

COMPONENT-ORIENTED
PROGRAMMING

ANDY JU AN WANG
KAI QIAN
Southern Polytechnic State University
Marietta, Georgia

A JOHN WILEY & SONS, INC., PUBLICATION

COMPONENT-ORIENTED
PROGRAMMING

COMPONENT-ORIENTED
PROGRAMMING

ANDY JU AN WANG
KAI QIAN
Southern Polytechnic State University
Marietta, Georgia

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright 2005 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400, fax
978-646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,
(201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department
within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Wang, Andy Ju An.
Component-oriented programming / Andy Ju An Wang & Kai Qian.

p. cm.
“A Wiley-Interscience publication.”
Includes bibliographical references.
ISBN 0-471-64446-3

1. Component software. 2. Computer programming. I. Qian, Kai. II. Title.

QA76.76.C66W36 2005
005.3 – dc22

2004015681

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

CONTENTS

Preface ix

1 Introduction 1

1.1 What Is COP? 1
1.2 Why Is COP Important? 3
1.3 What Is a Component? 5
1.4 Hardware Components and Software Components, 7
1.5 From OOP to COP, 8
1.6 Component-Based Software Engineering, 10
1.7 Summary, 11
1.8 Self-Review Questions, 12
1.9 Exercises, 14

References, 14

2 Theory of Components 16

2.1 Principles of COP, 16
2.2 Infrastructures of COP, 18
2.3 Component Models, 20
2.4 Connection Models, 21
2.5 Deployment Models, 26
2.6 Unifying Component Technologies, 26
2.7 Summary, 32
2.8 Self-Review Questions, 33
2.9 Exercises, 35

References, 35

3 COP with JavaBeans 37

3.1 Overview of JavaBeans Technology, 37
3.2 Component Model of JavaBeans, 38

v

vi CONTENTS

3.3 Connection Model of JavaBeans, 64
3.4 Deployment Model of JavaBeans, 72
3.5 Examples and Lab Practice, 76
3.6 Summary, 83
3.7 Self-Review Questions, 85
3.8 Exercises, 86

References, 87

4 Enterprise JavaBeans Components 88

4.1 EJB Architecture, 88
4.2 Component Model of EJB, 90
4.3 Connection Model of EJB, 100
4.4 Deployment Model of EJB, 104
4.5 Examples and Lab Practice, 105
4.6 Summary, 142
4.7 Self-Review Questions, 143
4.8 Exercises, 143
4.9 Programming Exercises, 144

References, 145

5 CORBA Components 146

5.1 CORBA Component Infrastructure, 146
5.2 CORBA Component Model (CCM), 149
5.3 Connection Model of CORBA and CCM, 173
5.4 Deployment Model of CORBA and CCM, 176
5.5 Examples and Lab Practice, 184
5.6 Summary, 189
5.7 Self-Review Questions, 190
5.8 Exercises, 191
5.9 Programming Exercises, 192

References, 192

6 .NET Components 194

6.1 .NET Framework, 194
6.2 Component Model of .NET, 198
6.3 Connection Model of .NET, 204
6.4 .NET Component Deployments, 212
6.5 Visual Studio .NET, 215
6.6 Examples and Lab Practice, 224
6.7 Summary, 234
6.8 Self-Review Questions, 234
6.9 Exercises, 235

6.10 Programming Exercises, 236
References, 237

7 COP with OSGi Components 238

7.1 Overview of OSGi Technology, 238
7.2 Component Model of OSGi, 239

CONTENTS vii

7.3 Connection Model of OSGi, 247
7.4 Deployment Model of OSGi, 250
7.5 Examples and Lab Practice, 252
7.6 Summary, 261
7.7 Self-Review Questions, 263
7.8 Exercises, 265

References, 266

8 Web Services Components 267

8.1 Web Services Framework, 267
8.2 Component Model of Web Services, 281
8.3 Connection Model of Web Services, 293
8.4 Web Services Component Deployment, 297
8.5 Examples and Lab Practice, 299
8.6 Summary, 311
8.7 Self-Review Questions, 312
8.8 Exercises, 313
8.9 Programming Exercises, 314

References, 314

Index 315

PREFACE

This book is about component-oriented programming (COP for short), a new pro-
gramming paradigm beyond object-oriented programming. Component-oriented pro-
gramming offers higher reusability and better modular structure with greater flexibility,
compared with object-oriented programming or library-based programming approaches.
This book discusses principles of component-oriented programming and provides a uni-
fied component infrastructure to describe different component technologies. Hands-on
programming practice is emphasized in this book. Readers of this book will learn how
to develop reusable software components and how to build a software system out of
prebuilt software components.

Both authors have been teaching “Component-Based Software Development” (CBSD)
to graduate and undergraduate students for several years. We strongly believe that we
need a textbook emphasizing the “programming” aspect of CBSD or CBSE (Component-
Based Software Engineering). Thus, students majoring in computer science, software
engineering, or related areas can take this course as one of the major “concentrations”
following OOP (Object-Oriented Programming) and elementary software engineering
courses. CBSD is not just a philosophy, a theory, or some standard. It represents a new
programming paradigm beyond OOP and library-based programming paradigms – this
is partially why we chose the title Component Oriented Programming. In a library-
based programming paradigm, multiple layers of software abstractions stack up one on
top of the other, whereas in a component-based model, multiple software components
plug in side-by-side with one another. In a library-based model, once a module is com-
piled into the software, it is always available at runtime. In a component-based model,
a component can come and go dynamically at runtime. In a library-based paradigm,
one most likely must rebuild and repackage the entire set of libraries to fix bugs and
add features at compile-time. In a component-based paradigm, new components can be
added or existing components can be updated in an incremental way at runtime. In a
library-based paradigm, changes made to public interfaces have less impact because one
has to rebuild the software in its entirety. In a component-based paradigm, the cost of

ix

x PREFACE

redoing public interfaces can be prohibitive because other components may have relied
on them at runtime.

We can make a long list of differences between traditional, library-based program-
ming and new, component-based programming. Many software engineers have not
realized or appreciated this shift in programming paradigms. As many experts have
predicted, CBSE and component-oriented programming will be the future of soft-
ware development following structured programming, library-based programming, and
object-oriented programming. It is essential to make students realize that component-
based software development requires more discipline on the part of developers dur-
ing the design and programming stages to provide more stability, extensibility, and
flexibility. Such disciplined activity and techniques have to be established through
well-developed training and practice following component-based software develop-
ment principles.

However, books published on CBSE are not suited to provide such training. Some
are highly theoretical, targeting academic researchers, while others emphasize software
life cycle and project management; yet others are too specific for particular component
technology. In a typical computer science or software engineering curriculum setting in
colleges and universities, the course for “component-based software development” is
usually designed for students with previous training on OOP and fundamental software
engineering principles. Hence, it is challenging to shift students from the mindset of
library-based programming and OOP to the mindset of component-oriented program-
ming. Both authors have followed a “programming-centered approach” to teaching the
“Component-Based Software Development” course, which has turned out to be suc-
cessful in emphasizing programming methodology and programming practice in the
CBSE context.

The programming paradigm is changing from object-oriented programming to com-
ponent-oriented programming. We predict that in the next few years, component-based
development will be the mainstream practice in software engineering. This book
will provide in-depth knowledge about component-based development. It intends to
introduce component-oriented programming to college students majoring in computer
science, software engineering, information technology and to professional software
engineers working in the industry as well. We assume that the readers of the book
are familiar with at least one high-level programming language. The emphasis will be
on component-oriented programming principles, methods, and techniques. Any reader
who is interested in component-based software engineering in general will find useful
information in this book. Readers can expect to gain the comprehensive knowledge
necessary for component software development.

Three efforts have been made to help readers understand and master component-
oriented programming techniques. First, a unified component infrastructure is used
for all component technologies covered in this book, namely, JavaBeans, EJB,
COM/DCOM/.NET, CORBA, OSGi, and Web Services. This common component
infrastructure contains a component model, a connection model, and a deployment
model. It represents standard conventions for component specification, interfaces,
composing connectors, architecture, packaging, and deployment. It also helps to apply
the component principles to practical component software development following a
well-defined format. The unified component infrastructure also serves as a pedagogical
tool to keep readers concentrating on technical essentials rather than being distracted
by those technical details.

PREFACE xi

Second, we have paid careful attention to the pedagogical organization of the book.
For instance, we put forward briefly at the beginning of each chapter its main objectives,
and we explain all potential tricky points in detail in the process of presenting the
content. At the end, a brief summary is provided to highlight the key points of the
chapter. Self-Review Questions are designed for readers to test their understanding
of the materials in each chapter, and key solutions for these questions are supplied.
Exercises and Lab Practice are provided at the end of each chapter, serving as an
integral part of the book.

Third, a supplementary Web site (ftp://ftp.wiley.com/public/sci tech med/component/)
is provided containing all examples, laboratory project guidelines, software packages,
and developing tools used in the book.

Overview of Chapters

Chapter 1 is a brief introduction to component-oriented programming and the benefits
of component-based software development.

Chapter 2 discusses the principles of component-oriented programming, and pro-
vides a unified framework for describing different component technologies.

Chapter 3 introduces the component infrastructure of JavaBeans. Both BDK (Bean
Development Kit) and Bean Builder are discussed.

Chapter 4 covers J2EE framework and EJB component architecture.
Chapter 5 discusses CORBA (Common Object Request Broker Architecture) com-

ponent infrastructure.
Chapter 6 introduces Microsoft .NET framework and Visual Studio .NET compo-

nent technology.
Chapter 7 covers the component technology proposed by OSGi (Open Service Gate-

way initiative).
Chapter 8 investigates Web services component technology.

Acknowledgments

Thanks to Cassie Craig of John Wiley & Sons, Inc., for her incredibly positive support
in the writing of this text. We want to thank all the other people who helped improve
the text, from the reviewers and editors to those who sent suggestions and feedback in
the early drafts of this book.

1
INTRODUCTION

Objectives of This Chapter

ž Define COP and its major objectives
ž Discuss the importance of COP
ž Define components and their characteristics
ž Distinguish hardware components and software components
ž Investigate the differences between OOP and COP
ž Introduce component-based software engineering

1.1 WHAT IS COP?

Throughout this book COP stands for component-oriented programming.
Programming is an activity of constructing computer programs that are a sequence

of instructions describing how to perform certain tasks with computers. Programming
can be classified or described in terms of the major techniques, concepts, or facil-
ity used for constructing computer programs. Different computers require different
kinds of programming techniques. The Pascal’s machine built in 1642 by Blaise Pas-
cal (1623–1662), for instance, could only be programmed by operating gears and
cranks. For all modern electronic computers, however, certain programming languages
have to be used to program the computers. If a specific technique, say X, is being
used to program computers, we will say this is X-oriented programming. Below is
a brief discussion of different programming paradigms toward component-oriented
programming.

Component-Oriented Programming, by Andy Ju An Wang and Kai Qian
ISBN 0-471-64446-3 Copyright 2005 John Wiley & Sons, Inc.

1

2 INTRODUCTION

Gear-Oriented Programming
Similar to the Pascal’s machine mentioned above, for Charles Babbage’s difference
engine in 1822, programming means to change gears, cogs, and wheels. Through these
physical motion and arrangement of gears, a new computation could be performed.
Obviously, this kind of computer programming required both mental intelligence and
physical capability as well.

Switch-Oriented Programming
For the first electronic computer ENIAC (Electronic Numerical Integrator And Com-
puter) in 1942, programming means presetting switches and rewiring the entire system
for each new “program” or calculation. This could be a tedious work because ENIAC
had 6000 multiposition switches connecting a multitude of sockets with a veritable
forest of jumper cables.

Procedure-Oriented Programming
With the help of high-level programming languages, programmers have been liberated
from manipulating hardware details and the chores of machine languages. Program-
ming languages such as Fortran, Pascal, and C encourage programmers to think in
terms of procedures or functions. This was highlighted by structured programming,
a top–down design and stepwise refinement design approach. In order to develop a
computer program, the programmer would first think about what functionality should
be implemented. Each functional requirement will be implemented eventually as a
collection of procedures or functions.

Object-Oriented Programming
Object-oriented programming (OOP) encourages programmers to think in terms of
data types. Programs are constructed around data types and data-type hierarchies. The
fundamental building blocks in an object-oriented program are classes and objects.
An object is a packet of information stored in a chunk of computer memory. Every
object is associated with a data type, and the data type determines what can be done
to an object. All programming languages have built-in data types, such as the integer
data type and the character data type. Typically, programmers define data types and
data-type hierarchies themselves so that they can describe individual entities to come
up naturally in their applications.

Aspect-Oriented Programming
Aspect-oriented programming (AOP) introduces a new technology for separation of
concerns in software development. AOP makes it possible to modularize crosscutting
aspects of a system. Like objects, aspects may arise at any stage of the software life
cycle, including requirements specification, design, implementation, and so on. Com-
mon examples of crosscutting aspects are design or architectural constraints, systemic
properties or behaviors (e.g., logging and error recovery), and features. AOP blends
support for many different kinds of modularity, including block structure, object struc-
ture, inheritance as well as crosscutting.

A key intuition underlying AOP is that simple hierarchies are not rich enough to cap-
ture complex structures. Therefore, AOP tries to explore a variety of mechanisms that
make it possible to view and implement a system from multiple perspectives. Toward
this end, a new programming language called AspectJ was designed and implemented.
AspectJ is a seamless aspect-oriented extension to the Java programming language,
enabling the clean modularization of crosscutting concerns such as error checking

WHY IS COP IMPORTANT? 3

and handling, synchronization, context-sensitive behavior, performance optimizations,
monitoring and logging, debugging support, and multiobject protocols.

Component-Oriented Programming
Component-oriented programming enables programs to be constructed from prebuilt
software components, which are reusable, self-contained blocks of computer code.
These components have to follow certain predefined standards including interface,
connections, versioning, and deployment.

Components come in all shapes and sizes, ranging from small application compo-
nents that can be traded online through component brokerages to the so-called large
grain components that contain extensive functionality and include a company’s busi-
ness logic. In principle, every component is reusable independent of context, that is to
say, it should be ready to use whatever from wherever.

COP is to develop software by assembling components. While OOP emphasizes
classes and objects, COP emphasizes interfaces and composition. In this sense, we
could say that COP is an interface-based programming. Clients in COP do not need
any knowledge of how a component implements its interfaces. As long as interfaces
remain unchanged, clients are not affected by changes in interface implementations.

1.2 WHY IS COP IMPORTANT?

How do other more mature industries or engineering disciplines deal with the devel-
opment of complex systems?

Building systems out of components is a natural part of engineering systems. The
automotive industry, for instance, develops very complex cars using components of
every size from a tiny screw to complex subsystems such as engines and transmis-
sions. The modern automotive factory has become more of a system integrator than
a manufacturer. It is easy to name many other industries and engineering disciplines
making effective use of components by a rigorous set of standards that define inter-
operability. For hundreds of years, industries have adopted component standards for
interchangeable parts and streamlined assembly tools to speed the development of
highly complex products.

It is the Industry Revolution that dramatically changed the nature of production in
which machines replaced tools, steam and other energy sources replaced human or
animal power, unskilled workers replaced skilled workers, and massive products made
by machines and assemble lines replaced handmade items.

In the software industry, however, the products are still mainly handmade items.
The productivity is low, the quality is not guaranteed, and projects are mostly overrun.
The phenomenon has been called “software crisis.”

As hardware technology advances, the cost of developing a computer application
is mainly on software part. The key issues of software engineering include how to
create quality software effectively. Components are widely seen by software engineers
as an important technology to address the “software crisis.” The Industrial Revolution
of software will occur through component-based software engineering.

There are a number of important reasons why COP is important. It provides a higher
level of abstraction. There are an increasingly large number of reusable component
libraries that assist in the development of applications for various domains.

There are three major goals of COP: conquering complexity, managing change,
and reuse.

4 INTRODUCTION

1. Conquering Complexity We are living in a complex world at information explo-
sion age. According to a research team at UC Berkeley [SIMS 2000], “The world
produces between 1 and 2 exabytes of unique information per year, which is
roughly 250 megabytes for every man, woman, and child on earth. An exabyte
is a billion gigabytes, or 1018 bytes.” In computer science, the size and complexity
of software have been increasing significantly. Table 1.1 shows the comparison
of some operating systems in terms of their sizes. The first string in each box
is the version; the second is the size measured in lines of source code, where
K = 1000 and M = 1,000,000. Comparisons within a column have real mean-
ing, while comparisons across columns do not [Tanebaum 2001]. Fortunately,
COP provides an effective way to deal with the complexity of software: divide
and conquer.

2. Managing Change Change is inherent in software engineering. The user require-
ments change, specifications change, personnel change, budget changes, technol-
ogy changes, and so on. One of the fundamental software engineering principles is
to emphasize the importance of managing change. It is important to place primary

TABLE 1.1. Software Size Changes Over Time

Year AT&T BSD MINIX Linux Solaris Win NT

1976 V6 9K

1979 V7 21K

1980 4.1 38K

1982 Sys III 58K

1984 4.2 98K

1986 4.3 179K

1987 SVR3 92K 1.0 13K

1989 SVR4 280K

1991 0.01 10K

1993 Free 1.0 235K 5.3 850K 3.1 6M

1994 4.4 Lite 743K 1.0 165K 3.5 10M

1996 2.0 470K 4.0 16M

1997 2.0 62K 5.6 1.4M

1999 2.2 1M

2000 Free 4.0 1.4M 5.8 2.0M 2000 29M

WHAT IS A COMPONENT? 5

emphasis during architecture and design on the dependencies between the compo-
nents, and on the management of those dependencies.

COP provides an effective way to follow the software engineering principle
of dealing with change: planning for change, design for change, and building
for change. Components are easy to adapt to new and changing requirements.
Software engineers have come to the consensus that the best way of dealing with
constant changes is to build systems out of reusable components conforming to
a component standard and plug-in architecture.

3. Reuse Software reuse allows to design and implement something once and to
use it over and over again in different contexts. This will realize large productiv-
ity gains, taking advantage of best-in-class solutions, the consequent improved
quality, and so forth.

There are different levels of software reuse. Source code copy, for instance, is
the lowest level of reuse. Procedural function libraries are a better form of reuse
than source code copy, but not extensible. Class libraries are a better form of
reuse, and they are extensible. However, it requires a lot of understanding before
classes can be reused. Moreover, it supports only white-box reuse; clients will be
affected if internals of classes changed. For instance, in an OOP language such
as C++ or Java, derived classes are coupled to the base class implementation.
Changes in any of the base classes in the inheritance hierarchy would break
derived classes. Furthermore, this level of reuse is language specific; no reuse
across code in other languages.

COP supports highest level of software reuse because it allows various kinds
of reuse including white-box reuse, gray-box reuse, and black-box reuse. White-
box reuse means that the source of a software component is made available and
can be studied, reused, adapted, or modified. Black-box reuse is based on the
principle of information hiding. The interface specifies the services a client may
request from a component. The component provides the implementation of the
interface that the clients rely on. As long as the interfaces remain unchanged,
components can be changed internally without affecting clients. Gray-box reuse
is somewhere in between white-box reuse and black-box reuse.

As the size and complexity of software systems grows, the identification and proper
management of interconnections among the pieces of the system becomes a central
concern. COP provides a manageable solution to deal with the complexity of software,
the constant change of systems, and the problems of software reuse. COP is now the
de facto paradigm for developing large software systems, for example, enterprise-scale
distributed applications, N-tier Web applications, and Web services.

1.3 WHAT IS A COMPONENT?

Software engineering has made great progress during the last 30 years with many
innovative technologies invented and applied including structured programming, CASE
technology, and object-oriented technology. However, the essential style of developing
software maintains the same: the programmers write code line by line until it finishes.
Such a preindustry style of production is the key factor for the unmatch between hard-
ware productivity and software productivity. The revolutionized changes in software

6 INTRODUCTION

development, like the industrial revolution to classical engineering disciplines, have to
be introduced:

ž The handcraft fashion of software development should be replaced by engineer-
ing methods.

ž The line-by-line-coding style should be replaced by component-based develop-
ment.

ž The syntax-based programming should be replaced by assembling components
based on their interface and semantics.

Obviously, such a revolutionary change would not occur until we could discover sys-
tematic, formal approaches to component-based software development.

Software components are defined in various ways from similar and different points of
view. [Brown 1998] presented four definitions of a software component, summarizing
the First International Workshop on CBSE in April 1998:

1. A component is a nontrivial, nearly independent, and replaceable part of a system
that fulfills a clear function in the context of a well-defined architecture. A
component conforms to and provides the physical realization of a set of interfaces.
(Philippe Krutchen, Rational Software)

2. A runtime software component is a dynamically bindable package of one or more
programs managed as a unit and accessed through documented interfaces that
can be discovered at runtime. (Gartner Group)

3. A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can
be deployed independently and is subject to third-party composition. (Clemens
Szyperski)

4. A business component represents the software implementation of an “autono-
mous” business concept or business process. It consists of the software artifacts
necessary to express, implement, and deploy the concept as a reusable element
of a larger business system. (Wojtek Kozaczynski, SSA)

Discussion about component definitions can also be found in many recent confer-
ences and publications [Koza 1999; Parrish 1999; Wang 2000; Yacoub 1999; Fischer
2002; Fukazawa 2002]. In this book, we will use the following definition for a soft-
ware component:

A software component is a piece of self-contained, self-deployable computer code
with well-defined functionality and can be assembled with other components through
its interface.

From this definition, a component is a program or a collection of programs that
can be compiled and made executable. It is self-contained; thus, it provides coherent
functionality. It is self-deployable so that it can be installed and executed in an end
user’s environment. It can be assembled with other components so that it can be reused
as a unit in various contexts. The integration is through a component’s interface, which
means that the internal implementation of a component is usually hidden from the user.

Component technologies complying with the above definition include JavaBeans
and enterprise Java Beans (EJB) from Sun Microsystems, COM (Component Object

HARDWARE COMPONENTS AND SOFTWARE COMPONENTS 7

Model), DCOM (Distributed Component Object Model), and .NET components from
Microsoft Corporation, and CORBA (Common Object Request Broker Architecture)
components from the Object Management Group. We will discuss all these components
along with OSGi (Open Service Gateway Initiative) component model and Web service
components in this book.

1.4 HARDWARE COMPONENTS AND SOFTWARE COMPONENTS

For the last 50 years, the technology for producing computer hardware has radically
changed. Chips of integrated circuits (IC) and very large scale integrated circuits (VLSI)
make the basic building blocks from which faster and less expensive computers can
be assembled. In hardware engineering, component-based approach is widely utilized
to build new products through prebuilt hardware components. There are some driving
factors for component-based hardware design:

ž The complexity and capability of hardware devices are increasing exponentially.
ž The productivity and time-to-market requirements are getting more stringent.
ž Synthesis from very high-level descriptions does not provide adequate quality

of results.

Hardware engineers achieve required design productivity by assembling reusable
blocks of intellectual property (IP) such as microprocessors, DSP, encryption/decryption
chips, and so on. Recently, silicon capability has enabled integration of entire systems
on a single die. The component-based approach has increased productivity and relia-
bility of end products since each chip component has been well tested and fabricated
massively. However, there was no dramatic change in software production. Each new
software product required that software designers and programmers start from scratch
and produce program code line by line until the program was finished. The big progress
of software development for the last 50 years is from producing a program line by line
using machine code to producing a program line by line using high-level program-
ming languages. High-level programming languages offer several important benefits
that improve programming productivity thanks to compiler techniques. Nevertheless,
the line-by-line fashion of software production is still dominating the current practice
and becoming the bottleneck of rapid developing quality software with low cost. What
are the major barriers of applying component-based approach to software engineering?
What are the differences between hardware components and software components?

Logically, computer hardware and software are equivalent in terms of their com-
putability. That is, any operation performed by software can also be built directly into
the hardware. On the other hand, any instruction executed by the hardware can also be
simulated in software. Typical hardware components are ICs including medium-scale
integration (MSI), large-scale integration (LSI), and VLSI circuits. These chip-level
components are possible because of logic circuits that have well-defined input–output
functions that do not require interaction with outside world directly. The commu-
nications among hardware components are supported by a system bus. A software
component, on the other hand, is usually difficult to be expressed as simply a function
from an input domain to an output codomain. Moreover, some software components

8 INTRODUCTION

must interact with users or other physical plant in the environment; thus, they cannot
be treated simply as black boxes like their hardware counterparts.

It is important to note that there is a well-defined computing model, that is, Boolean
algebra, for gate-level design in building hardware components. Boolean algebra pro-
vides an economical way of describing the function of digital circuitry. Given a desired
function, Boolean algebra can be applied to develop a simplified implementation of
that function through algebraic laws.

What is the computing model for component-based software engineering? Obvi-
ously, a similar computing model is greatly in need for component-based software
development, like Boolean algebra for component-based hardware engineering. As a
matter of fact, Hoare logic [Hoare 1969], among others, provides a formalism, veri-
fying the correctness of programs based on the program structure and their pre- and
postconditions. As we move from statement-level programming or line-by-line coding
to component-based development, we are in need of a formalism capturing the behav-
ior of components and assuring the correctness of component interactions. We will
discuss this issue extensively in Chapter 2.

Furthermore, we have to note that the comparison of software components to
hardware components is limited for two reasons. The first is that unlike memory
chips – which must be physically reproduced each time, that is, producing compo-
nents with slight variations – producing software components is an exact duplicate
each time. The second is that a software component’s environment is likely to change
for each new installation.

Finally, there is no temporal aspect, such as wear or chemical deterioration, to
consider in software components [Mason 2002]. This difference is important especially
when we consider the quality assurance issues for component-based development. For
instance, the reliability for a hardware component is a function of four factors:

ž errors in design
ž errors in manufacture
ž physical defects
ž chemical and physical wear

The reliability for a software component, however, is a function of only one factor:
errors in design (for a software component, here we consider its implementation as
a part of design), because software does not wear out, nor, in most senses, are there
manufacturing errors.

1.5 FROM OOP TO COP

1.5.1 Language View of COP

A program is an assembly of basic programming elements. In a machine language, the
basic programming elements are 0s and 1s. Assembly languages use simple “words”
as basic programming elements to abstract binary strings. Higher-level languages
have made coding closer to human readable. The basic programming elements in
a typical higher-level programming language are functions, also called procedures or
subroutines. In an OOP (object-oriented programming) language, an object is a basic

FROM OOP TO COP 9

programming element encapsulating data and behavior. Therefore, OOP is a way of par-
titioning functionality in modeling a problem or process into its constituent objects. The
data abstraction provides a way of organizing data with associated operations, allowing
classes or objects to be reused easily in another program. In COP, the basic program-
ming elements are components, self-contained and self-deployable entities encouraging
higher level of software reuse.

1.5.2 Software Engineering View of COP

OOP was claimed to support encapsulation, inheritance, and polymorphism. However,
it never reached its goal because implementation inheritance violated true encapsu-
lation. Furthermore, objects or classes are not self-deployable. We could distinguish
COP from OOP in terms of various software engineering aspects as below:

ž COP is interface-based, while OOP is object-based.
ž COP is a packaging and distribution technology, while OOP is an implementa-

tion technology.
ž COP supports high-level reuse, while OOP supports low-level reuse.
ž COP, in principle, can be written in any language, while OOP is bound to

OO languages.
ž COP has loosely coupled components, while OOP has tightly coupled objects

dependent on each other through inheritance implementation.
ž COP has large granularity components, while OOP has objects as fine-grained

units of composition.
ž COP supports multiple interfaces, and interface-oriented design, while OOP does

not provide clear relationship of interfaces among superclasses and subclasses.
ž COP supports more forms of dynamic binding and dynamic discovery, while OOP

provides limited support for object retrieval and runtime composition mechanisms.
ž COP has better mechanisms for third-party composition, while OOP has limited

forms of connectors (method invocation).
ž COP provides more support for higher-order services (security, transactions, etc.),

while OOP has limited sets of supported services such as security, transactions,
and so on.

ž COP components are designed to obey rules of the underlying component frame-
work, while OOP objects are designed to obey OO principles.

Table 1.2 gives a brief summary of commonality and differences among structured
programming (SP), OOP, and COP.

In terms of composing capability, SP is the lowest, OOP is high, and COP is
very high. Two different implementation units in SP can never be interchangeable. In
OOP, however, two different objects implementing the same specification are inter-
changeable. Yet, in COP, two different components with different specifications are
interchangeable, as long as they satisfy those interface requirements for all client com-
ponents. For instance, one server component may replace another one even if it has
a different specification, as long as its specification includes the same interfaces the
client components require.

10 INTRODUCTION

TABLE 1.2. Comparison of COP with OOP and SP

Capabilities SP OOP COP

Divide and Conquer Yes Yes Yes

ž Manage complexity
ž Break a large problem down into smaller pieces

Unification of Data and Function Yes Yes

ž A software entity combines data and the functions
processing those data

ž Improves cohesion

Encapsulation Yes Yes

ž The client of a software entity is insulated from how
that software entity’s data is stored or how its
functions are implemented

ž Reduces coupling

Identity Yes Yes

ž Each software entity has a unique identity

Interface Yes

ž Represents specification dependency
ž Divides a component specification into interfaces
ž Restricts inter-component dependency

Deployment Yes

ž The abstraction unit can be deployed independently

1.6 COMPONENT-BASED SOFTWARE ENGINEERING

Sometimes, COP and CBSE (component-based software engineering) are interchange-
able in literature. However, CBSE is a more general term, taking COP as only a part
of it:

CBSE = COA + COD + COP + COM,

where COA, COD, and COM represent component-oriented analysis, component-
oriented design, and component-oriented management respectively. CBSE promises to
accelerate software development and to reduce costs by assembling systems from pre-
fabricated software components. Designing, developing, and maintaining components
for reuse is, however, a very complex process, which places high requirements not
only for the component functionality and flexibility but also for the development orga-
nization. CBSE covers many software engineering disciplines and different techniques,
which still have not been fully defined, explained, and exploited either from theoretical
or practical points of view.

SUMMARY 11

In traditional software engineering, software development process consists of a
sequence of activities or stages, namely, analysis, design, programming, testing, and
integration. In CBSE, the main development stages become analysis, design, provision,
and assembling. That is to say, the traditional programming, testing, and integration
activities are replaced in CBSE by component provision and component assembling.

From the viewpoint of components, there are two kinds of activities in CBSE:
developing for reuse (DF) and developing with reuse (DW). For DF, the development
effort could be organized following traditional software engineering approaches, with
the emphasis of component standards. For instance, each component provides two kinds
of interfaces: (1) provided interface, which defined the public services this component
will provide and (2) required interface, which specifies the services this component
requires in order to work properly. For DW, software component search and retrieval
have now become crucial activities for building applications.

From the viewpoint of engineering process, components could be classified into five
different forms [Cheesman 2001]:

1. Component Specification This form represents the specification of a unit of
software that describes the behavior of a set of component objects and defines a
unit of implementation. Behavior is defined as a set of interfaces. A component
specification is realized as a component implementation.

2. Component Interface The interface form presents a definition of a set of behav-
iors that can be offered by a component object.

3. Component Implementation The implementation form is a realization of com-
ponent specification, which is independently deployable. This means it can be
installed and replaced independently of other components. It does not mean that
it is independent of other components – it may have many dependencies. It does
not necessarily mean that it is a single physical item, such as a single file.

4. Installed Component The installed form is an installed (or deployed) copy
of a component implementation. A component implementation is deployed by
registering it with the runtime environment. This enables the runtime environment
to identify the installed component to use when creating an instance of the
component or when running one of its operations.

5. Component Object A component object is an instance of an installed com-
ponent. This is a runtime concept. Similar to OOP, a component object in
COP is an object with its own data and a unique identity, which performs the
implemented behavior. An installed component may have multiple component
objects (which require explicit identification) or a single one (which may be
implicit).

1.7 SUMMARY

ž With the advances of technology in computer hardware and software, the field of
computer programming has grown from machine-code programming, via object-
oriented programming, to component-oriented programming.

ž Software components support black-box reuse.

12 INTRODUCTION

ž Software components encapsulate functionality and provide services through well-
defined interfaces.

ž Components are interchangeable software parts.
ž A software component is a piece of self-contained, self-deployable computer

code with well-defined functionality and can be assembled with other components
through its interface.

ž Logically, hardware components and software components are equivalent, but
COP needs fundamental theory and supporting tools to match the advance of
hardware engineering.

ž Compared with structured programming and OOP, the major features of COP
include interfaces and independent deployment.

ž There are two kinds of activities in component-based software engineering: devel-
opment for reuse and development with reuse.

ž From the viewpoint of software engineering, a component can take different forms:
specification, interface, implementation, installed, and running object.

1.8 SELF-REVIEW QUESTIONS

1. The essential characteristics of a software component include
a. composable
b. interface
c. deployable
d. all of the above

2. Which of the following is common in hardware and software components?
a. Binary form
b. Unique return value
c. Reusable
d. Having Boolean logic as computing model

3. Which of the following could be a component?
a. A macro in C
b. A template in C++
c. A block in Smalltalk
d. A device bean

4. The major problem of Clemens’ definition for a component is:
a. Composability should not be a characteristic of components.
b. Independence should not be a characteristic of components.
c. Components are not in binary form.
d. It does not reflect various forms of components.

5. Which of the following is false?
a. Type definitions and Ada generics both can be components.
b. Procedures, classes, modules, or even entire applications could be components.

SELF-REVIEW QUESTIONS 13

c. Insisting on independence and binary form for components could allow for
multiple independent vendors and robust integration.

d. Composition of components enables prefabricated things to be reused by rear-
ranging them in ever-new composites.

6. CBSE is about
a. how to create reusable components

b. how to create software products with reusable components

c. how to develop software with component requirements specification, provision-
ing, and assembling

d. all of the above

7. Explain why “Object orientation has failed but component software is succeeding.”
a. Object orientation has a 20-year history.

b. Component-based approach is new and promising.

c. Object technology tends to ignore the aspects of economies and markets.
Objects, by themselves, are not independently deployable. Components are
independent units of deployment.

d. Object-oriented programming languages are too hard to use.

8. Explain why “Component standards are essential for component markets to develop
and thrive.”
a. With standards, we could build a general-purpose component.

b. A component standard specifies the necessary interfacing of certain components
as is needed to allow clients and vendors to work together.

c. The interplay of components is not a problem of software engineering.

d. A component does not need many clients to be economically viable.

9. A common feature among SP, OOP, and COP is
a. unification of data and function

b. divide and conquer for managing complexity

c. encapsulation for information hiding

d. interface specification

10. A unique feature for COP (which SP or OOP does not possess) is
a. unification of data and function

b. divide and conquer for managing complexity

c. encapsulation for information hiding

d. interface specification

11. Which of the following has the highest composability, that is, the capability of
one entity being integrated with other entity?
a. SP

b. OOP

c. COP

d. XP (extreme programming)

14 INTRODUCTION

Keys to Self-Review Questions

1. d 2. c 3. d 4. d 5. a 6. d 7. c 8. b 9. b 10. d 11. c

1.9 EXERCISES

1. When we discuss component-oriented programming, we require that a component is
in binary form and to be independently deployable. Discuss why these requirements
are essential for component-oriented programming.

2. Which of the following could be components and why?
a. A procedure
b. A class
c. A module
d. A function
e. An object
f. A subroutine
g. A UML diagram
h. A testing case
i. An event
j. Type declaration
k. C macros
l. C++ template

m. Smalltalk blocks
n. A protocol
o. A package in Java
p. An assembly in. NET

3. List three major goals for component-oriented programming.

4. List different forms of components along with brief explanations.

5. What are the two kinds of developing activities in component-based software engi-
neering?

REFERENCES

[Brown 1998] Brown, A. W. and Wallnau, K. C. “The current state of CBSE,” IEEE Software,
Sept./Oct.: 37–46, 1998.

[Cheesman 2001] Cheesman, J. and Daniels, J. UML Components: A Simple Process for Speci-
fying Component-Based Software, Addison-Wesley, 2001.

[Fischer 2002] Fischer, B. Deduction-Based Software Component Retrieval, Ph.D. thesis,
http://ase.arc.nasa.gov/people/fischer/papers/phd.html , 2002.

[Fukazawa 2002] Fukazawa, Y., Washizaki, H., and Yamamoto, H. Software Component Met-
rics, http://www.fuka.info.waseda.ac.jp/Project/CBSE/metrics.html , 2002.

[Hoare 1969] Hoare, C. A. R. “An axiomatic basis for computer programming,” Communica-
tions of ACM, 12(10): 576–580, 1969.

REFERENCES 15

[Koza 1999] Kozaczynski, W. “Composite nature of component,” 1999 International Workshop
on Component-Based Software Engineering , http://www.sei.cmu.edu/cbs/icse99/papers, 1999.

[Mason 2002] Mason, D. V. Probabilistic Program Analysis for Software Component Reliability,
Ph.D. thesis, www.sarg.ryerson.ca/∼dmason/thesis.pdf , 2002.

[Parrish 1999] Parrish, A., Dixon, B., and Hale, D. “Component based software engineering: a
broad based model is needed,” 1999 International Workshop on Component-Based Software
Engineering , http://www.sei.cmu.edu/cbs/icse99/papers/16/16.htm , 1999.

[SIMS 2000] School of Information Management and Systems. University of California at Berke-
ley, How Much Information? http://www.sims.berkeley.edu/research/projects/how-much-info/
summary.html , 2000.

[Tanebaum 2001] Tanebaum, A. The Modern Operating Systems, 2nd ed., Prentice Hall, 2001.

[Wang 2000] Wang, J. A. “Towards component-based software engineering,” Journal of Com-
puting Sciences in Colleges, 16(1): 177–189, 2000.

[Yacoub 1999] Yacoub, S., Ammar, H., and Mili, A. “Characterizing a software component,”
1999 International Workshop on Component-Based Software Engineering , http://www.sei.
cmu.edu/cbs/icse99/papers/34/34.htm , 1999.

2
THEORY OF COMPONENTS

Objectives of This Chapter

ž Discuss principles of COP and its major features
ž Investigate the infrastructures of COP technologies
ž Provide a framework to unify various component technologies
ž Provide formal definitions of software components
ž Provide formal definitions of connections for component assembling
ž Provide formal definitions of component deployment

2.1 PRINCIPLES OF COP

The word “component” has been around in computer industry for a long time. As a
matter of fact, the concept of component itself had been living with us even before
computers were invented. A house builder used components from several other indus-
tries to build a house. It is a common practice for automobile manufacturers to use
many components from other industries to build a car. In computer hardware industry,
engineers no longer design basic hardware elements from scratch for every product.
Various microprocessor chips, memory chips, circuit boards, and network cards are
available for building larger and powerful computing systems.

Even though we might have many different definitions about software components,
the principles about software components remain the same for different definitions
[Allen 1997; Garlan 2000; Liskov 2000; Luck 2000; Wang 2000, 2002]. Next, we
will discuss some fundamental principles in component-based software engineering in
general and in component-oriented programming in particular.

Component-Oriented Programming, by Andy Ju An Wang and Kai Qian
ISBN 0-471-64446-3 Copyright 2005 John Wiley & Sons, Inc.

16

PRINCIPLES OF COP 17

Principle 1: Components Represent Decomposition and Abstraction

The basic and effective strategy for tackling any large and complex problem in com-
puter science is “divide and conquer.” One major idea in component-based software
development is to create software modules that are themselves self-contained and inde-
pendently deployable. Thus different developers will be able to work on different
components independently, without needing much communication among themselves,
and yet the components will work together seamlessly. In addition, during software
maintenance phase, it will be possible to modify some of the components without
affecting all of the others.

When we decompose a system, we factor it into separable components in such a
way that

ž each component is at the same level of detail;
ž each component can be solved independently; and
ž the implementations of these components can be integrated to satisfy the original

system requirements.

Abstraction is a way to do decomposition productively by changing the level of detail
to be considered. Software components hide certain details in an effort to provide only
necessary information to the clients through their interface. The strategy of abstracting
and then decomposing is typical in software development process. Decomposition is
used to break software into components that can be combined to solve the original
problem; abstraction assists in making a good choice of components. Computer science
has gone through various abstractions. Procedural abstraction allows us to decompose
a problem solution into independent functional units. Data abstraction or data type
encapsulates data objects with a set of operations characterizing the behavior of the
objects. This book is considering the third kind of abstraction: component abstraction,
which is the highest level of abstraction in terms of its extension and useful information
encapsulated.

Principle 2: Reusability Should Be Achieved at Various Levels

Software exists in different forms throughout the software engineering process. At
the modeling and analysis phase, the requirements specification is seen as a form of
software. In the design phase, architectural design and detail design documents are
part of the software. Source code in the implementation phase and executable code
deployed to the customer site are certainly software. Therefore, software reusability
includes the reuse of any software artifacts in various formats.

As we discussed briefly in Chapter 1, there are five forms of software components,
namely, component specification, component interface, component implementation,
installed components, and component objects. Each form of the software components
could be reused in different stages of a software life cycle.

Principle 3: Component-Based Software Development Increases the Software
Dependability

With the rapid advances of computer hardware, highly reliable, powerful, and cheaper
hardware are available for various applications. The dependability of a computing

18 THEORY OF COMPONENTS

system relies heavily on the trustworthiness of the software part. Component-based
software development and component-oriented programming provide a systematical
way to achieve dependable systems. Owing to the abstraction of components and sys-
tematic integration of components, it is much easier to validate critical requirements
and verify safety for component-based systems. On the other hand, reusable compo-
nents have usually been tested through the validation process and real usage for a long
time and, therefore, their quality can be assured.

Principle 4: Component-Based Software Development Could Increase the
Software Productivity

Component-based software is constructed by assembling existing reusable components
rather than developing from scratch every time – reuse instead of reinventing the wheel.
This process is much faster than developing an application from scratch in most cases.

Principle 5: Component-Based Software Development Promotes Software
Standardization

As Clemens Czyperski described in [Clemens 2003], for component markets to develop,
component standards must be in place. Standards can be used for creating an agree-
ment on concrete interface specifications, enabling effective composition, and ensuring
COP to be a new programming paradigm in which “plug-and-play” becomes a reality
in software development just like the hardware counterpart.

2.2 INFRASTRUCTURES OF COP

We have discussed component definitions in Chapter 1, and we found out that it is
not easy to have a unique component definition to fit in different situations. Such
difficulties underlying the definition discussion are due to the following facts:

Software components are associated with their component infrastructure. Different com-
ponent technologies have different component infrastructures, and thus have different
component definitions.

What is a component infrastructure? Let us first find out the definition of infrastruc-
ture. According to [DIC 1995], infrastructure refers to the basic structures and facilities
necessary for a country or an organization to function efficiently, for instance, buildings,
transport, water, and energy resources, and administrative systems. The New Webster’s
Encyclopedic Dictionary of the English Language [Random House Value Publishing,
Inc., 1997] gives the following definitions for infrastructure: (1) the basic, underly-
ing framework or features of a system or organization; (2) the fundamental facilities
serving a country, city, or area, as transportation and communication systems, power
plants, and roads; (3) the military installations of a country.

A component infrastructure is the basic, underlying framework and facilities for
component construction and component management. It consists of three models: a
component model, a connection model, and a deployment model. The component
model defines what a valid component is and how to create a new component under

INFRASTRUCTURES OF COP 19

the component infrastructure. Component engineers build reusable components accord-
ing to the component model. Each component infrastructure has a reusable component
library containing building blocks confirming to the component model. The connec-
tion model defines a collection of connectors and supporting facilities for component
assembling. Thus, the connection model determines how to build an application or a
larger component out of existing components. The deployment model describes how
to put components into a working environment.

The component infrastructure discussed here is sometimes called “component
technology” or “component architecture” in literature. We prefer the name “component
infrastructure” because it better serves our purposes in the component-oriented
programming context. Component technologies complying with the above definition
include JavaBeans from Sun Microsystems, COM (Component Object Model) and
DCOM (Distributed COM) from Microsoft Corporation, and CORBA (Common
Object Request Broker Architecture) from the Object Management Group. COM
provides a framework for creating and using components on a Windows platform. It
supports interoperability and reusability of distributed objects by allowing developers
to build systems through assembling reusable components from different vendors that
communicate via COM. It defines an application programming interface (API) to allow
for the creation of components for use in integrating custom applications or to allow
diverse components to interact, as long as the components adhere to the binary structure
specified by Microsoft. DCOM extends COM to allow network-based components
interaction. CORBA is a specification of a standard architecture, allowing vendors to
develop ORB (Object Request Broker) products that support application portability and
interoperability across different programming languages, hardware platforms, operating
systems, and ORB implementations. A large and growing number of implementations
of CORBA are available in the market place, including implementations from major
computer manufactures and independent software vendors.

In the following six chapters, we will discuss six different component infrastruc-
tures, namely, JavaBeans, EJB, CORBA, .NET, OSGi, and Web Services. For each
component infrastructure, we will discuss in detail its component model, connection
model, and deployment model. We will see from the discussion that some component
infrastructures are better than others in terms of their richness in one model and few
component infrastructures are good in all these three models.

Component infrastructure has close relationship with algebra. Algebra is a mathe-
matical object with internal structures. Let A be an algebra, which can be described as
the following triple:

A = 〈D, C, L〉

where D is the domain of A, a set of objects under discussion within the algebra;
C is a set of operators defined on the domain D; and L is a set of laws describing
the behaviors of objects with respect to the operators in C. For instance, in Boolean
algebra, the domain D = {0, 1}, the operator set is C = {+, ∗,∼}, and the law set L

includes the following laws:

0 + 0 = 0 0 ∗ 0 = 0 ∼0 = 1
0 + 1 = 1 0 ∗ 1 = 0 ∼1 = 0
1 + 0 = 1 1 ∗ 0 = 0
1 + 1 = 1 1 ∗ 1 = 1

20 THEORY OF COMPONENTS

Every component infrastructure embodies a component algebra. The domain of such
an algebra is defined by the component model of the component infrastructure. The
operator set of such an algebra is determined by the connection model of the component
infrastructure. The laws of the algebra are abstractions of the deployment model of the
component infrastructure.

Every component infrastructure is supported by a component builder tool or an IDE
(integrated development environment). For instance, BDK (Bean Development Kit)
was developed by Sun Microsystems as a visual design environment for Java beans,
which supports JavaBeans component infrastructure. Microsoft Visual Studio .NET
supports its .NET component infrastructure. JES (Java Embedded Server) 2.0 supports
the OSGi component infrastructure. Most component builder tools support both “design
for reuse” and “design with reuse” in component-based development. Some of them,
however, have been designed only for “design with reuse.” For instance, BDK 1.1
does not have a source code editor, neither a compiler nor a JAR utility; thus, BDK
1.1 is not good for developing components, that is, developing for reuse. The user has
to use another IDE to generate a Java bean packaged in a JAR file and load it into the
“ToolBox” of BDK. Besides, BDK does not provide any method editor or event editor.
Therefore, the use of BDK cannot modify a Java bean other than simply change some
public properties. In terms of connection operators, BDK provides two operators to
integrate components: modifying properties and event handling. With an ideal builder
tool, a user should be able to generate a new component by either manually coding
in a source code editor or by modifying an existing component taken from a reusable
component library.

2.3 COMPONENT MODELS

Informally, a component has a collection of properties, methods, and events. Each
component has a Name, an identifier presenting the component. Properties encapsulate
states or attributes of a component. Each property has a type. Methods describe the
behavior and services of a component. Each method has a signature:

visibility access return_type method_name (parameter-list).

Events describe the actions of which this component can initiate. Each event also has
a type. Interface, a subset of the Cartesian set of the power sets of properties, methods,
and events, defines the communication parts of the component to the outside world.
We could use a graphical notation, called component chart (Figure 2.1), to present
a component.

The component chart is a graphical representation of a software component. The
rectangles, circles, and diamonds on both left and right sides represent public properties,
methods, and events respectively in its interface. These interface elements act similarly
as hardware pins around an integrated circuit chip. If there is no confusion from the
context, we could just present one side of interface and omit the S (source) and T
(target) part from the component chart, as shown in Figure 2.2 and Figure 2.3.

Formally, a component can be defined as

C = (P, M, E, I)

CONNECTION MODELS 21

Properties

Events

Methods

Name

T (target)S (source)

FIGURE 2.1. A component chart.

where

ž P = {p:T | p ∈ identifier, T ∈ type}
ž M = {(v,a,t,i(p)) | v ∈ visibility, a ∈ access, t ∈ type,
i ∈ identifier, p ∈ parameter}

ž E = {e:T | e ∈ event, T ∈ type}
ž I ⊆ 2P × 2M × 2E

The definitions for identifier, type, visibility, access, and parameter will
be presented formally in Section 2.6.

The formal definition of component given here is only an abstraction of reusable
software components. Different component infrastructures have their own concrete
definitions for their components. The specification of a component also varies in dif-
ferent component infrastructures as well. For instance, the specification of a method
in an interface can be given using pre- and postconditions, as illustrated in the follow-
ing example.

Example 2.1 Suppose a component has a public method, called squareRoot, in its
interface. The specification of this method could be given as below:
public static float squareRoot (float num)

Pre-condition: num > 0
Post-condition: returns an approximation to the square root of num.

2.4 CONNECTION MODELS

Component software engineers can modify a component or integrate several compo-
nents together to generate a new component or application with composition opera-
tors defined in a component infrastructure. In this section, we discuss some generic
composition operators such as +, – , *, /, which are independent of any component
infrastructures. Therefore, these operators can be interpreted differently in different
component infrastructures.

1. Aggregation or Addition (+) Two components are added together without direct
interactions, as shown in Figure 2.2.

2. Reduction or Subtraction (–) This is an inverse operator of addition.

22 THEORY OF COMPONENTS

P1

M1

E1

P2

M2

E2

C1 = (P1, M1, E1, I1) C2 = (P2, M2, E2, I2)

C1 + C2

FIGURE 2.2. Aggregation or addition of two components.

P1

M1

E1

P2

M2

E2

C1 * C2

C1 = (P1, M1, E1, I1) C2 = (P2, M2, E2, I2)

FIGURE 2.3. Multiplication of two components.

3. Event Handling or Multiplication (*) Hook up an event from the source com-
ponent to a method of the target component, as shown in Figure 2.3. When we
need to express which event triggers the communication, we could attach the
event to the operator as a subscript like: C1 *e C2, where e is the triggering
event for the hookup operation.

4. Event to Property or Divide (/) Hook up an event from the source component
to a property of the target component. This operator is similar to multiplication
except for the target effect. Similar to the case of multiplication, we could use
this operator with a subscript like: C1 /e C2, where e is the triggering event for
the operation.

5. Event to Event (ˆ) Hook up an event from the source component to an event
of the target component. This operator is similar to multiplication except for the
target effect. With this operator, an event e1 from a component C1 could trigger
an event e2 in a component C2. This operation can be explicitly expressed as
C1 e1ˆe2 C2.

6. Modification of Interface (+p, – p,+m, – m,+e, – e) These operators are used
to modify the interface of a component. For instance, the result of applying +p

to a component C is a component C′ exactly same as C but with an explicit
property p. The result of applying −e to a component C is a component C′
exactly same as C but without the event e in its interface.

CONNECTION MODELS 23

Example 2.2 An Air-Conditioning System: This system contains three components:
AirCondition, Temperature, and Thermostat. These three components are hooked up
together with the operators discussed above. The Thermostat component has a property
named Comforting Temperature that allows the user to modify at runtime. It has another
property called Current Temperature, controlled by the AirCondition component instead
of by user. Temperature component represents the current temperature provided by a
temperature sensor. For demonstration purposes, users can change the value of current
temperature at design time. Finally, the AirCondition component has three modes: AC
OFF, COOLER, and HEATER. Its initial mode is AC OFF. When the current temper-
ature is higher than the Comforting Temperature, COOLER is executed. In contrast,
when the current temperature is lower than the Comforting Temperature, HEATER is
executed. The architecture diagram of the system is illustrated in Figure 2.4.

Let C1, C2, and C3 in Figure 2.5 represent AirCondition, Temperature, and Ther-
mostat respectively. These components have been implemented in Java and packaged
as JavaBeans. P11, P12, P13, M11, M12, E11 are the properties, methods, and events
in component C1 implemented as a JavaBean component, respectively, and similarly
for C2 and C3.

There are three compositions in this system organized in a way presented in
Figure 2.6. (1) C1*C2 is hooked up through an event from source component C1 to

Air Condition

Temperature
pulse

Temperature is
changed

Temperature

Requires COOLER
or HEATER

Thermostat

FIGURE 2.4. The air-conditioning system.

P1

M1

E1

P2

M2

E2

P3

M3

E3

P13

P12

P11

P22

P21

E21E11

M21
M12

M11
M31

P31

P32

E31

E32

E33

M34

M35

M36

M32

M33

C1 C2 C3

FIGURE 2.5. Components in the air-conditioning system.

24 THEORY OF COMPONENTS

P1

M1

E1

P13

P12

P11

P13

P12

P11

T S

E11E11

M12

M11

M12

M11

C1
T S

C2

S T
C3

P2

M2

E2

P22

P21

P22

P21

E21E21

M21M21

P3

M3

E3

P32

P31

P32

P31

E31E31

E32E32

E33E33

M31
M32
M33
M34
M35
M36

M31
M32
M33
M34
M35
M36

COOLER Temperature

Comforting Temperature

22.0

Current Temperature

38

>><<

FIGURE 2.6. Component composition.

trigger a method in the target component C2. The event from C1 is E11 and the method
in C2 is M21. (2) C2*C3 is hooked up through an event from source component C2
to trigger a method in target component C3. The source event from C2 is E21 and
the method in C3 is M32. (3) C3*C1 is hooked up through an event from source
component C3 to trigger a method in target component C1. The source event from C3
is E32 and the target method in C1 is M11. This three-way composition among the
components in this design represents the structural relationship of the air-conditioning
system, as illustrated in Figure 2.4 and Figure 2.6.

If we specify a component in text following the original quadruple definition, we
obtain a component table that is similar to component charts in terms of their objectives.
A component table expresses the component properties, methods, and events in a table
format. In addition, a component table has a special slot to specify constraints of the
component. These constraints are specified using first-order temporal logic formulas.
This is useful for real-time and embedded systems, and it is important to include
constraint specification capability for those components to capture nonfunctional user
requirements as well as functional requirements. Since reactive systems interact with
their environment without terminating, the partial correctness and termination are not
adequate for their specification and verification [Pnueli 1992]. We need to be able to
state and prove properties of execution sequences, not just pre- and postconditions.
Therefore, we need temporal operators from first-order temporal logic to specify and
verify temporal properties of embedded systems.

Example 2.3 A TemperatureSet component specified using a component table with
temporal properties. The TemperatureSet component will be used as a control panel

CONNECTION MODELS 25

for users to input the desired temperature setting or threshold temperature via a slider.
This temperature will be sent to a Switch component to be used to compute the heater
switch-state in a thermostat system. This component will use the class ControlPanel
that will extend JPanel and implement Serializable. This component can also be
used in other systems in which the user must set a threshold value via input hard-
ware such as a knob or slider. Other systems may include heating/cooling, fuel tanks
(determine the height in the tank), or cruise control for automobiles.

TemperatureSet

int currentValue

Public void setCurrentValue(int)

Public int getCurrentValue(void)

firePropertyChange

stateChanged

G(setCurrentValue(i) -> next(currentValue) = i)

This component has one property: int currentValue – the user-selected temper-
ature from the slider object. It has two methods: public void setCurrentValue
(int) – this method sets the currentValue property to the value of the slider – and
the method public int getCurrentValue(void) that returns the value of the prop-
erty currentValue. The event firePropertyChange will broadcast the updated value
currentValue to all registered listeners. The event stateChanged will broadcast the
updated value from the slider to all registered listeners. The special requirements slot of
this component contains only one formula, which means that for all times in the future,
if the method setCurrentValue()is called with an integer value i, then the thermostat
control panel will display i as the current value. Here G is a temporal operator. Gp means
that p is true at all times in the future. Other temporal operators include F, U, and X. The
F operator is used to express a condition that must hold true at some time in the future.
The formula Fp is true at a given time if p is true at some later time. The formula pUq,
which is read “p until q,” means that q is eventually true, and until then, p must always
be true. The formula Xp means that p is true at the next time. Notice that “next” is not
a temporal operator. It is defined on state variables and thus it is a state operator.

The associations among components are represented graphically using arrows. There
are two major associations: message passing and event driving. We use dash-line arrows
to represent message passing and solid arrows to represent event driving relation.
Figure 2.7 below illustrates message passing association.

The event driving associations are relationships among source components and tar-
get components. Source components are typical AWT or Swing components in Java
programming environment, which can trigger an event. Target components provide
event handlers for the event fired by the source components. Figure 2.8 depicts the
event driving associations among three components.

26 THEORY OF COMPONENTS

Sensor Controller Actuator Valve

getTemp setTemp angle

FIGURE 2.7. Message passing associations.

Button-1 Button-2Animation

FIGURE 2.8. Event driving associations.

When Button-1 is pressed, it triggers an ActionEvent. The event handler action-
Performed() is provided by the Animation component, similarly for the component
Button-2.

2.5 DEPLOYMENT MODELS

The deployment model of a component infrastructure determines the process and activ-
ities of preparing a component for execution, including installation and any necessary
configuration. For instance, EJB (enterprise Java Beans) produces a separate XML-
based deployment descriptor to help deploy an EJB component. Web Services use
UDDI (Universal Description, Discovery and Integration) as a key building block
enabling enterprises to quickly and dynamically discover and invoke Web Services both
internally and externally. Java-based component infrastructures deliver components as
JAR files, while .NET components are called assemblies. The deployment model is
one of the fundamental differences among different component infrastructures.

2.6 UNIFYING COMPONENT TECHNOLOGIES

In this section, we will define a formal specification language CSL (Component Spec-
ification Language) as a foundation for unifying different component technologies. We
believe that a formal language for components is in need for several reasons:

ž It serves to clarify confusions and misinterpretations.
ž It is intellectually stimulating and challenging.
ž A precise definition is a necessary condition for research and development in any

scientific discipline.
ž Formal models support formal specifications and formal verifications.
ž Formal models support automatic tool development.

The syntax of the CSL is given in BNF-like notation. Terminal symbols are set
in a typewriter font (like this). Non-terminals are set in an italic font (like this).
The vertical bar | denotes an alternative in a rule. Parentheses (. . .) denote grouping.
Parentheses with a trailing star sign (. . .)* denote zero, one, or several occurrences of

UNIFYING COMPONENT TECHNOLOGIES 27

the enclosed item. Parentheses with a superscript plus sign (. . .)+ denote one or several
occurrences of the enclosed item. Brackets [. . .] denote an optional item.

Blanks

The following characters are considered as blanks: space, new-line, and horizontal
tabulation. Blanks separate adjacent identifiers, literals, and keywords that would be
otherwise confused as a single identifier, literal, or keyword. Apart from that, they
are ignored.

Comments

Comments are Java-like comments. They start with two forward slashes “//” for a
single-line comment. For a multiple line comment, it starts with /* and ends with */.
Comments are treated as blanks.

Identifiers

Identifiers are a sequence of letters, digits, and (the underscore character) starting
with a letter. A letter can be any of the 52 lowercase and uppercase letters from the
ASCII set. Currently, we place no limit on the number of characters of an identifier.

ident ::= letter (letter | digit |)*
letter ::= A . . . Z | a . . . z
digit ::= 0 . . . 9

Integer Literals

An integer literal is a sequence of one or more digits. By default, integer literals are
in decimal (radix 10).

Integer-literal ::= (0 .. 9)+|
0 × (0 .. 9|A .. F |a .. f)+|
0o(0 .. 7)+

The following prefixes select a different radix:

Prefix Radix

0x Hexadecimal (radix 16)

0o Octal (radix 8)

Boolean Literals

The boolean type has two possible values, represented by the literals true and false.
A boolean literal is always of type boolean.

boolean-literal ::= true |
false

28 THEORY OF COMPONENTS

Bit Literals

Bit literals are delimited by ‘ (single quote) characters.

bits-literal ::= ‘(bit)+’
bit ::= 0|1| ∗ |.

Prefix and Infix Operators

The following tokens are the CSL operators:

+ - * / ^ ||
+p -p +m -m +e -e

Temporal and State Operators

The following temporal and state operators are used to capture special requirements
for temporal properties:

Temporal operator ::= G | F | U | X
State operator ::= next() | previous()

G represents “always,” “henceforth,” or “global.”
F represents “eventually,” or “sometimes.”
U represents “until.” The formula pUq means that p keeps true before q becomes true.
X represents “next.” The formula Xp means that p is true at the next state.
The two state operators, next() and previous(), can only be applied on state

variables.

Keywords

The identifiers below are reserved keywords:

extends implements requires effects public
protected Private static

Component Specification

Component ::= ident (Property, Method, Event, req) |
Component + Component |
Component – Component |
Component * Component |
Component/Component |
ComponentˆComponent |
+p Component | -p Component |
+m Component | -m Component |
+e Component | -e Component |
Component || Component |

UNIFYING COMPONENT TECHNOLOGIES 29

?(message) Component | !(message) Component |
Property ::= (ident type)*
Method ::= (visibility [access] type ident ([param]*))*
Event ::= (ident type)*
visibility ::= public | protected | package | private
access ::= static | volatile
param ::= ident type
Type ::= int | String | any Java type
Req ::= Interface | p | Gp | Fp | pUq | Xp |

next(ident) | previous (ident), where p and q are
first-order logic formulas.

Formal Semantics of CSL

The semantics of CSL is based on many-sorted algebra. An algebra consists of a domain
of values and a set of operations or functions defined on the domain: 〈set of values;
operations〉. Equations are given to define equivalences between syntactic elements;
they specify the transformations that are used to translate from one syntactic form to
another. The domain is often called a sort, and the domain and the function sections
constitute the signature of the algebra. Functions with zero, one, and two operands are
referred to as nullary, unary, and binary operations. If there is more than one domain,
the algebra is called a many-sorted algebra. In Example 2.4, we have an abstract
data-type Stack specified in a many-sorted algebra.

Example 2.4 Many-sorted algebra Stack

Domains:
Nat (the natural numbers), Stack (of natural numbers), and Bool
(Boolean values).
N ∈ Nat, S ∈ Stack

Functions:
newStack: () → Stack
push: (Nat, Stack) → Stack
pop: Stack → Stack
top: Stack → Nat
empty: Stack → Bool

Axioms:
pop(push(N, S)) = S
top(push(N, S)) = N
empty(push(N, S)) = false
empty(newStack()) = true

Errors:
pop(newStack())
top(newStack())

In this example, a stack of natural numbers is modeled as a many-sorted algebra with
three sorts (natural numbers, stacks, and Booleans) and five operations (newStack,

30 THEORY OF COMPONENTS

push, pop, top, empty). Next, we will define components with many-sorted alge-
bra technique.

1. Domains Let S be the collection of all components, and let CP ,CM , and CE

represent the set of properties, the set of methods, and the set of events of a com-
ponent C respectively. Let ICP , ICM , and ICE represent the set of properties,
the set of methods, and the set of events of C in its interface respectively.

2. Functions

+ : S × S → S

C1 + C2 = C3

C3k = C1k ∪ C2k, k ∈ {P, M, E}
IC3k = IC1k ∪ IC2k, k ∈ {P, M, E}

− : S × S → S

C1 − C2 = C3, if C1 = C2 + C3

C3k = C1k\C2k, k ∈ {P, M, E}
IC3k = IC1k\IC2k, k ∈ {P, M, E}
C1 − C3 = C2, if C1 = C2 + C3

C2k = C1k\C3k, k ∈ {P, M, E}
IC2k = IC1k\IC3k, k ∈ {P, M, E}

e*m : S × S → S, , e ∈ C1E, m ∈ C2M

C1e*m C2 = C3

C3P = C1P ∩ C2P

C3M = C1M ∩ (C2M − {m})
C3E = (C1E − {e}) ∩ C2E

IC3P = IC1P ∩ IC2P

IC3M = IC1M ∩ (IC2M − {m})
IC3E = (IC1E − {e}) ∩ IC2E

e/p:S × S → S, , e ∈ C1E, p ∈ C2p

C1 e/p C2 = C3

C3P = C1P ∩ (C2P \{p} ∪ {p′}), where p′ is the updated property
C3M = C1M ∩ C2M

C3E = (C1E − {e}) ∩ C2E

IC3P = IC1P ∩ (IC2P \{p} ∪ {p′}), where p′ is the updated property
IC3M = IC1M ∩ IC2M

IC3E = (IC1E − {e}) ∩ IC2E

e1̂e2 : S × S → S, , e1 ∈ C1E, e2 ∈ C2E

C1 e1̂e2 C2 = C3

C3P = C1P ∩ C2P

C3M = C1M ∩ C2M

C3E = (C1E − {e1}) ∩ (C2E − {e2})
IC3P = IC1P ∩ IC2P

UNIFYING COMPONENT TECHNOLOGIES 31

IC3M = IC1M ∩ IC2M

IC3E = (IC1E − {e1}) ∩ (IC2E − {e2})
+p: S → S

+ p C1 = C2

C2P = C1P ∪ {p}
C2M = C1M and C2E = C1E

IC2P = IC1P ∪ {p}
IC2M = IC1M and IC2E = IC1E

−p: S → S
− p C1 = C2

C2P = C1P \{p}
C2M = C1M and C2E = C1E

IC2P = IC1P \{p}
IC2M = IC1M and IC2E = IC1E

+m: S → S
+ m C1 = C2

C2M = C1M ∪ {m}
C2P = C1P and C2E = C1E

IC2M = IC1M ∪ {m}
IC2P = IC1P and IC2E = IC1E

−m: S → S
− m C1 = C2

C2M = C1M\{m}
C2P = C1P and C2E = C1E

IC2M = IC1M\{m}
IC2P = IC1P and IC2E = IC1E

+e : S → S

+ e C1 = C2

C2E = C1E ∪ {e}
C2P = C1P and C2M = C1M

IC2E = IC1E ∪ {e}
IC2P = IC1P and IC2M = IC1M

−e: S → S
− eC1 = C2

C2E = C1E\{e}
C2P = C1P and C2M = C1M

IC2E = IC1E\{e}
IC2P = IC1P and IC2M = IC1M

|| : S × S → S

C1||C2 = C3

32 THEORY OF COMPONENTS

C3P = C1P ∩ C2P

C3M = C1M ∩ C2M

C3E = C1E ∩ C2E

IC3P = IC1P ∩ IC2P

IC3M = IC1M ∩ IC2M

IC3E = IC1E ∩ IC2E

3. Axioms Let A, B,C be components; p a property; m a method; e an event.
Let 0 represent the component whose property set, method set, and event set are
all empty.

A + B = B + A

A*B �= B*A

A + A = A

A + 0 = A

(A + B) + C = A + (B + C)

A*(B + C) = (A*B) + (A*C)

(A + B)*C = (A*B) + (A*C)

+p(−pA) = A − p(+pA) = A

+m(−mA) = A − m(+mA) = A

+e(−eA) = A − e(+eA) = A

+p(A + B) = (+pA) + (+pB)

−p(A + B) = (−pA) + (−pB)

+m(A + B) = (+mA) + (+mB)

−m(A + B) = (−mA) + (−mB)

+e(A + B) = (+eA) + (+eB)

−e(A + B) = (−eA) + (−eB)

+p(−pA) = A = −p(+pA)

+m(−mA) = A = −m(+mA)

+e(−eA) = A = −e(+eA)

+p(A*B) = (+pA)*(+pB)

−p(A*B) = (−pA)*(−pB)

+m(A*B) = (+mA)*(+mB)

−m(A*B) = (−mA)*(−mB)

A||B = B||A
(A||B)||C = A||(B||C)

A||(B + C) = (A||B) + (A||C)

(A + B)||C = (A||B) + (A||C)

A + (B||C) = (A + B)||(A + C)

(A||B) + C = (A + C)||(A + C)

4. Errors All the operations other than defined above will generate errors or excep-
tions.

2.7 SUMMARY

Component-based development (CBD) has been recognized as an effective way to
build software. However, there does not exist a widely accepted component definition

SELF-REVIEW QUESTIONS 33

yet nor systematic component-based development methodology that can be applied
throughout the software development process. A software component is a piece of self-
contained code with well-defined functionality and can be reused as a unit in various
contexts. From this definition, a component is a program or a collection of programs
that can be compiled and made executable. A software component can be used and
tested as a unit, independent of the context in which the component is eventually
used. The internal implementation of a component is usually hidden from the user.
The main premise behind a software component is the aspect of reuse. Software is
best divided into components that are designed and implemented, each for a specific
purpose. This allows the users or developers to partition the different aspects of a
system into common areas that can be very distinctly identified, specified, designed,
implemented, and ultimately be reused for other potential domain applications.

A component infrastructure is the basic, underlying framework and facilities for
component construction and component management. It consists of three models: a
component model, a connection model, and a deployment model. The component
model defines what a valid component is and how to create a new component under
the component infrastructure. Component engineers build reusable components accord-
ing to the component model. Each component infrastructure has a reusable component
library containing building blocks confirming to the component model. The connec-
tion model defines a collection of connectors and supporting facilities for component
assembling. Thus, the connection model determines how to build an application or a
larger component out of existing components. The deployment model describes how
to put components into a working environment.

2.8 SELF-REVIEW QUESTIONS

1. The basic and effective strategy for tackling any large and complex problems in
computer science is
a. artificial intelligence
b. distributed processing
c. parallel processing
d. divide and conquer

2. The word “component” has been used
a. in hardware engineering only
b. in software engineering only
c. in computer industry and other engineering disciplines for a long time
d. in the same meaning as the object or module

3. Abstraction is a way to do
a. programming and testing
b. decomposition productively by changing the level of detail to be considered
c. designing a system with object-oriented approach
d. integrating several components into a large application

4. Software reusability should be achieved at various levels because
a. software exists in different forms throughout the software life cycle

34 THEORY OF COMPONENTS

b. software design has several steps
c. software implementation has different formats
d. software is ported into different platforms

5. Component-based software development increases the software dependability
because
a. component-based software was developed using Java
b. component-based software has simpler architecture
c. reusable components have usually been tested through the validation process

and real usage for a long time
d. reusable components have less overhead at run-time

6. Component-based software development could increase software productivity in
a. enterprise computing, where server-side programming plays a critical role
b. service-oriented computing, where nonfunctional requirements plays a criti-

cal role
c. “development for reuse,” in which a new component is developed and stored

in a reusable library for future reuse
d. “development with reuse,” in which a new application is constructed by assem-

bling existing reusable components

7. A component infrastructure refers to
a. the interface between components
b. the basic, underlying framework and facilities for components construction

and management
c. the communication between components
d. the standard used to develop components

8. The component model defines
a. a collection of connectors and supporting facilities for component assembling
b. how to put components into a working environment
c. what a valid component is and how to create a new component under the

component infrastructure
d. the interface to another component

9. The connection model defines
a. a collection of connectors and supporting facilities for component assembling
b. how to put components into a working environment
c. what a valid component is and how to create a new component under the

component infrastructure
d. the interface to another component

10. There are different component definitions available because
a. component infrastructure has not been developed yet
b. software components are not associated with their component infrastructure
c. different component technologies have the same component infrastructure
d. different component technologies have different component infrastructures

REFERENCES 35

Keys to Self-Review Questions

1. a 2. c 3. b 4. a 5. c 6. d 7. b 8. c 9. a 10. d

2.9 EXERCISES

1. Discuss some other principles of component-oriented programming that were not
discussed in this chapter.

2. Describe component infrastructure with your own words. On the basis of your
software development experience, list some software development environment
similar to the component infrastructure defined in this chapter.

3. Draw a component chart for a Button component. It has the following properties:
foreground color, background color, name, size, and image. It has a pair of methods
(setter and getter) for each property above to set or get the property value. It has
one event: pressButton.

4. Construct a component table for the Button component in the previous question.

5. Use component charts to describe the following component-based software system:
A student information system consists of a user login component, a modifying
component for faculty to upload student grades, and displaying component for
students to check their grades on-line through a Web browser.

6. Write preconditions and post-conditions for a method changeGrade(String stu-
dent) and a method displayGrade() in the student information system defined
in the previous question.

7. How do you use UML diagrams to represent a software component?

8. How do you use UML diagrams to describe a component-based software system?

9. How do you describe the deployment model in a component infrastructure?

10. Discuss the strengths and weaknesses of UML as a modeling language to support
the design of component-based software systems.

REFERENCES

[Allen 1997] Allen, R. and Garlan, D. “A formal basis for architectural connection,” ACM
Transactions on Software Engineering and Methodology, 6(3): 213–249, July, 1997.

[DIC 1995] Hornby, A. S. Oxford Advanced Learner’s Dictionary of Current English, Oxford
University Press, Oxford, UK, 1995.

[Garlan 2000] Garlan, D., Monroe, R., and Wile, D. “ACME: Architectural description of
component-based systems,” in Foundations of Component-based Systems, G. T. Leavens and
M. Sitaraman (eds), Cambridge University Press, Cambridge, UK, 2000.

[Liskov 2000] Liskov, B. and Guttag, J. Program Development in Java, Abstraction, Specifica-
tion, and Object-Oriented Design, Addison-Wesley, Upper Saddle River, NJ, 2000.

[Luck 2000] Luckham, D. C., Vera, J., and Meldal, S. “Key concepts in architecture definition
languages,” in Foundations of Component-based Systems, G. T. Leavens and M. Sitaraman
(eds), Cambridge University Press, Cambridge, UK, 2000.

36 THEORY OF COMPONENTS

[Pnueli 1992] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems,
Springer-Verlag, New York, 1992.

[Wang 2000] J. A. Wang, “Towards component-based software engineering,” Journal of Com-
puting Sciences in Colleges, 16(1): 177–189, 2000.

[Wang 2002] J. A. Wang, “Algebra for components,” in Proceedings of the 6th World Multicon-
ference on Systemics, Cybernetics and Informatics, Vol. 5, Computer Science I , N. Callaos,
T. Leng, and B. Sanchez (eds), International Institute of Informatics and Systemics, 2002,
pp. 213–218.

3
COP WITH JAVABEANS

Objectives of This Chapter

ž Present an overview of JavaBeans technology
ž Discuss the component infrastructure of JavaBeans
ž Introduce the component model of JavaBeans
ž Learn the connection model of JavaBeans
ž Discuss the deployment model of JavaBeans
ž Discuss the key features and techniques of component-oriented programming

with JavaBeans

3.1 OVERVIEW OF JAVABEANS TECHNOLOGY

As we discussed in Chapters 1 and 2, a software component refers to a reusable,
self-contained, independently deployable software unit. The JavaBeans specification
[Sun 1997] defines software components, called beans, with an extra feature: beans are
not only self-contained, reusable software units but are also visually constructed using
builder tools like BDK [Sun1 2001] or Bean Builder [Sun2 2003]. Thus, JavaBeans
components are good for designing graphical applications. With JavaBeans compo-
nents, for instance, a new GUI (graphical user interface) can be built visually by
“drag-and-drop” with minimal programming effort. The JavaBeans component infras-
tructure provides all the techniques for programmers to assemble larger applications
from prebuilt, reusable JavaBeans components. JavaBeans components do not exist
without such a component infrastructure, the underlying foundation or basic framework
to construct, assemble, and deploy JavaBeans components.

Component-Oriented Programming, by Andy Ju An Wang and Kai Qian
ISBN 0-471-64446-3 Copyright 2005 John Wiley & Sons, Inc.

37

38 COP WITH JAVABEANS

There are a number of critical concepts for a JavaBeans component:

ž Properties Public attributes of a bean that affect its appearance or behavior, for
instance, background color, font, size, and so on.

ž Methods Java methods that can be called from other beans or the environment.
ž Events A source bean fires an event, while a listener bean receives the event and

responds to the event.
ž Customization Exposed properties could be modified at design time by a property

editor or bean customizers.
ž Persistence Enable a bean to save and restore its state.

The JavaBeans API includes interfaces and classes in the java.beans package and
several other interfaces and classes from core Java API:

ž The Java event model: java.util.EventObject, java.awt.event
ž Object serialization: java.io.Serializable, java.io.Object
ž Reflection: java.lang.reflect

In this chapter and in the next, we will study Java component architecture: Jav-
aBeans and enterprise Java Beans (EJB), introducing component technology into Java
programming language. While JavaBeans is mainly for client-side programming, EJB
is designed for server-side programming. JavaBeans enables both software develop-
ment for reuse and software development with reuse. It constitutes the fundamental
platform for component-oriented programming in Java. In this chapter, we first intro-
duce the basic concepts about JavaBeans, followed by a thorough discussion on the
component model of JavaBeans. Various examples are given for creating a JavaBeans
component from scratch or from an existing Java program. A JavaBeans component
could be customized by modifying its properties. The connection model of JavaBeans
allows us to assemble prebuilt beans into applets, stand-alone applications, or com-
posite components. We will discuss the connection model using BDK 1.1 and Bean
Builder 1.0. As for the deployment model in JavaBeans component infrastructure, bean
components are packaged and delivered in JAR files that contain class files and sup-
porting resources. We will discuss different deployment methods based on the two
builder tools: BDK and Bean Builder.

3.2 COMPONENT MODEL OF JAVABEANS

3.2.1 Basic Concepts

According to [Sun 1997], “a JavaBean is a reusable software component that can be
manipulated visually in a builder tool.” The original goal of JavaBeans was to “define
a software component model for Java, so that third party ISVs (independent software
vendors) can create and ship Java components that can be composed together into
applications by end users” [Sun 1997]. JavaBeans API allows us to create reusable,
platform-independent components.

Component-based software development intends to build large software systems by
integrating prebuilt software components. The high productivity is achieved by using

COMPONENT MODEL OF JAVABEANS 39

standard components. The principles of component-based software development can be
best described by the following two guiding principles: reuse but do not reinvent (the
wheel); assemble prebuilt components rather than coding line by line. There are two
basic activities in component-based software development. First, develop components
for reuse. The production process model for this activity involves component specifica-
tion, design, coding, testing, and maintenance. Second, develop software with existing
components. A component search engine is used in this activity to obtain appropriate
components while composing logic is applied to prove correctness of the component
integration.

The JavaBeans architecture brings the component development model to Java. Java-
Beans allows software developers to construct applications by piecing components
together either programmatically or visually. Any Java program can be transformed
into a Java bean. Since the entire runtime environment required by JavaBeans is part
of the Java platform, no special libraries or classes have to be distributed with your
components, which are fully portable to any platform supporting the Java runtime
system. Since JavaBeans supports the features of software reuse and component models
while it keeps all the benefits from Java, we could say that JavaBeans allows us to
“Write once, run anywhere, and reuse everywhere.”

Although Java beans are intended to work in a visual application development tool,
they do not necessarily have a visual representation at runtime. This means that beans
must allow their property values to be changed through some type of visual interface
and their methods and events should be exposed so that the development tool can
write a code capable of manipulating the component when the application is executed.
Creating a bean does not require any advanced concepts. Below is a piece of code that
implements a simple bean:

public class MyBean implements java.io.Serializable
{

protected int theValue;

public MyBean () { }

public void setMyValue(int newValue)
{

theValue = newValue;
}
public int getMyValue()
{

return theValue;
}

}

This bean has the state (the instance variable theValue) that will automatically be
saved by the JavaBeans persistence mechanism, and it has a property named MyValue
that is usable by a visual programming environment. This bean does not have any
visual representation, but that is not a requirement for a Java bean component. Several
essential information and requirements for developing beans are listed below:

ž All beans should implement the Serializable interface so that their state can be
saved and later restored.

40 COP WITH JAVABEANS

ž Methods that are to be exposed to the builder tool and to other beans must be
made public.

ž All exposed methods should be made thread-safe (possibly synchronized) to pre-
vent more than one thread from calling a method at any given time.

ž Properties are exposed through the use of public “set” and “get” methods. Prop-
erties with no “set” method are read-only. Properties with no “get” method are
write-only.

ž The “get” side of a boolean property may be exposed either through the use of a
public “is” method or an ordinary “get” method.

ž Events that the bean can multicast are exposed through public “add” and “remove”
methods.

Some important features and issues about JavaBeans are summarized below. Later
we will revisit these concepts and discuss these issues in detail.

Properties, Methods, and Events

ž Properties are attributes of a bean that are referenced by name. These properties
are usually read and written by calling methods.

ž The methods of a bean are just the Java methods exposed by the class that imple-
ments the bean. The methods represent the interface used to access and manipulate
the component.

ž Events are messages sent from one component to another, notifying the recipient
that something interesting has happened.

The component sending the event is said to fire the event; the recipient is called a
listener, and is said to handle the event. One component is free to listen to as many
different events as it desires. On the other hand, many components can listen to a
particular event; thus, components must be able to fire an event to an arbitrary number
of components.

Introspection, Customization, and Persistence

ž Introspection is the process of exposing the properties, methods, and events that
a JavaBeans component supports.

ž Customization is the process of modifying the attributes of a Java bean for spe-
cific purpose.

ž Persistence refers to saving a bean component in its current state for future use.
JavaBeans support the persistence model by implementing the java.io.Seria-
lizable interface. This interface helps save the customized bean by serializing
the bean to a file.

Visibility, Multithreading, and Security

ž Visibility is a runtime property of a bean. If a bean has a graphical user interface,
it is visible at runtime in a builder tool. Even though there is no requirement that
a bean be visible at runtime, it is necessary for a bean to support the visual appli-
cation builder. An invisible runtime bean may provide custom property editors
and customizers.

COMPONENT MODEL OF JAVABEANS 41

ž Multithreading is the capability of a program to do several things at the same
time. Java has multithreading capability, and so does JavaBeans. If a Java bean
uses more than one thread during its execution, the programmer should follow
all the principles of multithread programming. On the other hand, a Java bean
should anticipate its use by more than one thread at a time and be able to handle
the situation properly.

ž Security is one of the most important features of Java. In general, we should
assume that a bean is running in an untrusted applet. We should not make any
design decisions that require our beans to be run in a trusted environment. All of
the security restrictions apply to beans, such as denying access to the local file
system, and limiting socket connections to the host system from which the applet
was downloaded. Of course, if a bean is intended to run only in a Java application
on a single computer, the Java security constraints do not apply.

One of the differences between a Java bean and an ordinary Java program is that a
Java bean must be able to operate properly at both runtime and design time. A Java
bean must be able to operate properly in a running application as well as inside an
application development environment. At design time, the component must provide
the design information necessary to edit its properties and customize its behavior. It
also has to expose its methods and events so that the design tool can write code that
interacts with the bean at runtime.

3.2.2 Creating a New Bean from a Java Program

Before reading this section, you should complete the Lab Practice 3.1: Install Java
Beans Development Kit (BDK 1.1) on your computer.

Since Java beans are reusable components written in Java, in principle, every Java
program can be transformed into a Java bean. Now the question is: What is the differ-
ence between a bean and an ordinary Java program? In other words, how to transform
a Java program into a bean? Let us discuss the answers through an example.

Example 3.1 A Java program with GUI component JLabel in a JPanel:

//Exam3_1.java
//A simple JLabel in a JPanel container

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Exam3_1 extends JPanel {

private JLabel l = new JLabel("A simple JLabel with raised
border");

private int width=200, height=100;

public Exam3_1() {
setSize(width, height);
setBackground(Color.green);

42 COP WITH JAVABEANS

l.setFont(new Font("TimesNewRoman", Font.BOLD, 20));
l.setForeground(Color.red);
l.setBorder(BorderFactory.createRaisedBevelBorder());
add(l);

}

public static void main(String args[]) {
Exam3_1 ex = new Exam3_1();
JFrame jf = new JFrame("Testing JLabel ... ");
jf.getContentPane().add(ex, BorderLayout.CENTER);
jf.addWindowListener(

new WindowAdapter() {
public void windowClosing(WindowEvent e) {

System.exit(0);
}

});
jf.setSize(ex.getPreferredSize().width + 20,

ex.getPreferredSize().height + 40);
jf.setVisible(true);

}
}

The output of the program is shown in Figure 3.1.

QUICK-REVIEW QUESTIONS

1. In the constructor of the class Exam3 1, the statement “setSize(width, height);”
is not necessary for this example, why?

2. At the end of Exam3_1.java, we set the size of the JFrame to be the “pre-
ferred size” of the JPanel plus some offset pixels. What is the preferred size
of a GUI component?

3. What is the difference between the two Component methods: show(true) and
setVisible(true)?

The Component methods show() and show(boolean) were defined in JDK1.1.
They were deprecated and were replaced by setVisible(boolean) since JDK1.2.

Every GUI component in Java has a preferred size. The preferred size is generally
the smallest size necessary to render the component in a visually meaningful way.

Now let us see how to transform the Java program Exam3_1.java into a Java bean.

Step 1: Use package Statement as the First Line of Your Source Code Normally,
classes that represent a bean are first placed into a package. It is especially useful

FIGURE 3.1. The output of Exam3 1.java: JLabel.

COMPONENT MODEL OF JAVABEANS 43

to generate a JAR file for a bean with a number of multimedia files. Even for this
extremely simple example, we use a package statement as its first line as below:

package Pack3_2;

This means that we are going to create a package (actually a directory) called
Pack3_2, and all the information necessary for deploying the bean will be put there.

Step 2: Implement the Serializable Interface for Persistence At the line of class defi-
nition, make your class implement the Serializable interface. This is to support
persistence – saving a bean object in its current state for future use. All the Java
beans should implement the Serializable interface to support persistence. Note
that the Serializable interface belongs to the java.io package, and usually we
import this package at the beginning of our programs.

Below is a list of the complete source code for the Java bean adapted from
Exam3_1.java. The only two changes are highlighted .

Example 3.2 A bean converted from a Java program with a JPanel superclass:

//Exam3_2.java
//A simple JLabel bean

package Pack3_2;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.io.*;

public class Exam3_2 extends JPanel implements Serializable {

private JLabel l = new JLabel("A simple JLabel with raised
border");

private int width=200, height=100;

public Exam3_2() {
setSize(width, height);
setBackground(Color.green);
l.setFont(new Font("TimesNewRoman", Font.BOLD, 20));
l.setForeground(Color.red);
l.setBorder(BorderFactory.createRaisedBevelBorder());
add(l);

}

public static void main(String args[]) {
Exam3_2 ex = new Exam3_2();
JFrame jf = new JFrame("Testing JLabel ... ");
jf.getContentPane().add(ex, BorderLayout.CENTER);
jf.addWindowListener(

new WindowAdapter() {
public void windowClosing(WindowEvent e) {

44 COP WITH JAVABEANS

System.exit(0);
}

});
jf.setSize(ex.getPreferredSize().width + 20,

ex.getPreferredSize().height + 40);
jf.setVisible(true);

}
}

Step 3: Compile Your Packaged Classes Using the −d Option The line command used
for compiling this example is the following:

javac -d . Exam3_2.java

Note that the -d <directory> option for the Java compiler means that we are
going to put the compiled classes in the directory <directory>. In this example,
we put all generated class files in the current directory (the “.”). Since we used
a statement of “package Pack3_2;” in our source code, all the class files are
actually put into the.\Pack3_2 directory.

Step 4: Create a Text File to Describe the Contents of a JAR File The BDK requires
the beans to be in a JAR (Java Archive) file. JAR files are used for packaging related
class files, serialized beans, and other resources. We will use JAR files to bundle
beans and their supporting classes. As a matter of fact, JAR files have many other
applications including the improvement of download performance of Java applets
in a Web page.

The manifest file tells the jar program to generate JAR files as desired. It con-
tains a series of attribute/value pairs specifying various attributes of the contents of
the archive. We will mainly use the manifest file to specify whether a particular class
is a Java bean and which class is the main class in this archive. In our example, we
name our manifest file as manifest3_2.tmp. The contents of manifest3_2.tmp
is shown below:

Main-Class: Pack3_2.Exam3_2
Name: Pack3_2/Exam3_2.class
Java-Bean: True

Note that the syntax of the manifest file must be correct:

ž Each class listed in the manifest file should be separated from all other classes
by a blank line.

ž If the class is a bean, its Name: line should be immediately followed by the line
of Java-Bean: True.

ž If the class is not a bean, its Name: line should be immediately followed by the
line of Java-Bean: False.

ž The Main-Class: line uses dots (.) to separate package names and class names.
ž The Name: line uses forward slash (/) to separate package names and class names.

COMPONENT MODEL OF JAVABEANS 45

Step 5: Create The JAR File for Your Bean Using The jar Utility For this example,
we use the following command to generate our JAR file:

jar cfm Exam3_2.jar manifest3_2.tmp Pack3_2*.*

ž The option cfm means that
– We are going to create (c) a JAR file (f), and

– this JAR file is named as the first argument (Exam3_2.jar), and
– the manifest (m) file is specified in the second argument (manifest3_2.tmp).

ž the third argument (Pack3_2*.*) indicates that all the files in the.\Pack3_2
directory should be included in the JAR file.

ž the directory structure in the JAR file must match the directory structure used in
the manifest file. Thus, we need to execute the jar command from the directory
in which Pack3_2 is located.

Step 6: Check If The Files Were Archived Correctly For this example, we can use the
following command to check whether the JAR file was generated as expected:

jar tvf Exam3_2.jar | more

This command will list all files in the JAR file Exam3 2.jar in table form as
shown below:

D:\Book\COP\Ch3>jar tvf Exam3_2.jar
0 Thu Jun 8 11:00:22 CDT 2000 META-INF/

145 Thu Jun 8 11:00:22 CDT 2000 META-INF/MANIFEST.MF
387 Thu Jun 8 10:59:52 CDT 2000 Pack5_2/Exam5_2$1.class

1744 Thu Jun 8 10:59:52 CDT 2000 Pack5_2/Exam5_2.class

Here the META-INF directory and the MANIFEST.MF file were generated by
the jar program automatically.

Step 7: Test Your Java Bean Wrapped in a JAR File This can be done by using java
utility with the -jar option. For this example, we use the following command:

java -jar Exam3_2.jar

Step 8: Add the Bean into The BeanBox There are two ways to do this:

1. Place the JAR file in the BDK1.1\jars directory.
2. Use the BeanBox file menu’s LoadJar ... option to locate the JAR file on

your system and load it into the BeanBox’s ToolBox.

We summarize the discussion above into the following Code Pattern and 8-step table:

package Pack_name ;

import java.awt.*;
import java.awt.event.*;

46 COP WITH JAVABEANS

import javax.swing.*;
import java.io.*;

public class MyBean extends JPanel implements Serializable {

//creating MyBean
java_statements ;

}

Code 3.1. Creating a Java Bean

The eight steps to create a simple Java bean is summarized below using Exam3_2.
java as an example:

Step 1: Use package statement as the first line of your source code.
package Pack3_2;

Step 2: Implement the Serializable interface for persistence.
public class Exam3_2 extends JPanel implements
Serializable

Step 3: Compile your packaged classes using the -d option.
javac -d . Exam3_2.java

Step 4: Create a manifest file to describe the contents of a JAR file.
edit manifest3_2.tmp

Step 5: Create the JAR file for your bean using the jar utility.
jar cfm Exam3_2.jar manifest3_2.tmp Pack3_2*.*

Step 6: Check if the files were archived correctly.
jar tvf Exam3_2.jar | more

Step 7: Test your Java bean wrapped in a JAR file.
java -jar Exam3_2.jar

Step 8: Add the bean into the BeanBox.

Note that these steps are applicable to create a new bean from an existing Java
program. If you develop a bean from scratch, then Step 7 above should be omitted.

QUICK-REVIEW QUESTIONS

1. If we delete the main method in Exam3_2.java and repeat the eight steps discussed
above, what will happen? Can we obtain a new bean anyway?

2. If we have a Java application whose direct superclass is JFrame (instead of JPanel
as in Example 3.2), can we add the bean converted from the Java program into
the BeanBox?

COMPONENT MODEL OF JAVABEANS 47

3. If we have a Java applet, how do we convert it into a bean? Can we add the result
bean into the BeanBox?

Example 3.3 A Java application with a JFrame superclass:

//Exam3_3.java
//A Java application with JFrame as its superclass

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class Exam3_3 extends JFrame {
private JLabel l = new JLabel("Hello, this is a testing JFrame

...");
private Container c = getContentPane();

public Exam3_3() {
super("Exam3_3 - JFrame");
c.add(l, BorderLayout.CENTER);
setSize(l.getPreferredSize().width+50,

l.getPreferredSize().height+50);
setVisible(true);

}

public static void main(String args[]) {
Exam3_3 f = new Exam3_3();
f.addWindowListener(new WindowAdapter(){

public void windowClosing(WindowEvent e) {
System.exit(0);

}
});

}
}

The output of this program is shown in Figure 3.2.
The Java program Exam3_3.java can be converted into a Java bean in the follow-

ing example:

FIGURE 3.2. The output of Exam3 3.java.

48 COP WITH JAVABEANS

Example 3.4 A bean converted from a Java program with a JFrame superclass:

//Exam3_4.java
//A bean Converted from a Exam3_3.java with a JFrame superclass
package Pack3_4;

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;

public class Exam3_4 extends JFrame implements Serializable {
private JLabel l = new JLabel("Hello, this is a testing

JFrame ...");
private Container c = getContentPane();

public Exam3_4() {
super("Exam3_4: Converted from Exam3_3");
c.add(l, BorderLayout.CENTER);
setSize(l.getPreferredSize().width+50,

l.getPreferredSize().height+50);
setVisible(true);

}
}

The manifest file used for this example is listed below:

Main-Class: Pack3_4.Exam3_4

Name: Pack3_4/Exam3_4.class
Java-Bean: True

After creating the JAR file, we can successfully load the JAR file into the ToolBox of
BDK. However, we could not insert the bean (Exam3_4.jar) into the BeanBox. This
problem is due to the containment hierarchy of GUI components. Since the BeanBox
is a Frame, it cannot hold another Frame. The conclusion of the discussion can be
restated as the following:

If you want to create a Java bean that can be manipulated inside the BeanBox, its
superclass should be a Component other than Frame or JFrame.

3.2.3 Creating a New Bean from Scratch

In this section, we will investigate how to create Java beans from scratch.

3.2.3.1 Invisible Java Beans If a Java bean does not have a graphical user interface,
it will not be “visible” inside the BeanBox. An invisible bean actually shows a name in
plain text when you drop it into the BeanBox. You can hide invisible beans completely
from showing in the BeanBox by selecting “Hide Invisible Beans” from the menu
“View” of the BeanBox window. There are no properties shown in the Property window
for invisible beans.

COMPONENT MODEL OF JAVABEANS 49

Example 3.5 A simple invisible bean:

//Exam3_5.java
//An invisible bean with no GUI

import java.io.*;

public class Exam3_5 implements Serializable {
public static void main (String args[]) {

System.out.println("This is an invisible Java bean.");
}

}

We first compile this program using the following line command:

javac Exam3_5.java

Then, we edit a text file named manifest3 5.tmp with the following contents:

Main-Class: Exam3_5

Name: Exam3_5.class
Java-Bean: True

We create a JAR file using the following command:

jar cfm Exam3_5.jar manifest3_5.tmp Exam3_5.class

Then, we can load the JAR file into the BeanBox. The bean shows its main class
name as “Exam3 5” in plain text in the BeanBox. We call it “invisible” because
it does not have a graphical interface and it does not show any properties in the
Property window. It does not show any events either. We can hide it completely from
the BeanBox by selecting the BeanBox menu "View" and then "Hide Invisible
Beans".

QUICK-REVIEW QUESTIONS

1. The bean Exam3 5 is invisible because it does not have a graphical user interface.
Are all beans with graphical user interfaces visible beans?

2. The bean Exam3 5 has zero visible property in the Property window, and no visible
event can be fired from this bean. However, it has three visible methods displayed
in the EventTargetDialog window:

equals, notify, notifyAll.

Where are they coming from?
3. If we change the java interpreter command in beanbox/run.bat to

java sun.beanbox.BeanBoxFrame > beanreport.txt

50 COP WITH JAVABEANS

we can receive a report file on information associated with a bean. Now, load Exam3 5.
jar into the BeanBox and select menu “Edit” - “Report . . . ” and check the file bean-
report.txt after exiting from BeanBox, we will see all 10 public methods are listed!
Why were only 3 methods displayed in the EventTargetDialog window?

A bean might be invisible even it uses graphical user interface. Below, we present
one example.

Example 3.6 A simple invisible bean with GUI:

//Exam3_6.java
//An invisible bean with GUI

import javax.swing.JOptionPane;
import java.io.Serializable;

public class Exam3_6 implements Serializable {
public static void main(String args[]) {

JOptionPane.showMessageDialog(null, "This is a
\nJOptionPane Java bean.");

System.exit(0);
}

}

This bean is invisible even when it has graphical user interface. This bean shows no
visible property nor visible event. Like Exam3 5, however, it has 3 visible methods
displayed in the EventTargetDialog window:

equals, notify, and notifyAll.

This example indicates that an invisible bean does not necessarily have no graphical
user interface. An invisible bean is a Java bean not inheriting from a Component or
JComponent, thus showing no visible property in the Property window.

3.2.3.2 Beans Inherited from Canvas The Canvas class inherits from java.awt.
Component. A Canvas component represents a blank rectangular area of the screen
onto which the application can draw or from which the application can trap input
events from the user. A bean inheriting from Canvas can be very simple, as shown in
the Example 3.7 below. The bean should override the paint method in order to draw
custom graphics on the canvas.

Example 3.7 A bean inheriting from a Canvas:

//Exam3_7.java
//A simple bean with superclass Canvas

import java.awt.*;
import java.io.*;

public class Exam3_7 extends Canvas implements Serializable {
public Exam3_7() {

COMPONENT MODEL OF JAVABEANS 51

setSize(60, 50);
}

public void paint(Graphics g) {
g.drawOval(5,5,50,30);
g.drawOval(12,12,15,8);
g.drawOval(30,12,15,8);
g.fillOval(19,12,8,8);
g.fillOval(37,12,8,8);
g.drawArc(22,20,16,8,180,180);
g.drawString("Hello!", 16, 45);

}
}

After compiling it, a JAR file can be generated from a simple manifest file as
shown below:

Main-Class: CanvasBean1
Name: CanvasBean1.class
Java-Bean: True

Figure 3.3 shows a window capture of the bean Exam3_7 after loading it into
the BeanBox.

There are four visible properties shown in the Property window: background,
foreground, name, and font. There are 22 visible events corresponding to 9 kinds
of event handlers, as shown in Figure 3.4.

There are 19 visible methods displayed in the EventTargetDialog window:
dispatchEvent, equals, addNotify, disable, doLayout, enable, hide,
invalidate, layout, list, nextFocus, notify, notifyAll, removeNotify,
repaint, requestFocus, show, transferFocus, validate.

QUICK-REVIEW QUESTIONS

1. In the program Exam3_7.java, we did not define those properties, events, and
methods listed above. Where do they come from?

2. Some of the properties are not very useful for certain purposes, for instance, the
“name” property of the bean Exam3 7 for the visual manipulation of the bean.

FIGURE 3.3. The window capture for the bean Exam3 7.

52 COP WITH JAVABEANS

Number Event Event Handler

1 Property propertyChanged(e)

2 Component componentResized(e)

3 Component componentMoved(e)

4 Component componentShown(e)

5 Component componentHidden(e)

6 Mouse mouseMoved(e)

7 Mouse mouseDragged(e)

8 Mouse mousePressed(e)

9 Mouse mouseReleased(e)

10 Mouse mouseClicked(e)

11 Mouse mouseExited(e)

12 Mouse mouseEntered(e)

13 Hierarchy hierarchyChanged(e)

14 Key keyTyped(e)

15 Key keyPressed(e)

16 Key keyReleased(e)

17 Focus focusGained(e)

18 Focus focusLost(e)

19 Hierarchy ancestorMoved(e)

20 Hierarchy ancestorResized(e)

21 InputMethod inputMethodTextChanged(e)

22 InputMethod caretPositionChanged(e)

FIGURE 3.4. Visible events for the bean inheriting from Canvas.

How do we stop them showing in the Property window? Similarly for events and
methods, how do we control them so that only those “useful” for our purpose are
revealed to outside?

3. Can we add GUI components such as JButton or JList into a Canvas?

All those properties, events, and methods listed above are actually inherited from
the superclass Canvas, which again inherits from Component.

We summarize this section by the following Code Pattern for a bean with superclass
Canvas:

COMPONENT MODEL OF JAVABEANS 53

package Pack_name ;

import java.awt.*;
import java.io.*;

public class BeanName extends Canvas implements Serializable {
public BeanName () {

setSize(60, 50);
}

public void paint(Graphics g) {
g.drawString("Hello!", 16, 45);
//other drawing statements
}

}

Code 3.2. Creating a Java Bean Inheriting from Canvas

3.2.3.3 Beans Inherited from Panel or JPanel Panel is the simplest container
class. A panel provides space in which an application can attach any other component,
including other panels. The default layout manager for a panel is the FlowLayout
layout manager.

Example 3.8 A bean inheriting from a JPanel:

//Exam3_8.java
//A simple bean with superclass JPanel

import javax.swing.*;
import java.io.*;

public class Exam3_8 extends JPanel implements Serializable {
private JLabel l = new JLabel("A Bean inheriting from

JPanel");

public Exam3_8() {
setSize(getPreferredSize());
add(l);

}
}

Figure 3.5 shows a window capture of the bean Exam3_8 after loading it into
the BeanBox.

There are 11 visible properties shown in the Property window: doubleButtered,
opaque, autoscrolls, background, alignY, alignX, debugGraphics-
Options, foreground, requestFocusEnabled, font, and verifyInput-
WhenFocusTarget.

There are 28 visible events corresponding to 12 kinds of event handlers, as shown
in Figure 3.6. In addition to the 22 visible events corresponding to 9 kinds of event

54 COP WITH JAVABEANS

FIGURE 3.5. The window capture for the bean Exam3 8.

handlers as shown in Figure 3.4, the beans inheriting from JPanel add the following
6 events corresponding to 3 event handlers.

There are 25 visible methods displayed in the EventTargetDialog window: In addi-
tion to the 19 methods listed for Canvas (dispatchEvent, equals, addNotify,
disable, doLayout, enable, hide, invalidate, layout, list, nextFocus,
notify, notifyAll, removeNotify, repaint, requestFocus, show, trans-
ferFocus, validate), JPanel adds the following 6 methods: getClientProperty,
grabFocus, removeAll, resetKeyboardActions, revalidate, and updateUI.

3.2.3.4 Beans Inherited from Applet or JApplet

Example 3.9 A bean inheriting from a JApplet:

//Exam3_9.java
//A simple bean with superclass JApplet

import java.awt.*;
import javax.swing.*;
import java.io.*;

public class Exam3_9 extends JApplet implements Serializable {
private JLabel l = new JLabel("A Bean inheriting from

Japplet");
private JButton b = new JButton("Test JButton");

public void init() {
Container c = getContentPane();
c.setLayout(new FlowLayout());
c.add(l);
c.add(b);

}
}

Figure 3.7 shows a window capture of the bean Exam 3-9 after loading it into the
BeamBox. The visible properties, events, and methods of this bean are similar to the
bean inheriting from Canvas (Example 3.7). We leave its details as an exercise.

3.2.3.5 Adding an Icon to a Bean Some of the beans in the ToolBox have icons
attached to them. If you want to add an icon to your bean, you need to prepare a small

COMPONENT MODEL OF JAVABEANS 55

Number Event Event Handler

1 Property propertyChanged(e)

2 Component componentResized

3 Component componentMoved(e)

4 Component componentShown(e)

5 Component componentHidden(e)

6 Mouse mouseMoved(e)

7 Mouse mouseDragged(e)

8 Mouse mousePressed(e)

9 Mouse mouseReleased(e)

10 Mouse mouseClicked(e)

11 Mouse mouseExited(e)

12 Mouse mouseEntered(e)

13 Hierarchy hierarchyChanged(e)

14 Key keyTyped(e)

15 Key keyPressed(e)

16 Key keyReleased(e)

17 Focus focusGained(e)

18 Focus focusLost(e)

19 Hierarchy ancestorMoved(e)

20 Hierarchy ancestorResized(e)

21 InputMethod inputMethodTextChanged(e)

22 InputMethod caretPositionChanged(e)

23 Container componentAdded(e)

24 Container componentRemoved(e)

25 VetoableChange vetoableChanged(e)

26 Ancestor ancestorMoved(e)

27 Ancestor ancestorAdded(e)

28 Ancestor ancestorRemoved(e)

FIGURE 3.6. Visible events for the bean inheriting from JPanel.

56 COP WITH JAVABEANS

FIGURE 3.7. The window capture of the bean Exam3 9.

graphical icon (16 pixels in width and height) first and then develop a Java program
to show this icon when the JAR file is loaded into the ToolBox.

Example 3.10 A BeanInfo class for attaching an icon to a bean:

//Exam3_10BeanInfo.java
//The BeanInfo class for the bean inheriting from Canvas
//Just display an icon

package Pack3_10;

import java.beans.*;
import java.awt.*;

public class Exam3_10BeanInfo extends SimpleBeanInfo {
public Image getIcon(int iconKind) {

if (iconKind == BeanInfo.ICON_COLOR_16x16) {
Image img = loadImage("wja.gif");
return img;

}
if (iconKind == BeanInfo.ICON_COLOR_32x32) {

Image img = loadImage("wja.gif");
return img;

}
return null;

}
}

The Java program is called BeanInfo class because it is a supporting class that
provides information about the bean. Note the public class name must be the bean
name followed by “BeanInfo” suffix. It inherits from SimpleBeanInfo class that
implements BeanInfo interface in the java.beans package. The SimpleBeanInfo
method loadImage() takes an image file name as its parameter and returns an Image
object. By default, the SimpleBeanInfo method getIcon() claims that there are
no icons available for the bean. Here we overrode the getIcon method so that it
returns an Image object as the requested icon. This program should be compiled and
its class file should be included into the JAR file along with the image file wja.gif.
After loading this JAR file into the ToolBox window, you will see a small icon that
appears to the left side of the bean name Exam3_10, as shown in Figure 3.8.

We summarize the discussion about BeanInfo class by presenting the following
Code Pattern:

COMPONENT MODEL OF JAVABEANS 57

FIGURE 3.8. The bean Exam3 10 with an icon.

package Pack_name ;

import java.beans.*;
import java.awt.*;

public class BeanNameBeanInfo extends SimpleBeanInfo {
public Image getIcon(int iconKind) {

if (iconKind == BeanInfo.ICON_COLOR_16x16) {
Image img = loadImage("wja.gif");
return img;

}
if (iconKind == BeanInfo.ICON_COLOR_32x32) {

Image img = loadImage("wja.gif");
return img;

}
return null;

}
}

Code 3.3. A BeanInfo Class to Load an Icon

QUICK-REVIEW QUESTIONS

1. For the BeanInfo class discussed in Example 3.10, what file name must it have?
What name must a BeanInfo class source file have generally?

2. What other functions does the BeanInfo class provide in addition to load an icon
to a bean?

3. In the current version of BDK, you cannot modify or update a bean after you load
it into the BeanBox, unless you exit from the BeanBox, modifying the JAR file,
restarting the BeanBox, and loading the JAR file again. Is there any way to go
around this problem?

3.2.4 Customizing a Java Bean

A Java bean can be customized in many different ways. For instance, we can add or
remove some properties for a bean, similarly for events and methods revealed to the
bean users.

58 COP WITH JAVABEANS

3.2.4.1 Adding Properties to a Bean For a simple bean like Exam3 10 discussed
in the last section, it displays only four properties in the property sheet demonstrated in
the Figure 3.9: font, name, background, and foreground. The user can customize
the bean by changing the values of these properties. For instance, the foreground and
background color can be changed to whatever you like. The font style and font size
for the text string “Hello” can also be changed. However, you cannot change the text
string itself because the property sheet does not provide such a property.

We can add a new property, say “text,” into the property sheet of this bean by adding
a property set method and a property get method code to the source file, following
some Code Patterns shown below:

public void setText(String s)
public String getText()

In general, to add a property called PropertyName, we must follow the following
Code Pattern:

//For non-boolean type property:

public void setPropertyName (DataType value)

public DataType getPropertyName ()

//For boolean type property:

public void setPropertyName (boolean value)

public boolean isPropertyName ()

Code 3.4. Adding a Property to a Bean (Source Code)

Here we emphasize some points for the Code Pattern:

ž The set method returns void and takes one argument. On the other hand, the get
method returns the same type as the corresponding set method’s argument.

ž The first letter of property name is capitalized in the set/get method names.

FIGURE 3.9. The property sheet for the bean Exam3 10.

COMPONENT MODEL OF JAVABEANS 59

ž For boolean type property, the get method name begins with the word is rather
than get .

The Bean Builder tool uses an introspection process to examine a bean. When it finds
a set/get method pair that matches the Code Pattern 3.4, it exposes the corresponding
property in the property sheet of the bean.

Example 3.11 Adding more properties to the bean Exam3 10:

1 //Exam3_11.java
2 //Based on Exam3_10 with superclass Canvas, more properties

added
3
4 package Pack3_11;
5
6 import java.awt.*;
7 import java.io.*;
8
9 public class Exam3_11 extends Canvas implements Serializable

{
10 private String s = "Hello";
11 private boolean smiling = true;
12 private int width = 60;
13 private int height = 50;
14
15 public Exam3_11() {
16 setSize(width, height);
17 }
18
19 public void paint(Graphics g) {
20 g.drawOval(5,5,50,30);
21 g.drawOval(12,12,15,8);
22 g.drawOval(30,12,15,8);
23 g.fillOval(19,12,8,8);
24 g.fillOval(37,12,8,8);
25 if (smiling)
26 g.drawArc(22,20,16,8,180,180);
27 else
28 g.drawArc(22,24,16,8,0,180);
29 g.drawString(s, 16, 45);
30 }
31
32 public void setText(String ss) {
33 s = ss;
34 }
35
36 public String getText() {
37 return s;
38 }
39
40 public void setSmiling(boolean b) {

60 COP WITH JAVABEANS

41 smiling = b;
42 }
43
44 public boolean getSmiling() {
45 return smiling;
46 }
47
48 public void setWidth(int w) {
49 width = w;
50 setSize(width, height);
51 }
52
53 public int getWidth() {
54 return width;
55 }
56
57 public void setHeight(int h) {
58 height = h;
59 setSize(width, height);
60 }
61
62 public int getHeight() {
63 return height;
64 }
65 }

Lines 32 to 38 define the “text” property using a pair of set/get methods. So the user
of the bean can now type in any text string to replace the original string “Hello” below
the face. Lines 40 to 46 define the “smiling” property using a pair of set/get methods.
Thus, when the user selects “False” for the property smiling, an angry face will be
displayed. Otherwise, a smiling face is displayed by default. Lines 48 to 64 use two
pairs of set/get methods to define two more properties: width and height of the Canvas.
Figure 3.10 illustrates the bean Exam3 11 after it was loaded into the BeanBox.

QUICK-REVIEW QUESTIONS

1. The “smiling” property in Example 3.11 is a boolean property. However, the pro-
gram used a set/get method pair instead of a set/is method pair as shown in the
Code Pattern 3.4. How do you explain this?

2. In the Property window (the property sheet) for the bean Exam3 11, the “smiling”
property item shows a drop-down list with “True” and “False” list items. How do
we create a non-boolean property with a drop-down list of more than two items?

3. When I changed the value for the property “name,” nothing was changed to the
bean in the BeanBox. What is the purpose for that property?

3.2.4.2 Removing Properties from a Bean Recall that bean Exam3_2 defined in
Example 3.2 is inherited from JPanel and displayed 11 properties when it was loaded
into the BeanBox. These 11 properties are debugGraphicsOptions, opaque,
requestFocusEnabled, doubleBuffered, alignmentY, alignmentX, auto-
scrolls,foreground, background, font, and verifyInputWhenFocusTarget.

COMPONENT MODEL OF JAVABEANS 61

FIGURE 3.10. The property sheet for the bean Exam3 11.

If we are not interested in some of the properties, we can remove them from the property
sheet by the BeanInfo class.

The example discussed below is based on Example 3.2 but uses a BeanInfo class
to control the property sheet. We introduce one property called “text” but hide away
10 properties from the original property sheet.

Example 3.12 Manipulating the property sheet with a BeanInfo class:

//Exam3_12.java
//Based on Exam3_2, adding a property "text", and removing

several
//properties from the property sheet.

package Pack3_12;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.io.*;

public class Exam3_12 extends JPanel implements Serializable {

private JLabel l = new JLabel("A simple JLabel with raised
border");

private int width=200, height=100;

public Exam3_12() {
setSize(width, height);
setBackground(Color.yellow);
l.setFont(new Font("TimesNewRoman", Font.BOLD, 20));
l.setForeground(Color.red);

62 COP WITH JAVABEANS

l.setBorder(BorderFactory.createRaisedBevelBorder());
add(l);

}

public void setText(String name) {
l.setText(name);

}

public String getText() {
return l.getText();

}
}

The last two methods represent a pair of set/get methods for the new property “text”
so that the user can modify the JLabel text at the design time. The BeanInfo class
source file is given below:

1 //Exam3_12BeanInfo.java
2
3 package Pack3_12;
4
5 import java.beans.*;
6 import java.awt.*;
7
8 public class Exam3_12BeanInfo extends SimpleBeanInfo {
9 private final static Class beanClass = Exam3_12.class;
10 public PropertyDescriptor[] getPropertyDescriptors() {
11 try {
12 PropertyDescriptor background =
13 new PropertyDescriptor("Background",

beanClass);
14 PropertyDescriptor text =
15 new PropertyDescriptor("Text", beanClass);
16 background.setBound(true);
17 text.setBound(true);
18 PropertyDescriptor pv[] = {background, text};
19 return pv;
20 }
21 catch (IntrospectionException e)
22 { throw new Error(e.toString());
23 }
24 }
25
26 public Image getIcon(int iconKind) {
27 if (iconKind == BeanInfo.ICON_COLOR_16x16)
28 { Image img = loadImage("star.gif");
29 return img;
30 }
31 if (iconKind == BeanInfo.ICON_COLOR_32x32)
32 { Image img = loadImage("wja.gif");

COMPONENT MODEL OF JAVABEANS 63

33 return img;
34 }
35 return null;
36 }
37
38 public BeanDescriptor getBeanDescriptor() {
39 return new BeanDescriptor(beanClass);
40 }
41 }

Line 8

public class Exam3_12BeanInfo extends SimpleBeanInfo {

defines the class name as Exam3_12BeanInfo following the Code Pattern: “Bean-
Name + BeanInfo.” The superclass SimpleBeanInfo implements the BeanInfo inter-
face, providing the explicit information about the methods, properties, events, and so
on, of the bean. The public method getPropertyDescriptors() in line 10

public PropertyDescriptor[] getPropertyDescriptors() {

returns an array of PropertyDescriptors describing the editable properties supported
by this bean. The class java.beans.PropertyDescriptor describes one property
that a Java bean exports via a pair of set/get methods. This example uses its constructor
in the following form:

public PropertyDescriptor(String propertyName,
Class beanClass)
throws IntrospectionException

The first parameter propertyName represents the programmatic name of the prop-
erty. The second parameter beanClass is the Class object for the target bean.
Since the constructor of PropertyDescriptor throws IntrospectionException,
an exception that occurs during introspection, we have to put the PropertyDescrip-
tor initialization part into a try block and catch IntrospectionException in the
catch block.

Lines 16 and 17 set both text and background as bound property, which we will
discuss shortly.

Line 38

public BeanDescriptor getBeanDescriptor() {

returns a BeanDescriptor, providing overall information about the bean. Line 39
uses a constructor of BeanDescriptor with a single parameter in the following form:

BeanDescriptor(Class beanClass),

which creates a BeanDescriptor for a bean that does not have a customizer.

64 COP WITH JAVABEANS

FIGURE 3.11. The BDK window capture for loading Exam3 12.jar.

Loading the bean Exam3 12 into the BeanBox, you will see only two properties
displayed in the property sheet, as shown in Figure 3.11.

QUICK-REVIEW QUESTIONS

1. What is a bound property? Why do we need bound properties?

2. Can we control those visible events and methods using the similar techniques dis-
cussed for properties?

3. What is a bean customizer?

4. How do we customize the property sheet with a customizer presented for
a bean?

3.3 CONNECTION MODEL OF JAVABEANS

The connection model of JavaBeans allows us to combine components into applets,
applications, or composite components. We discuss the connection model of JavaBeans
with BDK 1.1 and Bean Builder 1.0.

3.3.1 Assembling Java Beans in BDK

The most interesting benefit of component-based software development is that we
can build new software components from assembling existing software components.
JavaBeans architecture provides a simple environment for component-based software
development. We use one example to demonstrate how to assemble Java beans, that
is, to create a new Java bean based on existing beans.

Example 3.13 Assembling Java beans in BDK: Suppose we want to use two Explic-
itButton beans and one animated Juggler bean to create a new bean. We will label
the buttons Start and Stop, which will start and stop the animation respectively.

Step 1: Start the BeanBox.
Step 2: Drop a Juggler bean and two ExplicitButton bean instances into the

BeanBox.

CONNECTION MODEL OF JAVABEANS 65

Step 3: Select an ExplicitButton instance. On the properties sheet, change the label
property to Start. Select a second ExplicitButton instance and change its label
to Stop.

Step 4: Choose the Start button. Select the Edit – Events – button push –
actionPerformed menu items in the specified order.

This causes a rubber band line to track between the Start button and the cursor.
Click on the Juggler instance. This brings up the EventTargetDialog window.
This list contains Juggler methods that take no arguments or arguments of type
actionPerformed.

Step 5: Select the startJuggling method and click on OK. You will see a message
that the BeanBox is generating adapter classes.

Step 6: Repeat steps 4 and 5 on the Stop button, but choose the stopJuggling method
in the EventTargetDialog.

Clicking on the Start and Stop buttons will now start and stop the Juggler.
Figure 3.12 shows a window capture of the result.

Below is a general description of what happened:

ž The Start and Stop buttons are event sources. Event sources fire events at event
targets. In this example, the Juggler bean is the event target.

ž You choose the type of event that the event source will fire when you choose
the Start button and choose an event method (via the Edit – Event menu
item).

ž You select the event target bean when you connect the rubber band line to
another bean.

ž The EventTargetDialog lists methods that can accept that type of event or that
take no parameters. When you choose a method in the EventTargetDialog, you
are specifying the method that will receive the fired event and act on it.

FIGURE 3.12. Assembling Juggler with two ExplicitButtons.

66 COP WITH JAVABEANS

Step 7: Resize the BeanBox window to appropriate width and height and then se-
lect File – MakeApplet ... menu item. Select the right directory and JAR file
name at the dialog window “Make an Applet.” This will generate an applet cor-
responding to a BeanBox layout. The data and classes needed for this applet are
packaged into a JAR file. The applet itself is a bean and it can be read back into
the BeanBox if desired.

QUICK-REVIEW QUESTIONS

1. After Step 7 above, I cannot display the generated applet using either a Web
browser or appletviewer. What is the problem?

2. After the assembling procedure, we should have a new Java bean. What is the
superclass for the resulting bean? Is there any relationship between the superclass
of the result bean and those superclasses of assembled beans?

3. What properties will be displayed in the property sheet of the resulting bean?
What visible events and methods will be displayed?

Note that the generated applet requires a Java 1.1-compliant Web browser to dis-
play. The appletviewer always works for this purpose. Alternatively, you can use
the HotJava browser. You might need to modify the generated HTML file and add
</body></html> to the end of the file.

3.3.2 Assembling Java Beans in Bean Builder

The Bean Builder 1.0 was released in January 2002 by Sun Microsystems, which
allows the visual assembly of an application by instantiating and setting the properties
and event handling methods of components in JavaBeans component infrastructure.
The static structure of an application is specified by connecting lines with different
colors. The dynamic behavior of the application is expressed by event handling between
components. The state of the application is saved to and restored from an XML file.

The Bean Builder uses a modifiable GUI, called palette, to present reusable beans
as illustrated in Figure 3.13. Note here that all Java Swing components are treated
as beans. The content and format of the palette are determined by an XML file. The
default palette file is named palette.xml located in the “lib” subdirectory of the
Bean Builder installation.

In addition to this palette interface, Bean Builder 1.0 has a container window, called
designer, for initiating, selecting, and assembling components. When a component is

FIGURE 3.13. The Bean Builder palette.

CONNECTION MODEL OF JAVABEANS 67

selected from the palette and dropped into the designer, nine blue and white resize
handles appear around the new component. The center handle allows the user to move
the component around the designer. The handles on the edges and corners allow the
user to resize the component in the direction indicated by the cursor, as shown in
Figure 3.14 for the component JComboBox. The four dark gray connection handles on
the outside of the component (as illustrated in Figure 3.14 for the component JLabel)
act as anchors or ports for event handling or setting properties.

When a component is selected in the designer, all its public properties are shown
in the Property Inspector window as shown for the JComboBox in Figure 3.15.

Can we drop a Java object not on the palette into the designer? The answer is
“yes.” Let us instantiate an “invisible” component, DefaultComboBoxModel, and load
it into our designer panel. First, put your cursor focus in the “Instantiate Bean” text
field right below the palette in the top window. Then, enter the text in the text field

FIGURE 3.14. Two components dropped in the designer.

FIGURE 3.15. The property editor for the JComboBox component.

68 COP WITH JAVABEANS

javax.swing.DefaultComboBoxModel and press the Enter key. You will see a visual
proxy component appear in the upper left corner of your designer panel. Point your
mouse cursor at the center handle of this proxy component and drag it to a new location,
as shown in Figure 3.16.

The Bean Builder provides a graphical means of creating bean components by
building the components from existing components in JAR files or by assembling
components from the base JDK API packages. In order to allow composition of multiple
components into a single application, Bean Builder provides two operations to assemble
two or more bean components: (1) Set Property and (2) Event Adapter. We will discuss
these two connecting operations below with examples.

1. Composition by Property Customization Property customization involves the
manipulation of properties between two or more beans. Through property customiza-
tion, a public property of a bean can be manipulated by another bean. This is done in
Bean Builder through the “Set Property” operation.

Example 3.14 In Figure 3.16, there are three components. Let us try to connect the
empty dropdown list component (JComboBox) to the DefaultComboBoxModel com-
ponent using the “Set Property” operation provided by Bean Builder 1.0. The source
component is DefaultComboBoxModel and the target component is the JComboBox
component. The purpose is to set the property of the target component with the
source component itself. Thus, the source component becomes a property of the tar-
get component.

Step 1: Click on any one of the four connection handles surrounding the source com-
ponent, DefaultComboBoxModel instance, and drag the mouse over to a connection
handle surrounding the JComboBox component.

Step 2: Release the mouse over the JComboBox connection handle. Notice that the con-
nection line has red color now and a popup menu appears as shown in Figure 3.17.

Step 3: Select the Set Property radio button. The items in the list are target component
methods whose parameter matches the type of the source component.

Step 4: Select the “model(ComboBoxModel)” list item and select the Finish button.
The interaction wizard is dismissed and the DefaultComboBoxModel instance is
used as the model for the JComboBox component. Notice that the color for the
connection line now becomes green.

FIGURE 3.16. A proxy component.

CONNECTION MODEL OF JAVABEANS 69

FIGURE 3.17. Set property popup window.

2. Composition by Event Handling Let us add two more text field components
to the designer panel based on Figure 3.16. Our purpose is to connect JTextField-1,
JTextField-2, and JComboBox such that when pressing Enter key in the text fields,
the content of JTextField-1 will be added into the drop-down list, while the content of
JTextField-2 will be selected in the drop-down list if the content matches one of the
list items. The basic components are shown in Figure 3.18.

Step 1: Click on a connection handle for JTextField-1 and drag the cursor to a Default-
ComboBoxModel connection handle.

Step 2: Select the Event Adapter radio button in the popup wizard, as shown in
Figure 3.19.

Step 3: Select the “action” item in the “Event Sets” list and “actionPerformed(Action-
Event)” in the “Event Methods” list. Then press the Next button.

Step 4: Select the target method “addElement(Object)” and press the Next button.

FIGURE 3.18. Basic components for Example 3.14.

70 COP WITH JAVABEANS

FIGURE 3.19. Event Adapter has been selected.

FIGURE 3.20. Testing the runtime application.

Step 5: Select the “getText()” item in the “Source Methods” list and select the Fin-
ish button.

A new event handler is created that adds the string in the JTextField-1 to the
drop-down list as a result of the actionPerformed method when the Enter key
is pressed.

Step 6: Create a new event adapter for the JTextField-2 using the interactive wiz-
ard. This connection selects the item in the drop-down list when the Enter key
is pressed in the JTextField-2. This time the source component is JTextField-2,
the Target component is DefaultComboBoxModel, the source method is actionPer-
formed(ActionEvent), and the target method is setSelectedItem(Object).

Step 7: Change the Bean Builder from Design Mode to Runtime Mode by unselecting
the check box on the top window. In a popup window, the application behaves as it
was designed. Type some string value in the JTextField-1 and press Enter key. The
string will be added at the end of the drop-down list. Type some string value in the
JTextField-2 and press Enter key. The string will become selected in the drop-down
list, as shown in Figure 3.20.

CONNECTION MODEL OF JAVABEANS 71

3. Working with User-Developed Beans There are two ways to obtain an instanti-
ation of a component outside of Java Swing packages:

Method 1: First, put your cursor focus in the “Instantiate Bean” text field right below
the palette in the top window. Then, enter the complete path of your main class
file for your component. We have followed this approach as we instantiate a proxy
component for javax.swing.DefaultComboBoxModel in Figure 3.16.

Method 2: Edit the default palette.xml to include your components. The palette con-
figuration file has a very simple structure, as demonstrated in the code list below.
Figure 3.13 was created with the XML file shown in Figure 3.21.

<?xml version="1.0"?>
<!-- This is a palette configuration file for the Bean Builder. -->
<!DOCTYPE palette [

<!ELEMENT palette (tab+)>
<!ATTLIST tab name CDATA #REQUIRED>
<!ELEMENT tab (item+)>
<!ELEMENT item (#PCDATA)>

]>
<palette>
<tab name="Swing">

<item>javax.swing.JButton</item>
<item>javax.swing.JCheckBox</item>
<item>javax.swing.JComboBox</item>
<item>javax.swing.JFormattedTextField</item>
<item>javax.swing.JLabel</item>
<item>javax.swing.JList</item>
<item>javax.swing.JPasswordField</item>
<item>javax.swing.JProgressBar</item>
<item>javax.swing.JRadioButton</item>
<item>javax.swing.JScrollBar</item>
<item>javax.swing.JSlider</item>
<item>javax.swing.JSpinner</item>
<item>javax.swing.JTextArea</item>
<item>javax.swing.JTextField</item>
<item>javax.swing.JTextPane</item>
<item>javax.swing.JToolBar</item>
<item>javax.swing.JTree</item>
<item>javax.swing.JTable</item>
<item>javax.swing.JToggleButton</item>

</tab>
<tab name="Containers">

<item>javax.swing.JApplet</item>
<item>javax.swing.JEditorPane</item>
<item>javax.swing.JInternalFrame</item>
<item>javax.swing.JDialog</item>
<item>javax.swing.JFrame</item>
<item>javax.swing.JOptionPane</item>
<item>javax.swing.JPanel</item>

FIGURE 3.21. Palette configuration file.

72 COP WITH JAVABEANS

<item>javax.swing.JTabbedPane</item>
<item>javax.swing.JWindow</item>
<item>javax.swing.JColorChooser</item>
<item>javax.swing.JFileChooser</item>
<item>javax.swing.JScrollPane</item>

</tab>
<tab name="Menu">

<item>javax.swing.JMenu</item>
<item>javax.swing.JMenuBar</item>
<item>javax.swing.JMenuItem</item>
<item>javax.swing.JSeparator</item>
<item>javax.swing.JCheckBoxMenuItem</item>
<item>javax.swing.JRadioButtonMenuItem</item>
<item>javax.swing.JPopupMenu</item>

</tab>
<tab name="AndyWang">

<item>sunw.demo.molecule.Molecule</item>
<item>sunw.demo.sort.SortItem</item>

</tab>
</palette>

FIGURE 3.21. (continued)

Notice that at the end of the palette configuration file in Figure 3.21, one tab is
added named as “AndyWang.” There are two components under this tab, which will
be used in our discussion next.

3.4 DEPLOYMENT MODEL OF JAVABEANS

JavaBeans components are packaged and delivered in JAR files that contain the class
file, serialized files, and the resources for the component along with a file called the
Manifest that provides information about its contents. In BDK 1.1, components are
deployed by moving them into a designated directory: BDK-Home/jars. These compo-
nents will be displayed in the ToolBox frame of BDK when started. Components and
applications built with BDK can be saved as a serialized file or a Java applet to be
reused in a Web page.

Bean Builder 1.0 provides much flexible deployment method. In principle, you can
have your component anywhere on your local computer, as long as your component
JAR files are in the class path of the Java runtime system. The Java Swing components
are deployed by default in Bean Builder 1.0. However, a user can load and display
his/her components in the Bean Builder palette by modifying the palette.xml file. As
an example, Figure 3.22 illustrates some user-designed beans loaded into the palette.

Note that some beans in Figure 3.22 do not have an icon on the palette. In order to
show a customized icon for a bean when it is imported into the builder tool, the bean
designer has to create a custom BeanInfo class for his/her bean with a public method
getIcon(int iconKind) to return the icon. The predefined icon types are:

ž BeanInfo.ICON_MONO_16x16
ž BeanInfo.ICON_MONO_32x32

DEPLOYMENT MODEL OF JAVABEANS 73

FIGURE 3.22. Load and display user-designed beans.

ž BeanInfo.ICON_COLOR_16x16

ž BeanInfo.ICON_COLOR_32x32

Figure 3.23 gives a sample BeanInfo class for the smile bean in Figure 3.22.
A user can also load their components into the designer panel by instantiating them in

Bean Builder 1.0. After designing and connecting components into a new application,
the user may save the application as an XML file, which is called the long-term
persistence XML format that can be reloaded by a builder tool. This XML file retains
all the design information for the application. Therefore, JavaBeans components can
also be deployed with this XML file along with the JAR files. Figure 3.24 gives a
sample code to reconstruct an XML design.

Example 3.15 In this example, we will construct an application, save it to an XML
file, and reload and run it using the Java program in Figure 3.24. The reusable com-
ponents are JSlider.jar and JProgressBar. The JSlider.jar is the source
component and JProgressBar is the target component. We will connect these two
components so that when the user moves the slider, the progress bar will change its
value correspondingly.

Step 1: Start Bean Builder 1.0. Select JSlider.jar and JProgressBar.jar from
the Swing tab on the palette and drop them into the designer panel.

Step 2: From one connecting handle surrounding the source component, JSlider.
jar, drag a line pointing to one of the handles surrounding the target component,
JProgressBar.jar.

74 COP WITH JAVABEANS

//Exam5_11BeanInfo.java
//The BeanInfo class for the bean inheriting from Canvas

package Pack5_11;

import java.beans.*;
import java.awt.*;

public class Exam5_11BeanInfo extends SimpleBeanInfo {

public Image getIcon(int iconKind) {
if (iconKind == BeanInfo.ICON_COLOR_16x16) {

Image img = loadImage("smile.gif");
return img;

}

if (iconKind == BeanInfo.ICON_COLOR_32x32) {
Image img = loadImage("smile.gif");
return img;

}
return null;

}
}

FIGURE 3.23. A sample BeanInfo class.

import java.io.*;
import java.beans.XMLDecoder;

public class Test {
public static void main(String arg[]) {

try {
InputStream is = new BufferedInputStream(

new FileInputStream(arg[0]));
XMLDecoder d = new XMLDecoder(is);
Object o = d.readObject();

} catch (IOException ex) {
System.out.println(ex.getMessage());

} catch (ArrayIndexOutOfBoundsException ex) {
System.out.println("Usage: java Test

XmlFileName.xml");

}
}

}

FIGURE 3.24. A sample Java code to reconstruct a design.

DEPLOYMENT MODEL OF JAVABEANS 75

FIGURE 3.25. Select source event method.

FIGURE 3.26. Select target method.

Step 3: Select stateChanged(ChangeEvent) as the event method for JSlider,
as shown in Figure 3.25.

Step 4: Select setValue(int) as the target method for JProgressBar, as shown
in Figure 3.26.

Step 5: Select getValue(), whose return value will be the integer value passed to the
target method as parameter (Figure 3.27).

Step 6: Press the “Finish” button and the result in the designer panel will look like
Figure 3.28.

Step 7: Save the design into an XML file called SliderBar.xml.
Step 8: Compile the source code in Figure 3.24 and issue the following command from

a command shell window:

java Test SliderBar.xml

Step 9: Try to move the slider, the progress bar should display the corresponding value
of the slider, as shown in Figure 3.29.

76 COP WITH JAVABEANS

FIGURE 3.27. Select the argument for the target method.

FIGURE 3.28. The connection of the two components.

FIGURE 3.29. Runtime result of Example 3.15.

3.5 EXAMPLES AND LAB PRACTICE

Lab 3.1 Install Java Beans Development Kit (BDK 1.1) on Your Computer

In order to develop Java beans, you need to install the JavaBeans Development Kit
(BDK) first on your computer. The BDK can be downloaded free of charge from the
Sun Microsystems website: http://java.sun.com/beans/software/index.html. At the time
of writing this book (July of 2000), the latest version of BDK was BDK 1.1 released
in April 1999.

Before downloading BDK, make sure that you have installed the Java 2 Standard
Edition SDK version 1.3 released in May 2000, since BDK 1.1 depends on the Java

EXAMPLES AND LAB PRACTICE 77

2 platform. BDK is available for Windows, Solaris, and Linux. The description below
is assuming that you are using a Windows computer.

Step 1: Download the BDK installer software. You can download it from the Sun
Microsystems web-site. The name and size of the BDK installer are:

bdk1_1-win.exe 2,510,420 bytes

Step 2: Run the BDK installer bdk1_1-win.exe.
After running the BDK installer, you will be prompted to where you want to

install it. The BDK should be installed as a root directory in a drive. For convenience
of discussion below, I suppose you installed the BDK at the following directory:

D:\BDK1.1

Of course, you can install it on another disk drive.
Step 3: Check the files and directories.

After installing the BDK software, check the installation directory D:\BDK1.1,
which should have the following files and directories:

D:\BDK1.1>dir

Volume in drive D has no label
Volume Serial Number is 07CE-0B11
Directory of D:\BDK1.1

. <DIR> 09-13-99 9:36a .

.. <DIR> 09-13-99 9:36a ..
UNINST∼1 <DIR> 09-13-99 9:36a UninstallerData
LIB <DIR> 09-13-99 9:37a lib
JARS <DIR> 09-13-99 9:37a jars
INFOBUS JAR 76,262 09-13-99 9:37a infobus.jar
DOC <DIR> 09-13-99 9:37a doc
DEMO <DIR> 09-13-99 9:37a demo
BEANBOX <DIR> 09-13-99 9:37a beanbox
MAKEFILE 564 09-13-99 9:37a Makefile
LICENS∼1 HTM 5,968 09-13-99 9:37a LICENSE.html
GNUMAK∼1 452 09-13-99 9:37a GNUmakefile
BEANS GIF 7,012 09-13-99 9:37a beans.gif
README∼1 HTM 4,559 09-13-99 9:37a README.html

6 file(s) 94,817 bytes
8 dir(s) 6,258.49 MB free

Step 4: Update the PATH variable. If you are using Windows 95/98, edit the file
C:\AUTOEXEC.BAT using a DOS editor or using the system editor (Choose
“Start,” “Run” and enter sysedit, then click OK. The system editor starts up with
several windows showing. Go to the window that is displaying AUTOEXEC.BAT.).
Look for the PATH statement and update it. (If you do not have one, add one.) For
example, in the following PATH statement, we have added the BeanBox directory
at the right end:

PATH C:\WINDOWS;D:\JDK1.3\BIN;D:\BDK1.1\beanbox

78 COP WITH JAVABEANS

To make the path take effect in the current command prompt window, execute
the following:

C:>C:\autoexec.bat
If you are using Windows NT/2000/XP, change your path accordingly.

Step 5: Start the BDK environment. At a command line of any DOS window, type
“run” then hit the Enter key. You will have four windows popped up.

ž The left-hand window is the ToolBox palette displaying available beans that can
be used to build new beans.

ž The middle window is the main BeanBox composition window where new beans
are assembled.

ž The upper right-hand window is a Property window showing the properties for
the currently selected bean.

ž The lower right-hand window is a Method Tracer displaying BeanContext
services.

Lab 3.2 Get Familiar with BDK 1.1

This lab practice gets yourself familiar with the BDK environment by constructing an
application using existing beans in the ToolBox and BDK.

Step 1: From a command shell, change to the BDK installation directory and start it.
You should see the interface as shown in Figure 3.30.

Let us get familiar with BeanBox menus (File, Edit, and View menus) before we
move on.

FIGURE 3.30. The BDK interface.

EXAMPLES AND LAB PRACTICE 79

1. File Menu

Menu Item Action

Save Saves the beans currently in the BeanBox, including
each Bean’s size, position, and internal state. The
saved file can be loaded via File -- Load.

SerializeComponent. . . Saves the beans in the BeanBox to a serialized (.ser)
file. This file must be put in a .jar file to be usable
by the BeanBox.

MakeApplet. . . Generates an applet from the BeanBox contents.

Load. . . Loads saved files into the BeanBox. This command will
not load .ser files.

LoadJar. . . Loads a JAR file’s contents into the ToolBox.

Print Prints an image of the BeanBox contents.

Clear Removes the BeanBox contents.

Exit Quits the BeanBox without offering to save.

2. Edit Menu

Menu Item Action

Cut Removes the bean selected in the BeanBox. The cut bean is
serialized and can then be pasted.

Copy Copies the bean selected in the BeanBox. The copied bean is
serialized and can then be pasted.

Paste Drops the last cut or copied bean into the BeanBox.

Report. . . Generates an introspection report for the selected bean.

Events Lists the selected bean’s event-firing method, grouped by the
Java interface that declares the methods.

Bind property. . . Lists all of the selected bean’s bound property methods, if
any.

80 COP WITH JAVABEANS

3. View Menu

Menu Item Action

Disable Design
Mode/Enable Design
Mode

Removes the ToolBox and the Properties sheet from the
screen. Eliminates all BeanBox design and test
behavior (selected bean, and so on) and makes the
BeanBox behave like an application.

Hide Invisible
Beans/Show Invisible
Beans

Hides or shows beans with no GUI.

Step 2: From the left frame called ToolBox, drag a Juggler and two JellyBean
beans into the BeanBox. This can be done with your mouse: first select the bean
and click in the BeanBox frame.

Step 3: Change colors for the two JellyBean beans. Select one JellyBean with
your mouse, you will see a dashed-angled line around it. The Property Sheet frame
on the right-hand side lists all the properties for the current bean. The default color
for the JellyBean is yellow as shown on the left side of Figure 3.31. Select the
color field in the property sheet and change the color into green, as shown on the
right side of Figure 3.31. Change the label to Start. Similarly, change the color
of another JellyBean into red.

Step 4: Select the red button. Select the “Edit” menu on the BeanBox menu bar. Select
the “Events” submenu. Select the “mouse” submenu. Select the “mouseClicked” menu
item. Then attach the red line to the Juggler bean by selecting it. When you see a
popup window called “EventTargetDialog,” select the startJuggling method from
the list, as shown in Figure 3.32. Select the OK button.

Step 5: Conduct the similar actions for the red JellyBean button. This time, of course,
select the stopJuggling method from the method list of the popup “EventTarget-
Dialog” window.

Step 6: Now click the JellyBean buttons with your mouse and you will have a fully
functional program with an interface as shown in Figure 3.33.

FIGURE 3.31. Change color for the JellyBean.

EXAMPLES AND LAB PRACTICE 81

FIGURE 3.32. Select a mouse event handler.

FIGURE 3.33. A fully functional program built from beans.

Step 7: Now save your work by selecting “Save . . . ” under the “File” menu and save
the file as “testing.ser.” The .ser extension stands for serialized. It is not a required
extension but we use it here just for reminding us of the file property.

You can also save the result into a Java applet so that you could upload it to a
Web page. This is done by selecting “MakeApplet . . . ” under the “File” menu. Let
us also name our work as an applet named MyApplet, as shown in Figure 3.34.

82 COP WITH JAVABEANS

FIGURE 3.34. Create a Java applet from BeanBox.

Step 8: Exit the BeanBox and restart it. Reload the saved serialized file “testing.ser,”
and you should see the animation as shown in Figure 3.33.

To test your applet created in the last step, change to the “tmp/myApplet” subdi-
rectory under “BDK1.1/beanbox” and launch appletviewer with the HTML file
named myApplet.html. You should see a running Juggler in a Web page.

Lab 3.3 Create a Bean from a Java Application in BDK 1.1

Step 1: Find a Java application (not applet) from your previous program assignments.
Step 2: Convert the Java application into a bean following the 8 steps discussed in

Section 3.2.
Step 3: After loading your bean into the ToolBox, select your bean by clicking the

left button of your mouse on your bean name in the ToolBox window. Your mouse
cursor should now change to a crosshair shape. Position the mouse cursor inside the
BeanBox window and click your left button to place your bean in the BeanBox.

Step 4: Now you should see your bean with a dashed border in the BeanBox. The
dashed border highlights the fact that the bean was selected. If you did not see such
a selecting border around your bean, click your bean to select it. (For some beans,
you need to click just outside the bean’s boundary to select it.)

Step 5: Check the Property window on the right-hand side and answer the questions
below:

QUICK-REVIEW QUESTIONS

1. How many properties do you have?
2. What are they?
3. Where do they come from?

Lab 3.4 Create a Bean from a Java Applet in BDK 1.1

Step 1: Find a Java applet (AWT Applet or Swing JApplet, not application) from your
previous program assignments.

Step 2: Convert the Java applet into a bean following the 8 steps discussed in Section 3.2.
Step 3: After loading your bean into the ToolBox, select your bean by clicking the

left button of your mouse on your bean name in the ToolBox window. Your mouse

SUMMARY 83

cursor should now change to a crosshair shape. Position the mouse cursor inside the
BeanBox window and click your left button to place your bean in the BeanBox.

Step 4: Now you should see your bean with a dashed border in the BeanBox. The
dashed border highlights the fact that the bean was selected. If you did not see such
a selecting border around your bean, click your bean to select it. (For some beans,
you need to click just outside the bean’s boundary to select it.)

Step 5: Check the Property window on the right-hand side and answer the questions
below:

1. How many properties do you have?
2. What are they?
3. Where do they come from?

Lab 3.5 Install Bean Builder 1.0 on Your Computer

Step 1: Download the Bean Builder 1.0 from Sun Microsystems [Sun2 2003]. The
distribution file is called builder.zip.

Step 2: Create a new directory for the installation of Bean Builder 1.0. This directory
will be referred to as the “builder root.”

Step 3: Unzip the builder.zip file in the builder root directory.
Step 4: Set your JAVA HOME environment variable to point to the root of your J2SDK

1.4.0 or later distribution.
Step 5: Execute the run.bat batch file.

Lab 3.6 Component Connection in Bean Builder 1.0

Step 1: Start Bean Builder 1.0 and load one instance of the molecule.jar from BDK
1.1 into the designer panel.

Step 2: Drop into the designer panel two JButton instances. Rename the button text
to “RotateX” and “RotateY” respectively.

Step 3: Connect source component “RotateX” to molecule.jar: Source event method:
actionPerformed(ActionEvent); target method: rotateOnX().

Step 4: Connect source component “RotateY” to molecule.jar: Source event method:
actionPerformed(ActionEvent); target method: rotateOnY().

The connection design should look like Figure 3.35.
Step 5: Change the mode of Bean Builder by unselecting the checkbox “Design Mode”

in the Control Panel near the “Instantiate Bean” text field.
Step 6: In the newly popped up window, try to click “RotateX” and “RotateY” and

observe the result.

3.6 SUMMARY

The JavaBeans specification defines a component infrastructure to build, customize,
assemble, and deploy Java software components. It brings the advantages of component-
oriented programming to the ever-growing Java development platform [Camp 1999]. As

84 COP WITH JAVABEANS

FIGURE 3.35. The connection of three components.

a component infrastructure, JavaBeans provides most of the requirements specified by
the component theory discussed in Chapter 2. It provides properties, which are exposed
through its interface by getter and setter methods. It provides methods, which are used
to provide services to be called from other components. It provides an event handling
model, which is critical for communications among beans. Finally, the BeanInfo interface
describes what properties, methods, and events are exposed by a bean component. In
addition, JavaBeans provides support for introspection and customization, which allow
automatic analysis of beans and easy configuration of bean components.

One of the distinguishing features of JavaBeans is that components are visually
composed into applications in a builder tool. Two builder tools have been discussed
in this chapter: BDK 1.1 and Bean Builder 1.0, both form Sun Microsystems, Inc.
BDK 1.1 has a BeanBox window for visually manipulating components. The compo-
sition method in BDK 1.1 is event handling. The Bean Builder 1.0 demonstrates new
technologies in Java platform that allow the construction of applications using com-
ponent assembly mechanisms. The Bean Builder 1.0 extends the capabilities of the
BDK 1.1 by demonstrating new techniques for long-term persistence, layout editing,
and dynamic event adapter generation, using the new dynamic proxy API that was
introduced in Java 2 platform.

Bean Builder 1.0 comes with two main connecting operators for assembling com-
ponents: “Set Property” and “Event Adapter.” The “Set Property” operator provides
the designers with a technique of changing some properties of targeting components.
The “Event Adapter” is used to connect an event from one component up to a method
of another component. In other words, this operator provides for the “multiplication”
composition in device beans discussed in Chapter 2. It is possible to create a chain of
events to alter multiple components from one fired event. So the first component in the
sequence would fire an event to the second component, which in turn would trigger the
third component to react, and so on. The strength of Bean Builder with regard to the

SELF-REVIEW QUESTIONS 85

component model and the connection model in the JavaBeans component infrastructure
is mainly the visualization of the connections that can be made between components.
The use of XML file to describe component design makes long-term persistence possi-
ble. XML is becoming a universal language for its independence between builder tools
and computer architectures. However, neither BDK 1.1 nor Bean Builder 1.0 is a mature
component technology yet. Their functionalities and usability have to be improved sig-
nificantly before they could be a major market hit in component-oriented programming.

3.7 SELF-REVIEW QUESTIONS

1. The JavaBeans components are
a. known as “beans”
b. reusable software units written in Java
c. visually composed into composite components using a visual builder tool
d. all of the above

2. The JavaBeans components expose their to builder tools for visual
manipulation.
a. interfaces and implementation of the interfaces
b. the source code plus supporting classes
c. properties, public methods, and events
d. JavaDoc information and manifest file contents

3. BDK 1.1 stores reusable components in
a. ToolBox
b. BeanBox
c. Palette
d. Property sheet

4. Bean Builder 1.0 stores reusable components in
a. ToolBox
b. BeanBox
c. Palette
d. Property sheet

5. The properties of a bean refers to
a. the mechanism to communicate with other beans
b. the attributes, appearance, and behavior characteristics of the bean
c. the BeanInfo interface or the bean customizer class
d. the services this bean will provide for other beans

6. The methods of a bean refers to
a. the mechanism to communicate with other beans
b. the attributes, appearance, and behavior characteristics of the bean
c. the BeanInfo interface or the bean customizer class
d. the services this bean will provide for other beans

86 COP WITH JAVABEANS

7. The events of a bean refers to
a. the mechanism to communicate with other beans
b. the attributes, appearance, and behavior characteristics of the bean
c. the BeanInfo interface or the bean customizer class
d. the services this bean will provide for other beans

8. In JavaBeans component infrastructure, a fires an event, while a
provides a handler to response to the event.

a. listener bean, target bean
b. listener bean, source bean
c. source bean, target bean
d. target bean, source bean

9. Persistence enables a bean to
a. modify its attributes and appearance
b. save and restore its states
c. call other beans for services
d. introspect properties, methods, and events described in a BeanInfo class

10. Every JavaBean component has a visual interface.
a. True
b. False

Keys to Self-Review Questions

1. d 2. c 3. a 4. c 5. b 6. d 7. a 8. c 9. b 10. b

3.8 EXERCISES

1. Create a JavaBean component that displays the current time and date.

2. Find a Java program from your code library and change it into a JavaBean com-
ponent.

3. Investigate the problems and their solutions for the following situation: When you
load a JAR file into the Bean Builder 1.0, you get a null pointer error.

4. Investigate the problems and their solutions for the following situation: When you
load a JAR file into the Bean Builder 1.0, you get “java.lang.ClassFormat-
Error: Duplicate name” error.

5. How do you get your JavaBeans component to display a customized icon when it
is imported into a Bean Builder tool?

6. How many different ways do you instantiate a bean?

7. How many different composition methods (operators) does BDK 1.1 provide?
What are they?

REFERENCES 87

8. For each operator you identified in the previous question about BDK 1.1, provide
at least one example to show how this operator works.

9. How many different composition methods (operators) does Bean Builder 1.0 pro-
vide? What are they?

10. For each operator you identified in the previous question about Bean Builder 1.0,
provide at least one example to show how this operator works.

11. How do you specify static relationship among JavaBean components in BDK 1.1
and Bean Builder 1.0?

12. How do you specify dynamic behaviors and dependency among JavaBean com-
ponents in BDK 1.1 and Bean Builder 1.0?

13. What are the strength and limitations of JavaBeans?

REFERENCES

[Camp 1999] Campione, M., Walrath, K., and Huml, A. The Java Tutorial, Continued,
Addison-Wesley, 1999.

[Sun 1997] Sun Microsystems. JavaBeans Specification v1.0.1 , July 1997, http://java.sun.com/
products/javabeans/docs/spec.html.

[Sun1 2001] MageLang Institute, JavaBeans Short Course, and Stearns, B. JavaBeans 101,
Sun Microsystems, Inc. http://.java.sun.com/products/javabeans/learning/tutorial/index.html,
2001.

[Sun2 2003] Davidson, M. The Bean Builder Tutorial, Sun Microsystems, Inc., https://bean-
builder.dev.java.net/guide/tutorial.html, 2003.

4
ENTERPRISE JAVABEANS
COMPONENTS

Objectives of This Chapter

ž Introduce J2EE framework and EJB architecture
ž Introduce the concepts of EJB component and its runtime environment
ž Discuss the types of EJB components, connection, and their deployments
ž Introduce the new features of EJB 2.x
ž Distinguish between synchronous and asynchronous method invocations
ž Provide step-by-step tutorials on building, deploying, and using EJB components

4.1 EJB ARCHITECTURE

4.1.1 Overview of the EJB Architecture and J2EE Platform

Sun Microsystems Inc. announced its Enterprise Java Bean (EJB) specification in 1998.
The new specification of EJB 2.1 was released in 2002. The EJB 2.x architecture
is a component architecture for development and deployment of component-based
distributed applications. An EJB component is a reusable, WORA (Write Once Run
Anywhere), portable, scalable, and compiled software component that can be deployed
on any EJB servers such as Java 2 Platform Enterprise Edition (J2EE), JBoss, and
WebLogic Enterprise environment. The EJB technology is part of J2EE, which provides
a set of APIs, and other system services. The EJB implementations concentrate on
business logic. J2EE is designed to support applications that provide enterprise services.
J2EE not only supports EJB components but also supports Web components such as
JSP and Servlets.

Component-Oriented Programming, by Andy Ju An Wang and Kai Qian
ISBN 0-471-64446-3 Copyright 2005 John Wiley & Sons, Inc.

88

EJB ARCHITECTURE 89

The EJB architecture makes enterprise application development much easier because
there is no need to care for system level services such as transaction management, secu-
rity management, multithreading management, and other common management issues.

The EJB architecture also supports WORA and portable solution. An EJB compo-
nent can be developed once and then reused in many applications and deployed on
many different platforms without recompilation or modification of the source code of
the EJB component.

The EJB architecture also manages the EJB component life cycle from the creation
to the termination including activation and deactivation of an EJB component.

The EJB architecture provides Web services and compatibility with CORBA.
An EJB component is a server-side component that provides services to remote

or local clients, while a Java bean is a client-side component that is installed and
run at the client side most of time. We can even have a Java bean running on the
server side but it is hard to provide services to any remote clients. An EJB com-
ponent is hosted by its container and the container is supported by J2EE or any
J2EE-compliant tools.

4.1.2 J2EE Server

A J2EE compliant application server provides the following services:

ž Java Naming and Directory Interface (JNDI) API, which allows clients to look
up and locate the container where EJB components are registered and hosted.

ž J2EE supports authentication and authorization for security purposes.
ž J2EE supports HTTP service and EJB-related services, device access services,

and multithreading services.

Figure 4.1 depicts the EJB infrastructure.

4.1.3 EJB Container

The EJB instances are running within the EJB container. The container is a runtime
environment (set of classes generated by deployment) that controls an EJB component
instance and provides all necessary management services for its whole lifetime. Below

J2EE serverClient

EJB container Web container

EJB1 EJB2 ServletJSP

DB

FIGURE 4.1. J2EE architecture.

90 ENTERPRISE JAVABEANS COMPONENTS

EJB EJB

Request

Container service
(security, transaction, life cycle, persistence)

EJB context

FIGURE 4.2. EJB container.

is a list of such services [Sun1 2002]:

ž Transaction management: ensuring transaction properties of multiple distributed
transaction executions.

ž Persistence management: ensuring a persistent state of an entity bean, which is
backed up by database.

ž Life cycle management: ensuring the EJB component state transitions in its
life cycle.

The EJB container provides an interface for the EJB component to the outside world.
All access requests to the EJB component and responses from the EJB component
must get through the EJB container. The EJB container isolates EJB component from
direct access by its clients. The container will intercept the invocation from clients to
ensure the persistence, properties of transaction, and security of client operations on
EJB. Figure 4.2 shows that the EJB container supports EJB components and an EJB
component needs the container to reach outside and to obtain necessary information
from its context interface.

The EJB container is in charge of generating an EJB home object, which helps to
locate, create, and remove the EJB component object.

The EJB context interface provided by the EJB container encapsulates relevant
information about the container environment such as the identity of an EJB component
client, the status of the transaction, the remote reference to EJB itself, and so on.

4.1.4 EJB Component

An enterprise bean is a distributed component that lives in an EJB container and is
accessed by remote clients over network via its remote interface or is accessed by
other enterprise beans on the same server via its local interface. The EJB component
is a remotely executable component deployed on its server and it is self-descriptive
component specified by its Deployment Descriptor (DD) in XML format.

4.2 COMPONENT MODEL OF EJB

4.2.1 Overview

Each EJB component has a business logic interface exposed by the component so that
clients can access the business logic operations via this interface without knowing the

COMPONENT MODEL OF EJB 91

EJB home

EJB object

JNDI

EJB context

New()

Register

EJB container

Client

1. Look up ("myEJB")

2. Create()

3. Invoke method
EJB
class

FIGURE 4.3. The interaction between a client and an EJB component.

detail implementation behind the interface. We call such interface as a remote interface.
An instance of an EJB component is created and managed via its home interface by
the EJB container. Every enterprise bean must have a home interface and a remote
interface. The EJB component can be configured at the deployment time by specifying
its DD. Figure 4.3 depicts the structure of an EJB component and the process flowchart
of an interaction between a client and an EJB component.

The EJB class behind home and remote interfaces are designed to implement these
two interfaces. An EJB component is a black-box component. A client of an EJB
component only knows what the component does but not how it does. A client makes
a request to an EJB component with its deployed name by looking up at JNDI to
get the Object Reference (OR) of this EJB component. The client can then create an
instance of this EJB component on the server according to the OR. Finally, the client
invokes the interface methods of this EJB instance. Of course, an EJB must register
itself with JNDI for clients to look up.

Enterprise beans are software components that can be embedded in various appli-
cations without recompiling or modifying their source code. They can be deployed in
any EJB-compliant servers.

The EJB component model supports the following enterprise bean types:

ž Stateless session beans that implement various business logics, such as language
translation, logon process, tax calculation, and currency conversion.

ž Stateless session beans wrapped in a Web service. Any existing enterprise bean
can be encapsulated in an external Web service by a WSDL document describing
the Web service endpoint that the bean implements. Such special beans for Web
services do not provide interfaces that a regular EJB component provides.

ž Stateful session beans, which play the same roles as stateless session beans except
that they keep track of the states of the conversation from clients to the EJB com-
ponents. For instance, a shopping cart bean can be a typical stateful session bean.

92 ENTERPRISE JAVABEANS COMPONENTS

Any session bean, no matter a stateful or stateless one, does not support the persis-
tence requirement for an entity bean in EJB component infrastructure:

ž Message-driven beans, which were introduced lately, represent a new EJB com-
ponent type that work in an asynchronous communication mode just like an
event-driven event delegation model in Java.

ž Bean Managed Persistence (BMP) entity beans, which are entity beans while their
persistent storage management are taken care by themselves.

ž Container Managed Persistence (CMP) entity beans, which are entity beans while
their persistent storage management is specified by the deployment tool and man-
aged by the container. However, the CMP entity beans do not need to handle any
database SQL access. An entity bean is backed up by a relational database.

The remote interface of an EJB component implements javax.ejb.EJBObject
interface, which in turn implements java.rmi.Remote interface. The home
interface of an EJB component implements javax.ejb.EJBHome interface, which
again implements java.rmi.remote interface. A local interface implements
javax.ejb.EJBLocalObject interface and a local home interface implements
javax.ejb.EJBLocalHome interface. The local interface is used by another EJB
component running at the same server to access it so that it can reduce the overhead
caused by remote access. The remote interface provides the location independence but
it is more expensive. The local interface makes invocation more efficient. Another
important difference between local and remote interfaces is that method invocation in
local interface uses passing by reference and the method invocation in remote interface
uses passing by value, which needs serialization, that is, marshaling and unmarshaling.

4.2.2 Session Beans

As its name implies, a session bean is an interactive bean and its lifetime is during the
session with a specific client. A session bean corresponds to a particular client on the
server. It responds to the behavior of a client and terminates when the client session
is over. Session beans are often designed for business logic and flow control in front
of entity beans. A session bean may make requests to another session bean or to other
Web components such as JSP, Servlet, or HTML pages.

There are two types of session beans: stateless session beans and stateful ses-
sion beans.

The following code shows an example of a stateless session bean that converts the
temperature between Fahrenheit and Centigrade:

//Converter.java specifies the remote interface for this converter
//session bean component.

package converter;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;
import java.math.*;

public interface Converter extends EJBObject {

public double cToF(double c) throws RemoteException;

COMPONENT MODEL OF EJB 93

public double fToC(double f) throws RemoteException;

}

//The file ConverterHome.java specifies the home interface for
//this EJB component.

package converter;
import java.io.Serializable;
import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

public interface ConverterHome extends EJBHome {

Converter create() throws RemoteException, CreateException;

}

//The file ConverterBean.java specifies the EJB implementation
//class for above interfaces of this component.

package converter;
import java.rmi.RemoteException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
import java.math.*;

public class ConverterBean implements SessionBean {

public double cToF(double c) {

double temp=0; temp=c*9/5+32;
return temp;

}

public double fToC(double f) {

double temp=0; temp=(f-32)*5/9;
return temp;

}

public ConverterBean() {}
public void ejbCreate() {}
public void ejbRemove() {}
public void ejbActivate() {}
public void ejbPassivate() {}
public void setSessionContext(SessionContext sc) {}

} // ConverterBean

94 ENTERPRISE JAVABEANS COMPONENTS

A stateful session bean represents a specific client and holds the data for this client
during the session. For example, a shopping cart session bean or a student registration
session bean is stateful because the session must keep track of which items or courses
have been selected so far. A session bean class has a Collection type data member
during a session but it does not have any permanent data storage to support.

We can see that a session bean can be accessed by any client just like a procedure
or function. It does not keep any persistent state for a particular client during the
conversation. It just takes the input from the client and sends the results back to the
client. Another example of session bean can be an on-line session bean calculator or
a logon verification bean.

4.2.3 EJB Web Service Components

Web services are getting popular recently thanks to the ubiquitous and platform-
independent features of Web applications. It is important to make an existing EJB
application a deployable Web service. EJB2.x can wrap a stateless session bean with
a Web service endpoint interface, which can be accessed by any Web service client.
EJB can also provide Web service via a Servlet front end by JAX-RPC. A stateless
session bean also plays a front-end role in most of EJB distributed applications. The
details of Web service implementation will be discussed in a separate chapter.

Here is a simple hiUser Web service endpoint interface implemented by a stateless
session bean that extends Remote class in rmi package. The hiUser Web service
endpoint wraps the session bean HiUserBean.

//HiUser.java is a web service endPoint interface for the
//stateless session bean
package hiUser;
import java.rmi.*;

public interface HiUser extends Remote{

Public String hiUser(String user) throws RemoteException;

}

//HiUserBean.java is a stateless session bean implementation class
package hiUser;
import java.rmi.RemoteException;
import java.ejb.*;

public class HiUserBean implements SessionBean{
public String hiUser(String user){

Return “Hi “ + user + “!”;}}

Here HiUserBean may be an existing stateless session bean. In order to provide a
Web service, we must provide its WSDL file by a command line wscompile.

The steps to create a Web service endpoint are shown as follows:

1. Create all EJBs.
2. Create a wsdl Web service interface specification file by wscompile command.

COMPONENT MODEL OF EJB 95

3. Package the wsdl.xml file with all class files.
4. Assemble them into an ejb .ear file.
5. Deploy .ear file on a J2EE-compliant server.

A Web service can be accessed by any Web service client via HTTP protocol at
a designated port. This session bean can also be accessed by a remote client if any
additional remote and home interfaces are available.

4.2.4 Entity Bean

An entity bean represents some persistent data backed up by a database. Students,
teachers, and courses are examples of entity beans. Each entity bean has an underlying
table in the database and each instance of the bean is stored in a row of the table. An
entity bean does not correspond to any specific client. It provides a shared access. It
is supported by the EJB transaction service via its container. It has a persistent state
with a unique primary key identifier that can be used by a client to locate a particular
entity bean.

There are two types of entity beans: Bean Managed Persistence (BMP) entity beans
and Container Managed Persistence (CMP) entity beans.

Here is an example of a student BMP entity bean. A database table must be created
by the SQL:

CREATE TABLE student
(id VARCHAR(3) CONSTRAINT pk_student PRIMARY KEY,
gpa Number(2,1)
);

//The following is the home interface for this student BMP entity
//bean.

import javax.ejb.*;
import java.util.*;
public interface StudentHome extends EJBHome {

public Student create(String id, double gpa)
throws RemoteException, CreateException;

public Account findByPrimaryKey(String id)
throws FinderException, RemoteException;

}

//The following code is the remote interface for this student BMP
//entity bean.

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Student extends EJBObject {
public double getGpa() throws RemoteException;

}

//The following is the BMP implementation entity bean where SQL
//statements are explicitly included.

96 ENTERPRISE JAVABEANS COMPONENTS

import java.sql.*;
import javax.sql.*;
import java.util.*;
import javax.ejb.*;
import javax.naming.*;

public class StudentEJB implements EntityBean {
private String id;
private double gpa;
private EntityContext context;
private Connection con;
private String dbName = "java:comp/env/jdbc/StudentDB";
public double getGpa() {

return gpa;
}

//The following ejb callback methods are executed by EJB
//container. The Detailed references are in this chapter
//reference.[1]
//When a new bean instance is created the method ejbCreate()
// is automatically called by the container to insert a row in a
//corresponding table in the database.

public String ejbCreate(String id, double gpa)
throws CreateException {
try {

insertRow(id, gpa);
} catch (Exception ex) {

throw new EJBException("ejbCreate: ");
}

this.id = id;
this.gpa = gpa;
return id;

}

public String ejbFindByPrimaryKey(String primaryKey)
throws FinderException {
boolean result;
try {

result = selectByPrimaryKey(primaryKey);
} catch (Exception ex) {

throw new EJBException("ejbFindByPrimaryKey: ");
}

if (result) {
return primaryKey;

}
else {

throw new ObjectNotFoundException
("Row for id " + primaryKey + " not found.");

}
}

COMPONENT MODEL OF EJB 97

public void ejbRemove() {
try {

deleteRow(id);
} catch (Exception ex) {

throw new EJBException("ejbRemove: ");
}

}

public void setEntityContext(EntityContext context) {
this.context = context;
try {

makeConnection();
} catch (Exception ex) {

throw new EJBException("Failed to connect to
database.”);

}
}

public void ejbActivate() {
id = (String)context.getPrimaryKey();

}

public void ejbPassivate() {
id = null;

}

public void ejbLoad() {
try {

loadRow();
} catch (Exception ex) {

throw new EJBException("ejbLoad: ");
}

}

public void ejbStore() {
try {

storeRow();
} catch (Exception ex) {

throw new EJBException("ejbLoad: ");
}

}

public void ejbPostCreate(String id, double gpa) { }

void makeConnection() throws NamingException, SQLException
{ InitialContext ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup(dbName);
con = ds.getConnection();

}

//The following methods are callback methods to invoke SQL
//statements to access database

98 ENTERPRISE JAVABEANS COMPONENTS

void insertRow (String id, double gpa) throws SQLException {

String insertStatement = "insert into student values
(?,?)";

PreparedStatement prepStmt =
con.prepareStatement(insertStatement);

prepStmt.setString(1, id);
prepStmt.setDouble(2, gpa);
prepStmt.executeUpdate();
prepStmt.close();

}

void deleteRow(String id) throws SQLException {
String deleteStatement = "delete from student where id = ?

";
PreparedStatement

prepStmt=con.prepareStatement(deleteStatement);
prepStmt.setString(1, id);
prepStmt.executeUpdate();
prepStmt.close();

}

boolean selectByPrimaryKey(String primaryKey) throws
SQLException

{
String selectStatement="select id "+"from student where id =

? ";
PreparedStatement prepStmt =

con.prepareStatement(selectStatement);
prepStmt.setString(1, primaryKey);
ResultSet rs = prepStmt.executeQuery();
boolean result = rs.next();
prepStmt.close();
return result;

}

void loadRow() throws SQLException {
String selectStatement =

"select gpa " + "from student where id = ? ";
PreparedStatement prepStmt =

con.prepareStatement(selectStatement);
prepStmt.setString(1, this.id);
ResultSet rs = prepStmt.executeQuery();
if (rs.next()) {

this.gpa = rs.getDouble(2);
prepStmt.close();

}
else {

prepStmt.close();
throw new NoSuchEntityException(id + " not found.");

}
}

COMPONENT MODEL OF EJB 99

void storeRow() throws SQLException {
String updateStatement =

"update student set gpa = ? " + "where id = ?";
PreparedStatement prepStmt =

con.prepareStatement(updateStatement);
prepStmt.setDouble(1, gpa);
prepStmt.setString(2, id);
int rowCount = prepStmt.executeUpdate();
prepStmt.close();
if (rowCount == 0) {

throw new EJBException("Store id " + id + " failed.");
}

}
}

A developer for CMP entity beans does not need to write any database access code.
However, he or she has to map the CMP entity bean to a table in the database along
with related database operations at deployment time. On the other hand, BMP entity
beans let developers have full control of database access for the bean. Of course, CMP
is more portable and flexible than BMP and all details of database operations are
specified in its DD.

4.2.5 Message-Driven Beans (MDB)

The MDB component is another type of Java server component running on the EJB
container.

The MDB component works as a listener listening to a queue supported by Java
Message Server (JMS).

Once a client sends a message to the queue, the MDB component will receive the
message. It works in an asynchronous communication mode.

The MDB technology is available in J2EE 1.4 (EJB2.x). The MDB technology can
work in two different ways: PTP (point to point) and publisher/subscriber. PTP works
in one-to-one mode and publisher/subscriber works in a broadcasting (one to many)
mode. The MDB technology works in an asynchronous fashion in that a notification
can be received by an MDB component and its reactions could be immediate as long
as MDB is active.

An MDB component works in the following way:

1. The container registers this MDB component with JMS.
2. The JMS registers all JMS destinations (Topic for broadcasting or Queue for

PTP) with Java Naming and Directory Interface (JNDI).
3. The EJB container instantiates this MDB component.
4. The client looks up the destination with the MDB.
5. The client sends a message to the destination.
6. The EJB container selects the corresponding MDB to consume the message.

MDB components work in a producer/consumer asynchronous mode and the mes-
sage type can be text messages, object messages, stream messages, or byte messages.
Messages are pushed and processed in a MessageListener’s method called onMes-
sage().

100 ENTERPRISE JAVABEANS COMPONENTS

4.3 CONNECTION MODEL OF EJB

In this section, we will discuss the connection mechanisms among EJB components.
We will explore how to use glue to tie up all basic component building blocks to
generate new components or new applications. The connection model of EJB gives a
guideline in design of individual EJB components, connections, and communications
between related components as well [Component 2004].

In order for one client EJB component object to talk to another EJB component
object, the client must get an object reference (pointer) to the target component and
instantiate a remote instance that the

Remote Method Invocation (RMI) takes place afterward. This can be seen from the
temperature converter example shortly.

There may be either synchronous or asynchronous connections between two EJB
components via remote or local interfaces of the EJB components. An EJB component
can also be accessed by a J2EE Web component such as a JavaBean component, a
Servlet component, or a JSP component. An EJB component may also access other
data objects of EIS by JDBC.

Figure 4.4 shows one front session bean connecting to two entity beans backed up
by a database.

Home

Remote

Home Home

Remote or
local

Remote or
local

DB DB

BMP CMP

Session bean
JSP or Servlet
or Application

client

FIGURE 4.4. Connection between session beans and entity beans.

CONNECTION MODEL OF EJB 101

4.3.1 Tight Coupling Synchronous Connections

A synchronous invocation follows the request–response interaction mode. A client
invokes a remote method in the interface of a target EJB component object. The com-
ponent interface hides all details of implementations of business logic methods from
the clients. After the target EJB component object completes its work, it may respond
to the requests by returning the result or it may request other services from other
components and wait for the result back and may forward it to the client afterward.

A typical example for this type of communication may be a shopping cart stateful
session bean that sends a request to an order entity bean and wait for the order bean
to process the order and to confirm the order.

Synchronous interaction leads to a tight coupling between EJB components. When
a client component object initiates the request, the invocation thread is blocked from
further processing until it receives a reply from the target EJB component. Most of the
examples we have seen so far work in the synchronous mode.

4.3.2 Loosely Coupled Asynchronous Communication

An asynchronous communication involves a message-based communication between
an EJB component and its client. A client makes a request to an EJB component but the
client does not block itself. Instead, it continues its own process. There are two forms
of asynchronous communications: queue-based PTP and publish-/subscribe-based mes-
sage broadcasting. The queue-based asynchronous communication requires a message
queue supported by JMS, which is between a client (message producer or sender) and
a message consumer or message receiver. In publisher/subscriber mode, the consumer
subscribes the topic into which the producer pushes the message and more than one
subscriber (consumers) can receive the message from the topic.

In the asynchronous communication, clients and servers are loosely coupled, which
results in a better throughput.

4.3.3 Remote Versus Local Communications

A client and its server component can be on the same machine or on different JVMs.
If two EJB components are running on the same machine, there will be much less
overhead by using local interfaces comparing to using remote interfaces. That is why
EJB 2.x added the localHome and localObject interfaces in addition to remote
interface. Some entity beans can provide both remote and local interfaces in EJB 2.x
specification. A session bean may play a role of facade to entity beans, and an entity
bean can be exposed directly to its clients or via a session bean or be connected to
another entity bean. A local interface passes an argument to a method in passing by
reference mode, while a remote interface does it in passing by value mode.

4.3.4 Object References to Entity Beans

In order to talk to a target entity bean, a stateless session bean must look up the deployed
component according to its name registered in JNDI to get an object reference for it and
may pass that reference to other beans. A stateful session bean may hold the reference
to an entity bean in a conversational state. A session bean or MDB component can

102 ENTERPRISE JAVABEANS COMPONENTS

hold the reference to another EJB component in an instance variable of its bean.
A BMP entity bean can hold a reference to another entity bean in its nonpersistent
field.

4.3.5 Association Connection Relationships between Entity Beans

Each entity bean has its persistent storage supported by a relational table. Each instance
of an entity bean is stored as a row in the table regardless of BMP or CMP. The rela-
tionships between entity beans can be one to one, one to many, or many to many, just
like the data relationships in a database reflected by E-R diagrams.

For example, the relationship between the student entity bean and the course entity
bean is a many-to-many relationship. One student may take many courses and one
course may be taken by many students. Let us implement these entity beans by CMP
in EJB 2.x architecture. Assume these two CMP entity beans are deployed in one
container so that local interface is used.

package student;
import java.util.*;
import javax.ejb.CreateException;
import javax.ejb.EntityBean;
import javax.ejb.EntityContext;
import javax.naming.Context;
import javax.naming.InitialContext;

public abstract class StudentBean implements EntityBean {

private EntityContext context;

//StudentID and StudentName are CMP fields

public abstract String getStudentID(); //primary key
public abstract void setStudentID(String id);

public abstract String getName();
public abstract void setName(String lastName);

//CMR(container-managed relationship) fields to course bean

public abstract Collection getCourses();
public abstract void setCourses (Collection courses);

//StudentBean next defines its business logic such that
//getCourseList()
//returns all corresponding courses this student has taken and
//addCourse() will add a new course for this student.

CONNECTION MODEL OF EJB 103

public ArrayList getCourseList() {
ArrayList list = new ArrayList();
Iterator c = getCourses().iterator();
while (c.hasNext()) {

list.add(
(LocalCourse)c.next());

}
return list;

}
public void addCourse (LocalCourse course) {

getCourses().add(course);
}

//Student Local Home Interface
Here’s the LocalStudentHome home interface for the StudentBean:
import javax.ejb.CreateException;
import javax.ejb.EJBLocalHome;
import javax.ejb.FinderException;
public interface LocalStudentHome extends EJBLocalHome {

public LocalStudent create (String studentID, String Name)
throws CreateException;

public LocalStudent findByPrimaryKey (
String studentID)throws FinderException;

}

//The Student bean also defines a local interface. The bean’s
//LocalStudent interface extends the EJBLocalObject interface
//not the EJBObject interface.

import java.util.ArrayList;
import javax.ejb.EJBLocalObject;

public interface LocalStudent extends EJBLocalObject {
public String getStudentID();
public String getName();
public ArrayList getCourseList();
public void addCourse(LocalCourse course);
public void addCourse(String CourseKey); }

Here we only list the student CMP entity bean, and the course CMP entity bean has
a very similar structure except the cmp and cmr fields. The Course bean includes equiv-
alent methods to retrieve and set all students associated to a particular course instance.

public abstract Collection getStudents();
public abstract void setStudents(Collection students);

The DD specifies the enterprise bean relationship.
The deploy tool can be used to specify both the CMP and CMR fields, the bean-to-

bean relationships, and the EJB SQL code for the finder methods.

104 ENTERPRISE JAVABEANS COMPONENTS

Deployment descriptor

1 * * *

Dept Student Course

DB DB DB

FIGURE 4.5. Association relationship between entity beans.

In Figure 4.5, there are three CMP entity beans. The Dept has one-to-many rela-
tionship to the Student entity bean and the Student entity bean has a many-to-many
relationship to the Course entity bean. All the bean-to-bean relationship, cmp and cmr
definitions, and implementation of some methods in SQL are defined by a deployer
using deployment tool.

In comparison, BMP requires a lot of work to be done by a deployer, while CMP
does not require the programmer provide any SQL coding.

4.4 DEPLOYMENT MODEL OF EJB

An EJB component is packaged as a .jar file, which is assembled in turn with other
Web component packages (.war) and J2EE application client packages (.jar) in a
J2EE application file (.ear).

The hierarchical structure of a J2EE application package is shown in Figure 4.6.
After creating the code for enterprise bean and its client, we need to compile them

into class files. Next, we need to pack EJB components, Web components, or client
into Java archive files (.jar) or Web archive file (.war) with their DD XML files
and then assemble all of these archive files into an enterprise archive file (.ear)
to be deployed on a server. The detail steps are shown in the lab practice in the
next section.

A DD is a deployment definition file in XML format. It tells the types of the
EJB, class names for remote interfaces, home interfaces, implementation beans, trans-
action management specification, access control security, and persistence property of
entity beans. DD is created automatically by deploytool after the deployment wizard
is completed.

EXAMPLES AND LAB PRACTICE 105

.jar (java archive) .war (web archive)

... ...

Client

Client DD
Java applet or
application
.jar (java archive)

EJB component

EJB DD
EJB class

Remote interface

Home interface

Web component

DD XML

Servlet or

JSP or

HTML

J2EE application

J2EE application

DD XML
.ear (enterprise

archive)

FIGURE 4.6. J2EE assembly and deployment.

The following is a partial content of a DD:

<?xml version=“1.0”>
<ejb-jar>

<enterprise-beans>
<entity>

<ejb-name>studentBean</ejb-name>
<home>studenthome</home>

<remote>student</remote>
<ejb-class>Student</ejb-class>
<persistence-type>Container</persistence-type>
<pri-key-class>Integer</pri-key-class>
...
<cmp-field><field-name>id</field-name></cmp-field>
...
<cmp-field><field-name>name</field-name></cmp-field>

</enterprise-beans>
<assembly-descriptor>

<security-role>
...
</security-role>
...

</assembly-descriptor>
</ejb-jar>

4.5 EXAMPLES AND LAB PRACTICE

This section is designed to enhance the understanding of the EJB concepts by providing
some concrete examples and step-by-step guidelines demonstrating how to build EJB

106 ENTERPRISE JAVABEANS COMPONENTS

components, how to assemble and deploy EJB components, and how to build and
run different client applications for these components. Here are two examples for
lab practices.

Lab1 describes the steps to build a session bean called temperature converter com-
ponent and to deploy it by the utility tool deploytool in J2EE 1.4.x. The client of
this temperature converter EJB application is either a JSP web component that is
accessed by a browser or a Java application client. Lab1 also demonstrates the running
result of a web client and an application client of this EJB component.

Lab2 is an implementation of a student registration system with one enrollment
session EJB component and two CMP entity EJB components for student and course
respectively. Lab2 shows the connection between the session bean and the entity beans,
and association relationship between two entity beans.

4.5.1 Lab1: Temperature Converter Session Bean Component Development

Step 1: Installation and configuration for Lab1 and Lab2

1. Download J2EE 1.4 All-In-One bundle from www .java.sun.com.
2. Install J2EE 1.4 on your machine and ensure that the 〈install dir〉/bin directory

is included in the environment’s path.
3. All the source code and configuration files are available on this book’s Wiley

Website. Download the cop folder for Lab1 and Lab2 and put it under c:\.
4. Set up environment for Java-based Ant Build facility.

J2EE 1.4 All-In-One bundle includes Ant Build Tool, which is used in this
lab for compiling Java source code and other processing. Ant has a relatively
simple XML syntax. It is easy to learn and to use. In order to run the Asant
scripts, the directory structure is built as below:

It is not strictly necessary to follow the suggested directory structure but it
is strongly recommended until you are comfortable with it to make your own

EXAMPLES AND LAB PRACTICE 107

modifications. Under the common folder there are two Ant scripts: build.pro-
perties and targets.xml.

Verify the variable in the build.properties based on the installation. Mod-
ify it if necessary.

By default, Ant looks for a file called build.xml that is in the working
directory, for example tempConv. All the Java source code is in the src directory.
JSP or HTML files are in the Web directory. When using Ant Build Tool to
compile Java source code, a new directory build will be automatically created
with all the class files.

Step 2: Coding the Enterprise Bean and client
The enterprise bean in this example includes the following code:

ž Remote interface
ž Home interface
ž Enterprise bean class

//Remote interface: TempConv.java

package tempConv;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface TempConv extends EJBObject {
public double fToC (double f) throws RemoteException;
public double cToF (double c) throws RemoteException;

}

//Home interface: TempConvHome.java

package tempConv;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

public interface TempConvHome extends EJBHome {
TempConv create() throws RemoteException, CreateException;

}

//Enterprise bean class: TempConvEJB.java

package tempConv;

import java.rmi.RemoteException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
import java.math.*;

public class TempConvEJB implements SessionBean {

108 ENTERPRISE JAVABEANS COMPONENTS

public double cToF(double c) {
return ((c*9.0/5.0 + 32)*100)/100.0;

}

public double fToC(double f) {
return ((f-32)*5.0/9.0*100)/100.0;

}

public TempConvEJB() {}
public void ejbCreate() {}
public void ejbRemove() {}
public void ejbActivate() {}
public void ejbPassivate() {}
public void setSessionContext(SessionContext sc) {}

}

//Application Client for EJB: TempConvClient.java

import tempConv.TempConvHome;
import tempConv.TempConv;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;
import java.text.DecimalFormat;
import javax.swing.JOptionPane;

public class TempConvClient {
public static void main(String[] args) {

String output = "";
String sDegree = "";
double degree;
DecimalFormat twoDigits = new DecimalFormat ("0.00");
try {

Context initial = new InitialContext();
Context myEnv =

(Context)initial.lookup("java:comp/env");
Object objref = myEnv.lookup("ejb/ClientConv");
TempConvHome home =

(TempConvHome)PortableRemoteObject.narrow(objref,
TempConvHome.class);

TempConv converter = home.create();
sDegree = JOptionPane.showInputDialog("Enter centigrade

degree");
degree = Double.parseDouble(sDegree);
output = sDegree + " centigrade degrees are " +

twoDigits.format (converter.cToF(degree)) +
" fahrenheit degrees " ;

JOptionPane.showMessageDialog (null, output,
"results", JOptionPane.INFORMATION_MESSAGE);

sDegree = JOptionPane.showInputDialog ("Enter
fahrenheit degree");

degree = Double.parseDouble(sDegree);

EXAMPLES AND LAB PRACTICE 109

output = sDegree + " fahrenheit degrees are " +
twoDigits.format(converter.fToC(degree)) +

" centigrade degrees" ;
JOptionPane.showMessageDialog (null, output,
"results", JOptionPane.INFORMATION_MESSAGE);

System.exit(0);
}
catch (Exception ex) {

System.err.println("Caught an unexpected
exception!");

ex.printStackTrace();
}
}

}

<%-- Web Client for the EJB: Index.jsp --%>

<%@ page import="java.math.*"%>
<%@ page import="javax.naming.*"%>
<%@ page import="javax.ejb.*" %>
<%@ page import="javax.rmi.PortableRemoteObject" %>
<%@ page import="java.text.DecimalFormat" %>
<%@ page import="java.rmi.RemoteException" %>
<%@ page import="tempConv.TempConv" %>
<%@ page import="tempConv.TempConvHome" %>

<%!
private TempConv conv = null;

public void jspInit() {
try {

InitialContext ic = new InitialContext();
Object objRef = ic.lookup("java:comp/env/ejb/WebConv");
TempConvHome home =

(TempConvHome)PortableRemoteObject.narrow(objRef,
TempConvHome.class);

conv = home.create();
} catch (RemoteException ex) {

System.out.println("Couldn’t create TempConv bean."+
ex.getMessage());

} catch (CreateException ex) {
System.out.println("Couldn’t create TempConv bean."+

ex.getMessage());
} catch (NamingException ex) {

System.out.println("Unable to lookup home: "+
"WebConv "+

ex.getMessage());
}

}

public void jspDestroy() {
conv = null;

}

110 ENTERPRISE JAVABEANS COMPONENTS

%>
<html>
<head>

<title>Temperature Converter</title>
</head>

<body bgcolor="white">
<h1><center> Temperature Converter </center></h1>
<hr>
<p>Enter a degree to convert:</p>
<form method="get">
<input type="text" name="degree" size="25">

<p>
<input type="submit" name="fToC" value="Fahrenheit to

Centigrade">
<input type="submit" name="cToF" value="Centigrade to

Fahrenheit">
</form>

<%
DecimalFormat twoDigits = new DecimalFormat ("0.00");
String degree = request.getParameter("degree");
if (degree != null && degree.length() > 0) {

double d = Double.parseDouble(degree);
%>
<% if (request.getParameter("fToC") != null) {
%>

<p>
<%= degree %> fahrenheit degrees are
<%= twoDigits.format(conv.fToC(d)) %>
centigrade degrees.

<% }
%>
<% if (request.getParameter("cToF") != null) {
%>

<p>
<%= degree %> centigrade degrees are
<%= twoDigits.format (conv.cToF(d)) %>
fahrenheit degrees .

<% }
%>
<% }
%>
</body>
</html>

Step 3: Compiling all source code
Compile the source files at command prompt in c:\cop\ejb\tempconv direc-

tory. Type

>asant build

EXAMPLES AND LAB PRACTICE 111

A new directory build is created with class files.
Step 4: Deployment

1. Start J2EE Application Server
On Windows Start menu, choose Program | Sun Microsystem | Appli-

cation Server | Start Default Serve to start J2EE Application Server.

2. Start deploytool
On Windows Start menu, choose Program | Sun Microsystem | Appli-

cation Server | deploytool to start deploytool utility.

3. Creating the J2EE Application
ž In deploytool, select File | New | Application.
ž Click Browse.

ž In the file chooser, navigate to c:\cop\ejb\tempconv.
ž In the File Name field, enter TempConvApp.ear.
ž Click New Application and OK.

4. Packaging the EJB
To package an enterprise bean, we run the New Enterprise Bean wizard

of the deploytool utility, which will create the bean’s deployment descriptor,
package the deployment descriptor and the bean’s classes in an EJB JAR file,
and insert the EJB JAR file into the application’s TempConvApp.ear file.

To start the New Enterprise Bean wizard, select File | New |
Enterprise Bean.
ž In the EJB JAR General Settings dialog box, select the Create New JAR
Module in Application radio button.

ž In the combo box, select TempConvApp.
ž In the JAR Display Name field, enter TempConvJAR.
ž Click Edit Contents.
ž In the tree under Available Files, go to c:\cop\ejb\tempconv\build

directory.
ž Select TempConv folder from the Available Files tree and click Add.
ž Click OK. And Next.

112 ENTERPRISE JAVABEANS COMPONENTS

ž In the Bean General Settings dialog box select tempConv.TempConvEJB
in the Enterprise Bean Class combo box. Verify TempConvEJB in the Enter-
prise Bean Name field. Under Bean Type, select the Stateless Session
radio buttons.

ž Select tempConv.TempConvHome in the Remote Home Interface combo
box, select tempConv.TempConv in the Remote Interface combo box, click
Next.

ž In the Expose as Web Service Endpoint dialog box, select the No radio
button, click Next and Finish.

EXAMPLES AND LAB PRACTICE 113

After the packaging process, you can view the deployment descriptor by
selecting Tools | Descriptor Viewer.

<?xml version='1.0' encoding='UTF-8'?>
<ejb-jar version="2.1"

xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd" >
<display-name>TempConvJAR</display-name>
<enterprise-beans>

<session>
<ejb-name>TempConvEJB</ejb-name>
<home>tempConv.TempConvHome</home>
<remote>tempConv.TempConv</remote>
<ejb-class>tempConv.TempConvEJB</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Bean</transaction-type>
<security-identity> <use-caller-identity>
</use-caller-identity></security-identity>

</session>
</enterprise-beans>

</ejb-jar>

5. Packaging the Application Client
To start the New Application Client wizard, select File | New |

Application Client.
ž In Jar File Contents dialog box, select Create New AppClient Module
in Application radio button.

ž Select TempConvApp in the combo box.
ž Enter TempConvClient in the AppClient Name field.
ž Click Edit Contents button.
ž In the tree under Available Files, go to c:\cop\ejb\tempconv\build direc-

tory.
ž Select the TempConvClient.class file and click Add.
ž Click OK and Next.
ž Select TempConvClient in the Main Class combo box in the General dia-

log box.
ž Select use container-managed authentication in the Callback Han-
dler Class combo box.

ž Now, click Next and Finish.

114 ENTERPRISE JAVABEANS COMPONENTS

Specifying the Application Client’s Enterprise Bean Reference:
ž In the tree, select TempConvClient.
ž Select the EJB Refs tab and click Add.
ž Type ejb/ClientConv in the Coded Name column, select Session in the Type

field, and select Remote in the Interfaces field.
ž Type tempConv.TempConvHome in the Home Interface field and type temp-
Conv.TempConv in the Local/Remote Interface field.

ž Select JNDI Name radio button in the Target EJB box, enter MyTempConv
and click OK.

EXAMPLES AND LAB PRACTICE 115

After the packaging process, you can view the deployment descriptor by
selecting Tools | Descriptor Viewer.

<?xml version='1.0' encoding='UTF-8'?>
<application-client version="1.4"

xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/application-

client_1_4.xsd"
> <display-name>TempConvClient</display-name>

<ejb-ref>
<ejb-ref-name>ejb/ClientConv</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>tempConv.TempConvHome</home>
<remote>tempConv.TempConv</remote>

</ejb-ref>
</application-client>

6. Packaging the Web Client
To package a Web client, we can first run the New Web Component Wizard,

which will create a web application deployment descriptor. Next, add all compo-
nent files to a war file and add the war file to the application’s TempConv.ear file.

Build the web component by the New Web Component wizard and select
File | New | Web Component. See the following dialog boxes:
ž In the WAR File dialog box, select Create New WAR Module in Applica-
tion.

ž Select TempConvApp in the combo box.
ž Enter TempConvWAR In the WAR Name field.
ž Click Edit Contents.
ž In the tree under Available Files, go to c:\cop\ejb\tempconv\web directory.
ž Select index.jsp and click Add.
ž Click OK and Next.
ž In the Choose Component Type dialog box, select JSP radio button. Click

Next
ž In the Component General Properties dialog box, select index.jsp in

the JSP FileName combo box.
ž Click Finish.

116 ENTERPRISE JAVABEANS COMPONENTS

Specifying the Web Client’s Enterprise Bean Reference:
ž In the tree, select TempConvWAR.
ž Select the EJB Refs tab.
ž Click Add.
ž In the Coded Name field, enter ejb/WebConv.
ž Select Session in the Type field.
ž Select Remote in the Interfaces field.
ž Type tempConv.TempConvHome in the Home Interface field and type tem-
pConv.TempConv in the Local/Remote Interface field.

ž Select JNDI Name radio button for the Target EJB, enter MyTempConv, and
click OK.

After the packaging process, you can view the following deployment descrip-
tor by selecting Tools | Descriptor Viewer.

<?xml version='1.0' encoding='UTF-8'?>
<web-app version="2.4"

xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd" >

<display-name>TempConvWAR</display-name>
<servlet> <display-name>index</display-name>

<servlet-name>index</servlet-name>
<jsp-file>/index.jsp</jsp-file>

</servlet>
<ejb-ref> <ejb-ref-name>ejb/WebConv</ejb-ref-name>

<ejb-ref-type>Session</ejb-ref-type>

EXAMPLES AND LAB PRACTICE 117

<home>tempConv.TempConvHome</home>
<remote>tempConv.TempConv</remote>

</ejb-ref>
</web-app>

Specifying the JNDI Names:
Follow the following steps to map the enterprise bean references used by the

clients to the JNDI name of the bean.
ž In the tree, select TempConvApp.
ž Click Sun-Specific Settings button.
ž Choose JNDI Names for View.
ž To specify a JNDI name for the bean, find the TempConvEJB component in

the Application table and enter MyTempConv in the JNDI Name column.
ž To map the references, in the References table enter MyTempConv in the JNDI
Name for each row.
Specifying the Context Root:

ž In the tree, select TempConvWAR.
ž Click General tab and enter tempconv in the Contest Root field, so tem-
pconv becomes the context root in URL.

ž Save the application file.

7. Deploying the J2EEApplication
At this time, the J2EE application contains all components and it is ready

for deployment.
ž Select the TempConvApp application.
ž Select Tools | Deploy.
ž Select the checkbox labeled Return Client Jar.

118 ENTERPRISE JAVABEANS COMPONENTS

ž Verify the full path name for the file TempConvAppClient.jar so that it will
reside in the c:\cop\ejb\tempconv subdirectory. The TempConvApp-
Client.jar file has the EJB stub that enables remote access to TempConvEJB.

ž Click OK.
Notes: To undeploy an application

ž Under the Servers in the tree, Click localhost:4848.
ž Select the Deployed Object and click undeploy.

EXAMPLES AND LAB PRACTICE 119

Step 5: Running the J2EE Application Client and Web Client
In a terminal window,go to the c:\cop\ejb\tempconv directory, check

TempConvApp.ear and TempConvAppClient.jar files and then type

>appclient -client TempConvAppClient.jar

You will see the screen shown in the figure after entering 100 in the input field
and clicking OK.

To run the Web client, point your browser at the following URL. Replace 〈host〉
with the name of the host running the J2EE server. If your browser is running on
the same host as the J2EE server, you may replace 〈host〉 with localhost. By default
your URL is http://localhost:8080/tempconv.

120 ENTERPRISE JAVABEANS COMPONENTS

You should see the screen shown in the figure after entering 100 in the input field
and clicking 〈Fahrenheit to Centigrade〉.

4.5.2 Lab2: A Complete J2EE Application with One Session Bean and Two
Entity Beans

The Lab2 implements a student registration application “EnrollerApp ”, which con-
sists of a front session bean and two backend CMP entity beans supported by database
tables. It can add new course or new student into the registration system, remove a
course, or remove a student. It can also register a student with a number of courses or
drop a student from one or many courses registered. The system can also report some
statistical data of registration such as the enrollment of a specific course.

This EnrollerApp application has four components. The EnrollerAppClient
component is a J2EE application client that accesses the EnrollerEJB session bean
through the bean’s remote interface. The EnrollerBean accesses two entity beans –
StudentBean and CourseBean – through their local interfaces. The entity beans
use container-managed persistence and relationships. The StudentBean and Course-
Bean entity beans have a many-to-many relationship. Each bean has a relationship
field whose value identifies the related bean instance. The diagram below shows the
components and their relationships in the EnrollerApp application. The dotted lines
represent the access gained through invocations of the JNDI lookup method. The
solid lines represent the container-managed relationships [Armstrong 2004; Component
2004; Pawlan 2000].

EXAMPLES AND LAB PRACTICE 121

Student entity bean
(CMP)

*

*

Enroller session bean

Client

Course entity bean
(CMP)

The example in this Lab is tested with a PointBase database, which provides
persistent storage for application data. The PointBase is included in the J2EE SDK.

Step 1: Develop Beans and their client
Student entity bean component includes the following code:

ž Local interface: LocalStudent.java
ž Local home interface: LocalStudentHome.java
ž Entity bean class: StudentBean.java

//LocalStudent.java is a Local interface for student CMP entity
//bean, It can be a remote interface if its client is remote.

package cmppack;

import java.util.*;
import javax.ejb.*;

public interface LocalStudent extends EJBLocalObject {

public String getStudentId();
public String getName();
public Collection getCourses();

}

//LocalStudentHome.java is a Home interface of student CMP
//entity bean
//It can be defined as a remoteHome interface if accessed by a
//remote client

package cmppack;

122 ENTERPRISE JAVABEANS COMPONENTS

import java.util.*;
import javax.ejb.*;

public interface LocalStudentHome extends EJBLocalHome {

public LocalStudent create (String id, String name)
throws CreateException;

public LocalStudent findByPrimaryKey (String id)
throws FinderException;

public Collection findByName(String name)
throws FinderException;

public Collection findAll()
throws FinderException;

}

//StudentBean.java is a CMP entity bean class implementation

package cmppack;

import java.util.*;
import javax.ejb.*;
import javax.naming.*;

public abstract class StudentBean implements EntityBean {

private EntityContext context;

// Access methods for persistent fields, implicit definition of
// class members

public abstract String getStudentId();
public abstract void setStudentId(String id);

public abstract String getName();
public abstract void setName(String name);

// Access methods for relationship fields.

public abstract Collection getCourses();
public abstract void setCourses(Collection courses);

// Select methods, Business methods, EntityBean methods

public String ejbCreate (String id, String name)
throws CreateException {
setStudentId(id);
setName(name);
return null;

}

EXAMPLES AND LAB PRACTICE 123

public void ejbPostCreate (String id, String name)
throws CreateException { }

public void setEntityContext(EntityContext ctx) {
context = ctx;

}

public void unsetEntityContext() {
context = null;

}

public void ejbRemove() {}
public void ejbLoad() {}
public void ejbStore() {}
public void ejbPassivate() {}
public void ejbActivate() {}

} // StudentBean class

Course entity bean component includes the following code

ž Entity bean class: CourseBean.java
ž Local home interface: LocalCourseHome.java
ž Local interface: LocalCourse.java

//LocalCourse.java

package cmppack;

import java.util.*;
import javax.ejb.*;

// Local interface of course CMP entity bean

public interface LocalCourse extends EJBLocalObject {

public String getCourseId();
public String getTitle();
public int getMaxEnrollment();
public int getCurrentEnrollment();
public Collection getStudents();

public void addStudent(LocalStudent Student);
public void removeStudent(LocalStudent Student);

}

//LocalCourseHome.java

package cmppack;

import java.util.*;

124 ENTERPRISE JAVABEANS COMPONENTS

import javax.ejb.*;

// Home interface of course CMP entity bean

public interface LocalCourseHome extends EJBLocalHome {

public LocalCourse create (String id, String title, int
MaxEnrollment, int CurrentEnrollment) throws

CreateException;

public LocalCourse findByPrimaryKey (String id)
throws FinderException;

}

//CourseBean.java

package cmppack;

import java.util.*;
import javax.ejb.*;
import javax.naming.*;

public abstract class CourseBean implements EntityBean {

private EntityContext context;

// Access methods for persistent fields: courseId, title,
// maxEnrollment, currentEnrollment

public abstract String getCourseId();
public abstract void setCourseId(String id);

public abstract String getTitle();
public abstract void setTitle(String title);

public abstract int getMaxEnrollment();
public abstract void setMaxEnrollment(int maxenroll);

public abstract int getCurrentEnrollment();
public abstract void setCurrentEnrollment(int currenroll);

// Access methods for relationship fields

public abstract Collection getStudents();
public abstract void setStudents(Collection students);

// Business methods

public void addStudent(LocalStudent student) {
try {

Collection students = getStudents();
students.add(student);
setCurrentEnrollment(getCurrentEnrollment() + 1);

EXAMPLES AND LAB PRACTICE 125

} catch (Exception ex) {
throw new EJBException(ex.getMessage());

}
}

public void removeStudent(LocalStudent student) {
try {

Collection students = getStudents();
students.remove(student);
setCurrentEnrollment(getCurrentEnrollment() - 1);

} catch (Exception ex) {
throw new EJBException(ex.getMessage());

}
}

// EntityBean container callback methods

public String ejbCreate (String id, String title, int
maxenroll, int currenroll)

throws CreateException {
setCourseId(id);
setTitle(title);
setMaxEnrollment(maxenroll);
setCurrentEnrollment(currenroll);
return null;

}

public void ejbPostCreate (String id, String title, int
maxenroll, int currenroll)
throws CreateException { }

public void setEntityContext(EntityContext ctx) {
context = ctx;

}

public void unsetEntityContext() {
context = null;

}

public void ejbRemove() {}
public void ejbLoad() {}
public void ejbStore() {}
public void ejbPassivate() { }
public void ejbActivate() { }

} // CourseBean class

Enroller session bean includes the following code:

ž Remote interface: Enroller.java
ž Remote home interface: EnrollerHome.java
ž Session bean class: EnrollerBean.java

126 ENTERPRISE JAVABEANS COMPONENTS

ž StudentDetails.java
ž CourseDetails.java

//Enroller.java is a Remote interface of Enroller session bean

package enroller;

import java.util.*;
import javax.ejb.EJBObject;
import java.rmi.RemoteException;
import cmppack.*;

public interface Enroller extends EJBObject {

// Students
public void createStudent(StudentDetails details)

throws RemoteException;

public void addStudentToCourse(String studentId, String
courseId)
throws RemoteException;

public void removeStudentFromCourse(String studentId,
String courseId)
throws RemoteException;

public ArrayList getStudentsOfCourse(String courseId)
throws RemoteException;

// Courses
public void createCourse(CourseDetails details)

throws RemoteException;

public void removeCourse(String courseId)
throws RemoteException;

public CourseDetails getCourse(String courseId)
throws RemoteException;

}

//EnrollerHome.java is a Remote home interface of Enroller
session bean

package enroller;

import java.rmi.RemoteException;
import javax.ejb.*;

public interface EnrollerHome extends EJBHome {

Enroller create() throws RemoteException, CreateException;

EXAMPLES AND LAB PRACTICE 127

}

//EnrollerBean.java

package enroller;

import java.util.*;
import javax.ejb.*;
import javax.naming.*;
import cmppack.*;

public class EnrollerBean implements SessionBean {

private LocalStudentHome studentHome = null;
private LocalCourseHome courseHome = null;

// student business methods

public void createStudent(StudentDetails details) {
try {

LocalStudent student =
studentHome.create(details.getId(),
details.getName());

} catch (Exception ex) {
throw new EJBException(ex.getMessage());

}
}

// add a student to a course

public void addStudentToCourse(String studentId, String
courseId) {

try {
LocalCourse course =

courseHome.findByPrimaryKey(courseId);
LocalStudent student =
studentHome.findByPrimaryKey(studentId);
course.addStudent(student);

} catch (Exception ex) {
throw new EJBException(ex.getMessage());

}
}

// drop student from a course

public void removeStudentFromCourse(String studentId,
String courseId) {

try {
LocalStudent student =
studentHome.findByPrimaryKey(studentId);

128 ENTERPRISE JAVABEANS COMPONENTS

LocalCourse course =
courseHome.findByPrimaryKey(courseId);

course.removeStudent(student);
} catch (Exception ex) {

throw new EJBException(ex.getMessage());
}

}

// get student list for a course

public ArrayList getStudentsOfCourse(String courseId) {
Collection students = null;

try {
LocalCourse course =

courseHome.findByPrimaryKey(courseId);
students = course.getStudents();

} catch (Exception ex) {
throw new EJBException(ex.getMessage());

}

return copyStudentsToDetails(students);
} // getStudentsOfCourse

// Course business methods

public void createCourse(CourseDetails details) {
try {

LocalCourse course =
courseHome.create(details.getId(),
details.getTitle(), details.getMaxEnrollment(),
details.getCurrentEnrollment());

} catch (Exception ex) {
throw new EJBException(ex.getMessage());

}
}

public void removeCourse(String courseId) {
try {

LocalCourse course =
courseHome.findByPrimaryKey(courseId);

course.remove();
} catch (Exception ex) {

throw new EJBException(ex.getMessage());
}

}

public CourseDetails getCourse(String courseId) {
CourseDetails courseDetails = null;
try {

LocalCourse course =
courseHome.findByPrimaryKey(courseId);

courseDetails = new CourseDetails (courseId,

EXAMPLES AND LAB PRACTICE 129

course.getTitle(), course.getMaxEnrollment(),
course.getCurrentEnrollment());

} catch (Exception ex) {
throw new EJBException(ex.getMessage());

}
return courseDetails;

}

// SessionBean methods

public void ejbCreate() throws CreateException {
try {

studentHome = lookupStudent();
courseHome = lookupCourse();

} catch (NamingException ex) {
throw new CreateException(ex.getMessage());

}
}

public void ejbActivate() {
try {

studentHome = lookupStudent();
courseHome = lookupCourse();

} catch (NamingException ex) {
throw new EJBException(ex.getMessage());

}
}

public void ejbPassivate() {

studentHome = null;
courseHome = null;

}

public EnrollerBean() {}
public void ejbRemove() {}
public void setSessionContext(SessionContext sc) {}

// Private methods

private LocalStudentHome lookupStudent() throws
NamingException {

Context initial = new InitialContext();
Object objref =
initial.lookup("java:comp/env/ejb/SimpleStudent");
return (LocalStudentHome) objref;

}

private LocalCourseHome lookupCourse() throws
NamingException {
Context initial = new InitialContext();
Object objref =

130 ENTERPRISE JAVABEANS COMPONENTS

initial.lookup("java:comp/env/ejb/SimpleCourse");
return (LocalCourseHome) objref;

}

private ArrayList copyStudentsToDetails(Collection students)
{

ArrayList detailsList = new ArrayList();
Iterator i = students.iterator();

while (i.hasNext()) {
LocalStudent student = (LocalStudent) i.next();
StudentDetails details = new

StudentDetails(student.getStudentId(),
student.getName());

detailsList.add(details);
}

return detailsList;
} // copyStudentsToDetails

} // EnrollerBean

//StudentDetails.java

package enroller;

public class StudentDetails implements java.io.Serializable {

private String id;
private String name;

public StudentDetails (String id, String name) {
this.id = id;
this.name = name;

}

public String getId() {
return id;

}

public String getName() {
return name;

}

public String toString() {
String s = "Student Id: " + id + " Name: " + name +

"\n"; return s;
}

} // StudentDetails

//CourseDetailes.java

EXAMPLES AND LAB PRACTICE 131

package enroller;

public class CourseDetails implements java.io.Serializable {

private String id;
private String title;
private int maxenroll;
private int currenroll;

public CourseDetails (String id, String title, int
maxenroll, int currenroll) {
this.id = id;
this.title = title;
this.maxenroll = maxenroll;
this.currenroll = currenroll;

}

public String getId() {
return id;

}

public String getTitle() {
return title;

}

public int getMaxEnrollment() {
return maxenroll;

}

public int getCurrentEnrollment() {
return currenroll;

}

public String toString() {
String s = "Course Id: " + id + " Course Title: "

+ title + " \n " + "Max #: " + maxenroll + " Current
#: " + currenroll + "\n";

return s;
}

} // CourseDetails

//Enroller Client: EnrollerClient.java

package client;

import java.util.*;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;
import cmppack.*;
import enroller.*;
import javax.swing.*;

132 ENTERPRISE JAVABEANS COMPONENTS

public class EnrollerClient {

public static void main(String[] args) {
String output;

try {
Context initial = new InitialContext();
Object objref =
initial.lookup("java:comp/env/ejb/SimpleEnroller");
EnrollerHome home =

(EnrollerHome)PortableRemoteObject.narrow(objref,
EnrollerHome.class);

Enroller myEnroller = home.create();
output = createCourses(myEnroller);
output = output + register(myEnroller);
output = output + getClassList(myEnroller);
JOptionPane.showMessageDialog(null, output,

"Results", JOptionPane.INFORMATION_MESSAGE);
System.exit(0);

} catch (Exception ex) {
System.err.println("Caught an exception:");
ex.printStackTrace();

}
} // main

private static String getClassList(Enroller myEnroller) {
String s = "Class List \n";
try {

ArrayList studentList;
CourseDetails courseInfo;
courseInfo = myEnroller.getCourse("C1");
s = s + courseInfo.toString();
studentList = myEnroller.getStudentsOfCourse("C1");
s = s + dispDetailsList(studentList) + "\n";

courseInfo = myEnroller.getCourse("C2");
s = s + courseInfo.toString();

studentList = myEnroller.getStudentsOfCourse("C2");
s = s + dispDetailsList(studentList) + "\n";

} catch (Exception ex) {
System.err.println("Caught an exception:");
ex.printStackTrace();

}
return s;

} // getClassList

private static String dispDetailsList(ArrayList list) {
String s = "";
Iterator i = list.iterator();
while (i.hasNext()) {

Object details = (Object)i.next();
s = s + details.toString();

EXAMPLES AND LAB PRACTICE 133

}
return s;

} // printDetailsList

// Create Courses

private static String createCourses(Enroller myEnroller) {
String s = "";
try {

myEnroller.createCourse(new CourseDetails(
"C1", "JAVA Programming", 50, 0));

s = "Create course C1 - JAVA Programming \n";
myEnroller.createCourse(new CourseDetails(

"C2", "Component Oriented Programming", 50, 0));
s = s + "Create course C2 - Component Oriented

Programming \n\n";
} catch (Exception ex) {

System.err.println("Caught an exception:");
ex.printStackTrace();

}
return s;

}

// Create students and add to courses

private static String register(Enroller myEnroller) {
String s = "";
try {

myEnroller.createStudent(new StudentDetails(
"S1", "Dan Jones"));

myEnroller.addStudentToCourse("S1", "C1");
myEnroller.addStudentToCourse("S1", "C2");
s = s + "Create student S1 - Dan Jones \n" +

"Add student to course C1, C2 \n";

myEnroller.createStudent(new StudentDetails(
"S2", "Vivian Smith"));

myEnroller.addStudentToCourse("S2", "C1");
myEnroller.addStudentToCourse("S2", "C2");
s = s + "Create student S2 - Vivian Smith \n" +

"Add student to course C1, C2 \n";

myEnroller.createStudent(new StudentDetails(
"S3", "Bob Roberts"));

myEnroller.addStudentToCourse("S3", "C1");
s = s + "Create student S3 - Bob Roberts \n " +

"Add student to course C1 \n\n";
myEnroller.removeStudentFromCourse("S2", "C1");
s = s + "Drop student S2 from course C1.\n\n";

} catch (Exception ex) {
System.err.println("Caught an exception:");
ex.printStackTrace();

134 ENTERPRISE JAVABEANS COMPONENTS

}
return s;

}
}

Step 2: Set up environment and getting started
See Lab1 for environment setup and start J2EE Application Server.
To start PointBase on Windows, from start menu, choose Progrm | Sun Micro-

systems | Application Server | Start PointBase.

Step 3: Compiling the Source Files
To compile the source files, open a terminal window, go toc:\cop\ejb\cmpen-

roller directory and type the following command:

>asant build

A new directory “build ” with all the class files will be created.

Step 4: Deployment
Start deploytool.

1. Create a new Application named EnrollerApp.ear
ž In deploytool, select File | New | Application.
ž Click Browse.
ž In the file chooser, navigate to c:\cop\ejb\cmpenroller.
ž In the File Name field, enter EnrollerApp.ear.
ž Click New Application and OK

2. Create StudentBean Entity Bean
ž Select File | New | Enterprise Bean to start the New Enterprise Bean
wizard

ž In the EJB JAR dialog box select the Create New JAR File in the Application
radio button. In the combo box, select EnrollerApp.

ž In the JAR Name field, enter CmpJAR.
ž Click Edit
ž In the tree under Available Files, locate the c:\cop\ejb\cmpenroller\build

directory. Select cmppack folder and click Add, then click OK.
ž In the EJB JAR General Settings dialog box, select cmppack.StudentBean
for the Enterprise Bean Class combo box.

ž Verify that the Enterprise Bean name field is StudentBean.
ž Under Bean Type, select the Entity radio button.
ž In the Local Home Interface combo box, select cmppack.Local-
StudentHome.

ž In the Local Interface combo box, select cmppack.LocalStudent.
ž Click Next, Finish.

EXAMPLES AND LAB PRACTICE 135

Selecting the Persistent Fields and Abstract SchemaName:

ž Select StudentBean and click Entity tab.

ž In the Fields To Be Persisted list, select the fields that will be saved
in the database. For Student entity bean select studentId and name.

136 ENTERPRISE JAVABEANS COMPONENTS

ž Choose Select an existing field for the Primary Key Class.
ž Select studentId from the combo box.
ž In the Abstract Schema Name field, enter Student. This name will be ref-

erenced in the EJB QL queries.
Defining EJB QL Queries for Finder and Select Methods:

ž Click the Finder/Select Queries... button to start Finder/Select
Methods for StudentBean dialog box.

ž To display a set of finder or select methods, click one of the radio buttons
under the Show label.

ž To specify an EJB QL query, choose the name of the finder or select method
from the Method list and then enter the query in the field labeled EJB QL
Query.

ž Select findAll, type the following EJB QL Query for findAll:

select object(s) from Student s

ž Select findByName and type the following EJB QL Query for findByName:

select distinct object(s) from Student s
where s.name = ?1

ž Click OK.

Specifying Transaction Settings:
ž Select StudentBean in the tree.
ž Click Transactions tab.
ž Select Container-Managed.

3. Adding CourseBean Entity Bean to Existing JAR File
ž Select File | New | Enterprise Bean to start the New Enterprise Bean

wizard.
ž In the EJB JAR dialog box, select Add to Existing JAR File.

EXAMPLES AND LAB PRACTICE 137

ž In the Existing JAR File, select CmpJAR and click Next.
ž Follow the steps of creating entity bean of StudentBean to complete the
CourseBean creation.

4. Defining Entity Relationships
After you create StudentBean and CourseBean you can define relationships

between the two entity beans that reside in the same EJB JAR file.
ž Select CmpJAR in the tree view and then select the relationships tab.
ž Click Add (or Edit to modify) button to open Add Relationship dialog box.
ž Select many to many in the combo box
ž In the Enterprise Bean A, select StudentBean for Enterprise Bean Name,

courses for Field Referencing Bean B, and java.util.Collection for Field
Type.

ž In the Enterprise Bean B, select CourseBean for Enterprise Bean Name, stu-
dents for Field Referencing Bean A, and java.util.Collection for Field
Type.

5. Specifying Table Creation:
ž Select CmpJAR from the tree in deploytool.
ž Select the General tab.
ž Click Sun-specific Settings button.
ž In the JNDI Name field enter jdbc/PointBase.
ž Click Create DataBase Mappings button.
ž Select Automatically Generate Necessary Tables.
ž Click OK.
ž Verify field mappings for StudentBean and CourseBean.
ž Click the Table Generation Settings to open a dialog box.
ž Select Create Table on Deploy and Delete Table on Undeploy for
testing and click OK.

ž Click Close.

138 ENTERPRISE JAVABEANS COMPONENTS

6. Packaging the Session Bean – EnrollerBean
ž Select File | New | Enterprise Bean to start the New Enterprise Bean

wizard.
ž Select the Create New JAR File In Application radio button.
ž In the combo box, select EnrollerApp.
ž In the JAR Name field, enter EnrollerJAR and then click Edit Contents.
ž In the tree under Available Files, locate the c:\cop\ejb\cmpenroller\build

directory.
ž Select the Enroller folder from the Available Files tree and click Add:
ž In the Bean General Settings dialog box select enroller, enrollerBean

for Enterprise Bean Class combo box.
ž Enter Enrollerbean in the Enterprise Bean Name field.
ž Select Stateful Session radio button for Bean type.
ž In the Remote Home interface combo box, select enroller.EnrollerHome.
ž In the Remote Interface combo box, select enroller.Enroller.
ž Click Next, Finish.

EXAMPLES AND LAB PRACTICE 139

Specify the Session Bean Reference:
The EnrollerEJB session bean accesses two entity beans: StudentBean and

CourseBean. When it invokes the lookup method, the EnrollerBean refers to
the home of entity beans:

Object objref =
initial.lookup("java:comp/env/ejb/SimpleStudent");

Object objref =
initial.lookup("java:comp/env/ejb/SimpleCourse");

Specify this reference as follows:
ž In the tree, select EnrollerBean.
ž Select the EJB Refs tab and click Add.
ž In the Coded Name column, enter ejb/SimpleStudent.
ž In the Type column, select Entity.

140 ENTERPRISE JAVABEANS COMPONENTS

ž In the Interfaces column, select Local.
ž In the Home Interface column, enter cmppack.LocalStudentHome.
ž In the Local/Remote Interface column, enter cmppack.LocalStudent

and click OK.
ž Choose Enterprise Bean Name for Target EJB and select ejb-jar-ic.jar#Student-

Bean from the combo box.
ž Add another line for CourseBean.

Specifying Transaction Settings:
ž Select EnrollerBean in the tree.
ž Click Transactions tab.
ž Select Container-Managed

7. Packing the Application Client
Create new application client module:

ž Select File | New | Application Client to open Application Client wizard.
ž In the JAR File Contents dialog box select Create New AppClient Module in

Application.
ž Select EnrollerApp in the combo box.
ž Enter EnrollerClient in the Appclient name field.
ž Click Edit Contents.
ž In the tree under Available Files, locate the c:\cop\ejb\cmpenroller\build

directory.
ž Select the Client folder For the Contents.
ž Click OK and Next.
ž In the General dialog box select client.EnrollerClient for the Main
Class combo box.

ž In the Callback Handler Class combo box, select container-managed
authentication.
Specifying the ApplicationClient Reference:

ž In the tree, select EnrollerClient.
ž Select the EJB Refs tab and click Add.
ž In the Coded Name field, enter ejb/SimpleEnroller.
ž In the Type field, select Session.
ž In the Interfaces field, select Remote.
ž In the Home Interface field, enter enroller.EnrollerHome.
ž In the Local/Remote Interface field, enter enroller.Enroller.
ž Select JNDI Name for the Target EJB and enter MyEnroller and click OK.

Specifying the JNDI Names:
ž In the tree, select EnrollerApp.
ž Click Sun-Specific Settings button.
ž In the Application table, locate the EnrollerBean component and enter
MyEnroller in the JNDI name field.

EXAMPLES AND LAB PRACTICE 141

ž To map the references, in the References table enter MyEnroller in the
JNDI name.

8. Final deployment
ž Click Tools | Deploy
ž Select Return Client Jar and click OK.

Step 5: Running the EnrollerApp Application

In c:\cop\ejb\cmpenroller directory run the following command:

appclient -client EnrollerAppClient.jar

The report of this example shows that the student registration system has courses C1
and C2 and students S1, S2, and S3. S1 registered in C1 and C2. S3 student registered
in C1 and C2 as well. S3 registered in C1. S2 dropped C1.

The final report shows that course C1 – “JAVA Programming” has two students, the
course C2 “Component-Oriented programming” has S1 and S2 registered.

142 ENTERPRISE JAVABEANS COMPONENTS

4.6 SUMMARY

Sun Microsystems’ EJB 2.x provides a complete component infrastructure similar
to CORBA 3.0. The component model of the EJB technology is used for building
Java enterprise application in distributed computing environment. Any EJB compo-
nent has two interfaces and one bean class to implement the interfaces. The EJB
home (can be local home or remote home) interface manages the life cycle of an
EJB object such as creating, removing an EJB instance, and finding an entity bean
instance by primary key. The EJBObject (remote or local) interface provides and
exposes all business logic methods to be used by its clients. The implementation
bean class extends a session bean or entity bean class, depending on the type of this
EJB component.

There are two types of session beans, stateless and stateful ones, and both of them
act on the behaviors of their clients. The stateless EJB component does not hold
any state information during its session such as an on-line calculator. On the other
hand, stateful session beans need to hold some state information during the session.
For instance, a shopping cart session bean needs to keep track of a client’s items in
a collection.

There are two types of entity beans, too, BMP and CMP ones, and both of them
are used in the back-end tier to connect database and to support the persistence. Each
entity bean has a relation table behind it. Each instance of the entity EJB compo-
nent is stored in the table as a row. CMP entity beans are free of SQL database
access code, and the mapping to database implementation is done by a deployer at
deployment time.

EXERCISES 143

Any EJB component is hosted by an EJB container, which provides all necessary
services and makes EJB more portable and scalable. An EJB component is packed,
assembled, and finally deployed on a server.

EJB components are server-side reusable components. This compares to JavaBeans
components discussed in Chapter 3, which are client-side reusable components. EJB
components are widely used in distributed computing applications in a LAN, WAN,
Internet, or wireless network environment. The EJB component can work with other
components such as CORBA components, Servlets, or JSP Web components.

4.7 SELF-REVIEW QUESTIONS

(True or False)

1. BMP entity beans provide SQL access code but CMP entity beans do not.

2. CMP entity beans can be deployed to any J2EE server with any relational database.

3. The ejbCreate() method is in the home interface of an entity bean.

4. Every session bean has a primary key.

5. MDB Java beans also have their interfaces just like ordinary enterprise beans.

6. Web service endpoints can be applied to any entity bean to make an EJB component
Web service available.

7. The ejbCreate() method is called back by its container.

8. The ejbCreate() method must be overridden by an entity bean.

9. Session beans may have their own states.

10. Any EJB component must have a remote interface and a home interface.

11. The business logic is defined in remote interface.

12. The finder method should be defined in both session beans and entity beans.

13. An EJB component can be reached by any Servlet Web component or JSP Web
component or HTML component.

14. An EJB component cannot have both of local interface and remote interface.

Keys to Self-Review Questions

1. T 2. T 3. T 4. F 5. F 6. F 7. T 8. T 9. T 10. F 11. T 12. F 13. T 14. F

4.8 EXERCISES

1. What is EJB component infrastructure?

2. How is an EJB component object located?

3. How does the EJB container work?

4. What is the purpose of the EJB container?

144 ENTERPRISE JAVABEANS COMPONENTS

5. What are the major differences between EJB and Javabeans?

6. What are the major differences between EJB and MDB?

7. Is EJB architecture a cross-language platform?

8. What are new in EJB 2.x compared with EJB 1.x?

9. What is an object reference?

10. Where will EJB components be deployed?

11. Why do we need local interfaces?

12. What is a local home?

13. What is a local EJB object interface?

14. What is a remote interface?

15. When is a class channel needed?

16. What is EJB packaging?

17. What is EJB assembly?

18. What would a .jar file usually contain?

19. What would a .war file usually contain?

20. What would a .ear file usually contain?

4.9 PROGRAMMING EXERCISES

1. Session bean programming
a. Design a stateful session bean that provides a calculator services. The calcu-

lator has the functionality to perform addition, subtraction, multiplication, and
division of two real numbers. It can also detect the zero divisors in division
operation. Use namespace in this component.

b. Design a client of the calculator in the previous question in Web component or
text-mode client.

c. Deploy the server component “Calculator.”

d. Plug in this “Calculator” component into a Window Form application.

e. Plug in this “Calculator” component into a Web form to be browsed by any
Web browser.

f. Plug in this “Calculator” component into a text-mode client.

2. Entity bean programming
a. Design an on-line auction business application using entity beans and session

beans and other Java Web components. The business includes all routine auction
activities such as bidding price, starting price, current highest bid price, time
period control, winner notification, and so on.

REFERENCES 145

REFERENCES

[Armstrong 2004] Armstrong, E. J2EE 1.4 Tutorial , java.sun.com/j2ee/1.4/docs/tutorials/doc,
2004.

[Component 2004] www.componentsource.com, 2004.

[Pawlan 2000] Pawlan, M. Writing Enterprise Application with Java 2 SDK, Enterprise Edition,
2000.

[Sun2 2003] Sun Microsystems, J2EE Developer’s Guide, java.sun.com, 2003.

[Sun1 2002] Sun Microsystems, Enterprise JavaBean Specification, v2.1, java.sun.com, 2002.

5
CORBA COMPONENTS

Objectives of This Chapter

ž Introduce CORBA component infrastructure
ž Introduce the concepts of CORBA components and its runtime environment
ž Discuss different types of CORBA components, their connections, and deploy-

ments
ž Introduce new features of CORBA Component Model (CCM)
ž Provide step-by-step guide on building, deploying, and using CORBA components

5.1 CORBA COMPONENT INFRASTRUCTURE

5.1.1 CORBA Overview

The Common Object Request Broker Architecture (CORBA) is becoming an indus-
trial standard for component-based software and distributed middleware development.
CORBA was created by a consortium called the Object Management Group (OMG),
involving over 800 companies. It allows distributed components to interoperate in a
language-independent and platform-independent environment. Since CORBA compo-
nents are self-descriptive, they can be deployed on any compliant servers. A CORBA
component is portable and scalable. A client CORBA component can be programmed
in a programming language different from the language used for implementing the
server component. Besides, a client CORBA component can be deployed and exe-
cuted on a platform that is different from the platform where the server component
is running.

Component-Oriented Programming, by Andy Ju An Wang and Kai Qian
ISBN 0-471-64446-3 Copyright 2005 John Wiley & Sons, Inc.

146

CORBA COMPONENT INFRASTRUCTURE 147

CORBA 1.0 was created in 1991 as a distributed object model. It had an Interface
Definition language (IDL), which supports a mapping to C, and a set of API for
remote method invocation and interface repository. This earlier version only supported
BOA (Basic Object Adapter) not POA (Portable Object Adapter). As a matter of fact,
CORBA 1.0 was not a true component infrastructure.

CORBA 2.0 was released in 1996. CORBA 2.2 defined POA, Internet Inter-ORB
Protocol (IIOP), and supported the mapping from IDL to Java in addition to C. CORBA
2.x increased the interoperability by specifying a mandatory IIOP, which is basically
TCP/IP plus the message format exchanges that serves as a common backbone bus pro-
tocol. Any CORBA vendor must implement IIOP so that their CORBA objects could
talk to other CORBA objects on the Internet. There are a number of vendors imple-
menting CORBA 2.x such as Borland VisiBroker with IDL to C++ and Java mapping,
IONA’s Orbix with IDL to C++, Smalltalk, and Java mapping, Sun Microsystems JIDL
with IDL-to-Java mapping, IBM SOM (System Object Model), and so on. Microsoft
has its own CORBA-compliant product called DCOM, which is being replaced by
.NET framework.

CORBA 3.0, which is the latest version at the time of writing this book, is a true
component infrastructure because the CCM (CORBA Component Model) became an
integral part of CORBA 3.0. More about CCM will be discussed in the next few
sections. OpenCCM, MicoCCM, and EJB 3.0 are examples of the implementations for
the CCM standard.

The idea of CORBA originated from Remote Procedure Call (RPC) in Unix and C.
RPC is procedure oriented and programming language dependent. In other words, RPC
does not pass any object as an argument or return an object as the result of calling a
remote procedure. CORBA defines the infrastructure for interoperations of distributed
component objects. It handles a request for services provided by a distributed compo-
nent. The services provided by a component are exposed via its interface described by
an IDL program. Each object of CORBA-distributed components is identified by its
object reference. IDL is a definition language with its own syntax and semantics. IDL
also supports a number of data types such as long, short, float, double, char, boolean,
and other complex data types.

5.1.2 CORBA Architecture Basics

Let us take a look at all the important parts in CORBA architecture first. Figure 5.1
shows a diagram of CORBA architecture. IIOP is a common backbone bus where
CORBA components and their clients are running and communicate via the Object
Request Broker (ORB).

1. Object Request Braher (ORB) is a container software that has CORBA runtime
library and processes to locate and activate any remote object. ORB mediates
the interactions between clients and servers and provides distributed services that
handle the request to remote CORBA objects. It locates remote objects, requests
remote methods in a remote CORBA interface, and gets the result back to the
client. ORB must be available in both client and server sides.

2. Object Adapter (OA) is a runtime environment that is in charge of CORBA
component object’s life cycle on the server side. It provides API for generation

148 CORBA COMPONENTS

and interoperations of OR (Object Reference), method invocation, interaction
security, object activation and deactivation, mapping OR to its object’s imple-
mentation, and so on. OA associates a CORBA component object with ORB.

BOA provides basic adapter services to listen to a client’s connection request
and redirect the inbound request to the desired target object. However, the object
is not portable in BOA.

POA is replacing BOA because it allows CORBA components to be portable
between different ORB vendors. POA also supports CORBA objects with per-
sistent identities and transparent activation of objects.

3. Stub and Skeleton The stub code and the skeleton code are used to marshal and
demarshal remote method invocations in distributed applications. Marshaling is
an encoding process to pack all information about remote method invocation in
a flat format to be sent to the remote destination, while demarshaling is an oppo-
site process to unpack and decode the messages. The stub marshals the method
invocation request and the skeleton demarshals the request and forwards it to an
actual remote method invocation. Both of them make a CORBA component and
its client be aware of the definition of IDL, that is, the definition of the interface
for this CORBA component. There are two different approaches to generating the
stub code for a client and generating the skeleton code for the server component:
(1) static approach, SII (Static Invocation Interface) and SSI (Static Skeleton
Interface); (2) dynamic approach, DII (Dynamic Invocation Interface) and DSI
(Dynamic Skeleton Interface). SII and SSI are generated at IDL compilation
time. It means that the IDL interface must be available in advance. In some
cases, it is not possible to have these available. For example, we need to build a
bridge for an adapter object to hook up with an existing CORBA system without
rebuilding it. In such a case, the client can get all the necessary knowledge of
the interface from IR (Interface Repository) as long as the interface is registered.
DII consults with IR to find all the syntax of operations to generate and revoke
the stub code dynamically. DSI also provides a runtime building mechanism to
generate the skeleton code handling the incoming request. It does not rely on the
static skeleton since it is not available at this time.

4. Interface Repository (IR) and Implementation Repository IR is a database on
the server side, which has all metadata of all registered IDL interfaces, including
type information, methods, and parameters. IR provides self-descriptive binary
interfaces. IR is referenced by both DII and DSI. The implementation repository
is a database on the server side that tells how to launch a server component when
it is not active. It is a runtime repository for all the information about the server
components, including classes and objects.

5. Object References (OR) are CORBA component objects. OR encapsulate the
locations of CORBA object requests and other information such as the IDs of
objects. They are proxy objects standing on the client side. They can be passed
from one object to another. A client must get the OR to the CORBA component
objects in order to invoke a remote method of a CORBA component object.

6. Interface Definition Language (IDL) and Language Mapping The IDL interface
of a CORBA component exposes all the operations or methods that a client of
this component may access. An IDL interface is a language-independent text file
with an extension idl, which can be mapped to many different programming
languages such as C++, Java, Smalltalk, and so on. The details of IDL will be

CORBA COMPONENT MODEL (CCM) 149

Client component

Call

Return

Dynamic
invocation

Dll

IDL stub

Sll

IDL

IDL
skeleton

SSl
DSI

ORB ORB

IIOP (Internet)

POA object adapter

Object component
(servant)

Interface
repository

Implementation
repository

FIGURE 5.1. CORBA infrastructure.

discussed in next section. Just like any other component architecture, the IDL
interface is a contract between a server component and its client that separates
the implementation from the definition.

The dash lines in Figure 5.1 indicate the logical communication channels between a
CORBA component object and its client. The solid lines indicate the physical channels
for a client to request a service from a server-side CORBA component [Compo-
nent 2004].

5.2 CORBA COMPONENT MODEL (CCM)

5.2.1 Classic CORBA Object

As we discussed before, the IDL interface of a CORBA component exposes all oper-
ations it provides and all attributes that clients can use get and set methods to access
them. The IDL interface is implemented by classes of CORBA component and is
aware to any client of the CORBA component. It is a contract between a client and
the server component. The basic structure of a CORBA component object is described
in Figure 5.2.

150 CORBA COMPONENTS

Attributes

Object reference

Operations
(provide services)

(CORBA component)

FIGURE 5.2. CORBA component.

We may have an Account.idl as follows:

module MyAccount {
interface Account{

attribute long accountNo;
void deposit (in double amount);
void withdraw(in double amount);
double reportBalance(); }

}

The module MyAccount is mapped to a package MyAccount in Java and the
interface Account is mapped to a Java interface Account. The read/write attribute
accountNo is mapped to a pair of get and set methods for this attribute.

Let us take a look at a simple component TempConvert, which provides services
to convert a temperature from Celsius to Fahrenheit. It is a programming language-
independent interface shown below. We can map this IDL interface to any programming
language that can be implemented by either the server component or its client. The
processing is shown in Figure 5.3.

The server component and its client can be implemented by different languages and
running at different platforms. Here we focus on Java implementation.

The first step is to define an interface by IDL in a Convert.idl file.

module TempConvertApp
{

interface Convert
{

double cToF(in double c);
};

};

The utility command idlj maps this IDL interface to Java and generates number of
files including CORBA interface, client stub, server skeleton, and other helper Java files.

CORBA COMPONENT MODEL (CCM) 151

Let us discuss these generated Java files first because they are the bases of the server
implementation and the client development. There are two server-side mapping models.
One is the inheritance model and the other is the delegation model. We present here a
POA inheritance model.

ž Convert.java specifies the Java interface for the component. We can find that
the module is mapped to a package and the interface is mapped to a Java interface.
If the IDL interface is mapped to C++, then the module is mapped to a namespace
and the interface is mapped to an abstract class in C++. It depends on the vendor’s
implementations. Figure 5.3 depicts a classic CORBA object development, its
structure, and its generation.

Package TempConvertApp
Public interface Convert extends org.omg.CORBA.Object{

Double cToF(double c): }

ž TempConvertApp/ConvertOperations.java declares all exposed operations
in this interface.

package TempConvertApp;
public interface ConvertOperations
{
double cToF (double c);
} // interface ConvertOperations

ž TempConvertApp/ConvertHelper.java provides auxiliary functionality such
as the narrow() method required to cast a CORBA object reference to their
proper types.

package TempConvertApp;

abstract public class ConvertHelper
{

private static String _id =
"IDL:TempConvertApp/Convert:1.0";

public static void insert (org.omg.CORBA.Any a,
TempConvertApp.Convert that)

{
org.omg.CORBA.portable.OutputStream out =

a.create_output_stream();
a.type (type ());
write (out, that);
a.read_value (out.create_input_stream (), type ());

}

public static TempConvertApp.Convert extract (org.omg.CORBA.Any
a)

{
return read (a.create_input_stream ());

}

private static org.omg.CORBA.TypeCode __typeCode = null;
synchronized public static org.omg.CORBA.TypeCode type ()

152 CORBA COMPONENTS

{
if (__typeCode == null)
{
__typeCode = org.omg.CORBA.ORB.init ().create_interface_tc

(TempConvertApp.ConvertHelper.id (), "Convert");
}
return __typeCode;

}

public static String id ()
{
return _id;

}

public static TempConvertApp.Convert read
(org.omg.CORBA.portable.InputStream istream)

{
return narrow (istream.read_Object (_ConvertStub.class));

}

public static void write (org.omg.CORBA.portable.OutputStream
ostream,

TempConvertApp.Convert value)
{
ostream.write_Object ((org.omg.CORBA.Object) value);

}

public static TempConvertApp.Convert narrow
(org.omg.CORBA.Object obj)
{
if (obj == null)

return null;
else if (obj instanceof TempConvertApp.Convert)

return (TempConvertApp.Convert)obj;
else if (!obj._is_a (id ()))

throw new org.omg.CORBA.BAD_PARAM ();
else
{

org.omg.CORBA.portable.Delegate delegate =
((org.omg.CORBA.portable.ObjectImpl)obj)._get_delegate ();

TempConvertApp._ConvertStub stub = new
TempConvertApp._ConvertStub ();

stub._set_delegate(delegate);
return stub;

}
}
}

ž TempConvertApp/ConvertHolder.java has a Holder class used to hold
a CORBA object for input stream read and output stream write operations
of parameters.

package TempConvertApp;
public final class ConvertHolder implements

CORBA COMPONENT MODEL (CCM) 153

org.omg.CORBA.portable.Streamable
{
public TempConvertApp.Convert value = null;

public ConvertHolder ()
{
}
public ConvertHolder (TempConvertApp.Convert initialValue)
{

value = initialValue;
}
public void _read (org.omg.CORBA.portable.InputStream i)
{

value = TempConvertApp.ConvertHelper.read (i);
}

public void _write (org.omg.CORBA.portable.OutputStream o)
{

TempConvertApp.ConvertHelper.write (o, value);
}
public org.omg.CORBA.TypeCode _type ()
{

return TempConvertApp.ConvertHelper.type ();
}

}

ž TempConvertApp/ConvertPOA.java is a skeleton class for server implemen-
tation that implements operations interface and uses narrow() in Helper class
shown before. This is a stream-base skeleton.

package TempConvertApp;
public abstract class ConvertPOA extends

org.omg.PortableServer.Servant
implements TempConvertApp.ConvertOperations,
org.omg.CORBA.portable.InvokeHandler

{
// Constructors
private static java.util.Hashtable _methods = new

java.util.Hashtable ();
static
{

_methods.put ("cToF", new java.lang.Integer (0));
}
public org.omg.CORBA.portable.OutputStream _invoke (String

$method, org.omg.CORBA.portable.InputStream in,
org.omg.CORBA.portable.ResponseHandler $rh)

{
org.omg.CORBA.portable.OutputStream out = null;
java.lang.Integer __method=(java.lang.Integer)_methods.get

($method);
if (__method == null)

throw new org.omg.CORBA.BAD_OPERATION (0,
org.omg.CORBA.CompletionStatus.COMPLETED_MAYBE);

154 CORBA COMPONENTS

// Dispatch method request to its handler
switch (__method.intValue ())
{

case 0: // TempConvertApp/Convert/cToF
{

double c = in.read_double ();
double $result = (double)0;
//invoke the method
$result = this.cToF (c);
//create an output stream for delivery of the result
out = $rh.createReply();
//Marshal the result via output stream which connects
//the input stream of client
out.write_double ($result);
break;

}
default:

throw new org.omg.CORBA.BAD_OPERATION (0,
org.omg.CORBA.CompletionStatus.COMPLETED_MAYBE);

}
return out;

} // _invoke

// Type-specific CORBA::Object operations
private static String[] __ids = {

"IDL:TempConvertApp/Convert:1.0"};

public String[] _all_interfaces
(org.omg.PortableServer.POA poa, byte[] objectId)

{
return (String[])__ids.clone ();

}

public Convert _this()
{

return ConvertHelper.narrow(
super._this_object());

}
public Convert _this(org.omg.CORBA.ORB orb)
{

return ConvertHelper.narrow(
super._this_object(orb));

}
} // class ConvertPOA

ž TempConvertApp/ConvertStub.java is a stub for a CORBA client that mar-
shals the arguments of method invocation via an output stream and unmarshals
the results back via an input stream. The stub class also implements the Convert
Java interface shown before.

package TempConvertApp;
public class _ConvertStub extends

org.omg.CORBA.portable.ObjectImpl

CORBA COMPONENT MODEL (CCM) 155

implements TempConvertApp.Convert
{

public double cToF (double c)
{

org.omg.CORBA.portable.InputStream $in = null;
try {

//create a request via an output stream
org.omg.CORBA.portable.OutputStream $out =

_request ("cToF", true);
//marshal the arguments
$out.write_double (c);
//method invication via output stream and
//connect to a input stream
$in = _invoke ($out);
//unmarshal the return result
double $result = $in.read_double ();
return $result;

} catch (org.omg.CORBA.portable.ApplicationException $ex) {
$in = $ex.getInputStream ();
String _id = $ex.getId ();
throw new org.omg.CORBA.MARSHAL (_id);

} catch (org.omg.CORBA.portable.RemarshalException $rm) {
return cToF (c);

} finally {
_releaseReply ($in);

}
} // cToF
// Type-specific CORBA::Object operations
private static String[] __ids =

{"IDL:TempConvertApp/Convert:1.0"};

public String[] _ids ()
{

return (String[])__ids.clone ();
}

private void readObject (java.io.ObjectInputStream s) throws
java.io.IOException

{ String str = s.readUTF ();
String[] args = null;

java.util.Properties props = null;
org.omg.CORBA.Object obj = org.omg.CORBA.ORB.init (args,

props).string_to_object (str);
org.omg.CORBA.portable.Delegate delegate =
((org.omg.CORBA.portable.ObjectImpl) obj)._get_delegate

();
_set_delegate (delegate);

}

private void writeObject (java.io.ObjectOutputStream s)
throws java.io.IOException

{
String[] args = null;
java.util.Properties props = null;

156 CORBA COMPONENTS

String str = org.omg.CORBA.ORB.init (args,
props).object_to_string (this);

s.writeUTF (str);
}

} // class _ConvertStub

ž ConvertServer.java is a server file with two classes. One is ConverImpl
class that inherits ConvertPOA class (a CORBA skeleton) and the other is a
public daemon class ConvertServer that has a main() method.

// ConvertServer.java
import TempConvertApp.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import java.util.Properties;

class ConvertImpl extends ConvertPOA {
private ORB orb;

public void setORB(ORB orb_val) {
orb = orb_val;

}

// implement cToF() method
public double cToF(double c) {

return (c*9./5+32);
}

}

public class ConvertServer {

public static void main(String args[]) {
try{
// create and initialize the ORB
ORB orb = ORB.init(args, null);
// get reference to rootpoa & activate the POAManager
POA rootpoa =
POAHelper.narrow(orb.resolve_initial_references
("RootPOA"));
rootpoa.the_POAManager().activate();
// create servant and register it with the ORB
ConvertImpl convertImpl = new ConvertImpl();
convertImpl.setORB(orb);
//get object reference from servant
org.omg.CORBA.Object ref =
rootpoa.servant_to_reference(convertImpl);
Convert href = ConvertHelper.narrow(ref);
//get naming context
org.omg.CORBA.Object objRef =
orb.resolve_initial_references("NameService");

CORBA COMPONENT MODEL (CCM) 157

// cast the generic object reference to a proper type
NamingContextExt ncRef =
NamingContextExtHelper.narrow(objRef);
//bind the name “Convert” with naming service
NameComponent path[] = ncRef.to_name(“Convert”);
ncRef.rebind(path, href);
// wait for invocations from client
orb.run();
}
catch (Exception ex) {
System.err.println("ERROR: " + ex);
ex.printStackTrace(System.out);

}
}

}

ž ConvertClient.java is a CORBA GUI client that accesses the CORBA com-
ponent on the server.

import TempConvertApp.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

public class ConvertClient extends JFrame
{

static Convert convertImpl;
static JTextField input;
static JTextField output;
static ConvertClient a;
static JButton submit, clear;

public ConvertClient()
{ //layout the GUI

Container contentPane = getContentPane();
contentPane.setLayout(new FlowLayout());
JLabel l1=new JLabel("C input:");
JLabel l2=new JLabel("F output");

input =new JTextField(10);
output= new JTextField(10);
submit=new JButton("SUBMIT");
clear=new JButton("Clear");
submit.addActionListener(new ActionHandler());
clear.addActionListener(new ActionHandler());

contentPane.add(l1);
contentPane.add(input);
contentPane.add(l2);
contentPane.add(output);
contentPane.add (submit);

158 CORBA COMPONENTS

contentPane.add(clear);
setTitle("Client Access");
setSize(340, 250);
show();

}
public static void main(String args[])

{ try{
a =new ConvertClient();
// create and initialize the ORB
ORB orb = ORB.init(args, null);
// get the root naming context
org.omg.CORBA.Object objRef =
orb.resolve_initial_references("NameService");
// Use NamingContextExt instead of NamingContext.
// This is part of the Interoperable naming Service.

NamingContextExt ncRef=NamingContextExtHelper.narrow(objRef)
// resolve the Object Reference in Naming

String name = "Convert";
convertImpl = ConvertHelper.narrow(ncRef.resolve_str(name));

} catch (Exception e) {
System.out.println("ERROR : " + e) ;

e.printStackTrace(System.out);}
}

class ActionHandler implements ActionListener{
public void actionPerformed(ActionEvent e)
{

try{
if(e.getSource()==submit)

{
System.out.println("Obtained a handle on server

object:");
String temp=input.getText();
double a =Double.parseDouble(temp);
double result=convertImpl.cToF(a);
output.setText(""+result);

}
else if(e.getSource() == clear)

{ input.setText("");
output.setText("");

}
} catch (Exception ex) {

System.out.println("ERROR : " + e) ;
ex.printStackTrace(System.out);

}
}

}
}

Figure 5.3 shows the CORBA component development guideline. The detail steps
to build and to run this application with the CORBA component will be shown in the
practice lab section of this chapter.

CORBA COMPONENT MODEL (CCM) 159

IDL

Client
code

OA

Implementation
repository

Implementation
code

Dynamic
lookup

Idl compiler

Compiler Compiler

Server
skeleton

Server

Component
descriptor

xml

Instantiate
object at
runtime

Client
stub Servant

Client

FIGURE 5.3. CORBA component developments.

5.2.2 Component Model of CCM in CORBA 3.x

5.2.2.1 CCM Component Concepts There are two CORBA component types sup-
ported in CORBA 3.0. One is the CCM component (extended component) that supports
many new component features. The other discussed in last section is a basic classic
component that does not support any of the following except the component attribute.
The declaration of an extended CCM component type is declared in CIDL (Compo-
nent Interface Definition Language) and is mapped (translated) into its equivalent IDL
declaration [OMG CCM 2002].

CCM has significantly reduced the software complexity, increased the reusability
and productivity of software, made it easier to adapt and maintain, and made it easier
to extend or aggregate software. CCM also provides a standard facility to support com-
ponent packaging, assembling, and deployment. A CCM component must be packaged
and deployed in order to work and is completely different from classic CORBA object.
A CCM component is declared by a keyword component in CIDL. Figure 5.4 shows
an example of CCM component. The CCM component syntax is as follows [OMG
CCM 2002; Flissi 2002].

component <name>
[:<base>][supports <interface>], [,<interface>]

{<attribute declaration>
<port declaration>

}

160 CORBA COMPONENTS

A CCM component can inherit from one parent CCM component specified in 〈base〉
and/or supports multiple interfaces specified in 〈interface〉, which is similar to Java
class that can extend one parent class and implement many interfaces. In order to get
the services provided by a CCM component, a client must create an instance of that
component. Each component instance is created and managed by its component home
interface. Each component has many ports to offer services or send events to other
components and get services or events from other components.

The component-distinguished interface shown in Figure 5.4 is also called an equiv-
alent interface. A component instance is identified by its component reference or by
its set of facet reference. One component has a single distinguished reference that the
interface conforms to the component definition. A component interface is an entry
point that is used to navigate other multiple interfaces supported by this component.
This interface allows the client to navigate to the component’s facets and from any
facet to the component interface by get_Component()method. The facet interfaces
are encapsulated by the component. Any component instance is created by its home
interface and accessed via an object reference. The home interface and object reference
are discussed later in this section. The type of this object reference is an interface, and
it is not explicitly defined and is called equivalent interface or distinguished interface.
This interface itself does not define any method. All the methods encapsulated are
derived from other supported interfaces. A component definition cannot introduce any
new operations. The only way to expose operations in a component is to include these
methods in a supported interface.

A CCM component binds its features to its ports. The CCM ports make up a
component capacity. The loose coupling features of CCM ports make it much easier
to compose a new component.

…

… …

… …

… …

Facet:
Auction_Item_Interface

(get, set,......)

Component-
distinguished interface

Auction_Item

Attributes

name

Event source:
status notification event

(winner, without winner,)

Receptacle:
service

from registration
component

Sink:
time event

FIGURE 5.4. CCM component and its ports.

CORBA COMPONENT MODEL (CCM) 161

The ports supported by CCM component can be one of the following four:

1. Facets The facet is a CCM port of access point or entry point. A CCM com-
ponent provides and exposes all its functionality as a set of interfaces that come
from supported interfaces by this component. All interfaces provided by a com-
ponent are called the component’s facets. One component may provide many
facets. In Figure 5.4, you can find an auction_item component that has a
facet named auction_Item_Interface. All the operations supported by this
auction_item such as setting the starting bid price, setting the new bid price,
getting the current bid price, and others are exposed via this facet so that the
clients of this component can operate on it. A facet of a CCM component is
implemented by its component executor. The syntax of a facet definition is

provides <Interface> <name_identifier>

Its equivalence in CORBA 2.x IDL is:

<interface> provide_<name_identifier>()

A facet name is used to navigate between component equivalent interface and
individual facets. We can navigate from equivalent reference to its facets by
a method provide_facet(facet_name) or navigate from a facet to its own
component by get_component().

2. Receptacles The receptacle is a connection point to collaborate with other CCM
ports. It is a kind of configuration port to specify some required services from
other components. A CCM component needs to perform some operations pro-
vided by other components to complete its own task. A CCM component must
obtain an object reference to the instance of other components in order to get ser-
vices from other components. A CCM component uses the receptacle to connect
to other components to receive services. The auction_item component gets the
services from another component called registration, which provides services
to register or unregister an auction item to or from the system.
The syntax of a receptacle definition is

uses <Interface> <name_identifier>

It is mapped to its IDL equivalence connecting, disconnecting, and getting related
reference as below:
//receptacle passes an object reference to make a connection

void connect_<name_identifier>(in <interface> conxn);

//disconnection

<interface> disconnect_<name identifier>();

//returns the connected object reference if it is connected.

<interface> get_connection_<name identifier>

162 CORBA COMPONENTS

3. Event Source OpenCCM supports event-driven communication, which is dif-
ferent from invocation-based in that the event-driven connection is a loosely
coupling connection between components. It is also called asynchronous message
passing. All notification event values must be defined in ValueType.
A user-defined event type can be defined as

ValueType <event_name>:component::EventBase{
Public <type> <name_identifier> }

A CCM component can send out an event that has an eventType to notify its
listener who is interested in such an event. A listener is called an event sink.
The event sent out by a CCM component will be intercepted by any component
that has registered and subscribed itself with such an event. We will discuss it in
detail in the sink port section. There are two different ways for an event source
to communicate with its targets: publish or emit. The publisher mode works in
a way for a publisher to broadcast an event to many sinks. It is a one-to-many
multiplex mode. The emit mode works in a way of point-to-point mode that an
emitter sends an event to one target sink. An emitter can share the same channel
such as a message queue with another emitter but a publisher cannot share a
channel with another publisher. The auction_item component in this example
publishes an event of an auction bid status (“sold” or “bid canceled”) to all the
bidders. The syntax of an event source can be either one of these two. We can
see that an event consumer must subscribe a publisher event source to receive an
event and must make a direct connection to an emitter to get an event from it.

publishes <event_type> <name_identifier>

is mapped to its IDL equivalence as follows:

Components::Cookie subscribe_<name_identifier>
(in <event_type>Consumer consumer);

<event type>Consumer unsubscribe_<name identifier>
(in components::Cookie ck);

emits <event_type> <name_identifier>

is mapped to its IDL equivalence as follows:

Void connect_<name_identifier>(in <event_type>Consumer
consumer);

<event_type>Consumer disconnect_<name identifier>();

An event-subscribing method returns a cookie to identify the consumer for sub-
sequent unsubscribe operation.

4. Event Sink An event destination is called event sink, which is interested in
receiving this type of event. An event sink must subscribe the event in which it
is interested and is expected to be notified. A sink consumes an event from an
event source where this component is interested. It is asynchronously notified by
an event source, which is very similar to the Java event delegation model where
an event listener listens to an event if it is registered with that event.

CORBA COMPONENT MODEL (CCM) 163

The syntax for a sink is

consumes <event type> <name_identifier>

It is mapped to its IDL equivalence, which returns an object reference for the
consumer who receives the event.

<event type>Consumer get_consumer_<name_identifier>

The sink of component Auction_item in our example may take a timer event
sent out by another clock component when the auction deadline is passed. A
coffeemaker is another example that provides users with an interface as a facet,
and the power is provided via a power socket. It has a sink to take some incoming
event such as timer or temperature control to stop heating and an event from light
sensor component to start the coffeemaker. When coffee is ready, an event signal
will be sent out in a format of beep or a message to notify the user or another
component such as toaster to start making a toast. A sink port of a component
is implemented by its component executor.

Other CCM component features:
1. Attribute A CCM component attribute is a named configurable component prop-

erty, which is only intended to be configured and customized as needed. An
attribute is intended to be configured at the time of component installation, pack-
aging, assembling, and deployment that makes a component more adaptable. It
can be supported by a visual property tool just like Java BDK or Bean Builder.
It can also raise an exception when get and set methods are called. An attribute
can be persistent or transient, and it can also be read/write or read-only.

attribute <type> <name_identifier>

This will generate accessor and mutator operations in the component interface.
These operations may throw exceptions by configurations of getRaises and
setRaises subclauses in the attribute declaration.

2. Home Interface All components have their home interfaces, which manage the
life cycle of the component instance including the instantiation and removing
an instance of a component type. A client never creates an instance of
a CCM component type by itself. A home interface acts like a factory
for component instance. A home interface may also have a finder that
provides find_by_primary_key and get_primary_key operations in its IDL
equivalence. A home must be declared for every component. Each component
instance is managed by a home object in its container at runtime. Home is a
primary entry point for a client to get into a component.

A simple home is declared as

Valuetype itemKey:Components::PrimaryKeybase{
Public String name; }

Home Auction_itemHome manages Auction_item primaryKey itemKey{
Factory CreateAution_item(in String name);
Finder FinderAuction_item(in String name);
}

164 CORBA COMPONENTS

An entity CCM component needs a primary key but service components,
process components, and session components do not need it.

3. Component Categories CCM supports four component categories:

Service CCM component is a stateless session component without key.
Session CCM component is a stateful conversational component without key.
Process CCM component is a keyless (internal key only) durable entity component.
Entity CCM component is a persistent durable keyful component.

The component categories are declared by CIDL, which is an extension to
IDL used after a CCM component is declared. A simple example of CIDL is
shown here:

Composition entity Auction_itemImple{
Implement Auction_item;

home executor Auction_itemHomeImpl delegatesTo abstract
storagehome

Auction_itemStorageHome;};

4. Component Persistent State A component such as Auction_item may keep
its state from session to session. Its state may persist. This can be described by
Persistent State Definition Language (PSDL), which is a subset of CIDL. For
example, we can create a storage type Auction_itemState as follows.

abstract storage Auction_itemState{
state String name;
state float start_price;
state float current_price;}

storagetype PortableAuction_itemState implements
Auction_itemState{};

5. Home Executor and Component Executors A component home interface is
implemented by its home executor, for example, a programming artifact, which
manages component executor and binds to a storage type described by PSDL.
A component is implemented by its component executor. Both the home execu-
tor and component executor are specified by CIDL. A complete Auction_item
CCM component declaration is given after the introduction to all basic structures
of CCM component.

interface item{
string name();
float start_price();
float setCurrent_price();}

component Auction_item supports item{

provides itemService myItemService;
uses registrationService myItemregistration
consumes TimeEvent from_Registration;
publishes statusInfo itemInfo1;
emits statusInfo itemInfo2;

CORBA COMPONENT MODEL (CCM) 165

attribute String name;
attribute float start_price;

}

5.2.2.2 CCM Implementation: OpenCCM We will see a complete and tested
OpenCCM example in this section. This is a simple auction bid process example.
There are Client and Server components in the application myDemo. The Client
component gets service from Server component synchronously by connecting its
receptacle port to Server’s facet port. The Client also connects its sink port to
Server’s event source port so that it can be notified by Server asynchronously when
time is out. The Server publishes an event and Client must register with it if it
is interested. All components are created by a simple component home managers
with primary keys. The component homes are used to instantiate and manage the
components. Figure 5.5 shows the relationship between all CCM components in
this example.

A client can be a seller to sell an item by setting up a start bid price and a time
period for bidders to bid. A client can also be a bidder who bids the item by offering
a price. The winner will be the one who makes the highest offer within the time limit.
If a bid is lower than the starting price set by the seller, then the Server will inform
the clients that the bid is too low. The Server takes the seller’s request and takes the
bids from bidders and notifies all participants about the status of the processing. This
sample application has been tested successfully in OpenCCM 0.7.

OMG CORBA 3.0 CCM Server and Client component definition in Figure 5.5 are
given as follows [Flissi 2002; OpenCCM 2003]:

//Importation of OMG IDL scopes
import Components;

//replace #pragma
typeprefix demo “ccm.objectweb.org”;

module myDemo{

//The Service interface provided by the Server component and used
//by its Client components

Client Server

AttributeAttribute

Service

Event

FIGURE 5.5. Relationship between CCM components.

166 CORBA COMPONENTS

interface MyService
{

void show (in string text, in string num);
};

//The Event valuetype published by the Server component and
//consumed by its Client components

eventtype TextEvent
{

public string text;
};

//The primary key to identify components
valuetype NamePrimaryKey : ::Components::PrimaryKeyBase
{

public string name;
};

// The Server component type
component Server supports MyService

{
// Provides a Service to its Client components
provides MyService my_service;

// Publishes Events to its Client components
publishes TextEvent to_clients;

// attributes can be configured at deployment time.
attribute string name;

};

// Simple home for instantiating Server component

home ServerHome manages Server {};

// The home for managing Server components
home ServerManager manages Server

primarykey NamePrimaryKey
{

// To create a new Server identified by the name
factory create_server(in string name);

// To find a Server identified by the name
finder find_server(in string name);

};

// The Client component type
component Client
{

// Uses the service provided by the Server component
uses MyService my_service;

CORBA COMPONENT MODEL (CCM) 167

// Consumes Events published by Server components.
consumes TextEvent from_servers;

attribute string name;
};

// Simple home for instantiating Client components
home ClientHome manages Client
{
};

// The home for managing Client components
home ClientManager manages Client

primarykey NamePrimaryKey
{

// To create a new Client identified by the name.
factory create_client(in string name);

//To find a Client identified by the name.
finder find_client(in string name);

};
}

The CCM component IDL definitions are in myDemo.idl3, which is compiled
into myDemo.idl to get an equivalent IDL definition by the ir3_idl2 OpenCCM
command. The detail steps of the compilation, packaging, assembling, and deployment
are shown in the practice lab section.

An equivalent ID file is generated by the following mapping.

eventtype TextEvent
{

public string text;
};

//is mapped to idl2 as follows:

valuetype TextEvent : ::Components::EventBase
{

public string text;
};

interface TextEventConsumer : ::Components::EventConsumerBase
{

void push_TextEvent(in ::myDemo::TextEvent the_textevent);
};

component Server supports MyService
{

provides MyService my_service;
publishes TextEvent to_clients;

attribute string name;
};

//is mapped to idl2 as follows:

168 CORBA COMPONENTS

interface Server : ::Components::CCMObject,
::myDemo::MyService

{
::myDemo::MyService provide_my_service();
::Components::Cookie subscribe_to_clients(in

::myDemo::TextEventConsumer consumer);
::myDemo::TextEventConsumer unsubscribe_to_clients(in

::Components::Cookie ck);
attribute string name;

};

home ServerHome manages Server {};

//is mapped to idl2 as follows:

interface ServerHomeExplicit : ::Components::CCMHome
{
};
interface ServerHomeImplicit : ::Components::KeylessCCMHome
{

::myDemo::Server create();
};
interface ServerHome : ::myDemo::ServerHomeExplicit,

::myDemo::ServerHomeImplicit
{
};

home ServerManager manages Server
primarykey NamePrimaryKey
{

factory create_server(in string name);
finder find_server(in string name);

};

//is mapped to idl2 as follows:

interface ServerManagerExplicit : ::Components::CCMHome
{

::myDemo::Server create_server(in string name);
::myDemo::Server find_server(in string name);

};
interface ServerManagerImplicit
{

::myDemo::Server create(in ::myDemo::NamePrimaryKey key);
::myDemo::Server find_by_primary_key(in

::myDemo::NamePrimaryKey key);
void remove(in ::myDemo::NamePrimaryKey key);
::myDemo::NamePrimaryKey get_primary_key(in

::myDemo::Server comp);
};
interface ServerManager : ::myDemo::ServerManagerExplicit,

::myDemo::ServerManagerImplicit { };
component Client
{

uses MyService my_service;
consumes TextEvent from_servers;

CORBA COMPONENT MODEL (CCM) 169

attribute string name;
};

//is mapped to idl2 as follows:

interface Client : ::Components::CCMObject
{

void connect_my_service(in ::myDemo::MyService connexion);
::myDemo::MyService disconnect_my_service();
::myDemo::MyService get_connection_my_service();
::myDemo::TextEventConsumer get_consumer_from_servers();
attribute string name;

};

// The following are server side executors
// Main component executor interface

local interface CCM_Server_Executor :
::Components::EnterpriseComponent, ::myDemo::MyService

{
attribute string name;

};

// Monolithic component executor interface
local interface CCM_Server : ::myDemo::CCM_Server_Executor

{
::myDemo::CCM_MyService get_my_service();

};

local interface CCM_Server_Context
: ::Components::CCMContext

{
void push_to_clients(in ::myDemo::TextEvent event);

};

// Main component executor interface
local interface CCM_Client_Executor

: ::Components::EnterpriseComponent
{

attribute string name;
};

// Monolithic(single class) component executor interface
local interface CCM_Client

: ::myDemo::CCM_Client_Executor
{

void push_from_servers(in ::demo::TextEvent event);
};

// Component-specific context interface.
local interface CCM_Client_Context

: ::Components::CCMContext
{

::myDemo::MyService get_connection_my_service();
};

170 CORBA COMPONENTS

The next step after the mapping is to generate the skeleton and the stub of the
components to be implemented by Java implementations.

MyDemo.java is a bootstrap of the application to initialize the ORB, obtain the
Name Service, obtain component servers ComponentServer, obtain a container home,
instantiate a container on each server, install homes for Client and Server, create a
components with create() method of homes, configure all components, and connect
each client to the server by calling the configuration_complete() methods of the
components implementation.

One of the goals of CCM is to make programming easier by the composition
of components and the extension of component. The partial of myDemo.java code
below illustrates the composition of CCM components, where c1, c2, and c3 are
instances of the client component and s is an instance of the server component.
The receptacle ports of Client component instances c1, c2, c3, connect to the
facet port of Server component instance s. The c1,c2, c3 also use their sink
port to consume the event published by Server component instance s through its
event source port. The provide_my_service() and subscribe_to_clients()
are mapped from provide MyService my_service and publishes TextEvent
to_clients in Server component interface, and the connect_my_service() and
get_consumer_from_servers() are mapped from uses Myservice my_service
and consumes TextEvent from_servers in the component Client respectively.

...
org.omg.Components.CCMHome h = null;
h = server1_cont.install_home("myDemo",

"org.objectweb.ccm.myDemo.monolithic.ClientHomeImpl.create_home",
config);

ClientHome ch = ClientHomeHelper.narrow(h);
...
h = server2_cont.install_home("myDemo",

"org.objectweb.ccm.myDemo.monolithic.ServerHomeImpl.create_home",
config);

ServerHome sh = ServerHomeHelper.narrow(h);
...

Server s = sh.create();
Client c1 = ch.create();
Client c2 = ch.create();
Client c3 = ch.create();

c1.name("saleman");
c2.name("bidder1");
c3.name("bidder2");
s.name("The Server");

// Connecting clients and consumers to server.

MyService my_service = s.provide_my_service();
MyService my_service = s.provide_my_service();
c1.connect_my_service(my_service);
c2.connect_my_service(my_service);
c3.connect_my_service(my_service);

CORBA COMPONENT MODEL (CCM) 171

s.subscribe_to_clients(c1.get_consumer_from_servers());
s.subscribe_to_clients(c2.get_consumer_from_servers());
s.subscribe_to_clients(c3.get_consumer_from_servers());
...

push_to_clients() pushes a TextEvent to all registered event consumers(lis-
teners) and this method is implemented by Client, and push_from_event() specifies
the response to an incoming notification of TextEvent and this method is implemented
by Server. Here is a simple implementation of push_from_servers() in package
org.objectweb.ccm.myDemo.monolithic of ClientImple.java.

...
public void push_from_servers(TextEvent event)

{
textArea_.append(event.text + "\n");

}
...

The server implementation in package org.objectweb.myDemo of ServerImpl.
java implements the show method for the MyService interface by showing a string
text and pushing events to the client sink by push_to_clients(...), which is defined
in ServerCCM.java. An internal timer event is triggered out when time is out, which
results in sending a TextEvent to notify the client.

...
public void show(String name, String stringNumber)

{
int intNumber = Integer.parseInt(stringNumber);

textArea_.append(name + ":" + intNumber + "\n");

if(flag == true)
{
salePrice = intNumber;
timer.start();
flag = false;
}

else
result = getBiggestNumber(intNumber, name);

}
...

timer = new javax.swing.Timer(FIVE_SECOND, new
java.awt.event.ActionListener(){

public void actionPerformed(java.awt.event.ActionEvent
evt)

{
if(result < salePrice)

{
get_context().push_to_clients(new TextEventImpl("Bid too

low"));

172 CORBA COMPONENTS

textArea_.append("\n" + "Time is out");
textArea_.append("\n" + "Bid is too low" + "\n");}

else
{

get_context().push_to_clients(new TextEventImpl("Sold at $
" + result));

textArea_.append("\n" + "Time is out");
textArea_.append("\n" + "Sold at $ " + result +

"\n");
}

}
});

timer.setRepeats(false);

In ClientImpl.java, when a client pushes the “send” button, an actionEvent
will be triggered and actionPerformed() is invoked. It will get a reference to
a Server component by get_connection_my_service() method and invoke the
method show() of that component.

...
public void actionPerformed(ActionEvent evt)
{MyService service = the_context_.get_connection_my_service();
...
service.show(name, inputField.getText());

...

The class in ClientHomeImpl.java inherits from the local CCM_ClientHome
interface. It implements the create_home() method called by the OpenCCM Com-
ponent Server to create a home instance.

The class in ServerHomeImpl.java implements the create_home() method to
create a home instance and register the TextEvent valueType factory to the ORB.

After Java CORBA 2 stubs and Java OpenCCM skeletons are generated, we can
compile all Java implementation sources, build archive myDemo.jar, start installation,
start up nameService, start up server component, and run the application. The details
are shown in the section of “Practice Lab.”

A sample output of this application is shown below. The starting price is set at
$100. The next two bids are too low. In order to simplify the discussion, we assume
that the first client is a seller and other clients are bidders.

CONNECTION MODEL OF CORBA AND CCM 173

The highest in next three bids is $200. After time is over, 200 is posted to all clients.

5.3 CONNECTION MODEL OF CORBA AND CCM

CCM components are reusable building blocks used to build a new component. Devel-
opers can glue multiple components together to build a new application or a new
component. In this section, we discuss the connection and the communication between
CORBA components.

There are two types of ports: import and export.
The import ports are receptacles, which require or get services from other components,

and sinks, which receive incoming events from event sources in other components.
The export ports are facet ports, which provide interface services to other com-

ponents, and event publisher/emitter ports, which send out events when the trigger
condition is met.

The facets and receptacles work together in a pair in synchronous communica-
tion mode. Publisher/emitter and sink work in pair in asynchronous mode. We have

174 CORBA COMPONENTS

seen an example in Figure 5.5, where the connections between Client and Server
components are established by two channels. One is a synchronous connection from
receptacle port of Client component to facet port of Server component and the other
is an asynchronous connection from event source port of Server component to the
sink port of Client component.

The synchronous method invocation expects a result back from the method invo-
cation right away. The asynchronous communication does not expect to get response
immediately; instead, it can continue its work without being idle in waiting until being
notified by the server. There are many ways to implement such a callback method,
which passes in a callback method as an argument of a remote method invocation to a
server component and lets the server component call back this callback method when
it is ready. Other options can be implemented just as the mode in the pair of event
source and event sink in CCM.

Compositions of components versus programming is a goal of CCM, which can
accelerate time-in-market and reduces the cost. Figure 5.6 shows the connection
between four components by all four types of component ports.

interface itemService{
string name();
setStarting_price(in float sell);
setCurrent_price(in float bid);
getCurrent_price();}

eventtype statusEvent{
public string status; }

eventtype timeEvent{
public long timeLeft;}

interface RegistrationService{
register(String name);

Bidder

Seller Auction
item

Registration

Bid

Sell
Register

Status

Timer

FIGURE 5.6. Connections between CCM components.

CONNECTION MODEL OF CORBA AND CCM 175

unRegisterset(String name);}
component Auction_item supports itemService{

provides itemService myItemService;
uses registrationService myItemregistration
consumes TimerEvent from_Registration;
publishes statusEvent itemInfoI;
emits statusEvent itemInfoII;

attribute String name;
attribute float start_price;

}

valuetype NameKey:
::Components::PrimaryKeyBase{
public string name;};

home Auction_itemHome manages Austion_item primarykey NameKey{
factory create_Auction_item(in string name);
finder find_Auction_item(in string name);};

The statusInfo and TimerEvent are event types. RegistrationService is an
interface, which is shown later.

component Registration supports RegistrationService{

provides RegistrationService myRegistration;
consumes statusEvent itemInfoR;
publishes TimerEvent timeInfoR;

}

home RegistrationHome manages Registration{...};

component Bidder{

uses itemService myItemService
consumes TimerEvent timeInfoB;
consumes StatusEvent itemInfoB

}

home bidderHome manages Bidder{...};

component Seller{
uses itemService myItemService
consumes StatusEvent itemInfoS;

}

home SellerHome manages Seller{...};

The following incomplete fragment shows the connection between bidder, Auc-
tion_item, and registration implementation. Assume item1 is an instance of
component type Auction_item created by create() method of home manager. The
bidder1 is an instance of the Bidder component type and registration1 is an instance
of the component type Registration.

//provide_myItemService() is mapped from provides ItemService
//myItemService() in Auction_item

176 CORBA COMPONENTS

ItemService item=item1.provide_myItemService();

//connect_myItemService() is mapped from uses ItemServicein
//Bidder component
bidder1.connect_myItemService(item);

//subscribe_itemInfoI is mapped from publishes statusEvent
//itemInfoI in Auction_item
//get_consumer_itemInfoR is mapped from consumes statusEvent
//itemInfoR in Registration

item1.subscribe_itemInfoI(registration1.get_consumer_iteminfoR());

The connection configuration can be programmed in a bootstrap module, which is
just like the OpenCCM sample shown in last section. It can also be configured in an
assembly descriptor, which will be discussed in next section.

5.4 DEPLOYMENT MODEL OF CORBA AND CCM

One of the most important features of software component is its reusability and porta-
bility that a component can be deployed on any compliant server. It is platform and
programming language independent.

The first step in the CCM component deployment is the component packaging.
Before getting a component in a package, we must get the component implementation,
which is shown in Figure 5.7. A component package is stored in an archive file with
a packaging tool. A packaged component is self-descriptive by an XML descriptor.

Next step may be the assembling. A component package can be assembled with
other related component packages together by a CORBA assembly tool.

Finally, a component assembly can be deployed with a deployment tool and run at
any compliant server [OMG CCM 2002; Flissi 2002].

Here is a sample component descriptor files for Client component and Server
component that we discussed before.

<?xml version ="1.0"?>
<!DOCTYPE corbacomponent SYSTEM "...corbacomponent.dtd">
<corbacomponent>

<corbaversion> 3.0 </corbaversion>
<componentrepid repid="IDL:myDemo/Client" />
<homerepid repid="IDL:myDemo/Client" />
<componentkind>

<process>
<servant lifetime="container" />

</process>
</componentkind>
...
<configurationcomplete set="true" />
...
<homefeatures name="ClientHome" repid="IDL:myDemo/Client">
</homefeatures>

DEPLOYMENT MODEL OF CORBA AND CCM 177

IDL/CIDL/PSDL

.idls, .cidl, .psdl

Idl compiler mapping

Tool

Component
descriptor

Component
implementation

Implementation
code

Most from CIDL

.ccd

Stub, skeleton

.java or other

.class

.java

FIGURE 5.7. Component implementation of IDL, CIDL, PSDL.

<componentfeatures name="Client" repid="IDL:myDemo/Client">
<ports>

<uses usesname="my_service" repid="IDL:myDemo/Server" />
<consumes consumesname="from_servers" eventtype="TextType">

<eventpolicy policy="normal" />
</publishes>

</ports>
</componentfeatures>

...
</corbacomponent>

Here is a sample ccd file for the Server component in myDemo example.

<?xml version="1.0"?>
<!DOCTYPE corbacomponent SYSTEM ".../corbacomponent.dtd">
<corbacomponent>

<corbaversion> 3.0 </corbaversion>
<componentrepid repid="IDL:myDemo/Server" />
<homerepid repid="IDL:myDemo/Server" />

178 CORBA COMPONENTS

<componentkind>
<session>

<servant lifetime="component" />
</session>

</componentkind>
...
<homefeatures name="ServerHome" repid="IDL:myDemo/ServerHome">
</homefeatures>
<componentfeatures name="ForkManager" repid="IDL:myDemo/Server">

<ports>
<provides providesname="my_service"

repid="IDL:myDemo/Server"
facettag="1">

</provides>
<publishes publishesname="to_clients" eventtype="TextType"

<eventpolicy policy="normal"/>
</publishes>

</ports>
</componentfeatures>

...
</corbacomponent>

5.4.1 Packaging

A CCM component must be packaged in a zip package such as a. jar file that is different
from classic CORBA object, which does not require packaging. A component pack-
age has one component consisting of one or many implementations for different OS
or programming languages; one IDL file of the component; one CORBA Component
Descriptor (.ccd), which has the information generated from CIDL for container man-
agement; one Property File Descriptor (.cpf), defining pairs of name/default value for
CCM component’s attributes and home properties; and one Software Package Descrip-
tor (.csd), describing the package general elements (title, author, description, Web
page, license, link to IDL file, etc.) and a list of implementations (information about
implementations such as OS, ORB, language, compiler, dependencies on other libraries,
entry point, etc.).

Figure 5.8 shows the CCM package generation.
The following is a sample Component Software package Descriptor CSD file for the

Server component. The IDL definition and implementation of this Server component
are specified in it. Also, all related CCDs in this software package are listed here.

<?xml version="1.0"?>
<!DOCTYPE softpkg SYSTEM "../../src/dtd/ccm/softpkg.dtd">

<softpkg name="Server" version="2,0">
<title>Server</title>
<pkgtype>CORBA Component</pkgtype>
<author>

...
</author>
<description>A simple client/server application</description>

DEPLOYMENT MODEL OF CORBA AND CCM 179

Component
descriptor

Component
package

XML

.ccd

Default properly
descriptor

XML

.cpf

OS2

OS1 component
implementation

.class

IDL, CIDL

.idl,...

Packaging tool

Zip

describes

.csd

Software package
descriptor

Interface,
implementation,

system requirement,
initial config

FIGURE 5.8. CCM component package.

<license href="http://corbaweb.lifl.fr/OpenCCM/COPYRIGHT"/>
<idl id="IDL:myDemo/Server:1.0">

<link href="myDemo.idl3"></link>
</idl>
<descriptor type="CORBA Component">

<fileinarchive name="META-INF/server.ccd"/>
</descriptor>

<implementation id="ServerImpl">
<os name="Win2000" version="X.X.X.X"/>
<os name="Linux" version="X.X.X.X"/>
<processor name="x86"/>
<compiler name="JDK"/>
<programminglanguage name="Java"/>
<dependency type="ORB" action="assert">

<name>OpenORB</name>
</dependency>
<code type="Java class">

<fileinarchive name="archives/myDemo.jar"/>

<entrypoint>org.objectweb.ccm.myDemo.cif.
ServerHomeImpl.create_home</entrypoint>

</code>

180 CORBA COMPONENTS

<runtime name="Java VM" version="1,4.0.0"/>

</implementation>
</softpkg>

Similarly, the Client software package descriptor is listed as follows.

<?xml version="1.0"?>
<!DOCTYPE softpkg SYSTEM ".../src/dtd/ccm/softpkg.dtd">

<softpkg name="Client" version="2,0">
<title>Client</title>
<pkgtype>CORBA Component</pkgtype>
<author>

...
</author>
<description>A simple client/server application</description>
<license href="http://corbaweb.lifl.fr/OpenCCM/COPYRIGHT"/>
<idl id="IDL:myDemo/Client">

<link href="myDemo.idl3"></link>
</idl>
<descriptor type="CORBA Component">

<fileinarchive name="META-INF/Client.ccd"/>
</descriptor>

<implementation id="ClientImpl">
<os name="Win2000" version="X.X.X.X"/>
<os name="Linux" version="X.X.X.X"/>
<processor name="x86"/>
<compiler name="JDK"/>
<programminglanguage name="Java"/>
<dependency type="ORB" action="assert">

<name>OpenORB</name>
</dependency>
<code type="Java class">

<fileinarchive name="archives/myDemo.jar"/>

<entrypoint>org.objectweb.ccm.myDemo.cif.ClientHomeImpl.
create_home</entrypoint>
</code>
<runtime name="Java VM" version="1,4.0.0"/>

</implementation>
</softpkg>

5.4.2 Component Package Assembly

The CCM component assembly is a zip archive file (such as a jar file) that is for
deployment of a group of connected components. Each component package assembly
is described by a CORBA Component Assembly Descriptor (.cad), which describes
all contained Component Software package Descriptor (.csd). A component assembly
package contains one or many component packages, property file descriptors (.cpf)

DEPLOYMENT MODEL OF CORBA AND CCM 181

specifying initial attribute values, and a Component Assembly Descriptor (CAD) speci-
fying home instance, component instance, and connections between ports in connection
of multiple components. Each assembly may have one or more component packages.
The cad file references all related .csd and specifies how a home and a compo-
nent should be instantiated. An assembly may be imported to be reused or extended.
Figure 5.9 shows the generation of a CCM component assembly. A component package
assembly can then be deployed at a CORBA server.

The following is an example CAD XML file from our mydemo OpenCCM applica-
tion discussed before.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE componentassembly SYSTEM "... my.dtd">
<componentassembly id="myDemo">
<componentfiles>

<componentfile id="Client">
<fileinarchive name="META-INF/client.csd">
</fileinarchive>

</componentfile>
<componentfile id="Server">

<fileinarchive name="META-INF/server.csd">
</fileinarchive>

</componentfile>
</componentfiles>
<partitioning>

<homeplacement cardinality="1" id="ServerHome">
<componentfileref idref="Server"/>

Component
package

Component
package

Component
package

Zip Zip

......

Zip

Zip

.aar

Assembly archive Assembly
descriptor

describes
Connection of

component parts

.cad

Deployment tool

Assembly tool

FIGURE 5.9. CCM component assembly.

182 CORBA COMPONENTS

<componentimplref idref="ServerImpl"/>
<registerwithhomefinder name="OpenCCM/ServerHome"/>
<registerwithnaming name="OpenCCM/ServerHome"/>
<componentinstantiation id="Server">

<componentproperties>
<fileinarchive name="META-INF/server.cpf">
</fileinarchive>

</componentproperties>
</componentinstantiation>
<destination>ComponentServer2</destination>

</homeplacement>
<hostcollocation>
<homeplacement cardinality="1" id ="ClientHome">
<componentfileref idref="Client"/>
<componentimplref idref="ClientImpl"/>
<registerwithhomefinder name="OpenCCM/ClientHome"/>
<registerwithnaming name="OpenCCM/ClientHome"/>
<componentinstantiation id="C1">

...
</componentinstantiation>
<componentinstantiation id="C2">

...
</componentinstantiation>
<componentinstantiation id="C3">

...
</componentinstantiation>

</homeplacement>
<destination>ComponentServer1</destination>

</hostcollocation>
</partitioning>
<connections>

<connectinterface>
<usesport>

<usesidentifier>my_service</usesidentifier>
<componentinstantiationref idref="C1"/>

</usesport>
<providesport>

<providesidentifier>my_service</providesidentifier>
<componentinstantiationref idref="Server"/>

</providesport>
</connectinterface>
<connectinterface>

<usesport>
<usesidentifier>my_service</usesidentifier>
<componentinstantiationref idref="C2"/>

</usesport>
<providesport>

<providesidentifier>my_service</providesidentifier>
<componentinstantiationref idref="Server"/>

</providesport>
</connectinterface>
<connectinterface>

<usesport>

DEPLOYMENT MODEL OF CORBA AND CCM 183

<usesidentifier>my_service</usesidentifier>
<componentinstantiationref idref="C3"/>

</usesport>
<providesport>

<providesidentifier>my_service</providesidentifier>
<componentinstantiationref idref="Server"/>

</providesport>
</connectinterface>
<connectevent>

<consumesport>
<consumesidentifier>from_servers</consumesidentifier>
<componentinstantiationref idref="C1"/>

</consumesport>
<publishesport>

<publishesidentifier>to_clients</publishesidentifier>
<componentinstantiationref idref="Server"/>

</publishesport>
</connectevent>
<connectevent>

<consumesport>
<consumesidentifier>from_servers</consumesidentifier>
<componentinstantiationref idref="C2"/>

</consumesport>
<publishesport>

<publishesidentifier>to_clients</publishesidentifier>
<componentinstantiationref idref="Server"/>

</publishesport>
</connectevent>
<connectevent>

<consumesport>
<consumesidentifier>from_servers</consumesidentifier>
<componentinstantiationref idref="C3"/>

</consumesport>
<publishesport>

<publishesidentifier>to_clients</publishesidentifier>
<componentinstantiationref idref="Server"/>

</publishesport>
</connectevent>

</connections>
</componentassembly>

We can see that all CSD file names and all connections of all component instances
are specified in this CAD file.

5.4.3 CCM Deployments

Next to the assembling is the component deployment, which is a one-step automatic
deployment. An assembly archive is deployed by a deployment tool. Figure 5.10 shows
the process of CCM component deployment, including installation of component server,
container, home on host, and CCM component object instantiation. Any CCM com-
ponent object starts its life cycle after being instantiated.

184 CORBA COMPONENTS

Load
component implementation

Create assembly

Component server installation

Container installation

Home installation

Object instantiation

FIGURE 5.10. CCM component deployment.

5.5 EXAMPLES AND LAB PRACTICE

5.5.1 Lab 1: Classic CORBA Component of Temperature Converter

Step 1: Compilation of IDL Interface in SDK1. 4.x

1. Change to the directory that contains the file Convert.idl shown in 5.2.1.
2. Run the IDL-to-Java Compiler

> idlj – fall Convert.idl

After compilation, there are the following source codes that will be inside the
subfolder TempConvertApp, just as the snapshot shown below.

EXAMPLES AND LAB PRACTICE 185

3. Compile all the .java files using the following command

� javac *.java TempConvertApp*.java

Step 2: Start orbddaemon

� start orbd – ORBInitialPort 1050

Step 3: Start the Server From an MS-DOS system prompt, enter

� start java ConvertServer – ORBInitialPort 1050 –
ORBInitialHost localhost

Step 4: Run the Client Application Open one more MS-DOS prompt and enter

� java ConvertClient – ORBInitialPort 1050 – ORBInitialHost localhost

The GUI will show up; randomly type in one number into the left textfield Celsius
and click the “submit” button and the converted Fahrenheit result will be shown in
the right one, as the following.

186 CORBA COMPONENTS

5.5.2 Lab 2: CCM CORBA Component of MyDemo in OpenCCM

MyDemo is discussed in detail in this chapter. We explore all details of OpenCCM installa-
tion; first, environment configuration and next, CCM component compilation, packaging,
and deployment. Finally, we will show the execution of this CCM application. We use
OpenCCM 0.6 version, which is the newest version at the time of writing this book
[Flissi 2002; OpenCCM 2003].

Step 1: Installations of all Requirements

1.1 A full Java product CORBA 2.4 ORB

Download OpenORB-1.3.0.zip from http://prdownloads.sourceforge.net/
openorb/OpenORB-1.3.0.zip?use mirror=unc.

Extract the package to the drive you prefer, for example, D:\OpenORB-1.3.0.
Put “orb.properties” in the right directory, for example,
D:\ > cd OpenORB-1.3.0\lib
D:\ OpenORB-1.3.0\lib> java – jar openorb-1.3.0.jar

1.2 Install Java Development Kit j2sdk1.4.

1.3 Use ant 1.5-beta2 tool to build OpenCCM platform.
Go to http://jakarta.apache.org/ant/. Download the latest version Ant 1.5.1. and
install “ant” in
D:\ apache-ant-1.5.3-1 and set environment variables:

set ANT HOME d:\apache-ant-1.5.3-1
set path d:\apache-asnt-1.5.3-1\bin

1.4 Download the OpenCCM package.
Go to http://www.objectweb.org/openccm/download/index.html, download and
extract the
OpenCCM package in D:\OpenCCM-0.6.

Step 2: Configuration

2.1 Create a build.properties template file.
D:\OpenCCM-0.6> build

EXAMPLES AND LAB PRACTICE 187

2.2 Edit build.properties file to configure following environment variables:

For OpenORB-1.3.0 for Java.
ORB.name=OpenORB-1.3.0

The directory where the OpenCCM Platform will be installed.
By default, this is in the distribution directory.
OpenCCM.root.dir=D:/OpenCCM-0.6
install.dir=D:/OpenCCM-0.6/build

The directory where the used ORB is installed.
ORB.home.dir=D:/OpenORB-1.3.0

The directory where the Transaction Service binaries are installed.
OTS.home.dir=D:/OpenCCM-0.6

The directories where the used Transaction Service jar files are installed.
OTS.jar.dir=D:/OpenCCM-0.6/externals/ots

Step 3: Compilation and Installation

3.1 Build OpenCCM platform based on the configured build.property file.
D:\OpenCCM-6.0>build

3.2 D:\OpenCCM-6.0>build install

188 CORBA COMPONENTS

3.3 Loading the OpenCCM environment.
D:\OpenCCM-6.0\build>cd bin
D:\OpenCCM-6.0\build\bin>call envi OpenCCM.bat

Step 4: Run the demo

4.1 D:\OpenCCM-6.0\demo\demo3>bin\start java

4.2 Repeat step 1 again.
D:\OpenCCM-6.0\demo\demo3>bin\start java

SUMMARY 189

In this demo, the first client sets the selling price at $100. Two bidders’ bids are
too low.

Two more bids are $150, $200, and $180 in sequence. After time is out, the final
sold price is $200 since it is the highest bid.

5.6 SUMMARY

This chapter introduces the CORBA component-based distributed computing. CORBA
is the acronym for Common Object Request Broker Architecture, OMG’s open,
vendor-independent architecture and infrastructure that computer applications use

190 CORBA COMPONENTS

to work together over networks. Using the standard protocol IIOP and ORB, a
CORBA-based program from any vendor, on almost any computer, operating system,
programming language, and network, can interoperate with a CORBA-based program
from the same or another vendor, on almost any other computer, operating system,
programming language, and network.

CCM is the first open standard in true component-based software engineering for
distributed computing. This chapter discusses how to design, implement, package,
deploy, execute, and reuse CORBA component. The difference of CORBA 3.x from
CORBA 2.x is discussed. “CORBA 2” sometimes refers to CORBA object model
and “CORBA 3” refers to the CCM. The CCM model makes the distributed software
development more productive, more reusable, and more easier to compose new com-
ponents or applications. A CCM component must be packaged, and can be assembled
and deployed as a reusable component.

The separation of interface from implementation, enabled by OMG IDL, is the
essence of CORBA. An IDL interface is a contract between client and implementation.
A CCM component interface exposes all its ports. It has its facets, receptacles, event
sources, event sinks, and configurable attributes. It is very easy to connect multiple
CCM components by their ports.

CCM model has shown its strength in component-based software development.

5.7 SELF-REVIEW QUESTIONS

1. Which following file extensions are used in CCM component packaging, assem-
bling, and deployment?
a. .csd
b. .cad
c. .cpf
d. None of above
e. All

2. CORBA 2.x standard is a true component model for distributed computing.
a. True
b. False

3. A CORBA-distributed component and its client may be run
a. in different machines
b. in same machine
c. both
d. on HTTP

4. Both of CORBA 2.x and CORBA 3.x support ports of sink, source, facet, recep-
tacle.
a. True
b. False

5. Attribute is available in
a. CORBA 2.x only

EXERCISES 191

b. CORBA 3.x only
c. both of a and b

6. CCM CORBA home interface provides
a. component lifetime management
b. business logic processing
c. both
d. neither

7. Communications between CCM CORBA components can be
a. synchronous
b. asynchronous
c. both

8. A CORBA client extends a CORBA skeleton to marshal and unmarshal the argu-
ments of a remote method invocation of a distributed CORBA component and
result returned from this invocation.
a. True
b. False

9. CORBA 3.x is integrated with EJB 2.x.
a. True
b. False

10. CORBA client uses a naming service to locate the target object by its deploy-
ment name.
a. True
b. False

Keys to Self-Review Questions

1. e 2. b 3. c 4. b 5. c 6. a 7. c 8. b 9. a 10.a

5.8 EXERCISES

1. What is CORBA?

2. What is ORB?

3. Who produces CORBA?

4. Why use CORBA?

5. What is OpenCCM?

6. What is CORBA object reference?

7. Is CORBA object reference persistent?

8. What is IIOP?

9. What is DII?

192 CORBA COMPONENTS

10. What is DSI?

11. Whet is IR?

12. What is SII

13. What is SSI?

14. What is OA?

15. What is the difference between BOA and POA?

16. What is synchronous delegate?

17. What does a stub do?

18. What does a skeleton do?

19. What can Facet port and Receptacle port do in CCM?

20. What can an Attribute in CCM do?

21. What is the detail process of CCM packaging, assembling, and deployment?

5.9 PROGRAMMING EXERCISES

1. Design a Java CORBA component that provides services of a calculator. The
calculator has the functionality to perform addition, subtraction, multiplication,
and division of two real numbers. It can also detect a zero divisor in division
operation.

2. Design a GUI client of this calculator in Java.

3. Design a MicoCCM or OpenCCM CORBA component that provides services of
a calculator. The calculator has the functionality to perform addition, subtraction,
multiplication, and division of two real numbers. It can also detect the zero divisor
in division operation.

4. Design a GUI client of this calculator in Java.

5. Implement the CORBA temperature conversion example in an interoperable mode,
that is, Component and its client use difference programming languages, one in
C++ and the other in Java.

6. Extend the bidder CCM example program to an operational auction system. The
system takes the offer from the seller and sets the item name, description, starting
price, bid duration, amount, and contact information. The system also takes the bids
from customers with their contact information, bid price, and bid time. After time
out, the bidder will be notified with the result and all bidders will be notified of the
status of the auction processing.

REFERENCES

[OMG CCM 2002] OMG CCM Implementers Groups, CORBA Component Model Tutorial ,
CCM/02-04-01, www.omg.org , 2002.

REFERENCES 193

[Flissi 2002] Flissi, A. Getting Started with OpenCCM Tutorial , 2002.

[OpenCCM 2003] OpenCCM User Guide, Installation Guide, http://openccm.objectweb.org ,
2003.

[Component 2004] http://www.componentsource.com, 2004.

6
.NET COMPONENTS

Objectives of This Chapter

ž Introduce .NET framework
ž Introduce the concepts of .NET components
ž Discuss the types of .NET components, connections of components, and their

deployments
ž Distinguish local and distributed components
ž Distinguish aggregation and containment compositions
ž Distinguish synchronous and asynchronous method invocations
ž Provide step-by-step tutorials on building, deploying, and using .NET components

6.1 .NET FRAMEWORK

6.1.1 Overview of .NET Framework

The .NET framework is one of the newest technologies introduced by Microsoft Corpo-
ration. Its first Beta version was released in 2000. The .NET framework is a platform
for rapid and easier building, deploying, and running secured .NET software com-
ponents to be integrated in applications as well as for rapid developing XML Web
Services and applications. It provides a highly productive, component-based, multilan-
guage environment for integrating existing applications with the Internet to meet the
challenges of new applications for deployment and operation of internet-scale appli-
cations. The .NET framework encompasses a virtual machine that provides a new

Component-Oriented Programming, by Andy Ju An Wang and Kai Qian
ISBN 0-471-64446-3 Copyright 2005 John Wiley & Sons, Inc.

194

.NET FRAMEWORK 195

platform for software development. The core of the .NET framework includes XML
and Simple Object Access Protocol (SOAP) to provide Web Services over the Internet.

The purpose of the .NET framework is to facilitate the developments of desktop
window, and Web-based application services on Windows platform and make them
available and accessible not only on Windows platform but also on other platforms
through common protocols such as SOAP and HTTP.

First, .NET simplifies the componentization especially for Component Object Model
(COM), Distributed COM (DCOM) technology. Although COM components can be
reused as plug-and-play software components in component software and application
constructions, the development process is too complex and COM does not support ver-
sioning (side-by-side execution), which may cause version conflict (DLL Hell problem).
The .NET technology supports component assembly deployment that allows multiple
versions of same-named components to coexist without any conflict. .NET technology
simplifies the creation and deployment of components in addition to securing reliable
and scalable services provided by components.

Second, .NET facilitates developments of distributed components by Remoting
Channel technology. .NET framework supports the interoperability between COM and
.NET components. The XML Web Service is another kind of component. A .NET
component can work with any existing COM components. In other words, .NET can
provide services to COM components, and COM components can also be used by any
.NET components. It is much easier to develop components in .NET than in COM. Web
service is a replacement of MS DCOM technology for Internet applications supported
by XML, SOAP, and HTTP protocols. .NET frees developer’s coding from heavy
enterprise programming such as transaction management through Enterprise Service.
.NET Web Service overcomes DCOM’s lack of support for firewall and makes services
available across platforms via loosely coupled XML and SOAP protocols.

The .NET framework is available in .NET Framework SDK and Visual Studio
.NET IDE SDK, both of which can be downloaded from MS Website. The .NET
Framework SDK is the foundation of Visual Studio .NET and is a part of Visual
Studio .NET when Visual Studio .NET is installed. The .NET framework consists of
two main parts (as shown in Figure 6.1): Common Language Runtime (CLR) and a set
of unified framework basic class libraries including ASP.NET Web forms for building
Web applications, Windows Forms for building desktop applications, and ADO.NET
for data access. The SDK includes all your needs to write, build, test, and deploy
.NET applications. It supports all .NET languages such as VB .NET, VC .NET, C#,
and others. .NET SDK and Visual Studio .NET can access services of all layers in the
.NET framework platform.

6.1.2 Foundation of .NET Framework – CLR

CLR is a virtual machine environment sitting on the top of Windows operating sys-
tem. CLR consists of Common Type System (CTS), Just-In-Time IL Compiler (JIT),
Execution unit, plus some other management services such as garbage collection and
security management. CLR is like the JVM in Java. All these software components are
assembled in a package of assembly (just like Java archive file .jar file) that consists of
MS Intermediate Language (MSIL) code and manifest (Metadata about this packet).

The IL code is translated into native code by JIT compiler in CLR. IL code is
verified by CTS first to check the validity of data type used in the code. Figure 6.2
shows how the CLR works.

196 .NET COMPONENTS

.Net framework
SDK

.NET Framework

ASP .Net
(Web Services,

Webforms)

Windows forms
(control, drawing)

Basic
.NET Class library --- mscorlib.dll

CTS (Common Type System)

JIT (Just In Time Compiler)

CLR execution

Class loader

CLR (Common Language Runtime) mscoree.dll

Windows platform

.Net visual
studio

FIGURE 6.1. .NET framework.

.NET framework integrates multiple programming languages (VB, managed VC++,
C#, etc.) by CLR implementation. Not only a component in one language can access
the services provided by other components in other languages but also a class in one
language can inherit properties and methods from related classes in other Languages.
The United Class Library provides a set of reusable classes for component development.
The CTS defines a standard set of data types and rules for creating new types. The CLR
knows how to execute these types. There are two categories of types: Reference type
and Value type. The code targeting CLR and to be executed by CLR is called .NET
managed code. All MS language compilers generate managed codes that conform to
the CTS.

The IL code is like Java byte code. Regardless of the types of source code pro-
gramming languages, IL code can communicate with each other through the support
of CLR. The IL code can be either in the format of executable (.EXE) or Dynamic
Link Library (.DLL). If these IL code are generated by .NET compiler, they are called
managed code. The managed code can be executed only on .NET aware platform.
Some DLL or EXE generated by non .NET compilers (such as early version of VC++)
are called unmanaged code.

In summary, the CLR is a high-performance execution engine. It provides a code-
execution environment that manages the code targeting the .NET framework. The code
management includes management of memory, thread, security, code verification, and
IL compilation [Platt 2003; Chappel 2002].

.NET FRAMEWORK 197

VB .Net

VB .Net
compiler

C# .Net C# .Net

C# .Net
compiler

C#
compiler

IL code

Deployment

Assembly in
.DLL or .EXE

Class loader and
type verifier

JIT

Managed native
code

CCR execution
unit

CLR

Class
library

FIGURE 6.2. .NET CLR.

6.1.3 .NET Framework Class Library

The .NET framework class library is a collection of reusable basic classes that are well
organized by namespaces. The framework class library collects all classes including
Windows Foundation Classes (WFC) into a unified set of classes, which is a single
set of classes. The namespace is just like a package in Java technology and the class
library is just like the Java API structure. A namespace consists of many classes and
subnamespaces. It is deployed as a component class library itself and is organized in a
component–based hierarchy. Figure 6.3 lists a partial set of components in the .NET
class library hierarchy. All these classes in the library can be used by other classes in
different languages.

The root namespace in the class library is System namespace, which contains many
basic classes such as Object, Console, and may contain subnamespaces such as IO, Net,
Data, Remoting, etc. For example, XML is a subnamespace of System namespace that
is deployed as System.XML.dll, ADO.NET is available in System.Data.dll that corre-
sponds to System.Data namespace, and Form-based UI classes are available in Sys-
tem.Windows.Forms.dll corresponding to namespace System.Windows.Forms.

Developers can create custom namespace and organize related classes in a custom
namespace. A namespace can be deployed as an assembly of binary components.

198 .NET COMPONENTS

Console Object

IO

NET

… … ...

… … …

System
Name space
Class

Primitive type Array String Delegate

Data

Web

XML

Remoting

FIGURE 6.3. Portion of .NET class library.

Classes with the same name can be placed in different namespaces because they are
referenced by different namespace prefix.

In order to use classes in a namespace, a directive using <namespace> in C#
or import <namespace> in VB must be included at the beginning of code. The
system built-in basic class library is deployed in mscorlib.dll file [Platt 2003;
Chappel 2002].

6.2 COMPONENT MODEL OF .NET

The .NET Component technology has enhanced and simplified existing MS COM,
DCOM, COM+ technologies. MSIL DLL components are replacing COM Components,
the MSIL Remoting Channels EXE components are replacing DCOM Component, and
the Web Service components are new SOAP components intended to be cross-platform
and cross-language Web-based components. .NET components are much easier to
develop than COM and DCOM. They resolve the COM’s version conflict DLL Hell
problem and firewall problem in DCOM.

Also, the .NET component technology is unified language oriented. Any .NET com-
ponent is in the format of precompiled MSIL, which can be binary plugged-in by any
other MSIL components or any other .NET compatible clients.

The .NET framework itself is built up in a component model, for example, System
namespace System.Runtime.Remoting is available in mscolib.dll and System.XML
namespace is available in System.XML.dll. A .dll file is a .NET deployed component
(Assembly). A namespace is just like a logical package in Java to organize related
classes together. An assembly may have many namespaces, and one namespace may
span over multiple assembly file. The details of .NET assembly will be discussed in
the following sections.

A .NET component is a single precompiled and self-described MSIL module built
from one or more classes or multiple modules deployed in a DLL assembly file. An
assembly consists of up to four parts:

COMPONENT MODEL OF .NET 199

1. Manifest (table of info records): name of assembly, key info version, strong
name, culture info, files that make up assembly, reference depended assemblies
exported info.

2. Metadata of modules.
3. IL code of modules.
4. Resources such as image files.

A module has MSIL code and its metadata but without manifest. A module is not
loadable dynamically. It is used as a building block at the compile time to build up an
assembly Module file. It has an extension of .netmodule. There may be one or many
classes in a module. An assembly is made up by one or many classes in a module.
Each module may be coded in different languages but finally in same MSIL format.
Assembly has a manifest file to self-describe the component itself. An assembly has a
file extension .dll or .exe and is dynamically loadable. That is why most people say
.NET component is an assembly (we will say it is deployed in an assembly). A .dll
file is not executable, just like a class file is a byte code file that is not executable.

There are many different types of components in the .NET framework. We can
classify them into visual or nonvisual component categories. A visual component is a
control that can be deployed in a toolbox as an icon for “drag and drop” in a window
form container. We focus on nonvisual component, which is known as .NET component.

A .NET component can be installed at client site, server site, or middleware site.
It does not matter what kind of component it is; a .NET component always provides
some services to its clients (client may be another component or client application).

Figure 6.4 shows the contents of an assembly.
A .NET component can be a local component (.dll), which can only be accessed

locally (within the same application domain), in the same machine or a remote
(distributed) component (.exe), which can be accessed remotely (across application
domains) in same machine or different machines. An application domain is a
lightweight process, which can be started or stopped independently within a process.
It is just another level of the isolation in .NET. The idea is very similar to out-of-
process DLL prior to .NET. One component cannot directly access a component in
another application domain or process because each application domain has its own
memory space.

A .NET DLL component can be deployed as a private component, which knows the
target client or can be deployed as a shared public component, which does not know
the target client. A DLL component can be plugged-in to Windows form, Web form
of another DLL or application [MSDN 2004; Component 2004; Lowy 2003].

Let us take a look at a very simple sample component in C#. This component
provides services of converting temperature between F◦ and C◦.

//Listing of TempConvComp.CS:

using System;
namespace TempConv
{ public class TempConvComp

{ public double cToF (double c)
{ return (int) ((c*9)/5.0+32);
}

public double fToC (double f)

200 .NET COMPONENTS

{ return (int) ((f-32)*5/9.0);
}

}
}

We can build a module from it with the following command:

>csc /t:module TempConvComp.cs → TempConvComp.netmodule

This module can be added to a component by

>csc /t:library /addmodule: TempConvComp.netmodule anotherComp.dll

Also, we can build a DLL component by the command

>csc /t:library TempConvComp.cs→TempConvComp.dll

Version

Version

Name

Name

Types

Shared name

Shared
name

Manifest

Metadata

Metadata

Metadata Metadata

IL code

IL code

Resources

Assembly

Assembly

app.dll or app.exe

(a) Single file assembly

(b) Multiple file assembly

Referenced
assembly

Files
Manifest

main .dll or .exe

Module Module

app1.dll app2.NET module

FIGURE 6.4. Single file assembly and multiple file assembly for .NET components.

COMPONENT MODEL OF .NET 201

Here are two clients of this component. One is TempConvCSClient.cs in C# and
the other is TempConvCppClient.cpp in C++. Both of them reuse this TempConvComp
component.

The following list is the C# program list of the client of TempConvComp component:

using System;
using TempConv;

class MainApp
{

public static void Main()
{

TempConv.TempConvComp myCSTempConvComp =
new TempConv.TempConvComp();
double choice;
double input;
double output;
bool next = true;

while (next)
{

Console.WriteLine("Please enter your choice:
1 - Converter from F to C,
2 - from C to F,
3 - exit");

choice=Double.Parse(Console.ReadLine());
if (choice == 1)
{
Console.WriteLine("Please tell me the temperature in F:

");
input=Double.Parse(Console.ReadLine());
output = myCSTempConvComp.fToC(input);
Console.WriteLine(output);
}
else if (choice ==2)
{
Console.WriteLine("Please tell me the temperature in C:

");
input=Double.Parse (Console.ReadLine());
output = myCSTempConvComp.cToF(input);
Console.WriteLine(output);
}
else
{
next= false;
Console.WriteLine ("See you next time.");
}

}
}

}

202 .NET COMPONENTS

In TempConvCSClient.cs, the client loads TempConv namespace by “using
TempConv” directive and instantiates an instance of the TemConvComp component and
invokes fToC() and cToF() methods provided by this component.

The Client application in C# can be built by the following command:

>csc /t:exe /r:TempConvTemp.dll TempConvCSClient.cs →
TempConvCSClient.exe

The following is the managed C++ program list of the client of TempConvComp
component

// This is the main project file for VC++ application project
// generated using an Application Wizard.

#include "stdafx.h"
#include <iostream>

#using <mscorlib.dll>
#using "TempConv.dll"

using namespace System;
using namespace std;

// This is the entry point for this application
#ifdef _UNICODE
int wmain(void)
#else
int main(void)
#endif
{

int choice;
double input;
double output;
bool next = true;
TempConv::TempConvComp * myCSConvComp =

new TempConv::TempConvComp ();

while (next) {
Console::WriteLine(S"Please enter your choice:

1 - Converter from F to C,
2 - from C to F,
3 - exit");

cin>>choice;
if (choice == 1) {
Console::WriteLine(S"Please input the temperature in

F: ");
cin>>input;
output = myCSConvComp->fToC(input);
Console::WriteLine(output);

}
else if (choice == 2){

COMPONENT MODEL OF .NET 203

Console::WriteLine(S"Please input the temperature in
C: ");

cin>>input;
output = myCSConvComp->cToF(input);
Console::WriteLine(output);

}
else {

next= false;
Console::WriteLine (S"See you next time.");

}
}

return 0;
}

Similarly, in TempConvCppClient.cpp, the client loads namespace TempConv by
#using “TempConv.dll” and gets an instance of this component, and then gets the
services provided by this component.

In summary, the client of a component makes a reference to the server component at
compiler time, and then the client loads the component dynamically into its application
domain at run time when it is needed. Figure 6.5 depicts the processing of a component
at compiling time and at run time [MSDN 2004; Lowy 2003].

Using Lib.dll
Reference

Compile time
Namespace Lib

Lib.dlltest.dll or .exe
(a) At compile time process

Application domain

Test.dll
or

Test.exe

Lib.dll

CLR host

(b) At run time process

FIGURE 6.5. .NET components at compiling time and at run time.

204 .NET COMPONENTS

6.3 CONNECTION MODEL OF .NET

6.3.1 .NET Component Compositions

Component compositions enable the component reuse in either aggregation composi-
tions or containment compositions.

In aggregation composition model, the service of inner component hands out its
service directly to the client of outer component. In aggregation composition, the outer
component exposes the interfaces of the inner component. The innerM() method
of inner component becomes part of interface to the outer component as shown in
Figure 6.6. The detailed implementation example is shown in the following code
fragment.

In containment compositions, if a request to the outer component needs help from
an inner component, the request is forwarded to that inner component. The outer
component does not expose the interface of the inner component. The containment
is transparent to the client of an outer component. The client is blind to the handler
of the request. The outerM2() delegates a request to the innerM() method of inner
component as shown in Figure 6.7.

A .NET component can also be composed by mixed aggregations and containments
in a flat structure or nested compositions in multiple levels in depth.

Here, we use an example to explain the concepts of combined containment and
aggregation compositions.

using System;
namespace NS1
{

public class Inner
{

public void innerM ()
{

Console.WriteLine (“I am Inner.”)
}

}
}

using System;
using NS1;

public class Outer
{

public Inner i = new Inner ();
//aggregation: Outer expose the Inner
public void outerM1 ()
{

Console.WriteLine (“I am outer.”);
}
public void outerM2() //delegation in containment
{

i.innerM();
}

public static void main()

CONNECTION MODEL OF .NET 205

{
outer o1 = new Outer();
Inner i1 = o1.i;
i1.innerM(); //interface to the aggregate
o1.outerM();
o1.outerM2(); // interface to the containment
Inner i2 = new Inner();
i2.innerM();

}
}

Figure 6.8 shows a direct method invocation of a component.

6.3.2 Communication of Components by Event and Delegate

The .NET Delegate is a method type (a reference to a method) that is similar to function
pointer in C++, but it is type-safe and secure. A Delegate will delegate a flow control
to its registered event handler when the event is raised. It works in the pattern of
observer, which is a kind of an event listener in Java.

An instance of a Delegate can hold a static method of a class, or a method of a
component, or a method of object itself.

There are two types of Delegates: SingleCast and MultiCast.

innerM()

Inner

outerM1()
Outer

FIGURE 6.6. Aggregation.

outerM2()
innerM()

Inner

Outer

FIGURE 6.7. Containment.

Component A

Call

Application domain

Component B

Method

FIGURE 6.8. Direct invocation.

206 .NET COMPONENTS

A SingleCast Delegate can only delegate one method at a time seen in the fol-
lowing example:

Delegate int Mydelegate();
public class MyClass
{ public int ObjMethod() {- - - }
static public int StaticMethod () {- - - }
public class Drive { Static public void Main()
{ Myclass c = new MyClass();
MyDelegate dlg = new MyDelegate(c.objMethod());
dlg();
dlg = new MyDelegate (MyClass.StaticMethod());
dlg();
}
}

As seen in this example, MyDelegate is a Delegate that references any method
with int return type and without any parameter. The signatures of objMethod and
StaticMethod match the Delegate MyDelegate. The first dlg() invokes objMethod
and the second dlg() invokes class method StaticMethod.

A MultiCast Delegate has a void return type and can bind multiple methods, and
it will invoke them in the order of registrations.

Delegate void MultiDelegate();
MultiDelegate mdlg = null;
mdlg += new MultiDelegate (Method1);
mdlg += new MultiDelegate (Method2);

Registration is done by += Delegate operation and unregistration is done by – =
operation.

The Delegate plays a role of listener, and the event handler must register this listener
to be able to handle the event once the event is fired off. The relationship between the
event handler and event trigger via a delegate is shown in Figure 6.9.

An event is a message sent by an object to invoke an action. The object that raises
the event is event source and the object that intercepts the event and handles the event
is event target.

This is an event-driven communication model between components or within the
same component. The Delegate class is the communication channel class between the
event source and event target. Event can be a predefined event such as an event trigger
by a Windows Form component. A developer can also define a custom event. The
procedure to create and use a delegate event is listed here.

1. Create a delegate class.

Public delegate void DelegateStart();

2. Create a class containing a delegate field, Class MyClass.

{ public event DelegateStart EventStart;
- - -

CONNECTION MODEL OF .NET 207

Event trigger

Event

Registration(+=), Unregistration(–=)

Component
B

Method

Application domain

Delegate

(Listener)

Component A

Event-driven delegate (events can be System built-in or custom events)

FIGURE 6.9. Delegate wiring of a delegate event and its handler.

3. Define an event handler.

public void handleEvent(){ - - -}

4. Bind delegate event with an event handler via event listener, trigger an event,
invoke the event handler.

Public static void Main() { MyClass EventObj = new
MyClass();

EventObj.EventStart += new DelegateStart(handleEvent);
EventObj.EventStart();
...

}

6.3.3 Remoting Connectors for .NET Distributed Components

A component or a client cannot directly access a remote component running in a
different application domain in the same or different processes unless it uses Remoting
channel connection. The marshaling makes it possible to invoke a remote method of
a distributed component. There are two ways to marshal an object: in MBV (Marshal
by Value), the server passes a copy of an object to client or in Marshal by Reference
(MBR) the client creates a proxy of a remote object. When a remote component must
run at a remote site, MBR is the only choice.

A channel is the way to implement communications between clients and remote
components. We use TCP channel in our example. The channel is similar to the socket
communication in Java. Each channel must bind with a port. A client channel binds a
client port, and the server channel binds a port on the server. We create TCP channel

208 .NET COMPONENTS

on port 4000 and register the channel with the remote class and URI name, which will
be used by client to get an object of remote component. We also need to create a TCP
channel and register it on the client site.

Here is an example of a distributed component and its client. They are running in a
remote mode (different application domains or different processes). We use the same
component TempConvComp but we build it as a distributed component to be accessed
remotely at this time.

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Tcp;

public class CoTempConv : MarshalByRefObject
{

public static void Main()
{

TcpChannel channel = new TcpChannel(4000);
ChannelServices.RegisterChannel(channel);

RemotingConfiguration.
RegisterWellKnownServiceType (

typeof(CoTempConv),
"TempConvCompDotNet",
WellKnownObjectMode.Singleton);

System.Console.WriteLine("Hit <enter> to
exit...");

System.Console.ReadLine();
}

public double cToF(double c)
{

return (int)((c*9/5.0+32)*100)/100.0;
}

public double fToC(double f)
{

return (int)((f-32)*5/9.0*100)/100.0;
}

}

Here is the client of the above component.

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Tcp;

class MainApp
{

public static void Main()
{

CONNECTION MODEL OF .NET 209

try
{
TcpChannel channel = new TcpChannel();
ChannelServices.RegisterChannel(channel);
CoTempConv myCSTempConvComp =

(CoTempConv)Activator.GetObject(
typeof(CoTempConv),
"tcp://127.0.0.1:4000/

TempConvCompDotNet");

double choice;
double input;
double output;
bool next = true;

while (next)
{

Console.WriteLine("Please enter your
choice:

1 - Converter from F to C,
2 - from C to F,
3 - exit");
choice=Double.Parse (Console.ReadLine());
if (choice == 1)
{
Console.WriteLine("Input temperature in F:

");
input=Double.Parse(Console.ReadLine());
output = myCSTempConvComp.fToC(input);
Console.WriteLine(output);
}
else if (choice ==2)
{
Console.WriteLine("Input temperature in C:

");
input=Double.Parse(Console.ReadLine());
output = myCSTempConvComp.cToF(input);
Console.WriteLine(output);
}
else
{
next= false;
Console.WriteLine ("See you next time.");
}

}
}
catch (Exception e)
{

Console.WriteLine(e.ToString());
}

}
}

210 .NET COMPONENTS

Stub

App domain 1 App domain 2

Client
component

Server
component

Proxy Port Port

MBV (Marshal by Value)

(client and server running
at same machine)

MBR (Marshal by reference)
(client and server running

at different machines)

Remoting
channel
delegate

FIGURE 6.10. Remote synchronous method invocation of a distributed component.

The following shows the steps to build the server and client.

>csc TempConvComp.cs
>csc /r:TempConvComp.exe TempConvCSClient.cs

Now it is ready to activate the distributed server component and its client by running
the following commands:

>TempconvComp.exe
>TempConvCSClient.exe

The client gets a reference to remote component by Activator.GetObject() and
invoke the method of this remote component. The diagram of Figure 6.10 shows the
remote synchronous method invocation of a distributed component.

6.3.4 Remoting Asynchronous Callback Invocation between Distributed .NET
Components

The Remoting asynchronous callback is based on Remoting Delegate. It will not block
out the client while waiting for notification from remote components. For example,
suppose someone wants to be notified once the stock prices reach a specified level.
Instead of pooling the stock price all the time, why not let the server notify you and you
can do whatever you want to do. In some other cases, the jobs on the server will take
very long to complete, why not let the server notify you when the job is done.

Let us reuse the TempConvComp component discussed before and make asynchronous
callback from server to client. It looks like a round trip. When the client makes a syn-
chronous call to remote method of remote component, it passes a callback method to
server to be called back late through Remoting Delegate.

Here are two Delegates: one is Mydelegate pointing to the remote method “cToF”
of remote component named “TempConvDotNET.” The other asynchronous Delegate
is AsynchCallback, which is passed to BeginInvoke method of MyDelegate.

CONNECTION MODEL OF .NET 211

using System;
using System.Threading;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Messaging;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Tcp;

public class Client {

public delegate double MyDelegate(double c)
public static int main(string [] agrs)

TcpChannel chan = new TcpChannel();
ChannelServices.RegisterChannel(chan);
CoTempConv obj =

(CoTempConv)Activator.GetObject(typeof(CoTempConv),
“tcp://localhost:4000/TempConvCompDotNet”);
If(obj == null) System.Console.WriteLine(“Could not locate

server”);
else {

AsyncCallback cb = new AsyncCallback(Client.MyCallBack);
MyDelegate d = new MyDelegate(obj.cToF);
IAsyncResult ar = d.BeginInvoke(32, cb, null);

}

System.Console.WriteLine(“Hit <enter> to exit ... ”);
System.console.ReadLine();
return 0;
}

public static void MyCallBack(IAsyncResult ar)
{

MyDelegate d = (MyDelegate)((AsyncResult)ar).AsyncDelegate;
Coinsole.WriteLine(d.EndInvoke(ar));
Coinsole.WriteLine(“See you next time”);

}
}

App domain 1 App domain 2

Client
component Delegate

Callback
method

Async
callback
delegate

Remoting channel

Remote
method

Server
component

FIGURE 6.11. Asynchronous callback method invocation of distributed component.

212 .NET COMPONENTS

We can find two Delegates here. One is MyDelegate pointing to the remote method
“cToF” of distributed component; the other is AsyncCallback pointing callback
method “MyCallBack.” Figure 6.11 illustrates the asynchronous callback method invo-
cation of distributed component discussed above.

The first parameter of BeginInvoke is a 32 degree in Celsius for “cToF” remote
method and the second parameter is a callback Delegate.

The callback will not block client program. When the distributed component com-
pletes the conversion work, the callback method is called and IAsyncResult is
returned back to client [Csharp 2004; Component 2004; Code 2004].

6.4 .NET COMPONENT DEPLOYMENTS

A .NET component can be deployed as private component or public shared component
in an assembly file. The assembly is an atomic deployment (distribution) unit in .NET
Framework. A private component knows the component where it will be plugged-in.
A public shared component does not know which component will use itself. It must
be published (registered) in a centralized repository Global Assembly Cache (GAC).
A shared component supports side-by-side multiple version component execution.

6.4.1 Private Deployment

A private component must be deployed in a same directory of its client or subdirectory
of where the client is. It is the simplest deployment done by copying all components
to where the client is. The undeployment is done by simply removing all related .dll
components from the directory. A private component does not support versioning
control and just for in-house development within a company. Figure 6.12 shows an
example of private deployment.

>csc /t:library /out:dir1\comp1.dll comp1.cs
>csc /t:library /out:dir2\comp2.dll comp2.cs
>csc /r:dir1\comp1.dll, dir2\comp2.dll /out:client.exe client.cs

An XML configuration description file is required if components are not located in
the same directory with their client. The private path must be specified in the probing

client.exe.config Client.csClient.exe

Comp1.dll Comp2.dll

dir1 dir2

dir

FIGURE 6.12. Directory structure of a private component deployment.

.NET COMPONENT DEPLOYMENTS 213

subtag of assembly building tag in the application configuration file with an extension
of “config.”

Here is a sample of configuration file:

<configuration>
<runtime>

<assemblyBinding>
<probing privatePath = “dir1; dir2”/>

</assemblyBinding>
</runtime>

</configuration>

The CLR will use a private path to look for the required component to load if the
CLR cannot find the required component in current directory.

6.4.2 Public Shared Deployment

The most popular reusable component deployment is to deploy a component with a
strong name, to register it with GAC. A shared component with strong name can make
itself unique by public/private key pair. A shared component registered with GAC can
make itself to be shared anywhere.

The steps needed to create a shared .NET component are as follows:

Step 1: Create a pair of public key/private key by sn.exe utility.

>sn -k mykey.snk

The public key is for verification against private key, which is signed as a cryp-
tographic signature stored in component assembly. The public key is stored in a
manifest of the assembly. When a client references the component, the public key
token is stored in the client’s assembly.

Step 2: Embed the following lines into the source code of component:

using System.Reflection:
[assembly:AssemblyKeyFile (“mykey.snk”)]
[assembly:AssemblyDelaySign (false)]
[assembly:AssemblyVersion (“1,2,3,4”)]

The following command will sign the signature with the component immediately
without a delay:

>csc /t:library mycomponents.cs

The next command line will store a public key token in the client component.

>csc /r:mycomponent.dll /out:myapplication.exe myapplication.cs

If the signature delay is needed, we can sign the signature late by

>sn -R mycomponent.dll mykey.sn

The signature is verified when the component is registered with GAC in step #3
to ensure that the component is not altered since the assembly was built.

214 .NET COMPONENTS

At run time, the public key token in the client manifest is verified against the
public key that is part of component identity. If they match, then it indicates that
this is the right component wanted.

Figure 6.13 shows the private and public key pair in manifests of the component
and its client component.

The version number of a shared component is marked by four discrete numbers
separated by dots in the format of “major.minor.build.revision.” A side-by-side
execution is implemented by .NET versioning. The .NET framework allows dif-
ferent versioned components with the same name running side-by-side in different
applications. The CLR checks the major and minor numbers first. By default, only
an exact match on major.minor is allowed. The build number is backward com-
patible by default. In other words, Version “1.2.3.0” is compatible with “1.2.0.0”
but “1.2.3.0” is not compatible with “1.2.4.0.” If the version number in a com-
ponent’s manifest cannot match any component in GAC, it will load a versioned
component that is different in revision part. The revision number is called Quick
Fix Engineering (QFE), which is always compatible by default.

The default version policy can be customized by overriding the assembly speci-
fication in configuration file. For example,

<assemblyIdentity>

<binding Redirect oldVersion = “1.2.3.4”
newVersion = “2.0.0.0”/>

</assemblyIdentity>

This setting indicates the component in version “2.0.0.0” will be loaded instead
of “1.2.3.4.”

Step 3: Register the shared component in GAC.

>gacutil /i mycomponent.dll

Step 4: Using shared component.
The client must make a reference to the shared component to be reused.

>csc /t:exe /r:mycomponent.dll /out:myapp.exe myapp.cs

Client

Manifest

Token

sn utility Public key

Private key

Server
component

Manifest

Signature
after signed

FIGURE 6.13. Public/private key pair in .NET component.

VISUAL STUDIO .NET 215

In order to reuse the shared component, the client source code must “use names-
paces” where namespace is available in the assembly. An example of shared com-
ponent deployment of the TempConvComp component is shown in the following:

using System;
using System.Reflection;
[assembly:AssemblyVersion("1.0.0.0")]
[assembly:AssemblyKeyFile("originator.key")]

namespace TempConv
{

public class TempConvComp
{

public TempConvComp()
{
}

public double cToF(double c)
{

// how to control output format
return (int)((c*9/5.0+32)*100)/100.0;

}

public double fToC(double f)
{

// how to control output format
return (int)((f-32)*5/9.0*100)/100.0;

}
}

}

The following steps show how to build a shared component:

>sn -k originator.key
>csc /t:library /out:TempConv.dll TempConvComp.cs
>gacutil /i TempConv.dll
>csc /r:TempConv.dll /t:exe /out:TempConvCSClient.exe

TempConvCSClient.cs

The code of the client program is the same as TempConvCSClient.cs in
Section 6.2.

6.5 VISUAL STUDIO .NET

The Visual Studio .NET is an IDE (Integrated Development Environment) toolkit that
makes .NET development much easier and much more productive. It is a unified-shared
toolkit that there is only one environment to configure and to use regardless of the types
of the programming languages. It simplifies developments of scalable Windows and
Web .NET components. The Visual Studio .NET provides GUI interface to access all
services available in all layers of the .NET Framework. Most of command line works
can be undertaken here visually.

216 .NET COMPONENTS

The Visual Studio .NET supports a variety of project types that you might undertake,
including Windows applications, Windows service, Class library(DLL), Control library
for Windows Form, ASP .NET Web application for Web site, ASP .NET Web Service
for XML SOAP interface, Console applications, and other projects.

We focus the discussion on .NET component development by Visual Studio .NET.
First, we show the development of a .NET temperature conversion component we
discussed before. Then, the development of two clients of these components is demon-
strated in detail, one in Windows Form and the others in Web Form developed in ASP
.NET and deployed on MS IIS Web server to be accessed by any Web browser. Both
of them reuse a common component to convert the temperature between Fahrenheit
and Celsius degree.

6.5.1 Build a .NET Component

Step 1: Start up Visual Studio .NET and configure your profile. The default setting
works for most of the cases unless any specific customization is needed.

Step 2: Create a new project by selecting “Visual C# Projects” with a template “Class
Library” that will result in a DLL component.

VISUAL STUDIO .NET 217

Step 3: Add in the source code for this TempConvComp component class.

Step 4: Build and deploy the component.

Build the component by choosing the “Build” option on the top menu bar and
configure the AssemblyInfo.cs file created by Visual Studio if a shared component
deployment is necessary.

218 .NET COMPONENTS

Finally, you will see that a DLL component is created as shown in the following:

VISUAL STUDIO .NET 219

6.5.2 Build a Windows Form Client to the .NET Component
Step 1: Create a windows application in a Visual Basic Project.

Step 2: Design a GUI interface for this Windows Form by Dragging and Dropping the
GUI components from the Toolbox on the left to the design form.

220 .NET COMPONENTS

Step 3: Add a reference to the .NET component “TempConv.dll” in this client.
Select the menu item “Projects” from the top bar menu or right click on the

references in the “Solution Explorer” panel to specify the name of the component
to be used.

Step 4: Build the client.
The source code of this Windows Form Client is shown as follows:

Public Class Form1
Inherits System.Windows.Forms.Form

Private Sub ButtonFtoC_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles

ButtonFtoC.Click
Dim objConv As New TempConv.TempConvComp()
Dim f As Double
f = CDbl(TextBoxF.Text)
TextBoxC.Text = objConv.fToC(f)

End Sub

Private Sub ButtonCtoF_Click(ByVal sender As System.Object,
ByVal e As

System.EventArgs) Handles ButtonCtoF.Click
Dim objConv As New TempConv.TempConvComp()
Dim c As Double

VISUAL STUDIO .NET 221

c = CDbl(TextBoxC.Text)
TextBoxF.Text = objConv.cToF(c)

End Sub
End Class

The next diagram shows the result of the execution of this VB .NET client to a
CS .NET component.

6.5.3 Build a Web Form Client for This .NET Component

Step 1: Make sure IIS is installed before you run Web application.
Your Web application will be saved to C:\Inetpub\wwwroot by default. The

virtual directory localhost will be matched to this physical directory.
Step 2: Create an ASP.NET Web Application in a VB .NET project.

222 .NET COMPONENTS

Step 3: Design GUI interface in this Web Form.
The process is the same as the GUI design in Windows Form.

Step 4: Bind This Web Form with the .NET component by “Add reference,” which is
TempCov.dll. “Add Reference” option is available in the menu item “Project” on
the top menu bar.

VISUAL STUDIO .NET 223

The source code of this Web Form client is shown as follows:

Public Class WebForm1
Inherits System.Web.UI.Page
Protected WithEvents Label1 As

System.Web.UI.WebControls.Label
Protected WithEvents Label2 As

System.Web.UI.WebControls.Label
Protected WithEvents Label3 As

System.Web.UI.WebControls.Label
Protected WithEvents Button1 As

System.Web.UI.WebControls.Button
Protected WithEvents TextBoxC As

System.Web.UI.WebControls.TextBox
Protected WithEvents TextBoxF As

System.Web.UI.WebControls.TextBox
Protected WithEvents Button2 As

System.Web.UI.WebControls.Button
Private Sub Page_Load(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles MyBase.Load
'Put user code to initialize the page here

End Sub

Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click
Dim objConv As New TempConv.TempConvComp()
Dim f As Double
f = CDbl(TextBoxF.Text)
TextBoxC.Text = objConv.fToC(f)

End Sub

Private Sub Button2_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button2.Click
Dim objConv As New TempConv.TempConvComp()
Dim c As Double
c = CDbl(TextBoxC.Text)
TextBoxF.Text = objConv.cToF(c)

End Sub
End Class

Step 5: Build the Web Form client for the .NET component.
Press the Build menu item and take an action to produce this Web Form, which

is saved as an aspx file that can be browsed by any internet browser. The Web-
Form1.aspx can be browsed just like a HTML page but it is an interactive page.
The following picture shows this aspx file browsed by Internet Explorer.

224 .NET COMPONENTS

6.6 EXAMPLES AND LAB PRACTICE

This section is designed to enhance the understanding of .NET component concepts
by providing some concrete examples and step-by-step guidelines that demonstrate
how to build different types of .NET components, how to assemble and deploy the
components, and how to build a client for these components and run the clients.

This section focuses on the development by command lines of .NET framework
SDK. Here are four labs:

Lab 1 describes the steps to build a C# private component with a managed C++
client. It also demonstrates the running result of this console application.

Lab 2 shows the steps to build a C# client for the same component and execution
result of this console application.

Lab 3 depicts the deployment of a shared .NET component.
Lab 4 illustrates the detailed steps to build up a distributed .NET component and its

remote .NET client. The server-distributed component is running at a different
process from the remote client, which is running in another process.

All source code in these labs are available in the attached companion CDROM.

6.6.1 Lab 1: Build a Private Component in C# .NET
(Client Using Managed C++)

Step 1: We repeat the code one more time here, just for convenience.

using System;

namespace TempConv
{

EXAMPLES AND LAB PRACTICE 225

public class TempConvComp
{

public TempConvComp()
{
}

public double cToF(double c)
{

return (int)((c*9/5.0+32)*100)/100.0;
}

public double fToC(double f)
{

return (int)((f-32)*5/9.0*100)/100.0;
}

}
}

Step 2: Build a .NET DLL component.

>csc.exe /t:library /debug+ /out:TempConv.dll TempConvComp.cs

This component will be referenced by Lab 1 and Lab 2; you can copy the dll
file to the corresponding project fold to be used.

Step 3: Develop client source code.

#using <mscorlib.dll>
using namespace System;
#using "TempConv.dll"

void main()
{

double choice;
double input;
double output;
bool next = true;

TempConv::TempConvComp *myCSConvComp = new
TempConv::TempConvComp();

while (next) {
Console::WriteLine(S"Please enter your choice:
1 - Converter from F to C,
2 - from C to F,
3 - exit");

choice=Double::Parse (Console::ReadLine());
if (choice == 1) {
Console::WriteLine(S"Please tell the temperature in F: ");
input=Double::Parse (Console::ReadLine());
output = myCSConvComp->fToC(input);
Console::WriteLine(output);
}

226 .NET COMPONENTS

else if (choice ==2){
Console::WriteLine(S"Please tell the temperature in C: ");
input=Double::Parse (Console::ReadLine());
output = myCSConvComp->cToF(input);
Console::WriteLine(output);
}
else {
next= false;
Console::WriteLine (S"See you next time.");
}
}

}

Step 4: Build a C++ client who uses the .NET component and run it.
All the following commands are saved in a batch file called BuildAndRun.bat

file.

>cl.exe /CLR /Zi /c TempConvCPPClient2.cpp
>link.exe /debug /nod:libcpmt.lib kernel32.lib mscoree.lib
/out:TempConvCPPClient2.exe TempConvCPPClient2.obj
>TempConvCPPClient2.exe

The following picture shows the output of the execution of this batch file.

6.6.2 Lab 2: Build a Console Application with a C# Client Accessing .NET
Component

Step 1: Develop source code for the C# client.

EXAMPLES AND LAB PRACTICE 227

using System;
using TempConv;

class MainApp
{

public static void Main()
{

TempConv.TempConvComp myCSTempConvComp = new
TempConv.TempConvComp();
double choice;
double input;
double output;
bool next = true;

while (next)
{Console.WriteLine("Please enter your choice:
1 - Converter from F to C,
2 - from C to F,
3 - exit");

choice=Double.Parse (Console.ReadLine());
if (choice == 1)
{Console.WriteLine("Please tell the temperature in

F: ");
input=Double.Parse (Console.ReadLine());
output = myCSTempConvComp.fToC(input);
Console.WriteLine(output);
}
else if (choice ==2)
{Console.WriteLine("Please tell the temperature in

C: ");
input=Double.Parse (Console.ReadLine());
output = myCSTempConvComp.cToF(input);
Console.WriteLine(output);
}
else
{next= false;
Console.WriteLine ("See you next time.");
}
}

}
}

Step 2: Build a C# client accessing TempConv component. Remember to copy the
DLL file into the same directory of the client because the component is a pri-
vate component.

>csc /debug+ /reference:TempConv.dll /out:TempConvCSClient.exe
>TempConvCSClient.cs
>TempConvCSClient.exe

228 .NET COMPONENTS

After we run this batch file “BuildAndRun.bat,” we will see the following
output on the screen.

6.6.3 Lab 3: Build a Shared .NET Component by .NET Framework SDK

Step 1: Modify the source file to add two lines in [] in bold or make an AssemblyInfo
file and put these lines in this file.

using System;
using System.Reflection;
[assembly:AssemblyVersion("1.0.0.0")]
[assembly:AssemblyKeyFile("originator.key")]

namespace TempConv
{

public class TempConvComp
{

public TempConvComp()
{
}

public double cToF(double c)
{

return (int)((c*9/5.0+32)*100)/100.0;
}

public double fToC(double f)
{

return (int)((f-32)*5/9.0*100)/100.0;
}

}
}

EXAMPLES AND LAB PRACTICE 229

Step 2: Develop client source code.

using System;
using TempConv;

class MainApp
{

public static void Main()
{

TempConv.TempConvComp myCSTempConvComp = new
TempConv.TempConvComp();
double choice;
double input;
double output;
bool next = true;

while (next)
{

Console.WriteLine("Please enter your choice:
1 - Converter from F to C,
2 - from C to F,
3 - exit");

choice=Double.Parse (Console.ReadLine());
if (choice == 1)
{
Console.WriteLine("Please tell the temperature in F: ");
input=Double.Parse (Console.ReadLine());
output = myCSTempConvComp.fToC(input);
Console.WriteLine(output);

}
else if (choice ==2)
{
Console.WriteLine("Please tell me the temperature in C: ");
input=Double.Parse (Console.ReadLine());
output = myCSTempConvComp.cToF(input);
Console.WriteLine(output);
}
else
{
next= false;
Console.WriteLine ("See you next time.");
}
}
}

}

Step 3: Build a shared .NET component and its client, run it.
Create a pair of public/private key by sn command.
Compile the client source code which references the component. DLL file.

230 .NET COMPONENTS

Register the built component with the GAC to be a shared component.
Run the client.

>sn -k originator.key
>csc /t:library /out:TempConv.dll TempConvComp.cs
>gacutil /i TempConv.dll
>csc /r:TempConv.dll /t:exe /out:TempConvCSClient.exe

>TempConvCSClient.cs
>TempConvCSClient.exe

All these commands are saved in “BuildAndRun.bat” batch file. The next screen
shows the result from this batch file.

After the shared component deployment, this shared component can be found in
assembly subdirectory of WINNT directory as shown in the following:

EXAMPLES AND LAB PRACTICE 231

6.6.4 Lab 4: Distributed .NET Components by .NET Framework SDK

Step 1: Develop the source code for the distributed remote component.

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Tcp;

public class CoTempConv : MarshalByRefObject
{

public static void Main()
{

TcpChannel channel = new TcpChannel(4000);
ChannelServices.RegisterChannel(channel);

RemotingConfiguration.RegisterWellKnownServiceType (
typeof(CoTempConv),"TempConvCompDotNet",

WellKnownObjectMode.Singleton);
System.Console.WriteLine("Hit <enter> to exit...");
System.Console.ReadLine();
}

public double cToF(double c)
{

return (int)((c*9/5.0+32)*100)/100.0;

232 .NET COMPONENTS

}

public double fToC(double f)
{

return (int)((f-32)*5/9.0*100)/100.0;
}

}

Step 2: Develop the source code for the remote client that accesses the distributed
remote component.

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Tcp;

class MainApp
{

public static void Main()
{

try
{
TcpChannel channel = new TcpChannel();
ChannelServices.RegisterChannel(channel);
CoTempConv myCSTempConvComp = (CoTempConv)
Activator.GetObject(typeof (CoTempConv),

"tcp://127.0.0.1:4000/
TempConvCompDotNet");

double choice;
double input;
double output;
bool next = true;

while (next)
{
Console.WriteLine("Please enter your choice:

1 - Converter from F to C,
2 - from C to F,
3 - exit");

choice=Double.Parse (Console.ReadLine());
if (choice == 1)
{
Console.WriteLine("Please input the temperature in

F: ");
input=Double.Parse (Console.ReadLine());
output = myCSTempConvComp.fToC(input);
Console.WriteLine(output);
}
else if (choice ==2)
{

EXAMPLES AND LAB PRACTICE 233

Console.WriteLine("Please tell me the temperature
in C: ");

input=Double.Parse (Console.ReadLine());
output = myCSTempConvComp.cToF(input);
Console.WriteLine(output);
}
else
{
next= false;
Console.WriteLine ("See you next time.");
}
}
}
catch (Exception e)
{
Console.WriteLine(e.ToString());
}

}
}

Step 3: Build the distributed server component and its client component.

>csc TempConvComp.cs
>csc /r:TempConvComp.exe TempConvCSClient.cs

Step 4: Run the server.

>TempconvComp.exe

Step 5: Run the remote client in a separate process.

>TempConvCSClient.exe

234 .NET COMPONENTS

6.7 SUMMARY

The .NET component technologies are discussed in this chapter. The .NET framework
and its constructs are introduced first. The .NET component is a precompiled MSIL
file deployed as an assembly file that may contain multiple modules and resources self-
described by its manifest. A .NET component can be deployed as a private component
or a public shared component with strong name and GAC registration. The associa-
tion of two .NET components can be composed by aggregation or containment. The
invocation of method of one component from another component can be synchronous
or asynchronous. A .NET component can be a local component accessed by other
components within the same application domain or can be a distributed component
accessed by other components remotely via Remoting channel.

6.8 SELF-REVIEW QUESTIONS

1. .NET component and its client
a. must be written in same programming language
b. may be written in different languages
c. may be running in different platforms

2. .NET component is deployed in
a. MSIL
b. bytecode
c. executable target code

3. .NET assembly may consist of
a. metadata
b. MSIL
c. resource files
d. modules
e. all

EXERCISES 235

4. A .NET component has an extension
a. .dll
b. .exe
c. .netmodule
d. a or b
e. all

5. A .NET component itself
a. must be coded by a single programming language
b. may be assembled from many different modules in different languages

6. A .NET distributed component and its client must be run
a. in different machines
b. in the same machine
c. in the same application domain
d. in different application domains

7. A shared component must be registered
a. with NT Registry
b. with GAC

8. .NET component Versioning control is supported
a. .NET shared component
b. .NET private component
c. both of a and b
d. DLL COM

9. .NET delegate supports
a. synchronous event handler method invocation with event triggering
b. asynchronous event handler method invocation with event triggering
c. both
d. neither

10. .NET component composition can be completed by
a. containment
b. aggregation
c. both

Keys to Self-Review Questions

1. b 2. a 3. e 4. d 5. a 6. d 7. b 8. a 9. c 10. c

6.9 EXERCISES

1. What is .NET framework?

236 .NET COMPONENTS

2. How is .NET framework class library organized?

3. How does .NET support?

4. What is the purpose of CLR?

5. What is the difference between CLR and JVM?

6. What is the difference between MSIL and JAVA bytecode?

7. Is .NET framework a cross-language platform?

8. How do you composite a .NET component nested inside another component?

9. Does private .NET component support side-by-side versioning?

10. Where is .NET component deployed?

11. Why is GAC needed for .NET shared component?

12. What is asynchronous delegate?

13. What is synchronous delegate?

14. When is class channel needed?

15. What is .NET module?

16. What is .NET assembly?

17. Is a module loadable?

18. Does a module have manifest?

19. Is a private key generated by command “SN” saved in manifest of component?

20. What is .NET application domain? Can a component access another component
locally in another application domain?

21. Can an EXE file be deployed using .NET component?

6.10 PROGRAMMING EXERCISES

1. Design a .NET component in .NET C#, managed C#, .NET VB that provides
services of a calculator. The calculator has the functionality to perform addition,
subtraction, multiplication, and division of two real numbers. It can also detect the
zero divisor in division operation. Use namespace in this component.

2. Design a client of this calculator in .NET VB, .NET C#, and .NET managed C#.

3. Deploy the server component “Calculator” as a private component.

4. Deploy the server component “Calculator” as a shared public component.

5. Rewrite component “Calculator” as a distributed .NET component.

6. Rewrite the client of this component to reuse the distributed component by Remot-
ing Channel.

7. Plug in this “Calculator” component into a Window Form application.

REFERENCES 237

8. Plug in this “Calculator” component into a Web form by ASP.NET and IIS to
enable a user to browse it on-line.

9. View the manifest of assembly for component “Calculator.”

10. Design a client program using asynchronous delegate to let a server component to
call back when the server component completes the request from a client.

REFERENCES

[Chappel 2002] Chappel, David. Understanding .NET, Addison-Wesley, 2002.

[Code 2004] http://www.codeproject.com, 2004.

[Component 2004] http://www.componentsource.com, 2004.

[Csharp 2004] http://www.csharphelp.com, 2004.

[Lowy 2003] Lowy, J. Programming .NET Component, O’Reilly, 2003.

[MSDN 2004] http://msdn.microsoft.com/library, 2004.

[Platt 2003] Platt, David. Introducing Microsoft .NET, Microsoft Press, 2003.

7
COP WITH OSGi COMPONENTS

Objectives of This Chapter

ž Introduce OSGi component architecture
ž Discuss the infrastructures of OSGi technology
ž Provide definitions of software components in OSGi
ž Provide definitions of connectors for component assembling in OSGi
ž Provide definitions of deployment model in OSGi

7.1 OVERVIEW OF OSGi TECHNOLOGY

OSGi stands for Open Service Gateway initiative, an industry alliance formed to spec-
ify, develop, and promote an open service platform for the delivery and management
of multiple applications and services to all types of network devices in home, vehicle,
mobile computing, and other environments [Chen 2002; OSGi 2003]. The OSGi spec-
ification defines a service platform, supporting service delivery and management. The
first version of OSGi (version 1.0) specification was released in May 2000. The latest
version (3.0) was released in April 2003. The OSGi specification has been designed
to support a wide range of existing networking and computer technologies, enhancing
existing wired and wireless networks and high-speed access technologies. The OSGi
service platform includes a service gateway, a central device to enable, consolidate,
and manage service request and service delivery between the local area network and
the wide area network, such as the Internet. The service gateway can also function as
an application server for high-level services such as healthcare services and security

Component-Oriented Programming, by Andy Ju An Wang and Kai Qian
ISBN 0-471-64446-3 Copyright 2005 John Wiley & Sons, Inc.

238

COMPONENT MODEL OF OSGi 239

monitoring, appliance monitoring and control in a home environment, or GPS-enabled
tour guide, and emission detection and control in a vehicle environment.

The OSGi framework serves as the common environment for service components
called bundles, which are software components plugged into the framework dynam-
ically and provide various services. A service performs actual business task in the
OSGi world. For instance, a service may monitor or control home temperature, obtain
a customized stock quotes or interactive TV programs, and even check the merchan-
dise quantity in a remote vending machine. Technically, a service is a Java interface
with defined semantics and potentially multiple implementations. Services are pack-
aged along with their associated resources such as images, HTML pages, and other
data files. The interface specifies what the service will do, while the implementation
provides the details of how the service is performed. One service bundle is a reusable
and self-contained software that can be downloaded into the gateway and executed in
a plug-and-play manner. Service bundles are insulated from each other in that code
within one bundle cannot refer to classes inside another bundle, nor instantiate them or
invoke their methods. Therefore, service framework and bundles in OSGi specification
provide a component infrastructure, where high-level service bundles act as software
components in component-oriented programming [Brown 1998]. In the rest of this
chapter, we will use OSGi model for the component architecture embodied in OSGi
specification.

Service bundles interact with each other by requesting or providing services at
runtime. One bundle connects to other bundles through the OSGi framework, and
their connection declarations are defined in a manifest file. The framework provides a
hosting environment with the following services:

ž Managing the life cycle of bundles.
ž Resolving interdependencies among bundles and making classes and resources

available from a bundle.
ž Maintaining a registry of services.
ž Firing events and notifying listeners when a bundle’s state changes, when a service

is registered or unregistered, or when the framework is launched or raises an
error.

There exist several implementations for different versions of OSGi specifications,
to name just a few: Java Embedded Server (JES) from Sun Microsystems [Sun 2003],
mBedded Servers from ProSyst Software [ProSyst 2003], and Oscar [Oscar 2003].
The rest of this chapter will discuss the component model, the connection model, and
the deployment model in OSGi component infrastructure based on JES 2.0, which is
available from [Sun 2003].

7.2 COMPONENT MODEL OF OSGi

The simplest bundle is one without service interface. It has an activator class and a manifest
file. A bundle activator class is a Java class that implements org.osgi.framework.
BundleActivator and defines a pair of methods: start and stop. After a bundle is
installed, the JES framework will call the start and stop methods to start and stop the
bundle. There are three steps to create a simplest bundle:

240 COP WITH OSGi COMPONENTS

Step 1: Write a bundle activator class in Java.
Step 2: Create a Manifest file as a text file.
Step 3: Build a JAR file that contains the compiled activator class the Manifest file.

Below is an example of simplest bundle, called Display.jar, which simply dis-
plays a message when started:

1 package simplest;
2
3 import org.osgi.framework.*;
4
5 public class Display implements BundleActivator {
6
7 public void start(BundleContext ctxt) {
8 System.out.println(“Hello”, my name is Alice.’’);
9 }
10
11 public void stop(BundleContext ctxt) {
12 System.out.println(“Good bye, see you later.”);
13 }
14 }

Code 7.1. File name: Display.java

Line 1 puts the Activator class in the package named simplest. Line 3 imports
the classes from org.osgi.framework package, including BundleContext used in
the method parameter and BundleActivator interface. Any bundle activator class
must define its start and stop methods. In this example, both these methods simply
display a piece of message.

Every bundle installed in the JES framework contains a Manifest file, a standard
text file that describes the contents of the JAR file. The Manifest file is structured
in headers, and each header has an attribute. Our example manifest file contains only
one header as below:

Bundle-Activator: simplest.Display

Code 7.2. File name: Manifest

The headers in a manifest file tell the JES framework where to find resources within
the bundle during the bundle life cycle. The OSGi specification defines a number of
headers as shown in Table 7.1:

Now that we have a bundle activator class and a manifest file, we are ready to
create a bundle. Suppose we have both Display.java and Manifest files created
in our current working directory, and the JES framework.jar in our CLASSPATH,
issue the following two commands:

javac -d . Display.java
jar cmf Manifest Display.jar simplest*.class

COMPONENT MODEL OF OSGi 241

TABLE 7.1. Headers for Bundle Manifest Files

Bundle-Activator Bundle-DocURL Bundle-Version

Bundle-ClassPath Bundle-Name Export-Package

Bundle-ContactAddress Bundle-NativeCode Export-Service

Bundle-Description Bundle-UpdateLocation Import-Package

Bundle-Vendor Import-Service

This will create a bundle called Display.jar in our current-working directory.
Now, start the JES server and install the Display.jar bundle. When we start and
stop this bundle, we will see a printed message “Hello, my name is Alice” and “Good
bye, see you later.” respectively.

As we discussed previously, bundles represent components in OSGi component
architecture. Components are connected through component interface and services.
Services are designed to be written with interface and implementation separated. The
interface is exposed to other components, which acts as a contract between the client
components and the service component. The separation of interface and its imple-
mentation makes it possible to have different implementations for one interface. An
example with the separation of interface and implementation is given below:

1 package hello.service;
2
3 public interface HelloService {
4 public void hello(String firstName, String lastName,

String title);
5 }

Code 7.3. File name: HelloService.java

This interface is named HelloService (line 3). The hello method is declared
in line 4 with three parameters: the individual’s first name, last name, and title. Any
implementation of this service will provide a concrete way to say “hello.” Let us see
a first implementation.

1 package hello.impl;
2
3 import java.util.*;
4 import hello.service.HelloService;
5
6 class HelloImpl implements HelloService {
7
8 public void hello(String firstName, String lastName,

String title) {

242 COP WITH OSGi COMPONENTS

9 System.out.println("Hello, "+ title +" "+ firstName +"
"+ lastName +"!");

10 }
11 }

Code 7.4. File name: HelloImpl.java

Notice that this implementation class is stored in a different package than the inter-
face class (line 1). Line 6 defines the class to implement the HelloService interface.
Notice that the implementation class has default package access, while the HelloSer-
vice interface has public access. This means that other bundles can call the interface
but not the implementation. In the hello method (line 8), this implementation provides
a simple greeting method.

Next, we need to write a bundle activator class. In this example, we must register
our new service, HelloImpl, so that other bundles can access this new service, and
whenever this new service is requested, its start method will be called. In our bundle
activator class, we will register services using the registerService method that the
BundleContext object defines. If the service registration is successful, the framework
returns a unique ServiceRegistration object to the bundle. The ServiceRegis-
tration object lets other bundles get a reference to the service or update a service’s
properties. We must use the ServiceRegistration object to unregister, so only the
bundle that holds the ServiceRegistration object can unregister the service.

1 package hello.impl;
2
3 import java.util.Properties;
4 import org.osgi.framework.*;
5 import hello.service.HelloService;
6
7 public class Activator implements BundleActivator {
8
9 private ServiceRegistration reg=null;
10
11 public void start(BundleContext ctxt) throws

BundleException {
12 HelloService hs = new HelloImpl();
13 Properties props = new Properties();
14 props.put("description", "hello");
15
16 reg = ctxt.registerService("hello.service.HelloService",

hs, props);
17
18 hs.hello("Andy", "Wang", "Dr.");
19 hs.hello("Don", "Carpenter", "Professor");
20 hs.hello("Ken", "Messersmith", "Mr.");
21 }
22
23 public void stop(BundleContext ctxt) throws

BundleException {

COMPONENT MODEL OF OSGi 243

24 if (reg ! = null)
25 reg.unregister();
26 }
27 }

Code 7.5. File name: Activator.java

The bundle activator class is stored in hello.impl (line 1), the same package as the
implementation class. We need to import java.util.Properties (line 3), because
we will create a Properties object in order to register the service. We also need
to import the HelloService interface (line 5), because we will register our service
under its interface name. Unlike the implementation classes, the BundleActivator
class is declared public (line 7), so that the JES framework can call it. Line 9 creates a
reference, named reg, to a ServiceRegistration object. Line 12 creates an instance
of our service and casts it to its interface type because we will register the service
under its interface name. Line 13 creates a Properties object and gives it a key
and a value in line 14. Once the service is registered, the framework will return a
ServiceRegistration object that you can store in that object reference variable
(line 16). Notice that in line 16, we use the fully qualified name for the interface
HelloService, the instance of the service and the Properties object that we just
created to register the service. In the stop method (line 23–26), we check for a
valid ServiceRegistration object, then use the ServiceRegistration object to
unregister the service with the unregister method.

Now we can offer our services for other bundles to use. To do this, we add an
Export-Package header to the Manifest file, which names the Java packages that
the bundle offers to share with other bundles. Because a bundle always contains a
bundle activator class, the Manifest file must also have a Bundle-Activator header,
as below:

Bundle-Activator: hello.impl.Activator
Export-Package: hello.service

Code 7.6. File name: Manifest

After compiling these source codes, we have the following file structure, starting
with our current working directory:

Current-Working Directory
Manifest (file)
hello (directory)

service (directory)
HelloService.class (file)

impl (directory)
HelloImpl.class (file)
Activator.class (file)

Issuing the following command from the current working directory

jar cmf Manifest Hello.jar hello\service*.class
hello\impl*.class

244 COP WITH OSGi COMPONENTS

will create a bundle named Hello.jar. Install and start this bundle, and we will see
the following display:

Hello, Dr. Andy Wang!
Hello, Professor Don Carpenter!
Hello, Mr. Ken Messersmith!

We can examine the registered services by issuing a command services at the
JES server prompt and we will get the following:

> services
[hello.service.HelloService]

description=hello

The property description=hello was set with the Properties.put method (line
14) in the source code Activator.java.

We could provide a different implementation of HelloService called HelloImpl2.
java that is similar to HelloImpl.java except that the implementation of the hello
method is different.

1 package hello2.impl;
2
3 import java.util.*;
4 import hello.service.HelloService;
5
6 class HelloImpl2 implements HelloService {
7
8 public void hello(String firstName, String lastName,

String title) {
9 System.out.println("Hello, "+ title +" "+ firstName +

" "+ lastName +"!");
10 System.out.println("How are you? -- I’m fine, thank

you.");
11 }
12 }

Code 7.7. File name: HelloImpl2.java

This HelloImpl2.java also imports and implements the HelloService interface
(lines 4 and 6). The hello method is implemented as before, but this time it displays
more greeting messages (lines 9 and 10). The new implementation must also have a
new bundle activator class that is similar to the one before but that registers our new
service, HelloImpl2.

1 package hello2.impl;
2
3 import java.util.Properties;
4 import org.osgi.framework.*;

COMPONENT MODEL OF OSGi 245

5 import hello.service.HelloService;
6
7 public class Activator implements BundleActivator {
8
9 private ServiceRegistration reg =null;
10
11 public void start(BundleContext ctxt) throws

BundleException {
12 HelloService hs = new HelloImpl2();
13 Properties props = new Properties();
14 props.put("description", "hello2");
15
16 reg = ctxt.registerService("hello.service.HelloService",

hs, props);
17
18 hs.hello("Andy", "Wang", "Dr.");
19 hs.hello("Don", "Carpenter", "Professor");
20 hs.hello("Ken", "Messersmith", "Mr.");
21 }
22
23 public void stop(BundleContext ctxt) throws

BundleException {
24 if (reg != null)
25 reg.unregister();
26 }
27 }

Code 7.8. File name: Activator.java for a different implementation

The manifest file for this new implementation is listed below:

Bundle-Activator: hello2.impl.Activator
Export-Package: hello.service

Code 7.9. File name: Manifest2 for the new implementation

Notice that the Hello2 bundle exports the package hello.service, which includes
HelloService.java. Recall that the bundle Hello exports the hello.service
package as well. If another bundle wants to share hello.service, does it share
with bundle Hello or bundle Hello2? The JES framework is designed so that the
bundle that is started first will export the package. We can always check which bundle
has exported a package using exportedpackages command from the JES framework
command line.

After compiling these source codes, we have the following file structure, starting
with our current working directory:

Current-Working Directory
Manifest2 (file)
hello2 (directory)

impl2 (directory)

246 COP WITH OSGi COMPONENTS

HelloImpl2.class (file)
Activator.class (file)

Issuing the following command from the current working directory

jar cmf Manifest2 Hello2.jar hello\service*.class
hello2\impl2*.class

will create a bundle named Hello2.jar. Install and start this bundle, and we will see
the following display:

Hello, Dr. Andy Wang!
How are you? -- I’m fine, thank you.
Hello, Professor Don Carpenter!
How are you? -- I’m fine, thank you.
Hello, Mr. Ken Messersmith!
How are you? -- I’m fine, thank you.

To summarize, a service should provide a public interface that specifies what it does
and the necessary implementation classes that realize how it is done. The service must
be registered with the framework to be useful for other bundles to access. The general
process of developing a service bundle is listed below:

Step 1: Design the service interface.
Step 2: Implement the service.
Step 3: Write a bundle activator that usually registers the service in its start method

and unregisters the service in its stop method.
Step 4: Declare the packages exported by the bundle in the Export-Package manifest

header; the service interface should belong to the exported packages.
Step 5: Compile the classes and pack everything into a bundle JAR file.

We have discussed component definitions in Chapter 1 and we found out that it
is not easy to have a unique component definition to fit in different situations. Such
difficulties underlying the definition discussion are due to the following facts:

Software components are associated with their component infrastructure. Different com-
ponent technologies have different component infrastructures, and thus have different
component definitions.

In OSGi component infrastructure, a component is a packed JAR file, which is self-
contained in that it contains class files and resources such as images, HTML pages,
and other data files necessary for this component to fulfill its functions. Each OSGi
bundle usually delivers at least one service that is reusable by other components. An
OSGi component is not just a static archive file. It has a life cycle with state transitions
in its lifetime, as illustrated in Figure 7.1.

When a component is developed and deployed, other components can use it through
OSGi connection model discussed in the next section.

CONNECTION MODEL OF OSGi 247

Explicit
transition

Automatic
transition

In
st

al
l

Uninsta
ll

Uninstall

Update
Resolve

Start

Stop

INSTALLED

UNINSTALLED RESOLVED

STARTING

ACTIVE

STOPPING

FIGURE 7.1. Bundle state transitions in its life cycle.

7.3 CONNECTION MODEL OF OSGi

There are two kinds of connections among OSGi components:

1. Static connections through import/export packages.
2. Dynamic connections through services.

Static connections define the architectural relationship among components in terms
of their packages dependency. A package is a collection of classes that are grouped
together according to their functionality. The Java API, for instance, consists of hun-
dreds of such packages, forming a Java class library. Java uses a special keyword
package to create packages at the first line of a Java source code. One OSGi compo-
nent can import multiple packages, which indicates that the component needs to use
some classes in the imported packages to fulfill its own tasks. On the other hand, one
OSGi component can export packages, which indicates that the component is willing to
make its packages available for other components to use. In object-oriented program-
ming or library-based programming, one program can always import an API package or
a library package without considering its availability at runtime. In component-oriented
programming, however, one component has to import those packages that have been
exported by other components so that its needs could be satisfied at runtime.

An OSGi component expresses its intention to export or import packages by declar-
ing the packages with the Export-Package or Import-Package header respectively
in its manifest file. For instance, the HTTP bundle in JES 2.0 has the following headers
in its manifest file:

Export-Package: org.osgi.service.http; specification-version=1.0,
com.sun.jes.service.http, com.sun.jes.service.ssl

Import-Package: javax.servlet; specification-version=2.1.1,
javax.servlet.http; specification-version=2.1.1

248 COP WITH OSGi COMPONENTS

Let diamonds represent packages and rectangles represent OSGi components, that is,
OSGi bundles. Figure 7.2 illustrates that Bundle 1 exports package A and imports
package B.

With this graphical notation, we can discuss the component connections in terms of
their packages dependency. For example, Figure 7.3 demonstrates the package depen-
dency among three bundles in JES 2.0: HTTP, Servlet, and Log.

The package dependency is determined at design time. Therefore, package depen-
dency represents static component connections.

The second kind of component connection in OSGi component infrastructure is
service connections. One OSGi component can provide certain services by registering
its services with the framework. Once these services are registered, they can be accessed
by other components. A component can provide multiple services if it desires. On the
other hand, a component might not provide any service at all.

Suppose we have an OSGi component called FTP that provides file transfer services.
In its manifest file, there is one line as the following:

Export-Package: ftp.service; specification-version=1.0

In order to register its service with the framework, FTP has a piece of code similar
to the following in the start() method of its activator class:

Bundle 1

A B

FIGURE 7.2. Export/import packages.

(a) com.sun.jes.service.http
(b) org.osgi.service.http
(c) com.sun.jes.service.ssl
(d) javax.servlet
(e) javax.servlet.http
(f) org.osgi.service.log
(g) javax.servlet.jsp

HTTP

(a) (d)

(b)

(c)

(e)

(f)

(g)
Servlet

Log

FIGURE 7.3. OSGi component connections via package dependency.

CONNECTION MODEL OF OSGi 249

1 //in the FTP bundle’s activator
2 public void start(BundleContext bctx) {
3 Properties props = new Properties();
4 props.put(“port”, new Integer(21));
5 FtpService ftp = new FtpServiceImpl();
6 bctx.registerService(“ftp.service.FtpService”, ftp,

props);
7 }

Code 7.10. Registering a service

The BundleContext in line 2 is a Java interface that provides bundle’s execution
context within the framework. It has a method called registerService() to register
services in the framework’s service registry. The first parameter to this method (line 6)
is the class name under which the service can be located. The second parameter is the
service object. The third parameter is the properties for this service. Note that the Prop-
erties object was created in line 3 and line 4. Since java.util.Properties inherits
from java.util.Hashtable and again from java.util.Dictionary, props calls
the Hashtable method put() to set a property by supplying a key and its value to
the put() method (line 4).

After a service is registered, another component can use it through invoking the
service’s methods. Suppose a bundle called Download wants to use the file transfer
service provided by FTP bundle. First of all, the manifest file of Download has to
include an import header as below:

Import-Package: ftp.service; specification-version=1.0

Then, it could obtain such a file transfer service with the following code in the
start() method of its activator class:

1 //in the Download bundle’s activator
2 public void start(BundleContext bctx) throws Exception {
3 ServiceReference ref

=bctx.getServiceReference(‘‘ftp.service.FtpService’’);
4 FtpService ftp = (FtpService) bctx.getService(ref);
5 ftp.get(file);
6 }

Code 7.11. Using a service

In the code list 7.11, it calls BundleContext’s getServiceReference method
in line 3, specifying the name of the service interface to get ServiceReference to
the service. Then in line 4, it calls BundleContext’s getService method, passing
in ServiceReference obtained in line 3, to get the service object. Finally, in line 5,
file transfer is conducted by calling the method of the service object.

Let circles represent services and rectangles represent bundles. Figure 7.4 illustrates
that Bundle 1 provides service A and requires service B.

250 COP WITH OSGi COMPONENTS

Bundle 1

A B

FIGURE 7.4. OSGi services.

A: HttpService
B: BasicSchemeHandler
C: UserPasswordService

JESMP B

A

C

A

B

HTTP

HTTPUSERS

FIGURE 7.5. OSGi service connection.

With this graphical notation, we can describe the service connections among the
three components in JES 2.0 – JESMP, HTTP, and HTTPUSERS, as depicted in
Figure 7.5.

In Figure 7.5, both JESMP and HTTPUSERS require the HttpService provided by
the HTTP component. JESMP requires the UserPasswordService provided by HTT-
PUSERS. Both JESMP and HTTPUSERS require the BasicSchemeHandler service
provided by another component called HTTPAUTH that is not displayed in the figure.

We have discussed two kinds of connections among OSGi components: package
connections and service connections. Package connections represent static, architec-
tural dependency among components, while service connections represent dynamic,
runtime dependency among components. These two kinds of connections have a close
relationship: package connections are the prerequisite for service connections. In other
words, a server component must first export its service package and a client component
must import the service package before the client can successfully establish a service
connection with the server component.

7.4 DEPLOYMENT MODEL OF OSGi

An OSGi component is deployed by installing it in the OSGi framework. In JES 2.0,
there is a default reusable component base located at the directory of %JES HOME%/
bundles. A bundle can be physically moved into this component base in order to be
installed conveniently by referring its name only. Otherwise, you have to specify the
complete URL for a component in order to install it.

DEPLOYMENT MODEL OF OSGi 251

An OSGi component is a Java archive (JAR) file called a bundle, which may reside
on the local file system or on a remote server. The current OSGi specification does
not provide specific mechanisms as how to find those bundles. The deployment of
OSGi components requires that the location and the name of the bundles be known
in advance.

Once a component has been installed, it will have unique identifier (ID) assigned
by the framework, and its state becomes INSTALLED. Recall that a bundle has var-
ious states during its life cycle (Figure 7.1). Whenever a bundle enters one of the
five states in {INSTALLED, STARTED, STOPPED, UPDATED, UNINSTALLED}, a
bundle event will be generated to inform its listeners. Thus, a bundle can trigger five
types of events, as summarized in Table 7.2.

After a bundle has been installed, the OSGi framework will examine its manifest
file to see what packages this bundle to import/export. If it needs to import packages,
the framework checks whether those packages have been exported by other bundles.
If yes, the bundle changes its state to RESOLVED and exports its packages. A user
of the RESOLVED bundle can start the bundle by issuing a “start” command fol-
lowed by the bundle ID in the OSGi framework. The framework responses to the
user command by creating a BundleContext object for the bundle and calling the
start() method of the bundle’s activator class. Then, the bundle registers its ser-
vices, which is part of the start() method. This action generates a service event
broadcast to interested listeners. There are three kinds of service events, as illustrated
in Table 7.3.

TABLE 7.2. OSGi Bundle Events

Bundle Event When the Event Is Fired Listener Method Invoked

INSTALLED A bundle has been installed in the
framework.

BundleListener.bundleChanged

STARTED A bundle has been activated. BundleListener.bundleChanged

STOPPED A bundle has been deactivated. BundleListener.bundleChanged

UPDATED A bundle has been updated. BundleListener.bundleChanged

UNINSTALLED A bundle has been uninstalled. BundleListener.bundleChanged

TABLE 7.3. OSGi Service Events

Service Event When the Event Is Fired Listener Method Invoked

REGISTERED A service has been registered. ServiceListener.serviceChanged

UNREGISTERING A service is being unregistered. ServiceListener.serviceChanged

MODIFIED The properties of a service
have been modified.

ServiceListener.serviceChanged

252 COP WITH OSGi COMPONENTS

When the start() method has been successfully executed and returned, the bundle
changes its state from STARTING to ACTIVE. An active bundle is one running in the
OSGi environment with all its dependency resolved.

A bundle can be updated at runtime, which allows a new version of the bundle to
replace the old one. This is done by the update command followed by the bundle ID
and the URL of the new version JAR file.

To stop a bundle, the OSGi framework calls the bundle activator’s stop() method
followed by a sequence of actions:

1. The framework unregisters the service provided by the bundle. This will trigger
a service event broadcast to notify interested listeners that the service is being
unregistered.

2. The framework releases any services in use by the bundle.
3. The framework removes any event listeners added by the bundle.
4. The bundle’s state changes from ACTIVE to STOPPING and then to

RESOLVED.
5. A bundle event is generated and broadcast to notify listeners that the bundle has

been stopped.

Finally, a bundle can be uninstalled such that the bundle is removed from the
OSGi framework environment. Again, a bundle event will be triggered to inform those
listeners that the bundle has been uninstalled.

7.5 EXAMPLES AND LAB PRACTICE

This section discusses a few examples of component-oriented programming using OSGi
component infrastructure. Readers are recommended to follow the steps with hands-on
practice on a computer. As we discussed in previous sections, the OSGi component
infrastructure defines service bundles as self-contained software components, and each
component usually has a public interface and its implementation. The service interface
specifies what this component does, and the service implementation class provides how
this service is realized in detail. The process of developing an OSGi component has
six steps as listed below:

ž Step 1: Write a Java interface for the service bundle.
ž Step 2: Write a Java class to implement the interface in Step 1.
ž Step 3: Write a Java class, usually named as Activator, to implement the
BundleActivator interface provided by org.osgi.framework package. The
activator class usually registers the service in its start() method and unregisters
the service in its stop() method.

ž Step 4: Write a text file, usually named as Manifest, to define the bundle headers.
The most important headers include: Bundle-Activator, Export-Package, and
Import-Package.

ž Step 5: Compile the Java source files and create a bundle JAR file.
ž Step 6: Deploy the bundle JAR file to an OSGi server like JES 2.0 and start

running it.

EXAMPLES AND LAB PRACTICE 253

Example 7.1

Following the process given above, let us develop a weather service bundle that reports
the current weather for a city.

Step 1: Write a Java interface for the weather service bundle.

package weather;
public interface WeatherService {

public void getWeather(String location);
}

Code 7.12. File name: WeatherService.java

Step 2: Write a Java class to implement the interface.

package weather;
import weather.WeatherService;

class WeatherServiceImpl implements WeatherService {
public void getWeather(String location) {

System.out.println(location + " is sunshine, high
70, low 59");

}
}

Code 7.13. File name: WeatherServiceImpl.java

Step 3: Write an activator class.

package weather;
import java.util.*;
import org.osgi.framework.*;
import weather.WeatherService;

public class Activator implements BundleActivator {
private ServiceRegistration reg;

public void start(BundleContext ctx) {
WeatherService ws = new WeatherServiceImpl();
Properties prop = new Properties();
prop.put("description", "weather");

reg = ctx.registerService("weather.WeatherService",
ws, prop);

ws.getWeather("Marietta");
}

public void stop(BundleContext ctx) {

254 COP WITH OSGi COMPONENTS

System.out.println("Thanks for using weather
service.");

if (reg != null)
reg.unregister();

}
}

Code 7.14. File name: Activator.java

Step 4: Write a text file named as Manifest.txt.

Export-Package: weather
Bundle-Activator: weather.Activator

Code 7.15. File name: Manifest.txt

Step 5: Compile the Java source files and create a bundle JAR file with the follow-
ing commands:

javac -d . -classpath %classpath%;c:\jes2.0\lib\framework.jar
*.java

jar cmf Manifest.txt weather.jar weather*.class

Step 6: Deploy the bundle JAR file to an OSGi server like JES 2.0 and start running it.

Example 7.2

This example demonstrates a bundle that registers a servlet and an image included as
a resource in the bundle.

Step 1: With a text editor, create the following source code files:

package servlet;
import org.osgi.framework.*;
import org.osgi.service.http.*;
import java.net.*;
import java.io.IOException;
import javax.servlet.*;
import javax.servlet.http.*;

public class Activator implements BundleActivator {
final static String IMAGE_ALIAS = "/example7_2/image";
final static String SERVLET_ALIAS = "/example7_2";
private HttpService http;

public void start(BundleContext context) throws Exception {
ServiceReference ref = context.getServiceReference(

"org.osgi.service.http.HttpService");

EXAMPLES AND LAB PRACTICE 255

http = (HttpService) context.getService(ref);
HttpContext hc = new HttpContext() {

public String getMimeType(String name) {
return null;

}

public boolean
handleSecurity(HttpServletRequest req,
HttpServletResponse resp) throws IOException

{
return true;

}

public URL getResource(String name) {
URL url =

this.getClass().getResource(name);
return url;

}
};
http.registerResources(IMAGE_ALIAS,

"/servlet/image", hc);
http.registerServlet(SERVLET_ALIAS, new

ExampleServlet(), null, hc);
}

public void stop(BundleContext context) throws Exception {
if (http != null) {

http.unregister(IMAGE_ALIAS);
http.unregister(SERVLET_ALIAS);

}
}

}

Code 7.16. File name: Activator.java

package servlet;
import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.Date;

class ExampleServlet extends HttpServlet {
public void doGet(HttpServletRequest req,

HttpServletResponse resp)
throws ServletException, IOException

{
String html =

"<HTML>\n" +
"<title>Example Servlet</title>\n" +
"<body bgcolor=white>\n" +

256 COP WITH OSGi COMPONENTS

"<h1>Time is
Money!<h1>\n" +

"<h3>This is a Sample of " +
"Using HTTP Service.</h3>\n\n" +
"<img src=\"" + Activator.IMAGE_ALIAS +
"/clock.gif\">
\n</body></HTML>\n";

ServletOutputStream out = resp.getOutputStream();
resp.setContentType("text/html");
out.println(html);
out.close();

}
}

Code 7.17. File name: ExampleServlet.java

Bundle-Activator: servlet.Activator
Import-Package: javax.servlet; specification-version=2.1,
javax.servlet.http; specification-version=2.1,
org.osgi.service.http

Code 7.18. File name: Manifest.txt

Step 2: Compile the two Java source files with the following command, where
%JES HOME% refers to the installation directory of JES 2.0.

javac -d . -classpath %classpath%;%JES HOME%\lib\framework.jar;\
%JES_HOME%\bundles\servlet.jar;%JES_HOME%\bundles\http.jar
*.java

Step 3: This example uses an image file. Select and put an image file (here we use
clock.gif that comes along with JES 2.0) in the directory matching the source
code 7.16 and 7.17: .\servlet\image\clock.gif.

Step 4: Generate a JAR file with the following command:

jar cmf Manifest.txt myServlet.jar servlet*.class
servlet\image\clock.gif

You can use a command “jar tvf myServlet.jar” to check the content of
your JAR file, myServlet.jar, which should have the following content:

META-INF/
META-INF/MANIFEST.MF
servlet/Activator.class
servlet/Activator$1.class
servlet/ExampleServlet.class
servlet/image/clock.gif

Step 5: Start the JES 2.0 and install the bundle myServlet.jar. Since this bundle
depends on http.jar and servlet.jar, make sure to start these two bundles
before you install and start myServlet.jar.

EXAMPLES AND LAB PRACTICE 257

FIGURE 7.6. Accessing a servlet registered with HttpService.

Step 6: Launch a Web browser with the URL http://localhost:8080/example7 2, you
should see Figure 7.6 as a result.

Example 7.3

This example demonstrates the package connections among five OSGi components.
The code is as follows:

package a;
import org.osgi.framework.*;

public class Activator implements BundleActivator {
public void start(BundleContext context) throws

Exception{
System.out.println("I am bundle a");

}
public void stop(BundleContext context) throws

Exception{
}

}

Bundle A’s
Activator.java
And

Manifest file

Bundle-Activator: a.Activator
Import-package: d, b

258 COP WITH OSGi COMPONENTS

package b;
import org.osgi.framework.*;

public class Activator implements BundleActivator {
public void start(BundleContext context) throws

Exception{
System.out.println("I am bundle b");

}
public void stop(BundleContext context) throws

Exception{
}

}

Bundle B’s
Activator.java
And

Manifest file

Bundle-Activator: b.Activator
Import-package: c
Export-Package: b

package c;
import org.osgi.framework.*;

public class Activator implements BundleActivator {
public void start(BundleContext context) throws

Exception{
System.out.println("I am bundle c");

}
public void stop(BundleContext context) throws

Exception{
}

}

Bundle C’s
Activator.java
And

Manifest file

Bundle-Activator: c.Activator
Export-Package: c

package d;
import org.osgi.framework.*;

public class Activator implements BundleActivator {
public void start(BundleContext context) throws

Exception{
System.out.println("I am bundle d");

}
public void stop(BundleContext context) throws

Exception{
}

}

Bundle D’s
Activator.java
And

Manifest file

Bundle-Activator: d.Activator
Import-Package: e, c
Export-Package: d

EXAMPLES AND LAB PRACTICE 259

package e;
import org.osgi.framework.*;

public class Activator implements BundleActivator {
public void start(BundleContext context) throws

Exception{
System.out.println("I am bundle e");

}
public void stop(BundleContext context) throws

Exception{
}

}

Bundle E’s
Activator.java
And

Manifest file

Bundle-Activator: e.Activator
Export-Package: e

Code 7.19. Five simple bundles and their manifest files

According to their manifest files, these five components have the package connections
illustrated in Figure 7.7.

Now, compile and package these codes into five JAR files and deploy them into
JES framework. If you start bundle A first, what will happen? If you start B before C,
what will happen?

Lab Practice 7.1

1. Download JES 2.0 from http://wwws.sun.com/software/embeddedserver/buy/
index.html and install JES 2.0 on your computer, referencing the documentation
of JES 2.0.
a. JES 2.0 was downloaded onto my computer but I failed to install it.
b. JES 2.0 was downloaded onto my computer and I have installed it successfully.
c. I have got the following problems:
d. I did not download or install it because it is already available on my computer.

2. How many different commands are provided by JES 2.0? List
five major commands that you have tried out so far.
a.
b.

A

b

d

c

e

C

E

B

D
c

FIGURE 7.7. The package connections among five OSGi bundles.

260 COP WITH OSGi COMPONENTS

c.
d.
e.

3. Develop a Java program “MyCommands.java” similar to the sample code list 7.1.
When started, the program displays the five JES commands you listed in Question 2.
When stopped, the program displays “Bye XXX,” where “XXX” is your name.

4. Write down where is your cache directory.

Lab Practice 7.2

This assignment practices how to use framework console and the JES Management
Panel to

ž manage the bundle life cycle in the JES framework
ž obtain information about installed bundles
ž get and set system properties and OSGi environment variables

1. Launch the JES framework.
2. Install and start the following three bundles: log.jar, servlet.jar, and

http.jar.
3. Make sure that only the three bundles in Step 2 are actively running in your

framework. Now, issue the command “exportedpackages” to obtain a list
of package dependencies. Using the graphical notations given in Figure 7.2 for
OSGi package connections, draw a diagram illustrating the package dependencies
among the three bundles.

4. Make sure that only the three bundles in Step 2 are actively running in your
framework. Now issue three commands “manifest log,” “manifest http,”
and “manifest servlet” to obtain a list of services of these bundles.
Alternatively, you can issue the command “services” and then filtered services
command to collect services information: “services (description =*Log*),”
“services (description =“Http”),” and so on. Following the graphic nota-
tions defined in Figure 7.4 for OSGi service connections, draw a diagram illustrating
the service dependencies among the three bundles.

5. Get OSGi Environment Properties:
a. Issue the command “get org.osgi.framework.version” to get the ver-

sion of the framework.
b. Issue the command “get org.osgi.framework.vendor” to get the vendor

of this framework implementation.
c. Issue the command “get org.osgi.framework.language” to get the lan-

guage being used.
d. Issue the command “get org.osgi.framework.os.name” to get the name

of the OS of the hosting computer.
e. Issue the command “get org.osgi.framework.os.version” to get the

version number of the OS of the hosting computer.
f. Issue the command “get org.osgi.framework.processor” to get the

name of the processor of the hosting computer.

SUMMARY 261

6. Set OSGi Properties:
a. Issue the command “get com.sun.jes.service.http.hostname” to get

the hostname of the computer running JES http service.
b. Issue the command “get com.sun.jes.service.http.port” to get the

port number running JES http service.
c. Issue the command “set com.sun.jes.service.http.port=8080” to set

the port number running JES http service.
7. The JES Management Panel (JESMP) provides a graphical interface to

a framework instance. Make sure the three bundles in Step 2 have
been installed and started. Then, issue the following commands: “start
httpauth, tcatjspcruntime, httpusers, jesmp.” Now, check bundles
with a command “bundles,” and you will find all the following seven bundles are
in ACTIVE status: log.jar, servlet.jar, http.jar, httpauth.jar,
tcatjspcruntime.jar, httpusers.jar, and jesmp.jar.

8. Start a web browser with the URL http://hostname:portnumber/admin in the loca-
tion field. Fill in user name and password both as “admin.”

9. Print out your content of “View Log.”

Turn in: Your results of Steps 3, 4, and 9.

Lab Practice 7.3

Develop a grade service component in OSGi component infrastructure such that it
stores student grades and displays the grades upon starting the bundle.

Step 1: Develop an interface, GradeService.java, publishing the grade service. For
instance, you could provide a getGrade() method in the interface.

Step 2: Develop an implementation of the grade service interface. The implementation
should store grades for a number of students and provide detail implementation of
the getGrade() method. For instance, the method could be implemented in such
a way that the student grade will be printed out upon request.

Step 3: Develop an activator class to test the grade service. Note that this activator
class should register the grade service in its start() method and unregister it in
its stop() method.

Step 4: Write a manifest file, and create a JAR file.
Step 5: Deploy your component into JES framework and start it.

Turn in: Your source files GradeService.java, GradeServiceImpl.java, Acti-
vator.java, and Manifest file.

7.6 SUMMARY

In the OSGi component infrastructure, the basic software components are called service
bundles. A bundle usually consists of a service interface, an implementation class, and
an activator class. The interface declares what services this component will provide,
and the implementation class contains detail realization of how these services are
implemented. The activator class conducts routine work for starting and stopping a
service bundle, such as registers and unregisters its services with the framework. The

262 COP WITH OSGi COMPONENTS

OSGi framework plays the role of a component home or component container. Its
responsibilities include managing the life cycle of bundles, resolving interdependencies
among bundles, maintaining a registry of services, and providing a communication
platform for component collaborations. One of the most distinguishing features of OSGi
component infrastructure is its support for dynamic evolution of a component-based
system. OSGi components can be downloaded, installed, updated, stopped, uninstalled,
and removed dynamically without terminating the overall system. OSGi components
are highly independent of each other in that code within one bundle cannot refer to
classes inside another component. This feature protects classes in one component from
interfering with those in another component. However, components in OSGi model do
not completely isolated from each other. They are hooked to the OSGi framework and
they cooperate through the OSGi connection model.

The OSGi connection model allows cooperation among service bundles as well as
creation of large applications using bundles as the building blocks. Thus, a high-level
bundle could rely on lower-level bundles to do those common and routine works. There
are two kinds of component connections in OSGi: package connections and service
connections. One bundle can export its packages to make the classes available for other
bundles to use. On the other hand, a bundle can request other packages by importing
them. Both import and export packages are done by declaring the packages using head-
ers in their manifest files. Package connections represent static dependencies among
components because these connections are specified at design time by the component
developers. The service connections, however, represent dynamic dependencies among
components as they are resolved at runtime with the help of OSGi framework. When
one bundle registers its services with the framework, it publishes its services so that
other bundles can obtain and consume the services. The dynamic characteristics of
OSGi service bundles create unique challenges for handling service connections. What
would happen if one client component is actively using the services provided by a
server component and the server bundle decides to withdraw?

The OSGi framework solves the dynamic service dependency by event handling.
Within the framework, events are broadcast when bundles go through their life cycle
states and when services are published or withdrawn. A server component withdraws
its service by unregistering its services with the framework. The unregistering action
is not complete until all the client components have finished their actions and have
done proper cleanup to release the service connections. It is important to notice these
dynamic features inherent in OSGi component infrastructure when you build your
service bundles.

The deployment model in OSGi component infrastructure relies on the framework
implementation for the OSGi specification. Under JES 2.0, an implementation of OSGi
1.0 provided by Sun Microsystems Inc., the deployment of a component is done by
supplying the framework with the URL of the bundle’s JAR file, which may reside
on the local computer or on a remote server. The framework will assign a unique ID
for each service bundle, resolve its package dependency and service dependency, and
provide other necessary resources for it to be functioning correctly. When a bundle is to
be stopped, the framework calls the bundle activator’s stop() method and unregisters
the services provided by this bundle.

The OSGi component infrastructure enforces the separation of interface and imple-
mentation. Thus, any change made to the implementation is transparent to the client of
the component. This will encourage software reuse and improve flexibility as well as

SELF-REVIEW QUESTIONS 263

reduce maintenance cost. The OSGi specification focuses on delivering multiple ser-
vices through a gateway in home, office, or vehicle environment. However, the OSGi
component infrastructure merits further research and study from a broader software
engineering perspective [Koza 1999; Parrish 1999].

7.7 SELF-REVIEW QUESTIONS

1. The OSGi in this chapter stands for
a. Operating System General initiative

b. Operating System Generic interface
c. Open Service Generation and interconnection

d. Open Service Gateway initiative

2. Which of the following is the component in OSGi component infrastructure?
a. Imported package
b. Exported package

c. Service bundle

d. Manifest file

3. If a service bundle has an activator class, what methods have to be implemented
in this class?
a. Start and stop
b. Run and sleep

c. Constructor and destructor

d. Register and unregister

4. When you compile your source code in order to generate an OSGi component,
which JAR file should be included in your CLASSPATH?
a. %JAVA HOME%/lib/tools.jar.

b. %JES HOME%/lib/framework.jar.

c. %JAVA HOME%/lib/dt.jar.

d. %JES HOME%/bundles/log.jar.

5. Suppose you have created a correct manifest file and you have two class files in
the same working directory to be included in the JAR file. Which of the following
is the correct command to create the myBundle.jar file?
a. jar cmf myBundle.jar Manifest myclass1.class myclass2.class

b. jar cfm myBundle.jar Manifest myclass1.class;myclass2.class

c. jar cmf Manifest myBundle.jar myclass1.class/myclass2.class

d. jar cmf myBundle.jar Manifest myclass1.class myclass2.class

6. What is the OSGi framework?
a. It is the service bundle that an OSGi component developer must develop and

deploy first.

b. It is the Java virtual machine for OSGi services to function correctly at runtime.

264 COP WITH OSGi COMPONENTS

c. It serves as the common environment for hosting a set of OSGi components
called bundles.

d. It is an interface between gateway hardware and gateway software such as
operating systems.

7. If a manifest file for a nonlibrary OSGi component has only one line, what header
will it specify?
a. Export-Package
b. Import-Package
c. Bundle-Version
d. Bundle-Activator

8. In the OSGi component connection model, if a bundle imports a package, it indi-
cates that:
a. The bundle informs the framework to make the classes in the exported package

available for any other bundles that need to use them.
b. The bundle is looking for a peer bundle that imports the same package.
c. The bundle needs to use the specified classes from the imported package in

order to run.
d. The bundle is communicating to a peer bundle directly for a connection.

9. In the OSGi component connection model, if a bundle exports a package, it indi-
cates that:
a. The bundle informs the framework to make the classes in the exported package

available for any other bundles that need to use them.
b. The bundle is looking for a peer bundle that imports the same package.
c. The bundle needs to use the specified classes from the imported package in

order to run.
d. The bundle is communicating to a peer bundle directly for a connection.

10. In OSGi component connection model, which of the following is correct?
a. The bundle package connection is independent of service connection.
b. The bundle package connection is a prerequisite for service connection.
c. The bundle service connection is a prerequisite for package connection.
d. The bundle service connection is complete as soon as package connection

is resolved.

11. In the OSGi component connection model, which of the following is correct?
a. The bundle package connection is dynamic.
b. The bundle service connection is static.
c. The bundle service connection is dynamic.
d. The package connection and service connection both are dynamic.
e. The package connection and service connection both are static.

12. Component-oriented programming with OSGi component technology requires
more discipline on the part of programmers because:
a. The programmers have to learn Java.

EXERCISES 265

b. The programmers can always count on other components to provide neces-
sary services.

c. Once the services provided by other components have registered, they will be
available all the time.

d. The services a component depends on may not always be there.

Keys to Self-Review Questions

1. d 2. c 3. a 4. b 5. a 6. c 7. d 8. c 9. a 10. b 11. c 12. d

7.8 EXERCISES

1. What is the component model in OSGi component infrastructure?

2. What is the connection model in OSGi component infrastructure?

3. What is the deployment model in OSGi component infrastructure?

4. What is the difference between STARTING and ACTIVE states in a bundle
life cycle?

5. Under what situations could a bundle enter RESOLVED state?

6. When the stop() method in a bundle’s activator class is called, what tasks will
be performed by the OSGi framework?

7. Develop an OSGi component providing billing services for a home user. Typical
functions of such billing services include:
a. On-line billing service for home internet connection.
b. Automatic billing service for local and long-distance phone bills.
c. Automatic billing service for cable or satellite TV services.
d. Automatic billing service for water, electricity, and gas companies, assuming

that smart meters have been installed at home to automatically report meter
readings to a home gateway.

8. Develop an OSGi component to check your local news.

9. Develop an OSGi component to provide fax services for your home business.

10. Develop an OSGi component to control your home light system, including gate
lights, garage lights, back yard lights, bedroom lights, and so on.

11. Develop an OSGi component to monitor and control your home temperature.

12. Develop an OSGi component to monitor and control your lawn sprinkler.

13. Modify the grade service in Lab 7.3 such that when started, the service will display
the class average in addition to individual grade.

14. Develop a service bundle based on Lab 7.3 to make the service interactive. When
the bundle starts, it will first ask the user to input her/his name, then the service
searches its database and displays the corresponding grade if there is a match
between the user name and one record in its own database.

266 COP WITH OSGi COMPONENTS

15. Write a short research paper discussing the commonality and differences between
OOP and COP with the OSGi component infrastructure.

16. Write a term paper comparing the OSGi component infrastructure with other com-
ponent infrastructures such as JavaBeans, EJB, CCM,. NET, Web Services, and
so on.

REFERENCES

[Brown 1998] Brown, A. W. and Wallnau, K. C. “The current state of CBSE,” IEEE Software,
Sept/Oct: 1998, 37–46.

[Chen 2002] Chen, K. and Gong, Li. Programming Open Service Gateways with Java Embedded
Server Technology, Addison-Wesley, New York, 2002.

[Koza 1999] Kozaczynski, W. “Composite nature of component,” 1999 International Workshop
on Component-Based Software Engineering , http://www.sei.cmu.edu/cbs/icse99/papers, 1999.

[Oscar 2003] Hall, R. S. http://sourceforge.net/projects/oscar-osgi/, accessed in May 2003.

[OSGi 2003] OSGi Alliance Web site: http://www.osgi.org, visited in May 2003.

[Parrish 1999] Parrish, A., Dixon, B., and Hale, D. “Component based software engineering: a
broad based model is needed,” 1999 International Workshop on Component-Based Software
Engineering , http://www.sei.cmu.edu/cbs/icse99/papers, 1999.

[ProSyst 2003] ProSyst Software AG. http://www.prosyst.com/, accessed in May 2003.

[Sun 2003] Sun Microsystems, Inc. http://wwws.sun.com/software/embeddedserver/, accessed in
May 2003.

8
WEB SERVICES COMPONENTS

Objectives of This Chapter

ž Introduce the Web services framework
ž Introduce concepts of Web services components
ž Discuss compositions of Web services components
ž Discuss types of Web services components and their deployments
ž Discuss the interoperability of Web services components
ž Distinguish between synchronous and asynchronous Web services invocations
ž Provide step-by-step tutorials on building, deploying, and using Web services

components

8.1 WEB SERVICES FRAMEWORK

8.1.1 Overview of the Web Services Framework

Web service is a new paradigm to deliver application services on Web and enables
a programmable Web, not just an interactive Web. Web service is the third gen-
eration in the Web evolution after static HTML and interactive Web development
such as PERL, ASP, JSP, and others. Web services are typical black box–reusable
building block components in the distributed computing. Although there are many
other distributed component frameworks available in the industry such as CORBA,
MS DCOM, .NET, and EJB, only Web service can provide cross-platform, cross-
programming language, cross-proprietary restriction, and internet firewall-friendly solu-
tions to the interoperable distributed computing. All other distributed technologies face

Component-Oriented Programming, by Andy Ju An Wang and Kai Qian
ISBN 0-471-64446-3 Copyright 2005 John Wiley & Sons, Inc.

267

268 WEB SERVICES COMPONENTS

some painful problems such as difficulties of message exchanging and remote object
method invocation between different platform components, for example; we need to
bridge the gaps between them. Furthermore, each of these technologies needs to have
some special protocol layers to be installed such as ORB/IIOP for CORBA, which
makes the interoperability very difficult in the distributed computing. Most of these
distributed component technologies have a hard time to deal with the firewall secu-
rity. Web service works on a protocol stack consisting of SOAP/XML/HTTP/TCP/IP,
which makes Web services widely acceptable as long as clients of Web services
have supports from these protocols. Web service revolutionizes the distributed com-
puting and signals a new era of lightweight distributed application development in
the advantage of loosely coupled features of Web services components. The deploy-
ment of components in other technologies is not very easy. It is very easy to deploy,
publish, discover, and invoke a Web service on Internet. Web service is a solu-
tion to all the above problems. There is a strong shift in e-Commerce, B2B, Enter-
prise Application Integration (EAI) from using proprietary technologies to using Web
services to develop new applications on-line or to wrap existing application with
Web services technologies. There is no precise definition on Web services by a sin-
gle statement. We can simply say that Web service is a self-descriptive on-line dis-
tributed component, which exposes its services and functionality via its interface
on-line and can be published, located, and invoked programmatically over the Internet.
A key point of the importance of Web services is its ability to support program-
matic endpoint for any application to get services provided by any Web service
on-line.

One philosophy behind Web services is to shift distributed software development
from programming to composition, from coding ground up to building new application
from existing components either by purchasing or by reusing the existing components.
This is exactly the advantage of Component-Oriented Programming (COP) and Com-
ponent Based Software Development (CBSD). So the main goal of Web services is not
only to provide services on Web but also to provide a mechanism to share its services
as a building block to be part of other Web services or application programs via its
programmatic Web service endpoints. Web service has shown its potentials to change
the ways of the enterprise business modeling in the distributed system interactions. A
large enterprise system can be divided into many relatively independent Web service
components, which in turn get services from other Web services components deployed
on the Internet. EAI or B2B can be constructed in a hierarchy of Web services com-
ponents. Some of these Web services components can be developed from scratch and
others can be constructed on the basis of the existing Web services compositions or
by converting some existing distributed components to be Web service available such
as EJB components.

There are already thousands of Web services available on-line. We can predict that
more and more Web services will be there and more and more Web applications will
take advantages of Web services. Many Web services development tools are there
such as Apache Tomcat next generation Web service – AXIS, Microsoft .NET Web
service studio based on IIS server, IBM Web Sphere Web service, BEA Web Logic
Workshop, Java Web Service Development Pack (JWSDP), Mind Electric GLUE, and
others. All of them provide development tool kits for Web services developments and
deployments. We will discuss two Web services servers, Apache Tomcat AXIS and
Microsoft .NET IIS Web services in detail in this chapter.

WEB SERVICES FRAMEWORK 269

Let us summarize the characteristics and features of the Web services technology
as the following:

ž It increases the portability and interoperability of distributed computing.
ž It increases the reusability and scalability of distributed components.
ž It reduces the complexity of component composition and deployment.
ž It reduces the cost and time-in-market for distributed component software devel-

opments.
ž It significantly enhances the B2B and Electronic Data Interchange (EDI).
ž It simplifies the distributed system administration.
ž It is very easy to wrap an existing proprietary application to be Web services

compatible.
ž It operates on an open standard protocol stacks.
ž It is a third-generation Internet solution for distributed computing.

The Unified Communication Technical Project in UC Berkley is a good example
of Web services applications to unify all e-mail services, voice-mail services, PDA
services, fax services, and other electronic or computer-based services by Web services
technologies. Web services also face some challenges such as QoS in terms of response
time, performance, and Service Level Agreement (SLA) problems.

We will explore the basic concepts of XML and SOAP in next few sections since
they are parts of the foundation protocol stacks of Web services.

8.1.2 XML Basics

eXtensible Markup Language (XML) is a super set of HTML. A user can define his/her
own tags in XML. Any XML document must follow its metadata such as Document
Type Definition (DTD) or Schema, which specifies complex data types, elements, its
attributes, and its subelements, and so on. An XML document can be used to represent
and transfer structured data in the hierarchy of element tags. An XML documents with
its schema or DTD can be recognized by any programs or software easily as long as
XML API is supported. An XML document is a universal format document type used
for data exchange and data storage. Almost all commercial databases support XML
now. Oracle 9i supports XML format database, which is one step beyond the import
and export of XML documents. XML is also widely used for deployment descriptors
and configuration specifications.

Let us look at a simple XML document about student GPA record.

<?xml version = “1.0”?>
<students>

<student id=1234>
<name>John Smith</name>
<gpa>3.5</gpa>

</student>
<student id=2345>

<name>Scott Tiger</name>
<gpa>4.0</gpa>

</student>
</students>

270 WEB SERVICES COMPONENTS

This XML document shows two student records. Each record consists of the stu-
dent’s name and his/her grade point average (gpa). The tag students is a top-level root
element, which has a number of subelements called student. Each student element
consists of two subelements called name and gpa. The identifier id in student
tag is an attribute of element student. The tag “?” is a Processing Instruction (PI) to
inform the XML parser that this XML document must conform to XML v. 1.0. Every
XML document must have its metadata just as a data record in a data table of any
database must satisfy the definition of the table, which is called schema in database.
There may be many different formats of XML schema such as internal DTD within
XML file, a separate external DTD, or a schema, since the DTD itself does not use the
XML syntax and is not very flexible. Schema is getting more and more popular now and
is replacing DTD because schema itself is in XML format. We will focus on Schema
describing the XML structure. An XML Schema Document (XSD) is a metadata of an
XML document. XSD specifies the syntax, structure, and constraints in a correspond-
ing XML, including data type or complex data type of elements, attributes of elements,
and so on. The following Schema describes the structure of the above students XML
document. A complex type can be specified by a complexType tag as follows.

<element name = “student”
<complexType>

<element name = “name” type = “xsd: string” />
<element name = “gpa” type = “xsd: float” />

</complexType>
</element>

Let us examine a complete XSD Schema sample.

<?xml version=”1.0” encoding=”UTF-8”?>
<xsd:schema xmlns:xsd=http://www.w3.org/2001/XMLSchema

targetNamespace=http://www.mybooks.org”
xmlns=”http://www.mybooks.org”>

<xsd:element name = “students”>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref=”student”

minOccurs=”1”
maxOccurs=”unbounded”/>

</xsd:sequence/>
</xsd:complexType/>

</xsd:element>
<xsd:element name=”student”>

<xsd:complexType>
<xsd:sequence>

<xsd:element ref=”name”/>
<xsd:element ref=“gpa”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name=”name” type=”xsd:string”/>
<xsd:element name=”gpa” type=”xsd:float”/>

</xsd:schema>

WEB SERVICES FRAMEWORK 271

The sequence tag in XSD Schema specifies the order and the occurrence of
subelements in their parent element. In this example, name and gpa elements are
the subelements of the student element, which in turn is an element of the students
element. Of course there may be many students in a students set. The XMLNS plays
the same role as a package in Java and namespace in C++ to prevent naming collisions.
An element name can be qualified with a namespace prefix with a colon symbol “:”.
The idea of combining a namespace URI with a local name is to make any identifier
name in XML universally unique.

For example, book in 〈xyz:book xmlns:xyz =http://www.amazon.com/books/〉 is an
element name and xyz is the prefix, which is defined in xmlns namespace construct
with the unique URI address as http://www.amazon.com/books.

8.1.3 Simple Object Access Protocol (SOAP) Basics

SOAP is an XML-based message exchange protocol specified by the W3C specifica-
tion. Its new version SOAP 1.2 was recommended by W3C in 2003. SOAP is also a
lightweight protocol working in a distributed heterogeneous environment. Some people
simply say that SOAP = HTTP + XML because a SOAP message is an XML docu-
ment but it conforms to a specific XML Schema. SOAP is used to specify the format
of a request and response in the Web services computing to get and send messages via
HTTP port by HTTP POST method.

Every SOAP message has a required envelope and a message body. A SOAP enve-
lope identifies an XML document as a SOAP message. A SOAP envelope element
must have one subelement, which is the Body element. A Body element of a SOAP
message can be data itself, a name of a method to be invoked, arguments of the method
to be invoked, a SOAP request message, or return results from a SOAP response mes-
sage. A SOAP envelope may also have a header subelement, but it is optional. A
header element just gives more metadata about the message.

Here is an example of a SOAP request message that asks a Web service to convert
temperature zero in Celsius degree to Fahrenheit degree. The name of the invoked
method is “toFahrenheit.”

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope

SOAP-ENV:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"

xmlns:SOAP-
ENV="http://schemas.xmlsoa.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:SOAP-

ENC="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>

<toFahrenheit>
<celsius xsi:type="xsd:string">0</celsius>

</toFahrenheit>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

In the Body element of this SOAP request, an XSD string type data “0” is passed
as an argument to the remote method (operation) toFahrenheit of this Web services.

272 WEB SERVICES COMPONENTS

The following SOAP message is a SOAP response message of the converted tem-
perature of 32 in Fahrenheit degree:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<SOAP-ENV:Body>

<toFahrenheitResponse
SOAP-ENV:encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/">
<toFahrenheitResult xsi:type=

"xsd:string">32</toFahrenheitResult>
</toFahrenheitResponse>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

8.1.4 Web Services Architecture

There are three important components in Web services architecture. Figure 8.1 shows
the Web service requester (simplified client) on the left, the Web service provider on
the right, and the Web service registry on the top.

A Web services provider must publish/register its services with a Universal Descrip-
tion, Discovery, and Integration (UDDI) registry so that it can be accessed by any Web
services requester globally. It just looks like a phonebook, where all businesses reg-
ister their phones there for customers to look up services. A customer must look up
the phonebook either on-line or by phonebook unless a customer knows the phone
number before. A Web services can also be reached without any assistance from
UDDI if the Web services client knows the contact information such as Web ser-
vices’s URL, name of method, argument signature of the method including types

SOAP

XML

UDDI Registry

WSDL

Client

(find ws)

Web service

Endpoint

HTTP

Web server

TCP/IP

(publish ws)

(bind ws)

XML / SOAP request =>

<= XML / SOAP
 response

FIGURE 8.1. Web services architecture.

WEB SERVICES FRAMEWORK 273

of return value. There are a number of UDDI registries available on-line such as
uddi.microsoft.com, uddi.ariba.com, and www-3.ibm.com/service/uddi. The Web ser-
vices provider can register their Web services at these UDDI registries and Web services
requester can look up a specific Web service by its provider name (business name),
category info, Web service name, or even by their keys if the requester knows them.
A Web services provider actually registers a WSDL (Web services Description Lan-
guage) interface at UDDI registry, which is a contract interface of the Web services
to be used by its client. Both UDDI query requests and UDDI query results are in the
SOAP formats [Deitel 2003a, 2003b; McGovern 2003].

In the following section, we will give more detail discussions on WSDL and UDDI.

8.1.4.1 WSDL A Web services WSDL interface is an XML file, describing what
functionality this Web service provides, where this Web service resides, and how to
access Web service and invoke the remote method provided by this Web service.
WSDL shows an abstract view or interface definition that can be implemented by
many concrete Web services implementations in different platforms and in different
languages. We can divide a WSDL Web services definition into two parts: Web services
reusable interface specification and Web services implementation. There may be four
elements in first part: The Types elements for complex data type and user-defined
type; Message elements for message description, which is used in portType element;
PortType element describing an abstract set of reusable exposed operations by one or
many Web service endpoints(port); binding element for message format specification
and concrete protocol binding specification such as SOAP, HTTP, and MIME. There
are two major elements in WSDL implementation part: Port element, which is a single
Web services endpoint defined on the basis of a binding defined in binding element and
an URL access location; Service element, which is a parent element of port element
and a collection of related Web services endpoints or ports. WSDL XML document
basically defines Web services as a collection of endpoints or ports.

The structure of a WSDL looks like the following templates:

<definition ...>
<types ... >
<message ...>
<portType ... >
<binding ... >

<service ... >
<port ... >

</service>
</definition>

The following list is a WSDL definition part of Convert.wsdl, which gives a clear
description of a Web services definition. A WSDL definition element has a number
of subelements such as message element, portType element, binding element, port
element, and service element.

<wsdl:definitions . . .
<wsdl:message name="toFahrenheitResponse">

<wsdl:part name="return" type="SOAP-ENC:string"/>

274 WEB SERVICES COMPONENTS

</wsdl:message>

<wsdl:message name="toFahrenheitRequest">
<wsdl:part name="in0" type="SOAP-ENC:string"/>

</wsdl:message>

<wsdl:portType name="Convert">

<wsdl:operation name="toFahrenheit" parameterOrder="in0">
<wsdl:input message="intf:toFahrenheitRequest"/>
<wsdl:output message="intf:toFahrenheitResponse"/>

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="ConvertSoapBinding" type="intf:Convert">

<wsdlsoap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="toFahrenheit">

<wsdlsoap:operation soapAction=""/>

<wsdl:input>

<wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:myDirectory" use="encoded"/>

</wsdl:input>

<wsdl:output>

<wsdlsoap:body
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:myDirectory" use="encoded"/>

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service name="ConvertService">

<wsdl:port binding="intf:ConvertSoapBinding" name="Convert">

<wsdlsoap:address
location="http://localhost:8080/axis/services/Convert"/>

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

WEB SERVICES FRAMEWORK 275

The name of the Web services “ConvertService” is specified in a service ele-
ment, which is listed at the end of the above WSDL file. The port element of the
service element specifies an URL address of the Web service and access point of this
Web service for a unique binding. The binding “ConvertSoapBinding” is defined in a
binding element, which is referenced in binding attribute of port subelement of service
element in WSDL definition element. There may be multiple ports in one Web services.

There are two message elements at the beginning of definition element. One describes
the argument type of Web services’s remote method and the other is the return type
of the same method. The part subelement specifies the name and data type of the
message exchanged.

The portType element describes an operation provided by the Web services. An
operation is a method that a client must know about the input parameters and return data
type. The two messages defined for Web services request and response are specified
in the operation element. The operation element describes that the name of the
method in Web service is toFahrenheit. A portType is a collection of operations.

The binding elements inside definition element specify how a client and Web
services should exchange message with each other. The binding subelement of the
binding element specifies SOAP as the protocol, and input request and output response
must be in a SOAP format. It also tells that this is a request/response two-ways oper-
ation by the attribute style “rpc”. The other style option may be “document”. There
are four type of operations in terms of patterns of inputs and outputs: input only,
output only, input/output, output/input. These will be discussed in detail
in the Web services connection section.

8.1.4.2 UDDI UDDI is a technical specification for building a distributed directory
for business and Web services, which enables business companies to publish and find
Web services. How to publish a Web service globally and how to discover a desired
Web service to reuse it as part of new Web service or as part of client application is
a challenge for Web services to be widely used. If a client of a Web service knows in
advance about the location of the Web services and the way to invoke the operations
provided by the Web services, there will not be a need for Web services registry.
UDDI acts like a naming service in the distributed computing, or phone directory for
phone service, or Google search engine for Internet service. UDDI consists of an XML
schema that defines UDDI’s four core data structures – business, service, binding and
tModel programmatic interface, and a set of APIs that provide publishing and inquiry
operations on those structures. UDDI was developed by IBM, Microsoft, and Ariba
in 2000, and is now under the stewardship of the UDDI community (www.uddi.org),
which has more than 200 member companies. UDDI is currently at Release Version 3.0.

In Figure 8.1, we see that a Web services requester searches the service registry and
finds the desired service description. Through the information the requester finds in the
registry, the requester connects to the Web services provider and invokes the service.
UDDI is a group of specifications that lets Web services providers publish information
about their Web services and lets Web service requesters search that information to
find a Web service and run it.

A Web services listing is created using WSDL and then sent to a UDDI registry,
which is mapped to a UDDI XML format document. A listing is composed of three
elements. At the highest level, there are White Pages, which contain basic information
about the business, including business name, descriptions, contact info (name, address,

276 WEB SERVICES COMPONENTS

<definitions>

</definitions>

<types>

<message>

<portType>

<binding>

<service>

<port>

<port>

</service>

WSDL

UDDI

<businessEntity>
Business name,
contacts, identifiers,
categories, etc.

<bindingTemplate>

businessKey

<businessService>
Service name,
description, group of
binding templates

<bindingTemplate>

Description,
URL type of
access point,
protocol binding

<tModel>
Technical
fingerprints
name, key URL
of webservice
taxonomy

White page

Yellow Page

Green page

tModel key

bindingKey

l : n

l : n

l : l

FIGURE 8.2. Web service WSDL to UDDI mapping.

phone, fax, Web site, etc.), and business identifier that a business may be known by.
Next are Yellow Pages, which organize services by industry codes, service type/business
categories in product/services or geographical location taxonomy. Finally, there are
Green Pages, which specify how to bind to a service provider. It includes the technical
information (such as interfaces and URL locations) about how to find and execute a
Web service. An application requesting a service will use WSDL to programmatically
interact with the Green Pages section of that service’s listing.

In short, UDDI is organized in a three-level nested structure model with business
information, service information, and binding information.

In Figure 8.2, we can see a very clear picture of UDDI and how a WSDL is mapped
onto UDDI.

First of all, let us focus on the data structure and then we will discuss how to publish
a Web service, how to find, and how to get a Web service by UDDI’s API.

<businessDetail>
<businessEntity businessKey=”[BSK1]”>

Names, Descriptions, Contacts , . .

WEB SERVICES FRAMEWORK 277

<businessServices>
<businessService serviceKey=”[SK1]” businessKey=”[BSK1]”>

Names, Descriptions, ..
<bindingTemplates>

<bindingTemplate bindingKey=”[BDK1]” serviceKey=”
[SK1]”>
Descriptions ..
<accessPoint

URLType=”http”>http://www...</accessPoint>
<tModelInstanceDetails>

<tModelInstanceInfo>
<tModelKey>[tMK1]</tModelKey>
Descriptions, ..
<instanceDetails>
Descriptions, Overview URLs, ..
</instanceDetails>

</tModelInstanceInfo>
</tModelInstanceDetails>

</bindingTemplate>
...

</bindingTemplates>
<categoryBag>...<tModelKey>[tMK]</tModelKey>...
</categoryBag>

</businessService>
...

</businessServices>
<identifierBag>...<tModelKey>[tMK1]</tModelKey>...
</identifierBag>
<categoryBag>...<tModelKey>[tMK2]</tModelKey>...</categoryBag>

</businessEntity>
...

</businessDetail>

This business detail information can be retrieved by a SOAP request if a business
key is known in advance. The following SOAP XML shows the SOAP request for the
above information:

<?xml version='1.0' encoding='UTF-8'?>
<Envelope xmlns='http://schemas.xmlsoap.org/soap/envelope/'>
<Body>

<get_businessDetail xmlns="urn:uddi-org:api">
<name>[BSK1]</name>

</find_business>
</Body>
</Envelope>

We can also get the following tModelDetail information about a specific Web
service by a SOAP request against UDDI if we know tModelKey in advance.

<tModelDetail ... >
<tModel tModelKey = ”[tMK1]” operator = “ .. “ .. >

278 WEB SERVICES COMPONENTS

<name>myMethod .. </name>
<description> .. </description>
<overviewDoc>

<description> .. </description>
<overviewURL>http:// ... myWsdl.wsdl</overviewURL>

</overviewDoc>
<categorybag>

<keyedreference tModelKey =“[tMK3]“
keyName=“uddi-org-types“
keyValue=“wsdlSpec“/>

</categorybag>
</tModel>

...

</tModelDetail>

The [XXX] in the above UDDI examples are the keys for business, webservice,
and tModels. The myWsdl is the ultimate endpoint of this Web services. There are
many ways to get this endpoint; either by drilling down step by step from a known
business name, service name, or by a key id such as business key, Web services key,
key of BindingTemplate, or tModelkey.

UDDI specifications specify a programmer’s API to allow programmatic access to
UDDI registry information. This API is divided into two logical parts: publisher API
and inquiry API. The publisher API is used to publish and update the information stored
in a UDDI registry. The syntax of publisher UDDI API elements can be save_XX or
delete_XX, where XX can be business, service, binding, or tModel. The Inquiry
API is used to find and get Web services information in a UDDI registry. The syntax
of a UDDI inquiry API element can be find_XX, which can be used to search for
a broad overview of registration data based on a variety of criteria or can also be
get_XXDetail direct call if an actual key is known in advance. XX can be business,
service, binding, or tModel, same as in publisher API.

Here is a sample SOAP UDDI query to find “SUN” business registered in a UDDI
registry by find_business SOAP request message.

<?xml version='1.0' encoding='UTF-8'?>
<Envelope xmlns='http://schemas.xmlsoap.org/soap/envelope/'>
<Body>

<find_business generic="1.0" xmlns="urn:uddi-org:api">
<findQualifiers></findQualifiers>
<name>SUN</name>

</find_business>
</Body>
</Envelope>

The response that comes back from UDDI may look like the following.

<soap:Envelope ...>
<soap:Body>
<businessList generic="1.0" operator="..."

WEB SERVICES FRAMEWORK 279

truncated="false" xmlns="urn:uddi-org:api">
<businessInfos>

<businessInfo businessKey="[BSK1]">
<name>SUN Microsystems</name>

<description xml:lang="en"> .. </description>
<serviceInfos>

<serviceInfo businessKey="[BSK1]"
serviceKey="[SVCK1]">

<name>Products..</name>
</serviceInfo>

<serviceInfo businessKey="[BSK1]"
serviceKey="[SVCK2]">

<name>Developer..</name>
</serviceInfo>

</serviceInfos>
</businessInfo>

</businessInfos>
</businessList>

</soap:Boday>
</soap:Envelope>

It turns out that SUN Microsystem’s business with businessKey BSK1 encapsu-
lates two services with serviceKey SVCK1 and SVCK2, which in turn encapsulate
bindingTemplate. The bindingTemplate is not shown in this list. If we drill down
further by an UDDI query for details by get_businessDetail with its business key,
it will return all details including a reference pointing to a tModel of technical model
of Web services access detail information.

<?xml version='1.0' encoding='UTF-8'?>
<Envelope xmlns='http://schemas.xmlsoap.org/soap/envelope/'>
<Body>

<get_businessDetail generic="1.0" xmlns="urn:uddi-org:api">
<findQualifiers></findQualifiers>
<businessKey>[BSK1]</businessKey>

</get_businessDetail>
</Body>
</Envelope>

The response SOAP message is shown below.

<soap:Envelope xmlns:soap = “ ... “ ... xmlns:xsd = “ ... “
<soap:Body>

<businessDetail .. >
<businessEntity businessKey=”[BSK1]” ... >

<discoveryURLs>
<discoveryURL ..

businessKey=[BSK1]>[URL1]</discoveryURL>
<name>Sun ... </name>
<description ... >... </description>
<contact>... </contact>
<businessServices>

280 WEB SERVICES COMPONENTS

<businessService serviceKey=”[SVK1]”businessKey=”[
BSK1]”>

<name>...</name>
<description>...</description>
<bindingTemplates>

<bindingTemplate serviceKey=”[SVK1]”
bindingKey=”[BDK1]”>

<accessPoint URLType=”[URL2]”</accessPoint>
<tModelInstanceInfo tModelKey=”[TMK1]”/>

</bindingTemplate>
</bindingTemplates>
</businessService>

</businessServices>
<categoryBag>

<keyedreference tModelKey=”[TMK2]”
keyName=”[K1]”keyValue=”[V1]” />

...
</categoryBag>

</businessEntity>
</businessDetail>

</soap:Body>
</soap:Envelope>

Here we can find that a businessEntity may encapsulate many businessSer-
vices, each businessService may encapsulate many Web services, and each Web
service can encapsulate and may bind many bindings. Each binding references to
its unique tModel that provides all technical detail information to get this Web ser-
vice. The following shows an example of tModel SOAP message referenced by a
tModelKey TMK1.

<soap:Envelope ...>
<soap:Body>

<tModelDetail ...>
<tModel tModelKey=”[TMK1]” ... >

<name> ... </name>
<description> ... /description>
<overViewDoc>

<description> ... </description>
<overviewURL>http://.../XYZ.wsdl</overviewURL>

<overviewDoc>
<categorybag>
<keyedReference tModelKey=... keyname=...

keyValue=.../>
</categoryBag>

</tmodel>
</tModelDetail>

</soap:Body>
</soap:Envelope>

UDDI plays a registry role for business to publish its Web services and for Web
services application to find a needed Web services for their applications.

COMPONENT MODEL OF WEB SERVICES 281

8.2 COMPONENT MODEL OF WEB SERVICES

8.2.1 Interface and Implementation of Web Service Component

As we have discussed so far, Web services is a typical software component available
on-line. There is also a Web services interface just like other components but Web
services interface is specified in a WSDL XML format file instead of an IDL file in
CORBA. We can have a single wsdl interface specification including all necessary
information for a Web services client to access it, as shown below:

myService.wsdl:

<definition ...>
<types ... >
<message ...>
<portType ... >
<binding ... >

<service ... >
<port ... >

</service>
</definition>

The first four elements constitute a reusable Web services interface definition. The
type element describes the XSD type and user-defined types that may be used in
message element. The message element describes the request and response message
specifications used in a portType element. The portType element specifies a col-
lection of operations (methods) exposed by Web services. PortType plays a very
similar role of class in Java. The binding element binds and maps operations defined
in portType element to a transport protocol. The service element plays a role of
implementation of the above Web services definition by specifying the binding defined
and physical endpoint address of the Web services where it resides.

We can also have two or multiple WSDL specifications working together that
one WSDL can import definitions from another WSDL. For example, we can sep-
arate myService.wsdl into two WSDL specifications, service implementation WSDL
myServiceImpl.wsdl and service interface WSDL myServiceIntf.wsdl. The ser-
vice interface gives a reusable definition of a Web service and corresponds to a tModel
in UDDI. The service implementation is an implementation of the service. A WSDL
XML specification can be generated from an implementation Java source file or even
from a Java interface source file by Web services development tools. For example,
java2wsdl utility command line can be used to generate or make an internet URL
request a [Web services name].jws?wsdl to get and save it in a file.

Service interface document myServiceIntf.wsdl:

<definition ...>
<types ... >
<message ...>
<portType ... >
<binding ... >

</definition>

282 WEB SERVICES COMPONENTS

Service implementation document myServiceImpl.wsdl:

<definition ...>
<import namespace= ... location=”... /myServiceIntf.wsdl>
<service ... >

<port ... >
</service>

</definition>

In myServeImpl.wsdl, the import element has a location attribute, which refer-
ences to the service interface document and a namespace attribute, which matches the
targetNamespace in the service interface document. The service element specifies the
actual location (URL) of Web services on the server, and port element is the endpoint
of Web service, specifying the address for particular binding.

A WSDL specification can be generated from an existing Web services implemen-
tation such as a Java source file or from a Java interface file.

In order to understand Web services better, we choose the popular third-generation
Web services – Apache eXtensible Interaction System (AXIS) to explain it in detail.
AXIS is an extension or replacement of Apache SOAP Web service engine. There are
many other Web service runtime environment engines available such as .NET Web
service engine for which we will show some practice examples in the lab section.

Basically, there are two different ways to develop a Web service, depending on the
existence of service implementation:

ž Top-Down Design First, start up the design and development with a Java inter-
face file or WSDL XML file to generate Web services skeleton and stub, without
the existing Web services implementation. Next, develop implementation of Web
services on server site and deploy the Web services on Web services server.
Finally, develop Web services client on the basis of the Web services stub gener-
ated in the first step to access the Web services deployed. If we start off a Web
service design with a new WSDL, which is called “green field” design, a Java
interface will be generated from the WSDL and rest of the development procedure
will be the same.

ž Bottom-Up Design First, start the design and development of the Web services
with an existing Web service such as a Java source file. Next, generate and deploy
Web services with different deployment options. Finally, develop the Web services
client to get service from the deployed Web services.

Figure 8.3 shows a diagram of AXIS Web services development.

8.2.2 Web Services Development Based on an Existing Web Service
Source Code

We will use the same simple temperature conversion example used before to demon-
strate how to develop a Web service in Bottom-Up mode. The drop-in simple detail
deployment options are discussed here and custom deployment will be discussed in
the Web services deployment section.

The Convert Web services has a single method called toFarenheit, taking a Cel-
sius temperature degree as an argument and converting it to a Fahrenheit degree. This

COMPONENT MODEL OF WEB SERVICES 283

Service implementation

Client stub

WSDL

Service
implementation

skeleton

Web services development

Supply method
code

Web service Java–
interface

java2WSDL

java2WSDL

Invoke a Web service
through SOAP request

and response messages

Generate WSDL from
Web service code

Generate server
skeleton

Generate client proxy code
for accessing a web service

WSDL2java WSDL2java

Client

FIGURE 8.3. AXIS Web services development diagram.

example demonstrates how easy it is to create a Web service, deploy a Web service
that will programmatically be ready, and develop a Web services client to access this
Web service. The detail installation and configuration of AXIS Web services runtime
will be discussed in the practice lab section.

Step 1: Get a Web services implementation Java source file.

//Convert.java

public class Convert {
public Convert() { }
public String toFahrenheit(String pCentigrade) {

double pCen = Double.parseDouble(pCentigrade);
double fah = 32 + pCen*9/5;
return "" + fah;

}
}

Step 2: Deploy the Web services by an easy drop-in deployment.
To deploy this Web service, just copy and paste the Convert.java file into

the webapps directory under TOMCAT HOME directory and change its extension
from. Java to .jws. That is all. The Web service is ready to use. The Web services
AXIS runtime engine will compile it automatically for the client when the client
invokes this Web service. But this type of deployment only works with an available
Java source file and not for the bytecode Java class file.

This is the time for us to check the WSDL definition–generated AXIS Web
services engine by typing http://localhost:8080/axis/Convert.jws?wsdl in the address
block of the Internet Explorer. The WSDL definition is shown as follows:

284 WEB SERVICES COMPONENTS

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="urn:myDirectory"
xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:impl="urn:myDirectory-impl"
xmlns:intf="urn:myDirectory"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:message name="toFahrenheitResponse">
<wsdl:part name="return" type="SOAP-ENC:string"/>

</wsdl:message>

<wsdl:message name="toFahrenheitRequest">
<wsdl:part name="in0" type="SOAP-ENC:string"/>

</wsdl:message>

<wsdl:portType name="Convert">

<wsdl:operation name="toFahrenheit" parameterOrder="in0">
<wsdl:input message="intf:toFahrenheitRequest"/>
<wsdl:output message="intf:toFahrenheitResponse"/>

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="ConvertSoapBinding" type="intf:Convert">

<wsdlsoap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="toFahrenheit">

<wsdlsoap:operation soapAction=""/>

<wsdl:input>

<wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:myDirectory" use="encoded"/>

</wsdl:input>

<wsdl:output>

<wsdlsoap:body
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:myDirectory" use="encoded"/>

</wsdl:output>

COMPONENT MODEL OF WEB SERVICES 285

</wsdl:operation>

</wsdl:binding>

<wsdl:service name="ConvertService">

<wsdl:port binding="intf:ConvertSoapBinding"
name="Convert">

<wsdlsoap:address
location=

"http://localhost:8080/axis/services/Convert"/>

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

Step 3: Develop a Java client for this Web services component.

ConvertClient.java

package myDirectory;

import java.net.URL;
import org.apache.axis.client.Service;
import org.apache.axis.client.Call;
import org.apache.axis.encoding.XMLType;
import javax.xml.rpc.ParameterMode;

public class ConvertClient {

public ConvertClient() {}

public static void main (String args[]) {
try {

// EndPoint URL for the convert Web service
String endpointURL =

"http://localhost:8080/axis/Convert.jws";
String methodName = "toFahrenheit";
Service service = new Service();
// Create Web service object of Call available in client
// package of API
Call call = (Call) service.createCall();
//Set the endPoint URL
call.setTargetEndpointAddress(new

java.net.URL(endpointURL));
//Set the methodname to invoke --- toFahrenheit
call.setOperationName(methodName);
//Set three parameters: a user-defined name of the
//parameter, the parameter data type, and kind of

286 WEB SERVICES COMPONENTS

//parameter – input only, output only, input/output
call.addParameter("celsius", XMLType.XSD_STRING,

ParameterMode.PARAM_MODE_IN);
//set return type of the method
call.setReturnType(XMLType.XSD_STRING);

//Setup the command line argument to be passed as input
//parameter to the convert Web service

String result = (String) call.invoke(new Object[] {
args[0] });

//Print out the result
System.out.println(result);

}
catch (Exception e) {

System.err.println(e.toString());
}

}
}

Step 4: Test the Web services.
Compile the ConvertClient.java file into a class file and run the client class

file with a command line argument of Celsius degree 15 and expected converted
Fahrenheit degree is 59, as shown below:

D:\apps>java myDirectory.ConvertClient 15

This is a Java Web services implementation and its client is also programmed
in Java. We can also have a Web service implemented in Java and client in .NET
or Web services in .NET and client in Java. The interoperability examples will be
shown in the section of practice labs.

8.2.3 Web Services Development without Prior Application

Let us start with a Web services definition in Java, which just specifies a package and
an interface with its method declaration without any detailed implementation.

Step 1: Provide a Java interface in Convert.java.

COMPONENT MODEL OF WEB SERVICES 287

package convert;

public interface Convert
{

public String toFahrenheit(String pCentigrade);
}

Step 2: Create a WSDL interface from this Java interface by Java2WSDL.

D:\apps\myDirectory>java org.apache.axis.wsdl.Java2WSDL -o
convert.wsdl -l

“ http : //localhost : 8080/axis/services/Convert” -n “urn:myDirectory”
-p“convert” “urn:myDirectory” convert.Convert

Here -o indicates the output for the WSDL filename, -l specifies Web service
location URL, -n specifies the target namespace, and -p provides a mapping from
Java package to namespace to ensure that all classes in the specified package will be
mapped to the namespace. The convert.wsdl is generated now, which is shown
in the previous section.

Step 3: Create Bindings using WSDL2Java.

D:\apps\myDirectory>java org.apache.axis.wsdl.WSDL2Java -o. -d session
-s -Nurn:myDirectory convert convert.wsdl

WSDL2Java takes a number of options. -o specifies the output directory such
as current working directory “.” in this example. -d specifies the deployment scope
such as request, session, and application. -N specifies the mapping from namespace
to package. -s option generates all server-side skeleton and binding, and a WSDL
XML file deploys. wsdd and undeploy.wsdd. WSDL2Java also generates client-side
stub proxy.

We will discuss all the files generated by WSDL2Java.

ž WSDL2Java generates 〈typename〉.java for each 〈type〉 definition in WSDL XML
document.

ž WSDL2Javagenerates an interface Java file 〈portTypename〉.java for each 〈portType〉
in WSDL. The file Convert.java is generated corresponding to the portType
“Convert.” This file plays a role of an interface in Java.
Here is the list of this file.

/**
* Convert.java
*
* This file was auto-generated from WSDL
* by the Apache Axis Wsdl2java emitter.
*/

package convert;

public interface Convert extends java.rmi.Remote {

288 WEB SERVICES COMPONENTS

public java.lang.String toFahrenheit(java.lang.String
in0) throws

java.rmi.RemoteException;
}

ž WSDL2Java also generates a <portName>SOAPBindingStub.java for each
<binding> in WSDL specification. This file implements SDI and is used
at client side as a stub. The following is the list of this stub template.
ConvertSoapbinding is the name of binding in WSDL.

/**
* ConvertSoapBindingStub.java
*
* This file was auto-generated from WSDL
* by the Apache Axis Wsdl2java emitter.
*/

package convert;

public class ConvertSoapBindingStub extends
org.apache.axis.client.Stub

implements convert.Convert {
private java.util.Vector cachedSerClasses = new

java.util.Vector();
private java.util.Vector cachedSerQNames = new

java.util.Vector();
private java.util.Vector cachedSerFactories = new

java.util.Vector();
private java.util.Vector cachedDeserFactories = new

java.util.Vector();

public ConvertSoapBindingStub() throws
org.apache.axis.AxisFault {

this(null);
}

public ConvertSoapBindingStub(java.net.URL endpointURL,
javax.xml.rpc.Service service) throws
org.apache.axis.AxisFault {

this(service);
super.cachedEndpoint = endpointURL;

}

public ConvertSoapBindingStub(javax.xml.rpc.Service service)
throws

org.apache.axis.AxisFault {
try {

if (service == null) {
super.service = new

org.apache.axis.client.Service();
} else {

COMPONENT MODEL OF WEB SERVICES 289

super.service = service;
}

}
catch(Exception t) {

throw org.apache.axis.AxisFault.makeFault(t);
}

}

private org.apache.axis.client.Call getCall() throws
java.rmi.RemoteException {

try {
org.apache.axis.client.Call call =

(org.apache.axis.client.Call)
super.service.createCall();

if (super.maintainSessionSet) {
call.setMaintainSession(super.maintainSession);

}
if (super.cachedUsername != null) {

call.setUsername(super.cachedUsername);
}
if (super.cachedPassword != null) {

call.setPassword(super.cachedPassword);
}
if (super.cachedEndpoint != null) {

call.setTargetEndpointAddress
(super.cachedEndpoint);

}
if (super.cachedTimeout != null) {

call.setTimeout(super.cachedTimeout);
}
java.util.Enumeration keys =

super.cachedProperties.keys();
while (keys.hasMoreElements()) {

String key = (String) keys.nextElement();
call.setProperty(key,

super.cachedProperties.get(key));
}
// All the type mapping information is registered
// when the first call is made.
// The type mapping information is actually
// registered in

// the TypeMappingRegistry of the service, which is
// the reason why registration is only needed for the
// first call.

if (firstCall()) {
call.setEncodingStyle(org.apache.axis.Constants.

URI_SOAP_ENC);
for (int i = 0; i < cachedSerFactories.size();

++i) {
Class cls = (Class) cachedSerClasses.get(i);
javax.xml.rpc.namespace.QName qName =

(javax.xml.rpc.namespace.QName)
cachedSerQNames.get(i);

290 WEB SERVICES COMPONENTS

Class sf = (Class)
cachedSerFactories.get(i);

Class df = (Class)
cachedDeserFactories.get(i);

call.registerTypeMapping(cls, qName, sf, df,
false);

}
}
return call;

}
catch (Throwable t) {

throw new org.apache.axis.AxisFault("Failure trying
to get the Call object", t);

}
}

public java.lang.String toFahrenheit(java.lang.String in0)
throws java.rmi.RemoteException{
if (super.cachedEndpoint == null) {

throw new org.apache.axis.NoEndPointException();
}
org.apache.axis.client.Call call = getCall();
javax.xml.rpc.namespace.QName p0QName = new

javax.xml.rpc.namespace.QName("", "in0");
call.addParameter(p0QName, new

javax.xml.rpc.namespace.QName("http://schemas.xmlsoap.org/
soap/encoding

/", "string"), javax.xml.rpc.ParameterMode.PARAM_MODE_IN);
call.setReturnType(new

javax.xml.rpc.namespace.QName("http://schemas.xmlsoap.org/
soap/encoding/", "string"));

call.setUseSOAPAction(true);
call.setSOAPActionURI("");
call.setOperationStyle("rpc");
call.setOperationName(new

javax.xml.rpc.namespace.QName("urn:myDirectory",
"toFahrenheit"));

Object resp = call.invoke(new Object[] {in0});

if (resp instanceof java.rmi.RemoteException) {
throw (java.rmi.RemoteException)resp;

}
else {

return (java.lang.String) resp;
}

}
}

ž WSDL2Java also generates a server-side implementation skeleton Java file corre-
sponding to this ConvertSoapBinding binding specification in the WSDL. For
each <service> specification, WSDL2Java also generates a <service>Service.

COMPONENT MODEL OF WEB SERVICES 291

java and <service>ServiceLocator.java files. In our example, a Convert-
Service.java is generated corresponding to the Convert name in port element
of service element. It is a Java interface declaring get method for each port
defined in the service.

/**
* ConvertService.java
*
* This file was auto-generated from WSDL
* by the Apache Axis Wsdl2java emitter.
*/

package convert;

public interface ConvertService extends javax.xml.rpc.Service {
public String getConvertAddress();

public convert.Convert getConvert() throws
javax.xml.rpc.ServiceException;

public convert.Convert getConvert(java.net.URL portAddress)
throws javax.xml.rpc.ServiceException;

}

A ConvertServiceLocator.java file is generated, which implements the above
interface. It is used to locate an implementation of the service and creates and returns
an instance of the stub.

/**
* ConvertServiceLocator.java
*
* This file was auto-generated from WSDL
* by the Apache Axis Wsdl2java emitter.
*/

package convert;

public class ConvertServiceLocator extends
org.apache.axis.client.Service

implements convert.ConvertService {

// Use to get a proxy class for Convert
private final java.lang.String Convert_address =

"http://localhost:8080/axis/services/Convert";

public String getConvertAddress() {
return Convert_address;

}

public convert.Convert getConvert() throws
javax.xml.rpc.ServiceException {
java.net.URL endpoint;

292 WEB SERVICES COMPONENTS

try {
endpoint = new java.net.URL(Convert_address);

}
catch (java.net.MalformedURLException e) {

return null;
// unlikely as URL was validated in WSDL2Java

}
return getConvert(endpoint);

}

public convert.Convert getConvert(java.net.URL portAddress)
throws javax.xml.rpc.ServiceException {
try {

return new
convert.ConvertSoapBindingStub(portAddress, this);

}
catch (org.apache.axis.AxisFault e) {

return null;
}

}
}

Step 4: Customize the skeleton template ConvertSoapBindingImpl.java generated
in Step 3 to fill in the implementation code.

/**
* ConvertSoapBindingImpl.java
*
* This file was auto-generated from WSDL
* by the Apache Axis Wsdl2java emitter.
*/

package convert;

public class ConvertSoapBindingImpl implements convert.Convert
{

public java.lang.String toFahrenheit(java.lang.String in0)
throws java.rmi.RemoteException {

double pCen = Double.parseDouble(in0);
double fah = 32 + pCen*9/5;
return "" + fah;

}
}

Step 5: Compile the Java files generated.

D:\apps\myDirectory>javac convert/*.java

Step 6: Make a jar file to be deployed.

D:\apps\myDirectory>jar cvf conv.jar convert/*.class

CONNECTION MODEL OF WEB SERVICES 293

Step 7: Copy the jar file to a proper directory; set CLASSPATH to include that directory.

D:\apps\myDirectory>copy conv.jar
D:\apps\jakarta-tomcat-4.0.6\webapps\axis\WEB-INF\lib\

Step 8: Deploy Web services with WSDD. The detail contents of WSDD and
AdminClient utility are discussed in Web services deployment section.

D:apps\myDirectory\convert>java org.apache.axis.client.AdminClient
deploy.wsdd

Step 9: Develop a Web services client testing program ConvertTest.java, and com-
pile and run it for testing.

// ConvertTest.java

package convert;

public class ConvertTest

{
public static void main(String args[]) throws Exception

{
convert.ConvertService service =

new convert.ConvertServiceLocator();

convert.Convert conve = service.getConvert();
System.out.println("The result is " +

conve.toFahrenheit(args[0]));

}

}

D:\apps\myDirectory>javac convert/ConvertTest.java
D:\apps\myDirectory>java convert.ConvertTest 17

In this section, we discussed the concept of Java Web services implemented in AXIS.
Other implementations such as .NET Web service and Web service interoperability will
be covered in the practice lab section.

8.3 CONNECTION MODEL OF WEB SERVICES

8.3.1 Interactions Between Web Services

8.3.1.1 Synchronous Interaction Versus Asynchronous Interactions Web services
invocation is either synchronous or asynchronous. In synchronous interaction, a client
sends a Web services request and halts its operation while waiting for a response. If the

294 WEB SERVICES COMPONENTS

service takes a tremendous computation time to complete, an asynchronous interaction
must be used instead. The synchronous interaction is the default interaction in Web
services operations. Another reason is that in some cases there is no backward channel
available for the response to come back synchronously such as e-mail response to a
HTTP request.

There are four portType of operations in WSDL interface definitions. They can
be divided into two groups: asynchronous message-based operations and synchronous
RPC-based operations.

Asynchronous message-based operation is a single-message passing operation, which
can be one-way incoming notification and one-way outgoing notification. One-way
message passing operation never expects any response right away. The message may
be a signal, a notification, or data to be processed by the target of the message. The
two-way request/response operation is an RPC-based operation with a combination of
incoming and outgoing message. The source of the message sends out an outgoing
SOAP message and expects to get an incoming response SOAP message right away.
In the out/in mode, the target of message gets incoming message and responds to an
outgoing message in the out/in mode. Obviously, they are synchronous operations.

The basic Web services connection is established between two endpoints of Web
services. The source webservice1 has an outgoing message port, which connects a
same type incoming message port of target webservice2. In Figure 8.4, there are
two separate unrelated one-time channels (not permanent) between webservice1 and
webservice2. The webservice2 provides an outgoing message port, which connects
to a same type incoming message port of webservice1.

The webservice2 may process data according to the message received from web-
service1 or process the message itself and then forward it to third Web services.

This message-based operation is a typical asynchronous communication style that
a client of such Web services does not need to wait for any reply back from the Web
services it requests and just simply continue its own control flow.

RPC-based request/response message exchange takes place between two endpoints
of Web services where webservice1 has an out/in port and webservice2 has an
in/out port so that webservice1 can send a SOAP request to the in port of webser-
vice2 and webservice2 responds a SOAP message via its out port to the in port of
webservice1. The sequence of incoming message before outgoing messages in the
definition of portType in WSDL specifies an in/out portType operation, which is a
service provider operation. The sequence of outgoing message before incoming mes-
sages in the definition of portType in WSDL specifies an out/in portType operation,
which is a service request operation. RPC-based style service is a typical synchronous
communication style service that a client must wait till the result of the invoked method
of Web services is received.

WSDL

webservice 1

WSDL

webservice 2

One way out

One way in (notification from ws2)

WSDL

webservice 3

FIGURE 8.4. Asynchronous message-based connection between Web services.

CONNECTION MODEL OF WEB SERVICES 295

WSDL port

webservice 1

WSDL port

webservice 2

Two way out/in

Two way in/out

FIGURE 8.5. Synchronous RPC-based connections between Web services.

Message type 1

Message type 2

In port

WSDL

webservice 2

Out port

Out port

In port

WSDL

webservice 1

Out port

In port
WSDL

webservice 3

Out port

In port
Message type 3

Message type 4

FIGURE 8.6. Synchronous RPC-based connection between ports of Web services.

Figures 8.5 and Figure 8.6 depict the synchronous connections between two Web
services.

8.3.1.2 Static Invocation Versus Dynamic Invocation There are two different ways
for a Web services client to invoke a method provided by a Web service, static invo-
cation and dynamic invocation. In static invocation mode, the client generates a proxy
stub during the development time or compilation time. The WSDL of the Web services
must be available at that time since this WSDL describes the signatures and all neces-
sary information for the method invocation. The client will invoke the remote method
provided by the Web services via invocation of the method in proxy. The client does
not need to parse the WSDL when the method is invoked. So the method invocation
is very efficient. The downside of it is that the WSDL must be unchanged; otherwise,
the proxy must be generated again, which is different from dynamic invocation.

In dynamic invocation mode, the client does not need any static proxy stub. The
proxy stub is dynamically generated at runtime using dynamic invocation APIs instead
of development time. The advantage is that any WSDL changes after the client devel-
opment will not affect the Web services invocation. The client will retrieve and interpret
the WSDL at runtime and dynamically construct a call. Although it is not as efficient
as static invocation in terms of method invocation, it is much more flexible.

8.3.2 Web Services Composition Versus Web Service Conversation

So far, we have discussed the styles of Web services conversations among Web ser-
vices and from client to Web services. We can also compose a new Web service
from many existing Web services. In order to make Web service truly useful in A2A,
B2B, there must be a way to combine and coordinate collections of Web services, to
glue them together, so that they can be integrated to support a large-scale real-world

296 WEB SERVICES COMPONENTS

WS1

WS2

WS3

WS5

WS4

FIGURE 8.7. Web services composition.

WS endpoint

Web service wrapper

Servlet
EJB

EJB

JSP

FIGURE 8.8. Web services wrappers for a J2EE enterprise application.

Endpoint of new WS

New WS

IIS

Axis/Tomcat

.NET
WS

Java
WS

Java
WS

SOAP/Tomcat

FIGURE 8.9. Web services wrappers (containment) of Web services composition.

business enterprise applications. A new Web service has its own identification, which
is different from Web services interaction or conversation. One Web service can be
composed in many other Web services and one Web service may consist of many
Web services. There is a many-to-many relationship between a Web service and Web
services composition. There are two composed Web services in Figure 8.7, where both
of them use ws3 as a part of their Web services. We can see that a Web services
composition is a Web services authoring to combine or glue multiple Web services
into a new large Web service. Web services Flow Language (WSFL) may be used to
determine the sequence of subprocess of Web services that form a business process
and flow of information. Some people call Web services composition as Web services
orchestration.

WEB SERVICES COMPONENT DEPLOYMENT 297

A Web services composition can be implemented by a containment construction,
in which the outer Web service holds a reference to one or many inner Web ser-
vices and outer Web service forwards a Web service request to an inner Web service.
The endPoint of inner Web services is behind the scene. An example of contain-
ment construction is the Web service endPoint for stateless session EJB shown in
Figure 8.8.

A Web services composition can also be implemented by an aggregation construc-
tion, in which an inner Web services endPoint reference is handed out directly to
the outer Web services client. Figure 8.9 shows both of these compositions, which are
hardwired at design time.

8.4 WEB SERVICES COMPONENT DEPLOYMENT

Web services components need to be deployed just like any other type components.
In Section 8.2, we have discussed a simple drop-in deployment, but it has many
restrictions such as the availability of the source code of Web services. In this section,
we discuss the Web services custom deployment, which is much more flexible than
a drop-in deployment. We demonstrate this deployment using the same example of
temperature conversion that we used before.

This type deployment requires a Web services Deployment Descriptor (WSDD)
XML document to deploy a Web service on-line.

Assume we only have Web services class files on hand. There are two ways to
generate WSDD XML files. One way is to create (write) WSDD from scratch and the
other way is to generate a WSDD by AXIS tools, which generate WSDL from class
files and then generate WSDD from WSDL.

First let us take a look at a WSDD XML document deploy.wsdd for our temper-
ature conversion Web services, which is generated by the tools.

<!-- Use this file to deploy some handlers/chains and services -->
<!-- Two ways to do this: -->
<!-- java org.apache.axis.utils.Admin deploy.wsdd -->
<!-- from the same directory that the Axis engine runs -->
<!-- or -->
<!-- java org.apache.axis.client.AdminClient deploy.wsdd -->
<!-- after the axis server is running -->

<deployment
xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

<!-- Services from ConvertService WSDL service -->

<service name="Convert" provider="java:RPC">
<parameter name="className"

value="convert.ConvertSoapBindingSkeleton"/>
<parameter name="allowedMethods" value="toFahrenheit"/>

</service>
</deployment>

298 WEB SERVICES COMPONENTS

The root element in this WSDD is a deployment element, which has a subele-
ment service. The root element defines a default namespace of WSDD, a namespace
for Java provider, and an XML Schema instance namespace. The service element
defines the name of the Web services used to provide a unique name for the Web
services and type of provider. The default types of provider may be RPC-based type
or document-based types. RPC type works for request/response synchronous commu-
nication and document type works for message passing asynchronous communication.
AXIS also supports EJB-based type provider and COM provider, depending on the
kind the Web services. The child elements, which are both parameters, describe
the class available to the service and the methods to be accessed. The name/value
pairs tell the names of the classes and the names of methods for this deployed
Web services.

The deployment can be implemented by command line utility or by Apache- AXIS
Admin utility at http://<URL>:<port>/axis/index.html, for example, http://localhost:
8080/axis/index.html to deploy or check the deployed Web service. We focus on the
command line Web service deployment in this section.

The deployment command line is shown in the following:

D:apps\myDirectory\convert>java org.apache.axis.client.AdminClient
deploy.wsdd

Before we run this command, we need to make sure the Tomcat is up and running
and deploy.wsdd is available in this directory. AdminClient takes a WSDD XML
file as its arguments to deploy the Web service or takes an argument of list -l Admin-
ServiceURL to list all deployed Web services in AXIS. The AdminServiceURL is the
URL of AdminService, which is typically accessible at http://localhost:8080/axis/
services/AdminService.

In order to remove or undeploy a Web service from the AXIS server, an unde-
ploy.wsdd is needed. The undeployed.wsdd can be created manually or generated by
AXIS utility WSDL2Java, which generates both of deploy.wsdd and undeploy.wsdd
at the same time.

The following is the undeploy.wsdd file for Convert Web services.

<!-- Use this file to undeploy some handlers/chains and services
-->

<!-- Two ways to do this: -->
<!-- java org.apache.axis.utils.Admin undeploy.wsdd -->
<!-- from the same directory that the Axis engine runs -->
<!-- or -->
<!-- java org.apache.axis.client.AdminClient undeploy.wsdd -->
<!-- after the axis server is running -->

<undeployment
xmlns="http://xml.apache.org/axis/wsdd/">

<!-- Services from ConvertService WSDL service -->

<service name="Convert"/>
</undeployment>

EXAMPLES AND LAB PRACTICE 299

We can remove the Web services we deployed by the following command:

D:apps\myDirectory\convert>java org.apache.axis.client.AdminClient
deploy.wsdd

8.5 EXAMPLES AND LAB PRACTICE

In this section, we will demonstrate Web services design, development, deployment,
and Web services client application. The interoperability of Web services will also be
explored in the practice labs.

8.5.1 Lab 1: Apache AXIS Web Service Engine Installation

In order to practice all labs in this chapter, we need to have the following:

1. Tomcat 4.0
Follow the link to download jakarta-tomcat-4.0.6.zip or newest version
http://jakarta.apache.org/builds/jakarta-tomcat-4.0/release/ and
Extract the package to the directory you prefer, for example, D:\apps\jakarta-
tomcat-4.0.6.

2. Apache AXIS
Go to http://ws.apache.org/axis/dist/beta1/and download xml-axis-beta1.zip
and extract the package to a directory you prefer such as D:\apps\xml-axis-
beta1.

3. Java Development Kit version 1.4.0
Follow the links to download JDK from http://java.sun.com/j2se/and install it in
<root-directory>\j2sdk1.4.0 such as D:\j2sdk1.4.0 or newest version.

4. Microsoft Visual Studio .NET for .NET Web services

After downloading all the above files, we can start installations.

Step 1: Copy the webapps/axis directory from the xml-axis distribution into
Jakarta-tomcat-4.0.6\webapps directory. For example, D:\apps\jakarta-
tomcat-4.0.6\webapps\axis

Step 2: Copy the xerces.jar file from D:\apps\jakarta-tomcat-4.0.6\
common\lib to D:\apps\jakarta-tomcat-4.0.6\webapps\axis\WEB-INF\
lib

Step 3: Configure the environment and deploy the AXIS by the command:

D:\apps>deploy

300 WEB SERVICES COMPONENTS

set AXIS_HOME=D:\apps\xml-axis-beta1
set CATALINA_HOME =D:\apps\jakarta-tomcat-4.0.6
set DEPLOY_HOME=D:\apps\jakarta-tomcat-4.0.6\webapps\axis\WEB-

INF\lib
set CLASSPATH=.;D:\apps\xml-axis-beta1\lib\axis.jar
set CLASSPATH=%CLASSPATH%;%DEPLOY_HOME%\log4j-core.jar
set CLASSPATH=%CLASSPATH%;%DEPLOY_HOME%\clutil.jar
set CLASSPATH=%CLASSPATH%;%DEPLOY_HOME%\commons-logging.jar
set CLASSPATH=%CLASSPATH%;%DEPLOY_HOME%\jaxrpc.jar
set CLASSPATH=%CLASSPATH%;%DEPLOY_HOME%\wsdl4j.jar
set CLASSPATH=%CLASSPATH%;%DEPLOY_HOME%\tt-bytecode.jar
set CLASSPATH=%CLASSPATH%;%DEPLOY_HOME%\xerces.jar
set CLASSPATH=%CLASSPATH%;%AXIS_HOME%

8.5.2 Lab 2: Java Web Service/Java Client with Drop-in Deployment

The Web services practiced in this lab is the temperature conversion Web services that
we discussed before. In this lab, we will go through a Java Web services development
with an existing Web services Java source code and a Java client. The Web service is
deployed by drop-in deployment. This Web services design and development is in a
bottom-up model.

Step 1: Copy the Convert.java file to D: \apps\jakarta-tomcat-4.0.6\
webapps\axis and rename it as Convert.jws.

// Convert.java
public class Convert {

public Convert() {
}

public String toFahrenheit(String pCentigrade) {
double pCen = Double.parseDouble(pCentigrade);

EXAMPLES AND LAB PRACTICE 301

double fah = 32 + pCen*9/5;
return "" + fah;

}
}

Step 2: To test our Web services, we develop a ConvertClient.java file, which is a
client of our Web services. First, make sure that Tomcat is up and running on your
machine on port 8080.

//ConvertClient.java
package myDirectory;

import java.net.URL;
import org.apache.axis.client.Service;
import org.apache.axis.client.Call;
import org.apache.axis.encoding.XMLType;
import javax.xml.rpc.ParameterMode;

public class ConvertClient {

public ConvertClient() {}

public static void main (String args[]) {
try {

// EndPoint URL for the Web Service
String endpointURL =

"http://localhost:8080/axis/Convert.jws";
String methodName = "toFahrenheit";
Service service = new Service();
Call call = (Call) service.createCall();
//Set the endPoint URL
call.setTargetEndpointAddress(new

java.net.URL(endpointURL));
//Set the methodname to invoke - toFahrenheit
call.setOperationName(methodName);
call.addParameter("Celsius", XMLType.XSD_STRING,

ParameterMode.PARAM_MODE_IN);
call.setReturnType(XMLType.XSD_STRING);

/*Setup the Parameter of temperature in Celsius to be
passed as input parameter to the Convert Web Service*/

String result = (String) call.invoke(new Object[] {
args[0] });

//Print out the result
System.out.println(result);

}
catch (Exception e) {

System.err.println(e.toString());
}

}
}

302 WEB SERVICES COMPONENTS

Run the Web services client program:

D:\apps>java myDirectory.ConvertClient 15

The converted temperature 59 in Fahrenheit is shown on the screen.

8.5.3 Lab 3: Demonstration on Web Services SOAP Request and Web Services
SOAP Response Using TCP Monitor

This lab is a continuation of Lab 1 to demonstrate the SOAP request and response in Web
services. AXIS provides a tool called tcpmon, which can intercept the SOAP messages
during the Web services processing to show the XML SOAP request and response.

Step 1: Let tcpmon listen on the port 9000 to check the activities on the HTTP port
8080. It will start up a TcpMonitorwindow.

D:\apps>java org.apache.axis.utils.tcpmon 9000 localhost 8080

Step 2: Change one line in ConvertClient.java. Replace the line

String endpointURL = "http://localhost:8080/axis/Convert.jws";

with the following line.

String endpointURL = "http://localhost:9000/axis/Convert.jws";

Step 3: Open another command line prompt window.
Set CLASSPATH again, then recompile and run ConvertClient.

D:\apps>javac myDirectory/ConvertClient.java
D:\apps>java myDirectory.ConvertClient 20

We will see the result of this Web services request in the following screen snapshot:

EXAMPLES AND LAB PRACTICE 303

The SOAP Request and Response are shown in TCPMonitor window.

The complete SOAP request and SOAP response messages for this Web services
are shown in the following:

SOAP Request:

POST /axis/Convert.jws HTTP/1.0
Content-Length: 480
Host: localhost
Content-Type: text/xml; charset=utf-8

304 WEB SERVICES COMPONENTS

SOAPAction: ""

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<toFahrenheit>
<celsius xsi:type="xsd:string">20</celsius>

</toFahrenheit>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP Response:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: 461
Date: Fri, 19 Sep 2003 03:36:06 GMT
Server: Apache Tomcat/4.0.6 (HTTP/1.1 Connector)

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<SOAP-ENV:Body>
<toFahrenheitResponse SOAP-

ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<toFahrenheitResult

xsi:type="xsd:string">68.0</toFahrenheitResult>
</toFahrenheitResponse>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

8.5.4 Lab 4: Web Services Interoperability with Java Web Services
and .NET Client

So far, we have seen the Web services implementation in Java and service request
coming from a Java client. In this section, we will practice an example of Java Web
services with a .NET client. We use the same Java Web services as before except
that the client is .NET client. This Web services design and development is done in
top-down model.

Step 1: Get WSDL specification of Convert Web services.
Type http://localhost:8080/axis/Convert.jws?wsdl in the address block of the

Microsoft Internet Explorer. A WSDL document is displayed.

EXAMPLES AND LAB PRACTICE 305

Save convert.wsdl to D:\apps\myDirectory directory by clicking on “Save
as” from “File” menu bar. Next, open a Visual Studio .NET Command Prompt
and use the saved Convert.wsdl to generate a template C# Web service client
ConvertService.cs.

D:\apps\myDirectory>wsdl Convert.wsdl

Step 2: Modify the client template ConvertService.cs and add a main method

public static void Main(string [] args) {
ConvertService service = new ConvertService();

306 WEB SERVICES COMPONENTS

string response = service.toFahrenheit(args[0]);
Console.WriteLine("The result is " + response);

}

Step 3: Compile and run the client ConvertService in .NET framework.

D:\apps\myDirectory>csc ConvertService.cs
D:\apps\myDirectory>ConvertService 16

The converted temperature result is shown above.

8.5.5 Lab 5: Web Service Custom Deployment with WSDD

Step 1: Generate a WSDL from a Java interface or class without Web service source
code or create a WSDL specification manually. Here is a Java interface definition.

package convert;

public interface Convert

{
public String toFahrenheit(String pCentigrade);

}

Step 2: Create WSDL using Java2WSDL.

D:\apps\myDirectory>java org.apache.axis.wsdl.Java2WSDL -o
convert.wsdl -l“http://localhost:8080/axis/services/Convert” -n
“urn:myDirectory” -p“convert” “urn:myDirectory” convert.Convert

EXAMPLES AND LAB PRACTICE 307

Step 3: Generate Web services stub and skeleton, and deployment wsdd using
WSDL2Java.

D:\apps\myDirectory>java org.apache.axis.wsdl.WSDL2Java -o. -d session
-s -Nurn:myDirectory convert convert.wsdl

Step 4: Override ConvertSoapBindingImpl.java with implementation of toFaren-
heit method and compile it.

package convert;

public class ConvertSoapBindingImpl implements convert.Convert {
public java.lang.String toFahrenheit(java.lang.String in0) throws
java.rmi.RemoteException {

double pCen = Double.parseDouble(in0);
double fah = 32 + pCen*9/5;
return "" + fah;

}
}

D:\apps\myDirectory>javac convert/*.java

Step 5: Make a Web services Java archive file with an extension .jar for Web ser-
vice deployment.

D:\apps\myDirectory>jar cvf conv.jar convert/*.class

308 WEB SERVICES COMPONENTS

Copy the jar file to a proper directory; set CLASSPATH to include the directory
where the jar file resides.

D:\apps\myDirectory>copy conv.jar
D:\apps\jakarta-tomcat-4.0.6\webapps\axis\WEB-INF\lib\

Step 6: Deploy the Web service with WSDD file.

D:apps\myDirectory\convert>java org.apache.axis.client.AdminClient
deploy.wsdd

Make a Web services client ConvertTest.java and compile and run that for
testing. The source code is listed below.

D:\apps\myDirectory>javac convert/ConvertTest.java
D:\apps\myDirectory>java convert.ConvertTest 17

EXAMPLES AND LAB PRACTICE 309

package convert;

public class ConvertTest

{

public static void main(String args[]) throws Exception

{

convert.ConvertService service =
new convert.ConvertServiceLocator();

convert.Convert conve = service.getConvert();
System.out.println("The result is " +
conve.toFahrenheit(args[0]));

}

}

8.5.6 Lab 6: .NET Web Services

In this lab, we will practice a .NET Web services implemented in .NET C#. We
also show the result of a Web services request in an XMP format before being fur-
ther processed.

Step 1: Make Convert.asmx file and save in C:\Inetpub\wwwroot directory.
Assume a Microsoft IIS Web server is available now. The wwwroot directory is
a root directory for www population.

// Convert.asmx
<%@ Web services Language="C#" Class="Convert" %>

using System;
using System.Web.Services;

public class Convert : Web services {

[WebMethod] public float toFahrenheit(String pCentigrade) {
float pFen = float.Parse(pCentigrade);
float fah = 32 + pFen*9/5;
return fah;

}
}

Step 2: Type http://localhost/Convert.asmx in internet explorer address box. A
Web services Convert window appears and we can click the link of Web services
method toFahrenheit to get the interaction built-in Web service interface.

310 WEB SERVICES COMPONENTS

SUMMARY 311

The result from Web services is shown in a response window.

We can easily implement a .NET client to access this .NET Web services pro-
grammatically. We can also implement a Web services Java client accessing a .NET
Web services.

8.6 SUMMARY

In this chapter, we discuss the foundation of Web services including XML, SOAP,
concept and development of Web services, deployment of a Web service, publication
of a Web service, and connection models of Web service.

Web service is an on-line component that can be described by its interface – WSDL,
deployed by a deployment tool such as AXIS adminClient utility with WSDD, pub-
lished in a registry such as UDDI, located by a SOAP lookup based on UDDI API,
and invoked by a SOAP request. The Web services are loosely coupled, contracted
components that communicate via XML-based WSDL Web services interface.

WSDL Web services interface plays a role of implementation of a Web services
and its clients. The modification of a Web service will not affect its client, which may
be another Web services or application client, as long as the contract is unchanged. A
Web service is reusable. Even the part of WSDL interface definition is reusable.

A Web service component is different from other components in that Web service
is an on-line component; Web service is an interoperable component; Web service
is a component that can wrap other type components such as EJB, CORBA, and
.NET components; Web service is a firewall-friendly component because it is XML
SOAP-based text format proprietary-free component; Web service is globally available
component supported by its UDDI registry; Web service is an application-to-application
(A2A), business-to-business(B2B), e-commerce-to-e-commerce(E2E) component.

The connections between Web services can be synchronous and asynchronous, one-
way and two-way message passing, message-based and rpc-based, message passing
and request/response, and static binding and dynamic binding. A Web services com-
position can be a wrapper of an existing application, or containments of a number of
Web services, or aggregations of a number of Web services.

312 WEB SERVICES COMPONENTS

Although Web services has drawn so much attention in the business industry and
software development, this technology still faces a lot of challenges such as the
standards for interaction and conversation between Web services and flow control
in Web services integration.

8.7 SELF-REVIEW QUESTIONS

1. Web services provider and requestor
a. must be written in same programming language.
b. may be written in different languages.
c. may be running in different platforms.

2. An Apache Axis Web services component can be deployed in
a. .jws
b. .asmx
c. .wsdd
d. .jar

3. HTML is used for Web presentation and XML/SOAP is used for message exchange
representation.
a. True
b. False

4. A Microsoft Web services component has an extension
a. .zip
b. .exe
c. .asmx
d. none of the above

5. WSDD is a utility tool used to deploy a Web services.
a. True
b. False

6. A Web services distributed component and its client must be run
a. in different machines
b. in the same machine
c. on Internet
d. all above
e. none of the above

7. A Java Web services component can be accessed by a .NET client.
a. True
b. False

8. WSDL is an interface between a Web services and its client.
a. True
b. False

EXERCISES 313

9. UDDI is a Web services directory for Web services registration and lookup.
a. True
b. False

10. Web services request/response interaction model is a RPC-based messaging mode.
a. True
b. False

11. Three Web service design models are top-down, bottom-up, green field design.
a. True
b. False

12. Service tag in WSDL is a reusable implementation definition of a Web service.
a. True
b. False

Keys to Self-Review Questions

1. b,c 2. a 3. a 4. c 5. a 6. d 7. a 8. a 9. a 10. a 11. a 12. b

8.8 EXERCISES

1. What is a Web service?

2. How does a Web service work?

3. How does .NET support?

4. Describe the protocol stack for Web service.

5. What is the difference between CORBA and Web service?

6. List four portTypes of Web service.

7. Is Web service a cross-language platform?

8. How does one composite a Web service component nested inside another
component?

9. Describe the difference between XML and HTML.

10. Where is a Web service component deployed?

11. Describe the difference between XML and SOAP.

12. What is WSDL?

13. What is asynchronous interaction with a Web service?

14. What is synchronous interaction with a Web service?

15. When is class channel needed?

16. What is UDDI?

17. Can a Web service provider be a client of another Web service?

314 WEB SERVICES COMPONENTS

18. What is the difference between MS DCOM, .NET components, and Web ser-
vices component?

19. List all major Web services vendors you know.

20. Does Web services have problem with firewall?

8.9 PROGRAMMING EXERCISES

1. Design a Web services component NET C#, managed C#, .NET VB, which pro-
vides service of a simple calculator. The calculator has the functionality to perform
addition, subtraction, multiplication, and division of two real numbers. It can also
detect the zero divisor in division operation. Use namespace in this component.

2. Design a client of this calculator in .NET VB, .NET C#, .NET managed C#,
and Java.

3. Deploy this Web services component “Calculator” as a. asmx file on IIS server.

4. Rewrite component “Calculator” as a Java Web services component.

5. Deploy it on Apache Axis by WSDD or just. jws.

6. Develop a .NET client in C# to access this Web services.

7. Display the wsdl file of the Web services.

8. Display the SOAP of the Web services request and response.

REFERENCES

[Apache 2004a] http://ws.apache.org, 2004.

[Apache 2004b] http://ws.apache.org/axis, 2004.

[Deitel 2003a] Deitel. Java Web Services for Experienced Programmers, Prentice Hall, 2003.

[Deitel 2003b] Deitel. Web Services, A Technical Introduction, Prentice Hall, 2003.

[McGovern 2003] McGovern, James. Java Web Services Architecture, Morgan, 2003.

INDEX

A
Abstraction, 17
Addition, 21
Aggregation, 21, 204–205
Aggregation composition, 204
Algebra, 19
AOP, 2
Application programming interface (API), 19
Aspect-oriented programming, 2
Assembly, 26, 180–183, 198
Association, 102
Asynchronous communication, 101
Asynchronous interaction, 293–294
Asynchronous message passing, 162
Attributes, 163
AWT components, 25
AXIS (Apache extensible interaction system), 282

B
BeanBox, 47
Bean Builder, 37, 66, 73, 84
BeanDescriptor, 63
Bean development kit (BDK), 20, 37, 64, 72, 76,

78, 84
Bean icon, 54
BeanInfo class, 56–57, 62
Bean managed persistence (BMP), 92, 95
Beans, 37
Bit literals, 28
Black-box reuse, 5, 11, 267
Boolean algebra, 8, 19

Boolean literals, 27
Bundle activator class, 239
Bundle events, 251
Bundle life cycle, 247
Bundles, 239, 251

C
C#, 201–203, 224–228
Callback, 210
Canvas, 50, 52
CBSE, 10
CCM, 149, 159
CCM component, 159–160
CCM component categories, 164
CCM deployment, 183
CCM ports, 160
Chip-level components, 7
Client-side programming, 38
Cohesion, 10
COM, 195
Common Object Request Broker Architecture

(CORBA), 146
architecture, 147–149
assembly, 180–183
attribute, 163
connection models, 173–176
CORBA components, 149–158
CORBA component model (CCM), 159
deployment, 183–184
deployment models, 176–184
emit, 162

Component-Oriented Programming, by Andy Ju An Wang and Kai Qian
ISBN 0-471-64446-3 Copyright 2005 John Wiley & Sons, Inc.

315

316 INDEX

Common Object Request Broker Architecture
(CORBA) (continued)

event sink, 162
event source, 162
facets, 161
home interface, 163
IDL equivalence, 161–163
interface definition language (IDL), 147–150
interface repository, 147–148
module, 150
object adapter (OA), 147–148
object reference (OR), 148–149
object request broker (ORB), 147
OpenCCM, 165–173
packaging, 176–180
ports, 160
publish, 162
receptacles, 161
skeleton, 148
stub, 148

Common Language Runtime (CLR), 195–196
Common Type System (CTS), 195–196
Component abstraction, 17
Component algebra, 20
Component architecture, 19
Component assembly, 11
Component assembly descriptor, 180
Component associations, 25
Component-based analysis (COA), 10
Component-based design (COD), 10
Component-based management (COM), 10
Component-based software development (CBSD),

10
Component-based software engineering (CBSE), 10
Component charts, 20
Component definition, 18
Component executor, 164
Component implementation, 11
Component infrastructures, 18
Component interface, 11
Component models, 18, 20
Component object, 11
Component-oriented programming, 3
Component persistent state, 164
Component provision, 11
Component specification, 11, 28
Component standards, 18
Component table, 24
Component technology, 6, 19
Composite components, 38
Connection models, 18, 21
Connectors, 19
Conquering complexity, 4
Container, 89–90
Container managed persistence (CMP), 92, 95
Containment, 204–205
Containment composition, 204
COP, 1, 3, 8–9

CORBA, 146
CORBA component, 150
CORBA component descriptor (CCD), 178
CORBA infrastructure, 149
CSL (Component Specification Language), 26
CSL semantics, 29
Customization, 38, 40, 57
Customizing, 57

D
Data abstraction, 17
DCOM, 195
Decomposition, 17
Delegate, 205
Dependable systems, 18
Deployment, 10, 104–106
Deployment models, 18, 26
Design mode, 41, 70
Development for reuse, 11, 38–39
Development with reuse, 11, 38–39
Divide, 22
Divide and conquer, 10, 17
DLL components, 215–219
Document type definition (DTD), 269–271
Drag-and-drop, 37
Dynamic binding, 9
Dynamic connection, 247
Dynamic discovery, 9
Dynamic invocation, 295
Dynamic invocation interface (DII), 148
Dynamic link library (DLL), 196–199
Dynamic skeleton interface (DSI), 148

E
EJB architecture, 88
EJB component, 90
EJB component model, 90
EJB container, 89
EJB Web Service components, 94
Emit, 162
Encapsulation, 10
Enterprise Java Bean (EJB)

CMP example, 120–142
component model, 90–92

bean class, 92–93
entity bean, 95–99
interface, 92
message-driven bean (MDB), 99–100
session bean, 92–95

connection model
association, 102
asynchronous, 101
local, 101
remote, 101
synchronous, 101

container, 89–90
deployment, 104–106

Entity Bean, 95–99, 101

INDEX 317

Entity component, 164
Events, 20, 40
Event adaptor, 70
Event delegate, 205
Event driving, 25
Event handling, 22, 69
Event listeners, 40
Event sink, 162
Event source, 162
Event to event, 22
Event to property, 22
Export packages, 247
Export ports, 173

F
Facets, 161
Fire and event, 40

G
Gear-oriented programming, 2
Global assembly cache (GAC), 212
Graphical user interface (GUI), 37
Gray-box reuse, 5

H
Hardware components, 7
Hoare logic, 8
Home executor, 164
Home interface, 91, 95, 163

I
Identifiers, 27
Identity, 10
IDL, 147–148
Implementation repository, 148
Import packages, 247
Import ports, 173
Independent software vendor (ISV), 38
Infix operators, 28
Infrastructures, 18
Installed component, 11
Instance variables, 39
Integer literals, 27
Integrated development environment (IDE),

20
Intellectual property, 7
Interface, 10, 20, 92
Interface repository (IR), 148
Intermediate Language (IL), 195, 197–199
Introspection, 40
Invisible beans, 48

J

J2EE Architecture, 88–89
J2EE server, 89
JApplet, 54
JAR files, 44–45, 104, 240, 251
JavaBeans, 37

JavaBeans component infrastructure, 37
Bean Builder, 66
BeanDescriptor, 63
BeanInfo class, 56
component model, 38
connection model, 64
customization, 40
customizing, 57
deployment model, 72
design mode, 70
introspection, 40
invisible beans, 48
runtime mode, 70
serializable, 39, 43
persistence, 40

Java Embedded Server, 239
Java naming and directory interface (JNDI),

89
JES, 20, 239
JFrame, 47
JPanel, 41, 43, 53, 55
Just-in-time (JIT) compiler, 195

K
Keywords, 28

L
Local, 101

M
Managed C++, 203, 224–226
Managed code, 196
Managing change, 4
Manifest file, 44–45, 72, 199, 239–240
Many-sorted algebra, 29
Marshal by Reference (MBR), 207–210
Marshal by Value (MBV), 207–210
Message-Driven Bean (MDB), 92, 99–100
Message passing, 25
Methods, 20, 40
Modification of interface, 22
Multiplication, 22
Multithreading, 41

N
Name space, 197–198
.NET Component Infrastructure, 194

component deployment, 212
private deployment, 212–213
public shared deployment, 213–215,

228–230
component model, 198

C#, 201–203, 224–228
managed C++, 203, 224–226

connection model, 204–212
composition aggregation, 204–205
composition containment, 204–205
event delegate, 205

318 INDEX

.NET Component Infrastructure (continued)
remote asynchronous callback, 210–212
remote marshal by reference (MBR), 207–210
remote marshal by value (MBV), 207–210

framework, 194–237
common language runtime (CLR), 195–196
common type system (CTS), 195–196
dynamic link library (DLL), 196–199
intermediate language (IL), 195

.NET Web Service, 304–306, 309–311

O
Object adapter (OA), 147–148
Object-oriented programming, 2
Object reference (OR), 148–149
Object request broker (ORB), 147
OOP, 2, 8–9
Open CCM, 165–173
ORB, 147
OSGi components, 238
OSGi component infrastructure, 20, 262

bundles, 239
bundle events, 251
component model, 239
connection model, 247
deployment model, 250
export packages, 247
import packages, 247
service dependency, 250
service events, 251

OSGi framework, 239
OSGi implementations, 239
Open Service Gateway initiative, 238
OSGi specification, 238–239

P
Packaging, 115, 176–180
Package dependency, 248
Passing by reference, 92, 101
Passing by value, 92, 101
Persistence, 38, 40, 43
Platform-independent components, 38–39
Plug-and-play, 18, 239
Ports, 160
Post-condition, 21
Pre-condition, 21
Prefix operators, 28
Private component, 199, 212
Procedural abstraction, 17
Procedures, 8
Procedure-oriented programming, 2
Process component, 164
Programming, 1–3
Programming elements, 8
Properties, 20, 40
Property customization, 68
Property descriptor, 63
Property file descriptor, 178

Provided interface, 11
Proxy component, 68
Public component, 199, 212
Publish and emit, 162

R
Receptacles, 161
Reduction, 21
Reflection, 38
Remote, 101
Remote interface, 91, 95
Remote asynchronous callback, 210–212
Remote connector, 207–210
Remote method invocation (RMI), 100
Remote procedure call (RPC), 147
Required interface, 11
Reusability, 17
Reuse, 5
Runtime mode, 41, 70

S
Security, 41
Serializable, 39, 43
Serialization, 38–39
Server-side programming, 38
Service component, 164
Service dependency, 250
Service events, 251
Service interface, 246
Session bean, 92–95, 125
Session component, 164
Self-contained, 6, 12
Self-deployable, 6, 12
Simple object access protocol (SOAP), 195, 271
Skeleton, 148
Stateful session bean, 94
SOAP messages, 271
Software component, 7
Software component definitions, 6
Software dependability, 17
Software development process, 11
Software package descriptor, 178
Software productivity, 18
Software standardization, 18
Sort, 29
Source component, 20, 25
SQL access, 92
State operators, 28
Statement-level programming, 8
Static connection, 247
Static invocation, 295
Static invocation interface (SII), 148
Static skeleton interface (SSI), 148
Structured programming, 9
Stub, 148
Subroutines, 8
Subtraction, 21
Swing components, 25

INDEX 319

Switch-oriented programming, 2
Synchronous, 101
Synchronous connection, 101
Synchronous interaction, 293, 295

T
Target component, 20, 25
Temporal logic, 24
Temporal operators, 24, 28
Third-party composition, 9

U
UDDI (Universal Description, Discovery and

Integration), 26, 272, 275
Unmanaged code, 196

V
Visibility, 40
Visual Studio .NET, 215–224

DLL components, 215–219
window form client, 219–221
Web form client (VB.NET, ASP.NET), 221–224

W
Web services

Apache axis, 282, 286, 299–309
architecture, 272–280
asynchronous, 293–294
composition, 295–297

connection model, 293–297
component model, 92, 281
development, 282–293
deployment, 297–299
deployment descriptor, 297
document, 269–271
Document Type Definition (DTD), 269–271
dynamic, 295
framework, 267–269
synchronous, 293–297
SOAP, 271–272, 302–304
static, 295
.NET Web Service, 304–306, 309–311
wrappers, 296
WSDD, 297–299
WSDL, 281–293
XML, 269–271

White-box reuse, 5
Window form client, 219–221
WSDL, 91, 273, 281–293
WSFL, 296

X
XML, 269–271
XML-based deployment, 26
XML descriptor, 176
XML file, 66, 71, 73, 104, 181
XML schema, 269
XML schema document (XSD), 270

