIPR05], based on Oblivious Pseudo-Random Function (OPRF), i.e. a secure
computation protocol for a functionality which lets R compute value fk(x) for a
pseudo-random function f given S’s input k and R’s input x. The idea is simple:
S picks k and sends to R the set of values X̃ = {fk(x)}x∈X . Then S and R
interact in n instances of the OPRF protocol on S’s input k and R’s input y, for
each y ∈ Y . R outputs the set {y ∈ Y s.t. fk(y) ∈ X̃}. Note that this set is equal
to X ∩ Y if f is a one-to-one function. This idea was revisited in [HL08] who
utilized a non-injective PRF, which could introduce collisions for a maliciously
chosen PRF key, and therefore it was not secure against malicious adversaries.
Subsequently [JL09] and [BCC+09] proposed secure computation protocols for
injective PRF’s with O(1) exponentiations, leading to secure set intersection in
the standard model with O(n) modular exponentiations. However, the protocols
of [JL09, BCC+09] require a Common Reference String which includes a safe
RSA modulus – required by a Paillier Encryption [Pai99, CS03] these protocols
utilize – which must be securely generated. Moreover, the protocols of [JL09,
BCC+09] involve several exponentiations modulo N2, where N is at least 1024-
bit long, with |N |-bit exponents, and each such exponentiations is about 24 times
slower than a 160-bit exponentiation modulo a 1024-bit modulus.
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Main Contribution. Our main contribution is a protocol for set intersection
secure against malicious adversaries under the One-More Gap Diffie-Hellman
(OMGDH) assumption in ROM. This protocol is a very close variant of the pro-
tocol of Evfimievski et al. [EGS03], and our contribution is really a security anal-
ysis of this modification rather than the protocol itself. This protocol is attractive
because it takes only one round of interaction, and its total computational cost
is under 3(|X |+ |Y |) exponentiations. Moreover, since these exponentiations can
use 160-bit exponents, this protocol could be on the order of 20− 100 times less
expensive than the protocols of [JL09, BCC+09]. Furthemore, the OMGDH as-
sumption and ROM model might be an attractive alternative to the assumptions
required by the latter works, which consist of the DCR assumption on Z∗N2 and
the DDH assumption on QRN , for safe RSA modulus N , and the Decisional q-
SDH assumption on either Z∗N2 [JL09] or a prime-order group [BCC+09]. While
the original protocol of [EGS03] used only |X | + 2|Y | exponeniations, it was
shown secure only in the honest-but-curious model, which is clearly not satisfy-
ing in practice. Thus the significance of our analysis is that assuming ROM one
can get a set intersection protocol secure against malicious players at a small
overhead over [EGS03], and the resulting solution is an order of magnitude faster
than currently fastest standard model solutions, which moreover rely on strong
assumptions of DCR, DDH, and q-SDH [JL09, BCC+09].

An important disclaimer is that unlike the protocols of [JL09, BCC+09], the
protocol we propose is only shown to implement secure computation of an adap-
tive variant of the set intersection functionality, denoted Fn×nASI , which on S’s
input a set X of at most n elements, allows the receiver R to make n adaptive
queries y1, ..., yn, each time revealing whether or not item yi belongs to set X .
However, we also show that under OMGDH in ROM all efficient adversaries
are committed at the time of the protocol execution to the set of at most n
distinct queries they can ever make. In other words, even though the protocol
achieves only an adaptive version of the set intersection functionality, any effi-
cient adversary is committed to all its inputs at the execution time, and hence it
is not clear what advantage an adversary could obtain by not making all these
queries straight away at the time of protocol execution, in which case the Fn×nASI

functionality is equivalent to the standard set intersection functionality Fn×nSI .

Closely Related Prior Work. Several prior works on set intersection protocol
or adaptive oblivious transfer protocols [EGS03, CNS07, OK04, CT05] con-
sider very close variants of the protocol presented in this paper. In particu-
lar the protocol we analyze varies from the protocol shown honest-but-curious
secure by [EGS03] in only the following aspects: (1) We change the descrip-
tion of this protocol so that to emphasize that it is a case of the OPRF-based
set intersection protocol of [FIPR05, HL08] for the ROM-based PRF function
fk(x) = (H(x))k; (2) we add the outer layer hashing to this function, i.e. we use
fk(x) = H ′(H(x), (H(x))k) instead of fk(x) = (H(x))k, which facilitates more
efficient extraction of inputs x on which a malicious party evaluates this function;
(3) to enforce consistency of S’s computation we add a zero-knowledge proof of
correct exponentiation to S’s response; and (4) we change the procedure to blind
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R’s inputs to make R’s privacy perfect instead of computational. The security
analysis we provide for this modification of the protocol of [EGS03] shows that
(1) getting malicious security for the [FIPR05, HL08]-style OPRF-based Fn×nSI

protocol which uses the ROM-based PRF shown above requires a One More
DH assumption, and not just CDH required by the honest-but-curious protocol;
(2) the reduction seems to go through only assuming access to the DDH ora-
cle (otherwise it’s unclear how to extract adversarial receiver’s inputs), so the
security of this protocol against malicious players requires the One-More Gap
DH assumption; and as we explained in a paragraph above, (3) the resulting
protocol is a secure computation of FASI, and not FSI, but no efficient receiver
can take advantage of the adaptive interface of FASI other than by delaying its
committed queries (or foregoing them entirely), assuming OMGDH in ROM.

Another group of papers which considered protocols closely related to the one
we consider are Adaptive OT protocols of [OK04] and [CT05], secure under One-
More RSA and One-More DH respectively, as well as [CNS07] which generalizes
both of them with a generic construction of secure computation of adaptive
OT from unique blind signatures. The underlying idea of the set intersection we
propose is very similar to these Adaptive OT protocols because unique signature
scheme can also be thought of as verifiable unpredictable function, and in a sense
we enable such verifiability in the security reduction by allowing the reduction
to have access to the DDH oracle. However, the difference between our work and
[OK04, CT05, CNS07] lies in the following: (1) [CNS07, CT05] provide “index”
OT protocols, i.e. R enters an index i to get the i-th data item from the sender
who enters a sequence of n items, while our construction is a “keyword” OT,
as in [OK04], where S contributes a set of keyword/data pair which R retrieves
by also contributing keywords; (2) [CNS07, OK04] are based on unique blind
signatures which have efficient verification, unlike our PRF, while (3) [CT05],
which does not use blind signatures is only shown secure according to game-
based security notions instead of secure computation; and last but not least (4)
all of these works target an adaptive oblivious transfer, while for us adaptivity
is a problem! As we discussed above, our goal is a minimal-round computation
of standard set intersection functionality, which is non-adaptive, and although
we fall (slightly) short of that goal because we do not guarantee extraction of
all n queries made by R during protocol execution time, we show that there is
a very limited amount of adaptivity in the way an efficient receiver can make
these queries: It can only choose to forego or delay making any query in a set of
n queries Y to which it is committed at the execution time.

Finally, in parallel with our work, [CT10] proposed a close variant of the pro-
tocol analyzed here, with blind RSA signature replacing blinded exponentiation,
and analyzed its security against honest-but-curious adversaries. Compared to
our protocol the computational cost of S’s increases by a factor of two, but R’s
cost is reduced to four group multiplications. Hence it would be practically rele-
vant to analyze the security of that variant in the malicious adversarial setting.

Extension to Set Intersection with Data Transfer. We also extend the secure
computation of set intersection to secure computation of Set Intersection with
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Data Transfer, i.e. computation of functionality Fn×nSIwDT : ((X,D), Y ) → (⊥
, {(xi, di) : xi ∈ Y }), whereX = (x1, . . . , xN ) andD = (d1, . . . , dN ). As in the set
intersecton case, the protocol we present computes securely, under the OMGDH
assumption in ROM, the adaptive variant of this functionality, Fn×nASIwDT, defined
similarly as FASI is defined in relation to FSI, and as in the set intersection
case an efficient adversary is committed to the set of n queries Y it can ever
make at the protocol execution time. As a side technical contribution, we also
point out a simple oblivious computation protocol for the unpredictable (under
CDH) or pseudorandom (under DDH) function fk(x) = (H(x))k , secure in ROM
according to a game-based definition.

Technical Roadmap. [FIPR05] proposed the idea of constructing a set intersec-
tion protocol from the oblivious pseudo-random function. Since for any unpre-
dictable function fk(x), H ′(fk(x)) is a pseudo-random function in ROM, a set
intersection protocol can be constructed from an oblivious computation of a
simple function fk(x) = (H(x))k which is unpredictable under CDH in ROM.
An oblivious computation of fk is just a “blind exponentiation” protocol: The
receiver R picks a random exponent α, sends y = (H(x))α to the sender S, upon
which S replies with z = yk, so that R can recover fk(x) = z1/α. Receiver’s
privacy follows from the fact that what R sends are random group elements. Se-
curity against malicious receiver is defined in the following way: After (parallel)
interaction in Q instances of this protocol, the malicious receiver cannot output
Q + 1 pairs (xi, fk(xi). This property directly follows from the One-More DH
assumption: Given a set of n group elements (g1, . . . , gN ), it’s hard to output
Q + 1 pairs of (gij , (gij )x) if one is allowed only at most Q queries to an oracle
which returns hx for any input h. Note that this simple protocol is not a secure
function evaluation of fk(x), because information is leaked about S’s key k in
addition to just the function value fk(x), but as we show it still leads to a secure
set intersection protocol.

Using the idea of [FIPR05] we convert this simple OPRF into a set intersection
protocol: S computes ui = f ′k(si) = H ′(fk(si)) for each si in S’s private set, and
sends the set of ui’s to the receiver. Then S and R interact to allow R to learn
vj = f ′k(rj)) for each rj in R’s private set, while leaking no information about
any rj to S. (In our actual protocol we use f ′k(x) = H ′(H(x), fk(x)), which
allows for better security reduction.) This is done by using the simple protocol
above to obliviously compute fk(rj). Because function f ′k is collision-resistant
even for maliciously chosen k, with overwhelming probability the receiver can
recover the intersection between si’s and rj ’s from the intersection between ui’s
and vj ’s, while S learns nothing from the protocol.

The one technical difficulty remaining is that it appears difficult to extract
a malicious receiver R∗’s input together during the protocol execution, which
is necessary for a secure computation of set intersection. Instead we show that
when the hash functions are modeled as random oracles then the simulator
can use a DDH oracle to extract R∗’s input rj whenever R∗ itself learns the
f ′k(rj) value, which can happen at any time after protocol execution. Thus this
protocol achieves secure computation of Adaptive Set Intersection functionality
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Fn×nASI under the One-More Gap Diffie-Hellman assumption. However, as we show
in Section 4.1, the same OMGDH guarantees that for any efficient receiver, its
inputs r1, ..., rn are committed when R∗ sends its first protocol message.

Organization. We list the cryptographic assumptions and tools we need in Sec-
tion 2. A simple oblivious computation of the unpredictable function under
OneMore DH in ROM is described in 3, followed by the constructions of Set
Intersection protocol and Set Intersection with Data Transfer respectively in
Section 4 and Section 5.

2 Assumptions and Tools

– CDH assumption: Let g be a generator of a group G of order q. CDH
problem is (t, ε)-hard if for any t-time algorithm A, Pr[gab ← A(ga, gb)] ≤ ε,
for the probability going over random a and b in Zq.

– (N,Q)-One-More (Non-Adaptive) DH Assumption: [BNPS03] shows
the adaptive One-More RSA Inversion assumption and One-More Discrete
Log assumption. Here we give a non-adaptive variant of the One-More prob-
lem, One-More DH assumption, where the algorithm A must prepare all the
queries to the One-More DH oracle together. Let G be a multiplicative group
of order q. We say that (N,Q)-one-more DH problem is (t, ε)-hard if for any
t-time algorithm A,

Pr
[
{(gi, (gi)x)}i=1,...,Q+1 ← A(·)x

(g1, . . . , gN)
]
≤ ε

where the probability goes over random (g1, . . . , gN) in GN and the random
x in Zq, oracle (·)x on any h ∈ G returns hx, and A makes at most Q parallel
query to the oracle (·)x.

We show a proof of the hardness of the (Q + 1, Q)-One-More (Non-
Adaptive) DH problem in the generic group model in the full version of
this paper [JL10], which implies the hardness of (N,Q)-One-More (Non-
Adaptive) DH problem by Lemma 3.3 of [BNPS03], which relates in corre-
sponding way with the adaptive One-More RSA assumptions.

– (N,Q)-One-More (Non-Adaptive) Gap DH Assumption: Informally,
we say that (N,Q)-One-More (Non-Adaptive) Gap DH problem is hard if
(N,Q)-One-More (Non-Adaptive) DH problem is hard while DDH problem
is easy. Formally let G be a multiplicative group of order q. We say that
(N,Q)-one-more (Non-Adaptive) Gap DH problem is (t, ε)-hard if for any
t-time algorithm A,

Pr
[
{(gi, (gi)x)}i=1,...,Q+1 ← A(·)x,DDH(·,·,·,·)(g1, . . . , gN)

]
≤ ε

where the probability goes over random (g1, . . . , gN) in GN and the random
x in Zq, DDH(·, ·, ·, ·) on tuple (g, h, u, v) returns 1 if there exists a w ∈ Zq,
s.t. h = gw and v = uw and 0 otherwise, and A makes at most Q parallel
queries to the oracle (·)x. Here we don’t limit the number of queries made
by A to the oracle DDH.
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A weaker version of this assumption replaces the DDH oracle with
DLx(·, ·) which on pair (g, h) returns 1 if h = gx and 0 otherwise. We indeed
only need this weaker assumption in the security proof for our set inter-
section protocol in Section 4. This is a simplification of the DDH oracle,
because one can view it as DDH(h1, y1, ·, ·), where h1 and y1 is the query
and answer from the (·)x oracle.

– An Unpredictable Function under CDH in ROM: A function (fam-
ily) (K,D,R,F) for F = {fk(·) : D → R}k←K is an (t, qf , ε)-unpredictable
function if for any t-time algorithm A, any auxiliary information z

Pr[(x∗, fk(x∗)← Afk(·)(z)) ∧ x∗ 
∈ Q] ≤ ε
where A makes at most qf queries to fk(·), Q is the set of these queries, and
the probability goes over the random k in K.

Consider a multiplicative group G of prime order q, a hash functions
H : {0, 1}n1 → G, and the function fk(x) = (H(x))k, for k ∈ Zq. It is a
simple fact that this function fk(x) is unpredictable in random oracle model
under CDH assumption and we give the formal proof of this fact in [JL10].

3 Parallel Oblivious Unpredictable Function

Let fk(·) be an unpredictable function. A Parallel Oblivious Unpredictable Func-
tion (POUF) is a protocol between a sender S and a receiver R on common input
n, and respective private input key k and arguments (x1, . . . , xn), and at the end
of the protocol, S learns nothing, while R learns (fk(x1), . . . , fk(xn)). The POUF
protocol should satisfy sender security and receiver security defined below:

– Sender Privacy. The POUF is (t, ε)-sender-secure if for any t-time receiver
R∗, for any auxiliary information z,

Pr
[
{(xi, fk(xi))}i=1,...,n+1 ← R∗S(k)(z)

]
≤ ε

where R∗ makes at most a single oracle access to S(k) and the probability
goes over randomness of S.

– Receiver Privacy. The POUF is (t, ε)-receiver-secure if for any X0 and
X1, where Xb = (xb,1, . . . , xb,n) for b = 0 and 1, for any t-time sender S∗,∣∣∣Pr

[
S∗R(X0) = 1

]
− Pr

[
S∗R(X1) = 1

]∣∣∣ ≤ ε
where the probability goes over the randomness of R. We call a POUF per-
fectly receiver-private if it’s (t, ε)-receiver-private for all t and ε.

3.1 Construction of Parallel Oblivious Unpredictable Function

Here we depict the construction of an Parallel Oblivious Unpredictable Function
(POUF) in Figure 1, from the unpredictable function fk(x) = (H(x))k, and show
that this POUF protocol is secure under one-more DH assumption in random
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oracle model. It also gives an intuition why the protocol shown in Section 4
below is a secure set intersection protocol.

Fact 1: If the (qH , n)-One-More DH problem is (t, ε)-hard in the group G of
order q, then the POUF protocol constructed in Figure 1 is (t, qH , ε′)-sender
private, where ε′ = ε+n/q, qH is the number of queries to the hash function H.
Proof. (sketch) With the challenge tuple (g1, . . . , gqH ), reduction algorithm Red
replies to the i-th hash query with gi. On the R∗’s message (y1, . . . , yn) Red
queries the one-more DH oracle, gets back (z1, . . . , zn) = ((y1)k, . . . , (yn)k), and
passes (z1, . . . , zn) to R∗. Now when R∗ returns {(xi, vi)}i=1,...,n+1, Red returns
{(H(xi), vi)}i=1,...,n+1 to the One-More DH challenger.

Denote evt as the event that R∗ did not query H on xi, while (xi, vi) is a pair
in R∗’s output and vi = (H(xi))k. Then Pr[evt] = n/q. The probability that
Red breaks the (n, qH)-One-More DH assumption is the advantage of R∗ over
the sender privacy game minus n/q.

Fact 2: The POUF Protocol in Figure 1 is perfectly receiver-private.
Proof. For any X ∈ ({0, 1}n1)n, S∗’s view when interacting with R(X) is iden-
tical to the uniform distribution in Gn. Hence the protocol is perfectly receiver-
private.

S’s private input: k ∈ Zq R’s private input: (x1, . . . , xn) ∈ ({0, 1}n1 )n

∀i=1,...,n hi ← H(xi), αi ← Zq , yi ← (hi)
αi(y1,...,yn)��

for i = 1, . . . , n, zi ← (yi)
k (z1,...,zn) �� output ∀i=1..n fk(xi) = z

1/αi
i

Fig. 1. Construction of POUF under One-More DH in ROM

4 Construction of the Set Intersection Protocol

A set intersection protocol is a protocol between a sender S with input S =
(s1, . . . , sns), and a receiver R with input R = (r1, . . . , rnr ), and at the end of
the protocol, the receiver learns S ∩ R. Secure computation of set intersection
is a protocol that securely implement the functionality Fns×nr

SI : (S,R) → (⊥
, S ∩ R). Here we allow dummy items in S and R.

We introduced an adaptive variant of this functionality, namely Fns×nr

ASI , which
allows adaptive queries from R, i.e. Fns×nr

ASI takes a set S from sender S at input,
for each query on input ri made by R, for i = 1, . . . , nr, Fns×nr

ASI returns yes
or no for whether ri ∈ S. We allow dummy items in S and R for Fns×nr

ASI too.
Below we show a protocol illustrated in Figure 2 that securely computes Fns×nr

ASI ,
assuming the hardness of the One-More (non-adaptive) Gap DH problem, where
H1 : {0, 1}n1 → G andH2 : G2 → {0, 1}n2 are hash functions modeled as random
oracle in the security analysis. Although the protocol in Figure 2 is only proven
as a secure computation of the functionality Fns×nr

ASI , we argue in Section 4.1
that the receiver’s input set is committed in the first message (y1, . . . , ynr ), i.e.
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the next query of the ideal-world receiver is independent of the answers to the
previous queries it gets. (Moreover, it is also independent of the randomness
feeding to the real-world receiver after the message (y1, . . . , ynr ) is sent.)

The intuitive reason why the protocol is only proven to be a secure compu-
tation of Fns×nr

ASI instead of Fns×nr

SI lies in the difficulty in extracting R’s input
all together during the protocol execution. As shown in the proof of Theorem 1
below, the simulator extract R’s input one by one by controlling the hash func-
tions H1 and H2 (as well as using the DDH oracle). When a pair of (h, t) queried
to H2 satisfy that (1) t = hk (which can be verified using the DDH oracle) and
(2) there exists a query x to H1, s.t. H1(x) = h, then the simulator concludes
that x is in the set R (with negligible error probability), but at the same time,
simulator has to assign the value H2(h, t), so R immediately learns whether or
not x ∈ S based on whether there exists ui ∈ U s.t. ui = H2(h, t).

S’s private input: S = (s1, . . . , sns ) R’s private input: R = (r1, . . . , rnr )

k ← Zq for i = 1 to nr

(ŝ1, . . . , ŝns )← Π(S), where hi ← H1(xi)
Π is a random permutation αi ← Zq, yi ← hαi

i(y1,...,ynr )��
for i = 1, . . . , nr, zi ← (yi)

k

π = PoK{k | ∀i=1,...,n zi ← (yi)
k}a (z1,...,znr ), π �� Abort if π doesn’t verify.

vi = H2

(
hi, (zi)

1/αi

)
for j = 1 to ns

uj ← H2

(
H1(ŝj), (H1(ŝj)

k
)

Let V = (v1, . . . , vnr )
U=(u1,...,uns) ��

output {ri | ri ∈ R ∧ vi ∈ U ∩ V }
a S and R interacts in a zero-knowledge proof of knowledge π = PoK{k | zi ←

(yi)
k, i = 1, . . . , nr}, where S performs the prover and R performs the verifier. Here

for simplicity, we put non-interactive proof system instead.

Fig. 2. Construction of Set Intersection Protocol under One-More DH in ROM

Remark on Optimizing the Online Computational Cost. We notice that the on-
line cost of this set intersection protocol illustrated in Figure 2 can be reduced
by letting S publish a pair (g, pk) at the beginning, s.t. pk = gk, and g is the
generator of the group G. Then we modify the protocol as follows: R computes
yj = H(rj) ·gαj , and computes wj ← zj · (pk)−αj . The online cost of the receiver
is then reduced from 2nr exponentiations with variable bases plus nr inversions
mod q, to 2nr exponentiations with fixed bases (Here we did not count the com-
putation in the proof π). However, this modification requires a stronger version
of the One-More Gap DH assumption: adversary A, in addition to the challenge
tuple (g1, . . . , gN ), is also given a pair (g, pk = gk) as input. Here we make a
security claim only for the basic protocol in Figure 2.

Theorem 1. If the (N,Q)-One-More Non-Adaptive Gap DH problem is hard,
and if the proof system π is a zero-knowledge proof of knowledge, our set
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intersection protocol in Figure 2 is a secure computation of the functionality
Fns×nr

ASI described above in the random oracle model.

Proof. Constructing an ideal-world SIMs from a malicious real-world sender S∗.
The simulator SIMs is constructed as follows:

1. SIMs builds two tables T1 = (x, φ) and T2 = ((h, t), ψ) to answer the hash
queries to H1 and H2 respectively. To answer an H1-query on x that has
never been queried before, SIMs picks random φ in G, adds an entry (x, φ)
to T1, and returns φ as H1(x). Similarly, to answer an H2-query on the pair
(h, t) which has never been queried before, SIMs picks random ψ ∈ {0, 1}n2,
adds an entry ((h, t), ψ) to T2, and returns ψ as H2(h, t).

2. SIMs sends random (y1, . . . , ynr) ∈ Gnr to S∗.
3. After getting the tuple (z1, . . . , znr) and interacting with S∗ as verifier in the

proof π, if the proof π does not verify SIMs aborts. Otherwise, SIMs runs
the extractor algorithm for π to extract k.

4. On getting U = (u1, . . . , uns), for each ul ∈ U , SIM checks if ∃ (xi, φi) ∈ T1

and ∃ ((hj , tj), ψj) ∈ T2, s.t. φi = hj , tj = (hj)k and ψj = ul. If so, add xi to
the set S (initially set to ∅); otherwise, add a dummy item into S. Then SIM
sends S to Fns×nr

ASI , which uses S to respond to ideal receiver R̄’s queries.

It is easy to see that S∗’s views when interacting with the real receiver R and with
the simulator SIMs are identical, because (y1, . . . , ynr ) sent by the real receiver
R is uniformly random in G

nr , and the answers to the H1 and H2 are all picked
at random in the respective ranges.

Now we look at the output of the honest receiver R in the real world interacting
with S∗. First, because the proof π is sound, if R doesn’t abort the protocol, then
with overwhelming probability, every zi sent by S∗ is (yi)k for the yi’s sent by R.
Now if zi = (yi)k for i = 1, . . . , nr, then R’s final output is a set containing all the
ri’s s.t. H2(H1(ri), (H1(ri))k) ∈ U , which is equivalent to say that R outputs, for
each i ∈ {1, . . . , nr}, yes if there exists a uj ∈ U , s.t. H2(H1(ri), (H1(ri))k) = uj ,
and no otherwise. Since H2 is random oracle, if H2(H1(ri), (H1(ri))k) = uj, there
are two possibilities: (1) S∗ computed uj from H2(H1(sj), (H1(sj))k) for sj = ri;
and (2) S∗ did not query H1 on ri or did not query H2 on (H1(ri), (H1(ri))k),
but H2(H1(ri), (H1(ri))k) happens to be equal to uj. In case (1) SIMs described
above extracts sj = ri, puts sj in S, and the ideal world receiver R̄ output yes on
ri. In case (2), S∗ either (a) did not query H1 on ri or (b) did not query H2 on
(H1(ri), H1(ri))k. If S∗ did not query H2 on (H1(ri), H1(ri))k), then Pr[∃ uj ∈
U, ∃ ri ∈ R, s.t. uj = H2(H1(ri), (H1(ri))k)] ≤ ns ·nr · 2−n2 . If S∗ did not query
H1 on ri, then Pr[∃ uj ∈ U, ∃ ri ∈ R, s.t. uj = H2(H1(ri), (H1(ri))k)] = ns ·nr ·
Pr[H1(ri) = h ∧ H2(h, hk) = uj ] = ns ·nr ·q ·Pr[H1(ri) = t] ·Pr[H2(tk) = uj] =
ns ·nr · 2−n2 . Hence case (2) happens with probability at most (ns ·nr · 2−n2+1).
Therefore, except with probability (ns · nr · 2−n2+1), the real world receiver R
and the ideal world receiver R̄ output identically.

Constructing an ideal-world SIMr from a malicious real-world receiver R∗.
We construct SIMr as follows.
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1. SIMr builds two table T1 = (x, φ) and T2 = ((h, t), ψ, b) to answer the H1

and H2 queries respectively. The bit b should be set to 1 if t = hk and there
exists an entry (x, φ) ∈ T1 such that h = φ, and 0 otherwise. SIMr first
responds with random value to the H1 and H2 queries made by S∗ while
maintaining consistency, and records (xi, H1(xi)) in T1 for every query to
H1 on xi, ((hj , tj), H2(hj , tj), 0) for every query to H2 on (hj , tj).

2. On R∗’s message (y1, . . . , ynr ), SIMr picks random k ∈ Zq, computes zi =
(yi)k for i = 1, . . . , nr, replies to R∗ with (z1, . . . , znr) to R∗, and interacts
with R∗ as prover in the proof π. SIMr also sends U = (u1, . . . , uns) to R∗,
random in ({0, 1}n2)ns .

3. After (z1, . . . , znr ) is sent, SIMr initializes set R = ∅ and H = ∅, and answers
the H1 and H2 queries as follows:

– For each query x to H1 not having been queried before, SIMr picks a
random φ ∈ G, and checks if ∃ ((hi, ti), ψi, bi) ∈ T2, s.t. hi = φ and
ti = hk. If so, SIMr outputs fail1 and aborts. Otherwise, it adds (x, φ) to
T1, and returns φ to R∗ as H1(x).

– For each query (h, t) to H2 that has not been queried before, SIMr checks
if ∃ (xi, φi) ∈ T1, s.t. h = φi and t = hk. If not, then SIMr answers the H2

queries in as in item 1 above. Otherwise, SIMr checks if ∃ (hl, tl, ψl, bl) ∈
T2, s.t. hl = h and tl = t.
• If such an entry exists and bl = 0 then SIMr outputs fail2 and aborts.

This happens when R∗ queried H2 on some (h, t) for t = hk, before
sending the message (y1, . . . , ynr ) and getting back (z1, . . . , znr) with
zi = (yi)k for each i = 1, . . . , nr, i.e. before seeing any information
about k.
• If such an entry exists and bl = 1, then SIMr returns ψl as H2(t);

If such an entry doesn’t exist for either bl = 0 or 1, then SIMr adds x to
R. If |R| > nr, SIMr outputs fail3 and aborts. Otherwise, SIMr sends x
to Fns×nr

ASI . If Fns×nr

ASI returns yes, then SIMr picks random uj ∈ U \ H,
adds uj to H, adds ((h, t), uj , 1) to T2, and returns uj as H2(h, t) to R∗. If
Fns×nr

ASI returns no, then SIMr sets H2(t) as a random value ψ ∈ {0, 1}n2,
adds (h, t, ψ, 1) to T2, and returns ψ to R∗.

This finishes the construction SIMr. The ideal-world S̄ that interacts withFns×nr

ASI ,
which answers the queries from SIMr as the ideal-world receiver R̄∗, gets ⊥ from
Fns×nr

ASI , and the real-world sender S which interacts with R∗ in the real protocol
also outputs ⊥. Now we argue that R∗’s views in the real game with honest real-
world sender S and in the interaction with the simulator SIMr constructed above
are indistinguishable. R∗’s view when interacting with the real sender S differs
from that when interacting with SIMr only if one of the following happens:

• fail1 happens. fail1 happens if R∗ queries x to H1 which returns φ for the
entry ((φ, φk), ψ, b) already existing in T2. I.e. R∗ made the query (φ, φk) before
knowing that H1(x) = φ. This happens with probability at most qH1 · qH2 · 1/q,
for qH1 and qH2 being the number of queries R∗ made to H1 and H2 respectively.
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• fail2 happens. As explained above, this happens when R∗ queried H2 on (h, t)
for t = hk, before seeing any information about k. Since k is random in Zq, this
happens with probability at most qH2/q.
• fail3 happens. If fail3 happens then a reduction can be constructed to break the
(qH1 , nr)-One-More (Non-Adaptive) Gap DH assumption. The reduction Red does
everything as SIMr does, except (1) Red answers all the queries toH1 using the One-
More Gap DH challenge, i.e. (g1, . . . , gqH1

); (2) after getting (y1, . . . , ynr) from R∗,
Red queries the One-More DH oracle on (y1, . . . , ynr) and gets back (z1, . . . , znr),
which it returns to R∗; (3) Red simulates the proof for π. Because the proof system
π is zero-knowledge, R∗ cannot distinguish the real prover and the simulation ex-
cept with negligible probability; (4) when SIMr checks the hash table for whether
∃ (x, h) ∈ T1 and ∃ (t, h′, b) ∈ T2, s.t. t = hk, Red queries the oracle DLk(·, ·) on
(h, t); (5) Red initializes a set R′ = ∅ at the beginning. Whenever SIMr decides
to add an x into R, which happens only if R∗ makes a query on (φ, t) such that
DLk(φ, t) = 1, and there exists (x, φ) in T1, SIMr also adds (φ, t) toR′. If |R| > nr
then so is |R′|, and SIMr simply returns all the pairs in R′, hence breaking the
(qH1 , nr)-One-More DH assumption. Therefore, the probability that fail3 happens
is bounded by the probability to break (qH1 , nr)-One-More DH assumption plus
the probability that R∗ distinguishes the real proof π from the simulated one.

Since all of the 3 evens happen with negligible probability, R∗’s views in the
real game with the real-world sender S and in the interaction with SIMr are
indistinguishable.

4.1 The Committing Property of Our Set Intersection Protocol

We only showed above that our set intersection protocol is a secure computation
of the functionality Fns×nr

ASI . Indeed, the receiver in our protocol cannot change
its input set after sending the message (y1, . . . , ynr). In this subsection, we are
going to prove the property that the receiver’s input set is committed in the
message (y1, . . . , ynr ). Intuitively, if a receiver can change its input set with non-
negligible probability, then we rewind this receiver to the point when it just
finished sending the tuple (y1, . . . , ynr). Denote Ri as the set extracted in the
i-th rewinding. We keep rewinding this receiver until |⋃Ri| > nr, which implies
breaking the One-More Gap DH assumption (using the same technique as in the
proof of Theorem 1). We claim the committing property of the receiver in our
set intersection protocol in Figure 2 in terms of the following property of the
constructed ideal-world receiver R̄ which is SIMr in the proof of Theorem 1 with
oracle access to the real-world receiver R∗.

Theorem 2. Let γ = (γ(1), . . . , γ(l)) be randomness used by R̄ sequentially. (We
can assume that R̄ uses γ(i) in the i-th step.) If the (N,nr)-One-More Gap DH
problem is (tomdh,εomdh

)-hard, and if the proof system π is (tD, tsim, εzk)-zero-
knowledge, then for any tR∗-time R∗, for at least (1 − ε′) fraction of γ values,
there exists a set R of size at most nr and an integer i s.t. γ(i) is used before R̄
makes the first query to Fns×nr

ASI , for any set S,
Pr

[
r← R̄(γ(i+1), . . . , γ(l)) ∧ r 
∈ R

]
≤ ε
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for the probability going over random (γ(i+1), . . . , γ(l)), tR∗ = min{tomdh, tD} ·
(1 + κ(nr+1)

ε )−1 − tsim, ε′ = εomdh+εzk

1−(nr+1)e−κ , and N = qH1 · (1 + κ(nr+1)
ε ).

This theorem intuitively claims that for the ideal-world receiver R̄, there exists
a point before it makes any query to Fns×nr

ASI , upon which R̄ decides the set R,
and then all the queries made by R̄ afterwards must be in the set R. Readers
might not get convinced of the committing property for malicious receiver, as
we only claim it for a particular ideal-world receiver R̄. However, since this R̄
fully simulates R∗’s view and its behavior, the committing property of R̄ does
guarantee that R∗’s inputs are also committed.

Proof. Let’s first consider the POUF protocol in Section 3, where the receiver
with a set of (x1, . . . , xn) as input wants to interact with the sender, which
has a random key k ∈ Zq as input, and finally outputs pairs of (xi, (H1(xi))k)
for i = 1, . . . , n. This protocol is indeed the essential part of our set intersec-
tion protocol, while in the set intersection protocol the receiver needs to make
another series of H2 queries to compute H2(H1(xi), (H1(xi))k) (where xi’s are
denoted as ri’s in the set intersection Protocol), and it is also given the values
H2(H1(si), (H1(si))k) for every si in the sender’s set. We claim here the receiver’s
input set (x1, . . . , xn) is committed in (y1, . . . , yn).

Lemma 1. Consider any (potentially adversarial) deterministic receiver R∗. Let
h = (h1, . . . , hqH1

) ∈ (G)qH1 be the vector used to answer the H1 queries made
by R∗ and let I(R∗, h) be the index of the H1 query after which R∗ sent the
message (y1, . . . , yn). Note that (h1, . . . , hI∗) with I∗ = I(R∗, h) are the only
possible randomness for R∗ to determine the message (y1, . . . , yn). Now we define
a distribution D for the vector h and the receiver R∗ as follows

D(R∗, h) = {h′ = (h′1, . . . , h
′
qH1

) | h′i = hi for 1 ≤ i ≤ I(R∗, h)}
We now define the set GoodHR∗,ε for our POUF protocol with receiver R∗ having
n inputs as the following set.

GoodHR∗,ε
�
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
h

∣∣∣∣∣∣∣∣∣∣

∃ X = {(xj , tj)}, s.t. |X | ≤ n ∧
Pr

[
(R∗)h

′,(·)k → (x, t) ∧ (x, t) 
∈ X ∧
∃ h′i ∈ h′ s.t. H1(x) = h′i ∧ t = (h′i)

k

]
≤ ε

for the probability going over random k in Zq

and random h′ ∈ D(R∗, h)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

We claim that for security parameter κ, if the (N,n)-One-More Gap DH
problem is (tomdh, εomdh)-hard, then for every tR∗-time deterministic receiver R∗

Pr [h 
∈ GoodHR∗,ε] ≤ ε′

for the probability going over random h in (G)qH1 , where tR∗ = tomdh · (1 +
κ(n+1)

ε )−1, ε′ = εomdh

1−(n+1)e−κ , and N = qH1 · (1 + κ(n+1)
ε ).

Note that ε and ε′ satisfy the following relation: If ε (resp. ε′) is inverse poly-
nomial in the security parameter κ, then ε′ (resp. ε) must be negligible in κ
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assuming the hardness of the One-More DH assumption. Intuitively, this lemma
claims that a set X = (x1, . . . , xn′) for n′ ≤ n is committed in the message
(y1, . . . , yn), i.e. R∗ cannot compute any (H1(x))k for any x outside the set X
except with negligible probability under the One-More Gap DH assumption.

Proof. If there exists a deterministic receiver R∗, s.t. Pr[h 
∈ GoodHR∗,ε] = ε∗ >
ε′, then we show a tomdh-time reduction algorithm Red solving the (N,n)-One-
More Gap DH problem with oracle access to R∗ with advantage greater than
εomdh , where N = qH1 · (1 + κ(n+1)

ε ).

Getting the One-More Gap DH challenger tuple (g1, . . . , gN), Red first sets h =
(g1, . . . , gqH1

) and answer the H1-queries from R∗ using h. With probability ε∗,
h 
∈ GoodHR∗,ε. We now assume h picked by Red is not in the set GoodHR∗,ε. Let
I∗ = I(R∗, h). When R∗ sends (y1, . . . , yn), Red queries the One-More DH oracle
and gets back (z1, . . . , zn), which satisfies zi = (yi)k for some random k ∈ Zq

and all i = 1, . . . , n. Then R∗ does the following.
Repeat the following steps n+ 1 times starting with an empty set X ′ = ∅, a

flag found = false, and a integer j = qH1 + 1, where X ′ is supposed to contain
triples of (x,H1(x), (H1(x))k), and j is supposed to point to a chunk of the
N -tuple (g1, . . . , gN ) used for answering the H1-queries in each iteration:

– Set the flag found to false. Repeat the following steps for κ/ε times or until
found = true:
• Let l = j + qH1 − I∗− 1. Set h′ = (g1, . . . , gI∗ , gj, . . . , gl) and answer the
H1-queries from R∗ using h′; Set j ← j + qH1 − I∗.
• Pick a random α in Zq and perform the role of the sender with input
k′ = αk, i.e. reply to R∗’s message (y1, . . . , yn) with ((z1)α, . . . , (zn)k)
where the tuple (z1, . . . , zn) was returned by the One-More Gap DH
oracle above.
• If at the end of the interaction between Red simulating S and R∗, R∗

outputs a pair (x, t), s.t. H1(x) ∈ h′, t = (H1(x))k
′

(which can be verified
by querying the DLk oracle on the pair ((H1(x))α, t)), and (x, t) 
∈ X ′,
then add the triple (x,H1(x), t) to X ′ and set the flag found to true.

Now we analyze the advantage that Red breaks the One-More Gap DH assump-
tion. First, note that every h′ in the above execution are random in D(R∗, h)
for the h = (g1, . . . , gH1). For each assignment of h′ in the i-th iteration and
for the random key k′ = αk for the unknown key k picked by the One-More
Gap DH challenger, the probability that R∗ outputs a pair (x, t) s.t. H(x) ∈ h′,
t = (H(x))k

′
is greater than ε (because h 
∈ GoodHR∗,ε), and hence if this is

repeated κ/ε times, the probability R∗ fails to find such a pair after all the
κ/ε iterations is (1 − ε)κ/ε ≈ e−κ. Therefore the probability that Red fails to
find n + 1 triples of (x,H1(x), (H1(x))k) is bounded by (n + 1) · e−κ. All the
above probability are conditioned on the fact that h = (g1, . . . , gqH1

) is not in
GoodHR∗,ε, which happens with probability ε∗ as assumed at the beginning of
this proof. Therefore, the probability that Red solves the One-More Gap DH
problem is ε∗ · (1− (n+ 1)e−κ) which is greater than εomdh if ε∗ > ε′, causing a
contradiction to the (N,n)-One-More Gap DH assumption.
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Now we consider our set intersection protocol. Instead of outputting pairs of
(x, (H1(x))k) as in the POUF protocol, the (malicious) receiver in the set inter-
section protocol tries to learn more information about the sender’s input than
necessary. Since the only information sent by the sender about its own input is
H2(H1(si), (H1(si))k) for every si in its input set, the receiver tries to distin-
guish the value H2(H1(si), (H1(si))k) from random. We claim the following for
the malicious receiver in the protocol in Figure 2.
Lemma 2. Consider any deterministic receiver R∗. Let h = (h1, . . . , hqH1

) ∈
(G)qH1 , ψ = (ψ1, . . . , ψqH2

) ∈ {0, 1}n2×qH2 be the two vectors to answer the H1

and H2 queries made by R∗ respectively. Let (I∗1 , I∗2 ) = I(R∗, h, ψ) be the numbers
of the H1 and H2 queries respectively before R∗ sending the message (y1, . . . , ynr).
Note that (h1, . . . , hI∗1 ) and (ψ1, . . . , ψI∗2 ) with (I∗1 , I

∗
2 ) = I(R∗, h) are the only pos-

sible randomness for R∗ to determine the message (y1, . . . , ynr). Now we define a
distribution D for the vectors h and ψ and the receiver R∗ as follows

D(R∗, h, ψ) =

{
h′ = (h′1, . . . , h

′
qH1

)
ψ′ = (ψ′1, . . . , ψ

′
qH2

)

∣∣∣∣
∀i∈[1..I∗1 ] h

′
i = hi, ∀j∈[1..I∗2 ] ψ

′
j = ψj

where (I∗1 , I
∗
2 ) = I(R∗, h, ψ)

}

Let S(S; k) denotes the sender taking input set S and randomness k. We now
define GoodHΨR∗,ε for our set intersection protocol with receiver R∗ having nr
inputs as the following set:

GoodHΨ
�
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h, ψ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ R = {(rj , tj)} s.t. |R| ≤ nr, ∀ r∗ s.t.
∀ t s.t. (r∗, t) 
∈ R ∧ ∀ S s.t. |S| ≤ ns∣∣∣∣∣∣
Pr

[
(R∗)h

′,ψ′,S(S;k)
(
H2(H1(r∗), (H1(r∗))k)

)→ 1
]

−Pr
[
(R∗)h

′,ψ′,S(S;k)(u)→ 1
]
∣∣∣∣∣∣
≤ ε

where the probability goes over random k in Zq, random u
in {0, 1}n2 and random (h′, ψ′) in D(R∗, h, ψ), H1 and H2

queries are answered by h′ and ψ′ respectively.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

We claim that for security parameter κ, if the (N,nr)-One-More Gap DH
problem is (tomdh, εomdh)-hard, and if the proof system π is (tD, tsim, εzk)-zero
knowledge, then for every tR∗-time deterministic receiver R∗,

Pr [(h, ψ) 
∈ GoodHΨR∗,ε] ≤ ε′

for the probability going over random h in (G)qH1 , random ψ in {0, 1}n2×qH2 ,
where tR∗ = min{tomdh, tD} · (1 + κ(nr+1)

ε )−1 − tsim, ε′ = εomdh+εzk

1−(nr+1)e−κ , and

N = qH1 · (1 + κ(nr+1)
ε ).

We will not show the detailed proof of this lemma because it is a simple ex-
tension of the proof of Lemma 1. Intuitively, if there exists r∗ s.t. R∗ distin-
guishes H2

(
H1(r∗), (H1(r∗))k

)
from random u in {0, 1}n2, then R∗ must have

queried H1 on r∗ and H2 on the pair
(
H1(r∗), (H1(r∗))k

)
. We can use the extrac-

tor algorithm Ext as in the security proof of Theorem 1 for malicious receiver
to extract

(
r∗, H1(r∗), (H1(r∗))k

)
, and add it to the set R′ containing triples of
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(
r, H1(r), (H1(r))k

)
. As in the proof of Lemma 1, we iterate this procedure until

|X | > nr and we break the One-More Gap DH assumption. �

Let the randomness γ used by R̄ be the random vector h and ψ, as well as the
random key k in Lemma 2, ordered by R∗’s hash queries and its interaction with
real-world sender S, then Theorem 2 is immediately implied by Lemma 2.

5 Set Intersection with Data Transfer

A natural generalization of the set intersection protocol problem is for the receiver
not only to learn which of its items (r1, . . . , rnr ) is shared with the sender, but in
case an item is shared, the receiver would receive some data which the sender asso-
ciates with this item. In other words, consider sender’s input (s1, . . . , sns) as a set
of (distinct) indexes, denoted (sID1, . . . , sIDns), where each index sIDi is accompa-
nied by some data entryDi. The receiver inputs is a set of indexes (rID1, . . . , rIDnr),
and the goal of the protocol is to transfer all data entries Di s.t. sIDi = rIDj for
some j ∈ {1, . . . , nr}. More precisely, the receiver should compute a sequence
(D′1, . . . , D

′
nr

) s.t. for each j, D′j = Di if rIDj = sIDi for some i, and D′j =⊥
otherwise, while the sender learns nothing from the protocol (except of the size nr
of the receiver’s query set, which we treat as a public parameter).

Clearly, Set Intersection with Data Transfer is a generalization of the set inter-
section problem. It is also a generalization of the “Keyword” Oblivious Transfer
problem [FIPR05]: Keyword OT is the same problem restricted so that the re-
ceiver has only one query rID. Conversely, Set Intersection with Data Transfer
can be thought of as a (nr, ns)-Keyword-OT, where the receiver has nr queries
and ns is the size of the sender’s database. One can consider a stronger ver-
sion of this problem, corresponding to the adaptive keyword OT [OK04], de-
fined similarly as adaptive OT [NP99], in which the receiver R can choose the
nr items (rID1, . . . , rIDnr) adaptively, i.e. the j-th query rIDj is determined by
(D′1, . . . , D

′
j−1) where D′i = Dl if rIDi = sIDl, and D′i =⊥ otherwise.

Construction of Set Intersection with Data Transfer Protocol. Let sSet = {(sIDi,
Di)}i=1,...,ns and rSet = {rIDi}i=1,...,nr . As described above, Set Intersection
with Data Transfer protocol is a secure computation of the functionality FSIwDT :
(sSet, rSet) → (⊥, {Di | ∃ (sIDi, Di) ∈ sSet ∧ ∃ rIDj ∈ rSet ∧ sIDi = rIDj}),
where ns and nr are the public parameters. The adaptive variant of the FSIwDT

functionality, called FASIwDT on the public parameters ns and nr and S’s private
input sSet, allows R to make nr adaptive queries on rIDj and get back (1, Di) if
∃ (sIDi, Di) ∈ sSet ∧ sIDi = rIDj); and (0,⊥) otherwise. We show a construction
of a secure computation of the functionality FASIwDT in Figure 3. The idea of
constructing this protocol is the same as the constructing our set intersection
protocol in Section 4. In addition to the unpredictable function fk(x) = (H1(x))k

for H1 : {0, 1}n1 → G being a hash function, and G being a multiplicative
group of order q, in which we assume the One-More Non-Adaptive Gap DH
assumption holds, we need the hash function H2 to take one more bit as input,
i.e. H2 : G2×{0, 1} → {0, 1}n2. Both H1 and H2 are modeled as random oracle.
tag and data are bit values 0 and 1 respectively.
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S’s private input: {(sIDi, Di)}i=1,...,ns R’s private input: {rIDi}i=1,...,nr

k ← Zq

for i = 1, . . . , n
ui ← H2(H1(sIDi), (H1(sIDi))

k, tag) for j = 1, . . . , nr

vi ← H2

(
H1(sIDi), (H1(sIDi))

k, data
)

hj = H1(rIDj)
ei ← vi ⊕Di αj ← Zq, yj ← (hj)

αi(y1,...,ynr )��∀j=1,...,nr zj ← (yj)
k

π←PoK
{
k

∣∣∀j=1,...,nr zj =(yj)
k
}
(z1,...,znr ), π ��

Abort if π doesn’t verify.{(ui,ei)}i=1,...,ns ��
for j = 1, . . . , nr

wj ← (zj)
1/αj , u′

j ← H2(hj , wj , tag)
if ∃ i, s.t. ui = u′

j

v′
j ← H2(hj , wj , data), D′

j ← v′
j ⊕ ei

else D′
j ←⊥

output (D′
1, . . . , D

′
qt

)

Fig. 3. Illustration of the Set Intersection with Data Transfer Protocol

As in the set intersection protocol in Figure 2, the receiver here in the Set
Intersection with Data Transfer protocol illustrated in Figure 3 also commits
to all its queries in its first message (y1, . . . , ynr). This follows from the same
argument as Theorem 2 in Section 4.1.

Theorem 3. If the (N,Q)-One-More (Non-Adaptive) Gap DH problem is hard,
and if the proof system π is a zero-knowledge proof of knowledge, then the Set
Intersection with Data Transfer Protocol in Figure 3 is a secure computation of
the Adaptive Set Intersection with Data Transfer functionality FASIwDT in the
random oracle model.

Proof idea: For malicious sender, the proof is exactly the same as in the
proof of Theorem 1; For malicious receiver, simulator SIMr sets ui and ei at
random in {0, 1}n2, then it controls the hash functions H1 and H2 and extracts
each rIDj as how the simulator does in the proof of Theorem 1. Then SIMr

sends rIDj to FASIwDT, and gets back either (1, D′j) or (0,⊥). If the answer is
(0,⊥), then SIMr sets H2(H1(rIDj), (H1(rIDj))k, tag) as a random number in
{0, 1}n2 different from all the ui’s. Otherwise, if the answer is (1, D′j), SIMr sets
H2(H1(rIDj), (H1(rIDj))k, tag) to some ui that has not been picked before, and
H2(H1(rIDj), (H1(rIDj))k, data) = ei⊕D′j. By similar analysis as in the proof of
Theorem 1, the malicious receiver’s views in the real game and in the interaction
with SIMr are indistinguishable.
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Abstract. An identity-based encryption (IBE) scheme can greatly reduce the
complexity of sending encrypted messages. However, an IBE scheme necessarily
requires a private-key generator (PKG), which can create private keys for clients,
and so can passively eavesdrop on all encrypted communications. Although a dis-
tributed PKG has been suggested as a way to mitigate this key escrow problem
for Boneh and Franklin’s IBE scheme, the security of this distributed protocol
has not been proven. Further, a distributed PKG has not been considered for any
other IBE scheme.

In this paper, we design distributed PKG setup and private key extraction pro-
tocols for three important IBE schemes; namely, Boneh and Franklin’s BF-IBE,
Sakai and Kasahara’s SK-IBE, and Boneh and Boyen’s BB1-IBE. We give special
attention to the applicability of our protocols to all possible types of bilinear pair-
ings and prove their IND-ID-CCA security in the random oracle model against
a Byzantine adversary. Finally, we also perform a comparative analysis of these
protocols and present recommendations for their use.

1 Introduction

In 1984, Shamir [2] introduced the notion of identity-based cryptography (IBC) as an
approach to simplify public-key and certificate management in a public-key infrastruc-
ture (PKI) and presented an open problem to provide an identity-based encryption (IBE)
scheme. After seventeen years, Boneh and Franklin [3] proposed the first practical and
secure IBE scheme (BF-IBE) using bilinear maps. After this seminal work, in the last
few years, significant progress has been made in IBC (for details, refer to a recent book
on IBC [4] and references therein).

In an IBC system, a client chooses an arbitrary string such as her e-mail address to be
her public key. With a standardized public-key string format, an IBC scheme completely
eliminates the need for public-key certificates. As an example, in an IBE scheme, a
sender can encrypt a message for a receiver knowing just the identity of the receiver
and importantly, without obtaining and verifying the receiver’s public-key certificate.
Naturally, in such a system, a client herself is not capable of generating a private key
for her identity. There is a trusted party called a private-key generator (PKG) which
performs the system setup, generates a secret called the master key and provides private

� An extended version of this paper is avaiable [1].
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keys to clients using it. As the PKG computes a private key for a client, it can decrypt
all of her messages passively. This inherent key escrow property asks for complete trust
in the PKG, which is difficult to find in many realistic scenarios.

Importantly, the amount of trust placed in the holder of an IBC master key is far
greater than that placed in the holder of the private key of a certifying authority (CA) in a
PKI. In a PKI, in order to attack a client, the CA has to actively generate a fake certificate
for the client containing a fake public key. In this case, it is often possible for the client
to detect and prove the malicious behaviour of the CA. The CA cannot perform any
passive attack; specifically, it cannot decrypt a message encrypted for the client using
a client-generated public key and it cannot sign some document for the client, if the
verifier gets a correct certificate from the client. On the other hand, in IBC, 1) knowing
the master key, the PKG can decrypt or sign the messages for any client, without any
active attack and consequent detection, 2) the PKG can make clients’ private keys public
without any possible detection, and 3) in a validity-period-based key revocation system
[3], bringing down the PKG is sufficient to bring the system to a complete halt (single
point of failure), once the current validity period ends. Therefore, the PKG in IBC needs
to be far more trusted than the CA in a PKI. This has been considered as a reason for
the slow adoption of IBC schemes outside of closed organizational settings.

Boneh and Franklin [3] suggest distributing a PKG in their BF-IBE scheme to solve
these problems. In an (n, t)-distributed PKG, the master key is distributed among n
PKG nodes such that a set of nodes of size t or smaller cannot compute the master key,
while a client extracts her private key by obtaining private-key shares from any t + 1
or more nodes; she can then use the system’s public key to verify the correctness of her
thus-extracted key. Boneh and Franklin [3] propose verifiable secret sharing (VSS) [5]
of the master key among multiple PKGs to design a distributed PKG and also hint
towards a completely distributed approach using the distributed (shared) key generation
(DKG) schemes of Gennaro et al. [6]; however, they do not provide a formal security
model and a proof. Further, none of the IBE schemes defined after [3] consider the
design of a distributed PKG.

Although various proposed practical applications using IBE, such as pairing-based
onion routing [7] or verifiable random functions from identity-based key encapsula-
tion [8], require a distributed PKG as a fundamental need, there is no distributed PKG
available for use yet. This practical need forms the motivation of this work.

Related Work. Although we are defining protocols for IBE schemes, as we are concen-
trating on distributed cryptographic protocols and due to space constraints, we do not
include a comprehensive account of IBE. We refer readers to [9] for a detailed discus-
sion on the various IBE schemes and frameworks defined in the literature. Pursuant to
this survey, we work in the random oracle model for efficiency and practicality reasons.

None of the IBE schemes except BF-IBE considered distributed PKG setup and key
extraction protocols in their design. Recently, Geisler and Smart [10] defined a dis-
tributed PKG for Sakai and Kasahara’s SK-IBE [11]; however, their solution against
a Byzantine adversary has an exponential communication complexity and a formal
security proof is also not provided. We overcome both of these barriers in our dis-
tributed PKG for SK-IBE: our scheme is secure against a Byzantine adversary and has



438 A. Kate and I. Goldberg

the same polynomial-time communication complexity as their scheme, which is secure
only against an honest-but-curious adversary; we also provide a formal security proof.

Other than [10], there have been a few other efforts in the literature to counter the in-
herent key escrow and single point of failure issues in IBE. Al-Riyami and Paterson [12]
introduce certificateless public-key cryptography (CL-PKC) to address the key escrow
problem by combining IBC with public-key cryptography. Their elegant approach, how-
ever, does not address the single point of failure problem. Although it is possible to solve
the problem by distributing their PKG using a VSS (which employs a trusted dealer to
generate and distribute the key shares), which is inherently cheaper than a DKG-based
PKG by a linear factor, it is impossible to stop a dealer’s active attacks without completely
distributed master-key generation. Further, as private-key extractions are less frequent
than encryptions, it is certainly advisable to use more efficient options during encryp-
tion rather than private-key extraction. Finally, with the requirement of online access
to the receiver’s public key, CL-PKC becomes ineffective for systems without continu-
ous network access, where IBC is considered to be an important tool. Lee et al. [13] and
Gangishetti et al. [14] propose variants of the distributed PKG involving a more trustwor-
thy key generation centre (KGC) and other key privacy authorities (KPAs). As observed
by Chunxiang et al. [15] for [13], these approaches are, in general, vulnerable to passive
attack by the KGC. In addition, the trust guarantees required by a KGC can be unattain-
able in practice. Goyal [16] reduces the required trust in the PKG by restricting its abil-
ity to distribute a client’s private key. This does not solve the problem of single point of
failure. Further, the PKG in his system still can decrypt the clients’ messages passively,
which leaves a secure and practical implementation of distributed PKGs wanting.

Threshold versions of signature schemes obtained from some IBE schemes using the
Naor transform have been proposed and proved previously [17,18]. However, these so-
lutions do not work for the corresponding IBE scheme. This is due to the inherent secret
nature of a client’s private keys and corresponding shares as compared to the inherent
public nature of signatures and corresponding signature shares. While designing IBE
schemes with a distributed PKG, we have to make sure that a PKG node cannot derive
more information than the private-key share it generates for a client and that private-key
shares are not available in public as commitments.

Our Contributions. We present distributed PKGs for all three important IBE frame-
works: namely, full-domain-hash IBEs, exponent-inversion IBEs and commutative-
blinding IBEs [9]. We propose distributed PKG setups and distributed private-key
extraction protocols for BF-IBE [3], SK-IBE [11], and Boneh and Boyen’s (modified)
BB1-IBE [9,19] schemes. The novelty of our protocols lies in achieving the secrecy
of a client private key from the generating PKG nodes without compromising the effi-
ciency. We realize this with an appropriate use of non-interactive proofs of knowledge,
pairing-based verifications, and DKG protocols with and without the uniform random-
ness property. Based on the choice of the DKG protocol, our distributed PKGs can work
in the synchronous or asynchronous communication model. In terms of feasibility, we
ensure that our protocols work for all three pairing types defined by Galbraith et al. [20].

We prove the adaptive chosen ciphertext security (IND-ID-CCA) of the defined
schemes in the random oracle model. Interestingly, compared to the security proofs
for the respective IBE schemes with a single PKG, there are no additional security
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reduction factors in our proofs, even though the underlying DKG protocol used in the
distributed PKGs does not provide a guarantee about the uniform randomness for the
generated master secrets. To the best of our knowledge, there is no threshold cryp-
tographic protocol available in the literature where a similar tight security reduction
has been proven while using a DKG without the (more expensive) uniform random-
ness property. Finally, using operation counts, key sizes, and possible pairing types, we
compare the performance of three distributed PKGs we define.

2 Preliminaries

2.1 Cryptographic Background

Bilinear Pairings. For three cyclic groups G, Ĝ, and GT (all of which we shall write
multiplicatively) of the same prime order p, an admissible bilinear pairing e is a map
e : G× Ĝ → GT with the bilinearity, non-degeneracy and admissibility properties. For
a detailed mathematical discussion of bilinear pairings refer to [21]. We consider all
three types of pairings [20] for prime order groups: namely, type 1, 2, and 3. In type 1 or
symmetric pairings, an isomorphismφ : Ĝ → G as well as its inverseφ−1 are efficiently
computable. In type 2 pairings, only the isomorphism φ, but not φ−1, is efficiently
computable. In type 3 pairings, neither φ nor φ−1 can be efficiently computed. The
efficiency of the pairing computation improves from type 1 to type 2 to type 3 pairings.
For a detailed discussion of the performance aspects of pairings refer to [20,22].

Non-interactive Proofs of Knowledge. As we assume the random oracle model in
the paper, we can use non-interactive zero-knowledge proofs of knowledge (NIZKPK)
based on the Fiat-Shamir methodology [23]. In particular, we use a variant of NIZKPK
of a discrete logarithm (DLog) and one for proof of equality of two DLogs.

We employ a variant of NIZKPK of a DLog where given a DLog commitment
(C〈g〉(s) = gs) and a Pedersen commitment [24] (C〈g,h〉(s, r) = gshr) to the same
value s for generators g, h ∈ G and s, r ∈ Zp, a prover proves that she knows s and r
such that C〈g〉(s) and C〈g,h〉(s, r). We denote this proof as

NIZKPK≡Com(s, r, C〈g〉(s), C〈g,h〉(s, r)) = π≡Com ∈ Z
3
p. (1)

It is nearly equivalent to proving knowledge of two DLogs separately.
We use another NIZKPK (proof of equality) of discrete logs [25] such that given

commitments C〈g〉(s) = gs and C〈h〉(s) = hs, a prover proves equality of the associated
DLogs. We denote this proof as

NIZKPK≡DLog(s, C〈g〉(s), C〈h〉(s)) = π≡DLog ∈ Z
2
p. (2)

Note that g and h can belong two different groups of the same order. Refer to the
extended version of the paper [1] for the descriptions of the above proofs.

There exists an easier way to prove this equality of DLogs if a pairing between the
groups generated by g and h is available. Using a method due to Joux and Nguyen [26]
to solve the decisional Diffie-Hellman (DDH) problem over pairing-friendly groups,

given gx and hx
′

the verifier checks if e(g, hx
′
) ?= e(gx, h). However, when using a type
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3 pairing, in the absence of an efficient isomorphism between G and Ĝ, if both g and h
belong to the same group then the pairing-based scheme does not work. NIZKPK≡DLog
provides a completely practical alternative there.

2.2 Assumptions

System Assumptions. Except for the steps involving DKG in some form, all other steps
in our distributed PKG protocols are independent of the communication model used. As
distributedness of PKG is important in IBC outside closed organizational settings, we
suggest the asynchronous communication model as it closely models the Internet. In
particular, we follow the system model of the DKG protocol in [27]. In a synchronous
communication network, it is straightforward to replace this asynchronous DKG with a
more efficient protocol such as the Joint Feldman DKG (JF-DKG) [28].

We assume a standard t-Byzantine adversary in a system with n ≥ 3t + 1 nodes
P1, P2, . . . , Pn, where any t nodes are compromised or crashed by the adversary. In the
synchronous communication model, the above resiliency bound becomes n ≥ 2t + 1.
Further, when the communication model is synchronous, we assume a rushing adver-
sary. It can wait for the messages of the uncorrupted players to be transmitted, then
decide on its computation and communication for that round, and still get its messages
delivered to the honest parties on time. The adversary is also static as all of the efficient
VSS and DKG schemes that we use are proved secure only against a static adversary,
which can choose its t compromisable nodes before a protocol run. They are not con-
sidered secure against an adaptive adversary because their security proofs do not go
through when the adversary can corrupt nodes adaptively. [28, §4.4] Canetti et al. [29]
presented a DKG scheme provably secure against adaptive adversaries with at least
two more communication rounds as compared to JF-DKG. Due to the inefficiency of
adaptive (provably) secure DKG protocols, we stick to protocols provably secure only
against a static adversary. However, it possible to easily use the DKG protocol in [29]
and obtain security against the adaptive adversary.

Cryptographic Assumptions. Our adversary is computationally bounded with a se-
curity parameter κ. We assume an instance of a pairing framework e of groups G, Ĝ

and GT , whose common prime order p is such that the adversary has to perform 2κ

operations to break the system. Let G = 〈e,G, Ĝ,GT 〉. Following [9], we work in the
random oracle model for efficiency reasons. For the security of the IBE schemes, we use
the bilinear Diffie-Hellman (BDH) [30] and bilinear Diffie-Hellman inversion (BDHI)
[31,32] assumptions. Here, we recall their definitions for asymmetric pairings from [9].

BDH Assumption: Given a tuple (g, ĝ, ga, ĝa, gb, ĝc) in a bilinear group G, the BDH
problem is to compute e(g, ĝ)abc. The BDH assumption then states that it is infeasible
to solve a random instance of the BDH problem, with non-negligible probability, in
time polynomial in the size of the problem instance description.

BDHI Assumption: Given two tuples (g, gx, gx
2
, . . . , gx

q

) and (ĝ, ĝx, ĝx
2
, . . . , ĝx

q

) in
a bilinear group G, the q-BDHI problem is to compute e(g, ĝ)1/x. The BDHI
assumption for some polynomially bounded q states that it is infeasible to solve a ran-
dom instance of the q-BDHI problem, with non-negligible probability, in time polyno-
mial in the size of the problem instance description.
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2.3 Distributed Computation

We next describe the distributed computation primitives that are required to design our
distributed PKGs in an network of n nodes with a t-limited Byzantine adversary. Note
that these distributed computation primitives are the efficient versions of the their orig-
inal forms in [33,34,35,28,36,27] that utilize the presence of random oracles and the
pairing-based DDH problem solving technique [26].

DKG over Zp. Pedersen [24] introduced the concept of DKG and developed a DKG
protocol. Unlike VSS, where a dealer chooses a secret and distributes its shares among
the nodes, DKG requires no trusted dealer. In an (n, t)-DKG protocol over Zp, a set of
n nodes generates an element s ∈ Zp in a distributed fashion with its shares si ∈ Zp

spread over the n nodes such that any subset of size greater than a threshold t can
reveal or use the shared secret, while smaller subsets cannot. We mandate the following
correctness and secrecy properties for a DKG protocol.

Correctness (DKG-C). There exists an efficient algorithm that on input shares from
2t + 1 nodes and the public information, outputs the same unique value s, even if
up to t shares are submitted by malicious nodes.

Secrecy (DKG-S). The adversary with t shares and the public parameters cannot com-
pute the secret s.

In the synchronous and asynchronous communication models, respectively JF-DKG in
[28] and the DKG protocol in [27] achieve these properties and are suitable for our use.
For ease of exposition, we avoid crash-recoveries used in the DKG protocol in [27].

The shared secret in the above DKG protocols may not be uniformly random; this
is a direct effect of using only DLog commitments having only computational secrecy.
(See [28, §3] for a possible adversary attack.) In many cases, we do not need a uni-
formly random secret key; the security of these schemes relies on the assumption that
the adversary cannot compute the secret. Most of our schemes similarly only require the
assumption that it is infeasible to compute the secret given public parameters and we
stick with DLog commitments those cases. However, we do indeed need a uniformly
random shared secret in few protocols. We mandate the following stronger correctness
and secrecy properties based on the DKG correctness and secrecy defined in [28, §4.1].

Strong Correctness (DKG-sC). Along with the DKG-C property, s is now uniformly
distributed in Zn.

Strong Secrecy (DKG-sS). No information about s can be learnt by the adversary ex-
cept for what is implied by the public parameters.

In this case, we use Pedersen commitments, but we do not employ the methodology
defined by Gennaro et al. [6], which increases the number of rounds in the protocol.
We observe that with the random oracle assumption at our disposal, the communica-
tionally demanding technique by Gennaro et al. can be replaced with the much simpler
computational non-interactive zero-knowledge proof of equality of committed values
NIZKPK≡Com described in Eq. 1. The simulator-based proof for the above is similar
to that in [28, §4.3] and is included in [1]. We represent DKG protocols using the DLog
and Pedersen commitments as DKGDLog and DKGPed respectively. For node Pi,
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(
C(s)
〈g〉, si

)
= DKGDLog(n, t, t̃, g, αi) (3)

(
C(s,s′)
〈g,h〉 , [C(s)

〈g〉,NIZKPK≡Com], si, s′i
)

= DKGPed(n, t, t̃, g, h, αi, α′
i) (4)

Here, t̃ is the number of VSS instances to be chosen (t < t̃ ≤ 2t + 1), g, h ∈ G

are commitment generators and αi, α
′
i ∈ Zp are respectively a secret and random-

ness shared by Pi. For ψ, ψ′ ∈ Zp[x] of degree t with ψ(0) = s and ψ′(0) = s′,
C(s)
〈g〉 = [gs, gψ(1), · · · , gψ(n)] and C(s,s′)

〈g,h〉 = [gshs
′
, gψ(1)hψ

′(1), · · · , gψ(n)hψ
′(n)] are

respectively DLog and Pedersen commitment vectors. The optional NIZKPK≡Com is

a vector of proofs that the entries of C(s)
〈g〉 and C(s,s′)

〈g,h〉 commit to the same values.
In the most basic form of DKG, nodes generate shares of a secret z chosen jointly

at random from Zp. Here, every node generates a random ri ∈ Zp and shares that
using the DKG protocol with DLog or Pedersen commitments as DKG(n, t, t̃ = t +
1, g, [h], ri, [r′i]) where the generator h and randomness r′i are only required if Pedersen
commitments are used. We represent the corresponding protocols as follows:

(
C(z)
〈g〉, zi

)
= RandomDLog(n, t, g) (5)

(
C(z,z′)
〈g,h〉 , [C(z)

〈g〉 ,NIZKPK≡Com], zi, z′i
)

= RandomPed(n, t, g, h). (6)

Distributed Addition over Zp. Let α, β ∈ Zp be two secrets shared among n nodes
using the DKG protocol. Let polynomials f(x), g(x) ∈ Zp[x] be the respectively asso-
ciated degree-t polynomials and let c ∈ Zp be a non-zero constant. Due to the linearity
of Shamir’s secret sharing [37], a node Pi with shares αi and βi can locally generate
shares of α+β and cα by computing αi+βi and cαi, where f(x)+g(x) and cf(x) are
the respective polynomials. f(x) + g(x) is random if either one of f(x) or g(x) is, and
cf(x) is random if f(x) is. Commitment entries for the resultant shares respectively are(
C(α+β)
〈g〉

)
i
=

(
C(α)
〈g〉

)
i

(
C(β)
〈g〉

)
i

and
(
C(cα)
〈g〉

)
i
=

(
C(α)
〈g〉

)c
i
.

Distributed Multiplication over Zp. Local distributed multiplication of two shared se-
crets α and β looks unlikely. We use a distributed multiplication protocol against a com-
putational adversary by Gennaro et al. [36, §4]. However, instead of their interactive
zero-knowledge proof, we utilize the pairing-based DDH problem solving technique
to verify the correctness of the product value shared by a node non-interactively. For
shares αi and βi with DLog commitments gαi and ĝβi , given a commitment gαiβi of

the shared product, other nodes can verify its correctness by checking if e(gαi , ĝβi) ?=
e(gαiβi , ĝ) provided the groups of g and ĝ are pairing-friendly. We observe that it is also
possible to perform this verification when one of the involved commitments is a Peder-
sen commitment. However, if both commitments are Pedersen commitments, then we
have to compute DLog commitments for one of the values and employ NIZKPK≡Com
to prove its correctness in addition to using the pairing-based verification. In such a
case, the choice between the latter technique and the non-interactive version of zero-
knowledge proof suggested by Gennaro et al. [36] depends upon implementation effi-
ciencies of the group operation and pairing computations.
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In our IBC schemes, we always use the multiplication protocol with at least one
DLog commitment. We denote the multiplication protocol involving two DLog com-
mitments as MulDLog and the one involving a combination of the two types of commit-
ments as MulPed. For the protocol correctness, along with recoverability to a unique
value (say s), protocol Mul also requires that s = αβ. For the protocol secrecy, along
with the secrecy of αβ, the protocol should not provide any additional information
about the individual values of α or β once αβ is reconstructed.(

C(αβ)
〈g∗〉 , (αβ)i

)
= MulDLog(n, t, g∗,

(
C(α)
〈g〉 , αi

)
,
(
C(β)
〈ĝ〉 , βi

)
) (7)

(
C(αβ,αβ′)
〈ĝ,ĥ〉 , (αβ)i, (αβ′)i

)
= MulPed(n, t, ĝ, ĥ,

(
C(α)
〈g〉 , αi

)
,
(
C(β,β′)
〈ĝ,ĥ〉 , βi, β

′
i

)
) (8)

For MulDLog, g∗ = g or ĝ. For MulPed, without loss of generality, we assume that β
is distributed with the Pedersen commitment. If instead α uses Pedersen commitment,
then the Pedersen commitment groups for (αβ) change to g and h instead of ĝ and ĥ.

Briefly, the protocol works as follows. Every honest node runs the DKG(n, t, 2t +
1, ĝ, [ĥ], αiβi, [αiβ′

i]) from Eq. 3 or 4. As discussed above, pairing-based DDH solving
is used to verify that the shared value is equal to the product of αi and βi.1 At the end,
instead of adding the subshares of the selected VSS instances, every node interpolates
them at index 0 to get the new share (αβ)i of αβ.

The above Mul protocols can be seamlessly extended for distributed computation of
any expression having binary products (BPs). For � shared secrets x1, · · · , x�, and their
DLog commitmentsC(x1)

〈g〉 , · · · , C(x�)
〈g〉 , shares of any binary productx′ =

∑m
i=1 kixaixbi

with known constants ki and indices ai, bi can be easily computed by extending the pro-
tocol in Eq. 7. We denote this generalization as follows.(

C(x′)
〈g∗〉, x

′
i

)
= MulBP(n, t, g∗, {(ki, ai, bi)},

(
C(x1)
〈g〉 , (x1)i

)
, · · · ,

(
C(x�)
〈g〉 , (x�)i

)
) (9)

Node Pj shares
∑

i ki(xai )j(xai)j . For a type 1 pairing, the correctness of the sharing

is verified by other nodes as e(g
∑

i ki(xai
)j(xbi

)j , g) ?=
∏
i e((g

(xai
)j )ki , g(xbi

)j ). For
type 2 and 3 pairings, NIZKPK≡DLog is used to provide DLog commitments to the
(xbi)j with generator ĝ, and then a pairing computation like the above is used. We use
MulBP in Eq. 9 during distributed private-key extraction in the BB1-IBE scheme in §3.5.

Sharing the Inverse of a Shared Secret. Given an (n, t)-distributed secret α, computing
shares of its inverse α−1 in distributed manner (without reconstructing α) can be done
trivially but inefficiently using a distributed computation ofαp−1; this involvesO(log p)
distributed multiplications. However, using a technique by Bar-Ilan and Beaver [33],
this can be done using just one Random and one Mul protocol. This protocol involves
interpolation of the product of the secret α with a distributed random element z. If z
is created using DLog commitments and is not uniformly random, the product αz may
leak some information about α. We avoid this by using Pedersen commitments while
generating z. For a generator g∗, we represent this protocol as follows:(

C(α−1)
〈g∗〉 , (α−1)i

)
= Inverse(n, t, ĝ, ĥ,

(
C(α)
〈g〉 , αi

)
) (10)

1 For type 3 pairings, a careful selection of commitment generators is required to make the
pairing-based verification possible.
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The protocol secrecy is the same as that of DKG except it is defined in the terms
of α−1 instead of α; for the correctness property, along with recoverability to a
unique value s, this protocol additionally mandates that s = α−1. For a dis-

tributed secret
(
C(α)
〈g〉 , αi

)
, protocol Inverse works as follows: Every node Pi runs(

C(z,z′)
〈ĝ,ĥ〉 , zi, z

′
i

)
= RandomPed(n, t, ĝ, ĥ) and computes shares of (w,w′) = (αz, αz′)

as
(
C(w,w′)
〈ĝ,ĥ〉 , wi, w

′
i

)
= MulPed(n, t, ĝ, ĥ,

(
C(α)
〈g〉 , αi

)
,
(
C(z,z′)
〈ĝ,ĥ〉 , zi, z

′
i

)
). It then sends

(wi, w′
i) to each node and interpolates w using the correct received shares. If w = 0,

repeats the above two steps, else locally computes (α−1)i = w−1zi. Finally, it com-

putes the commitment C(α−1)
〈g∗〉 using w−1, C(z,z′)

〈ĝ,ĥ〉 , and if required, any of the NIZKPK

techniques. A modified form of this protocol is used in the distributed PKG for SK-IBE
in §3.4.

3 Distributed PKG for IBE

We present distributed PKG setup and private key extraction protocols for three IBE
schemes: BF-IBE [3], SK-IBE [11], and modified BB1-IBE [9]. Each of these schemes
represents a distinct important category of an IBE classification defined by Boyen [38].
They respectively belong to full-domain-hash IBE schemes, exponent-inversion IBE
schemes, and commutative-blinding IBE schemes. The distributed PKG architectures
that we develop for each of the three schemes apply to every scheme in their respective
categories. Our above choice of IBE schemes is influenced by a recent identity-based
cryptography standard (IBCS) [19] and also a comparative study by Boyen [9], which
finds the above three schemes to be the most practical IBE schemes in their respective
categories. In his classification, Boyen [38] also includes another category for quadratic-
residuosity-based IBE schemes; however, none of the known schemes in this category
are practical enough to consider here.

The role of a PKG in an IBE scheme ends with a client’s private-key extraction and
the distributed form of the PKG does not affect the encryption and decryption steps of
IBE. Consequently, we define only the distributed PKG setup and private-key extraction
steps of the three IBE schemes under consideration. We recall the original encryption
and decryption steps in the extended version of the paper [1].

3.1 Bootstrapping Procedure

Each scheme under consideration here requires the following three bootstrapping steps.

1. Determine the node group size n and the security threshold t such that n ≥ 3t+ 1
(the asynchronous case) or n ≥ 2t+ 1 (the synchronous case).

2. Choose the pairing type to be used and compute groups G, Ĝ, and GT of prime
order p such that there exists a pairing e of the decided type with e : G× Ĝ → GT .
The security parameter κ determines the group order p.

3. Choose two generators g ∈ G and ĝ ∈ Ĝ required to generate public parameters as
well as the commitments. With a type 1 or 2 pairing, set g = φ(ĝ).
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Any untrusted entity can perform these offline tasks. Honest DKG nodes can verify the
correctness of the tuple (n, t) and confirm the group choices G, Ĝ, and GT as the first
step of their distributed PKG setup. If unsatisfied, they may decline to proceed.

3.2 Formal Security Model

An IBE scheme with an (n, t)-distributed PKG consists of the following components:

– A distributed PKG setup protocol for node Pi that takes the above bootstrapped
parameters n, t and G as input and outputs a share si of a master secret s and a
public-key vector Kpub of a master public key and n public-key shares.

– A distributed private key-extraction protocol for node Pi that takes a client identity
ID, the public key vector Kpub and the master-secret share si as input and outputs
a verifiable private-key share dIDi. The client computes the private key dID after
verifying the received shares dIDi.

– An encryption algorithm that takes a receiver identity ID, the master public key
and a plaintext message M as input and outputs a ciphertext C.

– A decryption algorithm for client with identity ID that takes a ciphertextC and the
private key dID as input and outputs a plaintext M .

Note that the above distributed PKG setup protocol does not require any dealer and
that we mandate verifiability for the private-key shares rather than obtaining robustness
using error-correcting techniques. During private-key extractions, we insist on minimal
interaction between clients and PKG nodes—transferring identity credentials from the
client at the start and private-key shares from the nodes at the end.

To define security against an IND-ID-CCA attack, we consider the following game
that a challenger plays against a polynomially bounded t-limited Byzantine adversary.

Setup: The adversary chooses to corrupt a fixed set of t nodes and the challenger sim-
ulates the remaining n− t nodes to run a distributed PKG setup protocol. At the end of
the protocol execution, the adversary receives t shares of a shared master secret for its t
nodes and a public key vector Kpub. The challenger knows the remaining n− t shares
and can derive the master secret as n− t ≥ t+ 1 in any communication setting.

Phase 1: The adversary adaptively issues private-key extraction and decryption queries
to the challenger. For a private-key extraction query 〈ID〉, the challenger simulates the
distributed key extraction protocol for its n − t nodes and sends verifiable private-key
shares for its n − t nodes. For a decryption query 〈ID, C〉, the challenger decrypts C
by generating the private key dID or using the master secret.

Challenger: The adversary chooses two equal-length plaintexts M0 and M1, and a
challenge identity IDch such that IDch does not appear in any private-key extraction
query in Phase 1. The challenger chooses b ∈R {0, 1} and encrypts Mb for IDch and
Kpub, and gives the ciphertext Cch to the adversary.

Phase 2: The adversary adaptively issues more private-key extraction and decryption
queries to the challenger except for key extraction query for 〈IDch〉 and decryption
queries for 〈IDch, Cch〉.
Guess: Finally, the adversary outputs a guess b′ ∈ {0, 1} and wins the game if b = b′.
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Security against IND-ID-CCA attacks means that, for any polynomially bounded
adversary, b′ = b with probability negligibly greater than 1/2.

3.3 Boneh and Franklin’s BF-IBE

BF-IBE [3] belongs to the full-domain-hash IBE family. In a BF-IBE setup, a PKG
generates a master key s ∈ Zp and a public key gs ∈ G, and derives private keys for
clients using their identities and s. A client with identity ID receives the private key
dID = (H1(ID))s = hsID ∈ Ĝ, where H1 : {0, 1}∗ → Ĝ∗ is a full-domain crypto-
graphic hash function. (Ĝ∗ denotes the set of all elements in Ĝ except the identity.)

Distributed PKG Setup. This involves generation of the system master key and the sys-
tem public-key tuple in the (n, t)-distributed form among n nodes. Each node Pi partic-
ipates in a common DKG over Zp to generate its share si ∈ Zp of the distributed master

key s. The system public-key tuple is of the form C(s)
〈g〉 = [gs, gs1 , · · · , gsn ]. We obtain

this using our RandomDLog protocol from Eq. 5 as
(
C(s)
〈g〉, si

)
= RandomDLog(n, t, g).

Private-key Extraction. As a client needs t+ 1 correct shares, it is sufficient for her to
contact any 2t+ 1 nodes (say set Q). The private-key extraction works as follows.

1. Once a client with identity ID contacts every node in Q, every honest node Pi ∈ Q
authenticates the client’s identity and returns a private-key share hsi

ID ∈ Ĝ over a
secure and authenticated channel.

2. Upon receiving t + 1 valid shares, the client can construct her private key dID as
dID =

∏
Pi∈Q(hsi

ID)λi ∈ Ĝ, where the Lagrange coefficient λi =
∏
Pj∈Q\{i}

j
j−i .

The client can verify the correctness of the computed private key dID by check-

ing e(g, dID)
?= e(gs, hID). If unsuccessful, she can verify the correctness of each

received hsi
ID by checking if e(g, hsi

ID)
?= e(gsi , hID). An equality proves the cor-

rectness of the share, while an inequality indicates misbehaviour by the node Pi
and its consequential removal from Q.

In asymmetric pairings, elements of G generally have a shorter representation than those
of Ĝ. Therefore, we put the more frequently accessed system public-key shares in G,
while the occasionally transferred client private-key shares belong to Ĝ. This also leads
to a reduction in the ciphertext size. However, for type 2 pairings, an efficient hash-to-
Ĝ is not available for the group Ĝ [20]; in that case we compute the system public key
shares in Ĝ and use the more feasible group G for the private key shares.

Proof of Security. Using the encryption and decryption steps of the FullIdent version
of BF-IBE [3, §4.2] along with the above distributed setup and key extraction protocols,
we prove the IND-ID-CCA security of BF-IBE with the (n, t)-distributed PKG ((n, t)-
FullIdent) based on the BDH assumption. Hereafter, qE , qD and qHi denote the number
of extraction, decryption and random oracle Hi queries respectively.

Theorem 1. Let H1, H2, H3 and H4 be random oracles. Let A1 be an IND-ID-CCA
adversary that has advantage ε1(κ) in running time t1(κ) against (n, t)-FullIdent
making at most qE , qD, qH1 , qH2 , qH3 , and qH4 queries. Then, there exists an
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algorithm B that solves the BDH problem in G with advantage roughly equal to
ε1(κ)/(qH1qH2(qH3 + qH4)) and running time O(t1(κ), qE , qD, qH1 , qH2 , qH3 , qH4).

For their proof, Boneh and Franklin define two additional public key encryption
schemes: BFBasicPub [3, Sec. 4.1], and its IND-CCA secure version BFBasicPubhy

[3, Sec. 4.2] and prove the security of FullIdent in the following proof sequence:
FullIdent → BFBasicPubhy → BFBasicPub → BDH. We use distributed versions
of these encryption schemes: (n, t)-BFBasicPubhy and (n, t)-BFBasicPub respec-
tively, and prove the proof sequence (n, t)-FullIdent → (n, t)-BFBasicPubhy →
(n, t)-BFBasicPub → BDH. For the complete proof, refer to the extended version
of the paper. [1]

3.4 Sakai and Kasahara’s SK-IBE

SK-IBE [11] belongs to the exponent-inversion IBE family. Here, the PKG generates
a master key s ∈ Zp and a public key gs ∈ G just as in BF-IBE. However, the key-
extraction differs significantly. Here, a client with identity ID receives the private key

dID = ĝ
1

s+H′
1(ID) ∈ Ĝ, where H ′

1 : {0, 1}∗ → Zp.

Distributed PKG Setup. The distributed PKG setup remains the exactly same as
that of BF-IBE, where si ∈ Zp is the master-key share for node Pi and C(s)

〈g〉 =
[gs, gs1 , · · · , gsn ] is the system public-key tuple.

Private-key Extraction. The private-key extraction for SK-IBE is not as straightforward
as that for BF-IBE. We modify the Inverse protocol described in §2.3; specifically, here a
private-key extracting client receiveswi from the node in step 3 and instead of nodes, the
client performs the interpolation. In step 4, instead of publishing, nodes forward ĝzi and
the associated NIZKPK≡Com directly to the client, which computes ĝz and then dID =
(ĝz)w

−1
. The reason behind this is to avoid possible key escrow if the node computes

both ĝz and w. Further, the nodes precompute another generator ĥ ∈ Ĝ for Pedersen

commitments using
(
C(r)
〈ĝ〉, ri

)
= RandomDLog(n, t, ĝ), and set ĥ =

(
C(r)
〈ĝ〉

)
0

= ĝr.

1. Once a client with identity ID contacts all n nodes the system, every node Pi au-

thenticates the client’s identity, runs
(
C(z,z′)
〈ĝ,ĥ〉 , zi, z

′
i

)
= RandomPed(n, t, ĝ, ĥ) and

computes sIDi = si +H ′
1(ID) and for 0 ≤ j ≤ n,

(
C(sID)
〈g〉

)
j

=
(
C(s)
〈g〉

)
j
gH

′
1(ID) =

gsj+H
′
1(ID). RandomPed makes sure that z is uniformly random.

2. Pi performs
(
C(w,w′)
〈ĝ,ĥ〉 , wi, w

′
i

)
= MulPed(n, t, ĝ, ĥ,

(
C(sID)
〈g〉 , sIDi

)
,
(
C(z,z′)
〈ĝ,ĥ〉 , zi, z

′
i

)
),

where w = sIDz = (s + H ′
1(ID))z and w′ = (s + H ′

1(ID))z′ and sends(
C(w,w′)
〈ĝ,ĥ〉 , wi

)
along with NIZKPK≡Com(wi, w′

i,
(
C(w)
〈ĝ〉

)
i
,

(
C(w,w′)
〈ĝ,ĥ〉

)
i
) to the

client, which upon receiving t + 1 verifiably correct shares (wi) reconstructs w
using interpolation. Ifw �= 0, then it computesw−1 or else starts again from step 1.

3. Node Pi sends
(
C(z)
〈ĝ〉

)
i

= ĝzi and C(z,z′)
〈ĝ,ĥ〉 along with

NIZKPK≡Com(zi, z′i,
(
C(z)
〈ĝ〉

)
i
,
(
C(z,z′)
〈ĝ,ĥ〉

)
i
) to the client.
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4. The client verifies
(
C(z)
〈ĝ〉

)
i

using the received NIZKPK≡Com, interpolates t + 1

valid ĝzi to compute ĝz and derives her private key (ĝz)w
−1

= ĝ
1

(s+H(ID)) .

This protocol can be used without any modification with any type of pairing. Further,
online execution of the RandomPed computation can be eliminated using batch pre-

computation of distributed random elements
(
C(z,z′)
〈ĝ,ĥ〉 , zi, z

′
i

)
.

Proof of Security. The security of SK-IBE with a distributed PKG ((n, t)-SK-IBE) is
based on the BDHI assumption.

Theorem 2. Let H ′
1, H2, H3 and H4 be random oracles. Let A1 be an IND-ID-CCA

adversary that has advantage ε1(κ) in running time t1(κ) against (n, t)-SK-IBE making
at most qE , qD, qH′

1
, qH2 , qH3 , and qH4 queries. Then, there exists an algorithm B that

solves the BDHI problem in G with advantage roughly equal to ε1(κ)/(qH′
1
qH2(qH3 +

qH4)) and running time O(t1(κ), qE , qD, qH′
1
, qH2 , qH3 , qH4).

Chen and Cheng [39] prove the security of the original SK-IBE protocol in a proof se-
quence: SK-IBE → SKBasicPubhy → SKBasicPub → BDHI, where SKBasicPub
and SKBasicPubhy [39, §3.2] are public key encryption schemes based on SK-IBE.
We prove Theorem 2 by showing (n, t)-SK-IBE → SKBasicPubhy . For the complete
proof, refer to the extended version of the paper [1].

3.5 Boneh and Boyen’s BB1-IBE

BB1-IBE belongs to the commutative-blinding IBE family. Boneh and Boyen [32]
proposed the original scheme with a security reduction to the decisional BDH assump-
tion [40] in the standard model against selective-identity attacks. However, with a prac-
tical requirement of IND-ID-CCA security, in the recent IBCS standard [19], Boyen
and Martin proposed a modified version, which is IND-ID-CCA secure in the random
oracle model under the BDH assumption. In [9], Boyen rightly claims that for practical
applications, it would be preferable to rely on the random-oracle assumption rather than
using a less efficient IBE scheme with a stronger security assumption or a weaker attack
model. We use the modified BB1-IBE scheme as described in [9] and [19].

In the BB1-IBE setup, the PKG generates a master-key triplet (α, β, γ) ∈ Z
3
p and an

associated public key tuple (gα, gγ , e(g, ĝ)αβ). A client with identity ID receives the
private key tuple dID = (ĝαβ+(αH′

1(ID)+γ)r, ĝr) ∈ Ĝ2.

Distributed PKG Setup. In [9], Boyen does not include the parameters ĝ and ĝβ

from the original BB1 scheme [32] in his public key, as they are not required during
key extraction, encryption or decryption (they are not omitted for security reasons).
In the distributed setting, we in fact need those parameters to be public for efficiency
reasons; a verifiable distributed computation of e(g, ĝ)αβ becomes inefficient other-
wise. To avoid key escrow of clients’ private-key components (ĝr), we also need ĥ

and C(β)

〈ĥ〉 ; otherwise, parts of clients’ private keys would appear in public commitment

vectors. As in SK-IBE in §3.4, this extra generator ĥ ∈ Ĝ is precomputed using the
RandomDLog protocol. Distributed PKG setup of BB1 involves distributed generation
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of the master-key tuple (α, β, γ). Distributed PKG node Pi achieves this using the fol-

lowing three RandomDLog protocol invocations:
(
C(α)
〈g〉 , αi

)
= RandomDLog(n, t, g),(

C(β)
〈ĝ〉 , βi

)
= RandomDLog(n, t, ĝ), and

(
C(γ)
〈g〉 , γi

)
= RandomDLog(n, t, g).

Here, (αi, βi, γi) is the tuple of master-key shares for node Pi. We also need C(β)

〈ĥ〉 ;

each node Pi provides this by publishing
(
C(β)

〈ĥ〉

)
i

= ĥβi and the NIZKPK≡DLog

(βi, ĝβi, ĥβi). The tuple
(
C(α)
〈g〉 , e(g, ĝ)

αβ , C(γ)
〈g〉 , C(β)

〈ĥ〉

)
forms the system public key,

where e(g, ĝ)αβ can computed from the public commitment entries. The vector C(β)
〈ĝ〉 ,

although available publicly, is not required for any further computation.

Private-key Extraction. The most obvious way to compute a BB1 private key seems
to be for Pi to compute αiβi + (αiH ′

1(ID) + γi)ri and provide the corresponding
ĝαiβi+(αiH

′
1(ID)+γi)ri , ĝri to the client, who now needs 2t+1 valid shares to obtain her

private key. However,αiβi+(αiH ′
1(ID)+γi)ri here is not a share of a random degree-

2t polynomial. The possible availability of ĝri to the adversary creates a suspicion about
secrecy of the master-key share with this method. For private-key extraction in BB1-
IBE with a distributed PKG, we instead use the MulBP protocol in which the client is
provided with ĝwi , where wi = (αβ + (αH ′

1(ID) + γ)r)i is a share of random degree
t polynomial. The protocol works as follows.

1. Once a client with identity ID contacts all n nodes the system, every node Pi au-

thenticates the client’s identity and runs
(
C(r,r′)
〈ĥ,ĝ〉 , [C

(r)

〈ĥ〉,NIZKPK≡Com], ri, ri
)

=

RandomPed(n, t, f, ĥ, ĝ). RandomPed makes sure that r is uniformly random.
2. Pi computes its share wi of w = αβ + (αH ′

1(ID) + γ)r using MulBP in Eq. 9.
(
C(w)
〈g∗〉, wi

)
= MulBP(n, t, f, g∗, desc,

(
C(α)
〈g〉 , αi

)
,
(
C(β)

〈ĥ〉 , βi

)
,
(
C(γ)
〈g〉 , γi

)
,
(
C(r)

〈ĥ〉, ri

)
).

Here, desc = {(1, 1, 2), (H ′
1(ID), 1, 4), (1, 3, 4)} is the description of the required

binary product under the ordering (α, β, γ, r) of secrets. To justify our choices
of commitment generators, we present the pairing-based verification in protocol

MulBP: e(gαiβi+(αiH
′
1(ID)+γi)ri , ĥ) ?= e(gαi , ĥβi)e((gαi)H

′
1(ID)gγi , ĥri). For type

2 and 3 pairings, g∗ = g, as there is no efficient isomorphism from G to Ĝ. For
type 1 pairings, we use g∗ = ĥ = φ−1(h). Otherwise, the resultant commitments
for w (which are public) will contain the private-key part gαβ+(αH′

1(ID)+γ)r.
3. Once the MulBP protocol has succeeded, Node Pi generates ĝwi and ĝri and sends

those to the client over a secure and authenticated channel.
4. The client generates her private key (ĝαβ+(αH′

1(ID)+γ)r, ĝr) by interpolating the
valid received shares. For type 1 and type 2 pairings, the client can use the pairing-
based DDH solving to check the validity of the shares. However, for type 3 pairings,
without an efficient mapping from Ĝ to G, pairing-based DDH solving can only be
employed to verify ĝwi . As a verification of ĝri , node Pi includes a NIZKPK≡DLog
(ri, ĥri , ĝri) along with ĝwi and ĝri .

As in SK-IBE in §3.4, online execution of the RandomDLog computation can be elimi-

nated using batch precomputation of distributed random elements
(
C(r)

〈ĥ〉, ri
)

.
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Proof of Security. Along with the above distributed setup and private-key extraction
protocols, we prove IND-ID-CCA security of BB1-IBE with the (n, t)-distributed PKG
((n, t)-BB1-IBE) based on the BDH assumption. To the best of our knowledge, an IND-
ID-CCA security proof for the modified BB1-IBE scheme has not been published yet.

Theorem 3. Let H ′
1, H2, H3 and H ′

4 be random oracles. Let A be an IND-ID-CCA
adversary that has advantage ε(κ) in running time t(κ) against (n, t)-BB1-IBE making
at most qE , qD, qH′

1
, qH2 , qH′

3
, and qH4 queries. Then, there exists an algorithm B

that solves the BDH problem in G with advantage roughly equal to ε(κ)/(qH′
1
qH′

3
) and

running time O(t(κ), qE , qD, qH′
1
, qH2 , qH′

3
, qH4).

For the proof, refer to the extended version of the paper [1].
Using a more expensive DKG protocol with uniformly random output, all of our

proofs would become relatively simpler. However, note that our use of DKG without
uniformly random output does not affect the security reduction factor in any proof.
This is something not achieved for the known previous protocols with non-uniform
DKG such as threshold Schorr signatures [28]. Further, we do not discuss the liveness
and agreement properties for our asynchronous protocols as liveness and agreement of
all the distributed primitives provides liveness and agreement for the distributed PKG
setup and distributed key extraction protocols. Finally, for simplicity of the discussion,
it would have been better to combine three proofs. However, that looks difficult, if not
impossible, as the distributed computation tools used in these distributed PKGs and the
original IBE security proofs vary a lot from a scheme to scheme.

Finally, observing the importance of proactiveness and a capability to handle group
dynamics in any practical system, we also discuss the proactive security and group mod-
ification primitives for our distributed PKGs in the extended version of the paper [1].

4 Comparing Distributed PKGs

In this section, we discuss the performance of the setup and key extraction protocols
of the above three distributed PKGs. For a detailed comparison of the encryption and
decryption steps of BF-IBE, SK-IBE and BB1-IBE, refer to [9]. The general recommen-
dations from this survey are to avoid SK-IBE and other exponent-inversion IBEs due to
their reliance on the strong BDHI assumption, and that BB1-IBE and BF-IBE both are
good, but BB1-IBE can be a better choice due to BF-IBE’s less efficient encryption.

Table 1 provides a detailed operation count and key size comparison of threedistributed
PKGs. We count DKG instances, pairings, NIZKPKs, interpolations and public and pri-
vate key sizes. We leave aside the comparatively small exponentiations and other group
operations. As mentioned in §3.5, for BB1-IBE, with pairings of type 1 and 2, there is a
choice that can be made between usingnNIZKPKs and 2n pairing computations. The ta-
ble shows the NIZKPK choice (the only option for type 3 pairings), and footnote b shows
where NIZKPKs can be traded off for pairings. An efficient algorithm for hash-to-Ĝ is
not available for type 2 pairing curves and we interchange the groups used for the public
key and client private-key shares. Footnote c indicates how that affects the key sizes.

In Table 1, we observe that the distributed PKG setup and the distributed private-
key extraction protocols for BF-IBE are significantly more efficient than those for
SK-IBE and BB1-IBE. Importantly, for BF-IBE, distributed PKG nodes can extract



Distributed Private-Key Generators for Identity-Based Cryptography 451

Table 1. Operation count and key sizes for distributed PKG setups and distributed private-key
extractions (per key)

BF-IBE SK-IBE BB1-IBE
Setup Extraction Setup Extraction Setup Extraction

Operation Count
Generator h or ĥ X � �
DKGa (precomputed) - 0 - 1P - 1P

DKG (online) 1D 0 1D 1P 3D 1D

Parings @PKG Node 0 0 0 2n 1b 2n

Parings @Client - 2(2t + 2) - 0 - 2nb

NIZKPK 0 0 0 2n nb 2nb

Interpolations 0 1 0 2 1 2
Key Sizes

PKG Public Key (n + 2)Gc (n + 3)G (2n + 3)G, (n + 2)Ĝ, (1)GT

Private-key Shares (2t + 1)Ĝc (3n)Zp, (3n + 1)Ĝ (2n)Zp
b, (2n)Ĝ

a For DKG, D indicates use of DLog commitments, while P indicates Pedersen commitments.
b For type 1 and 2 pairings, 2n extra pairings replace n NIZKPKs. Further, the 2n Zp elements

are omitted from the private-key shares.
c For type 2 parings, the groups used for the PKG public key and the private-key shares are

interchanged.

a key for a client without interacting with each other, which is not possible in the other
two schemes; both BB1-IBE and SK-IBE require at least one DKG instance for every
private-key extraction; the second required instance can be batch precomputed. There-
fore, for IBE applications in the random oracle model, we suggest the use of the BF-IBE
scheme, except in situations where private-key extractions are rare and efficiency of the
encryption step is critical to the system. For such applications, we suggest BB1-IBE as
the small efficiency gains in the distributed PKG setup and extraction protocols of SK-
IBE do not well compensate for the strong security assumption required. BB1-IBE is
also more suitable for type 2 pairings, where an efficient map-to-group hash functionH1

is not available. Further, BB1-IBE can also be proved secure in the standard model with
selective-identity attacks. For applications demanding security in the standard model,
our distributed PKG for BB1-IBE also provides a solution to the key escrow and single
point of failure problems, using pairings of type 1 or 2.

5 Concluding Remarks
We have designed and compared distributed PKG setup and private key extraction pro-
tocols for BF-IBE, SK-IBE, and BB1-IBE. We observed that the distributed PKG pro-
tocol for BF-IBE is the most efficient among all and we suggest its use when the system
can support its relatively costly encryption step. For systems requiring a faster encryp-
tion, we suggest the use of BB1-IBE instead. However, during every distributed private
key extraction, it requires a DKG and consequently, interaction among PKG nodes.
That being said, during private-key extractions, we successfully avoid any interaction
between clients and PKG nodes except the necessary identity at the start and key share
transfers at the end. Finally, each of the above schemes represents a separate IBE frame-
work and our designs can be applied to other schemes in those frameworks as well.
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Abstract. Anonymous credential system promise efficient, ubiquitous access to
digital services while preserving user privacy. However, their diffusion is impaired
by the lack of efficient revocation techniques. Traditional credential revocation
measures based on certificate revocation lists or online certification authorities
do not provide privacy and cannot be used in privacy-sensitive contexts. Existing
revocation techniques specifically geared towards anonymous credential systems
are more involved – for the credential issuer, users, as wells as credential con-
sumers – as users have to prove that their credential is still valid, e.g., not included
in a revocation list.

We introduce a novel, non-interactive technique to update issuer-controlled
attributes of anonymous credentials. Revocation is implemented by encoding the
validity time of a credential into one of these attributes. With the proposed proto-
col, credential issuers can periodically update valid credentials off-line and pub-
lish a small per-credential update value on a public bulletin-board. Users can later
download their values and re-validate their credentials to prove possession of a
valid credential for the current time period. Our solution outperforms all prior
solutions for credential revocation in terms of communication and computational
costs for the users and credentials consumers and the issuer’s effort is comparable
to the best prior proposals.

1 Introduction

The increasing number of ubiquitous digital services calls for efficient and pervasive
means of authentication. User-centric identity management solutions like for instance
Cardspace [1] do not only provide such an authentication mechanism, but also allow for
the exchange of user attributes. To promote a global deployment of such systems and
in order to maximize their benefit for democratic societies, authentication and autho-
rization systems must offer a good balance between security, privacy, and performance.
Anonymous credential systems as introduced by Chaum [24] offer strong authentica-
tion and the best possible privacy protection. The recent efficient realizations such as
idemix [15] and U-Prove [10] are well suited to be used in practice even when using
smart cards as authentication tokens [6].
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In an anonymous credential system, the credential issuer provides a user with cre-
dentials that certify her attributes and permissions. The issued credentials allow the
users in turn to perform transactions in which they disclose only the minimum amount
of information required to obtain a service. Moreover, credential issuers do not learn
which certified information are shown to which credential consumers, and issuers and
consumers cannot link any transactions.

When using credentials to access a service it is of course crucial to ensure their valid-
ity and the information they carry. In particular, the support for revocation is essential
for any credential or certification system, independent of what privacy protecting fea-
tures it offers. There are many reasons why a credential needs to be revoked. The user
might have lost her right to carry the credential, the secret key underlying the creden-
tial might have been compromised, or just because the attributes stated in the credential
became outdated. Also, sometimes the application scenario might require a rich revoca-
tion semantic where a credential might only need to be “partially revoked”: for instance,
an expired European passport can still be used to travel within Europe but not to travel
to the USA, or a driver’s license revoked because of speeding could still be valid to
prove the owner’s age or address. Thus the validity checks that need to be done and
therefore the means to use for revocation depend on the particular application scenario.

A possible solution to revocation in the case of non-anonymous credentials is to
“blacklist” all serial numbers of revoked credentials in a so-called certificate revocation
list [26] that can be queried on- or off-line. This solution does not work as such for
anonymous credentials, as revealing a unique serial number of a credential would vi-
olate the unlinkability requirement. However, the general principle of publishing a list
of all valid (or invalid) serial numbers can still work if, rather than revealing the serial
number of their credential, users leverage the minimum disclosure feature of anony-
mous credentials to prove that it is among the list of valid serial numbers, i.e., that this
number is not among the invalid ones. A number of protocols that work along these
lines have been proposed [8,12,13,30,33] where the solution by Nakanishi, Fujii, Hira
and Funabiki [30] seems to be the most elegant one.

A solution inspired by revocation lists is the use of so-called dynamic accumula-
tors [18,16]. Here, all valid serial numbers are accumulated (i.e., compressed) into a
single value that is then published. In addition, dynamic accumulators provide a mech-
anism that allows the user to prove that the serial number of her credential is con-
tained in the accumulated value. Whenever a credential is revoked, a new accumulator
value is published that no longer contains the revoked serial number. Accumulator based
schemes require, however, that users keep track of the changes to the accumulator to be
able to execute their validity proofs. Camenisch, Kohlweiss and Soriente [16] proposed
another accumulator where updates only require multiplications; moreover, computing
the credential update information for the users can be performed by any party as it
requires no secrets. They achieve this at the cost of a very large state, linear in the over-
all number of issued credentials. Moreover, accumulator-based solutions allow only to
invalidate a credential as a whole and do not enable a rich revocation semantic for sce-
narios where partial revocation is required.

A common drawback of the solutions described so far is that they all make proving
and verifying ownership of credentials less efficient (typically about a factor of 2 or
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worse), as not only possession of the credential has to be proven but also that it is still
valid w.r.t. the revocation list/accumulator.

Another solution to revocation of credentials is to limit their lifetime by means of an
expiration date and periodically re-issue non-revoked credentials. Here credentials are
made valid only for a specific period of time (epoch), such as, only for a week, a couple
of days, or hours, depending on the revocation requirements. This requires of course
that the credentials are re-issued periodically. As for anonymous credentials, issuing
is an interactive protocol between the user and the issuer, this puts quite a burden on
the infrastructure, not only in terms of bandwidth and computational power, but also in
terms of availability. Indeed, an issuing of credentials such as electronic ID cards does
typically not happen via the Internet but only in secured environments (as to protect the
signing key) and often involves physical interactions with the user such as visiting a
postal office.

In this paper we study to what extent existing credential systems allow for a non-
interactive update of credentials. The issuing protocol of an anonymous credential sys-
tems typically consists of a protocol between the user and the issuer at the end of which
the user gets a signature on a number of attributes, some of them chosen by and secret
to the user and some of them chosen by the issuer. The idea we follow here is that
the users and the issuer need to run an initialization protocol only once and thereafter
the issuer can just update some values and publish them. Users can then retrieve these
values and then recompute their credentials to make them valid again for the new time
period. In fact, the period for which a credential is valid is only one of the attributes
that a credential can hold; the issuer might want to update other attributes as well and
enable richer revocation semantic. Our solution has the advantage that the verifier does
not need to check any revocation lists and furthermore that the showing and verification
of credentials are as efficient as possible, i.e., there are no extra work or space incurred
by enabling revocation. Moreover the costs for updating credentials are minimal for
users and are comparable to other solutions for the issuer. In fact, the issuer can (pre-)
compute the update off-line and then periodically published the update values.

Performance and tradeoffs. Different applications have very diverse revocation require-
ments. The number of total users, the ratio of revoked users to unrevoked ones, the fre-
quency of credential use, and the speed with which revocation has to take effect are just
some of the parameters that influence the design of a revocation system for anonymous
credentials. In order for the system to scale, the issuer must be able to handle a large
number of users. At the same time, computational resources of user devices may be
limited.

Our solution does not support immediate revocation or very short epochs (e.g., one
hour) as it requires the issuer to provide credential updates for all non-revoked user.
Accumulator-based revocation solutions are better suited for short revocation epochs as
the issuer is not required to provide per-user updates, i.e., each non-revoked user can
update her own witness. However, in application scenarios with infrequent credential
usage such as the Belgian electronic identity card (eID) system with large number of
issued (2,25 million per year) and revoked users (375.000 per year)1 witness updates

1 See http://godot.be/eidgraphs
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become exorbitantly expensive, e.g., 10 minutes for the CL accumulator [18], according
to Lapon et al. [29].

While lacking the feature of immediate revocation, our solution only requires the
user to download a short public credential update value and allows for rich revocation
semantic at no additional cost for the show protocol. Hence, it is currently the most
suitable system for the large scale deployment of anonymous credential systems.

As validity period based revocation mechanisms cannot revoke credentials immedi-
ately, they can be combined with accumulator-based solutions for time-critical applica-
tions such as for instance passport control. In the example for the Belgian eID scenario,
one could set the validity period to a day and use accumulators for immediate revoca-
tion. Thus, users would have to process about 1000 revocation updates per day while
the computational load of the issuer to compute credential updates is still feasible. In
addition, for some less critical uses of the eID, the verifier might not have to check for
immediate revocation and hence relieve the user of the accumulator-proof in the show
protocol.

Organization. Instead of considering a whole credential system, we first isolate the
problem by looking at the core building block of many anonymous credential schemes,
i.e., a signature scheme with efficient protocols [19]. We recall this and other crypto-
graphic building blocks in Section 2. In particular we look at the issuing protocol of
these signatures. In Section 3 we propose a new mechanism for the issuing of such sig-
natures: it consists of an interactive part run once and a non-interactive part that can
be repeated arbitrarily many times and that allows the issuer to change the messages
(attributes) of the resulting signature to their current values. We give a definition of
these protocols and procedures and their security requirements in Section 3.1. We then
provide a sample construction of these protocols for a signature scheme based on bi-
linear maps in Section 3.2. In Section 4 we discuss how our new protocols can be used
to construct an anonymous credential system with efficient revocation and attribute up-
dates. Finally, in Section 5 we discuss for which other signature and credential schemes
similar constructions can be developed. We conclude in Section 6.

2 Preliminaries

In this section we recall the cryptographic tools used by our scheme. After discussing
efficient zero-knowledge proofs for prime order groups, we look at signature and com-
mitment schemes that operate in the same setting. In particular, aforementioned zero-
knowledge proofs will allow us to prove possession of a signature and to prove that a
blindly issued signature signs a committed messages.

2.1 Discrete-Logarithm-Based Zero-Knowledge Proofs for Prime Order Groups

In the common parameters model, we use several previously known results for prov-
ing statements about discrete logarithms, such as (1) proof of knowledge of a discrete
logarithm modulo a prime [32], (2) proof of knowledge of equality of some element
of representations different elements [25], (3) proof that a commitment opens to the
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product of two other committed values [21,23,9], and also (4) proof of the disjunction
or conjunction of any two of the previous [28].

When referring to the proofs above, we will follow the notation introduced by Ca-
menisch and Stadler [22] for various proofs of knowledge of discrete logarithms and
proofs of the validity of statements about discrete logarithms. For instance,

PK{(α, β, δ) : y = gαhβ ∧ ỹ = g̃αh̃δ}
denotes a “zero-knowledge Proof of Knowledge of integers α, β, and δ such that y =
gαhβ and ỹ = g̃αh̃δ holds” where y, g, h, ỹ, g̃, and h̃ are elements of some groups
G = 〈g〉 = 〈h〉 and G̃ = 〈g̃〉 = 〈h̃〉 that have the same order. (Note that the some
elements in the representation of y and ỹ are equal.) The convention is that variables in
parenthesis, such as “(α, β, δ)”, denote quantities of which knowledge is being proven,
while all other values are known to the verifier. For prime-order groups which include
all groups we consider in this paper, it is well known that there exists a knowledge
extractor which acts as a verifier and can extract these quantities from a successful
prover, if the latter can be rewinded. Also, these proofs can all be done efficiently (in
four rounds and O(k) communication, where k is a security parameter) by using the
transformation by Cramer, Damgård and MacKenzie [27].

2.2 CL-Signature Schemes

A CL-signature scheme CLS [19] extends a conventional signature scheme and consists
of five procedures (KGen, CLSig, CLSVer, CLSProof, CLSPrVer). The procedure KGen
generates the public and secret key of the signer, CLSig produces a signature σ on a
block of messages m1, . . . , mn on input the secret key, and CLSVer outputs 1 iff σ is
a valid signature on m1, . . . , mn w.r.t. the signer’s public key. Finally, (CLSProof ↔
CLSPrVer) is an interactive protocol where a user can prove to a verifier knowledge of
a valid signature on some message m1, . . . , mn such that the verifiers does not learn
any information about the signatures and messages apart from the set {mj}j∈R, where
R ⊂ {1 . . . n} is arbitrarily chosen by the user. The security requirements are that the
signature scheme be unforgeable and that the (CLSProof ↔ CLSPrVer) be a zero-
knowledge proof of knowledge.

Camenisch and Lysyanskaya have presented a scheme secure under the Strong RSA
assumption [19], one under the LRSW assumption [20], and one that is based on the
Boneh, Boyen and Shacham [7] group signature scheme under the Strong Diffie-Hellman
assumption [20]. In the following we described a variant of the latter that was proposed
and proved secure by Au, Susilo and Mu [2].

A CL-signature scheme based on the Au et al. signature scheme. The signature scheme
assumes a non-degenerate bilinear map ê : G×G→ GT of prime order q with genera-
tors h, h0, h1, . . . , hn, where n is a system parameter. The signer’s secret key is x ∈ Zq

while the public key is y = hx .
A signature on messages m1, . . . , mn ∈ Zq is a tuple (A, r, r̂, s) where r, s

$← Zq

are values chosen at random by the signer. The value r̂ ∈ Zq is a value that can be
chosen at random by the user in an interactive issuing protocol. For non-interactive
signature generation, i.e., the CLSig procedure, we assume that r̂ = 0. The original
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signature scheme aggregates r and r̂ into one value. We keep the two values separate
to ease exposition in the following protocols. The value A is computed by the signer as
A = (hhr+r̂

0 hm1
1 · · ·hmn

n )1/(x+s). A signature is verified by checking if ê(A, hsy) =
ê(hhr+r̂

0 hm1
1 · · ·hmn

n , h) holds.
We now show how to implement the (CLSProof ↔ CLSPrVer) protocol. In this

protocol the user proves knowledge of a signature on messages m1 . . . mn but only
reveals an arbitrary subset {mj}j∈R, R ⊂ {1 . . . n} to the verifier. Given a signature
(A, r, r̂, s) on messages m1 . . . , mn ∈ Zq , we want to prove that we indeed possess
such a signature. To this end, we need to augment the public key of the signature with
values u, v ∈ G such that logh u and logh v are unknown. Proving knowledge of a
signature can be done by choosing random values w, w′ $← Zq , computing Ã = Auw,
B = vwuw′

and executing the following proof of knowledge:

PK{(α, β, s, w, w′, {mj}j∈{1...n}\R, r′) : B = vwuw′ ∧ 1 = B−svαuβ ∧
ê(Ã, y)

ê(h
∏

j∈R h
mj

j , h)
= ê(Ã−suαhr′

0

∏

j∈{1...n}\R

h
mj

j , h)ê(u, y)w} ,

where r′ = r + r̂, α = sw, and β = sw′.
Let us explain this proof protocol. The first statement proves the prover’s knowledge

of values w and w′ such that B = vwuw′
. The next statement asserts the prover’s

knowledge of values α, β, and s such that α = sw and β = sw′. Let us consider the
last line. It asserts the prover’s knowledge of further values {mj}j∈{1...n}\R such that

ê(Ã, y) =ê(h
∏

j∈R

h
mj

j , h)ê(Ã−suαhr′
0

∏

j∈{1...n}\R

h
mj

j , h)ê(u, y)w

=ê((
uw

Ã
)shhr′

0

n∏

j=1

h
mj

j , h)ê(u, y)w

holds, where we have made use of the relation α = sw. We can further reformulate this
equation into the following one

ê(
Ã

uw
, y)ê((

Ã

uw
)s , h) = ê((

Ã

uw
)s+x , h) = ê(hhr′

0

n∏

j=1

h
mj

j , h) ,

where x is the secret key of the signer. Thus we must have

(
Ã

uw
)s+x = hhr′

0

n∏

j=1

h
mj

j ,

i.e., that the prover knows a signature (Ãu−w, r′, s) on the messages m1, . . . , mn.
It was proved by Au et al. [2] that the above signature is unforgeable under adaptively

chosen message attack if the Q-SDH assumption [7] holds, where Q is the number of
signature queries. The authors also showed that the associated proof of knowledge is
perfect honest-verifier zero-knowledge.
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2.3 Commitment Scheme

A commitment scheme is a two-phase scheme that allows a user to commit to a hidden
value, while preserving the ability of the user to reveal the committed value at a later
stage. The standard definition of a non-interactive commitment scheme consists of a
setup algorithm ComSetup, and an algorithm Com that is used both in the commit and
reveal stage. ComSetup(1k) outputs public parameters paramsCom for the commitment
scheme. Com(paramsCom, x, open) is a deterministic algorithm that computes C , a
commitment to x, using randomness open . One opens a commitment C by revealing x
and open and verifying that Com(paramsCom, x, open) = C .

A secure commitment scheme is hiding: the value committed to must remain undis-
closed until the reveal stage, and binding: the only value that may a commitment can be
opened to is the one that was chosen in the commit stage. In our protocols we make use
of a commitment scheme that is computationally binding and perfectly hiding:

Definition 1 (Computational Binding). For all probabilistic polynomial time (p.p.t.)
algorithms that on input paramsCom ← ComSetup(1k) output x, x′, open, open′, x 
=
x′, the probability that Com(paramsCom, x, open) = Com(paramsCom, x′, open′) is a
negligible function ν in k.

Definition 2 (Perfectly Hiding). Let Uk be the uniform distribution over the opening
values under public parameters paramsCom ← ComSetup(1k). A commitment scheme
is perfectly hiding if for all x 
= x′ the probability ensembles {Com(ComSetup(1k), x,
Uk)}k∈N and {Com(ComSetup(1k), x′, Uk)}k∈N are equal.

Pedersen commitments. We use the perfectly hiding commitment scheme proposed
by Pedersen [31], that is binding under the discrete logarithm (DL) assumption. For the
parameters paramsCom we will reuse generators u, v of a group G of prime order q from
the CL-signature scheme’s public key. These values fulfill the property that logu(v) is
unknown. A commitment C to x ∈ Zq is generated by choosing at random open $←
Zq and computing C = Com(paramsCom, x, open) = uxvopen . The commitment is
opened by revealing x and open .

In the issuing protocol we also use a generalized of Pedersen commitments computed
as C = hopen

0 hx1
1 · · ·hxn

n that allows to commit to multiple values.

3 Issue Protocol for CL-Signatures with Updates

We formalize the security properties required from a CL-signature scheme with updates,
and give an exemplary construction based on the Au et al. signature scheme.

3.1 Definitions

Let CLS = (KGen, CLSig, CLSVer, CLSProof, CLSPrVer) be a secure CL-signature
scheme and let C = (ComSetup, Com) be a secure commitment scheme. A blind issu-
ing and update scheme for CLS and C consists of five additional procedures SKeygen,
SObtSig, SIssSig, SIssUpd, and SObtUpd that are defined as follows.
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Let � be the number of blindly signed messages. We write m1..n as a shorthand for
m1, . . . , mn, similarly for m1..�,m�+1..n, open1..� and C1..�.

SKeygen(1k). This procedure combines the functions of KGen and ComSetup. On in-
put the security parameter k, the algorithm generates the secret and public keys
for the signature scheme and the parameters for the commitment scheme. It then
augments these keys with all the parameters needed for the issue, and update pro-
cedures. It outputs the augmented secret skI and public key pkI of the issuer. The
latter also includes the commitment parameters paramsCom.

SObtSig(pkI , m1..n, open1..�)↔ SIssSig(skI ,C1..�, m�+1..n) is a protocol between
the user and the issuer. Before running the protocol, the user commits to the mes-
sages m1, . . . , m� that are to be signed blindly. The opening information open1..�

is part of the user’s input, while the commitments C1..� are part of the issuer’s in-
put. The user’s part SObtSig outputs the signature σ on messages m1, . . . , mn, and
the issuer’s part SIssSig outputs the signature state stateσ that will be later used to
update signatures.

SIssUpd(skI , stateσ, m′
�+1..n) on input the state value stateσ for blinded messages

m1, . . . , m�, this procedure outputs a value updateσ that allows to obtain an up-
dated signature on messages m1, . . . , m�, m

′
�+1, . . . , m

′
n.

SObtUpd(pkI , m1..n, m′
�+1..n, σ, updateσ) combines the signature σ on messages

m1, . . . , mn (those for which the user ran the issuing protocol initially) and the
value updateσ to obtain the signature σ′ on messages m1, . . . , m�, m′

�+1, . . . , m
′
n.

We require that the additional procedures do not damage the security of the original
signatures scheme. We formulate this as the following two security requirements: signer
privacy and user privacy. Informally, signer privacy requires that the user does not learn
anything from interacting with the issuer via SIssSig and the updates from the issuer via
SIssUpd other than signatures on the list of messages on which these protocols and
procedures are run. In particular, this includes that the user shall not be able to forge
signatures on other lists of messages.

The user privacy requirement states that the issuer does not learn anything about the
messages m1, . . . , m� when interacting with via SObtSig with the user.

Signer privacy. The idea here is that no p.p.t. adversary A can tell if it is obtaining
signatures from an honest issuer I running SIssSig and receiving signature updates via
SIssUpd or whether it interacts with a simulator S with algorithms SSimIssSig and
SSimUpd for issuing and updating signatures that does not know the issuer’s secret key
but only has access to a signing oracle. We formalize this using two experiments:

Experiment RealSP
A (k) proceeds as follows:

1. Run SKeygen(1k) and hand the secret and public keys to A. Receive messages
m1, . . . , mn and openings open1, . . . , open� fromA. Compute commitments C1←
Com(paramsCom, m1, open1); . . . ;C� ← Com(paramsCom, m�, open�). Run al-
gorithm SIssSig(skI ,C1..�, m�+1..n) withA. The experiment stores the value stateσ

output by SIssSig.
2. Repeat until A stops with output b. Receive messages m′

�+1, . . . , m
′
n from A. Re-

trieve stateσ . Otherwise run SIssUpd(sk, stateσ, m′
�+1..n

), hand updateσ to A.
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Experiment SimulatedSP
A (k) proceeds as follows:

1. Run SKeygen(1k) and hand the secret and public keys to A. Receive messages
m1, . . . , mn and openings open1, . . . , open� fromA. Compute commitments C1←
Com(paramsCom, m1, open1); . . . ;C� ← Com(paramsCom, m�, open�). Compute
σ ← CLSig(skI , (m1..n)) and run SSimIssSig(σ, comm1..�, m�+1..n) with A. The
experiment stores the output stateS of SIssSig and messages m1, . . . , m�.

2. Repeat untilA stops with output b. Receive messages m′
�+1, . . . , m

′
n fromA. Com-

pute σ′ ← CLSig(skI , m1..�, m
′
�+1..n) and run SSimUpd(σ′, stateS , m′

�+1..n),
hand updateσ to A.

The simulator is allowed to rewind the adversary. Let the adversary’s advantage in dis-
tinguishing between the two experiments be AdvSP

A (k) = |Pr[RealSP
A,I(k) = 1] −

Pr[SimulatedSP
A,S(k) = 1]|. Signer privacy requires that AdvSP

A (k) is a negligible
function in k.

We have defined signer privacy in terms of the issue and update sequence of a single
signature, but our definition is strengthened by the fact that the adversary is given the
issuers secret key skI . A simple hybrid argument can be used to show that this defini-
tion implies privacy for many credentials as long as the signature issue protocols are
executed sequentially.

User privacy. No p.p.t. adversaryA can tell if it is issuing signatures to an honest user
U running SObtSig or to a simulator S running SSimObtSig that does not know the
users secret inputs. We formalize this using two experiments:

Experiment RealSP
A (k) proceeds as follows:

1. Receive a signature public key pkI , messages m1, . . . , m�, and openings open1,
. . . , open� fromA.

2. Run SObtSig(pkI , m1..�, open1..�) withA. The experiment outputs the adversary’s
output b.

Experiment SimulatedSP
A (k) proceeds as follows:

1. Receive a signature public key pkI , messages m1, . . . , m�, and openings open1,
. . . , open� from A. Compute C1 ← Com(paramsCom, m1, open1); . . . ;C� ←
Com(paramsCom, m�, open�).

2. Run SSimObtSig(pkI , comm1..�) with A. The experiment outputs the adversary’s
output b.

Again, the simulator is allowed to rewind the adversary. Let the adversary’s advantage
in distinguishing the two experiments be AdvUP

A (k) = |Pr[RealUP
A,U (k) = 1] − Pr

[SimulatedUP
A,S(k) = 1]|. User privacy requires that AdvUP

A (k) is a negligible function
in k.

Note that we require that only the user’s input m1, . . . , m� be hidden from the issuer,
but not necessarily the user’s output σ. The reason that this is sufficient is that in actual
applications (for example, in anonymous credentials), a user would never show σ in the
clear; instead, she would just prove that she knows σ.

Definition 3. We say that UCLS = SKeygen, CLSig, CLSVer, CLSProof, CLSPrVer,
Com, SKeygen, SObtSig, SIssSig, SIssUpd, SObtUpd) is a secure CL-signature scheme
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with updates if the algorithms (SKeygen, CLSig, CLSVer, CLSProof, CLSPrVer) con-
stitute a secure CL-signature scheme, the algorithms (SKeygen, Com) constitute a se-
cure commitment scheme, and SKeygen, SObtSig, SIssSig, SIssUpd, SObtUpd fulfill the
signer privacy and user privacy properties.

3.2 Construction

The main insight that leads to our construction is that issuing credential based on CL-
signatures typically consists of two stages: 1) the user sends to the issuer some form
of commitment to the messages that she wants to be included in the credential and 2)
the issuer extends that commitment into one that covers all the message to be signed
and then computes the signature of all these messages. As the second stage essentially
consists only of computations by the issuer followed by sending the user the signature,
this stage can be repeated any number of times with new messages chosen by the issuer
and instead of sending the result on-line to the user, it can be provided as an update by
any form of communication (e.g., provided for download at a website).

This approach of two stages is possible because for all the CL-signature schemes
that we consider [17,19,20] and in particular for the signature scheme by Au, Susilo
and Mu [2] on which we base our explicit construction, signing consists of computing
a group element from a number of bases where the message to be signed are used as
exponents. Hence, this group element can also be considered as a Pedersen commitment
to all the message. This holds even for the group element computed by the user for the
messages that are hidden from the issuer provided that the user proves to the issuer that
she did do these computations correctly.

We describe a construction for CL-signatures with updates and prove the security of
the issuing protocol and the update algorithms.

SKeygen(1k). On input 1k, pick a non-degenerate efficiently computable bilinear map
ê : G×G→ GT of prime order q with G = 〈h〉. Pick additional bases h0, h1, . . . ,

h�, h�+1, . . . , hn
$← G. The signer’s secret key is x $← Zq while the public key is

y = hx . Publish pkI = (q, G, GT , e, h, h0, h1, . . . , h�, h�+1, . . . , hn, y, u, v). The
secret key skI includes the public key material and x . To speed up computation the
issuer can choose values x1, . . . , xn ← Zq and compute hi = hxi for i = 1..n.
This allows to compute a product

∏n
i=1 hmi

i as h
∑n

i=1 ximi .
SObtSig(pkI , m1..n, open1..�)↔ SIssSig(skI , comm1..�, m�+1..n).

1. U picks r̂
$← Zq , computes P = hr̂

0

∏
i=1..� hmi

i and sends it to I.
2. U engages with I in the following proof of knowledge to convince I that P is

correctly formed.

PK{(r̂, m1..�, open1..�)
�∧

i=1

C =Com(paramsCom, mi, open i)∧P =hr̂
0

∏

i=1..�

hmi

i } .

3. I picks s, r
$← Z

∗
q , computes A = (hPhr

0

∏n
i=�+1 hmi

i )1/(x+s) and sends
(A, r, s) to U .

4. I outputs stateσ = P .
5. U outputs σ = (A, r, r̂, s).
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SIssUpd(skI , stateσ, m′
�+1..n). This algorithm is periodically run by I to update a sig-

nature with state stateσ . I proceeds with the following steps.

1. I picks s′, r′ $← Z
∗
q , computes A′ = (hPhri

0

∏n
i=�+1 h

m′
i

i )1/(x+s).
2. I outputs updateσ = (A′, r′, s′).

If the issuer chooses hi = hxi the computation of A only requires two exponentia-
tion (or rather one two-base multi-exponentiation).

SObtUpd(pkI , m1..n, m′
�+1..n, σ, updateσ). Given a signature σ = (A, r̂, r, s) and

updateσ = (A′, r′, s′) output σ′ = (A′, r′, r̂, s′), if CLSVer(pkI , σ′, m1..�,
m′

�+1..n) = 1 and ⊥ otherwise.

Theorem 1. Under the Strong Diffie-Hellman assumption (that implies the Discrete
Logarithm assumption), the algorithm above together with the Au et al. CL-signature
scheme and the Pedersen constitute a secure CL-signature scheme with updates.

Lemma 1. The SIssSig and SIssUpd algorithms above together with the Au et al. CL
signature scheme and the Pedersen commitment scheme fulfill the signer privacy prop-
erty assuming the security of the zero-knowledge proof of knowledge and commitment
scheme.

Proof. Given a list of commitments C1..� messages m1, . . . , mn and a signature σ =
(A, r̃, 0, s) as input SSimIssSig simulates the adversaries view. Upon receiving the value
P , it interacts with the adversary in a proof of knowledge. The adversary proves that
she knows messages m1, . . . , m� corresponding to C1..� and the randomness r̂ used
to create P . The simulator uses the knowledge extractor of the proof of knowledge to
obtain r̂, and returns (A, r̃ − r̂, s) to the adversary. The state stateS of the simulator
corresponds to r̂.

For each request to generate a signature update, SSimUpd receives messages m′
�+1,

. . . , m′
n and a signature σ′ = (A′, r̃′, 0, s′) as input. The simulator uses r̂ to returns

updateσ = (A′, r̃′ − r̂, s′).
We proof using a sequence of games that RealA(k) and SimulatedA(k) are in-

distinguishable.

Game 1 corresponds to the RealA,I(k) experiment.
Game 2 is the same as Game 1, but the knowledge extractor of the proof of knowledge

is used to extract r̂, m̃1..�, open1..�. If extraction succeeds proceed as in Game 1,
otherwise abort. The probability ν1(k) to distinguish between Game 1 and Game 2
is bounded by the knowledge extraction error of the proof of knowledge protocol.

Game 3 is the same as Game 3, except that the game aborts, if the values m̃1..� ex-
tracted from the proof of knowledge differ from the values m1..� output by the
adversary. The probability ν2(k) to distinguish between Game 2 and Game 3 is
bounded based on the security of the commitment scheme.

Game 4 computes the response of the issuing protocol and all update protocols, by first
computing a signature σ = (A, r̃, 0, s) for messages m1, . . . , mn and m1..�,m′

�+1,n

respectively, and then replying with (A, r̃ − r̂, s). Game 4 is identically distributed
to Game 3 and corresponds to experiment SimulatedA,S(k).
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The adversaries advantage in distinguishing the games is bounded by AdvA(k) <
ν1(k) + ν2(k).

Lemma 2. The SObtSig algorithm above together with the Au et al. CL-signature
scheme and the Pedersen commitment scheme fulfill the user privacy property.

Proof. Given the issuers public key pkI and commitments comm1..� as input, the sim-
ulator SSimObtSig picks a random value P . Then it uses the zero-knowledge simulator
to interact with the adversary in the following proof protocol:

PK{(r̂, m1..�, open1..�) :
�∧

i=1

C =Commit(paramsCom, mi, openi)∧P =hr̂
0

∏

i=1..�

hmi

i } .

As both the commitments C1..� and P are perfectly hiding Pedersen commitments, this
is a proof of a true statement, and the simulation is perfect.

4 Anonymous Credential Systems with Efficient Revocation and
Attribute Update

In this section we will show how to use CL-signatures with updates to design an anony-
mous credential system where credential revocation is accomplished through an effi-
cient, non-interactive protocol for updating credentials. The considered scenario con-
sists of three types of players:

A credential issuer (I) that issues and manages anonymous credentials. One or more
credential verifiers that provide services to users upon show of valid credentials. A
set of users that anonymously obtain credentials from I and show them in a privacy
preserving way to verifiers in order to access their services.

Several research papers describe how to construct anonymous credential schemes
from CL-signatures. The efficient anonymous credential scheme of Camenisch and
Lysyanskaya [17] made use of CL-signatures as an implicit building block that the
same authors later formalized in [19]. Their basic system, however, does not support
attributes. A non-interactive variant of such a credential system was also proposed by
Belenkiy, Chase, Kohlweiss and Lysyanskaya in [5]. Bangerter, Camenisch and Lysyan-
skaya [3] describe a flexible anonymous certification framework that allows for blind
issuing and selective show of credentials that certify multiple user and issuer chosen
attributes. CL-signatures also form the basis for direct anonymous attestation (DAA)
[14]. The DAA protocol makes use of a blindly certified user secret skU . This value
never leaves the trusted platform module and protects the credential against theft and
abuse.

We describe a credential system that combines the features in the above schemes.
In addition, we allow for efficient revocation through the inclusion of time period in-
formation. The anonymous credential system uses the SObtSig ↔ SIssSig protocol to
issue a credential with the following information to the user: the users secret skU , the
credential serial number id, the time period for which the credential is valid t, and d
attributes a1, . . . , ad chosen by the issuer. The key skU is only known to the user and
is certified blindly. The update feature of our CL-signature scheme allows the issuer to
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publish update information for new time periods. As an added benefit, the issuer can
update the users attribute. The latter allows rich revocation semantic as credential can
be partially (i.e., only some of the credential attributes) revoked and/or updated.

More formally, our anonymous Credential System with efficient revocation and up-
dates consists of the following algorithms:

IssuerKeygen(1k) This algorithm is run once by I to setup system parameters. It runs
SKeygen(1k) to create skI and pkI of a CL-signature with Updates scheme. It also
outputs an empty set state where to store issued credentials.

UserKeygen(1k) This algorithm is run only once for each U before she interacts with
the I to obtain any credential. U obtains her secret key skU and the corresponding
public key pkU that might be advertised as the user identity.

ObtainCert(U(pkU , skU ), I(pkI , skI , a1..d, state, t) In this protocol, U obtains a cer-
tified credential with unique serial number id. The latter is arbitrarily chosen by I.
For example, given state as the set of all issued credentials, I might set id to the
next available serial number.
1. The user commits to her secret key as C = Com(paramsCom, skU , open) and

user sends her public key and the commitment to the issuer. The user does a
proof of knowledge that the public key corresponds to the commitment. This
provides the issuer with the guarantee that the credential will be issued to the
correct user.

2. Now the issuer sends the attributes id, t, a1, . . . , ad to the user.
3. The user and the issuer run SObtSig(pkI , skU , id, t, a1..d, open) ↔ SIssSig(

skI ,C , id, t, a1..d), respectively. Note that skU is the only blindly signed mes-
sage, and n = d + 3. The user obtains the signature σ and the issuer obtains
stateσ .

4. The issuer adds record (1, id, stateσ, a1, . . . , ad) to state; the first element of
the record flags the credential as currently valid.

5. The users output is the certificate cert = (σ, id, t, a1, . . . , ad).
InvalidateCerts(state, id) This algorithm is periodically run by I to revise validity sta-

tus of issued credentials. For each credential to be revoked, let id be its serial num-
ber, I replaces record (1, id, stateσ, a1, . . . , ad) in state with record (0, id, stateσ,
a1, . . . , ad); the first element of the record flags the credential as revoked.

UpdateAttributes(state, id, a′
1..d) This algorithm is run by I before producing the up-

dates of each valid credential. It is used to update credential attributes for valid cre-
dentials. The issuer replaces (1, id, stateσ, a1, . . . , ad) in state with (1, id, stateσ,
a′
1, . . . , a

′
d) to reflect the changes to the credential attributes for the current time

period.
CertUpdate(pkI , skI , state, t) This algorithm is periodically run by I to update cre-

dentials that are still valid. For each record (1, id, stateσ, a1, . . . , ad) in state,
the issuer runs SIssUpd(skI , stateσ, id, t, a1..d) and publishes the resulting update
value together with the new attribute values as updateid,t = (updateσ, a1, ...ad).
Note that revoked credentials in state do not get updated.

ProveCert(U(skU , cert , updateid,t, R),V(pkI , t, R) This algorithm is run at time t by
an user U and a verifier V before the latter grants any service to the former. At the
end of the protocol, V only learns that U has a credential issued by I with attributes
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{ai}i∈R that is valid at time t. First, U parses updateid,t as (updateσ, a1, ...ad)
and updates her credential running SObtUpd(pkI , a1..d, σ, updateσ). The updated
certificate is cert = (σ′, id, t, a1, . . . , ad). Where t, a1, . . . , ad correspond to the
current time period and the updated attribute values. Later, she can show her cre-
dential an arbitrary number of time to any verifier. At each show, the user sends
messages {ai}i∈R to the issuer, and performs the following zero-knowledge proof
of knowledge:

PK{(σ, skU , {ai}i∈{1,...,d}\R) : 1 = CLSVer(pkI , σ, skU , id, t, a1..d) ∧ . . . } .

Note that in the above example, credentials are revoked as a whole. Partial revocation
can be achieved using multiple flags per credential. To use the driving licence example
of Section 1, each credential would have a flag to define credential validity for driving
permissions and an additional flag to define its validity for owner identification pur-
poses. Flags could be encoded in the credential and updated independently as required.

Security discussion. In [17] a secure anonymous credentials scheme is defined using an
ideal functionality. The authors show that the extraction and zero-knowledge properties
of the proof system and the unforgeability of the signature scheme guarantee that an ad-
versary attacking the real world anonymous credential system cannot do more damage
than an adversary interacting with the ideal functionality. The signer privacy and user
privacy properties introduced by Belenkiy et al. [5] formalize the needed properties for
the issuing protocol. In addition to what is shown in [5] we show that the non-interactive
signature updates do not leak additional information about the issuers secret key. The
credential show protocol is unchanged and relies on the security of the zero-knowledge
proof of knowledge of signature possession.

5 Efficient Updates for Other Signatures and Anonymous
Credential Schemes

The construction we give in this paper employs a signature scheme based on bilinear
maps. There are however a number of other constructions for signature schemes with
efficient protocols and constructions for group signatures and credential systems. In
this section we discuss whether the approach of introducing validity time periods and
publishing credential/signature update information also applies to other schemes.

CL-signatures. Camenisch and Lysyanskaya have proposed a number of different sig-
nature schemes that allows efficient proofs of knowledge of a signature. Apart from
the one we have already used in our construction, they have proposed a scheme based
on the strong RSA assumption [19] and one based on the LRSW assumption [20]. As
all of these schemes follows the same principles, they can all be extended in the same
way as what we did in our construction. We quickly sketch this for the widely used
CL-signature scheme based on the strong RSA assumption:

The signature σ consists of a tuple (A, r, e) with A = (hhr
0h

m1
1 . . . hmn

n )−emod m,
where m is an RSA modulus. Similarly to our construction based on bilinear maps,
the issue protocol starts with the user sending a value P = hr̂

0h
m1
1 . . . hm�

� that is then
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extended by the issuer to compute a signature on blinded values m1, . . . , m� and issuer
chosen messages m�+1, . . . , mn. This last step can be repeated for different messages
m′

�+1, . . . , m
′
n to implement the update.

Blind-signatures based schemes. The credential schemes by Brands [10,11] employ a
blind Schnorr signature scheme to achieve anonymity. This signature scheme uses hash
functions in a crucial way to achieve unforgeability.

Conceptually, a Schnorr blind signature protocol consists of three steps. The com-
mitment step, the challenge step, and the response step. The first and the last step are
computed by the signer. To achieve blindness, the user (signature receiver) needs to
compute the challenge as a hash value on the values of the commitment step and the
user’s public key h′ = gα

0

∏n
i=1 gmi

i , that encodes his attributes (see Chapter 4 of [11]).
The user then blinds (randomizes) the challenge before the signer can compute signa-
ture values in the final response step using its signing secret key. It thus seems inherent
that the user needs to do this hash function computation for every signature and thus,
signature updates cannot be done non-interactively. A solution that works partially is as
follows. The user could prepare many blind signatures and then send them all at once to
the signer. The signer could then finish the individual protocols as needed (e.g., one in
each epoch). This, however, works only if all the messages (e.g., attributes of a creden-
tial) are fixed at the time the user prepares all these blind signatures. Thus, the signer
would not be able to update any of the messages in the update phase which seems to
be a severe limitation. Furthermore, the user would have to store all the blinding values
of all the prepared blind signatures (or to regenerate them from a seed using a suitable
pseudo-random function).

Other schemes. Belenkiy el al. [5,4] have proposed so-called P-signatures that are based
on bilinear maps and allow one to use Groth-Sahai non-interactive proofs for proving
knowledge of a signature. However, issuing signatures in their schemes is highly in-
teractive and it seems not possible to apply our approach to these schemes as they are
now.

An approach that works for all interactive and non-interactive CL and P-signature
schemes is to combine an interactively issued signature that contains the attribute values
that should be blindly signed and the credential identifier id, with a plain signature that
contains the same identifier, the time period t, and all issuer attributes. The disadvantage
of this approach is that the prove protocol becomes twice as expensive, as the user now
has to prove possession of two signatures.

When considering related schemes such as group signatures and identity escrow, we
see that our approach can in general not be used as they do not have a means to include
a validity time period identifier. However, many of them are constructed along the lines
of using a CL-signature to sign a group member’s secret key and then defining a group-
signature to be a non-interactive proof of knowledge of a CL-signature by the group
manager on a secret key. For these schemes, it is of course not hard to extend them such
that the group manager signs also a second message being an epoch identifier and hence
our approach can be used.
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6 Conclusion

Despite a growing concern for user privacy in a cyber-world, the diffusion of Anony-
mous Credential Systems is impaired by the lack of efficient protocols. Use of non-
interactive protocols, rich revocation semantic and minimal overhead at show time
are key features to enable the adoption of Anonymous Credential Systems in privacy-
preserving scenario with large number of users.

In this paper we have introduced a signature scheme with updates that can be used
in anonymous credential systems to enable efficient, semantically rich revocation. Our
scheme allows for non-interactive credential update as well as partial revocation/update.
Moreover, it enjoys no overhead in the show protocol to prove that a credential is non-
revoked. Updates can be performed off-line and later published on a public bulletin
board for users to download them. Also, users can miss an arbitrary number of updates,
that is, the latest update to their original credential suffices to prove its possession.
Compared to previous solutions for revocation, our approach is much more efficient
for showing and verifying credentials (there is no additional cost), more flexible (it ad-
dresses even updates of attributes), and has a similar overhead for managing revocation
status as previous solutions.
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