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Preface

At the beginning of the 21st century, both software engineering and business
application development are facing a variety of challenges. On the one hand,
there is significant pressure to streamline the development process and reduce the
costs to create, deploy, and maintain software applications. On the other hand,
software applications have to fulfill constantly growing demands, in particular
as they are being recognized as integral parts of an organization’s competitive
advantage and as their significant impact on the corporate (e-) business strategy
becomes obvious.

Nowadays, software applications have to satisfy rapidly evolving functional
and extra-functional requirements. Similarly, the importance of software in tech-
nical applications is also constantly growing, as more and more software con-
tributes to the value of various products and technical processes. In both do-
mains, the enterprise and the technical product, software becomes more and more
critical, as its failures can have dramatic impact on enterprises, users, and the
environment. Cross-cutting these demands, managing the application complex-
ity, flexibly adapting applications to changes in the business environment, and
reducing the development time are of primary concern in today’s development
projects.

In order to better comply with these challenges, designing software architec-
tures of good quality becomes a critical success factor. A software application
is organized by its architecture that partitions it into elements and defines re-
lationships among them. For this, we usually use multiple views, each with a
different organizing principle. In addition, a software architecture supports rea-
soning about properties that are emergent and cannot be ascribed to particular
elements. These properties are described using a language of quality attributes.
Often, quality attributes, such as the system’s performance or reliability, have a
pervasive impact, are difficult to reverse, and preclude or constrain other prop-
erties. For these reasons, they have to be taken into account already during the
design phase.

The conference on the Quality of Software Architectures (QoSA) is concerned
with all of these topics. It brings together researchers and practicioners from a va-
riety of disciplines to promote a better understanding of how to develop software
architectures of good quality. This year’s conference combined presentations of
carefully reviewed papers, industrial experiences, keynotes, and discussion ses-
sions that delved into topics of interest. In particular, it addressed:

– Architecture design principles and design decisions based on architectural
knowledge

– Defining, measuring, and evaluating architecture quality
– Managing architecture quality, tracing architectural decisions upstream to

requirements and downstream to implementation
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– Preserving architecture quality throughout the lifetime of a software system
– Reasoning about emergent architecture properties such as performance and

reliability

According to QoSA’s tradition, the themes addressed in the call for papers
were broad. The papers selected for QoSA 2007 present recent research and
experiences on the topics listed above. From 42 submitted papers, 13 were se-
lected as papers for this conference proceedings volume (for an acceptance rate
of 31%). Each paper received at least three reviews and was discussed in depth
during special mini-panel sessions at the conference. The selected papers are
complemented by a written version of Murray Woodside’s keynote on “Resource
Architecture and Continuous Performance Engineering.”

The conference, held in Medford, MA, featured an additional “Industrial
Day” event with inspiring presentations from invited speakers, a variety of tu-
torials, and a panel discussion. As in 2006, this year’s QoSA was organized in
conjunction with the International ACM SIGSOFT Symposium on Component-
Based Software Engineering (CBSE 2007). Together with the Workshop on the
Role of Software Architecture for Testing and Analysis (ROSATEA 2007), they
formed the week-long conference and workshop series as Federated Events on
Component-Based Software Engineering and Software Architecture (COMP-
ARCH 2007).

We thank the members of the Program Committee and the additional re-
viewers for their thoughtful and timely reviews that helped us in selecting the
best papers. We are indebted to Judith Stafford and George Heineman for their
invaluable work that made the COMPARCH vision come true. For their support
and their work as QoSA Steering Committee, we thank Steffen Becker, Christine
Hofmeister, and Ralf Reussner. We thank the generous sponsors of QoSA 2007:
Tufts University and University of Karlsruhe (TH). Finally, we are grateful for
the support of our COMPARCH sponsors Siemens, Addison-Wesley, and The
MIT Press. Without the commitment of all the above people and sponsors, this
conference would not have been possible.

August 2007 Sven Overhage
Clemens Szyperski
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Resource Architecture and Continuous Performance 
Engineering 

Murray Woodside 

Dept. of Systems and Computer Engineering 
Carleton University, Ottawa, Canada 

Abstract. The concept of resource architecture has been introduced to describe 
the association of operations with resources, and interactions between these op-
erations. This paper explains resource architecture with examples, and how it 
can be used in performance engineering throughout the life of a project. 

1   Introduction 

Performance engineering of software is a problem that is not under control at the 
time of writing. It has serious effects in many projects, it cannot be predicted when 
serious problems will emerge (or not), and every decision in software development 
and deployment potentially affects it. The current status of the field, and some of its 
possible future evolutions, are discussed in [16]. That paper argues the importance 
of an integrated life-cycle methodology that combines prediction from models of 
architecture with measurement-based diagnosis and testing of products, called here 
“Continuous Performance Engineering”. This paper describes how “Resource Ar-
chitecture”, a concept introduced in [14], can be the basis of Continuous Perform-
ance Engineering. 

Insight and evaluation both require a system perspective, which comes from archi-
tecture, combined with sources of data, which can come from expertise (for predic-
tion) and from measurement. Within the continuous process we can identify three 
viewpoints on this combined information, shown in Figure 1.  

• Architecture comes first and gives a framework,  
• Design/deployment/configuration adds essential detail, resources (such as proces-

sors), parameters of the configuration (such as buffer and thread pool sizes), and 
workloads, and  

• Runtime provides opportunities to measure actual behaviour and performance. 

The second viewpoint is useful for predictive analysis, illustrated in Figure 2. The 
distinction is made between the Amodel (a software model, e.g. expressed in UML) 
and Pmodel (a performance model, possibly expressed in a queueing language).  

The third viewpoint provides empirical verification. We argue here that architec-
ture (in the form of Resource Architecture) underpins it, as well as the second, and 
integrates them. 
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Fig. 1. Viewpoints in Continuous Performance Engineering 

No attempt will be made here to provide a comprehensive background survey, in-
stead the reader is referred to [16]. 

Pmodel 
builder 

workload W, Deployment Resources DR 
Configuration Parameters CP 
         W   DR   CP     

“Completion” { 

throughput 

response time 

x

Point Solution Amodel Pmodel  

Fig. 2. Constructing a Performance Model (Pmodel) for Evaluation 

2   Underlying Factors: Resources and Behaviour 

Performance is determined by how behaviour uses resources. This includes physical 
resources like processors and logical resources like process thread pools, buffer pools 
and connections. We assume here that “architecture” includes a specification of be-
haviour, possibly defined by UML (see for instance [17]) interaction or activity  
models.  
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2.1   Representing Behaviour and Resources Together 

To show the interaction of behaviour and resources we shall use a scenario represen-
tation that describes Steps, Resources, and special steps that acquire and release re-
sources. Resources include processors and logical resources. A Step has an associated 
processor, and the detailed acquisition and release of the processor during the Step are 
not shown explicitly (since they are usually under the control of the operating system 
and not the architect). Architecture is represented by “Modules”, such that each Step 
is associated with one module and each module is associated with one processor. 
Interactions between modules are not included as such, but as behaviour transitions 
from one module to another. The modules have a dual role, partly to tie the Steps into 
the architecture, and partly to represent the Task resources managed by the operating 
system, which are associated with models which are also OS tasks or processes.  

Figure 3 shows four examples of scenarios, using a simplified version of the “Core 
Scenario Model” 0[9, 10] which was developed for this purpose. Figure 3(a) shows an 
application (AppModule) which executes two Steps S1, S2. The module is a Re-
source, that is it is a schedulable OS task with a thread pool with one or many threads. 
Before the task can begin, the task resource must be acquired, and this is associated 
with input of a request for execution. In Figure 3(b) the application makes a blocking 
request to Server, so the Server task resource must also be acquired. 

In Figure 3(c) the same service is non-blocking, thus the application resource is re-
leased when the server is acquired. The order (release application, acquire server) 
could also be reversed. Finally Figure 3(d) shows a fully asynchronous service where 
the application is not involved in exploiting the service result. 

3   Resource Context of an Operation 

The Resource Context of an operation is defined as the set of resources that are held 
by the scenario during that operation, ordered in the order of acquisition. Figure 3 
indicates resource contexts in two ways. First, it shows the contexts from the resource 
point of view, as a bold/dashed outline surrounding the Steps that have the resource in 
their context. This has value in indicating the Steps that are included in the holding 
time of the resource. Non-blocking and asynchronous service patterns are important 
for performance because they reduce the holding time of App. 

It also shows the context of the scenario as it changes with time, with resources 
shown as strips which begin at acquisition and end at release. The resource context of 
a Step is the set of strips at the point corresponding to that Step. Thus in Figure 3(b) 
we see that the context of S2 is (Server, App).  

3.1   Resource Context Nesting 

In Figure 3(b) the holding time of Server is nested within the holding time of App, 
and this is a common case in client-server architectures. A non-nested holding pattern 
is shown for a buffer resource, in Figure 4.  
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Fig. 4. Resource Contexts for a Buffer Handover 

The buffer is acquired in the context of component CompA and released in another 
context (CompB), a common case for buffers. 

Resource context nesting is a kind of structuring of resource usage, that in the fol-
lowing section provides a basis for a resource architecture.  

Strictly Nested Resource Contexts:  
Contexts are strictly nested if  

(a) resources are always released in the reverse order to which they are acquired, 
(b) the order of acquisition is the same in all scenarios. Thus, there is a partial order 

among the resources, such that every pair of acquisitions with no release between 
them satisfies the partial order. 

Figure 5(a) shows a deeply nested example as a Context Chart, with a directed 
graph of the resources (which are all task resources) showing the partial order. A 
justification for using such a partial order is, that the tasks can never deadlock through 
a circular request chain. 

3.2   Nearly-Nested-Context Cases 

Many web-based and enterprise systems have simply nested contexts as just de-
scribed. However nesting may constrain performance, and optimizations may break 
the nesting to a lesser or greater degree. In particular a resource may be released from 
the context before resources that were acquired after it. Contexts are Nearly Nested if 
they satisfy the order-of-acquisition condition above, but not the order of release. 

A special case, if the second-last resource is released while the last is retained, is eas-
ily implemented as an early reply to a blocking request. That is, the active task releases 
the task that requested it before it is finished with execution of the request, and contin-
ues on concurrently. Examples are delayed writes in databases and file systems, and 
clean-up operations in servers generally. However the continuing task is the root of a 
new concurrent resource context, and can execute quite general operations. 
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Fig. 5. A Deeply Nested Set of Resource Contexts: Context Chart, Graph of the Partial Order, 
and the Semantics of Early Unblocking 

Figure 5(c) illustrates early unblocking of the WebServer thread by the application, 
and execution of the last operations of Application in its concurrent context. The 
concurrent context after the early release of WebServer is called here “part 2” of the 
resource context provided by Application. In this second case, the interaction for the 
acquisition of Serv1 by App in the architecture diagram in the middle is applied twice, 
to both part 1 and part 2 of the operation by App. Notice that after the end of part 1, 
WebServer is free to do concurrent operations.  

Inspection of Figure 4(b) shows that the buffer handover can be modeled this way, 
with the operations of CompB in the second part of the buffer context. 

3.3   An Embedded System Example 

An example adapted from [15]0 illustrates a system with many resources and a vari-
ety of features in its resource contexts. It is a Building Security System first described 
as an example for the UML SPT Profile in [8], and analyzed further in [17], with 
resource contexts that were used to illustrate the CSM scenario language in [9, 10]. 
The deployment in Figure 6 shows a part for video surveillance of a building, includ-
ing cameras, a part for controlling access to doors, and a common database. The de-
tails of behaviour are described in the references, but they lead to the scenarios and 
resource contexts shown in Figures 7 and 8. 
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Fig. 6. The Building Security System 

Figure 7 shows the door control scenario. The access control is initially nested 
while the requester waits, but at the decision point there is either an asynchronous 
message to the alarm task, or an early return to unlock the door (by Lock) while part 2 
of the AccessController context logs the entry record in the database. 

Figure 8 shows the video capture scenario. As previously discussed the buffer is 
not nested, only here it is more severe. Manager (M) acquires the buffer, GetImage 
(G) uses it, then passes it to StoreImage (S). The buffer context is shown as starting 
only after return from M, an approximation. Part 1 of the buffer context is associated 
to the operations by G after return from M, and part 2 is associated with the opera-
tions of S, allowing the controller V to be released early by G. 

4   Resource Architecture 

In the Resource Architecture [14]0, resources are first class entities, and all behaviour 
is represented as associated with some resource as a “resource operation”. Interactions 
are requests to obtain a resource, while in a resource operation. 

4.1   Resource Operations and Interactions 

An interaction between two resources corresponds to a request made from a resource 
operation in a given resource context {R0, R1, ... Rn}, to obtain a new resource R and 
carry out some operation Op. The architectural interpretation: 

1. considers every Step to be part of a Resource-operation by the last resource in its 
context, 

2. considers each request for a resource R to be a request for an operation Op by R. 
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Fig. 7. Scenario for Door Access Control, with contexts shown as areas and as a Context Chart. 
The Access Controller has a part 2 to store the log of the access event. 

 
3. The request for Op is an interaction between the current resource and operation, 

and resource R. It is a synchronous request if Op retains all of the previous re-
source context, and asynchronous if not.  

4. Op is defined by the sequence of Steps following the acquisition of R, until R is 
released. Op includes any nested (synchronous) resource operations for additional 
resources. 

5. If during Op the context changes to include only R, the operation after the change 
is defined as a continuation or part-2 of Op. 

Clearly a resource can have several different resource-operations, that do different 
things. A resource-operation and its interactions can be visualized as shown in Figure 9. 
Figure 9(a) shows two operations of resource ResA, with interactions with operations of 
ResB and ResC. Synchronous and asynchronous interactions are shown by arrow styles. 
The asynchronous interactions initiate a new resource context with just ResB, concur-
rent with the existing context including ResA. The synchronous interaction with ResC 
indicates that ResA (and any other resources) remain in the context for the execution of 
the operation at ResC.  

Figure 9(b) interprets the scenario of Figure 3(b) as a resource architecture. The 
User-op includes App-op, which in turn includes S1, S3 and Server-op. Server-op 
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Fig. 8. Scenario and Resource Contexts (shown as shaded areas) for the Video Capture Sce-
nario. A Context Chart is shown in Figure 10 below. 

includes S2. The treatment of the processing resource is that each Step of each operation 
includes  some number of processing sub-steps which acquire and release the processing 
resource, but the time detail is not part of the resource architecture. We keep track only 
of the total processor demand of the Step, and the processor that is used. 

4.2   Separation of a Sub-operation 

An operation by a software component may be divided into parts we will call sub-
operations by the acquisition of logical resources. The part that begins after acquiring 
a logical resource (say, R1) is regarded in the Resource Architecture as an operation 
(say, Op1) of R1. Alternatively, since the operation is not really executed by R1, one 
can redefine this part as a separate operation (say, OpA) by a separate pseudo-
component (say, CompA) derived from the original component, and invoked by Op1. 
To avoid introducing a spurious process resource, the resource multiplicity of CompA 
is made infinite. This approach is preferred because it makes the process context of 
the separated operation (OpA) traceable, and it accommodates a resource-operation 
that executes within multiple processes at different times. 
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Fig. 9. Visualization of Resource Architecture: Resources, Resource-operations, and Interactions 

Figure 10 shows the processOneImage operation of the GetImage process in the 
BSS, with the part after acquisition of the buffer separated into an operation getImage 
by a psuedo-process GetImage2, and the corresponding Resource Architecture.  In 
Figure 10, the role of the Component is taken by GetImage, and the role of R1 is 
taken by the Buffer. The execution of GetImage after the acquisition of Buffer is 
separated out as the shaded operation getImage (in the role of OpA) of psuedo-
component GetImage2 (in the role of CompA). Figure 11 shows the full Resource 
Architecture for the BSS. 

As we can see by examining Figure 9, the Resource Architecture mimics exactly 
the Software Architecture if there are only process resources. However when logical 
resources are introduced as in Figure 10, they differ, because of the resource-
operations of the logical resources. 

4.3   Architecture in the Presence of Non-nested Resource Use 

The architecture notation in Figure 9 was developed in the context of nested use of 
resources, which we may regard as “structured” resource use. One kind of non-nested 
behaviour has been incorporated easily, which is the “part 2” behaviour described 
above. Removal of all the earlier resources in the context list is modeled adequately 
this way. The earlier resources continue to be held by a concurrent scenario, so their 
holding times are unaffected. 

In other non-nested behaviour some but not all of the earlier resources in the con-
text list are removed during an operation. The operation should be divided into sepa-
rate parts every time the context changes. The architectural notation for showing re-
quests during an operation can be used, but must be augmented to also show releases; 
this is not considered here. The resource holding time would be the sum of the parts 
of the operation.  

4.4   Performance Modeling 

The purpose of a resource model is to support analysis of the resource usage, in par-
ticular the system performance. The view of resource architecture described here 
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Fig. 10. The Buffer operation and the separation of getImage from processOneImage 

corresponds to a form of performance model called Layered Queueing [3, 11]. Exam-
ples of layered queueing models are found in [5, 12]; tools and methods for solving 
them are described in [3, 11]. 

5   Using Resource Architecture to Reason About Performance 

The value of resource architecture in reasoning about performance is, that it repre-
sents not only the causes of resource congestion, but also the flow of causality be-
tween congestion effects at different resources. Causality flows along blocking re-
source interactions, shown as arrows in the architecture. Waiting at a congested re-
source propagates to the invoking resource-operations (if the interactions are block-
ing), increasing their holding times and congestion levels also. 

Resource architecture explains bottlenecks at logical and process resources (“soft-
ware bottlenecks”) and supports a root cause analysis [4]0. Because of the generality 
of the resource concept, it supports very general patterns and anti-patterns for per-
formance [13]. Through root cause analysis it also helps to identify the most relevant 
performance improvements that can be made by 

• code tightening 
• latency masking, e.g. by pre-fetching, 
• increased resources through replicas of processes and data, or larger thread or 

buffer pools, etc. 
• reduced calls to a service, or batched calls, 
• asynchronous and parallel operations (including the use of “second parts” of opera-

tions through early replies to a caller; this is discussed further in [2]) 
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Fig. 11. The full resource architecture for the Building Security System 

6   Continuous Performance Engineering 

The above section points to the value of Resource Architecture in performance engi-
neering at all stages and by all approaches. The broad goals of CPE are: 

• management of performance expectations and risk 
• early warning of problems through analysis by models derived from designs 
• continuous assessment as design concepts evolve 
• smooth handoff from early analysis to measurements and tests 

 
Integration of the model approach with existing measurement techniques was ar-

gued in [16] to provide more realistic performance expectations, more efficient search 
for improvements, and more efficient measurements in the test phase. The elements of 
a process to integrate models and measurements included: 

• performance prediction from architecture 
• more detailed predictions tracking the design 
• budgets for use of processing resources by operations, prior to coding 
• unit tests on operations, designed from the model, 
• end-to-end tests and field measurements, supported by test planning. 

The resource architecture can play a central role in tying the actual system and its 
resources, to models for analysis and insight. 
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7   Conclusions 

The concept of resource architecture has been discussed in detail to describe its simi-
larities and differences from the corresponding software architecture. The central role 
of resource architecture in understanding or analyzing performance at any stage in 
software development, was identified. Additional details are found in the references. 
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Abstract. In enterprise application development and other software constructi-
on projects, a critical success factor is to make sound architectural decisions. 
Text templates and tool support for capturing architectural decisions exist, but 
have failed to reach broad adoption so far. One of the inhibitors we perceived 
on large-scale industry projects is that architectural decision capturing is regar-
ded as a retrospective and therefore unwelcome documentation task which does 
not provide any benefit during the original design work. A major problem of 
such a retrospective approach is that the decision rationale is not available to 
decision makers when they identify, make, and enforce decisions. Often a large, 
possibly distributed, community of decision makers is involved in these three 
steps. In this paper, we propose a new conceptual framework for proactive deci-
sion identification, decision maker collaboration, and decision enforcement. 
Based on a meta model capturing reuse and collaboration aspects explicitly, our 
framework instantiates decision models from requirements models and reusable 
decision templates. These templates capture knowledge gained on other projects 
employing the same architectural style. As an exemplary application of these 
concepts to service-oriented architecture shows, reusable architectural decision 
models can speed up the decision identification and improve the quality of the 
decision making. Reusable architectural decision models can also simplify the 
exchange of architecture design rationale within and between project teams, and 
expose decision outcome as model transformation parameters in model-driven 
software development. 

Keywords: Architectural decision, architectural knowledge, MDA, SOA. 

1   Introduction 

Having been neglected both in academia and industry for a long time, the importance 
of architectural decision capturing is now widely acknowledged [15][20][28]. How-
ever, existing work focuses on capturing and representing decisions that have been 
made already. Little emphasis is spent on anticipating the required decisions based on 
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experience from previous projects, on recommending proven decision making tech-
niques for these decisions, and on team collaboration aspects. In collaborative envi-
ronments, decision making responsibilities are assigned to various team members; 
consensus must be found, and decision outcome communicated.  

As a consequence, capturing architectural decisions remains a challenge for practi-
cing architects. Reported inhibitors for capturing decisions include no appreciation 
from project sponsors, lack of time, and insufficient tool support [27]. Hence, intuiti-
on often is the only, but not always a suitable, decision driver; there is no systematic 
reuse of already gained knowledge. This lack of rigor leads to acceptance issues and 
quality problems with the software architectures under construction. 

This paper aims to alleviate these problems by proposing a conceptual framework for 
three decision capturing steps we observed and practiced on our own enterprise 
application development projects [30][33]. We refer to these three conceptual steps as 
decision identification, making, and enforcement. As we will explain, today’s practices 
support each of these steps only insufficiently. In our framework, reusable decision  
templates and semi-automatic decision model instantiation speed up the decision identi-
fication step. We aim to improve the quality of the decision making with decision de-
pendency modeling, catalogs of decision drivers, and recommendations for decision 
making techniques. Finally, we propose decision injection into model transformations, 
code aspects, and configuration policies as an additional means of enforcing decisions in 
model-driven software development. A common meta model explicitly capturing reuse 
and collaboration aspects connects the three steps. Our reusable decision modeling 
framework is complementary to software engineering methodologies such as the 
Rational Unified Process (RUP) [19]; decision making can become a dedicated part of 
the work breakdown structure defined by the software engineering methodology of 
choice. The framework also is complementary to traditional component-and-connector 
modeling of software architecture design [3]; decisions explicitly refer to elements of 
design models such as logical components. 

The remainder of this paper is structured in the following way: Section 2 introdu-
ces background and related work; Section 3 presents the requirements and the meta 
model for our conceptual framework for architectural decision modeling with reuse, 
and how the framework facilitates decision identification, making and enforcement. 
Section 4 applies our approach to the design of enterprise applications employing 
Service-Oriented Architecture (SOA) as their primary architectural style. Section 5 
concludes with a summary and an outlook to future work. 

2   Background and Related Work 

Our work extends several recent contributions to software architecture research, 
which in turn are based on existing work in design decision rationale research. We 
also draw upon the rich architectural knowledge captured by the patterns community. 

In [20], Kruchten et al. define an ontology that describes the attributes that should 
be captured for a decision, the types of decisions to be made, how decisions are made 
(i.e., their lifecycle), and decision dependencies. In their work, Kruchten et al. also fo-
cus on the visualization of the decisions. In [6], Falessi et al. present the decision, 
goal, and alternatives framework to capture design decisions. Their motivation is to 
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increase the maintainability of a software system by identifying why a certain 
approach has been chosen, and which design decisions have to be updated when the 
system is changed. In our work we build on both of these approaches, especially the 
ontology put forward by Kruchten and the use cases identified by Falessi, and apply 
them to enterprise application development. Unlike existing work, we investigate pro-
active decision identification to ease the reuse of architectural rationale. We are  
particularly concerned with collaboration and automation aspects. 

Jansen and Bosch [15] view a software architecture as a composition of a set of de-
sign decisions. Their model for architectural design decisions focuses on the time  
dimension, defining a dedicated entity representing architectural modifications occur-
ring over the software lifecycle. Other decision capturing templates exist in industry 
and academia, which can also be viewed as informally specified meta models [1][28]. 
None of these models is rich enough to support decision identification in requirements 
models, and there is no genuine support for decision reuse and collaboration. We 
could not find an alignment of these works with software engineering methods and 
patterns; platform-independent concerns are not separated from platform-specific 
ones. Our work enhances the existing modeling ideas in these directions. 

Design decision research in the 1990s [21] focused on facilitating the decision ma-
king step; explicit identification and enforcement steps are not present. For instance, 
Questions, Options and Criteria (QOC) diagrams [22] raise a design question, which 
points to the available solution options; decision criteria are associated with the opti-
ons. Selecting an option can lead to follow-on questions. Many active and passive De-
cision Support Systems (DSS) have been proposed. Most of the existing work focuses 
on management decision support; however, Svahnberg et al. suggest a quality-driven 
multi-criteria decision support method for software architecture selection [26]. This 
method allows multiple team members to score already identified architecture candi-
dates based on weighted quality attributes. The scores lead to a suggestion and stimu-
late a consensus discussion. However, identification and reuse of required decisions, 
available alternatives and relevant quality criteria are out of scope. QOC diagrams and 
DSS complement our work and can be leveraged during our decision making step.  

In the patterns community, several schools of thought and many pattern templates 
exist [5][9][11]. Requirements linkage typically is informal and appears in textual 
intent or forces sections. Many pattern languages remain on an abstract, conceptual 
level; others specialize on a single problem or technology domain such as enterprise 
application architecture [7] or process-driven SOA [29]. Patterns for process-driven 
SOA describe how to automate the management of long-running business processes 
such as loan approval processing or order management along supply chains (problem 
domain) with workflow engines and communication middleware (technology do-
main). The activity flow in such processes can be specified using Business Process 
Modeling (BPM) tools and implemented as a network of communicating Web servi-
ces [34]. In general, the relationship between architectural patterns and reusable deci-
sion models is synergetic. In this paper, enterprise application development serves as 
the sample domain; hence, SOA patterns appear as conceptual architecture alternati-
ves in the reusable architectural decision model we introduce in Section 4. 
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3   A Conceptual Framework for Decision Modeling with Reuse 

To overcome the limitations of the existing decision capturing approaches, we struc-
ture the architectural decision making process into three conceptual steps, decision 
identification, making, and enforcement.1 Decision identification scopes the architec-
ture design work on a particular software development project. Requirements and 
earlier decisions trigger the identification of individual decisions. During decision 
making, architects select alternatives according to certain decision drivers, which 
either are context-specific requirements or general software quality attributes [3][14]. 
This step is the core of the three-step process; making sound technical decisions on 
software development projects is what practicing architects are primarily responsible 
for. Decision enforcement deals with sharing the results of the decision making with 
the stakeholders and the project team, and getting them accepted.  Figure 1 illustrates: 

Decision 
Identification

Decision 
Making

Decision 
Enforcement

Decision Modeling Framework  

Fig. 1. Decision making steps 

Each of the three steps has its own specific requirements, all of which have to be 
addressed by an underlying common meta model. In the remainder of this Section, we 
first investigate these requirements, then derive the required meta model elements 
from them and finally discuss how we support the identification, making, and 
enforcement steps. 

3.1   Requirements 

Having interviewed close to 100 practicing software architects, we identified the 
following design goals and use cases for our decision modeling framework. 

Design goals. Supporting the decision identification, making, and enforcement steps 
requires extending existing practices for building up architectural knowledge, particu-
larly if the decision making responsibilities are shared within and across teams. 
Therefore, providing team collaboration support is a mandatory design goal – archi-
tectural decision making is a team effort, and for budgetary and other reasons, soft-
ware development projects today typically are carried out by geographically distribu-
ted teams. Furthermore, it should be possible to harvest architectural decisions from 
completed projects; a small overhead for capturing fresh decisions is desirable. 

Use cases. In [6], thirteen general use cases for design decision rationale capturing  
are identified, covering a wide range of activities such as design problem detection, 

                                                           
1 Finer grained models exist, for example in systems theory [10] and DSS research [26]. 
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validation, documentation, coordination, and communication. With respect to our 
design goals, they lead to the following seven concrete primary use cases:   

1. Obtain architectural knowledge from third parties, e.g., company-wide enter-
prise architecture groups or practitioner communities in consulting firms. 

2. Adopt and filter obtained decision knowledge according to project specific 
needs: delete, update, and add architectural decisions and alternatives, and 
manage dependencies between decisions. 

3. Delegate decision making authorities to subsystem architects and lead deve-
lopers and support review activities with bidirectional feedback loops. 

4. Involve network of peers in search of additional architectural expertise during 
decision making, requiring a common understanding of problem and solution 
space; hence, it is important to align terminology as much as possible. 

5. Enforce decision outcome via pattern-based generation of work products, for 
example documentation and code snippets serving as architectural templates. 

6. Inject decisions into design models, code, and deployment artifacts. 
7. Share gained architectural knowledge with third parties such as the actors 

from use case 1, after having sanitized the project deliverables. 

3.2   Meta Model Underpinning and Connecting the Framework Steps 

To be able to support the use cases from Section 3.1 and automate parts of our three-
step process, a common meta model is required. Figure 2 shows our proposal, which 
is inspired by previous research [1][15][20], the IBM e-business Reference Architec-
ture Framework used in [28] and our own decision documentation practices [30][33]: 

 

Fig. 2. Meta model in conceptual modeling framework for architectural decision reuse 

There are three core domain entities, Architectural Decision (AD), ADAlternative, 
and ADOutcome. In line with [15], we separate the outcome from the background in-
formation, in our case to facilitate reuse. AD and ADAlternative provide background 
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information only; attributes such as problemStatement characterize an AD on an intro-
ductory level, while references and knownUses point to further information.  

The rationale behind this modeling choice is that the same AD might pertain to 
many elements in a design model, e.g., business processes and Web service 
operations. The design model element types are referenced via the scope attribute in 
the AD. ADOutcome instances then can be created dynamically, and refer to design 
model element instances via a designModelReference. To give an example, an order 
management process model might state that five business processes have to be imple-
mented as a set of composed Web services [30]; while attributes such as problem 
statement, references, and recommendation are the same for all five processes, the 
justification might differ, depending on the individual decision drivers. Decision 
drivers include project-specific non-functional requirements (including environmental 
issues such as skill availability) and general software quality factors. The patterns 
community uses the term forces synonymously. 

Closely related ADs are grouped into ADTopics, which can form a hierarchy. Each 
ADTopic hierarchy is assigned to one of three ADLevels of abstraction, Concep-
tualLevel, TechnologyLevel, or AssetLevel. This novel structure is motivated by our ob-
servation that when designing enterprise applications, the technical discussions often 
circle around detailed features of certain vendor products, or the pros and cons of 
specific technologies, whereas many highly important strategic decisions and generic 
concerns are underemphasized. These discussions are related, but should not be merged 
into one. We therefore go through two refinements steps. This is good practice, e.g., 
Fowler [8] and RUP with its elaboration points recommend such an approach for UML 
class diagrams used as design models. We adopted this recommendation for decision 
models and made the three abstraction levels explicit in our meta model. 

Several attributes such as responsible, takenBy and status model decision owner-
ship and lifecycle in response to the collaboration use cases from Section 3.1. The 
phase attribute provides a link to general-purpose methodologies such as RUP. These 
and all other model attributes can queried, e.g., when looking for all open decisions to 
be made in the inception phase of an enterprise application development project. 

Decision dependencies are explicitly modeled as associations between ADs. At 
present, we use a single dependsOn dependency type, but are in the process of adop-
ting the taxonomy from [20]. To give an example, for our order management business 
processes, a conceptual decision for a PROCESS AUTOMATION PARADIGM is required: 
Should the processes be made executable in a WORKFLOW ENGINE, or be realized in 
traditional PROGRAMMING LANGUAGE CODE? If a workflow engine is decided for, a 
related technology decision is to agree on an EXECUTABLE WORKFLOW LANGUAGE, 
e.g., BUSINESS PROCESS EXECUTION LANGUAGE (BPEL) [23]. Once BPEL has been 
decided upon, a BPEL ENGINE can be selected, e.g., ACTIVE BPEL, IBM WEBSPHERE 

PROCESS SERVER or ORACLE BPEL PROCESS MANAGER.2 

3.3   Step 1: Decision Identification 

Let us now investigate state of the art and the practice for the first step in our frame-
work, decision identification. Next, we discuss how our decision identification sup-
port can increase productivity and improve quality. 

                                                           
2 In this and all further examples, we set ADs and ADALTERNATIVES in THIS FONT. 
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State of the art. Pattern languages [7][11], domain-specific plugins for software engi-
neering methods [16], technical papers and vendor documentation can be studied to 
identify required technical decisions. In theory, these sources of information provide 
deep coverage of all design concerns. However, the consumability of the vast amount 
of information is a key issue. Architectural decisions are often hidden behind various 
other material not targeting architects and therefore not being presented appropriately. 

Project reality. During our decision modeling work with practicing architects, it 
became apparent that ad-hoc decision identification solely based on personal experi-
ence is the state of the practice, as opposed to diligent literature studies, or systematic 
reuse of knowledge already gained in a community. As a consequence, much time is 
spent in early project phases (requirements analysis, high level design) to identify the 
critical design issues, invent potential solutions, and agree upon decision criteria, 
particularly if the team lacks experience. This time would be better invested in 
studying the business problem to be solved, and in the actual decision making.  

Our approach.  As Figure 3 shows, we propose the initial decision model for a pro-
ject team to be instantiated from project-specific requirements models and reusable 
decision templates. Reference architectures play a key role here, providing a common 
technical vocabulary and architectural patterns for a certain domain [3]. Architectural 
decisions cannot live in isolation; they have to be bound to design model elements, 
which can be found in the reference architecture. We refer to this binding step as 
decision scoping. In contrast to the pull model employed in practice today, we push 
the initial to-do list to the architecture team. We expect this reuse approach to increase 
productivity significantly, and to have a positive effect on quality. The decision 
templates serve as a completeness check list which can be seen as an early, informal 
review of the architectural work. 

Reference Architecture
(incl. Reusable Decision Templates)

Requirements Model
(Machine and Human Readable)

x

Conceptual, Technology, and Asset Decision Model 
(To-Do List for Project Team)

Partial Decision Identification 
Automation

(push)

  

Fig. 3. Semi-automatic decision identification in requirements model and reference architecture 

We do not aim to populate the entire design space; there will always be project-
specific design issues worth capturing ad hoc. However, proactive decision 
identification works fine for many common design issues. For instance, in [34] we 
captured 26 architectural decisions dealing with WEB SERVICES as INTEGRATION 

TECHNOLOGY. These decisions cover interface design issues such as SELECTION OF 

INTERFACE DESCRIPTION LANGUAGE and MODELING STARTING POINT (BUSINESS 

REQUIREMENTS vs. EXISTING IT ASSET) These decisions were reused successfully on 
several Web services projects conducted by others [12]. 
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3.4   Step 2: Decision Making 

The actual decision making is the second step of our three-step framework.  

State of the art. Architecture Tradeoff Analysis Method (ATAM) [3], Attribute-
Driven Design (ADD) and Decision Support Systems (DSS), as well as many semi-
formal techniques such as Strengths, Weaknesses, Opportunities, Threats (SWOT) 
tables can be used to support decision making. ATAM was originally positioned as an 
evaluation and review instrument, but can also be used during earlier decision making 
stages. Without customization, generic techniques such as ADD do not provide 
reusable, domain-specific advice. Many decision making techniques require infor-
mation not yet available during the early elaboration stages or use the strategy to 
address one Non-Functional Requirement (NFR) at a time and hence do not take side 
effects caused by decision dependencies into account. As a consequence, not all 
techniques are equally suited for all decision types. 

Project reality. Architectural decision making is often perceived as an art rather than 
part of an engineering process. Decisions makers often are biased; phrases like “this 
has always worked for me” or “this is the industry trend” justify decisions instead of 
sound technical judgment backed by tradeoff analysis activities or technical 
evaluations. Frequently, a single driver is overemphasized. For instance, we have seen 
architects use a simplistic “brain/heart/guts” model. In summary, personal experience, 
preferences, and intuition often are the main decision drivers; external forces such as 
vendor interests or strategic decisions motivated by potential future needs and 
synergies have a large, not always beneficial, impact on the decision making. Con-
sequently, the technically best solution is not always selected. Such ill-motivated and 
-fated decision making often is a root cause for project failure as the quality of the 
produced software architecture degrades. 

Our approach. Aiming to objectify the decision making, we integrate a collection of 
proven decision support techniques into our framework, which accompany and use 
the decision models created during the identification step. We also provide a list of 
decision drivers per decision, e.g., highlighting specific NFRs and software quality 
factors, but also non-technical factors such as political issues, license costs, and 
available skills.  

Depending on the type of decision to be made, we select from a continuum of sup-
port techniques, e.g., simple recommendations, semi-structured SWOT tables, ADD 
[3], QOC diagrams [22], hands-on evaluations and formal alternative scoring algo-
rithms [26]. A benefit of this approach is that it provides the decision makers with a 
technique well suited for a particular decision, as well as tangible advice that is 
aligned with requirements and background information (e.g., vendor best practices). 
Figure 4 illustrates. 

In our opinion, it is neither feasible nor desirable to fully automate the decision 
making. The importance of tradeoffs in specific contexts and design drivers naturally 
makes full automation impossible; heuristic solutions are required. Matching of the 
requirements contexts and decision drivers is important when reusing architectural 
knowledge. In many circumstances, it is imperative to deviate from generic 
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Decision Driver Catalog 
(NFRs, SW Quality Factors, 

Non-Technical Forces)

Conceptual, Technology, and 
Asset Decision Model

(To-Do List for Project Team)

x

Decision Outcome 
and Justification

Decision Making Support

(SWOT, ADD, QOC)

Fig. 4. Decision models, decision drivers and techniques for decision making 

recommendations. Hence, the decision making support in our approach empowers the 
architects to make informed decisions based on collective insight.  

To give an example, using DEEPLY NESTED XML SCHEMA TYPES as MESSAGE 

PARAMETER GRANULARITY was considered an anti-pattern in early Web services 
literature. Confronted with a rich core banking domain model, we still decided for this 
alternative in one of our projects [33]. We did so after having conducted a proof-of-
technology to mitigate interoperability and performance concerns, which we had 
identified as key decision drivers. This decision justification became a reusable 
architectural recommendation at a later stage, due to the positive experience gained. 

3.5   Step 3: Decision Enforcement 

State of the art. Traditional software engineering processes like RUP [19] address deci-
sion enforcement through stepwise design refinement down to code. The agile communi-
ty [4] emphasizes the importance of face-to-face communication. Maturity models such 
as the Capability Maturity Model Integration (CMMI) [25] and domain-specific gover-
nance models [13] also can be used to ensure that ADOutcomes find their way into 
running code. At build and deployment time, concepts such as code aspects and configu-
ration policies can be used to express architectural intent explicitly. However, complexity 
and maturity concerns have limited a broad adoption of these two concepts so far. 

Project reality. Coaching, architectural templates, and code reviews are the domina-
ting decision enforcement approaches today. All of them are perfectly valid. How-
ever, applying these approaches takes time and depends on the coding and leadership 
skills of the decision makers. Personal architectural knowledge that remains tacit 
often is lost during the maintenance phase of the application lifecycle, e.g., when the 
team setup changes. Codifying architectural knowledge in design models is an 
additional option when following Model-Driven Architecture (MDA) principles. 
However, a key limitation of standard MDA is that model transformations often are 
not configurable and therefore hard to adjust to project-specific architectural decisions 
[32]. For example, many BPM-to-BPEL tools allow the user to make simple deci-
sions, e.g., regarding activity naming, but use fixed values for key aspects, e.g., sy-
stem transaction management settings. Consequently, development resources have to 
be invested for changing the default values to the settings required in the particular 
requirements context. Such disconnects and reconciliation problems between 
architecture and development tools and artifacts can be observed frequently.  

Our approach. The existing practices work fine for many decisions, particularly 
those pertaining to micro design. As an additional option in our framework, machine-
readable decision models can be interpreted by model transformations and code 
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Fig. 5. Decision enforcement via injection into model transformations and code generation 

generators. Figure 5 illustrates this decision injection concept, which can help to 
reduce unnecessary development efforts and ensure architectural consistency: 

We have built a demonstrator for such an approach that uses Eclipse JET templates 
to codify key architectural decisions dealing with non-functional concerns regarding 
the implementation of executable business processes. For example, the demonstrator 
injects ADOutcome for TRANSACTIONAL POLICIES such as REQUIRESOWN and 
PARTICIPATES into the BPEL code generated by a BPM tool used to capture business 
requirements. In this example, the decision drivers are the logical business transaction 
boundaries, the physical resource protection needs, and the capabilities of the 
involved legacy systems. The BPM tool user, typically a domain expert (business 
analyst), can and should not be responsible for this architectural decision. 

4   Application of Conceptual Framework to SOA Design 

In this section, we describe how we applied the conceptual framework from Section 3 
to enterprise application development and SOA design incrementally. First, we orga-
nized the decision points encountered on our own SOA projects [30][33] according to 
the meta model from Section 3.2. As a second step, we factored in selected architectu-
ral knowledge from projects technically led by peers, leveraging an IBM-wide SOA 
and Web services practitioner community with 3500 members. To verify that the con-
cepts are not limited to SOA as the primary architectural style, we cooperated with 
architects specializing on information management, who documented their know-how 
about information integration and data-centric architectures using our concepts. The 
result is a reusable SOA decision model we refer to as SOA Design Space. 

4.1   Requirements Model and Reference Architecture for SOA Design Space 

In Section 3.3, we explained that we require a machine-readable requirements model 
to be able to partially automate the decision identification step. When constructing 
SOAs, analysis-level business process models, optionally annotated with NFRs, are 
well suited for this purpose [17]. Object-oriented analysis artifacts such as use case 
models also work well. Our minimum requirement for such models is that they have 
to list the processes and activities to be realized as software services; the decision 
identification support can then create realization decisions for these high-level 
functional building blocks.  

In the SOA case, we use the abstract SOA reference model from [2] as our refe-
rence architecture. It provides a conceptual, semi-strict layering scheme defining nine 
layers: consumer, process, service, component, resource, integration, Quality of 
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Service (QoS), information, and governance. It is possible to use other reference 
architectures, as long as these provide a layering scheme and allow associating a 
decision with the design model elements it pertains to. The selection of the concrete 
REFERENCE ARCHITECTURE is an executive-level architectural decision in its own 
right; making it is part of the project-specific adoption of the SOA Design Space. 

If an analysis model has already been transformed into a high-level design model, 
e.g., with support from BPM and SOA tools, we can further improve the decision 
identification step because the business-level activities in the process model have 
already been refined into high-level design artifacts such as candidate services. Fewer 
decisions remain. An example for such a transformation is DATA CONTAINER 

ASSIGNMENT, producing typed service operations as output. Furthermore, un-
necessary design points can be deleted. For example, if cycles have been removed 
from the business process automatically, DEALING WITH CYCLIC PROCESS MODELS is 
no longer relevant [17]. 

4.2   Organizing Principles in the SOA Design Space 

To decompose the rather complex SOA design domain, we applied several proven 
structuring principles such as separation of concerns and logical layering. Figure 6 
outlines the overall structure, resembling the ADLevel hierarchy from Figure 2: 

 

Fig. 6. UML packages for SOA Design Space and assignment to MDA levels  

ADTopics are used as a fine-grained grouping mechanism on each MDA level. We 
aim for high cohesion within and low coupling between ADTopics. In the Conceptual 
Decision Model, we use the ontology from [20]. The reference architecture from [2] 
organizes the ADTopics. Table 1 lists selected conceptual ADTopic nodes with 
examples, comparing their identification, making, and enforcement characteristics:  

Employing a consistent naming style for ADTopics, ADs, and ADAlternatives is 
another principle to make models comparable; all elements created according to the 
meta model from Section 3.2 have a unique identifier and a self-explaining short 
name. Our terminology takes inspiration from service modeling [2], enterprise archi-
tecture [7] and SOA patterns [29] literature. By convention, alternatives are ordered 
from common and recommended to exceptional; if present, fallback alternatives such 
as CUSTOM CODING and OTHER appear last. 
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Table 1. Decision types in Conceptual Decision Model of SOA Design Space 

Decision type (ADTopic) 
with examples 

Identification  
(role, phase)  

Decision Making 
Support 
(non-exclusive list) 

Enforcement  
(now, future) 

Executive Decisions, e.g., 
PLATFORM SELECTION, 
ARCHITECTURAL STYLE, 
GOVERNANCE  

Enterprise archi-
tect, before 
project starts 

SWOT analysis and other 
consulting techniques 
(high number of alterna-
tives, incomplete data) 

Now and future: 
Governance 
processes,  
limited tool support 
(personal productivity 
software) 

Enterprise Architecture 
Decisions (EADs), e.g., 
existence decisions: 
TRANSACTION  

MANAGEMENT, 
SESSION MANAGEMENT, 
LAYERING,  
PERSISTENCE STRATEGY 

[7] 

Lead architects 
and senior deve-
lopers, during 
early project 
phases (solution 
outline, macro 
design) 

Literature research (e.g., 
patterns books, online fo-
rums) and  “if-then” best 
practices rules (often se-
veral valid choices, deci-
sion drivers semi-
concrete) 

Now and future: 
Architectural tem-
plates, coaching 
Future: pattern tool-
kits, configurable 
model transformations  

Process Realization 
Decisions (PRDs), e.g., 
property decisions: 
MACRO VS. MICRO 

FLOW, INSTANCE 

CORRELATION,  
SYSTEM TRANSACTION 

BOUNDARIES,  
COMPENSATION [32] 

Technical archi-
tects, lead deve-
lopers, platform 
and technology 
specialists, during 
macro and  micro 
design 

Domain analysis and 
design (challenging NFRs 
and many other decision 
drivers), to be supported 
by QOC diagrams etc. 
(choices can be justified 
by concrete decision 
drivers) 

Now: Manual coding, 
hard wired in MDA 
model transformations 
and code generators 
Future: Decision 
injection into code, 
aspects, policies 

Service Realization Deci-
sions (SRDs), e.g.,  
MESSAGE EXCHANGE 

PATTERN,  
SERVICE GRANULARITY 
[32] 

Same as PRDs, 
but different skill 
set  

Same as PRDs, but often 
less alternatives because 
decisions on higher levels 
constrain choices 

Same as PRDs 

The SOA Design Space implements the abstract decision scoping concept from 
Section 3.2, using the process and service abstractions from the selected SOA refe-
rence architecture. PRDs have to be taken per process to be realized in software, 
SRDs once per process activity to be implemented as a software service.   

Via decision tagging, ADs can be annotated with keywords to express cross-
cutting concerns, which then become additional dimensions in our SOA Design 
Space. For instance, we tagged all decisions dealing with transactionality across 
ADLevels and ADTopics so that they can be searched for.  

There are many dependencies within and between the levels. To resume the 
example from Section 3.2, PROCESS AUTOMATION PARADIGM and deciding between 
abstract MESSAGE EXCHANGE PATTERNS such as REQUEST-REPLY and ONE WAY are 
architectural decisions in the Conceptual Decision Model. In the Technology Decision 
Model, concerns then are BPEL PROCESS DESIGN and SOAP MESSAGING VS. 
REPRESENTATIONAL STATE TRANSFER (REST) as MESSAGE EXCHANGE FORMAT; 
when integrating distributed components, the selection of a TRANSPORT PROTOCOL, 
e.g., HTTP or MESSAGING, is another technology decision. Vendor-specific issues 
appear in the Asset Decision Model. WEB SERVICE STACK SELECTION and deploy-
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ment issues such as selection of an open source or commercial SOAP ENGINE (e.g., 
APACHE AXIS) and engine-specific BPEL configuration decisions such as LONG OR 

SHORT PROCESS LIFETIME and ACTIVITY TRANSACTIONALITY are examples for such 
decisions [31]. The dependencies between the levels are modeled explicitly. 

4.3   Example: Ws-01, Service Provider Type 

Figure 7 illustrates a single AD, the selection of the SERVICE PROVIDER TYPE. It is a 
screenshot of ADkwik, a Web 2.0 collaboration front end implementing the concepts 
presented in this paper. We describe the user interface and knowledge engineering 
concepts of ADkwik  in detail in [24].  

 

Fig. 7. Web services decision example: Ws-01, selection of SERVICE PROVIDER TYPE  

The SERVICE PROVIDER TYPE decision is a SRD according to Table 1. On SOA 
projects, this decision has to be made for each service to be implemented, it can be 
identified in the analysis-level BPM model serving as input to the decision making 
process; therefore, this decision has a “service” scope (the scope attribute is defined in 
our meta model, see Figure 2). The phase attribute links the decision to a metho-
dology. In this case, “macro design”, a term from the method used by IBM Global 
Services, suggests that this decision should be taken during the early, overall 
architecture design. There is a problem statement motivating why this decision is 
needed. In this example, it is one paragraph paraphrasing the motivation for this 
decision found in the literature; in other cases, a simple question like “How to 
correlate incoming user requests to server-side session objects?” is more appropriate. 
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For this decision, the coding effort, the memory footprint, and several other general 
quality attributes are listed as particularly important decision drivers. The available al-
ternatives are listed as well, along with their pros, cons and known uses. In the 
example, JAVA PLAIN OLD JAVA OBJECT (POJO), J2EE ENTERPRISE JAVA BEAN 

(EJB), and PROVIDERS IN PHP, PERL, .NET have been identified. The references field 
points to recommended reading, in this case two online resources.  Dependencies to 
and from other decisions are modeled explicitly and shown as relationships. For 
example, the executive-level PLATFORM AND LANGUAGE PREFERENCES decision 
clearly has an impact: the non-Java alternatives are no longer relevant if using Java is 
imperative. As there are several WSDL-TO-JAVA CODE GENERATION WIZARDS, this 
decision then can be enforced via code generation, assuming that the selected wizard 
supports both POJO and EJB generation. 

4.4   Initial Evaluation and Expected Benefits of SOA Design Space 

As stated previously, the initial content of our SOA Design Space originates from 
several successful large-scale SOA development projects conducted since 2001. In the 
meantime, we have refactored the content and the meta model several times, which 
led to the fine-grained ADTopic structure outlined in Section 4.2. At present, the SOA 
Design Space consists of 160 reusable decision nodes. 

We have already applied our SOA Design Space in the use cases specified in  
Section 3.1, as well as for education, coaching, and architecture review purposes. 
From the experience gained during this initial evaluation, we estimate that on average 
one third of the early project phases such as RUP inception is spent on education and 
identification of decision points. Some of that will always be required to give new 
team members an opportunity to familiarize themselves with the project context, for 
instance the business problem to be solved and the project logistics (tools, build envi-
ronment, etc.). Still, the feedback from early SOA Design Space users suggests that 
much of this time can be saved with better tooling and pre-configured decision mo-
dels supporting decision identification in requirements models and reference 
architectures.  

In one case, the effort for the creation of a SOA principles deliverable decreased 
from eight to five person days because thirteen out of fifteen required decisions were 
present in the SOA Design space and could be reused. For instance, the architect on 
that project reused the decision node from Figure 7. The decision drivers listed in 
Section 4.3, particularly transactionality needs and ease of deployment, matched with 
the project requirements, so that our recommendation to use EJBs if leveraging the 
declarative EJB transaction model is adequate, and to use POJOs otherwise, was 
directly applicable. The architect also reported that he found several decisions in the 
SOA Design Space that he had not identified yet, but which turned out to be required: 
for instance, the decision for a SERVICE CATEGORIZATION SCHEME to distinguish 
technical utility services and logic-centric business services, which is described in 
[18] and [30], became a key element of his SOA design.  

A rigorous decision making process is often seen as a prerequisite to achieve hi-
gher maturity levels, e.g., in CMMI [25]. Decision dependency modeling makes 
design errors visible and allows backtracking. A positive impact on software quality 
can be expected, for example when combinations that do not work are detected or 
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disabled before the mistake is even made. These positive effects are hard to quantify; 
however, we have observed them on projects already.  

Our decision enforcement approach leads to less manual reconfiguration and 
coding needs and simplifies the model-code reconciliation, faithful to the original 
vision of MDA. A positive impact on team communication and climate can also be 
expected. Decision capturing becomes a shared responsibility; decisions that are 
openly created, discussed, and justified often are easier to accept than dictated ones. 

5   Conclusions and Outlook 

In this paper, we presented a proactive approach to modeling and reusing architectural 
knowledge for enterprise application development. As discussed in Section 2, our 
approach extends existing proposals for retrospective architectural decision capturing. 
It facilitates reuse of design rationale and team collaboration, two issues particularly 
relevant in enterprise application development. In Section 3, we defined a conceptual 
framework facilitating collaborative decision making supported by an extended meta 
model. In this framework, three steps improve decision reuse and sharing of rationale:  

• Semi-automatic decision identification, speeding up early project activities. 
In this step, we combine requirements models with reference architectures 
containing reusable decision templates to create an initial to-do list. 

• More informed decision making via reusable collections of decision drivers, 
good practices recommendations and other supporting techniques. In this 
step, our framework promises to improve decision making rigor and quality. 

• Improved decision enforcement in MDA via decision injection into parame-
terized model transformations and code generation, reducing development 
efforts and simplifying communication, governance, and maintenance.  

As demonstrated in Section 4, our approach already has proven to be practical for 
BPM requirement models and SOA as architectural style; we compiled a SOA Design 
Space with 160 reusable decision nodes. We could observe initial effort savings and 
quality improvements on an early adoption project. Tool support is available.  

The presented approach is generally applicable if several applications are built in 
the same or a similar context and if full decision automation is an illusion. We require 
the requirements model to be reasonably structured and at minimum one reference 
architecture for the selected architectural style to exist. Enterprise application deve-
lopment and SOA meet these applicability criteria.  

The complexity of the solution space and keeping the content up-to-date, 
consistent, and easy to locate are key challenges for a broader adoption of the presen-
ted approach. In response to these challenges, we plan to investigate the integration of 
architectural design and decision models even further, to involve a broader 
practitioner community in future content engineering, and to leverage additional 
results from other fields, e.g., knowledge management and architectural patterns. 

We envision several advanced usage scenarios for the SOA Design Space. Project 
managers can use it for planning and health checking purposes. Work breakdown 
structures and effort estimation reports can be created from the decision model, as 
open decisions correspond to required activities. If there are many, frequent changes, 
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or many questions are still unresolved in late project phases, the project is likely to be 
troubled. Moreover, product-specific decision outcome can serve as input to software 
configuration planning. Product selection and operational modeling decisions define 
which software licenses are required, and on which hardware nodes the required soft-
ware has to be installed. The SOA Design Space can also serve as an enterprise archi-
tecture communication vehicle; enterprise architects can maintain a company-specific 
instance of the SOA Design Space, consisting of a subset of decisions and alternatives 
to give freedom of choice to individual project teams without sacrificing overall 
architectural integrity. Finally, we plan to use the SOA Design Space as a prescriptive 
micro method for SOA construction, complementing service modeling methods. 

Future research work includes exploring several advanced concepts, for example 
more expressive dependency modeling. Decision space pruning can rule out alternati-
ves based on the outcome of other decisions. We also plan to investigate whether 
reusable architectural decision models can help improving the documentation of soft-
ware products, for example packages and middleware with many variation points. 
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Abstract. A software architecture design captures the main decisions regarding 
the quality-attribute requirements for a system. When constructing these 
designs, the architect normally evaluates and combines solutions with different 
quality-attribute tradeoffs. This exploration of the design space can be seen as a 
searching problem, in which the architect’s expertise is what directs the search 
towards a “good-enough” solution. Nonetheless, given complexity of this 
search, assisting the architect with adequate tool support becomes 
indispensable. In this context, we have investigated the utility of a planning-
based tool approach called DesignBots to explore design alternatives. 
Specifically, the approach considers quality-attribute issues as goals achievable 
by combinations of architectural mechanisms, which are generated by a mixed-
initiative and hierarchical planning engine. Our experiences with DesignBots 
show that the planning approach effectively helps architects to explore design 
alternatives productively.  

Keywords: software architecture design, quality-driven mechanisms, artificial 
intelligence techniques, tool support. 

1   Introduction 

Architectural design is considered a critical activity within the software development 
process [4].  As usual, the most critical activities are also the most complex ones.  A 
software architecture gives a blueprint with the main design decisions regarding the 
achievement of quality attributes (e.g., performance, modifiability, availability, 
security, etc.). The quality of these decisions is directly related to the architect’s 
expertise. Therefore, capturing such an expertise, and providing tool support to help 
novice architects to take advantage of it, becomes a valuable contribution for the 
construction of good-quality designs. This field, however, is rather unexplored and 
there is little available knowledge about how to model the architect’s rationale while 
creating designs.  
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Normally during architectural design, the architect applies her knowledge and good 
judgment to guide decision-making in a maze of different design solutions. A central 
objective in this activity is to obtain a reasonable balance among the quality attributes 
most relevant for the system. Unfortunately, these attributes often conflict with each 
other (e.g., performance versus modifiability, performance versus security, etc.). 
Looking closer at quality-attribute decisions, we have that the architect usually starts 
with a guess of the architectural solution, and progressively considers alternatives to 
improve this solution with respect to a set of quality goals. As decision-making 
proceeds, the architect gets involved in a complex process of exploration and 
composition of design alternatives. This process can be seen as a type of searching 
problem, in which the architectural knowledge serves to prune and direct the search of 
solutions. From a tool support perspective, it is certainly not realistic to try to 
automate the whole design process; however, we can develop “intelligent” tools able 
to assist the architect in the exploration of “promising” designs.  

Over the last years, as part of different research projects, we have been working 
with a design approach focused on the interplay between quality-attribute issues and 
the architectural strategies used to satisfy quality [8]. This relies on that qualities do 
not arise spontaneously from the architecture, but rather they are planned for by 
architects [4]. In particular, quality is engineered through the articulation of specific 
architectural tactics and patterns. Therefore, among the spectrum of AI techniques 
available, we decided to investigate the utility of hierarchical planning techniques 
[19] as a computational support for an automated design assistant. 

In this context, we have developed a tool approach called DesignBots to help 
architects to generate quality-driven design solutions. Basically, the architect feeds 
the DesignBots tool with an initial design, expressed in an architectural description 
language, as well as with a weighted list of quality-attribute scenarios for that design. 
Then, considering these scenarios as goals, a planning engine is able to propose 
alternative designs that improve the satisfaction of the scenarios, according to the 
importance of each quality with respect to the system. The alternative designs are 
constructed by applying basic “architectural” transformations on the initial 
architecture. These transformations are actually the planning operators for the engine, 
which is responsible for assembling them and produce a complex architectural 
transformation as output. Besides, as the engine is planning, the architect can be 
called for intervention to solve issues that cannot be automatically solved by the 
planner. The results of applying DesignBots have shown so far an important potential 
of planning to optimize the architectural design process. Essentially, the approach 
allows the architect to concentrate on the key design decisions for shaping the 
architecture, and delegate to the planner much of the routine work associated to the 
design alternatives derived from these decisions. 

The rest of the paper is organized around 5 sections. In section 2, we explain how 
to model architectural design in terms of a hierarchical planning framework. Section 3 
describes the general architecture that supports the DesignBots tool, explaining the 
steps and processing performed by the planning engine to generate design 
alternatives. In Section 4, we discuss the results of some case-studies. Section 5 
covers related work. Finally, Section 6 gives the conclusions of the paper and 
analyzes lines of future research.  
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2   Architectural Design as a Planning Problem 

Researchers in the field of automated design systems have long considered that the 
computational view of design activities is a process of searching and planning [10]. 
This view, however, has been little explored in the software development counterpart. 
Despite some limitations in the space of generic artifact designs, as discussed in [21], 
the application of planning for modeling the reasoning process in architectural design 
appears as an approach worthy to be investigated.   

A premise of software architectures is that the achievement of quality attributes 
comes from applying specific patterns on the architecture. Architectural patterns are 
ruled by general design principles [7] (e.g., abstraction, information hiding, 
modularization, separation of concerns, coupling, and divide-and-conquer, among 
others), which have been recently codified under the concept of architectural tactics 
[4]. In summary, both patterns and tactics capture the usual mechanisms articulated 
by architects when designing an architecture that satisfies the stakeholders’ concerns. 
It is common to express stakeholders’ concerns in terms of scenarios [4]. From an 
operational point of view, we can see quality-attribute scenarios as the goals that drive 
the architect through a search for architectural transformations. Interestingly, several 
planning techniques for this kind of problems have been developed within the AI 
community [18, 22]. Furthermore, any architectural transformation can be traced to a 
network of design operations, in the context of predetermined tactics and patterns. 
Thus, this transformational process fits naturally with hierarchical planning [19]. 

Classical planning concentrates on how to construct sequences of actions for a 
given state that, when executed correctly, will make a system satisfy a set of goals 
[18].  In particular, hierarchical planning (also known as HTN planning) tries to 
produce a sequence of actions that perform the activities described by a network of 
goals. Essentially, HTN planning organizes plans in terms of hierarchies of tasks1, 
called hierarchical task networks. These networks can be progressively refined in 
sub-plans, often nearly independent of each other. A sub-plan provides more details 
about the way an abstract task is achieved. Refinement of tasks is achieved in HTN 
either by means of methods or operators. The planning algorithm proceeds by 
applying methods that decompose each task into simpler tasks and resolving the 
conflicts among tasks, until a conflict-free plan consisting of primitive tasks is found. 
Primitive tasks are those that cannot be further decomposed, so they are executed over 
the current state of the world by means of operators. 

There is a division between the planning domain (i.e., a collection of generic 
actions: HTN methods and operators) and the planning problem (i.e., the world state 
and the goals). For the purpose of DesignBots, three basic mappings are necessary in 
order to cast architectural design to HTN planning: 

- Codify the knowledge about tactics, architectural patterns and mechanisms as the 
planning domain. HTN methods and operators are seen as “standard procedures” 
for tactics, architectural patterns and mechanisms. These tactics, patterns and 
mechanisms are the vehicles to address quality attributes.  

- Convert the architectural description into the world state for the planning problem. 

                                                           
1 The terms “goal” and “task” are used interchangeable in the HTN jargon. 
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- Process the quality-attribute scenarios for this architecture in order to get an initial 
task network for the planning problem. The tasks of this network are seen as goals 
of attainment for the planner. 

Since the amount of knowledge needed for automation can be really large, some 
form of abstraction is needed within the planning domain. An advantage of HTN 
planning is that identifies strategic solutions for qualities at a general level, and then 
provides separately more details of the procedures to implement these solutions.  For 
instance, let’s suppose a task network with a modifiability goal that involves breaking 
a dependency between two components, and a tactic that tries to insert some 
component as an intermediary for the dependency. According to the type of 
dependency, let’s also consider that this tactic could be materialized by different 
architectural patterns or mechanisms2, namely: a virtual machine, a repository, a 
naming server, a publisher-subscriber schema, etc.  

On the other hand, there are constraints (not directly related to quality-attribute 
issues) that affect the development of the planning process. The initial architecture, 
assumptions made by analysis models, architect's preferences, or component reuse, 
are examples of constraints that influence the selection of acceptable solutions by 
architects. For this reason, some degree of human decision-making must be taken into 
account, because not all the decisions and constraints can be automatically treated by 
the planning engine. The architect would answer some critical points of the solution, 
so that the remaining work would be reduced to routine issues solvable via planning.  
For instance, let’s consider that a dependency between components is detected. Here, 
the planner could suspend itself and display a list of patterns to break the dependency, 
enabling the architect to choose the pattern of her preference, according to the specific 
design situation. After that, the planner would proceed to implement the details of the 
selected pattern. This modality of planning is called mixed-initiative [22], as it 
involves a construction of plans through dialogs between the architect and the 
planning engine. 

3   The DesignBots Framework 

The DesignBots framework divides the design knowledge into a set of specialized 
agents referred to as designbots. These agents are capable of working with 
architectural specifications and have competences on particular quality attributes. 
Regarding planning, each designbot is equipped with both quality-attribute 
knowledge and goals. On one side, the knowledge tells the agent how to apply a 
certain tactic for a general quality in order to derive an architectural transformation. 
This knowledge comes mostly from a “procedure for predictable architectural design” 
developed at SEI [3].  Each designbot is configured with adequate knowledge during 
tool setup. On the other side, the goals are the concrete quality-attribute issues that 
drive the agents in the elaboration of transformations. These goals are the result of 
 

                                                           
2 Architectural patterns and mechanisms are seen as design elements with different levels of 

granularity that serve to make tactics concrete. An architectural mechanism is fine-grained 
and only implements a single tactic, while an architectural pattern is coarse-grained and 
usually encapsulates one or more tactics at the same time. 
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Fig. 1. Planning-based workflow for our architectural design tool 

processing the quality-attribute scenarios stated for the initial architecture. Both the 
initial architecture and the scenarios are entered by the architect as a user of the tool. 
A general view of the approach is shown in Figure 1. 

Since each designbot analyzes the architecture from the perspective of a single 
quality attribute, the planner will generate a collection of partial plans, each of which 
consisting of a sequence of architectural operations that intends to achieve a particular 
quality goal. For this reason, the DesignBots framework provides a procedure to 
combine the designbots’ partial plans into a global transformation. The idea here is to 
prioritize the designbots’ goals, balancing the effects of their plans on the re-design of 
the (initial) architecture.  Once a set of candidate transformations is available, the 
architect can select any of them and modify her architecture. This exploration 
continues until the tool produces a design that satisfies the architect’s expectations. 

Basically, the DesignBots approach involves five main activities with different 
degrees of automation, namely: description of the input architectural model (step 1); 
allocation of quality-attribute scenarios to the designbots (step 1); analysis of 
individual scenarios to determine suitable tactics (step 2); execution of the planning 
process at the designbots (steps 3 & 4); and application of combined transformations 
on the architectural model (steps 5 & 6). In order to explain the steps of the approach, 
we will use a case-study about a battlefield control system (BCS) adapted from [17]. 
BCS involves a central commander and a network of army units (e.g., troops, tanks, 
planes, sensors, maps, etc.). The commander is assigned to a series of missions, which 
can be accomplished by controlling the movement, strategy and operations of their 
units. As the initial BCS architecture, we have a central repository with information 
from the battlefield, as well as a number of fighter and sensor nodes.  Both types of 
nodes can submit information to the repository. The fighter nodes are also able to 
execute orders from the commander. 

3.1   The Architectural Model and the Quality-Attribute Goals  

For representing architectural models, we chose a custom architectural description 
language that allows us to specify systems as graphs of interacting components.  This 
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language, called ADLite, is based on the component-and-connector viewtype (C&C) [4]. 
Actually, ADLite can be seen as a subset of ACME [14] in which the vocabulary of 
components and connectors has been augmented with responsibilities, properties and 
templates3. The components may contain responsibilities that serve to capture 
application-specific functions. Besides, it is possible to annotate ADLite elements with 
different properties (e.g., data for quality-attribute analysis). The tool provides a special 
translator that compiles ADLite specifications to a Prolog-like representation, as the 
world state on which the planning engine will perform its computations. Figure 2 shows 
the initial BCS architecture in ADLite, and Figure 3 shows the HTN script generated for 
this architecture.  

# Main Quality Scenario Description Estimated Measure 

1 Modifiability A new type of sensor is added to the network by the system 
administrator, and the architecture should take account of it. 

average cost change = 55 % 

2 Performance The number of fighter and sensor nodes increase, and the 
system should keep the level of service bounded 

average throughput = 10 % 
average latency = 0.65 msec. 

 

Fig. 2. The initial BCS architecture and some quality-attribute scenarios for it 

The input architecture is accompanied by a list of quality-attribute scenarios. Each 
scenario must involve a single quality and a level of response (e.g., throughput or 
latency for performance, cost of components affected by a change for modifiability, 
etc.). Two particular scenarios elicited for BCS are included at the bottom of Figure 2. 
The architect determines a ranking for the list of scenarios, based on which of them 
are most influential for the architecture. Once ranked, the scenarios are distributed 
among the designbots according to their target quality. At this point, the designbots 
are ready to begin with the analysis activities.  

The analysis of scenarios employs scopes and reasoning frameworks. An 
architectural scope sets apart the region of the architecture affected by a scenario. 
 

                                                           
3 For simplicity, a number of features of ACME such as: families, types, connector roles, or 

attachments were deliberately taken out in ADLite, because they do not provide essential 
information at this stage of the research and could be incorporated later quite easily. 
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 #state: [ 
 
// Available types of components for BCS 
componentTemplate(tFighter).   // Template for fighters 
hasResponsibility(tFighter,executeOrder,public). 
hasResponsibility(tFighter,provideVisualizationData,public). 
hasResponsibility(tFighter,getOrder,public). 
hasResponsibility(tFighter,reportToCommander,public). 
hasPort(tFighter,guiPort). 
providesInPort(tFighter,guiPort,provideVisualizationData). 
hasPort(tFighter,unitPort). 
providesInPort(tFighter,unitPort,executeOrder). 
providesInPort(tFighter,unitPort,getOrder). 
providesInPort(tFighter,unitPort,reportToCommander). 
requiresInPort(tFighter,unitPort,storeInformation). 
... 
componentTemplate(tCommander).   // Template for commander 
hasResponsibility(tCommander,storeInformation,public). 
hasResponsibility(tCommander,processInformation,private). 
hasPort(tCommander,guiPort). 
... 
componentTemplate(tSensor).  // Template for sensors 
hasResponsibility(tSensor,reportToCommander,public). 
hasResponsibility(tSensor,acquireRawData,private). 
... 
componentTemplate(tGuiPanel).  // Template for guiPanel 
hasResponsibility(tSensor,displayData,public). 
... 
componentTemplate(tComChannel). // Template for comChannel 
... 

// Responsibilities for BCS 
responsibility(provideVisualizationData,'Provide data for …'). 
responsibility(reportToCommander,'Send information to …'). 
responsibility(acquireRawData,'Acquire raw data from devices …'). 
responsibility(executeOrder,'Execute an order from …'). 
responsibility(storeInformation,'Store information items that …'). 
... 
 
// BCS architectural model (components and connectors) 
architecturalModel(bcsInitial). 
component(bcsInitial,sensor1,tSensor), 
component(bcsInitial,sensor2,tSensor), 
component(bcsInitial,commander,tCommander), 
component(bcsInitial,fighter1,tFighter), 
component(bcsInitial,fighter2,tFighter), 
component(bcsInitial,fighter3,tFighter), 
component(bcsInitial,guipanel,tGuiPanel), 
component(bcsInitial,comChannel,tComChannel), 
connector (bcsInitial,comChannel,sensor1), 
connector (bcsInitial,comChannel,sensor2), 
connector (bcsInitial,comChannel,sensor3), 
connector (bcsInitial,comChannel,commander), 
connector (bcsInitial,guiPanel,commander), 
connector (bcsInitial,guiPanel,fighter1), 
connector (bcsInitial,guiPanel,sensor1) 
... 
 
]. // End HTN state 

#goals: [ // According to scenarios #1 and #2 in BCS 
#tasks: [  

n1: checkDependencyChain(sensor1,comChannel, dataServices),  // For modifiability 
n2: checkDependencyChain(sensor2, comChannel, dataServices), // For modifiability 
n3: deferBindingTime(tSensor, runtime), // For modifiability 
n4: reduceComputationalOverhead(tFighter, comChannel), // For performance 
n5: reduceComputationalOverhead(comChannel, commander) // For performance 

  ] 
#order: [   n1 before n3, n2 before n3, n1 before n4, n2 before n4, n4 before n5  ]      ]. 

 

Fig. 3. HTN state and goals generated for BCS 

This is desirable for two reasons: each designbot can better focus its analysis to derive 
pursued goals, and additionally, the searching state for the planner gets narrowed. The 
identification of scopes needs some cooperation of the architect. First, she has to 
extract the main responsibilities implied by the scenario. Then, she must execute 
algorithms provided by the tool that traverse the architectural model and create a view 
(i.e., the scope) with those elements related to the extracted responsibilities. After 
obtaining a scope, the designbot is able to apply a reasoning framework on it. A 
reasoning framework [5] is a technique for estimating a response measure for a 
quality attribute, given a base architecture. In general, DesignBots considers quality-
attribute frameworks as “black-box” tools that can be replaced in the future by more 
elaborated analysis models to compute scenario responses. Currently, the prototype 
supports two frameworks, namely: a queuing model for analyzing performance, and a 
dependency chain model for analyzing modifiability. The last column of the table in 
Figure 2 gives estimations of the architecture fitness regarding the two BCS scenarios. 
Once instantiated on the scope, a reasoning framework also establishes a number of 
goals for the designbot. Specifically, the processing of goals is based on Prolog rules, 
which look at scenario information and manipulate the reasoning framework 
parameters to control its response as needed [3]. 
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For example, let’s consider the modifiability scenario in BCS. This scenario can be 
tackled with a dependency model in which the response is the effort required to 
implement a change. Very briefly, our dependency model defines a graph with three 
types of elements: primary nodes, secondary nodes and links among the previous 
nodes. A primary node is a component whose responsibilities are directly affected by 
the change under consideration. A secondary node is a component whose 
responsibilities interact with some primary node. A link is a connector through which 
changes in a primary node may propagate and affect a secondary node. Each node, 
whether primary or secondary, is characterized with several costs of change, while 
each link is assigned to a probability of change propagation4. In this context, the 
scenario response is estimated through a cost model that computes a weighted sum 
over the elements participating in the scope. Therefore, the effort depends on the 
number of components directly affected by that change. If a problematic dependency 
chain is detected within a scope, the tool can apply the rule of “preventing the change 
propagation between components in that chain”. Here, the rationale is that the fewer 
components reached by the change, the lesser effort required to support the change.  

In the case of the BCS performance scenario, we are concerned with the timing 
issues associated to the messages that flow through the communication channel. This 
situation is analyzed with a simplified queuing model, which identifies two types of 
elements: service centers and delay centers. A service center is a component that 
provides and/or demands for services, processing different types of requests. A delay 
center is a connector that mediates interactions among service centers, adding some 
overhead according to the connector type. Analogously to the properties of the 
modifiability model, the architect must specify the average time each service center 
takes to process a request, the average rate at which requests arrive, and the overhead 
of requests in delay centers. The scenario responses are the latency and throughput of 
the scope, which can be estimated either using equations or through discrete 
simulation. To improve the actual responses of the scenario, the tool could follow the 
rule of “keeping the latency of communications under certain values”. Here, the 
rationale is that a controlled shared channel improves the communications of nodes 
flowing through the channel. Some goals inferred by the tool for the two scenarios are 
listed at the bottom of Figure 3. Due to space reasons, the whole analysis process 
through which the designbots infer goals is omitted (see [13] for more information).  

3.2   The Tactics, Architectural Patterns and Mechanisms  

The designbots rely on a body of architectural patterns and mechanisms, which can 
range from basic actions (e.g. creation/deletion of components or allocation of 
responsibilities) to more complex ones (e.g. delegation of responsibilities or insertion 
of a blackboard as intermediary). Some scripts for basic architectural mechanisms are 
shown in Figure 4a. They give a base for writing more elaborated mechanisms and 
patterns on top of them. Moreover, a “higher level logic” is needed to organize the 
application of mechanisms and patterns. This logic captures abstract design strategies 
known as architectural tactics [4]. Each tactic gives directives for improving a single 

                                                           
4 These costs have default values assigned initially by the tool, but the architect may modify the 

values of particular elements when necessary. 
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quality attribute. For example, the tactic of “breaking the dependency chain” is 
relevant for modifiability, and the tactic of “balancing resource allocation” is 
applicable for performance. In general, tactics admit different implementations in 
terms of architectural patterns and mechanisms. There is also a causal connection 
between reasoning-framework analysis and tactics, because the tactical directives are 
obtained by looking at the reasoning-framework parameters. 

 #method: addComponent( ?name, ?creation ) -> 
           #pre: [ equal(?creation, new), not(component(?name, ?anyTemplate) ] 
           #body: [ 
                  #tasks: [ 
                          n1: #eval: @getIntput ("Provide template for component: "+ ?name, ?template), 
                          n2: createComponent(?name, ?template)      ] 
                  #order: [ n1 before n2 ]    ]  #end-method. 
 
#operator: createComponent( ?name, ?template ) -> 
           #pre: [ not(component(?name,?template), componentTemplate(?template), architecturalModel(?current) ] 
           #add: [ component(?current, ?name, ?template) ] 
           #delete: []  #end-operator. 
 
#operator: createComponent( ?name, ?template ) -> 
           #pre: [ not(component(?name,?template), not (componentTemplate(?template)), architecturalModel(?current) ] 
           #add: [ componentTemplate( ?template), component(?current, ?name, ?template) ] 
           #delete: []  #end-operator. 
 
#operator: moveResponsibility( ?responsibility, ?target, ?source ) -> 
           #pre: [ component(?target,?someTemplate), component(?source, ?otherTemplate), architecturalModel(?current) ,  
                       hasResponsibillity(?responsibility, ?someTemplate, ?any1), not(hasResponsibility(?otherTemplate, ?responsibility, ?any2)) ] 
           #add: [ hasResponsibility(?otherTemplate, ?responsibility, ?any2) ] 
           #delete: [ hasResponsibility(?someTemplate, ?responsibility, ?any1) ]  #end-operator. 
… 

 

Fig. 4a. HTN domain with basic architectural mechanisms 

As an example, a HTN script for the tactic “breaking the dependency chain” is 
given in Figure 4b. In particular, this tactic is targeted to the goal schema 
checkDependency(?primaryChanged, ?rippled, ?typeOfDependency). The first two 
goals of the task network at the bottom of Figure 3 (from scenario #1 in BCS) are 
instances of that schema. The tactic proceeds as follows. First, the task 
checkDependency() verifies if the architect really wants to effect on the dependency 
between two designated components. To do so, there are special tasks, called user-
query tasks that permit to gather information at planning time (e.g., @selectOption(), 
@warning(), @getInput(), etc). In the case of @selectOption(), it displays a GUI 
panel and asks the architect for a decision.  Then, we have two alternatives for 
achieving the task checkDependency(). If a positive answer is entered by the architect, 
the next task is to effectively break the dependency by means of an intermediary. If 
not, a warning message is sent to the GUI panel. Following the thread of the tactic, we 
have again various options for implementing the intermediary. The first option 
proposes the replacement of the actual connector with a new one that softens the 
component coupling, while the second option refers to directly inserting a new 
component to bridge between the components. If the latter option is selected, one of 
the paths to materialize the tactic is the ForwarderReceiver pattern [7]. This pattern 
provides transparent inter-process communication (IPC) for systems with a peer-to-
peer interaction model. In Figure 4b, the arrangement of roles for forwarders and 
receivers as well as the responsibilities for them are specified by the top-level method: 
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applyForwarderReceiver(), plus the sequence of tasks: defineForwardersForPeer(), 
defineReceiversForPeers() and updateInteractionsOfPeerWithRest() (for simplicity, 
the details of their possible implementations are skipped in the figure).  

Note that the tasks in the body of HTN methods are not ordered in a sequence, but 
rather they present a partial order. Having partially-ordered task networks fit well 
with design activities, because the architect has freedom to decide the tasks to work 
on, and the planner only enforces task precedence when this is really necessary.  

 #method: checkDependency( ?primary, ?secondary, ?dependency ) -> // Starting method for applying the tactic 
           #pre: [ primaryComponent(?primary), secondaryComponent(?secondary), equal(?dependency, dataServices), 
                      someDependency(?primary, ?secondary) ] 
           #body: [ 
                  #tasks: [ 
                          n1: #eval: @selectOption("Can the dependency: "+?primary+" - "+?secondary+" be (further) broken?", [yes,no], ?yesno), 
                          n2: breakDependency(?primary, ?secondary, ?dependency, ?yesno)      ] 
                  #order: [ n1 before n2 ]    ]  #end-method. 
 
#method: breakDependency( ?primary, ?secondary, ?dependency, ?break ) -> 
           #pre: [ equal(?break, no)  ] 
           #body: [ 
                  #tasks: [ 
                          n1: #eval: @warning("Breakup of dependency: "+?primary+" - "+?secondary+" may not be achieved?")       ] 
                  #order: [ ]  ]  #end-method. 
 
#method: breakDependency( ?primary, ?secondary, ?dependency, ?break ) -> // Alternative method for task “breakDependency” 
           #pre: [ equal(?break, yes) ] 
           #body: [ 
                  #tasks: [ 
                          n1: #eval: @selectOption("What strategy is better for you?", [lowerCouplingConnector,intermediaryComponent], ?option), 
                          n2: insertIntermediaryFor(?primary, ?secondary, ?option), // Using an intermediary to break the dependency 
                          n3: checkDependency(?primary, ?secondary, ?dependency)         ] 
                  #order: [ n1 before n2, n2 before n3  ]         ]    #end-method. 
 
#method: insertIntermediaryFor( ?primary, ?secondary, ?strategy ) -> 
           #pre: [ someDependency(?primary, ?secondary), equal(?strategy, intermediaryComponent) ] 
           #body: [ 
                  #tasks: [ 
                          n1: #eval: @selectOption("What kind of communication in: "+?primary+" should be tackled ?, [send,receive,both], ?ptype), 
                          n2: #eval: @selectOption("What kind of communication in: "+?secondary+" should be tackled ?, [send,receive,both], ?stype), 
                          n3: applyForwarderReceiver(?primary,?ptype, yes), // Materializing the tactic with a forwarder-receiver pattern 
                          n4: applyForwarderReceiver(?secondary,?stype, yes)     ] 
                  #order: [ n1 before n3, n2 before n4 ]   ]    #end-method. 
 
method: applyForwarderReceiver( ?peer, ?variant, ?continue) -> 
           #pre: [ component(?peer), equal(?variant, send), equal(?continue, yes) ] 
           #body: [ 
                  #tasks: [ 
                          n1: #eval: @selectResponsibilities("Responsibilities for sending data/services in peer: "+?peer, ?list), 
                          n2: defineForwardersForPeer(?peer,?list, yes), 
                          n3: defineReceiversForPeer(?peer,?list, yes), 
                          n4: updateInteractionsOfPeerWithRest(?peer, ?list)   ] 
                  #order: [ n1 before n2, n1 before n3, n2 before n4, n3 before n4 ]   ]     #end-method. 
… 

 

Fig. 4b. HTN domain with a tactic and an architectural pattern 

3.3   Planning for Design Alternatives with Mixed-Initiative  

The evaluation of possible tactics is driven by the results of the scope analysis. In 
particular, each designbot chooses the tactic that better fits with the current reasoning 
framework, and then yields control to the planner. This way, the planner starts to 
consider different HTN methods/operators for the tasks until arriving to a solution 
plan. In general, as the planner decomposes a task network, we have that the most 
abstract tasks will typically capture design decisions (embodied by tactics) without 
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concrete effects on the architectural model, while the tasks at the intermediate and 
lowest levels of the decomposition will involve actions that modify the architectural 
model. The final solution is composed of many architectural operations, which are 
grouped as an architectural transformation and returned to the architect by the 
designbot. The tool evaluates these transformations with respect to their original 
reasoning frameworks, and if the responses are satisfactory, the architect can decide 
to apply some of them on the architecture. Although the HTN algorithm was 
originally designed to proceed forward and avoid backtracking [19], we have 
provided some points of backtracking in our algorithm, so that the planner can 
evaluate alternative paths of decomposition if necessary. The main backtracking 
points are:  generation of a network of goals for a tactic, execution of a task from the 
list of tasks without predecessors within the network, and selection of an HTN 
method/operator whose preconditions hold in the world state. These points can be 
selectively enabled or disabled at configuration time.  

The planning process is managed by the architect through a GUI console that 
controls the HTN algorithm, as outlined in Figure 5. According to the mixed-initiative 
metaphor, the presence of user-query tasks makes the planner suspend their execution 
 

 

The architect has executed two tasks: @selectOption and 
@selectResponsibilities. These tasks are opened up on the right of the 
panel. The bottom dialog is a choice among three forms of communication 
for a forwarder, and the front dialog is a selection of responsibilities for a 
peer. In addition, a dialog with the final transformation associated to the  
plan is displayed on the left of the main panel. 

 

Fig. 5. Snapshot of the mixed-initiative planning interface 
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and consider instead other tasks within the network. The algorithm may temporarily 
halt if the partial order precludes other tasks to be available (because they depend on 
pending user-query tasks). On the GUI side, the architect can opportunistically pick 
user-query tasks that she judges relevant to the current design and answer them. As 
long as the planner finds tasks ready for execution, it resumes the planning and tries 
to address them. Figure 5 depicts a typical interaction between the planner and the 
architect, while planning for the modifiability goals given in Figure 3 under the tactic 
of inserting an intermediary (several user-query tasks are listed in the central panel, 
which corresponds to the main planning console). 

So far, we have considered how individual designbots can take quality-attribute 
scenarios and produce transformations for their scopes. This is appealing in the sense 
that each designbot pursues one quality attribute at a time. However, interesting 
architectural decisions have to do often with multiple quality attributes. Therefore, it 
is necessary to handle the goals and transformations from a unified perspective. This 
problem is commonly referred to as multi-goal planning [23]. Currently, the 
DesignBots framework provides two strategies to approximate multi-goal planning 
and coordinate the designbot’s plans: (i) order the goals and solve them linearly, and 
(ii) merge groups of partial solutions to goals into a joint transformation. Since the 
planning theory behind these strategies is out of the scope of this paper, we have 
preferred a short explanation of the strategies from the architect’s perspective. 

The first strategy assumes that the goals can be achieved sequentially in any 
arbitrary order. This assumption relies on the notion of architectural drivers [4]. 
Thus, when selecting a transformation, the tool will prefer those plans generated by 
designbots associated to scenarios marked as “drivers” over the rest of the plans. 
Figure 6a shows the results of this strategy in BCS. Although the application of 
architectural operations is not always commutative, this strategy based on the 
prioritization of scenarios performs well in many cases and is straightforward to 
implement. The main problem of applying solutions sequentially (even with 
backtracking) is that early commitments to a solution strongly focused on a specific 
quality can hinder the consideration of better solutions later on.  

The second strategy comes from a heuristic for plan merging [23]. Depending on 
what kinds of interactions occur among the tasks of the designbots’ plans, the 
heuristic is able to construct a number of equivalence classes and derive a joint plan 
(i.e., architectural transformation). A special type of interaction called task-merging 
identifies “composite tasks” capable of accomplishing the “useful” effects of a set of 
tasks across plans while leaving the resultant plan correct (e.g., replacement of 1-to-1 
component relationships by n-to-1 relationships, removal or insertion of facades, 
cancellation of unnecessary connectors, compression and separation mechanisms, 
etc.). The construction of the right list of interactions is domain-specific. Basically, 
the architect is initially asked to select plans as candidates for merging, then the 
mediator analyzes the plans and suggests interactions for their tasks, and the architect 
finally decides which of these interactions should be processed by the heuristic. 

Figure 6b shows the BCS architecture after merging the modifiability and 
performance solutions. Note that this second strategy is closer to what architects do 
when faced with tradeoffs among solutions, in the sense that tradeoffs are cast to a 
number of “optimizations” over the plans for individual qualities. As drawbacks, the 
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a) The mediator has imposed first a forwarder-receiver for the modifiability scenario, and then a pool-of-
connections with a resource-scheduler for the performance scenario. 

Modifiability solution 

Performance solution 

compression 
(optimization) 

b) Here, the functionality of locationRegistry was mixed with the one of channelManager, the forwarders were 
collapsed into a single sharedForwarder for all the sensors, and the commanderReceiver was assimilated to 
the commander. These groupings follow a “compression criterion”, which intends to reduce the number of
components in order balance performance against modifiability. 

Scenario Initial Estimations Sequential Transformation Merged Transformation 

1 average cost change = 55 % average cost change = 38 % average cost change = 42 % 

2 average throughput = 10 % 
average latency = 0.65 msec. 

average throughput = 12 % 
average latency = 0.61 msec. 

average throughput = 18 % 
average latency = 0.45 msec. 

 

Fig. 6. Application of modifiability and performance plans: a) sequentially b) merged 

heuristic is quite complex to implement, and it does not produce always a successful 
combination of plans. In practice, if two tasks present a harmful interaction that 
cannot be solved (e.g., a before b in plan1, and b before a in plan2), it will not be 
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possible to merge the corresponding plans. In that case, sometimes the mediator can 
replace one of the plans by asking a designbot to generate an alternative plan.  

4   Evaluation and Lessons Learned 

As a proof-of-concept, we have developed a prototype tool of DesignBots and 
conducted some experiments with small and medium-size case-studies. The validation 
mainly pointed to answer two questions: 

1. How useful is planning-based assistance in the generation/evaluation of designs?  
2. What is the scalability of the tool for architectural specifications and knowledge? 

The prototype is built on top of a Java object-oriented framework, which supports 
the construction of designbots with different capabilities regarding architectural 
design and planning. For the architectural part, we have an ADLite toolkit that allows 
the architect to visually edit design elements such as: responsibilities, components, 
connectors, and scenarios. For the planning part, we have implemented a SHOP2-like 
algorithm as given by [19]. The original algorithm was extended with user-query 
tasks, backtracking, and undo/redo of steps. Our algorithm is based on JavaLog [1], a 
seamlessly integration between Java and Prolog. An advantage of JavaLog for the 
DesignBots prototype was that some parts of the planning processing were specified 
in Prolog and some others were programmed directly in Java.  

Three architectures with different modifiability and performance scenarios were 
studied, taking an “incremental” strategy. Initially, the BCS case-study served to 
deploy and tune the DesignBots infrastructure. Having this ready, we applied 
DesignBots to a moderate-size classroom project involving a home alarm monitoring 
system (HAS), where we had graduate students of a software design course produce 
alternative solutions for HAS. Finally, in the third case-study, DesignBots was tested 
in the context of a telecommunications project [13], as part of some consulting 
activities made for the company Delsat Group. We considered two usually conflicting 
types of designbots: modifiability-centered and performance-centered agents. Each 
type of designbot was equipped with assets such as: a reasoning frameworks, tactics 
and related architectural patterns and mechanisms. After reproducing various design 
situations with the prototype, we performed an empirical comparison of the 
designbots’ alternatives against the human designs. The experiments were executed 
on a Pentium IV computer with 1 GB RAM running Windows OS.  

As a sample, results of the HAS case-study are summarized in Table 1. This case-
study comprised 3 modifiability and 3 performance scenarios, which were assigned to 
6 different designbots. Among the transformations undergone by the initial 
architecture, we can mention: support for adding new sensor types, easy configuration 
of reactive and diagnosis functionality, timing issues for reactive actions, and 
personalization of action rules. In Table 1, we show the architectural mechanisms 
specified for the planning domain, and which of these mechanisms were actually 
selected by the designbots to generate solutions for the scenarios. Symbols +, - and 
+/- reflect the relative variations in the scenario responses when applying two 
solutions, using the sequential and merged strategies respectively.  
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Table 1. Analysis of the alternatives generated for BCS  

HTN Planning System Response Analysis Scenario
s  
 

Main design 
issue 

Architectural tactics and 
mechanisms available to 

the designbots Supported Suggeste
d 

Choice Sequential 
Solution 

Merged 
Solution 

1. Separate the sensor 
interface from its 
implementation 

Yes Yes M1 
 

Support 
adding new 
types of 
sensors 
within the 
device layer 

2. Insert an intermediary 
between the devices and 
the data they produce or 
consume 
- AbstractDataRepository 
- DataIndirection 
- PublisherSubscriber 

Yes Yes 

Within option 
2 , the first 
mechanism 
was selected 
 

+ + 

1. Provide customization of 
devices and their 
interactions 
- PublisherSubscriber 
- Façade 
- ClientDispatcherServer 

Yes Yes M2 Configuration 
of reactive 
and diagnosis 
functionality 
should be 
easy for the 
user 2. Defer binding time 

- ConfigurationFiles 
- UniformProtocol 

No No 

Within option 
1 , the first 
mechanism 
was selected 
 

+ +/- 

M3 New 
configuration 
rules should 
be made 
available for 
the devices 

1. Provision of some kind of 
interpreter 
- RuleBasedEngine 

Yes Yes Option 1 was 
the only 
available 
 

+/- - 

P1 Fulfill the 
deadlines 
associated 
with the 
production 
and 
consumption 
of data 

1. Define scheduling policy 
- PriorityBasedDispatcher 
- RoundRobinScheduling 

Yes Yes Within option 
1 , the first 
mechanism 
was selected 
 

+/- + 

1. Define scheduling policy 
- PriorityBasedDispatcher 
- RoundRobinScheduling 

Yes Yes P2 The level of 
response 
should be 
kept bounded 

1. Manage event rate 
- NotificationDispatcher 

Yes No 

Within option 
1 , the first 
mechanism 
was selected 
 

+/- +/- 

P3 The 
vocabulary of 
notifications 
can be 
updated,  but 
maintaining 
the above 
level of 
response  

1. Define scheduling policy 
- PriorityBasedDispatcher 
- RoundRobinScheduling 

Yes Yes Within option 
1 , the first 
mechanism 
was selected 
 

+/- + 

Overall, these three case-studies gave us interesting material to approximate “real” 
software design situations with DesignBots. Although more experimental studies are 
necessary, some findings and conjectures are shortly discussed below. 

Architectural modeling (question #2). The choice of ADLite had expected pros and 
cons. Having a compact architectural language was beneficial for experimentation, 
because it allowed us to move easily from quite informal architectural descriptions to 
ADLite specifications. However, ADLite restricts the architectural representation to a 
single view (C&C viewtype), and this affects the kind of analyzes and transformations 
derived from it (e.g., dynamic creation of components, operations involving 
processes, scheduling or deployment issues). The property annotations alleviated the 

tradeoff 

tradeoff 

tradeoff 

tradeoff 
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C&C limitations, and they actually worked well to capture the parameters of the 
analysis models used in the case-studies. However, ADLite does not support 
information about architectural styles that could help to check some design rules over 
the architecture and its derived alternatives. 

Planning support (questions #1 & #2). Deciding what is the best way of writing 
tactics and architectural patterns for the designbots was a central concern we faced at 
this stage. In general, the HTN writing style admits many alternative implementations 
of the same concepts. This depends on issues such as: modularity, level of architect’s 
intervention, or default values, among others. Since a clear task decomposition helps 
to visualize the relationships of architectural tactics with patterns/mechanisms, we 
preferred to codify the planning domain as modular as possible. Furthermore, 
opportunities of architect’s intervention were included only when this would avoid 
extra work in the planner. We also observed that, due to the limited GUI offered by 
the tool and the lack of design rational about what the planner was doing, the planning 
work sometimes demanded intellectual efforts from the architects to understand the 
important aspects in the re-design of the case-studies. The prototype proved to be 
useful for recording alternative plans of action or variants for a base solution the 
architects were familiar with. The “constructive schema” supported by the planning 
paradigm and the possibility of backtracking were the two factors that enabled this 
kind of assistance.  As another issue worth of mentioning, the architects recognized 
that the alternatives built by the designbots had clear influences from the quality-
attribute analyses used to establish the designbots’ goals. These relationships between 
architectural structures and qualities were not always well reflected in the designs 
produced by humans. Since tactics and patterns are at the core of the planning 
domain, DesignBots makes these issues more visible in the resulting designs.  

Accuracy and scalability of solutions (question #2). On the other hand, from the 
perspective of design assistance, the alternatives recommended by the designbots 
showed structural similarities with those developed by people. A 70% of the patterns 
applied by the designbots were considered correct by the architects that participated 
into the projects. Some differences were observed in the configuration of components 
when compared to those arranged manually by the architects. Analyzing the HAS and 
DELSAT case-studies, we found that the designbots elaborated more valid solutions 
for the HAS architecture, and they provided fewer and flawed solutions for the 
DELSAT architecture, when comparing these solutions with those developed by the 
DELSAT architects. An explanation for this tendency is that in the first case-study the 
design was carried out by novice designers, while in the second one the design was 
produced by expert architects. This effect is interesting in two senses. First, we 
envision the possibility of helping in teaching software architecture design. Second, 
even when equipping the designbots with sufficient tactics and patterns, the planner is 
not always capable of emulating design experience. The heuristic knowledge used by 
expert humans to select among alternatives should be also modeled and applied in 
order to improve a solution. This feature could additionally serve to prune the search 
space and make the treatment of large designs more efficient. Along this line, the 
scalability of the approach gets compromised depending on the way knowledge is 
mapped to planning operators and methods. 
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5   Related Work 

Considerable research has been done in the area of design support, although few 
approaches have explored the links between architectural design and artificial 
intelligence. Interesting approaches are: rule-based systems [3], goal-feature graphs 
[11, 12], system reconfiguration [2, 6, 15], and multi-objective optimization [9, 16]. 

The NFR-Framework used by Chung et al.[11] treats quality attributes as a graph 
of potentially synergistic or conflicting goals. The knowledge related to satisfaction of 
quality attributes is codified into methods and correlation rules. Methods are used in 
the decomposition and achievement of goals, similarly to what happens in the HTN 
model, while correlation rules somehow help with the analysis of tradeoffs among 
alternatives. The alternatives are linked to the leaves of the graph, according to their 
contributions to specific goals. Then, there is a special procedure that calculates the 
effects of decisions on the graph. Unfortunately, the alternatives reported are still very 
general regarding architectural structure. A later work by deBruin et al.[12] 
overcomes this problem, proposing a feature-solution graph that connects 
requirements with solutions fragments at the architectural level. Here, the developers 
can build architectures by recursively composing designs based on use-case maps into 
a reference architecture.  When compared to DesignBots, the graph barely considers 
guidelines for exploring alternatives, and the features do not reflect well tradeoffs.  

On the other hand, many researchers have tried to represent design knowledge 
using rule-based blackboard architectures. The first experiments can be traced in the 
Programmer’s Apprentice project at MIT [20] to build a CASE environment with 
automated support for requirements, design and implementation. Unfortunately, much 
of that work failed due to the weak support given by the representation formalism and 
the inherent complexity associated with the generation of operational programs from 
requirements. In the last years, the Software Engineering Institute has developed a 
tool called ArchE [3] as a rule-based expert system to help architects to quickly 
explore design alternatives. Based on the philosophy of the ADD method [4], the 
approach is focused on designing software architectures in such a way they can 
predictably achieve quality-attribute requirements. Nonetheless, there are still open 
issues such as: the considerable amount of data generated during normal design 
activities, the aspects of interaction with the architect, and the management of quality 
tradeoffs. Current ArchE5 efforts are oriented to improve the searching capabilities of 
the tool using a combination of planning with other AI techniques. 

In the domain of dynamic configuration management, the Arshad’s work [2] 
proposes the use of temporal planning to reconfigure distribute systems, where plans 
are derived from basic architectural elements and operations. The state, goals and 
operators are all expressed by means of scripts. This schema works quite well as long 
as the configurability situations can be anticipated by the developer. The planning 
results reported by the approach concur with our observations about domain writing 
and planning scalability to practical cases. A more flexible tool is given by Garlan et 
al. [15], which make architectural information explicit at runtime and provide a 
mapping between architecture and code. This tool detects when the system behavior 

                                                           
5 http://www.sei.cmu.edu/architecture/arche.html  
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falls outside of acceptable range and modifies the configuration of components and 
connectors accordingly. Although still based on rules, the reconfiguration applies 
many of the analyses/strategies used by DesignBots.  

The DeSiX approach [6] provides a set of tools for component-based systems on 
multi-processor architectures that allow for design space exploration. Scenario-based 
analysis for performance, reliability and cost properties serve to focus the design on 
particular static/dynamic architectural configurations. The developer can map usage 
profiles to simulation tasks, and then visualize the resulting architectures using Pareto 
curves. These curves are practical for investigating optimal alternatives with respect 
to component deployment. A drawback of DeSiX is that it does not support yet 
automated search, and the developer has to manually select configurations to be 
evaluated by the tool. Regardless its bias to system architectures, however, DeSiX 
confirms the arguments of DesignBots (and other approaches in this section) about the 
central role of quality attributes as drivers in the exploration process. 

Other researchers have argued for a view of software engineering as a search 
framework [9], in which automation is supported by optimization techniques such as 
hill-climbing, evolutionary algorithms and constraint-based solvers. An important 
requirement of this view is a well-defined mapping from software concepts to 
elements supported by an AI search technique. Several early results have been 
collected by Clarke et al.[9]. Nonetheless, these results are not based on a consistent 
architectural design theory, nor do they explore “constructive” techniques like 
planning. Very recently, Grunske [16] has applied evolutionary algorithms in the 
optimization of architectures related to satellite domains. Having an architectural 
specification that fulfills its functional requirements as the initial solution, a special 
tool tries to find solutions with better tradeoffs between reliability and cost 
requirements. Case-studies have been carried out for very limited problem/solution 
spaces. Overall, it still remains to be seen whether this kind of techniques can handle 
complex solution spaces in acceptable time and with a good diversity of solutions. 

6   Conclusions 

In this paper, we have described how architectural design can be cast to a planning 
system in order to provide tool support for the generation of design alternatives.  
Moreover, we have built a planning-based design assistant that basically considers 
quality-attribute goals as drivers for the architecting process, and then systematically 
applies patterns and tactics in function of these goals.  Although several abstractions 
used by DesignBots have been developed elsewhere, the main contribution of our 
work is that of approaching architectural decision-making from a planning 
perspective. We have shown that hierarchical and mixed-initiative planning fits well 
with architectural design, because the HTN methods/operators can be seen as the 
“operating procedures” that an architect would normally use to deal with quality-
driven design issues. As a tool for exploratory design, the benefits of DesignBots are 
twofold. First, the architect is less likely to overlook the options, variants and details 
associated with the generation and evaluation of designs, although she is still in 
control of the principal architectural decisions. Second, the DesignBots framework is 
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flexible enough to consider updates of the base of design knowledge (e.g., other 
quality-attribute models, new tactics and architectural mechanisms, etc.).   

In general, the prototype has managed to work well for the qualities of 
performance and modifiability, with limited architectural knowledge about tactics and 
mechanisms. In exchange for the efforts spent in the DesignBots setup, we were able 
to represent basic architectures and plan alternatives for them. Even though the results 
are preliminary, they are good indicators of the potential of this tool approach. 
Nonetheless, there are still problems and limitations that should be addressed in 
further research. A first limitation is the C&C viewtype. Currently, ADLite 
specifications are being replaced by UML2 component diagrams and Use-case-Maps, 
which will permit structural and behavioral architectural views. A second limitation is 
the specification of architectural knowledge, which we foresee as a time-consuming 
and error-prone activity. Another problem is that the potential combination of 
operations to examine by the planner may grow huge to be managed in reasonable 
response times. Therefore, better control strategies/heuristics are needed to direct the 
selection and instantiation of architectural patterns/mechanisms. Regarding tradeoffs, 
we are investigating how the designbots could reason about the implications of their 
plans and negotiate counterproposals at planning time. A possible extension for task 
networks is to record information about the decisions behind decompositions and 
revaluations. With such information, a decision-driven backtracking schema could 
help to search for better alternative plans, using predefined patterns according to 
actual tradeoff conditions and decisions previously made. 

Finally, DesignBots has reinforced the argument that the design of architectures 
driven by quality-attribute issues can be (partially) tractable by automated means. To 
make this approach industrial-strength, more quality attributes, design strategies and 
case-studies will be necessary. Provided this support, we believe that the combination 
of guidelines for articulating the design knowledge (e.g., like those of “predictable 
architecture design”) with AI techniques constitutes an encouraging research direction 
on proactive tools for architectural design.  
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Abstract. Traceability links are generally recognised as helpful means
for improving the effectiveness of evolutionary development processes.
However, their practical usage in analysis and design is still unsatisfying,
especially due to the high effort required for creation, maintenance and
verification of the links, and due to lacking or missing methods and tools
for their management.

In this paper a concept for the systematic management of traceability
is introduced, adapted for the and integrated into the Unified Process as
one of the widely accepted software development methods. As an exten-
sion, requirements templates are applied to facilitate a tool supported
analysis of natural language texts in use case descriptions. Template-
based analyses enable a determination of types of terms and a check of
their correct application as well as a recognition of implicit connections
between development artefacts. A rule set is defined as a first step to-
wards a powerful support of traceability handling. In the ongoing project
the rule set is enhanced by heuristics and semantic-based rules to a whole
framework of methods and rules.

Keywords: Traceability Link, Traceability Model, Evolutionary Devel-
opment, Requirements Engineering, Object-Oriented Methods, Require-
ments Templates, Unified Process, Glossary.

1 Introduction

Complex, business critical software systems have to adapt to frequently changing
needs. Evolutionary development processes have been developed to enable short
responses to changes. In complex settings changes bear high risks, such as in-
complete implementation, misunderstood dependencies, missing comprehension
and lacking coverage. To manage these risks, the concept of traceability has been
developed and introduced to the most development process standards. However,
we have to state that traceability is poorly used in practice, and their usage
is mostly limited to requirements engineering. Even in research, traceability is
more discussed for requirements.

However, traceability links are needed in the areas of design and implementa-
tion as well. They facilitate design decisions and change impact analysis, they sup-
port program comprehension and they enable completeness checks for changes, if

S. Overhage et al. (Eds.): QoSA 2007, LNCS 4880, pp. 53–71, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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they can be maintained in a correct and complete state. For a comprehensive sup-
port of such design activities, traceability links have to be defined at a fine-grained
level. Unfortunately, the maintenance of the links for such a way of design trace-
ability requires an extremely high effort because a high number of links has to be
managed, and many link maintenance tasks have to be carried out manually. Two
major open research questions have to be addressed: to master the amount and
the complexity of traceability information, and to maintain and update the links.
A tool support would be very helpful, but would require a traceability link update
into development methods. Even if most design methods claim to support the con-
cept of traceability, their definitions of artefacts, relations and activities are too
imprecise to define traceability link update techniques.

As discussed earlier, our vision is the integration of traceability link man-
agement and maintenance into development methods and tools [1]. One of the
challenges on this way consists in the refinement of the description of the ma-
jor development methods. Detailed development activities are then extended by
update activities for traceability links. The developer’s activities are enriched
as well, e.g. by describing the reasons and decisions for that activity. To meet
the needs of the industrial practice it is necessary to perform this refinement for
concrete development methods that are widely used in industry. In this paper
we have chosen the Unified Process UP [2] for the definition of a process-specific
model of traceability links. Although, Letelier showed in [3] the application of
his metamodel for the UP, his definitions are not detailed enough to derive rules
for traceability links. The UP description by its authors offers traceability as one
of its features, but there is no detailed description of how and between which
artefacts the traceability links should be established. Furthermore, works are
necessary to define traceability links syntactically and semantically.

The contribution of this paper consists in an analysis and classification of
UP artefacts concerning to traceability aspects. Based on that, all required links
between the artefacts of the UP activities of requirements engineering and de-
sign are defined. Additionally, a syntactic and semantic definition of traceability
links is established customized to the UP’s methods. This definition has been
developed and validated in practical projects and case studies. These results con-
stitute a milestone and provide a basis for further works towards our vision e.g.,
empirical investigations for rules concerning the suitable level of detail for trace-
ability links, or for rules how far to follow traceability links during the impact
analysis of a change.

The analysis of the UP and the customisation of the traceability concept
are performed during practical development projects. As results of these works,
guidelines for the level of detail and rules for the verification of traceability links
have been established.

2 Traceability

Traceability is the ability to follow and recover the development steps of a system
based on the connection between inputs or stimuli of every development step with
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its products. These products are the inputs of next development steps. This
leads to a graph of dependencies, which shows the realization of the systems
requirements within the developed system.

The following concepts and definitions are based on the related works men-
tioned in section 4 as well as on our experiences from practical projects in the
Automotive domain.

2.1 Categories of Traceability

Implicit Traceability. Implicit traceability results from existing associations be-
tween elements of the system model. For example, the use of the same identifier
in an analysis and a design artefact expresses a dependency between both. The
creation of this traceability link does not cause any additional effort.

Explicit Traceability. Explicit Traceability results from the establishing of con-
nections between two artefacts during the software development process by a
developer. It can be considered as an enhanced form of traceability [4], enabling
the storage of additional information with the link. This information for example
could be decisions made during analysis and design. By using explicit traceability
links, program comprehension and changes of the system are facilitated.

The creation of explicit traceability requires additional effort of the developer.
If one or both of two linked artefacts are changing, there is a risk that the
traceability link is becoming inconsistent or invalid. It is necessary, to check
explicit traceability links between changed artefacts, before they are used.

In contrast to explicit traceability implicit traceability describes references
between two model elements, without any additional properties. It is possible
to search for implicit connections, to store them and make them explicit. Thus,
the benefits of adding additional information are given. But, in this case it is
necessary to verify the correctness of the link, before using it.

2.2 Traceability Links

Components of Traceability Links. In the following we define the compo-
nents of an explicit traceability link. This definition is driven by the goal of
(semi)automatic support for link establishment and maintenance and focuses on
getting the highest possible benefit from the usage of traceability. It provides
the required data e.g. for the conservation of design decisions and for performing
an impact analysis. This definition was established based on an analysis of the
related works mentioned in section 4 and by our experiences from projects in
the Automotive domain. An explicit traceability link consists of:

– a unique identifier for its recognition and to avoid ambiguity,
– a start element as source of the link, including type and context of this

element (e.g. a class of the analysis model)
– an end element as destination of the link, including type and context of this

element
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– the type of the link
– the development decision connected with the link, including the goal of the

decision, alternatives, rating of the alternatives and the choice

The link can contain additional information:

– the link status concerning the certainty of correctness (e.g. after changes of
one or both of the connected elements),

– the creator of the link and
– a priority, which shows the importance of the link and allows to check only

high prioritised links after changes of elements (according to [5]).

A traceability link is syntactical defined in Backus-Naur-form as follows: This

Traceability Link::= <ID> <Start element> <End element> <Type> <Decision>
[ <Status> ] [ <Developer> ] [ <Priority> ]

Start element::= <ID>
End element::= <ID>
Type::= refine | realize | verify | define
Decision::= <Goal> <Alternatives> <Choice>
Status ::= 0 | . . . | 100 “%”
Developer::= <Text>
Priority::= 0 | 1
Goal ::= <Text>
Alternatives::= <Alternative> | <Alternative> <Alternatives>
Choice::= <Alternative.ID>
Alternative ::= <Alternative.ID> <Text>
Alternative.ID::= <Number>

definition of a link provides all information required for the link establishment
and update as well as for the traceability goals mentioned above. It conforms to
the UML metamodel [2].

Types of Traceability Links. The traceability link type shows the relation-
ship between two connected elements and/or the development activity for the
generation of the destination element from the source element. A reduction of
the number of types of traceability links aims at a minimization of the neces-
sary number of rules for establishing and checking of links. Several authors use
different types of links for different concepts: The link types of UML [2] and its
extension SysML [6], by Letelier [3] and in the link metamodel of Ramesh and
Jarke [7] differ in its concepts and categorisation. Based on the analysis of theses
works of related works (sect. 4) and on our experience from projects and case
studies, the following four basic types of traceability links have been identified:

– Refinement (�refine�) – in accordance with the level of detail of the con-
nected objects (e.g. between an analysis and a design object),

– Realization (�realize�) – the dependent object represents a part of the solu-
tion to the problem described with the independent object (e.g. between a
use case and an analysis class),

– Verification (�verify�) – of behaviour and properties of the developed solu-
tion or its parts (e.g. between a use case and a test case) and

– Definition (�define�) – of objects (e.g. between a glossary item and its usage
in one of the models).
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Representation. In the UML traces are defined as a special kind of dependency.
Therefore, the same graphical representation is used: a unidirectional arrow,
enhanced with the stereotype �trace�. For a simple dependency the arrow is
directed from the dependent (destination) to the independent (source) element
e.g. an analysis object is connected toward a use case. The graphical direction of
the traceability link does not exclude its usage in both directions, forwards and
backwards.

3 Software Development Processes and Methods

Software development processes consist of activities and artefacts leading from
requirements to the systems implementation. The handling of traceability links
can be the more automated the more the acts of a developer correspond to the
activities of a method. It is possible to apply traceability rules to these activities.
The better and fine-grained the process description is the easier is the defining of
rules for creation and updating of traceability links. Therefore, the approach for
traceability proposed in this paper is presently focused on one concrete process,
the Unified Process.

3.1 The Unified Process UP

In the UP several ancestor methods like Object-Oriented Software Engineering
OOSE [8] have been combined based on best practices and experiences. The UP
is available as commercial and as open-source version. The UP process model, the
activities of the method and the composition of the artefacts are described detailed
enough for the aimed level of support. The UP can be customized and concretised
to particular projects and companies needs. The UP is an incremental and iterative
process; it is based on use case and architecture centric development of software.
The incremental, iterative approach can be seen as a two-dimensional scheme as
described in [2]. For establishing traceability links especially the requirements ac-
tivities of the UP have to be more detailed and enhanced. For this purpose text
templates akin to those in [9] are integrated into the process.

3.2 Describing Requirements by Text-Templates

Chris Rupp et al. describe in [9] the requirements development as a three-step
process, consisting of formulating, analysing and successive improving require-
ments by rules. A concept of so-called requirements patterns is introduced to
accelerate this process. Rupp characterises it as a general concept to construct
natural language requirements based on formal defined elements, which are ver-
ifiable and can be modelled. A pattern consists basically of one or more generic,
syntactic requirements templates. Furthermore it consists of a semantic definition
of important parts of the template, of logical operators to combine conditions
and of rules to define test criteria’s. Using the templates supports the definition
of test cases and the identification of objects.
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[<When?>
<Under what
conditions?>]

SHALL

SHOULD

WILL

THE SYSTEM

PROVIDE
<whom?> THE

ABILITY TO
<process>

BE ABLE TO
<process>

<process>

<thing to be
processed>

<process detail>

Fig. 1. Requirements Templates for all Three Kinds of Requirements

In [9] Rupp et al. categorize requirements into three types: independent system
activity, user interaction and interface requirement. Figure 1 shows the elements
of all three types of requirements combined into one graphic. Each requirement is
based on a functionality, which is described by a so-called process word. A process
word is strictly a verb defined in a process word list. From top to bottom the
grey shaded boxes correspond to the introduced three types. If the requirement
is of type user interaction an actor has to be filled into the template. The legal
classification can be chosen by using one of the words: shall, should or will.
To complete the requirements expression an object and its enhancements and
optional logical and time constraints have to filled into the template.

In addition to the advantages of well formulated, verifiable requirements, the
usage of requirements templates offers some more benefits. Requirements tem-
plates support traceability. Rules can be defined based on the type of the re-
quirement, its elements and the position of these elements within the sentence.
Eventually this supports the consistency between different model elements. A
detailed explanation of this support is given in the next chapter.

The Rupp text templates can effectively support the structured description
of use cases according to [10]. For enabling the definition of activities in use
case descriptions we have coupled the text templates closely to the development
glossary: all terms filled into the template have to be defined in the glossary.
The actors of the user activity have to be the same as these specified in the field
actors of the use case description.

User Activity <actor> <process> <thing to be processed and details>.
System Activity The System [shall/should/will]

<thing to be processed and details> <process>.

3.3 Traceability Relevant Artefacts in the UP

In this section traceability relevant artefacts of the UP are introduced. We focus
mainly on the workflows requirements and analysis/design, as these contain the
traceability relevant activities and artefacts.

Artefacts of the Requirements Workflow

Requirements. Requirements describe properties or features of the system that
has to be developed. In the UP they are not hierarchically ordered instead they
represent different views for different groups of stakeholders.
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The Vision Document contains Needs, describing informally what the stake-
holders expect of the system and Features, describing informally what the system
offers to fulfil these needs.

The Software Requirements Specification (SRS) consists of Software Require-
ments, which are commonly divided in functional and non-functional require-
ments and constraints. The UP centralizes these requirements in two artefacts:
the Use Case Model, consisting of all functional requirements and the Supplemen-
tary Specification, consisting of all non-functional requirements and constraints
expressed as declarative statements.

Glossary. The glossary lists terms of the project domain and gives a definition
to each of them. The strict usage of defined glossary terms in all development
phases enables automated generation of connections between the same terms
used in different artefacts. Every special term from the very beginning of a
project has to be defined in the glossary. Only defined terms are allowed to
be used during the development process. That means, that the identifier of all
model elements consist only of defined terms. Also the elements of the before
introduced requirements templates have to be defined in the glossary. Glossary
items can be categorised into type groups, according to Rupp [9] in three types:
actor, object and process. By using additional information about the type of a
term, rules can be identified for suggesting a special term while naming an object
or writing a requirement. These rules can also be used to support the verification
of the right usage of terms in the model.

Domain Object Model (DOM). The DOM represents glossary items as classes
in UML class diagrams. The usage of equal names in both artefacts realizes a
connection as implicit traceability links.

Interface Description. Interfaces are described, depending on their kind as e.g.,
prototypes of graphical user interfaces, drawings or textual descriptions.

Artefacts of the Object-Oriented Analysis

Analysis Class. Analysis classes define the necessary structure for the realization
of a use case in the system. Class identifier must be meaningful and domain
specific and have to be defined in the glossary.

Package. Packages organize model elements and diagrams in groups.

Use Case Realization-Analysis. Use case realizations consist of a set of diagrams
describing a use case specification. For visualisation of the structure a class
diagram is used. Interaction diagrams describe the communication between these
classes.

Relation Between Analysis Objects. Relations visualize functional or structural
dependencies. The following relations can occur between analysis objects: Asso-
ciation, Generalization, Dependency and Hierarchy.
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Analysis Model. An analysis model consists of all artefacts, developed during
the analysis workflow.

Architectural Description. An architecture description is a short textual sum-
mary of architecture relevant aspects of the system.

Artefacts of the Object-Oriented Design

Design Class. Design classes are refined and detailed classes, suitable and ready
for implementation.

Use Case Realization-Design. Use case realizations-design describe the collabo-
ration of several design objects for use case realization.

Subsystem and Component. Subsystems and components result from decompos-
ing complex systems into smaller, easier manageable parts of the system.

Design Model. A design model is a refinement of the analysis model and is
enhanced with more details and particular technical solutions. The elements of
the design model have to be specified as far, that they can be implemented.

3.4 Development Activities and Relations Between Model Elements

In this section a model of useful traceability links for the UP is proposed. At
first the UP development activity is named and then, related to it, traceability
links between the developed artefacts are introduced. For illustration, every step
is explained by a simple example, for a wiper control. The activity chart in
Fig. 2 contains only those activities necessary for the establishment of traceability
links. It has to be pointed out that a sequential representation of activities is
used for better visualisation. However, in practice the activities are carried out
incrementally in several iterations.

Development Activities During the Requirements Workflow

Elaboration of the Vision Document. Based on a natural-language text document
of stakeholder requirements (needs), the system features have to be defined. The
needs and the realizing features are connected by explicit traceability links of
the type �

Creating the Glossary and the Domain Object Model. Parallel with the vision
document the glossary elaboration has to be started by defining and entering
all domain-relevant terms. Each new term identified during an activity must be
defined, before it can be used. The developer has to ensure that there is not
already another term defined for the same issue. If the new term has relations to
other terms it has to be modelled in the DOM as well. Additionally, every term
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has to be categorized by one of the following types: actor, object or process.
These categories refer to the type of term used within the before introduced
templates and for the naming of model elements. By knowing the type of a
term, it is possible to verify its correct usage within a text template or within
an identifier of a model object.

In our example three terms have been identified based on the feature defini-
tion: wiping speed, interval time and single wipe. They have to be defined and
listed in the glossary. These terms and those for the next development activities
are defined in Table 1. realize�(see Fig. 3).

Define Feature

Create Glossary Item Create Domain ObjectCreate Use Case

Identify Analysis Classes

Describe InterfaceDefine Test Case

Create Use Case Realization-Design

Capture Non-Functional Requirements/Contraints

Create Design Classes

Create Use Case Realization-Analysis

Refine Analysis Relations

Vision Document

Supplementary SpecificationInterface ModelUse Case Model Test Model Domain Object ModelGlossary

Use Case Realization-AnalysisAnalysis Model

Design Model Use Case Realization-Design

Create Subsystem/Component

Fig. 2. Development Activities of the Unified Process Workflows: Requirements and
Analysis/Design

Development of the Use Case Model. As first step the border of the system and
the interacting actors must be specified. The actors have to be defined in the glos-
sary as well (Table 1). The next step is to find use cases for the before defined
features. Between use cases and features m:n relations can exists, that means
that several use cases can refine one feature or that several features are refined
by one use case. Features and use cases are connected by an explicit traceability
link of type �refine�. The association between an actor and a triggered use case
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For the example, the following needs are known:
The wiper control of a car shall be
developed. It shall be possible to:

choose different wiping speeds,
to trigger a single wipe and
to adjust the time between wipes in
interval mode.

Based on the needs, the following
features could be identified:

Adjustable wiping speed
Single wipe
Adjustable interval time

«realize»

«realize»

«realize»

Fig. 3. Traceability Links between Needs and Features for the Wiper Control Example

Table 1. Glossary of the Wiper Control Example

Term Definition Type
1 Driver Person who drives a car Actor
2 Clamp 15 An electrical connection, which is Object

getting active when ignition is switched
on.

3 Steering Switch to choose the wiping speed Object
Column Switch with the positions off, interval,

slow and fast.
4 Wiping Speed Speed of the wiping blade Object
5 Interval Time Time between to wipings Object

in interval mode
6 Wiping Moving the wiper blade from its Object

start position to its end position
and back.

7 Single Wipe Manually triggered single wiping Object
8 Choose The user selects one or more elements Process

from a finite set of elements.
9 Set The system logically chooses the value Process

of a certain figure, according to
selection criteria from a finite set.

10 Trigger The user starts by a certain Process
action a process of the system.

can lead to an implicit traceability link. The use case specification should be
enhanced with test case specifications for the verification of its realization. Use
cases and test cases have to be connected by an explicit traceability link of type
�verify�. The relation is of m:n multiplicity. For the description of use cases,
text templates akin to Rupp [9] are used (see section 3.2).

In the example the following three use cases have been identified: Set Wiping
Speed, Choose Interval Time, and Trigger Instant Wipe. These use cases are
connected to the before defined features by explicit traceability links of type
�refine�(see Fig. 4).

Table 2. Example Description of the Use Case “Set Interval Time”

Name Choose Interval Time
Description This use case allows the driver to set a new interval

time, which is waited between two wipes.
Actors Driver

Rationale Steering column switch has been set to position interval.
Precondition Clamp 15 is active and the steering column switch

has position OFF.
Normal Flow 1 The driver switches the steering column switch to

position INTERVALL.
2 The driver switches the steering column switch to

position OFF.
3 The driver switches the steering column switch after

not more than 30s to position INTERVALL.
4 The system has to set the new interval time as the time

the steering column switch has been in position OFF.
Altern. Flow no

Postconditions no
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Single WipeFR-3

Adjustable Interval TimeFR-2

Adjustable
Wiping Speed

FR-1

Features

Driver

Set Wiping Speed

Choose Interval
Time

Trigger Single Wipe

Wiper Control
«refine»

«refine»

«refine»

Fig. 4. Traceability Links between Features and Use Cases for the Wiper Example

Development of the Interface Description. Textual documents, GUI-prototypes
or models can be used for interface descriptions. The description of an interface
contains associations between actors and use cases, in which an interface is used,
represented by an explicit traceability link of type �refine�. In the example there
is only one interface between driver and system, the steering column switch of
the car (see Fig. 5).

Driver

Set Wiping Speed

Choose Interval
Time

Trigger Single Wipe

Wipercontrol
«Interfacedescription»

Steering Column Switch

«refine»
«refine»

«refine»

Fig. 5. Example of an Interface Description

Development Activities of Object-Oriented Analysis

Identification of Analysis Classes. In the analysis phase classes and packages are
used for modelling the structure of the system. In the UP analysis classes are
distinguished as interface, entity or control class. There are different approaches
for finding analysis classes. The examination of nouns and verbs in use case
descriptions is a widely accepted technique. Nouns are candidates for classes or
attributes and verbs are candidates for responsibilities or methods. Another way
to find classes is the CRC-card method. The particular choice for a method is
determined by the project. Every use case is connected by explicit traceability
links to the analysis classes, which realize its flow. Each class can be connected
to several or only one use case and vice versa. That means a class can realize
more than one use case.

In the example three analysis classes are defined for the three use cases (see
Fig. 6). All use cases are triggered by the driver using the same interface (see
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Fig. 5. Therefore all use cases are connected by traceability links with the inter-
face class Steering Column Switch. The use cases Set Wiping Speed and Trigger
Instant Wipe are realized by the class Wiper Control and the use case Choose
Interval Time is realized by the class Interval Reader. All these development
activities are traceable through the corresponding links.

+Switch()

«Entity»
Wiper Control

Choose Interval
TimeTrigger Single WipeSet Wiping Speed

«realize»«realize» «realize»«realize»

«Control»
Interval Reader

«Interface»
Steering Column Switch

Fig. 6. Identified Analysis Classes to the Wiper System

Performing of Use Case Realizations-Analysis. In this step the cooperation be-
tween the different analysis classes has to be described by UML interaction
diagrams. For each use case at least one diagram is modelled, representing com-
munication and messages between instances.

The interaction diagrams have to be connected with the related use case,
using an explicit traceability link of type �realize�. It is also possible to con-
nect them implicitly by using consistent diagram names. By drawing messages
between classifiers in interaction diagrams an implicit connection between the
corresponding classes is established. This connection can be used to verify asso-
ciations in the class model between these classes. The sequence chart in Fig. 7
specifies the necessary communication between the analysis classes, to realize
the use case Choose Interval Time from the example.

«Entity»
Wiper Control

«Interface»
Steering Column Switch

Switch(Position)

Switch

Choose Interval
Time

sd  Choose Intervall Time

«realize»

Fig. 7. Example of a Use Case Realization

Development Activities During Design

Creation of Design Classes (Design Class Model). The design model is a refine-
ment of the analysis model. As a first step all elements of the analysis model
have to be copied. The copied elements are considered as initial design model. It
is possible to connect analysis and design elements automatically while copying
them by explicit traceability links of type �refine�.
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During the design phase almost all elements of the initial design model are
detailed, enhanced and refined step by step. Doing this the traceability links
between elements have to be changed or extended. Newly added design elements
have to be connected to analysis elements. Eventually, every analysis package
has to be connected to one or more design subsystems, each analysis class has to
be connected to one or more design classes and/or interfaces and each use case
realization-analysis hast to be connected to a use case realization-design.

Refinement of Analysis Relations. During design the relations established be-
tween analysis objects have to be further refined and adopted to the chosen
programming language. It is necessary to connect the original relation in the
analysis model and the replacing elements in the design model by explicit trace-
ability links of the type �refine�. If an analysis class is realized in the design
model by an attribute of a class or vice versa, this activity has to be docu-
mented by a traceability link as well. The replacement e.g. of a bidirectional
association by two unidirectional associations is shown in Fig. 8.

Class1 Class2

1 *

Class1 Class2

1 *

1 *

«refine»
«refine»

Fig. 8. Refining Analysis Relations to be able to Implement Them

Establishment of Subsystems and Components. The functional decomposition of
the system into packages is started in the analysis phase and completed during
the design phase. The parts of the system, separated by subsystems and their
components communicate only using defined interfaces. Subsystems refining an
analysis package are connected to this package by explicit traceability links of the
type �refine�. Newly introduced components and subsystems in the design model
to fulfil non-functional requirements or constraints are connected by traceability
links of the type �realize�.

Establishment of Use Case Realizations-Design. During analysis the use case re-
alizations are used to answer the question, what the system has to do to realize
a use case. During design these diagrams are further refined to show how it is
to do. The design diagrams have to be connected by explicit traceability links of
type �refine�with the corresponding diagram in the analysis model. Addition-
ally established diagrams have to be connected by traceability links of the type
�realize�with the related use case.
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Glossary

Glossary Item

Textual Glossary

Object

Domain Object ModelInterface Description

Interface Model

Need

Vision Document

Feature«realize»

Requirements Model

Software Requirement

Supplementary Specification

Actor

Use Case Model

Use Case

Software Requirement Specification

«refine»

«refine»

«refine»

«refine»

Test Case

Test Model

«verify»

Implementation Artifact

Implementation Model

Analysis Model

Analysis Object

Class

Relationship

   Package

Use Case Realization

Architecture Description

«realize» «realize»«realize» «realize»

Design Model

Design Object

Class

Relationship

   Component

Use Case Realization

«refine»«refine»

Implicit Traceability Link**

Explicit Traceability Link«realize»

*

* According to their type, glossary 
items can be used within all 
other artefacts, e.g. for use case 
descriptions, software requirements 
and the naming of classifier.

** Implicit traceability links are 
references between two model 
elements. They have no further 
properties and no direction.

Fig. 9. Traceability Links between Artefacts of Requirements Analysis, Object-
Oriented Analysis and Design

Activities of Implementation. The design model is transformed into exe-
cutable code during implementation. If it is possible to generate the source code
automatically or a developer has to implement it, depends on the level of detail
of the design model. If the source code is generated automatically, no additional
traceability is necessary. The used tool usually offers all functions necessary to
follow a design object into implementation. If a developer is doing the transfor-
mation manually, it is possible to use implicit traceability by consistent naming
of the implementation objects otherwise explicit traceability links have to be
used. Traceability links are stored in the source code as annotations.

Flow Description by Activity Diagrams and State Machines. Activity
diagrams and state machines allow the modelling of processes without a prede-
fined structure of the system. Activity diagrams are especially used to describe
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flows, e.g. use cases, information flows between use cases (as interaction diagram)
or methods and algorithms in the design model. State machines allow to model
reactive objects, like classes, use cases, subsystems or whole systems. Both di-
agram types can be used in various situations within the development process,
that’s why they are discussed separately.

If an activity diagram or a state machine is used to describe a use case, a class
or another model element, then both, the diagram and the model element have to
be connected by an explicit traceability link of the type �refine�. Alternatively,
a consistent naming of the diagrams and the corresponding model element can
be used for implicit traceability.

3.5 Tailoring of the Traceability Model

The introduced traceability links are summarized in Fig. 9. The presented trace-
ability model has been developed based on experiences, exploration of the UP
and best practices in software engineering. The traceability links allow following
essential development activities. However, tailoring is possible and sometimes
necessary depending on the complexity of the project, the expected results by
using traceability and the available resources to establish traceability. There are
two possible ways to tailor the traceability model to meet special needs:

1. omitting or adding traceability connections of the model and
2. enhancing or decreasing the level of granularity of defined links.

The first point is reasonable in the case that at the same time corresponding
development activities are omitted or added. Examples for such scenarios are:

– software development without object-oriented analysis for very small and
short-living projects or

– requirements analysis without feature definition.

The second point, the change of the level of granularity, refers in particular to
traceability links between use cases and analysis objects and between analysis
and design objects. Here a high number of traceability links has to be established,
but at the same time a higher level of granularity can support the developer with
valuable information, e.g. if traceability links between use cases and analysis
classes are used. It is possible to connect artefacts with a higher or lower level of
detail at both sides of the traceability link, then described in our model before. In
the case of use cases, more detail means to link parts of the use case descriptions
and less detail means to link to features instead of use cases. For analysis classes
more detail means to connect to methods and attributes and less detail means to
connect to the package, which contains the class. Figure 10 shows three examples
of possible traceability links. The level of detail is rising from left to right.

It has to be pointed out, that while using a higher level of detail, the trace-
ability links of fewer detail are included implicitly. That means by connecting a
use case action with an operation of an analysis class, there is also an implicit
connection between use case and class.
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In principle it is possible to increase or lower the level of detail only at one
connection side, but without real advantage because the resulting information is
not more precise. An advantage is only reached by a corresponding change on
both sides of the connection.

Pakege1
+Operation1()
+Operation2()

-Attribut1
-Attribut2

Class1
Class1

Class1

Use Case 1Feature1

«realize» «realize»

...
Basic Flow
1. Action1
2. Action2
3. Action3
...

Use Case 1

Use Case 1

«refine»

«realize»

Fig. 10. Example of the Level of Traceability between Use Cases and Analysis Objects

3.6 Verification of Traceability Links

Defined traceability links have to be verified for completeness and correctness.
Only thus the usability can be assured and a decay of traceability information
after changes of the connected models can be avoided. In the following rules for
validation are defined. Presently this set of rules is a first step for validating
only the pure existence of traceability links. For reaching this aim the analysis
of terms used in identifiers, the evaluation of relations in the class model or the
analysis of use case descriptions is necessary. E.g. one of the rule set introduced
in the list below is: each use case has to be realized by at least one analysis
class. This rule verifies the existence of at least one traceability link between
both model elements. But it is not sufficient for the verification of correctness.
Approaches for further validations offer the usage of terms in the model and the
validation of plausibility between diagrams. For example, the analysis of terms
means to search for glossary items of type object in the use case description
and try to relate them to the identifier of the linked analysis classes and their
attributes. Differences between both should lead to a notice for the developer.

Plausibility check between different diagrams means, that for each use case
triggered by an actor, an analysis class of type interface has to be defined. An-
other case considering use case realizations, the classes of all instances within
the use case realization have to be linked to the use case, because they realize
it. In the Table 3 the so far known rules are listed.

While applying the defined rules, one has to keep in mind that the UP is an
incremental and iterative process. That means these rules will raise warnings as
long as the model is not fully completed. However it is possible to check all chains
of artefacts to the last existing artefact and all loose artefacts. An example for
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Table 3. Verification Rules for Traceability Links

Need ←�realize�– Feature (m:n)
1. Each need is realized by at least one feature.
2. Each feature is realizing at least one need.
Feature ←�refine�– Use Case (m:n)
1. Each feature is refined by at least one use case.
2. Each use case is refining at least one feature.
Use Case/Actor-Assoc. ←�refine�– Interf. Descript. (m:n)
1. Each association between a use case and an actor is

refined by at least one interface description.
2. Each interface description is refining at least one

association between use case actor.
Actor – – – – – Use Case (m:n)
1. Each actor is associated to at least one use case.
2. The associated actor(s) are the same as the actors

used in the description of the use case.
Use Case ←�refine�– Suppl. Software Requirement (m:n)
1. Each software requirement (non-functional requirement,

constraint) is refining at least one use case.
Use Case/Suppl. Softw. Req. ←�verify�– Test Case (m:n)
1. Each software requirement is verified by at least one Test Case.
2. Each Test Case is verifying at least one use case or software requirement.
Glossary – – – – – DOM (1:0,1)
1. Each domain object is defined in the glossary.
Use Case ←�realize�– Analysis Class (m:n)
1. Each use case is realized by at least one analysis class.
2. Each analysis class is realizing at least one use case.
Use Case ←�realize�– Use Case Realization-Analysis (1:n)
1. Each use case realization is realizing one use case.

a loose artefact is a use case, which is realized by an analysis class, but does not
refine any feature. This should lead to a warning for the developer.

The rule set is going to be expanded during the next steps of the project
towards powerful support for developer.

4 Related Work

A comprehensive description of research topics, results and open issues in the
field of traceability was given in a former publication [11]. In this paper according
to the specific topic, three studies concerning traceability frameworks has to be
pointed out in particular.

Based on the analysis of industrial software development projects Ramesh and
Jarke [7] define two metamodels for traceability. The authors differentiate low-
end and high-end users of traceability. Correspondingly they explain a simplified
and a full version of their metamodel. Further they give a predefined standard
set of link types. The authors focus especially on project management and or-
ganizational needs of traceability. They do not give answers to the problem how
traceability should be established in analysis and design.

Spence and Probasco [4] discuss several alternatives for traceability between re-
quirements. The paper is focused on the UP. They do not give answers to the ques-
tion how the transition to analysis and design and the on-going work should be
traced.



70 P. Mäder, I. Philippow, and M. Riebisch

Letelier [3] offers a metamodel for requirements traceability in UML-based
projects. He gives an example of the usage in a UP project. The author is focusing
on a general traceability model and gives advise on how to customize it using
UML mechanisms. By keeping the model general useable, it is not possible to
define rules and activities for the creation, verification and the update of links,
which could be carried out (semi)automatically by a tool.

5 Conclusions and Future Work

In this paper the general activities of a software process model have been en-
hanced by the establishment of traceability links to reduce the effort and to
enable tool support. Traceability links improve the maintainability and sup-
port evolutionary development processes e.g., by recovering former development
activities, especially for the case of changing requirements. A model for trace-
ability links has been introduced which can be tailored if necessary. Based on
the development activities and artefacts, a set of rules for the verification of the
traceability links has been developed.

As a part of ongoing work, the developed traceability link model is currently
completed and refined towards a complete coverage of the methodical activities,
to facilitate appropriate tool support for the creation, update and verification of
the traceability links with a minimum interaction with the developer. For refining
the model, architectural development methods like Qasar [12] are investigated
and integrated.

Other development methods and processes like Fusion [13] and Refactoring
[14] are currently investigated aiming towards a generally usable traceability
model. For the realization of tool support we have started the implementation
of plug-ins for existing UML tools. The plug-ins will support the developer by
the establishment of traceability links in the background while modelling and
by maintaining the consistency of existing links during changes of artefacts.
However, a consequent application of the rules of the development method in all
modelling activities constitutes a precondition for such a support.
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Abstract. Organizations use to have implemented systems that represent a large 
effort and budget invested in the past. These systems are evolved and adapted 
over time in order to accommodate technological and business changes. More-
over, big companies often develop similar systems within the same domain. 
This has been motivating them to migrate to reuse approaches, such as domain 
engineering and product line. However, existing systems in general don't have 
up-to-date architectural documentation that can help in their maintenance and 
reuse. Considering this scenario, this paper presents an approach to architecture 
recovery and evaluation that aims at extracting knowledge from existing sys-
tems to help in their understanding and reuse. This extracted knowledge is rep-
resented through a recovered application architectural model composed by ar-
chitectural elements that represent domain concepts traced to implemented 
functional requirements, which may help in generating reusable artifacts. In or-
der to evaluate the approach feasibility, an experimental study was performed. 

Keywords: Architecture recovery, dynamic analysis, data mining, architecture 
evaluation, software inspection, program understanding, software reuse. 

1   Introduction 

There is a large number of reverse engineering approaches in the literature to recover 
documentation from existing systems. Many approaches of software clustering and 
remodularization [2, 16], or more specifically of architecture recovery [3, 7, 13, 20] 
reconstruct documentation from system available artifacts, such as source code and 
executable. These approaches are motivated by the fact that existing systems, which 
have been developed many years ago (i.e. legacy systems), usually don't have up-to-
date documentation that can help in their understanding. These systems represent a 
great investment made by the organizations and incorporate business knowledge that 
sometimes cannot be obtained in any other source of information. Moreover, big 
organizations tend to develop applications in the same or similar domains along the 
years. This motivates the reuse of the whole or parts of existing systems in new de-
velopments, mainly in domain engineering and product line approaches. However, 
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existent reverse engineering approaches, in general, are not focused on reuse and on 
the generation of abstractions that can be mapped to domain concepts. Moreover, they 
use to be based on criteria that are domain or implementation specific. 

In the last years, architecture recovery approaches have been receiving attention 
from the reverse engineering community since the architecture communicates high-
level knowledge about the system, facilitating its comprehension and reuse. Architec-
ture recovery can be defined as a reverse engineering activity that aims at obtaining a 
documented architecture for an existing system [9]. Many definitions to software 
architecture are given in the software engineering literature since this field has not 
consolidated concepts and representation models yet. Among the accepted definitions, 
we adopt the one from Bass et al.  [6], in which software architecture is defined as the 
structure, or structures of a system that comprises software elements (i.e. architectural 
elements), the externally visible properties of those elements, and the relationships 
among them. The architectural element we recover in this work stands for a group of 
functionally cohesive classes that implement a domain concept. Concerning architec-
tural structures or views, our approach recovers a static and a dynamic architectural 
representation. However, it is not the focus of this paper to describe the dynamic view 
recovery. Further details about this view can be obtained in [23]. 

Our goals in this work are: (1) to contribute to software reuse by clustering func-
tionally cohesive classes to compose architectural elements that represent domain 
concepts and possibly reusable artifacts; (2) to cope with program comprehension, 
through the reverse engineering of an application architectural model, with meaning-
ful names given to architectural elements; and (3) to provide an architecture recovery 
approach that can be reused across different domains and implementations. 

Our approach of architecture recovery, named ArchMine, is integrated to the Odys-
sey environment [18], which is a reuse infrastructure based on domain models that 
supports both: development for reuse, through a Domain Engineering process; and 
development with reuse, through an Application Engineering process.  ArchMine is 
integrated to the Application Engineering context and aims at generating artifacts that 
can possibly be reused in a Domain Engineering process.  

In order to be reusable, we must ensure that the recovered architectural elements 
are cohesive and consistently represent domain concepts. To this end, we adopt an 
architectural evaluation model based on inspection, ArqCheck [5], extended to 
evaluate architectural elements reusability. 

Finally, in order to extract knowledge from existing systems that can help in their 
comprehension, we base our architecture recovery on use case scenarios and data 
mining. Use case scenarios represent application usage scenarios that guide applica-
tion execution during dynamic analysis. The result of the dynamic analysis is a set of 
execution traces, i.e. method executions, each set related to a specific use case sce-
nario. They translate the application functional requirements and represent a means to 
map functional requirements to system entities (i.e. classes).  Data mining, in addi-
tion, is employed to mine the gathered execution traces and discover related classes 
based on the functionality they implement. Our approach is semi-automated and hu-
man-guided. We argue that, in contrast to fully automated approaches, by incorporat-
ing human knowledge to architecture recovery we can extract models that are rich of 
information and directed to user goals, e.g. software reuse. 
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This paper is organized as follows: section 2 presents meaningful related work in ar-
chitecture recovery and architecture evaluation; section 3 presents our approaches for 
architecture recovery and evaluation, i.e. ArchMine and ArqCheck; section 4 describes 
an experimental study performed to evaluate these approaches; and section 5 concludes 
the paper presenting its contributions, limitations, and future work.  

2   Related Work  

Concerning architecture recovery, works on software clustering and remodularization, 
besides architecture recovery itself, have many points in common. In [3], an architec-
ture recovery approach based on clustering classes by name similarity is presented. 
Reinforcing the conclusions they had in a previous work [2], name similarity shows to 
be a good approach to architecture recovery. Bojic and Velasevic [7] apply dynamic 
analysis to architecture recovery, like the work presented in this paper, but using a 
formal concept analysis technique to recover architectural elements. However, there 
are no experimental studies to confirm the validity of their approach, as we do in our 
work. In [21], dynamic analysis is also employed, but in this case to map low-level 
system events into more abstract architectural operations or connectors. Mappings are 
formally defined using Colored Petri Nets. Although, proposing a language to define 
the mappings and relying on regularities in system implementation, these mappings 
are very implementation dependant. In order to achieve more generality, our approach 
is not based on implementation patterns. 

Kazman and Carrière [13] present a semi-automated approach to architecture re-
covery performed with the support of the Dali workbench. In their approach, criteria 
to classes clustering into architectural elements are application-dependant, while in 
our approach they are general to object oriented (OO) applications from different 
domains. Sartipi [20] also employs data mining to architecture recovery, but in his 
work data mining is used to derive relations among entities based on their static struc-
tural properties, instead of their dynamic behavior as in our approach. 

Mitchell and Mancoridis [16] present an automatic approach to architecture recov-
ery that analyzes the static graph extracted from source code and clusters its entities 
based on the evaluation of their coupling. They apply a sub-optimal function that tries 
to maximize the connectivity inside architectural elements, while minimizing the 
connectivity among architectural elements. Architectural element names are derived 
randomly by selecting the name of one of their constituent classes. This problem of 
not automatically attributing semantic names to architectural elements is general in 
reverse engineering approaches, with the exception of few works as the one in [22]. 

To the best of our knowledge, current reverse engineering approaches don't provide 
a systematic means to evaluate the recovered architectures, being informally evalu-
ated by system experts. In order to fulfill this gap, we adopt an extended version of 
ArqCheck [5] to evaluate the architectures recovered by ArchMine. ArqCheck is a 
generic and simple approach to architecture evaluation. Some architecture evaluation 
methods, like the ones based on scenarios - e.g. ATAM [14] and SAAM [12], may 
require a great effort, and others are specific to some architectural representations – 
e.g. SAEM [10]. 
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3   Approach for Architecture Recovery and Evaluation 

In this section we present our approach for architecture recovery and evaluation. First, 
as shown in Fig. 1, architecture recovery sub-process takes place, which encompasses 
information extraction and architectural views reconstruction, performed through the 
ArchMine approach. The architecture evaluation sub-process main goal is to evaluate 
the reusability of architectural elements and is based on an extended version of the 
ArqCheck approach [5]. Fig. 2 and Fig. 6 detail these sub-processes, which are de-
scribed in the following sub-sections. The processes are modeled following OMG 
SPEM (Software Process Engineering Metamodel) notation. They jointly derive 
knowledge about the application to help in its understanding and reuse. 

 

 

Fig. 1. Architecture recovery and evaluation process 

3.1   Architecture Recovery Sub-process 

In order to reconstruct architectural elements, we cluster classes based on relations 
among them derived by means of dynamic analysis and data mining. Dynamic analy-
sis involves gathering application execution traces, i.e. sequences of methods that 
implement application functionalities. We apply a data mining algorithm inspired on 
Apriori [1] to mine execution traces and indicate related classes based on the func-
tionalities they implement.  

The approach is application and implementation independent and can be applied to 
OO applications from different domains. However, our supporting tool set was 
designed to analyze Java applications. ArchMine has been refined since 2005 [24] 
through its application in 5 case studies, involving systems of different sizes and 
domains. The 5th case study is presented in section 4, describing the application of 
ArchMine and ArqCheck approaches. 

The remainder of this section explains the architecture recovery sub-process 
activities, together with its tool set and an accompanying example. The example 
presents a real case study, i.e. ArchTrace [17] partially recovered artifacts. ArchTrace 
 

Legend: 
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is a traceability links evolution system which reads an architecture description and the 
related source code, establishing and maintaining traceability links between them.  

Static Structure Extraction. Static Structure Extraction and Use Case Scenarios 
Definition can be performed in parallel, as shown in Fig. 2. Static Structure Extrac-
tion reconstructs a UML class model (i.e. static structural model) from source code. 
This task is fully automated by applying the Odyssey static reverse engineering tool, 
Ares.  Ares is a plug-in to Odyssey [18] that reads Java source code and reconstructs a 
UML class model. This class model is at a low-abstraction level and classes are fur-
ther clustered into architectural elements. Fig. 3 depicts a partial view of the class 
model recovered from ArchTrace source code, which is at a very low-abstraction 
level.  

 

 Fig. 2. Architecture recovery sub-process  

• Use Case Scenarios Definition. This activity aims at determining usage 
scenarios to guide application execution for dynamic analysis. A use case 
(uc) is a description of sequences of actions, including variants, that an entity 
(e.g. a system) performs to produce an observable result of value to an actor 
[8]. It represents a functional requirement (fr) of a system, denoted by uc ⇔ 
fr. Each sequence of actions in a uc is called a use case scenario and 
represents one means for obtaining that fr [8]. Moreover, user inputs (e.g. 
menu option selection, button pressed, mouse pressed, mouse released) 
trigger system actions that lead to the execution of use case scenarios, 
generating concrete scenarios. Each use case scenario may have one or more 
associated concrete scenarios, representing execution paths inside the 
application that lead to the execution of that use case scenario. 
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Fig. 3. ArchTrace partial class model in the Odyssey environment 

Table 1 lists the manually defined use case scenarios for the ArchTrace 
application. For example, the use case scenario "Configures Architecture" can be 
performed through an application menu option or through a toolbar button (i.e. 
concrete scenarios).  

Table 1. ArchTrace use case scenarios 

ArchTrace Use Case Scenarios 

1. Configures preferences. 8. Removes traceability links from old file versions. 

2. Configures architecture. 9. Traceability to immutable arch. element. 

3. Configures repository. 10. Executes Data Mining policy. 

4. Configures policies. 
11. Updates traceability links when new file versions 
are committed. 

5. File save. 12. Help about. 

6. Traceability links to different file 
versions. 

13. Traceability link to file when already exists a link to 
the directory. 

7. Removes traceability links from files 
when a traceability link to the directory is 
created. 

14. Suggests traceability links to the most recent file 
versions. 

ArchMine defines some guidelines to help in the definition of use case scenarios, 
namely: derive 1 use case scenario for each application main menu and pop-up menu 
option; in case of nested menu items, choose the one in the last level of the hierarchy; 
tool bar buttons may derive use case scenarios; panel buttons that are not trivial, such 
as Ok, Cancel, Next etc., may also derive use case scenarios; tabs in tabbed panes 
may derive use case scenarios or make part of a greater scenario; for concrete 
scenarios that represent the same use case scenario, only define one scenario; fill in all 
the input data in the scenarios in order to exercise the most parts of the system as 
possible. These guidelines were derived through the case studies in which the 
approach was applied. 

In addition to the guidelines, user manuals; test cases; or available stakeholders (e.g. 
users, developers, maintainers) may be accessed in order to facilitate comprehending the 
use case scenarios and system functionality. Use cases and their scenarios are informally 
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specified in the Odyssey environment. ArchMine does not require 100% of use case 
scenarios coverage in order to allow architecture recovery. However, the higher the 
coverage achieved in use case scenarios definition concerning all the application use 
case scenarios, the higher tends to be the quality of the recovered architectural model. 

Dynamic Analysis. It involves application execution and monitoring for the specified 
use case scenarios, and gathering execution traces that are related to the realization of 
an application functionality or use case scenario. We instrument the bytecode of Java 
applications through AspectJ [4], allowing the detection of methods execution with 
related information, i.e. class, instance and thread. It is performed with the support of 
our Tracer tool [23], which takes as input the jar file and classPath of Java 
applications, and inserts the tracing code around each method execution. The output is 
a set of XML trace files (Fig. 4), in which methods are ordered and indented by 
control flow hierarchy. Through static filters, Tracer tool eliminates from the 
execution traces the classes belonging to libraries (e.g. Java API), which are not 
relevant to comprehend the application architecture.  

The tag “Label” indicates the executed use case scenario (e.g. Fig. 4, "Configures 
architecture"). Since the Tracer tool allows enabling and disabling tracing, it is 
possible to delimit a set of method executions belonging to a given use case scenario.  

 

 

Fig. 4. An excerpt of a hypothetical XML execution trace 

In order to evaluate classes coverage by dynamic analysis, the classes in the 
execution traces are compared to the ones extracted in the static model. Classes that 
were not monitored are shown to a system expert (e.g. a programmer, a developer, a 
designer) who indicates scenarios that still need to be executed. As shown in Fig.2 
there is an iteration between Dynamic Analysis and Use Case Scenarios Definition.  

Architectural Elements Reconstruction. It is a complex activity, composed of a 
series of tasks, namely: classes clustering, architectural elements names generation, 
and architectural elements dependencies computation. We apply a data mining 
algorithm inspired on Apriori [1] to mine execution traces and detect high-level 
relations among classes that implement common functionalities in the system. They 
are clustered into architectural elements. In order to make clear how we apply an 
Apriori-like algorithm, some Apriori concepts are defined: 

<?xml version="1.0" encoding="ISO-8859-1" ?>  
<Label name="Configures architecture"> 
<Method class="edu.uci.ics.archtrace.gui.ArchTraceTreeModel"  
   instance="@64" method="getChildCount" thread="AWT- 
    EventQueue-0" time="24 de Março de 2006 14h34min57s BRT"> 
  <Method class="edu.uci.ics.archtrace.model.ArchTraceElement"  
     instance="@64" method="getChildCount" thread="AWT- 
     EventQueue-0" time="24 de Março de 2006 14h34min57s BRT"/> 
  </Method> 
… 
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• Apriori discovers association rules among items of database transactions.  
• Association rule is an implication of the form: X ⇒ Y, where X and Y are 

items of the database and X ∩ Y = ∅. X is the antecedent of the rule, 
while Y is its consequent. Our rules have one antecedent and many 
consequents. 

• Apriori requires two threshold values: minimum support and minimum 
confidence. Support “s” means that s% of the transactions in the database 
contain X and Y. Confidence “c” implies that c% of the transactions that 
contain X also contain Y. Given a set of transactions τ, the problem of 
mining association rules is to generate all rules that have support and 
confidence equals or greater than the user specified minimum support and 
minimum confidence. 

In order to mine association rules, some concepts from the database domain are 
mapped to the dynamic analysis context. These mappings are presented in Table 2. 

Table 2. Mapping of concepts for mining association rules 

Data Mining 
Concepts Mapping to Dynamic Analysis 

Transaction  A use case scenario, represented by an execution trace. 
Data Item A class, in the execution trace, implementing the use case scenario. 
Support Percentage of use case scenarios implemented by a class. 
Minimum 
Support 

The minimum percentage of use case scenarios in which the classes in 
an association rule must appear together. 

Confidence 
Percentage of use case scenarios of class X in which a class Y also 
appears. 

Minimum 
Confidence 

The minimum percentage of use case scenarios of class X in which a 
class Y must also appear for the association rule between X and Y to 
be valid. 

Antecedent The class that is used as input to discover the association rules. 

Consequent 
The classes that are associated to the antecedent with support and 
confidence greater or equals to the minimum values. 

 

Mining is supported by our TraceMining tool, that reads the gathered execution 
traces and generates architectural elements in the Odyssey environment Instead of 
detecting large itemsets and then deriving association rules, as in the original Apriori 
algorithm, TraceMining queries specific antecedents, which are randomly chosen by 
the tool. The mining and architectural elements reconstruction process is guided by 
some heuristics, which are explained in the following.  

• H1: Minimum support must be low, since the most monitored classes that 
can be clustered into architectural elements along the mining process, the 
higher tends to be the quality of the recovered architecture.  

• H2: Minimum confidence must be tuned along the mining process by the 
user. This tuning may be performed with a system stakeholder (i.e. pro-
grammer, designer, developer), if possible. The user that guides the min-
ing process must try to balance architectural elements size, i.e. composing 
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not too large, neither too small clusters. Architectural elements size is  
impacted by minimum confidence: the higher the minimum confidence, 
the smaller the clusters will be.  

• H3: Classes must be mined and grouped from higher to lower support val-
ues. Higher support value classes are the most general ones, providing ser-
vices required by many others. They compose more general architectural 
elements that might implement infrastructure services or some core func-
tionality of the application.  

• H4: Classes that participate in a few number of use case scenarios tend to 
compose business architectural elements, which are more specific. They 
are the last mined and clustered ones. It is important to state that in the 
same support value boundary, classes must be randomly chosen as ante-
cedents for the mining process. 

• H5: Groups already formed must be filtered from subsequent mining cy-
cles, otherwise it shouldn't be possible to distinguish between more gen-
eral and more specific architectural elements. 

• H6: Whenever intersections are observed among the mining results, they 
must be prioritized in the composition of architectural elements, since 
they tend to reveal strongly related classes, that together participate in 
some association rules.  

• H7: Some superclasses and interfaces may not be monitored during dy-
namic analysis. Therefore, they must be grouped in the architectural ele-
ment to which they are closest. Closeness, in this case, is evaluated by 
measuring the number of subclasses per architectural element for each su-
perclass and the number of implementing classes for each interface. These 
classes are highly dependant on the superclass or interface specification.  

 
This heuristic set was derived through the case studies in which the approach was 

applied. It doesn't intend to be an exhaustive list, although these heuristics proved to 
provide good results along the case studies. In order to illustrate some of the described 
heuristics, Table 3 depicts some classes of the ArchTrace application and the corre-
sponding scenarios that they implement. Use case scenarios numbers are extracted 
from Table 1. Table 4 presents the structure of some resulting architectural elements 
with the corresponding association rules and heuristics that originated them.  

The minimum support adopted was 0% (H1), since the goal was to cluster all the 
monitored classes. Minimum confidence used was 60% (H2), since this value gener-
ated the best balanced sizes for architectural elements, i.e. from 2 to 8 classes. The 
first mined antecedent was ArchTraceWindow (H3), the class that had the highest 
support value in the example. CheckBoxTreeCellEditor was the only class that had 
confidence higher than 60% for ArchTraceWindow, generating the first element.  

The second mined class was DenyImmutableAETracePolicy, because according to 
heuristic H5 classes already grouped must be filtered, and, therefore, 30% was the 
next support value in the scale. In this support value boundary, DenyImmutableAE-
TracePolicy was randomly chosen as antecedent (H3 and H4). According to heuristic 
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Table 3. ArchTrace classes x use case scenarios 

Classes - support Use Case Scenarios 
ArchTraceWindow – 57% 6, 7, 8, 9, 10, 11, 13, 14  
CheckBoxTreeCellEditor – 50% 6, 7, 8, 9, 10, 13, 14 
TraceAbortedException – 30% 6, 9, 13, 14 
DenyImmutableAETracePolicy – 30% 4, 6, 9, 13 
ArchTraceException – 30% 6, 9, 13, 14 
DenySubCITracePolicy – 22% 4, 6, 13 
SuggestRelatedTracesPolicy – 15% 10, 4 
SuggestionDialog, SuggestionListModel – 15% 10, 4, 14 

DataMiner, MinedElement, MinedElements – 7% 10, 4 

Table 4. ArchTrace partial recovered architectural elements 

Architectural 
Element 

Name/Heuristics 

Association Rules Classes 

GUI-6 / H2, H3 ArchTraceWin-
dow⇒CheckBoxTreeCellEditor-
confidence=87,5% 

CheckBoxTreeCellEditor, 
ArchTraceWindow 

PRE-TRACE 
POLICIES-7/ 
H2, H3, H4, H5 

DenyImmutableAETracePolicy⇒ 
ArchTraceException, DenySub-
CITracePolicy, TraceAbortedEx-
ception – confidence=75% 

DenyImmutableAETracePolicy, 
ArchTraceException, 
DenySubCITracePolicy, 
TraceAbortedException 

SUGGESTION-
MINED-4 / H1, 
H1, H2, H3, H4, 
H5 

SuggestionDialog⇒ Sugges-
tionListModel-confidence=100% 
SuggestionDialog⇒DataMiner, 
MinedElement, MinedElements,, 
SuggestRelatedTracesPolicy-
confidence=66,7% 

DataMiner, MinedElement, MinedEle-
ments, SuggestionDialog, Sugges-
tionListModel, SuggestRelated-
TracesPolicy 

 

H2, the classes ArchTraceException, DenySubCITracePolicy, and TraceAbortedEx-
ception were the ones that had confidence (i.e. 75%) greater or equal to the specified 
minimum confidence (i.e. 60%). Following the support scale, as shown in Table 3, the 
next randomly selected antecedent was SuggestionDialog, with support value of 15%. It 
was grouped with DataMiner, MinedElement, MinedElements, SuggestionListModel, 
and SuggestRelatedTracesPolicy in the same architectural element.  

Reconstructed architectural elements are exported to Odyssey by the TraceMining 
tool, restructuring the static structural class model already extracted (e.g. Fig. 3) and 
leading it to a higher-abstraction level (e.g. Fig. 5). During exporting, architectural ele-
ment names are derived based on the most common substrings in their class names, 
providing semantics to their names. Therefore, class names are broken down into sub-
strings, which start by a capital letter or after an underscore symbol. TraceMining estab-
lishes a ranking among the substrings, by counting their occurrence in architectural 
element class names, and composes architectural element names by concatenating the 
best ranked ones. Architectural element names also contain a sequential number, to 
avoid redundancies in generated names. Whenever the system expert doesn't agree with 
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Fig. 5. ArchTrace  architectural model after applying the mining heuristics 

architectural element names, they can be changed. This situation occurred in some re-
covered elements for ArchTrace. 

Besides deriving architectural element names, TraceMining also computes depen-
dencies among architectural elements based on the relationships among their classes. 
In the Odyssey environment, derived architectural elements and their classes are 
traced to the use case scenarios that they implement. 

Dynamic View Reconstruction. It aims at representing interactions among architec-
tural elements, showing how the system behaves to perform the selected use case 
scenarios. The dynamic view is represented through UML sequence diagrams and its 
reconstruction is performed with the support of the Tracer and Phoenix tools. Further 
details can be obtained in [23]. 

3.2   Architecture Evaluation Sub-process 

The recovered architecture is evaluated by applying an extended version of 
ArqCheck. ArqCheck is an inspection method that uses a checklist as the defect de-
tection technique. It was chosen to architecture evaluation due to the following fac-
tors: it is simple and it requires less effort to architecture evaluation than other meth-
ods, like the ones based on scenarios [13, 14]; it can be configured to the architectural 
representation at hand; its feasibility was evaluated through  two experimental studies; 
and it has been developed in the same academic environment as the work presented in 
this paper, facilitating its extension.  

The questions in the checklist employed by ArqCheck are divided into three evalua-
tion categories: architectural representation consistency, conformance to functional 
requirements, and conformance to non-functional requirements. For the non-functional 
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requirements, the checklist questions are based on the knowledge available in architec-
tural tactics [6], covering Availablity, Performance, Modifiability, Usability, Security, 
and Testability. The checklist was extended in this work to evaluate architectural ele-
ments Reusability. Since there aren’t architectural tactics to evaluate Reusability, the 
questions were formulated based on the knowledge available in Component-Based 
Development (CBD) literature [19, 25], which aims at defining self-contained and cohe-
sive software artifacts. The applied extensions were evaluated through a case study, 
confirming their feasibility. 

Moreover, in order to describe non-functional requirements, quality scenarios are 
adopted, representing an information set that allows characterizing a non-functional 
requirement that facilitates its understanding [6]. Quality scenarios describe non-
functional requirements like use case scenarios describe the functional ones. Quality 
scenarios in the checklist must be instantiated any time it is applied according to the 
non-functional needs of the current system. 

The inspection process adopted by ArqCheck is adapted from the traditional in-
spection process described in [11] and is presented in Fig. 6.  

Three roles participate in an inspection process, namely: the moderator, who man-
ages the process execution; the inspected artifact author; and the inspector, who iden-
tifies defects on the artifact.  The process activities are detailed in the following and 
exemplified in the next section through the described experimental study. 

Inspection Planning. This activity involves identifying the moderator for the inspec-
tion, who selects the inspectors and distributes the inspection material. It also involves 
configuring the checklist of ArqCheck, that includes: analyzing the questions of the 
checklist to adapt the concepts to the architectural representation employed; classify-
ing questions in applicable or not, according to the architectural representation and 
non-functional requirements of interest; and instantiating quality scenarios for the 
selected non-functional requirements. It generates the configured checklist. 

Presentation and Detection. Presentation involves presenting the material to be 
inspected by the author and training inspectors in applying ArqCheck.  During the 
Detection, selected inspectors individually review the recovered architectural model, 
identifying discrepancies, that can be classified as defects or false-positives (i.e. dis-
crepancies that are not defects in fact) during the Inspection Meeting. These identified 
discrepancies are registered in the discrepancy reports of ArqCheck. Each inspector 
generates one discrepancy report. 

Inspection Meeting.  In the Inspection Meeting, the moderator, inspectors and docu-
ment author debate about the discrepancies identified in the discrepancies reports, 
classifying them in defects or false-positives.  The final decision about a discrepancy 
classification is the moderator's responsibility. Defects correction discussion is not the 
goal of the meeting, but a list of defects is generated as a result. 

Rework and Follow-up.  In the Rework activity, the document author corrects the de-
fects identified by the inspection, generating a Restructured Architectural Model.   
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Follow-up involves re-evaluating the quality of the inspected material, after correction, in 
order to decide whether a new inspection over the inspected artifact must occur or not.  

In the next section, an experimental study applying ArchMine and ArqCheck is 
presented and obtained results including some lessons learned are discussed. 

 

Fig. 6. Architecture evaluation sub-process 

4   Empirical Study 

Experimentation represents the core of a scientific process, being the unique way to 
evaluate a new theory. It offers a systematic, disciplined, computable, and controlled 
approach to evaluate new methods, techniques, languages, and tools. In [26], three 
kinds of empirical studies that can be carried out in software engineering are pre-
sented, i.e. surveys, case studies, and experiments. The choice among them depends 
on factors such as the proposal and conditions to the evaluation.  

In order to evaluate ArchMine and ArqCheck, we conducted a case study with an 
application of industrial use. Its goals, hypothesis, metrics, planning, execution, and 
results along with lessons learned, are discussed in this section. 

4.1   Experimental Study Goals and Definition 

ArchMine had been evaluated through 4 case studies before this one, through which it 
has been refined, according to the lessons learned. It proved to be feasible. However, 
one important issue identified was that the evaluation of the architectures recovered 
was ad-hoc, requiring a huge human effort, and not assuring that the quality of the 
recovered architecture was improved after evaluation.  

In order to improve this evaluation, an extended version of ArqCheck was adopted. 
Therefore, the goal of this experimental study is to evaluate if the extended version of 
ArqCheck reduces the evaluation effort and allows improving architectural quality for 
reuse, concerning the architectures recovered with ArchMine. The experimental study 
outline is presented as follows, according to the notation proposed in [26]: 
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Analyze the evaluation of the architectures recovered by ArchMine  
through the extended version of ArqCheck 

For the purpose of characterization 
With respect to architecture evaluation effort reduction and architecture  
                           reusability improvement 
From the point of view of software engineers 
In the context of the recovery of an object oriented framework, written in  

Java, and in use in an industrial context  

4.2   Experimental Study Hypothesis and Metrics 

This experimental study intended to reject two null hypotheses, namely: (H01) – the 
incorporation of an extended version of ArqCheck to evaluate the architectures recov-
ered by ArchMine doesn’t reduce the evaluation effort; and (H02) – the quality of the 
recovered architecture, concerning its reuse, is not improved by incorporating an 
extended version of ArqCheck to architecture evaluation. 

In order to test these hypotheses, some metrics were established, namely: M1 - av-
erage time spent to architecture evaluation by the inspectors; M2 - number of inspec-
tors who found it difficult to apply extended ArqCheck; M3 – number of inspectors 
who found that the quality of the architecture, concerning reuse, had improved. Met-
rics M2 and M3 were derived by counting the answers given by the inspectors in a 
post-evaluation form. 

4.3   Experimental Study Planning and Execution 

The architecture of the CSBase framework [15], that manages resources in a distributed 
grid environment and was developed in a partnership between the academy and the 
industry, was recovered following the heuristics defined for ArchMine (section 3.1). It 
has 720 classes. Use case scenarios were defined by the researcher with a system expert, 
following the guidelines of ArchMine (section 3.1). 129 use case scenarios were moni-
tored. The architecture was recovered by the first author of this paper.  

As soon as the architectural model has been recovered, the inspection process took 
place. The researcher, in the role of moderator and document author, planned the 
inspection process by configuring the checklist to evaluate CSBase recovered archi-
tecture. Although it is the moderator's responsibility to choose the inspectors, in this 
special case the inspectors were selected by the CSBase manager. The checklist was 
configured by classifying the questions in applicable or not, changing some architec-
tural terms to the architectural representation adopted, and by instantiating the quality 
scenario for the non-functional Reusability requirement. Table 5 presents an excerpt 
of the checklist used in this study. In order to classify the questions in applicable or 
not, in some cases, the moderator needed the help of the system experts. Question 8, 
for example, was not applicable in this study because CSBase didn't have a previous 
documented requirements model.  

Reusability quality scenario instantiated to evaluate CSBase recovered architecture 
is presented in Table 6. It is accompanied by a Context Identification Guide, which 
indicates how to look for the elements that must be evaluated for Reusability. 
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Table 5. Excerpt of the checklist used in the experimental study 

Nº Items that Evaluate Architectural Representation Consistency Yes No NA 
1. In the diagrams, is there any architectural element that doesn't have 

relationships, being isolated from the others? 
   

2. All the architectural elements, identified by their names, were repre-
sented by the same abstraction in the different diagrams? 

   

Nº Items that Evaluate the Conformance to Functional Requirements Yes No NA 
8. All the functional requirements, or quality attributes or other require-

ments, created by the architectural decisions, is being satisfied by any 
architectural element? 

  x 

Nº Items that Evaluate the Conformance to Non-Functional Require-
ments (Reusability) 

Yes No NA 

9. The responsibilities of the internal modules (i.e. classes) of a reusable 
element belong to the same context, i.e. they intend to achieve the same 
goal or are used in the same use case scenarios? 

   

10. Is it possible to identify groups of reusable architectural elements with 
similar responsibilities or that share some common implemented func-
tionalities that should be grouped to compose a component? 

   

11.  From the point of view of the concept that the reusable architectural 
element represents, are there modules (i.e. classes) that should be allo-
cated in it, considering their responsibilities or functionalities, but that 
are allocated in another architectural element? 

   

12. Are there couplings between a reusable architectural element and other 
elements that hinder its reuse? 

   

13. Considering the coupling among reusable architectural elements, are 
there couplings that justify their clustering in one component?  

   

 

After configuring the checklist, the moderator presented the recovered architecture 
and the checklist to the inspectors, training them in applying ArqCheck. They were 
also given a discrepancies report, to be filled anytime they found that an answer in the 
checklist indicated a defect in the architecture.  

Inspectors were also asked to fill some evaluation forms informing the difficulty 
degree in applying ArqCheck and the quality of the architecture for reuse, before and 
after correction. Once the inspectors concluded discrepancies detection, the moderator 
 

Table 6. Reusability quality scenario for CSBase recovered architecture 

Reusability requirement: the recovered CSBase architectural elements must be reused in the specifi-
cation and development of other applications in the distributed grid management domain. 

Reusability Scenario 
Stimulus source Domain Engineer 
Stimulus Reuse of the recovered architectural elements in domain design. 
System Context Domain Engineering process 
Artifact Recovered CSBase architectural elements, represented through packages 

in the Odyssey structural view. 
Answer Domain models generated. 
Answer Measure --------  

Context Identification Guide: according to the reusability requirement, identify the reusable ele-
ments that must be evaluated. Reusable elements are mainly identified through the stimulus and 
artifact described in the reusability scenario. In order to answer reusability questions, evaluate their 
internal structure, relationships with other architectural elements, and traced use case scenarios. 
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consolidated the discrepancies list, by eliminating redundancies. The final defects list 
was generated after the inspection meeting. Based on this list, the moderator con-
ducted the rework activity, contacting system experts, whenever he had difficulties to 
correct the architecture. The restructured architectural model was presented to the 
system experts (i.e. inspectors), who evaluated its final quality. 

4.4   Experimental Study Results and Lessons Learned 

Concerning the null hypotheses of the experiment, there were evidences to reject only 
the first one. Architecture evaluation effort was not reduced in comparison to our 
previous studies, according to the values of metrics M1 and M2. However, in order to 
confirm this result, it would be necessary to run the study again with two evaluation 
approaches (i.e. ad-hoc and ArqCheck) applied to the same application. Concerning 
the second hypothesis, the system inspectors agreed that ArchMine recovered archi-
tectural concepts for CSBase and that the quality of the architecture for reuse had 
improved after inspection, according to the values of metric M3. After discussing the 
results of the study with the system experts, some lessons learned were outlined: 

• CSBase is client-server and since the client and the server were separately 
monitored, some interface components were not adequately captured. 

• Architectural element names, in general, adequately reflected CSBase 
domain concepts, which indicates that names derivation strategy is a good 
contribution of ArchMine when compared to other reverse engineering 
approaches (e.g. Bunch [16]). 

• The minimum confidence used was 60%, a value that was tuned along the 
previous case studies, demonstrating to be a reasonable value. Minimum 
support was 0% in order to cluster all the monitored classes. 

• The effort required to apply ArqCheck is also due to limitations of the 
Odyssey environment in the manipulation of the recovered model. 

5   Conclusions 

In this paper we presented ArchMine, an architecture recovery approach based on 
dynamic analysis and data mining. ArchMine recovers architectural elements that 
represent functionally cohesive groups of classes, describing domain concepts and 
possibly reusable artifacts. Recovered architectural elements are evaluated by apply-
ing ArqCheck. The main contributions of our approach are: (1) the recovery of func-
tionally cohesive architectural elements, traced to the implemented functional re-
quirements, that can possibly be used for reuse and program understanding; (2) a 
general approach to recover the architecture of OO applications; (3) the recovery of 
an application architectural model, with meaningful names given to architectural 
elements, that can be used to comprehend its domain concepts; (4) the incorporation 
of an evaluation method that makes architectural evaluation a more systematic and 
controlled activity than in other reverse engineering approaches – e.g. [13, 16, 20]. 

However, we identify some limitations of the approach, such as the impact of the 
selected use case scenarios, minimum support, confidence and antecedents chosen for 
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the mining process in the quality of the recovered architecture. These limitations are 
minimized by the heuristics and guidelines proposed in ArchMine. These guidelines 
and heuristics may be iteratively refined as the approach is applied in new case stud-
ies, although the current ones proved to provide good results. As future work, it is 
important to evaluate the divergences in the recovered architectures by varying these 
values in the recovery process.  

Our final goal is to generate a reference architecture for the domain. We are cur-
rently working in the detection of variability among the recovered architectures, 
which requires recovering the architectures of at least three systems in the same do-
main. This approach will be useful for organizations that develop similar applications 
and intend to migrate to domain engineering or product line approaches. 
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Abstract. To support software architecture evaluation practices, several efforts 
have been made to provide a basis for comparing and assessing evaluation 
methods, document various best practices, and report the factors that may 
influence industrial practices. However, there has been no study to explore the 
experiences and perceptions of architects for determining the factors that 
influence architecture evaluation practices in a wide range of organizations. 
Hence, there is little empirically founded knowledge available on the factors 
that influence the industrial practices of software architecture evaluation. The 
goal of this paper is to report the results of an empirical study aimed at gaining 
an understanding of different factors involved in evaluating architectures in 
industry. The results of this study shed light on the factors that influence 
architecture evaluation practices based on the experiences and perception of 
architects who regularly evaluate architectures of various sizes of applications. 
It also discusses some of the strategies that practitioners apply to deal with the 
influence of the identified factors. 

1   Introduction 

Recently, it has been recognized that quality attributes (such as maintainability, 
usability, and performance) of large software systems are largely constrained by the 
systems’ software architectures [1-3]. Since architecture plays a significant role in 
achieving system wide quality attributes, it is very important to evaluate a system’s 
architecture with regard to desired quality requirements as early as possible. The 
principle objective of evaluating architecture is to assess the potential of a proposed 
architecture to deliver a system capable of fulfilling required quality requirements and 
to identify any potential risks.  Architectures are assessed either informally as an 
inherent part of the design process or formally as a requirement of organizational 
software development processes. Formal evaluation requires appropriate methods and 
processes to be used in order to perform architectural evaluation as objectively as 
possible. Architecture evaluation has its origin in design reviews. The major 
difference between design reviews and architecture evaluation is the level of 
abstraction and the criteria used; software architecture of a system is evaluated against 
business goals [1, 4].  



 Factors Influencing Industrial Practices of Software Architecture Evaluation 91 

There are two broad categories of approaches to evaluating software architecture: 
qualitative analysis and quantitative measures [5]. The former category includes 
techniques like scenarios, questionnaires, and checklists. The latter category consists 
of metrics and simulation. The software architecture community has proposed several 
evaluation methods such as Scenario-based Architecture Analysis Method (SAAM) 
[6], Architecture Tradeoff Analysis Method (ATAM) [7], and Architecture-Level 
Modifiability Analysis (ALMA) [8]. These are scenario-based methods, a category of 
evaluation methods considered quite mature [9, 10].  

Several studies have also critically analysed these methods and proposed several 
feature-based criteria to compare and assess these methods [10, 11]. An international 
working group on Software Architecture Review and Assessment (SARA) has 
produced a report summarizing architecture evaluation best practices [12]. Others 
have also made efforts to report architecture evaluation best practices in [5, 13].  

Since there can be several technical and non-technical factors that may influence 
the use of a particular practice in a certain context, there have also been attempts to 
identify and understand the factors that may influence software architecture 
evaluation practices in the real world [4, 13]. Though these factors have been 
identified by senior researchers and practitioners based on their extensive experiences 
and knowledge of evaluating software architectures for many large scale systems, 
there has not been an attempt to provide empirical evidence for these factors. Rather, 
they have been reported based on anecdotal evidence from mainly the 
telecommunication and defence domains.  

Hence, there is a vital need to explore the experiences and perceptions of architects 
with diverse industrial backgrounds to determine the factors that influence 
architecture evaluation practices of a wide range of organizations. Such an effort can 
not only provide empirically supported knowledge about the factors that influence 
architecture evaluation practices in industry, but can also help reveal the similarities 
and differences between the factors previously identified by senior researchers and 
practitioners (as mentioned above) and found by this study. 

The goal of this paper is to report the results of such an empirical study aimed at 
identifying different factors that may influence software architecture evaluation 
practices in industry. The results of this research shed light on architecture evaluation 
practices based on the experiences and perception of architects who regularly evaluate 
software architectures of various sizes of applications.  

As such, the objectives of this study were: 

• To determine the factors that influence industrial software architecture evaluation 
practices and to reveal any similarities and differences between the factors 
identified in this study and those reported by researchers and practitioners with 
extensive experience of software architecture evaluation (e.g., [4, 13]). 

• To gain an understanding of the challenges posed by the identified factors to 
architects in evaluating software architectures of varying sizes of systems in both 
small and large organizations.  

• To identify and discuss different approaches to dealing with these challenges used 
by practitioners and /or reported in literature.   

The paper makes following contributions to the software architecture evaluation 
research and practice:  
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• It presents the design and results of an empirical study on software architecture 
evaluation practices in varying sizes of organizations.   

• It provides information about how practitioners think about different aspects of 
software architecture evaluation and what challenges they face while evaluating 
software architectures.  

• It provides an empirical validation of previously identified factors influencing 
architecture evaluation practices as well as identifying additional factors such as 
system integration, vendor involvement, training and governance frameworks.  

• It clusters the identified factors into five categories so managers and evaluators 
can study and comprehend the influence of one category’s factors together rather 
than considering each factor individually.  

• It discusses some of the approaches, described by the participants or recommended 
in the literature, for dealing with the challenges in software architecture evaluation 
caused by the identified factors.  

This paper is organized as follows. Section 2 provides the details of the 
methodology used for this research. Section 3 presents and discuses the results of data 
analysis. Conclusions and future work finish the paper in section 4. 

2   Research Methodology 

This section describes the methodology and data analysis approach and procedures 
used for the reported research.  

2.1   Focus Group 

Our approach to collecting data was a focus group, which is considered a proven and 
tested technique to obtain the perception of a group of selected people on a defined 
area of interest. Focus group studies are carefully planned and structured discussions 
involving 3 to 12 participants. Focus group discussion is largely free-flowing, but 
discretely guided by an experienced moderator, who is responsible for keeping the 
group discussion focused on relevant topics and make sure that everyone has an 
opportunity to participate. Focus group discussion enables a researcher to explore the 
way people feel and think about the issues to be studied. 

The participants of a focus group study are usually selected based on some pre-
defined criteria, which ensures that the participants have certain individual 
characteristics and professional background as related to the discussion topic. The 
group discussion allows the participants to build on the responses and ideas of the 
others, which increases the richness of the information gained. Focus group sessions 
produce mainly qualitative information about the objects of study.  

Compared to other qualitative research methods (e.g., interviews), focus group 
research can generate candid and insightful information inexpensively and faster. 
However, focus group research also has several weaknesses such as subjective self-
reported data based on personal opinion and interpretation of a particular 
event/situation, biased moderation, and small sample size, which makes generalizing 
the results difficult [14, 15]. In the following sections, we describe the objectives, 
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logistics, and data analysis process of this study according to the five steps involved 
in the focus group research method.  

2.2   Define the Problem 

This step is aimed at defining the research problem that needs to be studied by using 
the focus group research. The focus group research method is usually suitable for 
gathering initial information about some ideas rather than testing a hypothesis or 
making a final decision. This study started with the identification of the research goal, 
which was to gain an understanding of the challenges of evaluating software 
architecture and obtain insights into the factors that influence architecture evaluation 
practices. Furthermore, we also wanted to know how practitioners deal with the 
challenges caused by those factors. 

2.3   Plan Focus Group 

Planning includes setting criteria for selecting participants, deciding the session length 
(i.e., usually 2 to 3 hours) and preparing documents to provide the participants with 
the study background, objectives, and protocols. The objective of our study was to 
gain an understanding of the formal and informal approaches used to evaluate 
software architectures by practitioners. We were particularly interested in knowing 
the factors that influence the organisational practices of architecture evaluation.  

2.4   Select Participants 

This step is aimed at selecting participants according to the criteria devised during the 
planning stage. In order to gain insights into the dimensions of industrial practices in 
software architecture evaluation, it was vital to invite participants with a certain level 
of experience in software architecture design and evaluation. It was also deemed 
necessary to invite participants from various sizes of organisations within a broad 
range of industries. Hence, the selection process of selecting participants for our focus 
group was governed by the following criteria: 

• At least 5 years of experience of architecture design and evaluation in 
different industrial domains such as finance, medicine, education and retail. 

• Availability and willingness to commit needed time and effort. 
• Knowledge and expertise of the issues of architecture evaluation; and 
• Willingness to share their experiences and candid opinion of different 

dimensions of software architecture evaluation in their organisations.  

It was also ensured that the participants were invited from in-house software 
development companies, software vendors, and consultancies. According to the 
selection criteria, our study needed responses concerning a very specific set of 
practitioners, basically software architects with several years of experience. Such 
practitioners usually have time constraints and are not likely to respond to invitations 
from unfamiliar sources. That was why a random sampling was not viable. 

Consequently, it was decided to use a non-probabilistic sampling technique, called 
availability sampling. Availability sampling operates by seeking responses from those 
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people who meet the inclusion criteria, if defined, and are available and willing to 
participate in the research. The major drawback of non-probabilistic sampling is that 
the results cannot be considered statistically generalizable to the target population 
[16]. However, given the abovementioned constraints, it is believed that the sampling 
technique was reasonable. We used two means of contacting potential respondents: 
personalised contact and professional referrals. We sent invitation emails to a selected 
pool of software architects drawn from two sources: practitioners’ profile database 
provided our research group’s industry liaison personnel and industry contacts of the 
involved researchers.  

2.5   Conducting the Focus Group Session 

A focus group session should be conducted by carefully managing time and ensuring 
all the participants get equal opportunity to share their opinion on the topics of 
interest. During the session, moderator can apply various techniques describes in  [17] 
to steer the discussion process. Session discussion can be recorded by a scribe and/or 
using audio and/or video instruments.   

We held two focus group sessions, each of them lasting approximately two hours. 
Each session started with a brief introduction of the participants and researchers. The 
introduction included the name of the attendees, their organizations, current position, 
professional background and experience and application domain and the type of 
industry. The sessions were audio recorded with participants’ consent. One of the 
researchers also acted as a scribe and took extensive notes.   

2.6   Data Analysis  

The data analysis step involves transcribing the recorded discussion using appropriate 
coding schemes. The transcribed data can be analysed using one or more of the 
qualitative data analysis techniques reported in [15] . The focus group sessions of this 
study resulted in approximately four hours of audio recording and extensive notes. 
This data needed to be transcribed and analysed. The audio recording of both sessions 
were transcribed by one of the researchers. However, in order to verify that there was 
no bias introduced during transcription, we performed an inter-rater reliability test by 
involving an independent person in the transcription process. The transcription of the 
primary researcher was time stamped and compared with the transcription of an 
independent researcher. The independent researcher (not any of the authors of this 
report) randomly listened to several transcribed parts of the focus group discussions. 
Both transcriptions were compared and no big differences were found. We did not 
perform a Kappa analysis for reliability of the transcribed content as there was no 
major disagreement between the transcriptions of two independent researchers. After 
this stage, content analysis and frequency analysis were used to examine the data 

Analysis of the transcribed data followed the iterative content analysis technique to 
prepare qualitative data for qualitative or quantitative analysis. Content analysis 
applies certain procedures to make valid inferences from text-based qualitative data. 
Krippendorf [18] defines the content analysis techniques as follows: “content analysis 
is a research technique for making replicative and valid inferences from data to their 
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context”. A content analysis strategy is extensively used in focus group and interview-
based empirical studies in software engineering (e.g. [19, 20]. 

During content analysis, the transcribed data was coded using Strauss and Corbin’s 
[21] open coding method. Using the open coding technique, data are broken into 
discrete parts, and closely examined and compared for similarities and differences. 
Events, happenings, actions and interactions that are found to be conceptually similar 
in nature or related in meaning were grouped under more abstract categories. We 
analysed transcripts and identified the major emergent themes following the above 
procedure. For each participant’s transcript we repeated the above procedure and 
identified the emerging themes. The coding process was independently carried out by 
two researchers for reliability purposes.  

Self-reported qualitative data can be transformed by coding into qualitative data 
[15]. However, this transformation does not eliminate the subjectivity aspect of the 
data. The frequency analysis performed on the transformed data can help identify the 
relative importance of each factor’s influence on organisational practice in software 
architecture evaluation. The presentation of data along with their frequencies is 
considered an effective mechanism for comparing and contrasting within, or across 
groups of variables. For frequency analysis, we counted the occurrences of each 
theme and placed each theme along with its respective frequency of occurrence under 
one of the higher level categories of factors influencing architecture evaluation 
practices. These higher level categories were organizational, technical, managerial, 
business, and socio-political.   

3   Results and Discussion 

In this section, we present the results of the data analysis and discussion on their 
implications for software architecture researchers and practitioners.  

3.1   Demographics 

Table 1 shows the profile of the participants of the focus group session. The 
participants were invited based on the participant selection criteria developed during 
the planning stage. All of the participants had several years of experience in software 
development and software architecture design and evaluation. The mean number of 
years of experience of software development possessed by each participant was 16.8 
years, the minimum 9, the maximum 34, and the mode was 16 years. The mean 
number of years of experience of designing and evaluating software architectures was 
8 years, the minimum 5, the maximum 15, and the mode was 7 years.  

The participants’ companies were of varying sizes in terms of number of employees 
(ranging from 50 to 6000 employees) and some of the companies were large 
multinationals (number of employees mentioned are for Australian operations only). 
The participants had backgrounds in different business domains (e.g., telecomms, 
finance, health, education) and had designed and/or evaluated software architectures for 
systems from multiple application domains. While the majority of the participants came 
from in-house software development units, there was representation from product 
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Table 1. Demographic information about the participants 

ID Experience 
in SD 

Experience 
in SA 

Company 
Size Domain Type of company 

1 10 21 100 Telecom Vendor 

2 5 10 100 
Business 
Intelligence Vendor 

3 7 12 50 Defence Consultant 

4 6 12 2000 Retail 
In-house 
development 

5 12 16 600 Finance Consultant 

6 6 16 2000 Govt 
In-house 
development 

7 7 20 6000 Finance 
In-house 
development 

8 
8 
 

34 2500 Finance 
In-house 
development 

9 
 

5 9 800 Health 
In-house 
development 

10 15 18 1000 Telecom 
In-house 
development 

vendors and consultants. Moreover, the participants from in-house software 
development houses had extensive experiences of working and dealing with external 
consultants and vendors’ representatives for software architecture evaluation.  

The demographic information about the participants of our study gives us 
confidence that we have gathered data from practitioners who are experienced in 
software architecture design and evaluation. Many of them came from companies, 
which have processes and procedures in place for evaluating software architectures 
and had established architecture review boards in their organisation. Hence, despite 
not being able to apply systematic random sampling because of the abovementioned 
reasons, the results are representative of architects with similar characteristics. 

3.2   Factors Influencing Software Architecture Evaluation Practices 

The data analysis found 254 unique themes from the transcription of the focus group 
sessions. The mean number of themes identified by the participants was 42, the 
minimum number 18, the maximum number 70, and the mode was 47.  

3.2.1   Organizational Factors  
These factors can have organization wide influence on architecture evaluation 
practices. They include engagement models, funding models, governance 
frameworks, support structures, training, and formats and forms for documenting 
software architecture design decisions. 

Engagement model – There were 39 themes related to this factor. Participants in the 
study considered that having a structured model of engagement for evaluating 
 



 Factors Influencing Industrial Practices of Software Architecture Evaluation 97 

software architecture is vital. Participants described that an engagement model has 
significant influence on the dynamics of architecture evaluation process. They 
mentioned several issues caused by not having a well-defined engagement model; for 
example, project team evaluating architecture itself, resistance to engage people 
external to the project, evaluating architecture on an ad hoc basis to check the health 
of a system rather than evaluation tightly embedded in a project’s development plan. 

Table 2. Organisational factors that influence architecture evaluation practices 

Factors Brief definition F 
Engagement model How does an engagement model affect 

architecture evaluation in an organisation? 
What are the different models being used?  

39 

Governance 
framework 

Is there a governance framework to comply 
with during architecture evaluation? 

32 

Support structure Having organisational structure and support 
system for rigorous architectural practices? 

21 

Design decision 
documentation 

Documenting design decision/rationale to 
support communication and understanding.  

19 

Funding model How is architecture evaluation funded? Is it 
Project-based, centralised, or hybrid? 

17 

Training  What kind of training is available? How the 
evaluation is used for staff training? 

13 

Several participants reported that their organisations had an Architecture Review 
Boards (ARB) based engagement model designed for using evaluators external to the 
project under evaluation. As noted by one of the participant: “We have a fairly 
structured engagement model, which is designed to help business units to achieve 
their goals. Since the architecture team are fully engaged, businesses do not consider 
them outsiders.  Because of having a structured engagement model, the old style of 
saying ‘give me the documentation and I will tell you what is wrong’ has disappeared 
as a work practice. Our CIO sits on the management committees of various business 
units and it forces the architecture team to align architectural decisions with the 
CIO’s insights into the needs of different business units.” 

Many large organisations have emphasised the need of having an architecture 
review board, which can be responsible for several aspects of getting architectures 
evaluated throughout an organisation [13]. Moreover, to assure impartiality, 
evaluators should be independent of the project being evaluated [22]. Participants also 
described various ways of engaging external evaluators such as having a pool of 
evaluators, architectural experts from sister or parent companies, or consultants. 

Governance Framework – The study data suggested that an organisation needs to 
have a governance framework to comply with during architecture design and 
evaluation activities. Participants mentioned that without having a governance 
framework, various organisational units may be developing and applying different 
policies, procedures, templates and methods to support architecture evaluation. 
Participants were of the opinion that having a governance model helps achieve 
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organisation wide consistent practices. One participant noted: “It is vital to have a 
governance framework for architecture evaluation and this framework needs to have 
the backing of all the key players in an organisation. Since a large organisation may 
have different operations, cultures, and procedures in different business units, a 
governance framework can provide consistency for architectural practices.”   

Support structure – Table 2 shows that there were 21 themes that mentioned the 
need for a suitable support structure. Participants suggested that non-existence of a 
suitable support structure is one of the reasons why architectural decisions may not 
comply with organisational standards or may be incommunicable to a wide range of 
stakeholders. Several participants thought that there should be a suitable 
organizational mechanism for bridging the gap between enterprise architecture and 
development teams to facilitate architecture evaluation and realization activities in 
accordance with the requirements of quality attributes and architectural decisions. The 
data also suggested the architecture group should have representation in the higher 
management to raise the visibility of critical architectural decisions.  

Design decision documentation – Problems caused by insufficient documentation of 
design decisions and contextual information have been widely reported by 
architecture researchers and practitioners [23, 24]. There were 19 themes related to 
design decision documentation. Several participants emphasised the need for 
documenting design decisions along with rationale and justification. All the 
participants reported that architecture decisions are documented in their respective 
organisations. However, they found it quite challenging to understand the different 
format and forms of documenting architecture decisions as sometimes they find just a 
few PowerPoint slides; other times, there can be huge documentation describing 
architectural decisions and rationale. Participants thought that organisations should 
have standard procedures and templates for documenting and communicating 
architecture decisions and rationales to interested stakeholders. As in [23, 25], 
participants reported that the use of templates brings consistency in capturing the 
necessary information about a decision. 

Funding model – There were 17 themes in the data mentioning the effects of a 
funding model on architecture evaluation practices. Participants described that cost 
related issues usually discouraged managers from carrying out rigorous evaluations of 
their systems’ architectures. Many of the participants mentioned that if there are 
additional funds available to a project for architecture evaluation, it is likely that 
project managers will attempt to utilize those funds, otherwise they may not want to 
release resources from the project budgets for evaluating architectures. As noted by 
several of the participants: “One way of encouraging a project manager to get their 
architecture evaluated regularly is to apply the 50-50 rule: 50% of the cost born by 
the project and 50% of the cost picked up by the  organisation. If a portion of the cost 
comes from the ARB, it provides a justification for them to get their members 
embedded into the projects, which can improve the chances of compliance with the 
architectural policies and procedures. That is why in our organisation, 50% of the 
fund required for architecture evaluation comes from outside of the project's budget, 
which provides us an opportunity to work with a project team for ensuring that 
architecture design and process are governed by organisational policies.” 
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Training – There were 13 themes related to this factor. Participants reported that 
getting suitably trained staff is a challenge, which has considerable effects on the 
architecture evaluation process. Many participants suggested that evaluations be used 
as training mechanism to help staff gain skills in architecture evaluation. It was 
reported that in large organisations, where multiple teams work on a system, 
architecture is used for assigning work and project coordination. This use of 
architecture helps different teams to understand the contribution that each makes to 
the realization of architecture design and help them to understand ways of improving 
reusability at the architecture level. On the role of architecture evaluation in staff 
training, one participant noted: “There are several issues related to keeping technical 
knowledge updated. At times, people engaged in architecture evaluation may not have 
enough training and skills in the tools and techniques used. Enterprise architects may 
also loose touch with reality, what developers are doing, what system architects are 
doing, what people in support are doing? They may make decisions without carefully 
thinking about the wider ramifications of those decisions. A suitable training program 
can help gain the required skills and visibility in the work of others.”  

3.2.2   Technical Factors 
These factors are related to the technological aspects of architecture evaluation. They 
include quality attributes being evaluated, challenges caused by integration issues, 
techniques and tools for representing and visualizing architectures, types of evaluation 
required, and methods and guidelines used. 

Quality attributes: The data from this study carried 37 themes, which mentioned the 
affect of the quality attributes being evaluated on the selection of a certain technique. 
Researchers have reported that different types of quality attributes (such as 
performance, maintainability, and security) need to be evaluated by using different 
approaches [10, 26]. Participants were also of the opinion that having a good 
understanding of the types and levels of required quality attributes is a vital factor as 
the types of attributes to be evaluated usually have significant influence on the choice 
of methods and practices. As mentioned by several of the participants: “The challenge 
is to clearly understand the quality requirements for evaluating architecture. Many 
stakeholders do not have a good understanding of what level of performance, security 
or usability is required to support their business processes. For example, some 
businesses may be able to live with cold standby for availability, while others may 
require site level failover. Moreover, a reference architecture may also need to be 
evaluated for extensibility and flexibility. Performance is the biggest area and it is 
very difficult to test performance in a simulated environment because it is different to 
the real environment where there would be so many factors to affect a system.” 

Integration issues – Table 3 shows that 35 themes identified in the data were related 
to evaluation issues specific to integration projects. Participants mentioned that more 
than 80% of the projects evaluated by them had some types of integration aspects 
involved; either integrating existing systems or building new systems by integrating 
COTS components. Participants mentioned that evaluating for integration influences 
evaluation practices as integration projects involve several unique challenges such as 
lack of knowledge about suitable evaluation methods and techniques, insufficient 
architectural information, vendors’ dubious claims, and no significant input from 
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Table 3. Technical factors that influence architecture evaluation practices 

Factors Main themes F 
Quality attributes 
being evaluated 

How to decide about a suitable evaluation 
strategy for certain quality attributes?  

37 

Integration issues How can the architectures of 
systems/components effectively and 
efficiently be evaluated for integration?  

35 

Representing and 
visualizing 
Architectures 

How can architecture be represented or 
visualised to support architecture 
evaluation? Which description language? 

32 

Types of evaluation What type of evaluation is usually carried 
out? e.g., Ad-hoc, formal, prototyping etc.  

25 

Methods and  
guidelines 

Does an organisation have 
developed/adopted methods and/or 
guidelines for evaluating architectures? 

17 

technical people in major purchasing decisions. One participant summarised the 
issues in these words. “The biggest problem is that people purchases large 
components without thinking about the integration issues and when it comes to 
quality requirements like performance, availability, and exception handling, 
acquisition decision makers are usually not aware of these issues. We have seen 
business people coming without having an integrated infrastructure layer and asking 
for a portal of integrated information with strict performance, security, and usability 
requirements. Evaluation for integration poses extra challenges because architectural 
information about the systems to be integrated is usually insufficient.” 

Documenting and visualizing architectures – Software architecture documentation 
is one of the key inputs to architecture evaluation [1]. The data from this study 
included 32 themes related to documenting and visualizing architectures. Participants 
believed that the use of an appropriate notation and abstraction level is important for 
communicating an architecture. They also emphasised the role of views or any other 
pictorial representation for visual communication of architectural information. 
However, participants also mentioned that commonly used notations and tools suffer 
from several deficiencies. Many mentioned they have proprietary notations and tools 
to document and visualise architectures. One of the participants described the 
problems in these words. “Describing architectures is a big challenge. We use UML 
for this purpose but UML tools have very poor integration with documentation 
packages like MS Word. Hence, we always face a huge problem. There is a real need 
for tools that enable architects to design an architecture and then put the design into 
a format that is comprehensible to business people. Lack of integration requires a lot 
of duplication. For example, drawing diagrams in UML based case tools and 
cutting/pasting into MS Word for presenting to business clients. Hence, there is a 
need for an integrated environment that incorporates modelling, text composition, 
and knowledge management features for supporting architectural practices.” 

Types of evaluation – There were 25 themes that suggest architecture evaluation 
practices can be planned or ad hoc; qualitative or quantitative; prototyping or 
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theoretical using mathematical models. Participants also suggested that the approach 
to evaluation also depends on the evaluation goals. One of the participants talked 
about evaluation approaches in these words: “There can be different types and forms 
of architecture evaluation. For example, we do two evaluations: architecture 
evaluation and IT peers review. The first concentrates on the compliance side of 
architectural decisions. The second is more a financial review to find out the cost 
effectiveness of the proposed architectural solution. Architecture evaluation also 
depends on the types of quality attributes considered. It may be qualitative based on 
evaluators’ experiences or quantitative using various models and prototypes. Rigor of 
evaluation also varies depending upon the cost of a project.” 

The experiences of the participants of this study corroborate the literature that 
suggests several kinds of evaluation, including questioning, measurement, scenario-
based and prototyping [5]. Each kind of evaluation may need different types of 
methods, techniques, and tools and hence influence the evaluation practice. 

Methods and guidelines – The data in this study included 17 themes related to the 
importance of having organisational wide standardized methods and guidelines for 
architecture evaluation and their influence on evaluation practices. Participants 
mentioned the benefits and drawbacks of standardizing methods and guidelines across 
an organisation. Participants also discussed the ways their organizational methods and 
guidelines have evolved and the influence of those methods and guidelines on their 
evaluation practices. As noted by one participant: “It is a challenging task to 
standardized methods and guidelines as a lot depends upon what someone is trying to 
do. That is why it is vital to have fluid processes but strict guidelines. There is 
definitely a need for standardizing in terms of publication of standards and 
methodologies being used. In the first instance, methods and processes can be derived 
from the experiences that usually exist in a large organization. External sources (such 
as TOGAF, IEEE 1471) can also be used to create templates and guidelines.” 

Participants’ emphasis on having standardized, albeit fluid, methods and guidelines 
for architecture evaluation is in line with contemporary architecture evaluation 
research, which is increasingly emphasizing the importance of having a defined 
process for evaluating architectures using suitable methods and guidelines [10, 11]. A 
method provides and organizes a set of techniques, guidelines, and rules that describe 
how to conduct the architecture evaluation. The guidelines state by whom, in what 
order, and in what way the techniques are used to accomplish the method’s goals.  

 

Table 4. Socio-political factors that influence architecture evaluation practices 
 

Factors Main themes F 
Soft skills What kinds of soft skills required for making 

architecture evaluation valuable to all the 
involved stakeholders? 

15 

Organisational 
politics 

What are organisational politics to have 
influence on architecture evaluation 

13 

Vendor involvement Vendors’ influence. Use of evaluation to 
thwart the purchase of unsuitable 
software/middleware.   

8 
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3.2.3   Socio-Political Factors 
These are related to the socio-political dimensions in an organisation such as soft 
skills, organisational politics, and vendor involvement to deal with socio-
psychological aspects of architecture evaluation.  

Soft skills – The data in this study suggests that architecture evaluation needs several 
kinds of soft skills including communication, leadership, team work, negotiation, and 
persuasion. There were 15 themes related to the influence of soft skills of the involved 
parties on architecture evaluation practices and outcomes in an organisation. 
Participants mentioned that architecture evaluation can be very socio-emotional 
exercise, which may be more influenced by the soft skills of the involved people than 
their technical understanding of architectural concepts and skills. Participants’ 
experiences are similar to the ones reported in the literature [4, 13] about the 
importance of soft skills in software architecture evaluation.  

Organisational politics – Participants mentioned 13 themes related to the influence 
of organizational politics on architecture evaluation practices. 

Vendor involvement – There were 8 themes in the data related to the influence of 
vendor involvement in designing and evaluating software architectures. Many of the 
participants said vendors can oversell a particular technology, which may not be 
suitable to organisational needs. They mentioned that evaluation of software 
architectures based on such technologies may be influenced by vendor involvement. 
Since vendors get themselves involved in organisational processes through higher 
management, they also attempt to influence the choice of evaluation techniques and 
tools, which can produce favourable results for their technologies.  

3.2.4   Managerial Factors 
These influence managers’ decisions about different aspects of software architecture 
evaluation practices. 

Management support and commitment – Table 4 shows that there were 17 themes 
in the data related to the management support and commitment to software 
architecture evaluation practices in an organisation. Participants reported several 
experiences of not being able to successfully institutionalizing planned software 
architecture evaluation because of insufficient management support and commitment. 
Many of them thought that managerial support and commitment have significant 
influence on whether architecture evaluation is ad hoc or tightly integrated in the 
development process. Participants also described a cases in which the positive results 
from ad hoc evaluation convinced management to support evaluation on regular basis. 
As one of the participants noted: “Our first evaluation was initiated by our CIO, who 
in a project's monthly review meeting advised that the architecture be evaluated by 
someone external to the project to see whether or not project could be put on the 
track. Hence, the influence came from the top and it put pressure on everyone 
involved that it needed to be done properly. Once that evaluation proved to be a 
success, it has become a norm in the organization to have an architecture evaluated 
before committing significant resources.”  
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Table 5. Managerial factors that influence architecture evaluation practices 
 

Factors Main themes F 
Management support 
and commitment 

How much managerial support is provided 
for architecture evaluation? Does 
management appreciate the practice? 

17 

Objectives of 
evaluating 
architectures 

What are the main objectives of evaluating 
architecture? Do stakeholders have the 
same understanding of the objectives? 

17 

Stakeholder-centric 
issues 

How are stakeholders selected? How to 
get them fully involved?  

11 

Objectives of evaluating architectures – The data contains 17 themes related to the 
influence of an evaluation’s objective on various practices. Participants were of the 
opinion that clarifying the objectives of evaluation is vital for selecting suitable 
techniques and tools. Some participants mentioned the challenges involved in 
evaluating from a quality attribute perspective when an organization’s staff are trained 
and used to evaluate architecture only from a functional point of view. Previously, it 
has been reported that an evaluation’s objective usually has a large influence on the 
method and techniques used [9, 10]. An architecture can be analysed for several 
objectives such as risk assessment, maintenance cost prediction, architecture 
comparison, and trade-off analysis. Several specialized methods have been proposed 
to evaluate architecture for different objectives such as ATAM for trade-off analysis 
[1], PASA for performance analysis [27], and ALMA for assessing maintenance cost 
[28]. Each of these applies different techniques for similar tasks; for example 
generating scenarios, ATAM gathers scenarios from stakeholders, PASA distils them 
from use cases, and ALMA gets them from architects and designers [29].  

Stakeholder-centric issues – Table 4 shows that there were 11 themes related to 
stakeholder issues and their potential effects on architecture evaluation and outcomes. 
Participants mentioned that one of the main challenges of architecture evaluation is to 
identify, select, and involve suitable stakeholders. The decision made on different 
aspects of stakeholders involvement can have a significant effect on evaluation 
output. They emphasised the need for having effective strategies for getting 
stakeholder involvement in the process and subsequent approval of architecture 
design. As mentioned by a participant: “I am convinced that the skill of getting 
stakeholder engagement is more important than anything else. It is hard to identify 
suitable stakeholders. There are common examples when project managers do not 
have any idea about the prospective stakeholders and how to get them involved.”   

Software architecture researchers have also identified the influencing role that 
involvement of suitable stakeholders can have on architecture evaluation. Clements et 
al. [1] describe the active participation of stakeholders in the architecture evaluation 
process as absolutely essential for a high-quality evaluation. Parnas [30] regards the 
presence of wrong people in the design review sessions as the one of the major 
problems with the conventional design review approaches.  
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3.2.5   Business factors 
These are aspects of architecture evaluation process that affect or are affected by 
external or internal business consideration.  

Business needs and industry standards – Many of the participants mentioned that 
business needs and industry standards greatly influence architecture evaluation 
practices in their organisation. There were 25 themes related to the influence of 
business needs and industry standards on architecture evaluation practices.  
 

Table 6. Business factors that influence architecture evaluation practices 
 

Factors Main themes F 
Business needs and 
Industry standards 

How do business needs and industrial 
standards and competition influence 
architecture evaluation practices 

25 

Requirements of 
business case 

What is required of the evaluation to 
perform a business case analysis?  

8 

Requirements of business case – It was also gathered from some participants’ 
discussions that the output of software architecture evaluation is used for supporting a 
business case for or against a particular technology. Participants reported that if the 
output is required for business case, the requirements of the business case greatly 
influences an architecture evaluation exercise. However, there were only 8 themes 
related to this factor in the data.   

4   Conclusion and Future Work 

Recently, software architecture evaluation has emerged as an important area of 
research and practice. Researchers and practitioners have been active in developing 
methods, techniques, and tools to support architecture evaluation. Many studies have 
reported technical and non-technical factors that may influence organisational 
practices in this area. However, there remains a need for systematically accumulating 
and widely disseminating evidence about the factors that may influence the selection 
and use of different methods, techniques, and tools for architecture evaluation.  

The overall goal of our research is to develop and empirically assess a taxonomic 
framework for studying and understanding factors that can influence architecture 
evaluation practices and identifying the various strategies to deal with the impact of 
those factors. To achieve that objective, this study was designed and executed with 
the aim of exploring practitioners’ experiences and perceptions to understand the 
challenges of evaluating architectures. Furthermore, it was also intended to find out 
the strategies practitioners apply to deal with the challenges caused by the influence 
of those factors. 

This research has gathered empirical evidence to advance the knowledge about the 
factors that influence industrial practices for evaluating software architectures. The 
findings also provide empirical evidence to confirm several factors considered 
influential in architecture evaluation by many researchers based on their experiences 
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and anecdotal evidence (such as reported in [4, 12, 13]). Moreover, it has also 
reported new factors (such as funding models, governance frameworks, vendor 
involvement, integration issues, business needs, industry standards, and requirements 
of a business case), which are perceived to have significant influence on architecture 
evaluation practices by the participants of this study. The findings of this study have 
revealed that there are many similarities between the experiences and perceptions of 
experienced researchers and practitioners from mainly two domains (i.e., 
telecommunication and defence) and architects from a wide variety of domains (such 
as education, manufacturing, finance, health). Additionally, it has also identified 
many more factors than previously reported. One possible explanation may be the 
diversity of domains from where the participants originate and variation in sizes of the 
systems with which they have been working.  

The research results provide information that can be useful for practitioners’ 
understanding of several factors that can influence architecture evaluation practices. 
Practitioners can take into account each factor and its potential effect, and suitable 
approaches while considering the introduction of architecture evaluation in their 
organizations. To deal with the challenges caused by the identified factors, practitioners 
can make use of not only the approaches reported by the participants of this study, but 
can also benefit from adapting/tailoring methods, techniques, and tools developed by 
research community to support planned and disciplined architecture evaluation. 
Practitioners can derive architecture evaluation practices from the experiences of 
researchers and practitioners reported in [4, 12, 13] based on evaluating architectures of 
hundreds of systems.  

The research results presented here can be used by researchers in several ways. For 
example, the results provide a framework for further research on the influence of 
various factors on developing and implementing architecture evaluation approaches, 
techniques, and tools in an organization. For factors found as important (based on 
high frequency) to architecture evaluation, studies should be conducted to ascertain 
aspects of causality, in particular, what independent variables impact aspects of the 
factors and should be considered while planning architecture evaluation. Moreover, 
studies should also be conducted to determine if significant peculiarities exist for 
architecture evaluation practices because of cultural differences caused by 
geographical location of staff within one company or among different companies. It is 
also hoped that the results of this study will stimulate researchers to discover the 
underlying model that leads to and/or influences the understanding and use of 
different architecture evaluation practices based on the factors within one category or 
interaction among factors of different categories.   

We are further analysing the data for identifying the similarities and differences 
among the factors reported by participants based on the size and business domain of 
their organizations. We hope this work will help us to propose a taxonomy of the 
factors influencing software architecture evaluation practices in various sizes of 
organisations in different business domains. A framework for taxonomic analysis of 
architecture evaluation factors is expected to enable practitioners and researchers to 
gain an understanding of the architecture evaluation challenges caused by each of the 
identified factors and suitable approaches to dealing with the challenges. 
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Abstract. Modern society relies heavily on complex software systems for
everyday activities. Dependability of these systems thus has become a critical
feature that determines which products are going to be successfully and widely
adopted. In this paper, we present an approach to modeling reliability of
software systems at the architectural level. Dynamic Bayesian Networks are
used to build a stochastic reliability model that relies on standard models of
software architecture, and does not require implementation-level artifacts.
Reliability values obtained via this approach can aid the architect in evaluating
design alternatives. The approach is evaluated using sensitivity and uncertainty
analysis.

Keywords: Reliability, Software Architecture, Dynamic Bayesian Networks.

1   Introduction

Software systems are now an inseparable part of our life. From online banking, to
power grids, and nuclear power plants, software controls various aspects of people's
daily lives. It is inevitable that dependability of these software systems (Reliability,
Safety, Security, Availability, and Performance) has become as critical as the
functionality they provide. Ensuring the dependability of the system after the bulk of
implementation is complete as an afterthought (e.g., via analysis done during testing,
deployment, and maintenance) is no longer an acceptable or cost-effective approach to
quality assurance. Dependability must be “built into” the software systems, and doing
so requires models to represent and further analyze dependability throughout the
software development life cycle (SDLC). Early dependability analysis is particularly
challenging, because the exact context in which the system will be used may be
unknown. Moreover, the operational profile of the system, in the early stages of the
development process may not be known apriori. Our research focuses on modeling and
analyzing dependability of software systems during the software architecture phase. 
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The architecture and design phases are in many ways the most critical stages of the
development process. Software architectures provide high-level abstractions for
representing the structure, behavior, and key properties of complex software systems.
Important design decisions –from specific interactions among components and
connectors in the system, to policies for exception and error handling, to anticipating
extensions to the system in the future– are made at the architecture phase. Changes to
these decisions and adopting alternative approaches late in the development process
can cost millions of dollars. While existing architecture modeling approaches offer
sophisticated qualitative analyses of the architecture, quantitative models sill lag
behind. Quantitative models are essential in comparing and contrasting design choices
and identifying cost-effective approaches to defect mitigation. In this paper, we present
our approach to predicting reliability of systems based on their software architecture. 

Software reliability is the probability that the system will perform its intended
functionality under specified design limits. Software reliability techniques are aimed at
reducing or eliminating failures in software systems. Existing approaches to reliability
modeling largely rely on the availability of implementation-level artifacts. Even those
approaches applicable at the architecture level, require information about the
operational profile that can only be obtained from a running system. Our approach is
novel as it leverages standard software architecture models, and quantifies the system
reliability in terms of specific architectural defects that may result in a failure, once the

system is operational1. We do so by first predicting reliability of individual
components, as a function of analysis results performed on their structure and behavior
[21]. We then incorporate these component reliability values into a system-level
reliability model. Our approach is applicable to cases where no runtime information is
available, and can handle uncertainties associated with early reliability prediction.

Our reliability technique leverages well-known architectural modeling approaches
and uses Dynamic Bayesian Networks [13] to perform reliability analysis. We evaluate
the approach using sensitivity and uncertainty analyses applied to several case studies
with two major goals in mind: to demonstrate that our approach to reliability
prediction is both possible (i.e., as a proof of concept) and meaningful.

The rest of this paper is organized as follows: In Section 2, we provide background
information, discuss the related work, and introduce the basics of Dynamic Bayesian
Networks. We also introduce a running example. In Section 3 we present our reliability
model and offer its evaluation in Section 4. Section 5 offers a high-level discussion of
uncertainties associated with early reliability prediction. We conclude in Section 6 and
discuss future directions of this research.

2   Background and Related Work

Modeling, estimating, and analyzing software reliability –during testing– is a
discipline with over 30 years of history. Many reliability models have been proposed:

1 We define an error as a mental mistake made by the designer or programmer. A fault or a
defect is the manifestation of that error in the system: it is a requirements, design, or implemen-
tation flaw or deviation from a desired or intended state [11]. Finally software failure is the
occurrence of an incorrect output as a result of an input value that is received, with respect to
specification [18].
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Black-box models treat the software system as a monolithic entity and ignore the
internal structure of the system. White-box approaches on the other hand, consider a
system’s internal structure in reliability estimation. Goseva-Popstojanova et al. further
classify white-box techniques into path-based and state-based [7]: path-based models
compute software reliability based on the system’s possible execution paths, while
state-based models use the control flow graph to represent the system’s internal
structure and estimate its reliability analytically. 

A common theme across all of these approaches however, is their reliance on
implementation-level artifacts. Even those approaches assumed to be applicable to
other development phases rely on estimates of the code size [5]. When incorporating
architectural information, most approaches consider only the structure of the system.
Exceptions are [6,19,26,27]: Reussner et al. [19] build architectural reliability models
based on both structural and behavioral specifications of a system, but assume the
reliability of individual component services to be known. Wang et al. [27] leverage
architectural configuration while focusing on architectural styles for building a
prediction model that is mostly concerned with sequential control flow across
components. Gokhale et al. [6] offer an analytical approach that leverages software
architecture, but relies on testing data to characterize failure behavior. Finally, Yacoub
et al. [26] use a scenario-based model of a system’s behavior and build component
dependency graphs.

However, none of these approaches offer a compositional model that predicts the
reliability of both the components and the entire system using the software
architecture. They simply assume that the component reliability, or the reliability of
some of its elements is known. Additionally, with the exception of [6], they rely on the
availability of a running system to obtain the frequency of component service
invocations. Our approach is different in that both our component- and system-level
reliability models only rely on architectural models to predict reliability. Our approach
thus, can be used to provide analysis of design decisions and their ramification on
system reliability. 

When predicting software reliability in the early stages of development, some level
of uncertainty is inevitable. A few approaches assess the uncertainties in reliability
estimation: using heuristics, with variable operational profiles, and via techniques such
as method of moments and simulation-based techniques such as Monte Carlo
simulation [7]. Other techniques however, assume fixed (apriori known) operational
profiles and varying component reliability, and apply traditional sensitivity analysis
[3, 25]. We address uncertainties using a set of parameters representing components’
reliabilities, system startup process, and human-system interactions, as discussed in
Section 5.

In our prior work, we leveraged architectural models of software components, and
given the result of standard analysis, provided a prediction of the component’s
architectural reliability [21]. This approach is different from the related techniques
above in that it only relies on architecture-level artifacts, and does not require runtime
data. It does so by directly leveraging results obtained from architectural analysis to



A Bayesian Model for Predicting Reliability of Software Systems 111

model components’ failure behavior. Our component-level reliability model in turn,
allows us to explore system-level reliability in a compositional way. In this paper, we
describe the details of our system-level reliability model.

2.1   Dynamic Bayesian Networks

A Bayesian Network or Belief Network (BN) is a probabilistic graphical model in the
form of a directed acyclic graph (DAG). The nodes in a BN represent variables, and the
links connecting these nodes denote the dependency relations among them. A
Bayesian Network models a stochastic relationship among the nodes, in terms of the
conditional probabilities of some nodes with respect to the others. Given the topology
of a BN and the probability distribution values at some of the nodes, the probability
distribution value at other nodes may be obtained. This is known as inference. A BN
consists of two parts: qualitative and quantitative. The qualitative part is a DAG
consisting of set of nodes and directed links connecting them. The links denote the
dependency between probability distribution values at each node. The quantitative part
embodies conditional probabilities among nodes and their parents. 

Bayesian Networks have been extensively used in Artificial Intelligence, Machine
Learning, Decision Making, Medical Diagnosis, and Bioinformatics. They have also
been used to model reliability of software systems during testing, based on the
operational profile obtained from system monitoring [2,12,16]. However, little work
has been done on predicting reliability early in the development process.

Dynamic Bayesian Networks (DBNs) is an extension of the basic BN and
incorporates the concept of time into the analysis. In DBNs, in addition to the basic
links described above, delay links are used to associate timing with the model [13].
We leverage DBNs to model time-dependent cyclical relations among reliabilities at
various states, resulting from interactions in the system. Inference and other analysis
performed on a BN can also be performed on a DBN. To do this, a DBN is first
expanded for a period of time resulting in a “regular” Bayesian Network.

2.2   SCRover Case Study

Throughout this paper, we use a simple example of a robotic rover to illustrate the
introduced concepts. SCRover [24], is designed and developed under the HDCP
Project in collaboration with NASA’s Jet Propulsion Laboratory, and in accordance
with their Mission Data System (MDS) methodology. To avoid unnecessary
complexity, we discuss a simplified version of the application with a particular focus
on SCRover’s “wall following” behavior. The rover uses a laser rangefinder to
determine the distance to the wall, drives forward while maintaining a fixed distance
from that wall, and turns both inside and outside corners as needed. This scenario also
involves sensing and controlled locomotion, including reducing speed when
approaching obstacles.
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As shown in Figure 1, the system contains five main components: controller,
estimator, sensor, actuator, and a database. The sensor component gathers physical
data (e.g., distance from the wall) from the environment. The estimator accesses the
data and passes them to the controller for control decisions. The controller issues
commands to the actuator to change the direction or speed of the rover. The database
stores the “state” of the rover at certain intervals or when values change.

3   System Reliability Modeling

An architectural approach to system modeling considers the system’s structure in
terms of its constituent components and their configuration, as well as system’s
behavior in terms of the interaction among components. We use an approach to
architectural modeling called Quartet, to comprehensively model the properties of a
software system [22]. It offers four complementary views to model interface, static
and dynamic behavior and the interaction protocol of each component in the system.
These views can be analyzed to detect possible inconsistencies both within a
component’s models and across models of communicating components. The
inconsistencies signify architectural defects, which may result in a failure at runtime,
thus adversely affect the system’s reliability.

Using Quartet, components exhibit an interaction protocol that determines their
code of behavior in relation to other components. The overall behavior of a system is
thus represented by a compositional model that combines interaction protocols of all
components. A suitable model for reliability prediction at the architectural level must
take the compositional nature of behavioral models into consideration. Architecture-
level reliability analysis can be leveraged to perform trade-off analysis, aimed at
evaluating design alternatives. 

Our approach for predicting a system's reliability is compositional in nature: the
system's reliability is estimated in terms of the reliabilities of its constituent
component and their interactions. We extend our work on component-level reliability
prediction [21], and combine individual components’ reliabilities via a compositional
model of their interactions, to estimate system reliability. 

Dynamic Bayesian Networks (DBNs) are used to model components interactions in
terms of the causal relationships among their reliabilities; when a change of state in a
component causes a change of state in another component, the reliability of the second
component depends on the reliability of the first. This DBN is then augmented with the

Fig. 1. SCRover’s Software Architecture
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notion of a failure state: any state in a component may result in a failure. Unreliability
at each state can impact the probability of the system's failure (i.e., its unreliability).

Our approach involves two major steps: first we build a compositional model
representing the overall behavior of the system in terms of interactions among its
components. This model is then used for stochastic analysis of the system's reliability.

Since our approach is intended to be applied in the early stages of the software
development life-cycle, lack of knowledge about the system's operational profile poses
a major challenge in building a reliability model. In the absence of such data, we use
an analytical approach that relies on domain knowledge as well as the system's
architecture. In cases where an operational profile is available (e.g., when analyzing
the reliability of a system that is a minor upgrade to an existing version), our reliability
model can leverage existing data, and provide a more accurate reliability analysis.

Figure 2 shows a high-level overview of our approach. Architectural models of
systems structure and behavior form the core of our model. A Global Behavioral
Model (GBM) is constructed to represent the system’s behavior in terms of the
behavior of its components. A DBN then leverages the GBM as well as the individual
components’ reliabilities to predict system reliability. The rest of this section, presents
our approach to modeling the global behavior of a system as well as the Bayesian
reliability model. 

3.1   Global Behavioral Modeling

The behavior of a software system is a function of the collective behavior of its
constituent components. These components interact to achieve system-level goals. The
interactions are often very complex, and capturing them requires sophisticated
modeling techniques, capable of representing request-response relations, as well as
related timing issues. These interactions are often described in terms of components'
provided and required functionality, exhibited through their interfaces. 

We model the collective behavior of components using a set of concurrent state
machines [8]. Each state machine within this concurrent model represents the
interaction protocol of a single component. Figure  depicts the conceptual view of the
interactions among the SCRover’s components. The left hand side diagram is the view
of the system’s configuration. The right hand side shows a concurrent state machine

Fig. 2.  Overview of the System Reliability Prediction Approach
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containing interaction protocols of individual components. In the interests of clarity,
labels on the transitions, events, actions, parameters, and conditions have been omitted.

In a concurrent state machine representing the system-level behavior of n
communicating components, at any point in time, the active state of the system is
represented using a set of component states {Sm1.Si.,Sm2.Sj..., Smn.Sk}, where n is the
number of components in the system, and Smk.Si corresponds to the active state (Si) in

the state machine Smk corresponding to the kth component. The interactions among
components are represented via event/action pairs. Each event/action pair acts as a
synchronizer among the state machines and describes how invocation of a
component’s services affects another component. Figure 3 depicts the interaction
protocols of the controller, estimator, and actuator components in the SCRover system.
To avoid unnecessary complexity in this discussion, we discuss the SCRover’s system
model in terms of these three components. However, the approach and techniques
presented here can be applied to a greater number of components. 

The Statechart semantics [8,9] permit two types of interactions among concurrent
state machines. The first type concerns concurrent events. Given the appropriate active
state of components, all of the transitions with the same event are activated at the same
time. For instance, in the case of the SCRover model (Figure 4), if the active state of
the controller component is controller.S2 and the active state of the actuator component

is actuator.S1, then invocation of the executeSpeedChange interface results in
generation of the corresponding event, which in turn causes a change of state in both
components (to controller.S3, and actuator.S2, respectively). Note that the generation
of this event has no effect on the state of the estimator component, regardless of its
active state.

The second type of interaction concerns the event/action pair semantics. Given the
appropriate state of components, generation of an event in one component may result
in the invocation of an action, which in turn may result in generation of another event
in another component. In SCRover, assuming that {controller.S2, estimator.S1,

actuator.S1} is the system’s active state, invocation of the executeSpeedChange

interface in the actuator component results in generation of the executeSpeedChange
event. In turn, this results in the triggering of the corresponding transition in the
controller component, causing the notifyDistChange action. The concurrent nature of

Fig. 3. View of SCRover System’s Collective Behavior

SCRover

Sensor

EstimatorController

Actuator Database

Actuator Sensor

Controller

Database

Estimator

components

communication link

state

transition

concurrent
state



A Bayesian Model for Predicting Reliability of Software Systems 115

the three state machines results in triggering of the notifyDistChange transition in the
estimator component (event caused by the action in the controller component), as well
as the executeSpeedChange transition in the actuator component (original event). The
new active state of the system will then be {controller.S3, estimator.S3, actuator.S2}.
The above semantics summarized here and presented in [8,9] form the basis for the
Global Behavioral Model. We use the GBM to construct our reliability model.

3.2   System Reliability Modeling

Our Bayesian reliability model uses the Global Behavioral Model as its core. This
model represents the dependencies between reliability values at various system states,
incorporates the notion of failure nodes, and offers reliability analysis of the system
based on its architectural models. Our approach leverages a classification of
architectural defects [23] to differentiate among different classes of failures. However,
the model can be used to either differentiate among various types of failures, or a
generic failure state can be used. When multiple failure types are modeled, the overall
reliability is estimated in terms of the cumulative effect of different types of failures in
the system. 

3.2.1   Qualitative Representation of the Bayesian Network
In this section, we describe how to a build the graphical part of the dynamic bayesian
network given the model of components’ interactions. The DBN is described in terms
of nodes and links, denoting the reliability dependency among the nodes.
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Nodes. Each node in the Bayesian Network corresponds to a state in the GBM.
Moreover, a “super” node (init) is added to represent the instantiation of the system.
This node will be used to model the reliability of the system’s startup process. In
addition, for every component, a set of failure nodes are added to the Bayesian
Network. Each failure node represents the occurrence of a specific type of failure in a
component. A failure may be due to an internal fault in a component, or to its
interaction with the rest of the system.

We also incorporate individual component reliability values (called raw reliability
values) in the system reliability estimation. These values may be obtained from other
methods such as [21], or in the case of off-the-shelf components could be advertised by
the vendor. The raw component reliability values are represented as a node in the BN.
For each component, this node serves as a root (a parent to the node corresponding to
its initial state). Alternative approaches may be taken in this regard. We discuss the
rationale for this decision in Section 5. 

Links. Three types of links in the Bayesian model capture the dependencies between
reliabilities at various nodes: instantiation, failure, and dependency links. Instantiation
links are added from the init node to all nodes corresponding to initial states of
components. They model the system’s startup process and signify that the reliability of
the system depends on the failure-free instantiation of all of its components.

Failure links represent the possibility of occurrence of various types of failures in
the different states of the system. While in general, every type of failure may occur
while the system is in any particular state, we employ the result of our architectural
analysis to determine the relevance of specific failure types at each state. Particularly,
if a specific defect of type d1 associated with a component service is revealed as a
result of some analysis, we designate a failure link between each state where an
outgoing transition corresponding to that operation exists, and the failure node fi
(corresponding to defect di). Details of our technique may be found in [20].

Finally, dependency links depict the reliability relationship among various nodes in
the system. There are two types of dependency links: inter-component and intra-
component links. The intra-component links are directly derived from each
component’s protocol model. For every transition in the interaction protocol model of
the component, there is a directed arc from the node corresponding to its origin state,
to the node corresponding to its destination in the BN. These links indicate that
reliability at each node depends on the reliability of its parent node. For example, in
the SCRover’s GBM, a transition from controller.S1 to controller.S2 signifies that the
system’s reliability at controller.S2 depends on the reliability of the system at
controller.S1, justifying a link in the Bayesian Network from the latter to the former. 

The inter-component dependency links represent the relationship between
reliabilities of the states among interacting components. The notion of event/action
interactions described earlier serves as the logical core of these links. Recall that
generation of an event in one component may cause a change of state in a different

component. More specifically, for each  pair in a component’s state machine
Smi, we seek all transitions in all other components’ state machines where an event
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matches the action ao. A link is then added from the origin node of  in Smi to the
destination nodes of all events ao in the other state machines. The inter-component

links denote that the reliability (probability of success) in the nodes of interacting
components are influenced by the reliability at the node of the component initiating the
interaction. 

A final issue concerns cycles in a Bayesian Network. By definition, a Bayesian
Network is a directed acyclic graph. Following the above approach may result in
creation of cycles in the graph. However, it is important to note that these cycles are
time sensitive: for example, while there are links in both directions between the
estimator.S1 and estimator.S3 in Figure 4, the two links are not representing a
dependency between the two nodes in the same time-step. That is, since the estimator
component cannot be in both estimator.S1 and estimator.S3 states at the same time, the
cycle introduced in the BN graph represents reliability dependencies at different points
in time. To address the issue of cycles, before adding a link to our Bayesian model, we
check for cycles that may be created once the link is added. If by adding the link a
cycle is generated, that link is marked as a Delay Link (dashed lines in our graphs).
Delay links are a standard concept in time-sensitive BNs and convert a simple
Bayesian Network to a Dynamic Bayesian Network (DBN) [13]. Inference performed
on a BN can also be performed on a DBN by expanding the model for a period of time.
The result of this expansion is a “regular” Bayesian Network which depicts the
reliability dependencies over time. 

3.2.2   Quantitative Representation of the Bayesian Network 
A major challenge of reliability prediction before the system's implementation phase
is its unknown operational profile. If the operational profile of the system were
available, the conditional probability values at various nodes could be obtained via
statistical techniques. The problem of estimating reliability would be then transformed
to performing standard inference methods on the available data. However, given the
uncertainties associated with early reliability prediction, analytical methods must be
employed. One such technique relies on the software architect, to derive formula that
describe the conditional probability values at each node, given the reliability of the
parent nodes. This is done by leveraging the known information about the system (its
topology, components' interactions, and individual components' reliabilities). 

In this section, we discuss a few basic relationships between the reliability of a
node and its parents. This step of the reliability prediction process is application
specific, and the software architect must define these relationships given the
application. In particular we define two main relationships and offer insights into a
few others.

A node and its parents are known to be in a serial relationship when the node’s
reliability directly depends on the reliability of all of its n parents. In other words, a
low reliability of any of its parents, directly (negatively) affects the reliability of the
node, regardless of the reliability of the other parents:

/l oe a
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A parallel relationship between a node and its parents represents the concept of
redundancy. The node’s reliability is at least equal to or greater than the reliability of
its most reliable parent. In this case, the unreliability of a node with n statistically
independent parallel parents is the product of the unreliability value of all parents. In
other words, in a parallel setting, all n parents must have very low reliability for the
node to be very unreliable, i.e., if any of the n parents is highly reliable, then the node
will still be very reliable:

Other customized configurations may describe the relationship between parent and
child nodes in a complex system. Examples include min, max, and partial parallel
configuration known as k-out-of-n parallel configuration. In the latter type, k or more
parents out of the total of n parents of a node must fail, in order for the node to fail. An
example of a type of system when this configuration is relevant is in a four-engine
airplane, where a minimum of two engines are required for it to be able to fly and still
satisfy minimal reliability requirements (k=2 out of n=4). 

3.2.3   System Reliability Analysis
Once the relationships among all the nodes have been devised by the architect, and
given the raw component reliability values (e.g., obtained by component-level
architectural reliability models [21]), the probability of various types of failures in the
system can be estimated using standard Bayesian inference. Aggregation of
probabilities of various failures represent the unreliability of the system. Determining
the aggregation formula that combines probabilities of various failures is application
specific. For the purpose of our evaluation, we use a generic approach using a Radar
Chart (a.k.a. Polar Chart and Spider Chart) to calculate the cumulative effect of each
component’s failure probabilities on the system. The value of each failure probability
(Fi) is plotted on an axis on the chart. The number of axes is equal to the number of

failure nodes (numF), the maximum length of each axis is one, and the angles between

all axes are equal . The area under the polygon formed by various failure

probabilities can be calculated by a triangulation method as follows:

where MaxArea is the maximum surface area of the polygon when all Fi values are at
the maximum of one.
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Figure  5  depicts the instantiation of the Radar chart for the SCRover system. Four

axes represent controller’s PrePostCondition, Protocol, and Signature failures2 as well
as the estimator’s Signature failure. A point closer to the center on any axis depicts a
low value, while a point near the edge of the polygon depicts a high value for the
corresponding failure probability. The cumulative effect of the failures can be obtained
by calculating the surface area formed by all the axes. Using this technique, the overall
system reliability for the SCRover is estimated as 0.982

Other techniques, such as those incorporating costs into this aggregation may be
employed [20] if analysis beyond a basic reliability prediction is desired. 

4   Evaluation

Evaluation of our reliability model is presented in terms of sensitivity analyses aimed
at demonstrating that architecture-level reliability modeling of software systems is
both possible and meaningful. The results are demonstrated in the context of two case
studies. The analyses demonstrate that the model reacts meaningfully to changes in its
parameters. Moreover, they demonstrate that our approach can be used to identify
critical components in a system whose mitigation has a greater impact on improving
the system reliability. Furthermore, analysis can determine the effect of specific system
configurations on the reliability, which can be used as a decision support tool for
evaluating various design alternatives.

2 Failure types discussed here are tied to an architectural defect classification [23]. Discussion of
failure types is outside the scope of this paper. Other classifications may be used without
impacting the approach.
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Figure  6 depicts reliability analysis of the SCRover system over a period of five
time steps. Recall that system reliability at time ti depends on the reliability of the
system at previous time steps t1, t2,..., ti-1. Lack of failure at time tj can be treated as
evidence for new inferences to obtain the reliability at time tj+1. The y-axis depicts the

system reliability while the x-axis shows the progression of time. Each curve depicts
the system reliability over time, based on evidence (of lack of failure) in the previous
time steps. For example the curve on the bottom depicts the reliability over 5 time
steps. The next curve shows the changes to reliability once evidence of lack of failure
at time t0 is incorporated into the model used in the previous curve. The third curve
incorporates evidence from t0 and t1, and so on. 

Sensitivity analysis based on individual component reliabilities can help identify
critical components in the system. Using our analysis, we found that changes in the
reliability of the controller component have the most significant impact on the system
reliability. The sensitivity of the model to the system’s startup process was also studied.
This init node in the DBN is specifically designated to model the uncertainties
associated with the system’s startup process. The architect must supply a value for this
parameter, and such values may depend on the development process. Discussion of how
to estimate this parameter is beyond the scope of this paper [20]. Sensitivity of the
SCRover model to changes in the reliability of the startup process is depicted in Figure  7
(left), and the results are consistent with our intuition: as the reliability of the system’s
startup process decreases, the system’s ability to perform its operations successfully
decreases (regardless of the reliabilities of individual components).

Finally we analyzed the sensitivityf the model to the failure probabilities. These
probabilities are estimated using Bayesian inference given the individual components’
reliabilities, and their interactions. However, as discussed earlier, the inference can be
updated using evidence that may be available. We model elimination of a particular
failure by assigning it zero probability, and observing the effect on the system’s
reliability. This type of analysis could be used as a decision tool to devise cost-
effective defect mitigation strategies, by prioritizing failures. Figure  7 (right) shows
that ensuring that the estimator’s signature failure does not occur has the largest impact
on the system’s reliability, improving it from the 90% (original prediction) to 97.7%. 
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In summary, sensitivity analyses on the SCRover demonstrate that our reliability
model is meaningful, and that the results are useful in making architectural decisions. 

We also performed similar analysis in the context of other case studies, including
NASA’s Object Oriented Data Technology (OODT) system [15]. OODT is a
methodology, a middleware, and a software architecture for development of distributed
data-intensive systems. The middleware offers access to geographically distributed and
heterogeneous data sources, by concealing the details of mediation at each data source,
and offering an extensible and flexible data sharing and transporting methodology. An
OODT system consists of a set of Clients, one or more ProfileHandlers, and a set of
ProfileServers. Clients request a set of services that may be provided by different
ProfileServers. The Client is oblivious to the number, type, and location of these
servers. ProfileHandlers act as mediators, and route requests and responses between
Clients and Servers. A high-level architecture and the corresponding DBN of such a
system is depicted in Figure 8.

In our adaptation of OODT we assumed that multiple disparate databases provide
data to clients via the web. In particular, two independent ProfileServers serve two
independent datasets. In this scenario, since the two servers access independent and
non-identical data sources, it is crucial for both servers to operate reliably, in order for
the system to operate reliably. In other words, the reliability of the system depends on
the reliable operation of all of its components, including the two servers. This is in
contrast to cases where one server may be a backup for the other server, in which case
reliable operation of at least one of the servers is sufficient for the reliable operation of
the system. We first analyze the system when the two independent and different
datasets are configured, and later demonstrate the result of modeling a different
scenario, where the two servers are considered to act as back-ups for identical datasets.

Figure  9 (left) depicts the effect of changes to components’ initial reliabilities on
the system reliability. Since the two ProfileServer components are effectively identical
in their functionality (although serving different datasets), as expected, changes to their
reliabilities show very similar trends in the changes in the system’s reliability.
Additional analysis confirmed this results and may be found in [20]. 

Fig. 7. System Reliability Given Different Startup Process Reliability (left), and the Effect of
Elimination of Particular Failures on SCRover System’s Reliability (right)
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Similar to the SCRover experiment, the overall system reliability decreases over
time (unless evidence of failure free operations is incorporated). Moreover, as depicted
in Figure  9 (left), it can also be seen that changes in the ProfileHandler and Client
components result in a greater range of system reliability. For example, changes to the
reliability of the Client component result in estimated system reliability values ranging
from 18% to 91%, while changes to the reliability of the ProfileServer components
result in system reliability variations between 52% and 91%. 

Analysis of the model’s sensitivity to the reliability of the startup process is shown
in Figure 9 (right). Similar to other experiments, system’s reliability has a direct
relationship with the reliability of the startup process.

We have also performed analysis to evaluate the impact of system configuration and
interaction semantics on systems’s reliability. In the case of OODT, we model
redundancy by designating the two ProfileServer components as backups for one
another. The left diagram in Figure  10 demonstrates the system reliability (depicted via
a line) as the reliability of ProfileServer 1 increases. The diagram on the right shows
that while increasing the reliability of ProfileServer1, the system reliability remains
unchanged (comparing to the left), if the reliability of ProfileServer2 decreases.
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We also studied the effect of changes to the system’s structure, on the overall
system’s reliability. While a structural change is considered an addition or removal of
components in a system, the impact on the interactions among components directly
affects the system reliability. For example, in the case of the OODT system, the
ProfileHandler component seems to act as a bottleneck for the system. As the number
of clients increases, the load on the ProfileHandler increases. This may adversely
affect the system reliability. To mitigate the problem, additional ProfileHandlers may
be instantiated to balance the load. 

Reliability results based on several configurations are shown in Figure 11. The x-
axis represents various configurations while the y and z-axes represent time and system
reliability, respectively. At each time step, an increase in the number of clients,
adversely affects the reliability. However, once a new instance of the ProfileHandler is
added to the system, the reliability improves. The new ProfileHandler component is set
up such that it is responsible for handling communication to and from the fourth and
fifth Clients. It can be seen that the reliability of the system with two ProfileHandlers is
similar to the reliability of the system with three Clients and a single ProfileHandler,
which can be rationalized, given the load balancing described above. 

Analysis of the OODT system further confirms that the system-level reliability
model produces meaningful and useful results. Our experience with a set of synthesized
models, as well as other case studies confirm the conclusions presented here.

Remark. Traditionally, many of the analyses performed on Bayesian Networks are
NP-hard [4]. In our approach, Bayesian Networks are only used in a simplified
predictive context: given the probabilistic relations among the nodes (assigned by the
domain expert), we predict the probability of failure nodes. Consequently, the
complexity of our analysis is greatly reduced and can be described as a function of the
number of nodes in the system, and the time period which the analysis is performed.
Furthermore, by incorporating evidence of the system’s reliability at time ti when
estimating the reliability at times ti+1,ti+2,... we can systematically control the number
of nodes to disallow the model to grow arbitrarily complex. 

On the other hand, the number of nodes in the DBN in turn, depends on the number
of states in the Interaction Protocol models of the components that comprise the
system. The complexity of the Interaction Protocol Models is bound by the number of
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externally visible interfaces of each component. The principles of component-based
software engineering, and encapsulation in Object-Oriented design, typically prevent a
component from having arbitrarily large number of interfaces. Consequently,
following good software design practices directly helps in creating models with
reasonable numbers of externally visible interfaces. In turn, this curbs the model’s
complexity.

5   Modeling Uncertainties

Modeling reliability of a software system in a compositional manner early during
software development process, when implementation is not available and the
operational profile is unknown, requires dealing with various sources of uncertainties.
Accommodating these uncertainties results in a more realistic prediction of the
reliability of the architecture. Our approach makes an effort to handle a variety of
uncertainties: uncertainty of components reliability values, uncertainty of system
startup process, and uncertainties of human-system interactions. 

Component reliability estimation typically happens in isolation. A component,
whether an “in-house” or an OTS one, is designed, built, and tested either in isolation,
or in an environment that may not be typical of its intended use. Consequently, the
reliability values associated with a component may not be accurate if the component is
used in a different setting. While such reliability values are useful as an “estimate” of
how component may perform in a system, it cannot be treated as an absolute number.
Treating component reliability values as nodes in our DBN, facilitates evaluation of
uncertainties. This is consistent with the stochastic nature of our approach. 

Furthermore, building a system out of fully reliable components may not result in
perfect reliability of the final system. This may be due to various sources of
uncertainties introduced in the integration process. Starting up a system is a critical
step in the integration, which could greatly impact its reliability. By introducing an init
node in the DBN, we have allowed uncertainties to be associated with the startup
process.

Fig. 11. Impact of Different Configurations on OODT System Reliability 

1 Client,
1

ProfileHa
ndler

3 Clients,
1

ProfileHa
ndler

5 clients,
1

ProfileHa
ndler

5 clients,
2

ProfileHa
ndler

t=2

t=1

t=00.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

System 
Reliability

Configurations

Time

t=2

t=1

t=0



A Bayesian Model for Predicting Reliability of Software Systems 125

Finally, uncertainties of human interactions with a software system is an important
and potentially serious problem when dealing with software systems. One way to
eliminate such uncertainties is to design appropriate constraints in the system. Using
the Quartet, such constraints can be implemented as pre/post conditions, guards, and
other types of assertions in the functional specification. While some harmful
interactions may be prevented this way, other measures may need to be blended into
the reliability model to address this form of uncertainty. Modeling human-computer
interactions, and associated uncertainties is beyond the scope of our approach.

6   Conclusion and Future Work

Despite the maturity of software reliability techniques, predicting the reliability of
software systems before implementation has not received adequate attention in the
past. Studies have shown that early discovery of defects in the software development
life cycle results in a more cost effective mitigation process. Reliability prediction
early during the software development life cycle is critical in building reliability into
the software system. Given the uncertainties associated with software systems early in
the development process, appropriate reliability models must be able to accommodate
uncertainties and produce meaningful results. Our approach to reliability prediction
leverages Dynamic Bayesian Networks and calculates system’s overall reliability as a
function of individual components’ reliabilities, and their complex interactions. Our
focus so far has been on building a basic architectural reliability model. In the future,
we plan to continue this research in several promising directions including modeling
reliability of software connectors, the effect of architectural styles or patterns on
reliability, and trade-off analysis aimed at identifying design alternatives in software
product families. 
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Abstract. Web Services play an important role in the Service-oriented
Architecture paradigm, as they allow services to be selected on-the-fly to
build applications out of existing components. In this scenario, the Busi-
ness Process Execution Language notation can be used as an orchestra-
tion language which allows the user to describe interactions with Web
Services in a standard way. The performance of a BPEL workflow is a
very important factor for deciding which components must be selected,
or to choose whether a given sequence of interactions can provide the
requested quality of service. Due to its very dynamic nature, work-
flow performance evaluation can not be accomplished using traditional,
heavy-weight techniques. In this paper we present a multi-view approach
for the performance prediction of service-based applications encompass-
ing both users and service provider(s) perspectives. As a first step to-
wards the realization of this integrated framework we present an effi-
cient approach for performance assessment of Web Service workflows
described using the BPEL notation. Starting from annotated BPEL and
WSDL specifications, we derive performance bounds on response time
and throughput. In such a way users are able to assess the efficiency of a
BPEL workflow, while service provider(s) can perform sizing studies or
estimate performance gains of alternative upgrades to existing systems.
To bring this approach to fruition we developed a prototype tool called
bpel2qnbound, using which we analyze a simple case study.

1 Introduction

The Service-oriented Architecture (SOA) paradigm foresees the creation of busi-
ness applications from independently developed services. In this vision, providers
offer similar competing services corresponding to a functional description of a
service; these offerings can differ significantly in some Quality of Service (QoS)
attributes like performance [1]. On the other side, prospective users of services
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dynamically choose the best offerings for their purposes. Using the SOA para-
digm to build applications, services can be dynamically selected and integrated
at run-time, so enabling system properties like flexibility, adaptiveness, and
reusability.

In this context, the key point is to build applications through the composi-
tion of available services. The application can be specified as a process in Busi-
ness Process Execution Language (BPEL) language in which the composed Web
Services (WSs) are specified at an abstract level. The interfaces of individual ser-
vices are specified using Web Service Description Language (WSDL), the W3C
standard to model WSs interfaces, with documented quality properties. Specifi-
cally, the agreed performance attributes and levels can be specified by means of
appropriate notations that augment the service specifications [2].

Applications built on services face different challenges: on one hand they
should ensure that users experience the required performance, and on the other
hand they have to maximize the resource utilization, so that provider incomes
are maximize. Besides, due to the high dynamism of the applications, the quality
assessment should be performed both at development and at run time. In fact
the quality of the application depend not only on the selected services but also
on the underlying support systems and on the network resources.

All these aspects pose a mix of new and old problems whose solution give
rise to a multi-view approach employing different techniques to performance
analysis/prediction. Specifically we envisage a new approach called Multi-views
Approach for Performance analysis of web Services (MAPS) that encompasses
users and providers viewpoints. One of the goal of MAPS is to validate the
provided performance of an application keeping the aspects strictly pertaining
to the observed system separated from the aspects that depend on the underlying
platform.

To this end we distinguish two different levels: the first one, called MAPS-
U(sers), is concerned with the description of the application level behavior, de-
scribed as a BPEL workflow. The second level, called MAPS-P(roviders), de-
scribes the physical resources where the provided services are deployed. Those
levels are combined, and we show how to derive performance bounds based on the
well-known operational laws of Queueing Network (QN) analysis [3]. The bounds
can be used to analyse bottlenecks at the system specification level, without
requiring the explicit derivation of the performance model. This makes the ap-
proach well suited for efficiently answering many performance-related questions
without the need for providing too many details.

The advantage of the proposed approach is that performance bounds can be
obtained with little computational effort, allowing the client to quickly answer
a set of common performance-related questions arising during the application
development cycle. If necessary, more accurate bounds can be derived by simply
applying different techniques (e.g., the one described in [4]). Our approach can
be applied: (1) at design time, to select services based on their expected per-
formance, or to estimate the expected overall system performance; (2) at run
time to reconfigure the system, e.g., to deal with changes of users requirements
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or with modification of the underlying environment. On the other hand, a more
complex, detailed and precise approach can be applied off-line at the resource
level, to update the performance information published with the services.

To implement part of the proposed approach, we developed a prototype tool
called bpel2qnbound, using which it is possible to parse of the annotated BPEL
(and associated WSDL) specifications and obtain as outputs the performance
bounds, as will be shown in more details in the following sections.

This paper is organized as follows. Section 2 briefly surveys related work. In
Section 3 we present the proposed multi-view approach, while in Section 4 we
give the details of the approach for early performance assessment of workflows
described using a combination of annotated BPEL and WSDL descriptions. In
Section 5 we show how the proposed approach can be applied to a case study.
Finally, conclusions and future work are described in Section 6.

2 Related Work

Recently, QoS issues in WSs selection and composition have obtained great in-
terest in the Web Service research community. Different approaches have been
followed so far, spanning the use of QoS ontologies [5], the definition of ad-
hoc methods in QoS-aware framework [6,7], and the application of optimization
algorithms [8,9,10].

One of the first works in this area is proposed in [1] where a framework
for composed services modeling and QoS evaluation is presented. A composite
service is modeled as a directed weighted graph where each node corresponds to
a WS and edge weights represent the transition probabilities of two subsequent
tasks. The author shows how to evaluate quality of service of a composed service
from basic services characteristics and graph topology.

Some recent proposals face the problem of composition of WSs by imple-
menting genetic algorithms [10]. In Canfora et al. [10] the reduction formulas
presented in [11] are adopted, and the problem is also periodically re-optimized
in order to take into account WS performance variability. However, only sub-
optimal solutions are identified since WSs specified inside execution loops are
always assigned to the same Web service implementation.

Proposals of QoS-aware frameworks can be found in [6,12,7]. Yu and Lin [7]
present a broker-based framework for the dynamic integration of Web services
with end-to-end QoS constraints. The main functions of the proposed QoS bro-
ker include: service tracking, dynamic service composition model, dynamic ser-
vice selection, and dynamic service adaptation. WebQ [6] is a QoS-based WS
framework where the service selection is based on the parallel execution and
monitoring of the candidate target services. Serhani et al. [12] propose a broker-
based architecture which adopts QoS verification and certification in the service
selection process. Zeng et al. [8] present a global planning approach to select an
optimal execution plan by means of integer programming. Yu and Lin [13] dis-
cuss selection algorithms for multiple QoS attributes defining the problem as a
multi-dimension multi-choice 0-1 knapsack problem as well as a multi-constraint
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optimal path problem. Ardagna and Pernici [9] model the service composition
as a mixed integer linear problem where both local and global constraints are
taken into account. Their approach is formulated as an optimization problem
handling the whole application instead of each execution path separately. Claro
et al. [14] propose the use of multi-objective optimization techniques to find a
set of optimal Pareto solutions from which a requestor can choose.

The works closest to ours concern methods to derive performance related mea-
sures of workflow processes [15,16]. Cardoso [15] proposes two different metrics
to evaluate the control-flow complexity of BPEL web processes before their ac-
tual implementation. In [16] a mathematical model based on operations research
techniques is proposed to estimate the influence of the execution of orchestrated
processes on utilization and throughput of the system. Being based on QN analy-
sis, our approach has the advantage that the bounding technique used in this
paper is one of the many possible solution algorithms of the performance model.
It if hence possible to compute more precise results by simply applying more
sophisticated QN solution techniques [17].

3 Overview of the Proposed Approach

In this section we illustrate the main steps of our methodology for the perfor-
mance evaluation of WS applications, while the description of the realized tool
is deferred to section 5.

We generically consider WS-based applications, built up from software ser-
vices glued together by means of some integration mechanism. In this context,
the services provide the application-specific functionalities (and are considered
as black boxes), and the glue defines the workflow that integrates these func-
tionalities to deliver the functionalities required from the application.

We envisage a two layers approach to derive performance indices of the WS
application. At the service providers level we can analyze the set of resources
devoted to provide a service (including, if necessary, network resources) by means
of a QN. The QN analysis results are then used as performance annotation
characterizing the service. The users, at the upper level, use this information
without concerning with the characteristics of the underlying platform.

In Fig. 1 we show a UML Activity Diagram with the main steps of MAPS.
Boxes show who is responsible for executing each action.

Users side The Users-side of our approach starts from the application workflow
specifications and derive performance bounds on the application response time
and throughput, as follows:

Identify application requirements. At this step the user describes the ap-
plication (s)he intends to realize and details its functional and non-functional
requirements.

Discover and compose services. The user sees only the services with their
performance annotations and builds its application based on the service
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Fig. 1. Activity diagram for the proposed methodology

description using tools like BPEL and performing service discovery and com-
position using methods like [18]; the details of this step are beyond the scope
of the paper.

Derive Performance model. The annotated BPEL specifications are used to
implicitly derive a QN model. The activities in BPEL describe the sequence
of requests which customers perform on service centers. The QN model is
used to compute performance bounds on throughput and response time. Such
information correspond to bounds on throughput and response times of the
resources on the software system under evaluation. A detailed description of
this step is given in Section 4.

Evaluate Results. The user exploits the computed performance bounds to
choose among the services available those that better fulfill the performance
requirements; performance results can also be used to answer “what-if” ques-
tions about the system. Based on the analysis results, the client can reach
a more informed decision about the system design. If the performance re-
quirements are fulfilled, (s)he can proceed with the acquisition of the pre-
selected WSs; otherwise (s)he has to iterate the process by repeating the
steps described, or lastly admit the unfeasibility of the performance require-
ments with the acquisition of publicly offered services.

Providers-side. At this side, the service providers must deploy the set of WS on
suitable physical resources, exposing a well-defined WSDL interface annotated
with QoS-oriented information. Service providers will execute the following steps:

Define interface of WS. At this step, the service providers must define the
interface of the services they offer. In the WS scenario this is done by defining
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an appropriate WSDL which clearly describes the interfaces, including the
operations provided, the input parameters and the type of the returned
results.

Deploy WS. At this step, the service providers must define the physical de-
ployment of the services they offer. This means that the services must be
implemented and installed on the appropriate hardware resources. Further
resources (disk space, additional CPUs, dedicated network connections and
so on) must be allocated, depending on the nature of the functionalities
provided by the WS.

Estimate Service times. At this step, the service providers must estimate,
for each individual operation they provide through their WSs, the average
service time on each of their resource. Thus, the service providers not only
have to compute the mean response time of each operation, but also break
down this response time to identify the fractions of it spent on each resource.
Service times can be estimated by the providers by using synthetic workloads
and monitoring the response times of the physical resources. It is possible
to constantly improve the estimate of the response times by continuously
profiling the resource usage under real workloads: that is, providers monitor
the resources utilization as client applications access them, and dynamically
adjust the advertised average service times as better estimates are computed.

Annotate WSDL. The information collected during the previous step are in-
serted as performance annotations in the WSDL of the services. Those in-
formation, combined with the structure of the BPEL workflows which are
executed on the system, are used to compute the performance bounds as will
be shown in Section 4.

4 Performance Modeling of BPEL Workflows

In this section we present the main contribution of this paper. Specifically, we
provide an algorithm for efficient computation of performance bounds for WSs
driven by BPEL workflows. We compute optimistic and pessimistic bounds for
system throughput and response time, where the “system” is the set of all phys-
ical resources (CPUs, disks, network connections) where all the WSs referenced
by a BPEL are deployed.

Bounding techniques are interesting for several reasons [19]. First, they quan-
tify the critical effect of bottleneck devices on system performance; it is also
easy to analyze the performance improvements which are gained by replacing
the bottlenecks. Moreover, bounds can be computed quickly and efficiently: they
can be used during early planning stages to answer many performance-related
questions, and eliminate inadequate design alternatives at early design phases,
and at run-time assisting reconfiguration operations.

BPEL allows users to describe interactions with WSs; each interaction (re-
quest, response, one-way remote method invocation) is described by an appropri-
ate BPEL action; moreover, elements are provided to model loops and branches.

The WS-BPEL version 2.0 [20] specifies, among others, the following types of
activity:
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〈receive〉 The executing process waits for a specific incoming message to be
received;

〈reply〉 Sends a message in reply to a message which was received through a
〈receive〉 tag;

〈invoke〉 Invokes a one-way or request-response operation on a partner;
〈wait〉 Waits for a given time period, or until a certain time has passed;
〈sequence〉 Denotes a set of activities which should be executed sequentially;

for each activity it is possible to specify additional dependencies, that is,
other activities which must complete before executing the current one.

〈if〉 Selects one activity from a set of choices;
〈while〉 Repeats an activity until a certain predicate is no longer true;
〈repeatUntil〉 Repeats an activity until a condition becomes true;
〈forEach〉 This activity repeats its child activity for a number N of times; the

child activity instances can be executed sequentially, or in parallel;
〈pick〉 The process blocks until a certain message is received, or a timeout goes

off. When one of these events occurs, the associated activity is executed and
the pick completes;

〈flow〉 Denotes a set of concurrent activities;
〈switch〉 Allows the process to choose exactly one branch of an activity with

multiple choices.

Fig. 2. Class diagram of a portion of the BPEL performance metamodel

We illustrate in Fig. 2 a portion of the BPEL metamodel as a UML class dia-
gram. There are two kinds of BPEL actions: composite actions (such as Sequence
and Flow), which act as containers, and simple actions (such as Invoke and
Reply) which represent atomic actions. In particular, the Invoke action is used
to perform a two-way (request-response) WS operation, which is described in an
appropriate WSDL. Each WS operation requests service on a set of resources.
For example, a WS operation may require CPU time, disk I/O operations, or in
general use other (physical) resources on the executing host.

From a performance point of view, a BPEL workflow applies a workload on the
resources. The workload may be open (if there is an infinite stream of instances
of the BPEL which are executed at a given rate λ), or closed (if there is a finite
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population of N BPEL instances, each spending Z time units outside the system
before being executed again).

We see in Fig. 3 the mapping between the BPEL model and the QN per-
formance model. Resources in the BPEL model correspond to service centers,
and BPEL actions represent requests which arrive to the service centers.

BPEL Workflow Web Services

Operation Resource

(a) BPEL model
Service Center

R
eq

ue
st

s

(b) QN model

Fig. 3. BPEL model and QN performance model

We consider the system made of all resources where WSs are deployed. Our
approach computes bounds on the system response time and throughput, from
which bounds on individual resources utilization, throughput and response times
can be obtained. We now briefly recall the main results related to QN bound
analysis, which will be used later in this section; more details on bound analysis
can be found in [3,19].

Let us consider a BPEL specification A = {A1, A2, . . . AN}, with actions
A1, A2, . . . AN . Let X be the system throughput (i.e., the rate of completion
of BPEL A). Let R = {R1, R2, . . . RK} be the set of all the K resources available
in the system, that is, all the resources used by WS operations. Then, according
to the utilization law, the utilization of resource Ri ∈ R can be expressed as:

U [Ri] = X [Ri] Si = XD [Ri] (1)

where U [Ri] is the utilization of device Ri, X is the whole system throughput,
D [Ri], X [Ri] and Si are resource Ri service demand, throughput and mean
service time, respectively. The utilization law states that the utilization of re-
source Ri is proportional to its service demand. Thus, the device Rmax with the
highest resource demand (and hence utilization) is the bottleneck device. Note
that bottleneck identification should be one of the first steps in any performance
study; any system upgrade which does not remove the bottleneck(s) will have
no impact on the system performance at high loads.
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The first step in the bound derivation process is to compute the service de-
mand D [R] for each resource R ∈ R. In this paper we analyze the scenario in
which a single kind of BPEL workflow is executed in the system; from the QN
model perspective, this results in considering a QN performance model with a
single customer class. Extension of the proposed approach to the scenario of
multiple kinds of workflows being executed on the system would result in the
computation of bounds for multiclass QN models. The same approach described
in [21] applies to BPEL workflows as it did for UML Activity diagrams. However,
bounding techniques are seldom used in multiclass QN analysis: the reason is
that bounds are mainly used to study bottleneck centers for which single class
models suffice.

Let Service [A, R] be the average service time on resource R for a single invo-
cation of action A; let Visits [A] be the visit count to action A. The visit count
is defined as the ratio of the number of visits to action A and the number of
completions of the whole BPEL A. The total service demand D [R] for resource
R is given by:

D [R] =
∑

A∈A

Visits [A] × Service [A, R] (2)

Let us denote with D =
∑K

i=1 D [Ri] the sum of all service demands; let Dmax
and Dave denote the maximum and average of the service demands at the centers
of the model, respectively.

Different kind of bounds can be computed, depending whether the BPEL
represents a closed or open workload. Let us consider the two cases separately.

Bounds for Open Workloads. Let λ be the rate at which the BPEL A is executed;
let X(λ) and R(λ) respectively denote the system throughput and response time
with respect to parameter λ. Then the following equations hold [19]:

X(λ) ≤ 1/Dmax (3)
D

1 − λDave
≤ R(λ) ≤ D

1 − λDmax
(4)

Bounds for Closed Workloads. Let N the total number of instances of BPEL
A which are executed; let Z be the time spent by each BPEL instance outside
the system before being executed again. If we denote with X(N) and R(N) the
system throughput and response time as a function of the request population
N , then the following equations hold [19]:

N

D + Z + (N−1)Dmax
1+Z/(ND)

≤ X(N) ≤ min

⎛

⎝ 1
Dmax

,
N

D + Z + (N−1)Dave
1+Z/D

⎞

⎠ (5)

max
(

NDmax − Z, D +
(N − 1)Dave

1 + Z/D

)
≤ R(N) ≤ D +

(N − 1)Dmax

1 + Z/(ND)
(6)



136 M. Marzolla and R. Mirandola

Note that Equations 3–6 provide bounds for the whole system throughput
and response time. These quantities are very important for customers execut-
ing BPEL workflows on a system. From the system provider point of view,
individual resource utilization U [Ri] are an equally important parameter. Note
that according to the utilization law (Eq. 1), bounds on U [Ri] can be directly
derived from bounds on X , by multiplying the latter by D [Ri] (we will show
shortly how to compute D [Ri]).

The modeler can specify whether the BPEL represents an open or closed work-
load by putting a suitable annotation in the BPEL specification. For example, a
closed workload can be modeled with this code fragment (note that the workload
element is in a different namespace with respect to the other standard BPEL
elements):

<bpws:process>
<perf:workload type="closed" thinktime=Z />
. . .

</bpws:process>

Similarly, an open workload can be modeled as follows:

<bpws:process>
<perf:workload type="open" arrivalrate=λ />
. . .

</bpws:process>

In order to be able to compute the bounds, we need to know the service de-
mand D [Ri] for each resource (see Eq. 2). The service demand can be computed
if we know the visit count Visits [A] for each action A ∈ A, and the average
service time on resource R for each execution of action A. Let us address these
two issues separately.

Definition of the Service Time
In order to compute the mean service time Service [Ai, R] from Eq. 2, the sys-
tem modeler is requested to annotate each method of the the WSs with which
the workflow interacts with their average service time. This can be done using
suitable XML elements in the WSDL specifications of the WS. Performance-
oriented extensions of WSDL have been proposed in the literature (see [22,2] for
one of these proposals). As we are only interested in representing service time
for WSDL operations, we adopt here a stripped down notation for the sake of
simplicity. Of course, our performance modeling approach is completely indepen-
dent from the notation actually used to enrich BPEL and WSDL specifications
with performance-oriented information.

Consider the following (simplified) WSDL describing an interface for an elec-
tronic flight booking application. Only the checkAvailability and bookFlight
operations are shown; we also omit all details related to the input and output
data types of such methods.
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<wsdl:definitions name="BookingApp">
<wsdl:portType name="BookingAppType">
<wsdl:operation name="checkAvailability">

. . .
<perf:PAdemand resource="disk" value="5"/> <!-- (1) -->
<perf:PAdemand resource="CPU" value="1"/> <!-- (2) -->

</wsdl:operation>
<wsdl:operation name="bookFlight">

. . .
<perf:PAdemand resource="disk" value="2"/>
<perf:PAdemand resource="CPU" value="15"/>

</wsdl:operation>
</wsdl:portType>

</wsdl:definition>

In this codewe added the child elements 〈perf:PAdemand〉 of 〈wsdl:operation〉
which are used to specify the mean service time of the operation on various re-
sources; the PAdemand name has been chosen for similarity with the notation
adopted in the UML Profile for Schedulability, Performance and Time Specifica-
tion (UML-SPT profile [23]). The line labelled (1) denotes a mean service time
of 5 on a resource named ”disk”, while line (2) denotes a service demand of 1 on
a resource named ”CPU”. Both service times are related to the checkAvailability
operation.

We use the perf prefix to denote the namespace where performance-oriented
annotations are defined; this is to distinguish the new elements from the stan-
dard WSDL ones. The value of the resource attribute is a string denoting the
name of a resource; the name is used for identification purposes only. The value
attribute is a real number denoting the service time required by the specific re-
source. The WSDL should be annotated by the service provider, who of course is
in the position of knowing how the operations are implemented, and can measure
or estimate their service time.

Now we show how to compute the value of Service [A, R], for each A ∈ A,
R ∈ R. If A is not an 〈invoke〉 action, then Service [A, R] = 0 for every R ∈ R.
If A is an 〈invoke〉 action, defined as:

A ≡
<invoke operation=Op>

· · ·
</invoke>

and the operation Op is defined and annotated in a WSDL as follows:

Op ≡

<wsdl:operation name=Op>
· · ·
<perf:PAdemand resource=R1 value=v1/>
<perf:PAdemand resource=R2 value=v2/>
...
<perf:PAdemand resource=RK value=vK/>

</wsdl:operation>
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then, for each i ∈ {1, . . .K} we let Service [A, Ri] = vi. We assume
Service [A, Ri] = 0 if the 〈perf:PAdemand〉 tag is omitted for resource Ri.

Computation of Visit Counts
We recall that the visit count Visits [Ai] represents the ratio of the number of visits
to BPEL activity Ai versus the number of completions of the whole BPEL A. Visit
counts can be computed by solving a system of linear equations; the equations are
derived by structural analysis of the BPEL activity, as follows. Given a BPEL frag-
ment Ai, we denote with E [Ai] a set of linear equations. The function is defined by
structural induction on Ai, according to the rules shown in Table 1.

5 Case Study

In this section we illustrate how the technique described in Sec. 4 can be applied
to a case study. As a motivating example, we consider a set of WSs which
can be used to execute jobs in a computational Grid [24]; in fact, the Basic
Execution Service (BES) [25] and Open Grid Services Architecture Data Access
and Integration (OGSA-DAI) [26] are WS interfaces for job submission and
data transfer respectively, which are being standardized in an effort to allow
interoperability between Grid components provided by different projects.

Let us consider a system where the following WSs are available: a Storage
Element, which is responsible for storing (possibly large amount of) data; a
Computing Element, which is a WS which can accept and execute computa-
tional jobs; an Analysis Element, which is a service for analyzing the output
data produced by running some application on the Computing Element. The
annotated WSDL interfaces of these services are reported in a simplified form in
Appendix A.2. Each operation is annotated with the (estimated) average service
time on the resources they require.

We consider the BPEL sketched in Appendix A.1. The BPEL represents a
closed workload, where each workflow spends 120 time units outside the system
(think time) before being executed again. The workflow executes the following
sequence of actions:

– The user authenticates on the system.
– The executable application and the files it needs to operate (called Input

SandBox ) are transferred in parallel with the input data that must be
processed by the application.

– The executable is started a number of times, possibly with different parame-
ters (this latter detail is not shown in the BPEL); this is done by iterating
the JobStart operation inside a 〈while〉 statement until a certain condition
(not shown in the BPEL) is false. The probability of the condition being
true is set to be 0.7.

– The output produced by the executable (called the Output SandBox ) is
transferred to another WS to be analyzed.

– The output data are finally analyzed.
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Table 1. Computation of the visit count

Ai ≡

<sequence|flow>
Aj1

...
Ajk

</sequence|flow>

E [Ai] =

8>>>>>>>><
>>>>>>>>:

Visits [Aj1 ] = Visits [Ai]
...

Visits [Ajk ] = Visits [Ai]
E [Aj1 ]

...
E [Ajk ]

Ai ≡

<if>
<condition perf:prob=pj1>

C1 </condition>
Aj1

<elseif>
<condition perf:prob=pj2>

C2 </condition>
Aj2

</elseif>
...
<else>Ajk</else>

</if>

E [Ai] =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

Visits [Aj1 ] = pj1Visits [Ai]
...

Visits
ˆ
Ajk−1

˜
= pjk−1Visits [Ai]

Visits [Ajk ] =
“
1 −

Pk−1
t=1 pjt

”
×Visits [Ai]

E [Aj1 ]
...

E [Ajk ]

Ai ≡

<pick>
<onMessage perf:prob=pj1 . . .>

Aj1 </onMessage>
...
<onMessage perf:prob=pjk . . .>

Ajk </onMessage>
</pick>

E [Ai] =

8>>>>>>>><
>>>>>>>>:

Visits [Aj1 ] = pj1Visits [Ai]
...

Visits [Ajk ] = pjkVisits [Ai]
E [Aj1 ]

...
E [Ajk ]

Ai ≡

<repeatUntil> Aj

<condition perf:prob=p>
C </condition>

</repeatUntil>

E [Ai] =
j

Visits [Aj ] = 1
p
Visits [Ai]

E [Aj ]

Ai ≡

<while>
<condition perf:prob=p>

C </condition>
Aj

</while>

E [Ai] =
j

Visits [Aj ] = p
1−p

Visits [Ai]
E [Aj ]

Ai ≡

<forEach>
<startCounterValue>

S </startCounterValue>
<finalCounterValue>

T </finalCounterValue>
<scope>Aj</scope>

</forEach>

E [Ai] =
j

Visits [Aj ] = (T − S + 1)Visits [Ai]
E [Aj ]

We developed a command-line tool written in C++ which is able to parse
the annotated BPEL (and associated WSDL) specifications and outputs the
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Table 2. Service demands for the case study

Resource Visit count Service Demand
CE:CPU 5.33 22.33
CE:Disk 2.0 150.00
DA:CPU 1.0 100.00
DA:Disk 1.0 30.00
DF:CPU 1.0 1.00
DF:Disk 1.0 120.00
Network 3.0 170.00

performance bounds computed using Eq. 3–6. The tool, called bpel2qnbound,
builds a BPEL performance model based on the metamodel shown in Fig. 2.
The tool, then, computes the visit counts and the service demands using the
approach described in Section 4, and produces the appropriate bound equations
as output.

By using the bpel2qnbound tool, we get the visit counts and service demands
shown in Table 2. As can be seen, the bottleneck device is the network. This
means that system performance, at heavy load, will not improve unless that
bottleneck is removed.

Given that the BPEL of the case study represents a closed workload, the
bounds from Eq. 5 and 6 apply. Fig. 4 shows the upper and lower bounds for the
Response Time and Throughput, as a function of the request population size N .

0
500

1000
1500
2000
2500
3000
3500
4000

2 4 6 8 10 12 14 16 18 20

R
(N

)

Number of requests N

Original
Improved

(a) Response Time Bounds (lower is bet-
ter)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

2 4 6 8 10 12 14 16 18 20

X
(N

)

Number of requests N

Original
Improved

(b) Throughput Bounds (higher is bet-
ter)

Fig. 4. Performance Bounds for the Case Study, original system vs. an improved one
where the bottleneck is removed

Oneof themost important questions a systemmodelermay ask is: “What should
be done in order to improve the system throughput/response time?”. This question
is easily answeredby looking at the service demands onTable 2: better performance
can be obtained if the system bottleneck (the network, in this case) is removed. Ac-
cording to Eq. 2, the service demand decreases if either (1) fewer visits are made



Performance Prediction of Web Service Workflows 141

to the bottleneck device, or (2) the average service time is shortened. Solution (1)
implies that the BPEL workflow (and possibly the system as well) is restructured
so that fewer network communications are required. On the other hand, solution
(2) requires moving to a faster network. If we consider an improved system where
the service demand on the network is exactly half of that on the original system,
we obtain the new bounds shown with the dashed lines in Fig. 4. The service de-
mand on the network for the improved system is 85, so that the bottleneck device
becomes the disk on theComputingElement. Fromthe figure, the improved system
offers definitely better performance (both throughput and response time) than the
original one, as the request population size N increases.

6 Conclusions

In this paper we described a multi-view approach for the performance prediction
of service-based applications encompassing both users and service provider(s) per-
spectives. As a first step towards the realization of this integrated framework we
described an algorithm for efficient computation of performance bounds for BPEL
workflows. Our approach applies QN analysis techniques directly on the BPEL
specification of the workflow and the WSDL associated with the Web Services it
references. We showed how to compute bounds for the system throughput and re-
sponse time using QN bounds. The approach can be fully automated: we devel-
oped a prototype tool, called bpel2qnbound, which automatically derives the ap-
propriate bounds from the annotated workflow specification. Our technique does
not require the derivation (and solution) of the underlyingQNmodel; nevertheless,
bounding techniques are useful to identify and quantify the effect of system bottle-
necks, and to performquick analysis anddiscard inappropriate (performance-wise)
alternatives at an early stage of a study. The results of the bpel2bound tool can be
interpreted both from a customer perspective, to select among the available WSs
those providing the best performance, and also from a system provider perspective,
to identify bottlenecks and estimate the performance gains obtained by upgrading
different parts of the system.

The research described in this paper can be extended in several directions. A
technique very similar to that described in [27] can be applied to explicitly derive
a multiclass QN model from annotated BPEL specifications; while the resulting
model would be more difficult to analyze, it would provide more accurate perfor-
mance measures. The long term goal is to integrate different performance analysis
techniques for BPEL into a single tool, where the system modeler can choose
the most appropriate type of analysis depending on speed/accuracy tradeoff.
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A Appendix

A.1 BPEL for the Case Study

<bpws:process>
<perf:workload type="closed" thinktime="120"/>
<bpws:import importType="http://schemas.xmlsoap.org/wsdl/"
location="CaseStudy.wsdl">

<bpws:sequence>
<bpws:invoke operation="Authenticate"/>
<bpws:flow>
<bpws:invoke operation="TransferISB"/>
<bpws:invoke operation="TransferData"/>

</bpws:flow>
<bpws:while>
<bpws:condition prob="0.7"/>
<bpws:invoke operation="JobStart"/>

</bpws:while>
<bpws:invoke operation="TransferOSB"/>
<bpws:invoke operation="Analyze"/>

</bpws:sequence>
</bpws:process>

A.2 WSDL for the Case Study

<!-- Interface for Storage Element -->
<definitions>
<portType name="DataFactory">
<operation name="TransferData">

http://forge.gridforum.org/projects/ogsa-bes-wg
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<perf:PAdemand resource="DF:CPU" value="1"/>
<perf:PAdemand resource="DF:Disk" value="120"/>
<perf:PAdemand resource="Network" value="80"/>

</operation>
</portType>

</definitions>

<!-- Interface for Computing Element -->
<definitions>
<portType name="JobFactory">
<operation name="Authenticate">
<perf:PAdemand resource="CE:CPU" value="10"/>

</operation>
<operation name="TransferISB">
<perf:PAdemand resource="CE:CPU" value="2"/>
<perf:PAdemand resource="Network" value="10"/>
<perf:PAdemand resource="CE:Disk" value="120"/>

</operation>
<operation name="JobStart">
<perf:PAdemand resource="CE:CPU" value="4"/>

</operation>
<operation name="TransferOSB">
<perf:PAdemand resource="CE:CPU" value="1"/>
<perf:PAdemand resource="Network" value="80"/>
<perf:PAdemand resource="CE:Disk" value="30"/>

</operation>
</portType>

<!-- Interface for Analysis Element -->
<definitions>
<portType name="DataAnalysis">
<operation name="Analyze">
<PAdemand resource="DA:CPU" value="100"/>
<PAdemand resource="DA:Disk" value="30"/>

</operation>
</portType>

</definitions>
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Abstract. Performance predictions aim at increasing the quality of software ar-
chitectures during design time. To enable such predictions, specifications of the
performance properties of individual components within the architecture are re-
quired. However, the response times of a component might depend on its configu-
ration in a specific setting and the data send to or retrieved from it. Many existing
prediction approaches for component-based systems neglect these influences. This
paper introduces extensions to a performance specification language for compo-
nents, the Palladio Component Model, to model these influences. The model en-
ables to predict response times of different architectural alternatives. A case study
on a component-based architecture for a web portal validates the approach and
shows that it is capable of supporting a design decision in this scenario.

1 Introduction

Performance problems in large distributed software systems, such as high response
times and low throughput, often result from poor architectural decisions during early
development stages [25,20]. When they are discovered in a running system, they might
require a costly redesign of the architecture and often cannot be fixed by simply revising
small parts of the code. To avoid redesigns, software architectures should be analysed
for their performance properties as early as possible.

As large software architectures are composed of (possibly third-party) components
[27], architects need performance specifications of each individual component to con-
duct performance predictions for the planned architecture. However, specifying the per-
formance of a software component is difficult, as component developers cannot make
any assumptions on the context (i.e., underlying hardware, operating system, usage
profile, performance of required services, etc.) of their components and thus need to
specify the performance independently of the context. Many existing approaches for
component-based performance prediction [3,6,12,13,9,7,29] neglect one or more con-
text dependencies in their component specifications. Especially the context-dependent
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configuration of components as well as the input and output parameters of component
services as part of the usage profile are usually disregarded.

This paper extends our existing component specification language, the Palladio Com-
ponent Model (PCM) [5], with constructs to model the performance influences by con-
figuration parameters of a component as well as input and output parameters. Compo-
nent developers may characterise a set of configuration parameters for their components
(called component parameters), which can be adopted by software architects to a spe-
cific usage profile. For example, a performance-relevant component parameter might
be the size of data the component uses for computation or a compression rate for a
component compressing files.

We have implemented a transformation of an architectural model composed out of
such component specifications into a formal analysis model, which can be used to pre-
dict response times for use cases of the architecture as probability distributions. Our
approach aims at evaluating the architectures of large distributed systems. It does not
try to make accurate predictions for real-time systems, but to guide design decisions
for distributed systems at early development stages, where some performance-relevant
details might still be unknown.

The contributions of this paper are i) extensions to an existing component perfor-
mance specification language (PCM) for modelling component parameters as well as in-
put and output parameters, ii) the implementation of a model transformation algorithm
to automatically map component performance specifications to an analytical model, and
iii) a proof-of-concept case study on a component-based architecture. We validate the
applicability of our approach by comparing our predictions for different usage profiles
of the same architecture with measurements from an implementation. Our results show
that the approach is capable of validating a service level agreement in our scenario.

The paper is organised as follows: Section 2 introduces extensions to the Palladio
Component Model, our specification language for component and architecture perfor-
mance, and includes an example of the newly introduced concepts. Section 3 details the
analytical model’s syntax and solution. After listing assumptions and limitations of the
approach, Section 4 contains a case study of performance predictions with our method
for a larger component-based software architecture. Section 5 surveys related work in
the area of model-based performance prediction for software architectures. Section 6
concludes the paper and points out future work.

2 Design Model

Our approach for performance prediction follows the established separation between a
design-oriented and an analytical model [3]. Developers create the design model during
early development stages of a software system with an UML-like modelling language
assisted by tools. It is then transformed via tools into a restricted stochastic process
algebra, which is solved mathematically to reveal bottlenecks or violated performance
requirements in the architecture. This approach hides the complexity and analytical
concepts of the underlying algebra from the developers, thereby possibly enabling even
non-performance specialists to manage a performance prediction.
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2.1 Palladio Component Model

The design model used in our approach is the Palladio Component Model (PCM) [5].
It is a meta-model specified as an instance of MOF (Meta-Object Facility) [21] (similar
to the UML meta-model) and can been seen as a domain-specific modelling language
for QoS (Quality-of-Service) predictions, which has been aligned to different developer
roles in CBSE.

Using the PCM, component developers specify their components’ performance prop-
erties with so-called service effect specifications (cf. Section 2.2). Software architects
compose these component specifications from repositories to build an application spec-
ification. Deployers model the middleware and hardware resources of the targeted ap-
plication environment and allocate component specifications to these resource models.
Finally, business domain experts, who are familiar with expected user behaviour, model
the usage profile of the application.

Usage Model

Component Specifications

<<User>>

Assembly Model

Allocation Model

Component Developer

System Architect

System Deployer

Domain Expert

PALLADIO
Component Model

Instance

M2M

specifies

specifies

specifies

specifies

Part of

Part of

Part of

Part of

Stochastic
Process Algebra

Analysis

Response Time 
Probability
Distribution

Function

SPA

Fig. 1. Process Model: Performance Prediction with the PCM

The PCM provides a modelling language for each of these roles (Figure 1), and each
language only includes concepts familiar to this role. This approach enables the division
of work targeted by CBSE, and reduces the model’s complexity for each role. Once all
models are specified, they can be combined and then be transformed into the analytical
model (cf. Section 2.4). More details about the PCM’s process model are available
in [16].

In the following, the paper will focus on the component specification language of
the PCM, which has been specified with the Eclipse Modeling Framework (EMF) in
Ecore [8]. A description of the other specification languages (e.g., component assem-
bly model, resource model) can be found in [22]. Software components are black box
entities with contractually specified interfaces [27]. In the PCM, components are either
composite components, which are assembled out of inner components, or basic com-
ponents, which cannot be further decomposed. Interfaces are first-class entities in the
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PCM and can be associated to a component in a providing or requiring role. An inter-
face consists of a number of service signatures, which contain a list of parameters, a
return type, and a list of exceptions.

2.2 Service Effect Specification

To specify the performance properties of a component’s service, our approach uses ser-
vice effect specifications (SEFF) [5,23], which describe how a provided service calls
required services and how it uses system resources. Such a specification makes the
dependencies between resource usage and input parameters explicit, because compo-
nent developers cannot know in advance how the component will be used by third par-
ties. The SEFF is a strong abstraction from the service’s source code including only
performance-relevant information and thus does not violate the black box principle.

The SEFF-metamodel in the PCM is shown in Fig. 2-4. A BasicComponentmay
contain a number of ServiceEffectSpecifications (Fig. 2), which each refer-
ence a signature of an associated provided interface. For performance predictions, our ap-
proach uses ResourceDemandingSEFFs, which contain a number of Abstract-
Actions.

BasicComponent

ServiceEffect
Specification

ResourceDemandingSEFF

ResourceDemanding

Behaviour

AbstractAction

1

*

1

*

*

1

VariableUsage

NamespaceReference

VariableReference

<<enumeration>>
Variable

CharacterisationType
VALUE
TYPE
BYTESIZE
NUMBER_OF_ELEMENTS
STRUCTURE

Signature

serviceName : String

*

1

*
1

1

1

1

*

RandomVariable

specification : String

VariableCharacterisation

type : VariableCharacterisationType

AbstractNamed
Reference

referenceName : String

Service Effect Specification

Parameter Model

Fig. 2. Basic Component, Service Effect Specification, and Component Parameters

Component Parameters. As components are often implemented with object-oriented
techniques, they can have an internal state at runtime, which can be the result of former
service calls, constructor calls, or other forms of configuring the component (e.g., via
deployment descriptors). In this paper, the elements of this state are called component
parameters, as they can be accessed from any service of the component and are not local
to a specific service. Essentially, component parameters extend the input space of the
component’s services. If they influence the performance of a component significantly,
a characterisation of their values should be included in the performance specification.

Following the suggestions in [13] component parameters are treated as additional in-
put parameters of a service. To avoid a state-space explosion in our model, we consider
these values as unchangeable during service execution, which is a simplification but
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nevertheless covers a number of practical situations and is often sufficient to analyse
single use cases. Furthermore, we assume that each client of the component’s services
accesses the same values in a specific use case, i.e., there are no client-specific compo-
nent parameters.

Therefore, a BasicComponent may contain a number of VariableUsages
(Fig. 2) to model component parameters, which in turn contain a name for the variable
(AbstractNamedReference) and a description of its actual values (Variable-
Characterisation). Variables can be characterised for their value, type, or size in
bytes in the PCM, as all these properties may influence performance. Additionally, the
number of elements and structure of collections can be characterised (see [17]). Vari-
able characterisations are constant or discrete RandomVariables enabling the use
of probability distributions, which is useful for characterising larger user groups with
different habits. A variable may have multiple characterisations of different types (e.g.,
VALUE and TYPE at the same time). Composite data structures can be characterised by
using multiple VariableUsages with the same NamespaceReference and dif-
ferent inner VariableReferences (e.g., ”customer.name” and ”customer.cash”).
Only parameters influencing performance properties need to be included into SEFFs,
all other parameters can be abstracted.

As an example of a component parameter, a component compressing files could con-
tain a parameter compressionRatio, whose value domain (’high’, ’medium’, ’low’) is
characterised with a probability mass function (PMF) assigning a probability to each
of the values (e.g., 10% ’high’, 20% ’medium’, 70% ’low’). Depending on the config-
ured compression ratio and assuming fixed-size data, the response time of calling the
component’s services would change, as a high ratio would result in slow calls, whereas
a low ratio would lead to faster executions. The component developer can specify this
parameter in the component description and possibly also provide a default value (e.g.,
100% medium). Upon including the component in an architecture, the value can be
changed by domain experts or software architects.

Actions, Input- and Output-Parameters. Fig. 3 shows the different specialisations of
AbstractAction from Fig. 2. Actions in SEFFs can either be ExternalCall-
Actions referencing required services or AbstractResourceDemandingAc-
tions describing internal executions, which use the resources the component is de-
ployed on. Actions are arranged in a chain, as each action references a predecessor
and successor. The chain starts with a StartAction, then might contain internal ex-
ecutions, branches, loops, or forks (described later), and ends with a StopAction.
AcquireAction and ReleaseAction allow the acquisition of passive resources,
such as threads or semaphores.
ExternalCallActions contain variable usages to characterise the input para-

meters when calling a required service. Also, they allow to assign characterisations of
output parameters from required service calls to local variables. Afterwards, the local
variables can be referenced by following actions. The characterisations of input and
output parameters are VariableCharacterisations, the same modelling entity
as for component parameters. They might themselves depend on the input parameters of
the specified service, for example if a parameter is processed internally and then passed
to an external service (e.g., extCallInput.VALUE = SEFFInput.VALUE). To
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Fig. 3. Actions in Service Effect Specifications

express changes on the characterisation made by the service, our framework for sto-
chastical expressions allows arithmetric operations on the corresponding random vari-
ables such as additions, subtractions, multiplication etc. For example, a service may add
some information to a file and then pass it to another service (e.g., extCallInput.-
BYTESIZE = SEFFInput.BYTESIZE + 100, where the byte sizes are specified
as random variables.).

We introduce a new action (SetVariableAction) to abstractly characterise the
return values of a service in a SEFF. It references a VariableUsage, which in turn
can include the name of a return value or of an output parameter. The characterisation
of these VariableUsagesmight again use input parameters of the SEFF. If multiple
SetVariableActions are specified in different branches of the SEFFs, the charac-
terisation of the corresponding output parameter is weighted according to the (possibly
nested) branching probabilities. Using a SetVariableActionwithin a loop results
in a characterisation of the output parameter weighted with the probabilities for the
number of loop iterations.

To consume the resources the service is deployed on, all actions other than Ex-
ternalCallActions can contain a ParametricResourceDemand. As com-
ponent developers can and should not know the concrete resources the component will
be deployed on by third parties, resource demands are specified for Processing-
ResourceTypes. These types can be for instance CPU, hard disk, network device,
etc. for which component developers specify the demand in terms of CPU cycles needed,
bytes read from hard disk, bytes sent over the network, etc. as random variables. Once
deployers specify the processing rates of concrete resources of these types, timing val-
ues can be derived from the resource demands. Resource demands may depend on input
parameters, and this dependency can be specified using the same stochastical expres-
sions as decribed above.

Control Flow. Fig. 4 illustrates the control flow operations in the SEFF-metamodel.
The behaviour of a SEFF may include branches, loops, and forks. BranchActions
split the control flow with an OR-semantic, only one of the following branch transitions
is executed, while ForkActions split the control flow with an AND-semantic, i.e.,
each of its inner behaviours is executed concurrently.
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Fig. 4. Control Flow in Service Effect Specifications

Branch transitions can be guarded or probabilistic. In the former case, the component
developer specifies a boolean random variable (BranchCondition) in relation to an
input parameter of the SEFF. As our framework for stochastical expressions allows
compare-operations such as equals, less, greater, etc. and also AND/OR combinations
complex constraints on the input parameters for executing a branch can be expressed.
The constraints shall always span the whole value domain of a parameter (e.g. X < 10
and X >= 10), and shall not intersect.

In the case of ProbabilisticBranchTransitions, the component devel-
oper specifies a probability for executing a specific branch. Though the behaviour of
component services is usually not probabilistic, it might occur in complex services that
a constraint on the input parameters for executing a branch cannot be specified easily.
In this case, the component developer can specify just a probability.
AbstractLoopActions can either be LoopActions, which include an inte-

ger random variable for the number of loop iterations (IterationCount), or Col-
lectionIteratorActions, which iterate over the elements of a collection pro-
vided as an input parameter to the service. In that case, the number of iterations is the
same as the number of elements in the collection, which might have been specified as a
probability distribution.
LoopActions assume the stochastical independence of parameters used in the

loop body to reduce the necessary computations. Opposed to this, Collection-
IteratorActions assume a stochastical dependency between the characterisations
of the inner elements of the collections used in the loop body. If a characterisation of an
inner element of the collection is used a second time within the loop body, its character-
isation is stochastical dependent to its first use. For example, an integer variable might
adopt the values 1 and 2 with a certain probability. If the random variable was evaluated
to 1 on the first use of the variable, it also has to evaluate to 1 on the second occur-
rence. Including this stochastical dependency increases the computational complexity,
but leads to more accurate predictions.

2.3 Example

Fig. 5 shows an example instance of the SEFF including most of the concepts intro-
duced above. The concrete syntax is an UML activity and stereotype actions and anno-
tations with the classes from our metamodel. Component1 provides Interface1, which
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<<InternalAction>>

<<GuardedBranchTransition>>
specification = „X.VALUE<0"

<<GuardedBranchTransition>>
specification = „X.VALUE>=0"

<<BranchAction>>

<<ParametricResourceDemand>>
specification = „Z.BYTESIZE * 10"
<<ProcessingResource>>
name = „CPU“

<<InternalAction>>

<<ParametricResourceDemand>>
specification = „Z.BYTESIZE * 2"
<<ProcessingResource>>
name = „CPU“

<<CollectionIteratorAction>>

<<ExternalCallAction>>

<<Parameter>>
parameterName = „Y“

<<VariableUsage>>
extCallPar.VALUE = 
Y.INNER.VALUE

<<SetVariableAction>>

<<VariableUsage>>
service1.RETURN.NUMBER_OF_ELEMENTS = 
Y.NUMBER_OF_ELEMENTS / 3

<<BasicComponent>>

Component1

<<VariableUsage>>
Z.BYTESIZE = 2000

<<ResourceDemandingSEFF>>

service1<<Interface>>

interface1

service1(X : Integer, 
Y : Collection) : Collection

<<ResourceDemandingBehaviour>>

<<ResourceDemandingBehaviour>> <<ResourceDemandingBehaviour>>

Fig. 5. Service Effect Specification

includes the signature of service1 with two input variables X,Y as well as the return
type Collection. Furthermore, a component parameter Z is specified for the component,
and its bytesize is characterised with a constant (2000).

After the start action, the SEFF contains a branch, which includes two Guarded-
BranchTransitions defining a constraint on the value of input parameter X. Once
the value distribution for X is specified by the domain expert, the probability for the
guards to become true can be determined. Both branched ResourceDemanding-
Behaviours include an InternalAction, whose resource demand is specified in
dependency to the bytesize of component parameter Z. After the branch, the service
iterates over the elements of input collection Y with the CollectionIterator-
Action. Within the ResourceDemaningBehaviour of this loop, an external ser-
vice is called, and its input parameter extCallPar is characterised in dependency to
the inner elements of input collection parameter Y. Finally, the SEFF characterises the
number of elements of service1’s return value in dependency of input collection Y.

Note, that the SEFF only contains performance-relevant information, such as re-
source demands, abstract control flow, and calls to external services. The actual code
of the component can contain an additional amount of internal computations, which are
not performance-relevant, and thus have been abstracted.

2.4 Transformation

In addition to the SEFFs by the component developers, the other three roles need to
specify their model instances (i.e., usage model, resource environment model, assembly
model, allocation model, etc.) in order to create a full PCM instance. Once all models
are specified and combined, they can be transformed into our analytical model. For
the specification of the model instances, we have implemented graphical editors using
Eclipse GEF/GMF.

The transformation (implemented in Java) consists of two steps: First, the parametric
dependencies in the SEFFs are resolved. This includes, for example, computing tran-
sition probabilities for guarded branch transitions and execution times for parametric
resource demands. As an example, Fig. 6 shows a set of variable characterisations on
the left side and the SEFF from the former section with solved parametric dependencies
on the right side.
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<<InternalAction>>

<<BranchProbability>>
probability = 0.8

<<BranchProbability>>
probability = 0.2

<<BranchAction>>

<<ActualResourceDemand>>
specification = „20000"

<<InternalAction>>

<<ActualResourceDemand>>
specification = „4000"

<<CollectionIteratorAction>>

<<ExternalCallAction>>

<<IterationCount>>
specification = INT_PMF[(30; 0.1)(60;0.9)]

<<SetVariableAction>>

<<ResourceDemandingSEFF>>

service1
<<ResourceDemandingBehaviour>>

P(X.VALUE = 7) = 0.2
P(X.VALUE = -5) = 0.8

P(Y.NUMBER_OF_ELEMENTS = 30) = 0.1
P(Y.NUMBER_OF_ELEMENTS = 60) = 0.9

P(Y.INNER.VALUE = „foo“) = 1.0

P(Z.BYTESIZE = 2000) = 1.0

<<VariableUsage>>
service1.RETURN.NUMBER_OF_ELEMENTS = 
INT_PMF[(10; 0.1)(20;0.9)]

<<ResourceDemandingBehaviour>> <<ResourceDemandingBehaviour>>

<<VariableUsage>>
extCallPar.VALUE = 
ENUM_PMF[(„foo“;1.0)]

Fig. 6. Service Effect Specification with Solved Dependencies

Second, the the PCM instance is converted into an instance of our stochastic process
algebra. This transformation merges a usage scenario with the participating SEFFs, and
transforms the n-ary tree of actions in the PCM into the binary tree of the algebra, which
will be explained in the next section.

3 Analytical Model

The computation of a service’s execution time uses a stochastic process algebra (SPA)
based on regular expressions. Its grammar is defined by the following BNF:

P := a | P · Q | P +π Q | P ∗(l)

For the scope of this paper, we use the common semantics of regular expressions en-
riching it with a semantic for timed behaviour. Opposed to process algebras in general,
recursive behaviour is forbidden here, instead our SPA uses the less expressive construct
of loops. This allows us to perform a relatively straightforward analysis of the described
systems. The complete version of the process algebra also supports parallel processes
and synchronisation (preliminary version can be found in [14]). In the following, the
time semantics of the rules above will be explained. Symbols will be denoted by small
letters (a, b) and processes by large letters (P, Q).

3.1 Computations

The execution time of a symbol a is a random variable Xa characterised by its PDF
fa(t). In our model, arbitrary distribution functions are allowed, which are assumed to
be independent and identically distributed (iid, see Section 3.2). Xa specifies the time
passed while processing a. If Xt is the time when a · P starts, the processing time of a
is added to Xt when it finishes, so X ′

t := Xt + Xa, and a · P then behaves like process
P at time X ′

t.
As for symbols, the execution time of process P is denoted by an iid random variable

XP characterised by PDF fP (t). The execution time of a sequence of two processes P
and Q, P · Q is the sum of their execution times XP ·Q = Xp + Xq . Since XP and XQ

are assumed to be iid, their characterising PDFs can be convoluted
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fP ·Q(t) = (fp � fq) (t),

where � denotes the symbol for convolution.
The probabilistic choice or alternative of two processes P and Q, P +π Q, either

has the execution time of process P with probability π or of process Q with probability
(1 − π). To define this behaviour, the uniform distribution between zero and one u(x)
is used, where u(·) denotes drawing a sample from u(x). Let u = u(·) be one sample
of PDF u(x), then

XP+πQ =

{
XP , if 0 ≤ u < π

XQ, if π ≤ u ≤ 1
.

The PDF of the alternative is the weighted sum of the single PDFs
fP+πQ(t) = πfP (t) + (1 − π)fQ(t)

If process P is executed in a loop, P ∗(l), the number of loop iterations is specified
by a probability mass function (PMF) pl(i) = Pl(X = i) denoting the probability
that process P is executed i times in a row. Then, if u = u(·) is a sample of the
uniform distribution u(x) and Fl(x) is the cumulative distribution function of pl(i), the
execution time of a loop is

XP ∗(l) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 0 ≤ u < Fl(0)
XP,1 Fl(0) ≤ u < Fl(1)
XP,1 + XP,2 Fl(1) ≤ u < Fl(2)

...

XP,1 + XP,2 + . . . + XP,N Fl(N − 1) ≤ u < Fl(N)

where N ∈ N+ is last value with pl(N) > 0 and pl(i) = 0 ∀i ∈ N+, i > N . XP,i is
the ith instance of random variable XP . The PDF of a loop can be computed by

fP l t
N

i 0

pl i
i

j 1
fP t

Tools and techniques from signal processing efficiently compute the execution time
of a process. We approximate continuous PDFs with discrete PMFs using a predefined
sampling rate as described in [10].

3.2 Assumptions and Limitations

The following section briefly describes assumptions and limitations underlying our ap-
proach. More detail can be found in [17,5].

Independent and identically distributed random variables: Random variables char-
acterising resource demand are assumed to be stochastically independent. This might
not hold in some realistic cases, for example, if a resource is overloaded and all resource
demands for this resource will lead to slow execution times. Furthermore, PDFs for re-
source demands are assumed to not change over time (e.g., to model a warm-up phase
and a normal operation phase of the system).
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Markov property on branches: As our SPA is based on Markov chains, our approach
inherits their usual assumptions. For loops, the Markov property (the probability of
going from one state to another is independent of the former execution path) has been
weakened, as our SPA allows the specification of PMFs for the number of loop iterations
and is not bound to a geometrical distribution. For branches, the Markov property is
still present, but the SEFF-model contains branch conditions in dependency to input
parameters.

Single-user analysis: As a first step, the analysis model assumes that only one user
executes a scenario at a time. However, the results from our approach can be fed into
existing tools for queueing networks to obtain predictions in a multi-user setting. Addi-
tionally, in [5] we have introduced a simulation tool for the PCM capable of simulating
multiple concurrent users.

Availability of models: SEFFs for each component in the architecture must exist to
apply our method. If new components are designed, it is possible to derive the SEFF
specifications from the design documents and publish them in a component repository.
For already existing components, we are working on code analysis tools for compo-
nent developers, to derive SEFFs semi-automatically out of source code, so that legacy
components can be integrated into our approach.

Static architecture: The PCM does not support dynamic component architectures,
where new components can be created or the links between components can change
at runtime. It is assumed that the set of components and their connection in the archi-
tecture are fixed for our performance prediction.

4 Case Study

We have conducted a proof-of-concept case study on a component-based architecture
comparing response time predictions based on our models with response time measure-
ments made with an implementation of the architecture. As the newly introduced com-
ponent specifications allow evaluating an architecture under different usage profiles, we
examined the architecture with two different usage profiles.

Specifically, the questions before the case study were: Can our method predict cor-
rectly, whether this component-based architecture can meet a service level agreement
(SLA) under two different usage profiles? How large is the prediction error of our
method in the measured usage scenarios?

4.1 Architecture, Scenario and Usage Profiles

The case study analyses the MediaStore architecture, a web shop for music and
video files modelled according to the functionality of the iTunes Music Store. It is a
three-tier architecture (Fig. 7) with a client tier, an application server hosting compo-
nents implementing the business logic, and a database tier with two MySQL databases
connected to the application server via Gigabit Ethernet. For the application server tier,
we chose the open-source variant of Sun’s Glassfish application server [11] which is
fully EJB3 compliant.
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Fig. 7. Media Store: Static/Allocation View

In the usage scenario of our case study, a user downloads a set of files (e.g., a mu-
sic album) from the store. Therefore, the user provides the WebGUI-component with
a query resulting in a set of music titles, which is forwarded to the MediaStore-
component. The database AudioDB is searched for the files, which afterwards get
transferred from the database server via the network connection to the application
server. Finally, the client can download the files. The UserDB database is not used
in this scenario.

The filling degree of the AudioDB is a performance-influencing factor (e.g., when
executing queries over the contained tables) and has been exposed with a collection
component parameter (StoredFiles.NUMBER OF ELEMENTS). The actual value
of this parameter depends on the context the component is used in. Furthermore, the
size of the files stored on the database server influences the transmission delay between
database server and application server, and is also modelled as a component parameter
(StoredFiles.INNER.BYTESIZE).

As a measure for copy protection, we incorporate a component DigitalWater-
marking into the architecture. It is able to unrecognisably watermark individual media
files with additional information. This component can be configured to watermark me-
dia files with the current user ID, so that the user could be tracked down, should the file
appear somewhere on the Internet. This configuration option has been modelled as a
component parameter probIncludeID, which specifies the probability of including
the ID. Additionally, the component can be configured to include additional texts like
lyrics or subtitles into the files, which has been modelled with the component parameter
probIncludeText.

Our performance prediction method shall check, whether the time between issuing
the download request and starting the download is sufficiently short. From the require-
ments, there is a service level agreement (SLA) of at least 90% of calls returning in
under 8 seconds, which has to be met even after watermarking is introduced.

The performance influencing information of the component services involved in
the case study has been modelled using SEFFs illustrated in Fig. 8. The parameteric
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addText

<<SetVariableAction>>

probIncludeID

1-probIncludeID

probIncludeText

1-probIncludeText

<<VariableUsage>>

fileToMark.BYTESIZE

<<Parameter>>

desiredFiles

<<RDSEFF>>

MediaStore.download
<<RDSEFF>>

AudioDB.getFiles

<<VariableUsage>>

filesIDs.NUMBER_OF_ELEMENTS

<<RDSEFF>>

DigitalWatermarking.
watermark

<<VariableUsage>>

filesToMark.BYTESIZE

<<ParametricResourceDemand>>

specification = „fileToMark.BYTESIZE * 
5.11E-9
<<ProcessingResourceType>>
name = „CPU“

<<VariableUsage>>

desiredFiles.NUMBER
_OF_ELEMENTS

<<InternalAction>>

getFiles

<<ParametricResourceDemand>>

specification = „4.0E-8 * 
desiredFile.BYTESIZE + 0.08“
<<ProcessingResourceType>>
name = „HD“

Fig. 8. MediaStore: Service Effect Specifications

dependencies within the SEFFs have been derived by monitoring the components and
analysing the results using statistical regression techniques. This step has to be per-
formed once for each component by its developer. Using such annotated SEFFs, dif-
ferent software architects can assemble the components to individual architectures and
predict the performance under their individual usage profiles.

As an example, Fig. 9 illustrates the series of measurements and the linear regres-
sion for searching the database, if the number of files stored within changes. We used
the derived values to specify the parameteric dependency for the InternalAction
”search” of the service AudioDB.getfiles in Fig. 8.
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Note, that this step of deriving parametric dependencies also has to be done parame-
terised by the hardware and middleware layer, on which the components are deployed
on. However, this is out of the scope of this paper.

The case study considers two different settings. In Setting1, the components and
the MediaStore architecture are used to build a music store, in which users usu-
ally request 10-14 files (a music album, number of files uniformly distributed) with
their filesizes distributed as given in Fig 10. The database is filled with 250.000 entries
of different music titles (i.e., AudioDB.StoredFiles.NUMBER OF ELEMENTS =
250000). Only the user ID branding from the watermarking component is used in this
setting (i.e., probIncludeID=1.0, probIncludeText=0.0).

Size (MB) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0
Probability 0.0060 0.0223 0.0466 0.1038 0.1606 0.2038 0.1882 0.1137 0.0685 0.0293 0.0173 0.0093 0.0300

Fig. 10. File size distribution

In Setting2, the components and the architecture are used to build a video store,
where users usually only request a single file (a movie), whose size is uniformly dis-
tributed between 95 and 105 MB. The database is filled with 10.000 entries of different
movies (AudioDB.StoredFiles.NUMBER OF ELEMENTS = 10000). The soft-
ware architect has configured the watermarking component to include the user ID and
also subtitles for the movies (i.e., probIncludeID=1.0,probIncludeText=1.0).

For the implementation of the MediaStore, we exploit the architectural model we
have used for the predictions. We have implemented a Model-2-Text transformation
on the PCM model instance, which generates code skeletons implementing the compo-
nents as EJB3. The code skeletons already contain the control flow parts of the SEFFs
(i.e., loops, branches, etc.), only the logic of internal actions is missing and has been im-
plemented manually. Additionally, build scripts, deployment descriptors, configuration
files, and a test client for performing the response time measurements are generated.
We introduce measurement probes into the implementation using aspects, which we
weave into the code using AspectJ [1]. Finally, we have ensured in a pre-test run that
the measurement probes do not distort the measured response times significantly. We
have measured the response time in both settings approx. 500 times to get distribution
functions.

4.2 Results

The predictions and measurements for the two settings of our case study can be found in
Fig. 11- 12. The figures illustrate both predictions (dark grey) and measurements (light
grey) as histograms and cumulative distribution functions (CDF), which are placed on
top of each other to enable comparing them visually. Matching areas of both functions
are shown in medium grey.

For Setting1, the probability functions widely overlap (Fig. 11(a)). The most
probable predictions for the response time is at around 6 seconds, which matches the
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(a) Histogram (b) Cumulative Distribution Function

Fig. 11. Response Times Setting1

(a) Histogram (b) Cumulative Distribution Function

Fig. 12. Response Times Setting2

measurements quite accurately. To test for goodness of fit, we used a Kolmogorov-
Smirnov-Test [19] (KS-test), which was not able to reject our null hypothesis of pre-
diction and measurement having the same underlying probability distribution at a sig-
nificance level of α = 0.01. From the CDF it can be derived that it was predicted that
the SLA of 90% of the calls returning in less than 8 seconds could be met (Fig. 11(b)).
This prediction also matched the measured values, where actually 92% of the calls re-
turned in less than 8 seconds. The deviation between prediction and measurement at the
90% mark (7.7 seconds vs. 7.8 seconds) is approx. 0.1 seconds, i.e., a difference of 1.3
percent.

In Setting2, the probability functions overlap to a large extent, but the measured
response times spread further than the predicted ones (Fig. 12(a)). This is due to the
higher network load because of the larger file sizes, which leads to a higher distortion
of the measurements [28]. However, the most probable predicted and measured values
are both around 9.5 seconds. As in setting1, the KS-test was not able to reject our null
hypothesis. In this case, it was predicted that 90% of the calls returned in 10.4 seconds,
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which would violate the required SLA of 8 seconds (Fig. 12(b)). The measurements
confirmed that under Setting2 the SLA would indeed be violated, as the 90% of the
calls returned in only 11.3 seconds. The error between prediction and measurement was
0.9 seconds or 8.0 percent.

Concludingly, our approach correctly predicted the compliance or violation of the re-
quired SLA in both studied cases. In these cases the pointwise error between prediction
and measurement was below 10 percent.

5 Related Work

Model-based performance prediction methods for software architectures originate from
the SPE (Software Performance Engineering) approach by Smith et al. [26]. They have
been surveyed by Balsamo et al. [3] and, specifically for component-based systems, by
Becker et al. [4]. We will briefly review usage profile modelling in other performance
prediction approaches for component-based systems, before comparing our analytical
model with established performance formalisms.

Bondarev et al. [7] proposed a similar approach to ours, but aim at components in an
embedded system environment. Dependencies between input parameters and resource
usage of a component are modelled explicitly in this approach, but it is assumed that
input parameters can be characterised as constant values. Our approach allows stochas-
tical characterisations of parameters, which is more accurate for the targeted domain of
large distributed systems. The CB-SPE approach [6] is based on component specifica-
tions, which are parameterisable for different resource environments (e.g., CPU time,
bandwidth, memory buffer), but not for different usage profiles. It furthermore assumes
that it is known which required services are invoked in a component upon calling a
provided services. This dependency is modelled explicitly in our approach. KLAPER
[12] is an intermediate specification language for component performance and reliabil-
ity aiming at reducing the effort for model transformations. It allows the specifications
of input parameters, but does not contain component configuration parameters or output
parameters. Hamlet et al. [13] aim at components resembling mathematical functions.
They divide the input space of a component into several subdomains. The execution
time for each subdomain is provided by the component developer, and the software
architect needs to execute the component for each subdomain to deduce which other
components are called.

Our approach uses a restricted stochastic process algebra (SPA) with generally dis-
tributed execution times (survey in [15]) as analytical model. Similar, even more ex-
pressive SPAs have been proposed, but due to their complexity they are usually only
solvable via time-consuming and less precise simulations, whereas our restricted SPA
can be efficiently solved analytically without simulation. Other analytical models for
performance prediction include queueing networks [18] and stochastic Petri nets [2].
Analytical solutions to queueing networks with generally distributed service times are
known only for very restricted cases. Layered queueing networks [24] only support
mean-value analysis, while our approach results in a more expressive probability distri-
bution function.
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6 Conclusions and Future Work

This paper has introduced extensions to an existing component specifications language
to model characterisations of component parameters as well as service input and out-
put parameters. Such parameters can influence the resource usage or control flow of a
component service significantly and should thus be included into QoS-predictions. We
have described the fully automated model transformation, which maps an architectural
model of our component specifications to a stochastic process algebra. Solving the al-
gebra analytically has yielded response times for use cases of the system as distribution
functions.

Component developers as well as software architects may benefit from this approach.
Component developers can specify the performance properties of their components
without exposing intellectual properties, and thereby increase their re-usability as users
can quickly check the actual performance of the component in their environment. With
the performance specifications, software architects can quickly evaluate different design
decisions regarding the components used in their systems. By adjusting the parameters
of the introduced models, they can check if performance requirements can be met under
different system configurations.

Future work is directed at lowering the limiting assumptions of our approach. We are
currently implementing code-analyses tools to semi-automatically derive SEFFs from
existing legacy software components. This might reduce the effort for manually creat-
ing the models needed for the performance prediction. The concurrency modelling of
our process algebra is still limited and needs to be extended and evaluated on multi-
processor systems. We plan to better include characteristics and configuration settings
of the middleware into our approach. In the long term, we will extend our approach for
dynamic component architectures, where the bindings between components can change
at runtime.
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Abstract. Self-adaptive systems are capable of changing their behav-
iour at runtime to meet target constraints. An important research ques-
tion is how quality of service models can inform runtime adaptation.

This paper presents a solution to the problem by application of control
theory to improve performance of queued systems by means of architec-
tural adaptation.

In a paper presented at the previous year’s QoSA conference, we
showed how Auto-Regressive Integrated Moving Average techniques can
be utilized to forecast how Quality of Service (QoS) characteristics are
likely to evolve in the near future. This is particularly important in cases
where systems can be adapted to counter QoS constraint violations. In
this paper, we show how, given a similar type of QoS characteristic fore-
casts, strategies of architectural adaptation can be implemented that
pre-emptively avoid QoS violations. The novelty of our approach is that
we use classical control theory to ensure that our adaptation strategies
are stable, in the sense that they do not oscillate between choices. We
provide a description of how our control theoretic model can be im-
plemented using context-based interception in .NET via model driven
engineering.

1 Introduction

Self-adaptive systems are capable of changing their behaviour at runtime to meet
target behavioural constraints. An important research question is how quality
of service models can inform runtime adaptation. This paper presents a step
towards solving this problem by application of classical control theory.

In a paper presented at the previous QoSA conference [7], we showed how
Auto-Regressive Integrated Moving Average (ARIMA) techniques can be uti-
lized to forecast how QoS characteristics are likely to evolve in the near future.
This result allows us to detect warning signs that a system is tending towards vi-
olation of desired QoS levels. A warning can be given to a human administrator,
who might then decide to reconfigure the system in such a way as to pre-empt
the violation occurring.

However, clearly there is benefit from an automated means of controlling sys-
tem parameters to provide such reconfiguration. The theory of dependability
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offers a range of possible solutions for automated control for load balancing
and fault tolerance. In this paper, we show how, given Auto-Regressive Moving
Average (ARMA) predictions of likely future QoS characteristics, pre-emptive
controllers can be developed by application of classical control theory. Our ap-
proach determines a control strategy that is optimal with respect to resource
cost.

We focus on the problem of queued stability and utilization. The idea is that, if
our system detects a dangerous trend towards a communication queue becoming
unmanageably long, then a controller component should adapt the architecture
of the system to improve influencing factors, such as service rate and the average
number of calls entering the queue. For example, if the queue is becoming too
long, the controller could create an alternative server and divert some calls to
it, halving the service rate. In a world of limitless resources, the controller could
solve the problem of QoS violation by creating a thousand such servers and,
when the queue becomes shorter, the thousand servers may be replaced by one
again. The problem is that each server has a cost, as does the adaptation action.
The controller should adapt the architecture to provide the best QoS and yet be
optimal with respect to cost.

A common approach is to perform adaptation by means of some form of a
policy-based controller. Determining the optimal control strategy is difficult. A
bad strategy yields a oscillating feedback problem: if the utilization improves
significantly, so (to minimize cost) influencing parameters are changed again (by
removing some servers for instance), and, consequently, the utilization worsens
significantly, resulting in influencing parameters needing to be changed again,
the utilization improving signficantly again, and so on. The best controller is one
that provides an appropriate adaptation as quickly as possible but do not result
in radical oscillations.

We develop the controller using root locus techniques to determine optimal
non-oscillating control strategies. We also provide a description of how our con-
trol theoretic model can be implemented using context-based interception in
.NET via model driven engineering.

The paper proceeds as follows:

– Section 2 summarizes relevant notions from queuing theory.
– Section 3 shows how to apply classical control theory to develop a controller

providing optimal adaptation.
– Section 4 provides overview of how we employ model driven techniques to

implement our control systems.
– An illustrate example is provided in section 5.
– Conclusions and related work are discussed in the final section.

2 Background

2.1 Queued Communication

Queuing theory enables the mathematical analysis of queued communication
between clients and a server (or a set of servers) (see, for example, [13,5]). Such
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communication is commonplace in large-scale distributed systems, where there
is a dependence on loosely coupled messaging and messages can potentially be
sent from different sources to the same component. Performance evaluation of
such systems is essential.

We understand queued communication as depicted in Fig. 1. A number of
calls enter a queue per unit time. We write Xi ≥ 0 for the random variable
denoting the number of calls entering at unit time i = 1, 2, . . .. Each call is
numbered and served in some order. As soon as the server finishes servicing a
call, it immediately starts to serve the next call (if there are calls remaining
in the queue) and the served call leaves the system. If repeated processing is
necessary, a call joins the queue right from the beginning. The server is called
idle when there are no calls remaining in the queue.

There is a range of different models of queued communication, each with
well understood QoS benefits and disadvantages. Factors effecting the values of
QoS characteristics for a particular model include the distribution of incoming
requests, the servicing discipline (for example, randomly selected, incoming order
or some priority discipline) and serving rate distribution.

 

IServer 

X3 X2 X1 

c … c c c c c c c … Server <<Interface>> 
IServer 

+c ( ) 

Fig. 1. A queued service. Invocations of the service’s methods are queued, where each
Xi is the number of invocations at unit time i .

For queued systems, a central QoS characteristic is stability. A system is
defined to be stable when each queued call is served. It is unstable if there is a
possibility that calls will not be served.

We compute stability via the notion of system utilization, defined as follows.
We assume each Xi is independent and equally distributed and with an aver-

age λ = E[Xi], defining the average number of calls joining the queue per unit
time. We assume that all calls have an average serving time b > 0 – this is the
average unit time to process a single request. We consequently define the average
service rate, the average number of requests that are served per unit time, to be
μ = 1/b.

Definition 1 (System utilization). The utilization of a system, ρ is defined

ρ = λ/μ = λb

where λ is average number of calls joining the queue per unit time and b is the
average serving time. The system is stable if, and only if, ρ < 1 and unstable if,
and only if, ρ > 1. In case when ρ = 1, the system is stable only when Xi = Xj

for all i, j.

Thus, if system works stable we have a finite queue length.
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2.2 Forecasting Queue QoS

Given a system in which there are no trends in the number of calls made to a
server or in the service time for a call, then the definition of ρ above provides
the best means of predicting stability and QoS dependent characteristics.

While such situations are common, there are many contexts where trends
in queue usage occur. For instance, if we are running a Google-like web service
search engine, then, depending on various factors that influence the popularity of
the service (our business plan, advertising strategies, the novelty and use of the
service itself, etc), it is possible that there will be a genuine trend in the number
of calls over time. In such a case, using an overall average to determine ρ will
not provide the best immediate prediction of stability. It would be preferable
to factor out earlier measures of calls (when the service was unpopular) and to
emphasize the newer values, to predict if the system is likely to become unstable
soon.

In our previous paper at QoSA [7], we considered the application of the
ARIMA method for the purpose of predicting QoS characteristics for queued
systems and presented some promising experimental results. Here, with the mo-
tive of applying control theory to the pre-emptive adaptation problem, we utilize
a basic version of this average, the Auto-Regressive Moving Average (ARMA).

ARMA Forecasting Strategies. ARMA was developed to treat trends in a
more sophisticated way than simple averages.

One of the simplest strategies for time series prediction based on trends is to
take an average of recent values of the time series, ignoring earlier values. This
is the simple moving average technique. Here, the average is computed as

SMA(Xn, r) =
n∑

i=n−r+1

Xi

r

where r is cycle length and n is the total number of observations. This is essen-
tially an arithmetic mean, but over a shorter cycle length than the total number
of observations.

ARMA extends the simple moving average and is widely used in financial
domains for forecasting time series. It consists of two components

– A moving average component, associating weights with previous values in
the time series, so that the forecasted next value depends more on the most
recent value and less on the earliest value in the time series.

– An autoregressive component, factoring in errors of previous predicted values
against actual values in order to minimize error in the predicted value.

The equation for ARMA is

y[k] =
m∑

q=0

x[k − q]βq −
n∑

p=1

y[k − p]αp (1)
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where x[i] is a time series of input values and y[j] is a time series of forecasted
values of x, βi and αj are weights for the moving average and autoregressive
components and m and n define how much of the time series the prediction
method should consider. Given a particular time series x[i] we can use least
squares regression to determine optimal values of these coefficients. There is a
way of obtaining the confidence interval for an ARMA forecast – see [7] for
details.

So, the ARMA prediction for the k-th arrival rate X̂n will be

X̂k =
m∑

q=0

Xk−qβq −
n∑

p=1

X̂k−pαp (2)

Prediction of Utilization. Given the ARMA prediction of call arrivals, it
is possible to forecast M/M/1 QoS characteristics by substitution of predicted
values of X into the formula for utilization. Confidence intervals are calculated
similarly.

We define the predicted utilization to be

ρ̂k = X̂kb

We can determine the confidence interval for predicted utilisation in terms of
predicted arrival rate’s error, using the fact that the error of ρ̂k will be X̂nb −
Xnb = RX

n b:

[
ρmin

n,k , ρmax
n,k

]
= ρ̂n,k ∓ ξ√

k

√√√√V ar

{
k∑

m=1

RX
n,mb

}

Utilization prediction is useful in two cases:

– When there is a genuine trend towards instability. This is a serious prob-
lem for a queued system and pre-emptive notification can be very useful if
an adaptation solution exists. For example, if a webservice has a predicted
instability, administration could refuse any more requests until the queue
normalizes.

– When there is a “local” trend towards instability. A time series might have
a globally stable utilization, but with locally unstable segments. That is, a
queued system might be able to respond to all requests eventually, but at
certain times, might have an unacceptably high number of requests compared
to service time. This situation can also benefit from pre-emptive notification
to inform an adaptation strategy.

The previous confidence intervals for a prediction are helpful for determining the
certainty we have of a current predicted trend in utilization.

See [7] for an explanation of how a number of related QoS characteristics can
be forecast based on these calculations.
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3 Control System Model

We now outline how classical control theory can be applied to develop a con-
troller for changing a queue service rate pre-emptively in response to trends in
utilization toward instability.

Specifically, we treat pre-emptive control of service rate in order to maintain
a desired level of utilization. If the predicted utilization diverges above or below
the desired level, we require our controller to apply a positive or negative gain
to offset the divergence.

The idea is as follows. At any point in time, the utilization for the service
can be computed in terms of the current average number of calls and average
service rate. A predicted utilization model can also be determined, following the
ARMA technique of the previous section, to give a picture of how we expect
the utilization to continue, given known trends. Consider a constraint that the
utilization should not exceed a certain amount. The control error of the service
is the difference between the predicted utilization and a desired utilization. The
controller is constructed to manipulate the average service rate in such a way
that this error is minimized. The controller is characterised by a function over
the error and a constant gain parameter. Each adaptation is associated with
a cost, so the controller must also ensure that cost is minimal. We construct
a closed-loop transfer function model for the system. This is a complex valued
function. Root locus analysis is a technique whereby the poles of the transfer
function are identified in order to determine the optimal gain for the controller
function.

3.1 Automatic Control Systems

Control systems to consist of a series of interconnected ‘plants’. The term ‘com-
ponent’ is often used in place of ‘plant’ by control engineers, but to avoid confu-
sion, we shall only use the term ‘component’ in the software engineering sense.
However, a plant does have some similarities to a software component, that we
expound upon in the next section. A plant is considered as a functional module,
taking an input signal and returning an output signal.

Transfer Functions. The relationship between input and output relationship
for a plant is often characterised by a transfer function. In the case of continuous
relationships, where input and output are related via time-invariant, differential
equations, the transfer function is given as the Laplace transform of the output
over the Laplace transform of the input. The analogous situation for discrete
relationships uses a Z-transform instead of a Laplace transform:

Transfer function = G(z) =
Z{output}
Z{input}
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The Z-transform Z is essentially a Fourier transform generalised over the com-
plex plane [12]. Given a signal x[n], the Z-transform is defined as

X(z) = Z{x[n]} =
∞∑

n=0

x[n]z−n

where z is some complex number z = Aejφ.
Transfer functions are used because they allow us to represent system dynam-

ics by algebraic complex equations. If the highest power of z in the denominator
of the transfer function is equal to n, the plant is called nth-order.

The transfer function for a plant enables us to understand its output for
various forms of input. Transfer functions can be experimentally derived by
studying how a plant reacts to a range of sample input values.

Automatic Control Systems and Block Diagrams. A block diagram of
a system represents how signals flow from one plant to another. Each plant is
represented by a square block, with the name of its transfer function drawn
inside. Arrows connecting plants define the way in which the output of one
plant is passed on as the input for another plant. Two signals can be added or
subtracted from one another at what is called a summing point. A signal can
split and be fed concurrently into several other blocks or summing points – the
point of such a split is called a branch point.

W(z)
E(z) C(z)R(z)

H(z)

++ - G(z)
b

Controller WS

Φ(z)

Fig. 2. Control flow for a single component architecture

A simple automatic control system is a system with the block diagram of
Fig. 2. It consists of three plants with transfer functions G(z), W (z) and H(z),
with input and output signals being sent as depicted by the arrows. The output
signal of W (z) branches out of the system and also is fed into a summation
point (depicted by the circle), where it is subtracted from a reference input R
(summation of the two signals would be depicted by two positive symbols in the
circle).
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The entire system forms a plant, with an input R and an output C. It can
therefore be associated with a transfer function of the form

C(z)
R(z)

=
G(z)W (z)

1 + G(z)W (z)H(z)
(3)

This is called the closed-loop transfer function for the system. The term

G(z)W (z)H(z)

relates the signal φ(z) to the error signal E(z), and is called the open-loop
transfer function.

3.2 Control System for a Queued Service

Our intention is to define a control system of the form given in Fig. 2, where

– The reference input R is the desired level of utilization to be maintained for
the service.

– The service is modelled by the plant W . We are not concerned with modelling
the actual functionality of the service here. Rather, we are only interested
in its current utilization. Therefore, in the control system, it is modelled as
a function that takes in a controlled service rate b from the controller G and
outputs a current utilization rate c = Xb, where X is the current number of
calls joining the queue. The transfer function for the service is

G(s) =
Z{output}
Z{input} =

X(z)b(z)
b(z)

= X(z)

Thus, the transfer function is parametrised over the model for the service’s
arrival process. For example, if we consider a service with a M/M/1 queue,
we assume the service is characterized by a Poisson arrival process and a
FIFO queue ordering discipline. In this case, the transfer function for G will
be the Z-transform of a Poisson distribution for arrivals X .

– The current utilization is fed into an prediction plant H that forecasts the
likely future utilization of the service, using an ARMA function of the form
(1), with coefficients optimised according to the service’s queuing model.
There is a well-known result in discrete control theory that relates ARMA
to a Z-transform, which tells us the Z-transform for (1) is

H(z) =
Φ (z)
C (z)

=

m∑
q=0

z−qβq

1 +
n∑

p=1
z−pαp
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Control Laws. Our control system, following Fig. 2, should also include a
controller plant. We then identify the controller plant defined by a function over
the error signal, taken as the difference between the desired utilization and the
predicted utilization

e = R − φ

The controller plant G takes this error as input and will return a service time b
thatwill attempt to offset any trends away fromthe desiredutilization.This service
time is taken as the input for the plant that models the queued service, W .

Control theory offers a range of possible equations that can define the con-
troller’s actions. Our approach works equally well with any of these strategies.
For the purposes of illustration, we employ the integral control action strategy,
in which the controller output value, the controlled service time, b(t) is changed
at a rate proportional to the error signal e(t),

db(t)
dt

= Kie(t)

where Ki is a constant parameter, called the gain of the controller. Because we
consider only discrete time, this becomes

b(t) = Ki

t∑

t=0

e(t)

The Z-transform for an integral controller is

G =
Ki

z

Note that the strategy is a simplification: in practice, the control strategy will
be implemented by discrete actions (for instance, increasing the service time by
diverting calls to replicated servers) offering generally coarser shifts in b. The
relation between the controller plant model and its implementation is addressed
in the next section.

Clearly a higher value of Ki will lead to a faster correction to predicted di-
vergence from a desired utilization. However, at some point, higher values of Ki

will “overshoot”, leading to a large predicted divergence in the opposite direc-
tion that will then require another large correction. When this occurs, the value
of Ki results in feedback through the control system and oscillations in control
actions. In terms of implementation, this is undesirable as oscillations will effect
performance, as each control action will be associated with a cost.

So, we require the highest value of Ki that does not overshoot in this fashion.
This can be determined through root locus analysis of the closed-loop transfer
function for the control system.

The root locus method involves finding the roots of the characteristic equation
for the closed-loop transfer function are plotted for all values of the gain para-
meter Ki. The characteristic equation for the closed-loop system is obtained by
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setting the denominator of (3) to zero. This occurs when the open loop transfer
function GWH is equal to −1,

G(z)W (z)H(z) = −1

The method enables the analyist to determine the effects variations on Ki will have
on the location of closed-loop poles. While theoretically quite complex, the solution
for systems of our form can be easily determined automatically by MATLAB.

The damping ratio for a root locus plot determines the speed at which we
would like the controller to converge to a desired value after a predicted diver-
gence, assuming no further external perturbations to the utilization arising from
changes to the arrival rate X . A lower damping ratio is desirable, but should be
balanced with as high a value of Ki as possible. A given damping ratio r can be
used to determine the value of Ki from the root locus plot: the value is found
from the point on the plot that makes an angle cos−1r with the negative real
axis. Because the ratio should be between 0 and 1, with a ratio above 1 leading
to oscillations, all non-oscillating values of Ki are to be found in the upper left
hand side of the complex plane for the the root locus plot.

4 Model Driven Development of Controlled Architectures

The method of the previous section developed a controller function that de-
termines how the service rate should be changed in order to avoid undesirable
trends in utilization. This function is a model of how control should work for
a particular queued service. The this section sketches how we implement such
models over an architecture through model driven engineering techniques.

4.1 Contexts and .NET

We use MDA to develop controlled service-based architectures built in .NET.
Services are web services managed via the .NET UDDI infrastructure.

Our approachmaintains encapsulation of functionality from instrumentationby
means of context-based interception. A context in the .NET Framework is used as
an objects execution scope and to intercept calls going to and from the object.

For the purposes of this paper consider the following conceptual semantics of
a simple context, as illustrated in Fig. 3. We can consider a context as a type
of container for .NET class objects. Contexts are associated with two kinds of
method, a pre-call process and a post-call process. When clients, external to
the context, invoke a contained class object, the context will execute the pre-
call process. Immediately after the class object returns a value, and prior to
returning control to the calling client, the context executes the post-call process.
Calls to any components contained within the context will be treated in the same
way, while calls within the context are not intercepted. In this way, a range of
functions can be implemented as pre- and post-call processes that “cut across”
the methods of all contained objects. The principle is therefore similar to aspect
oriented programming.
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method

2. Call intercepted

4. Return value

5. Return intercepted
6. Return value

passed back to C

Fig. 3. Simplified semantics of context-based interception

For our purposes, context-based interception will be used to separate the
service logic from control plumbing, by utilizing pre- and post-calls to provide
information about a class object’s behaviour without having to directly add
instrumentation code to the class definition.

Our semantics is a simplified abstraction of how context-based interception
is implemented in .NET with the System.Runtime.Remoting namespace. In
.NET, contexts are implemented as custom attribute classes, providing the
IContextProperty and IContributeServerContextSink interfaces. Intercep-
tion code is associated with a context via message sinks, classes which implement
the IMessageSink interface. Interception of sychronous method invocations is
achieved by refining the SyncProcessMessagemethod of the following abstract
sink class, GenericSick:

public class GenericSink : IMessageSink {
IMessageSink m NextSink;
public GenericSink(IMessageSink nextSink)

{ m NextSink = nextSink; }
public IMessageSink NextSink

{ get { return m NextSink; } }
public SyncProcessMessage(IMessage msg) {

//Pre-call interception
PreCallProcessing(msg);

//This calls the object:
IMessagereturnedMessage =
m NextSink.SyncProcessMessage(msg);
//Post-call interception
PostCallProcessing(returnedMessage);
return returnedMessage; }

void PreCallProcessing(IMessage msg) {
/* Do some pre call processing */ }

void PostCallProcessing(IMessage msg) {
/* Do some pre call processing */ } }

We implement diversions to pre-call processing and post-call processing within
the SyncProcessMessage method, by calling the class’s PreCallProcessing
and PostCallProcessingmethods, respectively prior to, and immediately after
invoking the requested class. It is possible to build a context that has a chain
of such sinks, to combine sets of cross-cutting functions. Contexts can then be
associated with classes using .NET’s declarative custom attribute syntax.

4.2 Model Transformations

We now sketch our approach to controller generation. We first develop control
systems for each constrained component of our extended version of the UML2
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UML2 extension

.NET

Control system
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Fig. 4. Model driven development of the controlled system

superstructure. Then we apply a so called Y model-transformation, mapping UML
components and their associated control systems to .NET based implementations.

We have implemented a beta version of our translations using the INRIA
Triskell group’s Kermeta transformation language. In this language, model trans-
formations are defined as meta-operations of M2 metaclasses, whose input types
are Platform Independent metaclasses and whose output types are Platform
Specific metaclasses. This has the advantage of providing a unifying MOF-style
framework for understanding both metamodels and model transformations.

We omit the full description of the transformations and instead describe their
behaviour informally. As a motivating example for our transformations, we de-
fine a simple application of model transformation, involving a constraint over
utilization imposed over method calls to a component.
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Three models are given given in Fig. 4. We use the UML2 superstructure
extended with QoS constraints, as defined in [3]. Our transformations map this
to a control system model, that defines an adaptation strategy.

5 Example

To illustrate our predictive methods, we describe a simulated B2B webservice
based system. The queued server WSDistributor is a computer component dis-
tributor selling for example chips or monitors. There are 30 Client web services
WSAssembler1, . . ., WSAssembler30 that act as communication points to busi-
nesses that use the distributor for purchasing components which they then as-
semble into computers. Clients could make one of the following three types of
call: makeOrder, cancelOrder or makeQuery. For the sake of simplicity, we do
not differentiate between the different calls, so that the arrivals per time unit X
may consist of any number of these method invocations. The architecture of the
system is shown in Fig. 5.

 

IServer 

B-2-B 

      WS

Computer 
component 
distributor 

WS 

Customer  - 
assembling 
business 

WS 

Call = order for a computer 
component

<<Interface>> 
IServer 

+makeOrder(corder:Details):int
+cancelOrder(order:Number):int 
+makeQuery(query:Query):Result 

Fig. 5. Our B2B example

In order to obtain an initial working dataset of arrivals per time unit, we
implemented the distributor webservice as an ASP.NET webservice, running
on a Xeon 1,7GHz server running Windows Server 2003 and IIS 6. We ran the
Microsoft Web Application Stress tool on a Pentium M laptop to simulate various
demand profiles, both random and noisy trends.

We then ran least squares regression over the dataset to obtain an optimal set
of 10 αi and βj parameters for an ARMA model of the form (1) with n = m = 9.

The model transformations of the previous section generate a context for the
server, mapping this ARMA model to prediction pre-call code in the context.
We assume each call type has the same processing time b.

The architecture of the system assumes an M/M/1 queuing model, with a
Poisson arrival distribution. This information is used in the UML to Control
theory transformation, generating a control system model with the following
description:

φ(n) = ARMA(c(n))
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We then apply root-locus analysis over this equation to determine the optimal
value of K. We plot the roots of the characteristic equation against all values
of K. This can be done easily in MATLAB, producing Fig. 6. The poles are
denoted by an x and the zeros by a o. We can use this to determine the value of
the gain that will make the damping ratio of the dominant closed-loop poles as
prescribed. For example, valid, non-oscillating values for Ki are .1 with damping
ratio .2, .5 with damping ratio .193 and 1 with damping ratio .63.
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Fig. 6. Root loci for our example

Fig. 7 shows controlled utilization with valid, non-oscillating gain values (0.1
and 1) against uncontrolled utilization. As can be seen, higher gain results in
faster response to trends away from the desired utilization level of 0.7. Because
there is always random arrival rates, the controlled utilization will never be ex-
actly at the desired level, but it maintains a satisfactory level of stability. Most
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Fig. 7. Two plots of controlled utilization with valid, non-oscillating gain values against
uncontrolled utilization)
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notably, when the uncontrolled utilization moves into instability between time
units 144-199 and 298-331, both graphs show the controlled utilization maintains
a much better level of stability. Fig. 8 shows controlled utilization for oscillating
gain values with a damping ratio of greater than 1. Clearly the controlled utiliza-
tion here “overshoots” the correction to deviation from required utilization. In
particular, the controller leads to undesirable oscillations between a near zero uti-
lization (corresponding to, for instance, a very high number of replicated servers)
and very unstable utilization (corresponding to a single overloaded server) at the
points where uncontrolled utilization exhibits prolonged instability. This makes
the controlled utilization worse than retaining ordinary utilization.

In the implementation, the service rate is changed by means of several adap-
tation strategies. 1) The server can be replicated n times, with yielding a new
processing time equal to bn. 2) There are equivalent versions of the server avail-
able to access via UDDI, each with a variable serving time. If calls are diverted
equally to one of these servers with service time b′, then the new overall process-
ing time is b + b′. These strategies are mapped to server selection code that
forms the final part of the pre-call in the context generated by the transforma-
tion. Given a desired service level b, the selection code chooses the best strategy
to meet the target. Provided the service rate change strategies are sufficiently
fine grained enough, the selector can follow the controller’s requests closely.

6 Related Work and Conclusions

There are many systems that permit dynamic adaptation of architectures based
on real time QoS information [2,1,15,4,11]. The work of [15] is most similar to
ours, as they use UDDI and QoS information to assemble web service architec-
tures of optimal performance. Adaptation has also been proven to be useful in
a range of other contexts. For example, [1] defines a language of QoS policies
for grid services that are enforced by means of adaptation mechanisms. A differ-
ent approach to QoS adaptation is considered in [14] for the case of embedded
systems. These systems do not involve control theoretic notions or forecasting
of values as part of their adaptation strategies. The ARMA methods need not
only be applied to compute QoS queue characteristics. These strategies have the
potential to be combined with such (non-queued) QoS-based runtime adaptation
technologies.

Similar forecasting methods are used by Dinda for host load prediction [6]
of CORBA based systems and the performance prediction methods of [2] and
[8]. The difference with that works is that we adapt ARIMA methods to queued
models, instead of load time estimation models. The intention behind our system
is analogous to that of the Running Time Advisor of [6], but applied to widely
distributed webservice component architecture.

Further work on stability for more complicated queuing strategies is given
in [9]. These results could be adapted to our context, to enable us to predict
stability for systems involving multiple servers.[10] presents the most completed
overview of different stochastic methods to examine queued system to stability.
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There are about ten methods. Each of them represents particular interest of
investigation, study and especially applying. Most of these methods have been
contrived to be applied in different parts of science, but never was applied to
predict behaviour of complicated computer systems.
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Abstract. Component-based development helps to improve the modularity and 
reusability of embedded systems. Component models devised for embedded 
systems are typically restricted due to the limited computing, storage and power 
resources of the target systems. Most existing component models for embedded 
systems therefore only support a static component architecture and provide a 
simple and lightweight core. With the increasing demand for more feature-rich 
embedded systems these component architectures must be extended.  In order to 
remain useful for the development of resource-restricted embedded systems, 
however, the extensions must be optional.  Creating such extensions requires a 
cost-effective development process that can produce reusable, rather than 
application-specific, extensions. This necessitates a systematic approach to 
seamlessly integrate application specific requirements of the extension, the 
existing component model and the constraints of the computing environment. In 
this paper we propose a scenario-based architectural approach to extending the 
capabilities of the CAmkES component model.  This approach is used to distil 
application specific requirements and computing constraints, summarise generic 
scenarios, drive the extension to the core CAmkES architecture. We illustrate 
our approach with a case study involving the addition of dynamic capabilities to 
CAmkES.  

Keywords: embedded system, component, extension, scenario, architecture 
design. 

1   Introduction 

Component-based development helps to improve the modularity and reusability of 
software and is increasingly being applied to embedded and real-time systems. 
Component architectures for embedded systems have major differences from those for 
enterprise systems mainly due to the resource restrictions of embedded systems. 
Deployment, cost, and size concerns lead to significant restrictions in processing power, 
memory size, and energy resources. Developers of software for embedded systems 
must, therefore, ensure that their software can perform sufficiently on slower processors, 
can fit into reduced memory, and can run efficiently in order to conserve energy. Since 
component-based implementation of applications often demands extra computing 
resources, component architectures and models for embedded systems are devised to be 
simple and lightweight. They typically allow only static architectures that do no change 
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at runtime, limit the ways that components can be connected and do not provide for 
memory protection between components. This means that, for example, components 
cannot be created or destroyed at runtime, nor can new connections be created or 
existing connections be broken.  

With increasing demand for more feature-rich embedded systems (including 
mobile phones, cars, multi-media systems, etc.) that require dynamic features such as 
downloading and updating of system software, dynamically changing configurations, 
etc. component models for embedded systems need to be extensible and flexible in 
order to support such features when they are required. The domain-specific nature of 
embedded systems means that features required by different types of devices (for 
example, mobile phones and cars) will be very different. This makes it impractical to 
devise a comprehensive component model that provides all the possible features.  

One solution is to develop a component model that supports core features and also 
embeds services for developing extra features in a monolithic design. This is similar 
to the component models implemented for enterprise applications, such as J2EE and 
CORBA Component Model (CCM). In these approaches a container hosts the 
application components and also provides services such as transaction and security 
management. Such a solution leads to a heavy component model and has the 
disadvantage that restricted resources can prevent its practical use.  

Another solution is to extend the static component models with only required 
features and develop a flexible architecture for incorporating newly added features. 
This solution imposes challenges for the design of the component architecture at two 
levels: first, the core model of the component architecture needs to be extended to 
incorporate new application specific requirements; second, in order to achieve cost-
effective development, extensions to the core component model should be reusable by 
other applications with similar requirements.  Furthermore, any resource restrictions 
that apply to the design and implementation of the component architecture will also 
apply to extensions.  

This necessitates a systematic approach to the development of feature extensions 
for embedded systems that seamlessly integrates application specific requirements 
that originally led to the need for extensions, the existing component model, and the 
constraints of the computing environment. In this paper we propose a scenario-based 
approach to extending the capabilities of our CAmkES component model.  Our 
approach distils the requirements of the target embedded application and integrates 
them with CAmkES components and relevant architectural patterns. We demonstrate 
our approach with an illustrative case study that involves adding dynamic capabilities 
to CAmkES. 

2   Overview of CAmkES  

CAmkES (Component Architecture for microkernel-based Embedded Systems) is an 
architecture that we have developed to enable the component-based development of 
embedded systems. Specifically, CAmkES targets embedded systems based on the L4 
microkernel [10]. Since microkernels are light on resource requirements, provide 
good protection between applications and OS components, and make for a suitably 
small trusted computing base, they are a highly suitable base upon which to build 
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reliable and trustworthy embedded systems [6]. In this paper we provide only a very 
brief introduction to the CAmkES architecture and development process, more details 
about the architecture can be found in [8].  

Similar to standard component architectures, the CAmkES architecture provides 
components, interfaces, and connectors. However, CAmkES is targeted at potentially 
resource restricted embedded systems, which leads to three key features of the 
architecture (and its associated component model). 

First, connectors are first class concepts and can be defined by users whenever 
specific communication functionality is required. This means that CAmkES allows 
developers to place components in the same address space, place components in 
separate address spaces, or even place the components on separate machines.  
CAmkES also provides the flexibility to tailor communication between components 
to application-specific needs. 

Second, the core CAmkES component model makes it possible to reduce the 
overhead introduced by component-based computing by limiting built-in features.  In 
particular, it only allows for static architectures that do not change at runtime. This 
means that components cannot be created or destroyed at runtime, nor can new 
connections be created or existing connections be broken. Since not all applications 
will require this kind of dynamic capability they should not have to pay for it. 

Finally, the core CAmkES component model and architecture can be extended by 
adding components that act as extensions. These components implement functionality 
that extends the architecture’s capabilities. For example, in order to allow the creation 
and destruction of components at runtime appropriate extension components must be 
added.  

With regards to the development process, at design time a system architect defines 
components and their interface in an architecture description language (ADL). The 
full system application is also specified in ADL, including specification of all the 
components and connectors involved, and all the connections between components. 
The component functionality is implemented separately in a regular programming 
language such as C. 

The ADL files are compiled to produce loading and initialisation code, 
communication stubs, and any other required runtime support code, all of which is 
compiled together with the component code, and combined with the L4 kernel to 
produce a loadable system image. At system boot time the system image is loaded 
into memory, the kernel starts up and invokes the CAmkES loader to load all the 
components. The loader creates and initialises all components and their connections, 
and after everything is ready starts the system running. 

3   The Approach 

Initially the need for an extension is driven by application specific requirements, such 
as being able to dynamically create a device driver instance at runtime, or being able 
to update components on-the-fly without bringing the system down. If the component 
model being used does not provide features required to do these things, the developer 
needs to extend the model with the appropriate capability. While a developer could 
work out application-specific solutions, such solutions are rarely reusable. As such, 
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when later development requests for similar features arise, new implementations must 
be redeveloped. Moreover, the maintenance overhead also increases since the 
solutions are tangled within the different applications. Obviously this is time 
consuming and not a cost effective development process.  

Rather than developing ad-hoc and non-reusable solutions, we envision a 
systematic approach that enables the development of generic extensions to a core 
component architecture. The extensions are implemented as components and services 
that support generic scenarios and are not specific to a particular application.  

There is currently a gap in this process between the application-specific 
requirements and the generic extension components. We consider adopting a 
scenario-based software architecture analysis approach [13] to solve this problem. In 
scenario-based analysis of software architecture, scenarios (i.e., detailed requirement 
descriptions in specific contexts) are used as a tool to analyse quality attributes and 
the primary utilisation of these quality attributes. Kazman et al. use scenarios to 
express the particular instances of each quality attribute that are important to the 
customer of a system.  In this paper the scenarios we refer to are consistent with the 
meaning as described in [13], which is a brief description of an anticipated or desired 
use of a system. The scenarios are usually described by a sentence, for example, “a 
PCI bus driver creates a device driver component instance at runtime.”  

Key application-specific scenarios can be derived from the application-specific 
requirements. By identifying these key application scenarios, we can better understand 
what is required of the component model and how components can be applied in the 
design and development of the application.  

Our scenario-based approach to designing generalised and reusable extensions is 
summarised in Fig. 1. On the right-hand side we show the desired application and its 
requirements, while the left-hand side shows the four main steps of our approach. 
These steps are outlined below. 

The first step is to derive key scenarios that cover the application-specific 
requirements. Many techniques for developing scenarios have been devised in 
scenario-based software architecture evaluation methods [2][4]. These techniques can 
be applied here to derive these key scenarios. For example, scenario brainstorming 
can be exercised with the goal of identifying the type of activities that the system 
must support.  

The second step involves generalising the key scenarios. The challenge here is to 
capture all the major components and connections that are involved in the key 
scenarios and redesign them to be generic. An example of a general scenario is that 
CAmkES is able to identify a component type, find loaded code for the given 
component type and create a component instance.  

Normally the scenario-based software architecture evaluation method starts with 
general and preliminary scenarios that have been gathered, classified and prioritised. 
During walk-through meetings, the architecture is evaluated according to these 
scenarios. Detail is added to the general scenarios and they evolve into application 
and context-specific concrete key scenarios.  

In our approach we start with application specific requirements and come up with 
concrete key scenarios. Since our aim is to develop reusable extensions these key 
scenarios are further generalised into scenarios covering the common requirements of 
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extensions that cover a broad range of applications. This demands expertise from the 
software architects and engineers who are responsible for designing the extension 
scenario and making decisions with regards to the selected scenarios. A practical 
approach is to start with the key scenarios and gather feedback from possible 
stakeholders and other software architects, then to revise the key scenarios toward 
more generic scenarios.  

The third step requires extension of the component model to support these general 
scenarios. An important requirement is that the extension be generic and reusable.  
One approach to extension is to change the core component model to incorporate the 
new requirements. This has potential maintenance and integration issues since the 
changes may cause compatibility issues with legacy code developed for the original 
core component model. It is also possible that the core component model 
implementation is not available, or it is impractical to make changes to it. A better 
approach then is that the implementation of these extensions should utilise existing 
components to the maximum extent through a flexible architecture. In the case of 
CAmkES, an extension to allow the dynamic creation of a component instance can be 
implemented as a factory component. This factory could be implemented as a static 
CAmkES component and loaded into the system memory from the boot image at boot 
time.  A concrete example is illustrated later in Section 4.  

Finally, the resulting generic solutions are used in the design and development of 
the specific application. At this stage, patterns as best practices can be applied as part 
of the application architecture. The context in which a pattern is applicable must 
match the context of the application scenarios and the component model must support 
an appropriate programming paradigm for implementing the pattern.  

Key Application
Scenarios

Generic
Scenarios

Generic
CAmkES-based

Solutions

Application

Specific
Components/

Services

CAmkES

model
Patterns

2.Generalizing

scenarios
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Dynamic Extension Static

1. Deriving requirements /constraints

 

Fig. 1. Scenario-driven component-based development approach 

4   Case Study: Developing a PCI Bus Driver  

In order to illustrate how our approach is used in the development of a real system we 
discuss a simple (but relevant) case study: the development of a PCI bus driver. Most 
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systems that incorporate a PCI I/O bus use a driver that scans the bus at start up in 
order to determine what devices are attached. There are two ways to build and use 
such a PCI driver. 

The first is a static approach in which the developer knows which devices will be 
attached to the bus and the PCI driver is simply used to provide initialisation 
information for the drivers of the attached devices. The second approach is a dynamic 
approach where the PCI driver scans the bus and the resulting information about 
which devices are attached is used to find, instantiate, and initialise appropriate 
drivers. 

Implementing the static approach using CAmkES is straightforward and does not 
require functionality beyond that provided by the core model. The components 
implementing the bus driver as well as the required device drivers (e.g., an Ethernet 
driver), their clients (e.g., a network stack component) and connections between them 
are all specified at design time and are created at system initialisation time. The bus 
driver component includes functionality to scan the bus and to invoke the connected 
device driver's configuration interface in order to initialise it correctly. It does not 
need to create any components at run time since the driver component is already there 
and connected to it. 

Implementing the dynamic approach, on the other hand, is not possible using only 
the core CAmkES functionality. In particular, at design time the system developer 
does not know what specific device will be connected to the PCI bus and so cannot 
include this in the system specification. As such, the device driver component cannot 
be created at system initialisation time nor is it possible to specify the connections to 
the device driver component at design time. It is up to the PCI bus driver to determine 
which device driver components to create and to ensure that the clients are connected 
to those drivers. In order to do this at runtime we must add appropriate extensions (in 
the form of extension components) to CAmkES. 

In the following we use the approach described in this paper to design and 
implement generic CAmkES extensions that allow us to build a system taking the 
dynamic approach to PCI bus driver design. 

4.1   Deriving Key Scenarios 

To keep the case study feasible we specify further details about the actual scenario 
that we wish to implement. We assume that the possible devices connected to the bus 
are limited and known ahead of time so that driver code can be made available in the 
loaded image (this simply prevents us from having to include discussion of 
functionality to download the code or search for it on external storage). We also 
assume that the family of devices (e.g., Ethernet card, audio device, etc.) that we 
discover on the bus is fixed. This means that the client knows the family of device 
that it will connect to, and therefore the interfaces that it wants to connect to, and 
prevents us from having to introduce interface discovery into the example. Another 
simplifying assumption is that there will be only one device attached to the bus (i.e., 
only one instance of the device driver component will need to be created). Finally, 
while the client does need to find the driver to connect to, there will be a 
predetermined way for the client to find the driver component.  
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Note that many of these further details comprise constraints on the system. Other 
constraints are provided by the application environment, and may relate to resource 
restrictions, temporal requirements, security requirements, etc. 

These constraints together with the initial application requirements allow us to 
perform the first step and distil key application scenarios, which results in the 
following: 

 
• Bus driver determines component required for a specific device. 
• Bus driver finds loaded device driver component code. 
• Bus driver creates device driver component instance. 
• Bus driver connects to device driver component's configuration, interrupt, 

and IO interfaces. 
• Bus driver initialises device driver component. 
• Bus driver registers device driver component instance in a registry with a 

predetermined keyword.  
• Client searches registry for desired device driver component by keyword. 
• Client connects to device driver component interfaces. 

 
The second step is to generalise these scenarios so that they are no longer 

application specific. We start by noting that we have at least two different types of 
components involved: 

 
• The bus driver and client components are included in the system 

specification at design time and are created at system initialisation time. 
• The device driver component, on the other hand, is created at runtime.  

 
Likewise there are different types of connections involved, either created at system 

initialisation time or at runtime. There are more distinctions possible, and Table 1 
provides an overview of the various aspects to consider when distinguishing between 
the types of components and connections. 

Based on the different combinations of these aspects we can identify all the 
different types of components and connections. For further clarity we have given 
names to some of the more common combinations. 

We call components that have property A1 and B1 static components. Components 
with A2 and B1 are called dynamic components, while those with A2 and B2 are 
called dynamically loaded components. We call connections with property C1 and D1 
static connections, those with C2 and D2 are dynamic connections and those with C2 
and D1 are partially dynamic connections. 

Note that some combinations are not feasible, including: A1 and B2, C1 and D2, 
and A2 and C1 as they violate the logic of the component model.  

4.2   Generalising Scenarios 

In this case study the bus driver and client components are static components, while 
the device driver is a dynamic component. While the connections between the static 
components and the dynamic component can be dynamic connections, for simplicity 
sake we will assume that they are all partially dynamic connections. 
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Table 1. Component and Connection Category 

 A. How component instances are created 
1. Statically created components are components that are created at system 
initialisation time. 
2. Dynamically created components are components that are created at runtime 
(after all static components have been created and the system has been started). 

B. How component code is loaded into the system 
1. Statically loaded components are loaded into the system memory at system boot 
time (from the boot image). 
2. Dynamically loaded components are loaded into the system memory at runtime, 
typically from secondary storage (e.g., disk, RAM disk, flash disk, etc.) or network. 

C. When the connections are created 
1. Statically created connections are created at system initialisation time. 
2. Dynamically created connections are connections that are created at runtime 
(after all static components and connections have been created and the system has 
been started). 
D. When the connection type is defined 
1. Statically defined connections have the connector types defined at design time in 
the ADL specification. Practically this means that communication stubs are 
compiled directly into the component. 
2. Dynamically defined connections have the connector types defined at bind time.   
Practically this means that the stubs are not compiled into the component code but 
must be dynamically linked in some way (e.g., using dispatch tables). 

Generalising from the application-specific scenarios we arrive at the following. 
The components involved can be generalised based on their role: 

• Creator (static component): requests that a new component be created. In 
the application-specific scenario this is the bus driver component.  

• Created (dynamic component): a component created at runtime. In the 
application-specific scenario this is the device driver component. 

• Connecter (static component): requests a connection to be created between 
the interfaces of two components.  Both the bus driver and the client 
components play this role in the application-specific scenario.  

• Client (static component): a component that is connected to the created 
component.  In the application-scenario both the bus driver and the client 
components take on the client role. 

Based on this, the generic scenarios we arrive at are: 

• Find loaded code for a given component type. 
• Create a component instance given a component type. 
• Connect the corresponding interfaces of two component instances; this 

requires being able to identify component instances and interfaces. 
• Register component instance at a registry with keywords. 
• Search the registry with keywords. 
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4.3   Extending CAmkES 

Next we design CAmkES extensions that allow us to implement these generic 
scenarios. Our main goal is to design and implement extensions in such a way that 
they are generic and reusable. It is also important to consider how the extensions can 
utilise the existing tools associated with the component architecture (e.g., the 
compiler and loader of CAmkES) in order to reduce the engineering effort and cost of 
development. Our solution to address these requirements is that the extension 
components will all be static components, and all connections to the extension 
components will be static as well. We end up with three extension components as 
shown in Table 2. These components will implement the interfaces shown in Table 3. 

Table 2. Extension Components 

Factory does the actual work to create a new component instance 

Registry Maps a keyword string to an opaque piece of binary data 

Binder does the actual work to connect two component instances at given 
interfaces 

Table 3. Extension Interfaces 

// IFactory interface: 
component_instance_id create (component_id) 
// IRegistry interface: 
register (component_instance_id, keyword[]) 
{component_id, keyword[]} lookup (component_instance_id) 
component_instance_id[] find_keyword(keyword[]) 
// IBinder interface: 
bind(component_instance_id, interface_id, component_instance_id, interface_id) 
 

These extensions are used to implement the general scenarios as follows. 

• The factory component is responsible for locating loaded component code 
given a component identifier.  The result of such a lookup is platform specific 
and will be used internally by the factory component in the following scenario.  

• The creator component invokes the factory component's create method.  The 
factory component locates the appropriate loaded component code and creates 
a new instance (the details of this are platform dependent). It returns a 
component instance identifier, which is an opaque platform-specific data type. 

• The connecter invokes the bind method on the binder component providing 
component instance identifiers of the two target components and their 
corresponding interfaces. 
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• A component invokes the register function of the registry component, 
providing the identifier of the component it wishes to register along with 
relevant keywords. 

• A component invokes the find_keyword method of the registry component, 
passing a keyword and receiving the identifiers of matching component 
instances.  

We apply knowledge of design patterns in this step to come up with extensions that 
can be used as parts of appropriate patterns when possible. For example, the factory 
design pattern is applied to create new instances of components while the registry 
component adopts the service locator design pattern.  

4.4   Developing Application Components 

Finally, given the extensions and their use in the generic scenarios we can implement 
the desired application by defining the appropriate application components and 
having them use the extensions as required. 

For the PCI scenario, the three application components are: the bus driver 
component (PCI bus driver), the client component (TCP/IP network stack), and the 
device driver component such as an Ethernet driver, which is to be created by the 
factory.  The first two are static while the device driver component is dynamic.  The 
design-time component architecture of the application is shown in Fig. 2. It contains 
the two static application components and the three extension components with 
appropriate connections between them. The interfaces of the application components 
are shown for completeness, however, we do not discuss them further. 

 

Fig. 2. Design-time component architecture 
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At runtime the following steps are taken: 

1. The bus driver scans the bus and maps the found device to an appropriate 
component identifier using internal (and driver-specific) data, such as PCI 
vendor ID and device ID fields in the PCI device configuration header. 

2. The bus driver creates a device driver component by calling the factory with 
the appropriate component identifier. 

3. The bus driver connects to the device driver component by invoking the binder 
component's bind method. 

4. The bus driver registers the device driver component with the registry 
component by invoking the register function and using a preset keyword (e.g., 
"ethernet"). 

5. The client queries the registry component for the preset keyword until a 
positive result is returned (an alternative approach would involve the client 
registering with the registry to be notified when a match for the keyword is 
available). 

6. Given the results from the registry the client connects to the device driver by 
invoking the binder component's bind method. 

The component architecture after these steps is shown in Fig. 3. Note that we now 
have one new component and several new connections. 

 

 

Fig. 3. Run-time component architecture 

To further develop the extensions, we can remove each of the scenario assumptions 
made earlier, thus broadening the scenario and changing the requirements.  Doing so 
may affect some of the decisions made so far (in terms of what extensions to provide 
and the details of the interfaces) but will make the extensions more broadly applicable 
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and therefore more general. In this way the design process can feed back into itself, 
allowing iterative feedback-based development of applications and generic CAmkES 
extensions. 

4.5   Evaluation 

We have followed this approach and implemented prototypes of the extension 
components as presented above.  In our prototype, the extended dynamic functionality 
was fully contained in the static extension components.  Future work will include the 
relaxation of several assumptions regarding the application scenario, and will lead to 
the development of further extensions such as those required for dynamically loading 
code and more flexible dynamic binding. 

In terms of the overhead introduced by this implementation, it is mainly incurred 
by the static core CAmkES components. This is because the extension components 
for the dynamic features in this case are implemented as static components.  

5   Applying the Approach to Non-functional Requirements of 
     Embedded Systems 

The previous case study illustrated the use of our scenario-based approach based on 
the analysis and generalisation of application-specific functional requirements.  The 
approach is also suitable when the application-specific requirements are non-
functional.  For embedded systems important classes of non-functional requirements 
include temporal requirements relating to timeliness of execution and worst-case 
execution times, power management, reliability, etc.  Following the approach as 
outlined earlier, we would start with application-specific scenarios that illustrate the 
non-functional requirements and remove the application-specific aspects to arrive at 
generalised scenarios relating to the requirements.  We would then use these scenarios 
to design extensions to the component model that enable the implementation of such 
scenarios.  The specific extension mechanism used may differ for these requirements 
than for functional ones, that is, we may need to make more changes than simply 
adding extension components. The details of extending the CAmkES model for non-
functional requirements are future work. 

6   Related Work  

The basic characteristics of embedded systems, their requirements and constraints, 
and the implications to component models are summarised and presented in [9]. The 
challenging issues of devising an appropriate component model for embedded 
systems are recognised when component-based software engineering is adopted in 
developing embedded systems through experience. That is existing technologies for 
enterprise systems such as CCM, J2EE and .Net/COM+ cannot be used, or at least 
used directly for embedded systems [9]. The constraints of embedded systems are 
further articulated in [5]. This essence is also acknowledged in this paper. The 
approach we proposed in this paper is based on our existing CAmkES component 
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model, which takes into account the constraints and requirements for embedded 
systems. We focus on the reusable extension of this core CAmkES component model. 
Our contribution is to demonstrate that this approach is feasible for developing the 
extension by reusing existing component models and making them general for 
different applications.  

Andrews et al summarised the impact of embedded system evolution on real-time 
operating system use and design [3], in which how to map components onto 
application specific requirements remains a challenging problem. We consider 
dynamic updates as typical extension requirements for embedded system evolution. 
Research and engineering effort has been devoted to the field of dynamic updates. For 
a good overview, we refer to [12]. This paper focuses on a method to extend the 
capability of component-based design and implementation for embedded systems. We 
used dynamic updates as an example to illustrate our scenario-based approach to 
extending capabilities of CAmkES component model for embedded systems. The 
approach integrates application specific requirements to the development of generic 
and reusable extensions.  

Another potential use of our approach is realising non-functional requirements 
through extensions to existing component models. Most component models do not 
address or at least have limitation in providing support for non-functional properties, 
such as timeliness, security, safety, reliability and fault tolerance. Ibrahim et al 
presented the ongoing research at Philips Semiconductors on improving productivity 
and reliability. It provides a literature survey of some techniques that address the 
issues of productivity and reliability [1]. In [7][16] solutions to address the timeliness 
and safety of embedded systems are proposed within their component model. In this 
paper we only briefly suggest that non-functional requirements can be implemented 
following our approach. It remains our future work on how to extend the component 
model to support non-functional requirements on quality attributes. 

Scenario-based approaches are widely applied in software architecture evaluation. 
Methods and mechanisms are well established. For a good overview, we refer to 
[2][4]. In this paper we adopt a scenario-based approach to drive the design and 
implementation of extensions. The general scenarios constructed in this paper are 
consistent with the concept of a general scenario used in [13], which describes what 
achieving a quality attribute goal means. In [13], general scenarios describe how the 
architecture should respond to a certain stimulus. In this paper, a general scenario is 
abstracted and derived from key scenarios for quality attributes of interest. It is 
described to be generic and less application specific than the key scenarios. It remains 
our future work to apply this approach to more case studies and further validate its 
practical use.  

7   Conclusion 

Given the resource restrictions of embedded systems, component models specifically 
targeted for such systems are typically minimal, providing only limited functionality 
with which to build systems.  In order to be widely useable and to fulfil demands 
imposed by modern embedded systems and their applications it is often necessary to 
extend the capabilities of such component models.  In CAmkES, our component 
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model for embedded systems, extending functionality is achieved by including 
extension components in a system’s design.  The need for extensions typically comes 
up when designing specific applications, however, the functionality provided by such 
extensions should be generalised such that the extensions can be reused to provide 
similar functionality for other applications. 

We introduce a scenario-based approach to developing such generalised 
component model extensions. In this approach we start with an application’s 
requirements and iterate through the steps of distilling key scenarios and then 
generalising these scenarios to make them independent of any specific application.  
The general scenarios provide requirements and context, which we use to guide 
development of the extensions.  Finally, with the help of architectural patterns we use 
the extensions during the development of applications. 

This approach has been applied during the development of CAmkES extensions 
that provide dynamic capabilities (e.g., creating and binding components at runtime).  
We describe a part of this experience in our case study section. Future work involves 
investigating the application of this approach to create extensions that address non-
functional application requirements, as well as other constraints imposed by an 
embedded system’s environment. 
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Abstract. Different organizations or organizational units are likely to store and
maintain different types of information about their software architectures. This in-
hibits effective management of architectural knowledge. We experimented with a
model of architectural knowledge to characterize the use of architectural knowl-
edge in four different organizations. Based on this experimentation we identified
four perspectives on architectural knowledge management, and additionally ad-
justed the model to better align theory with practice. The refined model defines a
minimal set of concepts with supposedly complete coverage of the architectural
knowledge domain. Because of the minimalistic aspect of the model, we refer
to it as a ‘core model’ of architectural knowledge. Supporting evidence for the
validity of our model, i.e. the supposed complete coverage, has been obtained
by an attempt to falsify this claim through a comparison with selected literature.
Application of the core model to characterize the use of architectural knowledge
indicates possible areas of improvement for architectural knowledge management
in the four organizations.

1 Introduction

The notion of software architecture is one of the key technical advances in the field of
software engineering over the last decades. The advantages of using an explicit soft-
ware architecture include early interaction with stakeholders, its basis for a work break-
down structure, and the early assessment of quality attributes [1]. Although considerable
progress has been made in this area, we still lack techniques for capturing, representing
and maintaining knowledge about software architectures.

Various authors (e.g. [2,3,4]) address the notion of ‘architectural knowledge’ and
provide a model of what this notion entails. Key elements in all models are design deci-
sions and their rationale. However, different authors use different words for what might
be the same. For example, some models consider design decisions, others architectural
decisions, but it is hard to determine whether these actually denote the same concept.

Having different notions of what architectural knowledge entails can hamper effec-
tive management of that knowledge. If, for instance, different organizations – or even
departments within a single organization – use different concepts to communicate archi-
tectural knowledge, terminological misunderstandings may arise. Sharing architectural
knowledge between these parties then becomes very hard, if not impossible. We need a
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model of architectural knowledge that acts as a common frame of reference and enables
architectural knowledge sharing.

The question we address in this paper is what this model should entail. As an an-
swer, we propose a model of architectural knowledge that has maximal expressivity in
the architectural knowledge domain and functions as a reference model for sharing ar-
chitectural knowledge. Real-life models of what architectural knowledge entails can be
expressed in the form of extensions to this model. These extensions are domain-specific,
organization-specific, or both.

2 Related Work

In an overview of the maturation of the software architecture field [5], Shaw and Cle-
ments conclude with an outlook on future work in software architecture research. Pro-
mising topics mentioned include a focus on architectural design decisions and their link
to quality attributes, and the organization of architectural knowledge to create reference
materials. Our work serves both these goals.

The research field already shows increasing focus on the management of architec-
tural knowledge (i.e. knowledge pertaining to a particular software architecture), such
as architectural design decisions and their rationale [3,6,7,8]. A growing number of re-
searchers acknowledges that a software architecture can – or should – be viewed as the
collection of architectural design decisions [9], or as the design decisions plus the re-
sulting design [4]. Others target tracing architectural decisions to concerns [10], or link
business goals to the software architecture [1].

Hofmeister et al. define architecting as an iterative process in which the architecture
‘grows’ over time as architects perform architectural activities, such as analysis, syn-
thesis, and evaluation [11]. In our research we build further on this view, by considering
the iterative nature of architecting as a ‘decision loop’. We focus not only on the design
decisions themselves, but also on the result of this iterative process – the architectural
design – which is reflected in various design artifacts such as architectural descriptions.

In recent years, several other models or frameworks have been proposed to capture
architectural knowledge. Akerman and Tyree propose an ontology that focuses on ar-
chitectural assets, architectural decisions, stakeholder concerns and an architecture im-
plementation road map [12]. A framework for capturing and using architecture design
knowledge is proposed by Ali Babar et al. in [2].

All methods and frameworks described above share a common understanding of
what ‘architectural knowledge’ is, or should entail. Then again, each of the methods
and frameworks has a different focal point and may use terminology differently from
others. In an attempt to aggregate the common understanding, while allowing for dif-
ferent specializations of the central concepts, we have constructed a reference model of
architectural knowledge that is described in Section 5.

3 Research Methodology and Structure of This Paper

The structure of this paper, schematically depicted in Fig. 1, is tightly coupled to the
research approach we followed. In the remainder of this section we outline the research
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Fig. 1. Structure of this Paper

methodology we employed, the steps we followed, and in which sections the respective
results are elaborated upon.

The research methodology that we followed can best be described as an instantia-
tion of action research. Action research is an iterative research approach in which the
researcher actively participates in the studies he performs. The researcher wants ‘to try
out a theory with practitioners in real situations, gain feedback from this experience,
modify the theory as a result of this feedback, and try again’ [13].

Our research commenced with a ‘theory’ of architectural knowledge that stemmed
from our earlier work [14]. This initial model of architectural knowledge was an ab-
stract conceptualization of the architectural knowledge domain. We experimented with
the model, and tried to characterize the use of architectural knowledge by (and together
with) four industrial partners. Experience from those characterization attempts taught
us that there were a number of mismatches between our theory and industrial practice.
Reflection on the apparent mismatches led us to conclude that our model should exhibit
a number of properties in order to overcome those mismatches. This reflection process
is elaborated further in Section 4. In order to accommodate for the desired properties
identified, we refined the initial model and arrived at a new ‘version’ of our theory of ar-
chitectural knowledge: a core model of architectural knowledge presented in Section 5.

With the mismatches between theory and practice removed, we could successfully
employ our core model of architectural knowledge to characterize the use of archi-
tectural knowledge by the four partners. This characterization, which is the subject of
Section 6, led to a number of hypotheses regarding the probable cause of problems with
architectural knowledge management in the collaborating organizations. We plan to al-
leviate the identified problems by removing the probable causes in the near future. This
illustrates the iterative nature of action research, where the result of the action research
cycle we performed is input for the next cycle.

Since we want our model to be useful as a reference model to align different archi-
tectural vocabularies, we believe our model can be regarded as ‘valid’ when concepts
from different architectural approaches can be expressed using terms from the model.
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Unfortunately, it is impossible to prove that our model is valid in this sense. However,
we can make the validity of our model plausible by trying to falsify our model by
comparing the model with (accepted) literature. This falsification attempt, which falls
outside the scope of the action research cycle itself, is discussed in Section 7.

4 A Theory of Architectural Knowledge: Experimental Use and
Modification

The goal of our research was to characterize the use of architectural knowledge in four
different organizations. The four organizations that participated in our research can be
described as follows:

– RFA is a large software development organization, responsible for development
and maintenance of systems for among others the public sector.

– VCL is a large, multi-site consumer electronics organization where embedded soft-
ware is developed in a distributed setting.

– RDB performs independent software product audits for third parties.
– PAV is a large scientific organization that has to deal with software development

projects spanning a long time frame (up to a period of more than ten years).

The theory that we used to characterize the organizations’ architectural knowledge
use was a model of architectural knowledge that is presented in detail in [14]. This
model had been constructed to structure software architectural knowledge in such a
way that it is clear what can exist and what can happen during the architecting phase
of a software development project. We aimed to use this model as an abstract view
of the architectural knowledge domain, to allow for clean reasoning about the use of
architectural knowledge in the four organizations.

Experience with the model from [14] in the four industrial organizations taught us
that the model did not entirely fit all organizations. The original model highly con-
formed to the IEEE-1471 standard for architectural description [15]. IEEE-1471 pre-
scribes the use of so-called ‘Viewpoints’ to describe the architecture from the perspec-
tive of different stakeholders. The resulting ‘Views’ (partial descriptions of the archi-
tecture) are aggregated in a single architecture description. Although stakeholders and
their concerns play a key role in any software architecting process, the tight coupling
of the model to IEEE-1471’s Views and Viewpoints turned out to be a mismatch with
most organizations’ practice. In hindsight this need not come as a big surprise, since
organizations can (and do) use other approaches for documenting their architectures,
which need not coincide with the IEEE-1471 way.

Although the model from [14] did not entirely fit all organizations, diagnosis of the
use of architectural knowledge in those organizations at least showed that each of the or-
ganizations has its own perspective on architectural knowledge management, resulting
in different issues at each of the organizations. The central issue within RFA was how
to share architectural knowledge between stakeholders of a project. The main question
within VCL was how compliance to architectural rules can be enforced in this multi-site
environment. RDB was mainly concerned with how auditors can discover the architec-
tural knowledge they need to do a proper audit. The main challenge for PAV was how to
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improve traceability of its architectural knowledge. While the mismatches between the-
ory and practice still prevented us from pinpointing the exact areas of improvement, at
least we had an idea where to search for those areas in a next research iteration. How-
ever, this required that we removed the identified mismatches to further align theory
with practice.

From a closer inspection of the mismatching concepts we learned that those concepts
could either be expressed in terms of other concepts already present in the model, or
as more generic concepts that are used by the organizations. This led us to believe that
we should strive to construct a model of architectural knowledge that is both minimal-
istic and complete. We believe the model can be regarded as ‘complete’ if there are no
concepts from other approaches that have no counterpart in the model. If there turns
out to be such a missing concept, our model should be extended. With ‘minimalistic’
we signify the feature that it should not be possible to express some concepts from the
model in any other concepts from the model.

Based on these insights we modified the initial model from [14] to obtain such a
model that is both complete and minimalistic. Especially because of this latter feature,
we refer to our model as a core model of architectural knowledge; elements that can be
modeled in terms of core elements do not belong to the core.

5 A Core Model of Architectural Knowledge

Our core model of architectural knowledge is depicted in Figure 2. As a result of the
minimalistic aspect of this model introduced in Section 4, the core model leaves room
for the use of different architecture description methods, including IEEE-1471. This
contrasts with the model from [14] in which the use of IEEE-1471 was assumed and
which therefore did not match those organizations that use other architecture description
methods.

In our core model of architectural knowledge, the concepts of Stakeholder and Con-
cern coincide with the, widely accepted, definitions of these terms in IEEE-1471: a
stakeholder is “an individual, team, or organization (or classes thereof) with interests
in, or concerns relative to, a system” [15]. Both IEEE-1471 concepts of Architectural
Model and View are subsumed in our notion of Artifact, i.e. an inanimate information
bearer such as a document, source code, or a chapter in a book. Storing or describing the
Architectural Design in either of these artifacts can be abstracted to a single action ‘to
reflect’. The Architectural Design can be reflected using different Languages, including
models, figures, programming languages, and plain English.

Constructing an architectural design is essentially a decision making process. In our
core model, decision making is viewed as proposing and ranking Alternatives, and se-
lecting the alternative that has the highest rank, i.e. the alternative that, after careful
consideration based on multiple criteria (i.e. Concerns), is deemed to be the best option
available with respect to the other alternatives proposed. It is especially this process of
proposing, ranking, and selecting which is hard to articulate and distinguishes the good
architects from the weaker. The chosen alternative becomes the Decision. The alterna-
tives that are proposed must address the Decision Topic, and can be ranked according to
how well they satisfy this and other concerns. We view Decision Topic as a special type
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Fig. 2. Core Model of Architectural Knowledge

of Concern, namely a Concern for which a Decision must be taken. Example concerns
for which no further decisions need to be taken – and which hence are no decision topics
but do need to be taken into account when evaluating (ranking) proposed alternatives –
are constraints, such as budget constraints, technological limitations, et cetera.

Architectural Design Decisions are defined as those Decisions that are assumed to
influence the Architectural Design and can be enforced upon this Architectural Design,
possibly leading to new Concerns that result in a need for taking subsequent decisions.
This ‘decision loop’ captures the relations between subsequent Architectural Design
Decisions. This loop also corresponds to the ‘divide and conquer’ technique of de-
cision making, in which broadly scoped decisions are taken which may result in finer
grained concerns related to the broader concern. Furthermore, it enables in theory trace-
ability from concerns through decisions to artifacts, although this very much depends
on whether those traces have been captured in the reflection of the architectural de-
sign. Note that architectural design decisions need not necessarily be ‘invented’ by the
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architect himself; architectural patterns, styles, and tactics are examples of architectural
design decisions (or, more precisely, alternatives) that are readily available from other
sources. The ‘decision loop’ described above also captures the rationale of an archi-
tectural design; the answer to the question why an architectural design is the way it is.
Rationale is in our opinion extremely interwoven with all elements in this loop, and is
therefore not represented as a distinct element in our model.

The Architectural Design (often called ‘architecture’ for short) is the result of all
architectural design decisions. Note that reflection of (part of the) Architectural Design
is not limited to a single Artifact: a single Architectural Design Decision might for
instance be represented in the architecture description as well as impact the source code.
Artifacts themselves can again be composed of various (sub)Artifacts, e.g. chapters in
a document, or methods in a class. The concepts Role and Activity are borrowed from
SPEM, which defines the software development process as “a collaboration between
abstract active entities called process roles that perform operations called activities on
concrete, tangible entities called work products” [16]. The ‘work product’ from SPEM
resembles our notion of Artifact. The latter is in our opinion a better known and widely
accepted concept in Software Engineering.

6 Core Model Application: Characterization of Architectural
Knowledge Use in Four Industrial Settings

We initially started our research with the goal to characterize the use of architectural
knowledge in four industrial organizations. Although we were able to discover four
different perspectives on architectural knowledge within those organizations (see Sec-
tion 4), the mismatches of our initial model of architectural knowledge with the ob-
served practice in those organizations hampered a further diagnosis of the problems
those organizations encounter. Since those mismatches have been removed in our core
model of architectural knowledge, it is interesting to see how the organization-specific
‘models’ of architectural knowledge of all four organizations can be expressed in terms
of the core model. From a superficial look, each of the organizations appears to use ar-
chitectural knowledge very differently. Alignment of the organization-specific models
to the core model, however, allows for a more fundamental characterization of how the
organizations perceive and use architectural knowledge.

The use of architectural knowledge in RFA and VCL is mainly located in the upper
‘description’ part of Figure 2, i.e. the reflection of architectural design decisions in
artifacts. The use of architectural knowledge within RDB and PAV is positioned more
in the lower ‘decision’ part, i.e. the decision making process reflected in the decision
loop. We hypothesize that the problems that the organizations experience in managing
architectural knowledge are partially due to their focus on only a part of the theory of
architectural knowledge as expressed by our core model.

An overview of the result of the four characterizations is provided in Table 1. In
this table we list for each of the organizations their prevalent perspective on the use of
architectural knowledge, the main architectural knowledge concepts encountered (both
organization-specific and at a core level), the hypothesized cause for the diagnosed
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Table 1. Diagnosis of Industrial Problems with Architectural Knowledge Management

RFA VCL RDB PAV
Perspective Sharing Compliance Discovery Traceability 
Main org. 
concepts

Design choices, 
Principles, Starting 
Points, Prerequisites 

Architectural rules Quality criteria,  
Quality in use 

Knowledge entities

Mainly used 
core concepts 

Arch. design decisions Arch. design decisions, 
to enforce

Arch. design decision, 
Concern, Arch. design, 
to reflect 

Concern, Decision topic 
Alternative, Arch. design 
decision

Problem Ambiguous terminology No sense of urgency 
regarding compliance 
with architectural rules 

Implicit relation between 
architecture and “quality” 

Lack of traceability 
between knowledge 
entities

Hypothesized 
cause

Decision making process 
not captured 

Tacit decision making 
process

‘Quality’ and related arch. 
knowledge not confined to 
a single artifact 

Implicit relations 
between artifacts 

Possible
solution

Explicit focus on 
relations between 
decisions through 
iterative "decision loop" 

Explicit focus on 
rationale of decisions 
through ‘decision loop’ 
elements 

Uncover architectural 
design decisions, their 
cause, and their effect on 
the software product 

Annotate architecture 
documents with specific 
knowledge entities 

problems, and a possible solution to this problem. In the following subsections, we
further elaborate on these aspects for each organization in turn.

6.1 RFA: Development Organization

RFA is a large development organization that develops and maintains software systems
for among others the public sector. These systems are typically critical for the public,
large in size and complexity, and long lasting. Because of the size of the organiza-
tion and the projects, this organization focuses on how to effectively share architectural
knowledge. To this end, RFA developed its own methodology and tooling to aid the
software architects in creating and documenting architectural knowledge by means of
architectural descriptions.

Architectural descriptions within RFA basically consist of a number of views based
on predefined viewpoints, and a set of specific architectural models such as an object
model, a functional data-model, etc. These models reflect a number of architectural
choices, which are based on decisions that relate to business objectives. The choices
take into account the design principles, starting points, and prerequisites to which the
architect needs to adhere to when designing the software architecture, as well as the
stakeholder concerns.

An example of a business objective documented in one particular architectural de-
scription is: “The data of the subsystems needs to be easily accessible”. A stated design
principle based on this objective is “The system needs to be accessible using web ser-
vices as well as the Enterprise Service Bus” and the final architectural choice made
based on this principle is “The system information exchange uses InfoMessaging and
MS.NET Web Services”.

We interviewed architects and managers from RFA, who in these interviews ac-
knowledged that they are currently struggling with the different concepts, their relations
and their more effective usage. This impairs effective sharing of architectural knowl-
edge, since architects are unsure which concepts to use to describe their architectural
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design. As a result, readers are unsure where in the architecture description they can
find the information they are looking for.

If we express the organization-specific terminology in terms of core concepts, an
interesting pattern emerges. The ‘different’ notions of business objectives, design prin-
ciples, and architectural choices all are in fact Architectural Design Decisions, which
are somehow related to each other. However, the organization’s methodology does not
define very concrete guidelines to distinguish between those decisions. RFA’s struggle
with terminology might partially be blamed on the use of different terms for the same
architectural knowledge concept without a good definition of the discriminative features
for these terms.

The explicit use of architectural knowledge within this organization can be primarily
found in the ‘description’ area of the core model: reflecting architectural decisions in an
architectural description. The decision making process – reflected in the decision loop
in the model – is left implicit by the organization’s methodology.

Our core model captures relations between different architectural design decisions in
the decision loop, where a certain architectural design decisions leads to a new concerns
that in turn leads to new decisions. A more explicit focus on this loop would help defeat
the ambiguity in terminology within RFA. A design principle could then for instance be
defined as a decision taken because of new concerns introduced by a business objective.
In the example above, the concern introduced by the business objective would be the
need for accessibility. Architectural choices are related to design principles analogously.

6.2 VCL: Consumer Electronics

VCL is a large organization within the consumer electronics domain. This organization
has arranged software development along subsystems. A release of the software for
a consumer electronic product consists of integrating the relevant subsystems. Each
subsystem is developed by a small, dedicated development team. The teams are located
at multiple, geographically spread development sites.

This arrangement of the software and the software development activities demands
guidelines to maintain the subsystem-based software architecture. To this end, a central
architecture team issues architectural rules: a set of principles and statements on the
software architecture that must be complied with throughout the organization.

Architectural rules originate from various issues that influence VCL’s software devel-
opment, such as defects identified in subsystem releases, change requests, or additional
requirements. These issues need to be addressed in the software architecture. Solutions
to these issues – which affect all subsystems – are captured in text-based documents.
These documents are sent to all development teams as architectural rules that need to
be adhered to.

The creation of architectural rules can be expressed in terms of the core model. The
issues identified by the various stakeholders correspond to Concerns of Stakeholders.
The architectural rules, i.e. the chosen solutions for these issues, are Architectural De-
sign Decisions that are enforced upon the Architectural Design through dissemination
of the Artifacts in which they are reflected.

Although VCL is similar to RFA in that the focus of architectural knowledge use is
on the ‘description’ area of the core model, development in teams at distinct locations
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should put a particular emphasis on enforcement of architectural design decisions. How-
ever, once the architectural rules have been disseminated to the individual development
teams, adherence to the rules on the subsystem architectures is the responsibility of the
teams themselves. In practice, some of the rules are disregarded by the teams. Our core
model suggests that one of the reasons for this might be the fact that only the architec-
tural design decisions themselves are being communicated, while the decision making
process itself remains tacit. This lack of insight into the reason of the architectural de-
sign decisions taken make that the development teams do not feel a sense of urgency
regarding compliance with these decisions. We believe that more information about the
rationale of the architectural rules, including the concerns that led up to the decisions,
increases this sense of urgency with the developers.

6.3 RDB: Quality Audits

RDB is a company that performs independent software product audits for third par-
ties. A software product audit consists of comparison of quality criteria with the actual
software product. Most quality criteria assess the effects of architectural decisions as
reflected in the software product artifacts. A quality criterion might for instance be “All
access to data in a relational database should take place through dedicated data access
objects. No direct communication of business objects with the database is allowed”.

The customer that acquires a software product expects this product to have a certain
‘quality in use’ [17]. Given the concern ‘quality in use’, there are various quality char-
acteristics for which quality criteria must be selected. For instance, the criterion that all
data access must take place through data access objects favors the maintainability of the
software product over its efficiency. Selection of quality criteria therefore depends on
the relative importance of each of the quality characteristics indicated by the customer.
The example criterion will only be selected if maintainability of the software product is
indeed more important to the customer than efficiency.

The problem an auditor faces when performing a software product audit is that archi-
tectural design decisions and the resulting architectural design are usually not reflected
in a single artifact. Even if there is a document called ‘the architecture description’,
architectural decisions impact other product artifacts (e.g. documentation and source
code) as well. There is no guarantee that the information in an architecture description
is complete, or even up-to-date.

The reflection of the effects of architectural decisions in different software product
artifacts can be readily identified in our core model. The Language used to reflect Archi-
tectural Design in Artifacts can be a natural language (e.g. English in software product
documentation), but also a programming language (source code) or graphics (e.g. dia-
grams and figures in a software architecture description). A more interesting and less
apparent mapping is the mapping of ‘quality’ to the core model.

In terms of our core model, quality in use is a Concern of the customer, who is a
Stakeholder. The quality characteristics and subcharacteristics are Decision Topics for
which quality criteria are proposed and selected. The proposed criteria are the Alter-
natives. Selection of quality criteria is based on their impact on the quality in use – the
Concern– in terms of prioritized (sub)characteristics, as indicated above. In this way,
trade-off analyses are being made regarding conflicting criteria. The chosen quality
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criteria describe the architecture in terms of how it ought to be. In other words, quality
criteria are a special type of Architectural Design Decisions: decisions that are expected
to have influenced (rather than enforced upon) the Architectural Design.

In RDB the relation between architecture and quality is not obvious at first sight.
The core model helps us to describe quality in terms of architectural decisions and their
effect on the software product, and shows us that quality criteria that apply to the ar-
chitectural design are themselves architectural decisions. Using the core model, we can
express a software product audit as a comparison of two types of architectural knowl-
edge: architectural knowledge that is present in the software product, reflected in the
Artifacts that make up the product, and architectural knowledge that is expected by the
customer, reflected in quality criteria. This makes it more apparent which architectural
knowledge is most important for a software product audit: the architectural design de-
cisions as well as their cause (e.g. stakeholder concerns and trade-offs) and effect (e.g.
constraints on subsequent decisions) should be discovered from multiple artifacts for
an effective assessment of a software product’s quality.

6.4 PAV: Scientific Research

PAV is a scientific organization that is involved in the development of large software-
intensive systems, used for scientific research. One of their projects is the development
of a highly distributed system that collects scientific data from around 15.000 sources,
distributed over 77 different stations, each source generating around 2 Gbps of raw data.
The challenge for this system is to communicate and process the resulting 30Tbps data
stream in real-time for interested scientists.

In this project, architectural decisions need to be shared and used over a time span
of more than 25 years. This is due to the long development time (more than 10 years),
and a required operational lifetime of at least 15 years. The organization is judged by
external reviewers on the quality of the architecture and the outcome of these reviews
influences the funding, and consequently the continuation, of their projects. Therefore,
it is of paramount importance to keep the system architecture at a high quality. In order
to achieve this purpose, PAV needs to evaluate at all times the design maturity, the
completeness, the correctness and the consistency of the architecture.

The evaluation of the architecture is to be performed at the level of knowledge enti-
ties, which are units of architectural knowledge shared and communicated among the
project stakeholders. There are four different types of knowledge entities: problems that
state how specific functional requirements or quality attributes must be satisfied; con-
cerns that comprise any interest to the systems development, its operation or any other
aspect that is critical or otherwise important to one or more stakeholders; alternatives
that solve the described problem, potentially in different ways and with different con-
sequences; decisions that denote the selection of one among multiple alternatives.

During the architecting process, the architect takes a number of architectural de-
cisions that are gradually being refined into more low-level, technical decisions. The
lowest level of an architectural decision is called a specification, and the architecting
process finishes when all architectural decisions have been refined into specifications.

Knowledge entities can be expressed in artifacts that are documents in electronic or
printed format. The organization also considers artifacts of smaller granularity, called
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artifact fragments, such as individual sections, paragraphs or pictures in a document,
in order to be able to trace fine-grained knowledge entities within a single document.
Finally, it is of high importance for the organization to keep trace of how the require-
ments, described in the requirements specification document are satisfied in the software
architecture document. Some requirements have associated risks.

We can express PAV’s organization-specific terminology in terms of our core model.
A problem is being solved by the alternatives, which coincides with the core model con-
cept of a Decision Topic. The knowledge entity on the other hand is a generalization of
four core model concepts, namely Concern, Alternative, Decision Topic and Decision.
A specification is a special, refined case of a Decision. An artifact fragment is an Arti-
fact contained in other Artifacts. Requirements and risks are special types of Concerns
that need to be taken care of in the decision making process.

During our research in PAV we found that – although many of the core concepts
are present – most relations between artifacts remain implicit, potentially leading to
traceability issues. The mapping between the core model and the concepts specific to
this organization brings to the architect’s attention that four of the fundamental core
model concepts, namely Concerns, Decision Topics, Alternatives and Decisions are
in fact special cases of knowledge entities. With this in mind architects can annotate
architecture documents with higher level of detail by taking into account the different
types of knowledge entities. A more explicit focus on the core model’s ‘decision loop’,
and in particular the individual elements that make up this loop, is likely to result in
better traceability.

7 Core Model Validation: Attempted Falsification through
Literature

The industrial experiences described in Section 6 showed a practical application of our
core model of architectural knowledge. In this section we determine the core model’s
theoretical significance by comparing its concepts to architectural knowledge concepts
used in accepted software architecture literature.

As defined in Section 4 our core model is minimal in the sense that it is not possible to
express some concepts in any other concepts, and complete in the sense that there are no
concepts from other approaches that have no counterpart in the model. Unfortunately, it
is impossible to ‘prove’ that our model exhibits the desired features of being complete
and minimal. The best we can do is to search for counterexamples that prove our model
does not exhibit those features, thereby demonstrating that our model is not valid. If we
don’t succeed in this falsification attempt, we accept that as supporting evidence for the
validity of our model.

To properly apply the falsification approach on our core model, we have mapped on
our model the complete set of concepts from three different terminological frameworks
for architectural knowledge well-known from literature. Each of these frameworks has
a slightly different perspective on architectural knowledge: IEEE-1471 [15] targets ar-
chitectural descriptions, Kruchten’s ontology [18] focuses on architectural design deci-
sions per se, while Tyree and Akerman [6] provide a template to capture architectural
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Table 2. Falsification Attempts on Core Model using Software Architecture Literature

Core concept IEEE-1471 [15] Kruchten’s ontology [18] Tyree’s Decision Template [6] 
Stakeholder Stakeholder
Concern Concern, Environment, 

Mission
Requirement, Defect, 
Risk, Plan 

Assumption, Constraint, 
Requirement

Decision Topic scope Issue, Group
Alternative Idea, Tentative Position
Ranking Argument
Arch. Design Dec. Decision Assumption, Decision, Principle 
“decision loop” Rationale relationships Related decisions / requirements 

/ principles 
Arch. Design Architecture
Language (Library) viewpoint 
to reflect (Library) viewpoint trace from/to related artifacts 
Artifact System, View, Model, 

Arch. description 
Technical artifact Artifact 

design decisions – thereby relating architectural decisions to architectural descriptions.
Together, these perspectives cover all ‘corners’ of our core model.

Our falsification attempts are summarized in Table 2, which shows the mapping be-
tween core model concepts and the concepts of the three terminological frameworks for
architectural knowledge. We failed to find any concepts that do not fit our core model;
we accept this result as support to the claim of validity of our core model. In the follow-
ing subsections the relationships between core model concepts and concepts of each of
the literature frameworks are elaborated upon.

7.1 Architectural Descriptions: IEEE-1471

IEEE-1471 prescribes the use of so-called views to describe an architecture. Views are
reflections of part of the architectural design according to a particular perspective, or
viewpoint. A viewpoint defines “the language, modeling techniques, or analytical meth-
ods to be used in constructing a view based upon the viewpoint” [15]. In other words, a
viewpoint defines the Languages to use as well as how to reflect the architectural design
in a view. The IEEE-1471 terms model and view are both subsumed in the core model
concept Artifact.

A library viewpoint is a viewpoint that is defined elsewhere, i.e. a specialized in-
stance of a normal viewpoint. The core model captures the rationale of an architectural
design decision in the trajectory from Concern and Decision Topic through ranking of
Alternatives to the eventual choice of the Decision.

In IEEE-1471 terms, a system has an architecture, reflected in the core model as an
Architectural Design that is reflected in a set of Artifacts, which together correspond
to the IEEE system. The architectural description is a particular Artifact that conforms
to the IEEE prescription of how the Architectural Design should be reflected, i.e. using
a viewpoint as Language. The environment in which a system operates determines the
setting and circumstances of developmental, operational, political, and other influences
upon that system. These influences are represented by Concerns in the core, as described
in Section 5.
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Finally, a mission is defined as ‘a use or operation for which a system is intended
by one or more stakeholders to meet some set of objectives’. This is a special case of
a Concern, i.e. ‘an interest which pertains to the system’s development, its operation or
any other aspects that are critical or otherwise important to one or more stakeholders’.

7.2 Ontology of Architectural Design Decisions

In [18], Kruchten defines an ontology of architectural design decisions. Kruchten ar-
gues that ‘design decisions deserve to be first class entities in the process of developing
complex software-intensive systems’ and proposes a model to do so. Due to space re-
strictions, this section only highlights some of the concepts from the ontology to capture
the spirit of this model and its relation to the core model. For a more elaborate discus-
sion, please refer to [19].

Kruchten defines a number of attributes of architectural design decisions, all of which
can be mapped to concepts in our core model. The scope of a decision, for example, can
be mapped on the Decision Topic concept. In our core model, Concerns consist of one
or more Decision Topics for which a Decision must be taken. These Decision Topics
are concrete subjects for which a solution is proposed. A single Decision Topic limits
the scope of a Decision to the concrete subject it represents.

The evolution of design decisions is captured in the state attribute. In the early de-
cision making phase, for instance, Ideas and Tentative decisions (i.e. decisions with a
state ‘idea’ or ‘tentative’) correspond to the core concept of an Alternative. Both are not
yet decisions, and might never become one. Tentative decisions can be used in running
‘what if’ scenarios, i.e. a ranking of different ideas.

The ontology further defines a number of relations between decisions. All these rela-
tionships are manifested in the ‘decision loop’ in the core model, described in Section 5.
For example, the relation ‘decision A constrains decision B’ implies that B is tied to
A and must be in the same state as A. For instance, ‘Must use J2EE’ constrains ‘use
JBoss as Application Server’. In terms of the core model, the Decision ‘Must use J2EE’
introduces a new Decision Topic ‘which application server to use?’. The Alternative
‘JBoss’ could not have been chosen without the decision to use J2EE.

Besides relations between decisions, Kruchten names several relations with ‘external
artifacts’. Design decisions trace from technical artifacts upstream: requirements and
defects (i.e. Concerns in the core model), and trace to technical artifacts downstream:
design and implementation artifacts (i.e. Artifacts in the core model). They are also
traceable to management artifacts, such as risks and plans (again Concerns). Finally,
Kruchten notes that it may be useful to track which portions of the system are not com-
pliant with some design decisions. In the core model, this non-compliance corresponds
to a reflection in Artifacts of an Architectural Design upon which some Architectural
Design Decisions have not yet been enforced.

7.3 Documenting Design Decisions

In [6], Tyree and Akerman consider important decisions as the major forces that drive
architecture. They present a template that can be used to document design decisions.
According to this template, assumptions and constraints limit the alternatives that can
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be selected. Assumptions are Decisions that are assumed to have been taken and to
influence the Architectural Design, often resulting in new Concerns for Stakeholders.
Constraints are posed by decisions already taken, reflected in new Concerns. These new
Concerns are to be taken into account when ranking Alternatives for a Decision Topic.

During the architecting process, an architect comes up with positions for a certain
issue. Ultimately, one of the positions is chosen based on some argument. This position
becomes the decision. This sequence of steps is also visible in our core model, as the
proposal of a set of Alternatives, out of which one Alternative is chosen as Decision.

A group can be used to organize a set of decisions based on their topic (e.g. integra-
tion, presentation, etc.). In our core model, Decision Topics (i.e. concrete subjects for
which a solution is proposed) correspond to the group concept from [6]. The example
template in [6] lists the positions (i.e. Alternatives) ‘Rearchitect existing batch logic in
System A’, ‘Extend System B to handle a new product type’, and ‘Develop a replace-
ment for System A’ for the issue ‘Current IT infrastructure doesn’t support interactive
approval functionality for most financial products’, with a grouping labeled ‘System
structuring’. The example template clearly shows the proposed positions all target the
group (i.e. Decision Topic) ‘System structuring’.

According to [6], a decision states the architecture’s direction. This corresponds to
our notion of an Architectural Design Decision that is enforced upon the Architectural
Design. The template has room for the documentation of related decisions, related re-
quirements, related artifacts, and related principles. The way in which Decisions (that
include principles), Artifacts, and Concerns (i.e. requirements) can be related has been
extensively described in Section 7.2.

8 A Vision on Architectural Knowledge Sharing

We can look at the core model from two perspectives, namely data integration and
service integration. For data integration the core model becomes a reference model
for sharing architectural knowledge. For service integration, it provides the means to
integrate the services that a grid infrastructure may provide.

Having a core model of architectural knowledge has a number of advantages. First of
all, from a data integration perspective, the core model defines a vocabulary for architec-
tural knowledge: the minimal set of common notions that is needed when architectural
knowledge has to be made explicit. Terminology, processes, and concerns particular to
a specific organization or domain can be expressed in terms of core model concepts.
Metaphorically speaking, the organization-specific terminology lies like a shell around
the core model. One can even envision multiple layers of shells, for instance when an
organization defines its own methodology (the outer shell) as an extension to the IEEE-
1471 standard (the inner shell). Thanks to this separation between core model and shells,
we gain in terminological stability (the core model acts as a reference model used by
all companies), extensibility (the architectural knowledge of new companies or domains
can always be added as a new shell without any increase in complexity), and reuse (by
adding new shells, the architectural knowledge vocabulary is incrementally enriched).

Moreover, with a shared core model it becomes easier to agree on a common ter-
minology. This common terminology sticks to the essence and neglects the specific
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Fig. 3. Sharing Architectural Knowledge in a grid-setting

concepts delegated to the shells. These benefits are reaped whenever multiple depart-
ments in the same organization, or even different partner organizations, have to collab-
orate in the same software project: terminological misunderstandings are avoided.

Furthermore, from a service integration perspective the core model can be the means
to integrate the services that a grid infrastructure may provide. These services may
‘speak the same language’ by exchanging data expressed in concepts from the core
model. A direct benefit of this language uniformity is that the core model, being shared
among multiple sites, realizes a more generic architectural style aimed at integration
via an enterprise data model [20]: the enterprise data model (i.e. our core model) is the
target format for all messages between the grid members, which transform their specific
formats to the target format. Such transformations are defined as shells.

We envision architectural knowledge sharing in a grid-setting, an instantiation of the
knowledge grid discussed in [21]. The basic idea is sketched in Figure 3. The model
depicted in the center is the core model of what concerns architectural knowledge.
Organization-specific models provide a specialization hereof. In the figure, design prin-
ciples (a kind of Architectural Design Decision) are made available by RFA, while
quality criteria (another kind of Architectural Design Decision) are made available by
RDB (see also Section 6). Both organizations may offer visualization services (e.g. tab-
ular versus graph-based) to visualize Architectural Design Decisions. Suppose a third
organization, X, is looking for Architectural Design Decisions that are shared on the
grid. Because of the specializations of the notion of an Architectural Design Decision
at RFA and RDB, this query translates into a search for design principles at RFA, and
quality criteria at RDB. Both results will be returned, even using the local visualization
services of RFA and RDB.

We have started to use our core model to realize our envisioned grid-like setting to
share architectural knowledge. We have built some simple services to process specific
architectural knowledge: a word processor plug-in to annotate the rationale in architec-
tural documents, and a service to visualize architectural design decisions using cluster-
based browsing [4]. Future work includes construction of the grid service infrastructure
based on the core model and specific shells, as well as new services to be shared among
organizations participating in the grid.
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9 Conclusions

In this paper we have presented a core model of architectural knowledge. This core
model is the result of the execution of an action research cycle. Experimentation with
an earlier version of the model identified mismatches between the model and industrial
practice. Those mismatches have been overcome by ensuring the new version of our
model of architectural knowledge is both complete and minimalistic. It is this latter fea-
ture that led us to adopt the term ‘core model’. The validity of the claim of completeness
of our core model is made plausible by an attempt to falsify this validity using various
sources from literature.

During experimentation with the earlier version of the model, we identified four
perspectives on architectural knowledge management in four different industrial orga-
nizations: sharing, compliance, discovery, and traceability. Subsequent application of
the core model allowed us to identify probable causes and remedies for problems with
architectural knowledge management encountered in those organizations: implicit rela-
tions between architectural decisions is the likely cause for the problems with sharing
architectural knowledge a particular software development organization encounters; the
compliance issues in a multi-site development organization are probably due to a deci-
sion making process that remains invisible to the affected parties; an organization that
performs software product audits has to deal with the fact that, since the result of ar-
chitectural decisions is not confined to a single product artifact, the relation between
‘quality’ and ‘architecture’ is often not obvious at first sight; long-term development
projects in a scientific organization benefit from improved traceability if a better dis-
tinction is made between different concepts that play a role in the decision making
process. We aim to alleviate those problems in a next iteration of our research with
tools, methods, and techniques that address the probable causes of these problems with
architectural knowledge management.
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Abstract. A large IT company is creating a generic architecting process. Since
the company has set an objective to achieve Maturity Level 3 of the Capabil-
ity Maturity Model Integration (CMMI), the process needs to comply with the
relevant requirements set by the CMMI. This paper presents the elicitation of
such requirements, and the resulting set of requirements. It analyzes their poten-
tial impact on generic architecting processes found in literature. It turns out that
many key architectural concepts are at best loosely defined in the CMMI. CMMI
is strong in support of the development-related architecting activities, but gives
only indirect support for other architecting activities, particularly in a product
development context.

1 Introduction

The setting of this paper is a large IT company, in which it was established that an in-
stitutionalized architecting process would help control technical risks in projects and
products. At about the same time, a company-wide objective had been set to achieve
CMMI Maturity Level 3. This made it necessary to obtain insight into the requirements
that architecting processes need to fulfill in order to comply with CMMI Maturity Level
3 1. This paper documents the process of establishing these requirements. Apart from
this paper, we will elaborate on the establishment of this architecting process in a sepa-
rate paper that is still under development.

As references we have chosen two generic processes found in literature: Architecture
Based Development [1], because its scope is close to our purpose and because it repre-
sents one of the better known approaches to architecting in both industry and academia,
and Hofmeister et al. [2], because their model represents the commonalities between
five industrial approaches.

First, in Sect. 2 we will present the organizational context and scope of a generic
architecting process. In Sect. 3, the CMMI Process Areas that are relevant to such an
architecting process will be identified, and their requirements on architecting processes
extracted. In Sect. 4 follows a discussion on the impact of the CMMI requirements on

1 CMMI Maturity Level 3 is abbreviated to CMMI Level 3 in the rest of this paper.

S. Overhage et al. (Eds.): QoSA 2007, LNCS 4880, pp. 215–230, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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generic architecting processes found in literature, and on the coverage of architecting
processes by CMMI. We will finish up with some conclusions and further work to be
done.

2 Architecting Process Context and Scope

2.1 Organizational Context

The analysis described in this paper was done by and for an IT Corporation of 40,000
people across 41 countries. The company has a diverse business portfolio, consisting of
services centered on business consulting, systems development and integration and IT
and business process outsourcing.

One of the company’s Technical Directorate’s activities is controlling technical risks
in the various IT projects and products. It was felt that technical risk control could be
enhanced by developing and institutionalizing a process that would provide guidance
for making technical decisions: in short, an architecting process. Two of the authors
of this paper work within the company’s technical directorate at group and subsidiary
levels, and have terms of reference that include management of technical risks.

The decision to institute an architecting process coincided with the setting of a ma-
turity objective by the company’s executive management. Encouraged by benefits ex-
perienced through local CMMI driven process improvement, management set an ob-
jective to achieve CMMI Maturity Level 3 for relevant organizational units throughout
the whole company. This meant that the architecting process to be developed would be
subject to the requirements set by the CMMI.

2.2 Scoping an Architecting Process

The terms Architecture and Architecting are used in a great variety of meanings in the
IT world. Rather than risking a non-converging discussion on the meaning of the terms,
it was decided to scope the architecting process in terms of a set of business goals and
usage scenarios. The details of this work and the resulting process description will be
the subject of a separate paper. For the purposes of this paper, a high-level summary is
provided:

Business Goals. The business goals for the architecting process were established as
Consistency in Delivery, Risk Management, Customer Satisfaction and Knowledge
Incorporation.

Usage Scenarios. The process will be used for architecting activities in the following
scenarios: Responding to a Request for Proposal (RFP), Software Development
Project, System Integration Project and Product Development.

The business goals and usage scenarios were analyzed to determine the scope of
the architecting process. Apart from literature and the existing experience of the au-
thors, additional input for the analysis came from other stakeholders, specifically the
company’s sales community, quality assurance community and technical community,
obtained in a workshop.
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The most significant elements in the outcome of this analysis are listed below.

– Analysis of the business goals and experience indicates that architectural deci-
sions are critical to the success of projects in terms of cost and timing of delivery.
The process should therefore give guidance on how to identify and make archi-
tectural decisions. This matches requirements from CMMI about decision analysis
and resolution, and with recent publications about the status of architectural deci-
sions [3, 4, 5].

– Many architectural decisions are made during the sales phase of projects; the archi-
tecting process has to facilitate that process.

– A certain level of reviewing and control has to be facilitated by the process. This is
the convergence of the architecture assessment practices from literature [6, 7], and
the responsibilities of the authors to control technical risks. Not only are reviewing
and control necessary parts of the process, it also has to be facilitated by a certain
level of standardization in documentation of architectures.

– The involvement of architects in the implementation phase of solutions is essen-
tial in order to assure that the selected solution will be adequately implemented
conforming to the architecture. The architecting process has to facilitate this.

– To contribute to the business goal of knowledge incorporation, the process should
support a structure for organizational learning from experiences. Learning points
may be both process-related (like best practices) and product-related (like best ar-
chitectural constructs).

– The objective is to implement a process that gives guidance on aspects of archi-
tecting that are not specific to particular types of applications, e.g. not just software
development, but also system integration, ERP implementations, and embedded
system development. This means its concept of “architecture” covers both software
and system architecture. For such a generic process to be useable, it must be ac-
companied by a set of guidelines for tailoring the process to the specific needs and
characteristics of the usage environment. This is also required by CMMI Generic
Practice 3.1 “Establish a Defined Process”.

The result of all this is an architecting process description under development that
focuses on requirements analysis, architectural decision making, shaping, selection and
evaluation of the best-fit solutions, documenting and implementing architectures and
controls like architectural governance and reviewing.

At the time of writing this paper, it is being considered to extend the scope of this
process to better support the product development scenario, by adding e.g. reusable
asset harvesting and product roadmapping.

The scope of what is meant by an “architecting process” in this paper is documented
as a list of requirements2 in Table 1. In Sect. 4.1, we will identify a number of generic
architecting processes in literature that are similar in scope.

The scope of the architecting process has been determined by the analysis of the
business goals and usage scenarios, with limited consideration of CMMI. We will now
focus on the influence of CMMI in more detail.

2 A note on the tagging of requirements in this paper: the reader will notice the use of mnemonic,
hierarchical tagging [8]. The use of dots indicates a hierarchical grouping, with an implicit
traceability to higher level requirements.
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Table 1. Scope of architecting process: high-level requirements

rq.arch A process giving guidance on architecting technical solutions.
rq.arch.decision Guidance on how to make architectural decisions.
rq.arch.sales Facilitating the sales process.
rq.arch.documentation Standardization of architectural documentation.
rq.arch.controls Guidance on architectural controls.
rq.arch.conform Assuring conformance with architecture during the implementation process.
rq.scalable Scalable over business unit sizes (20 - 2000) and project/programme sizes (80 K -

500 M), and over a broad range of size and complexity of solutions.
rq.generic Flexible / generic to work in diverse applications.
rq.generic.tailoring Be accompanied by a set of tailoring guidelines.
rq.accessible Simple, accessible to all.
rq.accessible.terminology Terminology familiar to company staff.
rq.cmmi CMMI Maturity Level 3 compliant.
rq.learning.product Bottle product experiences and make available to architects in controlled

manner.
rq.learning.process Support a structure for organizational process learning.

3 Architecting and CMMI

The Capability Maturity Model Integration (CMMI) is a process-improvement model
developed by the Software Engineering Institute (SEI) of the Carnegie Mellon Univer-
sity. It is scoped towards the development, acquisition and maintenance of systems or
services.

The “staged representation” of the CMMI consists of five maturity levels. With in-
creasing maturity level, the process capabilities increase, resulting in a higher prob-
ability that development or maintenance targets will be realized. Each maturity level
consists of a number of Process Areas (PAs). Each PA consists of a small set of “goals”
followed by a collection of practices that must be performed in order to realize the
goals. A process complies to a certain maturity level if the goals and practices of all
PAs of that level are satisfied. The PAs are customarily referred to by a set of fixed tags;
all level 2 and 3 PAs and their tags are listed in Table 2.

Goals and practices of a PA are divided into specific ones and generic ones. Specific
goals and practices directly refer to the PA itself, whereas generic goals and practices
represent mechanisms to institutionalize the specific goals and practices. These prac-
tices are called generic because they apply to multiple PAs.

CMMI Maturity Level 3 requires that for all PAs belonging to Level 2 and Level
3 a “defined process” is established. A defined process is tailored from the organi-
zation’s “standard process” according to a set of tailoring guidelines. In addition, a
defined process has a maintained process description, which implies that all (generic
and specific) practices are described. For more information, the reader is referred to [9]
or [10].

This section starts with an exploration of what a CMMI Compliant Architecting
Process actually means. This is followed by a discussion on the use of architectural
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concepts in the CMMI. We then proceed to identify the Process Areas that have a sig-
nificant contribution to architecting according to the scope set out in Sect. 2.2. We call
this set the Architecting Significant Process Areas (ASPAs).

3.1 CMMI-Compliant Architecting Process

The boundaries (scope) of the architecting process are determined in Sect. 2.2. Because
of the structure of the CMMI, the practices related to this process may be distributed
over a number of Process Areas.

The CMMI Level 3 coverage of the architecting process can be obtained by analyzing
every Level 2 and Level 3 specific practice to determine whether or not the practice is
inside the scope of the architecting process. The generic practices of Level 2 and Level
3 will always be in scope because they apply to all PAs. This analysis will be performed
further on in this paper.

Fig. 1. CMMI coverage of the architecting process

Figure 1 illustrates the CMMI coverage of the architecting process. As can be derived
from the figure, the architecting process may include elements that are not covered by
CMMI Level 3. These may for example be elements that are beyond the scope of system
development (like architectural roadmapping) or elements that are considered critical
for a successful architecting process but cannot be found in the CMMI.

Summarizing the above information, it can be stated that a CMMI Level 3 compliant
architecting process:

– has a maintained description of all specific and generic practices that are in scope
of the architecting process (the square box in the figure)

– has a maintained description of guidelines to tailor the process to the specific needs
and characteristics of the usage environment

– is consistently deployed inside the company in the context of the user scenarios
referred to in Sect. 2.2.



220 E.R. Poort et al.

The scope of this paper is the determination of the practices that should be part of
the maintained description mentioned in the first two items. These practices will be
presented as a list of requirements imposed on an architecting process description. In
Sect. 3.3 we will present the elicitation of these requirements, but first we will have a
more general look at the use of architecture concepts in the CMMI.

3.2 Architecture Concepts in the CMMI

The word “architecture” is used extensively in the CMMI. It appears in 7 out of 25
Process Area descriptions [9]. The CMMI is a collection of industry best practices
and not a formal theoretical model. Effort was put in making the model consistent and
unambiguous, but many parts are still subject to different interpretations.

Architecture itself is not defined in the CMMI glossary. The word is mostly used
informally to denote a number of concepts, some of which are related to our architecting
process, and others are not.

Architecting the company processes: the CMMI describes how to set up and main-
tain a company’s processes in order to best achieve its business goals. The design
and overview of these processes and their alignment with the company’s IT re-
sources require architecting skills. This type of architecting is relevant in the OPD
and OPF processes. It is outside the scope of this paper as defined in Sect. 2.2.

Architecting the product: the bulk of the CMMI PAs describe how to improve sys-
tems and software engineering processes. Architecting is an essential part of those
processes, especially RD, TS, PI, PP, REQM, DAR and RSKM.

Furthermore, several architecture-related terms are defined in the CMMI glossary:

Functional Architecture is defined as “The hierarchical arrangement of functions,
their internal and external (external to the aggregation itself) functional interfaces
and external physical interfaces, their respective functional and performance re-
quirements, and their design constraints.”

Process Architecture is defined as “the ordering, interfaces, interdependencies, and
other relationships among the process elements in a standard process”. This concept
is on a different level than the “architecture” in the architecting process as described
in this document.

Shared Vision is defined as “a common understanding of guiding principles includ-
ing mission, objectives, expected behavior, values, and final outcomes, which are
developed and used by a group, such as an organization, project, or team.”

A significant finding is the fact that “product architecture”, though used extensively,
is not defined in the CMMI glossary.

These considerations show that the concepts and terms relevant to architecting are
generically defined (e.g. Shared Vision) or not defined at all (e.g. Product Architec-
ture) in the CMMI. Hence the terms provide little guidance in themselves. The word
architecture is used in many different ways, making it inadequate as a basis to establish
direction for an architecting process. We have therefore selected a different approachto
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establishing the CMMI requirements on an architecting process, which will be the sub-
ject of the following section.

3.3 Process Areas Relevant to Architecting

Our approach to establish which requirements CMMI imposes on architecting processes
is to first identify which PAs are relevant for the process, and then to extract require-
ments on the process from the practices in their descriptions. An analysis of the CMMI
Level 3 PAs against the architecting process scoped in Sect. 2.2 results in a set of PAs
that have a direct and significant contribution to the objectives of this process. As dis-
cussed before, these PAs are called Architecting Significant Process Areas (ASPAs).

The PAs of the CMMI are grouped into four categories:

Process Management. These PAs contain the activities related to defining, planning,
implementing, monitoring, evaluating and improving all other processes. The ar-
chitecting process is subject to these process management PAs in order to assure
the required level of capability.

Project Management. These PAs cover the project management activities related to
planning, monitoring and controlling the development or maintenance project. The
architecting process is generally performed in the context of a project.

Engineering. These PAs cover the development and maintenance activities that are
shared across engineering disciplines (e.g. systems engineering and software engi-
neering). The architecting process falls mainly within these PAs.

Support. These PAs cover the activities that support all other PAs like establishing
measurement programs, verification of compliance, and effective decision making.
The architecting process is also subject to these PAs.

Table 2 identifies the categorized set of Level 3 PAs and indicates which PAs have
been qualified as an ASPA. It should be noted that all PAs of the CMMI contribute to
the objectives of the architecting process. Their contribution may be direct because the
PA is actually part of the architecting process, or indirect because the PA is establishing
the context and preconditions for a successful architecting process.

As stated before an ASPA has a direct contribution and this contribution should also
be significant. This is the case for all Engineering PAs, one Project PA (Risk Manage-
ment, RSKM) and one Support PA (Decision Analysis and Resolution, DAR). Both
RSKM and DAR are actually part of the architecting process and contribute signifi-
cantly to its objectives. The architecting relevance of the set of ASPAs is shortly ex-
plained below. Where relevant, underpinning references to the CMMI text have been
added in [braces].

REQM Requirements Management. The role of architecting in Requirements Manage-
ment focuses around the impact of requirements and their traceability to the archi-
tecture. [Specific Practice 1.1 Obtain an Understanding of Requirements describes
the process of the acceptance of requirements according to objective criteria. “Does
not break the architecture” is an important criterion to assess requirements, implied
in the example criterion “Appropriate to implement”. It is also implicit in the impact
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Table 2. Categorized Process Areas and their Architecting Significance

Tag Process Project Eng Supp ASPA
OPF Organizational Process Focus X N
OPD Organizational Process Definition X N
OT Organizational Training X N
PP Project Planning X N
PMC Project Monitoring and Control X N
SAM Supplier Agreement Management X N
IPM Integrated Project Management X N
RSKM Risk Management X Y
IT Integrated Teaming X N
ISM Integrated Supplier Management X N
REQM Requirements Management X Y
RD Requirements Development X Y
TS Technical Solution X Y
PI Product Integration X Y
VER Verification X Y
VAL Validation X Y
CM Configuration Management X N
PPQA Process and Product Quality Assurance X N
MA Measurement and Analysis X N
DAR Decision Analysis and Resolution X Y
OEI Organizational Environment for Integration X N

analysis mentioned in SP1.3 Manage Requirements Changes. SP1.4 Maintain Bidi-
rectional Traceability of Requirements: traceability to architectural components is
implied, as is traceability to architectural decisions.]

RD Requirements Development. This process area is where a system’s functional ar-
chitecture is defined, and where the requirements are analyzed and developed. Ar-
chitecting is important here both as a source of new requirements and as a means to
structure requirements. [“Analyses occur recursively at successively more detailed
layers of a product’s architecture”. Specific Goal 2 Develop Product Requirements
identifies the selected product architecture as a source of derived requirements.
SP2.1 Establish Product and Product-Component Requirements prescribes that “ar-
chitecture requirements addressing critical product qualities and performance nec-
essary for product architecture design” be developed, and that “requirements that
result from design decisions” be derived. SP2.3 Identify Interface Requirements
prescribes the definition of interfaces as an integral part of the architecture defini-
tion.]

TS Technical Solution. This process area covers the core of architecting: developing a
solution that fulfills the requirements. [TS specific goals are SG1 Select Product Compo-
nent Solutions, SG2 Develop the Design and SG3 Implement the Product Design. SP1.1 De-
velop Detailed Alternative Solutions and Selection Criteria prepares architectural decision
making by identifying alternatives and selection criteria. SP1.2 Evolve Operational Concepts
and Scenarios prescribes the use of scenarios to help assess alternative solutions for usability.
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SP1.3 Select Product Component Solutions and SP2.4 Perform Make, Buy or Reuse Analy-
ses are about making design decisions and documenting them, including rationale. SP2.1
Design the Product or Product Component establishes the product architecture. It describes
architecture definition, driven by the architectural requirements developed in RD SP 2.1. It
identifies elements of architectures, such as coordination mechanisms, structural elements,
standards and design rules. It also mandates architecture evaluations to be conducted pe-
riodically throughout product design. SP2.2 Establish a technical data package and SP3.2
Develop Product Support Documentation are about documenting, giving guidance on where
the architecture definition and the rationale for key decisions are documented. SP2.3 Design
Interfaces Using Criteria supplies requirements to the interface design process.]

VER Verification. Verification is an essential part of the architecting process because
its purpose is to ensure that the work products of this process meet the specified
requirements. Typical work products of the architecting process are the architecture
and design documents and the architecture and design itself. Means for verification
may be peer reviews (for documents) and architectural assessments. Verification
activities should be prepared, performed, the results analyzed and corrective actions
identified.

VAL Validation. Validation is in fact a variant on verification but its objective is to
demonstrate that a (work) product fulfills its intended use (i.e. that it meets user
needs). Regarding the architecting process, the work products and means for vali-
dation are similar to verification.

DAR Decision Analysis and Resolution. Key to architecting is decision making [3, 4].
The DAR process area prescribes a formal evaluation process for decisions of this
kind: evaluation criteria should be established, alternatives should be identified,
evaluation methods selected, alternatives evaluated and a solution selected. There
should also be guidelines establishing which decisions should be subject to this
formal evaluation process.

RSKM Risk Management. Better risk management is one of the business goals of the
architecting process. The inherent risk in a requirement is an important factor in
determining whether or it is an architectural requirement. [A requirement that,
when not fulfilled, heavily “impacts the ability of the project to meet its objec-
tives” (SP1.1 Determine Risk Sources and Categories), has a good chance to be
considered architectural. The RSKM process area prescribes how to deal with such
risks: risk parameters should be defined (SP1.2), a risk management strategy should
be established (SP1.3), the process should give guidance on how risks are identi-
fied and analyzed (SG2), and mitigated (SG3). Insofar as architectural requirements
involve risks, they should be treated the same way.]

An analysis of the texts of these ASPAs yields the requirements imposed on the ar-
chitecting process by the CMMI. These requirements are listed in Table 3. In agreement
with the nature of the CMMI, this table is effectively a list of 67 best practices that sup-
port companies in creating and implementing an architecting process. The tags allow
traceability to the PAs that the requirements originated from, and give the list a clear
structure. The largest contributor is TS with 31 requirements, confirming our earlier
observation that TS covers the core of architecting. The next largest contributor is RD
with 16 requirements, indicating that an architecting process within our scope includes
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Table 3. Requirements imposed on Architecting Process by CMMI

rq.cmmi.reqm.arch Use architectural fit as criterion when assessing requirements and changes.
rq.cmmi.reqm.trace Maintain traceability between requirements and architectural components and decisions.
rq.cmmi.rd.fun-arch Develop a functional architecture.
rq.cmmi.rd.recursive Recursive analysis of requirements.
rq.cmmi.rd.arch-req Develop architectural requirements.
rq.cmmi.rd.alloc-comp Allocation of requirements to product components.
rq.cmmi.rd.alloc-fun Allocation of requirements to functions.
rq.cmmi.rd.elicit Elicit needs from stakeholders by proactively identifying additional requirements.
rq.cmmi.rd.derive Derive requirements that result from design decisions.
rq.cmmi.rd.if Identify interface requirements.
rq.cmmi.rd.trace Document relationships between requirements.
rq.cmmi.rd.analyze Analyze requirements.
rq.cmmi.rd.scenario Develop operational concepts and scenarios.
rq.cmmi.rd.balance Use proven models, simulations, and prototyping to analyze the balance of stakeholder needs and constraints.
rq.cmmi.rd.risk Perform a risk assessment on the requirements and functional architecture.
rq.cmmi.rd.lifecycle Examine product life-cycle concepts for impacts of requirements on risks.
rq.cmmi.rd.assess Assess the design as it matures in the context of the requirements validation environment.
rq.cmmi.rd.measure Identify technical performance measures.
rq.cmmi.ts.alt Develop detailed alternative solutions to address architectural requirements.
rq.cmmi.ts.alt.crit Develop selection/evaluation criteria for alternative solutions.
rq.cmmi.ts.alt.crit.assess Assess adequacy of selection criteria after use.
rq.cmmi.ts.alt.req-alloc Obtain a complete requirements allocation for each alternative.
rq.cmmi.ts.alt.scenario Develop timeline scenarios for product operation and user interaction for each alternative solution.
rq.cmmi.ts.alt.eval Evaluate alternative solutions against criteria.
rq.cmmi.ts.alt.issues Identify and resolve issues with the alternative solutions and requirements.
rq.cmmi.ts.alt.select Select the best set of alternative solutions that satisfy the established selection criteria.
rq.cmmi.ts.alt.alloc Establish the requirements associated with the selected set of alternatives as the set of allocated requirements to those product components.
rq.cmmi.ts.alt.doc Establish and maintain the documentation of the solutions, evaluations, and rationale.
rq.cmmi.ts.reuse Identify the product-component solutions that will be reused or acquired.
rq.cmmi.ts.reuse.analyze Perform make, buy or reuse analysis.
rq.cmmi.ts.scenario Evolve operational concepts and scenarios.
rq.cmmi.ts.technology Identify technologies currently in use and new product technologies.
rq.cmmi.ts.design Establish the product architectural design.
rq.cmmi.ts.design.struct Establish product partition into components.
rq.cmmi.ts.design.struct.if Identify and document major intercomponent interfaces.
rq.cmmi.ts.design.struct.id Establish product-component and interface identifications.
rq.cmmi.ts.design.state Establish main system states and modes.
rq.cmmi.ts.design.if Identify and document major external interfaces.
rq.cmmi.ts.design.crit Establish and maintain criteria against which the design can be evaluated.
rq.cmmi.ts.design.method Identify, develop, or acquire the design methods appropriate for the product.
rq.cmmi.ts.design.standard Ensure that the design adheres to applicable design standards and criteria.
rq.cmmi.ts.design.fulfill Ensure that the design adheres to allocated requirements.
rq.cmmi.ts.design.doc Document and maintain the design in a technical data package.
rq.cmmi.ts.design.levels Determine the number of levels of design and the appropriate level of documentation for each design level.
rq.cmmi.ts.design.impl Base detailed design descriptions on the allocated product-component requirements, architecture, and higher level designs.
rq.cmmi.ts.rationale Document the rationale for key decisions made or defined.
rq.cmmi.ts.if Establish and maintain interface descriptions.
rq.cmmi.ts.if.crit Design interfaces using criteria.
rq.cmmi.ts.implement Implement design adhering to design decisions and architecture.
rq.cmmi.pi.seq Guidance on determining the product integration sequence.
rq.cmmi.pi.if Ensure interface compatibility of product components, both internal and external.
rq.cmmi.pi.if.review Review interface descriptions for completeness.
rq.cmmi.pi.if.manage Manage interface definitions, designs and changes.
rq.cmmi.ver.prepare Prepare verification activities.
rq.cmmi.ver.review Perform peer reviews on architecture and design documents.
rq.cmmi.ver.verify Verify (part of) the architecture or design.
rq.cmmi.ver.analyze Analyze verification results and identify corrective actions.
rq.cmmi.val.prepare Prepare validation activities.
rq.cmmi.val.validate Validate (part of) the architecture or design.
rq.cmmi.val.analyze Analyze validation results and identify corrective actions.
rq.cmmi.dar.guid Specify when a technical choice or design decision is architectural and subject to architecting process.
rq.cmmi.dar.rank Evaluation criteria for alternative solutions should be ranked.
rq.cmmi.dar.evalmethod Guidance on selecting evaluation methods for alternatives.
rq.cmmi.rskm Guidance on handling architectural requirements as risks.
rq.cmmi.rskm.id Identify architectural risks.
rq.cmmi.rskm.analyze Analyze architectural risks.
rq.cmmi.rskm.mitigate Mitigate architectural risks.
rq.cmmi.gen Architecting process should be institutionalized according to CMMI’s Generic Practices.

a substantial amount of requirements development practices. All other PAs provide only
4 or less requirements.

4 Discussion

In this section, we will discuss our results in conjunction with two generic architecting
process models found in literature, and we will discuss the coverage of architecting
processes in CMMI.
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4.1 Generic Architecting Process Models in Literature

The CMMI imposes requirements on processes used by organizations. So if an organi-
zation were to institutionalize an architecting process based on a model found in litera-
ture, what would that organization have to do to make their architecting process CMMI
level 3 compliant?

Although this analysis of CMMI’s influence on architecting processes was based on
an initial scope set out in the context of a particular company setting, the results of
the analysis should be relevant for other generic architecting processes. This section
explores that relevance. We examine the impact of the CMMI requirements derived in
this paper on two generic architecture process models found in literature: one from a
technical report and one from a recent conference paper. Please note that the architecting
process models treated here differ significantly in scope: one focuses on design and
analysis and the other focuses on architecture playing a central role throughout the
software development lifecycle process. Also note that the models only roughly overlap
the architecting process scope set out in Sect. 2.2. A discussion on how exactly these
processes match or mismatch this scope will be presented in a separate paper.

Architecture-Based Development (ABD). This is the generic architecting process as
developed by the Architecture group at the SEI. It is described in [1], but aspects of
it are present in most of the publications of the SEI Architecture group (e.g. [11]). It
is used as a reference here because its scope is close to that determined in Sect. 2.2,
and because it represents one of the better known approaches to architecting in both
industry and academia.

The ABD process consists of six steps:

1. Elicit the architectural requirements.
2. Design the architecture.
3. Document the architecture.
4. Analyze the architecture.
5. Realize the architecture.
6. Maintain the architecture.

Table 4. ASPAs Mapping onto ABD Steps

Elicit Design Document Analyze Realize Maintain

REQM X
RD X X
TS X X X X X
PI X
VER X X X X X
VAL X X X X X
RSKM X X X X X X
DAR X X X X X X
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Table 4 shows how the ASPAs map onto these steps. In order to make the ABD
process CMMI Level 3 compliant, each of these steps should be implemented in such
a way that the practices belonging to the ASPAs related to this step are satisfied. The
following explanation applies to this mapping:

– RD is not only mapped onto the Elicit step but also onto the Design step. This is
because the establishment of the “functional architectural structure” as part of this
step is actually a practice that is part of RD.

– VER activities start from the Design step because, as discussed before, verification
refers to the requirements produced during the Elicit step.

– The ABD process defines that each step includes validation (VAL) activities. For
the Elicit step this refers to the validation of behavioral and quality scenarios.

– The Maintenance step is not well defined and scoped in the ABD process descrip-
tion. The existing text refers to means to prevent that the architecture drifts from
its original precepts due to poor maintenance. This may include activities to extract
the architecture of the as-built system, verify its level of compliance with the archi-
tecture of the as-designed system and performing the required corrective actions.
In this respect, TS and VER should be mapped onto the Maintenance step.

– Because RSKM and DAR generally support all development and maintenance ac-
tivities, they are related to all steps of the ABD process.

Generalized Software Architecture Design Model. In [2], Hofmeister et al. compare
five industrial approaches to architectural design, and extract from their commonalities
a general software architecture design approach. The approach involves three activities:

1. Architectural analysis: define the problems the architecture must solve. This activ-
ity examines architectural concerns and context in order to come up with a set of
Architecturally Significant Requirements (ASRs).

2. Architectural synthesis: the core of architecture design. This activity proposes ar-
chitecture solutions to a set of ASRs, thus it moves from the problem to the solution
space.

3. Architectural evaluation: ensures that the architectural design decisions made are
adequate. The candidate architectural solutions are measured against the ASRs.

It should be noted that this generalized model is of a higher level of abstraction than
the ABD process discussed before, and that its scope is explicitly limited to the Design
step of architecting.

Table 5 shows how the selected set of ASPAs map onto these activities. In order
to make a process based on this generalized model CMMI Level 3 compliant, each of
these activities should be implemented in such a way that the practices belonging to the
ASPAs related to this activity are satisfied. The following explanation applies to this
mapping:

– Unlike the ABD process, the generalized model has limited its scope to the design
step of the architecture. For this reason, PI and VAL cannot be mapped to this
model.
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Table 5. ASPAs Mapping onto Generalized Architecture Design Model Activities

Analysis Synthesis Evaluation

REQM X
RD X
TS X
PI
VER X
VAL
RSKM X X X
DAR X X X

– The Architectural Evaluation activity ensures that the architectural design decisions
made are adequate. The candidate architectural solutions are measured against the
ASRs. Although the result is called the validated architecture, this activity is ver-
ification (VER) in CMMI terms because it refers to the requirements (ASRs) pro-
duced during the Architectural Analysis activity.

– Since RSKM and DAR generally support all development and maintenance activi-
ties, they are related to all activities of the generalized model.

4.2 CMMI Coverage of Architecting Processes

As discussed in Sect. 3, the architecting process scoped in Sect. 2.2 may include ele-
ments that are not covered by CMMI Level 3. An analysis of the information in this
section against the CMMI results in the following elements that are not or only indi-
rectly covered.

rq.arch.documentation. Standardization of architectural documentation: the activity
to document architecture and design information is part of the practices of TS,
including roughly what kind of information should be documented. In this way the
CMMI guides standardization of documents. Concrete standards, however, are not
provided.

rq.arch.conform. Facilitating conformance to architecture during the implementation
process: The implementation phase as such is part of the practices of TS, includ-
ing references to VER in order to verify the implementation once it is finished.
However, the CMMI does not provide any explicit support in ensuring that the ar-
chitecture and design will be adequately implemented during implementation (e.g.
by involvement of the architects).

rq.learning.product. Bottle experiences and make available for architects: the CMMI
has many PAs that deal with establishing an infrastructure for organizational learn-
ing and improvement. Because the CMMI is a process framework, this is strongly
focussed on the process dimension (like the architecting process), not on the prod-
uct dimension (like architectural solutions). Only at Level 5 the PA Organiza-
tional Innovation and Deployment (OID) addresses improvements on processes and
(process and product related) technologies. Product related technologies may also
be interpreted as architectural solutions.
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Reuse development. Although not indicated as a requirement in Sect. 2.2, reusable as-
sets like product components, source code libraries and technical documents may
be developed and maintained in the context of the usage scenario Product Develop-
ment. Although the CMMI addresses the concept of reuse in a number of PAs, the
development and management of a reusable base of core assets is not adequately
covered. The SEI has an area of work called Software Product Lines in the context
of its Product Line Systems Program to cover this. Although this includes some
process related support, no CMMI-like reference model exists.

Roadmapping. Like reuse development, the development and evolution of architec-
ture and technology roadmaps has not been indicated as a requirement in Sect. 2.2
although it is relevant in the context of the usage scenario Product Development.
Roadmapping is not supported by the CMMI because it is mainly a product plan-
ning (pre-development) activity.

Fig. 2. CMMI, architecting process and cross-section

An informal visualization of the overlap between CMMI and the architecting process
is presented in Fig. 2.

A note on the meaning of the fact that these elements are not covered by CMMI. We
have not made any statement on the relative merits of these elements. One could argue
that this lack of coverage is a shortcoming of CMMI; conversely, one could argue that,
given the success of CMMI, how do we know that the elements in the square aren’t
by themselves good enough for an optimal architecting process? The current state of
affairs does not allow us to answer this question in a general sense; the analysis in



The Influence of CMMI on Establishing an Architecting Process 229

Sect. 2.2 merely indicates that in the current organizational setting, the elements would
contribute to achieving the business goals set.

5 Conclusions and Further Work

Our starting point in this paper was a large IT company with a need to institutionalize a
generic architecting process that is compliant with CMMI Maturity Level 3. To this end,
we have studied and discussed the relation between architecting and CMMI, resulting in
the identification of PAs significant to architecting, and a list of requirements to make a
generic architecting process compliant with CMMI Maturity Level 3. Furthermore, we
have compared our findings with two well-known process models from literature.

We have concluded that:

– Architecture is not a well-defined concept in the CMMI; the word is used in many
meanings, most of which are not defined in the glossary.

– CMMI implicitly provides considerable support in establishing an architecting pro-
cess. However, in some areas of architecting, the CMMI only gives indirect support.
The weaker areas are documentation, facilitating the implementation of the archi-
tecture, and learning from architectural choices.

– In product development contexts, there are two activities generally associated with
architecting that are insufficiently supported by the CMMI: architectural roadmap-
ping and the exploitation of reusable assets.

Besides these conclusions, other relevant findings worth mentioning are:

– Although the scope of this paper was limited to CMMI Level 3, an investigation
of the level 4 and 5 PAs shows that none of these are Architecting Significant
according to our scope. This resonates with remarks made informally by Grady
Booch [12].

– Although architecting is generally viewed as an engineering activity, two PAs out-
side Engineering are crucial to a good architecting process: RSKM and DAR.

Further Work. The work described in this paper was based on CMMI version 1.1.
Since August 2006, CMMI version 1.2 exists. This is the ”CMMI for Development”.
There are now three CMMI variants: Development, Service and Acquisition. Since sup-
port for CMMI 1.1 will be dropped in time, we will update the work in this paper to
CMMI 1.2 for Development in the coming months.

As has been mentioned previously in this paper, the work described here was done
in the context of designing a generic architecting process for a large IT company. Since
this other work also yielded some interesting insights, we will describe it in more detail
in a separate paper, which will also contain a comparison of our developed architecting
process to the generic architecting processes discussed in Sect. 4.1.

An architecting process that complies with a maturity model also begs a comparison
with Architecture Maturity Models (AMMs), such as the IT Architecture Capability
Maturity Model (ACMM) developed by the US Department of Commerce [13]. This
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comparison could be subject of a future analysis. Conversely, the development of archi-
tecting enhancements to the CMMI would be an attractive idea for CMMI-compliant
companies that wish to enhance their architecting maturity levels, but would rather not
introduce another maturity model on top of CMMI. This could be another interesting
avenue to explore.
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Abstract. Software architecture and software architecture practices be-
come increasingly important for information systems since they enable
reasoning on the design of the system. The concept of architectural knowl-
edge, i.e. architectural design decisions and the resulting design, plays a
pivotal role in architecture. In order to get the most out of architectural
knowledge, we need insight into the ways in which architectural knowl-
edge is used. Currently, we lack this insight. We performed survey-based
research in the Netherlands to collect feedback on the importance of ar-
chitectural knowledge for the daily work of practitioners in architecture.
We present our findings using two perspectives: the architectural roles
practitioners fulfill and the architecture level practitioners are engaged
in. We use these perspectives to construct and reflect on the architect’s
mindset on architectural knowledge. This mindset of architects reveals
an approach which is focused on ‘to create and communicate’ rather than
‘to review and maintain’ an architecture.

Keywords: software architecture, architectural knowledge.

1 Introduction

A software architecture is a transferable abstraction of a system and allows for
communication of that system to different stakeholders [1]. Software architecture
and software architecture practices are gaining importance since they enable
reasoning on the design of the system and verifying quality attributes of a system
at an early stage in the development cycle.

Rather than viewing the software architecture as a set of components and
connectors, recent literature regards the software architecture as the set of ar-
chitectural design decisions [1,2]. The collection of architectural design decisions
and the resulting design together constitute architectural knowledge [3]. Besides
providing insight into the current software architecture, architectural knowledge
also caters for the ‘why’ of the software architecture, its rationale.

To get the most out of the architectural knowledge of information systems in
general, we need to determine in what way different stakeholders use architec-
tural knowledge. We term these typical uses use cases for architectural knowl-
edge. Some of these use cases may depend on the roles that stakeholders fulfill
or the architecture level stakeholders are engaged in. E.g. architects may favour
other use cases than designers or technical specialists, and enterprise architec-
ture practitioners may give priority to other use cases than software architecture
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practitioners. Currently, we determine what information is particularly impor-
tant for certain stakeholders, by using approaches and standards such as [4,5].
But we do lack insight into what intention these stakeholders have with archi-
tectural knowledge.

We have conducted a survey-based study to address the lack of insight into the
importance of architectural knowledge. We designed a survey which includes use
cases for architectural knowledge. These use cases are based on earlier work [3,6],
experiences in industry, and our own experience.

This paper reports on the results of our study. We provide insight in the
way practitioners in the Netherlands view and use architectural knowledge. In
doing this, we reveal the mindset of practitioners with respect to the use of
architectural knowledge by listing what uses are important for what roles and
on what architecture levels.

Based on the survey results, we make the following observations. Architects
regard the architecting process as a forward engineering discipline and do not see
clear benefits of reflection, assessment, and change of the architecture. Yet, litera-
ture argues that these are precisely the intended benefits of architecture (e.g. [1]).
Apparently, these intended benefits of architecture have not yet been firmly es-
tablished in the mindset of architects nor transferred to practice. Furthermore, a
forward decision-making process is reflected by the mindset of architects, but the
value of managing the set of decisions (‘architectural knowledge management’)
is not yet clear. Finally, the importance of stakeholder communication of the
architecture is generally recognized.

The results of this research call for further knowledge transfer on the more
innovative concept of viewing architecture as architectural decisions. Further-
more, it is important to quantify the benefits of this concept. At the same time,
further research is needed into the foundation for the mindset to identify the
activities needed to further establish the concept of architectural knowledge in
the architect’s mindset.

The remainder of this paper is organized as follows. Section 2 discusses related
work in the field of architectural knowledge, design rationale, and architectural
roles. Next, Sect. 3 describes the design of the research. Sections 4 and 5 present
the findings and a discussion of their limitations. Section 6 reflects on the results
and provides conclusions. Finally, Sect. 7 provides directions for future work.

2 Related Work

In recent work [7], the use and documentation of architecture design rationale
has been analyzed. The survey reveals the view of the participants on several
generic uses of design rationale. The study shows that although participants re-
gard design rationale as important, they do not capture the rationale. The main
reason for this is a lack of appropriate tools to support the architects. Further-
more, the survey shows that architects tend to focus on the positive aspects of
architectural decisions and design rationale instead of looking for problems in
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a specific architecture. We view design rationale as a specific subset of archi-
tectural knowledge [3]. We revert to the use cases for architectural knowledge,
initially described in [3] and elaborated on in [6], and provide a detailed view on
possible uses of architectural knowledge.

A template for architectural decisions is provided by [8]. This template de-
scribes a decision, its underlying assumptions, related requirements, and im-
plications. The template is useful for organizing architectural knowledge but
does not provide insight into the use of architectural knowledge. Multiple tem-
plates or tailoring of existing templates may be necessary to fully support ar-
chitects in their use of architectural knowledge. Our work can provide input for
this. Zimmermann et al. [9] report on a framework that can be useful in iden-
tifying, making, and enforcing architectural decisions during the architecting
process.

The meaning of architecture in practice has been extensively described in [10].
Smolander describes four metaphors for architecture: ‘architecture as blueprint’,
‘architecture as literature’, ‘architecture as language’, and ‘architecture as de-
cision’. The metaphors explain the meaning of architecture in practice. This
meaning may differ depending on the role practitioners fulfill or the architectural
levels they are engaged in. We provide insight into the importance of use cases
for architectural knowledge and relate this insight to the metaphors from [10].
Thus, we show what metaphors are accepted and in use by practitioners.

A good description of possible roles and activities of an architect is given
in [11]. Examples include a visionary, technical consultant, decision maker, and
coach. These different activities could be supported by appropriate use cases for
architectural knowledge. Use cases for architectural knowledge that are deemed
important for aforementioned roles enable the architect to effectively capture
and reason about architectural knowledge. The other way around, the relevance
of use cases for architectural knowledge for the practitioners could indicate to
what extent the possible roles and activities from [11] in fact are established.

Clements et al. [12] performed a study on publicly available resources to iden-
tify the duties, skills, and knowledge of software architects. They show that the
role of an architect implies more than only making technical decisions. Rather
than focusing on the competences of architects, our study focuses on the use of
architectural knowledge to support the architect in satisfying the competences.

3 Research Design

We aim to find out how practitioners engaged in architecture in the Netherlands
view architectural knowledge. This helps us to construct the mindset of architects
with respect to architectural knowledge. In order to reveal this mindset, we use
a survey instrument. Survey instruments are widely used in software engineer-
ing research [13]. In survey-based research, a number of factors should be taken
into account: the design of the survey, the selection of participants, and how to
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control the response rate of the survey. The remainder of this section describes
how we have addressed these factors.

3.1 Survey Design

The ultimate objective of the survey is to identify the way practitioners view and
use architectural knowledge. We took the typical uses distilled from experienced
practitioners within the GRIFFIN research project [3,6] as a starting point. We
validated and augmented the list of use cases with the industrial partners in
our research project and with our own experience. Next, we reformulated each
use case into a clear, self-explaining statement on architectural knowledge. We
allowed the survey participants to indicate the importance of each use case using
a 5-point Likert scale [14] ranging from ‘not important’ to ‘very important’.

We hypothesized that the importance of certain use cases may depend on
the roles practitioners fulfill and on the level of architecture that practitioners
are engaged in. We posed some demographic questions and specifically asked
the participants to a) indicate the architectural roles they typically fulfill and
b) indicate the relative amount of time they spend on certain architecture lev-
els. Using the information on the roles and architecture levels, we constructed
two different perspectives to analyze the way respondents perceive architectural
knowledge.

As a first step, we conducted a pilot with the survey on a focused group con-
sisting of selected employees of one of our industrial partners. We then developed
a web-based survey for administration of the complete population.

3.2 Selection of Participants of the Survey

We needed to construct a representative subset of Dutch practitioners that play
a key role in architecture. To come to this subset, we identified three dimensions
by which we selected participating organizations: domain (e.g. banking, telecom-
munications, insurance, governmental), type (IT service providers, software de-
velopment organizations), and market (commercial, non-commercial). Next, we
selected organizations or platforms (such as communities of enterprise architects
and embedded architects) in each of these dimensions and identified practition-
ers that play a key role in architecture at these organizations. This gives us
confidence that we have selected a representative subset of Dutch practitioners
to give us feedback on the use of architectural knowledge.

3.3 Control of the Survey

In order to keep control on the response rate, we directly contacted key prac-
titioners at the organizations involved. We enquired their willingness to act as
on-site representative for that organization. We sent these representatives the
hyperlink to the on-line survey. The on-site representatives forwarded the hyper-
link to knowledgeable colleagues and notified us of the total number of colleagues
involved (snowball sampling [13]).
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4 Findings

This section describes our findings. We first provide demographic information in
Sect. 4.1, after which we discuss the two different perspectives for presenting the
results as described in Sect. 3.1. Next, Sect. 4.4 describes how we clustered the
use cases for architectural knowledge. After that, we present our main results:
the way practitioners view and use architectural knowledge.

4.1 Demographic Information

We sent out the survey to 36 persons acting as on-site representatives. They for-
warded the survey to 348 practitioners. In total, 384 practitioners were reached.
We collected 143 responses, of which 107 were complete. This corresponds to a
response rate of 27.86%. We took these as a basis for our survey.

Of the total population, 213 practitioners are employed at one of the large
IT service providers included in our survey. We discuss the overrepresentation
of practitioners employed at IT service providers in Sect. 5. We received 75 re-
sponses from these practitioners, corresponding to a response rate of 35.21%.
The remaining 171 practitioners are employed at smaller IT consultancy firms
or e.g. IT departments of banks, insurance organizations or governmental orga-
nizations. We received 32 responses, corresponding to a response rate of 18.71%.

4.2 Architecture Levels

A list of definitions of architecture [15] shows that different views on architecture
exist. Examples include a systems-oriented view and a view focusing on the
information flow in or surrounding a software system. In our survey we used
concise definitions from [16] for the so-called architecture levels :

software architecture the structure and relations of a software system.
systems architecture the architecture of a single system, taking into account

both software and hardware.
information architecture the information needs and flows of business func-

tions as they are identified.
enterprise architecture architecture at the level of an organizational unit or

an organization as a whole.
process architecture a description of the processes running in or surrounding

a software system.

Each practitioner indicated the amount of time spent on a certain level of
architecture. To be able to compare the data collected, we normalized the to-
tal amount of time spent by each practitioner to 100%. The relative amount
of time spent on each level of architecture for all respondents is depicted in
Fig. 1. We observed that a concrete architecture of a single system (i.e. ‘software
architecture’ and ‘systems architecture’) receives more attention than company-
wide architectures (i.e. ‘information architecture’, ‘enterprise architecture’, and
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Fig. 1. The percentage of time spent by all respondents on architecture levels

‘process architecture’). Other architecture levels that are less often practitioned,
are grouped into the Other category in Fig. 1.

Since the population is relatively large, we grouped the respondents into clus-
ters and based our analysis on the clusters instead of on the individual responses.
Of course, architects may work on different architecture levels simultaneously.
We wanted to see if these architecture levels are related based on the responses
of the practitioners. E.g. if architects often work on two architecture levels si-
multaneously, we group these two levels. Moreover, this enables us to group
architecture levels that have different names, but in fact appear to be closely
related. In order to group similar or closely related architecture levels, we calcu-
lated the correlation between each of the architecture levels. This resulted in an
n-dimensional space, n being the number of architecture levels. In order to plot
the relative distances between the architecture levels, we reduced the number of
dimensions to two using classic multi-dimensional scaling [17]. In order to assess
the accuracy of the distance, we applied k-means clustering [18] to cluster archi-
tecture levels with a small distance. We observed that the optimal distribution
of architecture levels in clusters occured when we used five clusters. We com-
pared the clusters that appeared with k-means clustering with the distance plot
provided by classic multi-dimensional scaling. The comparison revealed that we
selected the right number of clusters and that we found the correct distribution
of elements over the clusters. Consequently, the clusters contain elements that
are different in nature and have overlap reduced to a minimum. We observed the
elements in these clusters of architectural levels and labeled the clusters. The
results are shown in Table 1.

Table 1 shows that distinct clusters provide for the relation of a software sys-
tem and the hardware it runs on (Systems Architecture), the structure of a soft-
ware system (Software Architecture), the structure of the organization or depart-
ment using the software system (Enterprise Architecture), and the process and
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Table 1. Clusters of architecture levels

Cluster label Levels of architecture

Systems Architecture systems architecture
Software Architecture software architecture, management of architecture
Enterprise Architecture enterprise architecture
Information and information architecture, process architecture

Process Architecture
Other development coach, integration architecture,

infrastructure architecture, service architecture,
maintenance of architecture, solution architecture

information flow in or surrounding a software system (Information and Process
Architecture).

Of the most significant architecture levels, only ‘information architecture’ and
‘process architecture’ are very often worked on by a single respondent simultane-
ously. Consequently, they fall into the same cluster. The remainder of the most
significant architecture levels each fall into a distinct cluster.

Practitioners can potentially work on different levels of architecture simul-
taneously. In spite of that, apparently practitioners do not do this. They are
specialized in working at one specific level of architecture only. Possible rea-
sons for this are the different technical and interpersonal skill-sets required at
each architecture level. For example, practitioners who mainly work on the level
of Systems Architecture are concerned with CPU performance, interrupt lev-
els, and other technical topics, whereas practitioners who mainly work on the
level of Process Architecture are concerned with implications of decisions on
working processes, which places less requirements on technical skills. Required
interpersonal skills can vary at different architecture levels as well. As the top-
ics that require to be communicated get less technical, the potential audience
could grow. Consequently, the set of stakeholders with which to communicate
grows from technology-oriented stakeholders to include more business-oriented
stakeholders.

4.3 Architectural Roles

The participants indicated the architectural roles they typically fulfill. The sur-
vey contained a list of roles, including ‘architect’, ‘reviewer of architecture’,
‘project manager’, and ‘developer’.

We repeated the same analysis as described in Sect. 4.2 to identify clusters
of roles typically fulfilled by a single respondent. The optimal distribution of
architectural roles in clusters occurred when we used five clusters. Again, we
labeled the clusters. The results are listed in Table 2.

The clusters labeled High-level and Low-level show that, apparently, architec-
tural roles are related based on level of abstraction with respect to a software
system and practitioners work at one specific level of abstraction. Our results
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Table 2. Clusters of architectural roles

Cluster label Architectural roles

Communicator architectural educator, project leader
Low-level designer, developer, reviewer of source code
Specialist consultant, technical specialist
High-level architect, reviewer of architecture
Other end user, lead architect, security consultant, other

also show that practitioners generally do not switch between the different levels.
This contradicts with the view on the role of a software architect as an imple-
mentor [11]; according to our survey, architect do not design or implement that
often. Furthermore, the roles ‘architectural educator’ and ‘project leader’ share
a communication responsibility towards a variety of stakeholders. Consequently,
we label this cluster Communicator.

4.4 Clustering the Use Cases

We listed the use cases for architectural knowledge from [6] and asked the practi-
tioners to indicate the importance of each use case for their daily work. We used
the answers of participants of the use cases to reveal underlying structure in the
use cases. The structure would excavate similarities between use cases based on
the answers and allow us to cluster the use cases accordingly.

First, we used principal components analysis [19] to identify the underlying
structure in the use cases for architectural knowledge based on the respondents’
answers. It turned out that no underlying structure could be found; the variance
in the scores of the use cases was explained by one main principal component.

Since the principal components analysis did not lead to a clustering of the use
cases, we next tried to cluster the use cases based on the purpose of the individual
use cases. Most use cases for architectural knowledge could be clustered relatively
easily. E.g. some use cases clearly dealt with stakeholders only. Consequently,
we grouped these use cases into a single cluster. For some use cases, clustering
was more difficult. These use cases could be grouped into multiple clusters (e.g.
‘add an architectural decision’ could point at a forward architecting approach,
but at the same time assumes that a set of architectural decisions exists to
which the new decision is added as well – see Table 3). We identified the most
appropriate cluster for these use cases by analyzing the questionnaire results of
the participants for these use cases. We compared the answers on a use case
with the average of the answers for each candidate cluster. We assigned the use
case to the cluster with the highest similarity in answers (see Sect. 4.5). The
interpretation of the survey results also led to the cluster labels. Table 3 lists
the resulting clusters of use cases for architectural knowledge.

The use case cluster Architectural decision set presupposes that a set of knowl-
edge entities (i.e. architectural decisions) and relations between these knowledge
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Table 3. Use cases for architectural knowledge

Use case cluster Use cases

Architectural 11. View the change of the architectural decisions over time
decision set 15. Recover architectural decisions

20. Identify incompleteness
22. Detect patterns of architectural decision dependencies
23. Check for superfluous architectural decisions
24. Cleanup the architecture

Assessment – 1. Check implementation against architectural decisions
reqs.→arch.→impl. 5. Check correctness (i.e. architecture versus requirements)

18. Evaluate the impact of an architectural decision
19. Evaluate consistency
27. Get consequences of an architectural decision

Assessment – 4. Perform a review for a specific concern
risk, trade-off analysis 16. Perform an incremental architectural review

17. Assess design maturity
21. Conduct a risk analysis
25. Conduct a trade-off analysis

Stakeholder-centric 2. Identify the subversive stakeholder
3. Identify key arch. decisions for a specific stakeholder
6. Identify affected stakeholders on change
7. Identify unresolved concerns for a specific stakeholder
8. Keep up-to-date
9. Inform affected stakeholders
26. Identify important architectural drivers

Forward Architecting 10. Retrieve an architectural decision
12. Add an architectural decision
13. Remove consequences of a cancelled decision
14. Reuse architectural decisions

entities exist (see [3] for a list of possible relations). The use cases in this cluster
are aimed at managing that set. Several other use cases have to do with assessing
or reviewing an architecture. Within this Assessment cluster, we distinguish
between use cases that imply a forward-engineering approach to architecture
(i.e. from requirements, to architecture, to implementation), and use cases that
target at performing different kinds of analyses and reviews. The first set aims
at verification of the architecting activities (“are we still on the right track?”)
whereas the second set aims at validation. Seven use cases form the cluster
Stakeholder-centric. These use cases concern identification of stakeholders and
communication of the architecture to specific stakeholders. The cluster Forward
Architecting, finally, consists of use cases that create, request, reuse or remove
architectural decisions.
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4.5 Participants’ Views on the Use Cases

Instead of elaborating on each of the 107 responses individually, we took the
clusters of architecture levels and architectural roles as described in Sects. 4.2
and 4.3 as two perspectives for analyzing the survey results.

We built a structure to be used to identify the importance of a specific use
case for architectural knowledge to a specfic cluster (of architectural roles or
architecture levels) as follows. For each respondent i in a cluster with n respon-
dents, we used the Likert scores (scorei). Using the relative contribution of the
respondent to that cluster (%i), we calculated the weighted average as shown
in (1):

score =

n∑

i=1

scorei · %i

n∑

i=1

%i

(1)

Next, we identified outliers and intermediate results by defining an upper and
lower limit of importance: within the possible range of scores from 1 – 51 we
regard a use case with a score of >= 3.5 as ‘important’ and a use case with a
score of <= 2.5 as ‘not important’. The results are listed in Table 4. Each row
in Table 4 relates a cluster of use cases for architectural knowledge to both
the clusters of architectural roles and the clusters of architecture levels. The
importance of each use case cluster for each cluster of architectural roles and
each cluster of architecture levels is provided. Important clusters are marked
‘(+)’, not important clusters are marked ‘(–)’. Impartial results are not listed
in the table. The findings are discussed below. An extensive discussion of their
implications is given in Sect. 6.

The use cases for architectural knowledge within the cluster Architectural de-
cision set assume that a set of architectural decisions is at the practitioner’s
disposal. In terms of the use cases, architecting thus boils down to managing
and manipulating that set of architectural decisions. Table 4 shows that view-
ing architectural knowledge as a set of decisions has not been established at the
Software Architecture and Systems Architecture levels. Furthermore, viewing the
architecture as a set of decisions is regarded as not important for Communi-
cator and Specialist roles. High-level and Low-level roles (i.e. ‘architects’ and
‘designers’/‘developers’) deem these use cases neutral. Apparently, the view on
architecture as a set of architectural decisions [2] and managing that set has not
yet transferred to practice, nor is it of particular value to the practitioners.

The cluster labeled Assessment – reqs.→arch.→impl. covers traceability of
architectural decisions to the actual implementation, the relation between deci-
sions themselves, and from architectural decisions back to the requirements that
have been set for the information system. Especially respondents who strongly
contribute to the clusters High-level, Low-level and Specialist (see Table 2)

1 1 being not important, 5 being very important.
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Table 4. Importance of use case clusters per cluster of architectural roles and cluster
of architecture levels. (+) denotes importance, (–) denotes unimportance.

Use case cluster Cluster of architectural roles Cluster of architecture levels
Architectural (–) Communicator (–) Software Architecture

decision set (–) Specialist (–) Systems Architecture
Assessment – (+) High-level (+) All levels

reqs.→arch.→impl. (+) Low-level
(+) Specialist

Assessment – (–) Specialist (–) Software Architecture
risk, trade-off analysis (–) Communicator

(–) Low-level
Stakeholder-centric (+) High-level (+) Enterprise Architecture

(–) Communicator (+) Process and Information
Architecture

Forward Architecting (+) High-level (+) All levels
(–) Low-level

regard these use cases as important. These roles are the ‘construction’ roles with
respect to architecture. This confirms our idea that practitioners involved in the
construction of architectures have a need for traceability of architecture. The
use cases in the cluster Assessment – risk, trade-off analysis are not regarded
as important by the High-level cluster of architectural roles. Furthermore, espe-
cially practitioners engaged in Software Architecture regard the use cases in this
cluster as not important.

A difference that exists between the two subclusters within Assessment could
lie in the architect’s mindset. The results of the cluster Assessment – reqs.→arch.
→impl. reveal a mindset with a linear (i.e. non-iterative) approach to design-
ing an architecture that satisfies the posed requirements and subsequently have
the implementation satisfy the architecture. Use cases that offer traceability in
this approach are regarded as important. The use cases in the cluster Assess-
ment – risk, trade-off analysis, on the other hand, all are aimed at having an
intermediate period of reflection to verify what risks apply, or what quality at-
tributes could be affected by certain architectural decisions. These use cases are
not directly related to either requirements or implementation.

In summary, in contrast to the literature stating that architecture offers a good
means to assess the correctness and suitability of the desired solution (e.g. [1,11]),
our results reveal architects regard the use cases for architectural knowledge in
the Assessment – risk, trade-off analysis cluster as not particularly important.
Literature points out that an architecture enables us to assess the design ma-
turity, perform incremental, iterative design reviews, and periodically identify
the largest risks pertaining to the architecture. Apparently, these benefits of
architecture are not valued by our respondents, which is surprising.

Moreover, the use cases in the cluster Assessment – risk, trade-off analysis
aim at finding possible problems in a certain architecture. Since practitioners
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do not regard these use cases as important, we might infer that practitioners do
not favour a period of reflection in which the current state of the architecture is
explicitly tested. Yet, this is one of the main reasons stated in the literature for
developing an architecture [1]. Apparently, these intended benefits of architec-
ture have not yet been firmly established in the mindset of architects. The lack
of value contributed to the intended benefits reveals a mindset of positiveness
(“architects always take the right decisions”), which supports the findings of [7].
Respondents do not like to use architectural knowledge to identify potential
weaknesses of their design.

A number of use cases for architectural knowledge are Stakeholder-centric.
These use cases involve identifying stakeholders and communicating the archi-
tecture towards these stakeholders. Five out of the seven use cases in this cluster
are regarded as important by the respondents. Especially the High-level role
deems these use cases important. The remaining use cases ‘identify affected
stakeholders on change’ and ‘identify key architectural decisions for a specific
stakeholder’ are deemed neutral. Furthermore, stakeholder-centric use cases are
regarded as more important at the architecture levels Enterprise Architecture
and Process and Information Architecture than on the other levels. This con-
firms the general idea that the architecture levels Enterprise Architecture and
Process and Information Architecture are suitable for communicating architec-
ture to non-IT stakeholders. The other way around, practitioners engaged in
Software Architecture and Systems Architecture do not regard communication
of the architecture to stakeholders as important. Apparently, at these more tech-
nically oriented levels of architecture, practitioners mainly capture architectural
decisions for themselves and not for communication to other stakeholders. This
in itself is not bad, but reveals that different communication needs exist for
different architecture levels.

Four use cases for architectural knowledge fall into the cluster Forward Ar-
chitecting. When we regard the use cases in this cluster we see that ‘adding
an architectural decision’ is deemed important at all architecture levels and by
most architectural roles (only the Specialist role does not regard this use case
as important). The use case ‘remove consequences of a cancelled decision’ is
not deemed very important. We can identify two reasons for this. Firstly, this
use case requires that a practitioner is able to cancel an architectural decision.
Consequently, the practitioner should determine the decision that needs to be
cancelled. This requires the practitioner to make a review iteration. Secondly,
this use case does not directly contribute to the forward-engineering paradigm
we identified when we analysed the Assessment use cases. Other use cases in
this cluster, such as ‘reuse architectural decisions’ and ‘retrieve an architectural
decision’ are deemed important by all architectural roles and at all architecture
levels. These results show that the practitioners regard architectural decisions
as an important asset to be reused in developing a specific architecture.

In addition to the results listed in Table 4, we make another observation. A
difference exist with respect to the perceived importance of use cases between
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the clusters Communicator, Low-level, and Specialist on the one side, and High-
Level on the other side. The cluster High-level regards more clusters of use
cases important than the other clusters. A possible reason lies in the fact that
practitioners in the High-level cluster have a wider perspective on architecture
and stakeholders involved, whereas practitioners in the other clusters have a
more narrowed focus on architecture. This corresponds with the variety of roles
and activities of a software architect listed in [11].

5 Threats to Validity

Our case study faced a number of threats. We list them similar to [13,20]. Our
survey was targeted at practitioners in the Netherlands. By carefully selecting
the participants for the survey, we have attempted to minimize a selection bias.
Nevertheless, IT service providers are somewhat overrepresented in our popula-
tion. Still, a comparison of the responses of practitioners employed at IT service
providers and respondents employed at other organizations did not show signif-
icant differences.

We kept control on the population of practitioners we invited to participate
in the survey. However, we do not have insight into the reasons why the non-
respondents did not participate. We conjecture that these practitioners did not
have enough time to administer the survey or could not relate the topic of the
survey to their daily work. Although our survey satisfies the guidelines for the
number of questions and maximum administration time as posed in [13], our
results may suffer from a maturation effect, which means that the attitude of
the participants towards the use cases in the survey changes during filling in
the survey. On the one hand, use cases in the first half of the survey receive a
more important rating than use cases in the second half. On the other hand, the
second half does contain several use cases rated ‘important’. Therefore, we have
confidence that the maturation effect did not influence our results substantially.

It was not possible to obtain a structure in the use cases for architectural
knowledge based on the practitioners’ answers alone. Apparently, the survey an-
swers varied too much to be used for structuring the use cases. A reason for
this could be that our study is based on more recent definitions of architecture
as made of a set of architectural decisions [2,3,21]. Some participants may re-
gard architecture as a set of components and connectors and are not yet used
to viewing architecture as a set of architectural decisions and rationale. Our
approach, which uses a list of use cases for architectural knowledge, may have
biased the results since the actual mindset of architects may require additional
use cases or other approaches to be fully captured. We provide an architectural
knowledge-oriented view towards the mindset.

To be able to reflect on the answers given, we identified a clustering based on
the use cases for architectural knowledge alone and related the answers to these
clusters. The resulting reflection in Sect. 6 is not only based on the clusters of
use cases, but puts the survey results in a broader perspective.
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6 Discussion and Conclusions

We conducted survey-based research on how the practitioners in software archi-
tecture in the Netherlands view and use architectural knowledge. Our results
reveal the importance of certain use cases for architectural knowledge for the
daily work of the practitioners. The individual results have been discussed in
Sect. 4.5. This section reflects on these results and draws overall conclusions on
the architect’s mindset and the role of architectural knowledge in that mindset.

Figure 2 provides an overview of the results and depicts the major elements
of the reflection. We approach architecture from two different perspectives. One
perspective is focused on developing a solution, i.e. the architecture. The other
perspective is focused on the underlying reason for that solution, i.e. architectural
decisions and rationale. The clusters of use cases for architectural knowledge are
depicted as package symbols. The +-mark or – -mark indicate the respondents’
view on these clusters. We put the clusters in perspective by depicting the evo-
lution between the different results that we identify in practice. By and large,
widespread acceptance of architecture verification activities preceded architec-
ture validation activities, such as performing risk or trade-off analyses. Similarly,
viewing architecting as a forward decision-making process preceded managing
the set of architectural decisions, i.e. ‘architectural knowledge management’.
Putting stakeholders central in architecture has been an important character-
istic across time and perspectives. The remainder of this section describes our
views as expressed in Fig. 2.

Focus on architectural 
decisions, rationale

Focus on the solution 
(architecture)

Forward architecting

+

Stakeholder-centric

+

Architectural decision set

-

evolution

Assessment
req. arch. impl.

+
Assessment

risk, trade-off analysis

-

Legend

Use case cluster

Score (+/-)

Fig. 2. Overview of the architect’s mindset

Forward architecting – Architects regard taking architectural decisions and
making these decisions explicit as important. Yet, architects tend to focus on
only taking architectural decisions to end up with a correct software architec-
ture for a specific problem. In taking these decisions, architects are supported
by e.g. architectural patterns [22], which provide proven architectural solution
fragments for certain problems, and by rationale tools such as gIBIS [23] and
QOC [24]. We signal an ongoing tension between making architectural decisions
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and capturing the underlying rationale and other context of these decisions; the
time spent on capturing the context is not spent on making new architectural
decisions. Consequently, adequate, lightweight tooling is necessary to lower the
threshold for capturing the context. Despite the continual tension, progress has
been made [25,26].
Architectural decision set – On a more generic level, architects do not re-
gard the architecture as a set of architectural decisions. Although the concept
of architectural decisions in itself has gained importance, the architect’s mind-
set lacks focus on reflections on those decisions as building blocks for software
architectures. These reflections allow for a step back to actually learn from archi-
tecture experiences. Furthermore, architects do not (yet) manage or manipulate
that set of architectural decisions (i.e. use cases in the cluster Architectural de-
cision set). A reason for this could be that more recent definitions of software
architecture in terms of architectural decisions [2,3,21] are not yet completely
transferred to practice. In addition, adequate tool support is necessary to fully
exploit architectural knowledge as a set of architectural design decisions across
architectures and domains.
Assessment – reqs.→arch.→impl. – Software development largely occurs via
projects. Depending on the development approach chosen, the architecting phase
can run in parallel during the lifetime of the project or the architecting phase
is a distinct phase which leads to a deliverable – the architecture. Based on the
results of this study, we conjecture that the latter is the case: the practitioners
show an approach in which the architecture is delivered based on the require-
ments. After that, the implementation is checked against the architecture. Our
experience shows that this verification phase often is not performed by architects.
Architects, often experienced and relatively expensive resources, perhaps run off
to other projects to run the architecting phase at that project. Consequently,
they may not be offered the time to support the design and implementation
phase.
Assessment – risk, trade-off analysis – Our study shows that methods and
techniques to validate the architecture (such as the Architecture Tradeoff Analy-
sis Method as described by [27], or their predecessors) are not embedded within
the mindset of architects. A recent presentation on the topic of this paper given
during the Dutch architecture conference revealed that when practitioners do
deem performing a risk analysis important, they do not have clear what the
role of architectural knowledge is in a risk analysis. Architectural knowledge
may support to evaluate the impact of architectural decisions on the resulting
architecture; it allows to (re-)consider alternative decisions as well. Apparently,
this rather new view on architecture is not yet generally accepted. Education
on viewing architecture as architectural decisions [10] as part of architectural
knowledge could help overcome this.
Stakeholder-centric – Another benefit of architecture is that it enables com-
munication among stakeholders [1]. Architecture thus can be regarded as a lan-
guage to transfer the architect’s opinions and views to those stakeholders. Most
use cases in the cluster Stakeholder-centric rate high, which means that the
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view of ‘architecture as language’ [10] is generally accepted. Communication of
architecture to stakeholders is clearly established in the mindset of architects.

Our study shows that the mindset of architects is focused on delivering a solu-
tion and capturing the related architectural decisions. Consequently, we conjec-
ture that a so-called micro view on software architecture largely is in place: archi-
tects are focused developing an architecture for a specific solution and (more and
more) on capturing the architectural decisions and rationale for that solution.
What lacks in the mindset of architects is a view that exceeds specific architec-
tures but puts architectures in context by validating them, and the architectural
decisions that led to them. When architects have a set of architectural decisions
at their disposal, this offers the opportunity to interrelate architectural decisions
taken in the past to identify learning opportunities for future architecting activi-
ties. We conjecture that this macro view may be achieved by applying initiatives
that proved valuable in other disciplines, such as ontology engineering [28] onto
the domain of (software) architecture.

In summary, the mindset of architects in the Netherlands reveals an approach
which is focused on ‘to create and communicate’ rather than ‘to review and
maintain’. This reflects a general pattern as e.g. highlighted in [7]. Furthermore,
architectural knowledge and the view of architecture as a set of architectural
decisions has not yet transferred to industry. We see two possible approaches
to embed the importance of architectural knowledge and design decisions in
industry. Firstly, more knowledge transfer is needed on the concepts and intended
benefits of this view. Secondly, it is necessary to collect more empirical data on
these benefits in terms of throughput and cost to fully sustain the importance
of architectural knowledge and architectural decisions.

7 Future Work

Our work describes the mindset of architects in the Netherlands. We provided
several reasons for this mindset but acknowledge that additional research is
needed on the foundation for this mindset. This additional research could fo-
cus on the activities needed to effectively establish the concept of architectural
knowledge in the architect’s mindset. The possible increase in understanding of
architectural knowledge by architects may be monitored by using our survey
instrument periodically. Moreover, we can compare the mindset of architects in
the Netherlands with the mindset of architects at other countries or continents
by reusing this survey.

We envision the use cases for architectural knowledge to define operations on a
grid for architectural knowledge. We view this grid to support satisfying the need
for architectural knowledge from different perspectives. De Boer et al. [29] define
a model that lies at the basis for this knowledge grid and supports capturing
architectural knowledge.

Within our research project, we are developing, notations, tools and associated
methods to extract, represent and use architectural knowledge. This paper sheds
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light onto the most important use cases for architectural knowledge from a prac-
titioners’ perspective. Although specialized tool support for the architects is still
generally lacking, we use these results to develop tools for the most important
use cases for architectural knowledge. In addition, we continue the work in our
project to further embed the view of architectural knowledge and architectural
decisions in practice.
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