
Part V Character InputOutput and String Functions(五)

431

EXAMPLE
C++ By

21

Device and
Character
Input/Output

Unlike many programming languages, C++ contains no input or

output commands. C++ is an extremely portable language; a C++

program that compiles and runs on one computer is able also to

compile and run on another type of computer. Most incompatibili-

ties between computers reside in their input/output mechanics.

Each different device requires a different method of performing

I/O (Input/Output).

By putting all I/O capabilities in common functions supplied

with each computer’s compiler, not in C++ statements, the design-

ers of C++ ensured that programs were not tied to specific hardware

for input and output. A compiler has to be modified for every

computer for which it is written. This ensures the compiler works

with the specific computer and its devices. The compiler writers

write I/O functions for each machine; when your C++ program

writes a character to the screen, it works the same whether you have

a color PC screen or a UNIX X/Windows terminal.

This chapter shows you additional ways to perform input and

output of data besides the cin and cout functions you have seen

Chapter 21 ♦ Device and Character Input/Output

432

C++ views input and
output from all
devices as streams
of characters.

throughout the book. By providing character-based I/O functions,

C++ gives you the basic I/O functions you need to write powerful

data entry and printing routines.

This chapter introduces you to

♦ Stream input and output

♦ Redirecting I/O

♦ Printing to the printer

♦ Character I/O functions

♦ Buffered and nonbuffered I/O

By the time you finish this chapter, you will understand the

fundamental built-in I/O functions available in C++. Performing

character input and output, one character at a time, might sound like

a slow method of I/O. You will soon realize that character I/O

actually enables you to create more powerful I/O functions than cin

and cout.

Stream and Character I/O
C++ views all input and output as streams of characters.

Whether your program receives input from the keyboard, a disk file,

a modem, or a mouse, C++ only views a stream of characters. C++

does not have to know what type of device is supplying the input;

the operating system handles the device specifics. The designers of

C++ want your programs to operate on characters of data without

regard to the physical method taking place.

This stream I/O means you can use the same functions to

receive input from the keyboard as from the modem. You can use the

same functions to write to a disk file, printer, or screen. Of course,

you have to have some way of routing that stream input or output

to the proper device, but each program’s I/O functions works in a

similar manner. Figure 21.1 illustrates this concept.

433

EXAMPLE
C++ By

Figure 21.1. All I/O consists of streams of characters.

The Newline Special Character: /n

Portability is the key to C++’s success. Few companies have the

resources to rewrite every program they use when they change

computer equipment. They need a programming language

that works on many platforms (hardware combinations). C++

achieves true portability better than almost any other program-

ming language.

It is because of portability that C++ uses the generic newline

character, \n, rather than the specific carriage return and line

feed sequences other languages use. This is why C++ uses the

\t for tab, as well as the other control characters used in I/O

functions.

If C++ used ASCII code to represent these special characters,

your programs would not be portable. You would write a C++

program on one computer and use a carriage return value such

as 12, but 12 might not be the carriage return value on another

type of computer.

By using newline and the other control characters available in

C++, you ensure your program is compatible with any com-

puter on which it is compiled. The specific compilers substitute

their computer’s actual codes for the control codes in your

programs.

Chapter 21 ♦ Device and Character Input/Output

434

Standard Devices

Table 21.1 shows a listing of standard I/O devices. C++ always

assumes input comes from stdin, meaning the standard input device.
This is usually the keyboard, although you can reroute this default.

C++ assumes all output goes to stdout, or the standard output device.
There is nothing magic in the words stdin and stdout; however,

many people learn their meanings for the first time in C++.

Table 21.1. Standard Devices in C++.

Description C++ Name MS-DOS Name

Screen stdout CON:

Keyboard stdin CON:

Printer stdprn PRN: or LPT1:

Serial Port stdaux AUX: or COM1:

Error Messages stderr CON:

Disk Files none Filename

Take a moment to study Table 21.1. You might think it is

confusing that three devices are named CON:. MS-DOS differenti-

ates between the screen device called CON: (which stands for

console), and the keyboard device called CON: from the context of

the data stream. If you send an output stream (a stream of characters)

to CON:, MS-DOS routes it to the screen automatically. If you

request input from CON:, MS-DOS retrieves the input from the

keyboard. (These defaults hold true as long as you have not redi-

rected these devices, as shown below.) MS-DOS sends all error

messages to the screen (CON:) as well.

NOTE: If you want to route I/O to a second printer or serial

port, see how to do so in Chapter 30, “Sequential Files.”

435

EXAMPLE
C++ By

Redirecting Devices from MS-DOS

The reason cout goes to the screen is simply because stdout is

routed to the screen, by default, on most computers. The reason cin

inputs from the keyboard is because most computers consider the

keyboard to be the standard input device, stdin. After compiling

your program, C++ does not send data to the screen or retrieve it

from the keyboard. Instead, the program sends output to stdout and

receives input from stdin. The operating system routes the data to

the appropriate device.

MS-DOS enables you to reroute I/O from their default loca-

tions to other devices through the use of the output redirection symbol,
>, and the input redirection symbol, <. The goal of this book is not to

delve deeply in operating-system redirection. To learn more about

the handling of I/O, read a good book on MS-DOS, such as Using
MS-DOS 5.

Basically, the output redirection symbol informs the operating

system that you want standard output to go to a device other than

the default (the screen). The input redirection symbol routes input

away from the keyboard to another input device. The following

example illustrates how this is done in MS-DOS.

Examples

1. Suppose you write a program that uses only cin and cout for

input and output. Instead of receiving input from the key-

board, you want the program to get the input from a file

called MYDATA. Because cin receives input from stdin, you

must redirect stdin. After compiling the program in a file

called MYPGM.EXE, you can redirect its input away from

the keyboard with the following DOS command:

C:>MYPGM < MYDATA

Of course, you can include a full pathname either before the

program name or filename. There is a danger in redirecting

all output such as this, however. All output, including screen

prompts for keyboard input, goes to MYDATA. This is

probably not acceptable to you in most cases; you still want

The operating
system gives you
control over devices.

Chapter 21 ♦ Device and Character Input/Output

436

prompts and some messages to go to the screen. In the next

section, you learn how to separate I/O, and send some

output to one device such as the screen and the rest to

another device, such as a file or printer.

2. You can also route the program’s output to the printer by

typing this:

C:>MYPGM > PRN:

Route MYPGM output to the printer.

3. If the program required much input, and that input were

stored in a file called ANSWERS, you could override the

keyboard default device that cin uses, as in:

C:>MYPGM < ANSWERS

The program reads from the file called ANSWERS every time cin
required input.

4. You can combine redirection symbols. If you want input

from the ANSWERS disk file, and want to send the output to

the printer, do the following:

C:>MYPGM < ANSWERS > PRN:

TIP: You can route the output to a serial printer or a second

parallel printer port by substituting COM1: or LPT2: for PRN:.

Printing Formatted Output to
the Printer

It’s easy to send program output to the printer using the

ofstream function. The format of ofstream is

ofstream device(device_name);

ofstream allows
your program to
write to the printer.

437

EXAMPLE
C++ By

The following examples show how you can combine cout and

ofstream to write to both the screen and printer.

Example

The following program asks the user for his or her first and last

name. It then prints the name, last name first, to the printer.

// Filename: C21FPR1.CPP

// Prints a name on the printer.

#include <fstream.h>

void main()

{

 char first[20];

 char last[20];

 cout << “What is your first name? “;

 cin >> first;

 cout << “What is your last name? “;

 cin >> last;

 // Send names to the printer.

 ofstream prn(“PRN”);

 prn << “In a phone book, your name looks like this: \n”;

 prn << last << “, “ << first << “\n”;

 return;

}

Character I/O Functions
Because all I/O is actually character I/O, C++ provides many

functions you can use that perform character input and output. The

cout and cin functions are called formatted I/O functions because they

give you formatting control over your input and output. The cout

and cin functions are not character I/O functions.

ofstream uses
the fstream.h header
file.

Chapter 21 ♦ Device and Character Input/Output

438

There’s nothing wrong with using cout for formatted output,

but cin has many problems, as you have seen. You will now see how

to write your own character input routines to replace cin, as well as

use character output functions to prepare you for the upcoming

section in this book on disk files.

The get() and put() Functions

The most fundamental character I/O functions are get() and

put(). The put() function writes a single character to the standard

output device (the screen if you don’t redirect it from your operating

system). The get() function inputs a single character from the

standard input device (the keyboard by default).

The format for get() is

device.get(char_var);

The get() device can be any standard input device. If you were

receiving character input from the keyboard, you use cin as the

device. If you initialize your modem and want to receive characters

from it, use ofstream to open the modem device and read from the

device.

The format of put() is

device.put(char_val);

The char_val can be a character variable, expression, or con-

stant. You output character data with put(). The device can be any

standard output device. To write a character to your printer, you

open PRN with ofstream.

Examples

1. The following program asks the user for her or his initials a

character at a time. Notice the program uses both cout and

put(). The cout is still useful for formatted output such as

messages to the user. Writing individual characters is best

achieved with put().

The program has to call two get() functions for each char-

acter typed. When you answer a get() prompt by typing a

get() and put()
input and output
characters from and
to any standard
devices.

439

EXAMPLE
C++ By

character followed by an Enter keypress, C++ interprets the

input as a stream of two characters. The get() first receives

the letter you typed, then it has to receive the \n (newline,

supplied to C++ when you press Enter). There are examples

that follow that fix this double get() problem.

// Filename: C21CH1.CPP

// Introduces get() and put().

#include <fstream.h>

void main()

{

 char in_char; // Holds incoming initial.

 char first, last; // Holds converted first and last initial.

 cout << “What is your first name initial? “;

 cin.get(in_char); // Waits for first initial.

 first = in_char;

 cin.get(in_char); // Ignores newline.

 cout << “What is your last name initial? “;

 cin.get(in_char); // Waits for last initial.

 last = in_char;

 cin.get(in_char); // Ignores newline.

 cout << “\nHere they are: \n”;

 cout.put(first);

 cout.put(last);

return;

}

Here is the output from this program:

What is your first name initial? G

What is your last name initial? P

Here they are:

GP

2. You can add carriage returns to space the output better. To

print the two initials on two separate lines, use put() to put a

newline character to cout, as the following program does:

Chapter 21 ♦ Device and Character Input/Output

440

// Filename: C21CH2.CPP

// Introduces get() and put() and uses put() to output

newline.

#include <fstream.h>

void main()

{

 char in_char; // Holds incoming initial.

 char first, last; // Holds converted first and last

 // initial.

 cout << “What is your first name initial? “;

 cin.get(in_char); // Waits for first initial.

 first = in_char;

 cin.get(in_char); // Ignores newline.

 cout << “What is your last name initial? “;

 cin.get(in_char); // Waits for last initial.

 last = in_char;

 cin.get(in_char); // Ignores newline.

 cout << “\nHere they are: \n”;

 cout.put(first);

 cout.put(‘\n’);

 cout.put(last);

return;

}

3. It might have been clearer to define the newline character as

a constant. At the top of the program, you have:

const char NEWLINE=’\n’

The put() then reads:

cout.put(NEWLINE);

Some programmers prefer to define their character formatting

constants and refer to them by name. It’s up to you to decide whether

you want to use this method, or whether you want to continue using

the \n character constant in put().

The get() function is a buffered input function. As you type

characters, the data does not immediately go to your program,

441

EXAMPLE
C++ By

rather, it goes to a buffer. The buffer is a section of memory (and has

nothing to do with your PC’s type-ahead buffers) managed by C++.

Figure 21.2 shows how this buffered function works. When

your program approaches a get(), the program temporarily waits as

you type the input. The program doesn’t view the characters, as

they’re going to the buffer of memory. There is practically no limit

to the size of the buffer; it fills with input until you press Enter. Your

Enter keypress signals the computer to release the buffer to your

program.

Figure 21.2. get() input goes to a buffer. The buffer is released when
you press Enter.

Most PCs accept either buffered or nonbuffered input. The

getch() function shown later in this chapter is nonbuffered. With

get(), all input is buffered. Buffered text affects the timing of your

program’s input. Your program receives no characters from a get()

until you press Enter. Therefore, if you ask a question such as

Do you want to see the report again (Y/N)?

and use get() for input, the user can press a Y, but the program does

not receive the input until the user also presses Enter. The Y and

Enter then are sent, one character at a time, to the program where it

processes the input. If you want immediate response to a user’s

typing (such as the INKEY$ in BASIC allows), you have to use getch().

Buffer

Chapter 21 ♦ Device and Character Input/Output

442

TIP: By using buffered input, the user can type a string of

characters in response to a loop with get(), receive characters,

and correct the input with Backspace before pressing Enter. If

the input were nonbuffered, the Backspace would be another

character of data.

Example

C21CH2.CPP must discard the newline character. It did so by

assigning the input character—from get()—to an extra variable.

Obviously, the get() returns a value (the character typed). In this

case, it’s acceptable to ignore the return value by not using the

character returned by get(). You know the user has to press Enter (to

end the input) so it’s acceptable to discard it with an unused get()

function call.

When inputting strings such as names and sentences, cin only

allows one word to be entered at a time. The following string asks the

user for his or her full name with these two lines:

cout << “What are your first and last names? “;

cin >> names; // Receive name in character array names.

The array names only receives the first name; cin ignores all data

to the right of the first space.

You can build your own input function using get() that doesn’t

have a single-word limitation. When you want to receive a string of

characters from the user, such as his or her first and last name, you

can call the get_in_str() function shown in the next program.

The main() function defines an array and prompts the user for

a name. After the prompt, the program calls the get_in_str() func-

tion and builds the input array a character at a time using get(). The

function keeps looping, using the while loop, until the user presses

Enter (signaled by the newline character, \n, to C++) or until the

maximum number of characters are typed. You might want to use

When receiving
characters, you
might have to
discard the newline
keypress.

443

EXAMPLE
C++ By

this function in your own programs. Be sure to pass it a character

array and an integer that holds the maximum array size (you don’t

want the input string to be longer than the character array that holds

it). When control returns to main() (or whatever function called

get_in_str()), the array has the user’s full input, including the

spaces.

// Filename: C21IN.CPP

// Program that builds an input string array using get().

#include <fstream.h>

void get_in_str(char str[], int len);

const int MAX=25; // Size of character array to be typed.

void main()

{

 char input_str[MAX]; // Keyboard input fills this.

 cout << “What is your full name? “;

 get_in_str(input_str, MAX); // String from keyboard

 cout << “After return, your name is “ << input_str << “\n”;

 return;

}

//**

// The following function requires a string and the maximum

// length of the string be passed to it. It accepts input

// from the keyboard, and sends keyboard input in the string.

// On return, the calling routine has access to the string.

//**

void get_in_str(char str[], int len)

{

 int i = 0; // index

 char input_char; // character typed

 cin.get(input_char); // Get next character in string.

 while (i < (len - 1) && (input_char != ‘\n’))

 {

 str[i] = input_char; // Build string a character

Chapter 21 ♦ Device and Character Input/Output

444

 i++; // at a time.

 cin.get(input_char); // Receive next character in string.

 }

 str[i] = ‘\0’; // Make the char array a string.

 return;

}

NOTE: The loop checks for len - 1 to save room for the null-

terminating zero at the end of the input string.

The getch() and putch() Functions

The functions getch() and putch() are slightly different from the

previous character I/O functions. Their format is similar to get()

and put(); they read from the keyboard and write to the screen and

cannot be redirected, even from the operating system. The formats

of getch() and putch() are

int_var = getch();

and

putch(int_var);

getch() and putch() are not AT&T C++ standard functions, but

they are usually available with most C++ compilers. getch() and

putch() are nonbuffered functions. The putch() character output

function is a mirror-image function to getch(); it is a nonbuffered

output function. Because almost every output device made, except

for the screen and modem, are inherently buffered, putch() effec-

tively does the same thing as put().

Another difference in getch() from the other character input

functions is that getch() does not echo the input characters on the

screen as it receives them. When you type characters in response to

get(), you see the characters as you type them (as they are sent to the

buffer). If you want to see characters received by getch(), you must

follow getch() with a putch(). It is handy to echo the characters on the

screen so the user can verify that she or he has typed correctly.

getch() and
putch() offer
nonbuffered input
and output that grab
the user’s characters
immediately after the
user types them.

445

EXAMPLE
C++ By

Some programmers want to make the user press Enter after

answering a prompt or selecting from a menu. They feel the extra

time given with buffered input gives the user more time to decide if

she or he wants to give that answer; the user can press Backspace and

correct the input before pressing Enter.

Other programmers like to grab the user’s response to a single-

character answer, such as a menu response, and act on it immedi-

ately. They feel that pressing Enter is an added and unneeded

burden for the user so they use getch(). The choice is yours. You

should understand both buffered and nonbuffered input so you can

use both.

TIP: You can also use getche(). getche() is a nonbuffered input

identical to getch(), except the input characters are echoed

(displayed) to the screen as the user types them. Using getche()

rather than getch() keeps you from having to call a putch() to

echo the user’s input to the screen.

Example

The following program shows the getch() and putch() func-

tions. The user is asked to enter five letters. These five letters are

added (by way of a for loop) to the character array named letters.

As you run this program, notice that the characters are not echoed

to the screen as you type them. Because getch() is unbuffered, the

program actually receives each character, adds it to the array, and

loops again, as you type them. (If this were buffered input, the

program would not loop through the five iterations until you

pressed Enter.)

A second loop prints the five letters using putch(). A third loop

prints the five letters to the printer using put().

// Filename: C21GCH1.CPP

// Uses getch() and putch() for input and output.

#include <fstream.h>

Characters input
with getch() are
not echoed to the
screen as the user
types them.

getch() and
putch() use the
conio.h header file.

Chapter 21 ♦ Device and Character Input/Output

446

#include <conio.h>

void main()

{

 int ctr; // for loop counter

 char letters[5]; // Holds five input characters. No

 // room is needed for the null zero

 // because this array never will be

 // treated as a string.

 cout << “Please type five letters... \n”;

 for (ctr = 0; ctr < 5; ctr++)

 {

 letters[ctr] = getch(); // Add input to array.

 }

 for (ctr = 0; ctr < 5; ctr++) // Print them to screen.

 {

 putch(letters[ctr]);

 }

 ofstream prn(“PRN”);

 for (ctr = 0; ctr < 5; ctr++) // Print them to printer.

 {

 prn.put(letters[ctr]);

 }

return;

}

When you run this program, do not press Enter after the five

letters. The getch() function does not use the Enter. The loop auto-

matically ends after the fifth letter because of the unbuffered input

and the for loop.

Review Questions
The answers to the review questions are found in Appendix B.

1. Why are there no input or output commands in C++?

2. True or false: If you use the character I/O functions to send

output to stdout, it always goes to the screen.

447

EXAMPLE
C++ By

3. What is the difference between getch() and get()?

4. What function sends formatted output to devices other than

the screen?

5. What are the MS-DOS redirection symbols?

6. What nonstandard function, most similar to getch(), echoes

the input character to the screen as the user types it?

7. True or false: When using get(), the program receives your

input as you type it.

8. Which keypress releases the buffered input to the program?

9. True or false: Using devices and functions described in this

chapter, it is possible to write one program that sends some

output to the screen, some to the printer, and some to the

modem.

Review Exercises
1. Write a program that asks the user for five letters and prints

them in reverse order to the screen, and then to the printer.

2. Write a miniature typewriter program, using get() and put().

In a loop, get characters until the user presses Enter while he

or she is getting a line of user input. Write the line of user

input to the printer. Because get() is buffered, nothing goes

to the printer until the user presses Enter at the end of each

line of text. (Use the string-building input function shown in

C21IN.CPP.)

3. Add a putch() inside the first loop of C21CH1.CPP (this

chapter’s first get() example program) so the characters are

echoed to the screen as the user types them.

4. A palindrome is a word or phrase spelled the same forwards

and backwards. Two example palindromes are

Madam, I’m Adam

Golf? No sir, prefer prison flog!

Chapter 21 ♦ Device and Character Input/Output

448

Write a C++ program that asks the user for a phrase. Build

the input, a character at a time, using a character input

function such as get(). Once you have the full string (store it

in a character array), determine whether the phrase is a

palindrome. You have to filter special characters (nonalpha-

betic), storing only alphabetic characters to a second charac-

ter array. You also must convert the characters to uppercase

as you store them. The first palindrome becomes:

MADAMIMADAM

Using one or more for or while loops, you can now test the

phrase to determine whether it is a palindrome. Print the

result of the test on the printer. Sample output should look

like:

“Madam, I’m Adam” is a palindrome.

Summary
You now should understand the generic methods C++ pro-

grams use for input and output. By writing to standard I/O devices,

C++ achieves portability. If you write a program for one computer,

it works on another. If C++ were to write directly to specific

hardware, programs would not work on every computer.

If you still want to use the formatted I/O functions, such as cout,

you can do so. The ofstream() function enables you to write format-

ted output to any device, including the printer.

The methods of character I/O might seem primitive, and they

are, but they give you the flexibility to build and create your own

input functions. One of the most often-used C++ functions, a string-

building character I/O function, was demonstrated in this chapter

(the C21IN.CPP program).

The next two chapters (Chapter 22, “Character, String, and

Numeric Functions,” and Chapter 23, “Introducing Arrays”) intro-

duce many character and string functions, including string I/O

functions. The string I/O functions build on the principles pre-

sented here. You will be surprised at the extensive character and

string manipulation functions available in the language as well.

449

EXAMPLE
C++ By

22

Character, String,
and Numeric
Functions

C++ provides many built-in functions in addition to the cout, getch(),

and strcpy() functions you have seen so far. These built-in functions

increase your productivity and save you programming time. You

don’t have to write as much code because the built-in functions

perform many useful tasks for you.

This chapter introduces you to

♦ Character conversion functions

♦ Character and string testing functions

♦ String manipulation functions

♦ String I/O functions

♦ Mathematical, trigonometric, and logarithmic functions

♦ Random-number processing

Chapter 22 ♦ Character, String, and Numeric Functions

450

Character Functions
This section explores many of the character functions available

in AT&T C++. Generally, you pass character arguments to the

functions, and the functions return values that you can store or print.

By using these functions, you off-load much of your work to C++

and allow it to perform the more tedious manipulations of character

and string data.

Character Testing Functions

Several functions test for certain characteristics of your charac-

ter data. You can determine whether your character data is alpha-

betic, digital, uppercase, lowercase, and much more. You must pass

a character variable or literal argument to the function (by placing

the argument in the function parentheses) when you call it. These

functions return a True or False result, so you can test their return

values inside an if statement or a while loop.

NOTE: All character functions presented in this section are

prototyped in the ctype.h header file. Be sure to include ctype.h

at the beginning of any programs that use them.

Alphabetic and Digital Testing

The following functions test for alphabetic conditions:

♦ isalpha(c): Returns True (nonzero) if c is an uppercase or

lowercase letter. Returns False (zero) if c is not a letter.

♦ islower(c): Returns True (nonzero) if c is a lowercase letter.

Returns False (zero) if c is not a lowercase letter.

♦ isupper(c): Returns True (nonzero) if c is an uppercase letter.

Returns False (zero) if c is not an uppercase letter.

The character
functions return True
or False results
based on the
characters you pass
to them.

451

EXAMPLE
C++ By

Remember that any nonzero value is True in C++, and zero is

always False. If you use the return values of these functions in a

relational test, the True return value is not always 1 (it can be any

nonzero value), but it is always considered True for the test.

The following functions test for digits:

♦ isdigit(c): Returns True (nonzero) if c is a digit 0 through 9.

Returns False (zero) if c is not a digit.

♦ isxdigit(c): Returns True (nonzero) if c is any of the hexa-

decimal digits 0 through 9 or A, B, C, D, E, F, a, b, c, d, e, or f.

Returns False (zero) if c is anything else. (See Appendix A,

“Memory Addressing, Binary, and Hexadecimal Review,”

for more information on the hexadecimal numbering

system.)

NOTE: Although some character functions test for digits, the

arguments are still character data and cannot be used in math-

ematical calculations, unless you calculate using the ASCII

values of characters.

The following function tests for numeric or alphabetical argu-

ments:

isalnum(c): Returns True (nonzero) if c is a digit 0 through 9

or an alphabetic character (either uppercase or lowercase).

Returns False (zero) if c is not a digit or a letter.

CAUTION: You can pass to these functions only a character

value or an integer value holding the ASCII value of a charac-

ter. You cannot pass an entire character array to character

functions. If you want to test the elements of a character array,

you must pass the array one element at a time.

Chapter 22 ♦ Character, String, and Numeric Functions

452

Example

The following program asks users for their initials. If a user

types anything but alphabetic characters, the program displays an

error and asks again.

Identify the program and include the input/output header files. The
program asks the user for his or her first initial, so declare the character
variable initial to hold the user’s answer.

1. Ask the user for her or his first initial, and retrieve the user’s answer.

2. If the answer was not an alphabetic character, tell the user this and
repeat step one.

Print a thank-you message on-screen.

// Filename: C22INI.CPP

// Asks for first initial and tests

// to ensure that response is correct.

#include <iostream.h>

#include <ctype.h>

void main()

{

 char initial;

 cout << “What is your first initial? “;

 cin >> initial;

 while (!isalpha(initial))

 {

 cout << “\nThat was not a valid initial! \n”;

 cout << “\nWhat is your first initial? “;

 cin >> initial;

 }

 cout << “\nThanks!”;

 return;

}

This use of the not operator (!) is quite clear. The program

continues to loop as long as the entered character is not alphabetic.

453

EXAMPLE
C++ By

Special Character-Testing
Functions

A few character functions become useful when you have to

read from a disk file, a modem, or another operating system device

that you route input from. These functions are not used as much as

the character functions you saw in the previous section, but they are

useful for testing specific characters for readability.

The remaining character-testing functions follow:

♦ iscntrl(c): Returns True (nonzero) if c is a control character
(any character from the ASCII table numbered 0 through 31).

Returns False (zero) if c is not a control character.

♦ isgraph(c): Returns True (nonzero) if c is any printable

character (a noncontrol character) except a space. Returns

False (zero) if c is a space or anything other than a printable

character.

♦ isprint(c): Returns True (nonzero) if c is a printable charac-

ter (a noncontrol character) from ASCII 32 to ASCII 127,

including a space. Returns False (zero) if c is not a printable

character.

♦ ispunct(c): Returns True (nonzero) if c is any punctuation

character (any printable character other than a space, a letter,

or a digit). Returns False (zero) if c is not a punctuation

character.

♦ isspace(c): Returns True (nonzero) if c is a space, newline

(\n), carriage return (\r), tab (\t), or vertical tab (\v) charac-

ter. Returns False (zero) if c is anything else.

Character Conversion Functions

The two remaining character functions are handy. Rather than

test characters, these functions change characters to their lower- or

uppercase equivalents.

The character-testing
functions do not
change characters.

Both tolower()
and toupper()
return lowercase
or uppercase
arguments.

Chapter 22 ♦ Character, String, and Numeric Functions

454

♦ tolower(c): Converts c to lowercase. Nothing changes if you

pass tolower() a lowercase letter or a nonalphabetic character.

♦ toupper(c): Converts c to uppercase. Nothing changes if you

pass toupper() an uppercase letter or a nonalphabetic character.

These functions return their changed character values. These

functions are useful for user input. Suppose you are asking users a

yes or no question, such as the following:

Do you want to print the checks (Y/N)?

Before toupper() and tolower() were developed, you had to

check for both a Y and a y to print the checks. Instead of testing for

both conditions, you can convert the character to uppercase, and test

for a Y.

Example

Here is a program that prints an appropriate message if the user

is a girl or a boy. The program tests for G and B after converting the

user’s input to uppercase. No check for lowercase has to be done.

Identify the program and include the input/output header files. The
program asks the user a question requiring an alphabetic answer, so declare
the character variable ans to hold the user’s response.

Ask whether the user is a girl or a boy, and store the user’s answer in ans.
The user must press Enter, so incorporate and then discard the Enter
keypress. Change the value of ans to uppercase. If the answer is G, print a
message. If the answer is B, print a different message. If the answer is
something else, print another message.

// Filename: C22GB.CPP

// Determines whether the user typed a G or a B.

#include <iostream.h>

#include <conio.h>

#include <ctype.h>

void main()

{

455

EXAMPLE
C++ By

 char ans; // Holds user’s response.

 cout << “Are you a girl or a boy (G/B)? “;

 ans=getch(); // Get answer.

 getch(); // Discard newline.

cout <<ans<<“\n”;

 ans = toupper(ans); // Convert answer to uppercase.

 switch (ans)

 { case (‘G’): { cout << “You look pretty today!\n”;

 break; }

 case (‘B’): { cout << “You look handsome today!\n”;

 break; }

 default : { cout << “Your answer makes no sense!\n”;

 break; }

 }

 return;

}

Here is the output from the program:

Are you a girl or a boy (G/B)? B

You look handsome today!

String Functions
Some of the most powerful built-in C++ functions are the string

functions. They perform much of the tedious work for which you

have been writing code so far, such as inputting strings from the

keyboard and comparing strings.

As with the character functions, there is no need to “reinvent

the wheel” by writing code when built-in functions do the same task.

Use these functions as much as possible.

Now that you have a good grasp of the foundations of C++, you

can master the string functions. They enable you to concentrate on

your program’s primary purpose, rather than spend time coding

your own string functions.

Chapter 22 ♦ Character, String, and Numeric Functions

456

Useful String Functions

You can use a handful of useful string functions for string

testing and conversion. You have already seen (in earlier chapters)

the strcpy() string function, which copies a string of characters to a

character array.

NOTE: All string functions in this section are prototyped in

the string.h header file. Be sure to include string.h at the

beginning of any program that uses the string functions.

String functions that test or manipulate strings follow:

♦ strcat(s1, s2): Concatenates (merges) the s2 string to the end

of the s1 character array. The s1 array must have enough

reserved elements to hold both strings.

♦ strcmp(s1, s2): Compares the s1 string with the s2 string on

an alphabetical, element-by-element basis. If s1 alphabetizes

before s2, strcmp() returns a negative value. If s1 and s2 are

the same strings, strcmp() returns 0. If s1 alphabetizes after

s2, strcmp() returns a positive value.

♦ strlen(s1): Returns the length of s1. Remember, the length of

a string is the number of characters, not including the null

zero. The number of characters defined for the character

array has nothing to do with the length of the string.

TIP: Before using strcat() to concatenate strings, use strlen()

to ensure that the target string (the string being concatenated

to) is large enough to hold both strings.

String I/O Functions

In the previous few chapters, you have used a character input

function, cin.get(), to build input strings. Now you can begin to use

the string input and output functions. Although the goal of the

The string functions
work on string
literals or on
character arrays that
contain strings.

457

EXAMPLE
C++ By

string-building functions has been to teach you the specifics of the

language, these string I/O functions are much easier to use than

writing a character input function.

The string input and output functions are listed as follows:

♦ gets(s): Stores input from stdin (usually directed to the

keyboard) to the string named s.

♦ puts(s): Outputs the s string to stdout (usually directed to the

screen by the operating system).

♦ fgets(s, len, dev): Stores input from the standard device

specified by dev (such as stdin or stdaux) in the s string. If

more than len characters are input, fgets() discards them.

♦ fputs(s, dev): Outputs the s string to the standard device

specified by dev.

These four functions make the input and output of strings easy.

They work in pairs. That is, strings input with gets() are usually

output with puts(). Strings input with fgets() are usually output

with fputs().

TIP: gets() replaces the string-building input function you

saw in earlier chapters.

Terminate gets() or fgets() input by pressing Enter. Each of

these functions handles string-terminating characters in a slightly

different manner, as follows:

gets() A newline input becomes a null zero (\0).

puts() A null at the end of the string becomes a newline

character (\n).

fgets() A newline input stays, and a null zero is added

after it.

fputs() The null zero is dropped, and a newline character

is not added.

Therefore, when you enter strings with gets(), C++ places a

string-terminating character in the string at the point where you

press Enter. This creates the input string. (Without the null zero, the

Both gets() and
puts() input and
output strings.

Chapter 22 ♦ Character, String, and Numeric Functions

458

input would not be a string.) When you output a string, the null

zero at the end of the string becomes a newline character. This is

preferred because a newline is at the end of a line of output and the

cursor begins automatically on the next line.

Because fgets() and fputs() can input and output strings from

devices such as disk files and telephone modems, it can be critical

that the incoming newline characters are retained for the data’s

integrity. When outputting strings to these devices, you do not want

C++ inserting extra newline characters.

CAUTION: Neither gets() nor fgets() ensures that its input

strings are large enough to hold the incoming data. It is up to

you to make sure enough space is reserved in the character

array to hold the complete input.

One final function is worth noting, although it is not a string

function. It is the fflush() function, which flushes (empties) what-

ever standard device is listed in its parentheses. To flush the key-

board of all its input, you would code as follows:

fflush(stdin);

When you are doing string input and output, sometimes an

extra newline character appears in the keyboard buffer. A previous

answer to gets() or getc() might have an extra newline you forgot to

discard. When a program seems to ignore gets(), you might have to

insert fflush(stdin) before gets().

Flushing the standard input device causes no harm, and using

it can clear the input stream so your next gets() works properly. You

can also flush standard output devices with fflush() to clear the

output stream of any characters you sent to it.

NOTE: The header file for fflush() is in stdio.h.

459

EXAMPLE
C++ By

Example

The following program shows you how easy it is to use gets()

and puts(). The program requests the name of a book from the user

using a single gets() function call, then prints the book title with

puts().

Identify the program and include the input/output header files. The
program asks the user for the name of a book. Declare the character array
book with 30 elements to hold the user’s answer.

Ask the user for the book’s title, and store the user’s response in the book
array. Display the string stored in book to an output device, probably your
screen. Print a thank-you message.

// C22GPS1.CPP

// Inputs and outputs strings.

#include <iostream.h>

#include <stdio.h>

#include <string.h>

void main()

{

 char book[30];

 cout << “What is the book title? “;

 gets(book); // Get an input string.

 puts(book); // Display the string.

 cout << “Thanks for the book!\n”;

 return;

}

The output of the program follows:

What is the book title? Mary and Her Lambs

Mary and Her Lambs

Thanks for the book!

Chapter 22 ♦ Character, String, and Numeric Functions

460

Converting Strings to Numbers

Sometimes you have to convert numbers stored in character

strings to a numeric data type. AT&T C++ provides three functions

that enable you to do this:

♦ atoi(s): Converts s to an integer. The name stands for alpha-

betic to integer.

♦ atol(s): Converts s to a long integer. The name stands for

alphabetic to long integer.

♦ atof(s): Converts s to a floating-point number. The name

stands for alphabetic to floating-point.

NOTE: These three ato() functions are prototyped in the

stdlib.h header file. Be sure to include stdlib.h at the beginning of

any program that uses the ato() functions.

The string must contain a valid number. Here is a string that can

be converted to an integer:

“1232”

The string must hold a string of digits short enough to fit in the

target numeric data type. The following string could not be con-

verted to an integer with the atoi() function:

“-1232495.654”

However, it could be converted to a floating-point number with the

atof() function.

C++ cannot perform any mathematical calculation with such

strings, even if the strings contain digits that represent numbers.

Therefore, you must convert any string to its numeric equivalent

before performing arithmetic with it.

NOTE: If you pass a string to an ato() function and the string

does not contain a valid representation of a number, the ato()

function returns 0.

461

EXAMPLE
C++ By

These functions become more useful to you after you learn

about disk files and pointers.

Numeric Functions
This section presents many of the built-in C++ numeric func-

tions. As with the string functions, these functions save you time by

converting and calculating numbers instead of your having to write

functions that do the same thing. Many of these are trigonometric

and advanced mathematical functions. You might use some of these

numeric functions only rarely, but they are there if you need them.

This section concludes the discussion of C++’s standard built-

in functions. After mastering the concepts in this chapter, you are

ready to learn more about arrays and pointers. As you develop more

skills in C++, you might find yourself relying on these numeric,

string, and character functions when you write more powerful

programs.

Useful Mathematical Functions

Several built-in numeric functions return results based on

numeric variables and literals passed to them. Even if you write only

a few science and engineering programs, some of these functions are

useful.

NOTE: All mathematical and trigonometric functions are

prototyped in the math.h header file. Be sure to include math.h

at the beginning of any program that uses the numeric func-

tions.

Here are the functions listed with their descriptions:

♦ ceil(x): The ceil(), or ceiling, function rounds numbers up to

the nearest integer.

♦ fabs(x): Returns the absolute value of x. The absolute value

of a number is its positive equivalent.

These numeric
functions return
double-precision
values.

Chapter 22 ♦ Character, String, and Numeric Functions

462

TIP: Absolute value is used for distances (which are always

positive), accuracy measurements, age differences, and other

calculations that require a positive result.

♦ floor(x): The floor() function rounds numbers down to the

nearest integer.

♦ fmod(x, y): The fmod() function returns the floating-point

remainder of (x/y) with the same sign as x, and y cannot be

zero. Because the modulus operator (%) works only with

integers, this function is used to find the remainder of

floating-point number divisions.

♦ pow(x, y): Returns x raised to the y power, or xy. If x is less

than or equal to zero, y must be an integer. If x equals zero,

y cannot be negative.

♦ sqrt(x): Returns the square root of x; x must be greater than

or equal to zero.

The nth Root

No function returns the nth root of a number, only the square

root. In other words, you cannot call a function that gives you

the 4th root of 65,536. (By the way, 16 is the 4th root of 65,536,

because 16 times 16 times 16 times 16 = 65,536.)

You can use a mathematical trick to simulate the nth root,

however. Because C++ enables you to raise a number to a

fractional power—with the pow() function—you can raise a

number to the nth root by raising it to the (1/n) power. For

example, to find the 4th root of 65,536, you could type this:

root = pow(65536.0, (1.0/4.0));

Note that the decimal point keeps the numbers in floating-

point format. If you leave them as integers, such as

root = pow(65536, (1/4));

463

EXAMPLE
C++ By

C++ produces incorrect results. The pow() function and most

other mathematical functions require floating-point values as

arguments.

To store the 7th root of 78,125 in a variable called root, for

example, you would type

root = pow(78125.0, (1.0/7.0));

This stores 5.0 in root because 5 7 equals 78,125.

Knowing how to compute the nth root is handy in scientific

programs and also in financial applications, such as time-

value-of-money problems.

Example

The following program uses the fabs() function to compute the

difference between two ages.

// Filename: C22ABS.CPP

// Computes the difference between two ages.

#include <iostream.h>

#include <math.h>

void main()

{

 float age1, age2, diff;

 cout << “\nWhat is the first child’s age? “;

 cin >> age1;

 cout << “What is the second child’s age? “;

 cin >> age2;

 // Calculates the positive difference.

 diff = age1 - age2;

 diff = fabs(diff); // Determines the absolute value.

 cout << “\nThey are “ << diff << “ years apart.”;

 return;

}

Chapter 22 ♦ Character, String, and Numeric Functions

464

The output from this program follows. Due to fabs(), the order

of the ages doesn’t matter. Without absolute value, this program

would produce a negative age difference if the first age was less than

the second. Because the ages are relatively small, floating-point

variables are used in this example. C++ automatically converts

floating-point arguments to double precision when passing them to

fabs().

What is the first child’s age? 10

What is the second child’s age? 12

They are 2 years apart.

Trigonometric Functions

The following functions are available for trigonometric appli-

cations:

♦ cos(x): Returns the cosine of the angle x, expressed in radians.

♦ sin(x): Returns the sine of the angle x, expressed in radians.

♦ tan(x): Returns the tangent of the angle x, expressed in radians.

These are probably the least-used functions. This is not to

belittle the work of scientific and mathematical programmers who

need them, however. Certainly, they are grateful that C++ supplies

these functions! Otherwise, programmers would have to write their

own functions to perform these three basic trigonometric calcula-

tions.

Most C++ compilers supply additional trigonometric func-

tions, including hyperbolic equivalents of these three functions.

TIP: If you have to pass an angle that is expressed in degrees

to these functions, convert the angle’s degrees to radians by

multiplying the degrees by π/180.0 (π equals approximately

3.14159).

465

EXAMPLE
C++ By

Logarithmic Functions

Three highly mathematical functions are sometimes used in

business and mathematics. They are listed as follows:

♦ exp(x): Returns the base of natural logarithm (e) raised to a

power specified by x (ex); e is the mathematical expression

for the approximate value of 2.718282.

♦ log(x): Returns the natural logarithm of the argument x,

mathematically written as ln(x). x must be positive.

♦ log10(x): Returns the base-10 logarithm of argument x,

mathematically written as log10(x). x must be positive.

Random-Number Processing

Random events happen every day. You wake up and it is sunny

or rainy. You have a good day or a bad day. You get a phone call from

an old friend or you don’t. Your stock portfolio might go up or down

in value.

Random events are especially important in games. Part of the

fun in games is your luck with rolling dice or drawing cards,

combined with your playing skills.

Simulating random events is an important task for computers.

Computers, however, are finite machines; given the same input,

they always produce the same output. This fact can create some

boring games!

The designers of C++ knew this computer setback and found a

way to overcome it. They wrote a random-number generating

function called rand(). You can use rand() to compute a dice roll or

draw a card, for example.

To call the rand() function and assign the returned random

number to test, use the following syntax:

test = rand();

The rand() function returns an integer from 0 to 32,767. Never

use an argument in the rand() parentheses.

Every time you call rand() in the same program, you receive a

different number. If you run the same program over and over,

The rand()
function produces
random integer
numbers.

Chapter 22 ♦ Character, String, and Numeric Functions

466

however, rand() returns the same set of random numbers. One way

to receive a different set of random numbers is to call the srand()

function. The format of srand() follows:

srand(seed);

where seed is an integer variable or literal. If you don’t call srand(),

C++ assumes a seed value of 1.

NOTE: The rand() and srand() functions are prototyped in the

stdlib.h header file. Be sure to include stdlib.h at the beginning

of any program that uses rand() or srand().

The seed value reseeds, or resets, the random-number genera-

tor, so the next random number is based on the new seed value. If you

call srand() with a different seed value at the top of a program, rand()

returns a different random number each time you run the program.

Why Do You Have To Do This?

There is considerable debate among C++ programmers con-

cerning the random-number generator. Many think that the

random numbers should be truly random, and that they should

not have to seed the generator themselves. They think that C++

should do its own internal seeding when you ask for a random

number.

However, many applications would no longer work if the

random-number generator were randomized for you. Com-

puters are used in business, engineering, and research to

simulate the pattern of real-world events. Researchers have to

be able to duplicate these simulations, over and over. Even

though the events inside the simulations might be random

from each other, the running of the simulations cannot be

random if researchers are to study several different effects.

Mathematicians and statisticians also have to repeat random-

number patterns for their analyses, especially when they work

with risk, probability, and gaming theories.

467

EXAMPLE
C++ By

Because so many computer users have to repeat their random-

number patterns, the designers of C++ have wisely chosen to

give you, the programmer, the option of keeping the same

random patterns or changing them. The advantages far out-

weigh the disadvantage of including an extra srand() function

call.

If you want to produce a different set of random numbers every

time your program runs, you must determine how your C++

compiler reads the computer’s system clock. You can use the

seconds count from the clock to seed the random-number

generator so it seems truly random.

Review Questions
The answers to the review questions are in Appendix B.

1. How do the character testing functions differ from the

character conversion functions?

2. What are the two string input functions?

3. What is the difference between floor() and ceil()?

4. What does the following nested function return?

isalpha(islower(‘s’));

5. If the character array str1 contains the string Peter and the

character array str2 contains Parker, what does str2 contain

after the following line of code executes?

strcat(str1, str2);

6. What is the output of the following cout?

cout << floor(8.5) << “ “ << ceil(8.5);

7. True or false: The isxdigit() and isgraph() functions could

return the same value, depending on the character passed to

them.

Chapter 22 ♦ Character, String, and Numeric Functions

468

8. Assume you declare a character array with the following

statement:

char ara[5];

Now suppose the user types Programming in response to the

following statement:

fgets(ara, 5, stdin);

Would ara contain Prog, Progr, or Programming?

9. True or false: The following statements print the same

results.

cout << pow(64.0, (1.0/2.0)) ;

cout << sqrt(64.0);

Review Exercises
1. Write a program that asks users for their ages. If a user types

anything other than two digits, display an error message.

2. Write a program that stores a password in a character array

called pass. Ask users for the password. Use strcmp() to

inform users whether they typed the proper password. Use

the string I/O functions for all the program’s input and

output.

3. Write a program that rounds up and rounds down the

numbers –10.5, –5.75, and 2.75.

4. Ask users for their names. Print every name in reverse case;

print the first letter of each name in lowercase and the rest of

the name in uppercase.

5. Write a program that asks users for five movie titles. Print

the longest title. Use only the string I/O and manipulation

functions presented in this chapter.

6. Write a program that computes the square root, cube root,

and fourth root of the numbers from 10 to 25, inclusive.

469

EXAMPLE
C++ By

7. Ask users for the titles of their favorite songs. Discard all the

special characters in each title. Print the words in the title,

one per line. For example, if they enter My True Love Is Mine,

Oh, Mine!, you should output the following:

My

True

Love

Is

Mine

Oh

Mine

8. Ask users for the first names of 10 children. Using strcmp()

on each name, write a program to print the name that comes

first in the alphabet.

Summary
You have learned the character, string, and numeric functions

that C++ provides. By including the ctype.h header file, you can test

and convert characters that a user types. These functions have many

useful purposes, such as converting a user’s response to uppercase.

This makes it easier for you to test user input.

The string I/O functions give you more control over both string

and numeric input. You can receive a string of digits from the

keyboard and convert them to a number with the ato() functions.

The string comparison and concatenation functions enable you to

test and change the contents of more than one string.

Functions save you programming time because they take over

some of your computing tasks, leaving you free to concentrate on

your programs. C++’s numeric functions round and manipulate

numbers, produce trigonometric and logarithmic results, and pro-

duce random numbers.

Now that you have learned most of C++’s built-in functions,

you are ready to improve your ability to work with arrays. Chap-

ter 23, “Introducing Arrays,” extends your knowledge of character

arrays and shows you how to produce arrays of any data type.

	书名页
	Device and
Character
Input/Output
	Stream and Character I/O
	Standard Devices
	Redirecting Devices from MS-DOS
	Printing Formatted Output to
the Printer
	Character I/O Functions
	The get() and put() Functions
	The getch() and putch() Functions
	Review Questions
	Review Exercises
	Summary

	Character, String,
and Numeric
Functions
	Character Functions
	Character Testing Functions
	Alphabetic and Digital Testing
	Special Character-Testing
Functions
	Character Conversion Functions
	String Functions
	Useful String Functions
	String I/O Functions
	Converting Strings to Numbers
	Numeric Functions
	Useful Mathematical Functions
	Trigonometric Functions
	Logarithmic Functions
	Random-Number Processing
	Review Questions
	Review Exercises
	Summary

