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This book is the result of years of original scientific research
into the various elements that are required to accurately price
options. We approached the topic in an objective and systematic
manner, just as we did in our study of futures trading systems
in The Encyclopedia of Trading Strategies (Katz and McCormick,
2000). The method: a traditional labor- and data-intensive study
involving thousands of hours of computer time; the result: a
wealth of practical findings of direct relevance to those who use
options to speculate or hedge.

An in-depth investigation was necessary because of the
nature of the subject under study. As is well known, options are
a fiercely competitive, zero-sum game. The amateur usually does
not stand a chance and even experienced players can find it dif-
ficult to use them effectively. Therefore, to successfully speculate
or hedge with options, every edge is necessary. As in almost all
realms of endeavor, knowledge can provide the biggest edge.
A thorough, clear-sighted understanding of the subject and the
factors that influence it are critical and can only be achieved by
implementing an objective, scientific approach.

When it comes to options, knowledge can mean the differ-
ence between making a profit and taking a loss. For example,
there is great advantage in knowing how to identify and exploit
mispriced options. We are not referring to small mispricings that
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only the most efficient arbitrageur or market maker can exploit,
but to gross mispricings that sometimes appear and, equally
quickly, disappear. There is an edge in knowing what to look for
and in knowing how to find it.

We know we must search for gross mispricings, but how do
we find them? An option pricing model is needed. However, not
just any pricing model will do. To gain an edge, a model must
correctly value options under circumstances that cause stan-
dard models to break down. In addition, the model must be used
with valid inputs; even the best model will not yield accurate
prices if the model’s inputs are in error.

In this book, we have done the research, described the logic
behind it and the steps involved, and presented the results as
practical solutions. We have analyzed standard option pricing
models, discovered their flaws, and investigated better estima-
tors of volatility and other model inputs. We have also explored
nonstandard, rather innovative ways to achieve more accurate
appraisals of option value. It is our sincere hope that this will
give you the edge you need in the tough options game.

THINKING OUT OF THE BOX

Basically, there are four kinds of books on the subject of options:
(1) those that deal with the basics and the strategic use of
options, (2) academic texts that discuss theoretical models of
how stock returns are generated, models that are then used to
construct option pricing formulae, (3) practical guides that pro-
vide advice (derived largely from personal experience) on how to
grab profits from the markets, and then there is (4) the book you
are holding in your hands.

Options as a Strategic Investment by McMillan (1993) rep-
resents a well-written, classic example of the first kind of book.
Such texts provide a basic understanding of options: they cover
Black-Scholes and the Greeks, discuss the effects of time decay
and of price changes in the underlying stocks, and contain
everything you would ever want to know about covered writes,
naked puts, straddles, spreads, equivalent positions, arbitrage,
and the risk profiles of various positions. Such background infor-
mation can help one maneuver intelligently around the options

2 Introduction
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markets, as well as tailor positions to fit individual needs and
expectations. However, unless you are one of the rare few who
can divine the future behavior of the markets, relying only on
texts such as these will not provide the practical knowledge you
need to gain a statistical edge.

The second kind of book, the academically-oriented text, is
heavy in theory. Such literature mostly consists of the kind of
material that has been implemented in the computer programs
used daily by market makers and options traders, or of esoterica
that is primarily of interest only to academic theoreticians.
An example of a good book of this genre is Black-Scholes and
Beyond by Chriss (1997). Most of these texts present detailed
theoretical analyses of option pricing models like Black-Scholes
and Cox-Ross-Rubinstein, as well as variations thereon. If you
are like Katz, an individual who enjoys playing with theoretical
models and running Monte Carlo simulations, then you will find
such books a lot of fun. Active options traders concerned with
their bottom lines, however, probably will not greatly benefit from
such reading.

Good books of the third kind are rather rare. Perhaps the
best example of this kind of publication is McMillan on Options
(McMillan, 1996). Such books are often based on personal expe-
rience and get down to the nitty-gritty by demonstrating how to
take profits from the options markets. They cover topics like how
volume and implied volatility can be tip-offs to large and profitable
moves, how to interpret and profit from extremes in volatility,
how to recognize significant situations, and much more. In terms
of providing hard-hitting, practical insight for the active options
trader, such books can be extremely useful.

The last category of book is, as far as we know, occupied solely
by ours.This distinction is the result of taking a unique perspective
on the subject. Although, as in academic texts, we discuss distribu-
tions of returns, the Central Limit Theorem, and random walks, in
our book there is a heavier-than-usual emphasis on the empirical.
Many books on option pricing focus on theoretical models and only
use data in an effort to test the assumptions made by these mod-
els. Rather than discuss theoretical distributions of price changes,
we examine actual, real-market distributions and how they differ
from the theoretical distributions assumed by such popular pricing

Introduction 3
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models as Black-Scholes. By using this approach we provide far
more extensive coverage of real-market behavior than do most
texts on pricing models, together with a wealth of data and
analyses not available elsewhere. In our examination of distri-
butions, we search for and find practical information about pric-
ing that anyone can use to take money out of the markets. In
short, we provide a detailed exploration of standard assump-
tions and then demonstrate how and where they are violated by
real-market behavior. Our integrative approach leads to
insights, not merely of theoretical significance, but of practical
value for the trader trying to pull money from the options mar-
kets. The information presented is otherwise hard to come by,
but essential to anyone wishing to become successful in the
highly competitive arena of options trading.

IMPROVING OPTION PRICING STRATEGIES:
A SCIENTIFIC INVESTIGATION

In this book, we are exploring a lot of new ground. The emphasis
is on asking a wide range of questions and attempting to find the
answers by studying real-market stock and options data. The
ultimate goal is to find new and effective techniques for model-
ing the price movements of stocks and the value of the options
that trade on them. At the same time, we investigate all the fac-
tors that bear upon the pricing of options, examine the standard
pricing models, and discover where those models go wrong and
lead to mispricing. The outcome: more effective ways to price
options. We not only look at the subject from a theoretical point
of view, but also study the actual movements of prices in the mar-
ket, how they are distributed, and what the patterns tell us.

Our approach is empirical and analytic; our style is intuitive
and practical. The work is based on continuing investigations by
the authors who are themselves options traders. Much of this
work involves extensive examination of long-persistent market
characteristics and in-depth statistical and mathematical analy-
ses. We present solid, research-based information of a kind often
buried in academic journals, but do so in a manner that is imme-
diately and practically useful. The analysis and results should be
as valid and relevant many years from now as they are today.

4 Introduction
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ASSUMPTIONS MADE BY POPULAR
MODELS: ARE THEY CORRECT?

In the world of equity options, accurate, mathematically-based
estimates of fair price and of the so-called “Greeks” are crucial for
success. Many professionals, as well as amateurs, still use the tra-
ditional Black-Scholes model to price options. Likewise, most
standard texts on the subject focus primarily on Black-Scholes,
while occasionally discussing Cox-Ross-Rubinstein and other
related models. A common feature of these models is the assump-
tion that, on a logarithmic scale, the distribution of returns (prof-
its or losses) in the market is normal (Black-Scholes), something
close to normal, or something that approaches normal in the limit
(Cox-Ross-Rubinstein). Most “random walkers”—proponents of
the Efficient Market Hypothesis (EMH)—would argue that the
assumption of normally distributed returns is justified by the
Central Limit Theorem and the “fact” that stock returns reflect
the accumulation of large numbers of equally small, random
movements. However, do stock returns really follow the familiar
bell-shaped curve of the normal distribution? No, they do not!

It is well known (and easy to verify) that empirical distribu-
tions of returns deviate from normal by, at the very least, having
longer tails—extreme returns are more frequent than would be
expected from a normal or near-normal distribution. This does not
necessarily imply that price movements are following something
other than a random walk. Perhaps the “small, random move-
ments” of the walk are simply not homogeneous. If some random
steps are drawn from a different underlying distribution than
others, e.g., a distribution that has a larger variance, a long-tailed
distribution of returns might result. Of course, the EMH itself
might be in error; perhaps stock prices are not random, but have
memory and move in trends. Again, the result could be a long-
tailed distribution of returns. Regardless of the reason, the differ-
ence between the empirical and normal distributions has
significant implications for option pricing. Frankly, models that
assume normality (like Black-Scholes) cannot be trusted to con-
sistently provide correct option prices and, therefore, can cost
hedgers and traders serious money!

Some might argue that, although the assumptions under-
lying Black-Scholes and related models are technically violated,

Introduction 5
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the prices generated by these models approximate correct values
well enough for practical purposes. Indeed, in many instances,
they do. However, it is easy to find conditions under which the
prices, and other data that are generated by a model like Black-
Scholes, dramatically miss the mark. Consider the so-called
“volatility smile” that has been the subject of many academic
papers. The smile appears when implied volatility is plotted
against strike price: deeply in- or out-of-the-money options have
higher implied volatilities than at-the-money options. If we take
a somewhat different perspective, when using Black-Scholes
deeply in- or out-of-the-money options appear overpriced relative
to at-the-money options. This is exactly what would be expected
when a model that assumes a normal, short-tailed distribution
of returns is applied to markets with long-tailed distributions of
returns. In addition, due to the mean-reverting nature of volatil-
ity, pricing errors become substantial when historical volatility
is an input to the model and reaches either very high or very low
levels. A number of other statistical features of the underlying
security can also result in seriously mispriced options.

The errors mentioned above are not small and of interest
only to academicians. Under certain circumstances, many of
these errors reach a magnitude that is quite significant, even to
the average options trader. Because of the popularity and naive
use of Black-Scholes and similar models, options can often be
found trading near the model’s estimate of fair value when, in
fact, they should be priced substantially higher or lower. A savvy
options player can take advantage of the discrepancies and sell
the overpriced options or buy the underpriced ones. A more
sophisticated and realistic pricing model—one that takes into
account the actual distributions of returns seen in the market
under various conditions and that is less subject to systematic
error—can be a powerful weapon for the trader or hedger seeking
a decisive edge over his or her competitors. Can such a model be
developed? What is involved in the construction of an improved
pricing model? Finally, assuming it can be built, how will such a
model perform in the competitive world of equity options?

This book examines the specific conditions under which
Black-Scholes and other popular models fail to provide good
estimates of fair option prices, the actual behavior of the market

6 Introduction
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and how it differs from what the standard models assume, how
to use such information to arrive at better option price estimates,
and the steps involved in building better option pricing models.

OPTIMAL MODEL INPUTS

In addition to the pricing model itself, certain inputs require spe-
cial attention. As anyone familiar with options knows, volatility
is one of the major factors that determine the value of an option.

When using an option pricing model, historical volatility is
often employed as one of the inputs. In such a case, historical
volatility is being used (knowingly or not) as a proxy for future
volatility. It is actually future volatility, not historical volatility,
that determines the worth of an option. Therefore, the direct use
of historical volatility as an input to a standard model can lead
to systematic and often severe mispricing. To some extent, volatil-
ity appears to be mean-reverting. If recent historical volatility is
extremely high, one can expect future volatility to be lower; if
recent historical volatility is extremely low, future volatility can
be expected to be higher. As it is future volatility that matters,
the use of historical volatility can distort option price appraisals:
extremely high historical volatility can lead to overpricing and
extremely low historical volatility can cause the model to under-
price options. The use of estimated future volatility, rather than
simple historical volatility, can improve price estimates based on
any option pricing model. Fortunately, volatility is much more
predictable than price movement and, as we will show, predictive
models can be constructed for it.

A substantial amount of space has been dedicated to the
prediction and estimation of volatility, considering its great impor-
tance to the pricing of options. Implied volatility is also examined
in detail. Finally, the way in which time (another major deter-
minant of an option’s value) and volatility are related, both in
theory and in actual practice, is studied.

WHAT IS COVERED IN THE CHAPTERS?

The book begins with coverage of the basics of options, fair
value, and pricing models. Chapter 1 provides a brief, but detailed,

Introduction 7
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review of options and option terminology. A clear discussion of
the Greeks and the use of standard option pricing models is
included. In addition, the basics of speculation, one form of arbi-
trage, and equivalent positions are reviewed. The use of option
characteristic curves, or price response charts, is also illustrated.

Chapter 2 attempts to elucidate the nature of fair value.
What is fair value? How is fair value related to the efficient mar-
ket hypothesis? Is fair value a unitary entity or a multiheaded
beast and, if it is the latter, what are its heads or components?
The chapter considers fair value in terms of both speculation on
future prices and certain kinds of arbitrage. A simple Monte
Carlo experiment, in which synthetic stock and option prices are
generated and examined, is presented to illustrate some of the
concepts developed in this chapter. The illustrative model exam-
ined in the experiment is the starting point that, with modifica-
tions, becomes a real option pricing model in the next chapter.

Chapter 3 contains an examination of the two most popular
option pricing models: Black-Scholes and Cox-Ross-Rubinstein.
These two models have such a pervasive presence in the world of
options that their influence on prices, and the behavior of traders
and hedgers, is overwhelming. The assumptions on which these
models are based are investigated and the models themselves
developed, illustrated, and dissected. A common thread in the
assumptions underlying these models is discovered and analyzed.
In this chapter, there is an extensive discussion of the log-normal
distribution and its impact when used as a basis for understand-
ing the underlying stock price movements or returns, as it indeed
is used in the standard pricing models. Cox-Ross-Rubinstein (also
known as the “binomial model”) is fully developed and illustrated
with both the Monte Carlo method and with pricing trees. The
Black-Scholes equations are also presented and some interesting
features of these equations (such as the fact that they are direct
calculations of the expectation of future option prices, under the
assumption of a log-normal distribution of returns) are demon-
strated numerically with the aid of numerical quadrature. Finally,
some phenomena associated with log-normally distributed stock
price movements are discussed; specifically, the fact that if there is
an even probability of either a win or a loss, there must be a posi-
tive net return, and if there is an average return that is neither

8 Introduction
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positive nor negative (i.e., a return that is zero or breakeven), then
the probability of any stock trade taking a loss must be greater
than 50%, all this being true if stock prices are indeed log-normal
random walks. The chapter concludes with an examination
of stock price movements in the NASD and NYSE, as well as those
generated in the course of a Monte Carlo experiment and designed
to behave according to the log-normal random walk assumption.

After the heavily theoretical discussion in Chapter 3, the
orientation becomes empirical.

Chapter 4 studies the distribution of actual stock returns by
examining their statistical moments. The reason for studying
stock price returns from the perspective of moments is to better
characterize the distributions involved. Distributions of underly-
ing stock price movement are a major determinant of the worth of
options trading on those stocks. The first four moments of a distri-
bution are defined and discussed. Moments are useful statistics in
characterizing the shape either of a theoretical distribution or of
one constructed based on sample data. Once the basics are defined,
the database used in all the studies that follow in this chapter is
discussed, as are the basic software tools and methodology.

Chapter 4 also contains a series of empirical studies or
tests in which a variety of questions are answered on the basis
of an examination of the statistical moments of the distributions
of returns. The study of moments can help determine, for exam-
ple, whether the underlying distribution of price movements in
stocks is indeed log-normal, as popular option models assume.
If the distribution is not log-normal, moments can help charac-
terize its shape and how it differs from the log-normal baseline.
In this chapter, moments are examined in relationship to holding
period, day of the week, time of the year, and time with respect
to option expiration.

Although it may sound strange to study statistical moments,
the reader who is familiar with options has already encountered
the second moment, which is, in fact, volatility. Almost every trad-
er is familiar with the first moment, which is simply the expect-
ed gain or loss over the holding period, i.e., the trend. The
following are some of the questions asked and answered in
Chapter 4: Does volatility scale with the square root of time? Are
successive returns independent of one another or, equivalently, is
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the market efficient and unpredictable? Is the distribution of
returns log-normal and, if not, how does it differ from log-normal?
Does volatility vary with day of the week and time of the year?
Most traders and hedgers would say that the answer to these
questions is yes. If volatility does vary with time, which days are
the most and least volatile; which times of the year are most and
least volatile? And what about the other moments, like skew, kur-
tosis, and expectation? Finally, what does the characterization (in
terms of moments) of the distribution of real-market returns
reveal about the worth of options under a variety of different con-
ditions?

Chapter 5 is dedicated to that statistical moment dear to
the heart of every options player, whether speculator or hedger:
volatility. When pricing options, the volatility of concern is not
historical, but future; it is future volatility that can be expected
to occur during the holding period. The focus of Chapter 5 is on
the estimation or prediction of future volatility for the purpose
of appraising options. This chapter is probably unlike any other
chapter on volatility that you have read in any other book. The
discussion begins with measurement reliability, as seen from
the perspective of a psychometrician. Although psychometrics
may seem far afield from the world of finance, it turns out that
some of the problems involved are similar when abstracted from
the specific content and require similar solutions. Some of the
basics of psychometrics or “test theory” are discussed, such as
estimating reliability using split-half correlations. Model com-
plexity and other issues are then examined. At this point, the
chapter covers the methodology employed, including the particular
databases used, software involved, and the calculation of implied
volatility (required in some of the studies). Then begins a series
of tests concerned with various aspects of volatility.

Study 1 in Chapter 5 examines the common use of simple
measures of historical volatility in pricing options. It asks a vari-
ety of questions. How good is historical volatility as a predictor of
future volatility? Under what conditions does the use of histor-
ical volatility lead to serious pricing errors? Can historical
volatility somehow be adjusted to yield better option appraisals?
How reliable is historical volatility as a measure of the underly-
ing trait of volatility possessed by a given stock at a given time?
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Moreover, which of the many different measures of historical
volatility should the trader or hedger employ? Although most
users of standard models might not be aware of it, there are
indeed a number of ways in which a measure of historical volatil-
ity may be obtained. The study leads to some interesting findings
regarding the relationship between historical volatility and
future market behavior and, in turn, the fair prices for options.
One finding of critical importance is that the use of uncorrected
or “raw” historical volatility can result in appraisals that are sys-
tematically distorted. In other words, standard models applied in
the standard way, using historical volatility as one of the inputs,
will, under certain conditions, yield theoretical fair prices that
are far from the actual worth of the option being priced.

The goal in Study 2 is to determine whether the combined
use of two different measures of historical volatility can improve
the estimation of future volatility and, thus, of pricing accuracy.
Here the technique of multivariate regression is employed. Some
interesting charts are presented depicting the relationship
between short- and long-term historical volatility and future
volatility.

Study 3 is an in-depth analysis of the reliability of volatil-
ity measurements and the stability of the underlying volatility
being measured. Here, the ingenious use of psychometric theory
appears. Several kinds of volatility measures are considered and
their reliability and validity assessed. Some surprising findings
emerge—findings that can provide immediate benefit to the
user of options.

Study 4 in Chapter 5 attempts to construct a more sophis-
ticated estimator of future volatility; multivariate polynomial
regression is employed. Inputs to the volatility forecasting model
include historical volatility for two periods (using the most reli-
able measures found in the previous studies), as well as cycle
harmonics to capture stable seasonal variations in volatility.
The results are dramatically better estimates of future volatil-
ity. Regardless of the option pricing model used, this is the kind
of volatility estimate that should be employed. This chapter does
not include consideration of standard approaches to forecasting
volatility, e.g., GARCH; such approaches and models have received
extensive coverage by other authors. Instead, Chapter 5 embodies
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the spirit of this book, which is to think out of the box, to apply
a variety of techniques that are not in general use, and to gain
an edge, in terms of both simplicity and power.

Study 5 examines implied volatility as an estimator of future
volatility. Again, some interesting findings emerge. Contrary to
popular belief, implied volatility is not necessarily any better
than historical volatility when used in a pricing model.

Finally, in Study 6, historical and implied volatility are
together used to forecast future volatility. Again a technique,
Sewall Wright’s path analysis, is borrowed from another disci-
pline that might seem to be far afield. Sewall Wright was a
geneticist who explored correlations of traits that were passed on
through generations. Path analysis allows causal inferences to be
made from correlation matrices; these inferences concern the
strength of a causal influence of one variable upon another when
considered in the context of a number of variables and possible
configurations of paths of causation. Path analysis helps answer
questions like the following: to what extent is implied volatility
determined (1) by historical volatility, and (2) by future volatility,
perhaps as a result of the leakage of inside information?

Chapter 6 deals with pricing options using empirically-based
conditional distributions. In standard models like Black-Scholes,
theoretical distributions are assumed a priori. As has been demon-
strated, the distributional assumptions made by such models
often appear to be violated by the price behavior of real stocks;
this leads to option pricing errors. What happens if the a priori
distributions are replaced with distributions determined from
real-market behavior? This is the central idea behind the use of
conditional distributions. Various questions regarding the use of
conditional distributions to price options are investigated.

One of the problems with conditional distributions derived
from market data concerns curve-fitting and degrees of freedom.
Chapter 6 begins with an extensive discussion of these issues,
which includes the use of rescaling as a means of reducing the
degrees of freedom consumed when constructing conditional dis-
tributions. General methodology, including data and software,
are then briefly discussed. A series of empirical studies follow.

Study 1 explores a simple pricing model in which raw his-
torical volatility is the only conditioning variable. Theoretical
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option premiums, determined from conditional distributions, are
compared to Black-Scholes, with the latter model computed both
with raw historical volatility and with an improved estimate
based on raw historical volatility that corrected for nonlinearity
and regression to the mean. Also presented are charts of theo-
retical premiums from Black-Scholes and from the empirical
distribution methodology for several strikes.

Study 2 in Chapter 6 is essentially a replication of Study 1,
except that raw historical volatility is replaced with a high qual-
ity estimate of future volatility.

In both Studies 1 and 2, the distributions employed are not
detrended; any consistent trends, volatility-related or not, were
allowed to influence theoretical option prices derived from the
conditional distribution methodology. In Study 3, a reanalysis is
performed with detrended distributions, i.e., the effect of trend
is removed by adjusting the first moment of each distribution
(its mean) to zero.

In Study 4, historical skew and kurtosis are added to the
model as conditioning variables; they are computed in a manner
similar to that used to compute historical volatility. The effect
of skew and kurtosis on the worth of puts and calls at different
levels of moneyness is examined.

Study 5 examines the effect of trading venue on the distribu-
tions of returns and, in turn, on option prices. Again, puts and
calls, with varying strikes and moneyness, are examined and their
empirically determined prices are compared to Black-Scholes.

In Study 6, distributions conditional upon the status of a
popular technical indicator are computed and used to price
options. Crossovers of the stochastic oscillator at the standard
thresholds are examined. Although such indicators are of little
use to speculative traders dependent on directional movement
(see Katz and McCormick, 2000), they may be significant when
trying to characterize aspects of the distribution of returns
other than trend. The chapter concludes with a general discus-
sion of the methodology, its strengths and weaknesses.

One of the problems with the use of conditional distributions
is a heavy demand for massive amounts of data because the
degrees of freedom required by the methodology can be enormous.
One way of making the empirical approach to pricing options more
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workable is to employ a general nonlinear modeling technique
that can smooth out the noise while still capturing the true rela-
tionships revealed by the conditional distribution methodology. In
Chapter 7, nonlinear models that potentially have the ability to
accomplish this are explored; specifically, neural networks, multi-
variate polynomial regressions, and hybrid models.

Chapter 7 begins with a detailed discussion of neural net-
works, multivariate polynomial regressions, and hybrid models.
We cover everything from the issues of numerical stability and
the accumulation of round-off errors to the use of Chebyshev
Polynomials as a means of dealing with problems of colinearity.

A general problem with neural networks and multivariate
polynomial regressions is the tendency to curve-fit the data. The
use of a hybrid model is one possible solution to this problem.
For example, a hybrid model might incorporate a neural net-
work in which the output neuron behaves like Black-Scholes.
The intention is to build into the model as much knowledge as
possible, even if it is only approximate, and to do so in such a
way that the errors in the approximation can be corrected for
by various elements in the model. Black-Scholes, although
exhibiting systematic error that can be great under certain con-
ditions, does yield a reasonable first approximation to the worth
of an option. What if some of the inputs to Black-Scholes could
be tweaked to force it to yield more accurate appraisals? This is
the idea behind the hybrid model under discussion. Why take
the trouble of developing a hybrid model, rather than a simple
neural network or polynomial regression? Because, with a
hybrid model, the number of free parameters required to obtain
a good fit to the data is substantially lower and, therefore, the
solution much less prone to curve-fitting and the excessive con-
sumption of degrees of freedom.

Before attempting to use nonlinear modeling techniques to
price options based on real-market data, it is important to dis-
cover whether they could accurately emulate Black-Scholes. If a
general nonlinear model cannot emulate Black-Scholes, how can
it be expected to capture the possibly more complex relationship
between factors such as volatility, time, and strike, and the fair
premium of an option that might exist in real-market data? The
first two studies of Chapter 7 answer this question.
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In Study 1, a neural network is trained to emulate
Black-Scholes and its performance is evaluated. In Study 2,
a multivariate polynomial regression is fitted to the same Black-
Scholes data set and evaluated for performance. Both approach-
es are demonstrated to be capable of doing a good job. Attention
is then turned to real-market data.

Study 3 investigates the ability of a polynomial regression
to accurately capture the relationships between fair premium
and the model inputs that are seen in data derived from real
stock returns using a methodological equivalent to conditional
distributions. The behavior of the polynomial model is compared
to Black-Scholes and is evaluated in terms of its ability to accu-
rately describe the empirical pricing data, as well as to filter out
random variations that are seen in such data. Several tables
and charts illustrating the pricing behavior are presented.

Study 4 repeats Study 3, but uses a neural network instead
of a multivariate polynomial.

Study 5 examines a hybrid model that consists of a neural
network with a special Black-Scholes output neuron and some
additional processing elements.

Chapter 7 concludes with a discussion that compares and
evaluates the various approaches. The following kinds of ques-
tions are addressed. Which approach best captures the relation-
ships required to accurately price options? Which approach is
most susceptible to undesirable curve-fitting and which is most
resistant? What are the specific problems that must be dealt
with when attempting to develop models of this kind? And, what
are the respective potentials of these various techniques when
the goal is to develop a coherent and sophisticated option pricing
model? Although long and elaborate, Chapter 7 is rather unique
when it comes to the treatment of option pricing.

Chapter 8 revisits volatility. In this chapter, a wide range of
variables beyond those explored in Chapter 5 are examined as
potential predictors of future volatility. These variables include
measures such as historical skew and kurtosis, and the status of
various technical indicators. The aim is to obtain the best possible
estimate of near-future volatility. Attempts are made to answer
questions about volatility that were raised in the course of the
other investigations in this book. For example, in Chapter 6,
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skew and kurtosis are found to affect fair premium. Do skew
and kurtosis have an effect on premium that is mediated through
volatility; in other words, do these variables influence the expec-
tation regarding future volatility and, therefore, have some
impact on the value of options? What about the status of tech-
nical indicators? Are their effects on option prices due to differ-
ences in future volatility, rather than just to differences in the
shape of the distribution of future returns? The answers to these
questions are found in Chapter 8.

So far, with few exceptions, theoretical option prices based on
observed movements in stock prices have been the focus of our
studies. In Chapter 9, comparisons are made between these theo-
retical option prices and real-market option prices, i.e., the prices
at which the relevant options are actually trading. The chapter
contains a discussion of the data and software used and attempts
to answer a variety of questions concerning the relationship
between option prices computed with different models to those
observed in the actual marketplace. For example, when there is a
wide disparity between the two figures, do real option prices fall
closer to Black-Scholes or to what one of the better models sug-
gests? Can one profit by looking for large discrepancies between
the theoretical price of an option and the price at which it is actu-
ally trading? How much does the use of Black-Scholes and other
popular models influence the options market?

Finally, there is the Conclusion. Here we summarize our
findings and provide you with information on how these insights
can improve your option pricing strategies.

WHO WILL BENEFIT?

This book is intended for everyone from the professional quant to
the student who desires a better understanding of, and strategy
for, pricing and trading options. Professional and institutional
options players, who may be adjusting the standard models in an
intuitive fashion, will find this book useful in that it may artic-
ulate their intuitive understanding of option pricing in such a
way as to allow the automation or computerization of the pricing
process. This could prove more effective than the intuitive
approach, e.g., by leading to the inclusion of a wider range of 
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conditions that will let hundreds, if not thousands, of options posi-
tions be quickly and repeatedly scanned for more frequent trad-
ing opportunities throughout the day. The sophisticated options
player will also find this book helpful in that it will place him or
her on a more level playing field with professional and institu-
tional traders—we are giving you information about models that
they may be using to obtain a closer estimate of an option’s
future value. The book should also be of interest to the academ-
ician or student trying to develop better theories and methods of
option pricing. We expect that all readers will find within these
pages at least one or two useful insights that will make their
approach to option pricing more profitable.

Although this book contains a lot of mathematics and sta-
tistics, we make every effort to explain things—especially findings
that are of practical use—in “plain English.” We also include
many tables and charts to illustrate the phenomena under dis-
cussion. Those who are mathematically challenged may want to
ignore the equations and stick to the less technical text.
Conversely, quants might want to skip the introductory material,
like Chapter 1 on the basics.

TOOLS AND MATERIALS USED IN
THE INVESTIGATION

As in any scientific investigation, the one essential element
that is required is a subject of study. In the present case, that
subject is the world of option pricing, as represented by real-
market data. We used data from two sources: (1) stock price and
volume data were obtained from the Worden Brothers TC-2000
database (www.worden.com); (2) option pricing, volume, and open
interest data were obtained from www.stricknet.com.

In our investigation, we focus primarily on short-term equity
options, with some attention to index options. The main reason for
using short-term options in our study is because they are the most
liquid and are the kind traded by the authors and most other
active traders. Secondly, by working with short-term options, we
can (somewhat safely) ignore interest rates and dividends, thereby
simplifying our investigations. The simplifications, and their pos-
sible impact on the findings, will be discussed whenever they arise.
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The tools used to investigate the subject come in the form
of software. To a great extent, the software was custom written
by Katz either exclusively for this book or for his company,
Scientific Consultant Services, Inc. For example, N-Train (his
neural network development system) was used in Chapter 7 as
part of the study of nonlinear pricing models. Other custom
developed software included libraries containing routines for
Black-Scholes pricing, calculation of statistical moments,
numerical quadrature, regression, data management, volatility
calculations, general mathematics, pseudo-random number gener-
ators, probability functions, utility functions, and the Neural-
Hybrid Options Model Library. Custom code was written for
each of the tests and studies, as well as for actual pricing models,
based on the resultant findings. At the end of this book, for the
benefit of those who would like to replicate and expand on
our work, we have provided information on how to obtain the
Companion CD and other software used in our studies.

In addition, a number of off-the-shelf products were used in
the course of the investigation. The GNU C/C++ and Fortran
compilers familiar to Unix users were used to compile code.
Microsoft’s Excel spreadsheet was used for visualization (chart-
ing) and presentation, as well as for some final analyses. Lastly,
routines from Numerical Recipes in Fortran 77 and Numerical
Recipes in C (both books and software packages by Press et al.,
1992) were employed.

AN INVITATION

We invite you to visit our Web site: www.scientific-consultants.
com. Here, you will find updates about our research and other
information that you may find useful.

We also enjoy hearing from our readers; you are
always welcome to send us your questions or comments by
e-mail to katz@scientific-consultants.com and mccormick@
scientific-consultants.com.

Jeffrey Owen Katz, Ph.D.
Donna L. McCormick
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This chapter provides some background by defining options
and many of the terms used when discussing them. It looks
at where options are traded, examines a few of their salient
characteristics, and discusses some of the factors that influence
their value. The reader is introduced to option price charts,
which are used to illustrate the option terminology and influen-
tial factors under discussion. The fundamentals of pricing
models, the Greeks, put-call parity, synthetics, and equivalent
positions are also covered. More advanced readers may wish to
skip this chapter.

BASIC OPTIONS: CALLS AND PUTS

Options are contracts that come in two primary flavors: calls
and puts. A call is an agreement that gives the holder (owner)
the right to purchase the underlying security at a predetermined
price called the strike price either at the call’s expiration date
(European-style options) or anytime during the life of the option
(American-style options). If and when the holder of a call actu-
ally exploits that right, it is said that the call has been exercised.
From the options seller’s point of view, being short a call means
having given someone the right to purchase from him or her the
underlying security at the strike price of the option, regardless
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of that security’s current market value. If and when this right is
exercised, the trader who is short the option is said to have been
assigned. While a call gives its holder the right to buy the under-
lying security, a put gives the trader the right to sell the under-
lying security at the strike price of the option. A trader who is
short a put has an obligation to purchase the underlying security
at the strike price of the option, should the put be exercised and
he or she be assigned.

Options are derivative securities because they owe their
existence and value to the underlying assets on which they
trade. In this book, the underlying assets of the options exam-
ined are mostly individual stocks, although market and sector
tracking entities such as the OEX index and the QQQ tracking
stock are also studied. In other words, the focus here is primar-
ily on equity (stock) options and index options. It should be noted
that most stock options are American-style options, which may
be exercised at any time prior to expiration. Index options may
be either European style or American style.

Years ago, options contracts were traded “over the counter”
and were customized to the contract writer’s requirements. Today,
while some options are still traded the old way, most have been
standardized, are issued by the Option Clearing Corporation
(OCC), and are traded on regulated exchanges as listed options.
A standard, listed option is fully defined by the underlying secu-
rity, expiration, strike price, and type (call or put). Standard
stock and index options generally expire on the Saturday follow-
ing the third Friday of the month of expiration. Consequently,
when specifying the expiration, only the month and, for longer-
term options such as LEAPS (long-term equity anticipation
securities), the year need be stated. Standard stock options may
be exercised until 5 p.m. Eastern Standard Time on the last day
of trading. This can be a source of a nasty surprise, should the
trader be caught off guard due to options being exercised after
the close of the market. If assigned, a trader who is short will
receive an assignment notice the day following the assignment.
Finally, each standard stock options contract usually controls
100 shares of stock. An option on IBM that expires in May and
gives the owner the right to buy 100 shares at $75 a share would
be referred to as an “IBM May 75 call”; an option on IBM that
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expires in June and gives the holder the right to sell 100 shares
at $52 a share would be specified as an “IBM June 52 put.”

Options are traded on a number of exchanges. The Chicago
Board Options Exchange (CBOE) was the first listed options
exchange in the world. Their Web site at www.cboe.com contains
a wealth of information on options that includes quotes, historical
data, option analysis tools (including pricing models), and educa-
tional materials. A newer, electronic options trading venue is the
International Securities Exchange (ISE). It offers excellent liquid-
ity on many options, as well as fast executions. The authors trade
the QQQ index options (often referred to as “Qubes”) on the ISE.
Options also trade on the American Stock Exchange (AMEX) and
on several regional exchanges such as the Philadelphia Stock
Exchange (PHLX) and the Pacific Stock Exchange (PSE).

NAKED AND COVERED

Options may be traded either naked or covered. A trader who
sells a covered call, also known as a covered write, already owns
the underlying security. For example, the owner of 100 shares of
IBM might sell an IBM call, which entitles the buyer to “call
away” the options seller’s stock. A trader may also cover a short
option position with a long position in another option on the
same underlying security; the combined long-and-short position
is known as a spread. Selling a naked call happens when a call is
sold without owning the underlying stock. If the call happens to
be exercised and the seller assigned, he or she will be obligated
to sell the stock at the strike price of the option. This will result
in a short position in the stock. The trader will probably want to
quickly cover the short stock position and will have to do so by
purchasing shares in the open market at a price higher than the
strike price at which the short option position was established.
A trader who sells a naked put is selling a put without being
short the underlying security. If assigned, the seller is obligated
to purchase the stock at the put’s strike price, a price that is
almost certain to be higher than the stock’s current market value.
Of course, if no assignment occurs, and the put or call expires
worthless, the options seller gets to keep the entire premium he or
she was paid for the option. Having options expire worthless is just
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what the seller of naked options usually hopes for, except when
puts are sold as a means of acquiring stock at a lower cost basis.

ADDITIONAL OPTION TERMINOLOGY

The price of an option is its premium. Premium can be broken
down into two components or kinds of value. One kind of value
is intrinsic value. If you have an IBM call with a strike price of
$100 and the stock is trading at $105, the option will have an
intrinsic value of $5. This intrinsic value derives from the fact
that if you exercise the option, you can buy the stock at $100
from the option’s seller, then immediately turn around and sell
the stock for $105 in the open market, pocketing a $5 profit.
Options also have another kind of value that has to do with
where the stock might go at some point in the future. Assume
that the option has several months of life remaining before expi-
ration. Its total worth is almost certain to be greater than $5; for
instance, it may be trading at $7. In this example, the extra $2
is the so-called time value or time premium of the option. Time
value derives from what might happen in the future. At some
future point in the option’s life, IBM stock might reach $200, in
which case the profit that could be made from holding the call
option would be at least $100. On the other hand, the stock could
drop to $20, leaving the option holder with a nearly worthless
option. But, if the option has any time remaining, it will still
have some value since, at some point prior to expiration, the
stock could again surge to over $100, the option’s strike price.

An option is said to be in-the-money to the extent that it
possesses intrinsic value. For a call to be in-the-money, the
underlying security must be trading at a price that is greater
than the strike price of the call. In such a case, the call’s intrin-
sic value is equal to the price of the underlying asset minus the
strike price of the option. Conversely, a put is in-the-money
when the underlying security trades at a price lower than the
option’s strike price. An in-the-money put has an intrinsic value
equal to the put’s strike price minus the price of the underlying
asset. An option is said to be out-of-the-money when it possesses
no intrinsic value, only time value. A call is out-of-the-money
when the underlying trades below the call’s strike price, while
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a put is out-of-the-money when the asset trades above the
strike. When the strike price of the option lies near the price of
the underlying security, the option is said to be at-the-money. At-
the-money options tend to have the greatest amount of time
value and are often the most actively traded. The term money-
ness is sometimes used to refer to how far up the scale, from
deeply out-of-the-money to deeply in-the-money, an option lies.

Deeply in-the-money options are flush with intrinsic value
but often have little or no time value, especially when close to expi-
ration. An in-the-money option is said to be trading at parity when
its price reflects only intrinsic value. Sometimes deeply in-the-
money options will actually trade at prices that are below their
intrinsic value. When an option trades at a price less than its
intrinsic value, the option is said to be trading below parity.
European-style options that are in-the-money often trade below
parity; because they cannot be exercised until expiration, the arbi-
trageur is subject to the risk of declining value, not to mention a
cost of carry. American-style options normally trade above parity.

FACTORS INFLUENCING OPTION PREMIUM

Many factors influence the price, or premium, of an option.
Among the more influential and better-known factors are the
price of the underlying security, the strike price of the option, the
time remaining before expiration, the volatility of the underlying
security, the dividend payout of that security (if any), and the
risk-free interest rate. Lesser-known factors, many of which will
be studied in subsequent chapters, include skew, kurtosis, serial
correlation, and other statistical properties of price movements,
as well as cycles, seasonal effects, and the impact of impending
events such as earnings reports and criminal or civil judgments
involving the companies behind the underlying securities. For
reasons of clarity, it will be assumed in the discussion that fol-
lows that the underlying asset is a stock unless otherwise stated.

Well-Known Factors

Two obvious variables that influence an option’s price are the
strike price of the option and the price of the underlying security.
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As already mentioned when discussing moneyness, the intrinsic
value of a call is zero when the stock trades below the strike, and
is equal to the price of the stock minus the strike price of the
option when it trades above. For a put, the relationship is reversed:
the intrinsic value of a put is zero when the stock price is greater
than the strike price, and the strike price minus the stock price
when the stock is lower than the strike. Intrinsic value is not the
only value affected by the price of the underlying security and the
strike price of the option. Time value is affected as well. All things
being equal, the closer an option’s strike price is to the price of
the stock, the greater the chance the stock will move sufficiently to
give the option real or intrinsic value before expiration and, con-
sequently, the greater the time value. At-the-money options tend
to have the most time value, while deeply in-the-money or deeply
out-of-the-money options have the least. These relationships
should be familiar to anyone who has examined option tables in
a newspaper, perhaps purchasing calls in an effort to profit from
rising stock prices, or puts to profit from falling ones.

Volatility and time, working together, also have a major
impact on an option’s price. Let us first consider volatility.
Volatility is a measure of how much a stock characteristically
moves in a given unit of time, often stated as an annualized per-
centage. As every trader knows, stocks differ greatly in their
volatility. A technology stock that is “in play” can easily have a
volatility of over 200% annualized, while a volatility of 20%
might be found in a quiet utility stock. Volatility that is calculated
using historical price data for the underlying security is referred
to as historical volatility. Implied volatility refers to the volatil-
ity that, when entered into an option pricing model, yields an
estimated, theoretical price that is equal to an option’s actual
price; it is the volatility implied by the current price at which
the option is trading.

As might be expected, the excess over intrinsic value that is
known as time value is highly influenced by volatility. Higher
volatility in an underlying security implies greater time value in
any option on that security. Why? Because volatility is a mea-
sure of movement, and the more a stock moves during the life
of an option, the greater the potential payoff. Time value is 
also determined by the period remaining before expiration: the
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longer the time remaining, the greater that component of an
option’s worth. If there is a longer period ahead, there is more
time for the stock to potentially reach a price level that would
yield a significant profit for the option holder. In a sense, time
value might be referred to as speculative value. It is value that
derives from potential movement in a stock’s price as a result
of volatility occurring within the framework of time. As expira-
tion approaches, speculative value declines; this phenomenon
is known as time decay. At expiration, when time has finally
run out, an option will have only intrinsic value remaining; its
speculative value will have dwindled to zero. It is for this reason
that options are sometimes referred to as wasting assets.

Interest rates and stock dividends are also well-understood
determiners of the worth of an option. Prices for calls increase
with interest rates, while prices for puts decrease. A simplified
understanding can be had by considering an arbitrageur who
purchases calls and hedges them with short stock and short
puts. The proceeds from the short side can be invested in bonds
and earn interest at the prevailing rate. To the extent that inter-
est rates are high, the arbitrageur, wanting to capture those
interest earnings, will be willing to pay more for the calls and
receive less for the puts. The same arbitrageur, short the stock,
will be responsible for dividend payments. Higher dividends
mean greater costs, and so the arbitrageur will pay less for calls
and demand more for puts. Consequently, as dividends rise,
prices decrease for calls and increase for puts. Dividends have
an opposite influence to that of interest rates on option prices.
In addition to their effects on arbitrage, interest rates and divi-
dends determine the so-called cost of carry and the relative
worth of competing investments, which, in turn, impact stock
and option prices. Most traders are familiar with the bullish
impact on the market of declining interest rates and of the drop
in a stock’s price when it goes ex-dividend.

Lesser-Known Factors

Skew and kurtosis define certain aspects of the statistical dis-
tribution of returns, just as volatility does. While volatility mea-
sures the spread or width of the distribution, skew and kurtosis
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measure features of its shape. In the world of statistics, skew and
kurtosis are the third and fourth moments of a distribution. The
first moment is the familiar mean or average, while the second
moment is the variance. The square root of the variance is the
standard deviation. It is the standard deviation that, in the lan-
guage of options, is referred to as volatility.

First, consider skew. Compared to the familiar bell-shaped
normal distribution, a distribution with negative skew is one that
has an extended left (negative) tail and compressed right (posi-
tive) tail, with the peak appearing tilted to the right. A distribu-
tion with positive skew has an extended right tail, shortened left
tail, and a peak that leans to the left. In the language of the trad-
er, a stock or index with negative skew would be one that exhibits
occasional sharp declines that are set against a background of
frequent, but relatively small, price gains. A stock with positive
skew evidences just the opposite behavior: occasional large gains
and frequent, but comparatively small, declines. Obviously, skew
affects the potential payoff of an option investment and so may
be highly relevant to a trader attempting to estimate the current
worth of an option.

Kurtosis, likewise, can be assumed to have a significant
impact on option prices. A platykurtic distribution is one with
negative kurtosis. It has shorter tails and a wider, flattened peak.
A leptokurtic distribution is one with positive kurtosis and has a
sharper peak and longer tails. As demonstrated later in this book,
the distribution of returns seen in stocks and stock indices tends
to be leptokurtic in that there are more extreme returns (both
positive and negative) than would normally be expected, as well
as more instances where prices change little, than there are
moderate gains and losses. The effect of a leptokurtic distribution
on option prices is that deeply out-of-the-money and deeply in-
the-money options will have greater value than expected based on
standard option pricing models. This is equivalent to observing a
volatility smile when plotting implied volatility, calculated using
a standard model and observed option prices, against moneyness.
The so-called volatility smile has been the subject of many aca-
demic papers concerned with option pricing models.

So far, the discussion has focused on volatility, skew, and
kurtosis, which are the second, third, and fourth moments,
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respectively. What about the first moment, the mean or expecta-
tion? A mean return that differs from zero appears on a stock
chart as a trend—a period during which prices tend either to
rise (positive mean return) or fall (negative mean return). Traders
often attempt to profit from a discernible trend by assuming
that the trend will have momentum, i.e., a tendency to persist,
and by acting on that assumption. In an uptrend, calls might be
expected to have increased value and puts decreased value,
because of the potential for continued directional movement in
the underlying stock. The reverse might be expected in a down-
trend. Such expectations, however, may not reflect market
reality since conversion and reversal arbitrage (which will be
discussed later) acts to attenuate the more obvious differential
effects of trend on put and call premiums. Nevertheless, trends
can be expected to have a significant influence on option values.

Finally, there are cycles, seasonal effects, and events that
are expected to generate news at some point in the future.
Cycles, it should be noted, can be observed not only in stock and
index prices, but also in their volatility. For obvious reasons, a
stock’s volatility might be expected to rise when earnings reports
are released. Since earnings reports are generally made avail-
able on a quarterly basis, there should be a discernible cycle in
volatility, and, consequently, in option premiums, having a peri-
od of around 90 calendar days. In addition to the earnings cycle,
there are other seasonal market phenomena. For whatever rea-
son, certain months are notorious for high volatility, while other
seasonal periods often exhibit exaggerated trends. Most traders
are familiar with October as a month of crashes and market
volatility, and with late December through early January as a
frequently bullish period. These seasonal tendencies in volatility
and trend should be reflected in, and perhaps even be anticipa-
ted by, the options markets. Because cycles and seasonal effects
are easily quantified, incorporating these factors into a practical
pricing model should not be difficult. News is another factor that
influences option premiums. For one thing, news is a significant
source of volatility. Consequently, rumors and impending news
(e.g., regarding the outcome of a lawsuit, a drug trial, or a poten-
tial takeover), with the implication of market volatility to come,
can cause implied volatility to skyrocket and options to gain
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greatly in price, even when the underlying stock remains rela-
tively unchanged in price and exhibits normal, uninflated his-
torical volatility. However, once the news becomes public
knowledge, inflated option prices often collapse.

USES OF OPTIONS

Options are versatile instruments that may be used in innu-
merable ways. One simple and familiar use is to speculate on
directional movement in the underlying, such as when a trader
buys calls to profit from an anticipated rise in a stock’s price, or
puts to benefit from a fall. When used for this purpose, options
can provide leverage while controlling certain kinds of risk.
However, as should be evident from the discussion of factors
influencing option premiums, options go far beyond simply pro-
viding leverage or limiting risk. For one thing, options make
it possible for the trader to speculate on variables other than
price. Consider a trader expecting increased volatility, but
unable to predict its direction. There are option strategies that
will respond profitably to the anticipated change in volatility
while minimizing the impact of any directional movement. Even
the trader who expects stock prices to remain in a narrow trad-
ing range can find an option strategy to take advantage of the
situation. Options are the perfect instruments for turning such
expectations into potentially profitable actions. They are also
the instruments of choice for transferring certain kinds of risk,
for hedging, and for custom-tailoring the risk-reward charac-
teristics of a variety of investments.

OPTION PRICING MODELS

In the above discussion, repeated references have been made to
option pricing models. An option pricing model, if not already
clear from the context, is a mathematical algorithm or formula
by which the theoretical fair value of an option may be calcu-
lated. Such a model, naturally, bases its calculations on certain
assumptions regarding the nature of fair value, the behavior of
price movements in the underlying security, and the effects of a
variety of factors that are known to influence option prices.
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An option pricing model is necessary, not only for estimating fair
value, but also for calculating several other useful items. One
such item, implied volatility, has already been discussed.
Implied volatility is the volatility that, when entered into an
option pricing model, produces a fair price estimate that match-
es the price at which the option is actually trading; it is the
volatility being implied by option prices. Other useful products
of an option pricing model include the so-called Greeks: Delta,
Gamma, Theta, Vega (also known as Tau), and Rho.

The Greeks

To one versed in calculus, the Greeks are just the partial deriv-
atives of the pricing model’s output (theoretical fair premium)
with respect to its inputs. However, one need not be fluent in cal-
culus to understand the Greeks.

First, consider Delta. Delta, also known as the hedge ratio,
simply measures how much an option’s premium is likely to
change in response to a small change in the price of the under-
lying stock. For example, if a call option has a Delta of 0.40, and
a share of the underlying stock moves up $0.80, the option can
be expected to gain $0.32 (0.40 multiplied by 0.80) per share
controlled (a standard options contract controls 100 shares).
Since rising stock prices imply rising call prices and falling put
prices, calls have positive Delta and puts have negative Delta.
As an option goes deeply in-the-money, its Delta approaches
+1.0 (call) or −1.0 (put). At the opposite end of the spectrum, a
far out-of-the-money option will have a Delta approaching zero.

Options traders sometimes refer to a position as being
Delta-neutral. Given the definition of Delta, it should be clear
that a Delta-neutral position is one that is relatively unrespon-
sive to small changes in the price of the underlying security. An
example would be an at-the-money straddle. A straddle consists
of a put and a call, both having the same strike and expiration,
on the same underlying security. With a properly chosen strike,
the negative Delta of the put will cancel out the positive Delta
of the call. Since Delta changes with moneyness, a straddle will
lose its Delta-neutral character, should stock prices move suffi-
ciently away from the strike.

A Review of Options Basics 29

7737_ch_1.qxd  28/12/04  11:35 AM  Page 29



Gamma is the rate at which Delta changes with movement
in the underlying stock. It is useful when constructing Delta-
neutral hedges involving multiple options that will remain
Delta-neutral over a wider range of stock price. Such hedges
require positions designed to minimize not only Delta, but also
Gamma. Positions that minimize Gamma are sometimes
referred to as Gamma-neutral. Of course, as time passes and
factors influencing option premium undergo change, adjust-
ments to the positions will be required in order to maintain a
Delta-neutral or Gamma-neutral stance.

Theta is the rate at which time decay erodes value. An option
with a Theta of −0.05 loses 0.05 points a day to time decay. This
works out to a loss of $5 a day per contract, given that a standard
contract controls 100 shares of stock. Obviously, Theta is the
option buyer’s enemy and the seller’s friend. Theta is highest for
at-the-money options having significant time value and, for these
options, increases rapidly with the approach of expiration.

Vega measures an option’s sensitivity to changes in vola-
tility. If volatility increases 10% and the option gains $0.20 per
share, then Vega is approximately 0.02 (0.20 divided by 10).
Longer-term options have more sensitivity to volatility and so
possess higher levels of Vega. Just as Delta-neutral positions
can be implemented to hedge price risk, so can Vega-neutral
strategies be employed to hedge volatility risk. Since volatility
is one of the most influential factors affecting option price, Vega
is of great interest to hedgers. It is also of interest to the trader
attempting to speculate on changes in volatility, something for
which options are an ideal instrument.

Finally, Rho measures sensitivity of option prices to inter-
est rates. Since call premiums increase with interest rates while
put premiums decrease, Rho is positive for calls and negative for
puts. For both puts and calls, the absolute value (negative or
positive) of Rho increases with increasing time.

Black-Scholes

Black-Scholes is undoubtedly the most popular option pricing
model in use today. It is readily available in the form of spread-
sheet add-ins, stand-alone programs, and as part of many online
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trading platforms. Numerous Web sites offer Black-Scholes cal-
culators. Needless to say, the Black-Scholes model is used by
almost every serious trader of options, even those having access
to newer and more complex pricing models. The reason is that,
although not perfect by any means, Black-Scholes is familiar,
easily understood, and does provide reasonable estimates of an
option’s worth under normal conditions. In addition, it is very
easy to calculate implied volatility and the Greeks using the
Black-Scholes formula. Black-Scholes uses, for its inputs, the
well-known factors that influence an option’s value: the stock’s
price, the option’s strike price, the volatility, the time remaining
before expiration, the risk-free interest rate, and the dividend
rate. The output, of course, is a theoretical fair price consonant
with the model’s assumptions.

Roughly speaking, Black-Scholes assumes that the price
behavior of the underlying security is accurately described as a
geometric random walk having a log-normal distribution of
returns, that the options markets are perfectly liquid and effi-
cient, and that arbitrage can always be carried out. In its stan-
dard form, it also assumes European-style options and continuous
interest and dividend payouts. As with most theoretical models, it
disregards the realities of transaction costs, wide ask-bid spreads,
and many other disturbing “minutiae” familiar to most traders.
What trader has not observed stale last price figures, options that
have not traded for days at a time, and other telltale signs of
extremely poor efficiency and liquidity in the options markets?
Yet, despite obvious violations of at least some of the model’s
assumptions, Black-Scholes generally provides useful, if not sur-
prisingly good, approximations to fair value.

It should be mentioned that Black-Scholes is not the only
popular option pricing model. The Cox-Ross-Rubinstein “bino-
mial” model also has a large following. Although computation-
ally more involved and time-consuming than Black-Scholes,
this model may actually be easier to understand. Cox-Ross-
Rubinstein is also more flexible in its application. For example,
it can easily be adapted to handle discrete dividends and
American-style options. Because of this flexibility, Cox-Ross-
Rubinstein might yield somewhat more accurate fair value esti-
mates in many circumstances.
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Finally, the correctness of prices generated by a model like
Black-Scholes is very dependent on the accuracy of the inputs.
Some inputs, like time left to expiration, stock price, strike price,
and interest rate, are either known precisely or change so slowly
that they are easily evaluated with relative precision, at least
for short-term options. These inputs present no problem. Other
inputs, such as volatility, do present problems in that they are
difficult to precisely determine and so must be estimated. It is
with such inputs and their estimates that serious inaccuracies
may enter the picture. Consider the fact that historical volatility
is often used as a proxy for volatility when computing Black-
Scholes when what is strictly required is future volatility.
Historical volatility may sometimes provide an acceptable
estimate of future volatility, but not always. There are specific
circumstances under which historical volatility affords a very
poor approximation to future volatility and one that will lead to
serious pricing errors. To avoid the need for an independent
estimate of future volatility, implied volatility is occasionally
used to calculate fair premium, but this only permits com-
parisons amongst options. When using implied volatility, it is
impossible to say whether any option on a given security is
overpriced or underpriced independent of others. The bottom
line is that for a model like Black-Scholes—a model with inputs
that have values that can only be estimated—any effort spent
on improving the accuracy of the input estimates will pay off in
increased precision in the theoretical fair prices the model
generates.

Exhaustive coverage is given in later chapters to random
walks, distributions (including the log-normal), issues concerned
with estimating volatility and other relevant input variables,
the assumptions made by popular pricing models, and the con-
ditions under which the approximations to fair value that such
models generate tend to break down.

Why Use a Pricing Model?

There are many reasons to use an option pricing model. One
obvious reason is that an option model enables the calculation
of a theoretical fair price. A theoretical fair price provides the
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trader with a rational basis that can be used to judge whether
actual prices in the marketplace are reasonable, and to deter-
mine where to place bids and offers. Another good reason to use
an option pricing model is that it makes possible the calculation
of implied volatility. Estimates of implied volatility allow mean-
ingful comparisons to be made amongst options with differing
strikes and expirations. Relatively expensive and perhaps over-
priced options will evidence higher implied volatility than those
that are cheap. A trader can gain a statistical edge in the mar-
ket by taking advantage of significant price discrepancies
revealed by comparisons of implied volatility. In addition, high
levels of implied volatility sometimes reflect insider activity and
can alert an astute player to a potential earnings surprise or
takeover bid. For an excellent, in-depth discussion of these
phenomena, consult McMillan on Options (McMillan, 1996).
Needless to say, an option pricing model makes it straight-
forward to evaluate various strategies and to estimate their pay-
offs under different market scenarios. With the aid of a pricing
model, charts can be prepared that show the theoretical re-
sponse of a position to various influences such as interest rate,
volatility, time, and stock price. This is true whether the trader
is contemplating a simple option position, such as a long or short
put or call, or a complex multiple option position like a straddle,
spread, or butterfly. Finally, the Greeks, calculated with the help
of a pricing model, are essential when trying to hedge specific
kinds of risk. A market maker would not survive for long if, at
the very least, he or she did not hedge against the risk of signif-
icant price movement in the underlying security by establish-
ing Delta-neutral positions. In short, trading options without a
good pricing model is like flying in fog without instruments.
Over the long haul, traders who intelligently employ good
pricing models will profit at the expense of those who do not.

GRAPHIC ILLUSTRATIONS

A variety of response charts was prepared using the standard
Black-Scholes pricing model. These charts show how options
theoretically respond to the various factors discussed earlier,
such as life remaining in the option, volatility, and moneyness.
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Response charts are useful for visualizing the impact of various
factors on an option’s premium and the related Greeks.

Figure 1–1 depicts the relationship between call option
prices, stock prices, and time remaining before expiration.
Annotations on the chart delineate the two kinds of value that
make up an option’s premium: intrinsic value and time value.
Delta is illustrated by the small rectangles drawn on the middle
curve. When generating data for Figure 1–1, interest and divi-
dend rates were assumed to be zero, volatility was fixed at 85%,
and the strike price was set to $50.

As shown in Figure 1–1, call option prices almost always
rise with increasing stock prices. The one instance where prices
do not rise is with an expiring call that is out-of-the-money. An
out-of-the-money option with no time remaining has no value.
In Figure 1–1, such an option is represented by the lowermost
curve when stock prices are less than $50. For stock prices less
than $50, the lowermost curve lies on the x-axis, representing
a premium of zero. The same curve shows a premium that
increases one-for-one with stock price when stock prices are
greater than $50 and the call is in-the-money.
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When there is time remaining prior to expiration, call
prices rise in a smooth but accelerating fashion with stock
prices. This can be seen in the curves for options with one and
three months of life remaining. When stock prices are low rela-
tive to a call’s strike price, Delta is low and the option price
curve ascends leisurely. As stock prices rise, Delta increases and
the curve begins to climb more steeply, revealing an accelerating
growth in option price. In general, the further out-of-the-money
an option becomes, the closer its price and its Delta approach
zero. At the other extreme, as an option becomes more and more
in-the-money, its price begins to rise or fall one-for-one with the
stock and its Delta approaches positive or negative unity. Either
way, any curve that represents the theoretical fair premium of
an option prior to expiration will be seen to asymptotically
approach the curve that describes the option at expiration as
stock prices continue to rise or fall, at least when interest and
dividends are ignored.

Delta, as mentioned earlier, is the slope of the curve relat-
ing an option’s theoretical price to the price of the underlying
security. The small rectangles drawn on the middle curve illus-
trate the idea of Delta. Delta can be understood and roughly
approximated as the ratio of such a rectangle’s height, measured
in option price units, to its width, measured in stock price units.
The approximation becomes precise to the extent that the rec-
tangle is small in relationship to the curvature of the price
response. Delta is positive when the slope of the response curve
is upward, normal for call options, and negative when it is
downward, normal for put options. As evident in Figure 1–1,
Delta changes with both stock price and time remaining before
expiration.

Time value appears in Figure 1–1 as the vertical distance
between the curve for the option that is about to expire and
either of the other curves. From this point of view, time value is
measured as the price of an option with time remaining, and
hence possessing both time and intrinsic value, minus the price
of an option with the same strike that is about to expire, pos-
sessing only intrinsic value. In Figure 1–1, it can be seen that
time value reaches a maximum when the stock is around $50
and, consequently, the options are at-the-money. At-the-money
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options generally have the greatest amount of time premium.
Time value decreases as options move further in- or out-of-the-
money. This appears in Figure 1–1 as a narrowing of the dis-
tance between the curves as stock prices move away from $50,
the strike price of the options. Intrinsic value is the vertical dis-
tance between the price curve for the expiring option and the
x-axis, which crosses the y-axis at zero.

The data in Figure 1–1 demonstrate how the decay of time
value can turn an option trade in which the underlying stock
performs favorably into a loser. For example, had a trader pur-
chased the three-month call (uppermost curve) with the stock at
$40, it would have cost about $3.55. Assume that the stock
moves up to $45 in a period of two months. The option now has
one month remaining (middle curve) and is worth only about
$2.55. Despite the stock gaining in price, the trader has suffered
a loss. Perhaps the stock continues to rise, ultimately reaching
$49 after the passage of another month. In that case, the expir-
ing option is worthless (lowermost curve) and the trade is a total
loss despite the stock’s substantial appreciation.

Time erosion can be very damaging when options are pur-
chased and held for even modest periods. However, the effect of
time decay may not be very significant for the very short-term
trader. For this kind of trader, there may be substantial benefits
to purchasing options rather than the underlying stocks. One
easily observed benefit is that an option reduces the impact of
adverse movement in the price of a stock or index at the same
time that it magnifies favorable movement. As can be seen in
Figure 1–1, a move down causes less of a loss to the holder of a
call than the same move up results in gain. This is especially
noticeable with at-the-money options near expiration, when
very little speculative value remains and Delta varies rapidly
with stock price.

Figure 1–2 examines the behavior of put options exactly as
Figure 1–1 examined the behavior of calls. As with Figure 1–1,
interest and dividend rates were assumed to be zero, volatility
was fixed at 85%, and the strike price was set to $50. It is read-
ily apparent that Figure 1–2 looks like Figure 1–1 flipped left to
right. This is because stock prices affect put premiums opposite
to the way they affect call premiums. As stock prices fall, put
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options move into the money and their premiums rise. As stock
prices rise, these options move out-of-the-money and lose prem-
ium. This is visible in the way the price curves ascend as one
scans from the right side of the chart to the left. When viewed in
terms of moneyness, both calls and puts behave similarly: the
less out-of-the-money, or more in-the-money, the greater the
option premium. In Figure 1–2, the options are in-the-money for
stock prices less than $50. At all points, the response curves are
either declining or flat as the chart is scanned to the right, illus-
trating the fact that Delta is always negative or zero for put
options. As with calls, intrinsic value appears as the vertical dis-
tance between the x-axis, at zero, and the curve for the expiring
option. The put at expiration (lowermost curve) has no value for
stock prices greater than $50, but has a value that rises one-for-
one with the stock price as it drops below $50. The vertical dis-
tance between the curve for the option at expiration and the
curves for those with more life remaining is again a measure of
time value. Time value is greater for the put with three months
of remaining life than for the put with one month left to expira-
tion. Finally, just as the calls in Figure 1–1 cushioned the trader
against a decline in stock price and amplified an incline, puts
amplify the profit from a decline in stock price, while cushioning
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the holder against a sudden rise. For a short-term or day trader,
the purchase of a put is a good way to speculate on an antici-
pated decline in a stock’s price, or to cash in on a crash.

Figure 1–3 shows the impact of volatility on call option pre-
miums. Again, interest and dividend rates have been set to zero
and the strike price to $50. In this instance, the time remaining
until expiration has been fixed at one month, and the three
curves characterize differing levels of volatility. The attentive
reader will note the similarity to Figure 1–1. This similarity
is not coincidental; without interest and dividends, time and
volatility have precisely the same effect on option premium.
This is because what influences premium is expected movement
in the price of the underlying. For a random walk, the amount of
movement expected can be calculated as volatility multiplied by
the square root of time. Quadruple the time and you have exactly
the same effect on expected movement, and thus option pre-
mium, as you would have had you left time unchanged but dou-
bled volatility. Naturally, when interest rates and dividends are
included in the model, time will have additional effects on option
premium not shared by volatility and not resulting from differ-
ing expectations regarding movements in the underlying.
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Nevertheless, interest rates and dividends generally have little
impact on short-term options. They become much more signifi-
cant for longer-term options, especially LEAPS, which may have
one or more years of life remaining.

The effect of volatility on option premium depicted in
Figure 1–3 can be taken advantage of by purchasing options
when volatility is expected to increase and selling options when
it is expected to decrease. This can be done in the context of a
Delta-neutral strategy when it is desirable to minimize direc-
tional price risk.

Figure 1–4 demonstrates the effect of time on option premi-
ums and illustrates Theta. In preparing the data for Figure 1–4,
interest and dividend rates were set to zero, the strike price was
fixed at $50 and volatility was assumed to be 85%. Only call
options are shown because, when interest rates and dividends
are zero, the influence of time on put options is virtually identi-
cal to its effect on call options.
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For the out-of-the-money call (lowermost curve), the loss of
premium to time decay is gradual, with prices dropping below
$0.05 (the standard option tick size) when about 7 days of life
remain. The rate at which premium is lost, the option’s Theta, is
about −$0.036 per day near the left end of the chart when there
are 87 days to expiration. Although not readily visible to the
naked eye, the rate of decline accelerates slightly, reaching a
peak when the option has 24 days of life remaining. At that point,
Theta is −0.048, indicating a loss of $0.048 per day to time decay.
Although the proportion of remaining time value that is lost each
day increases, since there is less value left to lose every day, the
absolute loss per day declines. With 10 days left to expiration, the
option is worth only about $0.15 and is losing about $0.037 per day
to time decay. The behavior of the in-the-money option (upper-
most curve) is similar to that of the out-of-the-money option,
except that all premiums have been shifted up by $10 as a result
of the option having $10 worth of intrinsic value. Time value is
lost at a rate of about $0.046 per day near the left end of the
chart. With the in-the-money option, the rate of decay reaches a
peak of $0.072 per day at 16 days and declines thereafter.

For an at-the-money option (middle curve), the picture is
different. Initially, the loss of premium to time decay is gradual
and not unlike what was seen with the other options. Near the
left end of the chart, when much time remains, Theta is about
−0.046 for the at-the-money option. As the days go by, however,
the erosion of premium accelerates steadily, reaching a
maximum right at the end. In fact, nearly $0.80 is lost just in
the last day! Because at-the-money options can easily become
in-the-money over a very short interval, there will be substan-
tial amounts of time value remaining right until the very end.
Substantial time value with little time left means abundant
time decay.

Figure 1–5 shows the relationship of call and put prices to
time and interest rates, and illustrates Rho. As can be seen, call
prices increase with interest rates while put prices decrease. For
both calls and puts, longer-term options are more affected by
interest rates than shorter-term ones. Rho is illustrated by the
small rectangle drawn on one of the curves, in the same way
that Delta was illustrated in Figure 1–1. Rho is approximated by
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the height of the rectangle divided by the width, the approxi-
mation becoming exact in the limit as the size of the rectangle
is reduced. The sign of Rho is positive for rising curves and nega-
tive for falling ones. Note that the effect of interest rates on
option prices shown in Figure 1–5 appears to be linear, i.e., the
curves describing the effect seem to be well-approximated by
straight lines. This is in stark contrast to time, volatility, and
stock price, all of which have more complex, curvilinear effects
on option prices.

Graphic representations of option behavior, such as those
illustrated in the figures, can help the options trader visualize
the characteristics not only of single options, but also of complex
strategies involving multiple options and, perhaps, the under-
lying stock as well. As an example, consider the next chart, which
is for a straddle. A straddle—a position involving an at-the-money
put and call having the same strike and expiration—was used
earlier as an example of a Delta-neutral position.

Figure 1–6 shows how the premium of a typical straddle
responds to stock price (the x-axis) and time (the three curves).
This figure is similar in construction to Figure 1–1; the difference
is that instead of depicting the behavior of individual options,
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it reveals the behavior of a multiple option position. Figure 1–6
was generated under the assumption that both the call and put
have a strike price of $50, that the volatility is 85%, and that
interest rates and dividends are zero.

The lowermost curve in Figure 1–6, which represents the
straddle at expiration, is V-shaped. Prices rise one-for-one with
the difference between the stock price and the straddle’s strike
price. This lowermost curve represents the intrinsic value of the
straddle. When stock prices are above $50, the Delta of the posi-
tion is one. In this case, the put has no intrinsic value, but the
call has an intrinsic value equal to the stock price minus the
strike. When stock prices are below $50, the Delta of the strad-
dle is minus one, the call has no intrinsic value, and the put has
an intrinsic value equal to the strike minus the stock price.
Delta is undefined when the stock price is equal to the strike
price, and because neither option has value, nor does the strad-
dle. The middle curve illustrates a straddle with one month left
to expiration. Here, the presence of time value is in evidence as
the vertical distance from the lowermost curve (the straddle at
expiration) to the middle curve. The uppermost curve, which
represents the straddle with three months left to expiration,
shows even greater amounts of time value.
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In contrast to the sharp, V-shaped curve, the two other
curves are bowl-shaped. The bottoms of all three curves occur at
or slightly below a stock price of $50. At prices slightly below
$50, the uppermost two curves reach bottom and become hori-
zontal, indicating there is little change in option price in
response to small changes in stock price. In other words, when
the stock is appropriately priced relative to the strike, a strad-
dle with time remaining has a near-zero Delta. Such a straddle
represents a Delta-neutral position. As stock prices drop well
below $50, Delta becomes increasingly negative as the two
uppermost curves rise at an accelerating rate, asymptotically
approaching each other and the lowermost curve. As stock prices
rise above $50, the curves also accelerate upward, asymptotically
approaching each other and the lowermost curve, while Delta
becomes increasingly positive, reaching unity in the limit.

Because two options are losing time value, the stock must
move significantly if a profit sufficient to compensate for the loss
is to be made. For instance, had the straddle been purchased
with the stock at $47 and three months of life remaining in the
options, it would have cost $13.48. Two months later, with only
one month of life remaining in the straddle, the stock would
have had to move either below $37.85 or above $59.98 for the
straddle to have yielded a profit. This can be seen by drawing
horizontal lines from the bottom of the uppermost (three-month)
curve to where they intersect with the middle (one-month)
curve, and then determining the stock prices at the points of
intersection. To be profitable at expiration, the stock would
have had to move even further, the position taking a loss for any
stock price between $36.52 and $63.48. Again, the breakeven
points can be located by extending horizontal lines from the bot-
tom of the uppermost curve, which represents the entry point, to
where they intersect the lowermost curve at the breakeven
points. The asymmetry observed in the breakeven points is due
to the geometric (proportional) rather than arithmetic scaling of
stock price movements. A stock that drops to half its original
price has made a move having essentially the same magnitude
and probability as a stock that doubles, although the arithmetic
or dollar value of the downside move is less than that of the
upside move.
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Figure 1–6 demonstrates the value of generating families of
response curves, as was done in these charts. With charts like
those shown above, a trader can easily visualize alternative
positions and how they are likely to perform under various mar-
ket scenarios. A model, like Black-Scholes, which can be imple-
mented in a spreadsheet or other easy-to-use software
application, makes the preparation of such charts a simple and
routine process.

PUT-CALL PARITY, CONVERSIONS,
AND REVERSALS

A specific relationship, know as put-call parity, exists between
puts and calls of the same strike and expiration. For the sake
of simplicity, let us assume that interest rates and dividends
are zero. Ignoring interest rates and dividends, the put-call
parity relationship can be precisely expressed by the following
equation:

C – P = U – S (1.1)

In this formula, C is the call price, P is the put price, U is the
price of the underlying stock, and S is the strike price of the
options. The formula basically says that when both options have
the same strike and expiration, the difference between the price
of a call and the price of a put must equal the difference between
their intrinsic values, and, consequently, that the time value of
the call must equal the time value of the put.

The relationship between call and put prices expressed in
the formula derives from the following facts. At expiration,
options have only intrinsic value. Thus, at expiration, a position
consisting of a long call and short put with similar terms will
have a premium of zero when the stock price is equal to the
strike price, a premium that rises one-for-one with stock price
when the stock price is above the strike, and a value that
declines one-for-one with stock price when the stock price is
below the strike. This follows because, for a stock price above
the strike price, the long expiring call rises one-for-one with the
stock, while the put remains valueless; for stock prices below
the strike, the short expiring put rises one-for-one with declines
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in the stock, while the call premium remains at zero. Analyzed
in this way, it is easy to understand why put-call parity must
always exist at expiration.

To the extent that the market is efficient, however, this sim-
ple relationship between the prices of puts and calls with the
same terms will be enforced, not just at expiration, but at all
times prior to expiration. The enforcing agent is arbitrage, and
deviation from put-call parity at any point in time represents an
inefficiency that can be exploited for profit and driven from the
market. To see how this works, imagine that the calls become
relatively more expensive than the puts in terms of the stated
relationship. In such a circumstance, an arbitrageur can sell the
expensive calls and purchase the relatively cheaper puts, creat-
ing a synthetic short stock. This synthetic stock is represented
by the part of the equation that lies to the left of the equal sign.
The arbitrageur can then purchase the actual underlying stock
to offset the synthetic short stock for a total position cost that is
less than the strike price of the options. A profit will result
because at expiration put-call parity will reassert itself, and the
entire position will have a value precisely equal to the strike
price of the options. Of course, to the degree that such arbitrage
is carried out, exploitable price discrepancies will be eliminated.
The selling of relatively expensive options will cause their prices
to fall while the buying of relatively inexpensive options will
cause their prices to rise. Put-call parity will thus be reestab-
lished. The form of arbitrage just described is known as conver-
sion arbitrage.

The converse, reversal arbitrage, involves the purchase of
underpriced calls and the sale of the corresponding overpriced
puts to establish a synthetic long stock, which is then offset by
shorting the actual underlying stock. The rationale is the same
as for conversion arbitrage, except that the individual option
and stock positions are all reversed. Again, the effect is to main-
tain put-call parity.

Note that the put-call parity relationship will tend to pre-
vail regardless of the expected (or actual) distribution of future
stock price movements. To understand why this is so, imagine
that options traders become very bullish and begin to aggres-
sively purchase calls. Naively, it might be assumed that such
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demand will drive up call premiums while put premiums fall or
remain unchanged. However, this will not happen because, as
the calls are bid up, arbitrageurs will sell the calls and purchase
the corresponding puts, forcing the options back into parity. As
a result of conversion arbitrage, demand for calls will translate
into demand for puts, and premiums (as well as implied volatil-
ities) are likely to increase for both kinds of options.

SYNTHETICS AND EQUIVALENT POSITIONS

In studying options, the reader is likely to encounter references
to synthetics and equivalent positions. A synthetic or synthetic
position is a position in one security that is simulated using a
combination of positions in other securities. As an example, con-
sider a position consisting of a long call and a short put, both
having the same strike and expiration. Such a position consti-
tutes a synthetic stock. It possesses profit and loss characteris-
tics similar to those of an actual stock position. Synthetics are
important to the arbitrageur since they can become overvalued
or undervalued relative to the actual securities they mimic, thus
providing arbitrage opportunities. As discussed earlier, conver-
sion and reversal arbitrage is one form of arbitrage in which
synthetics play a role; however, synthetics are useful not just to
arbitrageurs. Sometimes it is simply easier or more advanta-
geous to establish a synthetic position than an actual one.
A trader can establish a synthetic short stock position, for
instance, without having to wait for an uptick, as would be
required (by law) in order to establish a short position in the
stock itself; an uptick that might never come in a swiftly falling
market. In other instances, a synthetic position might be estab-
lished at a better price or permit greater use of margin. Finally,
in the world of futures, synthetics constructed using options can
help the trader cope with limit-locked markets.

An equivalent position is a position having profit and loss
characteristics similar to those of another, different position.
Consider the covered call, or covered write, as it is also known.
Selling covered calls is a popular strategy that many investors
regard as very conservative. However, assuming the strike and
expiration are the same, being long a stock and short a call is
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equivalent to being short a naked put. The short, naked put has
the same payoff characteristics and profit graph as does the long
stock and short call. They are, in fact, equivalent positions.
Moreover, in many cases it is more cost effective to sell naked
puts than to establish covered writes! However, selling naked
puts, strangely, is not generally perceived as a conservative
strategy. Obviously, many investors have an inadequate under-
standing of equivalent positions.

There is a close relationship between equivalent positions
and synthetics. The reader may have noticed in the above exam-
ple that a covered write is actually a synthetic short put. A short
put, however, would not normally be described as a synthetic
covered write. In general, when one of a pair of equivalent posi-
tions involves a single security, the other of the pair is typically
understood to be a synthetic version of that security. Synthetics
originated in the early days of options trading. In those days,
there were no puts, only calls. However, a trader could short a
stock and buy a call, thereby establishing a position with the
characteristics of a put. These equivalent positions became
known as synthetics.

There are many equivalent positions and synthetics with
which any savvy trader or investor should gain familiarity.
A few of these are listed below. Consult Options as a Strategic
Investment (McMillan, 1993) for a more extensive list and dis-
cussion of strategies.

Position Equivalent Position

Long stock + long put Long call

Short stock + long call Long put

Long stock + short call Short put

Short stock + short put Short call

Long call + short put Long stock

Long put + short call Short stock

Long stock + 2 long puts Long straddle (long put + long call)

By definition, equivalent positions possess similar profit
graphs. However, they generally do not have the same capital and
margin requirements. This is also true for synthetics. A synthetic
will usually have different capital and margin requirements
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than the security it mimics. Tax consequences may also differ
between otherwise equivalent positions. In estimating relative
returns and choosing an optimal strategy, a trader must take
tax, capital, and margin issues into consideration.

SUMMARY

In this chapter, options were described as contracts providing
certain rights and obligations. Two basic types of options con-
tracts were discussed: the put and the call. A standardized
option was fully specified by its type (put or call), strike price,
and expiration date. Many of the terms used in options dis-
course were defined: naked versus covered, in-the-money versus
out-of-the-money, intrinsic value versus time value, and so on.
Standardized options were observed to trade on a number of
exchanges, both traditional (AMEX, PSE, CBOE) and fully elec-
tronic (ISE). It was pointed out that options contracts, like
stocks and futures, could be traded from either the long or the
short side, hedged (covered) or unhedged (naked).

Options were observed to have value, reflected in their price,
said price also being known as premium. Option premium was
shown to derive from two kinds of value: intrinsic value and time
value. Option premium was found to be influenced by well-known
factors such as stock price and strike price, time, volatility, inter-
est and dividends, and by lesser-known factors such as skew, kur-
tosis, trend, and cycles. Estimating a fair premium, based on such
factors, was recognized as a problem for which an option pricing
model was the solution. An option pricing model was character-
ized as a mathematical formula or algorithm that enables its user
to calculate a theoretical fair price. An option pricing model, it was
noted, not only provides fair value estimates, but also makes it
possible to calculate the so-called Greeks. It was demonstrated
that the Greeks are not difficult to understand, even for a student
not versed in higher mathematics, and that they measure impor-
tant characteristics of option price behavior.

Some of the uses of options, and how they can benefit traders
and investors, were then examined. Option profit graphs or re-
sponse charts were illustrated and found to be useful in gaining
a visual understanding of how single options and multi-option
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positions respond to stock price, volatility, time, and other factors.
Attention then turned to a specific relationship known as put-call
parity that exists between the premiums of puts and calls with the
same terms, i.e., with the same strike and expiration. Put-call par-
ity was seen to be maintained by conversion and reversal arbi-
trage. Finally, synthetics and equivalent positions were discussed.
Synthetics were described as positions involving several securities
(such as options) that simulate the profit and loss characteristics
of another security (e.g., a stock). Equivalent positions were
defined as distinct positions that, nevertheless, have the same
profit and loss behavior and, consequently, the same profit graphs.

The goal of this chapter has been to provide the reader with
a working knowledge of the fundamentals and jargon of options.
Much of what follows in this book assumes knowledge of such
option basics.

One fundamental concept of great importance to options
traders, arbitrageurs, and investors, is the notion of fair value.
References to fair value and fair price were made frequently in
this chapter, although the meaning of these terms was never
precisely defined. It was merely suggested that such a thing as
fair value or fair price exists, and that option pricing models
were how it could be reckoned. The designations were left to be
interpreted within the framework of ideas regarding pricing
that all traders possess. All traders have some idea of what it
means for a security to be overpriced or underpriced. Every
investor looks to buy bargains and attempts to sell securities
that have become overvalued. Most readers know that profits
can be made buying underpriced securities and selling over-
priced ones, i.e., buying those priced below fair value and selling
those priced above it. In the world of options, some very precise
notions of what constitutes fair price or value can be developed.
The next chapter explores fair value in much greater depth and
attempts to elucidate more fully its nature and appraisal. It also
explores the intimate connection between fair value and market
efficiency. Fair value and its estimation, of course, is the subject
of this book. A good understanding of fair value is critical when
trying to develop better pricing models, given that such models
are intended to provide estimates of theoretical fair value.
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SUGGESTED READING

Good coverage of option basics and of various strategies employ-
ing options, as well as an excellent discussion of hedging and
the Greeks, can be found in Options as a Strategic Investment
(McMillan, 1993). Lots of practical information for traders,
including a discussion of how option activity can reveal the
activities of insiders and signal trading opportunities, appears
in McMillan on Options (McMillan, 1996). Another excellent
book on the basics is Options: Essential Concepts and Trading
Strategies (The Options Institute, 1999).
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Fair value and pricing models were briefly discussed in the
previous chapter. However, fair value was never precisely defined,
nor were the inner workings of pricing models examined. It is
now time to explore and define the concept of fair value. Since
the purpose of an option pricing model is to appraise fair value,
good knowledge of the concept is critical. In this chapter, it is
shown how fair value is related to market efficiency and how it
may be context dependent. Next, fair value is considered with
respect to arbitrage and statistical expectation regarding future
prices. Statistical (mathematical) expectation is then examined
in detail, using both direct and Monte Carlo methods, since it is
such a crucial concept in the context of this work. How statisti-
cal expectation and arbitrage relationships may be used to price
options is demonstrated. This forms a basis for a practical
understanding of how option pricing models work. In short, this
chapter is intended to provide some of the technical background
necessary for what is to follow in subsequent chapters.

DEFINING FAIR VALUE

What is fair value? A good place to begin with is the intuitive or
commonsense understanding that every trader and investor has
of the term. Most traders and investors attach meaning to terms
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such as “undervalued” and “overvalued.” Perhaps a stock has a
low price-to-earnings ratio, or the company’s breakup value is
greater on a per-share basis than its current stock price. Such
fundamental information might suggest that the stock is priced
below its true value. Perhaps all potential investors have already
purchased the stock, driving its price into orbit, and there are no
buyers left to keep the ball rolling. Sentiment and contrary opin-
ion theory might then lead to the belief that the stock is over-
priced and ready for a serious correction. Technical analysis
might reveal important support and resistance levels and, like
the analysis of fundamentals and sentiment, contribute to a
sense of a stock’s current value. Fair value is understood by way
of contrast: intuitively, a price represents fair value if it is nei-
ther a bargain (excessively low) nor a swindle (excessively high).

Traders and investors understand that it pays to buy
undervalued securities and to sell overvalued ones, and that
prices sometimes become discordant with reality. A bargain is
worth purchasing as it will eventually be discovered and bid up
by other traders until it is no longer a bargain. The trader who
bought the stock or option at a bargain price will have made a
profit. Likewise, an overvalued security is one that a savvy 
trader may want to short. As prices fall to more appropriate lev-
els, the trader can cover the short and take a profit. Traders and
investors also grasp the fact that it is much harder to profit
when a security is neither undervalued nor overvalued, i.e.,
when its price represents fair value. This commonsense under-
standing of fair value is quite good, as far as it goes. However,
a more precise, explicit, and computationally useful definition is
required.

For the purpose of this book, fair value is defined as that
value or price which discounts all foreseeable events and all
public information (fundamental, technical, or otherwise) regard-
ing a security. It is that price which allows no exploitation by
traders for a profit, and to which the market price of a security
will return should that security momentarily become overpriced
or underpriced. In short, a security is fairly valued when it is
efficiently priced by the market.

This notion of fair value refers to the so-called efficient
market hypothesis. The efficient market hypothesis essentially
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says that all publicly known information has already been
factored into securities prices and, therefore, that traders cannot
make profits beyond those that derive simply from taking on
nondiversifiable risk.

FAIR VALUE AND THE EFFICIENT MARKET

Obviously, there is an intimate relationship between fair value
and market efficiency. When a market behaves in accord with
the efficient market hypothesis, the prices of securities are such
that traders and investors cannot systematically profit by tak-
ing speculative positions or engaging in arbitrage. In other
words, an “efficient” market is one where all prices reflect fair
value. Were securities not fairly priced, traders could profit.
Traders could short overpriced securities and take long posi-
tions in underpriced securities, exploiting the mispricings.
However, in an efficient market, traders cannot systematically
profit. Ergo, efficient pricing is pricing at fair value.

Real markets, of course, are efficient only to the extent that
the actions of traders and other participants make them so.
Overall market efficiency comes about as a result of traders
attempting to capitalize on momentary inefficiencies. Their very
actions produce rapid adjustments in price, adjustments that
eliminate any further opportunities for profit. The trader who
accumulates underpriced securities represents demand: he or
she will bid up the prices. Likewise, the trader who sells over-
priced securities in an effort to exploit inefficient pricing adds to
supply, causing prices to fall. In the process, exploitable ineffi-
ciencies are more or less banished from the market.

THE CONTEXT DEPENDENCE OF 
FAIR VALUE

Although often presented as a generic characteristic, fair value
is actually context dependent. Fair value or price differs depend-
ing on the angle from which the problem is examined. Only in
relation to specific trading strategies, and the kinds of ineffi-
ciencies these strategies seek to exploit, does fair value exist.
As mentioned earlier, pricing efficiency is maintained by the 
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collective actions of traders as they strive to profit from ineffi-
ciencies that arise in the marketplace. Their efforts have the
effect of driving the inefficiencies out; nevertheless, a trading
strategy does not cast out all inefficiencies. It only tends to elim-
inate inefficiencies of the kind that it is designed to exploit, and
this is where context dependence enters the picture.

A particular trading strategy capitalizes on specific devia-
tions from efficient price or price relationships. To the extent
that it is employed, it brings prices and price relationships into
line, i.e., it forces them to fair value. Prices or price relationships
become “fair” with respect to a given strategy when that strat-
egy can no longer yield a profit. However, what is fair or efficient
for one strategy may or may not be fair or efficient for another.
A given strategy capitalizes on, and tends to eliminate, a specific
kind of inefficiency or deviation from fair value. It does not anni-
hilate all inefficiencies or mispricings. In fact, in the process of
doing away with one kind of market inefficiency, a given strategy
may actually accentuate some other kind of inefficiency. Conflicts
can easily arise between the various kinds of fair value being
imposed on the market by diverse trading strategies. Because of
its context dependent nature, fair value must be analyzed in the
context of a strategy designed to exploit a specific kind of mis-
pricing.

As stated, different trading strategies seek to exploit dif-
ferent types of inefficiency in the market in their quest for pro-
fits. Conversion and reversal arbitrage, for instance, attempts to
exploit inefficient pricing relationships between puts and calls
with the same terms. So-called “value investing” attempts to 
profit from situations where companies appear to have greater
or lesser fundamental value than reflected in the price of their
stocks. Technical trading strategies look for predictable trends,
cycles, support and resistance, and other related inefficiencies
that can possibly be exploited for a profit. The effect of traders
employing these strategies is to reduce or eliminate the ineffi-
ciencies from which such strategies profit. The more a particular
strategy is applied, the smaller the inefficiency on which it cap-
italizes becomes, until the strategy is no longer profitable except
to those with the most sophisticated implementations, lowest
trading costs, and fastest executions.
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A good example of how the widespread use of a strategy can
eliminate the very market inefficiency on which it depends can
be found in the realm of breakout systems. Until the late 1980s,
breakout systems were incredibly profitable across a wide range
of futures contracts. As breakout systems received increasing
coverage in books and trade magazines (such as Technical
Analysis of Stocks and Commodities and Futures), more and
more traders began using them. As a result, it became progres-
sively more difficult to profit from most breakout systems. By
the middle 1990s, it was possible to profit only from the most
sophisticated of such systems, and then only in certain futures
markets. The extensive use of breakout-based trading methods
has made it more difficult, generally, to find enduring, easily
captured trends. On the other hand, breakout trading has
increased the amount of noise and countertrend activity in the
market, possibly making it easier to implement and profit from
trading-range strategies, such as those based on oscillators or
support and resistance. The impact and performance of break-
out systems over time was thoroughly analyzed and discussed in
The Encyclopedia of Trading Strategies (Katz and McCormick,
2000).

One way to look at the multiplicity of fair values and strate-
gic contexts is by treating each strategy as a force that imposes
a fair value constraint, one that may be expressed in terms of
some mathematical equation, on the market. As strategies are
applied in the markets, such equations are imposed with more
or less force. In many cases, a solution that simultaneously satis-
fies all equations may be possible. This is the ideal sought by
academics. In other instances, however, a single solution may
not exist that fully satisfies all equations. When dealing with
option pricing, one can readily think of situations involving
more equations than there are unknowns; algebraically, this is
not surprising. Conflict might then be imagined to exist between
different kinds of fair value, and some kind of least-squares
solution might be necessary. Using a weighted least-squares
approach, each of the many equations could be assigned a
weight, representing the force with which it is imposed on the
market. Options traders can find treasures buried in these
ideas. How a strategy imposes a mathematical constraint on the
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market will be seen below in the context of conversion and
reversal arbitrage.

To summarize, an option or other instrument is fairly valued
if a trader cannot consistently profit by exploiting an inefficiency
in the marketplace. Different kinds of fair value exist because
there are different kinds of inefficiencies, generated by distinct
market forces, that can arise in the markets and that traders
can try to exploit for a profit using a variety of methods.

UNDERSTANDING AND ESTIMATING 
FAIR VALUE

A good understanding of fair value is essential in the context of
developing and improving option pricing models. The whole pur-
pose of a pricing model is to estimate fair value. Fair value is
important because it provides a solid baseline against which
actual market prices can be judged, and because a model for
estimating it is required to calculate the Greeks, and hence for
hedging. Throughout this work, many ways to measure or esti-
mate fair value are examined. Popular pricing models are dis-
sected to learn how they are constructed and to determine how
well they approximate fair value. An increasingly refined under-
standing of fair value and its estimation is the goal.

How can fair value be estimated? The seeds of the answer
are in the above discussion. An estimate of fair value or price
can be obtained by looking at a strategy designed to exploit
some inefficiency in the marketplace and ascertaining the 
prices or price relationships necessary to eliminate that strategy’s
profit potential. In other words, if it is possible to find those
prices or price relationships that eliminate the inefficiency from
which a strategy can profit, then it is possible to determine a fair
value or price, or a fair price relationship.

FAIR VALUE AND ARBITRAGE

Fair value is highly related to arbitrage. In fact, the elimination
of arbitrage opportunities is, in large measure, what fair value is
all about. Prices are considered fair when they are at those levels
that make it difficult, if not impossible, to profit by arbitrage.

56 CHAPTER 2

7738_ch_2.qxd  28/12/04  2:38 PM  Page 56



One example of fair value can be found in the put-call parity
relationship that is maintained by conversion and reversal arbi-
trage. In the context of conversion and reversal arbitrage, a fair
price is one that leads to put-call parity and thus eliminates any
arbitrage opportunity; i.e., if the prices of puts and calls with the
same terms are in parity, no arbitrage opportunity exists and
the options may be considered to be efficiently priced. Note that
this kind of fair or efficient price is not absolute, but only of one
option relative to another. The put-call parity relationship
implies that puts and calls will have roughly the same amount
of time premium, if the terms of the options are similar. Of
course, interest and dividends, which make the put-call parity
formula a little more complex than presented in the last chap-
ter, have not been considered. The equation defining the put-call
parity relationship shown below is essentially the same as
Equation 1.1 in the previous chapter, except that interest and
dividends are now included.

P + C = S − U − I + D (2.1)

In the equation, P and C are the prices of the put and the
call, respectively, with the same terms, S is the strike price of
the options, U is the price of the underlying stock, I is the interest
(as a dollar amount over the time remaining until expiration),
and D is the dividend (also as a dollar amount over the same
period). Given the terms of the options, the stock price, the
interest, and the dividends, this equation indicates that a corres-
ponding call price may be calculated for any put price, and for
any call price, a corresponding put price may be determined. If
plotted on a graph, where the x-axis represents call price and
the y-axis put price, the relationship expressed by Equation 2.1
appears as a diagonal line. Any pair of call and put prices falling
on this line satisfies the put-call parity relationship and offers
no opportunity to profit from conversion or reversal arbitrage. In
other words, option prices that fall on the line represent fair
values with respect to this form of arbitrage. To the extent that
prices deviate from this line, and thus fail to satisfy the con-
straint expressed in Equation 2.1, there exists an inefficiency
that conversion or reversal arbitrage can exploit for a profit.
In other words, as prices move away from the line, the options
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become less fairly priced relative to one another. Arbitrage 
activity will then tend to push prices back to the line, back into
a fair value relationship.

In the context of conversion and reversal arbitrage, fair
value is strictly relative. It applies only to a price relationship
between puts and calls, and not to the prices of either the calls
or puts on their own. Equation 2.1 cannot be used to calculate
the fair value for a put without having a fair price for the corre-
sponding call, or vice versa. There are, in fact, an infinite num-
ber of prices that satisfy the put-call parity relationship and are
thus efficient with respect to conversion and reversal arbitrage.
In other words, put-call parity defines a price relationship involv-
ing two unknowns, the put price and the call price (the strike
and stock prices, interest rates and dividends are assumed
known in this context).

As can be seen from the equation, and from the brief dis-
cussion of conversion and reversal arbitrage in the previous
chapter, the kind of fair value involved in put-call parity in no
way depends on either the current or future price behavior of
the underlying stock. The equation represents a clean, deter-
ministic relationship rather than a messy, statistical one. There
is no need for any sophisticated option pricing model, involving
a host of assumptions regarding distributions of returns, to cal-
culate this kind of fair value. Equation 2.1 is the only pricing
model—and it is a pricing model—that is required.

FAIR VALUE AND SPECULATION

Another kind of fair value comes into play in the context of
speculative trading, i.e., when options are bought, or sold short,
in an effort to profit from changes in price over time. Speculative
fair value is the kind of value that must be considered when sta-
tistical uncertainty intrudes. Again, fair value can be analyzed
in terms of efficient pricing. As with the prices of any security,
option prices are efficient when they fully discount the future.
When an option is priced so that a trader buying it with the
intention of exercising or selling it later (or shorting it with the
intention of either being assigned, covering, or having the option
expire worthless) will, on average, neither take a profit nor sustain

58 CHAPTER 2

7738_ch_2.qxd  28/12/04  2:38 PM  Page 58



a loss, the option can be said to be at fair value. Fairly priced
options, in this sense, are those that offer no real speculative
opportunity, at least not statistically. Options with prices that
deviate from fair value do offer the trader an opportunity to
profit. A trader can buy underpriced options and short over-
priced ones. This activity will tend to bring prices back in line
with fair value, and thus to eliminate the inefficiencies from
which the speculative trader seeks to profit.

In the context of speculative or directional trading, and in
contrast to the case with conversion and reversal arbitrage,
some method is necessary to foresee prices when the option is
expiring or exercised, and its value easily ascertained. What
happens down the road defines the profit or loss that will result
from taking a position. However, without a crystal ball or time
machine, it is impossible to use a deterministic model, as was
possible with conversion and reversal arbitrage, to assess fair
value. Instead, it is necessary to resort to some form of stochas-
tic modeling or estimation. This means that some consequential
assumptions must be made regarding the statistical behavior of
the underlying stock. These assumptions may then be used to
determine the mathematical expectation for an option’s value 
at some point in the future when that value is easy to directly
compute, for instance, at expiration.

ESTIMATING SPECULATIVE FAIR VALUE

To illustrate how speculative fair value can be appraised and
how option pricing models work, a simple option pricing model
will be constructed. For the sake of clarity, dividends and interest
will be ignored and a European-style option (no early exercise
rights) will be assumed. In order to appraise speculative fair
value for such an option, two items are required: the set of possi-
ble outcomes (e.g., prices) and the probabilities or frequencies
associated with these outcomes. How are the potential outcomes
and their associated probabilities found? In the world of option
pricing, these items are often calculated based on some theoret-
ical model of stock price movements. Such a model generally
involves random variables and probability distributions. The
probabilities may be obtained directly (or by iteration) from
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some formula, or they may be estimated using a Monte Carlo
technique. Both Monte Carlo and direct mathematical solutions
have their place, with the direct method usually being faster
and more precise. However, a well-defined mathematical solu-
tion may not exist, making a more flexible method such as
Monte Carlo necessary. For this reason, and for didactic pur-
poses, both techniques are demonstrated.

Modeling the Underlying Stock

Because probabilities must be established, the construction of
the illustrative model begins with assumptions regarding the
statistical behavior of the underlying stock. Imagine a strange
world in which stock prices move randomly up or down $1 every
day, with the direction of movement decided by the flip of a coin.
Further, imagine that the stock under scrutiny is currently trad-
ing at $50, and that an at-the-money call option expiring in
10 days is to be priced.

Given assumptions regarding the behavior of the underly-
ing stock, one way to determine the probability distributions
and potential outcomes required for pricing the option is with a
Monte Carlo analysis. The first step in such an analysis involves
the creation of synthetic price series for the underlying stock
that behave consistently with the model’s assumptions. For the
current assumptions, the following algorithm (expressed in the
Microsoft Excel Visual Basic for Applications macro language)
will generate one such price series:

Price(0) == 50
NumberOfDays == 10
For I == 1 To NumberOfDays

If Rnd() >> 0.5 Then Shock == 1 Else Shock == −−1
Price(I) == Price(I−−1) ++ Shock

Next I

An algorithm is simply a recipe for performing a calculation or
solving a problem. The logic of the above algorithm is straight-
forward: Start with an initial price of $50. Then, for each day,
determine the required price movement or “shock” (Shock),
using a random number generator (Rnd), and calculate the

60 CHAPTER 2

7738_ch_2.qxd  28/12/04  2:38 PM  Page 60



Fair Value and Efficient Price 61

new price by adding the shock to the previous day’s price.
Repeat the process until a price has been calculated for each
day in the series. In the code above, price shocks take on values
of +$1 (heads) or −$1 (tails), each with a probability of 0.5,
consistent with the imagined scenario in which daily price
changes are determined by the toss of a coin. The whole proce-
dure may itself be repeated as many times as necessary to gen-
erate the required set of price series. An example of a set of eight
price series constructed using the above algorithm, each start-
ing with an initial price of $50 and running for 100 days, is
shown in Figure 2–1. Series containing 100 days of prices
(rather than 10 days, as used for pricing the option) appear in
the figure for the sake of visual clarity. Each price series shown
in Figure 2–1 illustrates a particular kind of binomial random
walk.

For pricing the option, Monte Carlo analysis involves repeat-
edly applying the above algorithm to generate a large number 
of synthetic price series, such as those shown in Figure 2–1.

F I G U R E  2–1

Eight Synthetic Price Series Following a Binomial 
Random Walk
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The only difference is that each series generated is 10 days long,
the number of days remaining before the option expires.
Essentially, the analysis involves conducting a kind of experiment
or simulation with many trials. Once the experiment has been
done, i.e., once the appropriate price series have been generated,
the outcomes and their respective probabilities or frequencies
may be tabulated. Such tabulations contain exactly the informa-
tion necessary for pricing the option.

Another way to determine the required probabilities and
potential outcomes for pricing the option is to use a mathemati-
cal probability distribution or, more precisely, a probability den-
sity function. For prices moving in a unit binomial random
sequence, which is how prices move for the imagined stock, the
binomial distribution is the appropriate choice. The density
function for the binomial distribution, shown in Equation 2.2,
can be used to directly calculate the probabilities associated
with the various possible stock price outcomes.

(2.2)

Equation 2.2 gives the probability of having exactly k wins 
(positive shocks) appear in n games (days) when the probability
of a win in any single game is p (here, 0.5).

Table 2–1 contains the tabulated final price outcomes, fre-
quencies, and probabilities from a Monte Carlo experiment
involving 75,000 price series of the kind shown in Figure 2–1,
prepared using the algorithm described earlier. The table also
contains theoretical probabilities derived from the binomial
density function. The columns in Table 2–1 are as follows: The
first column, Final Stock Price, contains the possible stock price
outcomes at the end of each data series. For each trial, a series
of 10 daily prices was constructed. The possible terminal stock
price ranged from 40 to 60 in steps of two. The second column,
Frequency of Occurrence, contains the number of times each
price outcome was observed when considered over all 75,000
trials. The column sum is 75,000. This reflects the fact that the
summed frequencies of occurrence for each of the possible out-
comes must equal the total number of trials. Each number in the
third column, Monte Carlo Probability, represents the probability
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of observing a given possible outcome, i.e., the final price, in the
context of the experiment. The sample probability (normalized
frequency) of any outcome is obtained by dividing its frequency
by the number of trials or, equivalently, the sum of frequencies
over all possible outcomes. The numbers in this column add to
unity. The fourth column, Theoretical Probability, contains prob-
abilities derived from the binomial density function. These num-
bers represent the theoretical probabilities associated with each
of the possible outcomes. As with the sample or Monte Carlo
probabilities, the theoretical probabilities add to unity. Each
number in the fifth column, Monte Carlo Probability * Price
Level, was calculated by taking the product of the corresponding
numbers in the columns “Final Stock Price” and “Monte Carlo
Probability.” The sixth column, Theoretical Probability * Price
Level, is similar to the fifth column, except that stock prices 
are multiplied by the probabilities obtained from the binomial
distribution rather than those derived from the Monte Carlo

Monte Carlo Theoretical 
Final Stock Frequency of Monte Carlo Theoretical Probability * Probability *

Price Occurrence Probability Probability Price Level Price Level

40 79 0.001 0.001 0.042 0.039

42 730 0.010 0.010 0.409 0.410

44 3,286 0.044 0.044 1.928 1.934

46 8,731 0.116 0.117 5.355 5.391

48 15,469 0.206 0.205 9.900 9.844

50 18,308 0.244 0.246 12.205 12.305

52 15,376 0.205 0.205 10.661 10.664

54 8,926 0.119 0.117 6.427 6.328

56 3,300 0.044 0.044 2.464 2.461

58 727 0.010 0.010 0.562 0.566

60 68 0.001 0.001 0.054 0.059

Sums 75,000 1.000 1.000 50.007 50.000

T A B L E  2–1

Frequencies, Probabilities, and Mathematical Expectation for
a Stock Exhibiting Binomial Random Walk Behavior
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analysis. As was done for the second, third, and fourth columns,
sums were also computed for the fifth and sixth columns. These
later sums define the mathematical expectation for the stock
price (not the option price) at the close of the tenth day.

Figure 2–2 graphically displays the probability distribu-
tions obtained from both the Monte Carlo method (column 3,
plotted as bars) and the theoretical density function (column 4,
plotted as markers on a line). Note the similarity of the data
shown in Figure 2–2 to the familiar bell-shaped curve of the nor-
mal distribution. This similarity is not coincidental.

Comparisons reveal that, despite what may be considered a
relatively small sample (75,000 trials), the probability estimates
obtained from the Monte Carlo experiment are remarkably close
to the exact probabilities derived from the binomial density
function. Only in the third significant digit do these probabili-
ties differ, and then only by a small amount. The differences are
too small to be seen in the graphical presentation of the proba-
bility data. Mathematical expectations (sums under the last two

F I G U R E  2–2

Probability Density for Final Stock Price
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columns) for final stock price obtained from the two methods
also agree exceptionally well, with differences not appearing
until the fifth significant digit. These results demonstrate the
power and utility of the Monte Carlo method.

What are these numbers, referred to as “mathematical
expectations,” that appear under the last two columns in
Table 2–1? Each number represents the theoretical mean or
average of the final stock price. The first of the two numbers is
the average estimated by the Monte Carlo approach. The second
of the two numbers is the average calculated with the binomial
density function. For the Monte Carlo analysis, it is easy to
verify that the sum under the column labeled Monte Carlo
Probability * Price Level is really nothing more than a simple
average of the final prices. Just add the final prices (all 75,000
of them) and divide by 75,000 to obtain the average. This aver-
age works out to be $50.007, a perfect match to the expectation
computed by adding the products of price and probability. Such
an alternative trial-by-trial calculation cannot be performed for
the solution based on the binomial distribution since, for that
solution, expectation represents a theoretical average based on
an infinite number of trials. However, the products of price and
probability can be used to compute the expectation. The sum of
these products (as shown in Table 2–1) yields a theoretical
expectation or average of $50. This is exactly what one would
expect given a starting price of $50 and a symmetric random
walk like the unit binomial walk that was assumed for the hypo-
thetical stock.

In the language of the mathematician, expectation is the
first moment of a distribution. The term “moment” comes from
the idea of a balance point. Imagine bricks stacked at various
positions along a board, each position corresponding to a price
outcome, and the number of bricks stacked there corresponding
to the outcome’s frequency. The first moment would be the bal-
ance point of the board. Described this way, mathematical
expectation sounds esoteric. However, as just demonstrated, it is
familiar to anyone who has ever calculated a mean or average.
The term “expectation” is sometimes employed preferentially
when the mean or average under scrutiny is theoretical or
intended to describe a statistical distribution of events.
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In the discrete case (i.e., when the potential set of outcomes
is finite or at least denumerable) expectation is defined by

(2.3)

where is the expectation, i an index variable, n the number of
potential outcomes, fi the probability (or normalized frequency)
of the i-th potential outcome, and xi the value (e.g., price) corre-
sponding to the i-th potential outcome. This equation, although
perhaps unfamiliar when expressed mathematically, represents
just those calculations by which the last two columns and their
sums in Table 2–1 were determined.

After a somewhat lengthy mathematical diversion, the
problem of appraising speculative fair value can finally be
brought back in focus. Numbers representing price expectation
for a hypothetical stock at a specified future time are shown in
Table 2–1. How is future price expectation related to speculative
fair value? Recall that a security is fairly priced when a trader
will, on average, break even over a sufficiently large number of
trades. Assume that trades are entered on day zero, and closed
out on day n (in this instance, day 10). Stated in mathematical
terms, p0 (an unknown constant) represents a fair price if

0 = E( pn − p0) (2.4)

where E is the expectation operator, and where pn is the final
stock price (a random variable) when the trade is closed out.
In other words, p0 (the entry price) is fair if the statistical expec-
tation for the trade’s profit or loss (the final or exit price minus
the entry price) is zero. Given that the expectation of a constant
is just the constant, and that the expectation operator is asso-
ciative, Equation 2.4 can be rearranged as

0 = E( pn) − E( p0) = E( pn) − p0 (2.5)

which finally yields

p0 = E( pn) (2.6)

the sought-after fair price for the stock. In other words, a securi-
ty is fairly valued (in a speculative sense) when its current price
(p0) is equal to the statistical expectation (E) of its final price (pn).

x

x f xi i
i

n
= ∑

=1
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In the case of the hypothetical stock analyzed in Table 2–1 under
the assumption that trades would be closed out after 10 days, the
fair price was $50, as calculated exactly, or $50.007, as approxi-
mated by Monte Carlo. On average, a trader entering a position
at $50 and exiting 10 days later could expect to break even
(absent transaction costs). This is exactly what one might antici-
pate given a symmetric random walk: that profits and losses over
any given interval would average out to zero on a per-trade basis.

What else (other than the stock’s fair value) can be gleaned
from Table 2–1 and the kind of analysis it represents? One thing
easily determined from the data is the probability that the final
stock price will lie within any specified interval. What is the
probability that the stock will close above $54 on the 10th day?
Add the probabilities in Table 2–1 (exact or Monte Carlo) asso-
ciated with prices greater than $54. How likely is it that the
stock will end with a price of $50, unchanged from its initial
price? Just locate the row that corresponds to a final stock price
of $50 and read the probability. This kind of information can be
of practical use to traders of stocks and options.

Pricing the Option

So far, only stock prices have been discussed and some mathe-
matical background presented. Option prices have mostly been
ignored. The reader may feel cheated since this section began by
suggesting that it would illustrate the principles underlying the
appraisal of an option’s speculative fair value. However, what
has been accomplished is very significant for pricing options and
for understanding market movements. Imagine taking a stock
at a given price, assuming that its movements behave in accord
with some theoretical distribution (in this case, the binomial
distribution), calculating the mathematical expectation for the
stock’s price at some point in the future, and demonstrating that
this expectation is the stock’s fair value. Most of the elements
necessary for pricing an option are here and have, in fact, been
illustrated. All that remains is to establish, using the same
assumptions and probabilities, the mathematical expectation
for the price of the option at expiration. As with the stock, future
mathematical expectation defines speculative fair value.
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Table 2–2 is very similar to Table 2–1. The only differences
are that a Final Option Price column has been added, and that
the last two columns, Probability * Price Level and Theoretical
Probability * Price Level, have been modified so that they now
contain products of probabilities with option prices rather than
with stock prices. Each price in the column Final Option Price is
simply the corresponding stock price minus the strike price, or
zero, whichever is larger. This is the easily calculated worth of a
call option about to expire and with no speculative or time value
remaining. In the same way that the expectation of final stock
price was determined by summing the products of probability
and stock price, the expectation of final option price may be
found by accumulating the products of probability and option
price. In fact, the same probabilities used for pricing the stock may
be used for pricing the option since the probability of the stock
having, for instance, a terminal price of $54, is identical to the

Final Final Monte Carlo Theoretical 
Stock Option Frequency of Monte Carlo Theoretical Probability * Probability *
Price Price Occurrence Probability Probability Price Level Price Level

40 0 79 0.001 0.001 0.000 0.000

42 0 730 0.010 0.010 0.000 0.000

44 0 3,286 0.044 0.044 0.000 0.000

46 0 8,731 0.116 0.117 0.000 0.000

48 0 15,469 0.206 0.205 0.000 0.000

50 0 18,308 0.244 0.246 0.000 0.000

52 2 15,376 0.205 0.205 0.410 0.410

54 4 8,926 0.119 0.117 0.476 0.469

56 6 3,300 0.044 0.044 0.264 0.264

58 8 727 0.010 0.010 0.078 0.078

60 10 68 0.001 0.001 0.009 0.010

Sums 75,000 1.000 1.000 1.237 1.230

T A B L E  2–2

Frequencies, Probabilities, and Mathematical Expectation 
for an At-the-Money Call on a Stock Exhibiting Binomial
Random Walk Behavior
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probability of the option having a terminal price of $4. The indi-
vidual probability-price products found in the last two columns
of Table 2–2 can be interpreted as the contributions made by
different potential outcomes to the total current value of the
option. In the example, most of the option’s value derives from
instances where the stock finishes between $52 and $56. The
expectations appear as sums under the last two columns and
differ from one another only in the fourth significant digit, indi-
cating a good agreement between the theoretical and Monte
Carlo calculations. Both numbers represent fair value for the
option.

In Table 2–2, the column Option Price contains the prices at
expiration (on day 10) for a call option with a strike price of $50.
Note, however, that this column could just as easily hold prices
for a call option with a different strike, for a put option, or even
for some combination involving multiple options, e.g., a straddle.
The same calculations and probabilities used to price the exam-
ple call could also be used to determine the new position’s fair
value. Even for an option alive beyond day 10, the mathematics
would still apply if acceptable fair values for that option on
day 10 could be found and placed in the column. It would still be
possible to obtain the fair value on day zero from such data.

In the above presentation, speculative fair value was ana-
lyzed from the viewpoint of statistical expectation. Interest and
dividends were ignored. Some readers, however, may argue that
the only proper approach to pricing an option is to assume a self-
financing hedge involving a bond or other interest-bearing secu-
rity, an option, and the underlying stock. Except for the way
interest rates and dividends are handled, approaches involving
self-financing hedges generally produce solutions that are
equivalent to those based upon statistical expectation. In addi-
tion, whether implicitly or explicitly, both approaches require
the same kinds of statistical assumptions about price move-
ments and all of the other related mathematical paraphernalia.

Prevailing interest rates are easily handled in the context
of an expectation-based approach to option pricing by assuming
a risk-neutral world. A risk-neutral world is one in which all
assets are expected to grow at the prevailing rate of risk-free
interest. It makes sense to assume a risk-neutral world because,
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in the world of options, all risk can presumably be hedged.
To correctly price an option by analysis of future expectation,
the underlying stock must have an expected (in the statistical
sense) rate of growth equal to the risk-free interest rate, and the
expected future price of the option must be discounted for growth
at that same rate to obtain the current fair value.

SUMMARY

In this chapter, it was shown that fair value has much to do with
market efficiency, that it is context dependent, and that two of
the major forces that define or create fair value are arbitrage
(including conversion and reversal arbitrage) and expectation
regarding future prices. The relationship between conversion
and reversal arbitrage and fair value was expressed in the form
of a simple, deterministic equation. In the case of speculative
fair value related to expectation, an example illustrated some of
the elements that go into an option pricing model and how such
pricing models work. The example demonstrated the Monte
Carlo method and showed how one can proceed from assump-
tions regarding the price behavior of the underlying instrument
to a model for pricing an option trading on that instrument.
Some of the essential mathematical concepts required when
pricing options were also covered. In the following chapter, the
two most popular option pricing models will be examined and
their inner workings dissected. The manner in which interest
rates are handled in the context of expectation-based pricing
will also be demonstrated.

SUGGESTED READING

A good discussion of market efficiency and the Efficient Market
Hypothesis can be found in The Random Walk and Beyond
(Johnson, 1988). A Random Walk Down Wall Street (Malkiel,
1985) is another basic source on the subject. For those who wish
to pursue the matter in greater depth, there is an endless
procession of articles concerned with market efficiency in the
academic journals.
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Chapter 2 examined the concept of fair value. Fair value was
demonstrated to be related to arbitrage. It was also shown to be
related to speculative potential, which is a function of forward
expectation, i.e., the statistical expectation (or average) of future
prices. A simple option pricing model was developed and exam-
ined as a learning exercise. The model demonstrated how sta-
tistical expectation regarding future price could be calculated so
as to determine the current fair value of a hypothetical option.
For the sake of simplicity, the model used in the learning exer-
cise made rather unrealistic assumptions about the statistical
behavior of the underlying stock prices.

In this chapter, the two most popular models by which
options are priced are examined and their inner workings
revealed. One model is the Cox-Ross-Rubinstein or “binomial”
model. The other is the well-known Black-Scholes model. In con-
trast to the crude model presented in Chapter 2, these two mod-
els make more realistic assumptions regarding the price
behavior of securities. Although not flawless by any means, the
assumptions made are good enough to permit these models to be
of practical use to those who trade options or use them to hedge
other investments. When their assumptions are satisfied, Black-
Scholes and Cox-Ross-Rubinstein allow calculation of a fair price
that maintains put-call parity, which consequently eliminates
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opportunities for conversion and reversal arbitrage, and that
makes it impossible to profit from speculation on future prices.

The reader should be warned that much of what follows is
highly mathematical. It seemed appropriate to present this
material to provide an in-depth understanding of option pricing
that would serve as a sound basis for the work discussed in later
chapters. Despite the mathematics, the aim is not to generate a
lot of academic theory, but to work towards more trader-friendly
pricing models—models that traders can use to gain an edge in
the markets. Those who are mathematically challenged may
wish merely to skim the next few sections or perhaps skip
immediately to the Summary.

THE COX-ROSS-RUBINSTEIN 
BINOMIAL MODEL

The discussion of Cox-Ross-Rubinstein begins with the simple
model presented in Chapter 2. Surprisingly, that model is not
unlike the real binomial model. As the reader may recall, the
illustrative model presented in Chapter 2 relied on the assump-
tion that stock prices move up or down $1 every day, the direc-
tion of the movement being randomly determined by the flip of
a coin.

Is it rational to assume that stock prices move in this man-
ner? Imagine a $10 stock. It moves up $1, which represents a
reasonable 10% gain in price. Then there are several losses. It
does happen. Now the stock is trading at $1. The stock moves up
by $1 the next day, which is an impressive 100% gain. Then
three more losses occur. The stock is now trading at −$1. But
stocks neither take on negative prices nor do they generally fall
from $1 to $0 in a single day. There are obviously some serious
problems with the illustrative model and its assumptions.

One problem, easily remedied, is that stock price move-
ments tend to be proportional or geometric, rather than additive
or arithmetic. A $10 stock moving up $1 is roughly equivalent to
a $1 stock gaining $0.10 or a $100 stock appreciating by $10.
Random addition or subtraction must be replaced with random
multiplication or division. Instead of adding $1 to a stock’s cur-
rent price to get the next price, perhaps multiply the price by
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1.10; and instead of subtracting $1, divide by 1.10 (or equiva-
lently, multiply by its reciprocal).

Another problem with the illustrative model from Chapter
2 is the assumption of one-size-fits-all price movements. Price
movements in the real world differ, not only in direction but also
in amplitude, from day to day and stock to stock. In the course
of a typical day, some stocks fluctuate in price only by fractional
amounts, while others trace out great swings. Stocks also differ
in their long-term rates of growth. What this means is that the
up and down ratios or multipliers must be made independently
adjustable. Independently adjustable multipliers enable stocks
having different forward expectations (growth rates) and
volatilities to be correctly modeled. The probability of an up
transition may remain fixed at 0.5, as in the example from
Chapter 2, implying an equal probability for a down transition.
Some simple equations that yield the correct up and down mul-
tipliers for a specified growth rate and volatility must also be
provided.

Finally, should price shocks occur only once a day?
Definitely not! A finer grained analysis is required. This prob-
lem is easy to rectify. Allow the time steps or intervals into
which a given period is divided to be as small as desired. Of
course, the finer the grain or smaller each time step, the more
extensive and time consuming the calculations.

If the problems inherent in the original model and its
assumptions are addressed by these relatively minor changes,
a dramatically more realistic and useful model results. What
results is a model of an efficient market with statistical proper-
ties that can be characterized by growth and volatility, the first
and second moments of the statistical distribution of price
movements. In fact, what has been arrived at is the equal prob-
ability implementation of the famous Cox-Ross-Rubinstein bino-
mial pricing model.

Specifying Growth and Volatility

How are growth and volatility set for the binomial pricing
model? By choosing appropriate values for the up and down
multipliers. The best place to start, however, is actually the
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other way around, with equations that yield the growth and
volatility, given the up and down multipliers. It is easy to see
that the annual growth rate is given by

(3.1)

where ∆t is the length of each time step (in years), p the up tran-
sition probability, u the up ratio, (1 − p) the down transition prob-
ability, and d the down ratio. The growth rate may be recognized
as the logarithm of the one-step forward expectation of a $1
stock (the return achieved in a single time step) multiplied by
the number of time steps in one year. Think of compound inter-
est and you will have the right idea. Volatility (in percent per
annum) can be determined as

(3.2)

which follows from the fact that

(3.3)
where

(3.4)

These equations allow growth and volatility to be expressed as
functions of the up and down ratios and the transition probabil-
ities. However, the goal is to express the up and down multi-
pliers in terms of growth rate (r) and volatility (σ). Fixing the
transition probability p at 0.5, some algebraic manipulation of
Equations 3.1 and 3.2 yields

(3.5)
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the expressions for the up and down multipliers in terms of the
remaining variables.

The end of the road is almost in sight. All that is necessary
is to accept the fact that, in a risk-neutral world, options can be
priced using forward expectation. In a risk-neutral world, all
assets grow at the same rate. This, of course, is the risk-free
interest rate. If the growth is set to the rate of risk-free interest
(T-bonds are a good proxy) and volatility is set to a suitable
value that depends on the stock, it is possible to correctly model
a stock’s price behavior. Options trading on that stock can then
be appraised for fair value.

Monte Carlo Pricing

For continuity with Chapter 2, and because it is an effective
learning exercise, a Monte Carlo simulation is used to price an
option. In contrast to the previous effort, however, this exercise
takes into account the volatility of the stock to be simulated
and the risk-free rate of interest, properly handles the propor-
tional nature of stock price variation, and employs a generally
more acceptable statistical model of stock price behavior.
The equal probability implementation of the Cox-Ross-
Rubinstein model, on which this Monte Carlo example is based,
is actually used by traders, hedgers, and market makers to price
options.

The first step in setting up a Monte Carlo simulation is
to construct an algorithm that can generate a series of prices
that accord with the underlying theoretical model. An algorithm
that generates simulated stock prices consistent with the
equal probability variation of Cox-Ross-Rubinstein appears
below:

subroutine MCBRW (s, n, t, v, r)
dimension s(n)
p == 0.5
dt == t/(n −− 1)
evt == EXP (2.0 * v * SQRT (dt))
ert == 2.0 * EXP (r * dt)
d == ert/(evt ++ 1.0)
u == d * evt
do 10 i == 2, n
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if (RANFU ().lt. p) then
s(i) == s(i-1) * u

else
s(i) == s(i-1) * d

endif
10 continue

return
end

This time around, the algorithm is actualized as a Fortran
subroutine. Popular with quants, Fortran is a language better suit-
ed to heavy-duty number crunching than Microsoft’s Visual Vasic
language. The name of the subroutine, MCBRW, is an acronym for
Monte Carlo Binomial Random Walk. Not only is the language
used for the Monte Carlo analysis now Fortran, but a high quality
pseudo-random number generator is also employed. Built-in ran-
dom number generators, such as Rnd in Microsoft’s Visual Basic,
tend to be of poor quality. These generators customarily fail many
statistical tests of randomness. For serious Monte Carlo work, it is
vital to use a random generator that passes such tests. The uni-
versal random number generator, proposed by Marsaglia and
Zaman (in report FSU-SCRI-87-50), seems to be acceptable and is
freely available over the Internet. Another generator that appears
serviceable is the RAN2 generator from Numerical Recipies in
Fortran 77 (Press et al., 1992). Function RANFU in the Fortran code
above, which returns pseudo-random numbers between 0 and 1,
employs the Marsaglia and Zaman generator.

The logic of the algorithm is as follows: First, the up and down
multipliers (u and d) are calculated using Equations 3.5 and 3.6,
respectively, from the volatility (v) and growth or interest rate (r)
passed to the subroutine. Volatility and growth are specified in
percent per annum. The probability of an up transition (p) is fixed
at 50%, which also determines the probability of a down transition
(1−p). The size of each time step (dt) is computed by dividing the
time from start to finish (t) by the number of intervals into which
it is to be partitioned (n−1, where n is the number of prices in the
series s). In this algorithm, time is measured in years. Then comes
the loop, which is very similar to the one appearing in the Visual
Vasic code in Chapter 2. For each time step (indexed by i), the
corresponding stock price is found by either multiplying the previ-
ous price by the up ratio (u) or by the down ratio (d). Note how
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multiplication by u or d has replaced addition or subtraction of 1.
Just as in the former algorithm, a pseudo-random number gener-
ator decides which of the two operations is performed on each pass
through the loop. Before executing the algorithm, along with the
other arguments passed to the subroutine, the initial stock price
must be supplied in s(1); the subroutine will then be able to gen-
erate all of the remaining prices in s(2) through s(n). The gen-
erated series will have a theoretical volatility of v and growth rate
of r. It will span a period of t years.

For the Monte Carlo experiment presented below, volatility
was set to 85% per annum (v = 0.85), risk-free interest to 10%
per annum (r = 0.10), and elapsed time to 10 days (t =
10.0/365.25). In this instance, elapsed time is the time remain-
ing until expiration. The parameter n was fixed at 30, making
each time step equal to 8 hours. Both the initial stock price and
the strike price of the call option to be valued were specified as
$50. A set of 250,000 simulated price series were harvested. The
final prices and their associated probabilities were then tabu-
lated. This exactly follows the procedure employed in Chapter 2.
Table 3–1 contains most of the results from the Monte Carlo
experiment.

The first column in Table 3–1 lists all final stock prices that
were observed at least once in the Monte Carlo sample. The final
or terminal stock prices are the prices found in s(n) after calls
to subroutine MCBRW. In the example from Chapter 2, terminal
prices were evenly spaced along the real number line. Equal
intervals are not a feature of prices in the current experiment.
Instead of equal intervals, these prices exhibit equal proportions
or ratios. The ratio of any price to the preceding lower price is
always equal to the up multiplier (u) divided by the down
multiplier (d). Although the prices themselves are not equally
spaced, logarithms of these prices do fall at evenly spaced
intervals.

For each terminal stock price in the first column, the sec-
ond column in Table 3–1 has the corresponding final option
price. Given that the terminal stock price is the price of the
stock at option expiration, the final value of the option is easily
reckoned. For a call that is about to expire, the fair premium is
either zero, or the stock price minus the strike, whichever is
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greater. When examining the numbers in Table 3–1, keep in
mind that the call being appraised has a $50 strike price.

It should be mentioned that the option values in the second
column need not be the prices of an expiring option as they are in
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T A B L E  3–1

Example of Pricing an Option with Monte Carlo Using the
Equal Probability Implementation of the Cox-Ross-Rubinstein
Binomial Model

Final Final 
Stock Option Sample Sample Probability * Probability *
Price Price Frequency Probability Stock Price Option Price

27.23 0.00 2 0.0000 0.00 0.00

28.69 0.00 6 0.0000 0.00 0.00

30.22 0.00 50 0.0002 0.00 0.00

31.85 0.00 221 0.0008 0.02 0.00

33.55 0.00 716 0.0028 0.09 0.00

35.35 0.00 1,950 0.0078 0.28 0.00

37.25 0.00 4,635 0.0185 0.69 0.00

39.25 0.00 9,308 0.0372 1.46 0.00

41.35 0.00 16,130 0.0645 2.67 0.00

43.56 0.00 24,240 0.0969 4.22 0.00

45.89 0.00 31,498 0.1260 5.78 0.00

48.37 0.00 36,100 0.1444 6.99 0.00

50.97 0.97 36,105 0.1444 7.36 0.14

53.71 3.71 31,771 0.1271 6.83 0.47

56.58 6.58 24,155 0.0966 5.47 0.64

59.61 9.61 16,041 0.0641 3.82 0.62

62.81 12.81 9,430 0.0377 2.37 0.48

66.17 16.17 4,631 0.0185 1.23 0.30

69.71 19.71 1,993 0.0079 0.56 0.16

73.45 23.45 731 0.0029 0.21 0.06

77.39 27.39 212 0.0008 0.06 0.02

81.54 31.54 60 0.0002 0.02 0.00

85.91 35.91 13 0.0000 0.00 0.00

90.52 40.52 1 0.0000 0.00 0.00

95.37 45.37 1 0.0000 0.00 0.00

Column sums 250,000 1.0000 50.15 2.91
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the present instance. In fact, these prices can be the appraised
values for the option at any point in time prior to expiration. What
is crucial is that the option can somehow be valued at a specified
point in time, and the appraised values can be placed in the sec-
ond column. In such a case, the option valuation produced by the
calculations in this Monte Carlo analysis would be for a period of
time (t) prior to the time to which the appraised values corre-
spond. This fact will become significant later in the discussion of
binomial trees, when fair option values are determined recur-
sively by working backwards through the tree, a layer at a time.

The third column in Table 3–1 contains the frequencies
with which each of the stock and option prices occurred in the
Monte Carlo sample. These frequencies total 250,000—the total
number of trials in the experiment—confirming that every pos-
sible outcome was accounted for in the table.

Each sample probability (normalized frequency) in the
fourth column of Table 3–1 was computed by dividing the corre-
sponding frequency in the third column by the number of trials.
The sample probabilities add to 1, as they should. Just as in the
example from Chapter 2, these numbers can be used to assess
the probability of the stock (or option) finishing in any particu-
lar range of price.

The fifth column in Table 3–1 contains the probabilities
from the fourth column multiplied by the corresponding stock
prices from the first column. These numbers sum to $50.15, the
expected (mean) final price for the stock. The sum is slightly
greater than $50, the initial price, because, in a risk-neutral
world, all assets are expected to grow at the risk-free rate of
interest, specified here to be 10% per annum. This price should
actually be $50.14. The reason that the column sum differs from
the theoretically correct value is that it is based on one particu-
lar sample of 250,000 prices and not on an infinite sample.
Nevertheless, the Monte Carlo result is remarkably close to the
exact, theoretical expectation for the final stock price in a 30-
time-step model.

It must be pointed out that growth over any period is ordi-
narily measured as ln(b/a), where b is the final price and a the
initial price. Compounding of growth is calculated as m ln(b/a),
where m is the number of time periods over which compounding
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takes place. In other words, growth is not always measured in
terms of a percentage, although it is frequently referred to and
treated as if it were. There is, however, a direct relationship
between percentage-based and logarithmic measures of growth.
A true 10% (0.10) gain is equivalent to a logarithmic growth of
0.095 or ln(1.10), while a loss of 20% (−0.20) is equivalent to a
growth of −0.223 or ln(0.80). Likewise, a logarithmic growth of
0.20 is equivalent to percentage-based growth of 22.1% (0.221) 
or exp(0.20) − 1. Based on these examples, it should be clear how
percentage-based expressions are related to logarithmic meas-
urements of growth and vice versa. To the extent that growth is
small, so is the difference between the logarithmic expression
and the more familiar expression in terms of percentage gain (or
loss). This is why in practical situations, involving normal inter-
est rates and short periods of time, these two ways of defining
growth are often used interchangeably. Consider the Monte
Carlo experiment. A 10% yearly return from interest works out,
over the 10-day period analyzed, to a return of 0.002609 in
logarithmic terms or a gain of 0.2603% (0.002603) in true per-
centage terms. As can be seen, the difference between the two
measures is rather inconsequential as far as option premiums
are concerned.

The sixth and final column of Table 3–1 contains the prod-
ucts of probability and option price. The column sum is the
expected value of the option at expiration. Once discounted for
interest, this is the option’s fair value according to the equal-
probability variation of the Cox-Ross-Rubinstein binomial model.
In a risk-neutral world, all assets, including options, grow at the
risk-free rate of interest, hence the need to discount the final
expected price for the option by the interest over the holding
period. To discount for interest, the final expected value of $2.905
(rounded to 2.91 in Table 3–1) is divided by EXP(r*t), with r
and t as in the Fortran subroutine. With the specified interest
rate of 10% per annum (logarithmic form) and a holding period
of 10 days, the estimated fair value of the option is $2.898.

Apart from being useful for calculating option price, the
numbers in the sixth column also demonstrate how certain
potential outcomes contribute more to the current value of an
option than do other potential outcomes. For example, much of
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the value in the option being priced in Table 3–1 derives from
instances where the stock price finishes between $53 and $66.
Although higher stock prices imply richer options, such prices
occur with such rarity that the average payout on a relative basis
is small. Lower stock prices, those between $50 and $53, are
quite common. With lower stock prices, however, the value of the
expiring option is rather small. Again, on a comparative basis,
the expected or average payout from such outcomes is limited.

Although not shown, growth and volatility were also calcu-
lated for the Monte Carlo data. The observed volatility on an
annual basis was 84.9%, as against the specified or theoretical
value of 85%. Annual growth was 0.106 rather than 0.10 to
which it was set. As with other quantities taken from the Monte
Carlo experiment, the small discrepancies are due to the sam-
pling errors present whenever a finite sample is used in an
experiment. When necessary, greater accuracy can be readily
achieved by employing larger samples.

Pricing with Binomial Trees

Although binomial pricing may be accomplished with Monte
Carlo, there exists an alternative approach that is flexible, pow-
erful, and quite elegant: the method of binomial pricing trees.
A binomial pricing tree is a structure that maps all possible tra-
jectories of stock price through time as are allowed by the model.
This structure consists of nodes and branches. The nodes of a
binomial tree are arranged in columns or layers, like the nodes
of a neural network. Each layer corresponds to a particular
moment or time step. Each node in a given layer, therefore,
corresponds to a potential stock price at a particular point in
time. Nodes are identified with traversal probabilities and
option valuations, as well as with stock prices. Nodes, and the
data items with which they are associated, are easily indexed 
as elements in matrices, which indeed they are. A convenient
indexing scheme has the layer or time step represented by j
(a number between 1 and n, the number of layers or time steps)
and the nodes within each layer (the potential stock prices) by 
i (a number between 1 and m, the number of nodes in the layer).
Depending on whether or not the tree is recombining, the node
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count m for any given layer may range from j to twice the num-
ber of nodes in the previous layer.

Each branch or path in a binomial pricing tree represents 
a possible transition from one node to another node later in 
the tree and has a probability and a ratio associated with it. The
probabilities and ratios associated with the branches are the
same as those discussed earlier. Branches to higher nodes reflect
up probabilities ( p) and multipliers (u), while branches to lower
nodes implement the down probabilities (1 − p) and multipliers
(d). In a uniform, equal probability tree, p and 1 − p are 0.5 for all
branches, all upside branches share the same u, and all downside
branches share the same d. Such a tree is recombining.

To illustrate the process of pricing an option on a binomial
tree, consider Figure 3–1, which depicts a binomial tree with
four layers. In this figure, nodes are shown as round-cornered
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Prices, and Traversal Probabilities
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boxes and branches or transitions are shown as lines running
from the boxes in one column or layer to those in the next. Node
indices appear as pairs of numbers in the upper right corners of
the boxes. Counting is from left to right and bottom to top.

Given such a tree, whether drawn on paper or implemented
as a set of arrays in a computer program, the first step in pricing
an option is to fill in the stock prices and traversal probabilities
for each node. Nodes are filled in recursively, column by column
from left to right, beginning with the one and only node in the
first layer of the tree. The stock price for the first node (s1,1) is
simply the initial stock price for which a fair option price is
desired; it is the stock price that would have appeared in s(1)
in the Fortran code implementing Monte Carlo price series gen-
eration. The traversal probability (φ1,1) is 100% or 1, since this
stock price is the one and only possible price at the initial time
step that corresponds to the first layer in the tree.

Nodes in the second layer are filled in using the transition
parameters and values from nodes in the first layer. For node 2,2,
the stock price (s2,2) is the price from the previous node (s1,1) mul-
tiplied by u, and the probability (φ2,2) is the probability from the
previous node multiplied by p. For node 1,2, the stock price (s1,2)
is the price from the previous node multiplied by d, and the prob-
ability (φ1,2) is the probability from the source node multiplied by
1 − p. The same kinds of calculations are repeated to get values
for the nodes in the third layer from those in the second. In this
case, however, there may be a pair of nodes that have transitions
to the node under scrutiny. When more than one path to a node
exists, the node’s traversal probability is the sum of the proba-
bilities deriving from all possible paths. The stock price for a
given node in a recombining binomial tree may be calculated
either as u multiplied by the stock price at the previous lower
node or d multiplied by the stock price at the previous higher
node; both calculations yielding the same result. In fact, this is
what is meant when a binomial tree is said to be recombining:
that different paths recombine at future nodes.

In general, for a recombining tree, stock prices in one layer
may be determined from those in a previous layer by

(3.7a)s us ds i jij i j i j= = < <− − −1 1 1 1, , for all 
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with

(3.7b)

and

(3.7c)

The probabilities of traversal may likewise be computed, layer-
by-layer, as

(3.8a)

with

(3.8b)

and

(3.8c)

In the above equations, φij and sij refer to the specific φ and s of
the ij-th node.

Traversal probabilities and stock prices were filled in for all
nodes in Figure 3–1 with the aid of a small Fortran subroutine
implementing the layer-by-layer approach outlined above. With
the calculation of the data in the figure, the first step in the two-
step process of pricing an option has been completed.

Like Table 3–1, Table 3–2 displays the distribution of termi-
nal stock prices and their probabilities taken from the last column
of nodes in a tree such as that depicted in Figure 3–1. Table 3–2
also contains the price-probability products and the expectations
computed by summing these. In other words, the data in Table 3–2
are for the same transition parameters u, d, and p, but generated
using a binomial tree and Equations 3.7 and 3.8 rather than by
Monte Carlo as was the case for Table 3–1. A few rows appear in
Table 3–2 that were absent in Table 3–1. This is because some low
probability events simply did not occur in the Monte Carlo sam-
ple. The expected final (at option expiration) price for the stock
was $50.14. For the option it was $2.896, which, when discounted
for growth (interest), works out to be $2.888. In these calculations,
r (the risk-free interest rate) was 0.10, σ (the volatility) was 0.85,

φ φij i jp i j= =− −1 1, for 

φ φij i jp i= − =−( ) ,1 11 for 

φ φ φij i j i jp p i j= + − < <− − −1 1 11 1, ,( ) for all

s us i jij i j= =− −1 1, for

s ds iij i j= =−, 1 1for
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T A B L E  3–2

Example of Pricing an Option with a Binomial Tree Using the
Equal Probability Variation of the Cox-Ross-Rubinstein Model

Final Stock Final Option Terminal Node Probability * Probability *
Price Price Probability Stock Price Option Price

23.28 0.00 0.0000 0.00 0.00

24.53 0.00 0.0000 0.00 0.00

25.84 0.00 0.0000 0.00 0.00

27.23 0.00 0.0000 0.00 0.00

28.69 0.00 0.0000 0.00 0.00

30.22 0.00 0.0002 0.00 0.00

31.85 0.00 0.0008 0.02 0.00

33.55 0.00 0.0029 0.09 0.00

35.35 0.00 0.0079 0.28 0.00

37.25 0.00 0.0186 0.69 0.00

39.24 0.00 0.0373 1.46 0.00

41.35 0.00 0.0644 2.66 0.00

43.57 0.00 0.0966 4.21 0.00

45.90 0.00 0.1264 5.80 0.00

48.36 0.00 0.1445 6.99 0.00

50.96 0.96 0.1445 7.36 0.14

53.69 3.69 0.1264 6.79 0.47

56.57 6.57 0.0966 5.47 0.63

59.60 9.60 0.0644 3.84 0.62

62.80 12.80 0.0373 2.34 0.48

66.17 16.17 0.0186 1.23 0.30

69.71 19.71 0.0079 0.56 0.16

73.45 23.45 0.0029 0.21 0.06

77.39 27.39 0.0008 0.06 0.02

81.54 31.54 0.0002 0.01 0.00

85.91 35.91 0.0000 0.00 0.00

90.52 40.52 0.0000 0.00 0.00

95.37 45.37 0.0000 0.00 0.00

100.49 50.49 0.0000 0.00 0.00

105.88 55.88 0.0000 0.00 0.00

Column sums 1.0000 50.14 2.90
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s1,1 (the initial stock price) was $50, and t (the time remaining)
was 10 days (10.0/365.25 years). The strike price was assumed to
be $50, as was the case for the Monte Carlo analysis. There were
30 layers (n = 30) in the tree that was used to generate the data in
Table 3–2. It can easily be seen that the results from the binomial
tree are remarkably close to those obtained from the Monte Carlo
method when 30 time steps were simulated.

Although an option has just been appraised directly from
the terminal stock prices and their probabilities, this is not the
standard or the most flexible way to work with a binomial tree.
The second step in the pricing process generally involves work-
ing backwards through the tree, recursively, starting with the
final column of nodes representing the terminal distribution of
stock prices. As before, the calculations are performed layer by
layer, with entries in the j-th layer being determined from the
transition parameters and the entries in the j + 1-th column of
nodes. What is calculated in this instance are the one-step for-
ward expectations, discounted for growth. Forward expectations,
of course, represent theoretical option valuations. In Figure 3–2,
below, these are identified by ξ.

In general,

(3.9)

i.e., for each pair of nodes to which a given node has transitions,
multiply the transition probabilities by the valuations of the
target nodes and then discount for growth in a risk-neutral
world. For the last layer of nodes, the option is expiring (usually)
and the valuations (ξ) are easily determined. For an expiring
call, ξ is the greater of 0 or s − k, where s is the stock price and
k the strike. For an expiring put, ξ is the greater of 0 or k − s. In
all earlier layers, ξ may be determined recursively, using
Equation 3.9. When the first layer is reached, the option has
been priced. The fair value of the option is ξ1,1 (the ξ associated
with the initial node in the binomial pricing tree).

In actual fact, there are direct formulae for finding the
stock prices and traversal probabilities for any of the nodes in a
binomial tree, including the terminal ones, without the need for
any recursive, layer-by-layer calculations. There is also a direct

ξ ξ ξij
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i j i je p p= + − 
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+ + +
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formula for the value of an option, given the prices and proba-
bilities at the terminal nodes.

(3.10)

(3.11)

(3.12)

These formulae assume that the tree is recombining, and that
the transition parameters p, u and d are constant throughout
the tree. The reader may recognize Equation 3.10 as the
binomial probability density function, with parameters modified
for compatibility with the indexing scheme used to identify the
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The Same Binomial Tree with Node Indices and Option
Valuations
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nodes. The results obtained from these equations will be identi-
cal (ignoring roundoff error) to those computed by the recursive
approach. Tests using Fortran routines to compute binomial
pricings bear this out.

Although direct formulae (such as Equations 3.10 through
3.12) are available, there is a great loss of flexibility when using
them. For instance, there are no definitive direct solutions for
pricing options with early exercise rights, the so-called
American-style options. However, options with early exercise
rights are readily priced working back layer-by-layer through a
binomial pricing tree using Equation 3.9. The procedure is quite
straightforward: after calculating the forward expectations for
all nodes in a given layer, comparisons are performed. If the
value of exercise for a given node is greater than the forward
expectation, which represents the value of holding another time
step, then assume that the option is exercised at that node and
replace the node’s ξ with the option’s exercise value. Do this for
all nodes in the layer. Once done, each ξ in that layer will repre-
sent either the value of exercise or the value of holding,
whichever is greater. Once all the values have been determined,
apply Equation 3.9 to obtain the forward expectations for the
next layer back. Repeat the process until the initial node is
reached and the American-style option is priced.

The flexibility of the method of binomial trees makes it fea-
sible to price even exotic derivatives and to price options under
assumptions involving nonconstant interest rates and volatility.
No doubt, it is this power and flexibility that has contributed to
the enduring popularity of the method of binomial pricing trees.
An extensive and reasonably good treatment of the Cox-Ross-
Rubinstein binomial pricing model and its many variations and
applications can be found in Black-Scholes and Beyond (Chriss,
1997).

THE BLACK-SCHOLES MODEL

Consider the binomial pricing model presented above, where p,
u, and d are constant at all time steps throughout the pricing
tree. In such a model, as n, the number of time steps, approach-
es infinity, the distribution of prices at the terminal nodes
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approaches log-normal. Even for modest n, the approximation is
quite good, as can be seen in Figure 3–3. Figure 3–3 shows the
log-normal probability density (solid line) plotted along with the
discrete probabilities associated with the terminal nodes of a 
30-step binomial tree (dotted line with markers). The terminal
node probabilities used in the figure were taken from the third
column of Table 3–2. Note the great similarity between the dis-
tributions. By the time n reaches 200, the curves are visually
indistinguishable.

Geometric binomial random walks, such as those described
by binomial pricing trees, are not the only random walks that
converge to log-normal price distributions. Consider a model
where

(3.13)

and where sn and s0 are the final and initial stock prices, respec-
tively. If σ and u are finite, and if {x1 . . . x2} is a sequence of
independent, identically distributed random variables with a
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Discrete Terminal Price Probabilities from 30-Step Binomial
Tree versus Continuous Log-Normal Probabilities from
Probability Density Function
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common expectation of 0 and variance of 1, then it can be shown
that

(3.14)

as n → ∞. The right hand side of Equation 3.14 will be recog-
nized as the log-normal probability integral. Equation 3.13
describes the taking of n random proportional steps, the multi-
plier at each step being the exponential of a random variable
with a standard deviation of and mean of u/n and having
an arbitrary distribution. The values σ and u are the volatility
and growth, respectively.

The proof is actually quite simple. Taking the logarithms of
both sides of Equation 3.13 gives

(3.15)

In other words, the return (expressed as a logarithm) is the sum
of n random shocks. As a consequence of the Central Limit
Theorem, the right hand side of Equation 3.15 will approach a
normal distribution with mean u and standard deviation σ as 
n approaches infinity. What this means is that, if enough small
shocks are added together, then the distribution of their sum
will be normal in the limit as n → ∞, even if their individual
distributions are not normal. By definition, if Rn is a log-normal
random variable, then ln Rn is normally distributed, and vice
versa. It has just been shown that, indeed, ln Rn is normally
distributed, thus demonstrating that Rn has a log-normal
distribution.

In more trader-friendly language, what this means is that,
if the moment-to-moment proportional movements in a stock’s
price are random, and unpredictable on the basis of previous
movements, and if each moment’s movement is essentially like
any other moment’s movement in a statistical sense, then, given
an initial price, the probability of any final price being reached
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after some specified interval will be arbitrarily well approxi-
mated by the log-normal probability density function. Since, in
an efficient market, moment-to-moment movements are pre-
sumably close to random, the price movements over tradable
intervals (which are made up of many such moment-to-moment
movements) might be expected to be close to log-normal in their
distribution. Even in a market that is only moderately efficient,
a trader might expect prices to exhibit behavior that is at least
a reasonable approximation to log-normal. Given such theoret-
ical observations, the trader might even consider pricing
options on the basis of geometric, log-normal random walks.

The Black-Scholes Formula

A closed form solution actually exists for pricing European-
style options on stocks having log-normal terminal price distri-
butions. It is the famous Black-Scholes formula, which is 
shown below for both calls and puts. The fair value for a call is
given by

(3.16)

and the fair value for a put is given by

(3.17)

where

(3.18)

and

(3.19)

and where s is the current stock price, k the strike price, r
the risk-free interest rate, σ the volatility, t the time left until 
expiration, ξ the option value, and N the cumulative normal
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probability function. These formulae satisfy the put-call parity
relationship

(3.20)

expressed in the notation of this chapter. In the above equations,
d1 and d2 bear no relationship to the transition multipliers dis-
cussed earlier.

Black-Scholes and Forward Expectation

The Black-Scholes pricing formula was originally developed nei-
ther by taking the limit as n → ∞ of the binomial model nor by
determining the expectation of option price at expiration under
the assumption that stock prices are log-normally distributed at
that time. Instead, it was developed from a no-arbitrage argu-
ment. Nevertheless, the Black-Scholes formula is a direct solu-
tion for the simple binomial option price as n → ∞ and for the
valuation based on expectation at expiration, given an underly-
ing stock having a log-normal distribution of terminal prices.
Although no mathematical proof is offered here, it is instructive
to demonstrate these claims numerically. Consider

(3.21)

where

(3.22)

is the log-normal probability density function that describes the
distribution of terminal stock prices, where ξ0,k is the sought-
after theoretical option price, s0 the initial stock price, k the
strike price, ξn,k(x) the value of the option at expiration, and 
x the stock price at expiration.

Equation 3.21 will be recognized as defining expectation for
the option at expiration, appropriately discounted for growth in
a risk-neutral world. Essentially, the equation is a continuous
version of Equation 3.12, in which the sum has been replaced
with an integral and the discrete probability density with a con-
tinuous density function. In the equation, u = s0ert and σ= v t
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with t being the time remaining until expiration (measured in
years) and v the standard, annualized volatility.

Numerical integration, or quadrature as it is sometimes
called, can be used to solve for ξ0,k(s0) in Equation 3.21. This was
actually done using the same parameters employed when demon-
strating the binomial model. The volatility was set to 85%
(v = 0.85), the time remaining to 10 days (t = 10/365.25), the inte-
rest rate to 10% (r = 0.10), the strike price to $50 (k = 50), and the
initial stock price to $50 (s0 = 50). The value obtained for ξ0,k(s0)
was $2.8681983 for the call and $2.7314929 for the put. For the
purpose of comparison, the same parameters were entered into the
standard Black-Scholes formula. The option valuations obtained
from Black-Scholes agree with those computed by numerical inte-
gration of Equation 3.21 to at least the eight significant digits dis-
played by the Fortran program! Several other sets of parameters
were tried with similar outcomes. Likewise, when the binomial
model was taken to 3,000 steps, the resultant option prices for a
stock with the same parameters agree quite well with the results
from Black-Scholes and from numerical integration. Priced on a
3,000-layer binomial tree, the call was $2.86814 and the put
$2.73144. Monte Carlo data based on the Fortran routine MCBRW
presented earlier are also in close agreement with option prices
obtained from Black-Scholes, numerical integration, and binomial
trees. There is no doubt that Black-Scholes is a solution for the for-
ward expectation, discounted for interest, of an option trading on
a stock having a log-normal distribution of terminal prices and an
expected growth equal to the rate of risk-free interest; and, as
n → ∞, so is the Cox-Ross-Rubinstein binomial model.

Black-Scholes versus Binomial Pricing

Black-Scholes has become the dominant pricing model because it
is very easy to calculate both option prices and the Greeks and
because it gives acceptably good results. However, Black-Scholes
is not flexible and, in its original form, is unable to correctly price
American-style options. Although approximations for American-
style options have been developed, in many instances there is 
little practical difference in price between options with early
exercise rights and those without, and hence little need to go
beyond standard Black-Scholes. Long-term options such as
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LEAPS, and options that are deeply in-the-money, do require
early exercise to be taken into account if they are to be correctly
priced, hence the continued popularity of the binomial model
despite its time-consuming calculations. The binomial model is
adaptable, handles early exercise with grace, and can be used to
price all kinds of exotic options. With suitable adjustments, it can
even be used to price options under assumptions of nonconstant
volatility, dividends, and interest rates, and of distributions that
differ from log-normal. Given today’s computing power, the
numerical workload is virtually a nonissue. Nevertheless, Black-
Scholes continues to be used by many traders and hedgers.

MEANS, MEDIANS, AND STOCK RETURNS

Before closing, it is worth examining some properties of the log-
normal distribution, and, by implication, of other distributions
that approach or approximate it. For the log-normal distribution,
the median is always less than the mean. This has some signifi-
cant implications for stock prices and returns. Imagine a stock
with an initial price of $100. If the set of potential terminal prices
is described by a log-normal distribution with a median of $100,
then the stock would be expected to finish above $100 as fre-
quently as it would finish below $100. That is the definition of
the median: the fifty-fifty or midway point. Naively, this might be
construed as a break-even situation. However, it is not! With the
median at $100, the stock’s mean or expected terminal price will
be greater than $100. This is a positive return, a net profit for the
trader when considered over a sufficient number of trades. It is
due to the asymmetry of the log-normal distribution, which has
a truncated left tail and an elongated right one.

If the expectation for the final stock price is to be $100 (a
true break even situation), then the median must be less than
$100 by some amount. The amount depends on the difference
between the median and the mean, which, in turn, depends on
the volatility. The relationship between volatility (σ), the median
(µ), and the mean (E(sn), where E is the expectation operator) for
prices (sn) that have a log-normal distribution is defined by

(3.23)E( )sn =
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σ
exp

2

2
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Therefore, if a mean terminal stock price of $100 is to be
obtained, the parameter µ of the standard log-normal proba-
bility density function must be suitably adjusted. The parameter
µ must be set, not to 100, but to 100 divided by exp(σ2/2) or,
equivalently, 100 multiplied by exp(−σ2/2). Such an adjustment
was incorporated into Equation 3.22 (note the σ2/2 term in the
exponential) to allow the parameter µ in fµ,σ(x) to be identified
with the expectation or mean, rather than with the median of the
log-normal probability density described by the function. In the
above example, after adjusting µ, the expectation for the termi-
nal price will be $100. This is exactly as intended. However,
after the adjustment, the stock price will have a slightly greater
probability of falling than of rising.

How did the parameter µ become identified with the medi-
an? If x is a random variable with a normal distribution, than
exp (x) is a random variable with a log-normal distribution.
Consequently, every log-normal distribution has a corresponding
or underlying normal distribution. The logarithm of µ in the
standard formula for the log-normal probability density is iden-
tified with the mean of the underlying normal distribution, and
σ with the standard deviation of that underlying distribution.
For any symmetric distribution, including the normal distribu-
tion, the median and mean are equal. Hence, the logarithm of µ
is not just the mean of the underlying normal distribution, it is
the median as well. Let x be a random variable with a nonzero
standard deviation. It can be shown that M(exp(x)) = exp(M(x))
but that E(exp(x)) > exp(E(x)) where M is the median operator
and E the expectation. The result is that if the logarithm of µ
represents both the median and the mean of the underlying
normal distribution, then µ will represent the median, but not
the mean, of the corresponding log-normal distribution.

Empirical Study of Returns

How do real stocks behave? The trader would probably argue
that, in the absence of predictive information, a stock has a
roughly equal probability of either rising or falling, at least over
a short interval. Stocks that are more volatile would not be
expected to be any different in this regard than less volatile
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ones. Yet, if the expected price in the near future were the same
as a stock’s current price, then the stock would have to have a
higher probability of falling rather than rising in price.
Furthermore, the greater the stock’s volatility, the more exag-
gerated the relative likelihood of a downside move. If the trader
is right in arguing that the probability of a gain is roughly equal
to the probability of a loss, then the expectation for the near-
future price should be greater than the current price, i.e., the
stock should have a positive expected return, and that return
should increase with increasing volatility. Do stock returns have
positive expectations that grow with volatility? Would not such
returns represent inefficiencies in a supposedly efficient market–
profit opportunities that could be exploited by the astute trader?

Table 3–3 contains data relevant to these questions. The
first section of the table shows the results from a simple Monte
Carlo experiment. This experiment examines the theoretical
returns for several volatility levels and holding periods. In the
experiment, the distribution of price is assumed to be log-normal
and the median of the terminal price is assumed to equal the
initial price. The numbers are average price gains measured
in percent; they represent the return in dollars from the pur-
chase of a nominal $100 stock. Consistent with the theoretical
analysis, quite substantial gains are generated and these gains
increase with annualized volatility and holding period.

The last two sections of Table 3–3 show data similar to the
first section, but for real stocks rather than simulated, Monte
Carlo stocks. Small, thinly-traded NASD stocks are examined in
the first of these two sections, while higher-priced, more widely
followed NYSE stocks are examined in the second. For both sets
of stocks, returns are positive and tend to increase with annual-
ized volatility and holding period. In other words, there is a
volatility payoff. Do stock returns have a positive expectation
that grows with volatility? The answer is a resounding “Yes.”

For very low levels of historical volatility, real stocks deliver
higher returns than simulated Monte Carlo stocks with equiva-
lent theoretical volatilities. The explanation is regression to the
mean, or mean reversion, a well-known statistical phenomena.
When historical volatility is very low, regression to the mean
will lead to greater volatility in the period from which the return
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is calculated than in the preceding period that is used to calcu-
late the historical volatility. Mean reversion also partly explains
the lower relative returns for real stocks, when compared to
Monte Carlo simulacra, in situations where historical volatility
is very high. Another factor that contributes to relatively lower
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T A B L E  3–3

Expected Percentage Gain in Price as a Function of Holding
Period and Volatility

Log-Normal Geometric Random Walk (Monte Carlo Data)

Volatility (Annualized Percent)

Days Held 50 100 150 200 250 300 350

5 0.2 1.0 2.3 3.9 6.4 9.4 12.7

10 0.5 2.0 4.4 8.2 13.3 19.7 28.0

15 0.8 3.1 6.9 12.5 20.3 31.2 43.3

20 1.0 4.2 9.5 17.6 28.7 43.0 61.7

25 1.3 5.1 11.8 22.0 36.6 55.8 82.5

All NASD Stocks with Volume << 200,000 Shares and Price << $4

Volatility (Annualized Percent)

Days Held 50 100 150 200 250 300 350

5 0.7 1.3 1.9 2.8 4.3 6.1 6.6

10 1.4 2.5 3.4 5.2 8.1 9.1 13.7

15 2.1 3.5 5.0 7.9 10.9 12.8 18.4

20 2.8 4.7 6.5 10.1 14.2 17.6 18.6

25 3.6 6.0 7.9 12.5 16.8 21.9 20.9

All NYSE Stocks with Volume >> 400,000 Shares and Price >> $35

Volatility (Annualized Percent)

Days Held 50 100 150 200 250 300 350

5 0.3 0.9 2.1 1.5 3.1 4.8 1.9

10 0.7 1.7 3.9 2.7 5.4 6.2 0.7

15 1.0 2.5 5.6 5.1 7.8 7.4 4.5

20 1.4 3.4 6.8 8.3 8.7 9.8 5.0

25 1.7 4.3 8.3 10.0 12.0 14.0 5.3
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returns from real stocks when volatility is high is exploitation of
the volatility payoff by traders. Therefore, the answer to the
question, “Would not such [excessive] returns represent ineffi-
ciencies in the market and profit opportunities that could be
exploited by the astute trader?” is also “Yes.”

Although exploitation of inefficiencies acts to attenuate
returns, there are still rewards for taking on volatility risk. In
addition, when traders enter the market and drive out ineffi-
ciencies, they also alter the distribution of returns and the
observed volatility. The very fact of excessive volatility indicates
that traders who exploit inefficiencies induced by high volatility
have not yet entered the fray in sufficient numbers to bring the
volatility down and to neutralize the inefficiency. If they had,
the volatility would no longer be excessively high. On larger,
more widely followed NYSE issues, the mean volatility to which
recent historical volatility tends to revert is lower and there are
more astute traders around to drive out any inefficiency, vola-
tility-induced or otherwise. This is one possible explanation for
the generally smaller returns seen in the NYSE data. No doubt
“small-cap” and “ignorance” effects, well-known in the field, also
play a role in accounting for the differences in returns between
the two groups of stocks compared in Table 3–3.

SUMMARY

In this chapter, the two most popular option pricing models were
dissected and their inner workings explored. The Cox-Ross-
Rubinstein binomial model was the first to be examined. The dis-
cussion began with the crude Monte Carlo example from Chapter
2. In that model, stock prices were assumed to increase or decrease
randomly by $1 each and every day. Several modifications to this
model were made: allowing the size of each random movement to
be specified, permitting the size of the up moves to differ from the
size of the down moves, and making the movements multiplicative
or geometric, rather than additive or arithmetic.These changes led
directly to the equal probability variant of the Cox-Ross-
Rubinstein binomial model. The model was implemented using
Monte Carlo, just as the crude model in Chapter 2. The Monte
Carlo implementation was used to price a hypothetical option.
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The elegant method of binomial trees was then presented.
This method was demonstrated to be an extremely flexible and
powerful approach to implementing the Cox-Ross-Rubinstein
and related models. The same option previously priced with
Monte Carlo was priced on a binomial tree with similar results.
Pricing American-style options (those with early exercise rights)
with binomial trees was also discussed to illustrate the flexi-
bility of the method.

Some of the assumptions underlying the Cox-Ross-
Rubinstein model were examined. Expectation at expiration
(the mean option price at the time of option expiration) was also
considered, given the assumption that the terminal stock price
has a distribution that is, or approximates, log-normal. This led
directly to an alternative analysis of Black-Scholes that demon-
strated that the model is actually a closed form solution for
expectation at expiration, one that factors in growth of the
underlying stock and discounts the option for the holding inter-
val. The standard Black-Scholes formula was then used to price
the same option priced earlier using Cox-Ross-Rubinstein in
both its tree-based and Monte Carlo implementations. Finally,
using numerical quadrature, the expectation of that same
option’s price at expiration (with appropriate handling of growth
and discounting in a risk-neural world) was determined and
shown to be the same as the Black-Scholes price. The price from
both the direct numerical integration of the expectation
equation and from Black-Scholes agreed in every digit
displayed.

In the course of these analyses, it was found that, although
each model was arrived at by a different route and has a dis-
tinctive surface appearance, they all estimate essentially the
same variables, express similar assumptions, and produce vir-
tually identical option prices. The Cox-Ross-Rubinstein model
does so as the number of time steps in the binomial tree grows
large, whereas the Black-Scholes model does so immediately,
without requiring any specification of, or attention to, time
steps. Both models essentially calculate the option’s average
price at expiration, discounted for interest under the assump-
tion that the underlying stock exists in a risk-neutral world and
has, or closely approximates, a log-normal distribution of terminal
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prices (prices at the time of option expiration). By saying the
stock and the option exist in a risk-neutral world means that
both are assumed to have growth rates equal to the prevailing
rate of risk-free interest.

The only significant practical difference between the mod-
els, as implemented, was found to be flexibility. The binomial
model is extremely flexible and can be used to price all kinds of
options, including exotics such as barrier options, as well as
options with early exercise rights. The flexibility extends to the
point that the method of binomial trees can be modified to han-
dle nonconstant volatility, interest rates, and dividends, includ-
ing ones that are contingent upon the prior course of events. It
can even be adapted to terminal distributions that differ from
log-normal. As such, the Cox-Ross-Rubinstein model and the
method of binomial trees provide a very general and powerful
approach to pricing options. However, in its standard or basic
form, it yields basically the same results as Black-Scholes.
Black-Scholes has little, if any, flexibility, but is extremely fast
and easy to use. It is popular because, for practical purposes,
even when dealing with options that have early exercise rights
not accounted for in the model, it gives results that are not too
far off the mark.

Finally, some characteristics of the log-normal distribution,
upon which these models explicitly or implicitly rely, were exam-
ined. One such characteristic is that the mean of a log-normal
distribution is greater than its median, or 50th percentile.
Another characteristic is that the extent to which the mean is
greater than the median is directly related to volatility. In other
words, if it is assumed that a stock has an equal chance of ris-
ing or falling over the holding period, then a positive return that
will increase with increasing volatility—a volatility payoff—
must also be assumed.

Real data were examined to see if returns were consistent
with a log-normal distribution of terminal prices having a medi-
an equal to the initial stock price. Actual market data demon-
strated that the effect described above was indeed present to
some degree: there were volatility-related positive returns.
It should be noted that a strictly log-normal distribution is not
required for returns to be related to volatility; a volatility payoff

100 CHAPTER 3

7739_ch_3.qxd  28/12/04  11:42 AM  Page 100



may be observed with any distribution that has a longer right-
hand tail than a left-hand one and for which increasing
volatility or distributional spread results in a greater difference
between the mean and the median. The question of whether
stock prices really behave as these models assume—i.e., as geo-
metric random walks that yield log-normal distributions of
returns—is examined more fully in the next chapter.

SUGGESTED READING

Black-Scholes and Beyond (Chriss, 1997) provides thorough
coverage of the popular Black-Scholes and Cox-Ross-Rubinstein
pricing models, including the use of binomial trees to value
exotics. A handy source for basic numerical algorithms, includ-
ing algorithms for psuedo-random number generation and for
numerical quadrature, is Numerical Recipes in Fortran 77
(Press et al., 1992). More material on the subject of numerical
algorithms, with a focus on ultra-high-precision calculations,
can be found in Precise Numerical Methods Using C++ (Aberth,
1998). Continuous Univariate Distributions (Johnson et al.,
1994) provides reasonable coverage of the normal and log-
normal distributions. Also of possible interest is Monte Carlo
Simulation (Mooney, 1997).
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There are two good reasons to study the statistical moments of
stock returns. The first reason to investigate moments is to
check the assumptions made by popular option pricing models.
Popular pricing models make some heavy assumptions regard-
ing the statistical nature of price movements. As demonstrated
in the previous chapter, Black-Scholes and Cox-Ross-Rubinstein
assume a geometric random walk with a log-normal distribution
of returns. But do stock prices really follow a random walk? 
Is each price change or return statistically independent of all
others, as the random walk theory would imply? Are the distri-
butions of returns from real stocks log-normal? One way to
answer these questions is by examining the statistical moments
of actual returns. A statistical analysis involving moments may
reveal whether the price behavior of real stocks violates any
assumptions made by the standard models and, if so, how.

The second reason to study returns from the perspective of
moments is to better characterize the distributions involved and
to learn how these distributions are affected by circumstances.
If not log-normal, then what are the distributions of returns?
How are they affected by holding period, day of week, time of
year, and other factors? This breaches the topic of conditional
distributions, which are discussed in a later chapter. Option prices
are undoubtedly determined by the terminal price distributions,
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real or imagined, of the underlying stocks. All pricing models
make some assumptions regarding such distributions. Given
these facts, it is clearly worthwhile to empirically characterize
the distributions of stock returns, both conditionally and gener-
ally. Such characterizations can help in the quest for better pric-
ing models and for ways to improve the existing ones.

This chapter marks a transition from the primarily theoret-
ical and explanatory stance of earlier chapters to the more empi-
rical and practical viewpoint of later ones. The focus is now on
empirical studies designed to answer specific questions. Some of
these studies have to do with elucidating the circumstances under
which popular models break down and grossly misprice options.
Others concern the quest for a deeper statistical understanding of
the market and for more accurate option pricing, generally. The
ultimate objective is to devise pricing models that have practical
value for traders and that are not merely of theoretical interest.

THE FIRST FOUR MOMENTS

Distributions of returns may be characterized by statistics
called moments. The first four moments of a distribution are the
mean, variance, skew, and kurtosis. The mean, or expectation,
reflects a distribution’s central tendency. In pricing models such
as those discussed in Chapter 3, the mean appears as a growth
rate related to the rate of risk-free interest. Variance is a mea-
sure of a distribution’s width or range. The square root of vari-
ance is the standard deviation, known as volatility in the world
of options. Volatility is a major determinant of option value; as
such, it is a statistic required by virtually every pricing model.

While the mean and variance (or standard deviation)
describe the location and size of a distribution, skew and kurto-
sis characterize its shape. Skew measures relative asymmetry.
Positive skew characterizes a distribution that has, relative to
the normal distribution, a shorter left (negative) tail, a longer
right (positive) tail, and a peak that appears tilted to the left.
Negative skew describes a distribution that has a longer left
tail, a shorter right tail, and appears tipped to the right.
Kurtosis is a statistic reflecting the relative flatness or peaked-
ness of a distribution. A distribution with positive kurtosis has

104 CHAPTER 4

7740_ch_4.qxd  28/12/04  11:56 AM  Page 104



a sharp peak and long tails while one with negative kurtosis is
more rectangular, with a flatter top and shorter tails. In stark
contrast to growth and volatility, skew and kurtosis are ignored
by standard pricing models. However, skew and kurtosis are as
readily computed and analyzed as growth and volatility. All four
moments provide useful information about the distribution of
price movements in stocks and indices and could thus play a role
in more advanced option pricing models.

Moments may be calculated from a theoretical distribution
or from a sample of data. When calculated from a sample they
are known as sample moments. Sample moments are statistical
estimates of parameters—either parameters governing the
underlying or generating distribution, or those that describe the
population from which the sample was drawn.

Calculating Sample Moments

Let {x1, x2, ... xn} be a sample of n distinct data points. The first
moment is the sample mean, which is just the average of the
data points in the sample.

(4.1)

The sample variance, skew, and kurtosis are the second, third,
and fourth moments about the mean, respectively. They are
calculated as

(4.2)

(4.3)

(4.4)

where s is the sample standard deviation (the square root of the
sample variance, s2). As apparent from Equations 4.2 to 4.4,
moments about the mean are averages of powers of the deviations
about the mean. For skew and kurtosis, the deviations from the
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mean are normalized. Normalization is accomplished by dividing
each deviation by the standard deviation. Because of such nor-
malization, skew and kurtosis are independent of scale and sen-
sitive only to form. The reason for subtracting 3 in Equation 4.4
is that, when the distribution underlying the sample of data
points is normal, kurtosis will approach zero as n grows large.

The above equations require the mean to be calculated
prior to any of the other moments. Calculating the mean first
can be quite cumbersome for the programmer and can increase
processing time due to the need for two passes over the data. An
alternative method allows the moments to be calculated directly
from the sums of powers of the data points. The method requires
only one pass to accumulate the required sums (the ak in
Equation 4.5). Be warned, however, that this method is far more
susceptible to round-off error. When writing computer code to
calculate moments with the alternative method, do all sensitive
arithmetic with double precision! The alternative solution,
based on binomial expansions of the terms in Equations 4.1 to
4.4, is as follows:

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

Statistical Features of Sample Moments

Suppose that the underlying distribution from which a sample
is drawn has a finite mean and variance, and the sample data
points are statistically independent. For large n, the sample mean
will then have a distribution that approximates the normal and,
according to the Central Limit Theorem, the approximation will
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become exact as n approaches infinity. When the underlying dis-
tribution is normal, the sample mean will be an unbiased estimate
of the population mean (the mean of the underlying distribu-
tion). The standard deviation of the sample mean will be 
where σ is the standard deviation of the underlying distribution;
it will be well approximated by for even modest sample
sizes. If the underlying distribution is normal, then the sample
variance will be an unbiased estimate of the variance of the
underlying distribution and will have a chi-square distribution
with n−1 degrees of freedom. For sufficiently large n, the sample
standard deviation will have a distribution that approaches nor-
mal and a standard deviation that will be close to

Statements similar to those above can also be made about
sample estimates of skew and kurtosis. Skew and kurtosis should
have values that are not significantly different from zero if the
underlying distribution is normal. The standard deviation for
large n will be approximately for sample skew and 
for sample kurtosis when estimates are made using the sample
mean. If the mean is known, and is set independently of the
sample, then skew and kurtosis will have standard deviations of
approximately and respectively. Note the absence of
s or σ in these approximations: this is because both skew and
kurtosis are scale-independent. As with the first two moments,
and for similar reasons involving the Central Limit Theorem,
the distributions of sample skew and sample kurtosis will tend
toward normal as n grows large; however, distributions exist for
which skew and kurtosis have infinite standard deviations and
thus no meaningful estimates.

How large must n be for the approximations presented
above to be of practical use? Given an n of 25 and a normal
underlying distribution, the standard deviation of sample skew
has a mean of 0.41, determined by a large-scale, high-precision
Monte Carlo experiment, compared to 0.49, as found with the
approximation described earlier. Observed and approximated
standard deviations for skew are much closer for a sample size
of 100: 0.23 for Monte Carlo versus 0.24 for the approximation.
Rounded to two decimal places, the mean sample skew for all
sample sizes tested by Monte Carlo was 0.00—the expected
skew for a normally distributed random variable.

96/ ,n15/n
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Kurtosis requires a larger sample than skew for the
approximations provided above to achieve reasonable accuracy.
The standard deviation of kurtosis determined by Monte Carlo
was 0.67, while the approximation yielded 0.98, for an n of 25.
Agreement between Monte Carlo and the approximation is
much better with n at 100 (0.44 versus 0.49) and excellent with
n at 400 (0.24 versus 0.25). Mean sample kurtosis values esti-
mated by Monte Carlo were −0.45, −0.12, −0.03, and −0.01 for
sample sizes of 25, 100, 400, and 2,000, respectively. As n
increases, these mean kurtosis figures approach the zero kurto-
sis expected for a normal distribution.

The statistics for the sample mean and standard deviation
are extremely well approximated even for small sample sizes
and hence require no additional discussion.

EMPIRICAL STUDIES OF MOMENTS 
OF RETURNS

In the studies that follow, actual stock and index returns are
examined from the standpoint of moments. The findings from
these studies help in answering a variety of questions relevant
to the appraisal of options and in understanding the statistical
idiosyncrasies of stock price movements. Some observations
made in the course of these studies may be of immediate practi-
cal value to the stock and options trader.

The first study examines the sample moments of stock
returns for several holding periods. Day-of-week effects are ana-
lyzed in the second study. The third study investigates how
moments of returns are affected by the time of year, i.e., by sea-
sonal factors. Moments are examined in relation to time left
before expiration in the fourth study.

Before going into the details of the individual studies, three
items that are common across all investigations must be dis-
cussed: raw data, analytic software, and Monte Carlo baselines.

Raw Data

The raw, historical stock data used in the studies were taken
from the Worden Brothers TC-2000 end-of-day database. Data
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were extracted for all optionable stocks. Care was taken to
exclude from the extracted data all nonstock securities such as
munis, funds, and trusts, many of which trade on the NYSE.

The sampling period, which ran from January 2, 1996 to
April 14, 2003, involved a trade-off between sample size and
sample representativeness. A longer period would have con-
tained data that was far less representative of the current mar-
ket, while a shorter one would have been less adequate
statistically. The final data sample included both raging bull
(January 2, 1996 through March 24, 2000) and devastating bear
(March 24, 2000 through April 14, 2003) markets. Data and
sampling issues are thoroughly discussed in The Encyclopedia
of Trading Strategies (Katz and McCormick, 2000) and in
Computerized Trading (Jurik, 1999).

Only stocks that were active (alive, not necessarily traded)
on the last day of the period were included in the sample.
Of course, not all stocks were active over the entire sampling
period. An unbroken series of quotes running from January 2,
1996 to April 14, 2003 was available for stocks that were active
over the entire period; for those that were not, the unbroken
series spanned only a subset of the specified period. Prices for
bars or days prior to the active subset were filled with the earli-
est active price; this was the first nonzero price on a day when
the stock had a trading volume greater than zero. Volumes for
bars prior to the active subset were set to zero. For bars or days
where a stock was active, but during which no actual trading
had taken place, the zero volume figure was replaced with a
very small positive number. The tiny positive number was
intended as a flag to be used by the analytic software to ascer-
tain whether a stock simply had no trading activity on a given
day (infinitesimal positive volume), or whether it was dead or
not yet issued (zero volume).

All prices in the database were back-adjusted for splits.
Because a split factor was included among the extracted data
fields, the original, unadjusted prices were recoverable when
needed. The final sample was saved in a simple binary database
file for speedy access. Each data record in this binary database
had the following fields: Date, Open, High, Low, Close, Volume
(in 100s), and Split Factor. At this stage, there were 2,246 stocks,
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each with 1,834 bars (not all active), for a total of 4,119,164 data
records.

The extracted data for each stock were checked with a util-
ity akin to the one described in The Encyclopedia of Trading
Strategies (Katz and McCormick, 2000). The utility was interac-
tive, allowing the user to make on-the-fly corrections to the data.
Not unexpectedly, data errors were found. In most instances, the
errors were small and easily corrected. An example would be a
quote with a high that was just under the close, but where prices
were otherwise apparently correct. In a few instances, there
were more substantial errors that could not be as easily or
rationally corrected. If only one or two prices were involved, but
other nearby prices appeared to be correct, an attempt was
made to replace the bad prices with more reasonable ones that
were estimated from the context of surrounding prices. When
several zero (or other highly deviant) prices were followed by a
return to normal ones, the stock was typically “trashed,” i.e., the
data series containing the errors were flagged and deleted. Also
trashed was any stock with more than a few errors of any kind.
Given the large number of data points in the sample, it was
astonishing that only a small number of errors were found and
that only five stocks had errors serious enough to justify dele-
tion. This attests to the quality of the Worden stock data. The
corrections and deletions should not noticeably impact the
results except to make them more reliable by having eliminated
extremely deviant, obviously defective data points. Highly diver-
gent data points that echoed real market behavior, such as
crashes or other severe but legitimate price swings—e.g., those
that might be caused by earnings surprises or bankruptcy
announcements—were not “corrected” or removed from the
data. Data points had to be clearly erroneous before they were
corrected or the stock exhibiting them was trashed.

Analytic Software

All number-crunching was done using the C programming 
language. There were several reasons for choosing C over other
languages. One reason was that programs written in standard C
are portable across a wide variety of machines, operating systems,
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and compilers. Other reasons were power, flexibility, and speed:
C and C++ are powerful, flexible languages for which modern
compilers generate highly optimized code that runs quickly.
A final and most important reason for making C the language of
choice was the ready access to an immense library of routines
that were written and accumulated over the years and that have
been used and verified in many projects. The use of existing,
thoroughly tested routines saves time and gives bugs less oppor-
tunity to creep in and invalidate the results. The software used
to perform the analyses reported in this book is available from
the authors.

Monte Carlo Baselines

To provide a baseline for comparison, a Monte Carlo simulacrum
was constructed for each stock in the binary database. There
were two steps involved in creating each simulacrum.

The first step in the construction of each simulated stock
was calculation of the historical volatility at each bar in the data
series of the corresponding real stock. Historical volatility may
be determined from Equations 4.1 and 4.2, given a correct choice
of sample. The sample needed to determine an n-period histori-
cal volatility at a given bar consists of returns from the previous
n bars. When computing historical volatility, logarithmic returns
are employed. Hence, to calculate the historical volatility at bar
k, the sample {x1, x2, ... xn} referred to in Equations 4.1 and 4.2
would be identified with {ln(pk/pk−1), ln(pk−1/pk−2), ... ln(pk−n+1/pk−n)}
where pi is the price at the close of the i-th bar. To obtain
the annualized historical volatility, the sample variance (s2 in
Equation 4.2) must be multiplied by 252 (the average number of
bars or trading days in a year) and the square root then obtained.

The second step in the construction of each Monte Carlo
simulacrum was the generation of a series of random prices with
a log-normal distribution of returns. Starting with a price equal
to the initial price of the real stock, each successive price in the
simulated stock was found by multiplying the previous price 
by a random number having a log-normal distribution. The σ
parameter for the log-normal pseudo-random number generator
was set to the historical volatility. In this case, volatility
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expressed in daily, rather than annualized, form was required.
To obtain the daily (bar-to-bar) volatility, the standard (annual-
ized) historical volatility was divided by the square root of 252.
For each bar k of each simulated stock, the historical volatility
of the corresponding real stock at bar k + n/2 was used in the cal-
culation. The goal was to have the underlying volatility of each
simulated stock at any given bar be equal to the observed
volatility of the corresponding real stock over a period of n bars
centered on that bar. No effort was made to simulate growth due
to interest in a risk-neutral world (minimal over the holding
periods considered here) or to emulate trends that sometimes
seem to appear in real stock prices.

From the above steps, it should be clear that each simulated
stock had a local volatility that tracked a centered moving aver-
age of the volatility of the corresponding real stock. It should also
be apparent that each simulated stock was generated by a known
log-normal random process and so is correctly described as a geo-
metric random walk with a log-normal distribution of returns. As
such, the theoretical growth, skew, and kurtosis for each simu-
lated stock over any short interval should be close to zero, except
for the small effect of a slowly varying level of volatility. By
design, the simulacra had volatility levels similar to real stocks;
but, possibly unlike real stocks, they also fully satisfied the
assumptions made by most popular pricing models, including
those discussed in Chapter 3. That, in fact, is what makes these
simulated stocks good baselines for gauging the degree to which
real stocks violate the standard assumptions.

Returns from both real stocks and simulacra were analyzed
side by side in many of the tests reported below. By performing
parallel tests, distortions produced by normalization and sam-
pling procedures can be assessed and compensated for in the
analysis of the results.

STUDY 1: MOMENTS AND HOLDING PERIOD

The aim of this study was to determine whether successive
returns are statistically independent, whether such returns are
log-normal in their distribution, and, if not, how the distribution
of returns differs from log-normal. If successive returns are
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statistically independent, then volatility should scale as the
square root of time; e.g., quadrupling the holding period should
double the observed volatility. If the distribution of dollar
returns is log-normal, then, when expressed in logarithmic
form, such returns should have no skew or kurtosis. The pres-
ence of notable skew or kurtosis would indicate a deviation from
a log-normal distribution of returns.

Two different methods of analysis were employed in this
study. The first method was a segmented analysis in which
moments were computed for each of a large number of segments
and then averaged. The second method involved a more direct
analysis in which moments were calculated all at once from the
complete set of returns. Regardless of the method, returns from
five different holding periods were analyzed. The shortest hold-
ing period was one bar; the longer periods were 5, 10, 15, and
20 bars. Multiples of five bars were chosen for the longer periods
to minimize weekend and day-of-week effects.

Segmented Analysis

The idea behind the use of segments was that, within a segment,
the underlying characteristics of a stock would be fairly con-
stant and easily estimated. The procedure was as follows: First,
a stock was retrieved from the binary database of optionable
stocks described earlier. The n-period historical volatility was
calculated for the stock at each bar; in this instance, n was 100.
A simulacrum was then created with a local volatility similar to
that of the real stock. Other than a slowly changing volatility,
the simulated stock was designed to trace out a geometric random
walk that fully satisfied the assumptions, made by standard
pricing models, of sequential independence and a log-normal
distribution of returns.

Next, a set of segments, each m bars in length, were defined
for the stock’s data. The last (most recent) segment ended m/2
bars prior to the end of the data series. The next-to-last segment
ended m/2 bars earlier than the last segment. In other words,
each segment ended m/2 bars before the end of the subsequent
segment and an equal number of bars after the end of the pre-
ceding one. The first segment began with a bar greater than or
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equal to m/2. Given that each segment was m bars in length,
there was a 50% overlap between segments. A segment length,
m, of 150 bars was used in the analysis. Once all segments were
defined, each segment in the set was checked. If the stock was
inactive or had a price of less than $2 (uncorrected for splits) at
any point within the segment, the segment was discarded. Only
complete segments having valid data from start to finish were
analyzed further.

At this point, a segment was selected from the set of valid
segments for the stock. Logarithmic returns for each of the five
holding periods were then calculated from data in the segment. If
dollar or percentage-based returns are log-normal in their distri-
bution, then logarithmic returns will be normally distributed.
Because of this, volatility is usually calculated from logarithmic
returns and their use also makes skew and kurtosis more inter-
pretable. A return for a given holding period was simply the loga-
rithm of the ratio of the price at the end of the holding period to
the price at the beginning. Returns were allowed to have overlap-
ping holding periods. For example, to obtain the first 10-bar loga-
rithmic return for a segment, the price at bar 11 was divided by
the price at bar 1 and the logarithm was taken. For the second 
10-bar return, the price at bar 12 was divided by the price at bar
2 and the logarithm was again determined. Returns were calcu-
lated in this manner until the end of the segment was reached.
Consequently, a segment of m bars had m−k k-bar returns.

The first four moments were then calculated from the loga-
rithmic returns for each of the five holding periods. Calculations
were carried out for both returns from the real stock and for
returns from the identically processed simulacrum. Each seg-
ment, therefore, had eight statistics associated with it for each
of the five holding periods: the first four moments for the real
stock and the same statistics for the simulacrum.

After all moments were computed, the second moments, in
the form of standard deviations or volatilities, were normalized.
Normalization was accomplished by dividing the second
moment for each of the five holding periods by the second
moment for the 1-bar holding period and then multiplying by a
bias correction coefficient. This was done separately for both
the real and simulated data. The bias correction coefficient was
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where m was the number of returns and k the
holding period. Bias correction was necessary to adjust for
degrees of freedom lost due to overlap in the holding periods on
which the returns were based. Normalization was not required
for skew or kurtosis since these statistics are unaffected by scale.

Once a segment was completely analyzed, the resultant
statistics were saved to a scratch file and the next segment for
the stock was selected for processing. After all segments for a
given stock had been processed, the next stock was retrieved
and the segmenting and analytic procedures repeated. The
process was continued until every valid segment from every
stock had been considered. There were 39,333 valid segments
taken from 2,241 stocks. The finishing step was to calculate the
mean and standard deviation over all segments for each of the
eight statistics for each of the five holding periods.

Results from Segmented Analysis

The means and standard deviations of the segment statistics
are presented in Table 4–1. They are broken down by stock type
(real, simulated), holding period (1-, 5-, 10-, 15-, 20-bar), and
moment (growth, volatility, skew, kurtosis).

Statistical Independence of Returns First consider
the question of whether successive returns are statistically inde-
pendent. If the returns from individual time steps are statistically
independent, then the volatility of returns from a stock held for a
given period will be proportional to the square root of the number
of time steps in that period. Under the assumption that volatility
is proportional to the square root of time, and given that all volatil-
ities have been normalized by dividing them by the volatility for
the 1-bar holding period (a single time step), the mean volatilities
for the 1-, 5-, 10-, 15-, and 20-bar holding periods should theoret-
ically be 1, or 2.236, or 3.162, or 3.873, and or
4.472, respectively.

The actual figures for mean volatility presented in Table 4–1
are close to these theoretical values, suggesting that volatility does
in fact scale approximately as the square root of holding time.
Mean volatility figures for the simulacra lie even closer to the 
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theoretical values, which is not surprising given that these were
constructed to have statistically independent returns. If volatility
was not proportional to the square root of time, then the assump-
tion that stock returns from successive time steps are independent
and that stock prices follow a random walk would have to be
rejected. The fact that volatility does scale roughly as the square
root of time indicates that returns may be fairly independent of
one another. It also implies that it is reasonable to assume an
approximate square-root-of-time scaling when pricing options,
even if returns do exhibit some complex, nonlinear dependencies
that are not reflected in the time-related scaling of volatility.
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T A B L E  4–1

First Four Moments of Normalized Returns Calculated for
Five Holding Periods Using the Segmented Method on
Both Real and Simulated Stocks

Means 1-Bar 5-Bar 10-Bar 15-Bar 20-Bar

Growth Real 0.000 0.000 0.000 0.001 0.001

Sim 0.000 0.000 0.000 0.000 0.000

Volatility Real 1.000 2.189 3.023 3.669 4.217

Sim 1.000 2.225 3.128 3.809 4.378

Skew Real −0.028 −0.035 −0.052 −0.062 −0.051

Sim −0.002 −0.001 0.000 0.001 0.000

Kurtosis Real 3.940 1.093 0.325 −0.042 −0.273

Sim 0.149 0.009 −0.154 −0.287 −0.395

Standard Deviations 1-Bar 5-Bar 10-Bar 15-Bar 20-Bar

Growth Real 0.003 0.015 0.029 0.044 0.060

Sim 0.003 0.016 0.032 0.049 0.066

Volatility Real 0.000 0.251 0.483 0.698 0.920

Sim 0.000 0.208 0.457 0.711 0.967

Skew Real 1.092 0.697 0.600 0.546 0.511

Sim 0.228 0.337 0.409 0.440 0.454

Kurtosis Real 7.907 1.971 1.131 0.857 0.716

Sim 0.589 0.626 0.634 0.612 0.590
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While the volatility for genuine returns is more or less pro-
portional to the square root of holding time, this relationship is
not perfect. For each holding period, the mean volatility for real
stocks is slightly lower than that for simulated stocks and the
difference grows at least up to a 20-bar holding period. For a
20-bar holding period, real stocks have a mean volatility that is
3.7% lower than that of simulated ones. A possible explanation
would be the presence of some mild countertrend activity in the
behavior of real stocks over longer holding periods. For most
practical purposes, however, a square-root-of-time scaling for
volatility may be assumed.

The answer to the question “Are successive returns inde-
pendent?” is a qualified “yes.” This is consonant with the experi-
ence of successful traders. Although traders believe that there
are small inefficiencies that can be exploited for a profit—other-
wise, why trade—most would argue that these inefficiencies are
complex and hard to find and that, for the most part, future
price movements are unpredictable from (i.e., independent of)
the movements that immediately precede them.

Log-Normality of Returns The second question the study
intended to address was whether or not returns are log-normal
in their distribution. If x is a random variable with a log-normal
distribution, then ln(x) will be a random variable with a nor-
mal distribution. Consequently, if dollar or percentage-based
returns have a log-normal distribution, as assumed by standard
pricing models, then logarithmic returns should be normally
distributed. Are they? As mentioned earlier, a normally distrib-
uted random variable has neither skew nor kurtosis, i.e., its
skew and kurtosis are zero.

As reported in Table 4–1, the mean skew exhibited by
returns from genuine stocks clearly differs from zero; it is con-
sistently negative across all holding periods. In contrast, returns
from the Monte Carlo simulacra evidence little or no skew.
Although the amount of skew seen for real stocks is small, it is
statistically meaningful. The conclusion is that returns from
real stocks have a distribution that differs somewhat from log-
normal: In comparison to what standard pricing models expect,
real stocks more frequently take steep dives or make gentle
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ascents, and less frequently stage powerful rallies—a pattern of
behavior readily seen in stock charts.

Positive kurtosis, too, is evidence for deviations from nor-
mality that violate the assumptions of popular pricing models.
For the 1-bar holding period, the mean kurtosis for real stocks
was 3.940, while for simulated ones it was only 0.149, a very
substantial difference. This means that the distribution of 1-bar
returns from real stocks is leptokurtic. Extreme price changes,
either up or down, happen more frequently than allowed for by
standard models. Just remember the crash of 1987 or the
euphoric bubble of 2000. Such events would happen only once
every several thousand years, if market movements truly fol-
lowed a log-normal random walk. However, such crashes and
bubbles occur with alarming regularity. Minimal price changes
also occur with greater frequency than one might expect, as any-
one who has repeatedly lost money purchasing options on stocks
that rest motionless would attest. Conversely, moderate price
movements occur somewhat less often than standard models
would anticipate.

The results in Table 4–1 indicate that, as the holding period
increases, the level of kurtosis comes more in line with what
would be anticipated given a log-normal distribution of returns.
By the time a 20-bar holding period is reached, the difference
between the real and Monte Carlo data is small. On that time
frame, the typical stock’s price behavior is in closer agreement
with the assumptions of most option pricing models. The decline
in kurtosis across holding periods could be explained by occa-
sional large shocks to price—sharp movements that span only a
few days and that are distinct from the smaller, more normal
ones occurring before or after. When 1-day periods are exam-
ined, such intense 1- or 2-day thrusts would have a strong
impact on the distribution of returns. Their influence would be
washed out over longer periods by the larger number of smaller
movements taking place at other times. This explanation for the
decline in kurtosis with longer holding periods is supported by
the experiences of traders. Any trader of small stocks will occa-
sionally see a stock jump 10%, 20%, or even 100% (or decline
likewise) in the space of two or three days, and then, after the
shock, return to more normal behavior. Such a pattern of price
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movement frequently occurs in response to rumors and can be
very dramatic among smaller, less liquid issues; no doubt it
occurs in larger issues as well.

Although small in absolute size, the mean kurtosis figures
for the simulacra also differ from zero and become more nega-
tive as holding time increases. This is due to the segmenting
and normalization procedures employed when computing the
moments and is the reason comparisons are made against Monte
Carlo baselines rather than against theoretical values.

Estimating Standard Errors The standard deviations in
Table 4–1 may be used to estimate standard errors for the cor-
responding means. A standard error for a sample mean would
usually be computed by dividing the standard deviation by the
square root of sample size, here the number of segments. The
usual method assumes that sample data points are independent;
in this instance, however, they are clearly anything but. Because
of overlapping segments, and even more so as a result of corre-
lations between stocks, a great deal of statistical dependence
exists. Does this mean that a standard error cannot be found?
No. A standard error may still be coarsely reckoned by making
some subjective adjustments to standard statistical techniques.
The trick has to do with degrees of freedom. It is the effective
degrees of freedom (or effective sample size) that are reduced by
statistical dependence. If one is willing to venture a guess regard-
ing the effective degrees of freedom, given the dependencies on
the data, an estimate of the standard error can be obtained.
The trick is to divide the sample standard deviation by the
square root of the subjectively estimated effective degrees of
freedom instead of dividing it by the square root of the actual
sample size.

In the present case, there are about 40,000 segments or
sample data points. About half of the degrees of freedom implicit
in those data points are lost to the 50% overlap between seg-
ments. That leaves roughly 20,000 degrees of freedom. When
stocks, rather than simulacra, are being considered, these
remaining degrees of freedom must be further trimmed. If
stocks were perfectly correlated with one another, the 20,000
remaining degrees of freedom would have to be divided by the
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number of stocks, about 2,000. But, stocks are not perfectly cor-
related, only partially so. Suppose 90% of the 20,000 degrees of
freedom are lost to correlations between stocks, about 2,000
effective degrees of freedom would then remain. Assuming these
figures are roughly on target, the standard error can be esti-
mated for any real stock mean in Table 4–1 by dividing the cor-
responding sample standard deviation by 44.72, the square root
of 2,000. For simulated stocks, the standard deviation would be
divided by 141.42, the square root of 20,000, since degrees of
freedom are lost only to segment overlap and not to correlations
between stocks.

As an example, consider the calculation of a standard error
for the mean kurtosis of returns from the real stocks over a
5-bar holding period. If there were there no correlations between
stocks and no overlap between segments, the standard error of
mean kurtosis would be 1.971 divided by the square root of the
number of segments or about ±0.010. Since there are correla-
tions and overlaps, 1.971 is divided by 44.72, the square root of
the effective degrees of freedom, yielding ±0.044 as the estimated
standard error. For the Monte Carlo baseline data, the standard
error is 0.626 divided by the square root of 20,000, which works
out to be ±0.004. It should be noted that standard errors deter-
mined by the method just discussed may be used to compute the
statistical significance of differences between means. It is possi-
ble, e.g., to roughly reckon the statistical significance of the dif-
ference between the kurtosis of simulated and real stocks. An
extensive discussion of degrees of freedom, both real and effec-
tive, and the use of statistics in difficult circumstances can be
found in The Encycl0opedia of Trading Strategies (Katz and
McCormick, 2000).

Nonsegmented Analysis

An alternative way to calculate the first four moments across
holding periods was tested. In this analysis, the stock data were
not segmented. Instead, for every valid bar of every stock, nor-
malized returns were computed. Why were the returns normal-
ized? Because volatility varies dramatically from stock to stock,
and even from time to time within the same stock. Without
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normalization, the returns sampled would differ greatly in mag-
nitude from era to era and stock to stock, and in a way unrelated
to the distributions under investigation.

The first step in calculating a normalized return for a given
stock was to determine the m-period historical volatility at the
reference bar. In this instance, m was 100. The historical volatil-
ity was multiplied by to convert it from an annualized
measure to an expected volatility for a k-bar return. The loga-
rithmic return from the k-bar period immediately following the
reference bar was then divided by the expected volatility for a
k-bar return as determined from the historical volatility. These
calculations were performed for every valid reference bar, and
for both real stocks and simulacra. The result was two sets of
normalized returns for each k-bar holding period. For each hold-
ing period there were a total of 2,473,149 returns from real
stocks and an equal number from simulated stocks, certainly
sufficient for stable statistics.

Only stocks that were active over the entire period covered
in the binary database were analyzed. This limited the total
number of stocks to 1,475. The reason for only considering
stocks active over the entire historical span was to avoid any
bias that might result from the existence of different numbers of
stocks in different historical periods contributing to the sample
of returns.

Moments were computed across holding periods using the
normalized returns for both real stocks and Monte Carlo simulat-
ed stocks. In addition to the mean, standard deviation, skew, and
kurtosis, the average deviation was calculated. The average devia-
tion is a so-called robust statistic. It is robust in the sense that it is
less affected by outliers (highly deviant data points) and violations
of normality than its nonrobust cousin, the standard deviation.
Like the standard deviation, the average deviation measures the
spread of a distribution or of a sample of data points.

There were two reasons for performing an alternative, non-
segmented analysis. One reason was the desire to verify results
from the segmented method. The other reason was the need to
determine whether a simpler, whole-sample method was work-
able. It was desirable to have in reserve a whole-sample method
applicable to situations where insufficient data for the segmented
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approach would be available, e.g., when studying day-of-month
effects.

Results from Nonsegmented Analysis

The basic pattern of findings from the nonsegmented analysis is
similar to that produced by the segmented method, except that
the attenuation of skew and kurtosis due to segmentation was
avoided. Table 4–2 shows the results from the nonsegmented
analysis.

Volatility and Independence of Returns Given how
the returns were normalized, the observed volatility should be
slightly greater than unity and roughly equal across holding
periods if successive price movements are independent and volatil-
ity scales as the square root of time. The figures in Table 4–2
show that this is indeed the case. Also implying a market that
behaves almost precisely as standard theory would suggest is
the fact that for longer holding periods, the volatilities for the
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T A B L E  4–2

Moments of Normalized Returns Calculated Using the
Nonsegmented Method for Each of Five Holding Periods and
for Both Real and Simulated Stocks

1-Bar 5-Bar 10-Bar 15-Bar 20-Bar

Growth Real −0.001 0.000 0.002 0.003 0.005

Sim 0.000 0.000 0.000 0.001 0.001

Avg dev Real 0.751 0.772 0.779 0.788 0.794

Sim 0.807 0.809 0.812 0.814 0.818

Volatility Real 1.073 1.072 1.067 1.068 1.070

Sim 1.046 1.050 1.055 1.060 1.066

Skew Real −0.822 −0.675 −0.674 −0.652 −0.643

Sim −0.004 0.002 0.005 0.008 0.018

Kurtosis Real 22.999 9.217 7.188 5.838 5.177

Sim 1.034 1.073 1.114 1.181 1.435
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real and simulated stocks are nearly equal; however, the volatil-
ity of genuine stocks relative to simulated stocks declines slightly
as the holding period increases. A decline in relative volatility
with increasing holding period was also observed with the seg-
mented method and might indicate that real stocks exhibit some
systematic countertrend activity.

Essentially the same pattern appears when the average
deviation is used instead of the standard deviation as a measure
of volatility. Theoretically, the average deviation is about 23%
smaller than the standard deviation when the underlying dis-
tribution is normal. The numbers in Table 4–2 are lower by
about 23% for the Monte Carlo simulacra, just right for a sam-
ple drawn from a normal distribution, and by around 27% for
the real stocks. The greater difference between the standard
deviation and average deviation for real stocks is no doubt a con-
sequence of positive kurtosis in real stock returns; a platykurtic
distribution (one with positive kurtosis) has longer tails that
inflate the standard deviation more than they do the average
deviation and thus lead to a greater disparity in the values of
these statistics.

Skew, Kurtosis, and Log-Normality As with the seg-
mented method, skew is negative across all holding periods
examined. The observed negative skew is greater in the non-
segmented analysis because the attenuation that results when
estimates are made from small segments or samples is absent.

Kurtosis is intensely positive across all holding periods. As
with skew, the kurtosis figures have not been reduced by seg-
mentation. Consistent with what was found using the segmented
analysis, kurtosis declines as the length of the holding period
increases, but always remains substantially greater for real
than for simulated stocks. The normalization procedure and, to
a lesser degree, the slowly changing volatility in the simulated
stocks are responsible for the mild kurtosis observed in the Monte
Carlo returns.

The mean returns are quite small, as might be expected for
short holding periods. The numbers in Table 4–2 are slightly
larger in absolute size than in Table 4–1 because the data upon
which the means are based are not raw logarithmic returns, but
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rather normalized logarithmic returns expressed as z-scores,
i.e., in terms of standard deviations.

Nonsegmented Analysis of Two Indices

A nonsegmented analysis was carried out on the QQQ and SPY
index securities. For those not familiar with these popular,
optionable securities, the QQQ tracks the NASD-100 index
while the SPY tracks the S&P-500 index. The idea was to see 
if these index-based securities (and stock indices, generally)
behave like individual stocks. Table 4–3 contains the results
from the analysis broken down by data type (real or simulated),
moment (growth, average deviation, standard deviation, skew,
kurtosis), holding period (1-, 5-, 10-, 15-, 20-bar), and index
symbol (QQQ or SPY). Because data samples were smaller for
indices than for individual stocks, standard errors are larger for
the statistics reported in Table 4–3 than for those appearing
earlier in Table 4–2.

The mean returns in Table 4–3 are mildly positive for all
holding periods. If these numbers appear large, remember that
the returns on which they are based were measured in standard
deviation units (i.e., as z-scores) and not as percentages.

Consistent with theoretical considerations, the volatility of
returns from the simulacra is slightly greater than unity for
every holding period; except for the 1-bar holding period, the
volatility of returns from the real index securities is not: real
index returns from longer holding periods have volatility levels
considerably below unity, and even further below the Monte
Carlo figures. The difference between the real and Monte Carlo
volatility is greatest for the 10-bar holding period. Substantial
countertrend or mean-reverting activity in both the QQQ and
SPY might account for these findings. Unlike returns from indi-
vidual stocks, successive returns from index securities are not
independent and the square-root-of-time scaling assumption may
lead to an overestimation of volatility by as much as 10% for cer-
tain holding periods.

As with tests involving individual stocks, skew for returns
from the index securities is lower than for returns from the sim-
ulacra across all holding periods. Negative skew seems to be
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characteristic of both individual equities and equity indices like
the QQQ and SPY. Kurtosis is positive for the shortest holding
period, although not so much so as for individual stocks. For
longer holding periods, kurtosis becomes effectively negative
(below the simulacrum baselines), especially for the QQQ. Like
declining relative volatility with increasing holding time, this
may indicate the presence of countertrend activity. Negative

T A B L E  4–3

Moments Calculated Using Nonsegmented Method for
Normalized Returns from Two Popular Stock Indices 
across Five Holding Periods

SPY 1-Bar 5-Bar 10-Bar 15-Bar 20-Bar

Growth Real 0.007 0.021 0.033 0.043 0.053

Sim −0.006 −0.013 −0.019 −0.025 −0.031

Avg dev Real 0.799 0.770 0.732 0.748 0.753

Sim 0.818 0.827 0.838 0.828 0.804

Volatility Real 1.065 0.999 0.951 0.947 0.948

Sim 1.056 1.072 1.089 1.073 1.052

Skew Real −0.287 −0.446 −0.513 −0.450 −0.377

Sim −0.005 0.376 0.370 0.293 0.253

Kurtosis Real 2.518 1.478 1.302 0.725 0.354

Sim 0.624 1.781 1.189 0.959 1.160

QQQ 1-Bar 5-Bar 10-Bar 15-Bar 20-Bar

Growth Real 0.024 0.059 0.086 0.106 0.126

Sim −0.005 −0.011 −0.014 −0.016 −0.020

Avg dev Real 0.814 0.778 0.761 0.774 0.784

Sim 0.813 0.820 0.832 0.819 0.793

Volatility Real 1.054 0.984 0.959 0.955 0.969

Sim 1.046 1.056 1.071 1.049 1.027

Skew Real −0.085 −0.277 −0.105 −0.040 0.067

Sim 0.038 0.320 0.420 0.407 0.398

Kurtosis Real 2.006 0.846 0.297 −0.177 −0.358

MC 0.584 1.195 0.978 0.948 1.294
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kurtosis would be anticipated for a security that has prices 
constrained by resilient barriers of support and resistance, or in
cases where prices tend to revert to former levels after severe
shocks.

The lower relative volatility and unusual negative kurtosis
seen with longer holding periods will affect option prices and
cause standard models to produce erroneous results. For
instance, when using historical volatility, a model like Black-
Scholes will tend to overestimate the value of QQQ and SPY
options; it will do so because movements of the underlying secu-
rities in the period remaining before expiration are likely to be
less than expected, given the historical volatility level. Because
negative kurtosis reduces the value of far out-of-the-money
options, the overestimation will be worse to the extent that
the options being priced are of this kind; standard models tend
to overprice far out-of-the-money options when returns have a
platykurtic distribution.

Discussion

When individual stocks are studied, successive returns appear
to be nearly independent (at least in terms of any simple, linear
relationship) and volatility scales roughly as the square root of
time. The assumptions made by popular pricing models regard-
ing the independence of returns and the scaling of volatility
seem compatible with observed market behavior. In other words,
stock price movements are fairly efficient in the sense of being
relatively unpredictable. This is not to say that stock price
movements cannot be predicted at all; some predictability that
can be captured with appropriate nonlinear prediction models
may exist. However, for practical purposes involving individual
stocks over the timeframes studied here, the assumption of
independent returns appears to be acceptable. Such is not the
case for indices. When indices are examined, successive returns
are not independent. Index data appear to exhibit dependency,
perhaps in the form of mean-reverting or countertrend activity
that reduces the relative volatility for certain holding periods.

Whether dependent or independent, returns are clearly not
log-normal in their distribution. Returns from both stocks and
indices are negatively skewed across all holding periods.
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Kurtosis is strongly positive across all holding periods for stocks,
with the shortest periods having the most severe kurtosis. For
indices, kurtosis is positive for the shortest holding periods, but
drops below the Monte Carlo baselines when returns from longer
periods are considered.

In plain English, for stocks, and for indices held for short
periods, there are more extreme returns, both positive and neg-
ative, than expected from a log-normal distribution, as well as
returns that reflect little or no change in price. In addition, there
is a tendency for the extreme returns to be negative, rather than
positive—stocks tend to fall faster than they rise. There are
fewer moderate returns in either direction than would be
expected. For indices held for longer periods, the pattern is one
of a lower-than-expected volatility and an excess of moderate
returns in both directions punctuated by the occasional large
negative return.

Deviations from independence and log-normality, such as
those just discussed, will cause option premiums to differ from
what popular pricing models indicate is fair. The difference will
be especially pronounced under certain circumstances and for
particular options. For example, positive kurtosis gives out-of-
the-money options greater value than what might be calculated
using a model like Black-Scholes, which assumes a log-normal
distribution of returns. The reason is obvious: extreme moves
that could result in an out-of-the-money option becoming signifi-
cantly in-the-money at some future time are more likely than
allowed for by the standard models.

Turning this around, if market prices reflect actual value
then the implied volatility calculated with a standard model will
be greater for out-of-the-money options than for at-the-money
options trading on the same security. Higher implied volatility
has indeed been observed for many out-of-the-money options.
When combined with higher implied volatility for deeply in-the-
money options, another effect of positive kurtosis results—the so-
called “volatility smile.” The term derives from the smile-like
appearance of the curve when implied volatility is plotted against
moneyness for a chain of options having the same expiration date.

The reduced volatility in index returns from longer holding
periods will cause index options to have less value than antici-
pated based on standard pricing models. To the extent that serial
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dependence in returns attenuates volatility, models like Black-
Scholes will tend to overprice such options. Negative skew will
increase the value of out-of-the-money puts while decreasing the
value of out-of-the-money calls. Consequently, standard models
will overprice the calls and underprice the puts, and implied
volatility for out-of-the-money puts will be greater than for out-of-
the-money calls. There is no violation of put-call parity, since
options of different terms are involved. In fact, as a consequence
of put-call parity, standard models will also overprice in-the-money
puts and underprice out-of-the-money calls.

STUDY 2: MOMENTS AND DAY OF WEEK

This study examines how the moments of returns vary with day of
the week. Is Monday a day of sharp corrections? Does Friday often
close strong? Which days are least volatile and which are most?
Do weekend returns have a greater standard deviation than
nonweekend returns? These are some of the issues addressed.

The question of whether weekend returns (those from the
close on Friday to the close on Monday) are more volatile than
weekday returns is an important one when it comes to pricing
options. Consider the fact that the amount of time that remains
in the life of an option is an essential variable required by all
pricing models. Time may be measured in calendar days, or in
bars, or trading days. Pricing models are customarily set up to
measure time in calendar days. But is this the most effective
way to measure time for the purpose of pricing options? Or
should time be measured in trading days? It is all a matter of
volatility. If stock price movements over the weekend are statis-
tically like those occurring on other days, then trading days
should be used as the measure of time. If prices move more over
the weekend—some might argue they do since more price-influ-
encing events can occur in three days than in one—then calen-
dar time is the appropriate measure. Or perhaps weekends
should be counted as if they represent some intermediate inter-
val between one and three days. In fact, if each day manifests a
different volatility level, it might be argued that every day of the
week should be assigned an “effective time” that is proportional to
the square of that day’s relative volatility. Other issues examined
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in this study also have relevance to option pricing and are of
practical interest to traders of both options and stocks.

Method

A procedure very much like the nonsegmented analysis from
Study 1 was employed. The procedure was applied to both the
entire sample of stocks and to the QQQ and SPY index securi-
ties. First the historical volatility was computed for every bar of
every stock or index. The logarithmic return from each bar was
then normalized by dividing it by the historical volatility. For
this purpose, historical volatility expressed in daily (rather than
annualized) form was used. Only stocks or indices that were
active over the entire historical sample were analyzed. So far,
the procedure is identical to that employed in Study 1 to com-
pute the 1-bar returns for the nonsegmented method. At this
point, however, the returns were sorted into five distinct groups
that correspond to the five days of the week. The moments were
then separately determined, along with the average deviation,
for each group of normalized returns.

Results

The results appear in Table 4–4 arranged by moment (mean or
growth, average deviation, standard deviation or volatility, skew,
kurtosis), day-of-week, and market (stocks, indices). Moments for
Monday are based on returns from Friday’s close to Monday’s
close, moments for Tuesday are based on returns from Monday’s
close to Tuesday’s, and so on. The number of data points or returns
used to calculate each moment is also shown in Table 4–4.

Growth Because growth was computed from logarithmic
returns, it does not reflect gains achieved merely as a result of
the action of volatility (see Chapter 3). Also keep in mind that
the growth figures are based on normalized returns and hence
take the form of z-scores (ratios to the standard deviations)
rather than percentages.

Growth for the average stock is negative on Monday; it 
is positive on Friday and, to a lesser degree, on Wednesday.
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The same pattern is observed for the combined SPY and QQQ
index data except that, on a relative basis, Monday’s losses are
smaller than those for stocks and Wednesday’s gains are
greater. For both stocks and indices, growth is negligible on
Tuesday and Thursday.
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T A B L E  4–4

Moments of Returns Broken down by Day-of-Week, Real-vs-
Simulated and Stocks-vs-Indices

Stocks Mon Tue Wed Thu Fri

Growth Real −0.037 −0.002 0.012 −0.001 0.027

Sim 0.000 −0.003 0.000 0.002 0.001

Avg dev Real 0.770 0.748 0.751 0.760 0.728

Sim 0.809 0.811 0.809 0.807 0.809

Volatility Real 1.102 1.060 1.069 1.089 1.041

Sim 1.033 1.034 1.033 1.031 1.033

Skew Real −1.084 −0.772 −0.469 −0.951 −0.859

Sim 0.007 −0.010 −0.003 −0.001 −0.014

Kurtosis Real 25.632 20.577 19.297 25.501 24.610

Sim 0.504 0.494 0.581 0.539 0.485

Data pts 4,75,644 5,11,752 5,10,410 5,01,613 5,00,128

Indices Mon Tue Wed Thu Fri

Growth Real −0.008 0.003 0.051 0.001 0.032

Sim 0.081 −0.017 0.016 −0.017 −0.015

Avg dev Real 0.808 0.839 0.777 0.818 0.787

Sim 0.806 0.798 0.836 0.826 0.820

Volatility Real 1.114 1.087 0.999 1.048 1.049

Sim 1.036 1.026 1.068 1.041 1.023

Skew Real −1.228 0.136 0.288 −0.171 0.207

Sim 0.004 0.017 −0.016 −0.035 −0.136

Kurtosis Real 5.528 1.005 1.110 0.657 1.950

Sim 0.348 0.511 0.244 0.157 −0.092

Data pts 658 708 706 694 692
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Volatility and Average Deviation For both stocks and
indices, volatility is highest on Monday. This might be expected:
Monday is traditionally a volatile day. However, the volatility for
over-the-weekend returns on Monday is only marginally greater
than for weekday returns on Thursday, in the case of stocks, or
Tuesday, in the case of indices, and by far lower than would be
expected if it scaled with calendar rather than bar or trading time.
For any 3-day period (calendar time), the expected normalized
volatility is around 1.033 multiplied by 1.732 (the square root of 3),
or 1.789; observed Monday volatility is obviously far lower than
this: 1.102 for stocks and 1.114 for indices. The number 1.033
comes from the large-sample simulated volatility for normalized
returns from a 1-bar period; it is greater than one because the
divisor in the normalization, the historical volatility, contributes a
little to the total variance of the normalized returns.

Volatility is lowest on Friday for stocks, and on Wednesday
for indices. For the indices, Wednesday’s volatility is not merely
the lowest of the week; it is extremely low, even when considered
on its own.

Overall, the average deviation behaves much like the stan-
dard deviation, the usual measure of volatility. The average
deviation is, however, consistently low relative to the Monte
Carlo baselines, whereas the standard deviation is consistently
high. This effect is due to the fact that the distribution of loga-
rithmic returns has longer tails than the normal distribution,
and thus exhibits kurtosis. Kurtosis inflates the standard devi-
ation and, when returns are normalized as done here, drives
down the average deviation, which is much less affected by the
longer tails in the distribution.

Skew In the world of individual stocks, skew is decidedly
negative for every day of the week. Monday has the most nega-
tive skew, whereas Wednesday has the least. For the indices,
skew is quite negative for Monday, but mildly positive for
Wednesday and Friday.

Kurtosis Strong positive kurtosis exists for stocks across all
days of the week. For indices, kurtosis is positive and strong on
Monday, moderate on Friday, and weak but still positive on
Thursday.
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Discussion

Is Monday the most bearish day of the week? Does the homily
“Don’t sell stocks on Monday” have any truth? Growth is most
negative on Monday for both stocks and indices. Given such
negative growth, the answer would have to be “yes” to both ques-
tions. Is Monday a day of sharp declines? Monday has the most
negative skew and is also the day with the greatest kurtosis. The
negative skew together with positive kurtosis suggests that the
answer to this question is also “yes.” However, the high level of
kurtosis indicates that Monday may have not only an excess of
severe losses, but an excess of extreme gains as well. Friday and
Wednesday, by way of contrast, are more bullish days; this is true
for both stocks, where Friday is the stronger of the two days, and
for indices, where Wednesday is the stronger day. It is curious that
volatility is at its lowest on these two days, the days of strongest
growth.

When it comes to volatility, returns over weekends (on
Monday) behave much more like returns from other days of the
week than like those that might be expected from any three-day
period. Although volatility is slightly elevated on Monday, it is
nowhere near high enough to justify the use of calendar time
when computing theoretical option premiums. Based on the
data sample used in the analysis, weekends should be treated
like any other days of the week; bar time, not calendar time,
should be used when modeling volatility or pricing options.

From the findings of this study, when pricing options, the
customary use of calendar time can be expected to result in
overpricing on Friday and underpricing on Monday. Such mis-
pricing may be sidestepped by measuring time in bars. To use
bar time with any pricing model, simply let t = bars/252, where
t is the time remaining in years, rather than t = days/365.25. It
should be mentioned that the choice of time measurement is
really significant only for very short holding periods.

The higher kurtosis over the weekend, especially for
indices, probably reflects the factors normally assumed to justi-
fy the use of calendar time when working with volatility.
Political events and some types of news that affect the markets
may have a greater likelihood of occurring over the weekend
because of the three-day span, but such events are probably rare
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and tend to affect all stocks. Weekday news more often affects
specific stocks and its impact is thus smoothed out in the
indices. With indices, the countertrend activity generated by
arbitrageurs and index traders tends to dominate. Another 
possible explanation for the high level of kurtosis in Monday
returns is that Monday is a day that traders and investors act
on decisions made leisurely over the weekend. If these decisions
all happen to go the same way—a fairly uncommon event—a
large Monday spike, either up or down, may occur and contrib-
ute to a higher level of kurtosis.

Tuesday is a typical day for stocks, but a volatile one for
indices, especially the QQQ. Why this should be is a puzzle. In
fact, for the indices, the average deviation is greatest on Tuesday,
not Monday.

STUDY 3: MOMENTS AND SEASONALITY

One day early in 2003, one of the authors observed that options on
Intel (INTC) were trading with implied volatilities of well over
70%. This suggested that a large move was imminent. The very
next day, the same options were trading with implied volatilities in
the 30% to 40% range and at dramatically lower prices. What hap-
pened? An earnings report had been released. The release of the
report caused the uncertainty amongst traders to evaporate and
led to a collapse of implied volatility. As it happened, the stock
moved hardly at all. The implied volatility did not reflect reality; it
was excessively high almost exclusively because of the psycholog-
ical factor of uncertainty. Often, however, large moves do correlate
with the dissemination of earnings reports and traders have incor-
porated this fact into their understanding of the market.

Earnings reports are seasonal; they are released in droves
every quarter of every year. Because of index arbitrage, even
stocks that are not themselves releasing reports are likely to
participate in the movements induced by such releases. And,
there may be other seasonal cycles in volatility beyond those
induced by earnings reports. For example, October is often con-
sidered a highly volatile month, as is the time between late
December and early January. In October, volatility seems to
have a large downside component—it is the “Month of the
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Crash.” Conversely, the volatility that characterizes the so-
called “January Effect” often involves substantial gains.

Since volatility varies so perceptibly over the year, and since
it has a great impact on option value, it seemed appropriate to
analyze it for seasonality. The same can also be said for the other
moments—growth, skew, and kurtosis. Although seasonality
in price (or growth) has been discussed by numerous authors,
especially in articles and books on futures trading, seasonality
in volatility, skew, and kurtosis has not; yet it is the latter that
is most consequential when trading options. For that reason, the
following discussion is rather unique and may be of significant
practical importance for the options trader.

Method

First, a stock that was active over the entire historical period
was selected. A reference bar was then chosen from that stock’s
data series. The bar was tested for validity. To be a valid refer-
ence, it was necessary that the bar be preceded by enough bars
to calculate the historical volatility and that it be followed by a
sufficient number of bars to calculate a return. An additional
condition for validity was that the bar’s date fell between
January 1, 1996 and January 1, 2003. If the reference bar was
valid, a normalized, logarithmic, 1-bar return was calculated by
dividing the closing price of the bar following the reference bar
by the closing price of the reference bar, taking the logarithm,
and then dividing the result by the daily (unannualized) histor-
ical volatility. The historical volatility used to normalize the
return was computed over a one-year (252 bar) period to filter
out any seasonal variation. Once the return was determined, it
was saved along with the date. The next bar from the stock’s
data series was then chosen as the reference bar. After all valid
bars for the currently selected stock had been processed, the
next stock was selected and the whole procedure repeated. This
sequence of events continued until a normalized return had
been computed for every valid bar of every stock.

For each possible day and month, a set of returns was
assembled from those saved in the above-described procedure. If
a given day and month did not exist (or fell on a weekend) in a
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Statistical Moments of Stock Returns 135

particular year, the most recent return that did exist for each
stock was used. Hence, for each day and month, returns were
taken from every stock and every year in the sample. Because of
this, the number of returns assembled for each possible day and
month of a year was always equal to 10,325—the number of
stocks (1,475) multiplied by the number of years (7).

For each set of returns thus assembled, the first four
moments and the average deviation were computed. The result
was a table with columns that corresponded to the different sta-
tistics and rows that corresponded to the possible days and
months of a year. A centered, circular moving average was then
computed for each of the columns in the table to smooth out
noise. What is a centered, circular moving average? It is a mov-
ing average that treats data from the end of a series as if it pre-
ceded the beginning and data at the beginning as if it followed
the end, so that an equal number of data points on each side of
the moving reference can always be included in the calculation.
A 20-point circular moving average was used for growth, volatil-
ity, and average deviation, while a 30-point average served to
smooth the noisier skew and kurtosis data. The smoothed
columns or data series were then plotted against the day and
month to generate Figures 4–1 through 4–4.

Results

Growth As can be seen in Figure 4–1, the greatest gains in
stock prices occur from mid-October to mid-May, with growth
peaking in late April, early May, late October, and early
December. Losses tend to occur from mid-May to mid-October,
with the most negative growth observed in July and especially
in September. The pattern of growth in the current data is quite
reminiscent of that seen in the Calendar Effects Chart (Katz
and McCormick, 1990), which was based on S&P-500 index data
from 1976 through 1990, a much earlier period. In that data, too,
September is a month of generally negative growth and
November through the end of June is a period of strong positive
growth. The biggest difference between the two sets of results is
that the spikes of negative growth historically observed in
October occur somewhat earlier, in September, in the more
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recent data. This may be due to the fact that several years in the
current data sample come from a powerful bear market.

When perusing Figure 4–1, remember that growth was com-
puted from normalized, logarithmic returns. The use of logarith-
mic returns eliminates, from the growth figures, the small gains
that derive from the action of volatility, while the normalization
of returns may cause growth to appear larger in absolute magni-
tude than it is in reality. Normalization also results in a more
even contribution by all stocks to estimates of growth; without
normalization, more volatile stocks would have a greater impact
on estimated growth than do less volatile ones.

Volatility and Average Deviation Figure 4–2 shows
that volatility (thin dashed line) peaks in early January, early
April, and July, and reaches its highest levels in September and
October. Volatility in October is extremely high—about 20%
higher than the average volatility over the rest of the year! The
high level of volatility in October is significant since the data did
not include years having major crashes. A year like 1987 would
have driven estimated October volatility levels even higher.
Except for September, the peaks in volatility appear in months
when earnings reports are typically disseminated. Relatively
low levels of volatility are found in February, May, early June,
mid-August, and most of November.

The average deviation (thick solid line) tracks volatility
very closely. Only in September is there an appreciable diver-
gence between the two measures of distributional spread;
the volatility or standard deviation reaches a higher level in
September, while the average deviation in September is more in
line with its level in October. Reaction to the September 11, 2001
attacks can be ruled out as the cause—unless blame is placed on
terrorists attempting to profit from the impending attack—since
peak volatility was reached several days earlier.

The observed swings in volatility are not merely of academic
interest, but are of sufficient magnitude to be exploited by traders
for a profit. From mid-August to early September, volatility rises
by more than 20%. It declines an equal amount between late
October and mid-November. Several smaller swings of around 10%
are also apparent in Figure 4–2.
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Note that the volatility plotted in Figure 4–2 was adjusted
to have a unit mean. The adjustment was performed prior to
generating the chart by dividing every individual data point by
the average of all data points in the series, i.e., by the average of
the entire year. The same normalization to unit mean was car-
ried out for the average range, also shown in Figure 4–2.

An alternative analysis of volatility was performed to con-
firm the results of this study. For each bar of each stock, a
15-period historical volatility was computed and then normal-
ized. The historical volatility figures were then averaged by
day and month to obtain a chart similar to Figure 4–2. This
method of analysis is sensitive only to internal variation (volatil-
ity within a given stock at a given time) and not to variation that
might occur from year to year or stock to stock. It was suspected
that the year-to-year, and possibly the stock-to-stock, variation
might be distorting the findings, but this does not appear to be
the case. Although not presented here, the results from the alter-
native analysis were very similar to those obtained from the
method described earlier; the only notable difference was that
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volatility was somewhat lower in September. The alternative
analytic method was not used in this study because, unlike
volatility, skew and kurtosis could not be meaningfully estimat-
ed from small samples of data taken from individual stocks.

Skew and Kurtosis Figure 4–3 demonstrates that skew is
most negative from mid-June to early December, hitting its
maximum negative value late in November. Positive skew, some-
thing rarely seen with genuine (as opposed to simulated) stock
data, is observed in early January.

Figure 4–4 reveals that kurtosis is highest in December.
Relatively high values are also seen from late June to November
and in February. Lower levels of kurtosis are found in January
up to late June.

Discussion

Is October a month of crashes and wild price swings? Perhaps.
Volatility is, in fact, near its highest level in October, skew is
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strongly negative, and kurtosis is decidedly positive. However,
growth happens to be positive, rather than negative, throughout
much of the month. Growth and skew are most negative in
September, while kurtosis remains strongly positive. Based on a
data sample that contains no outright crashes, it appears
that while October has good qualifications as a crash month,
September has somewhat better ones. The conclusion is that
both months have the potential for intense volatility and sharp
declines.

What about the January effect? Consistent with the effect,
growth is indeed positive in January. Skew is also positive in very
late December and in early January—the only time, in fact, that
positive skew is observed. Kurtosis, although high in December,
has come down to more average levels in January. There are more
extreme returns with a below-average bias toward the downside
in December and an average number of extreme returns with a
bias toward large gains in January. In other words, the January
effect is detectable in the data sample used in the analysis.

Is there a quarterly earnings cycle in volatility? Unquestion-
ably! Measured with the average deviation, volatility peaks in
January, April, July, and October, precisely the months when large
numbers of earnings reports are released. Just as with the aver-
age deviation, when measured using the standard deviation,
volatility peaks in January, April, and July. Volatility based on the
standard deviation also peaks in September, but remains at a
high level well into October. Regardless of the measure used,
volatility forms bottoms in February, May, August, and November.

There is a curious relationship between growth and vola-
tility that can be seen in Figures 4–1 and 4–2. Volatility tends to
base near market highs, when growth is still positive, and to
peak just after periods when growth is most negative. This
pattern of volatility has been described by several market scho-
lars. According to trading lore, low volatility is often observed
proximal to market tops and high volatility near market bot-
toms. The effect has even been noted with implied volatility:
OEX options (including puts) were extremely inexpensive (had
very low implied volatilities) as the market topped prior to the
1987 crash; these same puts were very expensive near the
bottom that followed.
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Seasonal variations, as seen in Figures 4–1 through 4–4,
are of real significance to stock and options traders. Consider
volatility. The changes in volatility with time of the year are not
just theoretical, but are large enough to cause option prices to
vary by 10%, 20%, or more. The trader can definitely gain an
edge by focusing on positions that are long Vega at times when
volatility is seasonally low but about to rise, and positions that
are short Vega when volatility is high and about to fall. A glance
at Figure 4–1 suggests that, over a period of several years, a
trader could profit merely by selling option premium near the
end of October and covering in mid-November, or buying in early
June and selling late in the month.

Some of the seasonal patterns just discussed have been
noted by traders and students of the markets for a long time
(e.g., the October jitters) or have solid, logical reasons for their
existence (e.g., the quarterly swings in volatility produced by
earnings reports). These seasonal patterns are likely to continue
to exist in the future and must be seriously considered when
trading options or trying to develop a pricing model.

STUDY 4: MOMENTS AND EXPIRATION

Trading lore says that a lot of volatility occurs around the expi-
ration dates of options and futures. So-called “triple witching
days,” which occur when both options and index futures simul-
taneously expire, are notorious for being highly volatile times in
the marketplace. Yet the authors’ experience in trading options
on the QQQ index tells a somewhat different story: index prices
often seem to converge to one of the popular strikes as expira-
tion approaches, with declining (rather than rising) volatility—
almost as if the market wants the sellers of straddles to achieve
maximum profits. Then, again, the crash of 1987 took place on
the third Friday in October, the last trading day for the OEX
options, and high volatility was recorded for the whole week
leading up to the event.

For a variety of reasons, the market might be expected to
behave differently at different times vis-à-vis expiration. This
study examines the behavior of real stocks for each of 15 trad-
ing days prior to the day that options cease to trade. It provides
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some objective information on how volatility levels and the
other moments vary with the approach of expiration.

Method

The method of analysis is similar to that used to examine
moments of returns vis-à-vis days of the week in Study 2. In
Study 2, returns for both real and simulated stocks were grouped
by the day of the week; in the current study, they are grouped by
calendar days remaining until expiration Friday, the last day of
trading for expiring options.

In Study 2, the Monte Carlo results were reported for every
group or day of the week. In the current study they are not
reported for every group or day preceding expiration; instead,
the Monte Carlo results are computed for every day, but only
their average value and standard deviation are reported. On the
basis of the construction of the simulated stocks, moments of
their returns should bear little or no relationship to the time
remaining before expiration of the nearest option series. Thus it
makes sense to summarize the results statistically. The average
and standard deviation for each of the moments provide trust-
worthy baselines against which the data from real stocks may
be compared.

Results

Table 4–5 contains the results. There are seven columns in the
table. The first column lists the number of days remaining
before expiration. The growth or mean return for each day
appears in the second column. The third column contains the
average deviation; a robust measure of volatility less affected by
skew or kurtosis. For each day, the fourth column contains the
standard deviation or volatility of the normalized 1-bar returns.
Skew and kurtosis appear in the fifth and sixth columns, respec-
tively. The seventh column lists the number of cases or returns
used to compute the statistics in the preceding five columns.

Except for the last two rows, the rows in Table 4–5 corre-
spond to days located at different amounts of time prior to
option expiration. The first row, beginning with zero, contains
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statistics calculated from the normalized logarithmic returns
occurring from the close on Thursday to the close on expiration
Friday. The row that begins with four contains statistics for
returns accruing from the close on the Friday preceding expira-
tion to the close on Monday of expiration week. There are no
rows beginning with 5, 6, 12, or 13, because these days fall on
weekends. The last two rows in Table 4–5 contain statistics
derived from the Monte Carlo simulations. The row labeled
MCAVG contains the averages, over all 15 days for which there
were data, of the figures for the simulated stocks. The standard
deviations for the same figures appear in the row labeled MCS-
DEV. These Monte Carlo summary statistics can be used to
guide interpretation of the moment statistics for the real stocks
that appear in earlier rows of the table.

T A B L E  4–5

Moments of Stock Returns as a Function of Days Remaining
to Option Expiration

Days Mean ADEV SDEV Skew KURT NCAS

0 −0.047 0.722 1.046 −1.354 38.065 117,084

1 0.014 0.763 1.124 −1.875 54.726 118,554

2 −0.002 0.748 1.076 −0.671 20.864 118,552

3 0.069 0.743 1.048 −0.897 23.608 118,551

4 −0.009 0.763 1.125 −2.168 48.996 109,912

7 0.011 0.732 1.051 −1.060 32.432 114,215

8 −0.042 0.760 1.078 −0.816 20.096 118,510

9 −0.063 0.743 1.046 −0.380 10.909 118,515

10 −0.008 0.728 1.024 −0.442 10.956 118,517

11 −0.012 0.742 1.033 −0.454 10.554 114,143

14 0.115 0.753 1.050 −0.575 14.669 114,155

15 0.027 0.760 1.082 −0.662 13.686 115,616

16 0.083 0.763 1.080 −0.442 25.251 115,706

17 −0.012 0.790 1.117 −0.919 24.242 117,092

18 −0.028 0.812 1.156 −0.708 16.050 108,421

MCAVG 0.001 0.809 1.032 −0.004 0.516 115,836

MCSDEV 0.003 0.003 0.003 0.011 0.086 3,111
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Growth Negative returns appear on expiration Friday
despite the fact that Friday is usually a day of positive returns.
Tuesday, typically a neutral day, has positive returns during
expiration week. Returns are negative on Wednesday and
Thursday in the week prior to expiration week. However, the
Friday and Wednesday that fall two weeks before expiration
week evidence the strong positive growth normal for those days,
and Monday shows negative growth, also normal.

Volatility and Average Deviation Volatility on expira-
tion Friday does not differ much from that on any other Friday,
but it is mildly elevated on the previous day, Thursday. Volatility
on Monday is also elevated, but well within the range of a nor-
mal Monday level. Overall, volatility is lower in the week pre-
ceding expiration than in the week before that or in the week of
expiration. The average deviation follows a similar pattern.
Amazingly, when measured by the average deviation, the lowest
volatility of any day occurs on the Friday that the options cease
to trade!

Skew and Kurtosis Undoubtedly, skew is overall most
negative during expiration week, with Monday, Thursday, and
Friday being the most negative days, in that order. In the week
prior to expiration, Friday also has highly negative skew. Along
with heightened negative skew, expiration week is marked by
truly exceptional levels of positive kurtosis. The highest levels of
kurtosis appear on Thursday and Monday, with Friday falling
just behind. The Friday before expiration also shows elevated
kurtosis. Kurtosis is dramatically lower from Thursday in the
second week preceding expiration through Wednesday in the
week immediately before expiration.

Discussion

The extremely high level of kurtosis just prior to expiration is the
prominent finding of this study. High levels of kurtosis imply
that, relative to the normal distribution, there is an excess of
extreme returns, and an excess of small or negligible returns,
both at the expense of moderate returns. This is consistent with
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both the authors’ observations and with general trading lore. The
many instances in which returns are small and the market
moves little accounts for the author’s observation of a quiet pre-
expiration period when trading QQQ options. The infrequent, but
extremely large, moves that tend to occur during expiration week
explain the general feeling amongst traders that expiration is a
time of unexpected market turbulence. The trader who sells pre-
mium near expiration will very frequently profit from a quiet
market, but once in a while will experience a stunning loss.

The greater negative skew during the week of expiration,
taken in combination with the high level of kurtosis, indicates
that the infrequent but extreme returns tend to contribute
more to declining than to rising prices. Although usually quiet,
expiration week can be a week of wicked downturns.

SUMMARY

In this chapter, moments of returns from different holding
periods, days of the week, times of the year, and days remaining
before expiration were studied. The findings were that moments
of returns were conditionally dependent on such factors.

Successive returns were found to be statistically indepen-
dent for stocks. This was evidenced by the fact that volatility
was roughly proportional to the square root of the holding period.
Successive returns were not independent for indices. The varia-
tion in returns from certain holding periods was well below
what would be expected based on the proportional relationship
of volatility to the square root of time.

Although returns were statistically independent, at least
for stocks, in no case was their distribution log-normal. For the
most part, negative skew and positive kurtosis were noted.
Kurtosis was greatest for short holding periods, while skew was
more evenly apportioned. Relative to a log-normal process, there
was an excess of extreme returns, both negative (losses) and
positive (gains), with a bias to the downside. The observation of
a negatively skewed, leptokurtic distribution in returns from
stocks and indices is nothing new. Over the years, many investi-
gators have characterized the distribution of returns from
stocks as having long tails and negative skew.
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Moments of returns, including volatility, were found to differ
across days of the week; however, returns over the weekend were
observed to have only slightly greater volatility than returns from
other days. Volatility was not sufficiently greater over weekends
to warrant the use of calendar time when pricing options. Bar
time, not calendar time, is definitely better for this purpose.

During expiration week, kurtosis was extremely positive
and skew was very negative. Levels of skew and kurtosis were
by far lower in the week preceding expiration week, although
still typical of a negatively skewed, leptokurtic process.

A potent quarterly cycle was observed in volatility. Often
10% to 20% in size, the cyclic swings in volatility are large
enough to be important to the trader. The quarterly release of
financial reports by active companies is probably responsible 
for this cycle.

The phenomena observed when studying the moments of
returns are sufficiently intense to have practical significance
when trading or pricing options. Taking conditional variation in
growth, volatility, skew, and kurtosis into account can certainly
improve a trader’s bottom line. But how do the moments, and
differences in their levels under a variety of conditions, affect
the theoretical fair value and real-market price of an option?
Option value, market price, and influential variables are
explored in later chapters, beginning with the next in which one
of the moments, volatility, is studied in great depth.

SUGGESTED READING

A brief discussion regarding the statisitical moments of a sam-
ple can be found in Numerical Recipes in C, Second Edition
(Press et al., 2002). Moments and characteristic functions are
discussed from the mathematician’s perspective in Probability
(Lamperti, 1966) and in Continuous Univariate Distributions
(Johnson et al., 1994).
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There is no question that volatility is one of the most critical
variables when it comes to determining the worth of an option.
However, it is not implied or historical (past) volatility that
determines value; it is future volatility or movement that does
so. It goes without saying that future volatility cannot be di-
rectly measured until the future has become the past. Future
volatility must, therefore, be estimated or predicted. Often his-
torical volatility is used as a proxy for future volatility when
calculating theoretical option prices. Implied volatility, too, fre-
quently serves as an estimate of volatility in times to come. The
best estimator of future volatility, however, is definitely not
standard historical or implied volatility, taken as is. Better pre-
dictors of future volatility are easily constructed as will be
demonstrated in this chapter.

MEASUREMENT RELIABILITY

One issue to consider in the quest for a better predictor of future
volatility is the issue of reliability. The ability to accurately esti-
mate the volatility that lies ahead is limited by the reliability of
the measurements used to generate the estimate. How reliable
a measure is historical volatility calculated as a standard devi-
ation of returns? How about historical volatility assessed with 

147

C H A P T E R  5

Estimating Future Volatility

7741_ch_5.qxd  28/12/04  12:02 PM  Page 147

Copyright © 2005 by Scientific Consultant Services, Inc. Click here for terms of use.



a more robust estimator, such as the average daily range? In fact,
what exactly is reliability? The answer to the last question—and
the technology able to answer the other two—can be found in
the arcane realm of classical test theory or psychometrics.

Psychometrics is a field where the concept of reliability is
well developed. Consider volatility from the perspective of a
psychometrician. Volatility was defined in previous chapters as
price movement taking place in the context of time; it was mea-
sured as the standard deviation of logarithmic returns. However,
from the psychometric perspective, volatility is a trait, i.e., a
parameter governing an underlying generating process (or dis-
tribution) that characterizes an individual stock at a particular
point in time. Regarded as a trait, the behavior that volatility
affects may be observed, but not volatility itself. What behavior
does volatility influence? Price movement. In fact, when volatil-
ity is regarded as a trait, each day’s price movement may be con-
sidered a response to an item in a test. Calculating a 30-day
volatility becomes analogous to obtaining a score on a psycho-
logical test containing 30 items.

The score on any test may be interpreted as a weighted
sum of two components: one, the true level of the underlying
trait the test is intended to measure; and two, a random error
term. Just as there exists a true score for intelligence or depres-
sion in an individual at a particular moment, a given stock at a
given time has a true level of volatility. And, just as a test will
reflect both the psychological trait and the random measure-
ment error, so will a return reflect both volatility and noise. It is
the proportion of total variance that can be attributed to the
underlying trait—whether depression, intelligence, or volatili-
ty—that constitutes reliability.

So how reliable is the standard measure of historical
volatility? With the machinery of test theory, a question like this
is fairly easy to answer. No problem exists with construct valid-
ity since the items, the squared daily returns, clearly reflect the
desired underlying trait. However, as measures of the underly-
ing trait, the individual items are fairly unreliable. This is not a
serious problem because a set of items provides a more reliable
measure than any single item. The 30 returns, which may be
used as the basis for a 30-bar historical volatility calculation,
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yield a more reliable measure of underlying volatility than
merely one return. This is because a test’s trait-related variance
increases directly with the number of items, while its error vari-
ance increases only with the square root of the item count.

There are various ways to assess the reliability of a scale or
test composed of multiple items. A common approach involves
the concept of internal consistency. One measure of internal con-
sistency is the split-half correlation, from which the reliability of
a test may be easily reckoned. To calculate a split-half correla-
tion for a measure of volatility, split the data sample into odd
and even bars, determine the volatility from the odd bars, deter-
mine the volatility from the even bars, and then correlate the
odd and even volatility scores over all samples. The odd and
even scores can be correlated using the standard formula for the
correlation coefficient:

(5.1)

In this formula, rxy is the Pearson Product-Moment Correlation,
x and y are the variables for which the correlation is to be found,
and n is the number of data points. The split-half reliability
can readily be determined from the split-half correlation. This
correlation is, in fact, the reliability of a test containing half
as many items as the full-length measure. Reliability may be
extrapolated from a shorter to a longer test using the formula

(5.2)

where rk is the extrapolated reliability of the longer test, r is the
reliability of the shorter test (or test item), and k is the ratio of
the size of the longer test to the size of the shorter one. A split-
half reliability for a full test may be computed from the corre-
lation between the two halves by setting k = 2 in the above
formula. There is no reason not to compute split-half correla-
tions and reliability coefficients for a variety of volatility scales,
including the standard and average range measures.
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Why the fuss over reliability? Because the reliability of an
independent (predictor) variable is directly related to the maxi-
mum possible correlation of that variable with the dependent
(target) variable. If one variable is used as a predictor, the
correlation of that variable with the variable being predicted
can never be greater than the square root of the predictor vari-
able’s reliability. In other words, reliability limits predictive
utility. The more reliable a measure, the better an estimate it
can be of some other measure or of an underlying trait or hidden
parameter.

Obviously, measures used as independent variables should
be as reliable as possible. If a measure of historical volatility
lacks reliability, then, even if it measures precisely what is
intended, it will still be a poor estimator of future volatility.
Sometimes a biased estimator can provide better results. In fact,
bias in an estimator may be perfectly acceptable if sufficient
improvement in the level of reliability can be achieved. The
many ways of measuring volatility almost certainly differ in
both bias and reliability. For example, a robust measure, like the
average daily range, even though biased (in that it may measure
something slightly different than intended or have an expec-
tation that deviates somewhat from the correct value) may be
sufficiently more reliable to compensate for the slight loss in
validity. This is the essential idea behind the use of biased esti-
mators. Volatility measures, including the average daily range,
a biased estimator, are analyzed for reliability in several of the
studies that follow. One goal en route to developing the best pos-
sible estimator of future volatility is to determine the best (in
the sense of most reliable with fewest data points) measures of
historical volatility and other important variables.

MODEL COMPLEXITY AND OTHER ISSUES

Another issue to consider in the quest for better estimates of
future volatility has to do with the complexity of the estimation
model. No doubt, a predictor variable should have high reliabil-
ity. However, to obtain the best possible estimate of future
volatility, more than one such predictor may be necessary.

One effective way to combine several predictors is with
multiple regression. A model based on multivariate regression is

150 CHAPTER 5

7741_ch_5.qxd  28/12/04  12:02 PM  Page 150



likely to provide better estimates of future volatility than can be
achieved with a univariate (single predictor) model. To begin
with, a multivariate model can employ historical volatilities for
several periods as independent variables. Data of the type
adduced in Chapter 4, such as that related to holding period,
seasonality, and day of the week, are easily integrated within
the context of a multivariate regression model. Even nonlinear
relationships amongst the variables can be managed with
appropriate techniques. A well-designed multivariate regression
is a good way to determine expected future volatility, given a set
of relevant independent variables.

Multivariate regressions can be complex, in the sense of
having many input variables and model parameters. It is well
known that with model complexity comes the danger of curve-
fitting. Curve-fitting is of little concern in the investigations pre-
sented herein because data points are so numerous, while even
the most complex models contemplated involve only a handful of
variables.

In addition to examining the use of single predictor ap-
proaches, including those based on standard historical volatility
and on more reliable measures thereof, models with multiple
independent variables and nonlinear relationships will be
explored in the quest for improved estimation. The issue of what
to use as a dependent variable—the “target,” or measure of
future volatility—will likewise be considered. One possible
choice for the dependent variable is future volatility calculated
in the same manner as historical volatility, using the equations
from Chapter 4. An alternative and possibly better choice might
be the volatility implied by the terminal price of an at-the-
money straddle. Both choices with regard to future volatility
will be examined as dependent variables in the development of
predictive regression models. Finally, the reader should note
that more popular methods of forecasting volatility, such as
GARCH models, will not be covered, since extensive coverage of
these methods already exists in the literature on the subject.

EMPIRICAL STUDIES OF VOLATILITY

The series of studies to follow concerns the very real problem of
estimating future volatility for the purpose of pricing options.
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These studies attempt to answer many significant questions
including: How good are raw historical and implied volatility as
inputs to a pricing model or as predictors of near-term future
volatility? How can better estimates of future volatility, which
will provide more accurate appraisals of option worth, be calcu-
lated? How reliable are various measures of volatility? And how
does the statistical phenomenon of regression to the mean affect
volatility and option value?

Software and Data

All analyses were carried out in generic C++ and the same code
libraries as those employed in earlier chapters were used. In
some instances, final calculations were performed in Microsoft
Excel spreadsheets. Excel was also used to prepare charts and
to format tables for presentation.

Two binary databases were employed in the studies that
follow. The first binary database contained price and volume
data for 2,241 stocks. There were 1,834 bars in the period
spanned, which ran from January 1, 1996 to April 15, 2003. These
data, originally extracted from the Worden Brothers TC-2000
package, were thoroughly checked for errors and found to be
quite clean. Details regarding how the data were extracted,
examined for errors, and scrubbed cleaned can be found in
Chapter 4. The second binary database consisted of implied
volatility figures corresponding to every bar of every stock in the
first binary database. The figures in the second database were
computed using raw end-of-day option quotes obtained from
www.stricknet.com.

Calculation of Implied Volatility

Implied volatility is the volatility that, when entered into an
option pricing model, yields the observed market price of an
option. It is usually calculated for each of several active options
trading on a given security at a given time. The individual
implied volatilities may then be used by the trader or hedger to
compare the relative costs of the options or they may be com-
bined into a general (and more reliable) measure of implied
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volatility, as was done when constructing the database de-
scribed below.

Implied volatility numbers in the second binary database
were calculated in the following manner: First, one of the stocks
in the first binary database was selected. A bar was chosen for
that stock. An options chain was then retrieved from a large
options database that was assembled using data acquired from
www.stricknet.com. The options chain consisted of data for every
option trading on the selected stock on the day corresponding to
the selected bar. Each option in the chain was examined. If an
option had between 3 days and 48 days left to expiration, and if
the bid was greater than zero, then an implied volatility was cal-
culated and multiplied by a weight. The multiplier weight was
the amount of speculative value in the option divided by the
square root of the time remaining before expiration. The weighted
implied volatilities were then summed and the result divided by
the sum of the weights. This calculation produced a weighted
average that was the implied volatility figure. Implied volatility
figures were determined separately for calls and for puts. The
figures for the selected stock at the chosen bar were then saved
in the second binary database. At this point, processing moved
to the next bar of the currently selected stock. When all bars of
the selected stock were processed, the next stock was selected
and the sequence of steps outlined above was repeated.
Repetition continued until an attempt had been made to com-
pute implied volatility figures for every bar of every stock. It
should be noted that the second binary database contains only
about one year of implied volatility figures due to options data
availability.

The intent behind the weighting scheme used when calcu-
lating implied volatility was to give greater emphasis to at-the-
money or near-the-money options with substantial speculative
(time) value than to options that were either far out-of-the-
money or deeply in-the-money. At-the-money options have the
greatest amount of time value and are often the most liquid;
thus, their prices most reliably reflect the volatility-dependent
speculative component of option value. Options with no bids
were not analyzed since their true market price is indetermi-
nate. Options with less than three days of life were ignored

Estimating Future Volatility 153

7741_ch_5.qxd  28/12/04  12:02 PM  Page 153



because they have little time value and may have more erratic
market prices (especially if strikes sufficiently close to the stock
price are not available), while those with more than 48 days
were disregarded because they are typically much less active
and also fall outside the short-term trader’s timeframe that is
the focus of this book.

STUDY 1: UNIVARIATE HISTORICAL
VOLATILITY

Historical volatility is often used when calculating a theoretical
option price. Yet the value of an option ultimately depends not
on past volatility, but on future volatility. How good is raw his-
torical volatility as a proxy for future volatility? Are there con-
ditions under which the use of historical volatility will lead to
serious pricing errors? It is possible to correct historical volatil-
ity figures to obtain better estimates of future volatility and,
therefore, of option value? These are some of the questions that
this study attempts to answer. Additionally, this study compares
several measures of both historical and future volatility.
Comparisons are made between standard and average range
volatility as historical measures, and between standard, average
range, and implied terminal straddle price volatility as mea-
sures of future price movement.

Method

Data analysis was performed in three computational blocks.
The steps carried out in the first computational block were as
follows: First, a stock was selected. A bar from that stock was
then chosen as a reference bar.

Several criteria were used when choosing reference bars.
Data points from the first m bars of each stock’s data series were
avoided as reference bars because they were retained for the cal-
culation of historical volatility. Likewise, the last n bars of each
stock’s data series were reserved for the calculation of future
volatility. In addition, the stock had to be actively trading dur-
ing all m bars in the period preceding any reference bar and, at
no point during this period, could the price fall below $2.
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These criteria ensured that the data analyzed were from periods
during which the stocks were alive and trading above penny
stock levels. Given 1,834 bars (days) per stock and 2,241 stocks,
the number of reference bars was 4,109,994 less those eliminated
from consideration by the aforementioned criteria.

Once a stock was selected and a reference bar chosen, his-
torical volatility (the independent variable) and future volatility
(the dependent variable) were calculated. Historical volatility
was calculated over a 30-bar period (m = 30) ending at the refer-
ence bar. Future volatility was determined from a 10-bar period
(n = 10) immediately following the reference bar. The historical
and future volatility figures were saved to a scratch file.

At this point, the next reference bar was chosen and the
historical and future volatilities were again calculated and saved.
This process was repeated until the last reference bar of the
currently selected stock was reached, and then another stock
was selected. The sequence continued until historical and future
volatility had been calculated for every valid reference bar of
every stock in the database.

In the second computational block, historical volatility 
figures (derived from the above procedure) were sorted into 
50 equally spaced levels or bins. The lowest bin was centered at
0.05 and the highest bin was centered at 2.10, which covered
most of the range of historical volatility observed. For each level
of historical volatility, the mean and standard deviation of
future volatility was ascertained. For example, in the analysis
employing standard historical and future volatility, bin 10 con-
tained 211,087 data points with a historical volatility centered
at 0.468, and was associated with a future volatility having a
mean of 0.479 and a standard deviation of 0.252. Bin 45 was
centered at 1.933 and had only 1,375 historical volatility num-
bers falling in its range; for those cases where historical volatil-
ity fell in this bin, the future volatility had a mean of 1.153 and
a standard deviation of 0.619. For every level of historical
volatility, this bin-by-bin analysis provided a reasonably stable
estimate of the mean and standard deviation of the correspond-
ing future volatility.

The analysis performed in the third computational block
was that of a second-order polynomial regression. Data points
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were not binned. Coefficients a, b, and c were computed to make
ŷ = cx2 + bx + a a least-squares estimator of y, where y was the
observed future volatility and x the historical volatility. The
multiple correlation, which measures the goodness of fit, was
also determined.

A total of six analyses were performed as described above.
Each analysis examined the relationship between a particular
kind of historical volatility and a specific measure of future
volatility. Two measures of historical volatility were analyzed:
one was the standard historical volatility, based on the standard
deviation of logarithmic returns; the other measure was average
range volatility, which is based on daily price ranges. The stan-
dard historical volatility was computed using Equation 4.2 in
Chapter 4; every options trader is familiar with this kind of his-
torical volatility. Historical volatility based on the average range
was computed as

(5.3)

where m represents the lookback period, k the index of the ref-
erence bar, Hk−i the high of bar k−i, and Lk−i the low of bar k−i.

Three measures of future volatility were tested. The first
two measures were the same ones used for historical volatility,
but calculated from the n bars directly following the reference
bar rather than from the m bars immediately preceding it. The
third measure of future volatility was based on the terminal
price of an at-the-money straddle.

The third measure of future volatility was, in fact, the
implied volatility of an at-the-money straddle with n days of life
remaining. The implied volatility was calculated from the termi-
nal price, not the market price, of the straddle. In performing the
calculation, strike prices for the options comprising the straddle
were set equal to the stock price at the reference bar. The implied
volatility was the volatility that, when entered into Black-
Scholes, produced a theoretical price equal to the terminal price
of the straddle n bars after the reference bar. Because volatility
is linearly related to the price of an at-the-money straddle, the
expectation of the volatility implied by the terminal price is
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equal to the volatility implied by the expected terminal price.
Given that the mean or expected terminal price is the theoretical
value of an option, the implied volatility calculated from the ter-
minal price of an at-the-money straddle is precisely what must
be estimated in order to obtain accurate theoretical option prices.

Analyzed psychometrically, the only problem with the
straddle-based measure of future volatility is that it is based on
only one test item and, therefore, has low reliability. Reliability,
however, is of minor concern in the present instance, when the
measure is used as a dependent variable. When dealing with
measures used as dependent variables, bias and construct valid-
ity are of much greater concern. Considered from the perspec-
tive of bias and construct validity, the straddle-based volatility
measure wins hands down.

Results

Figure 5–1 shows the expected level of future volatility (y-axis)
for each bin or level of historical volatility (x-axis). Two data
series are presented in the figure. One data series illustrates the
relationship between standard historical volatility (SDH) and
standard future volatility (SDF), represented by data points
tagged by small X’s. The second data series, marked by small
rectangles, depicts the relationship between average range his-
torical volatility (ARH) and standard future volatility (SDF). The
smooth curves drawn through the data points are second-order
polynomial regression lines. The dotted curve corresponds to the
data points marked by Xs and expresses the statistical relation-
ship between standard future and historical volatility; the solid
curve is the regression between the more robust average range
historical volatility and standard future volatility. The regres-
sion equations, which express future volatility (y) as a function
of historical volatility (x), appear in Figure 5–1 along with the
squared multiple correlations (R2).

Regression to the Mean Three observations are readily
made when examining Figure 5–1. The first observation involves
regression to the mean, a phenomenon well known to statisti-
cians. Volatility clearly reverts to the mean. The phenomenon can

Estimating Future Volatility 157

7741_ch_5.qxd  28/12/04  12:02 PM  Page 157



be seen in the fact that low levels of historical volatility are fol-
lowed by higher levels of future volatility, while high levels of
historical volatility are followed by lower future levels. For
instance, with a standard historical volatility of 0.20, the expected
future volatility is around 0.25; a historical volatility of 0.80
decays to a future volatility close to 0.72. Future volatility tends
to revert to its mean value, which is approximately 0.50 or 50%.
Regression to the mean is more severe with standard historical
volatility than with average range historical volatility because
the standard measure is less reliable.

Quadratic (Nonlinear) Relationship The second obser-
vation derived from Figure 5–1 is that the relationship between
future and historical volatility is nonlinear; in fact, it is quad-
ratic. A quadratic regression yielded an exceptionally high R2

for both data series: 0.9969 for the average range (ARH-SDF)
and 0.9962 for the standard (SDH-SDF). When tested, higher
order polynomials produced little or no improvement.
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F I G U R E  5–1

Standard Future Volatility (SDF) as a Function of Standard
(SDH) and Average Range (ARH) Historical Volatility
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The nonlinear relationship between historical and future
measurements suggests that mean reversion becomes exagger-
ated beyond normal when volatility is very high. There are 
several possible explanations. One possible explanation for the
exaggerated mean reversion is that the occasional high volatil-
ity event (such as might be attributed to an earnings report) is
usually followed by a rapid collapse back to normal or baseline
levels. From the trader’s perspective, stocks usually exhibit
mildly varying baseline volatility and only occasionally become
extremely unstable. Another explanation for the nonlinear cap-
ping effect, seen in Figure 5–1, is the exploitation of high levels
of volatility by traders. Extreme volatility is probably not sus-
tainable because it represents an inefficiency that may be
exploited for a profit and eliminated or, at the very least, atten-
uated. Finally, however measured, volatility has an asymmetric
distribution; it can go up without limit, but down only to zero.

Changing Relationship with Changing Volatility The
third observation based on Figure 5–1 involves the change in
the relationship between historical and future volatility at dif-
ferent levels of historical volatility. Between about 15% (0.15)
and 100% (1.00), both measures of historical volatility provide
almost identical results with overlapping data points. In this
range, either measure may be used to estimate future volatility.
As the level of historical volatility exceeds 100%, the curves
diverge; the curve for the standard measure displays greater
droop than does the curve for the average range. The divergence
might be due to average range volatility being less sensitive to
short bursts of activity. To achieve a high level of average range
volatility, there must be sustained price movement. Such move-
ment probably tends to linger longer into the future than the
short-lived spikes that can easily inflate the standard historical
volatility measure. At the left end of Figure 5–1, the standard
measure can be seen to provide a better prediction of future
volatility than the average range. However, this is only true for
levels of historical volatility below 15% or 20%. The reason may
be that even a single quiver in stock price can drive up the stan-
dard measure but will have little effect on the average range
volatility. A stock that exhibits even one such quiver is more
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likely to have wider future price swings than one that is stead-
fastly quiet.

Straddle-Based versus Standard Future Volatility
Figure 5–2 again depicts the relationship between future and
historical volatility. The only difference in the data underlying
Figure 5–2 and Figure 5–1 is that, in the former, future volatil-
ity is based on what is implied by the terminal price of an at-the-
money straddle that has 10 bars of life left until expiration. It is
easily seen that the data series in these figures have the same
overall contour and the regression equations that define the poly-
nomial smoothings are similar. The regressions in Figure 5–2
have a somewhat lower R2 due to a greater dispersion of data
points about the regression curves. This is a consequence of the
lower reliability of the straddle-based measure—straddle-based
volatility is a one-item measure, in the psychometric sense.
The mean future straddle-based volatility was 0.507, very close
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F I G U R E  5–2

Straddle-Implied Future Volatility (SRF) as a Function of
Standard (SDH) and Average Range (ARH) Historical Volatility
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to that of the standard future volatility. Lastly, the three obser-
vations made for Figure 5–1 also apply to Figure 5–2.

It should be noted that another chart (not shown) was gen-
erated with standard and average range historical volatility
as the independent (x-axis) variables, and average range future
volatility as the dependent (y-axis) variable. Except for higher
R2 levels in the regressions—a consequence of the greater relia-
bility of the average range measure—the data in the chart
appear very much like those shown in Figures 5–1 and 5–2.
Likewise, the conclusions and observations are essentially the
same and are, therefore, not presented.

Longer-Term Historical Volatility The analysis shown
in Figure 5–1 was repeated using 100-bar (rather than 30-bar)
measures of historical volatility. Although the correlation
between historical and future volatility was expected to be larger
with 100 bars, this was not the case; however, regression to the
mean was slightly attenuated for historical volatility levels
below 80%. The reason for expecting a higher correlation and less
mean reversion involves measurement reliability. Imagine that,
over relatively short periods, a stock has some “true” underlying
volatility that is fairly constant. A trader assessing it over a
100-day period is comparable to a psychometrician measuring a
personality trait using a questionnaire containing 100 items.
In other words, in the analysis, there were 100 somewhat inde-
pendent measurements of the hypothetical true volatility. The
number obtained from these 100 one-day measurements should
be more reliable and, if the assumption of a relatively constant
underlying volatility is correct, more valid than volatility calcu-
lated from a 30-bar sample. In the market, however, validity
tends to be lower with longer periods because longer samples are
less representative of current market conditions. Reliability,
however, is still likely to show a gain with an increase in the
number of bars or test items. In the analysis of the 100-bar mea-
sures, the decrease in validity, due to changing levels of volatility
over time, roughly neutralizes the increase in reliability. The
greater reliability of the longer-term volatility measurement,
however, is sufficient to somewhat attenuate the reversion to
the mean. If the regression lines in Figure 5–1 are extrapolated
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to the y-axis, the zero intersection is not reached; instead, the
lines intersect the axis at a future volatility between 5% and
10%. The equivalent regression lines for the 100-bar analysis fall
closer to zero when similarly extrapolated, thus providing further
evidence of reduced mean reversion. However, the decay of very
high volatility in the future is not much different and, overall,
the results are quite similar to those found with the 30-bar his-
torical volatilities that were presented in Figure 5–1.

Raw Data Regressions The regressions in Figures 5–1
and 5–2 were calculated (in Excel) for the binned data points
actually depicted in the figures. Regressions were also computed
directly (in the third computational block) from the raw data
points. The equations generated from the raw data were quite
similar to those for the binned data, indicating that the same
curvilinear relationships were being described, although the 
R2 was much lower for the former. A lower R2 for the raw data
was anticipated since each raw data point represents an indi-
vidual measurement, while the data points in the figures repre-
sent averages of future volatility for all cases in a given bin. All
regressions had a large positive linear component, a small neg-
ative squared component, and a small positive intercept. The
multiple correlation (not squared) was highest (R = 0.808) for
the regression relating average range historical to average
range future volatility. Given that the average range measure is
the most reliable, this was not surprising. The regression equa-
tion for estimating the most construct-valid measure of 10-bar
future volatility (based on the implied volatility of an at-the-
money straddle) from the 30-bar average range historical
volatility is ŷ = 0.084 + 0.851x − 0.060x2. This regression, calcu-
lated over 3,395,614 data points, yielded a multiple correlation
of 0.395. Given the large number of data points, the regression
should be quite stable.

Discussion

For almost the entire spectrum of historical volatility, the aver-
age range provides a better estimate of future volatility than
does the standard measure. The factor responsible is the greater
reliability and robustness of the average range as a measure of

162 CHAPTER 5

7741_ch_5.qxd  28/12/04  12:02 PM  Page 162



volatility. The average range is more reliable because the aver-
age deviation holds up better than the standard deviation when
the underlying distribution differs from normal, and because
each item is itself a complete test of volatility that takes into
account more data—the entire range of a day—than does a 
single close-to-close return.

Although commonly used when pricing options, raw histor-
ical volatility is a poor predictor of future volatility. This is true
regardless of how it is measured. The situation worsens as his-
torical volatility moves away from around 50% and becomes
especially bad when it exceeds 100%. When historical volatility
is high, future volatility tends to fall below the historical level.
Consequently, options tend to be worth less than a standard
pricing model using raw historical volatility might indicate.
Likewise, when historical volatility is low, future volatility is
likely to be higher and option value greater than might be
expected. The use of raw (uncorrected) historical volatility as an
input to a standard pricing model is a bad practice that may
lead to erroneous theoretical option premiums.

Given the findings, the standard measure should be used to
price options when historical volatility is extremely low (below
15%). For all other levels of historical volatility, the average
range measure is more appropriate. Regardless of the measure
used, historical volatility must be corrected before it is employed
as an estimate of, or proxy for, future volatility. Much better esti-
mates of expected future volatility and, in turn, theoretical
option price can be obtained by correcting historical volatility
using the relationships described in the regressions and de-
picted in Figures 5–1 and 5–2.

How is historical volatility corrected for use in pricing an
option? Assume that the observed standard historical volatility
for a stock is 150%—not an uncommon figure in the technology
sector. Should this number be directly entered into an option
pricing model? No! It is easy to determine from the curve 
in Figure 5–1 that a standard historical volatility of 150% 
corresponds to an expected future volatility of around 110%.
Alternatively, the regression equation shown in the figure could
have been used to calculate the expected future volatility. It is
the expected future volatility, not the historical volatility that
must be entered into a model like Black-Scholes in order to
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establish the theoretical price for an option. How great would
the error be if Black-Scholes were calculated using raw histor-
ical volatility, as it often is, rather than with expected future
volatility? Would it be significant enough to matter to a trader?
Suppose the stock was trading at $50, and a $55 call with one
month of remaining life was under consideration. With a volatil-
ity of 150%—the raw historical volatility in the imagined sce-
nario—Black-Scholes prices the option at $6.36. A more
accurate theoretical price of $4.16 is obtained when the 110%
expected future volatility is used in the calculation. Should the
trader be concerned with a 53% pricing error? Is it worthwhile
estimating expected future volatility? You be the judge.

An implication of the above is that, when historical volatil-
ity is very high, selling premium might not be a bad idea, espe-
cially if market prices are tracking standard models using
uncorrected historical volatility. Likewise, in low historical
volatility situations, if option prices are tracking raw historical
volatility, a trader might wish to buy premium in the expecta-
tion that future volatility will revert to its higher mean.

It should be noted that, for the sake of simplicity, a 10-bar
period was settled upon for future volatility in the studies
described above. Obviously, a trader using an option model is not
going to price only options having 10 bars of life remaining.
Analyses like those presented, however, may easily be carried
out for options whose remaining life spans any desired period.
Tests have demonstrated similar results when other potential
holding periods were studied. It is not that difficult to prepare a
set of analyses covering a range of time frames that can provide
all the information necessary for pricing options with different
amounts of life remaining. Given the task at hand, however, it
may be better to construct a more unified nonlinear regression
or neural network estimator that takes as one of its inputs the
period over which future volatility is to be reckoned.

STUDY 2: BIVARIATE HISTORICAL
VOLATILITY

The previous study involved a univariate model in which a single,
short-term measure of historical volatility was used to estimate
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expected future volatility. Can the addition of a longer-term
measure of historical volatility improve the quality of estima-
tion? The primary objective of the current study is to discover
whether a multivariate model that employs two measures of
historical volatility—one a short-term measure, the other a
long-term one—can yield a better estimate of future volatility
than a univariate model that employs only one measure.

A secondary objective of this study is to further examine
mean reversion. In Study 1, future volatility appeared to revert
to the mean of the entire market. Perhaps, even more than it
reverts to the mean of the whole market, short-term historical
volatility regresses to the mean of a given security’s long-term
volatility. It seems reasonable to suppose that securities have
characteristic volatilities that are structurally and fundamen-
tally determined, and that persist over extended periods. If this
is the case, it gives further weight to the supposition that a
model that employs both a long-term and a short-term histori-
cal measure can yield better predictions of future volatility than
a model that employs either measure alone.

Method

The analysis was performed in two computational blocks. The
first computational block began with the selection of a stock and
a valid reference bar. A reference bar was valid if there were at
least m1 + m2 bars preceding it and n bars following it, if no
price was less than $2 in the m1+m2 preceding bars, and if the
stock was active during the entire period. Once a valid reference
bar was selected, the short-term historical volatility was calcu-
lated from the m1 bars immediately preceding the reference bar.
A long-term historical volatility was computed from the m2 bars
that preceded the first bar used to calculate the short-term
measure. Future volatility was determined from the n bars that
immediately followed the reference bar. In this study, m1 was
30, m2 was 70, and n was 10. Standard volatility, based on the
second moment of logarithmic returns, was used for all mea-
surements. The three volatility measurements (two historical
and one future) were saved to a scratch file. At this point, the
next reference bar was selected. When all valid reference bars
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for a given stock had been processed, the next stock was chosen.
The sequence of steps was repeated until all three volatility
figures had been calculated for every valid reference bar of 
every stock.

The second computational block involved the binning pro-
cedure. Because there were two independent variables, the bins
formed a two-dimensional grid, rather like a spreadsheet. The
bins in each row corresponded to a distinct level of short-term
volatility, while those in each column corresponded to a specific
level of long-term volatility. The bin in the upper left corner was
centered on both a short- and long-term historical volatility of
0.05. The center of the bin at the lower right corner fell at 2.05.
Since the bins formed a two-dimensional grid, there were far
more of them than in Study 1. This meant that fewer data points
would be assigned to any one bin and that many bins would 
likely have no data points at all assigned to them. To avoid a lot
of empty or inadequately filled bins, the range of volatility
was subdivided into only 20 levels, rather than the 50 used in
Study 1; in this way, the total number of bins was reduced to 400
(20 × 20) and the number of data points falling in each bin was
increased. There were two numbers associated with each bin:
one was the number of instances in which the two histor-
ical volatilities fell within the two ranges associated with the
bin; the other was the average (expected) future volatility for
those data points.

Results

Figure 5–3 depicts short- and long-term historical volatility as
predictors of future volatility. Data from each bin is individually
represented in this chart. The x-, y-, and z-axes represent the
short-term historical, long-term historical, and expected future
volatilities, respectively. Each ribbon in the three-dimensional
space of the chart illustrates the relationship between short-
term historical and expected future volatility for one level of
long-term historical volatility. Collectively, the ribbons define a
volatility surface in three-dimensional space.

Figure 5–4 shows a subset of the data from Figure 5–3.
The x-axis represents short-term historical volatility, the y-axis
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represents expected future volatility, and the four data series
(dotted lines and markers) correspond to four selected levels of
long-term historical volatility. From bottom to top, the data
series are for long-term historical volatilities falling into bins
centered at 0.261, 0.471, 0.992, and 1.839. As in Study 1, simple
polynomial regressions were used to smooth the data series;
they appear as solid lines.

The raw data points in Figure 5–4, which represent aver-
ages taken from the two-dimensional bins, have a much greater
variation about their polynomial regressions than was the case
with the data points in Figure 5–1 or 5–2. The reason is that
each two-dimensional bin in the current study contained fewer
cases over which to average future volatility than did the one-
dimensional bins in the previous study.

Independent Contributions Figure 5–3 shows that each
measure of historical volatility can independently account for
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variation in expected future volatility and, therefore, should
contribute to a model’s ability to generate accurate predictions.
For any level of short-term historical volatility, future volatility
tends to increase with increasing long-term historical volatility.
Likewise, with few exceptions, for any level of long-term histor-
ical volatility, future volatility increases with increasing 
short-term volatility. The exceptions are for very low levels 
of long-term volatility, where future volatility rises with 
short-term volatility up to a point and then declines. Future
volatility is greatest when both short- and long-term historical
volatility levels are high, and least when both historical volatil-
ities are low.

The unique contribution of each independent variable to
the level of the dependent variable is also clearly evident in
Figure 5–4. For any of the four levels of long-term volatility,
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future volatility generally rises with rising short-term historical
volatility, i.e., as the chart is scanned from left to right.
Likewise, when short-term historical volatility is fixed (when
that chart is scanned from bottom to top), higher levels of long-
term volatility are associated with higher levels of expected
future volatility. In other words, when one independent variable
is held constant, the other continues to contribute useful pre-
dictive information. This observation is quite significant, since
two independent variables can provide better prediction than
one variable only if each can demonstrate a correlation with
the dependent variable that persists when the other is held
constant.

Reversion to Long-Term Mean Figure 5–4 shows how
the level of long-term historical volatility influences the rela-
tionship between short-term and future volatility. When long-
term historical volatility is around 26% (represented by the
bottom curve), future volatility varies only between 20% for very
low short-term levels, to about 70% for extremely high short-
term levels. Short-term levels greater than about 30% result in
lower future levels, while those less than 30% are followed by
higher levels of expected future volatility. In other words, future
volatility appears to revert to a mean near 30% when long-term
volatility is close to 26%. When long-term volatility is near 184%
(as represented by the top curve in Figure 5–4), future volatili-
ty has a greater range and higher average level, running from
about 40%, when short-term volatility is 5%, all the way up to
120%, when short-term volatility is near its maximum. For the
curve representing 184% long-term volatility, the “fixed point,”
where short-term and expected future volatility meet, appears
to be around 100%. Clearly, future volatility seems to revert to a
level somewhere between the mean of the market and a stock’s
own mean as represented by its long-term historical volatility.
Furthermore, low long-term levels seem to be more enduring
than high ones. This makes sense in that certain stocks (e.g.,
utility stocks) are unlikely to change fundamentally into the
kind of stocks that have high volatility; but high volatility stocks
(e.g., new technology issues) can and do change into more stable
stocks over time.
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Discussion

The results suggest that stocks, especially utility stocks and
other relatively placid issues, have characteristic levels of
volatility that tend to endure over long periods. Future volatility
tends to revert to these characteristic levels as well as to the
mean volatility of the market as a whole.

The statistics also demonstrate that each measure of his-
torical volatility can explain variation in future volatility even
when the other is held fixed. A model that employs the two his-
torical volatility measures used in the study will, therefore,
predict future volatility more accurately than a model that em-
ploys only one. Given the levels of short- and long-term histori-
cal volatility, the expected future volatility may be ascertained
from a chart (like the one in Figure 5–4) or from a regression (as
in Study 1). To make this work in the current instance, howev-
er, charts or regressions are required for each of many levels of
long-term historical volatility. One solution to the problem
of a family of charts or regressions is investigated later in this
chapter, in Study 4. Despite the complexities, the findings are
encouraging in that they indicate progress in the search for a
better estimator of expected future volatility.

STUDY 3: RELIABILITY AND STABILITY

Several different volatility measures appear in the studies pre-
sented in this chapter. All are presumed to reflect roughly the
same thing—the amount of price movement occurring per unit
of time—with varying degrees of reliability. Exactly how reliable
are these different measures? In one instance, the better esti-
mation of future volatility provided by the average range was
explained in terms of that measure’s higher reliability. Is such
an explanation justified? How similar are the different mea-
sures in what they actually assess? Is the assumption that they
all measure essentially the same hidden variable a reasonable
one? Finally, how stable is volatility when considered as a trait?
These kinds of questions are the focus of this study.

The current study has three specific objectives. The first
objective is to determine reliability coefficients for each of the
three price-based volatility scales used in the studies. For the
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standard and average range scales, reliability can be calculated
with the split-half technique discussed earlier. The split-half
method cannot be used for the straddle-based measure because
straddle-based volatility is a one-item test; in that case, reliabil-
ity must be inferred by more complex methods. The second objec-
tive is to estimate how similar the underlying traits that the
different volatility scales measure are to one another; this
involves calculating correlations between perfectly reliable ver-
sions of the three measures of interest. The problem is that only
real, and thus less than perfectly reliable, measures exist.
However, it is possible to estimate theoretical correlations
between underlying traits measured by imperfect (real) scales
from the observed correlations between these scales together
with each scale’s reliability. Such theoretical correlations are
referred to as attenuation-corrected, or as having been corrected
for attenuation. The third objective in this study is to calculate
stability coefficients for the standard and average range volatil-
ity measures. Again, the problem is one of estimating a theoret-
ical correlation: that which exists between two perfectly reliable
measurements of volatility made at two points separated in time.

Method

First, a stock was selected. Then, a valid reference bar was cho-
sen. A reference bar was considered valid if there were at least
m bars preceding it, if no price in those m bars fell below $2, and
if the stock was active throughout that m-bar period. Volatility
was first calculated from the odd-numbered bars in the m-bar
period immediately preceding the reference bar, and then from
the even-numbered bars. The calculations were done for both
the average range and the standard measures. The result was
four volatility scores: the odd bar standard, the even bar stan-
dard, the odd bar average range, and the even bar average
range. These four numbers were saved to a scratch file. At this
point, the next valid reference bar was selected. When all refer-
ence bars for a given stock had been processed, the next stock
was drawn and the sequence was repeated. The result was an
array, saved in a file, with four columns that corresponded to the
four volatility scores and with over 3,000,000 rows (the exact
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number dependent on m) that corresponded to the stocks and
reference bars.

Correlations were calculated for the saved volatility scores
using Equation 5.1. Volatility scores (columns) were correlated
over all cases (rows) to produce a correlation matrix. The matrix
was written to a simple text file. Since the entire procedure just
outlined was carried out for three values of m (5, 10, and 30), a
file containing three correlation matrices was produced. Recall
that m specified the period of, or the number of bars in, each of
the volatility measures. Once computed and written to the file,
the correlation matrices were loaded into an Excel spreadsheet.
Also copied into the spreadsheet were correlations between his-
torical and future volatility that had been determined in previ-
ous studies in the course of performing raw-data regressions.

Equation 5.2 was used to determine split-half reliability coef-
ficients for the standard and average range volatility measures
from the correlations between the odd and even subscales. This
resulted in three sets of reliability coefficients. Each set corre-
sponded to a level of m, while each coefficient within a set corre-
sponded to a particular measure of volatility. The 10- and 30-bar
reliability figures derived from the calculations are relevant to
the 10- and 30-bar volatility measures used in Studies 1 and 2.
Reliability data may be extrapolated to the 70-bar measures in
Study 2 by means of Equation 5.2. In addition to reliability coef-
ficients, the attenuation-corrected correlations between the two
historical volatility measures were ascertained. There were three
such correlations, one for each m or period of measurement. An
attenuation-corrected correlation may be computed as

rẋẏ (5.4)

where rẋẏ represents the theoretical correlation between the true-
score components of measures x and y, where rxy is the observed
(raw or uncorrected) correlation between x and y, and where rxx
and ryy are the reliability coefficients for x and y, respectively.

Attenuation-corrected correlations between the historical
30-bar standard and average range measures and the equivalent
10-bar measures of future volatility were computed from the

=
r

r r

xy

xx yy
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split-half reliability coefficients determined above together with
the raw correlations copied from earlier studies. These attenua-
tion-corrected correlations, of which there were four, were aver-
aged to obtain a coefficient of stability.

The straddle-based measure’s reliability was then estim-
ated by solving for ryy in Equation 5.4. To solve the equation, rẋẏ
was set to the stability coefficient. Since reliability could not be
directly determined for the straddle-based measure, the sta-
bility coefficient could not be determined. However, stability
estimates could be and were calculated (see above) from the
other volatility measures. These estimates were quite near to
one another, and so the average was taken as an approximation
of the stability coefficient that might have been obtained with
the straddle-based measure, if it had been possible to directly
calculate that measure’s reliability. The observed correlation
between historical and future volatility needed for rxy was taken
from Study 1, while the reliability of the historical measure
required for rxx was computed in an earlier step. Two estimates
of straddle-based reliability were made with the procedure just
described: one estimate was based on the standard historical
and future measures and the other involved the average range
measures.

Finally, to verify the results, a third estimate of reliability
was made for straddle-based volatility using a very different
procedure. The third estimate was computed with Equation 5.2
and entailed extrapolating the known reliability of the 5-bar
standard measure to the reliability of a 1-bar measure. In addi-
tion, to verify the theory and calculations, reliability coefficients
for the standard and average range measures were extrapolated
from the 5- and 10-bar analyses to a 30-bar scale and the figures
compared with those actually obtained when 30-bar volatility
measures were directly analyzed.

Results

Reliability coefficients for the standard 5-, 10-, and 30-bar mea-
sures are 0.58, 0.69, and 0.83, respectively; the coefficients are
0.89, 0.93, and 0.97 for the average range measure. Using
Equation 5.2 to extrapolate from the 5- and 10-bar scales to the
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30-bar measure yields reliability coefficients of 0.89 and 0.87
for standard volatility and coefficients of 0.98 and 0.97 for aver-
age range volatility. For the average range measure, the relia-
bility extrapolations are virtually perfect, which affirms that
the calculations and theory are valid in the current context. The
extrapolations for the standard measure are satisfactory,
although not perfect. The extrapolations fall short of perfection
because the standard measure involves the square root of a sum
of squares, whereas the extrapolation logic implicit in Equation
5.2 assumes that test items are simply summed, as is the case
for the average range measure.

Straddle-based volatility has a reliability coefficient of 0.25
when inferred from Equation 5.4 either from the standard or from
the average range data. When determined by extrapolation from
the 5-bar standard data to a 1-bar test using Equation 5.2, a reli-
ability of 0.22 is found for the straddle-based measure. The two
figures agree acceptably well, given the great disparity in the
methods by which they were arrived at, thus confirming the valid-
ity of the analysis. With a reliability near 0.25, the largest correla-
tion that any predictor can have with the future volatility implied
by the terminal price of an at-the-money straddle is around 0.50.

The average attenuation-corrected correlation between 
30-bar historical and 10-bar future volatility is 0.80. This is the
correlation that theoretically exists between perfectly reliable
measures of volatility separated in time; it is the correlation
between the underlying trait of volatility in the 30-bar period
immediately preceding the reference bar and the same underlying
characteristic in the 10-bar period that follows the reference bar.
The aforementioned correlation is thus a measure of persistence
in the underlying trait or parameter; it is a stability coefficient.

A correlation of 0.98, corrected for attenuation, exists
between the standard and average range historical measures.
This very high correlation reflects the extent to which the two
distinct volatility scales measure the same underlying variable
after adjustments are made for their less-than-perfect reliability.

Discussion

There is no doubt that the average range is by far the most reli-
able measure of the three examined, especially when volatility

174 CHAPTER 5

7741_ch_5.qxd  28/12/04  12:02 PM  Page 174



must be appraised over short intervals. The straddle-based
measure, being a one-item test, has the lowest reliability.
Standard volatility is a much more reliable measure than the
one derived from an at-the-money straddle, but does not attain
the performance of the average range. How good is the perform-
ance of the average range? To achieve the reliability of a 10-bar
average range, a standard measure taken over more than 30 bars
would be required.

While straddle-based volatility may be excellent as a
dependent or target variable that represents future market
movement when determining a regression equation, the average
range is probably the best practical choice for assessing histor-
ical volatility. This is especially true when historical volatility
must be determined from a restricted number of bars. Any great
concern over differences in what the average range and stan-
dard scales reflect—differences that are not merely hypotheti-
cal, but that have practical significance—should be assuaged by
the remarkably high attenuation-corrected correlation that
exists between the two volatility measures.

Volatility appears to be a relatively enduring and pre-
dictable characteristic, as evidenced by a rather high stability
coefficient. At least when adjusted for nonlinearity, regression to
the mean, and other statistical phenomena, this finding justifies
the use of historical measures, especially the more reliable ones,
in models designed to estimate future volatility.

Finally, the current study demonstrates the merit of apply-
ing theory and practice developed in one field to problems in
another. For example, the work originally pioneered by psychol-
ogists studying mental tests is pertinent, not just to psychomet-
rics, but to any arena—including the study of volatility—where
accurate measurements depend on samples of noisy, error-laden
test items or mini-measurements.

STUDY 4: MULTIVARIATE PREDICTION

In an effort to build a better estimation model for future volatility
and, in turn, option price, Study 4 uses what was learned from
previous studies. Although the estimation model developed in the
current study is not the last word, it is the first to use both histori-
cal volatility measures and exogenous variables in a sophisticated

Estimating Future Volatility 175

7741_ch_5.qxd  28/12/04  12:02 PM  Page 175



multivariate regression. As such, it represents a major step on the
road to better volatility predictions and option valuations.

As in Study 2, the model examined here employs both long-
and short-term historical volatility. However, the historical
measures used in the current study are the more reliable aver-
age range measures, rather than the standard volatility mea-
sures employed in the previous study. Linear, second order, and
interaction or cross-product terms are included amongst the
independent variables in the regression. By incorporating both
volatility measures in one integrated model, the need to have a
family of regressions involving short-term volatility, one regres-
sion for each level of long-term volatility, is avoided. In addition
to independent variables derived from the historical volatility
measures, the first three harmonics of a three-month cycle are
factored into the model in order to capture the quarterly sea-
sonal rhythm in volatility discussed in Chapter 4. Analysis in
terms of only the first three harmonics conserves degrees of
freedom, requiring only six rather than the 252 that would be
lost if the raw seasonality data from Chapter 4 were used.
Analysis in terms of harmonics, therefore, has a stronger theo-
retical foundation and less potential for producing curve-fit
results. Harmonic decomposition also efficiently handles the
issue of cycle phase. Phase is critical since forward estimates
must be made; in other words, the phase of the observed quar-
terly cycle must be advanced sufficiently to achieve correct
alignment with the volatility look-ahead period.

Because 10-bar future volatility is the dependent variable,
day-of-week effects are irrelevant and ignored. Given the pur-
pose of this chapter, and for reasons of simplicity and space,
results for holding intervals (periods of future volatility) of other
than 10 bars are not presented. However, by changing a single
parameter in the program that performs the calculations, the
approach used in this study can be effectively applied to the esti-
mation of future volatility over any interval desired.

Method

As usual, a stock was drawn from the database and a valid 
reference bar was selected. A reference bar was valid if there
were at least m1 + m2 preceding bars during which the stock was
active and had no price less than $2, and if there were at least n
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following bars. The straddle-based measure of future volatility,
the dependent variable, was determined from the n bars that fol-
lowed the reference bar. Short-term average range volatility was
calculated over the m1 bars immediately preceding the reference
bar, while long-term volatility was determined from m2 consecu-
tive bars ending at the first bar used to compute the short-term
volatility. Cross-product and second-order terms were also evalu-
ated. In these calculations, m1 was 30, m2 was 70, and n was 10.
After all volatility-related figures had been calculated, the time
of the year at the reference bar was converted to radians.
January 1 was mapped to zero radians (or zero degrees), while
December 31 corresponded to a number just short of 2π radians
(or 360 degrees). The time of the year, measured in radians, was
used to compute the first three harmonics of a quarterly season-
al cycle. All in all, the variables computed were as follows:

Y = Future straddle-based volatility
X1 = Short-term average range historical volatility
X2 = Long-term average range historical volatility
X3 = X1 * X2

X4 = X1 * X1

X5 = X2 * X2

X6 = X1 * SIN (4 * T)

X7 = X1 * COS (4 * T)

X8 = X1 * SIN (8 * T)

X9 = X1 * COS (8 * T)

X10= X1 * SIN (12 * T)

X11= X1 * COS (12 * T)

In the above Fortran-like notation (used for consistency with
program and spreadsheet code), Y is the dependent variable, X1
through X11 are the independent variables, and T is the time of
the year in radians. Once computed, X1 through X11 were writ-
ten to a scratch file followed by Y. The next reference bar was
then selected and, when all reference bars for the current stock
had been processed, the next stock was drawn from the data-
base. This sequence was repeated until every reference bar of
every stock had been analyzed, and the associated dependent
and independent variables written. A scratch file containing a
12 column by 3,213,002 row array was the result.
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By using data from the scratch file, a multivariate regres-
sion analysis was performed. The regression equation produced
by the analysis was then employed to compute the expected
future volatility for every data point. The resultant figures were
sorted into 50 bins and the mean future volatility corresponding
to each bin, or level of predicted volatility, was determined. In
addition, the cyclic element was calculated for each day of the
year using only the sine and cosine terms in the regression
equation. When performing this latter calculation, the sines and
cosines were not premultiplied by the short-term historical
volatility, only by the regression weights.

Results

Each data point in Figure 5–5 shows the average observed
future volatility (on the y-axis) corresponding to a specific bin or
level of expected or predicted volatility (on the x-axis). In this
case, the expected volatility is that predicted by the multivariate
regression model. A solid, diagonal line that represents a perfect
one-to-one match between predicted and observed volatility
levels also appears in the figure for the sake of comparison.

For predicted levels between 18% and 140%, the relation-
ship between average future volatility and regression-based
expectation is almost perfect: the data points fall right on the
diagonal line. When predicted levels are extremely low, actual
levels of future volatility are greater than the regression esti-
mates and lie above the line that represents a perfect relation-
ship. The excess future volatility appears as a hook near the left
end of the chart. Such a hook was also observed in previous
studies, when the average range was used as the historical
volatility measure. For high levels of expected future volatility,
the data points are more scattered and lie slightly above the
diagonal line. Increased scatter is a consequence of fewer raw
data points falling in the relevant bins. Slightly higher levels of
observed future volatility with high levels of predicted volatility
imply the presence of some mild nonlinearity that is unaccount-
ed for in the regression by the second-order terms. Perhaps
future volatility has a nonlinear relationship with the cycle har-
monics, for which only linear terms were entered into the model.
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It is very encouraging that, in the present study, the rela-
tionship between average and predicted future volatility
remains relatively linear—even if not perfectly so—up to far
higher levels of volatility than in previous studies. In previous
studies, the curves that represented relationships between
various independent variables and observed future volatility
flattened out at a level between 120% and 140%, never reaching
any higher. In other words, regardless of the values taken on
by the independent variables, an average future volatility of
greater than around 140% could not be achieved due to what
was referred to as a “capping effect.” In the current study, the
capping effect is gone; predictions for volatility levels as high as
200% can be made with reasonable confidence.

The cyclic component of the multivariate model is plotted in
Figure 5–6 along with the raw seasonality data from Chapter 4.
In the figure, the smoother, solid line represents a weighted sum of
the six cycle-pertinent regression terms (those containing sines
and cosines). The more ragged, dotted line is the raw seasonal
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volatility observed in the market. Time of the year is represented
on the x-axis, while relative volatility is measured along the y-axis.

The cyclic component of the multivariate regression leads
the actual market cycle, just as it should in a model designed to
predict volatility down the road. Cycle highs appear in January,
April, July, and October, between the 4th and 5th of the month.
Given that a 10-bar holding period is equivalent to 14 calendar
days, the center of the look-ahead interval should be seven calen-
dar days, thus placing the predicted cyclic volatility high around
the 11th or 12th of the month. Cycle lows occur almost exactly
one month after the highs. The amplitude of the cycle-induced
swings is not inconsequential. From the valley at 90% relative
volatility to the peak at 114%, there is a 24% spread, certainly
sufficient to be of interest to options traders.

Because the cyclic component is computed only from a
three-month cycle and its second and third harmonics, each of
the four cycles that occur in a year are identical; this is not the
case for real market volatility cycles, which vary somewhat 
from quarter to quarter. A model using a one-year cycle and its 
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12 harmonics would capture these variations, but would require
the calculation of many more regression coefficients and, there-
fore, would consume many more degrees of freedom. As degrees
of freedom are consumed, the risk of curve fitting (in the bad
sense) increases. Given a data sample extending back by only
seven years, it seemed prudent to limit the number of regressors
and conserve degrees of freedom.

The regression produced a multiple correlation of 0.40
between predicted and observed future volatility. When correct-
ed for attenuation due to the less than perfect reliability of the
straddle-based measure of future volatility, the multiple corre-
lation was just over 0.80 and almost equal to the stability coef-
ficient. A correlation this high would require a perfect historical
measure to achieve, were historical volatility the only input to
the model. Of course, there were other inputs that contributed
sufficiently to compensate for the lack of perfect reliability in
the historical measures. The regression statistics, including the
weights, appear in Table 5–1.

In Table 5–1, CASES represents the number of data points,
RMUL the multiple correlation, RADJ the same correlation adjusted
for shrinkage (given the large number of data points, shrinkage is
negligible), F the standard variance ratio statistic for the model,
PROB the statistical significance (the probability that a multiple
correlation as high as that obtained could be due to chance),
RIDGE the ridge coefficient (nonzero only for ridge regression),
YMEAN the mean of the dependent variable, YSDEV the standard
deviation of the dependent variable, XMEAN the mean of the
independent variable, XSDEV the standard deviation of the
independent variable, WEIGHT the regression weight, STUD-T
the Student’s t-statistic used to assess the significance of a regres-
sion weight, and RXY the Pearson Product-Moment Correlation
between the independent variable and the dependent variable.

Discussion

When compared to the models explored in Studies 1 and 2, the
model constructed in this study yields predictions of mean (expect-
ed) future volatility that achieve greater accuracy over a much
wider range. Future volatility levels of up to a whopping 200% can
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now be anticipated, levels that were beyond the reach of earlier
models. Furthermore, almost perfect accuracy is achieved when
predicting future expectation for the range of volatility (between
20% and 140%) most often encountered by traders. To combine
cycle harmonics with the most reliable measures of historical
volatility in one multivariate model was a smart move. But what
about implied volatility? Could it, too, contribute to a model
designed to predict future volatility? So far, only historical
volatility and seasonal cycles have been examined. Implied
volatility has been ignored. Study 5 corrects this ignorance: it
takes a look at implied volatility and its ability (or lack thereof)
to forecast future price movement.
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CASES 3,213,002 F 56,369.98 YMEAN 0.507

RMUL 0.4022 PROB 0 YSDEV 0.557

RADJ 0.4022 RIDGE 0

VARNO Description XMEAN XSDEV WEIGHT STUD-T PROB RXY

0 INTERCEPT 1 0 0.0774 67.33 0 0

1 X1 0.522 0.287 0.6673 139.03 0.0000 0.391

2 X2 0.521 0.274 0.1806 34.74 0.0000 0.354

3 X1 * X2 0.337 0.368 −0.1014 −10.10 0.0000 0.372

4 X1 * X1 0.355 0.434 0.0224 4.61 0.0000 0.365

5 X2 * X2 0.347 0.392 0.0430 7.25 0.0000 0.330

6 X1 * SIN 4T 0.015 0.423 −0.0150 −21.85 0.0000 0.021

7 X1 * COS 4T −0.009 0.419 0.0791 115.96 0.0000 0.047

8 X1 * SIN 8T −0.012 0.421 0.0508 74.94 0.0000 0.036

9 X1 * COS 8T −0.005 0.421 0.0263 38.77 0.0000 0.016

10 X1 * SIN 12T 0.005 0.426 0.0121 18.09 0.0000 0.013

11 X1 * COS 12T −0.013 0.416 0.0151 22.01 0.0000 0.003

T A B L E  5–1

Regression Statistics for a Multivariate Model Designed to
Predict Near-Term Future Volatility from Average Range
Historical Measures and Seasonal Cycle Harmonics

X1 = Short-term average range historical volatility, 30 bar. 

X2 = Long-term average range historical volatility, 70 bar. 

T = Time of year in radians.
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STUDY 5: IMPLIED VOLATILITY

Because implied volatility is often used to price options, it is
examined here just as historical measures were examined ear-
lier. The current study investigates how implied volatility com-
pares with historical volatility when used as a predictor of future
market behavior. It also attempts to determine whether implied
volatility is subject to the capping effects, other nonlinear
response patterns, and regression to the mean that were found
with the historical measures. The approach taken in the present
study is the same as in Study 1, except that implied, rather than
historical, volatility serves as the independent variable.

Method

First, a stock was chosen. Then, a valid reference bar was selected.
A reference bar was considered valid if (1) data was available for
m consecutive bars ending at the reference bar, (2) the stock was
active over all m bars, (3) the stock’s raw (not split-corrected)
price was greater than $2 for every one of those bars, (4) the
average of the put and call implied volatility figures at the ref-
erence bar was greater than 0.05 and less than 2.10, (5) the
absolute difference between the put and call implied volatility
figures was less than 0.20, (6) data were available for at least n
consecutive bars following the reference, and (7) the last bar fell
on expiration Friday, if trading occurred on that day, or on the
most recent day during which trading did take place. These con-
ditions guaranteed that valid data were available for further
analysis. Condition (5) was necessary to prevent the use of
implied volatility figures based on stock prices that had changed
significantly in the 15 minutes between closing of the options
exchanges and closing of the stock exchanges.

Once a valid reference bar was located, the independent
and dependent variables were determined. The first indepen-
dent variable was the implied volatility. It was computed by aver-
aging the separate put and call figures taken from the database,
which, in turn, were calculated as described earlier. The second
independent variable was just the square of the first; it was
intended to represent the second-order term in the regression.
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By including a second-order term, quadratic relationships could
be fitted. Future volatility was computed over the n bars that
followed the reference and served as the dependent variable. All
three variables were written to a scratch file.

The next reference was then selected and, once all reference
bars for the current stock had been dealt with, the next stock was
drawn from the database. The process continued until every ref-
erence bar and stock had figured in the calculations. A scratch
file that contained an array with three columns (variables) and
18,633 rows (data points or reference bars) was the result.

By using data from the scratch file, two analyses were exe-
cuted. The first analysis involved sorting the implied volatility
figures into 20 bins or levels and calculating for each level of
implied volatility, the mean future volatility. Implied volatility
was sorted into only 20 bins—rather than the 50 bins into which
historical volatility was classified in Study 1—because there
were far fewer valid data points. The second analysis was a mul-
tiple regression with a linear and second-order term, i.e., a second-
order polynomial regression.

The entire procedure delineated above was carried out for
each of the three types of future volatility: standard, average
range, and straddle-implied. In every analysis, m was 30 and
n was 10.

Results

Each data point in Figure 5–7 shows the expected future straddle-
based volatility associated with a given bin or level of implied
volatility. A second-order polynomial smoothing is represented
by the solid curve drawn through the data points. The smooth-
ing equation, determined from the 20 data points shown in the
chart, appears in the upper left corner. Charts for the analyses
involving the standard and average range measures of future
volatility have been omitted.

Except for a greater dispersion of data points about the
polynomial curve and a smaller range of volatility on the x-axis,
both of which are consequences of the smaller number of data
points, the results from Study 5 shown in Figure 5–7 appear
quite cognate to those that appear in Figure 5–1 from Study 1.
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In both studies, there is regression to the mean and the rela-
tionship between the independent and dependent variable flat-
tens as volatility rises—the so-called “capping effect.” It is no
surprise that the smoothing polynomials that characterize the
relationship are quite similar across both studies, with a modest
negative coefficient for the second-order term and a positive
coefficient that is slightly greater than unity for the linear term.

The regression performed on the 18,633 raw data points
yielded a predicted, straddle-based volatility of ŷ = −0.199x2 +
1.034x + 0.021, where x is the implied volatility. A multiple cor-
relation of 0.370 for predicting straddle-based volatility from
implied volatility was achieved by the model. This may be com-
pared to the analogous correlation in Study 1 of 0.373, when the
standard historical measure was used to predict future straddle-
based volatility, and of 0.395, when the average range was
employed. When corrected for attenuation due to lack of relia-
bility in the straddle-based dependent variable, the multiple
correlations were 0.74, 0.75, and 0.79, respectively. Regression
equations computed to predict standard and average range
(rather than straddle-based) volatility had very similar weight
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coefficients. The raw multiple correlations were much greater
when predicting the more reliable measures of future volatility
but, after correction for attenuation, the numbers were in the
same ballpark as those just presented.

Discussion

These results demonstrate that implied volatility behaves very
much like its historical counterpart when it comes to the esti-
mation of future market action. For example, both historical and
implied measures evidence significant regression to the mean,
as well as the capping effect. This means that both historical
and implied volatility require adjustments before they are
entered into an option pricing model.

Given these results, it is easy to see that there is no great
edge in the use of implied volatility to predict future volatility or
to price options; in fact, there are some disadvantages, like the
inability to determine an option’s nonrelative worth. This is not to
suggest that implied volatility has no virtues. Since implied
volatility performs almost as well as 30-bar historical volatility, it
must be a reasonably reliable measure. Implied volatility has
another virtue: it is current. Unlike historical volatility, which
must be computed from a sample of bars extending well into the
past, implied volatility can be determined from a single, recent bar
(e.g., the reference bar). Of course, measures like the average
range require fewer bars to achieve good reliability, and so can also
yield more current volatility estimates than can the standard his-
torical measure.The intriguing possibility, however, is that implied
volatility might contribute some independent information to a
model that includes historical measures, the result being better
overall performance.This possibility is examined in the next study.

STUDY 6: HISTORICAL AND IMPLIED
VOLATILITY COMBINED

Can implied volatility add predictive information to a model
that already includes an historical measure? How strong is the
relationship between implied and historical volatility? Are they
measuring essentially the same variable? Is implied volatility
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more influenced by volatility in the future than in the past?
These are some of the questions addressed in the current study.

Study 6 employs several analytical methods, ranging from
the familiar correlation and multiple regression techniques to the
more obscure (at least in this subject area) path analysis.
The extent to which each kind of volatility contributes to a pre-
dictive model may be ascertained from the regression weights
and associated t-statistics computed in the course of a multiple
regression analysis. Correlation coefficients, perhaps corrected
for attenuation, can answer questions regarding the strength of
various relationships. When subjected to analysis by the method
of path coefficients (Wright, 1934), correlations may also shed
light on causal or directional influence.

Method

As in previous studies, a stock was drawn from the database and
a valid reference bar was selected. The criteria for the selection
of a valid reference bar were identical to those used in Study 5.
Once a valid reference bar was located, the independent and
dependent variables were calculated as follows:

Y = Future n-bar volatility
X1 = Implied volatility (average of put and call measures)
X2 = Average range m-bar historical volatility
X3 = X1 * X2 Interaction (cross-product) term
X4 = X1 * X1 Second-order term for implied volatility
X5 = X2 * X2 Second-order term for historical volatility

These variables were then written to a scratch file and the next
reference bar was selected. When all reference bars for the cur-
rent stock had been processed, the next stock was drawn from the
database. The above steps were repeated until all valid reference
bars had been processed for all stocks. A scratch file containing an
array with six columns (one for each variable) and 18,633 rows
(one for each valid data point or reference bar) was produced.

Using data from the scratch file, three procedures were per-
formed; the first was multiple regression. Regression weights for
the independent variables X1 through X5 were determined along
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with all associated statistics.The second procedure involved sorting
the predicted values of future volatility (based on the regression
equation derived in the previous step) into 20 bins. For predictions
falling into each bin, the mean future volatility was computed. The
third procedure was calculation of a correlation matrix for all vari-
ables listed above, both independent and dependent. Data gener-
ated by each procedure was written to a standard text file for
import into an Excel spreadsheet, where it could be further manip-
ulated and prepared for presentation. The entire series of steps
described in this section were repeated for each of the three meas-
ures of future volatility: the standard measure, the average range
measure, and the straddle-based measure.

Results

Table 5–2 presents regression weights and related statistics for
two models designed to predict future volatility (Y) from vari-
ables based on the historical and implied measures (X1 through
X5). One of the two models is for prediction of straddle-based
volatility; the other is for prediction of average range volatility.
Similar statistics for the standard measure are not presented.
The captions used in Table 5–2 are identical to those which
appear in Table 5–1, discussed earlier.

Regression Results As readily seen from the regression
weights and t-statistics, both implied and historical volatility
make independent and statistically significant contributions to
the predicted future volatility level. Historical volatility has a
greater impact on predictions when the dependent variable is
the average range, while implied volatility contributes more to
the model when the dependent variable is the standard measure.
Because the individual second-order terms possess negative
weights in both models, as either implied or historical volatility
rises, its relationship with future volatility levels off. This is 
consistent with earlier observations involving either implied or
historical volatility on its own. However, there is a synergy
between historical and implied volatility. In both of the regressions
presented in Table 5–2, the cross product or interaction term has
a substantial positive weight. The synergistic interaction that
occurs when both implied and historical volatility are high tends
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to cancel the downward pull of the individual second-order
terms in the model.

Multiple correlations of 0.819 and 0.371 are achieved when
predicting the average range and standard measures, respectively.
The correlations are 0.851 and 0.741 when corrected for attenua-
tion caused by lack of reliability in the future or dependent meas-
ure. These corrected correlations may be compared to similar ones
of 0.840 and 0.789, which were computed with data taken from
Study 1, and in which only historical volatility was employed as a
predictor. The correlations from the current study are not larger
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Regression for Straddle-Based Future Volatility

CASES 18,633 F 593.36 YMEAN 0.517

RMUL 0.3707 PROB 0 YSDEV 0.493

RADJ 0.3704 RIDGE 0 Y = SRF-10

VARNO Description XMEAN XSDEV WEIGHT STUD-T PROB RXY

0 INTERCEPT 1.000 0.000 0.0160 0.89 0.3733 0.000

1 X1 = IMPLIED 0.548 0.237 0.7610 9.35 0.0000 0.367

2 X2 = HISTORICAL 0.513 0.240 0.3093 3.87 0.0001 0.329

3 X3 = X1 * X2 0.330 0.301 0.4713 2.50 0.0125 0.341

4 X4 = X1 * X1 0.356 0.333 −0.2823 −2.86 0.0043 0.345

5 X5 = X2 * X2 0.320 0.320 −0.4024 −3.85 0.0001 0.301

Regression for Average Range Future Volatility

CASES 18,633 F 7,599.27 YMEAN 0.522

RMUL 0.8192 PROB 0 YSDEV 0.262

RADJ 0.8191 RIDGE 0 Y = ARF-10

VARNO Description XMEAN XSDEV WEIGHT STUD-T PROB RXY

0 INTERCEPT 1.000 0.000 0.0104 1.76 0.0791 0.000

1 X1 = IMPLIED 0.548 0.237 0.2981 11.16 0.0000 0.775

2 X2 = HISTORICAL 0.513 0.240 0.7198 27.40 0.0000 0.799

3 X3 = X1 * X2 0.330 0.301 0.3209 5.18 0.0000 0.788

4 X4 = X1 * X1 0.356 0.333 −0.0994 −3.06 0.0022 0.733

5 X5 = X2 * X2 0.320 0.320 −0.2840 −8.28 0.0000 0.756

T A B L E  5–2

Multiple Regression Statistics for Models Designed to Predict
Future Volatility from Historical and Implied Measures
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than those obtained in the earlier study (where historical volatility
was the only predictor); this suggests that the addition of implied
volatility contributes little or nothing to a model’s predictive abil-
ity, which runs counter to the findings from the multiple regres-
sion. Perhaps the high correlation that exists between implied
and historical volatility—a correlation that suggests one can
serve as a surrogate for the other—explains the apparent absence
of benefit from the addition of the implied measure. When exam-
ining the numbers, also keep in mind that the earlier analysis
was based on a larger sample of data that spanned additional
years, embraced a greater variety of market conditions, and had
a somewhat wider range of volatility.

The association between model-generated predictions and
future volatility is shown in Figure 5–8. This figure was generated
from the binned data. The x-axis, which runs from left to right
represents the level of predicted volatility. Ticks on this axis
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correspond to the centers of the bins into which the predictions
were sorted. The y-axis, which runs from front to back, reflects
the type of future volatility that is predicted. In order, from front
to back, are the standard, average range, and straddle-based
measures. Mean future volatility is plotted on the z-axis, which
runs from bottom to top.

Series of data points are represented in the chart as ribbons.
The middle ribbon follows the straightest path. It depicts a near-
perfect relationship between predicted value and future expecta-
tion when future volatility is determined from the average range.
The ribbon furthest back illustrates the greater dispersion of mean
future volatility when predicted levels are high and the straddle-
based measure is used as the dependent variable. Such dispersion
is explained by the lower reliability of the straddle-based measure
and by the smaller number of predictions falling into the higher
bins. The ribbon closest to the front of the chart represents the
relationship between predicted and mean future volatility for the
standard future measure. It ranks somewhere between the other
two ribbons in terms of linearity and absence of dispersion.

Correlational Analysis A strong correlation of 0.857 (0.875
when corrected for attenuation) exists between historical and
implied volatility. The correlation of historical volatility is 0.799
(0.842) with the future average range and 0.329 (0.667) with the
straddle-based measure. For implied volatility, the correlation is
0.775 (0.811) with the average range and 0.367 (0.739) with the
straddle-based measure.

Raw correlations with the future average range are by far
higher than raw correlations with the straddle-based measure
for both historical and implied volatility. When corrected for
attenuation, correlations with the average range still trump
those with the straddle-based measure, but to a much lesser
extent. The implication is that the reliability estimate for the
straddle-based measure is a little high and that, consequently,
the correlations are undercorrected.

Path Analysis A path analysis was performed to gain
deeper insight into the causal structure implied by the observed
correlations. Consider a theoretical model in which historical
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volatility influences both implied and future volatility, and in
which implied volatility influences only future volatility. Given
the causal assumptions of the model, figures that represent the
intensities of the influences may be determined such that the
observed correlations among the variables are fully accounted
for or, barring that, maximally explained in a least-squares
sense. Such figures are known as path coefficients. With future
volatility measured by the more reliable average range and cor-
relations corrected for attenuation, the path coefficients for the
influence of historical on implied, historical on future, and
implied on future volatility are 0.875, 0.565, and 0.317, respec-
tively. These path coefficients demonstrate that implied vola-
tility is highly controlled by historical volatility and that both
independently affect future volatility, with historical volatility
having a somewhat greater influence.

An alternative causal model assumes that future volatility
is affected by historical volatility and that both historical and
future volatility influence implied volatility. How can this be?
According to McMillan (1996), activity in equity options often
reflects insider knowledge regarding corporate plans, impending
bankruptcy filings, takeover bids, and yet-to-be-released earn-
ings reports. It takes no stretch of the imagination to see how
implied volatility may, therefore, be influenced by impending
events, known only to insiders, that will generate future volatili-
ty in the underlying stock. For this causal model, the path coeffi-
cients are 0.842 for the effect of historical on future volatility,
0.662 for historical on implied, and 0.254 for future on implied.

Discussion

Can implied and historical volatility work together to improve
the prediction of future volatility? According to the regression
calculated in this study the answer is “Yes”—regression coeffi-
cients for both variables were significantly different from zero.
Path analysis also clearly demonstrates that, even though
implied volatility is itself highly determined by historical
volatility, each variable has a direct influence on future volatili-
ty. Even when the causal model was flipped around in the sec-
ond path analysis (in which future volatility was hypothesized
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to be an influence on implied volatility), a positive path coeffi-
cient appeared; however, the path going the other way (from
implied to future volatility) in the first causal analysis had a
much larger coefficient of determination.

The fact that the regression models developed in the current
study did not produce higher multiple correlations than those
observed in Study 1 seems to indicate that no benefit derived
from the addition of implied volatility. As discussed earlier, this
finding was most likely an artifact of differences in data sample
and other related factors. It can be concluded, however, that the
contribution of implied volatility to a model that already employs
historical volatility is relatively modest. No doubt, this is a con-
sequence of the fact that implied volatility is mostly determined
by the actions of traders responding to pricing models that
employ historical volatility measures.

STUDY 7: RELIABILITY OF 
IMPLIED VOLATILITY

The goal in this study is to examine the reliability of implied
volatility just as the reliability of the other measures were
investigated in Study 3.

Method

The method in Study 7 closely follows those found in the earlier
studies. A stock was drawn from the first database and a refer-
ence bar was selected. The reference bar was checked for validity
exactly as in the previous two studies. Given a valid reference
bar, put and call implied volatilities were extracted from the sec-
ond database for four consecutive bars, ending at the reference.
The put and call figures were averaged for each bar, yielding
four numbers that were saved to a scratch file. At this point, the
next reference bar was selected and, when all reference bars had
been processed, the next stock was drawn. The sequence contin-
ued until all stocks and reference bars had been analyzed. The
result was a scratch file containing four columns, each correspond-
ing to an implied volatility, and 18,633 rows, each corresponding
to a valid reference bar.
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A four-by-four correlation matrix was then computed for
the data in the scratch file. The figures in the correlation matrix
were used to compute estimates of reliability, as well as to exam-
ine the stability of implied volatility over short periods of time.
For curiosity’s sake, the first centroid factor was extracted from
the correlations.

Results

The correlation coefficients computed for implied volatility
appear together with the centroid factor loadings and other
data, in Table 5–3.

As might be expected, the correlation matrix has a so-called
Toeplitz form: all correlations that fall just below the diagonal have
one value, those that fall just below the preceding correlations
have another value, and so on. Obviously, the correlations that
fall immediately below the diagonal all represent the relation-
ship between implied volatility on one bar with implied volatil-
ity on an immediately adjacent bar. All correlations that fall
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Reliabilities Appear in Diagonal
Implied Volatility Correlations Factor Analysis

VARNO 0 1 2 3 Loading H**2 U**2

0 0.986 0.986 0.976 0.966 0.988 0.976 0.024

1 0.986 0.986 0.986 0.977 0.993 0.986 0.014

2 0.976 0.986 0.986 0.986 0.993 0.986 0.014

3 0.966 0.977 0.986 0.986 0.988 0.976 0.024

MEANS 0.535 0.536 0.532 0.531 TOTVAR 15.698

SDEVS 0.223 0.222 0.219 0.218

NCAS 15,692

NVAR 4

T A B L E  5–3

Correlations, Factors, and Other Data for Implied 
Volatility Figures
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another step away from the diagonal represent the relationship
between implied volatility on one bar with that measured two
bars away in either direction. For practical purposes, the corre-
lations just off the diagonal may be treated as reliability coeffi-
cients, suggesting a reliability of 0.986 for implied volatility.
Moving away from the diagonal, the correlations become smaller
as a result of changes in implied volatility over time, and hence
more like the stability coefficient computed in Study 3; in
Study 3, however, the constancy under examination was for a
much longer period than just two or three days (roughly 28 days
separated the center of the 30-bar historical volatility from the
center of the 10-bar future measure).

The factor loadings also provide estimates of reliability.
In this case, the squares of the loadings (found in Table 5–3 in
the column labeled H**2) for variables 2 and 3 may be taken as
approximations to reliability. These approximations are extre-
mely close in value to the off-diagonal elements of the correla-
tion matrix.

Discussion

Implied volatility is extremely reliable in that repeated meas-
urements produce nearly identical results. And, this high relia-
bility is achieved with only a single measurement instance or
test item; this is in stark contrast to standard historical volatil-
ity, which requires an abundant sample of bars to achieve good
reliability. The ability to obtain a highly reliable measurement
from a single bar that lies as close as possible in time to the
period over which future volatility must be estimated can be a
great advantage. Implied volatility thus has the virtue of being
current. If the reliability and contemporaneousness were
matched by predictive worth, implied volatility would be the
ultimate estimator of future market action. As demonstrated by
both regression and path analysis, implied volatility has definite
value when it comes to predicting future volatility; however,
implied volatility is mostly determined by historical volatility,
which can provide equally good, if not better, predictions.
Implied volatility is, therefore, an important measure—possibly
worthy of inclusion as an independent variable in a model
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designed to forecast volatility—but not an awe-inspiring one
that is superior to most others.

It should be noted that the reliability coefficients computed
in this study were used to correct the correlations that involved
implied volatility in Study 6 for attenuation.

SUMMARY

Potentially useful independent variables were examined and
various models designed to estimate future volatility were tested.
Much was learned as a result of the effort. Some of the findings
are summarized here.

Consider measurement reliability and predictive worth. All
else being equal, the more reliable an independent variable, the
more it can contribute to a prediction or estimation model. For a
given number of bars, it is unquestionable that implied volatil-
ity is by far the most reliable of the independent variables tested.
Next comes the average range, which achieves respectable reli-
ability with a fairly small measurement sample. Less reliable is
the standard measure. At the bottom of the list is straddle-
implied volatility. When used as an independent variable, the
average range has the best overall ability to forecast volatility;
it represents a good combination of high reliability and high
validity. Standard volatility performs acceptably, as does implied
volatility. On its own, however, implied volatility can only be
used for relative and not absolute valuation when pricing
options. Straddle-based volatility, though perhaps the most
construct-valid, was far too unreliable for use as an independent
or predictor variable.

Regardless of the kind of volatility examined, a so-called
“capping effect” was observed. As the level of the independent
variable (whether historical or implied volatility) increased, the
dependent variable (future volatility) at first rose rapidly, but
then reached a limiting plateau. In all cases, the relationship
was fairly well described by an elementary quadratic equation
with a positive linear coefficient that was slightly above unity
and a negative second-order coefficient about one-fifth the size.
The capping effect was least with the average range historical
measure. Even though the capping effect may be an artifact of
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the mathematical nature of volatility, it must be accounted for
in any model intended to estimate future market action.

In the course of the investigations, it was found that better
estimation of future volatility could be achieved quite readily by
the use of more than one independent variable. For example, a
model that employed historical volatility from two periods, as
well as the first three harmonics of the quarterly earnings cycle,
provided distinctly better estimations of future volatility than
any of the simpler models. In addition, this model could suc-
cessfully anticipate much higher levels of future volatility, shat-
tering the cap. Another model that demonstrated improved
prediction and reduced capping was the one based on a combi-
nation of both historical and implied measures. Implied volatil-
ity was not incorporated into the model that employed cycles
and two historical volatility measurements; examining the
effect of bringing implied volatility into this more complex
model is left as an exercise for the reader.

Regardless of the number of variables involved in a model,
it is clearly necessary to take into account reversion to the
mean and lack of linearity when attempts are made to forecast
volatility for the purpose of pricing options. The direct use of
unadorned historical or implied measures as estimates of future
market behavior will lead to biased predictions, especially for
high or low volatility levels. Hence, the standard practice of
using raw historical or implied volatility as an input to Black-
Scholes is ill-advised. With minor adjustments, more accurate
future volatility estimates can be obtained. Even the simple pro-
cedure of consulting a graph (such as one of those sprinkled
throughout this chapter) to correct historical volatility for non-
linear response and regression to the mean before plugging the
numbers into Black-Scholes or some other popular model can
dramatically improve the accuracy of the theoretical option pre-
miums thus obtained.

Chapter 6 moves away from the subject of volatility and
examines the use of conditional distributions to price options.
At first it might appear more appropriate for the subject of 
conditional distributions to follow Chapter 3, another chapter
concerned with distributions and option prices; however, esti-
mates of volatility are required for much of what follows and
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therefore, some serious coverage of volatility seemed to be a
warranted prelude to the study of conditional distributions.

SUGGESTED READING

Good coverage of measurement reliability, construct validity,
and regression to the mean can be found in Foundations of the
Theory of Prediction (Rozeboom, 1966). Consult Psychometric
Theory (Nunnally, 1978) for a general overview of classical test
theory and a less technical presentation on reliability and valid-
ity. Another basic source on the subject is Essentials of
Psychological Testing (Cronbach, 1970). These books are classics
in their field. The Handbook of Psychological Testing (Kline,
2000) and Introduction to Classical and Modern Test Theory
(Crocker and Algina, 1986) are newer works on the same subject.

Linear regression, in both its univariate and multivariate
forms, is well covered in Introduction to Linear Regression
Analysis (Montgomery and Peck, 1982) and in Classical and
Modern Regression with Applications (Myers, 1986). These
books also tackle the statistical phenomenon of regression to
the mean.

For the mathematically literate reader wishing to learn
more about factor analysis, Modern Factor Analysis (Harmon,
1976) is the accepted bible of the field. The clearest presentation
on causal inference from correlational data is the original paper
on the subject, “The Method of Path Coefficients” (Wright, 1934).
Causal Analysis (Heise, 1975) and Cause and Correlation in
Biology: A User’s Guide to Path Analysis, Structural Equations,
and Causal Inference (Shipley, 2002) may also be recommended.
For the basics on modeling time series with GARCH, a reason-
able exposition can be found in “Generalized Autoregressive
Conditional Heteroskedasticity” (Bollerslev, 1986).
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Theoretical option premiums are easily calculated from distri-
butions of returns. This fact was clearly demonstrated in
Chapter 3, where it was shown how price distributions deter-
mine option value and where some of the specific theoretical dis-
tributions commonly assumed to govern market behavior were
examined. Furthermore, it was established in that chapter that
popular models like Black-Scholes essentially calculate future
expectation or theoretical fair value under the assumption that
price movements or returns have a log-normal distribution.

An examination of moments in Chapter 4, however,
revealed that the distribution of real-market returns is not log-
normal; rather, the empirical distribution of returns is lepto-
kurtic and negatively skewed. Consequently, theoretical option
premiums calculated with models like Black-Scholes must be
more or less inaccurate. Given the observed distribution of
returns, out-of-the-money options can be expected to have
greater value than popular models suggest, for example, and
out-of-the-money puts are likely to be worth more than the cor-
responding calls. Fortunately, a log-normal distribution of
returns is not a necessary presupposition when pricing options.
Distributions that better reflect actual market behavior may be
employed. The use of more fitting distributions is likely to result
in more trustworthy assessments of option value.
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The focus in the present chapter is on pricing options with
empirically derived conditional distributions. What is a condi-
tional distribution? It is a distribution that depends upon one or
more conditioning factors. By way of illustration, it is not very
difficult to establish the distribution of returns associated with
a given combination of initial stock price, volatility, and skew.
The resultant distribution may be considered conditional, since
it is clearly dependent on the particular levels specified for stock
price, volatility, and skew—the conditioning variables. The use
of a conditional distribution methodology allows many different
factors to be taken into account in an empirical pricing model.

DEGREES OF FREEDOM

When developing an option pricing model that relies upon
empirically defined conditional distributions, it is absolutely
critical to conserve degrees of freedom. The reader may recall
that a greater dispersion was observed in the expected future
volatility when data were binned for two historical volatility
measures, rather than for one. The reason was that the two-
dimensional solution involved a vastly greater number of bins
than did the one-dimensional solution and, consequently, fewer
data points fell in any single bin in the two-dimensional solution
than in the one-dimensional one. Analysis of empirical distribu-
tions involves a binning procedure analogous to that used when
studying volatility, as well as a comparable potential for some of
the bins to contain insufficient data for statistically stable
results. Several of the studies that appear below use a technique
first illustrated in Chapter 3, where a bin-based analysis was
performed to demonstrate how an option may be priced using a
distribution; however, that analysis was conducted as part of a
Monte Carlo experiment where as many data points as desired
could readily be generated. The luxury of a virtually unlimited
supply of data points does not exist when dealing with live mar-
kets. Hence, the number of bins or classes created by the condi-
tioning variables must be kept as small as possible so as to
conserve degrees of freedom. Fewer bins means more data
points in each bin and, therefore, more stable and statistically
meaningful results.
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The fact is that any kind of theoretical simplification that
can reduce the number of conditioning variables without neces-
sarily undermining the model will make the results more reli-
able and useful. For example, if all stocks can somehow be
adjusted so that they start out at a nominal price of $100, it may
be possible to eliminate initial stock price as a conditioning
variable, thus conserving degrees of freedom by reducing the
total number of bins or categories involved in the analysis.

Use of Rescaling to Conserve Degrees of Freedom

Is it reasonable to adjust or rescale the initial price of a stock to
a nominal $100? If certain assumptions regarding the nature of
stock price movements are met, the answer is a credible “yes.”
The assumptions are quite reasonable for a broad range of stock
prices. The principal assumption is that stock prices manifest
proportional movement, i.e., a $100 stock gaining $10 is, in
essence, the same as a $10 stock rising $1 or a $5 stock ascend-
ing $0.50. This is an assumption made by almost every pricing
model, either explicitly or implicitly, and one that seems quite
acceptable. It is easy to verify that an elementary scaling proce-
dure can bring any stock to the desired price. If the option’s
strike is likewise rescaled, an option price may be computed that
will be equal to the similarly rescaled price of an option com-
puted from the original (not rescaled) data. Since the ability to
rescale in this manner is critical to a number of studies in this
chapter, the process is illustrated here.

Imagine a stock that is trading at $20 and has a volatility
of 70%. Further, suppose a call with a $22.50 strike and 10 days
left to expiration is to be priced, and the risk-free interest rate
is 10%. Black-Scholes asserts that the theoretical premium for
this option is $0.207. Multiply the stock and strike prices by
a scaling factor of 5. The rescaled prices are now $100 for the
stock and $112.50 for the strike. If these numbers are entered
into Black-Scholes, a theoretical option premium of $1.035 is
obtained. This premium is exactly equal to the original option
premium multiplied by 5, the scaling factor. In other words, the
option premium computed for the nominal $100 stock may be
divided by the scaling factor to obtain the premium appropriate
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for the $22.50 strike option on the $20 stock. Rescaling may thus
be used to bring all stocks to the same price, thereby eliminating
stock price as a necessary conditioning variable.

GENERAL METHODOLOGY

To continue with the example, imagine that numerous stocks
have been subjected to rescaling and are all now at the nominal
$100 price. Further, imagine that the historical volatility is
known for each stock. At this point, consider stocks with histor-
ical volatilities between 80% and 85%. Check their terminal
prices 10 days later and sort them into a set of bins that
span the range of possible price outcomes, just as was done for
the Monte Carlo data in Chapter 3. Perhaps there are 7,500
instances of a price between $100 and $100.50, 7,200 instances
of a price between $100.50 and $101, and so forth. The result is
a histogram showing the frequency of observation plotted
against the level of terminal stock price. This histogram, in fact,
represents a discrete frequency distribution for a nominal $100
stock conditional upon a volatility that lies between 80% and
85%. Such a histogram or frequency distribution may be used to
generate option premiums for a variety of strikes for both puts
and calls that expire in 10 days. The entire procedure can be
repeated for stocks with volatilities between 85% and 90% or
between 90% and 95%. In other words, a family of histograms
may be computed such that each histogram corresponds to a
particular level of historical volatility. These histograms would
contain all the information necessary to price both puts and
calls with different strikes for stocks that have different levels
of volatility. Given such a family of histograms, a low-order poly-
nomial could be fitted in order to regularize the data for
increased accuracy and to allow options at intermediate volatil-
ity levels to be priced.

In the real world, a price of $100 is rarely found when a
stock and a reference bar are selected. However, any stock may
be rescaled to a nominal $100 by multiplying its price by a suit-
able constant. The corresponding strike must also be multiplied
by the same constant. An option premium can then be computed
based on distributions established for a stock with a nominal
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initial price of $100 and that premium can then be divided by the
scaling constant to obtain the desired option premium. Follow
this logic and a rudimentary option pricing model ensues. To
make the model realistic, prices may be adjusted for the rate of
risk-free interest and for other factors.

The studies in this chapter use precisely this methodology
to investigate option valuation with distributions that are con-
ditional upon volatility and many other factors of interest. Later
studies consider more complex questions, such as whether dis-
tributions of returns combine over time through a process of
convolution.

Data and Software

All the following studies exploit the same two binary databases
used in the previous chapter when investigating volatility. The
first database contains end-of-day stock quotes (consult Chapter
4 for details regarding its construction). The second database
consists of implied volatility figures determined as described in
the previous chapter. In addition, several studies require raw
option prices taken from a third binary database that was
assembled from data supplied by www.stricknet.com. The third
database contains, for every stock and every bar, a complete
option chain that consists of all options trading on that equity
on that day. The fields in the options database include the option
symbol, underlying (stock) symbol, date, strike, bid, offer, vol-
ume, open interest, expiration year, expiration month, and option
type (put or call).

The software libraries and toolsets are the same as those
employed in the previous chapters. Most of the calculations were
performed in generic, ISO-standard C and C++, with some final
analysis occasionally being conducted in Microsoft Excel. Excel
was also used to prepare tables and charts for presentation.

STUDY 1: RAW HISTORICAL VOLATILITY

This study is intended to demonstrate how options may be
priced using conditional distributions. To keep things simple,
the analysis is limited to one basic conditioning variable. Given

Pricing Options with Conditional Distributions 203

7742_ch_6.qxd  28/12/04  12:21 PM  Page 203



the conditioning variable, a family of distributions is calculated.
The distributions are then used to determine theoretical option
premiums.

The conditioning variable in this study is standard histori-
cal volatility and options are assumed to have a holding period
of 10 days. Interest rates are incorporated into the model. This
is necessary to compensate for the stock price gain that would
be expected in a risk-neutral world due to interest accruing over
the 10-day holding period. Likewise, theoretical option premi-
ums, computed on the basis of future price expectation, are dis-
counted by the same interest rate. Options, like any underlying
securities, are expected to grow at the current rate of risk-free
interest; therefore, if the expected option price at some point in
the future is known or estimated, that price needs to be dis-
counted by the interest to obtain the current premium.
Dividends are ignored, as are individual levels of growth, skew,
and kurtosis. Because empirical distributions are employed, the
growth, skew, and kurtosis that tend to characterize all stocks in
the database are not ignored, but are implicitly incorporated
into the model. Once the distributions are determined, they are
used to price some options. Finally, the option prices generated
from the distributions are compared to those computed with
Black-Scholes.

Method

The approach was to determine the distribution of terminal
prices for a nominal $100 stock for each possible level of raw
standard historical volatility, and to then compute (from the dis-
tributions) the theoretical option premiums for several strikes
and option types.

The steps were as follows: First, a stock was selected from
the 2,246 stocks in the database. The m-bar standard historical
volatility was then calculated for each bar in the entire series of
n bars using a fast, vectorized subroutine. In this study, m was 30
(a popular period over which to calculate historical volatility)
and n was 1,834. Next, a bar (the current or reference bar) was
chosen. When choosing a bar, only bars from m + 2 through n − 12
were considered. The objective was to leave sufficient room at
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the beginning of the data series for computing the m-bar stan-
dard historical volatility and, at the end, for determining the
terminal price 10 bars in the future. In selecting the current bar,
only bars for which the stock was trading on the previous m bars
and subsequent 10 bars were considered. Also, the stock’s raw
(not corrected for splits) price on all m bars preceding the cur-
rent bar was required to be greater than $2. These are the same
kinds of criteria used to select valid reference bars in studies
discussed in earlier chapters. Once a valid reference bar was
found, the raw historical volatility, the stock price at the current
or reference bar, and the price 10 bars beyond the current bar
(10 days in the future) were assembled.

The two assembled stock prices were used to calculate the
terminal price of a nominal $100 stock. To calculate this, the
future price of the stock was divided by the current stock price
(at the reference bar) and the result was multiplied by 100. To
wit, the stock’s current price was rescaled to a nominal $100 and
a future price consistent with the new scale was computed. For
example, a stock with a current price of $20 and terminal price
of $22 would be rescaled so as to have a current price of $100
and a future price of $110. Once determined, the future stock
price was discounted for interest at the current rate over the
holding period. The intent was to remove the implicit effect of
interest on the distributions about to be calculated. Compen-
sation for growth due to interest in a risk-neutral world was
accomplished by multiplying the terminal stock price by 
exp(-r*t), where r was the rate of interest at the reference
bar, and t was the holding or look-ahead period measured in
years (t = 10 bars/252 bars per year). The result was the adjust-
ed terminal stock price.

From p, the adjusted terminal price, an array index was
computed (using C language notation) as

ip == (int)(0.5 ++ (nlvlp-1)*(p-bmnp)/(bmxp-bmnp))

where ip represents the array column corresponding to a speci-
fied level of terminal stock price, nlvlp the number of price lev-
els, bmnp the center of the first bin (corresponding to the lowest
price level), and bmxp the center of the last bin (corresponding
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to the highest price level). In this study there were 100 price
levels or bins, each corresponding to a column in the array, with
the lowest level or bin centered at a price of $20 and the highest
centered at a price of $250.

The raw historical volatility, v, was also used to calculate
an index into an array. The formula for this array index (again
in C notation) was

iv == (int)(0.5 ++ (nlvlv-1)*(v-bmnv)/(bmxv-bmnv))

where iv represents the array row associated with a specified
level of historical volatility, nlvlv the number of volatility lev-
els, bmnv the center of the first bin (corresponding to the lowest
volatility level), and bmxv the center of the last bin (correspond-
ing to the highest volatility level). There were 20 volatility lev-
els, each corresponding to a row in the array, with the lowest
level or bin centered at a volatility of 10% (0.10) and the highest
centered at a volatility of 200% (2.00).

The contents of the array element addressed by the two
index variables (iv and ip) was then incremented by one, allow-
ing frequency statistics to be accumulated. At this point, the
next valid reference bar was chosen and, when all valid bars for
the currently selected stock had been processed, the next stock
was selected. The sequence continued until all stocks and all
valid reference bars had been included in the analysis. These
calculations produced a set of frequency distributions residing
in the rows of an array. Each row in the array corresponded to a
level of volatility and each column was associated with a level of
terminal stock price. Each array element thus comprised a fre-
quency associated with a specified two-dimensional bin. There
were 2,000 bins or elements in the array. The data in each row
represented a frequency histogram for a given level of standard
historical volatility.

By using the frequency histograms residing in the array
rows, option prices for several strikes were calculated in a man-
ner identical to that described in Chapter 3. A strike price and
volatility level were selected for performing this calculation. The
volatility level provided an index into the desired row in the
array, the one that contained the appropriate distribution.
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Working across the row, column by column, each frequency was
multiplied by the easily calculated terminal (expiration) price of
an option having the selected strike. This was done for calls,
puts, and straddles. For each volatility, strike, and option type,
the sum of the frequency-by-price products was divided by the
sum of the frequencies. The resultant option premiums, based
on the actual price distributions observed in the real market,
were saved in another array.

Additionally, for purposes of comparison, Black-Scholes
prices were calculated for the same set of volatility levels,
strikes, and option types. As the reader may remember from
Chapter 3, these are the prices that would be found if the
histograms in the array rows defined appropriate log-normal
distributions.

Results

Table 6–1 presents the cumulative probability distributions for
terminal stock prices for a nominal $100 stock. Cumulative
probabilities derived from the empirical frequency distributions
(EMP) are shown side-by-side with those derived from log-nor-
mal distributions (LN) for each of three levels of standard his-
torical volatility. Parameters for the log-normal distributions
were determined from the corresponding empirical distribu-
tions. The total frequencies (CASES) and the root-mean-square
differences (RMSD) between the empirical and log-normal prob-
abilities are also recorded in Table 6–1. The cumulative prob-
ability for a specified stock price level is just the sum of the
frequencies for that and all lower price levels divided by 
the total frequency. For reasons of space and clarity, probabili-
ties are presented in the table only for every third terminal 
price level.

Consistent differences between the empirical and log-nor-
mal distributions are easily discerned from the cumulative prob-
abilities in Table 6–1. For terminal stock prices sufficiently
below the nominal $100, the cumulative empirical probability is
much greater than the cumulative log-normal probability; and,
for prices sufficiently above $100, the empirical probability is
much further below 100% than the corresponding log-normal
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probability. This is true for all three volatility levels. As an exam-
ple, the probability that a real stock with a 30% historical volatil-
ity will decline from an initial price of $100 to a final price of
$75.76 or below is 0.567% (about 1 in 200), while the log-normal
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T A B L E  6–1

Empirical and Log-Normal Cumulative Probabilities for 3
Levels of Standard Historical Volatility and 25 Levels of
Terminal Stock Price

Stock 
30% Volatility 60% Volatility 90% Volatility

Price EMP LN EMP LN EMP LN

40.91 0.00006 0.00000 0.00047 0.00000 0.00089 0.00000

47.88 0.00018 0.00000 0.00090 0.00000 0.00203 0.00001

54.85 0.00042 0.00000 0.00197 0.00000 0.00479 0.00025

61.82 0.00094 0.00000 0.00415 0.00010 0.01042 0.00282

68.79 0.00212 0.00000 0.00993 0.00207 0.02336 0.01657

75.76 0.00567 0.00016 0.02520 0.01751 0.05370 0.06001

82.73 0.01859 0.00747 0.06787 0.07847 0.12047 0.15160

89.70 0.08194 0.08667 0.18242 0.21807 0.25036 0.29218

96.67 0.35892 0.35590 0.41085 0.42476 0.43959 0.45994

103.64 0.78605 0.71005 0.67432 0.63993 0.63526 0.62353

110.61 0.95245 0.92167 0.84625 0.80801 0.77961 0.75899

117.58 0.98892 0.98701 0.93238 0.91175 0.87473 0.85716

124.55 0.99699 0.99861 0.97000 0.96445 0.92970 0.92091

131.52 0.99906 0.99990 0.98591 0.98724 0.96036 0.95872

138.48 0.99964 0.99999 0.99317 0.99585 0.97811 0.97951

145.45 0.99980 1.00000 0.99639 0.99876 0.98750 0.99027

152.42 0.99987 1.00000 0.99805 0.99966 0.99244 0.99555

159.39 0.99992 1.00000 0.99888 0.99991 0.99542 0.99803

166.36 0.99994 1.00000 0.99931 0.99998 0.99715 0.99915

173.33 0.99996 1.00000 0.99957 0.99999 0.99811 0.99964

180.30 0.99997 1.00000 0.99969 1.00000 0.99865 0.99985

187.27 0.99998 1.00000 0.99983 1.00000 0.99914 0.99994

194.24 0.99999 1.00000 0.99988 1.00000 0.99942 0.99998

201.21 0.99999 1.00000 0.99990 1.00000 0.99957 0.99999

CASES 617,672 363,755 132,195

RMSD 0.0296 0.0246 0.0231
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distribution suggests a diminutive 0.016% (about 1 in 6,000)
probability of occurrence. At the other extreme, the actual prob-
ability that the same stock will rise to $131.52 or above is 0.094%
(1 − 0.99906), a rise in price that the log-normal distribution indi-
cates should occur only 0.01% (1 − 0.99990) of the time. In other
words, extreme price changes—either up or down—are far more
common with real stocks than would be anticipated from a log-
normal random walk.

The situation is reversed for terminal stock prices that are
only moderately above or below the $100 level. For prices
moderately below the $100 level, the cumulative probabilities
given by the log-normal distributions are greater than those
obtained from the empirical ones. The cumulative probabilities
obtained from the log-normal distributions are less than those
derived from the empirical distributions when prices are moder-
ately above the $100 level. This reflects a lower relative frequency
of moderate price changes in real stocks when compared to what
a model like Black-Scholes is predicated upon. Although not eas-
ily discerned from the figures in Table 6–1, the relative frequ-
ency of unchanged (or minimally changed) prices is high. Overall,
real stocks exhibit a distribution of returns with longer tails and
a sharper peak than should be observed if stock prices were
tracing out log-normal random walks. In other words, real
stocks display a leptokurtic distribution of terminal prices.

Figure 6–1 shows theoretical call premiums as a function of
standard historical volatility. The solid curves represent premi-
ums computed from the empirical or real-world distributions,
while the dotted ones depict those taken from Black-Scholes
(which assumes a log-normal distribution). Premiums computed
with Black-Scholes and those derived from the empirical distri-
butions are displayed for three strikes. The topmost curves are
for a call struck at $85, and hence well in-the-money. Curves for
an at-the-money call with a strike of $100 appear in the middle
of the chart. The lowermost curves are for an out-of-the-money
call that has a strike of $115.

Clearly evident in Figure 6–1 is the fact that Black-Scholes
flagrantly overprices options when the level of historical volatil-
ity is high. Black-Scholes tends to underprice options when his-
torical volatility is low and time value exists in the options being
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appraised. It is, naturally, the time value that is poorly estimated
by Black-Scholes in situations characterized by either high or low
historical volatility. For each pair of curves, there is a crossover
point where both the conditional distribution methodology (pre-
sumably accurate, at least for the data sample used in the analy-
sis) and Black-Scholes yield the same theoretical fair value.
The crossover point depends on the moneyness of the option: in-
the-money calls cross at about 130% historical volatility; at-the-
money and out-of-the-money calls cross at an historical volatility
between 60% and 80%.

One force unmistakably at work in producing the devia-
tions from Black-Scholes, seen in Figure 6–1, is regression to the
mean. Comparatively high or low historical volatility levels are
likely to be followed by more moderate levels of volatility in the
future. This was convincingly demonstrated in Chapter 5, where
future volatility was the focus of prediction efforts. When
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options are priced using conditional distributions of empirical
origin, regression to the mean and other prediction issues are
implicitly managed; the distributions conditional upon histori-
cal volatility (or any other variable) are of future, not of current,
stock prices. Black-Scholes, on the other hand, does not implicitly
correct for differences between historical and future volatility.
Consequently, unless volatility is explicitly corrected, Black-
Scholes assigns excessive value to options when historical
volatility is high and insufficient value when it is low. The
conditional distribution methodology, taking into account
regression to the mean, is not subject to this kind of systematic
pricing error.

A bullish bias in the data sample may explain why the
curves for the in-the-money call cross at a higher level of histori-
cal volatility than do the curves for the other calls. Another
viable explanation is the volatility payoff. Either way, deeply in-
the-money calls are rich in Delta and gain in value directly with
increasing stock price. The conditional distributions derived
from the data have not been detrended and, therefore, reflect
any tendency for in-the-money calls to show price strength. Any
such price strength can push the crossover point to the right—
i.e., towards higher levels of historical volatility.

Discussion

This study established that options may be readily priced using
conditional distributions derived from actual market data. It
also confirmed some earlier findings, such as the fact that the
distribution of stock price movements is leptokurtic and that
Black-Scholes systematically misprices options due to mean
reversion when raw historical volatility is used as a model input
and is either relatively high or relatively low. Finally, the study
demonstrated one virtue of a pricing model based on conditional
distributions: the implicit management of prediction issues.
There was no need to explicitly correct historical volatility for
regression to the mean (or for nonlinearities like the capping
effect discussed in Chapter 5) before generating theoretical
option premiums. Other virtues, not demonstrated, include
the fact that conditional distributions may be detrended and
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otherwise modified, that they statistically summarize actual
market behavior (whether log-normal or not), and that they may
be determined for a wide range of conditioning factors. Some of
these virtues were demonstrated in a two-part article written
for Futures (Katz and McCormick, 2001b,c) in which distribu-
tions that are conditional on factors other than just volatility—
e.g., trading venue (NASD versus NYSE), overall market mien
(bullish versus bearish), and skew (positive versus negative)—
were adduced and used to price options.

STUDY 2: REGRESSION-ESTIMATED
VOLATILITY

The purpose of this study is to examine the effect of using an
improved volatility estimate when computing the conditional
distributions. Except for the fact that the raw historical volatil-
ity used in the previous study has been replaced with a dramat-
ically better estimator of future market behavior in the current
one, both studies are fundamentally the same. The current
study uses a regression estimator that is based on two historical
volatility measures and three seasonal harmonics. This estima-
tor forecasts near-future stock price volatility fairly well and
fully corrects for regression to the mean. As was the case in the
previous study, skew and kurtosis assessments for individual
stocks are not included among the conditioning variables;
nevertheless, the skew and kurtosis commonly observed in stock
price movements are implicitly accounted for in the model.

Why use a multivariate regression estimator for expected
volatility rather than just include the relevant inputs directly as
conditioning variables? If there were an infinite (or incredibly
large) number of data points, it would make perfect sense to
simply include the two historical volatility measures and the
three cycle harmonics used in the multiple regression as condi-
tioning variables. In the real world, however, the inclusion of all
these variables in the model would consume so many degrees of
freedom that none would be left from which to obtain stable dis-
tribution statistics or option prices. How many degrees of free-
dom would be used? Equivalently, how many bins would need to
be filled with data to make things work? Suppose each of the
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twelve variables entered into the multiple regression (Chapter 5,
Study 4) was partitioned into only 10 levels. In that case, a
staggering 1,000,000,000,000 12-dimensional bins would need
to be addressed. Because the conditional distribution method-
ology can directly model nonlinear relationships, things are not
quite as bad as they might seem; the second-order and cross-
product terms used in the regression could be dropped as inputs
with no loss of accuracy, leaving just eight variables. Eight con-
ditioning variables, each having 10 levels, would require a mere
100,000,000 bins or array cells—a definite improvement.
Because multivariate regression is constrained to simple linear
relationships between its inputs and output, far fewer degrees
of freedom (in the present instance, only about 12) are con-
sumed. The fewer the degrees of freedom consumed, the more
meaningful the results.

Method

The analysis took place in two computational blocks. In the first
block, the conditional frequency distributions were accumulated
in the rows of an array. Option premiums for a variety of option
types, strikes, and volatility levels were calculated in the second
block.

First Computational Block Processing in the first block
began with the selection of a stock and a reference bar. The ref-
erence bar was then checked for validity. A reference bar was
considered valid if the following conditions held: (1) there were
at least m1 + m2 bars preceding the reference; (2) the stock was
active and had no raw price less than $2 in the interval defined
by those bars; and (3) there were at least n bars following the
reference. In this study, m1 was 30, m2 was 70, and n was 10.
Note that, in this instance, n refers to the holding or look-ahead
period, not to the total number of bars in each data series, which
remains at 1,834, as in the previous study.

Once a valid reference bar was located, long-term and
short-term historical volatility measures were calculated. Short-
term volatility was determined from the m1 bars immediately
preceding the reference. The m2 bars that came just before those
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employed for the short-term measure were used to compute
long-term volatility. Volatility was measured by the average
range method. Three harmonics of the quarterly cycle were also
determined. The cycle harmonics, as a set of sines and cosines,
were computed from the time of the year, expressed in radians.
An initial estimate (or forecast) of expected volatility over the 
n bars following the reference (the holding period) was then
calculated as

x = 0.077 + 0.667hs + 0.181hl − 0.101hshl + 0.022hs
2 (6.1)

+ 0.045hl
2 + hs(−0.015 sin 4θ + 0.079 cos 4θ + 0.051 sin 8θ

+ 0.026 cos 8θ + 0.012 sin 12θ + 0.015 cos 12θ )

where hs represents the short-term historical volatility, hl the
long-term volatility, and θ the time of the year measured in radi-
ans (2π radians = 360 degrees = 1 full year). Equation 6.1 may be
recognized as the multivariate regression estimator developed in
the previous chapter. To further improve the estimate of expected
future volatility, some additional linearization was performed
using the third-order polynomials presented immediately below:

v = 0.1093x3 − 0.1821x2 + 1.0743x − 0.0071 for x > 0.25 (6.2)
= −49.47x3 + 40.76x2 − 10.19x + 1.021 for x ≤ 0.25

In Equation 6.2, x represents the volatility estimate obtained
from the regression model specified by Equation 6.1, while v
represents the fully linearized estimate of volatility that was
intended for use in the determination of the conditional distri-
butions. The first polynomial in Equation 6.2 corrects for small
nonlinearities that are not completely accounted for by the
regression model. The second polynomial (which has substantial
higher-order coefficients) corrects for a more significant nonlin-
earity—the hook, appearing at the left end of Figure 5–5 in
Chapter 5—that is often observed when average range volatility
measures are used.

In addition to the expected future volatility (v), the termi-
nal price of a nominal $100 stock (p) was calculated. Calculation
of the terminal price involved dividing the stock price n bars
after the reference by its price at the reference bar and multi-
plying the result by 100, exactly as in the previous study.
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To discount for growth due to interest in a risk-neutral world,
the resultant terminal price was multiplied by exp(−rt), where r
was the interest rate at the reference bar and t the holding peri-
od measured in years (t = n bars/252 bars per year). The intent
was to eliminate the effect of interest on terminal price.
Elimination of the interest effect avoided the need to include
this fairly well-understood influence in the model as a condi-
tioning variable. Direct inclusion of interest as a conditioning
variable would have led to less stable results due to the degrees
of freedom that would have been consumed—degrees of freedom
better saved for more complex and less well-understood vari-
ables that have greater short-term impact on option prices.
Anyhow, interest can be more effectively handled in a theoreti-
cal manner, one that does not consume any extra degrees of free-
dom, once the conditional distributions are determined.

The estimated future volatility and interest-discounted ter-
minal stock price were massaged into row and column indices,
respectively. Indices were calculated with the same formulae
and parameter values employed in the previous study. Once 
the indices were determined, the array element addressed by
them was incremented by one; that is how the bin counts, that
form the basis for the conditional frequency distributions, were
accumulated.

Finally, another valid reference bar was chosen and, after all
valid reference bars for the selected stock were processed, the next
stock was selected. The sequence was repeated until all reference
bars for all stocks had been analyzed. The result was an array in
which each row contained a frequency distribution for the termi-
nal price of a nominal $100 stock, residing in an interest-free uni-
verse, and having a specified level of expected future volatility.

Second Computational Block In the second block,
theoretical option premiums for several strikes and option types
were calculated from the distributions adduced in the first
block. The calculations began with the selection of a volatility
level and strike price. The volatility level provided an index into
the array row containing the required frequency distribution.
Working across the row, column by column, each individual
frequency was multiplied by the easily calculated terminal
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(expiration) price of an option having the selected strike. The cal-
culations were carried out for calls, puts, and straddles. For each
volatility, strike, and option type, the sum of the products of price
and frequency was divided by the sum of the frequencies. The
resultant forward expectations—theoretical option premiums—
based on price distributions characteristic of genuine stocks,
were placed in another array. Black-Scholes premiums were also
calculated for the same set of volatility levels, strikes, and option
types in order to provide a baseline for comparison.

Results

Figure 6–2 shows the theoretical call premiums computed from the
empirical distributions and from Black-Scholes. The Black-Scholes
premiums are depicted in the figure by dotted lines. Premiums
derived from the empirical distributions appear as small black
markers. The solid lines drawn roughly through the markers
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represent smoothing polynomials that were fitted to the empirical-
ly derived premiums. Data are presented in Figure 6–2 for three
strikes: the topmost curves are for in-the-money calls struck at $85,
the middle curves are for at-the-money calls struck at $100, and
the lowermost curves are for out-of-the-money calls struck at $115.

As clearly seen in Figure 6–2, theoretical fair call premi-
ums derived from the empirical distributions are generally
larger than those calculated with Black-Scholes. The extent to
which the empirical distributions yield premiums that exceed
those produced by Black-Scholes depends on option strike and
level of volatility. Premiums derived from both approaches are
quite close to one another for the out-of-the-money call shown in
the figure until volatility reaches about 130%; at that point, pre-
miums obtained from the conditional distributions begin to take
off relative to those computed using Black-Scholes. Although
the volatility thresholds differ, the same pattern appears for the
at-the-money call and for the in-the-money call. The threshold
at which call premiums derived from distributions of
real returns begin to accelerate their growth (relative to those
computed with Black-Scholes), declines with increasing money-
ness of the options. Regardless of moneyness, for high volatility
levels, the empirical distributions yield call premiums that
greatly exceed those obtained from Black-Scholes.

Although not shown, theoretical premiums for straddles
and puts were also examined. At low volatility levels (less than
about 80%), both in-the-money and out-of-the-money puts were
found to have higher premiums when analyzed with conditional
distributions than when analyzed with Black-Scholes.
Empirically derived premiums, however, were less than Black-
Scholes premiums for at-the-money and in-the-money puts,
especially at high levels of volatility (greater than about 100%).
Both Black-Scholes and conditional distribution calculations
produced nearly identical theoretical premiums at all levels of
volatility for at-the-money straddles.

Discussion

Premiums based on the conditional distributions deviate from
Black-Scholes for both calls and puts. At all levels of volatility,
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calls have higher relative premiums; at high levels of volatility,
they have much higher relative premiums. Both in-the-money
and at-the-money puts have lower relative premiums at high
levels of volatility. Higher relative premiums are found at low
volatility levels for puts that are either in-the-money or out-of-
the-money. Premiums computed from conditional distributions
for at-the-money straddles, however, deviate hardly at all from
those computed using standard Black-Scholes.

Deviant Call Premiums Why are theoretical call premi-
ums for high-volatility stocks so much larger when derived from
the conditional distributions than when computed with Black-
Scholes? One possible explanation for the larger call premiums
associated with the empirical distributions is the volatility pay-
off. The volatility payoff, a positive return that accrues merely
from the action of volatility in a universe of asymmetrically dis-
tributed stock price movements, was thoroughly examined in
Chapter 3 under the header Means, Medians, and Stock Returns.
Another explanation might be the association of volatility with
market bottoms and imminent gains. Such an association might
be generic, or it could be specific to volatility estimates that take
seasonality into account, such as the regression estimate used in
the current study. Finally, an explanation for the larger call pre-
miums that were found with the conditional distributions might
lie with the data; perhaps the data sample used in the analysis
was dominated by bullish trends that tend to be magnified by
high-Delta options.

The last explanation, that a persistent bullish trend in the
data sample is somehow responsible for the greater empirically
derived fair premiums, makes the least sense of the several prof-
fered. Although it spans a bullish period, the data sample
employed in the study also spans one of the most bearish peri-
ods in recent market history. Additionally, returns in the sample
were characterized by a near-zero mean and consistently nega-
tive skew (see Chapter 4).

That volatility marks bottoms and leads rising stock prices
is a more tenable hypothesis. It is a hypothesis that is, at least,
consistent with the experiences of traders and technical ana-
lysts. The idea that a correlation may exist between the seasonal
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element in the volatility estimate and bullish trends in the
marketplace also has some support. Some of the most volatile
periods of the year are also the most bullish ones.

The best explanation proffered as to why theoretical call
premiums for high-volatility stocks are so much larger when
derived from the conditional distributions than when calculated
with Black-Scholes is the one involving a volatility payoff.
Option pricing models generally assume that a stock’s forward
expectation should reflect only growth due to interest in a risk-
neutral world. Growth due to volatility in a world of proportion-
ally distributed returns is something that popular models do not
assume. As a matter of fact, standard option pricing theory
argues that no risk or volatility payoff exists. But tests clearly
demonstrate that stocks do yield positive returns that are relat-
ed to volatility. These returns may be somewhat less than antic-
ipated, given stock prices hypothesized to have a log-normal
distribution and an equal probability of either rising or falling
over the holding period, but they are assuredly great enough to
be significant to traders. Perhaps the risk-neutral assumption
made by popular option models is inconsistent with the reality
of the marketplace; all risks may not be efficiently hedged
or eliminated, even in the world of options. If stocks exhibit
volatility-related returns, then it is probable that such returns
impact option premiums, especially those of in-the-money options
with abundant Delta. In other words, at high levels of volatility,
the fair premiums estimated from the empirical distributions
may be responding to volatility-induced gains in stock price that
are not reflected in models like Black-Scholes that pay homage
to the doctrine of risk-neutrality.

A little experiment was performed to test the hypothesis
that a volatility payoff in the underlying stock is responsible for
the deviant empirical premiums. Theoretical call premiums
were calculated using a modified Black-Scholes model. This
model was identical to standard Black-Scholes in every respect,
except that it did not factor out growth in the underlying stock
that could be attributed to volatility. In the standard model, the
mean of the underlying stock’s log-normal distribution of returns
is assumed to be zero when there is no interest; any growth that
can be attributed to volatility is factored out by the σ2 / 2 term
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that appears in Equations 3.18 and 3.22 (see Chapter 3).
This expresses the idea that there is no growth unrelated to
interest in a risk-neutral universe. In the modified Black-
Scholes, the median (rather than the mean) of the underlying
log-normal process was assumed to be zero, thus implying a
positive volatility-related growth in the underlying stock. The
premiums computed with the modified Black-Scholes, which
had been revised to include the theoretical volatility payoff,
were astonishingly similar to those derived from the conditional
distributions, but very different from the premiums calculated
using standard Black-Scholes.

How similar were the modified Black-Scholes premiums to
those computed from the empirical distributions? Here are some
figures: for a predicted volatility of 150%, the theoretical fair
premium for the at-the-money call was $14.20 when estimated
from the empirical distributions, and $14.80 when computed
with the modified Black-Scholes. Standard Black-Scholes priced
the same option at $12.05, a figure much lower than the other
two. The conditional distribution methodology yielded a fair pre-
mium of $23.70 for the in-the-money option, which was close to
premium of $23.50 produced by the modified Black-Scholes;
standard Black-Scholes yielded a much lower figure of $20.30.
With the volatility increased to 180%, the figures for an at-the-
money call were $18.50, $18.50, and $14.40 for the conditional
distribution, modified, and standard models, respectively. As can
be seen, there is a good fit—perfect in the last example—
between theory (modified Black-Scholes) and observation (con-
ditional distributions). These findings give strong support to the
hypothesis that there exists in stock returns a volatility payoff
that has a direct effect on option value, particularly when
volatility and option Delta are high.

It should be observed that the underlying volatility payoff
implied by the results appears larger than it did for the real
stocks analyzed in Table 3–3 (see Chapter 3), but almost per-
fectly in line with the corresponding theoretical figures that
appear in that table. The reason is that the analysis on which
the real stock figures in Table 3–3 was based employed standard
historical volatility and so these figures are affected by mean
reversion. Of course, the theoretical figures in Table 3–3 are not
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affected by mean reversion. Mean reversion is not a factor in the
present study since a much better regression estimator of future
volatility was employed.

Finally, a test was run to discover whether the presence of
low-priced, illiquid stocks in the data sample could be responsi-
ble for the higher relative call premiums derived from the con-
ditional distributions under high volatility conditions. The test
entailed recalculation of the entire analysis with a $10 price
minimum for a valid reference bar. In the original analysis, the
price minimum was set at $2. The results from the calculations
with a $10 minimum were very much like those obtained using
the $2 minimum. Low-priced stocks with large ask-bid spreads
were obviously not responsible for the deviant call premiums
observed at high levels of volatility.

Other Deviant Premiums For both in-the-money and
out-of-the-money puts on low-volatility stocks, the excess over
Black-Scholes in the premiums derived from the conditional dis-
tributions is most likely an effect of positive kurtosis and nega-
tive skew. Premiums computed using distributions of returns
from real stocks are correct in the presence of skew and kurto-
sis; those computed with Black-Scholes are incorrect.

The lower relative premiums computed from the empirical
distributions for at-the-money and in-the-money puts when
volatility levels are high almost certainly result from the so-
called “volatility payoff,” the effect of which is the opposite on
puts to what it is on calls. In-the-money puts, like in-the-money
calls, possess high Delta and apparently respond strongly to
trends, including those that reflect the growth associated with
volatility.

Nondeviant Premiums Because implied volatility based on
the terminal price of an at-the-money straddle served as the
dependent variable when constructing the regression estimator for
volatility, it is no surprise that both the standard Black-Scholes
and the conditional distribution approaches yield the same premi-
ums. Think of it this way: the volatility that must be entered into
Black-Scholes to obtain the terminal straddle price was precisely
that volatility to be estimated by the multivariate regression. The

Pricing Options with Conditional Distributions 221

7742_ch_6.qxd  28/12/04  12:21 PM  Page 221



regression-based volatility estimate was, in fact, specifically
designed to force Black-Scholes to yield an empirically correct
valuation in the specific case of an at-the-money straddle.

STUDY 3: RE-ANALYSIS WITH DETRENDED
DISTRIBUTIONS

Positive returns or price trends, perhaps deriving from the
volatility payoff, were thought responsible for the higher call
and lower put premiums that were observed with the empirical
model when it was compared to Black-Scholes in the previous
study. In that study, trends were left in; they were not selectively
removed from the observed distributions. Were positive trends
or returns—linked, for whatever reason, to high levels of volatil-
ity—at the root of the differences between the models in the
previous study? Standard models like Black-Scholes assume
that no trends other than those due to interest-related growth
in a risk-neutral world exist in the marketplace. How close to
those obtained from Black-Scholes would theoretical option pre-
miums derived from conditional distributions be for stocks that
are trendless, and thus satisfy the risk-neutral assumption, but
that are otherwise identical to real stocks? Equivalently, what
would be found were the conditional distributions of the previ-
ous study detrended—i.e., were their first moments somehow
adjusted to eliminate trend? Finally, how can trend be adjusted
in, added to (as might be necessary to account for growth due to
interest or other factors), or removed from a pricing model based
on conditional distributions? These are the questions addressed
in this study.

Method

As in Study 2, the analysis was carried out in two computational
blocks. The first of the two blocks was unchanged in the present
study. Discussion of the first block is, therefore, not repeated
(see Study 2 for details). The few differences that existed
between the analyses appeared in the second computational
block where, in the previous study, fair option premium was
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computed from each conditional distribution as

(6.3)

where ξ represented the forward expectation, fi the frequency
associated with the i-th terminal stock price level for the speci-
fied conditional distribution (in the language of the previous
study, the i-th element of the array row associated with the
specified level of predicted volatility), and si, the corresponding
terminal stock price. Given the terminal stock price, the func-
tion P simply returned the terminal premium (the premium at
expiration) for an option of the specified strike and type.

To remove the effect of trend from the underlying distribu-
tion of terminal stock price and, in turn, from the theoretical
option premium, si was replaced with si − u + 100 in the current
study, leading to

(6.4)

where u was set to (∑fisi)/(∑fi) the first moment of the frequency
distribution defined by f, i.e., the expectation for the terminal
stock price. The logic involved is simple: The stock price
associated with each frequency is shifted up or down by some
fixed amount. Shifting the stock prices shifts the first moment
of the stock price distribution, its expectation or mean. The
amount of shift is chosen to make the expectation for the
terminal stock price whatever is desired—in this case an even
$100, the initial price of the stock, implying the absence of any
growth or trend. The terminal option premium is then comput-
ed for each level of shifted stock price and the option’s forward
expectation or fair current premium determined in the usual
manner.

The second computational block was the same as in Study 2
(see that study for procedural details) except for the change to
the premium calculation that was just discussed.

ξ=

− +∑

∑

f s u

f

i i
i

i
i

P( )100

ξ=
∑

∑

f s

f

i i
i

i
i

P( )

Pricing Options with Conditional Distributions 223

7742_ch_6.qxd  28/12/04  12:21 PM  Page 223



Results

Table 6–2 presents theoretical call premiums for volatility lev-
els (VLTY) ranging from 20% to 200% in increments of 10%.
Data are shown in the table for options having three strikes or
levels of moneyness: an $85 in-the-money strike; a $100 at-
the-money strike; and a $115 out-of-the-money strike. Fair pre-
miums derived from the detrended empirical distributions
(EMP) are listed side-by-side with those calculated using stan-
dard Black-Scholes (BS). The numerical data in Table 6–2 are
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T A B L E  6–2

Theoretical Call Premiums for Three Strikes and a Range
of Volatilities Computed from Detrended Conditional
Distributions and with Black-Scholes

Strike == $85 Strike == $100 Strike == $115

VLTY EMP BS EMP BS EMP BS

0.20 15.04 15.00 1.87 1.59 0.03 0.00

0.30 15.09 15.01 2.40 2.38 0.08 0.02

0.40 15.20 15.06 3.16 3.18 0.22 0.14

0.50 15.40 15.20 3.98 3.97 0.50 0.39

0.60 15.69 15.44 4.82 4.77 0.93 0.76

0.70 15.98 15.77 5.59 5.56 1.43 1.24

0.80 16.33 16.18 6.32 6.35 1.93 1.79

0.90 16.74 16.64 7.09 7.14 2.52 2.39

1.00 17.17 17.14 7.82 7.93 3.12 3.04

1.10 17.69 17.68 8.56 8.72 3.68 3.71

1.20 18.11 18.24 9.20 9.51 4.18 4.42

1.30 18.72 18.83 10.06 10.30 4.95 5.14

1.40 19.44 19.44 10.99 11.09 5.75 5.88

1.50 20.32 20.06 11.96 11.88 6.70 6.63

1.60 20.28 20.69 11.94 12.66 6.72 7.39

1.70 21.26 21.33 13.11 13.45 7.65 8.15

1.80 22.73 21.97 15.05 14.23 9.55 8.93

1.90 21.70 22.63 13.96 15.01 8.45 9.71

2.00 24.18 23.29 16.52 15.79 10.74 10.49
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analogous to those presented graphically in Figure 6–2 in the
previous study.

For options that are well out-of-the-money and low in time
value, fair premiums computed from the detrended conditional
distributions substantially exceed those obtained from standard
Black-Scholes. This is true for both calls (shown in the table)
and puts (not shown) up to a volatility level of about 80%.
Deeply in-the-money options also display larger theoretical pre-
miums over a similar range of volatilities when computed with
the detrended distributions than when determined using Black-
Scholes. At higher levels of volatility, between about 110% and
170%, the chosen options are relatively less in-the-money or out-
of-the-money, and evidence smaller distribution-based premi-
ums. Options that are at-the-money and high in time value, and
hence associated with high levels of volatility, also tend to have
less empirical value, as assessed by the conditional distribution
methodology, than Black-Scholes would suggest. Overall, how-
ever, there is a surprisingly close agreement between premiums
from standard Black-Scholes and those from the detrended con-
ditional distributions for at-the-money options on stocks having
moderate levels of volatility (between 30% and 100%). These
observations are consistent with what might be expected given
the differences between the log-normal distributions assumed
by Black-Scholes and the leptokurtic ones actually observed in
stock returns.

When examining the data, remember that “in-the-money”
and “out-of-the-money” are relative terms that must be under-
stood in the context of volatility: a $115 strike call on a $100
stock is deeply out-of-the-money (in the sense that the stock
price is very unlikely to rise above $115 by expiration) when 
10 days remain and volatility is low, i.e., less than 40%; on the
other hand, in high-volatility situations, i.e., when volatility is
greater than 100%, the same option would only be considered
mildly out-of-the-money.

In addition to puts and calls, at-the-money straddles were
investigated. Consistent with theoretical considerations, the
premium for an at-the-money straddle has a straight-line rela-
tionship with estimated future volatility. This relationship is
easily seen when smoothing polynomials are used. Virtually
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identical premiums (within the limits of statistical measure-
ment error) are obtained whether the Black-Scholes or condi-
tional distribution methodology is employed for the calculations.
This was expected, given that the volatility estimator used in
the study was designed to make Black-Scholes generate empiri-
cally correct premiums for at-the-money straddles.

Substantial noise, in the form of variability of premiums
from volatility level to volatility level, is visible in the data from
the detrended empirical distributions when volatility is high.
The relatively small number of cases falling in the bins corre-
sponding to high volatility levels is responsible for the observed
noise. Smoothing polynomials are effective in this context for
noise reduction, not to mention for interpolation between dis-
crete levels of volatility. Such polynomials, along with the raw
data, were plotted in the figures shown earlier but are not pre-
sented in Table 6–2 for reasons of space.

Discussion

This study demonstrated how the first moment of a conditional
distribution, its growth or trend, could be set to zero or otherwise
adjusted. The process involved shifting, after the fact, the stock
prices that tagged the bins in which the frequencies of occurrence
were accumulated. When options were priced with unmodified
empirical distributions (those that reflected any trend present in
the data) substantial deviations from Black-Scholes were
observed at high levels of volatility. One hypothesis was that the
deviations were caused by a volatility-related trend component,
such as the volatility payoff discussed near the end of Chapter 3.
Removing the trends by setting the first moments to $100, the
initial stock price, eliminated the extremely deviant premiums
associated with high levels of volatility when options were
appraised using conditional distributions. There is no question
that trends, whatever their source, were responsible for the great
deviations from Black-Scholes with increasing volatility levels.
When trend is statistically partialled out, there is a much closer
match between premiums derived from the conditional distribu-
tion methodology and from Black-Scholes for all volatility levels,
option types, and degrees of moneyness.
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Nevertheless, significant differences remain between premi-
ums gleaned from the empirical distributions and those from
Black-Scholes. These differences are quite consistent with what
might be expected given the log-normal distribution of returns
assumed by Black-Scholes and the more leptokurtic distribution of
returns observed when real stock prices are examined. The dispar-
ities in premiums between the models are by no means trivial; for
certain levels of volatility and moneyness, they are of clear practi-
cal significance. For example, consider a call struck at $115 and
having 10 days left until expiration. Assume that this call is on a
stock with an estimated future volatility of 60%. The fair premium
for such a call is $0.76 when computed with Black-Scholes, and
$0.93 when reckoned using the conditional distributions—a 22%
spread. Few traders would want to ignore such a large divergence
in theoretical fair value.

Having demonstrated the use of detrended conditional distri-
butions in pricing options, this study raises the issue of whether or
not the trends and growth observed in stock prices should always
be partialled out or statistically removed. For example, it may not
always be desirable to eliminate the effect of the volatility payoff
on theoretical option prices. When options must be priced for spec-
ulative purposes, it may in fact be best to use the unaltered condi-
tional distributions. Finally, it is worth pointing out that, even if
trends have been removed from the raw data, growth and trend
factors may be brought into the model explicitly, at a later stage,
by setting the first moment of each conditional distribution to a
theoretically appropriate or desired value.

STUDY 4: SKEW AND KURTOSIS

The previous three studies examined volatility as a conditioning
variable. Volatility, the second moment, has a known and dramatic
influence on the fair value of an option. But what about the third
and fourth moments, skew and kurtosis? This study adds skew and
kurtosis as conditioning variables to the models of the previous
studies. More precisely, the current study examines the skew or
kurtosis that characterizes a given stock at a given time—the
stock’s historical skew or kurtosis—as a factor that may influence
fair option premium. Just like historical volatility, historical skew
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or kurtosis can be computed and used as an input to an option
pricing model. Note that the skew or kurtosis specific to a given
stock at a given time is being considered here, not the skew and
kurtosis characteristic of price movements generally. The latter
are automatically taken into account when using empirically
derived conditional distributions (unless these distributions have
been modified in some way that removes the higher moments)
since such distributions are derived from actual price movements.

How is historical skew or kurtosis computed? The measure-
ment of historical skew or kurtosis is straightforward and may
be accomplished with Equations 4.3 and 4.4 from Chapter 4. The
only issue is what to use as a data sample, or sample of returns,
in the calculations. In this study, the daily returns over the past
m bars (relative to the reference) were employed as the sample
of values to which Equations 4.3 and 4.4 could be applied in
order to obtain the desired statistics. It should be noted that his-
torical measures for skew or kurtosis are substantially less reli-
able than historical measures for volatility. The lower reliability
is due to the greater statistical error of measurement with the
higher moments. To achieve the same reliability—or statistical
error of estimate, the other side of the same coin—with skew or
kurtosis that was achieved with volatility, a much larger sample
of data points would have to be analyzed.

In this study, as in the previous one and those that follow,
the conditional distributions used to price options are detrended.
The reason is that it is easier to see the specific effects of skew,
kurtosis, or whatever other conditioning variable is being inves-
tigated on option premiums in the absence of volatility-related
growth than in its presence. Removal of trends from the condi-
tional distributions moves the theoretical premiums computed
from these distributions closer to those calculated with Black-
Scholes, thus making comparisons easier. This is an example of
the good old scientific method: to separate out and hold constant
all influences other than those under investigation.

Method

Except for some minor changes and additions, the analytic
approach is similar to that of the previous study. First, a stock
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was chosen from the 2,246 stocks in the database. A reference
bar was then selected from the 1,834 bars (not all active) avail-
able for the chosen stock. The reference bar was checked for
validity. To be valid, a reference bar had to satisfy the two
requirements used in the previous study: one, the stock had to
be active and have an unadjusted price greater than $2 in the
m1 + m2 bars preceding the reference; and two, there had to
exist a period of at least n bars following the reference from
which a return or terminal price could be computed. In the
analysis, m1 was 30, m2 was 70, and n was 10—exactly as
before. Given a valid reference bar, an estimate of future volatil-
ity based on two historical measures, together with three sea-
sonal harmonics, was determined. The volatility estimate was
the same as that used in the previous two studies. In addition to
volatility, historical skew or kurtosis was assessed from the
m1 + m2 bars that preceded the reference. Daily returns over
the historical period were used in the calculation of these higher
moments. There was then one of four possible conditions to ver-
ify: (1) That skew was positive or greater than zero, (2) That
skew was negative or less than zero, (3) That kurtosis was posi-
tive or greater than zero, or (4) That kurtosis was negative or
less than zero. If the specified condition was verified, the termi-
nal price frequencies were accumulated for the stock. The accu-
mulation of frequencies was carried out exactly as in the two
foregoing studies. Finally, the next reference bar was selected
and, when all valid reference bars for the chosen stock were
processed, the next stock was picked. The sequence was repeated
until every valid reference bar for every stock had been
analyzed. The result was a set of conditional distributions for a
specified level of either skew or kurtosis, and for each of the
20 levels of estimated future volatility. These distributions were
then used to compute theoretical option premiums.

The whole procedure just described was repeated four
times. Each time, one of the four possible conditions was speci-
fied. In this way, terminal stock price distributions for four pos-
sible skew or kurtosis situations (skew > 0, skew < 0,
kurtosis > 0, kurtosis < 0) and for all 20 levels of predicted
volatility (10%, 20%, . . . 200%) were computed along with derived
option valuations.
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It should be clear from the above discussion that only two
levels of skew and two levels of kurtosis were analyzed, and not
both at the same time. There were two reasons for handling
skew and kurtosis in this manner. One reason was the large sta-
tistical error associated with estimation of the higher moments
(see Chapter 4 for details), especially from the small samples
involved when computing historical measures. For the same
lookback period, measures of historical skew and kurtosis are
much less reliable than, for instance, measures of historical
volatility. Given the comparatively low reliability, two levels
(positive or negative) appeared sufficient to test the hypothesis
that historical skew and kurtosis would be useful in the
appraisal of option value. A second reason for the coarseness of
the analysis was to conserve degrees of freedom. A finer grained
analysis would absorb more degrees of freedom and, given the
low reliability of historical skew and kurtosis measurements,
would not necessarily provide more in the way of useful infor-
mation, at least in a preliminary investigation.

Results

Theoretical premiums derived from the conditional distribu-
tions and from Black-Scholes are shown in Tables 6–3 and 6–4.
Table 6–3 contains theoretical fair premiums for out-of-the-
money calls having a strike price of $115 and 10 days left to
expiration. Theoretical premiums for out-of-the-money puts
struck at $85 appear in Table 6–4. Option premiums are shown
in the tables for 19 levels of predicted volatility, ranging from
0.20 through 2.00, and for all four conditions involving skew and
kurtosis; premiums were not displayed for all 20 levels of
volatility because the lowest level (0.10) occurred too infre-
quently to yield meaningful results. In both tables, the first col-
umn (VLTY) contains the volatility levels corresponding to the
bins used to accumulate the conditional distributions.
Premiums for options on stocks having positive historical skew
appear in the second column (SKEW > 0). The third column
(SKEW < 0) contains the premiums for options on stocks that
display negative skew. Fair premiums for options on stocks with
positive historical kurtosis appear in the fourth column
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(KURT > 0), while those for stocks with negative kurtosis are
listed in the fifth column (KURT < 0). The sixth, and last, column
contains fair premiums computed using Black-Scholes. Since
neither skew nor kurtosis is an input to the standard Black-
Scholes model, only one column (BS) of data for this model is
required in the tables. The premiums in the last column are
intended to serve as baselines for comparison with those derived
from the conditional distributions and found in columns two
through five.

Skew, Kurtosis, and Out-of-the-Money Calls The
data in Table 6–3 suggest that historical skew has only a minor

Pricing Options with Conditional Distributions 231

T A B L E  6–3

Fair Premiums for Out-of-the-Money $115 Calls with 10 Days
Left to Expiration as a Function of Volatility, Skew, and
Kurtosis

VLTY SKEW >> 0 SKEW << 0 KURT >> 0 KURT << 0 BS

0.20 0.04 0.03 0.04 0.01 0.00

0.30 0.09 0.07 0.09 0.04 0.02

0.40 0.24 0.21 0.23 0.13 0.14

0.50 0.51 0.49 0.52 0.38 0.39

0.60 0.93 0.94 0.95 0.73 0.76

0.70 1.46 1.38 1.45 1.21 1.24

0.80 1.95 1.88 1.94 1.80 1.79

0.90 2.52 2.52 2.55 2.19 2.39

1.00 3.05 3.23 3.17 2.66 3.04

1.10 3.66 3.71 3.72 3.25 3.71

1.20 4.12 4.27 4.18 4.24 4.42

1.30 4.93 4.95 4.96 4.66 5.14

1.40 5.64 5.85 5.71 6.15 5.88

1.50 6.90 6.35 6.58 8.10 6.63

1.60 6.87 6.39 6.65 7.06 7.39

1.70 8.41 6.22 7.74 6.16 8.15

1.80 10.09 8.53 9.41 10.35 8.93

1.90 9.65 6.85 8.17 14.26 9.71

2.00 9.45 12.04 10.69 11.93 10.49
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impact upon fair call premiums when the underlying stock’s
volatility is low or moderate, although a more significant impact
is observed when the stock’s volatility is high. Out-of-the-money
calls on stocks with positive skew, and with predicted volatility
levels between 20% and 80%, tend to have slightly larger fair pre-
miums than calls on similar stocks with negative skew. This is
consistent with the notion that out-of-the-money calls should be
worth more in the presence of positive skew due to the greater
likelihood of a large gain in stock price. For volatility levels
between 90% and 140%, fair call premiums tend to be slightly
smaller when the underlying stocks are characterized by positive,
rather than by negative, historical skew. However, substantially
greater call premiums are found for stocks that have positive
skew and predicted volatility levels between 150% and 190%.

The story is different with kurtosis. Historical kurtosis has
a major effect upon theoretical call premiums at all levels of
estimated future volatility. In low volatility situations, out-of-
the-money calls generally have considerably larger theoretical
premiums when the underlying stocks exhibit positive historical
kurtosis (a leptokurtic distribution of returns in the recent past)
than when they do not. The effect is present for volatility levels
ranging from 20% to 130%. At higher levels of volatility, from
140% to 200%, the pattern is reversed: negative historical
kurtosis is associated with greater option premiums. This is
precisely the behavior that should be observed if kurtosis, like
volatility, is a moderately stable—and thus somewhat pre-
dictable—characteristic of a stock.

At low volatility levels (20% to 50%), premiums computed
with Black-Scholes fall at or below those based on distributions
of returns from stocks having negative historical kurtosis; Black-
Scholes premiums fall far below those computed for stocks hav-
ing positive historical kurtosis. For stocks that exhibit higher
levels of volatility, Black-Scholes premiums tend to fall between
those computed for stocks with negative kurtosis and those cal-
culated for stocks with positive kurtosis. The exact relationship
varies with volatility and is most likely a function of general
market kurtosis and of regression to the mean.

Remember that the market as a whole is characterized by
positive kurtosis. Any negative historical kurtosis in a given

232 CHAPTER 6

7742_ch_6.qxd  28/12/04  12:21 PM  Page 232



stock’s returns will, therefore, tend to regress to the more posi-
tive mean kurtosis with the arrival of the future. This is the
same phenomenon observed with raw historical volatility and
that can be expected to occur when using raw historical meas-
ures of any higher moments. In fact, there will be more regres-
sion to the mean with kurtosis than with volatility because of
the former’s lower reliability. At low levels of volatility, the pos-
itive future kurtosis that probably arises even with stocks that
evidence negative historical kurtosis causes theoretical premi-
ums for out-of-the-money options to exceed those suggested by
Black-Scholes. At higher levels of volatility, the options become
effectively less out-of-the-money and the impact of kurtosis
becomes smaller. The theoretical premiums thus show less
kurtosis-induced inflation and appear more in line with Black-
Sholes.

Skew, Kurtosis, and Out-of-the-Money Puts Table
6–4 contains the same kind of data as shown in Table 6–3, but
for out-of-the-money puts rather than for out-of-the-money calls.
Consistent with the idea that negative skew should enhance the
value of an out-of-the-money put, puts on stocks with predicted
volatilities between 20% and 80% have greater value when his-
torical skew is negative than when it is positive. The magnitude
of the premium difference, however, is fairly small. Put premi-
ums are paradoxically larger under negative skew conditions
when the underlying stock has an estimated future volatility
between 130% and 190%.

Variations in kurtosis also lead to substantial differences in
option premium. Positive kurtosis is associated with decidedly
greater premiums than negative kurtosis for puts on stocks with
volatilities between 20% and 90%. For volatilities between 110%
and 200%, positive kurtosis is associated with lower put prices.
As was the case for out-of-the-money calls, Black-Scholes under-
prices out-of-the-money puts at lower levels of volatility, regard-
less of historical kurtosis; at higher levels of volatility,
Black-Scholes premiums fall between those associated with pos-
itive and those identified with negative kurtosis.

The relationships observed between put premiums and
kurtosis are consistent with expectations. The fact that, when
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predicted volatility is low, even negative historical kurtosis is
associated with larger distribution-based premiums than Black-
Scholes premiums suggests either that (1) regression to the
mean is so great that even negative historical kurtosis is fol-
lowed by a positive average future kurtosis, or (2) that the nega-
tive skew that characterizes the stock market as a whole has
sufficiently raised the value of far out-of-the-money (when con-
sidered in the light of volatility) puts.

Skew, Kurtosis, and In-the-Money Options
Although the data are not presented, deeply in-the-money calls
have the same amounts of time value as out-of-the-money puts
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T A B L E  6–4

Fair Premiums for Out-of-the-Money $85 Puts with 10 Days
Left to Expiration as a Function of Volatility, Skew, and
Kurtosis

VLTY SKEW >> 0 SKEW << 0 KURT >> 0 KURT << 0 BS

0.20 0.03 0.04 0.04 0.02 0.00

0.30 0.09 0.09 0.09 0.06 0.01

0.40 0.19 0.22 0.21 0.14 0.06

0.50 0.39 0.42 0.41 0.29 0.20

0.60 0.66 0.73 0.70 0.55 0.44

0.70 0.96 1.01 0.99 0.91 0.77

0.80 1.27 1.41 1.34 1.22 1.18

0.90 1.74 1.74 1.75 1.63 1.64

1.00 2.12 2.24 2.17 2.13 2.14

1.10 2.71 2.65 2.68 2.80 2.68

1.20 3.09 3.12 3.09 3.33 3.24

1.30 3.77 3.57 3.65 4.58 3.83

1.40 4.48 4.30 4.35 5.84 4.44

1.50 5.60 4.78 5.21 6.51 5.06

1.60 5.19 5.33 5.16 6.10 5.69

1.70 6.80 5.16 6.26 5.51 6.33

1.80 7.93 7.09 7.56 9.07 6.97

1.90 7.25 5.75 6.48 11.14 7.63

2.00 8.28 10.11 9.18 8.32 8.29
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with the same strike, and vice versa. Consequently, skew, kurto-
sis, and volatility affect in-the-money options of one kind much
like they affect out-of-the-money options of the opposing kind.

Larger in-the-money put premiums are found with positive
skew than with negative skew for volatility levels between 150%
and 190%; smaller premiums tend to be found with volatility
figures between 90% and 140%; and slightly larger premiums
are observed at volatility levels between 20% and 80%.
Premiums for in-the-money calls tend to be much larger when
skew is negative than when it is positive for volatility levels
between 130% and 190%; they are consistently somewhat small-
er for levels of volatility between 20% and 80%.

When volatility is low, positive kurtosis is associated with
larger theoretical premiums for both puts and calls, and nega-
tive kurtosis is associated with smaller premiums. When vola-
tility is high, positive kurtosis is associated with smaller
premiums and negative kurtosis with larger premiums.

At-the-Money Options Because the conditional distri-
butions were detrended, and no interest or dividend payments
were entered into the model, at-the-money calls and at-the-
money puts have identical premiums.

At lower volatility levels (less than 140%), premiums are
virtually unchanged across skew conditions. Positive skew is
associated with greater call premiums than is negative skew at
higher levels of volatility (between 150% and 190%). Black-
Scholes premiums tend to fall in or near the range defined by
the premiums associated with the two distinct levels of skew.
The latter finding makes sense since at-the-money option pre-
miums are less affected by general market skew or kurtosis
than are the premiums of either deeply in-the-money or deeply
out-of-the-money options.

Kurtosis exerts a stronger and more consistent influence
upon the value of at-the-money options than does skew. At-the-
money option premiums are greater with positive historical
kurtosis than with negative kurtosis at lower levels of volatility
(below 110%). At higher volatility levels (above 120%), the
pattern is reversed; positive historical kurtosis is associated
with lower premiums than negative historical kurtosis.
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The difference in the premiums between the two conditions is
considerable and of practical relevance to traders.

Much random variation or “noise” is apparent in the premi-
ums derived from the conditional distributions at volatility levels
in excess of about 140%. The cause is the relatively small number
of cases that contribute to the high-volatility conditional distri-
butions from which the premium estimates are computed. The
random estimation error is greater under the negative than
under the positive kurtosis condition because, at all levels of
volatility, the number of instances where kurtosis is less than
zero is by far smaller than the number of cases where historical
kurtosis is greater than zero.

Discussion

The observations made in this study are quite encouraging.
Fairly simple historical measures of skew and kurtosis were
employed, no corrections were made for regression to the mean,
and only a coarse, two-level analysis was performed for each 
historical measure. Despite these limitations, effects large
enough to be important to traders were observed.

Skew has only a modest effect on option value at low levels
of volatility. For out-of-the-money options on low-volatility
stocks, the effect of skew differs from puts to calls and is what
might naively be expected on the basis of distributional shape;
positive skew yields relatively greater call premiums, while neg-
ative skew is associated with larger put premiums. There is lit-
tle variation in premium between the two skew conditions for
at-the-money options when volatility is low. At high volatility
levels, skew has a stronger and more consistent effect on theo-
retical premiums: all options, regardless of moneyness or type,
evidence greater value when historical skew is positive than
when it is negative. This latter observation suggests that his-
torical skew might have some predictive capacity, not only for
future skew, but also for future volatility.

By way of contrast, kurtosis has a tremendous, easily
demonstrable effect on the worth of options at all levels of
volatility. Even simple historical kurtosis, a measure that has
low reliability and is thus a fairly poor predictor of kurtosis in
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the near future, can forecast sizable variations in fair value.
How strong is the effect of kurtosis? Consider a $100 stock with
an historical volatility of 40%. With a volatility of 40%, the theo-
retical premium for a call struck at $115 is $0.23 when histor-
ical kurtosis is positive, but only $0.13 when it is negative.
Black-Scholes prices the same call at $0.14, ignoring kurtosis.
A fair call premium of $0.95 is found under positive kurtosis
conditions, and a premium of $0.73 under negative kurtosis con-
ditions, when the underlying stock’s volatility is 60%. When his-
torical kurtosis is positive, the fair value of the call exceeds the
Black-Scholes estimate of $0.76 by 25%. As easily seen, these
are not minuscule differences of interest only to academicians.
Positive kurtosis means greater value for all options (both puts
and calls, regardless of moneyness) at low levels of volatility;
it means lower fair premiums for options at higher levels of
volatility.

Although the effects of kurtosis on the value of in-the-
money and out-of-the-money options are consistent with theo-
retical expectations based on the shape of the underlying price
distributions, the similar effects observed on the worth of at-the-
money options are curious and were not anticipated. One might
speculate on the cause. Could the effect of historical kurtosis on
fair value be a result of its action on future volatility and not a
direct function of kurtosis itself? When estimated future volatil-
ity is low, positive historical kurtosis might be associated with
an actual future volatility that exceeds the predicted value. And,
while the detrending employed in the analysis removes any
variation in the volatility payoff, it does not remove variation in
future volatility. Deviations from predicted future volatility that
are related to differences in historical kurtosis might explain
some of the observations made in the current study.

Whether future volatility or the volatility payoff differs
with the level of kurtosis (or skew) can easily be tested with the
companion software and is left as an exercise for the reader.
Theoretically, the volatility payoff should be greater with
greater kurtosis, even when volatility is held constant, because
of the longer tails in the price distribution. Whether volatility
itself is affected is a matter of empirical investigation. There is
no reason why models for volatility and for the volatility payoff,
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such as those developed in Chapter 5, cannot include measures
of skew and kurtosis among the independent variables.

It should be noted that neither skew nor kurtosis appears as
an input to any popular volatility or pricing model. Nevertheless,
in the light of the results just presented, an advanced volatility or
pricing model would do well to include some measure of skew and
of kurtosis. Both skew and kurtosis are easily handled as model
inputs when using the conditional distribution methodology and
other techniques discussed later in this book. The next step along
this line of research is to develop better estimates for future skew
and kurtosis, just as was done in Chapter 5 for volatility. Given
the intrinsically lower reliability of historical measurements 
of the higher moments, such efforts are likely to be worthwhile.

STUDY 5: TRADING VENUE

This study does for trading venue what the previous study did for
skew and kurtosis. Along with volatility, venue is used as a condi-
tioning variable. The venues examined are the New York Stock
Exchange (NYSE), the American Stock Exchange (AMEX), and the
so-called “over-the-counter” markets (NASD). Stocks trading on
each of these exchanges or venues are, in the current study, analyzed
by having their returns binned, price distributions computed, and
theoretical premiums for options trading on them derived. The rea-
son for this study is that venue, like skew and kurtosis, may affect
theoretical option premiums. The possibility of option value being
affected by stock venue was suggested by tests reported by the
authors in Futures (Katz and McCormick, 2001b,c) and by observa-
tions made when trading; options on NASD stocks consistently
appear to have higher implied volatilities, even when the historical
volatilities of the underlying stocks are the same—a phenomenon
that could be due to a higher mean volatility in the NASD coupled
with a tendency for historical volatility to exhibit mean reversion. It
should be noted that the current study uses an approach like the one
employed in the aforementioned articles appearing in Futures.

Method

The analysis was conducted in the same manner as in Study 4,
but with one exception: the selection of cases based on skew or
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kurtosis was replaced with selection based on venue or
exchange. Analyses were carried out for three venues: the
NYSE, the AMEX, and the NASD. For each of these venues, dis-
tributions were accumulated and theoretical option premiums
based on terminal premium expectation were computed.
Premiums were computed for both puts and calls over a range
of strikes and levels of volatility. For details concerning the cal-
culations, consult Studies 3, 4, and 5, above.

Results

Only results for the NYSE and the NASD are discussed. Results
for the AMEX are not presented since there were too few stocks
with prices greater than $2 trading on that exchange (and pres-
ent in the Worden Bros. TC-2000 database) to yield a sufficient
number of data points for stable and meaningful statistics or
theoretical option premiums to be computed.

Table 6–5 displays theoretical premiums broken down by
moneyness (out-of-the-money, in-the-money), volatility (20% to
200% in steps of 10%), and source of premium (NYSE condition-
al distributions, NASD conditional distributions, Black-Scholes).

Out-of-the-Money Options, Detrended Distributions
As Table 6–5 reveals, both puts and calls have lower theoretical
premiums for stocks trading on the NYSE than for stocks trad-
ing on the NASD when volatility levels are low (25% to 60%) and
systematic trend is absent. At low levels of volatility, Black-
Scholes yields theoretical premiums even smaller than those
computed from the NYSE data. The differences observed in the
premiums are substantial, often reaching more than 50% of the
option’s value! At higher volatility levels, theoretical premiums
for options on NYSE stocks exceed those for options on NASD
stocks, with a few exceptions that are most likely artifacts 
resulting from the limited samples of data points available at
some levels of volatility. Black-Scholes premiums are generally
below the NYSE premiums, but frequently above the NASD
premiums.

In-the-money options are not discussed because, when the
first moment of the distribution of returns is zero, i.e., when there
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is no trend, in-the-money calls behave (as far as time value) pre-
cisely like out-of-the-money puts (with the same strike), and in-
the-money puts act precisely like out-of-the-money calls. Since
the conditional distributions on which this subset of results is
based were detrended, trend is effectively absent and the put-
call parity that is involved in the aforementioned relationship
between in-the-money and out-of-the-money options holds.

The effect of venue on option premiums appears to be very
much like that of kurtosis: both positive kurtosis and the NASD
venue are associated with relatively higher premiums at lower
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T A B L E  6–5

Fair Premiums Based on Detrended Conditional Distributions
as a Function of Trading Venue for Out-of-the-Money Options
with 10 Days Left to Expiration on a Nominal $100 Stock

Out-of-the-Money $115 Calls Out-of-the-Money $85 Puts

VLTY NYSE NASD BS NYSE NASD BS

0.2 0.04 0.04 0.00 0.04 0.06 0.00

0.3 0.07 0.16 0.02 0.08 0.12 0.01

0.4 0.20 0.31 0.14 0.19 0.24 0.06

0.5 0.44 0.59 0.39 0.38 0.43 0.20

0.6 0.89 0.97 0.76 0.66 0.71 0.44

0.7 1.40 1.44 1.24 1.00 0.98 0.77

0.8 2.00 1.91 1.79 1.44 1.31 1.18

0.9 2.80 2.48 2.39 1.82 1.73 1.64

1.0 3.52 3.08 3.04 2.36 2.16 2.14

1.1 4.11 3.66 3.71 3.15 2.66 2.68

1.2 4.97 4.14 4.42 3.65 3.08 3.24

1.3 5.72 4.89 5.14 4.19 3.68 3.83

1.4 6.27 5.72 5.88 4.53 4.44 4.44

1.5 5.84 6.75 6.63 3.52 5.43 5.06

1.6 8.99 6.53 7.39 6.79 5.16 5.69

1.7 9.41 7.56 8.15 6.90 6.22 6.33

1.8 12.22 9.44 8.93 12.27 7.56 6.97

1.9 5.78 8.56 9.71 6.40 6.72 7.63

2.0 16.52 10.27 10.49 10.07 9.12 8.29
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levels of volatility, and with relatively lower premiums at higher
volatility levels; negative kurtosis and the NYSE trading venue
are associated with the opposite pattern—higher relative premi-
ums at lower volatility levels, and lower ones at higher levels.

At-the-Money Options, Detrended Distributions Table
6–6 shows theoretical fair premiums for at-the-money options on
stocks that have no systematic trends. The data are broken down
by option type (put, call), venue (NYSE, NASD, BS), and volatil-
ity level (0.2, 0.3, ...1.6). The pattern formed by the premiums is
extremely similar to the one observed for the out-of-the-money
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T A B L E  6–6

Fair Premiums Based on Detrended Conditional Distributions
as a Function of Trading Venue for At-the-Money Options with
10 Days Left to Expiration on a Nominal $100 Stock

At-the-Money $100 Calls At-the-Money $100 Puts

VLTY NYSE NASD BS NYSE NASD BS

0.2 1.87 2.04 1.59 1.87 2.04 1.59

0.3 2.40 2.50 2.38 2.40 2.50 2.38

0.4 3.13 3.26 3.18 3.13 3.26 3.18

0.5 3.91 4.06 3.97 3.91 4.06 3.97

0.6 4.79 4.83 4.77 4.79 4.83 4.77

0.7 5.62 5.58 5.56 5.62 5.58 5.56

0.8 6.50 6.29 6.35 6.50 6.29 6.35

0.9 7.44 7.05 7.14 7.44 7.05 7.14

1.0 8.28 7.78 7.93 8.28 7.78 7.93

1.1 9.15 8.53 8.72 9.15 8.53 8.72

1.2 10.06 9.15 9.51 10.06 9.15 9.51

1.3 10.69 10.01 10.30 10.69 10.01 10.30

1.4 11.41 10.97 11.09 11.41 10.97 11.09

1.5 10.38 12.03 11.88 10.38 12.03 11.88

1.6 14.21 11.77 12.66 14.21 11.77 12.66

1.7 14.38 13.04 13.45 14.38 13.04 13.45

1.8 18.99 14.88 14.23 18.99 14.88 14.23

1.9 12.28 14.02 15.01 12.28 14.02 15.01

2.0 20.20 16.23 15.79 20.20 16.23 15.79
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options in Table 6–5. Theoretical premiums for options on NYSE
stocks are less than premiums for options on NASD stocks. The dif-
ferences, however, are smaller at low volatility levels than were seen
with out-of-the-money options. Black-Scholes baselines (BS) tend to
fall in between the premiums of options on NYSE stocks and those
of options on NASD stocks. The large discrepancies between the
Black-Scholes and conditional distribution premiums that were so
evident with the out-of-the-money options are not seen with at-the-
money options. The latter finding of less discrepant Black-Scholes
premiums makes sense in that general market kurtosis should have
the most influence on in-the-money and out-of-the-money options,
and the least influence on at-the-money options.

Note that the puts and calls in Table 6–6 have identical pre-
miums. When interest and dividends are ignored (or zero) and all
trends are removed, the expected terminal stock price will equal
the initial price or, equivalently, the expected return will be zero.
In such a case, the premium of a call will have precisely the same
amount of time value as that of a put with an identical strike and
expiration. This is put-call parity, which holds regardless of the
shape of the underlying distribution of returns, just so long as
that distribution’s expectation is zero. Since at-the-money
options have no intrinsic value, only time value, their premiums
will be identical, as can be observed in Table 6–6.

Out-of-the-Money Options, No Detrending Although
not presented in the table, the theoretical premiums of out-of-the-
money options based on raw (not detrended) distributions were
also examined. These option premiums reflect not only the shape
of the distribution of returns from the stocks on the two exchanges,
but also any systematic trends in the prices of these stocks, includ-
ing trends related to the venue and to the action of volatility.

At levels of volatility less than 60%, premiums for options
on NASD stocks are greater than those for options on NYSE
stocks, which are, in turn, greater than those calculated with
Black-Scholes. The higher premiums derived from the condi-
tional distributions most likely result from the general presence
of kurtosis in the marketplace. The pattern is observed for both
puts and calls and mirrors the pattern seen with premiums
based on the detrended distributions and presented in Table 6–5.

At levels of volatility greater than 70%, calls on NYSE
stocks have the highest premiums, followed by calls on NASD
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stocks, and by Black-Scholes, which again produces the lowest
premiums. Compared to the results from the detrended distri-
butions, the extent to which the NYSE premiums exceed the
NASD premiums is greater, and the extent to which the NASD
premiums exceed the Black-Scholes premiums is much greater.
The larger theoretical call premiums discovered with real stocks
when trends are not removed are almost certainly due to the
volatility payoff effect discussed earlier.

Puts at higher levels of volatility evidence inconsistent pre-
mium differences between the venues, and smaller premiums for
real stocks (on either venue) than they should have according to
the Black-Scholes model. Again, the presence of a volatility-
related trend component is responsible for the difference
between these results and those seen when detrended distribu-
tions were employed in the analysis. The trend component is suf-
ficient (and in the correct direction) to wash out the differences
between the venues for puts on higher volatility stocks and to
cause Black-Scholes to grossly overvalue these puts. Whether
trends should be left in the model is a question for further study
on larger data samples extending further back in time.

Discussion

Theoretical option premiums clearly differ with the trading
venue of the underlying stocks. Furthermore, such differences
are not merely a result of differences in the bullishness or bear-
ishness of stocks on a given exchange, i.e., the overall trend: they
appear even when trend is partialled out by means of statistical
manipulations of the distributions. The observed differences in
premium across venue or exchange are systematic and large
enough to be of concern to traders and hedgers.

It appears that some of the venue effect can be attributed
to differences in skew or kurtosis and possibly in volatility.
Different venues or exchanges might have stocks that trade with
different characteristic levels of skew or, especially, kurtosis.
This was not directly tested in the study, but would be easy to
examine in any of several ways. Perhaps if skew and kurtosis
were partialled out, venue might not affect premium.

Skew and kurtosis were not included as conditioning vari-
ables in this study as too many degrees of freedom would have
been consumed. However, the inclusion of skew and kurtosis
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would have made it possible to examine venue for any effect
beyond that explained by the other variables. Degrees of free-
dom should not be a problem in a more constrained regression
model, even if nonlinear. Polynomial regressions and neural net-
work models are studied in the next chapter.

As well as skew and kurtosis, volatility might be a factor in the
venue effect. For one thing, mean volatility differs greatly between
the NYSE and the NASD, with the latter exchange having stocks
with much higher average levels. Combined with regression to the
mean, these differences in average volatility can distort volatility
predictions such as those used in the analysis as the primary con-
ditioning variable. It must be noted that the predictive model for
volatility was developed using data from all venues represented in
the database—the NYSE, AMEX, and NASD—and might, there-
fore, have systematic, venue-specific biases built into it.

The venue effect can be incorporated into a pricing model in
any of several ways. One way is to develop different models for dif-
ferent venues or exchanges. This is implicitly done when venue is
treated as a conditioning variable in a model based upon condition-
al distributions of returns. The venue variable can also be included
in the model used to estimate future volatility. Inclusion of venue in
the volatility forecast might be sufficient to eliminate much of the
variation in theoretical premiums observed between the venues
studied. Inclusion of venue as part of the volatility model would
result in the consumption of far fewer degrees of freedom, if it was
feasible. Venue, like other variables, can also be handled in the con-
text of a general nonlinear approach such as that involving polyno-
mial, neural, or hybrid pricing models. Finally, venue might be an
unnecessary variable to consider were the effects of skew, kurtosis,
and possibly other intervening variables accounted for.

STUDY 6: STOCHASTIC CROSSOVER

It is clear that statistical variables like skew and kurtosis, and
such market variables as venue, affect the worth of options, even
when trend factors are statistically held constant. But what
about so-called “technical” variables, the kinds of indicators
used by technical analysts and traders? The indicators that
come to mind are moving averages and oscillators of various
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sorts. One such indicator, an oscillator, is the well-known “Lane’s
Stochastic.”

Lane’s Stochastic measures where the most recent price of
a security falls within the range of prices seen in the recent
past. It is called an oscillator because its value fluctuates up and
down, quasi-cyclically, within a limited range; in this instance,
between 0.0 and 1.0 (or between 0% and 100% as preferred by
some traders). Lane’s Stochastic is easily calculated for any
series of quotes having high, low, and closing prices. Let

Ui = highest of Hi−m+1, Hi−m+2, . . . Hi (6.5)

be the highest of the last m highs, and

Li = lowest of Li−m+1, Li−m+2, . . . Li (6.6)

be the lowest of the m most-recent lows. If Ci is the most recent
close, then

(6.7)

is Lane’s Stochastic at the k-th bar in the data series. Notice the
built-in 3-bar smoothing found in the traditional oscillator, also
known as the Fast Stochastic or Fast-D. The Slow Stochastic,
known as Slow-D, is obtained by taking a moving average of the
Fast Stochastic.

When using Lane’s Stochastic, the technical trader will often
pay attention to threshold lines placed at the 20% and 80% levels.
These are the traditional oversold and overbought thresholds used
with Lane’s Stochastic. When the oscillator reading is below 20%,
the market is said to be oversold and may be ready for a bounce;
when the reading is above 80%, the market or stock is considered
overbought and may soon experience a correction. Often the
technical trader will establish a long position when the oscillator
crosses from below to above the 20% line, and establish a short posi-
tion on a cross from above 80% to below. Whether one can make a
profit doing this is doubtful; it is just too easy, and that means many
traders will try to profit by the method, thereby making it impossi-
ble for anyone to actually do so, even if the indicator actually has
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(or once had) some validity. Tests presented in The Encyclopedia of
Trading Strategies (Katz and McCormick, 2000) demonstrate that,
used as described above, Lane’s Stochastic is useless for directional
trading. The same statement can be made for almost every other
technical indicator, when used in the standard manner.

However, can a technical indicator be of use in the apprais-
al of options? Although most technical indicators appear to be of
little use where trends are concerned, perhaps they can be of
value where nontrend variables are involved. In other words, the
status of indicators like Lane’s Stochastic may be prognostic of
near-future volatility, skew, or kurtosis, and other option-rele-
vant variables. Why? It is because technical indicators are gen-
erally used by directional traders whose trading efforts drive any
inefficiencies (with respect to these indicators) from the market.
As far as the authors are aware, technical indicators of the kind
under consideration are not popular with those who use options
to trade volatility; therefore, any inefficiencies in the options
arena that are related to readings on such indicators might have
survived and are just waiting to be exploited. It is easy to imag-
ine differences in near-future volatility, skew, and kurtosis that
might follow attacks on support or resistance, oscillator thresh-
old crossings, and other events tracked by technical analysts. Of
course, whether or not there is anything useful in the technical
analyst’s arsenal for traders of options is an empirical question.
It is this question that the current study begins to address.

Method

The analysis followed the lines of previous studies and took
place in two computational blocks.

First Computational Block In the first computational
block, stock returns were binned and the distributions were
determined. Two sets of distributions were constructed: one set
for stocks with a Slow Stochastic cross above the 20% line at the
reference bar; the other for stocks with a cross below the 80%
line at the reference bar.

Calculation of the first set of distributions began with the
initialization of all elements of the distribution array to zero and
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with the retrieval of a stock from the database. A valid reference
bar was then selected. A reference bar was considered valid when
the following conditions held: (1) the price of the stock, uncor-
rected for splits, was greater than $2; (2) there were at least
m1 + m2 bars preceding the reference and n bars following it; and
(3) that Slow Stochastic had just crossed from below 20% to
above. In the analysis, m1 was 30, m2 was 70, and n was 10—the
same as in the previous two studies. The Slow Stochastic, used to
evaluate condition (3), was computed with a 9-bar exponential
moving average. Once a valid reference bar was located, the
immediately preceding m1 bars were used to calculate a short-
term historical volatility and the m2 bars before that were used
for a longer-term volatility. The average range measure was used
in these calculations. Once determined, the two measures of his-
torical volatility and the date of the current or reference bar
served as inputs to a regression model that provided an estimate
of the expected volatility over the future n-bar holding period.

The volatility predicted by the regression estimator was
used to determine an index into the row of the distribution
array. The index was calculated (using Fortran notation) as

iv == Int (0.5 ++ 19 * (v - vmin)/(vmax - vmin))

where v was the forecast volatility, and where vmin and vmax
defined the range. Hence, ivwas zero for a volatility level between
0.06 and 0.14, 1 for a volatility level between 0.15 and 0.24, up to
19 for a level between 1.95 and 2.04. An index into the column of
the same array was determined from the return from the stock
over the holding period. To calculate this array index, the price of
the stock at the reference bar was rescaled to a nominal $100. The
terminal price (the price n bars after the reference) was then found
and the identical rescaling was applied. A 10% gain over the hold-
ing period would, therefore, result in a $110 terminal price, and a
5% loss would produce a terminal price of $95. The column index
into the distribution array was then computed as

ip == Int (0.5 ++ 99 * (p - pmin)/(pmax - pmin))

where p was the terminal price as described above, and where
pmin and pmax defined the range.
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The two array indices were then checked. If these indices
fell into the desired ranges, the value of the array element which
they referenced was incremented by one. In this manner, the
frequency distributions of terminal price for each level or range
of volatility was accumulated. The ranges for which data were
accumulated were 0 ≤ iv ≤ 19 (or, equivalently, 0.06 ≤ v ≤ 2.04)
for volatility, and 0 ≤ ip ≤ 99 (or, equivalently, $19 ≤ p ≤ $251)
for terminal price. These ranges encompassed the vast majority
(more than 99.9%) of all data points.

Finally, the next valid reference bar was chosen and, when
all reference bars for the selected stock had been processed, the
next stock was retrieved from the database. The sequence was
repeated until all the data had been analyzed.

Each row in the array generated by the calculations carried
out in the first computational block corresponded to a level or
range of volatility, and each element (column) of a given row cor-
responded to a range of terminal price. The actual values of the
elements were frequencies of occurrence. Each row of the array
can, therefore, be understood to contain a histogram of terminal
price frequency for a specified level of volatility. Specifically, the
array generated contained, for each possible level of stock
volatility, the raw frequency distributions for the terminal stock
prices that follow a Slow Stochastic cross over the 20% line
occurring at the reference bar.

Once the array was determined for the 20% crossover con-
dition, the analysis was repeated for the 80% crossover. This
involved repeating the steps outlined above, but with one alter-
ation: when checking for a valid reference bar, condition (3) now
required that the Slow Stochastic had just crossed from above
80% to below. Otherwise, the procedure was identical in every
respect. The product was a second array that contained the dis-
tributions of terminal stock price for each level of volatility con-
ditional upon the Slow Stochastic having crossed below 80% at
the reference bar.

Second Computational Block In this block, theoretical
(expectation-based) option premiums were calculated for each
level of volatility (0.2 to 2.0 in steps of 0.1), for both indicator pat-
terns (crossed above 20%, crossed below 80%), for the two
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standard types of options (puts, calls), and for several strikes ($85,
$90, . . . $115). Black-Scholes premiums were also determined for
each option type, level of volatility, and strike price. In all cases, a
nominal $100 stock price was assumed. The Black-Scholes premi-
ums were intended to serve as baselines. All results were written
to an intermediate text file. This file was then loaded into an
Excel spreadsheet, and the relevant data assembled into several
tables, two of which appear in the text below.

The manner in which theoretical option value can be com-
puted from frequency distributions is covered in Chapters 2 
and 3. Such computation is also discussed in this Chapter in
Study 1. The calculations involved in the statistical removal of
the trend component from a distribution are discussed in Study
3, earlier in this Chapter.

Results

Theoretical premiums for out-of-the-money options (strike = $115
for calls, $85 for puts) on a nominal $100 stock, broken down by
option type (put, call), volatility (0.2, 0.3, . . . 1.6), derivation
(observed or raw distributions, detrended distributions, Black-
Scholes baselines), and Slow Stochastic pattern (PAT1 = crosses
above 20% threshold, PAT2 = crosses below 80% threshold), are
presented in Table 6–7.

Out-of-the-Money, Detrended Distributions When cal-
culations are performed with the detrended distributions, the pre-
miums of the out-of-the-money options are, with few exceptions,
substantially greater with a Stochastic Oscillator that crosses from
an oversold level to above 20% than with a Stochastic that crosses
from an overbought level to below 80%. The exceptions mentioned
only occur for one or two levels of volatility, and are almost certain-
ly due to a small number of cases in the corresponding bins and,
hence, large statistical errors of estimation. In other words, out-of-
the-money options are worth more when the Stochastic Oscillator
has just crossed above the 20% line (Pattern 1); they are worth less
(relatively) when the oscillator has just dropped below the 80% line
(Pattern 2).Weak markets go with more valuable options, both puts
and calls, than do strong markets.
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How great are the differences in option value between the
two Oscillator patterns? Quite sizable, according to the data in
Table 6–7, and certainly great enough to be of interest to options
traders. As an example, consider a stock with a volatility of 60%,
annualized. If this stock has just had its Stochastic reading
move up from oversold territory, an out-of-the-money call with a
strike of $115 would theoretically be worth $1.10; the same call
on a stock exhibiting the same volatility, but having a Stochastic
Oscillator reading that has just fallen below the overbought
threshold, should be worth only $0.82. Black-Scholes prices the
call at $0.76. A put on the stock will have an even greater vari-
ation in value across the conditions: $0.83, $0.47, and $0.44, for
Pattern 1, Pattern 2, and Black-Scholes, respectively. These dif-
ferences cannot be ignored; they could easily be exploited for a
profit by even a retail trader.

For out-of-the-money calls, Black-Scholes premiums are
consistently smaller than the lower Pattern 2 premiums when
volatility is less than 90%. The same applies to out-of-the-money
puts when volatility is less than 70%. Above these levels of
volatility, Black-Scholes yields premiums that are sometimes
below the lowest of the two patterns, and sometimes between
the two pattern levels, depending on volatility.

Out-of-the-Money, Raw Distributions The differ-
ences in theoretical premiums between the oscillator patterns
are similar to those observed with the detrended distributions
when the raw data are examined; however, the extent to which
the Pattern 1 premiums exceed the Pattern 2 premiums has
been magnified for the puts and attenuated for the calls.
The attenuation of the Stochastic Oscillator effect for the calls
makes the observed differences in theoretical premium less con-
sistent over volatility levels.

When comparisons are made to Black-Scholes, the condi-
tional distribution premiums (regardless of oscillator pattern)
are large when volatility is less than or equal to 100%. For
Pattern 1, they are much larger with the raw conditional distri-
butions than with either the detrended distributions or with
Black-Scholes. In other words, it is with Pattern 1 that the
volatility payoff or trend effect really appears in the results.
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Pattern 2 seems to eliminate this volatility-induced trend, even
at high volatility levels—the premiums do not grow much larger
than the Black-Scholes baseline. The volatility effect does atten-
uate put premiums at higher volatility levels. This reminds the
authors of how cheap OEX puts were at the top just prior to the
1987 crash. Volatility was high and the Stochastic Oscillator
was in overbought territory and had begun to drop below the
80% line. The puts were behaving consistent with the findings of
this study. Yet, in fact, the puts had great value in that particu-
lar instance. However, statistically, puts do have less relative
worth when volatility is high, and the actual market prices at
the time reflected this statistical tendency. The deviations from
Black-Scholes are immense for some levels of volatility and pat-
tern. The actual worth, as determined by trends and all, of an
out-of-the-money put when the Stochastic Oscillator has crossed
below 80% and the volatility is 90% is $1.13; Black-Scholes
prices the same put at $1.64, over 45% greater in value! For
Pattern 1, calls also evidence much greater value at most levels
of volatility than Black-Scholes would suggest.

At-the-Money Options The first thing to note when exam-
ining the theoretical premiums for at-the-money options (see
Table 6–8), as determined from the detrended distributions, is
that they are identical for both puts and calls. This reflects the
fact that puts and calls of the same strike and expiration have the
same time value when there are no trends in the data, and when
dividends and interest are ignored, as in the present instance.
Since at-the-money options have no intrinsic value, and since the
options have the same strike, they have the same total premium.

At all levels of volatility, there is a very consistent pattern
of Pattern 1 having greater premiums for both puts and calls
than Pattern 2. Black-Scholes tends to yield premiums that fall
between those of the two patterns. Many of the deviations in
premium that are observed seem tradable.

Although Stochastic Oscillator patterns were found useless
for trend forecasting and directional trading in The Encyclo-
pedia of Trading Strategies (Katz and McCormick, 2000), the
use of the oscillator was not examined there in the context of
varying levels of volatility. It seems that Pattern 1 may be
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associated with some downward trend at low levels of volatility,
and with a definite upward trend (evidenced by higher call
prices) at high volatility levels—an apparent interaction
between Stochastic pattern and the volatility payoff. If these
trends are stable and appear in other samples, it would suggest
that these Oscillator patterns could be used at high levels of
volatility for directional trading, especially with options. For
example, given a stock with a volatility of 100%, the presence of
Pattern 1, and an at-the-money call with a market price that is
close to what Black-Scholes indicates is the fair price, $7.93,
then purchasing the call might lead to a profitable trade—the
call is theoretically worth over $9 based on future expectation,
as computed from the conditional distributions.

Discussion

There is no doubt that at least one technical indicator, the
Stochastic Oscillator, provides information that is useful in the
appraisal of options. In general, both puts and calls have greater
value when the Stochastic Oscillator crosses above 20% than when
it crosses below 80% and when trends are assumed to be absent.
The same pattern applies, although with somewhat less consis-
tency, when trends are present, i.e., when they have not been sta-
tistically removed. It seems that, with certain combinations of
volatility and oscillator pattern, the trend (volatility-induced, per-
haps) can exert a large influence on the worth of an option.

Other technical patterns, such as those occurring when a
stock’s price approaches recent levels of support or resistance,
when moving averages cross, and so on, should be investigated.
Even though these patterns might not be very useful for direc-
tional traders speculating on the stock, they might provide a
significant edge for the options trader betting on volatility or
kurtosis. Technical factors may even be useful for trend fore-
casting when other variables are included in the model,
e.g., volatility. More importantly, technical indicators may be
prognostic of the shape of the distribution of future stock price
movements and, therefore, of the value of options trading on the
affected stocks, even if they cannot forecast direction.
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SUMMARY

It was demonstrated in this chapter how the conditional distri-
bution methodology could be used to let the market reveal the
theoretical fair value of an option. The method of conditional
distributions has a number of desirable properties. For one
thing, the method implicitly takes into account the actual price
distributions that occur in the market, rather than distributions
that are assumed to accurately describe the behavior of stock
prices, but which may do so inaccurately. When using condition-
al distributions to price options, the fact that the distribution of
returns from real stocks is not log-normal presents no problem.
The use of conditional distributions also automatically corrects
for such things as regression to the mean in volatility and in
other critical model inputs. Moreover, the impact of variables
like skew, kurtosis, venue, and even the status of technical
indicators are easily assessed within the context of a pricing
approach based on empirically derived stock price distributions.
The conditional distribution methodology used in this chapter
also allows theoretical modifications and adjustments, such as
detrending or incorporation of the effects of well-understood
variables (like the rate of risk-free interest), to be easily accom-
plished. Finally, the method is transparent: the investigator can
easily examine the shape of a distribution, the effect of a condi-
tioning variable, and so on. This is in contrast, e.g., to neural
network pricing models, which are studied in the next chapter.
All in all, the method of conditional distributions was found to
be flexible and powerful, especially when combined with the
smoothing and interpolation methods discussed later in this
book. In addition, the method provides the ability to easily
examine the impact of different variables and conditioning fac-
tors on the value of an option; this is essential for the trader or
hedger attempting to gain an edge in the marketplace.

Despite its power and flexibility, the method of conditional
distributions is practical, fast, and easily implemented on mod-
ern computers. A complete set of conditional distributions can be
stored in an array or tensor, and used to price a wide variety of
options. The calculations involved can be carried out quickly and
efficiently, given some attention to the details of coding.
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However, there is a demon that plagues the conditional dis-
tribution methodology. This is the degrees of freedom demon
that enters the picture whenever statistical estimation based
on real data samples is involved. The very flexibility of the
approach, and the lack of constraints on the model’s functional
form, implies an avaricious consumption of degrees of freedom.
Add too many conditioning variables to the model, and the esti-
mation error grows like Jack’s proverbial beanstalk. This is the
problem of combinatorial explosion.

The degrees of freedom demon can be tamed in various
ways. One way is to employ some kind of simple data smoothing.
Polynomial smoothing was actually employed in many of the
charts presented in this and earlier chapters. Another way to
tame the demon is through the use of multivariate nonlinear
modeling techniques, such as general polynomial modeling or
neural networks. The use of polynomial models and neural
networks, both to enhance the conditional distribution method-
ology and to directly price options, is examined in the next
chapter.

The study of option appraisals based on conditional distri-
butions can reveal much about the markets. Consider the stud-
ies in this chapter. They demonstrate that there is a lot to learn
about the effects of different variables on theoretical option pre-
miums and that such investigations are not merely of academic
interest but can benefit the active options trader. For example,
the first study clearly demonstrated the effect of regression to
the mean when standard historical volatility was used in pric-
ing options. The second study revealed that the so-called
“volatility payoff,” seen in stock returns, also affects fair premi-
um for options at high levels of volatility. In the third study, the
use of detrending was illustrated and, with the effect of a sys-
tematic trend-volatility relationship removed, the effect on
option premiums of the general kurtosis in the market as a
whole could be observed. Kurtosis was demonstrated to raise the
observed premiums for both puts and calls at low volatility
levels. The third study directly examined the use of historical
measures of skew and kurtosis in the pricing of options. This
study demonstrated that, just as with historical volatility,
historical skew and historical kurtosis were related to fair
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premium and could thus contribute to a pricing model. Again,
the effects were large enough to be of concern to those who use
options to either speculate or hedge. The fifth and sixth studies
demonstrated that fair option premiums were dependent upon
exchange or trading venue and on the status of technical trad-
ing indicators, respectively. The effect of trading venue might
reduce to differences in skew or kurtosis, and may not be essen-
tial as an input to a model that already incorporates the higher
moments; however, the Stochastic Oscillator patterns (examined
in Study 6) do contribute information that is independent of
skew or kurtosis, at least of the historical variety, and may have
some prognostic usefulness with respect to volatility and vola-
tility-trend interactions. This study, at the very least, makes it
evident that other technical variables should be explored as pos-
sible contributors to an advanced pricing model.

There are several issues raised in this chapter that need
further exploration. One is how to best handle trends. Should
trends be removed from the data sample? Whether or not to
remove trends or to leave them in is an important question for
further study. The removal of trends implies a theoretical
stance; that any trends found are merely a sample artifact, and
are not to be considered a real and consistent feature of stock
price movements. Larger and more varied samples need to be
studied. If trends, including those caused by volatility (as in the
volatility payoff), really exist in the marketplace, then they
should probably not be removed (or specific kinds of trends
should be reinserted, e.g., the volatility payoff) when pricing
options for speculative purposes.

Another issue is how to best tame the degrees of freedom
demon. Perhaps the distributions of returns on which option
appraisals are based can be described compactly in terms of just
a handful of coefficients—for instance, the first several
moments. If this is the case, then instead of having to estimate
an entire distribution, only a small number of parameters would
need to be determined for each set of conditions of interest.
Estimation of a few coefficients consumes far fewer degrees of
freedom than does estimation of a complete distribution. The
use of polynomial or neural regressions might also be a way to
obtain a good fit with fewer free parameters and, hence, to
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conserve degrees of freedom while reducing combinatorial explo-
sion. Some empirical work needs to be done to discover the best
approach with regard to the degrees of freedom and other esti-
mation issues.

The impact of each of a wide range of possibly relevant vari-
ables on theoretical fair premium also needs to be explored.
Finding relevant and predictive variables can quickly pay off in
better option models. Better models should reveal more ineffi-
ciencies that the astute trader can exploit for a profit.

Finally, the prices of real options need to be examined in
order to see how they compare to the theoretical fair prices
found by various pricing models. So far, the actual market prices
of options have not been examined. Do such prices reflect the
value indicated by models such as those analyzed in this chap-
ter? Do they reflect Black-Scholes and Cox-Ross-Rubinstein? Or
do they reflect something in between? The low put prices at the
top before the 1987 crash imply that traders respond to the cor-
rect probabilities and statistical expectation, as calculated here,
and not to Black-Scholes estimates. Does this mean that there is
no opportunity to find inefficiencies of the kind unveiled by the
models used herein? Are option prices in the market consistent
with these models rather than with the more popular ones? Do
real option prices reflect phenomena like regression to the
mean? These questions are studied when actual market prices
for options are analyzed in a later chapter. The answers to ques-
tions such as these have direct bearing on whether models like
those considered in this chapter can highlight inefficiencies that
can be exploited for a profit.

SUGGESTED READING

Basic coverage of histogram analysis and binning procedures
can be found in Statistics (Hays, 1963). The approach to option
pricing used in this chapter was first discussed by the authors
in “Market Realities and Option Pricing” and “More Intelligent
Option Pricing” in Futures (Katz and McCormick, 2001b, c). An
analysis of Lane’s Stochastic and other technical indicators can
be found in The Encyclopedia of Trading Strategies (Katz and
McCormick, 2000).
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The problem involved in the development of an option pricing
model is primarily one of constructing a continuous, nonlinear
function that maps a set of input or independent variables, per-
haps represented as a vector, to an output that approximates
the theoretical fair value of an option.

CONTINUOUS, NONLINEAR FUNCTIONS

What is a continuous, nonlinear function? A nonlinear function
can be defined by first considering the nature of a linear func-
tion. Any function f that satisfies

f (ax) = af (x) (7.1)

and

f(x + y) = f (x) + f (y) (7.2)

where a is a scalar quantity, and x and y are vectors or functions,
is linear. In two dimensions, a linear relationship can be repre-
sented by a line; in three dimensions, by a plane; and in any
finite number of dimensions greater than three, a hyperplane.
A nonlinear function is one that does not satisfy Equations 7.1
and 7.2, and that, even when it is of finite dimension, cannot be
spatially represented by a line, plane, or hyperplane.
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An example of a linear function is the standard regression
estimator

ŷ = xa (7.3)

in which ŷ is the column vector containing the estimates or pre-
dictions, x is the data matrix on which the estimates are based,
and a is the column vector of regression weights. In a standard
regression model, the columns of x correspond to the model
input variables (including, perhaps, an intercept) and the rows
correspond to the cases or data points. A regression model may
be construed as a line, plane, or hyperplane that has been fit, in
a least-squares sense, to a specified set of data.

An example of a nonlinear function is the square root taken
over the domain of positive real numbers. A plot of the square
root appears, not as a straight line, but as a curve. Another non-
linear function is one close to the heart of almost every options
enthusiast. Black-Scholes maps volatility, and a host of other
inputs (also known in functionland as arguments), to a theoret-
ical fair price. To represent a nonlinear function like Black-
Scholes spatially requires a curved, multidimensional surface.

It is obvious that an option pricing model requires a non-
linear function. Just look at the charts sprinkled throughout
this book in which theoretical premium is shown as a function
of volatility or of some other influential variable. In all cases,
except for at-the-money options, the relationship between pre-
mium and volatility is curvilinear. Stock price and strike always
have a curvilinear relationship to fair premium. Only interest
rate has an influence on premium that is close to linear, at least
when examined visually.

By now it should be clear what is meant when a function is
described as nonlinear or curvilinear. But what about continu-
ity? What does it mean to say that some function is continuous
over some domain?

Roughly speaking, a continuous function is one for which
the change in its output decreases with decreasing change in its
input. All linear functions are continuous. The square root is
continuous over the domain of positive real numbers. Black-
Scholes, too, defines a continuous mapping when volatility, time
left, stock price, and strike are all strictly greater than zero, and
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when risk-free interest is greater than or equal to zero. The
Heaviside Function, H(x), which takes on the value of 0 for all
x ≤ 0 and 1 for all x > 0, is discontinuous; it has a discontinuity
at 0. When plotted, continuous functions do not have jumps,
gaps, or breaks; discontinuous functions do.

It is logical that an option pricing model must be defined by
a continuous function. It would not make much sense for an
infinitesimal change in, say, the volatility entered into a model
to result in a massive change in the model’s output, the theoret-
ical price of the option. At any point in the volatility spectrum,
the less volatility is perturbed, the smaller the change in pre-
mium that should result. The same can be said for all other inputs,
treated individually or as a vector. When plotted, curves that
describe the relationships between various influential variables
and fair option value appear to be (and probably should be)
smooth and unbroken. Within the limits of sampling or estima-
tion error, such smoothness can be seen in the various charts
that appear throughout this book. This substantiates the claim
that a continuous function underlies the relationship between
option prices and most of the variables that affect them.

Continuity has a lot to do with a particular kind of smooth-
ness. Option models need to be continuous, but one can rationally
demand more: that they be continuous in their first and second
derivatives, except at expiration (when time left is zero). The rea-
soning here is that not only should an option model be “smooth”
in relating its inputs to its output, but that it should also have
Greeks that are smoothly related to its inputs. The reader may
recall that the Greeks are derivatives (in the calculus sense of
the word) of fair premium (the model’s output) with respect to
various inputs (e.g., time left, stock price, and volatility). Perhaps
even more should be demanded: that all derivatives be continu-
ous. Continuity of derivatives of all orders is associated with a
special kind of smoothness. A function that is continuous in all of
its derivatives is said to be analytic and can be expanded at any
point in its domain as a locally convergent power series. In small
regions of input space, such functions can be well approximated
by polynomials—an important fact in the context of what follows.

Given the above discussion, the nature of a continuous,
nonlinear function should be clear. It should also be clear that
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what is required for pricing options is a continuous, nonlinear
function that has as inputs variables like volatility, time left,
stock price, and strike, and that has the expected (in a statistical
sense) terminal price of the option—its fair value—as an output.
But how can such a function be constructed?

CONSTRUCTION OF A PRICING FUNCTION

One way to construct a pricing function is to derive it purely
from theoretical considerations. Most extant option pricing mod-
els have been constructed in this manner. The Black-Scholes
and Cox-Ross-Rubinstein models are good examples of pricing
functions based on theoretical analyses.

But what if one wants to be heretical and to do it empirically
by fitting, in a least-squares sense, an appropriate kind of func-
tion to the data? The first thing that comes to mind is regression.
Standard regression, however, whether univariate or multivari-
ate, is linear; it fits a line, plane, or hyperplane to the data. This
will not do; the relationship between expected terminal option
premium and the various input variables is decidedly nonlinear
and a linear approximation, such as that provided by standard
regression, will give a poor fit to the data. So what is one to do?
The answer lies in general nonlinear models.

There are general-purpose data modeling techniques
that are designed to solve problems that involve continuous,
nonlinear mappings. The two most popular—and, in this
case, most relevant—are neural networks and polynomial
regressions.

POLYNOMIAL REGRESSION MODELS

The basic polynomial regression involves solving for the coeffi-
cients in an equation, one that contains terms which represent
the various powers and possibly cross-products of the input vari-
ables. In the univariate case, when there is only one input, a
polynomial regression takes the form of

ŷ (7.4)= =
=
∑f ( )x a xi

i

i

n

0
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where ŷ is the predicted value of the dependent variable, n is the
order of the polynomial model, x is the input or independent vari-
able, and a0, a1,. . . an are the regression coefficients. Naturally, the
ai are chosen to minimize ||y − ŷ||2, the sum of the squared pre-
diction or model errors. In the bivariate (two independent vari-
able) case, a polynomial regression model appears as

ŷ (7.5)

where x1 and x2 are the two inputs to the model, n is the order
of the polynomial, and aij is the coefficient for the x1

i x2
j term.

Clarity might be greater for the second-order bivariate model
(n = 2), which can easily be expanded as

ŷ = a0,0 + a1,0 x1 + a0,1x2 + a1,1x1x2 + a2,0 x1
2 + a0,2x2

2 (7.6)

The expansion makes it easy to see the intercept term, the
linear terms, the interaction term, and the squared (second-
order) terms.

It may come as a surprise that the coefficients (the ai or aij)
in the above models are, in fact, ordinary regression weights. By
preparing a data matrix with various powers and cross-products
of the independent variables, an ordinary linear regression
package can be used to find a set of coefficients that minimize
the sum of the squared errors. Polynomial models, like those
defined here, can be solved using ordinary least-squares regres-
sion techniques because, although clearly nonlinear with respect
to the independent variables, these models are definitely linear
in their coefficients.

Although it is perfectly sound, mathematically speaking, to
perform a polynomial regression by the application of standard
regression methodology to data consisting of various powers and
cross-products of the independent variables, this is almost never
the best way to proceed. Polynomial models, especially those of
a higher order that involve many terms, are almost certain to
exhibit severe collinearity. Solving directly for the coefficients
may be impossible or may lead to a near-total loss of precision due
to the accumulation of roundoff errors that occurs when working
with ill-conditioned matrices in a finite-precision environment
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(in other words, on a computer). There are many ways, however,
to finesse a solution without encountering a serious loss of preci-
sion or a computer crash. One exemplary way is to replace the
simple powers of the independent variables with Chebyshev
Polynomials. The basic idea is to orthogonalize the various terms
in the model to as great an extent as is possible and to thereby
avoid the problems of collinearity and ill-conditioning that might
otherwise arise. These issues, however, are more computational
than theoretical in that a regression package with infinite preci-
sion arithmetic applied to a table containing simple powers and
cross-products of the input variables would produce results iden-
tical to those of the more sophisticated methods.

Some problems respond very well to solutions in terms of
polynomial approximations. Over a small enough region of their
domain or input space, continuous, nonlinear functions with
continuous derivatives can often be well-approximated even by
low-order polynomials. To get a tight fit over a larger region of a
function’s domain may require polynomial models of a higher
order.

The approximation of functions by polynomials is a venera-
ble practice and polynomial regression models are employed in
many fields of science. The ability to fit a basic polynomial to a set
of data points is even built into the charting feature of Microsoft’s
Excel spreadsheet program where it is often used for the purpose
of smoothing and thus making more apparent any relationship
that exists in the graphed data. At one time in the early 1990s,
there were even specialized software products that offered com-
posite polynomial models as an alternative to neural networks.

The reader has already encountered a variety of polynomial
regression models in previous chapters. Simple polynomial
regressions involving a single independent variable were used
to smooth data in many of the charts. In Study 1 of Chapter 5,
e.g., a simple second-order polynomial was found to describe
effectively the relationship between historical and future
volatility. A more complex example can be found in the multi-
variate polynomial regression model developed in Study 4 of
Chapter 5 for the prediction of near-term future volatility. In the
latter model, long- and short-term historical volatility measures
were among the inputs. These inputs were analyzed in terms of
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a polynomial having linear, second-order, and cross-product
terms. The model produced excellent results. No doubt, polyno-
mial models can do a fine job of approximating a variety of non-
linear functions or relationships.

The main problem with polynomial modeling is not that of
achieving a good fit to the data; rather, it is the irksome, yet
familiar, problem of undesirable curve-fitting and excessive con-
sumption of available degrees of freedom. Nevertheless, a good
polynomial model may require far fewer degrees of freedom, and
be less subject to combinatorial explosion in the degrees of free-
dom consumed with increasing numbers of variables, than a less
constrained model, such as the one implicit in the use of condi-
tional distributions. At least with standard regression, and by
extension with polynomial models, there are statistics to help
the developer assess the extent to which curve-fitting and an
excessive consumption of degrees of freedom are problems in
any given situation. One nice statistic useful in this context is
the prediction sum of squares (PRESS) statistic, which is fully
described in Classical and Modern Regression with Applications
(Myers, 1986).

NEURAL NETWORK MODELS

Neural network technology arose from attempts to emulate the
behavior of neural tissue in living systems by implementing, on
the computer, structures composed of simulated neurons and
synapses (neuronal interconnections). Neural network technol-
ogy endeavors to emulate the kind of information processing
and decision making that presumably occurs in living organisms.

Neural networks come in a variety of flavors, depending on
their architecture, i.e., the particular ways in which the simu-
lated neurons are interconnected and the internal behavior of
these simulated neurons, i.e., their signal processing behavior,
transfer functions, and learning rules. The most popular kind of
neural network, and the most important in the current context,
is the multilayer, feed-forward perceptron. There are many other
kinds of neural network configurations, including learning
vector quantization (LVQ), Kohonen, as well as various adaptive
resonance and recurrent models.
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Neural architectures differ in the way they learn: some net-
works employ “supervised learning” and others “unsupervised
learning.” Supervised learning is when the network is shown
something and guided to produce a correct solution by being
shown that solution. In other words, a kind of paired-associate
learning is in operation: there are inputs that the network sees
and a desired output for every set of inputs; for every set of
inputs, the task of the network is to learn to produce the desired
outputs. In contrast, unsupervised learning involves a network
that simply takes presentations of inputs and learns to organize
them into patterns as the network sees fit. If an analogy is made
to statistics, unsupervised networks would be more akin to clus-
ter and factor models, whereas the supervised networks would
be closer to various forms of regression and discriminant analy-
sis, albeit in nonlinear form.

Research on neural networks began, on a theoretical level,
in the 1940s. At that time, however, computer technology to ade-
quately implement the theory was not available. Around the
time when computer technology had become sophisticated
enough to accommodate neural network research, Minsky and
Papert, in their book Perceptrons (1969), brought such research
to an abrupt standstill: They “proved” that a special kind of
two-layer neural network could not, in any way, solve the exclusive
or problem; this was enough, given their status as MIT profes-
sors, to discourage further study of the subject for many years.
The field did not recover from that blow until a form of gradient
descent optimization (back-propagation in neuro-speak) was
applied to finding the connection weights in neural networks
containing more than two layers and employing sigmoid trans-
fer functions. Since three-layer networks can readily solve the
exclusive or problem (as well as many others), the objections
that Minsky and Papert expressed were rendered irrelevant and
research began again, in earnest.

Feed-Forward Networks

A feed-forward neural network is composed of neurons arranged
in layers, like the nodes in a binomial pricing tree. The input
layer is the first layer found in such a network: from the outside
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world, it receives data (inputs or independent variables) from
which some inference is to be drawn or a prediction is to be
made. This layer is massively connected to the next layer, which
is usually called a hidden layer since it has no connections to the
outside world. The hidden layer’s outputs are, in turn, fed to
the next layer, which may be another hidden layer, in which
case the process repeats, or it may be the output layer. Each
neuron in the output layer produces an output from the net-
work. There may be one or more outputs. The outputs constitute
the inferences, predictions, estimations, or decisions made by
the network.

Networks can vary in size from only a few input variables
to hundreds or thousands of them and from only three layers to
dozens. The size usually depends on the nature and complexity
of the problem at hand. In almost all cases, a three-layer or four-
layer network (i.e., a network with one or two hidden layers) will
perform well; exceeding four layers is only rarely of benefit and
will add to the complexity and training time. In general, the
layer that immediately follows the input layer will have any-
where from two to three neurons, to perhaps 10 or 20 times 
the number of input neurons, depending on the problem. In a
four-layer network, the layer that immediately precedes the out-
put neuron may have anywhere from two or three neurons, to
perhaps ten times the number of output neurons. These num-
bers may vary, depending on the problem.

Figure 7–1 depicts the structure of a typical three-layer,
feed-forward neural network that contains two active input or
first-layer neurons, three active neurons in the second (middle)
layer, and one output neuron. In the figure, neurons are depict-
ed as circles and each column represents a layer. There are two
kinds of neurons: active neurons and threshold, or bias, neurons.
Within each active neuron, summation takes place; i.e., all stim-
uli targeted at that neuron are added together. The summation
process is symbolized by the ∑ inside the circle that defines each
active neuron. The transfer function, symbolized by f, is then
applied; it defines how the neuron responds to varying levels of
stimulation coming from its inputs. Threshold neurons work dif-
ferently; they supply a constant output that acts much like an
intercept in a regression model. These neurons are inactive in

Neural Networks, Polynomial Regressions, and Hybrid Pricing Models 267

7743_ch_7.qxd  28/12/04  12:40 PM  Page 267



the sense that they do not receive or respond to any input sig-
nals. They are depicted in the figure as circles containing the
numeral 1. The outputs from the neurons in any layer are fed
via interconnections that vary in strength and polarity (as speci-
fied by connection weights) to neurons in the next layer.
Neurons in each layer of a standard feed-forward network are
massively connected to those in the next. These connections are
shown in Figure 7–1 as lines, each of which is associated with a
coefficient or connection weight. A few connections weights—
symbolized by w(i,j,k), where i is the source layer index, j is the
source neuron index, and k is the destination neuron index—are
also on display in the diagram. Larger neural networks, and
those that possess more than three layers, have the same gen-
eral architecture as the small three-layer network just exam-
ined. Although neural network technology is readily available,
many tricks are required to use it successfully. Neural networks
learn from past experience. The system developer must there-
fore take the role of a teacher and provide the network with ade-
quate training examples; i.e., he or she must provide an
adequate sample of past experiences from which the system can
learn. One difficulty in developing a neural network is finding
and effectively “massaging” the data into training examples
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or facts that highlight meaningful patterns so that the neural
network can learn efficiently and not become confused or get
put astray.

As previously mentioned, training a neural network
involves repeatedly presenting pairs of inputs and desired out-
puts (facts) to the network. This is done so that the network can
learn, based on many examples, how to make accurate decisions,
predictions, estimations, or classifications.

During the training process, the connection weights, which
define the strength and polarity of the connections between the
layers of the network, are repeatedly adjusted in order to maxi-
mize the correspondence between the network’s actual outputs
and the targets (desired outputs). The back-propagation learn-
ing algorithm, a kind of gradient descent minimization, is the
most frequently used approach for determining how the net-
work is to adjust the weights in response to a training fact. It is
through such adjustments to the connection strengths, repeated
again and again, that learning occurs.

A new neural network is typically initialized with a random
set of weights; training then begins. The network engages in a
kind of hypothesis testing in which it makes guesses about the
targets or desired outputs. It does this based on the data just
received and the theories, or “constructs,” about the data that it
has thus far formed. If a guess is wrong, the learning algorithm
adjusts the weights in such a way as to make the network’s out-
put better agree with the target the next time around. Training
then moves on to the next fact, which consists of input data for
the network and a target against which the network’s output
can be compared. Training continues as additional facts are fed
to the network and corrections made to the weights, and hence
to the network’s internal construction of its world. This process
is repeated as long as the network trains. As training proceeds,
the correspondence between the network’s outputs and the tar-
gets usually improves and so the quality of the decisions or fore-
casts increases. Finally, there comes a point when additional
training yields little or no improvement in the results. When
this happens, convergence is said to have occurred. Training is
then terminated and the network is examined to evaluate its
performance on the data on which it was trained, as well as on
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data it has never seen before (the latter to discover whether the
network can generalize or successfully apply what it has learned
to new situations). If the training is judged to have been suc-
cessful and the network is producing accurate classifications,
decisions, estimates, or forecasts, then the work is done.

Neural networks are plagued by the demon known as curve-
fitting. Curve-fitting, also referred to as over-fitting, has a lot to
do with the number of degrees of freedom that are available
when fitting a model to a set of data points. Consider multivari-
ate regression: If the number of independent variables (including
the intercept) is equal to the number of cases to which the model
is fitted, a perfect squared multiple correlation will result, even
when the data are completely random! This is an extreme exam-
ple of curve-fitting. Excessive curve-fitting occurs when the num-
ber of free parameters (connection weights) is too large relative
to the number of facts or cases. A disproportionate multiple cor-
relation results, which then shrinks (often dramatically) when
tested on a second, independent sample.

There is a formula to correct for shrinkage in a multiple
correlation that is obtained from a standard multivariate regres-
sion. Here it is:

(7.7)

In this equation, rc is the multiple correlation corrected for
shrinkage, n is the total number of data points or facts to which
the model has been fit (or trained, in neuro-speak), p is the num-
ber of free parameters in the model, and r is the observed (uncor-
rected) multiple correlation in the fitting sample. The way to
avoid excessive curve-fitting or shrinkage in a multiple regres-
sion is to ensure that there are a large number of data points, or
facts, relative to the number of free parameters in the model.
With neural networks, the same logic applies. The secret to
avoiding an excessively curve-fit solution is to minimize the
number of free parameters and to train on a sufficiently large set
of facts. The fewer the free parameters and greater the number
of facts, the less the undesirable curve-fitting that will be experi-
enced. The connection weights in a neural network are akin to
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the weights in a multivariate regression. A feed-forward neural
network model is, in fact, a specific form of nonlinear multiple
regression. As with standard (linear) multiple regression, the
same shrinkage correction formula works acceptably well to esti-
mate what the correlation will be between a neural network’s
output and the target in an independent sample (one not used for
training), given the correlation achieved in the training sample.
The shrinkage correction formula—which, by the way, may also
be used in the context of multivariate polynomial regressions—
can help the model developer avoid excessive curve-fitting. Its
use in neural network development is thoroughly discussed and
illustrated in Chapter 11 of The Encyclopedia of Trading
Strategies (Katz and McCormick, 2000).

When properly trained, neural networks make admirable
pattern recognizers. They have been successfully applied to
a wide range of problems. Neural networks assess credit risk,
recognize written and spoken words, spot tumors in mammo-
grams, process sonar and radar signals, filter out noise in elec-
tronic communications systems, and much more. Neural networks
are also known to be universal mappers or approximators; in
theory (and, so it seems, in practice), they can be trained to pro-
vide as good an approximation as desired, given a sufficient
number of neurons and training examples, to any well-behaved
continuous function (and even to some less well-behaved func-
tions) over a specified domain. This ability makes the neural
network an ideal tool for pricing options. However, the ability of
a neural network to model such a wide range of relationships
comes at great expense in terms of degrees of freedom.

HYBRID MODELS

Given sufficient data, a neural network model can theoretically
solve a difficult nonlinear estimation problem, such as that of
pricing an option. And, although a single polynomial regression
model of reasonable order probably cannot solve the option pric-
ing problem over its entire input domain, a set of such models,
each operating over a properly chosen subdomain, almost cer-
tainly can. However, the best way to solve a difficult nonlinear
estimation problem like that of pricing options might not be

Neural Networks, Polynomial Regressions, and Hybrid Pricing Models 271

7743_ch_7.qxd  28/12/04  12:40 PM  Page 271



through the direct (and naive) application of a neural network
or a set of polynomial regression models. In cases where it is
feasible, a smarter approach might be to finesse a solution by
use of a properly designed hybrid model.

Why would the extra intellectual difficulty of designing and
custom programming a complex hybrid model be preferred over
the ease and simplicity of a basic neural network or polynomial
regression? Because it might be possible to obtain an equally
good (if not better) fit to the data with far fewer free parameters
in the model.

Obviously, the smaller the number of free parameters in
the model, the fewer the degrees of freedom the model con-
sumes. A model that consumes fewer degrees of freedom is less
curve-fit, more robust, and less subject to shrinkage. In addition,
a hybrid model that can be made to more “naturally” fit the
problem to be solved by the incorporation of hints or content-
relevant theory will produce better overall results—especially in
the face of limited (read finite) data samples. The idea is similar
to that which lies behind the use of so-called “biased” statistics;
inclusion of a bias that reflects some a priori expectation regard-
ing the data can result in a dramatic reduction in a statistic’s
standard error, especially over regions of input space where data
points are sparse and estimation is poor.

How might one go about constructing a hybrid model for
pricing options? Perhaps by starting with Black-Scholes.
Although Black-Scholes fails to take into account skew or kur-
tosis, and does not correct for regression to the mean in histori-
cal volatility, it does provide a reasonable first approximation to
an option’s fair value. Perhaps with a bit of encouragement,
Black-Scholes can be made to appraise options much more accu-
rately. How might Black-Scholes be coaxed to yield more accu-
rate theoretical option premiums? One way that comes to mind
is through the appropriate adjustment or “tweaking” of the
numbers entered into its volatility input.

Skew, kurtosis, and regression to the mean can all be con-
strued as factors that affect fair premium through an alteration
of the effective (not the actual) volatility of the underlying secu-
rity. The impact on effective volatility of these factors is not uni-
form, but rather it depends in a complex, nonlinear way on such

272 CHAPTER 7

7743_ch_7.qxd  28/12/04  12:40 PM  Page 272



Neural Networks, Polynomial Regressions, and Hybrid Pricing Models 273

things as moneyness, actual volatility, skew, kurtosis, venue, and
perhaps even technical indicators. However, if the data sent to
the Black-Scholes volatility input could somehow be massaged,
then perhaps the model could be induced to yield far more valid
theoretical price estimates. In fact, with proper adjustments to
the volatility figures plugged into Black-Scholes, the model
might even be persuaded to account for the effects of skew,
kurtosis, and regression to the mean!

But how can the volatility input to Black-Scholes be intelli-
gently adjusted? The answer is obvious: through the use of a neu-
ral network and some additional processing blocks. The hybrid
model in Figure 7–2 combines Black-Scholes with a neural net-
work and some simple data preprocessing to produce a better
estimator of fair premium, i.e., a superior option pricing model.

Figure 7–2 may be regarded as a kind of electronic circuit
diagram. At the left hand side of the diagram are the input sig-
nals: skew (A), kurtosis (B), historical (or, better yet, predicted)
volatility (V), time left (T), stock price (S), strike price (K), and
risk-free interest rate (R). The output (P), an estimate of the fair
premium, appears at the right hand side of the diagram.
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A Black-Scholes subsystem lurks inside the hybrid model
shown in Figure 7–2. Four of the five standard inputs to Black-
Scholes (time left, stock price, strike, and interest) are received
by this subsystem directly from the outside world. The remain-
ing Black-Scholes input, volatility, comes not from outside but
from another component in the hybrid model, the neural sub-
system. The neural subsystem gets its inputs from both the
outside world (skew, kurtosis, and historical volatility) and from
some simple computational blocks that provide the neural com-
ponent with two distinct measures of moneyness. The prepro-
cessing blocks pick their input data right off the hybrid entity’s
input lines.

It should be noted that the hybrid model in Figure 7–2
cannot be “trained” or fitted to the data with a standard neural
network package—not even with a sophisticated one. The reason
is that the correspondence between the target and the neural
component’s output is not what must be maximized; what must
be maximized is the correspondence between the target and the
output from the Black-Scholes block. Furthermore, Black-
Scholes cannot simply be run in reverse, i.e., inverted, to obtain
the volatility figures necessary to hit the targets and a neural
network then trained to estimate those volatility figures. Such
an approach will not work because Black-Scholes produces an
output that responds nonlinearly to volatility for all options
other than those that are exactly at-the-money. Given a nonlin-
ear function f, and a random variable y that is not perfectly pre-
dictable, it will generally be the case that f (E(f−1( y))) ≠ E( y). Yet,
it is E(y), the expectation of the target (the terminal option
price), and not f (E(f−1( y))) that the hybrid system must esti-
mate if options are to be properly valued. Anyhow, the Black-
Scholes relationship between volatility and theoretical premium
is not even invertible when in-the-money options and terminal
prices less than the intrinsic value are involved, as will be the
case for many of the individual data points or facts required to
train (using standard back-propagation) a neural component of
a system, like the one depicted in Figure 7–2, in an effort to get
the entire hybrid model to estimate the expectation of an
option’s theoretical price and, hence, to correctly appraise an
option’s true worth. The fact that standard back-propagation
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cannot be used to directly train the neural component of a
hybrid model, such as that shown in Figure 7–2, does not in any
way imply that neural connection weights that minimize the
sum of the squared errors for the entire model cannot be found.
It merely means that some custom mathematical programming
must be done to solve the problem. The problem of finding an
optimal set of connection weights for the neural component can
readily be solved by any of a variety of methods, including gra-
dient descent minimization—a process quite similar to standard
back-propagation.

A hybrid model like that shown in Figure 7–2 will be
encountered later in this chapter in the context of an empirical
study.

GENERAL OVERVIEW

What follows is a succession of studies intended to explore the
application of polynomial regressions, neural networks, and
hybrid models to the problem of pricing options. A variety of
questions are asked in these studies and attempts are made to
answer them on the basis of experimental evidence. Among the
questions considered are: Given a sufficient set of training
examples or data points, can a neural network be trained to gen-
erate theoretical option price as its output? Can a simple neural
network impersonate Black-Scholes? How about a polynomial
regression? Can a multivariate regression involving poly-
nomials correctly describe the relationship between theoretical
option price (the expectation of the price of an option at expira-
tion) and the variables that determine it? How well can polyno-
mial regressions and neural networks smooth and interpolate
pricing data adduced from, say, conditional distributions? Can
the application of general nonlinear models in this manner
reduce the noise present in such data and thereby improve the
accuracy of the results? Can a hybrid model be trained to accu-
rately price options over the whole range of possible input val-
ues encountered in the markets? How severe is the problem of
curve-fitting given the available data and the number of free
parameters required for a good fit? Do the various approaches
examined differ with respect to their tendency to curve-fit when
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applied to the pricing problem? By what means can the degrees
of freedom consumed be kept small without sacrificing a good fit
to the data when using a general nonlinear model?

DATA

The stock data used in the studies that follow were extracted from
the Worden TC-2000 database. Each quote in the extracted data
consisted of figures for price (open, high, low, and close), volume,
and split factor. The price and volume figures in the data were
back-adjusted for splits; however, the split factor allowed for
recovery of the original prices and volume when necessary. For
each stock, these quotes were arranged into a series. Each series
consisted of 1,836 bars spanning the period from January 2, 1996
to April 14, 2003. Not every stock was active over the entire
period and so, in some cases, the data series was padded. Bars
that came before a stock was alive, or after it had died and had
permanently ceased to trade, were marked by volume figures that
were precisely zero. Quotes for days when a stock did not trade,
but was clearly still alive, were marked by volume figures that
were greater than zero, but far smaller than even a single trans-
action would produce. The opening price of the first active bar
defined the price fields of all earlier bars and the closing price of
the last active bar defined the price fields of all subsequent bars,
so that no bar had a price of zero; this enabled vectorized routines
to be used without encountering divide-by-zero or domain errors
when, e.g., calculating historical or future volatilities. Each data
series was examined for errors. Small errors that could be reason-
ably corrected were corrected. Larger or more persistent errors
were handled by deletion of the series for the stock exhibiting
them; only nine series suffered this fate. Overall, there were very
few errors in the data that needed correction. There were a total
of 2,237 series or stocks after all bad data had been corrected or
eliminated. The complete set of data series was placed in a simple
binary database file for fast and convenient access. Further
details on the extraction and preparation of this data can be found
in Chapter 4.

Theoretical option premiums derived from conditional dis-
tributions were used in some of the studies as standards for
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comparison. These were obtained from spreadsheets prepared
in the course of writing Chapter 6. The spreadsheets contained
all the data generated by the C language programs that
performed the analyses—by far more data than were actually
presented in this text.

Finally, some of the data sets used in the following studies
take the form of plasmodes. A plasmode is a data set specifically
constructed to be consistent with a given theory or with the
assumptions made by a particular analytical method. The term
originated in the world of factor analysis, where artificial data
sets were sometimes assembled for testing purposes. These data
sets were designed to have an underlying organization consistent
with the factor model and to possess a known factor structure.
The idea was to see whether some particular method of factor
analysis could recover the hidden structure embedded in the
data. Using plasmodes, various methods of factor extraction and
rotation could be compared in terms of their ability to correctly
identify the already known factors. Plasmodes happen to be quite
useful in the present context. One plasmode soon to be encoun-
tered is the Black-Scholes plasmode employed in Study 1.

SOFTWARE

Several software packages, libraries, and programming lan-
guages were used for the analyses reported herein. Most calcula-
tions were performed using ISO-standard C, a highly portable
language. In some instances, however, the Visual Basic for
Applications language that is built into Microsoft’s Excel spread-
sheet program was employed. Libraries written in C language
provided routines for everything from database access to regres-
sion analysis. Some of these routines were translated to Excel’s
Visual Basic language to make them available and convenient to
use in that environment. N-Train, a sophisticated neural net-
work package designed (by Katz) to operate with high levels of
numerical stability, was employed to train and test standard
feed-forward perceptrons. A special library provided all the func-
tionality needed to train and test hybrid models of the kind
shown in Figure 7–2. All tables and presentation graphics were
prepared with Microsoft’s Excel spreadsheet program.
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STUDY 1: NEURAL NETWORKS 
AND BLACK-SCHOLES

The purpose of this study was to determine whether a standard,
feed-forward neural network—a multilayer perceptron with a
linear input layer and sigmoidal hidden and output layers—
could learn to imitate Black-Scholes. Why bother training a
complex neural network to do what Black-Scholes already does
more simply when the goal is to do better? Because, if a neural
network cannot reproduce the functional relationships implicit
in Black-Scholes, it is quite unreasonable to expect it to be able
to correctly interpret the relationships that would be implicit in
a better, more advanced pricing model. However, if a neural net-
work can learn to emulate Black-Scholes, perhaps it can also
learn to approximate the relationships demonstrable in data
taken from real stocks.

Assuming that a neural network can learn Black-Scholes,
how large must it be to achieve a good fit? How many degrees of
freedom will it consume? Are there any particular difficulties in
training such a neural network? These are some additional
questions addressed in the current study.

General Methodology

The experiment began with the construction of a plasmode. The
plasmode used in the current study consisted of a set of data
points— “facts” in the jargon of neural engineering—construct-
ed using the standard Black-Scholes pricing model. Each data
point or fact consisted of three independent or input variables,
and one dependent or target variable. The input variables were
strike price, time left, and volatility. Stock price was assumed to
be fixed at a nominal $100.00 and risk-free interest was
assumed to be zero for the purpose of this experiment. The tar-
get was the Black-Scholes theoretical premium for a standard
call option.

Inputs for the plasmode were constructed by stepping
volatility from vxmin to vxmax in increments of vxinc; time left
from tlmin to tlmax in increments of tlinc; and strike price
from skmin to skmax in increments of skinc. For each possible
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combination of inputs, Black-Scholes was applied to obtain the
associated target, the theoretical price for a call option. A large
set of facts that evenly covered the input space defined by the
ranges of the input variables was thereby generated.

A final step in the construction of the plasmode was to sub-
tract from each target the intrinsic value of the call in order to
obtain the call’s time value. Intrinsic value requires no statistical
estimation to evaluate; it is easily and unambiguously calculated
as max (0, stock$ − strike$) for a call or max (0, strike$ − stock$)
for put. It is not intrinsic value, but time value that is of critical
interest. Time value is the component of option premium that
requires something more than simple arithmetic to evaluate
and is difficult to model in the real world. The idea was that by
subtracting intrinsic value, a well-understood and easily deter-
mined variable, the target’s range would be reduced and the
neural network would be forced to focus on the most important
relationships present in the data. There is no disadvantage to
having a model that estimates time value only; intrinsic value
may easily be added back to any estimate of time value, neural
or otherwise, in order to obtain an option’s theoretical premium.

Once the plasmode had been constructed, attempts were
made to train several neural networks to fit the data.

Test of a Small Neural Network

In the first test, an attempt was made to train a small, three-
layer neural network to mimic Black-Scholes over a relatively
wide range of input values. For this test, volatility ran from 0.10
(vxmin) to 2.00 (vxmax) in steps of 0.05 (vxinc); time left ran
from 5 (tlmin) to 20 (tlmax) bars in steps of 1 (tlinc); and
strike price ran from $70.00 (skmin) to $130.00 (skmax) in steps
of $2.50 (skinc). This resulted in a plasmode containing 15,600
facts. The neural network in this test had three active input
neurons, 16 active neurons in a single hidden layer, and one
output neuron.

All training and testing of the neural model was performed
using N-Train, a neural network software package developed
and maintained by the authors. Facts were scaled and shuffled
using default parameters. A new neural network was then
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created. Standard (default) transfer and error functions were
specified: neurons in the input layer employed linear functions,
those in the hidden and output layers employed logistic func-
tions, and the error function was standard least-squares. The
logistic function, f ( x) = 1/(1 + exp(−x)) has a sigmoidal form and
is one of the most popular neural transfer functions. The learn-
ing rate was set to 1, momentum was turned off, the connection
weights were randomized with a dispersion of 1 and a seed of 93
for the Gaussian random number generator, and the maximum
number of training passes was set to 99,999 (the setparms
arguments for this were −lr1, −mm1, −rw1s93, and −mr99999).
Learning rate multipliers, training tolerances, and other param-
eters were left at default values. It should be noted that, with
these settings, the neural network is trained on all facts on
every pass through the fact set. These settings were chosen as
they tend to yield the most stable convergence when a neural
network must provide a high-accuracy fit to the data, certainly
a requirement here.

The neural network underwent over 15,000 training passes
on the plasmode data. It was trained to full convergence. Once
trained, the neural network was polished. Polishing was accom-
plished by running a few additional passes over the data with
the learning rate reduced to 0.01, a very small number. The idea
behind polishing is to remove any small bias that may be created
by the process of training.

Results with a Small Neural Network

A multiple correlation of 0.999724 between the neural output
and the Black-Scholes target was achieved for the fully trained
network. Correction for shrinkage brought this correlation down
to 0.999723, given a fit to 15,600 cases of a model with 64
degrees of freedom (3 * 16 + 16 * 1 connection weights). A corre-
lation this close to a perfect 1.0 may appear quite impressive
and is certainly rarely seen when working with neural net-
works. However, even such an impressive correlation is not quite
sufficient in the present context. The root-mean-square error for
the model was $0.0855 and the worst absolute error was $1.465,
certainly unacceptable.
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It should be noted that most neural network software
packages are incapable of training a neural network to any-
where near the required level of precision or even to the unac-
ceptable level of precision achieved in this test. Finding a set of
optimal connection weights in a neural network is an ill-condi-
tioned problem that requires special attention to the accumula-
tion of roundoff error, numerical stability, and other
computational issues, if correlations much beyond 0.99 are to be
achieved. Most packages give little, if any, attention to computa-
tional issues and, at best, use “single precision” floating point
arithmetic, which is barely adequate to achieve even modest cor-
relations with difficult data. To go much beyond a 0.99 correla-
tion, a learning algorithm coded in “double precision,” and
designed to maximize numerical stability and to control for loss
of precision in intermediate calculations, is essential. N-Train
goes so far as to perform some calculations, such as inner prod-
ucts, in greater than double precision arithmetic in order to min-
imize the accumulation of roundoff errors and to achieve good
numerical stability. Although neural networks are not usually
employed for high accuracy approximations, they can unques-
tionably be used for this purpose when correctly implemented.

Returning to the test results, the worst errors were not
evenly distributed among the data points, but tended to be seen
at the edges of the input space, especially at that edge repre-
sented by the lowest time and volatility levels where the peak in
time premium was sharpest when plotted against the strike price.

A small sample of the option premium data appears in
Table 7–1. At the left hand side of the table are the strike prices
(STRIKE) and at the top are three categories of volatility and
time remaining. The premiums appear in pairs of columns. The
first column of each pair (NOUT) contains the premium esti-
mates produced by the neural network; the second column
(TARG) contains the Black-Scholes target to which the network
was trained. The full premium for a call option is the time value
premium (which appears in the table) plus the intrinsic value
(the positive difference between the nominal stock price of
$100.00 and the strike).

As can be seen in Table 7–1, by far the worst errors
(the most distressing differences between the neural output and
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the target) are found in the leftmost time left and volatility cate-
gory, which lies at one extreme of the input space. When time
left is short and volatility is low, the neural network has great
difficulty in modeling the sharp peak in the Black-Scholes pric-
ing data. There are nine instances where either the neural or
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TIME = 5 TIME = 15 TIME = 15
VLTY = 0.20 VLTY = 0.50 VLTY = 1.00

STRIKE NOUT TARG NOUT TARG NOUT TARG

70.00 0.00 0.00 0.00 0.00 0.15 0.27

72.50 0.00 0.00 0.00 0.00 0.32 0.41

75.00 0.00 0.00 0.00 0.01 0.56 0.61

77.50 0.00 0.00 0.01 0.02 0.87 0.89

80.00 0.00 0.00 0.02 0.04 1.24 1.24

82.50 0.00 0.00 0.08 0.10 1.69 1.68

85.00 0.00 0.00 0.19 0.22 2.26 2.23

87.50 0.00 0.00 0.42 0.42 2.95 2.89

90.00 0.01 0.00 0.78 0.74 3.76 3.68

92.50 0.04 0.00 1.29 1.24 4.58 4.58

95.00 0.11 0.01 1.94 1.93 5.45 5.62

97.50 0.24 0.16 2.92 2.86 6.82 6.78

100.00 0.34 0.93 3.90 4.04 8.26 8.07

102.50 0.19 0.18 2.98 2.96 7.08 6.98

105.00 0.08 0.02 2.14 2.11 5.97 6.01

107.50 0.03 0.00 1.53 1.47 5.15 5.15

110.00 0.01 0.00 1.04 0.99 4.37 4.39

112.50 0.00 0.00 0.68 0.65 3.70 3.73

115.00 0.00 0.00 0.43 0.42 3.14 3.15

117.50 0.00 0.00 0.25 0.26 2.66 2.65

120.00 0.00 0.00 0.14 0.16 2.25 2.22

122.50 0.00 0.00 0.07 0.09 1.88 1.86

125.00 0.00 0.00 0.03 0.06 1.54 1.55

127.50 0.00 0.00 0.01 0.03 1.24 1.28

130.00 0.00 0.00 0.00 0.02 0.96 1.06

T A B L E  7–1

Correspondence between Neural Output and Black-Scholes
for a Three-Layer Feed-Forward Network with 
16 Hidden-Layer Neurons
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Black-Scholes price is greater than $0.00. In four of these
instances (44%), the error is greater than $0.05. The root-mean-
square error over all nine cases is a sizable $0.20, while the
largest error is a whopping $0.60.

The errors are much smaller, but still not quite acceptable,
in the middle category of time left and volatility. Here, there are
23 cases where either the neural or Black-Scholes price is
greater than $0.00. Four cases (17%) demonstrate an error
larger than $0.05. The largest absolute error is still quite
sizable at $0.14, but the root-mean-square error is an almost
tolerable $0.04.

In the rightmost category, at the other edge of the model’s
input space, the errors are again more substantial. Here, there
are 25 prices greater than $0.00, a largest error of $0.19, eight
errors (32%) greater than $0.05, and a root-mean-square error
of $0.072.

Test of a Larger Neural Network

Perhaps the problem in the previous test was that the neural
network was simply too small to fully model the fine nuances
found in the Black-Scholes plasmode. No doubt, a better fit to
the data can be obtained with a larger, more complex neural
model. The current test investigates whether a more complex
neural model can, indeed, provide a more acceptable fit to the
plasmode data than that achieved by the smaller neural net-
work in the previous test.

In the current test, a four-layer neural network with
three active neurons in the first or input layer, 26 active neurons
in the second layer, eight active neurons in the third layer, and
one neuron in the fourth or output layer was trained. The data
were identical to what was used in the test of the smaller neu-
ral network. Scaling was also the same as with the smaller net-
work (the N-Train default), except for the maximum output,
which was raised from 18.50165 to an even 20.0 in order to
reduce the unnecessary curvature imposed by the presence of an
artificial boundary condition where none was required. The min-
imum output was left at zero, as this is a valid boundary condi-
tion for option price. Transfer and error functions were N-Train
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defaults: linear transfer functions for the input layer, sigmoid
(logistic function) transfers for all other layers, and an error
function equal to the square of the difference between the neu-
ral network’s output and the target. The global learning rate
was initially set to 1.0, but both the global learning rate and the
layer-by-layer learning rate multipliers were adjusted now and
then over the course of training in order to hasten convergence.
Connection weights were initialized with a Gaussian random
generator set to a dispersion of 1.0, and seeded with 93, just as
was the case for the smaller network tested earlier. No momen-
tum was employed and training took place on every fact in the
plasmode on each pass through the data. The neural network
was trained to full convergence, which required many tens of
thousands of passes over the plasmode data to achieve. Given
the size of the network, and the accuracy to which it was to be
trained, tens of thousands of training passes should not be
viewed as excessive or unexpected. Once trained, the network
was polished by performing a few additional training runs with
the learning rate set to a very small number. Finally, the trained
neural network was tested. The process involved using the
trained network to generate an option price estimate for each
fact in the plasmode and then comparing each such price esti-
mate to the corresponding Black-Scholes target price.

Results with a Larger Neural Network

In contrast to the smaller neural network, which produced unac-
ceptable results in the previous test, the larger network in the
current test performed admirably. It must be stated that this
larger network consumed 294 (= 3 * 26 + 26 * 8 + 8 * 1) degrees
of freedom, but it yielded an extraordinary multiple correlation
of 0.99999941 between its output and the Black-Scholes target.
The root-mean-square error was a measly $0.00397, while the
worst absolute error in the entire sample of 15,600 data points
was now only $0.0999. Both error measurements were far small-
er than those calculated for the less complex neural model in the
earlier test. The data presented in Table 7–2 bear this out.

Table 7–2 is virtually identical to Table 7–1, except that the
neural network theoretical price estimates (NOUT) are those
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produced by the more complex, four-layer neural model. The dif-
ferences between the neural outputs (NOUT) and the Black-
Scholes prices (TARG) are much smaller than in Table 7–1,
attesting to the vastly better fit achieved by the larger neural
network model.

TIME == 5 TIME == 15 TIME == 15
VLTY == 0.20 VLTY == 0.50 VLTY == 1.00

STRIKE NOUT TARG NOUT TARG NOUT TARG

70.00 0.00 0.00 0.00 0.00 0.27 0.27

72.50 0.00 0.00 0.00 0.00 0.41 0.41

75.00 0.00 0.00 0.01 0.01 0.62 0.61

77.50 0.00 0.00 0.02 0.02 0.89 0.89

80.00 0.00 0.00 0.05 0.04 1.24 1.24

82.50 0.00 0.00 0.10 0.10 1.68 1.68

85.00 0.00 0.00 0.22 0.22 2.23 2.23

87.50 0.00 0.00 0.42 0.42 2.89 2.89

90.00 0.00 0.00 0.75 0.74 3.68 3.68

92.50 0.00 0.00 1.23 1.24 4.58 4.58

95.00 0.02 0.01 1.94 1.93 5.62 5.62

97.50 0.17 0.16 2.86 2.86 6.78 6.78

100.00 0.93 0.93 4.03 4.04 8.07 8.07

102.50 0.19 0.18 2.96 2.96 6.98 6.98

105.00 0.03 0.02 2.12 2.11 6.01 6.01

107.50 0.00 0.00 1.46 1.47 5.15 5.15

110.00 0.00 0.00 0.99 0.99 4.39 4.39

112.50 0.00 0.00 0.65 0.65 3.73 3.73

115.00 0.00 0.00 0.42 0.42 3.15 3.15

117.50 0.00 0.00 0.26 0.26 2.65 2.65

120.00 0.00 0.00 0.16 0.16 2.22 2.22

122.50 0.00 0.00 0.10 0.09 1.86 1.86

125.00 0.00 0.00 0.06 0.06 1.55 1.55

127.50 0.00 0.00 0.03 0.03 1.28 1.28

130.00 0.00 0.00 0.02 0.02 1.06 1.06

T A B L E  7–2

Correspondence between Neural Output and Black-Scholes
for a Four-Layer Feed-Forward Network with 26 and 8
Hidden-Layer Neurons
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For a time remaining of 5 bars, and a volatility of 20%,
there are five prices greater than $0, not one of them displaying
an error greater than $0.01. The root-mean-square error is
$0.011 for these figures. There are 23 prices greater than $0
when time left is 15 and volatility 50%. Not one error greater
than $0.01 is in evidence and the root-mean-square error is only
$0.004. When time left is 15 and volatility 100%, only one error
of $0.01 appears, no error is greater, and the root-mean-square
error is a negligible $0.002. Overall, the four-layer neural net-
work trained in this test does a commendable job of emulating
Black-Scholes, with errors generally far less than the size of a
single tick.

Discussion

Although the smaller, three-layer neural network trained in the
first test was unable to adequately price options according to
Black-Scholes, the larger, four-layer network trained in the sec-
ond test performed very well. The match between Black-Scholes
prices and those obtained from the larger neural model was quite
good; almost all errors were well below one tick or price incre-
ment ($0.05 for most options on most exchanges) in size. For
practical purposes, the four-layer network could serve as a drop-
in replacement for Black-Scholes. In comparison to the smaller,
three-layer neural network, the four-layer one had no difficulty
in modeling the sharp peak in time premium as a function of
strike price, that is associated with conditions of low volatility
and little time left. The results indisputably demonstrate that a
four-layer neural model of moderate complexity can, when
trained properly, accurately impersonate Black-Scholes over a
relatively wide range of input values, and price options trading
on securities having log-normal price distributions.

Given that a sufficiently complex neural network can imitate
Black-Scholes, chances are that such a network can also model
real-market price expectations reasonably well. The question is
whether or not the neural network would also model the noise in
the data, rather than smoothing out the random variations to
reveal the true relationships that presumably exist between the
model inputs and future price expectation, the target. With a
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large number of free parameters, like that present in the neural
model examined in the current study, fitting of the irrelevant pat-
terns in the data, the noise, as well as the relevant ones, is a
distinct possibility. In other words, excessive curve-fitting may be
an issue in developing a neural model to price options.

One way to handle the issue of curve-fitting and of an
excess consumption of degrees of freedom is to include some
prior knowledge in the model. This is loosely the idea behind
Bayesian and “biased” statistics. In the present situation, incor-
porating the knowledge implicit in Black-Scholes might do the
trick. Data points based on Black-Scholes, evenly distributed
throughout the data space, might be added to the fact set on
which the neural network would be trained. The addition of
such data points would, for one thing, increase the total number
of training facts. But, more importantly, it would increase the
relative density of data points in regions of the data space where
real-market data points are sparse. The effect, imagined visu-
ally, would be a response surface that, in regions of data space
densely populated with real-market data points, slices right
through those points, but that, in regions where real-market
data points are scanty, is pulled towards (or defaults to) the
nearby areas populated by the Black-Scholes data points. In
regions of data space where there are many real data points, the
Black-Scholes bias would have only a minuscule impact on the
solution; however, in the absence of sufficient outside informa-
tion, the bias would reduce the tendency of the response surface
to oscillate wildly or to wander far away from where it should
be—something that often happens around the fringes of the
data space, where nonlinear models seem to shoot for the sky or
go off the deep end.

If a neural network can be trained to accurately price
options, whether directly or by a “biased statistics” approach
like the one discussed above, an efficient, practical pricing model
will be the result. A neural network may take a massive amount
of computation, and hence hours or even days, to fully train;
once trained, however, pricing options with a neural network
can be almost as fast as pricing options with a standard model
like Black-Scholes and by far faster than pricing options with
Cox-Ross-Rubinstein.
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The reader may be thinking, “That is not true. The net-
works tested above had only strike, volatility, and time left as
inputs; a usable model would also require stock price and inter-
est rate.” In fact, the absence of these inputs presents no prob-
lem. It will be recalled from earlier in this work that, given
certain reasonable assumptions, a stock’s price may be rescaled
to a nominal $100, the strike price of the option similarly
rescaled, the option price computed with the rescaled stock and
strike prices, and the resultant option price then transformed
back to the original scaling. Adjustment for risk-free interest
may also be performed without changes to the basic model: fac-
tor the growth due to interest in a risk-neutral world into the
stock price, price the option using the basic model, then discount
the resultant theoretical option premium for the growth, due to
interest, expected for any security in a risk-neutral world. Voila!
The two inputs missing from the model have now been taken
care of so that any standard option may be priced.

It should be noted that several tests (not reported in this
study) were performed in an effort to find a way to conserve
degrees of freedom and to speed up the training process. One
such test used a larger three-layer neural network; the gain in
performance over the smaller three-layer model discussed earlier
was not sufficient to justify further exploration given that vastly
better results could readily be obtained from a four-layer model.
Another test involved a two-step procedure: First, a small,
simple neural network was quickly trained to provide a rough
initial approximation to the Black-Scholes target. Second,
another net was coached to estimate the error made by the first
neural network. The results were no better than those achieved
with greater simplicity by more extensive training of a single,
somewhat larger neural model. Finally, some additional tests
involved experimentation with various error and transfer func-
tions, learning parameters, and other related elements in an
effort to speed convergence. Although convergence could be
coaxed to take place marginally faster, all the hands-on atten-
tion required was not worth the effort. What it boils down to 
is that model fit is determined primarily by the number of con-
nection weights—free parameters—and that training must 
continue until full convergence is achieved, a lengthy process
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with no work-arounds (except, perhaps, more efficient training
algorithms).

None of the additional, unreported tests involved the “biased
statistics” approach outlined earlier in this chapter. This approach
may ameliorate the deleterious effect of an excessive number of
free parameters and yield an overall more valid and robust solu-
tion, but it will neither result in faster training (in fact, training
will be slower as a result of the additional data points in the fact
set) nor reduce the actual number of free parameters in the model.

STUDY 2: POLYNOMIAL REGRESSIONS 
AND BLACK-SCHOLES

Neural networks are evidently able to emulate Black-Scholes
with a high degree of precision. Can polynomial models do as
well? Are polynomial models any better with respect to the
degrees of freedom necessary for a good fit to the data? What are
the advantages, or disadvantages, if any, of polynomial regres-
sion models over neural networks? These are some of the ques-
tions that the current study addresses.

Method

The current study follows the same basic logic as the previous
one, except that a multivariate polynomial regression, rather
than a neural network, was fitted to the Black-Scholes plasmode
or data set.

The plasmode used in the current study was the same as
that used in the previous one, with two alterations: one, the
range of strike price was reduced from the previous range of $70
to $130 to a range of $75 to $125 in the current investigation;
and two, the range of volatility was reduced from the previous
range of 10% to 200% to a range of 20% to 200%. The response of
option premium to strike is hard to model at low levels of volatil-
ity and time left; it was for this reason that the ranges were
reduced to make it somewhat easier for a polynomial model of
modest order to provide a reasonably good fit to the data. Even
a low-order polynomial can model an analytic function well over a
sufficiently small region of its domain. Achieving a good fit over a
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larger span or region may require polynomials of much higher
order and, therefore, may demand that many more free param-
eters be optimized. Each fact or data point in the data set con-
sisted of three independent variables and one dependent or
target variable. The three independent variables were volatility,
time left (measured in bars), and strike price. A nominal $100
stock price was assumed, as was a zero interest rate. The target
was the same as in the previous investigation, the theoretical
option price derived from Black-Scholes.

The fitting of the model involved the following steps. First,
a fact was retrieved from the data set. The volatility (one inde-
pendent variable) was multiplied by the square root of the time
left (another independent variable) and the result was then
rescaled to have a range extending from −1 to +1. In C language,
the rescaled time-and-volatility composite was calculated as

x1 == 2.0 * (vx * sqrt (tl) −− 0.2 * sqrt (5.0))/
(2.0 * sqrt (20.0) −− 0.2 * sqrt (5.0)) −− 1.0

where −1 ≤ x1 ≤ 1, vx was the original volatility, and tl was the
time left. Chebyshev Polynomials of orders 0 to 13 were then
evaluated at x1, the appropriately scaled composite of volatility
and time. The evaluations for polynomials of orders 0 to 13 were
placed in tx1[0] through tx1[13], respectively. The recur-
rence relationship

T0 = 1 (7.8)

T1 = x

Tn = 2xTn − Tn−2 (for all n > 1)

where Tn represents the Chebyshev Polynomial of order n, and
x represents the value at which the polynomial is to be evalu-
ated, was used to determine the Chebyshev Polynomials effi-
ciently and with high precision.

Next, the strike price was rescaled to a range of −1 to +1
and placed in x2. In C, the rescaled strike was computed as

x2 == 2.0 * (sk −− 75.0)/(125.0 −− 75.0) −− 1.0

where −−1 ≤ x2 ≤ 1 and sk was the strike price taken from the
fact. Again, a set of Chebyshev Polynomials was evaluated, this
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time at x2, the rescaled strike. The results were placed in
tx2[0] through tx2[17]. Since the relationship of premium to
strike has been found harder to model over the range of concern
than that of premium to volatility, polynomials of orders up to
17 were analyzed.

All cross-products of the elements of tx1 and tx2 were
then computed, with the results placed in x[0] through x[251].
In C language, the code to accomplish this looked like

for (i2 == 0; i2 <<== 17; i2++++)
for (i1 == 0; i1 <<== 13; i1++++)

x[i1 ++ 13 * i2] == tx1[i1] * tx2[i2];

Since the Chebyshev Polynomial of order 0 is always 1, no sepa-
rate computations needed to be performed for terms involving
only x1 or x2, i.e., for those terms not actually involving true
cross-products.

A new, expanded fact, consisting of x[0] through x[251] as
independent variables, and the target from the original fact as
the dependent variable, was the result. This expanded fact was
saved in a standard fact file. Finally, another fact was retrieved
from the Black-Scholes plasmode and the sequence of steps
described above was repeated. The process continued until all
data points in the plasmode had been analyzed, expanded, and
written to the output fact file.

At this point, a multivariate linear regression was per-
formed on the expanded facts. All calculations were done in dou-
ble precision arithmetic in order to avoid the accumulation of
roundoff error that may easily occur when working with large
arrays and data sets.

Chebyshev Polynomials were employed in the model because
they have two very desirable properties: (1) they are orthogonal,
at least under certain conditions, and (2) their range is the inter-
val from −1 to +1. Both these properties help to avoid ill-condi-
tioning and loss of precision in the determination and use of a
regression model. Were simple powers and cross-products of the
independent variables used to compute the regression, a total or
near-total loss of precision would almost certainly be encountered
for models of the order contemplated—assuming an attempt to
invert a singular matrix did not interrupt or crash the regression
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procedure. Using Chebyshev Polynomials, models of amazingly
high order can be fitted to large data sets without encountering
ill-conditioned matrices and related problems. The better scaling
and the reduced collinearity associated with orthogonal (uncorre-
lated) terms or independent variables are the keys.

Naturally, the orthogonality of the Chebyshev Polynomials
strictly holds only under very specific conditions that are rarely, if
ever, met by empirical data. However, when employed in the man-
ner described above, these polynomials are close enough to orthog-
onal for making stable and accurate computation of a regression
model using standard double precision arithmetic feasible.

Apart from contributing to the accuracy of the solution, the
−1 to +1 output range of the Chebyshev Polynomials confers
another benefit: the additional error, or change in the regression
estimate of the dependent variable, incurred by dropping a term
from the model is limited to the size of the deleted term’s coeffi-
cient. When looking over the regression coefficients, it is easy to
see the relative contribution of each of the terms to the model.
This facilitates understanding. It also facilitates simplification
through an appropriate choice of model order for each inde-
pendent variable and through a process of pruning in which
terms with coefficients deemed sufficiently small are dropped.

Time left and volatility were combined to reduce the com-
plexity of the problem. The inclusion of all three independent
variables directly from the fact set would have required many
more free parameters in the regression. Polynomial models have
the disadvantage that they are much more subject to combina-
torial explosion in the number of free parameters with increas-
ing numbers of inputs than are neural models. The way in which
time and volatility were combined into a single variable relies
on the assumption that successive price movements or returns
are statistically independent—an assumption implicit in the
Black-Scholes model and only “slightly violated” by real-world
prices (see Chapter 4).

Results

The polynomial model fit the Black-Scholes data like a tight
glove. Over the 12,432 facts in the sample, the correlation
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between Black-Scholes and the estimate made with the polyno-
mial model was an incredible 0.99999999, with a root-mean-
square error of only $0.000409 and a largest error of $0.0124.
Even when the model was fitted over a wider range of strikes
($70 to $130), the root-mean-square error remained small at
$0.00129 and the maximum error rose only to $0.0415. As before,
the largest error occurred with volatility and remaining time at
their lowest levels, where the peak in theoretical premium as a
function of strike is sharpest.

Table 7–3 shows the polynomial regression estimates
(PREST) and the Black-Scholes targets (TARG) as a function of
strike price (STRIKE) for three combinations of time left and
volatility. As can easily be seen, the match between the regres-
sion model and Black-Scholes is superb. The quality of the fit is
clearly evident in the root-mean-square and largest absolute
errors that were calculated from the data in Table 7–3. With
5 bars left and 20% volatility, the root-mean-square error was
$0.0063 and the largest absolute error was $0.0124. The root-
mean-square error was $0.0003 and the largest error was
$0.0005 when 15 bars (trading days) remained until expiration
and volatility was 50%. With 15 bars left and 100% volatility, the
error figures were all $0.0001 (or less), reflecting an exceptional
fit of the polynomial model to the Black-Scholes data.

The excellent fit to the Black-Scholes data was achieved
with a regression model having 252 coefficients or free param-
eters. Many of these coefficients were quite small, especially
those associated with terms involving higher order polynomials.
The model could easily be simplified by pruning (removing) those
terms that contribute little to the final estimate of fair premium.

Discussion

No doubt, a polynomial regression can emulate Black-Scholes
very well. And, by way of comparison to a neural network, a poly-
nomial model is fast to train—minutes instead of hours or days.

However, to achieve a good fit with a polynomial model hav-
ing roughly the same number of free parameters as a neural
model, a reduction in the number of inputs to the model is
required. In order to simplify the model in the current instance,
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time left and volatility had to be combined into a single variable.
Of course, combining time and volatility in the manner done in
this study is only legitimate if successive returns in the mar-
ketplace are statistically independent—that successive returns
are statistically independent is an assumption made by Black-
Scholes, but one that is not necessarily valid. If time remaining
and volatility had not been combined into a single variable, the
polynomial regression would have required estimates for thou-
sands of coefficients, rather than for a mere 252 of them.
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TIME == 5 TIME == 15 TIME == 15
VLTY == 0.20 VLTY == 0.50 VLTY == 1.00

STRIKE PREST TARG PREST TARG PREST TARG

75.00 25.00 25.00 25.01 25.01 25.61 25.61

77.50 22.50 22.50 22.52 22.52 23.38 23.38

80.00 20.00 20.00 20.04 20.04 21.24 21.24

82.50 17.50 17.50 17.60 17.60 19.18 19.18

85.00 15.00 15.00 15.21 15.21 17.23 17.23

87.50 12.50 12.50 12.91 12.92 15.39 15.39

90.00 9.99 10.00 10.74 10.74 13.68 13.68

92.50 7.51 7.50 8.74 8.74 12.08 12.08

95.00 5.01 5.01 6.93 6.93 10.62 10.62

97.50 2.66 2.66 5.36 5.36 9.28 9.28

100.00 0.95 0.93 4.04 4.04 8.07 8.07

102.50 0.17 0.18 2.96 2.96 6.98 6.98

105.00 0.02 0.02 2.11 2.11 6.01 6.01

107.50 0.01 0.00 1.47 1.47 5.15 5.15

110.00 −0.01 0.00 0.99 0.99 4.39 4.39

112.50 0.00 0.00 0.65 0.65 3.73 3.73

115.00 0.00 0.00 0.42 0.42 3.15 3.15

117.50 0.00 0.00 0.26 0.26 2.65 2.65

120.00 0.00 0.00 0.16 0.16 2.22 2.22

122.50 0.00 0.00 0.09 0.09 1.86 1.86

125.00 0.00 0.00 0.06 0.05 1.55 1.55

T A B L E  7–3

Correspondence between Theoretical Call Premiums
Computed with a Polynomial Regression Estimator and with
Black-Scholes as a Function of Strike, Volatility, and Time
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And what if skew or kurtosis is to be incorporated into a
polynomial regression as input variables? Oops. Up goes the num-
ber of free parameters by another factor of 10 or more. That is the
main problem with multivariate polynomial models: the rapid
explosion in the number of coefficients or free parameters (and
degrees of freedom consumed) with any increase in the number of
model inputs. Neural networks are much more graceful in the
way they respond to the addition of input variables to the model
and can generally provide an equally good fit to the data.

The conclusion is that if polynomial regressions are to be
used to price options, substantial simplification of the problem
must be made a priority. There are many ways in which such
simplification may be accomplished. Time left and strike, e.g.,
could be eliminated as input variables; instead, separate polyno-
mials could be developed for each particular combination of time
left and strike. There would then be headroom, in terms of
degrees of freedom, for the addition of other variables like skew
or kurtosis as model inputs. Naturally, this means an untidy pro-
fusion of polynomials, rather than a clean, unitary model.
Although polynomials can be used to price options and to smooth
and interpolate the empirical data on which they (the polynomials)
are based, neural networks may be a better choice in the context
of option pricing, given their ability to handle more inputs with-
out requiring as vast an increase in the number of parameters
that must be determined when fitting the model to the data.

STUDY 3: POLYNOMIAL REGRESSIONS 
ON REAL-MARKET DATA

In Studies 1 and 2, neural networks and polynomial regressions
were shown to be fully capable of pricing options, at least accord-
ing to Black-Scholes. But, can such general-purpose nonlinear
models price options based on the behavior of stock returns in
the actual marketplace? Can they smooth out the noise and cap-
ture the essential relationships in the data? The next three
studies, beginning with the current one, attempt to answer
these questions.

The current study explores the use of a simple polynomial
regression to capture the relationship between terminal option
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price expectation, the target, and time left, estimated future
volatility, and strike, the model inputs. In other words, a poly-
nomial regression model to appraise options based on actual
stock price behavior is developed and evaluated. To maintain
simplicity, only call options are considered; if calls can be suc-
cessfully modeled by polynomials, so can puts.

Method

The analysis took place in three computational units or blocks.
The first computational unit involved preparation of the fact set
or training data. The second unit performed polynomial expan-
sions on the facts. And the third unit fitted a multivariate linear
regression to the expanded facts.

First Computational Unit Code implementing the first
unit embodied the following algorithm or sequence of actions.
First, all data series for one of the 2,246 stocks were retrieved
from the same binary stock database used in earlier chapters.
Details regarding construction of the stock database can be
found in the introductory sections of Chapter 4. Next, a valid
reference bar was chosen from the 1,834 available bars. A refer-
ence bar was valid if (1) there were at least m1 + m2 prior bars
over which the stock was active, (2) there were at least n bars
beyond the reference over which the stock was active, and
(3) the lowest original (unadjusted for splits) closing price over
the previous m1 bars was greater than or equal to $2. In this
analysis, m1 was 30, m2 was 70, and n was 10.

When a valid reference bar had been located, an estimate of
near-future volatility was computed with the multivariate regres-
sion model developed in Study 4 of Chapter 5. The estimated
future volatility was used to determine the first of two array
indices. In C-style notation, this array index was calculated as

ivx == (int)floor(0.5 ++ (nvx −− 1)*(vx −− bvxmn)/(bvxmx −− bvxmn))

where ivx was the array row index, nvx was the number of
volatility levels to be used in the analysis, vx was the estimated
near-future volatility, bvxmn was the center of the lowest volatility
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level, and bvxmx was the center of the highest volatility level.
The settings used for the scaling parameters in the above formula
were 37 for nvx, 0.20 for bvxmn, and 2.00 for bvxmx. These
parameter values imply an initial bin centered at 20% estimated
future volatility, an increment of 0.05 to get from one volatility
level or bin to the next, and a final bin centered at 200% volatility.
Time left (tl) was stepped from 5 to 20 in increments of 1. For
each time left, the second of two array indices (itl) was deter-
mined. A time left of 5 indexed column 0 (itl = 0), 6 indexed
column 1, and so on up to a time left of 20, which indexed column
15 (itl = 15). In addition to the array column index, the termi-
nal price of the stock, scaled to a nominal $100 at the reference
bar, was computed as

tfin == exp(−−(k/252.0)*rfi[i])*100.0*cls[i++k]/cls[i]

where tfin was the desired terminal stock price, 252.0 was the
typical number of bars in a year, k was the time left (in bars),
rfi[i] was the risk-free interest at the reference bar,
cls[i +k] was the close at the k-th bar following the reference,
and cls[i] was the close at the reference bar. When perform-
ing this calculation, k was set to (int)tl, the time left. Case
counts were then accumulated in one array and sums of termi-
nal stock prices in another array, using ivx and itl as the row
and column indices, respectively.

Once all possible values of time left were considered, the next
valid reference bar was chosen and the sequence repeated. When
the supply of valid reference bars for the given stock was exhaust-
ed, data for another stock was retrieved from the database.
Processing continued in this fashion until all the stock data had
been analyzed. The result was one array that contained the num-
ber of instances that each combination of time left and estimated
future volatility were observed, and another array that contained
the sum of the terminal prices for each combination of time left
and volatility. The case counts and sums in the two arrays were
used to determine the mean, or statistical expectation, for termi-
nal stock price as a function of time left and estimated future
volatility. The mean or expectation is, in this context, a measure of
trend when it is compared to the nominal $100 initial stock price.
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Once the trend was determined for each combination of
time left and volatility, another pass was made over the stock
data. Again, a stock was selected from the database, a valid ref-
erence bar was chosen, and near-future volatility was estimated
based on data that was historical with respect to the reference.
At this point, time left was stepped from 5 to 20, in increments
of 1, and strike price was stepped from $75 to $125, in incre-
ments of $2.50.

The volatility estimate, time left, and strike price were used
to create three array indices. These three indices were then
employed to address the elements of two arrays. In the first of
the two arrays, the instance counts were accumulated. In the
second of the two arrays, the terminal prices of theoretical options
(in this case, calls) trading on the stocks were summed.

The terminal price of a call having a given strike and
remaining time was computed as follows: First, the terminal
stock price, discounted for interest, was calculated as in the pre-
vious pass. Next, an adjustment was made for trend. This
involved subtracting the quantity 100.0−aefin(ivx,itl) from
the terminal stock price; the array element aefin(ivx,itl)
was the expectation, computed in the previous pass, for terminal
stock price at a given level of volatility and time. The terminal
price of the call (not the stock) was then easily found as the
greater of zero or s−sk, where s was the terminal stock price,
adjusted for trend, and sk was the strike.

After the element addressed in the first array by the three
indices had been incremented and the corresponding element in
the second array had the terminal option price added to its
value, the next combination of time left and strike were consid-
ered. Once all times and strikes were analyzed, the next valid
reference bar was chosen and, when there were no more such
bars for the selected stock, the next stock was selected and its
data retrieved. The sequence continued until all stocks, bars,
times, and strikes had been processed.

The results were two three-dimensional arrays that pos-
sessed all the information needed to compute the empirical expec-
tation for the terminal price of a call as a function of volatility,
time left, and strike—as reflected by the array indices. It
should be noted that the expectation thus computed is identical
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to that which would have resulted from application of the con-
ditional distribution methodology, given a sufficiently fine-
grained binning of terminal stock price. The sum of the terminal
option prices in each element of the second array was over-written
with the corresponding expectation obtained by dividing that
sum by the count contained in the equivalent element of the
first array.

The final step in the first computational unit was to write the
expectations, along with the volatility, time left, and strike vari-
ables, to a new fact file against which a pricing model could be
trained. This was accomplished by stepping each of the three array
indices through its full range of values. For each possible combi-
nation of index values, the corresponding levels of volatility, time
left, and strike were written to the fact file, followed by the termi-
nal price expectation obtained from the array element addressed
by the given combination of index values. Each fact, therefore, con-
sisted of three inputs and one target. Facts were written with
strike moving most rapidly and volatility least rapidly.

Second Computational Unit In this unit, a new set of
facts was constructed from the set prepared in the first compu-
tational unit by replacing the three independent variables in
each original fact with new, more numerous sets of input vari-
ables. The new input variables were computed as cross-products
of various orders of Chebyshev Polynomials evaluated at the
original input variables. In mathematical notation,

(7.9)

where the xij were the new input variables, v was the original
volatility input, t was the time left, and k was the strike price.
In this equation, Tn(a,b,d) represents the n-th order Chebyshev
Polynomial, rescaled for a ≤ d ≤ b and evaluated at d. An xij was
computed for all i and j that satisfied the following inequalities:
0 ≤ i ≤ 13, 0 ≤ j ≤ 17, and i + j ≤ 17. Consequently, there were 160 xij
or new inputs. Since T0 ≡ 1 it was not necessary to explicitly
compute the new variables that were not true cross-products.

The reader may wonder why volatility and time were
combined into a single value. The reason was simplification.

x T Tij i jv t k= ⋅( ) ( ). , , , ,2 5 2 20 75 125
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Were these two variables not combined, three distinct polyno-
mials would have had to be evaluated and multiplied; in other
words,

xijl = Ti(.2,2,v)⋅Tj (5,20,t)⋅Tl(75,125,k) (7.10)

This would have led to a much larger number of new variables
in the model. In fact, 802 variables would have been necessary
for a model of roughly the same order, i.e., with 0 ≤ i ≤ 13,
0 ≤ j ≤ 13, 0 ≤ l ≤ 17 and i + j + l ≤ 17.

The target in each expanded fact was the same terminal
option price expectation found in the original, unexpanded fact
on which the new fact was based.

Third Computational Unit In this unit, a standard
multiple linear regression was carried out on the fact set gener-
ated by the second computational unit. In other words, a set of
wij were determined in order to obtain an estimate of option
premium

(7.11)

for each fact that minimized the sum of the squared errors
taken over all of the facts. The code implementing the regression
was carefully written to minimize numerical instability and the
accumulation of roundoff errors in the face of large, ill-condi-
tioned matrices.

The third computational unit, the regression procedure,
produced two output files. One file contained the regression
report, which included various statistics, such as the regression
weights (the wij in the above discussion), variance inflation fac-
tors, and t-tests. The other file was written in standard fact file
format and contained the regression-estimated option premi-
ums and the target premiums (the terminal option price expec-
tations) against which the model was trained or fitted. The
output produced by the third computational block was loaded
into an Excel spreadsheet for visualization, further analysis,
and presentation.

=

=

∑

∑

w x

w T v t T k

ij ij
ij

ij i j
ij

(. , , ) ( , , )2 5 2 20 25 125
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Results

A fairly good fit of the model to the data was achieved. The
correlation between the actual target and the model’s estimate
of the target was 0.99936, the root-mean-square error was
$0.2920, and the maximum absolute error was $1.7405, over a
total of 12,432 cases or data points.

When compared to the results obtained from fitting a simi-
lar model to Black-Scholes in Study 2, these error and correlation
statistics may not look so great. One must remember, however,
that the facts or data points in the current study were derived
from real stock prices and not from a “perfect,” noiseless equation.
Since the number of stock prices on which each fact was based
was finite, the estimate of future option price expectation, which
forms each fact’s target, is just an estimate—a number that will
almost always be too high or too low, sometimes dramatically so,
and only rarely be correct within the intended precision of the
model. Even if the model being tested were perfect, precisely cap-
turing the true relationships underlying the data, less than per-
fect correlation and error statistics would be anticipated.

A more important issue in assessing the model, rather than
whether the statistics look great, merely acceptable, or even
bad, is whether the poor statistical showing reflects systematic
or model error, or whether it is a consequence of random varia-
tion in the facts, i.e., noise, which the model has wisely ignored
or “smoothed out.” The tables and chart presented below help
address that issue.

Table 7–4 shows the polynomial regression estimate of fair
premium (PR), the Black-Scholes estimate (BS), and the target
computed from the price activity of real stocks (CD) for each of
three combinations of time and volatility over a range of strike
prices (STRIKE).

For a time left of 5 bars and volatility of 50%, the poly-
nomial regression has no error greater than $0.02 for in-the-
money (strike < $97.50) and out-of-the-money (strike > $102.50)
options. Black-Scholes, on the other hand, has six errors greater
than $0.02, four of which are greater than $0.05. For at-the-
money options (strikes between $97.50 and $102.50), Black-
Scholes does somewhat better than the polynomial model. Given
that there are numerous data points contributing to the target
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expectations for this combination of time and volatility, “noise”
in the target is minimal and deviations of model estimates
(whether polynomial or Black-Scholes) from target values rep-
resent primarily model error. Black-Scholes gives a better fit for
these strikes because the premiums of near- and at-the-money
options are least affected by deviations from normality in the
underlying stock price distributions (i.e., by violation of the
Black-Scholes assumption that returns have a log-normal distri-
bution) and because the polynomial model has some difficulty
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T A B L E  7–4

Theoretical Call Premiums Computed with Polynomials,
Black-Scholes, and Conditional Distributions as a Function 
of Strike for Three Combinations of Time and Volatility

TIME == 5 TIME == 15 TIME == 15
VLTY == 0.25 VLTY == 0.50 VLTY == 1.00

STRIKE PR BS CD PR BS CD PR BS CD

75.00 25.00 25.00 25.00 25.19 25.03 25.20 26.42 26.23 26.40

77.50 22.49 22.50 22.50 22.76 22.57 22.77 24.29 24.14 24.27

80.00 20.00 20.00 20.01 20.36 20.14 20.37 22.24 22.13 22.23

82.50 17.50 17.50 17.51 18.01 17.77 18.02 20.29 20.21 20.27

85.00 15.00 15.00 15.01 15.72 15.48 15.74 18.43 18.39 18.41

87.50 12.51 12.50 12.52 13.51 13.29 13.54 16.67 16.68 16.66

90.00 10.05 10.00 10.04 11.43 11.24 11.46 15.03 15.07 15.02

92.50 7.59 7.52 7.58 9.49 9.36 9.53 13.50 13.57 13.50

95.00 5.19 5.11 5.19 7.75 7.66 7.77 12.09 12.18 12.09

97.50 3.06 2.98 3.01 6.21 6.16 6.23 10.79 10.89 10.81

100.00 1.49 1.41 1.37 4.90 4.87 4.90 9.61 9.71 9.65

102.50 0.58 0.51 0.53 3.82 3.78 3.80 8.53 8.63 8.59

105.00 0.21 0.14 0.20 2.94 2.88 2.90 7.56 7.65 7.63

107.50 0.10 0.03 0.08 2.24 2.16 2.19 6.68 6.76 6.77

110.00 0.05 0.00 0.04 1.70 1.59 1.64 5.89 5.96 5.99

112.50 0.01 0.00 0.02 1.29 1.15 1.23 5.18 5.24 5.30

115.00 0.00 0.00 0.01 0.98 0.82 0.92 4.55 4.60 4.68

117.50 0.00 0.00 0.01 0.74 0.57 0.69 3.99 4.02 4.12

120.00 −0.01 0.00 0.00 0.57 0.40 0.51 3.49 3.51 3.62

122.50 −0.01 0.00 0.00 0.43 0.27 0.39 3.05 3.06 3.19

125.00 −0.01 0.00 0.00 0.33 0.18 0.30 2.67 2.66 2.80
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handling the sharp turn, where the strike moves through the
at-the-money region, in an otherwise gentle curve that describes
the relationship of premium to strike. The root-mean-square
error over all strikes was $0.032 for the polynomial regression
model and $0.033 for Black-Scholes; the average absolute errors
were $0.02 and $0.025, respectively.

With 15 bars left and a volatility of 50%, the root-mean-
square error was $0.038 for the polynomial model and $0.151
for Black-Scholes. Measured by the average absolute deviation,
these errors were $0.033 and $0.130, and by the maximum
absolute deviation, $0.07 and $0.26. In this instance, the poly-
nomial model dramatically outperforms Black-Scholes.

Examining the figures in Table 7–4 reveals systematic error
in both the polynomial and Black-Scholes models. The polynomial
model tends to underestimate the value of in-the-money calls and
tends to overestimate the value of out-of-the-money calls. Black-
Scholes underestimates the value of both in-the-money and out-of-
the-money calls, with the underestimation being noteworthy in
the out-of-the-money case and very severe in the in-the-money
case. The underestimation of the value of both in-the-money and
out-of-the-money options by Black-Scholes is a model error; it is
exactly what might be expected from the application of a pricing
model that assumes a log-normal distribution of returns to a mar-
ket that exhibits a longer-tailed, leptokurtic distribution of price
movements. The model error seen with the polynomial regression
is much smaller; it reflects the limitation imposed by model order
on the fit that can be achieved to the data.

When options with 15 bars of life remaining on stocks that
have a volatility of 100% were examined, the root-mean-square
error was found to be $0.080 and $0.088 for the polynomial and
Black-Scholes models, respectively. The corresponding figures
for the average absolute error were $0.061 and $0.076; for the
maximum absolute error they were $0.14 and $0.17. Again, the
polynomial model performs better than Black-Scholes, although
less dramatically so than at a volatility level of 50%. The
reduced contrast between the polynomial model and Black-
Scholes is probably a result of the greater noise or estimation
error in the data points. Greater noise can be assumed to exist
in the facts corresponding to a volatility of 100% than in those
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T A B L E  7–5

Theoretical Call Premiums Computed with Polynomials,
Black-Scholes, and Conditional Distributions as a Function 
of Volatility for Three Strikes

TIME == 10 TIME == 10 TIME == 10
STRIKE == 80 STRIKE == 100 STRIKE == 120

VLTY PR BS CD PR BS CD PR BS CD

0.20 20.00 20.00 20.02 1.65 1.59 1.71 −0.01 0.00 0.01

0.25 20.02 20.00 20.02 2.05 1.99 1.98 0.02 0.00 0.02

0.30 20.05 20.00 20.04 2.43 2.38 2.35 0.05 0.00 0.03

0.35 20.07 20.00 20.06 2.80 2.78 2.74 0.07 0.01 0.05

0.40 20.09 20.01 20.09 3.17 3.18 3.15 0.10 0.03 0.10

0.45 20.13 20.02 20.14 3.56 3.58 3.58 0.16 0.08 0.16

0.50 20.18 20.04 20.19 3.96 3.97 3.98 0.25 0.14 0.25

0.55 20.25 20.08 20.28 4.38 4.37 4.39 0.37 0.24 0.38

0.60 20.34 20.13 20.35 4.80 4.77 4.84 0.52 0.36 0.55

0.65 20.44 20.20 20.42 5.21 5.16 5.21 0.70 0.51 0.72

0.70 20.54 20.29 20.51 5.62 5.56 5.58 0.89 0.68 0.89

0.75 20.65 20.40 20.62 6.01 5.96 6.00 1.10 0.88 1.12

0.80 20.76 20.52 20.73 6.39 6.35 6.35 1.31 1.10 1.31

0.85 20.89 20.66 20.86 6.77 6.75 6.71 1.54 1.33 1.50

0.90 21.03 20.82 20.97 7.14 7.15 7.11 1.77 1.58 1.78

0.95 21.18 20.99 21.12 7.51 7.54 7.41 2.02 1.85 1.98

1.00 21.35 21.17 21.27 7.89 7.94 7.85 2.27 2.13 2.32

1.05 21.53 21.37 21.51 8.27 8.33 8.27 2.53 2.42 2.54

1.10 21.72 21.57 21.60 8.65 8.73 8.47 2.80 2.72 2.68

1.15 21.93 21.79 21.82 9.04 9.12 8.96 3.07 3.03 3.05

1.20 22.14 22.01 21.95 9.42 9.52 9.17 3.35 3.35 3.10

1.25 22.35 22.24 22.22 9.80 9.91 9.60 3.63 3.68 3.47

1.30 22.57 22.48 22.46 10.17 10.31 10.04 3.91 4.01 3.81

1.35 22.80 22.73 22.63 10.54 10.70 10.56 4.19 4.35 4.26

1.40 23.02 22.98 22.94 10.90 11.09 10.89 4.48 4.70 4.53

1.45 23.25 23.24 23.17 11.25 11.49 11.28 4.77 5.05 4.88

1.50 23.49 23.51 23.77 11.61 11.88 12.14 5.07 5.40 5.79

1.55 23.73 23.77 24.11 11.96 12.27 12.07 5.38 5.76 5.44

1.60 23.98 24.05 23.42 12.32 12.67 11.49 5.69 6.12 5.14

1.65 24.24 24.32 23.82 12.68 13.06 12.15 6.01 6.49 5.79

1.70 24.50 24.60 24.53 13.03 13.45 13.06 6.33 6.86 6.41

1.75 24.75 24.89 25.41 13.39 13.84 14.41 6.64 7.23 7.27
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corresponding to a volatility of 50% due to the far smaller num-
ber of distinct returns contributing to each of the latter facts.

Errors were substantial for out-of-the-money options, but
quite small for in-the-money options, when appraisals of value
were made with the polynomial model. Black-Scholes produced
sizable errors at both ends of the moneyness spectrum, as well
as at some points in between.

Table 7–5 shows the target premiums computed as the ter-
minal option price expectations (CD), together with premiums
derived from Black-Scholes (BS) and from the polynomial
regression (PR). These premiums are presented for three strikes
(an in-the-money strike of $80, an at-the-money strike of $100,
and an out-of-the-money strike of $120) over the full range of
estimated future volatility (VLTY). In all cases, premiums were
for options with 10 bars of life remaining.

Random variation of the target premiums about their “true”
values is much more evident in Table 7–5 than in Table 7–4,
especially at high levels of volatility. This is because the samples
of stock returns that contribute to the expectation estimates for
terminal option price become small as volatility increases. For
example, at 50% volatility, a sample of 294,275 data points is
available for estimating the terminal price expectation of an
option. The sample size drops to 31,809 at 100% volatility and to
2,091 at 150% volatility. By the time 200% volatility is reached,
a sample of only 153 stock returns is available from the database
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T A B L E  7–5

(Continued )

TIME == 10 TIME == 10 TIME == 10
STRIKE == 80 STRIKE == 100 STRIKE == 120

VLTY PR BS CD PR BS CD PR BS CD

1.80 25.01 25.17 25.22 13.73 14.23 14.32 6.95 7.61 7.49

1.85 25.25 25.46 25.29 14.05 14.62 14.44 7.23 7.99 7.71

1.90 25.48 25.76 25.87 14.36 15.01 15.43 7.50 8.37 8.52

1.95 25.69 26.05 25.07 14.64 15.41 14.29 7.75 8.75 7.25

2.00 25.89 26.35 26.07 14.89 15.80 15.37 7.97 9.13 8.06
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employed in this study. Despite the greater random variation of
the target at higher levels of volatility, systematic pricing errors
can still be observed in the figures in Table 7–5.

With in-the-money options (strike of $80), the polynomial
model provides a close fit to the data for volatilities up to 85%,
overestimates prices for volatility levels between 90% and 140%,
and gives visually correct appraisals when volatility is between
145% and 200%—although, in this range of volatility, the premi-
ums are scattered fairly widely about the model-estimated 
values due to the small samples on which these premiums are
based. By way of contrast, Black-Scholes greatly underestimates
option worth at lower levels of volatility (between 30% and 100%)
and overestimates option value at higher levels of volatility
(between 120% and 200%).

A similar pattern appears with out-of-the-money options.
Again, the polynomial model yields accurate premiums and a
tight fit (small absolute errors) to the data at lower levels of
volatility, underestimates fair value at high levels of volatility,
and overestimates option worth over a small range in between.
Black-Scholes significantly underestimates the worth of out-of-
the-money options at lower levels of volatility and greatly over-
estimates the value at higher levels. The root-mean-square error
over all volatility levels was $0.228 for the polynomial model and
$0.269 for Black-Scholes, in the case of in-the-money call options.
The corresponding figures were $0.349 and $0.367 for at-the-
money options and $0.295 and $0.405 for out-of-the-money
options. The average absolute errors were $0.141 and $0.185,
$0.203 and $0.228, and $0.163 and $0.257, for the polynomial
and Black-Scholes models over the three strikes or levels of
moneyness; the corresponding maximum absolute errors were
$0.66 and $0.98, $1.07 and $1.18, and $1.02 and $1.50.

As is easily seen, the overall error, regardless of the statis-
tic by which it was measured, is worse for Black-Scholes than for
the polynomial regression model. The relatively poor perfor-
mance of Black-Scholes is exaggerated for out-of-the-money and
in-the-money options, where the market’s violation of the log-
normal assumption of Black-Scholes has the greatest impact.

Finally, Figure 7–3 illustrates graphically the relationships
between volatility and premium as determined by the direct
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evaluation of option terminal price expectation (small square
markers), by the polynomial regression model (solid line), and
by Black-Scholes (broken line). The data in the figure are for a
strike price of $120 and a time left of 10 bars.

It is easy to observe that the polynomial model (solid line)
provides a very good fit to the data points (small rectangles) at
lower levels of volatility. As volatility rises, the data points
become more dispersed about the solid line, but that line,
derived from the polynomial model, does seem to trace out some-
thing close to the true underlying relationship that probably
exists between premium and volatility in the market—i.e., the
relationship that would have been tracked by the square markers
were they based on samples large enough to eliminate the visible
estimation error. The Black-Scholes model (broken line), however,
systematically underprices the calls for volatility levels below
about 100% and overprices them for volatility levels greater
than about 120%.
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Call Prices Estimated by Polynomial Regression, Black-
Scholes, and Terminal Expectation, as a Function of Volatility
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As evident in Figure 7–3, the polynomial model does an
exceptional job of smoothing out the noise in the empirical data
and, thus, of revealing the true relationship between fair premium
and estimated future volatility.

What does the model actually look like? Table 7–6 contains
the regression weights for various terms in the model. In the
table, VT(0) through VT(13) represent Chebyshev Polynomials of
orders 0 to 13, evaluated at where v is the volatility, t
is the time left (in bars), and a and b are scaling constants cho-
sen to make the value of the expression fall between −1 and +1.
The SK(0) through SK(17) represent another set of Chebyshev
Polynomials evaluated at aK + b, where K is the strike price and
a and b are again scaling coefficients (different than those
above, but serving the same purpose). Each regression weight in
Table 7–6 is applied to the cross-product of the polynomial that
corresponds to the table row with the polynomial that corre-
sponds to the table column. The weighted cross-product terms
are then added to obtain the model output, an estimate of the
fair premium of a call.

Scanning Table 7–6 reveals that the largest weights appear
in the upper-left corner and are associated with cross-products
of Chebyshev Polynomials having low order. These cross-products
contribute the most to the model. As the focus moves away from
the upper-left corner of Table 7–6, the size of the weights
declines, implying smaller contributions to the model’s output
from cross-products involving higher order polynomials. In fact,
cross-products with weights less than, say, 0.001, could probably
be dropped from the model with little impact on the overall fit.
Chebyshev Polynomials (and their cross-products) have the neat
property of evaluating to a number between −1 and +1. This
means that the maximum absolute error introduced by omitting
a term can be no greater than the absolute size of that term’s
regression weight.

Discussion

This study clearly demonstrates that a pricing model based on
a polynomial regression can do a better job of describing the
relationship between variables such as time, volatility, and

av t b− ,
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VT(0) VT(1) VT(2) VT(3) VT(4) VT(5) VT(6)

SK(0) 13.2336 5.4363 −0.5219 −0.8564 −0.1078 −0.0146 0.0432

SK(1) −11.7348 0.7639 −0.1758 −0.1526 0.0040 −0.0330 0.0182

SK(2) 2.7245 −1.9231 0.6140 −0.0171 −0.0424 0.0446 0.0025

SK(3) −0.0731 −0.0301 0.0419 −0.0265 −0.0075 0.0103 −0.0128

SK(4) −0.2263 0.3684 −0.2336 0.1014 −0.0295 −0.0052 0.0025

SK(5) 0.0107 0.0002 0.0012 0.0132 0.0012 0.0026 0.0077

SK(6) 0.0617 −0.1154 0.0866 −0.0544 0.0294 −0.0110 0.0029

SK(7) −0.0024 0.0025 −0.0006 −0.0020 0.0011 −0.0004 −0.0006

SK(8) −0.0237 0.0484 −0.0366 0.0273 −0.0180 0.0114 −0.0041

SK(9) 0.0013 −0.0017 −0.0008 −0.0005 −0.0009 −0.0001 −0.0004

SK(10) 0.0112 −0.0133 0.0196 −0.0168 0.0095 −0.0059 0.0040

SK(11) 0.0015 0.0035 0.0004 0.0013 0.0007 0.0005 0.0000

SK(12) −0.0045 0.0177 −0.0062 0.0043 −0.0047 0.0060

SK(13) 0.0016 0.0006 0.0001 0.0000 0.0001

SK(14) 0.0015 0.0020 0.0036 −0.0054

SK(15) 0.0006 0.0006 −0.0006

SK(16) −0.0006 0.0050

SK(17) 0.0004

VT(7) VT(8) VT(9) VT(10) VT(11) VT(12) VT(13)

SK(0) 0.0413 0.0461 0.0579 0.0432 0.0084 −0.0069 −0.0261

SK(1) 0.0505 0.0464 0.0631 0.0502 0.0223 0.0093 0.0010

SK(2) 0.0358 0.0234 0.0127 0.0122 0.0016 0.0010 0.0046

SK(3) −0.0090 −0.0064 −0.0124 −0.0073 −0.0089 −0.0065 −0.0049

SK(4) −0.0104 −0.0015 −0.0048 −0.0029 0.0015 0.0008 −0.0001

SK(5) 0.0020 0.0034 0.0026 0.0025 0.0030 0.0020

SK(6) 0.0017 −0.0011 0.0015 −0.0001 −0.0004

SK(7) 0.0012 0.0006 0.0013 0.0007

SK(8) 0.0018 −0.0005 −0.0006

SK(9) −0.0004 −0.0003

SK(10) −0.0035

T A B L E  7–6

Regression Weights for a Simple Option Pricing Model
Based on Fitting Terminal Option Price Expectation Data
with Chebyshev Polynomials
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strike on the one hand, and real-market expectation for an
option’s terminal price on the other, than can Black-Scholes.

Polynomial models have virtues that go beyond their ability
to capture the complex relationships involved in pricing options.
Among these virtues are simplicity and transparency, especially
when compared to models based on neural networks. Polynomial
models also appear to effectively smooth out noise in the data on
which they are based. The model developed in this study clearly
demonstrates the smoothing ability of a polynomial regression of
appropriate order. Finally, polynomial models are easy to train:
the required regression weights can be computed in minutes,
even for enormous data sets, rather than the hours or even days
that are sometimes required for a neural model.

The one irksome problem with polynomial models is
the combinatorial explosion in the number of coefficients that
occurs with increasing numbers of model inputs. Neural net-
works suffer less from this problem, although they may consume
more degrees of freedom when only a few inputs are necessary.
Neural networks, therefore, are an alternative that may be
worth considering when there are many independent variables
to be included in the model. They are examined in Study 4.

STUDY 4: BASIC NEURAL PRICING MODELS

Can simple neural networks price real-market options? In other
words, can they provide meaningful estimates of terminal option
price expectation? How good are neural networks at capturing
essential pricing relationships whilst ignoring the inevitable
noise in the data on which they must be trained? Finally, how
does the performance of a neural model compare to that of a
polynomial model, like the one explored in Study 3? These are
the questions considered in the current investigation.

Method

The same fact set that was prepared with the first computational
unit in Study 3 was used in the current one. Each of the 12,432
facts in the fact set consisted of figures for three independent
variables and one target or dependent variable. The three
independent variables were estimated future volatility, time
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remaining (in bars), and strike price (in dollars). Estimated future
volatility ranged from 20% to 200% in increments of 5%; time left
ranged from 5 to 20 bars in increments of 1 bar; and strike price
ranged from $75.00 to $125.00 in increments of $2.50. The target
was the expected (mean) option price at option expiration, com-
puted from detrended stock returns, given the volatility, time, and
strike. For full details regarding preparation of the fact set, con-
sult the discussion of methodology in Study 3, above.

Instead of creating another fact set by expanding the
inputs in terms of Chebyshev Polynomials and then performing
a regression analysis on the expanded facts (as was done in
Study 3), the facts were directly employed to train a neural net-
work. The neural network was created and trained using the 
N-Train neural network development package.

The steps in creating and training the model were as fol-
lows. First, a default scaling control file was created using the
makescl command with arguments specifying three indepen-
dent variables and one dependent (target) variable. The facts
were then scaled with the scale command, which produced the
file train.scl. This file (the “internal scaling file,” in N-Train
parlance) was then opened in a text editor and the upper limit
for the network’s output was changed from 30.876 to 35.000 in
order to avoid saturation at the high end of the premium spec-
trum. Although 30.876 was the largest target premium found in
the fact set, it does not, in any way, represent a hard upper limit
on the premium of an option. On the other hand, zero does rep-
resent a hard lower limit on option premium and so this datum
in train.scl was not altered. After editing the internal scaling
file, the getfacts command was issued to load the fact set into
the N-Train program. Once loaded, the facts were thoroughly
shuffled using the shuffle command.

The next step was to employ the newnet command to create
a four-layer neural network with three active inputs, 26 active
second- layer neurons, eight active third-layer neurons, and 1
output. The network size and architecture were the same as for
the larger neural model tested against Black-Scholes in Study 1,
earlier in this chapter. Using setparms, the learning rate was
set to 1, the maximum run count was set to 99,999, and the momen-
tum factor was set to 1 (no momentum). The same command was
also used to randomize the connection weights with a seed of 93

Neural Networks, Polynomial Regressions, and Hybrid Pricing Models 311

7743_ch_7.qxd  28/12/04  12:40 PM  Page 311



and dispersion of 1, using random numbers having a Gaussian
distribution. Training was then initiated with the train com-
mand. At various points in the lengthy training process, adjust-
ments were made to the learning rate and to the layer-specific
learning rate multipliers in an effort to speed convergence. The
network was trained to full convergence; a process that took
many tens of thousands of training passes over the fact set, not
to mention a quite substantial amount of processor time.
Finally, the neural network was polished by performing some
additional training passes at a very low learning rate. When
training was complete, the trained network was run on the fact
set using runnet. This produced a file that contained, for each
fact, the neural network’s estimate of the target’s premium (on
the basis of the model’s inputs), followed by the target premium
itself. Various statistics were computed, tables prepared, and
charts drawn using the data in the runnet output file and in
the original fact file.

Results

The trained neural model produced estimates of target premium
that, overall, were much closer to the actual targets than
the estimates produced by the polynomial model examined in
Study 3. The correlation between the model estimate and the
actual target, computed over all facts, was 0.999914; the root-
mean-square error was $0.1073 (compare this to $0.292 for the
polynomial regression); and the maximum absolute error was
$0.6812 ($1.7405 for the polynomial model). Overall, the neural
model looks very good. As will be seen, however, the very tight
fit to the data was, to some extent, achieved by modeling the
noise, as well as the true dependencies underlying the data.
In other words, the degrees of freedom consumed by the neural
model may have exceeded what the data could supply without
risk of undesirable curve-fitting.

Table 7–7 shows fair call premiums generated by the
neural model (NN), side-by-side with premiums computed with
Black-Scholes (BS), and from actual stock prices (CD, the target).
These premiums are shown for three combinations of time left
(TIME) and estimated future volatility (VLTY) over a range of
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strikes. The data presented are directly comparable to those for
the polynomial model that appear in Table 7–4.

When time left is 5 bars and volatility is 20%, the neural
model tends to overestimate fair premium for strikes at or below
$87.50, underestimates it for strikes between $90 and $107.50,
and estimates it perfectly for strikes at or greater than $110.
The error is sizable for options struck between $100 and
$102.50, where the curve that describes the true relationship
between strike and premium turns most sharply. Black-Scholes

T A B L E  7–7

Theoretical Call Premiums Computed with a Neural Network,
Black-Scholes, and Conditional Distributions as a Function 
of Strike for Three Combinations of Time and Volatility

TIME == 5 TIME == 15 TIME == 15
VLTY == 0.25 VLTY == 0.50 VLTY == 1.00

STRIKE NN BS CD NN BS CD NN BS CD

75.00 24.94 25.00 25.00 25.19 25.03 25.20 26.45 26.23 26.40

77.50 22.46 22.50 22.51 22.77 22.57 22.77 24.28 24.14 24.28

80.00 20.00 20.00 20.01 20.39 20.14 20.37 22.22 22.13 22.23

82.50 17.50 17.50 17.51 18.05 17.77 18.02 20.26 20.21 20.27

85.00 14.99 15.00 15.01 15.75 15.48 15.74 18.40 18.39 18.41

87.50 12.51 12.50 12.52 13.54 13.29 13.54 16.65 16.68 16.66

90.00 10.08 10.00 10.04 11.44 11.24 11.46 15.01 15.07 15.02

92.50 7.63 7.52 7.58 9.50 9.36 9.53 13.48 13.57 13.50

95.00 5.19 5.11 5.19 7.74 7.66 7.77 12.08 12.18 12.09

97.50 3.05 2.98 3.01 6.20 6.16 6.23 10.78 10.89 10.81

100.00 1.52 1.41 1.37 4.88 4.87 4.90 9.60 9.71 9.65

102.50 0.65 0.51 0.53 3.78 3.78 3.80 8.52 8.63 8.59

105.00 0.26 0.14 0.20 2.88 2.88 2.90 7.54 7.65 7.63

107.50 0.10 0.03 0.08 2.18 2.16 2.19 6.65 6.76 6.77

110.00 0.04 0.00 0.04 1.63 1.59 1.64 5.86 5.96 5.99

112.50 0.02 0.00 0.02 1.22 1.15 1.23 5.16 5.24 5.30

115.00 0.01 0.00 0.01 0.91 0.82 0.92 4.53 4.60 4.68

117.50 0.00 0.00 0.01 0.68 0.57 0.69 3.98 4.02 4.12

120.00 0.00 0.00 0.00 0.52 0.40 0.52 3.48 3.51 3.63

122.50 0.00 0.00 0.00 0.40 0.27 0.39 3.04 3.06 3.19

125.00 0.00 0.00 0.00 0.31 0.18 0.30 2.66 2.66 2.80
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underestimates fair premium, more or less, for all strikes other
than $100 (exactly at-the-money); the greatest underestimation
occurs for options that are moderately in- or out-of-the-money
(strikes from $90 to $95 and from $105 to $110).

The neural model produces estimates of fair premium that
match the target values exceedingly well for options having
15 bars of time remaining and trading on stocks with estimated
future volatility of 50%. For this combination of volatility and
time, no error is greater than $0.03. Black-Scholes, on the other
hand, underestimates fair value, falling particularly short for
options that are not at- or near-the-money.

When there are 15 bars left and volatility is 100%, the neu-
ral model does all right up to a strike of $97.50. Black-Scholes
does quite poorly over this range of strikes. For strikes greater
than $97.50, the neural network significantly underestimates
fair value. Black-Scholes makes errors in both directions over
this range of strikes: first, overestimating value, and then
underestimating it.

The error statistics for Table 7–7 reveal an interesting
pattern: errors for the neural model vary widely with the region
of input space in which volatility and time appear. The root-
mean-square error for the neural model and for Black-Scholes,
for each of the three combinations of time and volatility, are
$0.051 and $0.033, $0.017 and $0.151, and $0.091 and $0.088,
respectively. Average error has corresponding values of $0.032
and $0.025, $0.014 and $0.180, and $0.070 and $0.076. Finally,
the maximum absolute error figures are $0.15 and $0.08, $0.03
and $0.26, and $0.15 and $0.17.

As easily seen from these error statistics, the neural model
performs exquisitely on the middle combination of time and
volatility, leaving Black-Scholes in the proverbial dust. It per-
forms on par with Black-Scholes (better, in the authors’ view,
because of good results for strikes less than $97.50) on the third
combination of time and volatility. The neural model’s perfor-
mance is worst for the first time and volatility combination, a
combination in which both time and volatility are at the lower
limits of their ranges in the training fact set.

Table 7–8 contains premiums estimated with the neural
model (NN), Black-Scholes (BS), and from stock return data (CD).
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T A B L E  7–8

Theoretical Call Premiums Computed with a Neural Network,
Black-Scholes, and Conditional Distributions as a Function 
of Volatility for Three Strikes

TIME == 10 TIME == 10 TIME == 10
STRIKE == 80 STRIKE == 100 STRIKE == 120

VLTY NN BS CD NN BS CD NN BS CD

0.20 20.02 20.00 20.02 1.67 1.59 1.71 0.01 0.00 0.01

0.25 20.04 20.00 20.02 1.97 1.99 1.98 0.01 0.00 0.02

0.30 20.05 20.00 20.04 2.32 2.38 2.35 0.02 0.00 0.03

0.35 20.07 20.00 20.06 2.72 2.78 2.74 0.05 0.01 0.05

0.40 20.09 20.01 20.09 3.14 3.18 3.15 0.09 0.03 0.10

0.45 20.13 20.02 20.14 3.57 3.58 3.58 0.16 0.08 0.16

0.50 20.17 20.04 20.19 4.00 3.97 3.98 0.26 0.14 0.25

0.55 20.23 20.08 20.28 4.42 4.37 4.39 0.40 0.24 0.38

0.60 20.31 20.13 20.35 4.84 4.77 4.84 0.56 0.36 0.55

0.65 20.40 20.20 20.42 5.24 5.16 5.21 0.74 0.51 0.72

0.70 20.50 20.29 20.51 5.63 5.56 5.58 0.93 0.68 0.89

0.75 20.61 20.40 20.62 6.01 5.96 6.00 1.13 0.88 1.12

0.80 20.73 20.52 20.73 6.38 6.35 6.35 1.33 1.10 1.31

0.85 20.86 20.66 20.86 6.75 6.75 6.71 1.54 1.33 1.50

0.90 20.99 20.82 20.97 7.11 7.15 7.11 1.76 1.58 1.78

0.95 21.13 20.99 21.12 7.46 7.54 7.41 1.99 1.85 1.98

1.00 21.28 21.17 21.27 7.82 7.94 7.86 2.23 2.13 2.32

1.05 21.43 21.37 21.51 8.17 8.33 8.27 2.47 2.42 2.54

1.10 21.60 21.57 21.60 8.53 8.73 8.47 2.73 2.72 2.68

1.15 21.79 21.79 21.83 8.90 9.12 8.96 2.99 3.03 3.05

1.20 21.98 22.01 21.95 9.27 9.52 9.17 3.26 3.35 3.11

1.25 22.19 22.24 22.22 9.65 9.91 9.60 3.54 3.68 3.47

1.30 22.41 22.48 22.46 10.02 10.31 10.04 3.84 4.01 3.81

1.35 22.63 22.73 22.63 10.41 10.70 10.56 4.15 4.35 4.26

1.40 22.88 22.98 22.94 10.82 11.09 10.89 4.53 4.70 4.53

1.45 23.24 23.24 23.17 11.34 11.49 11.28 5.01 5.05 4.88

1.50 23.81 23.51 23.77 12.04 11.88 12.15 5.60 5.40 5.79

1.55 24.01 23.77 24.11 12.10 12.27 12.07 5.54 5.76 5.44

1.60 23.34 24.05 23.42 11.37 12.67 11.49 4.98 6.12 5.14

1.65 23.86 24.32 23.82 12.15 13.06 12.15 5.73 6.49 5.79

1.70 24.52 24.60 24.53 13.06 13.45 13.06 6.36 6.86 6.41

1.75 25.43 24.89 25.41 14.38 13.84 14.41 7.18 7.23 7.27
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The premiums are broken down by moneyness and volatility.
In-the-money calls are represented by those with a strike of $80,
at-the-money by those struck at $100, and out-of-the-money by
those having a strike price of $120. Note that the strikes were
chosen to fall well within the range of strikes found in the fact
set on which the neural model was trained. In all cases, the time
left was 10 bars. As with the strikes, the time left was chosen to
avoid the edges of the input space, defined by the training facts,
where neural networks often have trouble.

The differences in Table 7–8 between premiums derived
from the neural model and those constituting the target do not
appear to represent systematic pricing errors; rather, they
appear to reflect random variation, “noise,” in the empirically
determined target. Consistent with the noise hypothesis, the
errors become larger as volatility increases and the samples of
returns on which the target premiums are based become smaller.
This contrasts to Black-Scholes, which evidences a systematic
pattern of error. At high levels of volatility, Black-Scholes over-
prices options; this is true for all strikes or levels of moneyness.
Black-Scholes underestimates fair premium at low-to-moderate
volatility for both in-the-money and out-of-the-money options,
but not for at-the-money options.

The error statistics associated with the numbers in
Table 7–8 demonstrate the superiority of the neural model over
Black-Scholes across all three strikes. The root-mean-square
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T A B L E  7–8

(Continued )

TIME == 10 TIME == 10 TIME == 10
STRIKE == 80 STRIKE == 100 STRIKE == 120

VLTY NN BS CD NN BS CD NN BS CD

1.80 25.30 25.17 25.22 14.45 14.23 14.32 7.56 7.61 7.49

1.85 25.26 25.46 25.29 14.48 14.62 14.44 7.68 7.99 7.71

1.90 25.48 25.76 25.87 14.95 15.01 15.43 8.28 8.37 8.52

1.95 25.40 26.05 25.07 14.52 15.41 14.29 7.85 8.75 7.25

2.00 26.03 26.35 26.07 14.93 15.80 15.37 7.64 9.13 8.06
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errors are $0.093 versus $0.269, $0.128 versus $0.366, and $0.144
versus $0.405, with the neural model and Black-Scholes figures
presented side-by-side for each of the three strikes examined in
the table. The corresponding average absolute errors are $0.046
versus $0.185, $0.073 versus $0.228, and $0.081 versus $0.257.
The largest absolute errors were $0.40 versus $0.98, $0.47 ver-
sus $1.18, and $0.60 versus $1.50. Regardless of the measure-
ment used, the error for the neural model is less than half the
error experienced with Black-Scholes.

What does the fit of the neural model to the data actually
look like? Figure 7–4 provides the answer.

In Figure 7–4, premium estimates (the y-axis) derived from
the neural network (solid line), Black-Scholes (broken line), and
real stock returns (rectangular markers) are plotted against
estimated future volatility (the x-axis). In all cases, the premiums
are for an out-of-the-money call struck at $120. As is easily seen
in Figure 7–4, Black-Scholes underestimates fair premium for
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volatility levels less than 110% and overestimates it for volatil-
ity levels above that threshold. The incorrect estimation of fair
value is likely due to the application of a model that assumes a
log-normal distribution of returns to a market that exhibits a
leptokurtic distribution. The neural model, on the other hand,
fits the data quite well.

In fact, the neural model fits the data too well. It seems
that the neural network has not only modeled the true relation-
ship that probably exists between volatility and fair premium,
but it has also successfully modeled some of the random varia-
tion or noise present in the data. Observe how the neural net-
work handles the hook near the upper-right corner of the chart
shown in Figure 7–4. Then take a look at the chart in Figure 7–3
and observe how the multivariate polynomial model, developed
in Study 3, responds to the same data. The neural network,
unlike the polynomial model, attempts to include the hook in its
estimate of fair option premium. This is evidence of an exces-
sively curve-fit solution of the kind often associated with a
disproportionate number of free parameters in the model; a ten-
dency to excessively curve-fit the data is a common problem
with neural networks.

Discussion

The current study demonstrates that a neural network can pro-
vide a good fit to the data, especially over interior regions of the
input space as it is represented in the training facts. Given
training data with a sufficiently low noise level, a neural net-
work can learn to accurately price options.

The problem is that a neural network can almost as easily
learn to model any noise present in the data. There are various
ways around this problem. One way to reduce the unwanted
impact of noise on the model is to use the kind of biased estima-
tion that was discussed earlier in this chapter. For example, the
target premiums used to train a neural net or fit a polynomial may
be intentionally biased toward Black-Scholes to the extent that
their error-of-estimate is high. Data points based on large samples
and having little estimation error (like those in Figure 7–4 that
correspond to volatilities less than about 100%) would be biased
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hardly at all; those that derive from small samples (like the ones
in Figure 7–4 associated with volatilities greater than 150%)
would be rather strongly biased in the direction of Black-Scholes.
Although not examined here, this method can be very effective; it
can make the construction of a complex neural pricing model that
does not excessively curve-fit the data feasible.

Another way to construct a model that better describes the
true relationships required for pricing options and that is less
affected by noise is to incorporate prior knowledge directly into
the model. Taken to the limit, this leads to a model based purely
on theory and not trained on, or fitted to, the empirical data at
all. However, it is possible to go halfway, building some prior
knowledge—even if only approximate—into the model, but
allowing room for the model to tweak itself on the market on
which it is to be used. Such models lie in the realm of hybrid
entities. One such model is examined in Study 5.

STUDY 5: PRICING OPTIONS WITH 
A HYBRID NEURAL MODEL

This study examines a hybrid model not unlike the one discussed
earlier in this chapter and diagrammed in Figure 7–2. The hope
is that such a model can provide a good fit to the data with fewer
free parameters, and less sensitivity to noise in the training
facts, than can a straight neural network or multivariate poly-
nomial regression. A reduction in the number of free parameters
is important for more reasons than just to reduce sensitivity to
noise. For one thing, a simpler model leaves more headroom for
additional inputs, like skew and kurtosis, that might improve
pricing accuracy.

The model tested here has exactly the same architecture as
a multilayer perceptron (i.e., an everyday, feed-forward neural
network), except that the usual sigmoidal output neuron has
been replaced with a different kind of neuron—one having some
additional inputs and possessing rather unusual properties.
What is the nature of this special output neuron? It is a
hybridization of a standard neuron with Black-Scholes.

The usual output neuron receives its inputs exclusively
from neurons in the previous layer. These inputs are added
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together. A transfer function (the logistic function is commonly
used) is then applied to the resultant sum in order to obtain a
number that represents the neuron’s output.

By way of contrast, the special hybrid neuron receives two
sets of inputs: one set derives from neurons in the previous layer
exactly as with a standard neuron; the other set comes from the
outside world. The inputs from the outside world are time left,
strike price, stock price, and risk-free interest rate. Inside the
neuron, the inputs from the previous layer are added together
and passed through a logistic transfer function. The output from
the logistic function, however, does not become the output from
the neuron, as it normally does. Instead, the number obtained
from the logistic function is scaled to an appropriate range and
passed to the volatility input of a Black-Scholes subsystem. The
second set of inputs to the special neuron supply the remaining
inputs required by Black-Scholes, which is then used to compute
a theoretical premium. The theoretical premium then becomes
the hybrid neuron’s output.

As a whole, the hybrid neural model, like the hybrid output
neuron, has two sets of inputs. The first set (which goes to the
standard input layer of the model) consists of volatility, together
with any other variables that seem relevant, e.g., skew and kur-
tosis. The second set (which goes directly to the hybrid neuron)
consists of the standard Black-Scholes variables with volatility
omitted.

In the current study, the first set of inputs consisted of esti-
mated future volatility, time left (which was also included in the
second input set), and normalized moneyness (discussed below).
Normalized moneyness was included so that the hybrid entity
could model the effect of general market kurtosis, which increases
the value of out-of-the-money and in-the-money options, espe-
cially at low levels of volatility. Time left was included in the
first set of inputs because future volatility was estimated for one
look-ahead period and no corrections were made to the volatility
estimate for the time remaining before expiration—the inten-
tion was to let the neural component of the hybrid model per-
form any corrections that were necessary.

The inputs in the second set were simply taken from the fact
file (time left, strike) or set to constants (stock price, risk-free
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interest). The target to which the hybrid model was trained was
the terminal option price expectation, also taken directly from
the fact file.

Method

The analysis employed the same fact set used in Study 4. Each
fact in this fact set was comprised of three independent variables
and one target. The independent variables were estimated future
volatility, time left (in bars), and strike. The dependent variable
was the statistical expectation of the terminal price of a call com-
puted from real stock returns for the specified levels of the inde-
pendent variables. There were 12,432 facts in the fact set.

Because of the hybrid output neuron, an off-the-shelf
neural network package could not be used to train the model;
instead, custom software had to be written. The software, com-
prised of a Neural Hybrid Options Model library together with
some glue code, was written in ISO-standard C language.
Employing a form of gradient-descent as the minimization algo-
rithm, this software made it possible to train the model, i.e., to
find connection weights that minimized the sum of the squared
errors over all facts in the fact set.

The inputs to the first layer of the model were estimated
future volatility, time left, and normalized moneyness. The first
two inputs were simply scaled to a mean of zero and a standard
deviation of one, and then passed to the first layer of the neural
component of the model. Such scaling is the default used by
N-Train, the neural network development package employed in
Study 4. The last input to the first layer of the model was

(7.12)

where s was the stock price (always $100), k was the strike price,
v was the estimated future volatility, and t was the time left.
Normalized moneyness M expresses moneyness in standardized
terms, analogous to a z-score in statistics. These first-layer
inputs were considered sufficient for the neural front-end to
determine the “effective” volatility, to compensate for regression

M
s k

v t
=

ln /( )
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to the mean, and to account for distortions in pricing attribut-
able to the long-tailed distribution that characterizes returns
from real stocks.

The additional (beyond those received from the previous
layer) inputs to the special hybrid neuron were time left, strike
price, stock price, and risk-free interest. Time left and strike
price need no discussion; they were taken, unaltered, from each
fact. Stock price and risk-free interest, however, were supplied
internally (by the glue code). Stock price was set to a nominal
$100 and risk-free interest was set to zero percent, consistent
with the assumptions used in preparing the fact set.

The model’s target was the terminal expectation of a call;
it was taken directly from each fact and is the same target used
in Studies 3 and 4.

As with a standard neural network, the developer must spe-
cify the number of input neurons, layers, and other parameters in
the model. This test employed a simple three-layer model that had
three input neurons, 12 active middle-layer neurons, and
one hybrid output neuron. Note the relatively small number of
free parameters (48 = 3 * 12 + 12 * 1) in this model, when
compared to the straight neural network in Study 4 (294 = 3 * 26
+ 26 * 8 + 8 * 1). The gradient multiplier (something like a learn-
ing rate) was set to 0.01 when carrying out the minimization of
the sum of the squared errors.

Once the model architecture and parameters were speci-
fied, training began. Tens of thousands of passes over the fact
set were made in the course of training or optimization, which
was carried out to full convergence.

Results

The correlation between the fully optimized hybrid model’s out-
put and the target was 0.999576, the root-mean-square error
was $0.2387, and the largest absolute error was $1.3807.

Regardless of how measured, error was less for the hybrid
neural model than for the polynomial model, despite the larger
number of free parameters in the latter. In other words, the
hybrid model gave a better overall fit to the data, yet consumed
far fewer degrees of freedom.
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Error figures for the hybrid model were greater than for the
straight neural model. This was expected, given that the basic
neural network had an abundance of free parameters, and that
it scrupulously modeled the noise, along with the true pricing
relationships that existed in the training set. Clearly, the hybrid
model has done a better job of smoothing out or ignoring the
noise; hopefully, not at the expense of failing to accurately cap-
ture the true relationships that determine the worth of an
option.

Table 7–9 shows premiums derived from the hybrid neural
model, Black-Scholes, and actual stock returns, for each of three
combinations of time left and volatility, and over a range of
strikes.

Both the hybrid model and Black-Scholes perform similarly
when time and volatility are at their lowest levels. This is rem-
iniscent of the basic neural model, which also had trouble at the
edges of the input space as it was defined by the fact set. The
largest absolute error for both models was $0.08, the root-mean-
square error was $0.032 for the hybrid model versus $0.033 for
Black-Scholes, and the average absolute error was $0.024 versus
$0.025, respectively. The pattern of errors is also similar for both
models.

For the middle combination of time and volatility, the
hybrid model decisively out-performs Black-Scholes. Black-
Scholes underprices in-the-money options quite severely, while
the hybrid model prices them fairly accurately. At the other end
of the moneyness spectrum, Black-Scholes again undervalues
the options, while the hybrid model overvalues them (but to a
lesser degree). At-the-money options are priced correctly by
Black-Scholes; these options, however, are slightly overpriced by
the hybrid model. The largest absolute error is $0.07 for the
hybrid model versus $0.26 for Black-Scholes; the root-mean-
square error is $0.053 versus $0.151; and the average error is
$0.046 versus $0.130, respectively.

The combination with the highest levels of time and volatil-
ity shown in Table 7–9 has the hybrid model performing only
slightly better than Black-Scholes. Again, this is reminiscent of
the lack of better performance by the basic neural model when
compared to Black-Scholes in Study 4. The largest absolute error
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is $0.12 for the hybrid model versus $0.17 for Black-Scholes; the
root-mean-square error is $0.073 versus $0.088; and the average
error is $0.062 versus $0.076, respectively. The hybrid model
mildly overprices options for strikes near $90 (modestly in-the-
money) and underprices them for strikes greater than $105 (out-
of-the-money). Black-Scholes seriously underprices options at
both extremes of moneyness and overvalues them in the middle.

Table 7–10 presents hybrid neural, Black-Scholes, and
market-derived premiums broken down by strike or moneyness,
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Theoretical Call Premiums Computed with a Hybrid Model,
Black-Scholes, and Conditional Distributions as a Function of
Strike for Three Combinations of Time and Volatility

TIME == 5 TIME == 15 TIME == 15
VLTY == 0.25 VLTY == 0.50 VLTY == 1.00

STRIKE NH BS CD NH BS CD NH BS CD

75.00 25.02 25.00 25.00 25.19 25.03 25.20 26.37 26.23 26.40

77.50 22.51 22.50 22.50 22.76 22.57 22.77 24.26 24.14 24.27

80.00 20.01 20.00 20.01 20.37 20.14 20.37 22.23 22.13 22.23

82.50 17.50 17.50 17.51 18.02 17.77 18.02 20.29 20.21 20.27

85.00 15.00 15.00 15.01 15.74 15.48 15.74 18.45 18.39 18.41

87.50 12.50 12.50 12.52 13.56 13.29 13.54 16.71 16.68 16.66

90.00 10.01 10.00 10.04 11.49 11.24 11.46 15.08 15.07 15.02

92.50 7.52 7.52 7.58 9.57 9.36 9.53 13.55 13.57 13.50

95.00 5.11 5.11 5.19 7.83 7.66 7.77 12.14 12.18 12.09

97.50 2.97 2.98 3.01 6.29 6.16 6.23 10.83 10.89 10.81

100.00 1.43 1.41 1.37 4.97 4.87 4.90 9.64 9.71 9.65

102.50 0.57 0.51 0.53 3.86 3.78 3.80 8.56 8.63 8.59

105.00 0.18 0.14 0.20 2.97 2.88 2.90 7.57 7.65 7.63

107.50 0.04 0.03 0.08 2.26 2.16 2.19 6.69 6.76 6.77

110.00 0.00 0.00 0.04 1.71 1.59 1.64 5.89 5.96 5.99

112.50 0.00 0.00 0.02 1.29 1.15 1.23 5.19 5.24 5.30

115.00 0.00 0.00 0.01 0.98 0.82 0.92 4.56 4.60 4.68

117.50 0.00 0.00 0.01 0.75 0.57 0.69 4.00 4.02 4.12

120.00 0.00 0.00 0.00 0.58 0.40 0.51 3.51 3.51 3.62

122.50 0.00 0.00 0.00 0.46 0.27 0.39 3.08 3.06 3.19

125.00 0.00 0.00 0.00 0.36 0.18 0.30 2.70 2.66 2.80
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T A B L E  7–10

Theoretical Call Premiums Computed with a Hybrid Model,
Black-Scholes, and Conditional Distributions as a Function of
Volatility for Three Strikes

TIME == 10 TIME == 10 TIME == 10
STRIKE == 80 STRIKE == 100 STRIKE == 120

VLTY NH BS CD NH BS CD NH BS CD

0.20 20.09 20.00 20.02 1.72 1.59 1.71 0.00 0.00 0.01

0.25 20.06 20.00 20.02 2.05 1.99 1.98 0.00 0.00 0.02

0.30 20.06 20.00 20.04 2.42 2.38 2.35 0.01 0.00 0.03

0.35 20.07 20.00 20.06 2.81 2.78 2.74 0.04 0.01 0.05

0.40 20.09 20.01 20.09 3.21 3.18 3.15 0.10 0.03 0.10

0.45 20.13 20.02 20.14 3.63 3.58 3.58 0.19 0.08 0.16

0.50 20.18 20.04 20.19 4.05 3.97 3.98 0.30 0.14 0.25

0.55 20.24 20.08 20.28 4.46 4.37 4.39 0.43 0.24 0.38

0.60 20.32 20.13 20.35 4.87 4.77 4.84 0.59 0.36 0.55

0.65 20.40 20.20 20.42 5.27 5.16 5.21 0.76 0.51 0.72

0.70 20.50 20.29 20.51 5.66 5.56 5.58 0.94 0.68 0.89

0.75 20.61 20.40 20.62 6.05 5.96 6.00 1.14 0.88 1.12

0.80 20.72 20.52 20.73 6.43 6.35 6.35 1.35 1.10 1.31

0.85 20.85 20.66 20.86 6.81 6.75 6.71 1.58 1.33 1.50

0.90 20.99 20.82 20.97 7.18 7.15 7.11 1.81 1.58 1.78

0.95 21.13 20.99 21.12 7.54 7.54 7.41 2.04 1.85 1.98

1.00 21.28 21.17 21.27 7.89 7.94 7.85 2.28 2.13 2.32

1.05 21.44 21.37 21.51 8.23 8.33 8.27 2.51 2.42 2.54

1.10 21.62 21.57 21.60 8.57 8.73 8.47 2.75 2.72 2.68

1.15 21.81 21.79 21.82 8.92 9.12 8.96 2.99 3.03 3.05

1.20 22.03 22.01 21.95 9.29 9.52 9.17 3.25 3.35 3.10

1.25 22.26 22.24 22.22 9.68 9.91 9.60 3.53 3.68 3.47

1.30 22.50 22.48 22.46 10.08 10.31 10.04 3.84 4.01 3.81

1.35 22.74 22.73 22.63 10.49 10.70 10.56 4.17 4.35 4.26

1.40 22.95 22.98 22.94 10.86 11.09 10.89 4.50 4.70 4.53

1.45 23.15 23.24 23.17 11.20 11.49 11.28 4.81 5.05 4.88

1.50 23.34 23.51 23.77 11.51 11.88 12.14 5.09 5.40 5.79

1.55 23.54 23.77 24.11 11.80 12.27 12.07 5.35 5.76 5.44

1.60 23.78 24.05 23.42 12.13 12.67 11.49 5.62 6.12 5.14

1.65 24.09 24.32 23.82 12.52 13.06 12.15 5.94 6.49 5.79

1.70 24.49 24.60 24.53 13.01 13.45 13.06 6.34 6.86 6.41

1.75 24.96 24.89 25.41 13.60 13.84 14.41 6.82 7.23 7.27

7743_ch_7.qxd  28/12/04  12:40 PM  Page 325



326 CHAPTER 7

TIME == 10 TIME == 10 TIME == 10
STRIKE == 80 STRIKE == 100 STRIKE == 120

VLTY NH BS CD NH BS CD NH BS CD

1.80 25.39 25.17 25.22 14.14 14.23 14.32 7.28 7.61 7.49

1.85 25.59 25.46 25.29 14.38 14.62 14.44 7.46 7.99 7.71

1.90 25.50 25.76 25.87 14.23 15.01 15.43 7.30 8.37 8.52

1.95 25.56 26.05 25.07 14.32 15.41 14.29 7.39 8.75 7.25

2.00 25.99 26.35 26.07 14.90 15.80 15.37 7.94 9.13 8.06

T A B L E  7–10

(Continued )

as well as by estimated future volatility. At low levels of volatil-
ity (between 30% and 100%), in-the-money calls (strike of $80)
are priced quite accurately by the hybrid model, but are very
significantly underpriced by Black-Scholes. Out-of-the-money
options (strike of $120) are also priced much more accurately by
the hybrid model than by Black-Scholes, which again yields the-
oretical premiums that are well below market-derived values.
The hybrid model and Black-Scholes handle at-the-money calls
(strike of $100) about equally well; at-the-money calls are some-
what overpriced by the hybrid model, while Black-Scholes errs
in both directions.

At high levels of volatility (above 140%), Black-Scholes
overprices calls, regardless of strike, with the greatest error
occurring with out-of-the-money and at-the-money options. The
hybrid model appears to price in-the-money options correctly
and tends to price the at-the-money and out-of-the-money
options below their probable value. Keep in mind when examin-
ing the data in Table 7–10 that, regardless of the model being
evaluated, individual data points exhibit large errors in both
directions due to small samples at high levels of volatility.

Figure 7–5 displays some of the data in Table 7–10 in visu-
al format. In this figure, the square markers represent the tar-
get premiums, the solid line represents the premiums computed
with the hybrid neural model, and the broken line represents
premiums derived from Black-Scholes. The data shown are for
an out-of-the-money call struck at $120.
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As seen in Figure 7–5, Black-Scholes premiums fall below
probable true value when estimated future volatility is less than
110% and above probable true value when volatility is greater
than 110%. The hybrid model can be seen to do a much better
job of estimating the true fair premium as reflected in the over-
all trend of the data points.

The astute observer will note, however, that Delta is not
monotonic with respect to volatility for the hybrid model. This is
revealed by the fact that the slope of the solid line does not
always either increase or remain the same with increasing
volatility; at some levels of volatility, the slope decreases. Given
a monotonic relationship, the line should be gently turning
counterclockwise, increasing its rate of ascent, or continuing on
a straight path; it should never be turning clockwise, even
slightly. Monotonicity of Delta (the first derivative of premium
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with respect to volatility) is clearly lost near the hook that
appears close to the upper-right corner of the chart.

The neural network in Study 4 also described a relationship
between fair value and volatility that became nonmonotonic in
Delta near the hook. In that case, not only was monotonicity lost
for Delta; it was also lost for the theoretical premium itself. The
neural network had simply curve-fit the hook, a probable sam-
pling artifact, as well as any more significant relationship pres-
ent in the fact set. At least with the hybrid model, the noise
appears to have been less aggressively curve-fit.

Why has the issue of monotonicity in the derivative (Delta)
been raised? Because the true relationship between fair premium
and volatility probably involves a Delta that is monotonic with
respect to volatility. The slight “bend” in the solid line near the
hook, therefore, represents model error—whether due to over-
fitting or to other factors. If such conditions as monotonicity of
Delta could somehow be included in a hybrid model as prior
knowledge, then better results could no doubt be achieved.
The problem, of course, is how to minimize the sum of the squared
errors subject to such constraints in an efficient manner; a genetic
algorithm could do the job, but it would take a very long time to
converge to the extent necessary to solve the option pricing prob-
lem. Nevertheless, this is something to explore down the road.

Discussion

Overall, the hybrid neural model performed fairly well, espe-
cially considering how much more miserly it was in its consump-
tion of degrees of freedom when compared to either the
polynomial regression or basic neural network tested in Studies
3 and 4, respectively.

Although the model examined here was far from perfect,
hybrid neural technology represents an interesting approach
that, with further effort, can almost certainly be made to yield
more accurate option appraisals.

SUMMARY

This chapter examined the application of such nonlinear model-
ing technologies as neural networks and polynomial regressions
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to the problem of pricing options. It was demonstrated that
models based on such technologies could be trained to emulate
Black-Scholes. Not only could these models emulate Black-Scholes,
they could also do significantly better than Black-Scholes when
properly trained on real-market data.

Only the standard inputs (volatility, time, strike price,
stock price, and interest rate) were used in the models investi-
gated in this chapter; additional inputs, like skew and kurtosis,
were not considered or incorporated into the models. It was first
necessary to discover whether models based on the nonlinear
technologies of concern would perform adequately in the simpler
case and manage to account for the general characteristics of
real stock prices, like the long-tailed distribution of returns.
It has been clearly shown that nonlinear models indeed can be
fit to data derived from actual stock prices and can outperform
Black-Scholes on such data. The implication is that, once the
details are fully worked out, models of the kind studied in this
chapter can be extended to encompass additional input vari-
ables without great difficulty.

The different approaches studied were shown to have
unique strengths and weaknesses, faults and virtues. First, con-
sider polynomial models. Polynomial regression modeling has
many strengths and virtues. A polynomial regression is simple,
fast to compute, and easy to understand. In addition, this
approach produces excellent results both when emulating
Black-Scholes and when modeling real-market data. With real-
market data, a model based on polynomial regression can appa-
rently capture the true pricing relationships buried in noisy facts
better than either a basic neural model or a hybrid one; there
is less evidence of undesirable curve-fitting and of violations of
reasonable monotonicity requirements. The major weakness of
polynomial regression as a modeling technique is the problem
of combinatorial explosion: the tendency for the number of free
parameters (regression coefficients) to grow in proportion to the
number of inputs taken to a power equal to the order of the poly-
nomial required for a good fit to the data.

Neural networks also have their virtues. Like polynomial
models, they can accurately mimic Black-Scholes and capture
pricing relationships in empirical data. They appear better than
polynomial models at coping with large numbers of inputs
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without requiring an astronomical number of free parameters to
obtain a reasonably tight fit to the data. On the negative side,
neural networks are slow to train (even on fast computers) and,
more importantly, they are prone to localized over-fitting. The
neural network developed in Study 4 demonstrated localized
over-fitting when it modeled a sampling artifact in the data—
the hook in the upper-right corner of Figure 7–4—almost as well
as it modeled the sought-after pricing relationships. Finally,
regardless of the number of inputs, the number of free param-
eters (connection weights) in a neural model that are necessary
to get a good fit to the data is likely to be large.

Lastly, there are the hybrid models. The great strength of a
well-designed hybrid model is that a good fit to the data can be
achieved with a relatively small number of free parameters; this
means the consumption of fewer degrees of freedom and the
reduction in the likelihood of unwanted curve-fitting. Well-
designed hybrid models that incorporate valid knowledge
regarding a domain are also likely to be more robust than are
more general nonlinear models. As with basic neural networks,
training a hybrid model requires a massive amount of computa-
tion and is a time-consuming process. The hybrid model devel-
oped in Study 5 exemplifies some of the strengths and
weaknesses of such models. Compared to the 294 degrees of
freedom consumed by the basic neural model of Study 4 or the
160 degrees of freedom consumed by the polynomial regression
in Study 3, only 48 degrees of freedom were required for the
hybrid model to achieve roughly the same level of performance.
Over-fitting was substantially less of a problem with the hybrid
model than with the basic neural model. Surprisingly, localized
over-fitting appeared to be more of a problem with the hybrid
model than with the polynomial regression, despite the latter
having twice the number of free parameters. Like the basic neu-
ral model, the hybrid model was slow to train. In addition, it
required customized mathematical programming.

Overall, of the three models developed in this chapter, the
current preference is for the polynomial regression. The polyno-
mial regression model provided a reasonably good fit to the
data, did not appear to curve-fit local features (such as the hook
seen in Figures 7–3 through 7–5), and satisfied various mono-
tonicity constraints.
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The neural approach, basic or hybridized, needs further
exploration, with an eye towards controlling excessive curve-
fitting and achieving the kinds of monotonicity that probably
characterize the true pricing relationships being sought, without
seriously compromising the good fit to the data or the graceful
handling of many inputs that are the strengths of the method.
To this end, studies need to be done of regularization and biased
estimation with neural-type models; except for the implicit bias
in the hybrid model, no such studies appear in this book because
of limitations of time and space. Additional avenues of research
include polynomial hybrids, and training or fitting algorithms
that allow specification of such things as monotonicity con-
straints. More efficient training algorithms would also be highly
desirable and would make research in this area easier and faster
to accomplish.

Although still in a development and research stage in the
context of option pricing applications, nonlinear modeling tech-
nologies have been shown to hold great promise as tools for
developing advanced pricing models and are worth exploring in
greater depth.

SUGGESTED READING

Two classic texts on the subject of linear regression are
Introduction to Linear Regression Analysis (Montgomery and
Peck, 1982) and Classical and Modern Regression with
Applications (Myers, 1986). These well-written texts cover the
basic theory of linear regression (in both univariate and multi-
variate forms) and discuss a variety of issues involved in its use,
including the problem and diagnosis of collinearity. Polynomial
and nonlinear regression models are covered in Nonlinear
Regression Analysis and Its Applications (Bates and Watts,
1988) and in Estimation with Applications to Tracking and
Navigation (Bar-Shalom et al., 2001). A discussion of neural net-
works and some of the important issues (such as curve-fitting
and degrees of freedom) that must be addressed before they can
be used effectively appears in Virtual Trading (Lederman and
Klein eds., 1995). A general overview of neural network theory
can be found in Advanced Methods in Neural Computing
(Wasserman, 1993). The use of neural networks for noise
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reduction and pattern detection in time series data—remember,
volatility and stock prices are time series—are discussed in
Neural, Novel and Hybrid Algorithms for Time Series Prediction
(Masters, 1995) and in Neural Networks for RF and Microwave
Design (Zhang and Gupta, 2000). Finally, The Nature of
Mathematical Modeling (Gershanfeld, 1998) covers problems of
regularization and of nonlinear model-building generally.
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In the context of option pricing, volatility is unquestionably
the variable most deserving of in-depth study. First, it is a
variable that has a major influence on the worth of options.
Second, the critical volatility is that which occurs in the future,
not that which has occurred in the past. Third, volatility is thus
problematic and must be estimated or predicted; it cannot be
easily evaluated or merely specified, as can the other well-
known variables that are important determinants of an option’s
value.

This chapter continues the exploration of volatility in the
spirit of the earlier one (Chapter 5) on that subject. It presents
studies designed to answer questions raised in the course of
preparing Chapters 6 and 7, as well as to break entirely new
ground. Among the subjects explored in this chapter are the
influence of historical kurtosis and skew on future volatility, the
usefulness of technical indicators (such as moving averages and
oscillators) in the prediction of volatility, as well as the relation-
ship of predicted volatility to implied volatility and, therefore, to
actual option prices. The results of these studies should be use-
ful to anyone who needs to price options, regardless of the
particular pricing model employed.
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DATA AND SOFTWARE

The data used in the studies that follow came from the Worden
Brothers TC-2000 database (www.worden.com) and from zipfiles
downloaded from www.stricknet.com. The data were cleaned
and saved in two binary databases in a compressed format
designed for speed and convenience. The first of the two binary
databases contained the stock data; the second contained the
options data. A third binary database was also constructed; it
contained implied volatility and open interest figures for both
puts and calls calculated from the options data in the second
binary database. Full details concerning the extraction, cleanup,
and formatting of the raw data, as well as the calculation of
implied volatilities, can be found in Chapters 4 and 5.

The software used to prepare the databases and to analyze
the data was custom written in ISO-standard C, compatible
with the GNU, Symantec, and other standards-compliant C/C++
compilers. Visualization and preparation of the results for pre-
sentation were carried out in a Microsoft Excel spreadsheet.

STUDY 1: VOLATILITY AND HISTORICAL
KURTOSIS

When studying conditional distributions, fair value was found to
vary significantly with historical kurtosis. More specifically, posi-
tive kurtosis was associated with increased value for all options
(puts and calls, all levels of moneyness) at lower levels of volatil-
ity, and with decreased value for options on stocks having higher
levels of volatility. Was the effect of historical kurtosis on fair pre-
mium mediated exclusively by differences in the shape of the dis-
tribution of future stock returns, or was the effect at least partly
due to an influence exerted by historical kurtosis on future volatil-
ity? Is historical kurtosis a useful input to a model designed to
estimate future volatility, the kind of volatility crucial for pricing
options? The current study attempts to answer such questions.

Method

The data were analyzed both by bin statistics and by a second-
order bivariate polynomial regression.
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First, a stock was chosen from the 2,246 stocks available.
The stock’s data were retrieved from the database. Data series
for 30-bar standard historical volatility, 100-bar historical kurto-
sis (based on 100 successive 1-bar returns), and 10-bar standard
future volatility, were calculated using vectorized procedures.
Then, a valid reference bar was selected from the 1,834 bars
available for every stock. A reference bar was considered valid if
(1) the stock was active (alive) over the preceding 100 bars and
following 10 bars, and (2) the stock had no original (not split-
corrected) price less than $2 over the past 30 bars.

Two array indices were then calculated. The first index (the
row index) was calculated from volatility as

ix1 == (int)floor(0.5 ++ (nlvx−−1)*(x1−−bvxmn)/(bvxmx−−bvxmn))

where nlvx was the number of levels or bins into which volatil-
ity was to be categorized for purposes of analysis, x1 was the
historical volatility at the reference bar, bvxmn was the center of
the lowest volatility category, and bvxmx was the center of the
highest volatility category. The second index (the column index)
was calculated as

ix2 == (int)floor(0.5 ++ (nlad−−1)*(x2−−badmn)/(badmx−−badmn))

where nlad was the number of levels into which kurtosis was to
be categorized, x2 was the historical kurtosis at the reference
bar, badmn was the center of the lowest kurtosis category or
level, and badmx was the center of the highest bin or level.

In calculating the first index (ix1), nlvx was 37, bvxmn
was 0.20, and bvxmx was 2.00. The volatility levels correspond-
ing to the centers of the bins, therefore, ranged from 20% to
200%, in increments of 5%. In the formula for the second index
(ix2), nlad was 6, badmn was −1.5, and badmx was 9.0, which
implied kurtosis categories centered at −1.5, 0.6, 2.7, 4.8, 6.9,
and 9.0. Although not symmetric with respect to zero, the kur-
tosis categories encompass the vast majority of observed kurto-
sis figures; the asymmetry simply reflects the fact that kurtosis
in stock returns is, on average, strongly positive.

The two indices were used to address elements in three
arrays. In the first array, the value of the element referenced
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was incremented by 1; this array accumulated the bin or event
counts. The future volatility at the reference bar was added to
the value of the referenced element in the second array. In the
third array, the squared future volatility was added to the ele-
ment addressed by the index pair. The latter two arrays accu-
mulated the data required to compute the bin statistics (the
means and standard deviations of future volatility for each com-
bination of historical volatility and historical kurtosis).

Next, data for the polynomial regression were passed to a
regression object to be accumulated so that a regression could
later be computed. There were six items passed to the regression
object: (1) the intercept variable, which was just the constant 1;
(2) the historical volatility at the reference bar; (3) the historical
kurtosis; (4) the cross-product of volatility with kurtosis; (5) the
square of volatility; and (6) the square of kurtosis. With a second-
order polynomial regression calculated using double precision
arithmetic, there was no need to use Chebyshev Polynomials, or
even to center and normalize the data variables.

The accumulation of data required for computing the bin
statistics and the polynomial regression only took place when
historical volatility and historical kurtosis were within specified
ranges; specifically, the ranges set by the bins or categories
defined earlier.

At this point, the next valid reference bar was selected.
When all valid reference bars for the chosen stock had been ana-
lyzed, another stock was chosen, its data retrieved from the
database, and the sequence repeated. This continued until all
stocks and reference bars had been processed.

The bin statistics and the regression results were then
determined. Bin statistics were computed from the sums accu-
mulated in the three arrays. The regression weights and related
statistics were computed from data accumulated inside the
regression object. Bin statistics consisted of the bin count, the
mean of future volatility, and the standard deviation of future
volatility. These three statistics were available for each possible
combination of discretized historical volatility and kurtosis. In
instances where the bin count was less than eight, all three sta-
tistics were given a value of zero. Regression statistics included the
regression weights, the variance inflation factors, the t-statistics
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for the regressors, the multiple correlation (both raw and cor-
rected for shrinkage), and more. Both the bin statistics and
regression results were written to a standard text file and then
loaded into an Excel spreadsheet for further analysis, charting,
and presentation.

Results

There was a total of 2,932,525 cases or data points in the 
sample. A histogram of the marginal frequency distribution of
standard 30-bar historical volatility is presented in Figure 8–1.

In many places throughout this work, reference was made
to the greater estimation error or noise caused by smaller sam-
ples (fewer data points) at higher levels of volatility. Charts like
the one in Figure 8–1 were the basis for these references. The
greatest number of data points fall in the bin centered at a
volatility of 35%; as volatility levels rise above or fall below 35%
(the mode), the number of data points in any bin (from which
future volatility or any other variable may be estimated) steadily
declines. Based on the data used in the current study, standard
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30-bar historical volatility has a mean of 52.6% and a standard
deviation of 27.3%.

Some statisticians might argue that a variable with a
skewed distribution like that of historical volatility should be
transformed to improve its statistical properties. A log trans-
form would, indeed, bring the observed distribution closer to
normal. However, although this might improve certain statis-
tical properties of historical volatility, it would also introduce
serious distortion when the goal is to estimate the expectation
of future volatility. Why? Option premium, P(v), is roughly lin-
ear in its relationship to volatility, v, for at-the-money options,
and approaches rough linearity for other options as volatility
grows sufficiently large; in other words, for at-the-money
options, and for other options as volatility grows large, fair value
expressed as E(P(v)) is approximately equal to P(E(v)). However,
exp(E(ln(v))) does not equal E(exp(ln(v))), which is nothing more
than E(v), and so P(exp(E(ln(v)))) does not necessarily approxi-
mate P(E(v)) or E(P(v)), even when high volatility levels or
at-the-money options are involved.

The marginal frequencies for kurtosis were (in thousands)
59, 1,714, 734, 249, 111, and 63, for categories centered at −1.5,
0.6, 2.7, 4.8, 6.9, and 9.0, respectively. No separate frequency dis-
tributions were determined for future volatility, except those
that appear in Table 8–1. Future volatility had a mean of 51.2%
and a standard deviation of 34.1%. The standard deviation was
larger for future volatility than for historical volatility because
the future measure was based on a smaller number of bars (10)
than the historical measure (30) and, therefore, contained more
noise variance.

The regression yielded a multiple correlation of 0.598
between predicted and measured future volatility; the root-
mean-square error was 0.273. In this context, the root-mean-
square error is a better measure since some of the predictor
variables explored in this chapter selectively restrict the sam-
ple, thereby altering the sample standard deviation and, conse-
quently, the sample correlation; the root-mean-square error,
however, continues to measure what is of interest: how well, in
some absolute and comparable sense, the given predictor variable
estimates future volatility.
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The regression weights (and associated t-statistics) were
0.02946 (43.3) for the intercept, 1.05765 (522.3) for historical
volatility, −0.10832 (−122.5) for its square, 0.00910 (37.6) for 
historical kurtosis, 0.00050 (17.8) for its square, and −0.03348 
(−123.9) for the cross-product or interaction term.

Although all terms in the regression were astronomically
significant when considered in a statistical sense (thanks to a sam-
ple consisting of almost three million data points), in a practical
sense the most important terms in the regression were the two
powers (first and second) of historical volatility and the interac-
tion term. The first two terms defined a relationship in which
future volatility, the dependent variable, increased at a deaccel-
erating rate with historical volatility—the so-called “capping
effect” described in Chapter 5. The interaction term defined a
relationship in which kurtosis had a lowering effect on volatility
in the future to the extent that historical volatility was high.

Figure 8–2 shows the mean observed future volatility asso-
ciated with each combination of historical volatility and kurtosis.
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Each curve in Figure 8–2 represents the relationship between
kurtosis and expected (mean) future volatility for a particular
level of historical volatility. Curves that correspond to low levels
of historical volatility appear at or near the bottom of the figure,
while those that correspond to high levels appear near the top.
A legend has been placed alongside the chart as an aid to the
reader in identifying the volatility level to which each curve
corresponds.

As is fairly evident in Figure 8–2, up to an historical vola-
tility level of 35%, future volatility tended to increase with
increasing kurtosis. With few exceptions, future volatility
decreased with increasing kurtosis at historical volatility levels
above 45%. The exceptions resulted from estimation error, espe-
cially evident at higher levels of volatility. Estimation errors,
i.e., noise, caused the curves near the top of the figure to be more
irregular than those near the bottom.

Discussion

The results suggest that historical kurtosis does have an effect
on future volatility and, therefore, that it can be useful as an
input to an option pricing or volatility model. Some of the effect
kurtosis has on option value, as assessed by the conditional dis-
tribution methodology in Chapter 6, may be a result of its influ-
ence on future volatility and not merely on the shape of the
distribution of returns. Specifically, for options trading on stocks
having high levels of historical volatility, the reduction in the
fair premiums observed with high levels of kurtosis may be
explained in terms of the impact of kurtosis on future volatility.
The greater premiums observed for both out-of-the money and
in-the-money options at lower levels of historical volatility, how-
ever, cannot be fully explained in such terms; they must be
explained on the basis of the shape (independent of volatility) of
the future distribution of returns.

How significant, in a practical sense, is the influence of his-
torical kurtosis on future volatility? Take a stock with an his-
torical volatility of 100%. Given an historical kurtosis of −1.5,
the expected future volatility of the stock is near 94%; it is near
73% when historical kurtosis is 9.0. Is the difference of practical

340 CHAPTER 8

7744_ch_8.qxd  28/12/04  12:53 PM  Page 340



importance? Most options traders would think so. Moreover, the
effect becomes stronger at higher levels of historical volatility.

With historical volatility held constant, why should higher
historical kurtosis be followed by lower future volatility? One
possible explanation is that, for any given stock, periods of
exceptional volatility (such as around earnings surprises) are
marked by higher levels of kurtosis than are periods of more
normal volatility. High kurtosis would then be an indicator of
unusual volatility of a kind likely to return to normal in the
near future (for instance, once the earnings data have been
widely disseminated); it would act as a signal that mean rever-
sion would be exaggerated in the near future.

STUDY 2: VOLATILITY AND HISTORICAL
SKEW

Like kurtosis, skew was found to affect fair premium (see
Chapter 6). At high levels of volatility, positive skew was associ-
ated with higher fair premiums for out-of-the-money calls than
was negative skew. This study attempts to determine whether
historical skew affects future volatility and, if it does, whether
its effect on volatility could be responsible for the observed influ-
ence on fair premium.

Method

The analysis involved the same basic steps as in the previous
study. It differed primarily in the variable used as the second
predictor: historical kurtosis in the previous investigation and
historical skew in the current one. The change in the second pre-
dictor variable required a change in the scaling parameters
(badmn and badmx) used when calculating the second array
index (ix2). In the current study, badmn was set to −3.5 and
badmx was set to 3.5; the values were chosen after examining
the frequency histogram associated with historical skew. The
bin centers for skew were, therefore, at −3.5, −2.1, −0.7, 0.7, 2.1,
and 3.5; the marginal frequencies corresponding to the bins cen-
tered at those values were 39,651, 107,131, 1,053,800,
1,776,124, 94,129, and 10,507, respectively.
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Results

A total of 3,081,342 cases were analyzed. This deviates slightly
from the 2,932,525 cases analyzed previously as a result of dif-
ferences in the number of cases in which the second predictor fell
outside the specified range, i.e., the range covered by the bins.

The regression model yielded a multiple correlation of
0.585 between estimated and actual future volatility; the root-
mean-square error was 0.278. The regression weights and the
t-statistics (in parentheses) were 0.04551 (72.0) for the inter-
cept, 1.03994 (534.4) for historical volatility, −0.22565 (−176.9)
for its second power, −0.01104 (−28.0) for historical skew, −0.006
(−62.4) for its second power, and 0.02818 (51.0) for the cross-
product of historical volatility and historical skew (the interac-
tion term).

A visual comparison was made between the actual levels of
future volatility and the estimates generated by the regression
when plotted as a function of historical volatility and historical
skew. The comparison indicated that a second-order polynomial
regression was inadequate to provide a good fit to the data.

The data derived from the bin statistics, which appear in
Figure 8–3, were unaffected by the regression and, therefore, cor-
rectly reflect the true relationships between the three variables.
In Figure 8–3, historical skew is represented by the x-axis and
future volatility by the y-axis. Each curve in the figure corre-
sponds to a given level of historical volatility, ranging from 0.20
(20%) to 1.80 (180%), in increments of 0.05 (5%). The curves
appear mostly in order of historical volatility (when observed
near the midpoint of historical skew), from 20% at the bottom to
180% near the top. A legend is provided in the figure to aid in
the identification of curves that fall close together.

For historical volatility levels below 40%, the curves trace
out a smile-like shape: future volatility was at a minimum
when historical skew was just below zero and rose as historical
skew moved away from this point in either direction. Histor-
ical skew had little effect on future volatility when historical
volatility levels were between 45% and 60%. Above 60% histor-
ical volatility, the curves tend to trace out an inverted smile:
future volatility reached its peak when historical skew was
slightly positive, and rapidly declined as skew deviated in either
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direction. The sharpness of the peak and the extent of the
decline became more pronounced as higher levels of historical
volatility were reached. As usual, the curves are less smooth,
revealing greater noise and more estimation error, at higher
levels of historical volatility.

Figure 8–4 shows the influence of historical measures of
skew and volatility on future volatility from another perspec-
tive. In this figure, historical volatility appears on the x-axis,
while different levels of historical skew are represented by dis-
tinct curves. Only four skew categories are shown; more than
that would lead to a lack of clarity in the figure. A legend is pro-
vided for identification of the curves.

The uppermost curve (dotted line) is for a historical skew of
0.70, and depicts the strongest (and most linear) positive rela-
tionship between future and historical volatility. The weakest
and most nonlinear—or “capped”—relationship between future
and historical volatility was observed with a skew of −2.10; it is
described by the lowermost curve (solid line). As well as in the
relationships they describe, the curves also vary in noise. The
variation in noise level resulted from a variation in the number
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of cases in the different bins. When skew was 0.70, there were
many more cases at all levels of volatility than there were when
skew was −2.10; this resulted in smoother curves and less noise
in the former instance and more ragged, noisier curves in 
the latter.

Discussion

Does historical skew have a meaningful influence on future
volatility? If it does, is the influence strong enough to be of prac-
tical relevance to the trader or hedger? Should historical skew
be included in a volatility estimation model? The answer to all
three questions is “yes.”

Historical skew has an easily measurable influence on
future volatility. The influence is not merely of academic inter-
est, but is sizable enough to have practical, bottom-line rele-
vance. Consider a stock with an historical volatility of 100%.
With an historical skew that falls in the bin centered at 0.70, the
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expected future volatility is 87.8%. Compare this to expected
future volatilities of 71.1% or 70.5% for historical skews that fall
in the bins centered at −3.5 or 3.5, respectively. Moreover, the
effect of historical skew on future volatility becomes even more
pronounced at higher historical volatility levels. There is no
question that historical skew should be included in a volatility
forecasting model.

Another question asked at the beginning of this study
was whether the influence of historical skew on future volatil-
ity could account for the differences in premium found in
Chapter 6 using the conditional distribution methodology. That
method of estimating fair premium automatically corrects for
volatility errors and distributional shape and thus provides
accurate estimates of fair value; however, it does not reveal how
that fair value is causally determined—i.e., whether shape is
the only relevant element or whether volatility is a mediating
variable.

The results obtained in this study suggest that the effect of
historical skew on fair premium found in Chapter 6 cannot be
explained in terms of the influence of historical skew on future
volatility. The influence of skew on future volatility appears to
be roughly symmetric, with both positive and negative skew
being associated with reduced volatility in the near future. If
volatility was the mediating variable (rather than the shape of
the distribution of returns), then option premiums should be
about the same for both positive and negative historical skew
and reduced when compared to zero-skew premiums. However,
positive skew is associated with larger premiums (especially for
calls) at high levels of volatility.

STUDY 3: STOCHASTIC OSCILLATOR 
AND VOLATILITY

In this study, Lane’s Stochastic is examined. The stochastic oscil-
lator is a so-called “overbought/oversold indicator” that is popu-
lar with directional traders and technical analysts. It basically
locates where, in the range of recent prices, the current price
resides. One way the stochastic oscillator is used is to consider a
crossing from oversold to neutral territory as a signal to enter 
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a long position in the stock or future, and a crossing from over-
bought to neutral territory as a signal to enter a short position.
Traditionally, oversold conditions are indicated by oscillator 
values below 20%, while overbought conditions are marked by
oscillator values that exceed 80%. Another way to use the
stochastic oscillator is to look for divergence between the
oscillator and prices. When the oscillator makes a higher low
despite prices tracing out a lower low, a reversal of price trend
is anticipated and a long position might be established.
Likewise, when the oscillator forms a lower high as the stock or
future makes a higher high, a short position might be estab-
lished to profit from the anticipated reversal of trend. A detailed
investigation of Lane’s Stochastic appears in The Encyclopedia
of Trading Strategies (Katz and McCormick, 2000); the results of
that study suggest that, if used in one of the aforementioned
ways, the stochastic oscillator will not provide a happy trading
experience.

The fact that an indicator is of little value for directional
trading does not imply an equal lack of value when trading or
forecasting volatility; indeed, Study 6 of Chapter 6 hints at the
possible value of the stochastic oscillator in the latter applica-
tion. It was found that a crossover of the stochastic oscillator
from below to above 20% was associated with higher fair premi-
ums, especially for put options; a crossover from above to below
80% was associated with lower fair premiums. Perhaps the dif-
ferences in fair premiums associated with the two crossover 
patterns is mediated by volatility—if not fully, at least partially—
implying an association between that variable and oscillator
behavior. It is the relationship between the behavior of the 
stochastic oscillator and future volatility that is investigated in
the current study.

Method

The present study, unlike the previous two, encompasses two
separate, but related, analyses. The first analysis began, as
usual, with the choice of a stock from the 2,246 available in the
database. Data series were then retrieved for the chosen stock.
Historical volatility (standard, 30-bar), future volatility (standard,
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10-bar), and the stochastic oscillator were computed for all 1,834
bars from these series using fast, vectorized routines. The sto-
chastic oscillator used in the study was the slow stochastic (also
referred to as Slow D%) with a period of 14 bars for the oscilla-
tor look-back and 9 bars for the moving average.

Next, a valid reference bar was selected. To be valid, a
reference bar was required to satisfy three conditions: (1) there
had to be a sufficient number of bars before the reference
to have valid figures for historical volatility and for the oscil-
lator, (2) there had to be a sufficient number of bars after the
reference to have a valid figure for future volatility; and
(3) the stock had to have an unadjusted (for splits) price greater
than $2 on each of the 30 bars immediately preceding the
reference.

A determination was then made as to the direction in which
the oscillator was moving. If the oscillator was on its way up, as
evidenced by its value on the reference bar exceeding its value
on the previous bar, then two array indices were computed; other-
wise, they were not.

The first array index (the row index) was calculated as

ix1 == (int)floor(0.5 ++ (nlvx−−1)*(x1−−bvxmn)/(bvxmx−−bvxmn))

where nlvx was 37, x1 was the historical volatility, bvxmn was
0.20, and bvxmx was 2.00. The row index (ix1) took on a value
of 0 for an historical volatility that fell in a bin centered at 0.20
(20%), a value of 1 for a volatility that fell in a bin centered at
0.25, all the way up to a value of 36 for an historical volatility
that fell in a bin centered at 2.00 (200%); this is exactly as in the
previous two studies.

The second array index (the column index) was calculated as

ix2 == (int)floor(0.5 ++ (nlad−−1)*(x2−−badmn)/(badmx−−badmn))

where nlad was 8.0, x2 was the value of the slow stochastic at
the reference bar, badmn was 0.20, and badmx was 0.80. This
index (ix2) took on values of 0, 1, ...7 for slow stochastic figures
that fell in bins centered at 0.200, 0.286, ... 0.800, respectively.

If both indices were computed, and both were within their
specified ranges, bin statistics were accumulated in three arrays
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and regression statistics were accumulated in a regression object,
exactly as in the previous two studies.

At this point, the next valid reference bar was selected and
all steps described above were again performed. When no more
reference bars were left for the given stock, another stock was
chosen and the entire process repeated. This continued until all
bars of all stocks had been analyzed.

The accumulated data were then transformed into usable
results. From the accumulated bin data, the mean future volatil-
ity was determined for each indexed combination of historical
volatility and slow stochastic reading. From the data accumu-
lated in the regression object, regression statistics (including
weights and t-statistics) were calculated. The results were writ-
ten to ordinary text files, which were then loaded into an Excel
spreadsheet. Spreadsheet programs like Excel are useful when
there is a need to view data in graphical form.

The second analysis was carried out in exactly the same
way except for one minor change: rather than computing the
array indices and accumulating the statistics only when the 
stochastic oscillator was on its way up, the indices were comput-
ed and statistics accumulated only when the oscillator was
going down.

Results

There were 1,407,176 data points associated with a rising slow
stochastic and 1,426,966 data points associated with a falling
slow stochastic. The sum of these numbers was 2,834,142,
approximately the number of cases analyzed in each of the pre-
vious studies.

The regression for the rising slow stochastic yielded a
multiple correlation of 0.590 and a root-mean-square error of
0.271. The regression weights were 0.12522, 1.11611, −0.25686,
−0.32440, 0.25238, and −0.13321. The t-statistics associated
with these weights were 55.0, 312.7, −148.2, −43.5, 37.4, and 
−32.9. The independent variables to which these statistics
corresponded were the intercept, historical volatility, its
square, the slow stochastic value, its square, and the cross-
product term.
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For the falling slow stochastic, the polynomial regression
produced a multiple correlation of 0.588 and a root-mean-square
error of 0.282. The regression weights were 0.12695, 1.17613,
−0.25993, −0.32854, 0.26164, and −0.19597. The corresponding 
t-statistics were 58.7, 324.0, −139.7, −44.2, 37.5, and −45.3. The
variables to which these numbers corresponded were again the
intercept, historical volatility, its second power, the slow sto-
chastic, its second power, and the interaction term.

The regression weights and t-statistics were similar across
both regressions. Judging by the t-statistics, historical volatility
and its square are the most important variables in the model.
The slow stochastic, its square, and the cross-product term,
also contribute significantly to the model, albeit to a lesser
degree.

Figure 8–5 shows expected future volatility ( y-axis) plotted
as a function of the level of the rising slow stochastic (x-axis)
and the historical volatility (the 33 curves). The data shown in
the figure were derived from the bin statistics.

As is clearly visible in Figure 8–5, the higher the level of the
rising slow stochastic, the lower the expected future volatility.
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For any level of historical volatility, expected future volatility is
highest at the leftmost edge of the chart, which corresponds to a
stochastic of 20%. Expected future volatility initially descends
at a rapid pace. The rate slows as the stochastic approaches
45%, but the decline continues all the way to the rightmost edge
of Figure 8–5, at a stochastic level of 80%. The same pattern
seems to exist at all levels of historical volatility, although the
true underlying relationship is obscured by noise when volatil-
ity is at its highest levels, as represented by the curves that
appear near the top of the chart.

Figure 8–6 is similar to Figure 8–5, except that it was based
on the bin statistics for the falling slow stochastic, rather than
for the rising one.

Essentially the same relationship appears to exist between
expected future volatility and the level of the falling slow sto-
chastic as was observed between expected future volatility and
the level of the rising slow stochastic. Except where noise
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intrudes at the highest levels of historical volatility, expected
future volatility is greatest when the falling slow stochastic is at
20%, declines rapidly as the slow stochastic approaches 45%,
and continues to descend at a slower rate all the way to a falling
slow stochastic of 80%.

The most important difference between the rising and
falling stochastic is that the mean future volatility tends to be
larger for the falling stochastic than for the rising stochastic at
all levels of historical volatility. For example, at an historical
volatility of 30%, a rising stochastic at the 0.20 level is associ-
ated with an expected future volatility of 37.4%, while a falling
stochastic is associated with a mean future volatility of 38.7%;
the corresponding figures for the rising and falling stochastics
at the 0.80 level are 30.8% and 31.5%, respectively. When his-
torical volatility is 100%, rising and falling stochastics at 0.20
are associated with future volatilities of 91.0% and 94.7%,
respectively; rising and falling stochastics at the 0.80 level are
associated with mean future volatilities of 77.0% and 78.5%.

One possible explanation for the higher expected future
volatility observed with the falling stochastic has to do with
price momentum or trend follow-through. Perhaps the down-
ward spiraling stock prices that lie behind a falling stochastic
have momentum, continue in their downward motion, and
result in lower stochastic oscillator levels in the bars immedi-
ately following the reference. Lower stochastic levels are associ-
ated with higher levels of expected volatility, thus accounting for
the higher future volatility levels seen with the falling stochas-
tic. A similar argument works for explaining the association of
lower expected future volatility with a rising stochastic.

Discussion

When it comes to the estimation of future volatility, where the sto-
chastic oscillator, a popular technical indicator, is coming from, and
where it is, clearly has relevance. Imagine a stock with an histor-
ical volatility of 120%—a volatile tech stock, perhaps. Further
imagine that the slow stochastic has just crossed the traditional
20% threshold, going from a reading of 17% on the previous bar
to 21% on the current bar. Given this information, it could be
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concluded that the expected future volatility is about 104%. On the
other hand, if the slow stochastic has just dropped below the tra-
ditional 80% threshold, landing at 71%, a future volatility of only
92% would be anticipated. Notice how both future volatility levels
(104% and 92%) are well below the commonly used historical
measurement (130%), and how the future volatility associated
with the previously overbought stochastic (92%) is lower than that
associated with the previously oversold stochastic (104%).
Needless-to-say, technical analysts who trade options may find
their indicators more useful than they previously thought.

What could be responsible for the higher future volatility lev-
els observed with lower readings on the stochastic oscillator?
Stochastic readings are usually high when a stock’s prices are ris-
ing and near the top of their recent range; readings are low when
prices are falling and near the bottom of their range. Trading lore
suggests that falling prices and bottoms are usually marked by
volatility, while steadily rising prices are often associated with
quieter times in the market. If trading lore is correct, higher future
volatility when stochastic readings are low, and vice versa, makes
perfect sense. Naturally, this is only one—and not necessarily the
best—of many possible explanations for the phenomenon.

Regardless of the explanation, Study 3 demonstrates that
at least one technical indicator, Lane’s Slow Stochastic, although
of little use for directional trading, may have some real value
when volatility, rather than direction, is at stake.

STUDY 4: MOVING AVERAGE DEVIATION
AND VOLATILITY

This study makes use of another tool that is popular with tech-
nical analysts: the moving average. Moving averages are used to
smooth data and reveal trends. Many trading systems are built
around moving averages. One such system, the moving average
crossover, takes a long position in the market when prices are
above the moving average and takes a short position when they
are below. The idea is that, when prices are above the moving
average, the trend is up; when they are below, it is down. Moving
average systems such as this one were investigated in The
Encyclopedia of Trading Strategies (Katz and McCormick, 2000)
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and found to be ineffective for directional trading. Such systems
are not predictive of the direction of future price movements.

But what about volatility? Is volatility, especially near-
future volatility, affected by where prices are relative to the
moving average? Study 4 investigates how the position of cur-
rent price, vis-à-vis a standard moving average, affects expected
future volatility and, consequently, fair option premium.

Method

The analysis involved basically the same procedure as in the pre-
vious studies; the only differences were in the calculation and
scaling of the second predictor or independent variable. In the
current study, the second independent variable was calculated as

x2 == 100.0 * (cls[ibar]/ma[ibar] −− 1.0)

where cls[ibar] was the closing (last) price at the reference
bar and where ma[ibar] was the moving average at the refer-
ence bar. A standard 50-bar simple moving average (the kind
most popular with stock traders) was employed in the calcula-
tion. The associated array index was computed as

ix2 == (int)floor(0.5 ++ (nlad−−1)*(x2−−badmn)/(badmx−−badmn))

where nlad was 7 (the number of bins or categories), x2 was as
defined immediately above, badmn was −25 (the center of the
first bin), and badmx was 25 (the center of the last category or
bin). As before, the first independent variable, x1, was standard
30-bar historical volatility; the dependent variable, y, was stan-
dard 10-bar future volatility.

What is being investigated, therefore, is the difference
between the closing price and the moving average (measured as
a percentage of the moving average), and its impact on future
volatility in the context of a given level of historical volatility.

Results

The regression produced a multiple correlation of 0.576 and a
root-mean-square error of 0.261. The root-mean-square error
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was smaller in this study than in any of the previous studies in
this chapter. Large t-statistics were not only associated with
terms involving historical volatility, but also with those involv-
ing the deviation of price from the moving average (hereafter
referred to as moving average deviation). The t-statistics were
93.2, 469.3, −178.8, −138.9, 196.8, and 47.5 for the intercept, his-
torical volatility, its second power, the moving average deviation,
its second power, and the interaction term, respectively.
Regression weights for these terms were 0.05849, 0.96750,
−0.25129, −0.00477, 0.00019, and 0.00233, in the same order as
the t-statistics. The regression weights for terms involving the
moving average deviation may appear relatively small; this is
not because these terms have little influence, but rather because
they have a large standard deviation—0.259 for historical
volatility versus 11.05 for the moving average deviation, or
122.13 for its square. The relatively small t-statistics for the
interaction term suggests that the two variables, historical
volatility and moving average deviation, exert a somewhat
independent effect on future volatility.

The statistical expectation of future volatility (y-axis) is
shown as a function of percent deviation for the moving average
(x-axis) and standard 30-bar historical volatility (set of curves)
in Figure 8–7. At all levels of historical volatility less than 100%,
expected future volatility is at a minimum when prices are just
above the moving average. Expected future volatility increases
rapidly as prices fall below the moving average; it rises more
gradually as prices move further above the moving average.
A similar pattern appears at higher levels of historical volatility,
except that there is less of a gain in future volatility with rising
prices and the data are much noisier.

Discussion

When prices are lower than they have been in the recent past,
volatility tends to be higher. Volatility is also higher, but not
quite so much, when prices are higher than they have recently
been. The lowest volatility occurs when a stock’s price is at or
just above the moving average, when there is a gentle upward
drift in prices.
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One possible explanation is that, for some period after a
sharp drop in a stock’s price, the absolute day-to-day variation
in price remains as it was prior to the decline. Since volatility
measures variation in price—not on an absolute basis, but rela-
tive to the prevailing price level—volatility appears higher to
the extent that prices are lower.

Another possible reason for the greater volatility observed
when prices deviate greatly from the moving average is the ten-
dency of “overbought” and “oversold” conditions—unusually
high or low prices—to bring out aggressive buying and selling.
The reader surely recalls seeing the frantic and volatile activity
at a “blow-off top” or “panic bottom.” During such situations,
stops get triggered, trend followers engage in panic exits (selling
into dropping prices or buying into rising ones), and coun-
tertrend traders buy the dips or sell the peaks. The result is a
price that swings rapidly up and down—i.e., volatility—as buyers
and sellers step up to the plate.
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What is odd is that one might have expected a volatility
bump right at the moving average, caused by traders taking
action when prices cross over or bounce against the moving aver-
age line. However, no such bump in volatility appears in the data.

Regardless of the explanation, the affect on near-future
volatility of price, vis-á-vis the moving average, is quite large. For
example, at 30% historical volatility, future volatility is 31% when
the current price lies near the moving average, but reaches 57%
(almost twice as great) when the current price of the stock is 25%
below the moving average (a fairly common occurrence). An effect
this large should be of great interest to traders and hedgers.

STUDY 5: VOLATILITY AND MOVING
AVERAGE SLOPE

The slope of a moving average can almost be considered a
direct—albeit delayed—expression of trend. In the previous
study, it was found that another noisier, but less delayed, mea-
sure of trend was strongly related to future volatility. What about
the slope of the moving average? Is it also strongly related to
future volatility? Is the relationship similar to one between
future volatility and the deviation of prices from the moving
average? These are the questions answered in Study 5.

Method

The analytic procedure in the current study differed from that
in the previous study only in the second independent variable
and its scaling.

In the current study, the second predictor was calculated as

x2 == 100.0 * (ma[ibar]/ma[ibar−−1] −− 1.0)

where ma[ibar] was the 50-bar simple moving average at the
reference bar and ma[ibar−1] was the same moving average at
the bar preceding the reference. The variable x2, therefore, rep-
resents the slope of the 50-bar moving average of closing price,
expressed as the percentage of change over one bar. The associ-
ated array index was determined as
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ix2 == (int)floor(0.5 ++ (nlad−−1)*(x2−−badmn)/(badmx−−badmn))

where nlad (the number of bins) was 7, badmn (the center value
of the lowest bin) was −2.0, and badmx (the center of the highest
bin) was 2.0.

As in Study 4, bin statistics and a simple polynomial regres-
sion were determined and written to a standard text file. The
data in that file was loaded into an Excel spreadsheet where
tables and charts could be prepared. The bin statistics, especially,
lent themselves to graphical representation.

Results

The two-dimensional bins that were identified with some com-
binations of historical volatility and moving average slope had
either no data points falling in them or too few data points (less
than eight) to calculate stable bin statistics. Because of this,
some of the curves in Figure 8–8 appear to be cut short; they do
not extend to the right and left sides of the chart.
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Figure 8–8 shows the mean future volatility (y-axis),
as determined by the slope of the moving average (x-axis), for
each of 33 levels of standard, 30-bar historical volatility (the 
33 curves).

In Figure 8–8, the relationship depicted between moving
average slope and historical volatility, on the one hand, and
expected future volatility, on the other, is very similar in flavor
to the relationship found between moving average deviation,
historical volatility, and mean future volatility in Study 4. In
both instances, near-zero values of the second predictor (moving
average deviation or moving average slope) are followed by the
lowest levels of future volatility. As the second independent vari-
able (here, the moving average slope) moves away from the cen-
ter of its range, an increase is observed in future volatility, the
increase being greater for movement to the left (toward more
negative or downward slope) than for movement to the right
(toward more positive or upward slope).

Compared to the moving average deviation examined in
Study 4, the rise in mean future volatility as one moves away
from the center of the chart appears more extreme, especially at
higher levels of historical volatility. The greater apparent effect
on mean future volatility may be at least partly a consequence
of the range of slope examined; had a somewhat smaller range—
say, from −1.33% to 1.33%—been examined, the increases in
future volatility with increasingly positive or negative slope
might have been more modest and, therefore, more in line with
those observed with the moving average deviation.

Another difference between the results for the moving
average slope and the moving average deviation is that, with the
former, the response of future volatility to increasing positive
slope does not flatten out at higher levels of historical volatility
as was the case with the latter.

As in all earlier studies in this chapter, higher levels of his-
torical volatility are associated with more noise in the estimates
of expected future volatility, noise which manifests as more
jagged curves in the chart.

Finally, the data shown in Figure 8–8 suggest that the effects
of the two predictors (historical volatility and moving average
slope) on mean future volatility are fairly independent. This is
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indicated by the fact that the curves identified with different 
levels of historical volatility have roughly the same shape.

The regression analysis supported this observation: ignoring
the intercept, the interaction term has the smallest t-statistic
(73.80). The first and second powers of historical volatility have 
t-statistics of 532.6 and −223.0, respectively, while the first and
second powers of moving average slope have t-statistics of −122.0
and 217.60, respectively. The regression weights were 0.04595 for
the intercept, 1.03756 and −0.28663 for the first and second pow-
ers of historical volatility, −0.09374 and 0.07741 for the first and
second powers of moving average slope, and 0.06712 for the inter-
action term. The weights for the two powers of moving average
slope define a U-shaped parabola, consistent with the shape of the
curves in Figure 8–8 with respect to the x-axis. The weights for the
two powers of historical volatility describe an inverted parabola
(with the maximum near the highest level of volatility) that
describes the tendency of future volatility to level off as historical
volatility increases. The regression yielded a multiple correlation
of 0.587 and a root-mean-square error of 0.277.

Discussion

Overall, the findings regarding the influence of moving average
slope on future volatility are similar to those for the influence of
price deviations from the moving average on the same variable.

Even when historical volatility is held constant, stocks that
are in a strong downtrend or a strong uptrend (as measured by
the slope of the moving average) have a higher mean future
volatility than do stocks that exhibit little directional movement
or trend.

How great is the influence of moving average slope (trend)
on expected future volatility? At an historical volatility of 25%,
future volatility is 28% when the moving average is going side-
ways (slope of zero); it is a much higher 52% when the moving
average is going down (slope of −1.33%). At a 50% historical
volatility, a “flat” moving average is associated with an expected
future volatility of 48%, while a falling moving average (slope of
−1.33%) is associated with a future volatility of 70%, and a rising
average (slope of +2.00%) is associated with a future volatility 
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of 65%. These differences in expected future volatility are large
enough to imply substantial differences in fair premium for
options trading on the relevant stocks.

STUDY 6: RANGE PERCENT AND
VOLATILITY

How is mean future volatility affected by the position of the cur-
rent price in the range defined by prices over the past 50 bars?
If historical volatility is held constant, is future volatility higher
when current prices are down near support or up near resis-
tance (with the potential for breakouts to new lows or highs)
than when current prices are in the middle? When the estima-
tion of future volatility is at issue, what is the interaction, if any,
between historical volatility and the relative position of current
prices with respect to their recent historical range? These are
the questions that Study 6 attempts to answer.

Method

The measure of the position of current price vis-á-vis the recent
historical range was termed range percentile. It was defined as

(8.1)

where C represents the current closing price of the stock (i.e., its
closing price at the reference bar), L represents the lowest low
price to occur over the past m bars, and H represents the high-
est high price to occur over the same m bars. The variable m, of
course, represents the period of the range percent measure or
indicator; it was set to 50 in the current study.

The reader may notice the similarity of the range percentile
measure to the stochastic oscillator. Indeed, range percentile (as
defined here) is exactly that—the stochastic—but in a raw form,
stripped of the usual smoothing, and computed over a much
longer period than is typical for the standard oscillator.

In the current study, the second predictor variable, x2, was
the range percentile, as defined above. The array index, ix2,
was calculated from x2 in the usual manner, with nlad set to

range percentile =
−
−

C L
H L
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11, badmn set to 0.05, and badmx set to 0.95. All other variables,
calculations, and aspects of the analytic procedure were
unchanged from the previous study.

Results

A multiple correlation of 0.592 and a root-mean-square error of
0.278 were obtained from the second-order polynomial regres-
sion. Ignoring the intercept, the largest t-statistics were associ-
ated with the first and second powers of historical volatility
(487.4 and −225.7, respectively). Next in size were the t-statis-
tics for range percentile and its second power (−159.5 and
149.9). The t-statistics for the intercept (132.8) and for the inter-
action term (−35.9) were the smallest. Regression weights for
historical volatility and its square, range percentile and its
square, the interaction or cross-product, and the intercept were
1.12038 and −0.28088, −0.42243 and 0.33673, −0.07068, and
0.13621, respectively.

Figure 8–9 depicts graphically the relationship between a
stock’s current range percentile reading (x-axis) and its expected
future volatility ( y-axis). The relationship is shown for each of
the 33 levels of historical volatility (the curves in the figure):
from 20% at the bottom to 180% at the top.

At all levels of historical volatility, as range percentile
increases from 5 to 50, expected future volatility declines, at
first rapidly, then more gradually. This is what appears in
Figure 8–9 when attention is on the true relationships between
the variables and when the noise in the data at higher levels of
historical volatility is filtered out by the observer. Considered
from a different perspective, future volatility increases as prices
approach the lower limit of their 50-bar range.

Another observation is that, as prices approach support at
the bottom of their 50-bar range, the gain in future volatility
tends to be greater at higher levels of historical volatility than
at lower levels. This suggests some interaction between histor-
ical volatility and range percentile.

For a range percentile reading between 50 and 100, the influ-
ence upon expected future volatility also changes with the level of
historical volatility, revealing an interaction. Here, the change is
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not merely one of amplitude or effect size, but also one of direc-
tion. At low levels of historical volatility (20% to 60%), future
volatility, which fell rapidly as range percentile climbed from 5 to
50, continues to decline much more gradually as range percentile
travels from 50% to 95%. When the level of historical volatility is
moderate (65% to 155%), future volatility remains fairly constant
as range percentile goes from 50% to 95%. At high levels of his-
torical volatility, expected future volatility increases with range
percentile over the 50% to 95% interval.

Finally, as was observed in all previous studies, the curves
get choppier, revealing greater noise or measurement error at
higher levels of historical volatility where sample sizes are
smaller.

Discussion

What does the effect of range percentile on future volatility look
like in tangible numbers? Consider a case where the standard,
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30-bar historical volatility is 30%. At a range percentile of 5,
expected future volatility is 41%. Future volatility decreases to
32% at a range percentile of 50, and to 31% at a range percentile
of 95. When historical volatility is 60%, mean future volatility is
73% for a range percentile of 5; it is 55% for a range percentile
of 50, and it continues to be 55% for a range percentile of 95.

The pattern seen with range percentile is in some ways
similar to that encountered with the moving average indicators.
In all cases, higher future volatility is associated with low stock
prices (those near the bottom of the range), even when historical
volatility is held constant. Moreover, in some instances, higher
future volatility is also associated with high stock prices (those
near the top of the range).

What could account for the patterns observed in the data?
Why was heightened future volatility found at all levels of his-
torical volatility when stock prices were near support, but only
at very high historical volatility levels when stock prices were
near resistance?

It is easy to understand the phenomenon of heightened
future volatility when historical volatility is high and stock
prices are either low (near support) or high (near resistance) as
opposed to middling. If stock prices are near support or near
resistance, a high level of recent historical volatility implies that
they arrived there in a sharp move. Sharply lower prices on high
volatility (and volume) characterize a “panic bottom,” which
often marks the final sell-off before a reversal of trend and a
rapid (hence volatile) recovery following the event. Likewise,
sharply higher prices on high volatility (and volume) are typical
of a “blow-off top,” which is generally followed by a noteworthy
correction.

But what about when prices merely drift lower or higher,
eventually reaching support or resistance on low-to-moderate
volatility? One possible explanation for the increased mean
future volatility near support has to do with news and corporate
events. A gradual decline in prices is often seen when a company
fades from the spotlight. Perhaps earnings have lost their luster.
Perhaps the company’s industry group is no longer perceived 
as “hot.” At some point, however, an earnings surprise brings 
the company back into the spotlight. Or, perhaps, prices drift
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sufficiently low to make the company a tempting target for a
takeover bid. Or, then again, prices start to drift up from the bot-
tom, triggering a short squeeze. Either way, the result is a
strong surge in price and volatility.

The authors have seen this happen again and again, espe-
cially among ignored, low-cap stocks that are marked by sparse
volume, low prices, and wide ask-bid spreads. Of course, some of
these downtrodden stocks just continue their decline, which
may even accelerate on bad news. Again, the result is high
volatility.

On the other hand, observations of the market suggest that
a calm, upward drift in prices can be sustained for a long time,
without either a sudden correction or a buying frenzy and the
concomitant volatility. Behind the gently rising prices often lies
a company with modest, but stable, earnings growth. The rela-
tively high prices make the company less tempting than a com-
pany with a depressed stock, and a strongly positive earnings
surprise is harder to come by given the already good earnings
growth. Naturally, a negative surprise is possible; however, it is
more likely to occur when earnings are shooting to the moon, the
company is a high-flyer, and volatility is already quite high.

Of course, these are just some possible explanations for
why volatility should always be higher near support, but only
sometimes higher near resistance; undoubtedly, the reader can
think of many other equally compelling ones. Regardless of the
reasons behind the observed effects, they are large enough to
have a serious impact on the bottom line.

STUDY 7: MONTH AND VOLATILITY

In Chapter 4, the effect of month-of-year on volatility, as well as
on other statistical moments (mean, skew, and kurtosis), was
examined. In that chapter, the month-of-year effect was investi-
gated on its own; the analysis was univariate. The current study
employs a bivariate analysis; month-of-year is examined together
with historical volatility. By considering both month-of-year and
historical volatility together, any interaction between the two
variables can be observed—something that was not possible in
the earlier analysis.
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Study 7 was designed to address a number of questions.
Do monthly differences in volatility persist when historical
volatility is held constant? Do these differences evidence the
same quarterly pattern that was seen when historical volatility
was not held constant, as was the case in Chapter 4? And, most
importantly, is there an interaction between month-of-year and
historical volatility, i.e., does the relationship between month and
future volatility change with the level of historical volatility?

Method

The analysis was conducted in the same manner as in all earlier
studies in this chapter. The only difference was in the determi-
nation and scaling of the second independent variable which, in
the current study, was month-of-year. As previously, standard
30-bar historical volatility was the first predictor and standard
10-bar future volatility was the dependent variable or target.

For month-of-year, the scaling parameters nlad (the num-
ber of bins), badmn (the center value of the lowest bin), and
badmx (the center value of the highest bin) were set to 12, 1, and
12, respectively. The scaling parameter nlvx remained set at 37,
bvxmn at 0.20, and bvxmx at 2.00, for historical volatility.

Results

Figure 8–10 shows mean future volatility plotted against
month-of-year for each of the 33 levels of historical volatility.

As clearly seen in Figure 8–10, expected future volatility
varies dramatically with the month of the year, even when his-
torical volatility is held constant. Lows in expected future
volatility occur every three months—in February, May, August,
and November—regardless of the level of historical volatility.
Highs in mean future volatility occur either one or two months
earlier, with the exact timing dependent on historical volatility
and time of the year, suggesting an interaction.

An interaction between historical volatility and month-
of-year is also evident in the behavior of mean future volatility
in March and December. The extent to which future volatility 
in March and December exceeds that seen in other months is
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controlled by the level of historical volatility: the higher the his-
torical volatility, the greater the relative future volatility in
March and December. This interaction is not apparent for the
months of July and September, months that are also charac-
terized by relatively high levels of mean future volatility.

Overall, May is the quietest month. In May, future volatility
hits its yearly low at most historical volatility levels. At low lev-
els of historical volatility, the month with the highest mean
future volatility is September. For stocks that exhibit high lev-
els of historical volatility, December is the month that has the
highest future volatility. Because high volatility stocks yield a
large volatility payoff, these are probably the stocks that con-
tribute most to the so-called “January effect.”

Although a second-order polynomial regression was com-
puted, the results are not reported here. The curves in Figure 8–10
do not exhibit either linear or parabolic trends of a kind that 
a second-order polynomial can effectively model; rather, these
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data exhibit cycles that are best modeled with sines and cosines,
as in Study 4 from Chapter 5. The second-order regression com-
puted in the standard procedure could not model the obvious
cyclic relationships in the data; this was clearly indicated by the
negligible t-statistics for all terms in the regression that
involved month-of-year.

Discussion

The current study confirms the presence of a strong quarterly
cycle in volatility, the kind that was discussed in Chapter 4 in
the context of seasonal cycles. It also demonstrates (1) the per-
sistence of this cycle when historical volatility is held constant
and (2) the presence of a strong, easily observed interaction
between a stock’s historical volatility and the month of the year
when these two variables are considered as predictors of future
volatility.

What causes the quarterly cycle? One factor that con-
tributes to the cycle is the quarterly release of earnings reports.
Another contributing factor is the expiration of the S&P 500
Index futures, together with the options, on what are known as
“triple witching days,” which are notorious for their volatility.

Explaining the interaction between historical volatility and
month-of-year is much more difficult than finding reasons for
the quarterly cycle. Perhaps the phenomenon has something to
do with actions taken in response to the annual tax cycle. Such
actions have been hypothesized to be at the root of the “January
Effect,” and may play a role in the interaction between month
and volatility. Exactly how this might work, however, is unclear,
especially considering that the second peak in the relative
future volatility occurs in March.

How much is future volatility influenced by month-of-year
and by its interaction with historical volatility? With historical
volatility at 30%, the mean future volatility in May is 28%; it is
36% (8% points higher) in July, and 33% (only 5 points higher)
in December. The expected future volatility is 97% in May, 113%
(16 points higher) in July, and 131% (a whopping 34% points
higher) in December, when historical volatility is held constant
at 150%. When considered on their own, these are all quite
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sizable differences in volatility. For example, an at-the-money
option on a stock with a historical volatility of 30% purchased in
May would be worth roughly 28% more than an identical option
purchased in December. The interaction effects are also large, as
is easily seen when these differences are considered in relation
to one another. When historical volatility is low (30%), the dif-
ference in future volatility between May and October is 8 points;
when historical volatility is high (150%), the difference is
34 points.

STUDY 8: REAL OPTIONS AND VOLATILITY

Study 8 differs from the earlier studies in this chapter in that it
examines the relationships of historical variables, not only to
future volatility, but also to the volatility implied by the prices
at which options actually trade.

Do option-implied volatilities track standard historical
volatility? Or, do they track better estimates of future volatility,
such as the one developed in Chapter 5, Study 4? And what
about kurtosis? Does it drive up real option prices and, there-
fore, implied volatility, when these are considered relative to a
good estimator of future volatility? These are some of the ques-
tions addressed below.

If implied volatility closely tracks standard historical
volatility, then the decision-making process of most traders and
hedgers (including the large institutional ones) probably utilizes
standard historical volatility and pricing models that do not
implicitly correct for biases in the volatility measures used as
model inputs. On the other hand, if implied volatility tracks a
better estimator of future volatility, then perhaps the bigger
players in the options arena use good future volatility estimates
and better pricing models than the standard ones; or, perhaps,
they use deep market experience to make subjective corrections
to the theoretical premiums produced by the standard models
with raw historical volatility.

Traders and hedgers who act primarily based on the implied
volatility tend only to cause options to stay in line with one
another; they do not generally influence overall implied volatil-
ity or option price levels, either up or down, by their trading
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activities. This is because implied volatility can only be used to
make relative appraisals of one option against another.

Method

The procedure involved the (by now, familiar) accumulation of
bin statistics, although it differs in the details from the proce-
dure used for the earlier studies in this chapter.

The first step was to choose the volatility measure or esti-
mate that was to serve as the independent variable in the
analysis. There were four possible choices. The first choice was
standard 30-bar historical volatility. Average range historical
volatility, also computed over 30 bars, was the second choice. The
third choice was again 30-bar standard historical volatility, but
this time corrected for nonlinearity and regression to the mean.
A good multivariate estimate of future volatility (see Study 4,
Chapter 5) was the fourth choice.

Once the volatility measure or estimate was chosen, a stock
was selected. Data were retrieved for the stock from the first of
the two binary database files. This database was the same one
employed in all earlier studies in this chapter; its construction
is fully described in the section on raw data in Chapter 4.
Implied volatility data for options trading on the selected stock
were retrieved from the second of the two binary database files.
The construction of the implied volatility database from the raw
options data are discussed in the section on the calculation of
implied volatility found in Chapter 5.

A valid reference bar was then designated for analysis.
Validity of the reference bar was judged based on three criteria:
first, the stock had to be active over the last 30 bars prior to the
reference bar; second, the lowest price encountered over those
30 bars had to be greater than $2; and third, a valid figure for
overall implied volatility had to exist at the reference bar.

The overall implied volatility was calculated as the average
of the put-implied and call-implied volatilities that were
obtained from the second binary database. The put-implied and
call-implied volatilities stored in the database were weighted
averages of the implied volatilities for several near-term puts and
several near-term calls, respectively; they were not the implied
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volatilities of individual options. If the overall implied volatility
was greater than 0.05 and less than 3.50, and the absolute dif-
ference between the put-implied volatility and the call-implied
volatility was less than 0.20, then the overall implied volatility
figure was considered to be valid. Assuming that a valid refer-
ence bar had been found, the overall implied volatility was taken
as the dependent variable in the analysis.

At this point, the chosen volatility measure or estimate
that was to serve as the independent variable in the analysis
was computed. This volatility estimate was based only on the
stock’s past (pre-reference) behavior and possibly on the time of
year; it did not involve either future stock behavior (as does
future volatility), or real-market option premiums (as does
implied volatility).

Given the independent and dependent variables as defined
above, the bin statistics were accumulated. The volatility mea-
surement or estimate that was to serve as the independent vari-
able was used to compute an array index. In C language, the
calculation was

ix == (int)floor(0.5 ++ (nlvx−−1)*(x−−bvxmn)/(bvxmx−−bvxmn))

where ix was the desired array index, nlvx was the number of
bins or levels, x was the value of the independent variable (the
chosen volatility estimate), bvxmn was the center for the lowest
bin, and bvxmx was the center for the highest bin. In the current
study, nlvx was 37, bvxmn was 0.20, bvxmx was 2.00, and ix
was in the range of 0 to 36. The index, ix, was used to address
two arrays. The first array served to accumulate the number of
cases falling in each bin and thus associated with each level of
the independent variable; the accumulation was accomplished
by incrementing the value of the array element addressed by the
index, ix, by 1. The second array was used to accumulate the
corresponding sums of the dependent variable; the sums were
accumulated by adding the value of the dependent variable
(implied volatility) to the value of the element addressed by ix.

Once these data were accumulated, the next valid reference
bar was designated. When no more valid reference bars were
available for the selected stock, another stock was selected.
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The sequence was continued until all valid reference bars for all
the stocks had been processed.

At this point, the mean of the dependent variable was deter-
mined for each level of the independent variable. This was
accomplished by dividing the sum accumulated in each element
of the second array by the case count in the corresponding ele-
ment of the first array. Then, the array index (ix) was stepped
from 0 to 37 in increments of 1; the bin center that corresponded
to the index (the level of the independent variable) was written
to a standard text file, followed by the mean that was computed
from the pair of array elements addressed by the index.

Finally, the next of the four possible independent variables
was chosen. The arrays used to accumulate data for the bin sta-
tistics were then cleared and the whole analysis was repeated.
This went on until analyses had been carried out with each of
the four measures or estimates of volatility.

The results of all these calculations were four sets of data.
Each data set consisted of two columns. The first column in each
set contained the levels of the measured historical, or predicted
future, volatility corresponding to the bin centers. The second
column in each data set contained the associated mean implied
volatility figures. Each data set, therefore, revealed the rela-
tionship between one of the four kinds of measured historical or
estimated future volatility, on the one hand, and option-derived
implied volatility, on the other.

Results

The data generated by the analyses appear in Table 8–1. In the
table, only one column, the first (BINCTR), was used for the bin
centers that defined the discretized values of the independent
variable; this was possible because the bin centers were identi-
cal across all four sets of data. Each of the remaining four
columns in Table 8–1 was simply the second column found in
each of the four data sets generated by the analyses.

Each row of the second column (STDHVX) in Table 8–1 con-
tains the mean implied volatility that was observed when the
standard 30-bar historical volatility fell in the bin centered at the
value found in the same row of the first column. The third column
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(ARHVX) contains the mean implied volatility for each level of
30-bar average range historical volatility. The fourth column
(STDADJ) lists the expected implied volatility for each level of
adjusted standard historical volatility. The mean implied volatil-
ity associated with each level (BINCTR) of regression-estimated
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T A B L E  8–1

Option-Implied Volatility versus Several Measures of Historical
Volatility and Predicted Future Volatility

BINCTR STDHVX ARHVX STDADJ PREST

0.200 0.288 0.273 0.244 0.238

0.250 0.337 0.314 0.294 0.271

0.300 0.386 0.359 0.346 0.319

0.350 0.436 0.408 0.401 0.372

0.400 0.475 0.453 0.452 0.430

0.450 0.519 0.496 0.501 0.487

0.500 0.561 0.538 0.553 0.549

0.550 0.605 0.585 0.608 0.604

0.600 0.647 0.629 0.660 0.662

0.650 0.683 0.671 0.713 0.722

0.700 0.722 0.715 0.768 0.776

0.750 0.762 0.757 0.824 0.830

0.800 0.793 0.796 0.864 0.875

0.850 0.835 0.837 0.899 0.922

0.900 0.854 0.873 0.946 0.961

0.950 0.878 0.907 0.992 0.985

1.000 0.902 0.935 1.001 1.045

1.050 0.910 0.967 1.034 1.078

1.100 0.943 0.988 1.127 1.124

1.150 0.983 1.016 1.116 1.187

1.200 0.989 1.059 1.226

1.250 1.006 1.092 1.250

1.300 0.982 1.111 1.297

1.350 1.016 1.127 1.326

1.400 1.053 1.169 1.391

1.450 1.042 1.238 1.398

1.500 0.994 1.260 1.435
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future volatility appears in the fifth column (PREST). The table
only contains data for levels of the independent variable up to
1.50 (150%).

When volatility is low, implied volatility is much higher
than standard 30-bar historical volatility; when volatility is high,
implied volatility is much lower than the standard historical
measure. As an example, a 25% standard historical volatility is
associated with a mean implied volatility of 34%; a 120% stan-
dard volatility is associated with a 100% implied volatility. The
pattern suggests regression to the mean, a phenomenon that was
observed in Chapter 5 when standard historical volatility was
used, uncorrected, as an estimator of volatility in the near future.
The fact that there is little gain in implied volatility as standard
historical volatility rises beyond 125% (at 150% standard volatil-
ity, mean implied volatility is only 99%) also implies the presence
of the capping effect observed in Chapter 5, when the standard
historical measure was used as a proxy for future volatility.

Regression to the mean is less, and capping much less, when
average range historical volatility is examined as a predictor of
implied volatility. With average range historical volatility at 25%,
a mean implied volatility of 31% is observed; with average range
volatility at 120%, the mean implied volatility is 106%; and with
average range at 150%, implied volatility has a mean of 126%.
Average range historical volatility was also found to exhibit less
capping and mean reversion when predicting future volatility.

Corrected for regression to the mean and for nonlinearities
such as capping when used as a predictor of future volatility,
adjusted standard historical volatility does much better as a
predictor of the volatility implied by option prices. With adjust-
ed standard volatility as the independent variable, mean rever-
sion and capping are gone. All that remains is a tendency for
expected implied volatility to hover about 5% above the adjusted
standard measure over much of the volatility spectrum. Because
this measure only took on values up to 115%, no comparisons
can be made at higher levels of volatility, as they were for the
other two measures.

There is no question that the volatility measure that best
estimated mean implied volatility was the multivariate regression
estimate of future volatility (developed in Study 4 of Chapter 5)
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that was based on two measures of historical volatility together
with several seasonal harmonics. There is little evidence of either
mean reversion or capping with this estimate. And, as was also the
case when it was used to predict future volatility, the multivariate
estimator is capable of predicting fairly high levels of volatility; its
range is not restricted as is the range of the adjusted standard
volatility measure.

When the estimated future volatility (using the multivari-
ate regression estimator) is at 25%, expected implied volatility
is 27%; when estimated future volatility is at 120%, implied is
123%; and when estimated future volatility is at 150%, the
mean implied volatility is 144%. There is still some tendency for
implied volatility to be greater than the estimate of future
volatility, although the disparity is much smaller with the good
regression estimator of future volatility than with the cruder
ones discussed earlier.

Figure 8–11 shows how implied volatility behaves in
response to standard historical volatility and to the better
regression-based estimator of future volatility. The dotted line

374 CHAPTER 8

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

1.200

1.300

1.400

1.500

0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50
Estimated future volatility

O
p

ti
o

n
-i

m
p

lie
d

 v
o

la
ti

lit
y

STDHVX

PREST
BINCTR

F I G U R E  8–11

Implied Volatility Plotted against Two Very Different Estimates
of Expected Future Volatility

7744_ch_8.qxd  28/12/04  12:53 PM  Page 374



(STDHVX) in the figure depicts the relationship of implied
volatility (on the y-axis) to standard historical volatility (on the
x-axis). The broken dash-dot line (PREST) shows how expected
implied volatility (again, the y-axis) responds to the regression-
based estimate of future volatility (on the x-axis). The straight,
solid line (BINCTR) in Figure 8–11 represents the relationship
that would exist between implied volatility (y-axis) and a perfect
estimator thereof (x-axis); it was placed in the figure to serve as
a baseline against which the other lines and the relationships
they represent could be compared.

When estimated future volatility is low, the dotted line falls
above the solid line; at levels less than about 80%, standard his-
torical volatility (taken here as the estimate of future volatility)
underestimates implied volatility. At about 80% estimated
future volatility, the dotted line drops below the solid line and,
as estimated future volatility continues to increase, the gap
between the solid line and the dotted one widens; above 80%
standard historical volatility, implied volatility is overestimated
and the overestimation becomes progressively worse as stan-
dard historical volatility continues to rise.

The pattern of over- and underestimation just described
suggests regression to the mean, as well as a blunted response
of implied volatility to increases in standard historical volatility
at higher levels—the capping effect. Regression to the mean and
capping were also observed in Study 1 of Chapter 5, when stan-
dard historical volatility was examined as a predictor for future
volatility. Overall, standard historical volatility is a poor esti-
mator of future volatility, as well as of implied volatility, at low
levels and, even more so, at high levels.

The broken dash-dot line in Figure 8–11 traces a path
that lies much closer to the solid line than does the dotted line.
This attests to the much closer fit between implied volatility
and the regression estimate of future volatility than between
implied volatility and the future volatility estimate based
on raw standard historical volatility. In fact, the fit between
implied volatility and the polynomial regression estimate of
future volatility is quite good, except for the slight bulge above
the baseline centered at an estimated future volatility (x-axis) of
around 70%.
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The bulge reflects the tendency of implied volatility to be
underestimated by (i.e., greater than) the future volatility pre-
dicted by the regression model from Study 4 in Chapter 5. The
higher relative implied volatility indicated by the bulge may be
a consequence of the use (by traders) of a pricing model (Black-
Scholes) that does not factor in the general presence of kurtosis
in the returns from stocks; kurtosis leads to higher option prices
(if they are efficiently priced by the market) and, in turn, to
higher implied Black-Scholes volatilities for in-the-money and
out-of-the-money options at moderate levels of volatility.

Discussion

Overall, the best estimators of future volatility are also the 
best estimators of implied volatility. Both the raw standard 
and the average range historical measures underestimate
implied volatility, just as they underestimate future volatility,
when volatility levels are low; they overestimate implied and
future volatility when levels are high. Adjusted standard volatil-
ity and the regression-based estimator of future volatility do
much better. These estimators provide less distorted estimates
of future volatility over their applicable ranges and fairly con-
sistent, but slightly low, estimates of implied volatility.

Because of results like this—in which implied volatility
appears to behave just like future volatility with respect to var-
ious historical measures and predictive estimates—much of the
discussion has implicitly assumed that implied volatility
reflects correct or “efficient” option premiums. Tacit in the dis-
cussion of the results found in Table 8–1 and Figure 8–11 was
the assumption that option prices are fairly representative (at
least on average) of actual fair value (as might be computed
from an empirical distribution) and, therefore, that implied
volatilities are efficient, except for errors in the option pricing
model used to compute them (like the failure of Black-Scholes to
take into account the general kurtosis in stock returns).

The results suggest that options are, indeed, priced effi-
ciently in the sense that implied volatility (assuming that a good
pricing model is used to compute it) comes close to what good
prediction models yield as the expected future volatility. This is
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in no way meant to suggest that implied volatility is influenced
by actual future volatility (in Chapter 5, a path analysis demon-
strated that implied volatility was mostly determined by histor-
ical volatility, not future volatility); rather, it suggests that
enough traders and hedgers, who set option prices by their
activities in the market, are using reasonably good estimates of
future volatility, as well as good pricing models, to support their
option-related activities. Given the resources of many market
makers and option houses, it is only natural to expect that influ-
ential hedgers and traders are using good future volatility esti-
mates and pricing models. And, even though many arbitrageurs
and traders still use Black-Scholes and standard historical
volatility, they know how to make “discretionary” or subjective
corrections to what may appear on their computer screens.

On average, implied volatility is best estimated by good pre-
dictors of future volatility. Standard historical volatility does not
predict implied volatility very well, suggesting that, for the most
part, it is not being used with Black-Scholes or other models as
the volatility input by those who set option prices—unless they
are doing a good job of subjectively correcting assorted important
variables. In other words, actual option prices are more consis-
tent with proper estimates of future volatility than with raw
measures of historical volatility. Of course, all of this applies to
averages—i.e., to expectation. There are many option prices that
are consistent with raw historical volatility and this is not neces-
sarily an indication that future price movement demands a dif-
ferent option premium; in other words, such options may simply
be mispriced, for any number of reasons. Whether such options
are truly mispriced and can be traded for a profit is a question
which needs further study.

There is one consistent pattern in the data in Figure 8–11
and Table 8–1 that has not been discussed above. The pattern is
rather curious and calls for an explanation. The two better esti-
mates of future volatility—corrected standard volatility and the
regression estimate—tend to underestimate implied volatility by
a small amount, except at levels of volatility greater than 100%.
Standard and average range volatility, uncorrected for regression
to the mean and for capping, cross implied volatility between
75% and 80%. Given that mean volatility tends to be around
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50%, the observed crossover point is rather high, which suggests
that a similar tendency towards underestimation would be
apparent with these measures of historical volatility even were
it not for the distortions introduced by mean reversion.

One hypothesis is that the apparently higher-than-predicted
implied volatility is due to distortions introduced into the 
statistics by the decidedly nonnormal distribution of volatility
(see Figure 8–1), whether historical or implied. To test this
hypothesis, a normalizing transformation (the natural loga-
rithm is effective in this case) was applied, the statistics were
re-calculated, and the logarithmically scaled expectations 
were transformed back to the original scale. The results of the
re-analysis were extremely similar to those obtained from the
original analysis. Apparently, the extended upper tail of the dis-
tribution of volatility was not the explanation.

Another hypothesis momentarily considered was that the
underestimation of implied volatility by the various measures
and estimates was caused by a different mean level of measured,
estimated, or implied volatility in the current data sample, as
compared to the original sample on which the estimates were
based. The mean of the independent variable (the measured his-
torical or predicted future volatility) was 50.8% and the mean of
the dependent variable (implied volatility) was 55.2%. Although
the volatility levels are in the same range as those found in sam-
ples used in earlier studies that did not examine implied volatil-
ity, there is a clear difference between the mean level of
standard volatility and the mean of implied volatility. A similar
difference also exists between the other volatility measures and
implied volatility. No doubt, the fact that mean implied volatil-
ity is greater than the other volatility measures explains the
observed pattern—even the size of the difference is in the cor-
rect ballpark.

The question then becomes, “Why should implied volatility
be systematically higher than the other measures of volatility?”
One possible answer has to do with the influence of kurtosis on
the measure of implied volatility used in the study.

Implied volatility was calculated as a weighted average of
the individual implied volatilities of all options with a valid
price greater than zero that had between 3 and 48 days of life
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remaining. The weighting scheme gave greatest weight to
at-the-money options that were flush with time value; however,
out-of-the-money and in-the-money options also contributed sig-
nificantly to the weighted average, i.e., to the overall implied
volatility. As has been repeatedly pointed out in a variety of con-
texts, out-of-the-money and in-the-money options are the ones
with premiums that are driven up by positive kurtosis. Since
Black-Scholes (a model that ignores kurtosis) was used in the
calculation of the individual implied volatility figures, the
increase in option premiums caused by kurtosis is reflected in
higher implied volatilities. The higher relative implied volatili-
ties of the out-of-the-money and in-the-money options (the
volatility smile) raises the weighted average, which is taken
over all options trading on a given stock at a given time or bar.
The weighted average, naturally, is the implied volatility used in
the current study. Given what has just been said, the weighted
average—implied volatility—would be expected to have a some-
what greater value than either historical volatility or estimated
future volatility; indeed, it does.

The most important finding in this study, however, is that
implied volatility (and the real option premiums doing the imply-
ing) is more consistent with good estimates of expected future
volatility and less consistent with poor estimates like uncorrect-
ed historical volatility, whether standard or average range.
Enough market participants are either using good future volatil-
ity estimates in their pricing models, or are “intuitively” adjust-
ing (based on observation and experience) for the distortions that
go with poor estimates, so as to cause options to be fairly effi-
ciently priced. The options player who does not correct for volatil-
ity estimation error or use a good volatility-forecasting model
will thus be at a severe disadvantage in the options arena.

SUMMARY

The reader may have expected coverage of ARCH, GARCH, and
other well-known approaches to modeling and forecasting
volatility. Such approaches were not covered here for several
reasons. One reason was that these approaches have been
extensively studied and discussed by many practitioners, both
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academicians working in universities and professional quants
operating within large financial institutions and options bou-
tiques. And, because of the way scientific—and, no doubt, finan-
cial—paradigms operate in a social context, it is a near certainty
that many more investigations within the standard paradigm
will be conducted and published in the literature.

This is not to say that GARCH models, for instance, do not
have a certain elegance and appeal; they clearly do: such models
are rather miserly in their consumption of degrees of freedom,
will correct for regression to the mean, and even embody a
hypothesis regarding the process that underlies the signal (in
this context, the price movements) under study. However, given
their extremely wide dissemination and, presumably, use in the
financial community, these models are unlikely to provide a
trader or hedger with a significant edge; in the markets, one
gains an edge, an advantage over the other participants, not by
following the crowd (they usually lose), but by being creatively
different.

The second reason for not covering models forged in the stan-
dard paradigm is because the intention in this work was to inves-
tigate techniques that are creatively different, that are not widely
covered in the literature, and, hopefully, that are not being exten-
sively employed. As short-term, electronic options traders, the
goal was to find an edge—something that might reveal inefficien-
cies that could be exploited for a quick profit, even by off-floor
traders. It seemed that to gain a practical advantage in the mar-
ketplace, a more empirical and flexible (even if less theoretically
elegant) approach was required. Such an approach would make it
easier to investigate uncommon variables and to discover ones
that might contribute to better estimates of future volatility. An
estimation model that incorporates variables not in common use
as predictors of volatility (but which, nevertheless, have predic-
tive value) is the kind of model that is most likely to produce esti-
mates of future volatility with respect to which the market is not
yet very efficient—estimates of volatility that might provide an
off-floor trader or hedger with a tangible advantage in the options
game. The methodology was, therefore, kept simple and the
uncommon variables with the potential for predicting volatility
were the focus of the investigations.
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The third reason for not covering the standard paradigm is
that the basic models are neither nonlinear (in the specific way
required here) nor multivariate. It should be noted that there
are multivariate generalizations of ARCH/GARCH and related
models; these more complex models can handle multiple time
series and, therefore, with additional adjustments for nonlin-
earity, might be used to study the kinds of relationships investi-
gated in this chapter. However, at this stage of the investigation,
why bring in all the excess complexity and theoretical baggage?
It seemed that the well-known KISS philosophy—Keep It
Simple, Stupid—was the more appropriate one in the current
context.

What was learned in this chapter? It was found that his-
torical skew and kurtosis have an influence on future volatility
that is independent of the influence exerted by historical volatil-
ity. Future volatility is also affected by the location of a stock’s
price relative to its moving average, by the slope of the moving
average, by the level and direction of Lane’s Stochastic, by
where the current price lies with respect to recent highs and
lows, and by the month of the year. The influence of these items
on future volatility often involves some statistical interaction
with historical volatility; i.e., at different levels of historical
volatility, these variables tend to have different effects on future
volatility. The implication of the findings is that variables like
those studied should be part of a good volatility forecasting
model; the fact is that they can add unique information and pre-
dictive value—with respect to which the market may not yet be
efficient—to a model designed to estimate future volatility.

Also studied in this chapter was the relationship between
various predictors of future volatility, on the one hand, and the
volatility implied by actual option prices, on the other. Poorer
predictors, like raw historical volatility, evidenced regression to
the mean when used to estimate implied volatility, just as they
do when used to estimate future price movements. The better
predictors, like corrected historical volatility, tended to system-
atically underestimate implied volatility because of the latter’s
higher average level. The higher average level of implied volatil-
ity, vis-á-vis both actual and estimated future volatility,
appeared to be a result of higher prices for out-of-the-money and
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in-the-money options which, in turn, are an expected consequence
of the leptokurtic distribution of returns.

Undoubtedly, a model could be developed specifically to pre-
dict implied volatility and, in turn, actual option prices in the
marketplace—prices that are not necessarily always efficient or
theoretically fair. Clearly, the relationship between historical,
estimated future, actual future, and implied volatilities are of
great importance and are worthy of further study.

SUGGESTED READING

A good introduction to GARCH models appears in “Generalized
Autoregressive Conditional Heteroskedasticity” (Bollerslev, 1986).
Coverage of standard models for the prediction of volatility can
also be found in Modelling Stock Market Volatility (Rossi, 1996)
and in Forecasting Volatility in the Financial Markets (Knight
and Satchell, 2002). Estimation with Applications to Tracking
and Navigation (Bar-Shalom et al., 2001) and Nonlinear
Regression Analysis and Its Applications (Bates and Watts, 1988)
contain material on the least-squares fitting of polynomials and
other nonlinear functions to real-world data. The subject of
technical analysis using moving averages, Lane’s Stochastic,
and other indicators is covered in The Encyclopedia of Trading
Strategies (Katz and McCormick, 2000) and in The Encyclopedia
of Technical Market Indicators (Colby and Meyers, 1988).
Finally, an excellent source on technical analysis using rigor-
ously defined chart patterns is The Encyclopedia of Chart
Patterns (Bulkowski, 2000).
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For the most part, previous chapters presented investigations
concerned either with the price behavior of stocks (the under-
lying securities) or with the theoretical fair premiums of options.
Theoretical option premiums are the premiums that can be con-
sidered fair given the behavior of the underlying securities; they
are not the same as the premiums at which options are actually
trading, which may be above or below what is theoretically fair.
In a few instances earlier in this book, the focus of attention was
on implied volatility, which is a measure of volatility derived
from the premiums at which options are being bid or offered. In
no case, however, was attention directly paid to real-market
option premiums. That changes with the current chapter, which
focuses on the premiums at which options are actually trading
in the marketplace, rather than merely on theoretical fair pre-
miums or stock price behaviors.

Do real options trade at prices consistent with theoretical 
premiums, such as those calculated with the conditional distribu-
tion methodology? How do actual option premiums compare to ter-
minal price expectations? Can option pricing approaches like those
investigated in this book provide an edge to the options trader?
Can such models be used to generate profitable trades? These are
among the questions the study in this chapter begins to address by
comparing theoretical fair value with observed market premiums.
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DATA AND SOFTWARE

Two databases were used in the studies in this chapter. The first
database contained data (extracted from Worden Brothers 
TC-2000 at www.worden.com) for 2,246 stocks and 1,834 bars.
The data ran from January 2, 1996 through April 14, 2003. Data-
base fields, for every bar and every stock, included Date, Open,
High, Low, Close, Volume, and Split Factor. The data were back-
adjusted for splits, but the original (uncorrected) prices and vol-
umes were recoverable, if needed, thanks to the inclusion of a
split factor among the database fields. The data were stored in
a binary format for speedy access. For full details, consult the
section on raw data in Chapter 4.

The second database used in the following studies contained
raw options data. The data were extracted from files downloaded
from www.stricknet.com, and spanned the period from March 1,
2002 through March 27, 2003. Each database record contained
the following fields: Quote Date, Underlying Symbol, Stock High,
Stock Low, Stock Close, Stock Volume, Strike Price, Bid, Ask,
Volume, Open Interest, Expiration Year, Expiration Month, and
Option Type (put or call). Database records were arranged in
chains so that data for all options trading on a specified stock on
a given day (or bar) could be retrieved as single unit with one
efficient procedure call. There were, on average, 2,100 options
chains collected per day on roughly 2,200 stocks. Each chain
averaged about 56 options (including LEAPS). The total number
of option quotes in the database was over 30 million. As with the
stock database, the options database was maintained in a highly
compressed, variable record size binary format designed for max-
imum speed and storage density.

The databases were maintained and accessed using
libraries of routines written in ISO-standard C/C++. Standard
C/C++ was also used for most of the analytic calculations. Some
final analyses were performed in Excel, which was also
employed for graphics and presentation-quality tables.

STUDY 1: STANDARD VOLATILITY, 
NO DETRENDING

This study compares the premiums at which options are 
actually trading with theoretical fair values derived both from
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Black-Scholes and from terminal option price expectation. Both
actual market premiums and theoretical premiums are exam-
ined as a function of strike and standard historical volatility.
The need to examine stock price is avoided, and the interpre-
tation of the results is simplified, by the rescaling of all initial
stock prices to a nominal $100, and the rescaling of all option
premiums to be consistent with the rescaled stock prices.

Where do real option bid and offer prices fall with respect to
Black-Scholes and to a good (even if somewhat noisy) theoretical
estimate of fair value? Can money be made off pricing errors? Are
real option premiums affected by the volatility payoff phenome-
non? These are the questions addressed by the current study.

Method

Because of the need to analyze both stock data and options data,
the analytic procedure was more complex in the current study
than in most of the studies found in earlier chapters.

The analysis began with the selection of a reference bar
from one of the 1,834 bars in the binary stock database. A bar
qualified for selection as a reference only if (1) the binary
options database contained data for options trading on the date
associated with that bar, and (2) there were mtlcal calendar
days left until option expiration. In the current investigation,
mtlcal, the time left in calendar days, was set to 14.

Next, a stock was selected from the 2,246 stocks in the
binary stock database. A stock qualified for selection only if the
following criteria were met: (1) the stock was alive over the 30
bars immediately preceding the reference bar (required for cal-
culation of historical volatility), (2) the unadjusted (not correct-
ed for splits) stock price on the reference bar was greater than
$5, (3) options trading on the stock could be found in the binary
options database, and (4) a valid options chain existed for the
stock on the currently selected bar or date.

An options chain was retrieved for the selected bar of the
selected stock. The chain consisted of all options (including
LEAPS) trading (actively or not) on the selected stock at the
specified bar. The retrieved chain was checked to verify that 
the options data matched the stock data; any data mismatch
would indicate a database error and was programmed to 
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trigger a so-called “fatal error” and terminate the analysis 
program. It should be noted that no such terminations were
encountered.

Each option in the chain was then examined. First, the
expiration date was checked. If the expiration date was mtlcal
calendar days beyond the reference bar, then processing con-
tinued; otherwise attention shifted to the next option in the
chain. Second, the option premiums were checked for validity. If
the ask price was less than the bid price, or if the ask was more
than $0.25 greater than the bid, the option premiums were con-
sidered invalid. A bid greater than the ask suggested either a
data error or a crossed market; an ask too much greater than
the bid indicated an illiquid market and the possible abdication
by market makers. If the premiums appeared valid, the next
step was performed; otherwise, attention again shifted to the
next option in the chain. Third, the option’s type was examined.
If calls were being analyzed and the option was a put, attention
moved to the next option in the chain. If the option was of the
correct type, the next step was performed.

The next step was to rescale the price of the stock at the ref-
erence bar to a nominal $100 and to adjust the option’s strike,
bid, and ask prices to be consistent with the rescaled stock price.
The terminal stock price, i.e., the price of the stock at option
expiration, was also adjusted to be consistent with the rescaled
stock price at the reference bar. These rescalings and adjust-
ments simplified the analysis as well as the interpretation of 
the results by eliminating stock price (at the reference bar) as 
a variable in need of consideration.

Array indices were then calculated. The first array index,
the row index, was calculated as

ix1 == (int)floor(0.5 ++ (nlsk-1)*(x1-bskmn)/(bskmx-bskmn))

where nlsk was the number of strike levels or categories, x1
was the option’s rescaled strike price, bskmn was the center of
the lowest strike category or bin, and bskmx was the center of
the highest strike level.

The second array index, the column index, was determined as

ix2 == (int)floor(0.5 ++ (nlvx-1)*(x2-bvxmn)/(bvxmx-bvxmn))
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where nlvx was the number of volatility levels, x2 was the stan-
dard 30-bar historical volatility, bvxmn was the center of the
lowest volatility category, and bvxmx was the center of the high-
est volatility level.

If the array indices were within range, i.e., 0 ≤ ix1 ≤ nlsk
and 0 ≤ ix2 ≤ nlvx, then data for computing the bin statistics
were accumulated in eight arrays. The first array was used to
accumulate the event or bin counts; bin counts were accumu-
lated by incrementing the value of the element addressed by the
indices by one. The second array accumulated the sums of the
first independent variable, the strike price, i.e., the strike price
was added to the value of the element addressed by the indices.
The third array accumulated the sums of the second indepen-
dent variable, the historical volatility, in the same manner. The
fourth array was used to accumulate the sums of the terminal
option prices, which were computed from the terminal stock
prices and strikes. The fifth array was used to accumulate the
option bid premiums, while the sixth array was used to accu-
mulate the ask premiums. Black-Scholes premiums—computed
based on the historical volatility (x2), strike (x1), time left 
(mtlcal), and interest rate (at the reference bar)—were accu-
mulated in the seventh array. Finally, the eighth array was used
to accumulate the terminal stock prices for each combination of
strike and volatility.

Once the arrays were updated, the next stock was selected.
After all stocks were processed at the current bar, the next ref-
erence bar was chosen. Processing continued in this fashion
until, for every valid stock and bar, options trading on that stock
and bar had been examined.

The next step in the analysis involved taking the data accu-
mulated in the eight arrays and using it to compute various bin
statistics. For each combination of strike level (ix1) and volatility
level (ix2), the following statistics were computed: (1) the mean
strike, (2) the mean volatility, (3) the mean or expected terminal
option price, (4) the mean option bid price, (5) the mean option ask
price, (6) the mean Black-Scholes price, and (7) the mean termi-
nal stock price. These seven statistics were calculated by dividing
the values in arrays two to eight by the value in array one, the
case count, on an element-by-element basis. If the case count for
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a given combination of strike and volatility was zero, all bin sta-
tistics were set to zero to indicate their noncomputability.

Finally, the case counts in the first array, as well as the
additional statistics in arrays two to eight, were written to a
standard text file as a set of tables, one table for each level of
volatility. The entire analysis was performed for both puts and
calls. The resultant text files containing the bin statistics were
then loaded into an Excel spreadsheet so that further analysis
could be performed, and tables and charts prepared.

Results

The results consisted of several large arrays of figures. Only four
subsets of these figures are presented as graphs and discussed.
Each subset corresponds to a few columns of data for a particu-
lar combination of option type and historical volatility and is
discussed in its own section. The first section covers call options
trading on stocks with historical volatilities centered at 30%, the
second section covers put options on stocks with 30% volatility,
the third section covers call options on stocks with 90% volatility,
and the fourth section covers puts trading on stocks with his-
torical volatilities centered at 90%.

Calls on Stocks with 30% Historical Volatility
Figures 9–1 and 9–2 show mean premiums for call options trad-
ing on stocks having 30% volatility plotted as a function of
strike. The solid line with small triangular markers (OASK) rep-
resents the mean ask price for calls trading on such stocks. The
solid line with square markers (OBID) represents the mean bid
price. The dotted line (Poly. THEO) represents a simple smooth-
ing polynomial fitted to theoretical premiums based on the
expected terminal prices of the calls, as computed from the ter-
minal stock prices; the small x markers (THEO) are the raw
(unsmoothed) theoretical premiums. Finally, the broken dash-
dot line (BSPM) represents premiums computed with Black-
Scholes. Figures 9–1 and 9–2 differ only in that Figure 9–1
shows data for calls that are out-of-the-money (strike greater
than the nominal $100 stock price), while Figure 9–2 shows data
for calls that are in-the-money (strike less than $100).
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The Black-Scholes fair premiums are amazingly close to
the posted bids, but well below the much higher offers (or ask-
ing prices), for all out-of-the-money calls trading on stocks hav-
ing 30% historical volatility. The fair premiums based on
terminal price expectation start off a little below the posted
offers for calls that are at-the-money or just slightly out-of-the-
money (left side of Figure 9–1); they end up just above the bids
for deeply out-of-the-money calls (right side of the figure).
Although all premiums except the offer are quite small for
deeply out-of-the-money calls, the expectation-based fair values
are several times larger than either the posted bids or the
Black-Scholes price estimates.

As can be seen in Figure 9–2, the Black-Scholes premiums
lie slightly above the bids for deeply in-the-money calls; for all
other in-the-money calls, they closely hug the bids, just as was
the case with out-of-the-money calls. For deeply in-the-money
calls, the theoretical fair values derived from the terminal
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expectations fall significantly above the posted offers or asking
prices.

Why do Black-Scholes premiums computed using standard
30-bar historical volatility tend to hug the means of the posted
bids? There are two possible (and not mutually exclusive) expla-
nations. The first explanation is that the Black-Scholes esti-
mates are low because of the regression to the mean to which
raw historical volatility is subject. Since historical volatility was
30%, well below the mean of 52%, Black-Scholes can be expected
to underprice the options; instead of the Black-Scholes dash-dot
line appearing midway between the ask and the bid, it appears
lower down in the chart, hovering around the bid. The second
explanation is a much simpler one: traders place their bids at
the Black-Scholes price because they believe that this is what
the options are worth.

Why do deeply out-of-the-money calls have a theoretical
fair value, determined by terminal price expectation, that is 
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several times the fair value calculated with Black-Scholes?
There are probably two reasons. The first is the tendency of
Black-Scholes (but not terminal price expectation) to underprice
options in low volatility situations. The second reason is kurto-
sis; out-of-the-money options have greater value than Black-
Scholes indicates when the distribution of stock returns has
longer tails than the log-normal distribution.

Finally, why are the theoretical expectation-based fair premi-
ums greater than the posted asks for deeply in-the-money calls?
Deeply in-the-money calls often seem to trade below fair value.
Perhaps people do not like to buy “expensive” options that appear
to be more risky and to provide less leverage. Less buying—less
demand—translates into lower prices. Also, as options rise in price
(as they go from out-of-the-money to in-the money), they get sold—
either to take a profit or to cover a losing short position. And, there
is the volatility payoff, which should, theoretically, have its great-
est effect on high Delta, i.e., in-the-money options. The volatility
payoff clearly affects terminal price expectation for options, but
may not be reflected in the prices at which actual options are being
offered.

Calls on Stocks with 90% Historical Volatility
Figures 9–3 and 9–4 show premiums for out-of-the-money and
in-the-money calls on stocks having 90% volatility. Mean bid
and ask prices at each strike are represented by the solid lines
marked with squares and triangles, respectively. Theoretical
fair premiums derived form Black-Scholes are represented by
the dash-dot line, while those derived from mean terminal
option price are represented by the x markers and by the dotted
line (a smoothing polynomial fit to the data).

Black-Scholes fair premium tracks the posted offers for
moderately out-of-the-money calls; it falls midway between the
bids and the offers for deeply out-of-the-money calls and for
most in-the-money calls. The theoretical fair value (based on ter-
minal option price expectation) tends to hug the bids for out-of-
the-money calls, rises above the offers for at-the-money options,
falls between the bids and offers for moderately in-the-money
calls, and goes back up to the ask (or even above) for deeply in-
the-money calls.
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The raw (unsmoothed) theoretical premiums (depicted in
Figures 9–3 and 9–4 by the x markers) are far more scattered
with calls on the 90% volatility stocks than they were for calls
on the stocks having 30% standard 30-bar historical volatility.

The last observation, that the premiums based on terminal
option price expectation are more scattered for options on stocks
with 90% volatility than for those on stocks with 30% volatility,
is easy to explain; there are far fewer data points at the 90%
volatility level than there are at the 30% volatility level and,
consequently, the standard error of estimate, the “noise,” is
much greater in the former case.

The fact that Black-Scholes now tracks the offers (or falls
midway between them and the bids) rather than tracking the
bids (as it did for calls on stocks having 30% volatility) can be
explained in terms of mean reversion. At 90%, volatility is high—
well above the mean to which it will revert. This implies that
Black-Scholes will tend to overprice the calls; in the earlier case
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of calls on stocks with 30% volatility, Black-Scholes tended to
underprice them. Another explanation is that, when volatility is
high, many traders want to sell calls (either naked or as covered
writes) and place their offers at what they believe is a fair
price—the price indicated by Black-Scholes.

Why, then, are the true values (based on terminal option
price expectation) near the bids for out-of-the-money calls? 
In other words, why are the actual call premiums (as represented
by the average of the bid and ask prices) high relative to their
true worth? Perhaps speculators (the naive ones) like to buy low-
priced, out-of-the-money options on volatile stocks with the hope
of striking a home run and achieving a windfall profit and thus
drive up the prices of these options. At-the-money options may
have premiums that are below what is, theoretically, fair because
these options are the prime targets of covered writers looking to
profit from the steady decay of time value. At-the-money options
on volatile stocks are flush with time value, making them a good
choice for covered writers intending to generate large returns.
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Finally, it should be noted that there is often a wide gap
between fair value as determined by Black-Scholes and fair
value as determined by the presumably more valid (albeit nois-
ier) terminal option price expectation. How wide can this gap
become? As an example, consider calls struck at $112 trading on
a $100 stock that has a volatility of 90%. In this case, the Black-
Scholes price is around $3, while the expectation-derived fair
value is just over $1, a difference that is quite noteworthy.

Puts on Stocks with 30% Historical Volatility
Figures 9–5 and 9–6 plot mean premiums against strike price
for out-of-the-money and in-the-money puts trading on stocks
with 30% standard historical volatility, respectively. The premi-
ums plotted are the offers (solid line, triangular markers), the
bids (solid line, square markers), the Black-Scholes numbers
(broken, dash-dot line, no marker), and the fair premiums based
on the mean terminal option prices (dotted line and x markers).
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Black-Scholes premiums are lower than the posted bids for
out-of-the-money and at-the-money puts, in-between the bids
and offers for in-the-money puts, and at or above the offers for
deeply in-the-money puts. Theoretical fair values based on ter-
minal option price expectations are just below the offers for out-
of-the-money and at-the-money puts, in-between the bids and
offers for slightly in-the-money puts, and at or below the bids for
moderately to deeply in-the-money puts (except for the last two
data points where the theoretical fair value is back at the offers,
probably due to sampling error in the latter).

Why do out-of-the-money puts appear expensive relative to
Black-Scholes, but reasonably priced when future price expecta-
tion is used as the gauge? One possibility is the use of out-of-the-
money puts as insurance. Hedgers are willing to pay slightly more
than the Black-Scholes fair premium for the protection puts offer
against sudden downdrafts and corporate scandals in uncertain
times. Also, Black-Scholes underestimates value at low (e.g., 30%)
volatility levels. The higher levels of the expectation-based value
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estimates can be explained by the fact that these estimates are
unaffected by mean reversion in the volatility figures. Smart
sellers might also place their offers well above Black-Scholes,
closer to the actual values, in the hope of getting good prices.

Moderately in-the-money puts also appear expensive.
Black-Scholes hovers just above the bid and expectation-based
values hover at or below the bid. Perhaps this is due to a high
demand for out-of-the-money calls, which drives up their prices.
Higher prices for out-of-the-money calls translate (via put-call
parity) to higher prices for in-the-money puts.

Puts on Stocks with 90% Historical Volatility
Mean premiums for puts on stocks with 90% standard 30-bar
historical volatility are plotted in Figures 9–7 and 9–8. Figure 9–7
contains premiums for out-of-the-money puts, while Figure 9–8
contains premiums for in-the-money puts. The premiums plot-
ted are the asks or offers (solid line with triangular markers),
the bids (solid line with square markers), the Black-Scholes 
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figures (dash-dot line with no markers), and the expectation-
based fair premiums (dotted line, x markers).

For out-of-the-money puts on stocks with 90% historical
volatility, Black-Scholes premiums fall between the bids and the
asks; for in-the-money puts, Black-Scholes premiums tend to
track the offers, and are far above the bids. Fair premiums based
on terminal option price expectation are at or below the bids for
both out-of-the-money and in-the-money puts; they fall well
below the bids for near-the-money and deeply in-the-money
options.

The higher Black-Scholes readings relative to the bids 
and offers of the puts on the stocks with 90% volatility are most
likely an effect of mean reversion: at 30% volatility, Black-Scholes
premiums were lower than they should be; now, at 90%, they 
are higher. The bids are greater than or equal to the expectation-
based estimates of fair premium because puts are often bought
for protection, even if the price is high, and are only occasionally
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sold (though they are considered equivalent, naked put selling 
is considered much riskier than covered writes using calls).
At-the-money and deeply in-the-money puts have bids and
offers that are much higher than the expectation-based esti-
mates of fair value. This may be due to out-of-the-money calls on
high volatility stocks being in high demand, together with the
action of put-call parity. Another possibility is that traders are
placing their bids and offers based on Black-Scholes, rather than
on better estimates of fair value. Most likely of all, the puts are
trading above their true value due to volatility-related trends
that neither market participants nor Black-Scholes take into
account; in other words, the volatility payoffs in the underlying
stocks. Positive trends in the underlying stocks associated with
the volatility payoff phenomenon would make puts—especially
in-the-money puts with high Deltas—worth less than the value
placed on them by Black-Scholes (or by market participants who
accept the risk-neutral hypothesis), just as such trends cause 
in-the-money calls to be worth more than standard models 
indicate.

SUMMARY

This chapter presented a brief investigation of real option prices
in relation to two measures of theoretical fair value. Obviously,
a lot more work of this kind needs to be done. Below is a list
some of the avenues of investigation that may be pursued by
those who feel so inclined.

The examination of the effect of historical skew and kurto-
sis on actual option prices is included in the “to do” list. Another
topic for study is the usefulness of technical or other indicators
in the prediction of real option prices, as well as in the predic-
tion of the relationship between such prices and future price
expectation.

An even more important subject to pursue is the inter-
action of current market premiums with volatility, strike, and
other variables in the determination of terminal option price
expectation (empirical fair value). Examining such interactions
can reveal whether there are any pricing inefficiencies that can
actually be exploited for a profit. This subject is so important
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that it is worth considering in further detail. For example,
assume a set of $100 stocks with historical volatilities of 90%.
Further assume that $110 calls with 14 calendar days remain-
ing are trading on those stocks, that the bids have a mean pre-
mium of $1 and a standard deviation of $0.20, and the terminal
option price expectation is $1.10 (as was approximately the case
in Figure 9–3). What would happen if a trader bought all the
calls that have bids of $0.60 or less (i.e., two standard deviations
below the mean) and sold them later, at or near expiration?
Would that trader make a profit? The answer depends on the
terminal option price expectation: If it is unchanged in the sub-
set of data points that correspond to calls with bids of $0.60 or
less, then the trader should be able to close out the positions at
just over $1, thus taking a hefty profit from the trade. However,
perhaps there is an interaction between volatility and strike, on
the one hand, and option price, on the other; perhaps the subset
of data points has a terminal option price expectation of $0.60.
If that is the case, the trader will not even break even; he or she
will incur a loss due to transaction costs. The more likely sce-
nario is that the terminal expectation will fall somewhere
between $1.10 and $0.60, making some profit-taking possible.
Determining which outcome is likely can be accomplished through
empirical studies of the kind that appear throughout this book
and especially in this chapter; such studies are just the kind
that are needed to locate exploitable pricing inefficiencies.

A final suggestion for further study concerns the large
spreads between the bids and offers that appear in Figures 9–1
through 9–8. When trading, what is the best way to deal with
these spreads? Where should one place limit orders (i.e., bids or
offers)? In our experience as traders, that is an important ques-
tion that needs a clear answer if one hopes to succeed in the
options game.
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The overall purpose of this book was to work toward discover-
ing the factors that would contribute to a better option pricing
model. We first examined the very element that option pricing
models are designed to predict—fair value—and the influences
that affect it. We then took a critical look at some of the standard
option pricing models to determine how they work, what
assumptions they make, and how they fare when put to the test
on real-market data. We learned from the weaknesses we dis-
covered and took the next step: exploring alternative ways of
finding accurate estimates of fair value. We systematically inves-
tigated some potential nonstandard approaches that are unlike
those that have already been heavily discussed as means to price
options. We found that these nonstandard solutions seem to hold
the promise of yielding excellent results in a difficult arena.

In this final chapter, we present you with the highlights of
our findings and suggestions for further investigation.

DEFINING FAIR VALUE

As a foundation to the study of option pricing, it was necessary
to precisely define fair value in a useful manner. Beginning with
the intuitive notion, which involves the concept of something
being overpriced or underpriced, we moved on to a more exact
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402 Conclusion

and operational definition of the term. Fair value was defined in
terms of its relationship to arbitrage and to the mean future
price of a security. More specifically, a security or option may be
regarded as fairly priced when any potential to profit from
either arbitrage, or from the difference between the current
price and the mean (or statistically expected) future price, is
nonexistent. Fair value is, therefore, closely related to the effi-
cient market hypothesis. An option or other security is fairly
priced when it is efficiently priced, i.e., when its price discounts
all current knowledge regarding the security’s future price or
arbitrage potential. This definition of fair value is the one that
underlies all the investigations in this book.

The operational definition of fair value makes reference to
mean or expected future price. While the future and its possibil-
ities are unknown until they occur, they can be characterized in
terms of probability distributions. The mean (or expected) future
price of an option, or other security, must be understood on the
basis of probability distributions. A very simple Monte Carlo
experiment demonstrated how the fair value of an option might
be determined from certain assumptions regarding how stock
price movements behave and are generated. Our attention then
turned to popular models that attempt to determine fair value.

POPULAR MODELS AND
THEIR ASSUMPTIONS

The Assumptions Themselves

One of the two most popular pricing models is Cox-Ross-
Rubinstein. The primary assumption made by the standard
version of this model is that stock prices are generated by
a sequence of proportional, independent, random shocks, each of
which is drawn from the same distribution. A complete deriva-
tion of the model was performed. The standard Cox-Ross-
Rubinstein model, as demonstrated by a variety of techniques,
bases its estimate of fair option price on the calculated mean
terminal price of an option under the assumption that the
terminal price of the stock (its price at option expiration) has
a binomial distribution with a known mean and standard
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deviation or volatility. In the limit, as the number of time steps
over which the model is computed (and over which the price
shocks occur) approaches infinity, the option price estimate gen-
erated by the model approaches the mean terminal price of an
option on a stock with a terminal price distribution that is log-
normal. The terminal distribution, in fact, approaches log-normal
very rapidly; even for a small number of time steps, the approxi-
mation to log-normal is very close. To summarize: the model
assumes that stock prices in each time step move either up or
down by some specified proportion or percentage, that these
movements are random and independent of one another, and
(thanks to the Central Limit Theorem in its proportional form)
that as the number of time steps grows large, the theoretical
option price generated by the model is consistent with the
assumption of a log-normal distribution of returns.

Another popular model, Black-Scholes, was originally derived
from the perspective of the elimination of arbitrage opportunity.
An analysis using various techniques demonstrated that the
Black-Scholes formula is actually a closed-form solution for the
expected terminal price of an option under the assumption that
the underlying stock has a log-normal distribution of returns.

During the investigation of these models, it was found that
both the standard Cox-Ross-Rubinstein (computed with a large
number of time steps) and Black-Scholes involve essentially sim-
ilar assumptions and yield virtually identical theoretical option
prices. It was further demonstrated that a log-normal terminal
price distribution (or distribution of returns), which both models
implicitly assume, is exactly what would be expected if returns
are the result of a series of random, proportional price changes.

Strengths and Weaknesses of Popular Models

The study of the Cox-Ross-Rubinstein and the Black-Scholes
models also revealed their strengths and weaknesses. The
strength of the Cox-Ross-Rubinstein (or binomial) model is
its flexibility. For example, it can easily be adapted to price
American-style options, to handle volatility or other influential
factors that vary over time, and even to price options under
different distributional assumptions. In addition, this model is
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transparent and easily understood. The main weakness (if it
really is one in today’s world of high-powered computing) is that
this model is computationally intensive.

Unlike Cox-Ross-Rubinstein, the Black-Scholes model is
not very adaptable. For example, it cannot be readily modified to
price American-style options. Also, the Black-Scholes model is
unable to price options under different assumptions regarding
either distributions or the constancy of such variables as vola-
tility and interest rates. The strength of this model is that it can
be computed quickly and easily. Black-Scholes is also readily
available: it has been programmed into most software packages
that a trader, hedger, or other financial specialist might use.

VOLATILITY PAYOFFS AND DISTRIBUTIONS

Until now, we have been discussing models that assume a log-
normal distribution of returns. A log-normal distribution of
returns has some interesting implications. Specifically, if a stock
has a log-normal (or other positively skewed) distribution of
returns, and if there is an equal probability that its price will
either rise or fall over the holding period, then the average return
will not be zero, as might naively be expected, but will be some pos-
itive number that increases with increasing volatility. In other
words, there will be a volatility payoff. To have no volatility payoff
(i.e., to have a return with an average of zero) when the returns
have a positively skewed distribution, the probability of the stock
falling must be greater than the probability of the stock rising. The
phenomenon was shown to be more than just a mathematical con-
struct. Experiments demonstrated that not only was it present in
synthetic stock returns (prepared with a log-normal, pseudo-
random number generator), but that it also occurred (to varying
extents) with real stock returns taken from the NASD and from
the NYSE.

MATHEMATICAL MOMENTS

Given the importance of statistical distributions in determining
the expected future prices of stocks and options, the mathematical
moments of actual stock returns were examined. Moments are
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useful in characterizing distributions. The first two moments are
the mean and the variance (or standard deviation). In the world of
stocks and options, the mean represents trend and the standard
deviation represents volatility. Additional important moments are
skew and kurtosis.

Moments and Holding Periods

The statistical moments were computed for returns that
involved different holding periods, days of the week, times of
the year, and day in relationship to option expiration.

If price movements are the result of a series of randomly
independent shocks, then the volatility of returns from different
holding periods should scale proportionately to the square root
of time. For example, the standard deviation of returns from a
one-week holding period should be half of the standard devia-
tion of returns from a four-week holding period. In the context
of holding periods, the study of returns demonstrated that this
proportionality of volatility to the square root of time was
approximately the case for individual stocks, but definitely not
the case for such index tradeables as the QQQ and SPY. The
scaling of volatility in proportion to the square root of time is
assumed by such standard models as Black-Scholes. The fact
that, for individual equities, volatility scales approximately
with the square root of time suggests that individual price
movements are at least approximately independent of one
another; they are close to random in the sense that the price
change in one time step cannot be easily predicted from the
price changes in nearby time steps. For the QQQ and SPY index
securities, the condition of independence was not satisfied.
However, the statistical independence of the returns in one time
step from those in another (i.e., the statistical independence
of the price shocks) is an assumption made by the standard
models.

Moments and Distributions

Regardless of the holding period, the distribution of returns was
found to differ significantly from log-normal. In our investigations,
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stocks typically exhibited negative skew across all holding peri-
ods; this could not be an artifact of the data analysis since a
similar analysis of synthetic Monte Carlo stocks evidenced no
skew. The distribution of returns also exhibited positive kurtosis.
Kurtosis was greatest for short holding periods, but present for
all that were examined. In other words, the distribution of
returns had longer tails and a sharper peak than the normal
distribution. Extreme gains and extreme losses, as well as prices
that moved hardly at all, were far more frequent than predicted
by a log-normal distribution, while moderate price movements in
either direction were less frequent. Of course, Black-Scholes and
similar models assume a log-normal distribution and, therefore,
no kurtosis. A high level of kurtosis means that out-of-the-money
and in-the-money options will have greater value than would be
indicated by a model that assumes a log-normal distribution.

Moments and Day of the Week

The moments characterizing the distribution of returns clearly
differed with the day of the week when one bar (one trading day)
returns were examined. First, volatility over the weekend was
only marginally greater than the average volatility for all days
during the week. This suggests that, when pricing options, bar
time should be used—not calendar time, which is the measure
most frequently employed. Calendar time treats weekends as if
they had a volatility roughly equal to the square root of 3 (or )
multiplied by the volatility of a typical weekday. Growth (or the
mean return) for the average stock was negative on Monday,
positive on Friday, and slightly positive on Wednesday; this is
consistent with trading lore that suggests that Monday is a
down day and that Friday is often strong. Volatility, the second
moment, was highest on Monday, which is also generally con-
sidered a volatile day. Volatility was lowest on Friday for stocks
and on Wednesday for indices. Skew was decidedly negative for
every day of the week, with Monday being the most and
Wednesday the least negative. For indices, skew was quite neg-
ative on Monday, but mildly positive on Wednesday and Friday.
Kurtosis was strongly positive for every day of the week for both
indices and stocks, with Monday having the most extreme
positive kurtosis.

3
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Moments and Seasonality

Very strong seasonal effects were found in the first four
moments of real-market returns. September was generally a
month of negative growth and November through the end of
June was a period of strong positive growth. Spikes of negative
growth tended to appear in September and July.

Volatility varied dramatically with time of the year: well
over 25% from its highest to lowest levels. Volatility was lowest
in February, May, August, and November. It was highest in early
January, early March, July, late September, and early October.
In other words, volatility exhibited a clear, quarterly cycle that
may be related (in timing) to the release of earnings reports.
The seasonal impact on volatility was so large that it should be
accounted for in any good volatility estimate or directly within
an option pricing model.

Skew, like volatility, also differed with time of year. Positive
skew was observed only in late December and early January.
Extremely negative skew was observed in July through October,
with the most negative skew occurring near the end of
September. Modestly negative skew was observed at most other
times of the year. It seems that crashes or sharp downdrafts
characterize the period from July through October, while equal-
ly sudden upward thrusts in price are typical of late December
and early January. When we say “a sharp downdraft” or “a
sudden thrust,” the reference is to a sudden move that occurs
against a backdrop of more moderate movements; we are not
referring to trend. Seasonality was also evidenced in kurtosis.
The lowest kurtosis was observed in March, April, and May,
while the highest kurtosis was seen in December. Middle levels
of kurtosis occurred over the rest of the year.

There is no doubt that the distribution of returns differs
with the time of the year. At certain times of the year, log-
normality is more violated than at others and volatility 
varies sufficiently to produce major differences in the worth of
options.

Moments and Expiration Date

The results demonstrated that the timing of returns relative to
expiration date also affects their distributions. In terms of the
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first moment (mean return or growth), negative returns tended
to occur on expiration Friday, despite the fact that, in general,
Friday is a day of positive returns. Tuesday, usually a neutral
day, had positive returns during expiration week. Returns were
negative on the Wednesday and Thursday in the week prior to
expiration, while the Friday and Wednesday that occur two
weeks before expiration evidenced strong positive growth (nor-
mal for those days) and Monday showed negative growth (also
normal).

Volatility, which might be expected to be greatest on expi-
ration Friday, was not; instead, it was mildly elevated on the
previous day, Thursday. The Monday of expiration week also
exhibited elevated volatility, but it was well within the range of
a normal Monday.

Not surprisingly, skew was most negative during expiration
week, with Monday, Thursday, and Friday being the most nega-
tive days (in that order); these are typically the days of potential
crashes or sharp spikes in a downward direction. The Friday
prior to expiration Friday also had negative skew.

Along with negative skew, exceptional levels of positive
kurtosis were found during expiration week. The highest levels
were on Thursday and Monday, with Friday falling just behind.
The extremely high level of kurtosis just prior to expiration was
the primary finding of this study. During expiration week, there
was an excess of extreme movement (up and down), and an
excess of small or negligible returns, both at the expense of
moderate ones, with a bias (due to the negative skew) towards
the downside. The trader who sells premium near expiration
will very frequently profit from a quiet market but, once in a
while, will experience a stunning loss.

When thinking about pricing options, consideration must
be given to the findings that concern the moments that charac-
terize the distributions of the underlying stock prices. Even
when using popular models (like Black-Scholes) with standard
estimates of historical volatility, corrections should be made to
compensate for the distortions that occur due to both violations
of the assumptions of these models, as well as to variation with
holding period, day of week, and time of year in the various
moments, most notably, volatility.

408 Conclusion

7746.qxd  28/12/04  12:59 PM  Page 408



VOLATILITY

One of the moments, volatility, is central to all attempts to deter-
mine the theoretical fair value of an option. Volatility was, there-
fore, given a great deal of attention in our study of option
pricing. Many important facts were learned.

When pricing options it should be understood that the
volatility of interest is not the easily measured historical or
implied volatility; rather, it is the volatility that will take place in
the future, during the holding period prior to option expiration.

Standard Historical Volatility as an Estimator of
Future Volatility

One extremely important finding is that standard historical
volatility exhibited regression to the mean. When historical
volatility is extremely low, future volatility tends to be higher
and options tend to have more value than would be suggested by
a model that employs uncorrected historical volatility. At high
levels of historical volatility, regression to the mean operates in
the opposite direction. Future volatility—and, in turn, the
actual worth of options—will be less than what a model like
Black-Scholes might indicate, if the model is used with uncor-
rected historical volatility. If historical volatility is to be used as
an input to a pricing model that does not implicitly correct for
regression to the mean, corrections to historical volatility must
be made before entering it as one of the inputs to the model.
This is very easy to accomplish using any of several charts in
Chapter 5, which show the relationship of future to historical
volatility, or by using one of the simple polynomial regressions
that appear in these charts.

In addition to regression to the mean, a capping effect was
discovered: as historical volatility increases, future volatility
reaches a plateau from which it rises no higher. It was discov-
ered that a simple quadratic model could accurately describe
the relationship between future and historical (or past)
volatility.

Given the importance of volatility, and the tendency for
mean reversion to distort option pricing, an attempt was made
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to use two measures of historical volatility (a longer- and a
shorter-term one) to determine whether better predictions of
future volatility could be obtained. It was demonstrated that
each of the historical volatility measures contributed useful and
independent information; therefore, they could be combined into
a model that would yield more accurate estimates of the future
volatility upon which option prices depend. A simple quadratic
polynomial model that used two measures of historical volatility
was able to produce distinctly better estimates of future volatil-
ity and to fully correct for regression to the mean.

The Reliability of Different Measures of Volatility

At this point, we became concerned with the reliability of differ-
ent measures of volatility. Although standard volatility (meas-
ured as the square root of the second moment of returns) is the
most frequently used, there are other well-known ways of meas-
uring volatility, including the average range method. Reliability
is important because the reliability of an independent variable
places a limit on its effectiveness when used in a model designed
to predict some dependent variable. To determine the reliability
levels of the various measures of volatility, methods were used
from the world of psychometrics.

Implied volatility had the highest reliability, followed close-
ly by average range volatility, and then by the other measures
examined. Obviously, in any predictive model, it is probably
worthwhile to use the most reliable measures for the variables
of interest. With historical volatility measures there is a trade-
off. For measures like the standard one and the average range,
reliability increases with the look-back period (in numbers of
bars). However, an increase in the look-back period means a
decrease in the representativeness of the measurement with
respect to the current status of the market. For example, while
a 500-bar volatility measurement, e.g., might be exceedingly
reliable, its validity for predicting volatility during the forth-
coming week will probably be less than that of a not quite so
reliable 30-bar historical measure. In addition, based on its
stability coefficient (the estimated correlation of perfectly
reliable measures of volatility taken from nearby times),
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volatility appears to be a relatively enduring and predictable
characteristic.

Developing a Better Estimator of Future Volatility

The next step was to determine whether a notably better esti-
mate of future volatility could be achieved by incorporating
some of the findings from the study of moments. A regression
model that involved a long- and a short-term measure of aver-
age range historical volatility (the most reliable measurement
of historical volatility), together with three harmonics of a quar-
terly seasonal cycle, was fit to the data. This regression included
linear, quadratic, and interaction terms for the historical volatil-
ity measurements, as well as terms consisting of sines and
cosines for the three quarterly harmonics. The result was a
dramatically improved estimator of future volatility.

Even with a standard model, the use of an estimator like
the one just described will vastly improve the accuracy of the
theoretical option prices that are generated. The regression esti-
mate does not suffer from regression to the mean or the capping
effect, and the relationship between actual future volatility and
estimated future volatility over the range of 20% to 140% is
described by a virtually perfect straight line. One can, of course,
do even better by taking into account additional variables;
the result being to reduce the uncertainty regarding the level
of future volatility. At least, however, the model just described
does not suffer from serious systematic distortions or biases.

Implied Volatility

Implied volatility was also examined from a variety of per-
spectives. A disadvantage in the use of implied volatility is that
it only permits relative evaluations of option worth (the worth of
one option against another), rather than absolute appraisals.
When used as a predictor of future volatility, implied volatility
suffered from the same distortions—regression to the mean and
capping—as standard historical volatility. It did not have any
of the magical virtues sometimes attributed to it, like the abili-
ty to more accurately anticipate future stock price movements;
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implied volatility was not a crystal ball that could be used to
divine the future.

A path analysis showed that implied volatility was mostly
determined by historical volatility. The correlation between
implied volatility and future volatility was, to a great extent, a
function of the influence of historical volatility on both. When
implied volatility was treated as the target being influenced,
historical volatility was shown to be the dominant influential
factor; future volatility had only a minimal impact. An effect of
insider knowledge (and other similar factors) on implied volatil-
ity may be present, but is not of sufficient strength to be very
important from a practical standpoint. For the most part, implied
volatility is set by the actions of traders and hedgers who influ-
ence option prices by placing trades based on the use of pricing
models that employ various measures of historical volatility or
estimates of future volatility computed from such measures.

CONDITIONAL DISTRIBUTIONS

When the goal is to appraise options, the probability distribu-
tion used as the basis for determining the expectation of future
stock prices does not have to be log-normal or even one of the
many standard probability distributions. In fact, it is not even
necessary to use just one distribution. Instead, one can employ
a set of distributions—possibly determined empirically from
actual stock price data—that is dependent on the status of dif-
ferent variables. This is the method of conditional distributions.

There are many ways to construct conditional distribu-
tions. They may be general mathematical forms that have been
fit to the observed data, e.g., in terms of a set of moments or
other coefficients. The distributions may also be stored in dis-
cretized form in an array, not unlike the way frequency histo-
grams are constructed and stored. If there is a sufficient
historical database, the method of conditional distributions can
be an extremely effective one for pricing options.

The major problem with the use of conditional distributions
is an avaricious demand for degrees of freedom. If there are too
many variables in the model, there will not be enough data in
even the largest data set to obtain stable results. Therefore,
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when using this methodology, it is imperative to simplify the
option pricing problem as much as possible.

A number of investigations were performed using empiri-
cally-based conditional distributions to price options. The first
investigation explored the use of distributions that were con-
ditional upon the level of raw standard historical volatility and
examined the resultant option prices. Almost by definition, con-
ditional distribution methodology yields correct option prices, at
least insofar as the data on which the distributions are based
is a reasonably representative sample and there are a sufficient
number of data points to keep the noise in the results to an
acceptable level.

Raw Historical Volatility: Conditional Distributions
versus Black-Scholes

When compared to the prices derived from conditional distribu-
tions, Black-Scholes flagrantly overpriced options at high levels
of volatility when the standard, raw measure was used as the
model’s volatility input. Black-Scholes underpriced options
when historical volatility was low and there was little time left.
The reason, of course, is that historical volatility regresses to the
mean. Since Black-Scholes does not correct for this, it yields
incorrect prices when raw historical volatility is used in the cal-
culations. Since the distributions used to price the test options
were specifically conditional upon raw historical volatility, there
was an implicit correction of such phenomena as regression to
the mean. Option prices computed using these distributions
were correct, although perhaps having higher errors of estimate
than would be the case if the distributions were conditional on
better estimates of future volatility.

Trends in the data also seemed to affect theoretical option
prices. More will be said about this later.

Regression-Estimated Volatility: Conditional
Distributions versus Black-Scholes

The next test involved regression-estimated volatility. In this
test, the distributions were conditional upon a high quality
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estimate of future volatility. When compared against Black-
Scholes, the impact of regression to the mean on the latter
model disappeared. The conditional distributions produced esti-
mates similar to those produced in the previous study, while
Black-Scholes produced theoretical prices that more closely
matched those from the conditional distributions. However,
another phenomenon became apparent.

At low levels of volatility there was a fairly close corre-
spondence between theoretical call prices derived from Black-
Scholes and from conditional distributions. As the volatility
level rose, call premiums from the conditional distributions
became relatively large compared to those from Black-Scholes,
while put premiums became relatively low. It turns out that
the volatility payoff discussed earlier affected calls and puts, as
well as the underlying stock; this flies directly in the face of
the assumption of a risk-neutral world that is made by most
pricing models. At very high levels of volatility, not only is the
expected terminal price of the stock increased, but also the
increase is reflected in the theoretical terminal prices of calls
and puts trading on that stock.

Detrended Distributions: Conditional Distributions
versus Black-Scholes

A reanalysis was performed with statistically detrended distri-
butions that were conditional upon a high quality regression
estimate of future volatility. Conditional distributions are flex-
ible in that various theoretical manipulations can be performed
on them, e.g., detrending (or adjusting the first moment to zero).
With trends removed, the difference between Black-Scholes and
conditional distribution-based premiums at high levels of volatil-
ity were greatly reduced. The match between the premiums
from the two methods became much closer. Significant differ-
ences, however, still remained between the premiums from the
two models. These differences were clearly the result of the more
leptokurtic distribution of returns found with real stock prices
than with the log-normal distribution that underlies the Black-
Scholes model. The disparity in premiums between the models
was large and of practical significance. Specifically, as indicated
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by conditional distribution-based premiums, out-of-the-money
options had greater value than Black-Scholes would suggest.

Distributions and the Volatility Payoff

The way in which theoretical premiums responded to detrending
raised an important issue. Should distributions have first moments
that reflect the volatility payoff or should they not? The standard
risk-neutral world stance says that they should not reflect the
volatility payoff. However, a speculator buying a short-term option
might want to know the expected price down the line, as it would be
computed using distributions that have not had the volatility payoff
effect (the positive first moment) eliminated. The findings suggest
that there is a need for a re-evaluation and further analysis of how
risk payoffs operate in the world of options. The risk-neutral world
assumption, obviously, stems from the idea that all risk can be
hedged away by using options. The means of reconciling these two
observations is an important question for future study.

Skew and Kurtosis as Conditioning Variables

Historical skew and kurtosis can be easily incorporated as condi-
tioning variables in a pricing model based on conditional distri-
butions. Doing so allows not only the generic skew and kurtosis of
the market as a whole to be accounted for in theoretical option
prices, but also the historical skew and kurtosis of individual
stocks. In our investigations, we also observed complex relation-
ships between historical skew, kurtosis, and theoretical premium.
The differences in premium at different levels of historical kurto-
sis and skew were, at certain levels of volatility, sizable enough to
be of definite practical importance. The results suggest that his-
torical skew and, especially, historical kurtosis should be inputs to
a good option pricing model. These variables are as easily com-
puted as standard historical volatility.

Conditional Distributions and Venue

Through the use of conditional distributions, it was demonstrat-
ed that venue also has a distinct effect on the theoretical fair
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value of an option. At low levels of volatility, options trading on
NASD stocks had greater value than those trading on equiva-
lent NYSE stocks. For example, take a $115 call on a $100 stock
that has a raw volatility of 40%: if the stock is on the NASD, the
theoretical fair value would be $0.31; on the NYSE, its fair value
would be $0.20; and, if estimated by Black-Scholes, it would be
$0.14. At high levels of volatility, greater value was found with
options on NYSE stocks.

Technical Indicators as Conditioning Variables

In the study of pricing by conditional distributions, at least one
technical indicator was discovered to have value as a conditioning
variable. Lane’s Stochastic Oscillator, which is virtually useless
for directional trading, is not quite so useless when it comes to
pricing options. Both puts and calls had greater value when the
stochastic oscillator has just crossed above 20% than when it has
just crossed below 80%; this applies whether the theoretical
option prices are computed with the original conditional distribu-
tions or with the detrended ones. In general, the findings suggest
that technical indicators, although of little value for directional
traders, may have value when it comes to estimating various
aspects of the future distributions of returns (other than the first
moment, i.e., trend) and, in turn, of fair option premiums.

PRICING OPTIONS USING NONLINEAR
MODELING

The main problem involved in pricing options is that of con-
structing a continuous, nonlinear function that maps a set of
influential variables to a theoretical fair value. One approach
to pricing options is to use a general, nonlinear modeling tech-
nique. For example, a neural network or polynomial regression
can be trained or fit to the observed terminal option price data
(assuming that the data sample on which the model is developed
is sufficiently large and representative). This approach should
result in an exceptionally good option pricing model. However,
the techniques of general-purpose nonlinear modeling have a
tendency to curve-fit the data, i.e., to capture not only the
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critical relationships, but also the spurious patterns of noise
that are specific to the sample.

Neural Networks versus Polynomial Regressions
versus Black-Scholes

In an investigation of general nonlinear modeling techniques, it
was found that neural networks can accurately emulate Black-
Scholes, with the implication being that they might also be able
to accurately model the true relationships found in real-market
data. Multivariate polynomial regressions were also able to
emulate Black-Scholes; however, polynomial models could only
achieve a good fit over a more limited range of input values and
so a small set of polynomial models would probably be required
to cover the entire domain.

On tests involving real-market data, both neural networks
and polynomial regressions worked quite well, providing results
that were distinctly better than, e.g., the standard Black-
Scholes model. And these were only first generation attempts.
There is no doubt that, with additional effort and sophistication,
even better results can be obtained.

Strengths and Weaknesses of 
Nonlinear Modeling Techniques

Polynomial models are flexible, fast to train, and tend to capture
the true relationships in the data necessary for pricing options
while mostly ignoring the noise—in other words, they were less
susceptible to curve-fitting than neural networks.

Neural networks were also found to be extremely effective
in capturing the relationships in the data required for pricing
options. Furthermore, a single neural network can handle the
entire domain of inputs. However, neural networks have a ten-
dency to over-fit the data.

There are several methods available for controlling or other-
wise dealing with curve-fitting. One means of coping with this prob-
lem is through use of a “biased statistics” approach.Another answer
may be found in the use of regularization, e.g., the development of
a solution that not only maximizes the fit to the data, but also
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satisfies a set of prespecified constraints, such as that Delta be
monotonic with respect to volatility.

Hybrid Models

A third way to avoid curve-fitting, while increasing the ability of
a model to capture the true relationships involved, is through
hybridization. Existing knowledge regarding a subject domain
can be incorporated into a hybrid neural model. Even if that
information is only an approximation, the model can tweak
itself to give the best possible fit to the data. The simple hybrid
neural model examined during the investigation was able to
achieve a reasonably good fit to the data with by far fewer free
parameters than either a straight neural model or a polynomial
regression; it also had much less tendency to curve-fit sampling
artifacts.

The use of multivariate polynomial regressions, neural
networks, and hybrid models appears to be an extremely fertile
area for future investigation. There is no doubt that, with appro-
priate techniques, an extremely robust, as well as fast, pricing
model can be developed.

VOLATILITY REVISITED

In the course of some of the studies, certain questions regarding
volatility arose. For example, does volatility mediate the effect of
historical skew on option price? Can historical skew and kurto-
sis improve the prediction of future volatility? And, what about
the whole world of so-called “technical indicators” used by tech-
nical analysts. Finally, what is the relationship between esti-
mated future volatility and implied volatility? 

The Impact of Historical Skew, Kurtosis, and
Historical Volatility on Future Volatility

Historical skew and kurtosis have a definite impact on future
volatility that is independent of the level of historical volatility.
In addition, the predictive relationship between historical skew,
kurtosis, and historical volatility, on the one hand, and future
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volatility, on the other, involves interactions: the relationship
between either skew or kurtosis, and future volatility differs in
form at different levels of historical volatility.

Using Technical Indicators in the Prediction of
Future Volatility

It is known that most standard technical indicators are virtually
useless for directional trading (for predicting the direction of
price movements). However, it seems these indicators are not
quite so useless when it comes to predicting future volatility,
regardless of the direction of the movement involved. At each
level of historical volatility examined, a relationship was found
between the readings from various indicators and future volatil-
ity. Under this rubric, the location of the last price relative to its
moving average, the location of the stochastic oscillator and the
direction of its movement, and the location of the current price
relative to its recent historical range (which reflects support and
resistance), were all found to have sizable effects on future
volatility. Many of these effects were large enough to be of imme-
diate practical importance, i.e., 20% or even 30% differences in
expected future volatility were observed with different readings
from the indicators. Therefore, although technical indicators
may be useless for directional trading, they may not be so use-
less to those trading volatility or pricing options—at least, not
yet. Once their value becomes common knowledge, and these
indicators become widely used as components in volatility fore-
casting models, their effectiveness may disappear.

OPTION PRICES IN THE MARKETPLACE

It is important to study not only theoretical fair value, but also
the actual prices of options in the marketplace and, especially,
the relationship between the two. It is fairly straightforward to
compute theoretical fair values in different ways and to make
comparisons with mean option prices, both bids and offers, using
the techniques developed in this book.

By performing such an analysis, a number of observations
were made. It became clear that different estimators of fair
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value fall at different places relative to the bids and offers actu-
ally seen in the options market. For example, at low levels of
volatility, Black-Scholes tended to hug the bids, while at higher
levels of volatility it tended to hover near the asks; this was
probably due to the effects of mean reversion when using stan-
dard volatility. Most in-the-money calls trading on stocks with
30% volatility had prices that were not too deviant from Black-
Scholes (which often falls between the bid and offer), but that
were significantly lower than their expectation-based fair
value—a truer, but noisier, estimate of an option’s real worth.
Deeply in-the-money puts on stocks with 90% volatility had bids
and offers that were much higher than their theoretical fair
value (computed on the basis of future price expectation), but
were roughly on par with Black-Scholes. The volatility payoff
may have been responsible for that occurrence—the true worth
of these puts may have been reduced because of the tendency for
positive movement in the stocks to occur over the holding period
due to volatility, while the market prices for these puts may not
have been reduced because of the assumption of risk neutrality
by options traders.

Another observation made in the course of the investi-
gation is that, on average, there is a large spread between the
bid and the offer.

During our studies, many questions were raised, including
whether, under certain conditions involving strike and volatility,
the expected terminal price of an option would remain the same
given a selection from the distribution of current option prices.
This last question is critical for determining whether it is possi-
ble to grab profits by exploiting mispricings on individual
options. The analyses required for obtaining the answer remains
on the agenda for future research.

SUMMARY

We have done a lot of the groundwork for anyone wishing to
develop better option pricing models. At the very least, you now
know how critical it is to have a good pricing model which,
among other things, should be consistent with the distributional
quirks of the actual markets that underly the options you are
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interested in. If you do not have a good model, you need to be
able to compensate for the flaws in a poor one and we have given
some pointers on how to do that. You also now know that it is
imperative to use good estimates of future volatility and that if
you can find a nonstandard technique for detecting instances of
changing future volatility, then you have found a very big edge
that can prove quite profitable.

In the course of discovering a series of unique, workable
approaches that will lead to better option pricing, quite a few
issues arose concerning the way to maximize the effectiveness
of these approaches. While we have identified and discussed
quite a number of these issues, there is still more work to be
done. Some of this work is rather tricky and requires special
knowledge and ability to finesse the models. We have made a lot
of progress in that realm, but we have not been able to include
it because it is beyond the scope and spatial limitations of this
book. For example, since it is unlikely that a unitary polynomial
model could cover the full range of all the input variables that
would be desired in a complete pricing model, one unexplored
(herein) direction is to assemble a set of polynomial models into
a mosaic that would cover the desired input domain; this would
lead to coherent, fairly complete, and practically useful pricing
models. Another direction to pursue is the development of trad-
ing systems based on some of the models we have discussed and
which, e.g., make use of some of the more unique conditioning
variables. We will be continuing our research in this realm and
hope we have given you the help you need to do the same. Let us
know how you are coming along!
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COMPANION SOFTWARE AVAILABLE

We invite all readers to visit our Web site at www.scientific-consultants.com
or to e-mail us at katz@scientific-consultants.com (please note: we do not
sell or otherwise distribute our lists). Our Web site contains updates about our
research, as well as other information you may find useful. It is there that those
who wish to replicate and expand on our research may obtain a copy of the data
and software that were used during the course of our studies. Included is infor-
mation on the following Companion Software items:

� LIBRARIES FOR: stock database management (routines for allocating a
stock data object, reading records from the stock database, and reading
records from a corresponding supplementary database that might contain
implied volatilities); options database management (routines for creating an
options database object, an options chain structure, and for retrieving option
chains from the database with indexing by the date and symbol of the under-
lying stock; as well as additional related functions); Black-Scholes pricing
model (routines for calculation of put and call prices, as well as put, call, and
straddle implied volatilities); mathematics and utilities (routines for allo-
cating memory, handling errors, as well as for conversion and calculation of
Julian and other dates, calculation of historical volatility, and other general
purpose supporting functions); correlation matrix (routines for creating a
correlation matrix object, for accumulating data, and for calculating a corre-
lation matrix from the data accumulated); multiple regression (routines for
creating a multiple regression object, for accumulating data on a case-by-
case basis, for calculating the regression based on the accumulated data, and
for printing a regression report to a file); the hybrid neural model (contains
functions for creating, loading, saving, and disposing of a hybrid neural
object for setting and examining parameters such as the gradient weights,
for setting inputs and retrieving outputs, for firing the model, and for causing
the model to learn).

� UTILITIES AND PROGRAMS FOR: general options data-base manage-
ment (creating database, extracting www.stricknet.com options data from zip
files, saving the data in ultra-compressed format in the options database,
generating index files for the database, etc.); stock database management
(extracting data from Worden Brothers TC-2000 and placing it in standard
compressed binary database format, cleaning up and editing the data to 
correct errors, etc.); developing and testing neural networks, i.e., the N-Train
neural network development system.

� CHAPTER-SPECIFIC SOFTWARE: Sets of specific software code 
corresponding to each of the chapters. This is the code that actually imple-
ments the analyses described in the studies discussed in the chapters.

You may also contact us at the following address:

SCIENTIFIC CONSULTANT SERVICES, INC. Phone & Fax:
20 Stagecoach Road, Selden, New York 11784 631-696-3333
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