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To our mothers — it is not their fault that lexicography took its toll.



Preface

Writing a dictionary of statistics is not many people’s idea of fun. And it wasn’t ours.
Can we say that we have changed our minds about this at all? No. Nevertheless, now
the reading and writing is over and those heavy books have gone back to the library,
we are glad that we wrote it. Otherwise we would have had to buy it. The dictionary
provides a valuable resource for students — and anyone else with too little time on
their hands to stack their shelves with scores of specialist statistics textbooks.

Writing a dictionary of statistics is one thing — writing a practical dictionary of sta-
tistics is another. The entries had to be useful, not merely accurate. Accuracy is not that
useful on its own. One aspect of the practicality of this dictionary is in facilitating the
learning of statistical techniques and concepts. The dictionary is not intended to stand
alone as a textbook — there are plenty of those. We hope that it will be more important
than that. Perhaps only the computer is more useful. Learning statistics is a complex
business. Inevitably, students at some stage need to supplement their textbook. A trip
to the library or the statistics lecturer’s office is daunting. Getting a statistics dictio-
nary from the shelf is the lesser evil. And just look at the statistics textbook next to it —
you probably outgrew its usefulness when you finished the first year at university.

Few readers, not even ourselves, will ever use all of the entries in this dictionary.
That would be a bit like stamp collecting. Nevertheless, all of the important things are
here in a compact and accessible form for when they are needed. No doubt there are
omissions but even The Collected Works of Shakespeare leaves out Pygmalion! Let us know
of any. And we are not so clever that we will not have made mistakes. Let us know if
you spot any of these too — modern publishing methods sometimes allow corrections
without a major reprint.

Many of the key terms used to describe statistical concepts are included as entries
elsewhere. Where we thought it useful we have suggested other entries that are
related to the entry that might be of interest by listing them at the end of the entry
under ‘See’ or ‘See also’. In the main body of the entry itself we have not drawn
attention to the terms that are covered elsewhere because we thought this could be
too distracting to many readers. If you are unfamiliar with a term we suggest you
look it up.

Many of the terms described will be found in introductory textbooks on statistics.
We suggest that if you want further information on a particular concept you look it up
in a textbook that is ready to hand. There are a large number of introductory statistics
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texts that adequately discuss these terms and we would not want you to seek out a
particular text that we have selected that is not readily available to you. For the less
common terms we have recommended one or more sources for additional reading.
The authors and year of publication for these sources are given at the end of the entry
and full details of the sources are provided at the end of the book. As we have dis-
cussed some of these terms in texts that we have written, we have sometimes
recommended our own texts!
The key features of the dictionary are:

Compact and detailed descriptions of key concepts.

Basic mathematical concepts explained.

Details of procedures for hand calculations if possible.

Difficulty level matched to the nature of the entry: very fundamental concepts are

the most simply explained; more advanced statistics are given a slightly more

sophisticated treatment.

e Practical advice to help guide users through some of the difficulties of the applica-
tion of statistics.

e Exceptionally wide coverage and varied range of concepts, issues and procedures —

wider than any single textbook by far.

Coverage of relevant research methods.

Compatible with standard statistical packages.

Extensive cross-referencing.

Useful additional reading.

One good thing, we guess, is that since this statistics dictionary would be hard to dis-
tinguish from a two-author encyclopaedia of statistics, we will not need to write one
ourselves.

Duncan Cramer
Dennis Howitt



Some Common
Statistical Notation

Roman letter symbols or abbreviations:

a constant

daf degrees of freedom

F F test

logn  natural or Napierian logarithm
M arithmetic mean

MS mean square

nor N number of cases in a sample

p probability

r Pearson’s correlation coefficient
R multiple correlation

SD standard deviation

SS sum of squares

t t test

Greek letter symbols:

(lower case alpha) Cronbach’s alpha reliability, significance level or alpha error
(lower case beta) regression coefficient, beta error
(lower case gamma)

(lower case delta)

(lower case eta)

(lower case kappa)

(lower case lambda)

(lower case rho)

(lower case tau)

(lower case phi)

(lower case chi)
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Some common mathematical symbols:

sum of

infinity

equal to

less than

less than or equal to
greater than

greater than or equal to
square root
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a posteriori tests: see post hoc tests

a priori comparisons or tests: where
there are three or more means that may be
compared (e.g. analysis of variance with
three groups), one strategy is to plan the
analysis in advance of collecting the data (or
examining them). So, in this context, a priori
means before the data analysis. (Obviously
this would only apply if the researcher was
not the data collector, otherwise it is in
advance of collecting the data.) This is impor-
tant because the process of deciding what
groups are to be compared should be on the
basis of the hypotheses underlying the plan-
ning of the research. By definition, this implies
that the researcher is generally disinterested in
general or trivial aspects of the data which are
not the researcher’s primary focus. As a conse-
quence, just a few of the possible comparisons
are needed to be made as these contain the
crucial information relative to the researcher’s
interests. Table A.1 involves a simple ANOVA
design in which there are four conditions —
two are drug treatments and there are two
control conditions. There are two control con-
ditions because in one case the placebo tablet
is for drug A and in the other case the placebo
tablet is for drug B.

An appropriate a priori comparison strategy
in this case would be:

e Mean, against Mean,
e Mean, against Mean,
e Mean, against Mean,

Table A.1 A simple ANOVA design

Placebo Placebo
Drug A Drug B control A control B
Mean, = Mean, = Mean_= Mean, =

Notice that this is fewer than the maximum
number of comparisons that could be made
(a total of six). This is because the researcher
has ignored issues which perhaps are of little
practical concern in terms of evaluating
the effectiveness of the different drugs. For
example, comparing placebo control A with
placebo control B answers questions about
the relative effectiveness of the placebo con-
ditions but has no bearing on which drug is
the most effective overall.

The a priori approach needs to be com-
pared with perhaps the more typical alterna-
tive research scenario — post hoc comparisons.
The latter involves an unplanned analysis of
the data following their collection. While this
may be a perfectly adequate process, it is
nevertheless far less clearly linked with the
established priorities of the research than a
priori comparisons. In post hoc testing, there
tends to be an exhaustive examination of all
of the possible pairs of means — so in the
example in Table A.1 all four means would be
compared with each other in pairs. This gives
a total of six different comparisons.

In a priori testing, it is not necessary to
carry out the overall ANOVA since this
merely tests whether there are differences
across the various means. In these circum-
stances, failure of some means to differ from



the others may produce non-significant
findings due to conditions which are of little
or no interest to the researcher. In a priori test-
ing, the number of comparisons to be made
has been limited to a small number of key
comparisons. It is generally accepted that if
there are relatively few a priori comparisons
to be made, no adjustment is needed for the
number of comparisons made. One rule of
thumb is that if the comparisons are fewer in
total than the degrees of freedom for the main
effect minus one, it is perfectly appropriate to
compare means without adjustment for the
number of comparisons.

Contrasts are examined in a priori testing.
This is a system of weighting the means in
order to obtain the appropriate mean difference
when comparing two means. One mean is
weighted (multiplied by) +1 and the other is
weighted —1. The other means are weighted 0.
The consequence of this is that the two key
means are responsible for the mean differ-
ence. The other means (those not of interest)
become zero and are always in the centre of
the distribution and hence cannot influence
the mean difference.

There is an elegance and efficiency in the a
priori comparison strategy. However, it does
require an advanced level of statistical and
research sophistication. Consequently, the
more exhaustive procedure of the post hoc
test (multiple comparisons test) is more
familiar in the research literature. See also:
analysis of variance; Bonferroni test; con-
trast; Dunn’s test; Dunnett’s C test; Dunnett’s
T3 test; Dunnett’s test; Dunn-Sidak multi-
ple comparison test; omnibus test; post hoc
tests

abscissa: this is the horizontal or x axis in a
graph. See x axis

absolute deviation: this is the difference
between one numerical value and another
numerical value. Negative values are
ignored as we are simply measuring the dis-
tance between the two numbers. Most

THE SAGE DICTIONARY OF STATISTICS

Absolute
deviation = 4

© <

Absolute
deviation = 2

® <

Figure A.l

Absolute deviations

commonly, absolute deviation in statistics is
the difference between a score and the mean
(or sometimes median) of the set of scores.
Thus, the absolute deviation of a score of 9
from the mean of 5 is 4. The absolute devia-
tion of a score of 3 from the mean of 5 is
2 (Figure A.1). One advantage of the
absolute deviation over deviation is that the
former totals (and averages) for a set of
scores to values other than 0.0 and so gives
some indication of the variability of the
scores. See also: mean deviation; mean,
arithmetic

acquiescence or yea-saying response
set or style: this is the tendency to agree or
to say ‘yes’ to a series of questions. This ten-
dency is the opposite of disagreeing or saying
‘no’ to a set of questions, sometimes called a
nay-saying response set. If agreeing or saying
‘yes’ to a series of questions results in a high
score on the variable that those questions are
measuring, such as being anxious, then a
high score on the questions may indicate
either greater anxiety or a tendency to agree.
To control or to counteract this tendency,
half of the questions may be worded in the
opposite or reverse way so that if a person
has a tendency to agree the tendency will
cancel itself out when the two sets of items
are combined.

adding: see negative values



ALPHA (o) RELIABILITY, CRONBACH’S 3

Probability of

head = 0.5

Probability of
tail=0.5

Probability of head
or tail is the sum of
the two separate

= probabilities
according to
addition rule: 0.5 +
05=1

Figure A.2 Demonstrating the addition rule for the simple case of either heads or tails when tossing a coin

addition rule: a simple principle of
probability theory is that the probability of
either of two different outcomes occurring is
the sum of the separate probabilities for those
two different events (Figure A.2). So, the
probability of a die landing 3 is 1 divided by
6 (i.e. 0.167) and the probability of a die land-
ing 5 is 1 divided by 6 (i.e. 0.167 again). The
probability of getting either a 3 or a 5 when
tossing a die is the sum of the two separate
probabilities (i.e. 0.167 + 0.167 = 0.333). Of
course, the probability of getting any of the
numbers from 1 to 6 spots is 1.0 (i.e. the sum
of six probabilities of 0.167).

adjusted means, analysis of covariance:
see analysis of covariance

agglomeration schedule: a table that shows
which variables or clusters of variables are
paired together at different stages of a cluster
analysis. See cluster analysis

Cramer (2003)

algebra: in algebra numbers are represented
as letters and other symbols when giving
equations or formulae. Algebra therefore is
the basis of statistical equations. So a typical
example is the formula for the mean:

m=2X
N

In this m stands for the numerical value of the
mean, X is the numerical value of a score,

N is the number of scores and Y is the symbol
indicating in this case that all of the scores
under consideration should be added
together.

One difficulty in statistics is that there is a
degree of inconsistency in the use of the sym-
bols for different things. So generally speak-
ing, if a formula is used it is important to
indicate what you mean by the letters in a
separate key.

algorithm: this is a set of steps which
describe the process of doing a particular cal-
culation or solving a problem. It is a common
term to use to describe the steps in a computer
program to do a particular calculation. See
also: heuristic

alpha error: see Type | or alpha error

alpha () reliability, Cronbach’s: one of a
number of measures of the internal consis-
tency of items on questionnaires, tests and
other instruments. It is used when all the
items on the measure (or some of the items)
are intended to measure the same concept
(such as personality traits such as neuroti-
cism). When a measure is internally consis-
tent, all of the individual questions or items
making up that measure should correlate
well with the others. One traditional way of
checking this is split-half reliability in which
the items making up the measure are split
into two sets (odd-numbered items versus
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Table A.2  Preferences for four foodstuffs
plus a total for number of
preferences

Ql: Q2: Q3: Q4:

bread cheese butter ham Total
Person | 0 0 0 0 0
Person 2 | | | 0 3
Person 3 | 0 | | 3
Person 4 | | | | 4
Person 5 0 0 0 | |
Person 6 0 | 0 0 |
Table A.3 The data from Table A.2 with QI
and Q2 added, and Q3 and Q4
added
Half A: Half B:
bread + cheese butter + ham
items items Total
Person | 0 0 0
Person 2 2 | 3
Person 3 | 2 3
Person 4 2 2 4
Person 5 0 | |
Person 6 | 0 |

even-numbered items, the first half of the
items compared with the second half). The
two separate sets are then summated to give
two separate measures of what would appear
to be the same concept. For example, the fol-
lowing four items serve to illustrate a short
scale intended to measure liking for different
foodstuffs:

1 TIlike bread Agree Disagree
2 Ilike cheese Agree Disagree
3 Ilike butter Agree Disagree
4 Ilike ham Agree Disagree

Responses to these four items are given in
Table A.2 for six individuals. One split half of
the test might be made up of items 1 and 2,
and the other split half is made up of items 3
and 4. These sums are given in Table A.3. If
the items measure the same thing, then the
two split halves should correlate fairly well
together. This turns out to be the case since
the correlation of the two split halves with

each other is 0.5 (although it is not significant
with such a small sample size). Another name
for this correlation is the split-half reliability.

Since there are many ways of splitting the
items on a measure, there are numerous split
halves for most measuring instruments. One
could calculate the odd-even reliability for
the same data by summing items 1 and 3
and summing items 2 and 4. These two forms
of reliability can give different values. This is
inevitable as they are based on different com-
binations of items.

Conceptually alpha is simply the average
of all of the possible split-half reliabilities that
could be calculated for any set of data. With a
measure consisting of four items, these are
items 1 and 2 versus items 3 and 4, items 2
and 3 versus items 1 and 4, and items 1 and 3
versus items 2 and 4. Alpha has a big advan-
tage over split-half reliability. It is not depen-
dent on arbitrary selections of items since it
incorporates all possible selections of items.

In practice, the calculation is based on the
repeated-measures analysis of variance. The
data in Table A2 could be entered into a
repeated-measures one-way analysis of vari-
ance. The ANOVA summary table is to be
found in Table A.4. We then calculate coeffi-
cient alpha from the following formula:

mean square between people —

mean square residual
alpha =

mean square between people

_ 0.600 - 0.200 _ 0.400
0.600 0.600

= 0.67

Of course, SPSS and similar packages simply
give the alpha value. See internal consis-
tency; reliability

Cramer (1998)

alternative hypothesis: see hypothesis;
hypothesis testing

AMOS: this is the name of one of the com-
puter programs for carrying out structural
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Table A4 Repeated-measures ANOVA
summary table for data in Table A.2

Sums of Degrees of  Means
squares freedom square
Between 0.000 3 0.000
treatments (not needed)
Between people  3.000 5 0.600
Error (residual)  3.000 15 0.200

equation modelling. AMOS stands for
Analysis of Moment Structures. Information
about AMOS can be found at the following
website:
http://www.smallwaters.com /amos/index.
html

See structural equation modelling

analysis of covariance (ANCOVA):
analysis of covariance is abbreviated as
ANCOVA (analysis of covariance). It is a form
of analysis of variance (ANOVA). In the sim-
plest case it is used to determine whether the
means of the dependent variable for two or
more groups of an independent variable or
factor differ significantly when the influence
of another variable that is correlated with
the dependent variable is controlled. For
example, if we wanted to determine whether
physical fitness differed according to marital
status and we had found that physical fitness
was correlated with age, we could carry out
an analysis of covariance. Physical fitness is
the dependent variable. Marital status is the
independent variable or factor. It may consist
of the four groups of (1) the never married,
(2) the married, (3) the separated and
divorced, and (4) the widowed. The variable
that is controlled is called the covariate,
which in this case is age. There may be more
than one covariate. For example, we may also
wish to control for socio-economic status if
we found it was related to physical fitness.
The means may be those of one factor or of
the interaction of that factor with other fac-
tors. For example, we may be interested in
the interaction between marital status and
gender.

There is no point in carrying out an analysis
of covariance unless the dependent variable
is correlated with the covariate. There are two
main uses or advantages of analysis of
covariance. One is to reduce the amount of
unexplained or error variance in the depen-
dent variable, which may make it more likely
that the means of the factor differ signi-
ficantly. The main statistic in the analysis of
variance or covariance is the F ratio which is
the variance of a factor (or its interaction)
divided by the error or unexplained variance.
Because the covariate is correlated with the
dependent variable, some of the variance of
the dependent variable will be shared with the
covariate. If this shared variance is part of the
error variance, then the error variance will
be smaller when this shared variance is
removed or controlled and the F ratio will be
larger and so more likely to be statistically
significant.

The other main use of analysis of covariance
is where the random assignment of cases
to treatments in a true experiment has not
resulted in the groups having similar means
on variables which are known to be corre-
lated with the dependent variable. Suppose,
for example, we were interested in the effect
of two different programmes on physical
fitness, say swimming and walking. We ran-
domly assigned participants to the two treat-
ments in order to ensure that participants in
the two treatments were similar. It would be
particularly important that the participants in
the two groups would be similar in physical
fitness before the treatments. If they differed
substantially, then those who were fitter may
have less room to become more fit because
they were already fit. If we found that they
differed considerably initially and we found
that fitness before the intervention was
related to fitness after the intervention, we
could control for this initial difference with
analysis of covariance. What analysis of
covariance does is to make the initial means
on fitness exactly the same for the different
treatments. In doing this it is necessary to
make an adjustment to the means after the
intervention. In other words, the adjusted
means will differ from the unadjusted ones.
The more the initial means differ, the greater
the adjustment will be.



Analysis of covariance assumes that the
relationship between the dependent variable
and the covariate is the same in the different
groups. If this relationship varies between the
groups it is not appropriate to use analysis of
covariance. This assumption is known as
homogeneity of regression. Analysis of cova-
riance, like analysis of variance, also assumes
that the variances within the groups are sim-
ilar or homogeneous. This assumption is called
homogeneity of variance. See also: analysis of
variance; Bryant-Paulson simultaneous
test procedure; covariate; multivariate
analysis of covariance

Cramer (2003)

analysis of variance (ANOVA): analysis
of variance is abbreviated as ANOVA (analy-
sis of wvariance). There are several kinds of
analyses of variance. The simplest kind is a
one-way analysis of variance. The term ‘one-
way’ means that there is only one factor or
independent variable. “Two-way’ indicates
that there are two factors, ‘three-way’ three
factors, and so on. An analysis of variance
with two or more factors may be called a fac-
torial analysis of variance. On its own, analy-
sis of variance is often used to refer to an
analysis where the scores for a group are
unrelated to or come from different cases
than those of another group. A repeated-
measures analysis of variance is one where
the scores of one group are related to or are
matched or come from the same cases. The
same measure is given to the same or a very
similar group of cases on more than one
occasion and so is repeated. An analysis of
variance where some of the scores are from
the same or matched cases and others are
from different cases is known as a mixed
analysis of variance. Analysis of covariance
(ANCOVA) is where one or more variables
which are correlated with the dependent
variable are removed. Multivariate analysis
of variance (MANOVA) and covariance
(MANCOVA) is where more than one depen-
dent variable is analysed at the same time.
Analysis of variance is not normally used to
analyse one factor with only two groups but
such an analysis of variance gives the same
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significance level as an unrelated ¢ test with
equal variances or the same number of cases
in each group. A repeated-measures analysis
of variance with only two groups produces
the same significance level as a related ¢ test.
The square root of the F ratio is the t ratio.

Analysis of variance has a number of
advantages. First, it shows whether the means
of three or more groups differ in some way
although it does not tell us in which way
those means differ. To determine that, it is
necessary to compare two means (or combi-
nation of means) at a time. Second, it pro-
vides a more sensitive test of a factor where
there is more than one factor because the
error term may be reduced. Third, it indi-
cates whether there is a significant inter-
action between two or more factors. Fourth,
in analysis of covariance it offers a more sen-
sitive test of a factor by reducing the error
term. And fifth, in multivariate analysis of
variance it enables two or more dependent
variables to be examined at the same time
when their effects may not be significant
when analysed separately.

The essential statistic of analysis of vari-
ance is the F ratio, which was named by
Snedecor in honour of Sir Ronald Fisher who
developed the test. It is the variance or mean
square of an effect divided by the variance
or mean square of the error or remaining
variance:

_ effect variance

F ratio -
error variance

An effect refers to a factor or an interaction
between two or more factors. The larger the F
ratio, the more likely it is to be statistically
significant. An F ratio will be larger, the big-
ger are the differences between the means
of the groups making up a factor or inter-
action in relation to the differences within the
groups.

The F ratio has two sets of degrees of
freedom, one for the effect variance and the
other for the error variance. The mean square
is a shorthand term for the mean squared
deviations. The degrees of freedom for a factor
are the number of groups in that factor minus
one. If we see that the degrees of freedom for
a factor is two, then we know that the factor
has three groups.
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Traditionally, the results of an analysis of
variance were presented in the form of a
table. Nowadays research papers are likely to
contain a large number of analyses and there
is no longer sufficient space to show such a
table for each analysis. The results for the
analysis of an effect may simply be described
as follows: “The effect was found to be statis-
tically significant, F, , = 4.72, p = 0.031." The
first subscript (2) for F refers to the degrees of
freedom for the effect and the second sub-
script (12) to those for the error. The value
(4.72) is the F ratio. The statistical significance
or the probability of this value being statisti-
cally significant with those degrees of free-
dom is 0.031. This may be written as p < 0.05.
This value may be looked up in the appropriate
table which will be found in most statistics
texts such as the sources suggested below.
The statistical significance of this value is
usually provided by statistical software
which carries out analysis of variance. Values
that the F ratio has to be or exceed to be sig-
nificant at the 0.05 level are given in Table A.5
for a selection of degrees of freedom. It is
important to remember to include the relevant
means for each condition in the report as oth-
erwise the statistics are somewhat meaning-
less. Omitting to include the relevant means
or a table of means is a common error among
novices.

If a factor consists of only two groups and
the F ratio is significant we know that the
means of those two groups differ significantly.
If we had good grounds for predicting which
of those two means would be bigger, we
should divide the significance level of the F
ratio by 2 as we are predicting the direction of
the difference. In this situation an F ratio with
a significance level of 0.10 or less will be signifi-
cant at the 0.05 level or lower (0.10/2 = 0.05).

When a factor consists of more than two
groups, the F ratio does not tell us which of
those means differ from each other. For exam-
ple, if we have three means, we have three
possible comparisons: (1) mean 1 and mean 2;
(2) mean 1 and mean 3; and (3) mean 2 and
mean 3. If we have four means, we have six
possible comparisons: (1) mean 1 and mean 2;
(2) mean 1 and mean 3; (3) mean 1 and mean 4;
(4) mean 2 and mean 3; (5) mean 2 and mean
4; and (6) mean 3 and mean 4. In this

Table A.5 Critical values of F

df for
error
variance df for effect variance

1 2 3 4 5 00

8 532 446 407 384 369 293
12 475 389 349 326 3.1 230
20 435 349 310 287 271 1.84
30 4.17 332 292 269 253 1.62
40 408 323 284 261 245 151
60 400 315 276 253 237 1.39

120 392 307 268 245 229 1.25

s 384 3.00 260 237 221 1.00

situation we need to compare two means at a
time to determine if they differ significantly. If
we had strong grounds for predicting which
means should differ, we could use a one-
tailed t test. If the scores were unrelated, we
would use the unrelated ¢t test. If the scores
were related, we would use the related t test.
This kind of test or comparison is called a
planned comparison or a priori test because
the comparison and the test have been
planned before the data have been collected.

If we had not predicted or expected the F
ratio to be statistically significant, we should
use a post hoc or an a posteriori test to deter-
mine which means differ. There are a number
of such tests but no clear consensus about
which tests are the most appropriate to use.
One option is to reduce the two-tailed 0.05
significance level by dividing it by the
number of comparisons to obtain the family-
wise or experimentwise level. For example,
the familywise significance level for three
comparisons is 0.0167 (0.05/3 = 0.0167). This
may be referred to as a Bonferroni adjustment
or test. The Scheffé test is suitable for unre-
lated means which are based on unequal
numbers of cases. It is a very conservative
test in that means are less likely to differ sig-
nificantly than with some other tests. Fisher’s
protected LSD (Least Significant Difference)
test is used for unrelated means in an analysis
of variance where the means have been
adjusted for one or more covariates.

A factorial analysis of variance consisting
of two or more factors may be a more sensi-
tive test of a factor than a one-way analysis of
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variance because the error term in a factorial
analysis of variance may be smaller than a
one-way analysis of variance. This is because
some of the error or unexplained variance in
a one-way analysis of variance may be due to
one or more of the factors and their inter-
actions in a factorial analysis of variance.

There are several ways of calculating the
variance in an analysis of variance which can be
done with dummy variables in multiple regres-
sion. These methods give the same results in a
one-way analysis of variance or a factorial
analysis of variance where the number of cases
in each group is equal or proportionate. In a
two-way factorial analysis where the number of
cases in each group is unequal and dispropor-
tionate, the results are the same for the inter-
action but may not be the same for the factors.
There is no clear consensus on which method
should be used in this situation but it depends
on what the aim of the analysis is.

One advantage of a factorial analysis of
variance is that it determines whether the
interaction between two or more factors is
significant. An interaction is where the differ-
ence in the means of one factor depends on
the conditions in one or more other factors. It
is more easily described when the means of
the groups making up the interaction are
plotted in a graph as shown in Figure A.3.

The figure represents the mean number of
errors made by participants who had been
deprived of either 4 or 12 hours of sleep and
who had been given either alcohol or no alcohol.
The vertical axis of the graph reflects the
dependent variable, which is the number of
errors made. The horizontal axis depicts one
of the independent variables, which is sleep
deprivation, while the two types of lines in
the graph show the other independent vari-
able, which is alcohol. There may be a signifi-
cant interaction where these lines are not
parallel as in this case. The difference in the
mean number of errors between the 4 hours’
and the 12 hours’ sleep deprivation conditions
was greater for those given alcohol than those
not given alcohol. Another way of describing
this interaction is to say the difference in the
mean number of errors between the alcohol
and the no alcohol group is greater for those
deprived of 12 hours of sleep than for those
deprived of 4 hours of sleep.

High . Alcohol
Errors
____—  Noalcohol
Low
1 1
4 hours 12 hours

Sleep deprivation

Figure A.3  Errors as a function of alcohol and
sleep deprivation

The analysis of variance assumes that the
variance within each of the groups is equal or
homogeneous. There are several tests for deter-
mining this. Levene’s test is one of these. If the
variances are not equal, they may be made to
be equal by transforming them arithmetically
such as taking their square root or logarithm.
See also: Bartlett’s test of sphericity;
Cochran’s C test; Duncan’s new multiple
range test; factor, in analysis of variance; F
ratio; Hochberg GT2 test; mean square;
repeated-measures analysis of variance; sum
of squares; Type | hierarchical or sequential
method; Type Il classic experimental method

Cramer (1998, 2003)

ANCOVA: see analysis of covariance

ANOVA: see analysis of variance

arithmetic mean: see mean, arithmetic

asymmetry: see symmetry

asymptotic: this describes a curve that
approaches a straight line but never meets it.
For example, the tails of the curve of a normal
distribution approach the baseline but never
touch it. They are said to be asymptotic.
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attenuation, correcting correlations
for: many variables in the social sciences are
measured with some degree of error or unre-
liability. For example, intelligence is not
expected to vary substantially from day to
day. Yet scores on an intelligence test may
vary suggesting that the test is unreliable. If
the measures of two variables are known to
be unreliable and those two measures are cor-
related, the correlation between these two
measures will be attenuated or weaker than
the correlation between those two variables if
they had been measured without any error.
The greater the unreliability of the measures,
the lower the real relationship will be
between those two variables. The correlation
between two measures may be corrected for
their unreliability if we know the reliability of
one or both measures.

The following formula corrects the correla-
tion between two measures when the reliability
of those two measures is known:

correlation between measure 1
and measure 2

measure 1 reliability X measure
2 reliability

For example, if the correlation of the two
measures is 0.40 and their reliability is 0.80
and 0.90 respectively, then the correlation
corrected for attenuation is 0.47:

040  _ 040 _ 040 _
J0.80 x 090 0.72 0.85

0.47

The corrected correlation is larger than the
uncorrected one.

When the reliability of only one of the
measures is known, the formula is

correlation between measure 1
and measure 2

R = -
° | measure 1 or measure 2 reliability

For example, if we only knew the reliability
of the first but not the second measure then
the corrected correlation is 0.45:

040 _040_ 45
1080 0.89

Typically we are interested in the association
or relationship between more than two vari-
ables and the unreliability of the measures of
those variables is corrected by using struc-
tural equation modelling.

attrition: this is a closely related concept to
drop-out rate, the process by which some
participants or cases in research are lost over
the duration of the study. For example, in a
follow-up study not all participants in the
earlier stages can be contacted for a number
of reasons — they have changed address, they
choose no longer to participate, etc.

The major problem with attrition is when
particular kinds of cases or participants leave
the study in disproportionate numbers to
other types of participants. For example, if a
study is based on the list of electors then it is
likely that members of transient populations
will leave and may not be contactable at their
listed address more frequently than members
of stable populations. So, for example, as
people living in rented accommodation are
more likely to move address quickly but, per-
haps, have different attitudes and opinions to
others, then their greater rate of attrition in
follow-up studies will affect the research
findings.

Perhaps a more problematic situation is an
experiment (e.g. such as a study of the effect
of a particular sort of therapy) in which drop-
out from treatment may be affected by the
nature of the treatment so, possibly, many
more people leave the treatment group than
the control group over time.

Attrition is an important factor in assess-
ing the value of any research. It is not a mat-
ter which should be hidden in the report of
the research. See also: refusal rates

average: this is a number representing the
usual or typical value in a set of data. It is vir-
tually synonymous with measures of central
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tendency. Common averages in statistics are
the mean, median and mode. There is no
single conception of average and every aver-
age contributes a different type of informa-
tion. For example, the mode is the most
common value in the data whereas the mean
is the numerical average of the scores and
may or may not be the commonest score.
There are more averages in statistics than are
immediately apparent. For example, the har-
monic mean occurs in many statistical calcu-
lations such as the standard error of
differences often without being explicitly
mentioned as such. See also: geometric mean

In tests of significance, it can be quite impor-
tant to know what measure of central tendency
(if any) is being assessed. Not all statistics com-
pare the arithmetic means or averages. Some
non-parametric statistics, for example, make
comparisons between medians.

averaging correlations: see correlations,
averaging

axis: this refers to a straight line, especially in
the context of a graph. It constitutes a refer-
ence line that provides an indication of the
size of the values of the data points. In a
graph there is a minimum of two axes —a hor-
izontal and a vertical axis. In statistics, one
axis provides the values of the scores (most
often the horizontal line) whereas the other
axis is commonly an indication of the fre-
quencies (in univariate statistical analyses) or
another variable (in bivariate statistical analy-
sis such as a scatterplot).

Generally speaking, an axis will start at zero
and increase positively since most data in psy-
chology and the social sciences only take posi-
tive values. It is only when we are dealing with

Frequencies

1980 1985 1990 1995 2000 2005
Year

Figure A4 lllustrating axes

extrapolations (e.g. in regression or factor
analysis) that negative values come into play.
The following need to be considered:

e Try to label the axes clearly. In Figure A.4
the vertical axis (the one pointing up the
page) is clearly labelled as Frequencies.
The horizontal axis (the one pointing
across the page) is clearly labelled Year.

e The intervals on the scale have to be care-
fully considered. Too many points on any
of the axes and trends in the data can be
obscured; too few points on the axes and
numbers may be difficult to read.

e Think very carefully about the implica-
tions if the axes do not meet at zero on
each scale. It may be appropriate to use
another intersection point but in some cir-
cumstances doing so can be misleading.

e Although axes are usually presented as at
right angles to each other, they can be
at other angles to indicate that they are
correlated. The only common statistical
context in which this occurs is oblique
rotation in factor analysis.

Axis can also refer to an axis of symmetry —
the line which divides the two halves of a
symmetrical distribution such as the normal
distribution.



bar chart, diagram or graph: describes
the frequencies in each category of a nominal
(or category variable). The frequencies are
represented by bars of different length pro-
portionate to the frequency. A space should
be left between each of the bars to symbolize
that it is a bar chart not a histogram. See also:
compound bar chart; pie chart

Bartlett’s test of sphericity: used in fac-
tor analysis to determine whether the correla-
tions between the variables, examined
simultaneously, do not differ significantly
from zero. Factor analysis is usually con-
ducted when the test is significant indicating
that the correlations do differ from zero. It is
also used in multivariate analysis of variance
and covariance to determine whether the
dependent variables are significantly corre-
lated. If the dependent variables are not signi-
ficantly correlated, an analysis of variance or
covariance should be carried out. The larger
the sample size, the more likely it is that this
test will be significant. The test gives a chi-
square statistic.

Bartlett-Box F test: one of the tests used
for determining whether the variances within
groups in an analysis of variance are similar
or homogeneous, which is one of the assump-
tions underlying analysis of variance. It is
recommended where the number of cases in
the groups varies considerably and where no

group is smaller than three and most groups
are larger than five.
Cramer (1998)

baseline: a measure to assess scores on a
variable prior to some intervention or
change. It is the starting point before a vari-
able or treatment may have had its influence.
Pre-test and pre-test measure are equivalent
concepts. The basic sequence of the research
would be baseline measurement — treatment
— post-treatment measure of same variable.

For example, if a researcher were to study
the effectiveness of a dietary programme on
weight reduction, the research design might
consist of a baseline (or pre-test) of weight
prior to the introduction of the dietary pro-
gramme. Following the diet there may be a
post-test measure of weight to see whether
weight has increased or decreased over the
period before the diet to after the diet.

Without the baseline or pre-test measure, it
would not be possible to say whether or not
weights had increased or decreased follow-
ing the diet. With the research design illus-
trated in Table B.1 we cannot say whether the
change was due to the diet or some other fac-
tor. A control group that did not diet would
be required to assess this.

Baseline measures are problematic in
that the pre-test may sensitize participants
in some way about the purpose of the exper-
iment or in some other way affect their
behaviour. Nevertheless, their absence leads
to many problems of interpretation even
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Table B.l Illlustrating baseline
Baseline/

Person pre-test Treatment Post-test
A 45 kg DIET 42 kg

B 51 kg 47 kg
C 76 kg 69 kg
D 58 kg 52 kg

E 46 kg > 4l

Table B.2 Results of a study of the effects
of two films on aggression

War film Romantic film

14
19
12
14
13
17 3

Mean aggression = 14.83 Mean aggression = 4.67

[ SRVS RN, NN N N

in well-known published research. Conse-
quently they should always be considered
as part of the research even if it is decided
not to include them. Take the following sim-
ple study which is illustrated in Table B.2.
Participants in the research have either
seen a war film or a romantic film. Their
aggressiveness has been measured after-
wards. Although there is a difference
between the war film and the romantic film
conditions in terms of the aggressiveness of
participants, it is not clear whether this is the
consequence of the effects of the war film
increasing aggression or the romantic film
reducing aggression — or both things happen-
ing. The interpretation would be clearer with a
baseline or pre-test measure. See also: pre-test;
quasi-experiments

Bayesian inference: an approach to infer-
ence based on Bayes'’s theorem which was ini-
tially proposed by Thomas Bayes. There are
two main interpretations of the probability or
likelihood of an event occurring such as a coin
turning up heads. The first is the relative fre-
quency interpretation, which is the number of
times a particular event happens over the

number of times it could have happened. If
the coin is unbiased, then the probability of
heads turning up is about 0.5, so if we toss the
coin 10 times, then we expect heads to turn up
on 5 of those 10 times or 0.50 (5/10 = 0.50) of
those occasions. The other interpretation of
probability is a subjective one, in which we
may estimate the probability of an event
occurring on the basis of our experience of
that event. So, for example, on the basis of our
experience of coin tossing we may believe that
heads are more likely to turn up, say 0.60 of
the time. Bayesian inference makes use of
both interpretations of probability. However,
it is a controversial approach and not widely
used in statistics. Part of the reluctance to use
it is that the probability of an event (such as
the outcome of a study) will also depend on
the subjective probability of that outcome
which may vary from person to person. The
theorem itself is not controversial.
Howson and Urbach (1989)

Bayes’s theorem: in its simplest form, this
theorem originally put forward by Thomas
Bayes determines the probability or likelihood
of an event A given the probability of another
event B. Event A may be whether a person is
female or male and event B whether they pass
or fail a test. Suppose, the probability or pro-
portion of females in a class is 0.60 and the
probability of being male is 0.40. Suppose fur-
thermore, that the probability of passing the
test is 0.90 for females and 0.70 for males.
Being female may be denoted as A, and being
male A, and passing the test as B. If we wanted
to work out what the probability (Prob) was of
a person being female (A;) knowing that they
had passed the test (B), we could do this using
the following form of Bayes’s theorem:

Prob(BIA,) X Prob(A,)

Prob(A,IB) =
[Prob(BIA,) X Prob(A,)] + [Prob(BIA,) X Prob(A,)]

where Prob(BIA,) is the probability of passing
being female (which is 0.90), Prob(A,) is the
probability of being female (which is 0.60),
Prob(BIA,) is the probability of passing being
male (which is 0.70) and Prob(A,) is the prob-
ability of being male (which is 0.40).
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Substituting these probabilities into this
formula, we see that the probability of some-
one passing being female is 0.66:

0.90 X 0.60 __ 054 054
(0.90 X 0.60) + (0.70 X 0.40) 054 + 028 0.82

Our ability to predict whether a person is
female has increased from 0.60 to 0.66 when
we have additional information about
whether or not they had passed the test. See
also: Bayesian inference

Novick and Jackson (1974)

beta () or beta weight: see standardized
partial regression coefficient

beta () error: see Type Il or beta error

between-groups or subjects design: com-
pares different groups of cases (participants or
subjects). They are among the commonest sorts
of research design. Because different groups of
individuals are compared, there is little control
over a multiplicity of possibly influential vari-
ables other than to the extent they can be con-
trolled by randomization. Between-subjects
designs can be contrasted with within-subjects
designs. See mixed design

between-groups variance or mean
square (MS): part of the variance in the
dependent variable in an analysis of variance
which is attributed to an independent vari-
able or factor. The mean square is a short
form for referring to the mean squared devi-
ations. It is calculated by dividing the sum of
squares (SS), which is short for the sum of
squared deviations, by the between-groups
degrees of freedom. The between-groups
degrees of freedom are the number of groups
minus one. The sum of squares is calculated
by subtracting the mean of each group from
the overall or grand mean, squaring this

difference, multiplying it by the number of
cases within the group and summing this
product for all the groups. The between-
groups variance or mean square is divided by
the error variance or mean square to form the
F ratio which is the main statistic of the analysis
of variance. The larger the between-groups
variance is in relation to the error variance,
the bigger the F ratio will be and the more
likely it is to be statistically significant.

between-judges variance: used in the
calculation of Ebel’s intraclass correlation
which is worked out in the same way as the
between-groups variance with the judges
representing different groups or conditions.
To calculate it, the between-judges sum of
squares is worked out and then divided by
the between-judges degrees of freedom
which are the number of judges minus one.
The sum of squares is calculated by subtract-
ing the mean of each judge from the overall
or grand mean of all the judges, squaring
each difference, multiplying it by the number
of cases for that judge and summing this
product for all the judges.

between-subjects variance: used in the
calculation of a repeated-measures analysis of
variance and Ebel’s intraclass correlation. It is
the between-subjects sum of squares divided
by the between-subjects degrees of freedom.
The between-subjects degrees of freedom
are the number of subjects or cases minus one.
The between-subjects sum of squares is calcu-
lated by subtracting the mean for each subject
from the overall or grand mean for all the sub-
jects, squaring this difference, multiplying it
by the number of conditions or judges and
adding these products together. The greater
the sum of squares or variance, the more the
scores vary between subjects.

bias: occurs when a statistic based on a
sample systematically misestimates the
equivalent characteristic (parameter) of the
population from which the samples were
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drawn. For example, if an infinite number of
repeated samples produced too low an esti-
mate of the population mean then the statistic
would be a biased estimate of the parameter.
An illustration of this is tossing a coin. This is
assumed generally to be a ‘fair” process as
each of the outcomes heads or tails is equally
likely. In other words, the population of coin
tosses has 50% heads and 50% tails. If the coin
has been tampered with in some way, in the
long run repeated coin tosses produce a dis-
tribution which favours, say, heads.

One of the most common biases in statistics
is where the following formula for standard
deviation is used to estimate the population
standard deviation:

standard deviation = [Y(X — X}

N

While this defines standard deviation, unfor-
tunately it consistently underestimates the
standard deviation of the population from
which it came. So for this purpose it is a
biased estimate. It is easy to incorporate
a small correction which eliminates the
bias in estimating from the sample to the
population:

unbiased estimate of
population standard =
deviation

(X - XP
N-1

It is important to recognize that there is a dif-
ference between a biased sampling method
and an unrepresentative sample, for example.
A biased sampling method will result in a
systematic difference between samples in the
long run and the population from which the
samples were drawn. An unrepresentative
sample is simply one which fails to reflect the
characteristics of the population. This can
occur using an unbiased sampling method
just as it can be the result of using a biased
sampling method. See also: estimated stan-
dard deviation

biased sample: is produced by methods
which ensure that the samples are generally

systematically different from the characteristics
of the population from which they are drawn.
It is really a product of the method by which
the sample is drawn rather than the actual
characteristics of any individual sample.
Generally speaking, properly randomly drawn
samples from a population are the only way
of eliminating bias. Telephone interviews are
a common method of obtaining samples. A
sample of telephone numbers is selected at
random from a telephone directory. Unfortu-
nately, although the sample drawn may be a
random (unbiased) sample of people on that
telephone list, it is likely to be a biased sam-
ple of the general population since it excludes
individuals who are ex-directory or who do
not have a telephone.

A sample may provide a poor estimate of
the population characteristics but, neverthe-
less, is not unbiased. This is because the
notion of bias is about systematically being
incorrect over the long run rather than about
a single poor estimate.

bi-directional relationship: a causal rela-
tionship between two variables in which both
variables are thought to affect each other.

bi-lateral relationship: see bi-directional
relationship

bimodal: data which have two equally
common modes. Table B.3 is a frequency table
which gives the distribution of the scores 1 to
8. It can be seen that the score 2 and the score
6 both have the maximum frequency of 16.
Since the most frequent score is also known
as the mode, two values exist for the mode: 2
and 6. Thus, this is a bimodal distribution. See
also: multimodal

When a bimodal distribution is plotted
graphically, Figure B.1 illustrates its appear-
ance. Quite simply, two points of the his-
togram are the highest. These, since the data
are the same as for Table B.3, are for the values
2 and 6.
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Table B.3 Bimodal distribution

Frequency %  Valid % Cumulative %

Valid 1.00 7 7.1 7.1 7.1
2.00 16 16.2 15.2 23.2
3.00 14 14.1 14.1 374
4.00 12 12.1 12.1 49.5
5.00 13 13.1 13.1 62.6
6.00 16 16.2 16.2 78.6
7.00 12 12.1 12.1 90.9
8.00 9 9.1 9.1 100.0
Total 99 100.0 100.0
18
16 -
14 -
212 4
3
o 10 4
8 4
6 4
4

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

Figure B.I Example of a bimodal distribution

Bimodal distributions can occur in all types
of data including nominal categories (cate-
gory or categorical data) as well as numerical
scores as in this example. If the data are nomi-
nal categories, the two modes are the names
(i.e. values) of the two categories.

binomial distribution: describes the prob-
ability of an event or outcome occurring,
such as a person passing or failing or being a
woman or a man, on a number of indepen-
dent occasions or trials when the event has
the same probability of occurring on each
occasion. The binomial theorem can be used
to calculate these probabilities.

binomial theorem: deals with situations in
which we are assessing the probability of get-
ting particular outcomes when there are just

two values. These may be heads versus tails,
males versus females, success versus failure,
correct versus incorrect, and so forth. To
apply the theorem we need to know the pro-
portions of each of the alternatives in the
population (though this may, of course, be
derived theoretically such as when tossing a
coin). P is the proportion in one category and
Q is the proportion in the other category. In
the practical application of statistics (e.g. as in
the sign test), the two values are often equally
likely or assumed to be equally likely just as
in the case of the toss of a coin. There are
tables of the binomial distribution available
in statistics textbooks, especially older ones.
However, binomials can be calculated.

In order to calculate the likelihood of get-
ting 9 heads out of 10 tosses of a coin, P = 0.5
and Q = 0.5. N is the number of coin tosses
(10). X is the number of events in one cate-
gory (9) and Y is the number of events in the
other category (1).

The formula for the probability of getting X
objects out of N (i.e. X plus Y) in one category is

binomial probability = }% PXQY

N!is the symbol for a factorial. The factor-
ial of 105 10 X 9 X 8 X 7 X 6 X 5 X 4 X 3 X
2 X 1 = 3,628,800. Factorials are easily calcu-
lated on a scientific calculator although they
tend to produce huge numbers which can be
off-putting and difficult for those of us not
used to working with exponentials. So, sub-
stituting values in the above,

10!
binomial probability ZW % 0.57 % 0.5!

=10 X PXQY
=10 X 0.0009765625 X 0.5
= 0.00488

This is the basic calculation. Remember that
this gives the probability of 9 heads and 1 tail.
More usually researchers will be interested
in the probability, say, of 9 or more heads. In
this case, the calculation would be done for
9 heads exactly as above but then a similar
calculation for 10 heads out of 10. These two
probabilities would then be added together
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to give the probability of 9 or more heads in
10 tosses.

There is also the multinomial theorem
which is the distribution of several categories.

Generally speaking, the binomial theorem
is rare in practice for most students and prac-
titioners. There are many simple alternatives
which can be substituted in virtually any
application. Therefore, for example, the sign
test can be used to assess whether the distri-
bution of two alternative categories is equal
or not. Alternatively, the single-sample chi-
square distribution would allow any number
of categories to be compared in terms of their
frequency.

The binomial distribution does not
require equal probabilities of outcomes.
Nevertheless, the probabilities need to be
independent so that the separate probabil-
ities for the different events are equal to 1.00.
This means, for example, that the outcomes
being considered can be unequal as in the
case of the likelihood of twins. Imagine that
the likelihood of any birth yielding twins is
0.04 (i.e. 4 chances in 100). The probability
of a non-twin birth is therefore 0.96. These
values could be entered as the probabilities
of P and Q in the binomial formula to work
out the probability that, say, 13 out of 20
sequential births at a hospital turn out to
be twins.

bivariate: involving the simultaneous analy-
sis of two variables. Two-way chi-square,
correlation, unrelated t test and ANOVA are
among the inferential statistics which involve
two variables. Scattergrams, compound histo-
grams, etc., are basic descriptive methods
involving a bivariate approach. Bivariate
analysis involves the exploration of interrela-
tionships between variables and, hence, pos-
sible influences of one variable on another.
Conceptually, it is a fairly straightforward
progression from bivariate analysis to multi-
variate analysis.

bivariate regression: see simple or bivariate
regression

blocks: see randomization

blocking: see matching

BMDP: an abbreviation for Bio-Medical Data
Package which is one of several widely used
statistical packages for manipulating and
analysing data. Information about BMDP can
be found at the following website:

http: //www.statsol.ie/bmdp/bmdp.htm

Bonferroni adjustment: see analysis of
variance; Bonferroni test; Dunn’s test

Bonferroni test: also known as Dunn’s test,
it is one test for controlling the probability of
making a Type I error in which two groups
are assumed to differ significantly when they
do not differ. The conventional level for
determining whether two groups differ is the
0.05 or 5% level. At this level the probability
of two groups differing by chance when they
do not differ is 1 out of 20 or 5 out of 100.
However, the more groups we compare the
more likely it is that two groups will differ by
chance. To control for this, we may reduce the
significance level by dividing the conven-
tional significance level of 0.05 by the number
of comparisons we want to make. So, if we
want to compare six groups, we would
divide the 0.05 level by 6 to give us a level of
0.008 (0.05/6 = 0.008). At this more conserva-
tive level, it is much less likely that we will
assume that two groups differ when they do
not differ. However, we are more likely to be
making a Type II error in which we assume
that there is no difference between two
groups when there is a difference.

This test has generally been recommended
as an a priori test for planned comparisons
even though it is a more conservative test
than some post hoc tests for unplanned com-
parisons. It is listed as a post hoc test in SPSS.
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It can be used for equal and unequal group
sizes where the variances are equal. The for-
mula for this test is the same as that for the
unrelated t test where the variances are equal:

group 1 mean — group 2 mean

J(group 1 variance/group 1) + (group 2 variance/group 2 1)

Where the variances are unequal, it is recom-
mended that the Games-Howell procedure
be used. This involves calculating a critical
difference for every pair of means being com-
pared which uses the studentized range
statistic.

Howell (2002)

bootstrapping: bootstrapping statistics lit-
erally take the distribution of the obtained
data in order to generate a sampling distribu-
tion of the particular statistic in question. The
crucial feature or essence of bootstrapping
methods is that the obtained sample data are,
conceptually speaking at least, reproduced
an infinite number of times to give an infi-
nitely large sample. Given this, it becomes
possible to sample from the ‘bootstrapped
population” and obtain outcomes which dif-
fer from the original sample. So, for example,
imagine the following sample of 10 scores
obtained by a researcher:

510,6,3,9,2,5,6,7,11

There is only one sample of 10 scores possible
from this set of 10 scores — the original sam-
ple (i.e. the 10 scores above). However, if we
endlessly repeated the string as we do in
bootstrapping then we would get

5,10,6,3,9,2,5,6,7,11,5,10,6,3,9,2,5,6,7,
11,5,10,6,3,9,2,5,6,7,11,5,10,6,3,9,2,5
0,6,3,9
0

~

6,7,11,5,10,6,3,9,2,5,6,7,11,5,10, 6, 3,
2,5,6,7,11,5,10,6,3,9,2,5,6,7,11, ...,5,1
6,3,9,2,56,7,11, etc.

~

7

With this bootstrapped population, it is pos-
sible to draw random samples of 10 scores
but get a wide variety of samples many of
which differ from the original sample. This is
simply because there is a variety of scores
from which to choose now.

So long as the original sample is selected
with care to be representative of the wider sit-
uation, it has been shown that bootstrapped
populations are not bad population estimates
despite the nature of their origins.

The difficulty with bootstrapping statistics
is the computation of the sampling distribu-
tion because of the sheer number of samples
and calculations involved. Computer pro-
grams are increasingly available to do boot-
strapping calculations though these have not
yet appeared in the most popular computer
packages for statistical analysis. The Web pro-
vides fairly up-to-date information on this.

The most familiar statistics used today had
their origins in pre-computer times when
methods had to be adopted which were capa-
ble of hand calculation. Perhaps bootstrap-
ping methods (and the related procedures of
resampling) would be the norm had high-
speed computers been available at the birth
of statistical analysis. See also: resampling
techniques

box plot: a form of statistical diagram to rep-
resent the distribution of scores on a variable.
It consists (in one orientation) of a horizontal
numerical scale to represent the values of the
scores. Then there is a vertical line to mark the
lowest value of a score and another vertical
line to mark the highest value of a score in the
data (Figure B.2). In the middle there is a box
to indicate the 25 to the 50th percentile (or
median) and an adjacent one indicating the
50th to the 75th percentile (Figure B.3).

Thus the lowest score is 5, the highest score
is 16, the median score (50th percentile) is 11,
and the 75th percentile is about 13.

From such a diagram, not only are these
values to an experienced eye an indication
of the variation of the scores, but also the

T I

567 89 10 11 12 13 14 15 16 17

Figure B.2 lllustration of box plot
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Lowest 25th 75th
score percentile Median

NN

Highest
percentile score

5678910 11 12 13 14 15 16 17

Figure B.3 Interpretation of the components of

a box plot

symmetry of the distribution may be
assessed. In some disciplines box plots are
extremely common whereas in others they
are somewhat rare. The more concrete the
variables being displayed, the more useful a
box plot is. So in economics and sociology
when variables such as income are being tab-
ulated, the box plot has clear and obvious
meaning. The more abstract the concept and
the less linear the scale of measurement, the
less useful is the box plot.

Box’s M test: one test used to determine
whether the variance/covariance matrices of
two or more dependent variables in a multi-
variate analysis of variance or covariance are
similar or homogeneous across the groups,
which is one of the assumptions underlying
this analysis. If this test is significant, it may
be possible to reduce the variances by trans-
forming the scores by taking their square root
or natural logarithm.

brackets (): commonly used in statistical
equations. They indicate that their contents
should be calculated first. Take the following
equation:

A =B(C + D)

The brackets mean that C and D should be
added together before multiplying by B. So,

A=2(3+4)
=2(7)
=2x7
=14

Bryant-Paulson simultaneous test
procedure: a post hoc or multiple comparison
test which is used to determine which of
three or more adjusted means differ from one
another when the F ratio in an analysis of
covariance is significant. The formula for this
test varies according to the number of covari-
ates and whether cases have been assigned to
treatments at random or not.

The following formula is used for a non-
randomized study with one covariate where
the subscripts 1 and 2 denote the two groups
being compared and # is the sample size of
the group:

adjusted mean, — adjusted mean,
adjusted 2 (covariate mean, — covariate mean,)’
error mean X [— + - 2
square n covariate error sum of squares

The error term must be computed separately
for each comparison.

For a randomized study with one covariate
we need to use the following formula:

adjusted mean, — adjusted mean,

adjusted covariate between — groups mean square
error mean X | 1 +

square covariate error sum of squares

number of cases in a group

The error term is not computed separately for
each comparison. Where the group sizes are
unequal, the harmonic mean of the sample
size is used. For two groups the harmonic

mean is defined as follows:
. 2 Xn Xn,
harmonic mean = ————

n, +n,

Stevens (1996)



canonical correlation: normal correlation
involves the correlation between one variable
and another. Multiple correlation involves
the correlation between a set of variables and
a single variable. Canonical correlation
involves the correlation between one set of X
variables and another set of Y variables.
However, these variables are not those as
actually recorded in the data but abstract
variables (like factors in factor analysis)
known as latent variables (variables underly-
ing a set of variables). There may be several
latent variables in any set of variables just as
there may be several factors in factor analy-
sis. This is true for the X variables and the Y
variables. Hence, in canonical correlation
there may be a number of coefficients — one
for each possible pair of a latent root of the X
variables and a latent root of the Y variables.

Canonical correlation is a rare technique in
modern published research. See also:
Hotelling’s trace criterion; Roy’s gcr; Wilks’s
lambda

carryover or asymmetrical transfer
effect: may occur in a within-subjects or
repeated-measures design in which the effect
of a prior condition or treatments ‘carries
over’ onto a subsequent condition. For exam-
ple, we may be interested in the effect of
watching violence on aggression. We conduct
a within-subjects design in which partici-
pants are shown a violent and a non-violent
scene in random order, with half the partici-
pants seeing the violent scene first and the

other half seeing it second. If the effect of
watching violence is to make participants
more aggressive, then participants may
behave more aggressively after viewing the
non-violent scene. This will have the effect
of reducing the difference in aggression
between the two conditions. One way of
controlling for this effect is to increase the
interval between one condition and another.

case: a more general term than participant or
subject for the individuals taking part in a
study. It can apply to non-humans and inani-
mate objects so is preferred for some disci-
plines. See also: sample

categorical (category) variable: also
known as qualitative, nominal or category
variables. A variable measured in terms of
the possession of qualities and not in terms of
quantities. Categorical variables contain a
minimum of two different categories (or values)
and the categories have no underlying order-
ing of quantity. Thus, colour could be consid-
ered a categorical variable and, say, the
categories blue, green and red chosen to be
the measured categories. However, bright-
ness such as sunny, bright, dull and dark
would seem not to be a categorical variable
since the named categories reflect an under-
lying dimension of degrees of brightness
which would make it a score (or quantitative
variable).
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Categorical variables are analysed using
generally distinct techniques such as chi-
square, binomial, multinomial, logistic regres-
sion, and log-linear. See also: qualitative
research; quantitative research

Cattell’s scree test: sece scree test,
Cattell’s

causal: see quasi-experiments

causal effect: see effect

causal modelling: see partial correlation;
path analysis

causal relationship: is one in which one
variable is hypothesized or has been shown
to affect another variable. The variable
thought to affect the other variable may be
called an independent variable or cause while
the variable thought to be affected may be
known as the dependent variable or effect. The
dependent variable is assumed to ‘depend’
on the independent variable, which is consid-
ered to be ‘independent” of the dependent
variable. The independent variable must
occur before the dependent variable. However,
a variable which precedes another variable is
not necessarily a cause of that other variable.
Both variables may be the result of another
variable.

To demonstrate that one variable causes or
influences another variable, we have to be able
to manipulate the independent or causal vari-
able and to hold all other variables constant. If
the dependent variable varies as a function of
the independent variable, we may be more
confident that the independent variable affects
the dependent variable. For example, if we
think that noise decreases performance, we

will manipulate noise by varying its level or
intensity and observe the effect this has on
performance. If performance decreases as a
function of noise, we may be more certain that
noise influences performance.

In the socio-behavioural sciences it may be
difficult to be sure that we have only mani-
pulated the independent variable. We may
have inadvertently manipulated one or more
other variables such as the kind of noise we
played. It may also be difficult to control all
other variables. In practice, we may try to
control the other variables that we think
might affect performance, such as illumina-
tion. We may overlook other variables which
also affect performance, such as time of day
or week. One factor which may affect perfor-
mance is the myriad ways in which people or
animals differ. For example, performance
may be affected by how much experience
people have of similar tasks, their eyesight,
how tired or anxious they are, and so on. The
main way of controlling for these kinds of
individual differences is to assign cases ran-
domly to the different conditions in a
between-subjects design or to different orders
in a within-subjects design. With very small
numbers of cases in each condition, random
assignment may not result in the cases being
similar across the conditions. A way to deter-
mine whether random assignment may have
produced cases who are comparable across
conditions is to test them on the dependent
variable before the intervention, which is
known as a pre-test. In our example, this
dependent variable is performance.

It is possible that the variable we assume to
be the dependent variable may also affect the
variable we considered to be the independent
variable. For example, watching violence
may cause people to be more aggressive but
aggressive people may also be inclined to
watch more violence. In this case we have a
causal relationship which has been variously
referred to as bi-directional, bi-lateral, two-
way, reciprocal or non-recursive. A causal
relationship in which one variable affects but
is not affected by another variable is vari-
ously known as a uni-directional, uni-lateral,
one-way, non-reciprocal or recursive one.

If we simply measure two variables at the
same time as in a cross-sectional survey or
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Table C.1 A contingency table with a single cell highlighted
Independent variable |
Category A Category B Category C
Independent ~ Sample X
variable 2 Sample Y

study, we cannot determine which variable
affects the other. Furthermore, if we measure
the two variables on two or more occasions as
in a panel or longitudinal study, we also can-
not determine if one variable affects the other
because both variables may be affected by
other variables. In such studies, it is more
accurate and appropriate simply to refer to
an association or relationship between vari-
ables unless one is postulating a causal rela-
tionship. See also: path analysis

ceiling effect: occurs when scores on a vari-
able are approaching the maximum they can
be. Thus, there may be bunching of values
close to the upper point. The introduction of
a new variable cannot do a great deal to ele-
vate the scores any further since they are vir-
tually as high as they can go. Failure to
recognize the possibility that there is a ceiling
effect may lead to the mistaken conclusion
that the independent variable has no effect.
There are several reasons for ceiling effects
which go well beyond statistical issues into
more general methodological matters. For
example, if the researcher wished to know
whether eating carrots improved eyesight, it
would probably be unwise to use a sample of
ace rifle marksmen and women. The reason is
that their eyesight is likely to be as good as it
can get (they would not be exceptional at
shooting if it were not) so the diet of extra car-
rots is unlikely to improve matters. With a
different sample such as a sample of steam
railway enthusiasts, the ceiling effect may not
occur. Similarly, if a test of intelligence is too
difficult, then improvement may be impossi-
ble in the majority of people. So ceiling effects
are a complex of matters and their avoidance
a matter of careful evaluation of a range of
issues. See also: floor effect

cell: a subcategory in a cross-tabulation or
contingency table. A cell may refer to just single
values of a nominal, category or categorical
variable. However, cells can also be formed by
the intersection of two categories of the two
(or more) independent nominal variables.
Thus, a 2 X 3 cross-tabulation or contingency
table has six cells. Similarly,a2 X 2 X 2 ANOVA
has a total of eight cells. The two-way contin-
gency table in Table C.1 illustrates the notion
of a cell. One box or cell has been filled in as
grey. This cell consists of the cases which are in
sample X and fall into category B of the other
independent variable. That is, a cell consists of
cases which are defined by the vertical column
and the horizontal row it is in.

According to the type of variable, the
contents of the cells will be frequencies (e.g.
for chi-square) or scores (e.g. for analysis of
variance).

central limit theorem: a description of the
sampling distribution of means of samples
taken from a population. It is an important
tool in inferential statistics which enables cer-
tain conclusions to be drawn about the charac-
teristics of samples compared with the
population. The theorem makes a number of
important statements about the distribution of
an infinite number of samples drawn at ran-
dom from a population. These to some extent
may be grasped intuitively though it may be
helpful to carry out an empirical investigation
of the assumptions of the theory:

1 The mean of an infinite number of ran-
dom sample means drawn from the pop-
ulation is identical to the mean of the
population. Of course, the means of indi-
vidual samples may depart from the mean
of the population.
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2 The standard deviation of the distribution
of sample means drawn from the popula-
tion is proportional to the square root of
the sample size of the sample means in
question. In other words, if the standard
deviation of the scores in the population is
symbolized by o then the standard devia-
tion of the sample means is o/JN where N
is the size of the sample in question. The
standard deviation of sample means is
known as the standard error of sample
means.

3 Even if the population is not normally dis-
tributed, the distribution of means of sam-
ples drawn at random from the population
will tend towards being normally distrib-
uted. The larger the sample size involved,
the greater the tendency towards the distri-
bution of samples being normal.

Part of the practical significance of this is that
samples drawn at random from a population
tend to reflect the characteristics of that popu-
lation. The larger the sample size, the more
likely it is to reflect the characteristics of the
population if it is drawn at random. With
larger sample sizes, statistical techniques
based on the normal distribution will fit the
theoretical assumptions of the technique
increasingly well. Even if the population is
not normally distributed, the tendency of the
sampling distribution of means towards nor-
mality means that parametric statistics may
be appropriate despite limitations in the data.

With means of small-sized samples, the
distribution of the sample means tends to be
flatter than that of the normal distribution so
we typically employ the t distribution rather
than the normal distribution.

The central limit theorem allows researchers
to use small samples knowing that they
reflect population characteristics fairly well.
If samples showed no such meaningful and
systematic trends, statistical inference from
samples would be impossible. See also: sam-
pling distribution

central tendency, measure of: any mea-
sure or index which describes the central value
in a distribution of values. The three most

common measures of central tendency are the
mean, the median and the mode. These three
indices are the same when the distribution is
unimodal and symmetrical. See also: average

characteristic root, value or number:
another term for eigenvalue. See eigenvalue,
in factor analysis

chi-square or chi-squared (x?): symbol-
ized by the Greek letter x and sometimes
called Pearson’s chi-square after the person
who developed it. It is used with frequency
or categorical data as a measure of goodness
of fit where there is one variable and as a
measure of independence where there are
two variables. It compares the observed fre-
quencies with the frequencies expected by
chance or according to a particular distribu-
tion across all the categories of one variable
or all the combinations of categories of two
variables. The categories or combination of
categories may be represented as cells in a
table. So if a variable has three categories
there will be three cells. The greater the dif-
ference between the observed and the
expected frequencies, the greater chi-square
will be and the more likely it is that the
observed frequencies will differ significantly.

Differences between observed and expected
frequencies are squared so that chi-square is
always positive because squaring negative val-
ues turns them into positive ones (e.g. — 2*> =
4). Furthermore, this squared difference is
expressed as a function of the expected fre-
quency for that cell. This means that larger
differences, which should by chance result
from larger expected frequencies, do not
have an undue influence on the value of chi-
square. When chi-square is used as a measure
of goodness of fit, the smaller chi-square is,
the better the fit of the observed frequencies
to the expected ones. A chi-square of zero
indicates a perfect fit. When chi-square is
used as a measure of independence, the
greater the value of chi-square is the more
likely it is that the two variables are related
and not independent.
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The more categories there are, the bigger
chi-square will be. Consequently, the statisti-
cal significance of chi-square takes account of
the number of categories in the analysis.
Essentially, the more categories there are, the
bigger chi-square has to be to be statistically
significant at a particular level such as the 0.05
or 5% level. The number of categories is
expressed in degrees of freedom (df). For chi-
square with only one variable, the degrees of
freedom are the number of categories minus
one. So, if there are three categories, there are
2 degrees of freedom (3 —1 =2). For chi-
square with two variables, the degrees of free-
dom are one minus the number of categories
in one variable multiplied by one minus the
number of categories in the other variable. So,
if there are three categories in one variable
and four in the other, the degrees of freedom
are6[3—1) X (4 —1) =6].

With 1 degree of freedom it is necessary to
have a minimum expected frequency of five
in each cell to apply chi-square. With more
than 1 degree of freedom, there should be a
minimum expected frequency of one in each
cell and an expected minimum frequency of
five in 80% or more of the cells. Where these
requirements are not satisfied it may be pos-
sible to meet them by omitting one or more
categories and/or combining two or more
categories with fewer than the minimum
expected frequencies.

Where there is 1 degree of freedom, if we
know what the direction of the results is for
one of the cells, we also know what the direc-
tion of the results is for the other cell where
there is only one variable and for one of the
other cells where there are two variables with
two categories. For example, if there are only
two categories or cells, if the observed fre-
quency in one cell is greater than that expected
by chance, the observed frequency in the other
cell must be less than that expected by chance.
Similarly, if there are two variables with two
categories each, and if the observed frequency
is greater than the expected frequency in one of
the cells, the observed frequency must be less
than the expected frequency in one of the other
cells. If we had strong grounds for predicting
the direction of the results before the data were
analysed, we could test the statistical signi-
ficance of the results at the one-tailed level.

Table C.2  Support for the death penalty
in women and men

Yes No Don’t know
Women 20 70 20
Men 30 50 10

Where there is more than 1 degree of freedom,
we cannot tell which observed frequencies in
one cell are significantly different from those
in another cell without doing a separate chi-
square analysis of the frequencies for those
cells.

We will use the following example to illus-
trate the calculation and interpretation of chi-
square. Suppose we wanted to find whether
women and men differed in their support for
the death penalty. We asked 110 women and
90 men their views and found that 20 of the
women and 30 of the men agreed with the
death penalty. The frequency of women and
men agreeing, disagreeing and not knowing
are shown in the 2 X 3 contingency table in
Table C.2.

The number of women expected to sup-
port the death penalty is the proportion of
people agreeing with the death penalty
which is expressed as a function of the num-
ber of women. So the proportion of people
supporting the death penalty is 50 out of 200
or 0.25(50/200 = 0.25) which as a function of
the number of women is 27.50(0.25 X 110 =
27.50). The calculation of the expected fre-
quency can be expressed more generally in
the following formula:

row total X column total

expected frequency = Ttotal
grand tota

For women supporting the death penalty the
row total is 110 and the column total is 50.
The grand total is 200. Thus the expected fre-
quency is 27.50(110 X 50/200 = 27.50).

Chi-square is the sum of the squared dif-
ferences between the observed and expected
frequency divided by the expected frequency
for each of the cells:

chi-square = (observed frequency — expected frequency)?

expected frequency
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This summed across cells. This value for
women supporting the death penalty is 2.05:

(20 — 2757  —7.5* 56.25
275 275 275

=2.05

The sum of the values for all six cells is 6.74
(2.05 + 0.24 + 0.74 + 2.50 + 0.30 + 0.91 =
6.74). Hence chi-square is 6.74.

The degrees of freedom are 2[(2 — 1) X
(8 — 1) = 2]. With 2 degrees of freedom chi-
square has to be 5.99 or larger to be statisti-
cally significant at the two-tailed 0.05 level,
which it is.

Although fewer women support the death
penalty than expected by chance, we do not
know if this is statistically significant because
the chi-square examines all three answers
together. If we wanted to determine whether
fewer women supported the death penalty
than men we could just examine the two cells
in the first column. The chi-square for this
analysis is 2.00 which is not statistically signi-
ficant. Alternatively, we could carry out a
2 X 2 chi-square. We could compare those
agreeing with either those disagreeing or
those disagreeing and not knowing. Both
these chi-squares are statistically significant,
indicating that fewer women than men sup-
port the death penalty.

The value that chi-square has to reach or
exceed to be statistically significant at the
two-tailed 0.05 level is shown in Table C.3 for
up to 12 degrees of freedom. See also: contin-
gency coefficient; expected frequencies;
Fisher (exact probability) test; log-linear
analysis; partitioning; Yates’s correction

Cramer (1998)

classic experimental method, in analy-
sis of variance: see Type II, classic experi-
mental or least squares method in analysis
of variance

cluster analysis: a set of techniques for sort-
ing variables, individuals, and the like, into
groups on the basis of their similarity to each

Table C.3 The 0.05 probability two-tailed
critical values of chi-square

df x? df X2

[ 3.84 7 14.07
2 599 8 15.51
3 7.82 9 16.92
4 9.49 10 18.31
5 11.07 1 19.68
6 12.59 12 21.03

other. These groupings are known as clusters.
Really it is about classifying things on the
basis of having similar patterns of character-
istics. For example, when we speak of families
of plants (e.g. cactus family, rose family, and
so forth) we are talking of clusters of plants
which are similar to each other. Cluster analy-
sis appears to be less widely used than factor
analysis, which does a very similar task. One
advantage of cluster analysis is that it is less
tied to the correlation coefficient than factor
analysis is. For example, cluster analysis
sometimes uses similarity or matching scores.
Such a score is based on the number of char-
acteristics that, say, a case has in common
with another case.

Usually, depending on the method of clus-
tering, the clusters are hierarchical. That is,
there are clusters within clusters or, if one
prefers, clusters of clusters. Some methods of
clustering (divisive methods) start with one
all-embracing cluster and then break this into
smaller clusters. Agglomerative methods of
clustering usually start with as many clusters
as there are cases (i.e. each case begins as a
cluster) and then the cases are brought
together to form bigger and bigger clusters.
There is no single set of clusters which always
applies — the clusters are dependent on what
ways of assessing similarity and dissimilarity
are used. Clusters are groups of things which
have more in common with each other than
they do with other clusters.

There are a number of ways of assessing
how closely related the entities being entered
into a cluster analysis are. This may be
referred to as their similarity or the proximity.
This is often expressed in terms of correlation
coefficients but these only indicate high
covariation, which is different from precise
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Table C.4 Squared Euclidean distances and the sum of the squared
Euclidean distances for facial features

Feature Person | Person 2 Difference Difference?
Nose size 4 4 0 0
Bushiness of eyebrows 3 | 2 4
Fatness of lips 4 2 2 4
Hairiness | 4 -3 9
Eye spacing 5 4 | |
Ear size 4 | -3 9
Sum =27

matching. One way of assessing matching
would be to use squared Euclidean distances
between the entities. To do this, one simply
calculates the difference between values,
squares each difference, and then sums the
square of the difference. This is illustrated in
Table C.4 for the similarity of facial features
for just two of a larger number of individuals
entered into a cluster analysis. Obviously if
we did the same for, say, 20 people, we would
end up with a 20 X 20 matrix indicating the
amount of similarity between every possible
pair of individuals - that is, a proximity
matrix. The pair of individuals in Table C.4
are not very similar in terms of their facial
features.

Clusters are formed in various ways in var-
ious methods of cluster analysis. One way of
starting a cluster is simply to identify the pair
of entities which are closest or most similar to
each other. That is, one would choose from the
correlation matrix or the proximity matrix the
pair of entities which are most similar. They
would be the highest correlating pair if one
were using a correlation matrix or the pair
with the lowest sum of squared Euclidean dis-
tances between them in the proximity matrix.
This pair of entities would form the nucleus of
the first cluster. One can then look through the
matrix for the pair of entities which have the
next highest level of similarity. If this is a com-
pletely new pair of entities, then we have a
brand-new cluster beginning. However, if one
member of this pair is in the cluster first
formed, then a new cluster is not formed but
the additional entity is added to the first clus-
ter making it a three-entity cluster at this stage.

According to the form of clustering, a
refined version of this may continue until all

of the entities are joined together in a single
grand cluster. In some other methods, clus-
ters are discrete in the sense that only entities
which have their closest similarity with
another entity which is already in the cluster
can be included. Mostly, the first option is
adopted which essentially is hierarchical
clustering. That is to say, hierarchical cluster-
ing allows for the fact that entities have vary-
ing degrees of similarity to each other.
Depending on the level of similarity required,
clusters may be very small or large. The con-
sequence of this is that this sort of cluster
analysis results in clusters within clusters —
that is, entities are conceived as having
different levels of similarity. See also: agglom-
eration schedule; dendrogram; hierarchical
agglomerative clustering
Cramer (2003)

cluster sample: cluster sampling employs
only limited portions of the population. This
may be for a number of reasons — there may
not be available a list which effectively
defines the population. For example, if
an education researcher wished to study
11 year old students, it is unlikely that a list of
all 11 year old students would be available.
Consequently, the researcher may opt for
approaching a number of schools each of
which might be expected to have a list of its
11 year old students. Each school would be a
cluster.

In populations spread over a substantial
geographical area, random sampling is enor-
mously expensive since random sampling
maximizes the amount of travel and consequent
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expense involved. So it is fairly common to
employ cluster samples in which the larger
geographical area is subdivided into repre-
sentative clusters or sub-areas. Thus, large
towns, small towns and rural areas might be
identified as the clusters. In this way, charac-
teristics of the stratified sample may be built
in as well as gaining the advantages of
reduced geographical dispersion of partici-
pants or cases. Much research is only possible
because of the use of a limited number of
clusters in this way.

In terms of statistical analysis, cluster sam-
pling techniques may affect the conceptual
basis of the underlying statistical theory as
they cannot be regarded as random samples.
Hence, survey researchers sometimes use
alternative statistical techniques from the
ones common in disciplines such as psycho-
logy and related fields.

clustered bar chart, diagram or graph:
see compound bar chart

Cochran’s C test: one test for determining
whether the variance in two or more groups
is similar or homogeneous, which is an
assumption that underlies the use of analysis
of variance. The group with the largest vari-
ance is divided by the sum of variances of all
the groups. The statistical significance of this
value may be looked up in a table of critical
values for this test.
Cramer (1998)

Cochran’s Q test: used to determine
whether the frequencies of a dichotomous
variable differ significantly for more than two
related samples or groups.

Cramer (1998)

coefficient of alienation: indicates the
amount of variation that two variables do not

have in common. If there is a perfect correla-
tion between two variables then the coeffi-
cient of alienation is zero. If there is no
correlation between two variables then the
coefficient of alienation is one. To calculate
the coefficient of alienation, we use the fol-
lowing formula:

coefficient of alienation = 1 — r?

Where r? is the squared correlation coefficient
between the two variables. So if we know that
the correlation between age and intelligence
is —0.2 then

coefficient of alienation = 1 — (—0.2)*
=1-0.04 =096

In a sense, then, it is the opposite of the coef-
ficient of determination which assesses the
amount of variance that two variables have in
common.

coefficient of determination: an index of
the amount of variation that two variables
have in common. It is simply the square of
the correlation coefficient between the two
variables:

coefficient of determination = 72

Thus, if the correlation between two variables
is 0.4, then the coefficient of determination is
0.4* = 0.16.

The coefficient of determination is a clearer
indication of the relationship between two
variables than the correlation coefficient. For
example, the difference between a correlation
coefficient of 0.5 and one of 1.0 is not easy for
newcomers to statistics to appreciate. However,
converted to the corresponding coefficients of
determination of 0.25 and 1.00, then it is clear
that a correlation of 1.00 (i.e. coefficient of
determination = 1.0) is four times the magni-
tude as one of 0.5 (coefficient of determina-
tion = 0.25) in terms of the amount of
variance explained.

Table C.5 gives the relationship between
the Pearson correlation (or point biserial
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Table C.5 The relationship between correlation, coefficient of determination and percentage of

shared variance

Correlation 1.0 0.9 0.8 0.7

Coefficient of 1.00 0.8l 0.64 0.49
determination

Shared variance 100% 81% 64% 49%

0.6 0.5 0.4 0.3 0.2 0.1 0.0
0.36 0.25 0.16 0.09 0.04 0.01 0.00

36% 25% 16% 9% 4% 1% 0%

or phi coefficients for that matter) and the
coefficient of determination. The percentage
of shared variance is also given. This table
should help understand the meaning of the
correlation coefficient values. See coefficient
of alienation

coefficient of variation: it would seem intu-
itive to suggest that samples with big mean
scores of, say, 100 are likely to have larger vari-
ation around the mean than samples with
smaller means such as 5. In order to indicate
relative variability adjusting the variance of
samples for their sample size, we can calculate
the coefficient of variation. This is merely the
standard deviation of the sample divided by
the mean score. (Standard deviation itself is an
index of variation, being merely the square
root of variance.) This allows comparison of
variation between samples with large means
and small means. Essentially, it scales down (or
possibly up) all standard deviations as a ratio
of a single unit on the measurement scale.

Thus, if a sample mean is 39.0 and its stan-
dard deviation is 5.3, we can calculate the
coefficient of variation as follows:

standard deviation
mean

coefficient of variation =

53
=390 0.14

Despite its apparent usefulness, the coeffi-
cient of variation is more common in some
disciplines than others.

Cohen’s d: one index of effect size used in
meta-analysis and elsewhere. Compared

with using Pearson’s correlation for this
purpose, it lacks intuitive appeal. The two
are readily converted to each other. See
meta-analysis

cohort: a group of people who share the
same or similar experience during the same
period of time such as being born or married
during a particular period. This period may
vary in duration.

cohort analysis: usually the analysis of
some characteristic from one or more cohorts
at two or more points in time. For example,
we may be interested in how those in a par-
ticular age group vote in two consecutive
elections. The individuals in a cohort need
not be the same at the different points in
time. A study in which the same individuals
are measured on two or more occasions is
usually referred to as a panel or prospective
study.
Glenn (1977)

cohort design: a design in which groups of
individuals pass through an institution such
as a school but experience different events
such as whether or not they have been
exposed to a particular course. The groups
have not been randomly assigned to whether
or not they experience the particular event so
it is not possible to determine whether any
difference between the groups experiencing
the event and those not experiencing the
event is due to the event itself.
Cook and Campbell (1979)
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Table C.6 Percentage intending to vote for
different cohorts and periods
with age in brackets

Year of measurement (period)

1980 1990 2000

Year of birth 1950
(cohort) 1960

60 (30) 70 (40)

50 (30) 60 (40)

cohort effect: may be present if the
behaviour of one cohort differs from that of
another. Suppose, for example, we asked
people their voting intentions in the year 1990
and found that 70% of those born in 1950 said
they would vote compared with 50% of those
born in 1960 as shown in Table C.6. We may
consider that this difference may reflect a
cohort effect. However, this effect may also be
due to an age difference in that those born in
1960 will be younger than those born in 1950.
Those born in 1960 will be aged 30 in the year
1990 while those born in 1950 will be aged 40.
So this difference may be more an age effect
than a cohort effect.

To determine whether this difference is an
age effect, we would have to compare the vot-
ing intentions of the two cohorts at the same
age. This would mean finding out the voting
intention of these two groups at two other
periods or times of measurement. These
times could be the year 1980 for those born in
1950 who would then be aged 30 and the year
2000 for those born in 1960 who would then
be 40. Suppose, of those born in 1950 and
asked in 1980, we found that 60% said they
would vote compared with 60% of those born
in 1960 and asked in 2000 as shown in Table C.6.
This would suggest that there might also be
an age effect in that older people may be
more inclined to vote than younger people.
However, this age effect could also be a time
of measurement or period effect in that there
was an increase in people’s intention to vote
over this period.

If we compare people of the same age for
the two times we have information on them,
we see that there appears to be a decrease in
their voting intentions. For those aged 30,
60% intended to vote in 1980 compared with
50% in 1990. For those aged 40, 70% intended

to vote in 1990 compared with 60% in 2000.
However, this difference could be more a
cohort effect than a period effect.

Menard (1991)

collinearity: a feature of the data which
makes the interpretation of analyses such as
multiple regression sometimes difficult. In
multiple regression, a number of predictor (or
independent) variables are linearly combined
to estimate the criterion (or dependent vari-
able). In collinearity, some of the predictor or
independent variables correlate extremely
highly with each other. Because of the way in
which multiple regression operates, this
means that some variables which actually
predict the dependent variable do not appear
in the regression equation, but other predic-
tor variables which appear very similar have
a lot of impact on the regression equation.
Table C.7 has a simple example of a correla-
tion matrix which may have a collinearity
problem. The correlations between the inde-
pendent variables are the major focus. Areas
where collinearity may have an effect have
been highlighted. These are independent
variables which have fairly high correlations
with each other. In the example, the correla-
tion matrix indicates that independent vari-
able 1 correlates at 0.7 with independent
variable 4. Both have got (relatively) fairly
high correlations with the dependent variable
of 0.4 and 0.3. Thus, both are fairly good pre-
dictors of the dependent variable. If one but
not the other appears as the significant pre-
dictor in multiple regression, the researcher
should take care not simply to take the inter-
pretation offered by the computer output of
the multiple regression as adequate.
Another solution to collinearity problems is
to combine the highly intercorrelated vari-
ables into a single variable which is then
used in the analysis. The fact that they are
highly intercorrelated means that they are
measuring much the same thing. The best
way of combining variables is to convert
each to a z score and sum the z scores to give
a total z score.

It is possible to deal with collinearity in a
number of ways. The important thing is that
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Table C.7 Examples of high intercorrelations which may make collinearity a problem

Independent  Independent Independent Independent Dependent
variable 2 variable 3 variable 4 variable 5 variable
Independent variable | 0.3 0.2 (W) 0.1 0.4
Independent variable 2 0.3 0.2 0.2
Independent variable 3 0.2 0.1 0.2
Independent variable 4 0.3 0.3
Independent variable 5 0.0

the simple correlation matrix between the
independent variables and the dependent
variable is informative about which vari-
ables ought to relate to the dependent vari-
able. Since collinearity problems tend to
arise when the predictor variables correlate
highly (i.e. are measuring the same thing as
each other) then it may be wise to combine
different measures of the same thing so
eliminating their collinearity. It might also
be possible to carry out a factor analysis of
the independent variable to find a set of fac-
tors among the independent variables which
can then be put into the regression analysis.

combination: in probability theory, a set of
events which are not structured by order of
occurrence is called a combination. Combina-
tions are different from permutations, which
involve order. So if we get a die and toss it six
times, we might get three 2s, two 4s and a 5.
So the combination is 2, 2, 2, 4, 4, 5. So com-
binations are less varied than permutations
since there is no time sequence order dimen-
sion in combinations. Remember that order is
important. The following two permutations
(and many others) are possible from this
combination:

4,2,4,5,2,2
—>

or
52,4,2,4,2
—>

See also: permutation

combining variables: one good and fairly
simple way to combine two or more variables
to give total scores for each case is to turn each
score on a variable into a z score and sum those
scores. This means that each score is placed on
the same unit of measurement or standardized.

common variance: the variation which two
(or more) variables share. It is very different
from error variance, which is variation in the
scores and which is not measured or controlled
by the research method in a particular study.
One may then conceptually describe error vari-
ance in terms of the Venn diagram (Figure C.1).
Each circle represents a different variable and
where they overlap is the common variance or
variance they share. The non-overlapping
parts represent the error variance. It has to
be stressed that the common and error
variances are as much a consequence of the
study in question and are not really simply a
characteristic of the variables in question.

An example which might help is to imagine
people’s weights as estimated by themselves
as one variable and their weights as estimated
by another person as being the other variable.
Both measures will assess weight up to a point
but not completely accurately. The extent to
which the estimates agree across a sample
between the two is a measure of the common
or shared variance; the extent of the disagree-
ment or inaccuracy is the error variance.

communality, in factor analysis: the total
amount of variance a variable is estimated
to share with all other variables in a factor
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Error variance

Variable !

A .
Variable
B
Common or
shared variance
Figure C.1 A Venn diagram illustrating the

difference between common variance
and error variance

analysis. The central issue is to do with the fact
that a correlation matrix normally has 1.0
through one of the diagonals indicating that
the correlation of a variable with itself is
always 1.0. In factor analysis, we are normally
trying to understand the pattern of association
of variables with other variables, not the corre-
lation of a variable with itself. In some circum-
stances, having 1.0 in the diagonal results in the
factor analysis being dominated by the correla-
tions of individual variables with themselves.
If the intercorrelations of variables in the factor
analysis are relatively small (say correlations
which are generally of the order 0.1 to 0.4), then
it is desirable to estimate the communality
using the methods employed by principal axis
factoring. This is because the correlations in the
diagonal (i.e. the 1.0s) swamp the intercorrela-
tions of the variables with the other variables.
Communalities are essentially estimated in fac-
tor analysis by initially substituting the best
correlation a variable has with another variable
in place of the correlation of the variable with
itself. An iterative process is then employed to
refine the communality estimate. The commu-
nality is the equivalent of squaring the factor
loadings of a variable for a factor and summing
them. There will be one communality estimate
per factor. In principal component analysis
communality is always 1.00, though the term
communality is not fully appropriate in that
context. In principal axis factoring it is almost
invariably less than 1.00 and usually substantially

less. To understand communality better, it is
useful to compare the results of a principal
components analysis with those of a principal
axis analysis of the same data. In the former,
you are much more likely to find factors which
are heavily loaded on just one variable. The dif-
ferences between these two forms of factor
analysis are small when the correlation matrix
consists of high intercorrelations.

compound bar chart: a form of bar chart
which allows the introduction of a second
variable to the analysis. For example, one
could use a bar chart to indicate the numbers
of 18 year olds going to university to study
one of four disciplines (Figure C.2). This
would be a simple bar chart. In this context, a
compound bar chart might involve the use of
a second variable gender. Each bar of the sim-
ple bar chart would be differentiated into a
section indicating the proportion of males
and another section indicating the proportion
of females. In this way, it would be possible to
see pictorially whether there is a gender dif-
ference in terms of the four types of univer-
sity course chosen. In a clustered bar chart,
the bars for the two genders are placed side
by side rather than stacked into a single col-
umn so that it is possible to see the propor-
tions of females going to university, males
going to university, females not going to uni-
versity, and males not going to university
more directly.

Compound bar charts work well only
when there are small numbers of values for
each of the variables. With many values the
charts become too complex and trends more
difficult to discern.

compound frequency distributions: see
frequency distribution

computational formulae: statistical con-
cepts are largely defined by their formulae.
Concepts such as standard deviation are dif-
ficult to understand or explain otherwise.
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(a) Simple bar chart
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(b) Compound bar chart (stacked)
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(c) Compound bar chart (clustered)

Count

Gender

= male
O female

Figure C.2 Simple and two types of compound bar
chart

Such formulae are not always the most
easily calculated by hand or using a calcula-
tor. So more easily calculated versions of the
formulae have been derived from the basic
defining formulae. These are known as
computational formulae. They have the dis-
advantage of obscuring what the basic con-
cept is since their purpose is to minimize
arithmetic labour. Consequently, they are
probably best disregarded by those trying
to learn statistical concepts as such, espe-
cially if it is intended to do all calculations
using a standard statistical package on a
computer.

concurrent validity: the extent to which a
measure is related to another measure which
it is expected to be related to and which is
measured at the same time. For example, a
measure of intelligence will be expected to be
related to a measure of educational achieve-
ment which is assessed at the same time.
Individuals with higher intelligence will be
expected to show higher educational achieve-
ment. See also: predictive validity

condition: in experiments, a condition refers to
the particular circumstances a particular group
of cases or participants experience. Conditions
are the various alternative treatments for the
independent variables. If the experiment has
only an experimental group and a control
group, there are two conditions (which are the
same as the different levels of treatment for the
independent variable). Where the study is more
complex, the number of conditions goes up
commensurately. Thus, in a 2 X 2 X 2 analysis
of variance there would be eight different con-
ditions — two for each variable giving 2 X
2 X 2 =8. Sometimes the different conditions
for a particular independent variable are men-
tioned. Thus, in a study of the effects of a drug,
the treatments would perhaps be 5mg, 3 mg,
1 mg and 0 mg. See also: levels of treatment

conditional probability: the probability of
any event occurring can be affected by
another event. For example, the likelihood of
being knocked over by a car on any day
might be 0.0002. However, what if one
decides to spend the entire day in bed? In
these circumstances, the probability of being
knocked down by a car would probably go
down to 0.00000 — or smaller. In other words,
a probability can be substantially affected by
consideration of the particular antecedent
conditions applying. So the chances of chok-
ing to death are probably greater when eating
bony fish than when eating tomato soup.
Hence, it is misleading to report general prob-
abilities of a particular event occurring if
factors (conditions) which greatly change the
likelihood are present.
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VAN

The characteristics of the
population are estimated
(inferred) from sample
information fairly directly
for the most part

VAN

The sample(s) is only
available information

AN

N

The mean of the population is
estimated to be sample value or
perhaps some other value such as
0.00 determined by the null
hypothesis

The spread (standard deviation) of
the sample is used to estimate the
standard deviation of the population
— then this is used to estimate the
standard error of the statistic in
question

The confidence interval is calculated
from the standard error multiplied by
the value of t or z which includes the
middle 95% or 99% of samples. For a
large sample, t = z; therefore 1.96 x
the standard error gives the distance
from the population mean to the
extreme 5% of samples

Figure C.3  Flowchart for confidence intervals

confidence interval: an approach to assess-
ing the information in samples which gives
the interval for a statistic covering the most
likely samples drawn from the population
(estimated from the samples).

Basically, the sample characteristics are
used as an estimate of the population charac-
teristics (Figure C.3). The theoretical distribu-
tion of samples from this estimated population
is then calculated. The 95% confidence interval
refers to the interval covering the statistic (e.g.
the mean) for the 95% most likely samples
drawn from the population (Figure C.4).
Sometimes the confidence interval given is for
the 99% most likely samples. The steps are:

e Usually the population value is estimated
to be the same as the sample statistic. This

does not have to be the case, however, and
any value could be used as the population
value.

o The variability of the available sample(s)
is used to estimate the variability of the
population.

o This estimated population variability is
then used to calculate the variability of a
particular statistic in the population. This
is known as the standard error.

e This value of the standard error is used in
conjunction with the sample size(s) to
calculate the interval of the middle 95%
of samples drawn from that estimated
population.

The concept of confidence intervals can be
applied to virtually any statistic. However, it
is probably best understood initially in
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Population mean under
consideration
— often zero

Estimated
population
distribution

—

95% confidence interval is the central part of the
distribution in which 95% of sample means (or other
statistics) lie

Figure C.4 lllustrating feature of the confidence

interval

terms of the confidence interval of the mean —
probably the most common statistic though
any statistic will have a confidence interval.

Confidence intervals are often promoted as
an alternative to point estimates (conventional
significance testing). This is to overstate the
case since they are both based on the same
hypothesis testing approach. Confidence
intervals are set values (95%, 99%). Conse-
quently they may not be as informative as the
exact values available for point estimates
using computers. (The equivalent drawback is
true of point estimates when critical values are
employed in hand calculations.)

Confidence intervals are also claimed to
allow greater understanding of the true
importance of trends in the data. This is basi-
cally because the confidence interval is
expressed in terms of a range on the original
scale of measurement (i.e. the measurement
scale on which the calculations were based).
Again this is somewhat overstated. Unless
the confidence refers to something which is
of concrete value in assessing the magnitude
of the trend in the data, then there is not that
much gain. For example, if we know that the
95% confidence interval for height is 1.41 to
1.81 metres then this refers to something that
is readily understood. If we know that the

confidence interval for a measure of dogma-
tism is 22 to 24 then this is less evidently
meaningful. See confidence interval of the
mean; margin of error; standard error of
the regression coefficient

confidence interval of the mean: indi-
cates the likely variability in samples given
the known characteristic of the data.
Technically, it gives the spread of the 95% (or
sometimes 99%) most likely sample means
drawn from the population estimated from
the known characteristics of the research
sample. If one knows the likely spread of
sample means then it is possible to interpret
the importance and implications of the
means of the data from the sample(s)
researched in the study. One problem with
the concept of confidence interval is that it is
difficult to put into everyday language with-
out distorting its mathematical reality. When
the confidence interval is wide, our sample is
likely to be a poor guide to the population
value.

An alternative way of looking at confi-
dence intervals is to define them as the
sample of means that are not significantly dif-
ferent statistically from a particular popula-
tion mean. By definition, then, the 95%
confidence interval is the range of the middle
95% of sample means: 47.5% above the mean
and 47.5% below the mean. Obviously it is
assumed that the distribution is symmetrical.
This is illustrated in Figure C.5.

Most commonly in the single-sample
study, the mean of the population is esti-
mated as being the same as the mean of the
known sample from that population. When
comparing two sample means (e.g. as with
the t test) the population mean would be set
according to the null hypothesis as being zero
(because if the null hypothesis is true then the
difference between the two samples will be
zero). In this case, if the confidence interval
does not include zero then the hypothesis is
preferred to the null hypothesis.

Consider a public opinion survey in which
a sample, say, of 1000 people have been asked
their age. Provided that the sample is a ran-
dom sample from the population, then the
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47.5% of sample means will
be in the area between the
left up arrow and the central

down arrow

Another 47.5% of the sample means are
between the down arrow and the right

up arrow

The distribution of sample means is
estimated from the standard deviation
of the known sample (s) from which
the standard error
can be calculated.

—

95% confidence interval is the central part of the distribution in which 95% of
sample means (or other statistics) lie.That is, between the two up arrows

Figure C.5

characteristics of the sample are generally our
best estimate of the characteristics of that
population in the absence of any other infor-
mation. However, given that we know that
random samples can and do depart from the
population characteristics, we need to be
aware that the sample probably reflects the
population characteristics less than precisely.
The confidence interval of the mean stipulates
the range of values of sample means likely
from the population. This, of course, is to base
our estimate on the characteristics of the sample
about which we have information.

Say the mean age of a sample of 1000 indivi-
duals for example is known as (m = 34.5) and
the standard deviation of age is 3.6; then the
confidence intervals are relatively easily cal-
culated. Assume we want to know the 95%
confidence interval of age. We can estimate
the population mean age at 34.5 (our best esti-
mate from the sample information). We then
use the estimated standard deviation of the
sample to calculate the estimated standard
error of samples of a particular size (1000 in
this case). The formula for estimated stan-
dard error is merely the estimated standard
deviation/square root of sample size. So the
standard error in this case is

lllustrating the 95% confidence interval for the mean

3.6 3.6
standard error = — = ——— = 0.21
y1000 17.321

For large samples, 1.96 standard errors above
and below the population mean cut off the
middle 95% of the distribution. (This is
because the distribution is the same as for the
z distribution.) For smaller sample sizes, this
figure increases somewhat but can be
obtained from the t distribution. So if the
standard error is 0.21 then the 95% confi-
dence interval is a distance of

0.21 X 1.96 = 0.412

from the mean. The estimated mean age is
34.5 so the 95% confidence interval is 34.5
minus 0.412 to 34.5 plus 0.412. That is, the 95%
confidence interval is 34.088 to 34.912 years.
This indicates that the researcher should be
confident that the mean age of the population
from which the sample came is close to 34.5
as the vast majority of the likely samples have
means very close to this. If the confidence
interval were 25.0 to 44.5 years then there
would obviously be considerable uncertainty
as to the typical age in the population.
Normally research samples are much
smaller so instead of using the z value of
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Table C.8 Example of values of t to calculate the 95% and
99% confidence intervals

N=6 N=10 N=15 N=30 N=50 N=100 N=1000

95%
99%

2.57
4.03

2.26
3.25

2.13
2.98

2.04
2.74

2.01
2.68

1.98
2.63

1.96
2.58

1.961 we need to use the appropriate z value
which is distributed by degrees of freedom
(usually the sample size minus one). Tables of
the t distribution tell us the number of stan-
dard errors required to cover the middle 95%
or middle 99% of sample means. Table C.8
gives the 95% and the 99% values of the t dis-
tribution for various degrees of freedom.

Broadly speaking, the confidence interval
is the opposite of the critical value in signi-
ficance testing. In significance testing, we
identify whether the sample is sufficiently dif-
ferent from the population in order to place it
in the extreme 5% of sample means. In confi-
dence intervals, we estimate the middle 95%
of sample means which are not significantly
different from the population mean.

There is not just one confidence interval
but a whole range of them depending on
what value of confidence (or non-significance)
is chosen and the sample size.

confirmatory factor analysis: a form of
factor analysis concerned with testing
hypotheses about or models of the data.
Because it involves assessing how well theo-
retical notions about the underlying structure
of data actually fit the data, confirmatory
factor analysis ideally builds on developed
theoretical notions within a field. For exam-
ple, if it is believed that loneliness is com-
posed of two separate components — actual
lack of social contact and emotional feelings
of not being close to others — then we have a
two-component model of loneliness. The
question is how well this model accounts for
data on loneliness. So we would expect to be
able to identify which items on a loneliness
questionnaire are measuring these different
aspects of loneliness. Then using confirma-
tory factor analysis, we could test how well
this two-component model fits the data. A

relatively poor fit of the model to the data
might indicate that we need to consider that
a third component may be involved — per-
haps something as simple as geographical
isolation. This new model could be assessed
against the data in order to see if it achieves a
better fit. Alternatively, one might explore the
possibility that there is just one component of
loneliness, not two.

Perhaps because of the stringent intellec-
tual demands of theory and model develop-
ment, much confirmatory factor analysis is
merely the confirmation or otherwise of the
factor structure of data as assessed using
exploratory factor analysis. If the factors
established in exploratory factor analysis can
be shown to fit a data set well then the factor
structure is confirmed.

Although there are alternative approaches,
typically confirmatory factor analysis is car-
ried out with a structural equation modelling
software such as LISREL or EQS. There are
various indices for determining the degree of
fit of a model to the data. See also: structural
equation modelling

Cramer (2003)

confounding variable: a factor which may
affect the dependent and independent vari-
ables and confuse or confound the apparent
nature of the relationship between the inde-
pendent and dependent variables. In most
studies, researchers aim to control for these
confounding variables. In any study there is
potentially an infinite variety of possible con-
founding variables. See partial correlation;
semi-partial correlation coefficient

constant: a value that is the same in a parti-
cular context. Usually, it is a term (component)
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of a statistical formula which maintains a
fixed value for all cases in the analysis. In a
regression equation, the intercept and the
regression coefficients are constants for a par-
ticular set of cases and variables in so far that
they remain the same. The values of the vari-
ables, however, are not constant as they will
vary. See also: criteria variable; predictor
variable

construct validity: the extent to which a
measure assesses the construct that it is
intended or supposed to measure. For exam-
ple, we would expect a measure of the con-
struct of how anxious you were at a particular
moment would vary appropriately according
to how anxious you were. So you would
expect this measure to show greater anxiety
before an exam than a few hours after it. If a
measure does not appear to show construct
validity, the measure may be invalid or our
ideas about the construct may be wrong or
both.

contingency coefficient: a sort of correla-
tion coefficient applied to cross-tabulation
tables. For such cross-tabulation tables
involving just two variables (e.g. Table C.9),
the chi-square test can be used to compare
samples in order to assess whether the distri-
butions of frequencies in the samples are dif-
ferent. But it is equally an indication of how
related the two variables are. Table C.9 indi-
cates how the same contingency table can be
reformulated in alternative ways. As can be
seen, what is conceived as a sample is not
crucial. If there is a zero or non-significant
value of chi-square, then the samples are not
different in terms of the distributions in the
different categories. If the value of chi-square
is significant, this is an indication that the
samples differ in their distributions of the cat-
egories. This also means that there is a corre-
lation between the two variables. See also:
correlation

Another way of putting this is that there is
a correlation between the variable ‘sample’
and another variable ‘category’. In other

Table C.9 A contingency table expressed in
three different forms

High jumpers Long jumpers Hurdlers

Males 27 33 15
Females 12 43 14
Sample | Sample 2 Sample 3
Males 27 33 15
Females 12 43 14

High jumpers Long jumpers Hurdlers

Sample | 27 33 15
Sample 2 12 43 14

words, there is not a great difference between
a test of differences and a correlation. Chi-
square is often referred to a test of associa-
tion. The problem with using chi-square as a
test of association or correlation is that its
numerical values differ greatly from the —1
through 0 to +1 range characteristic of, say,
the Pearson correlation coefficient. Pearson
offered a simple formula by which a chi-
square value could be converted into a corre-
lation coefficient known as the contingency
coefficient. This is simply

contingency coefficient =
g y XZ + N

N is the total number of frequencies in the
contingency table and x? is the value of chi-
square for the table. The significance of the
contingency coefficient is the same as the con-
stituent chi-square value.

The contingency coefficient simply does
not match the Pearson correlation coefficient
as it cannot take negative values and its
upper bound is always less than 1.00.

Cramer (1998)

contingency or cross-tabulation table:
usually shows the frequency of cases accord-
ing to two or more categorical variables.
Examples of such tables are to be found in
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Tables C.2 and C.9. A table displaying two
variables is called a two-way table, three vari-
ables three-way, and so on. It is so called
because the categories of one variable are
contingent on or tabulated across the cate-
gories of one or more other variables. This
table may be described according to the num-
ber of categories in each variable. For exam-
ple, a 2 X 2 table consists of two variables
which each have two categories. A2 X 3 table
has one variable with two categories and
another variable with three categories. See
also: Cramer’s V; log-linear analysis; marginal
totals

continuity correction: see Yates’s

correction

continuous data: scores on a variable that
could be measured in minutely incremental
amounts if we had the means of measuring
them. Essentially it is a variable which has
many different values. For example, height
is continuous in that it can take an infinite
number of different values if we have a suffi-
ciently accurate way of measuring it. Other
data cannot take many different values and
may just take a number of discrete values. For
example, sex only has two values — male and
female.

contrast: a term used to describe the
planned (a priori) comparisons between spe-
cific pairs of means in analysis of variance.
See also: a priori tests; analysis of variance;
post hoc tests; trend analysis in analysis of
variance

control condition or group: a compari-
son condition which is as similar as possible
to the principal condition or treatment
under study in the research — except that the
two conditions differ in terms of the key

variable. In most disciplines, the control
conditions consist of a group of participants
who are compared with the treatment
group. Without the control group, there is no
obvious or unambiguous way of interpret-
ing the data obtained. In experimental
research, equality between the treatment
group and control group is usually achieved
by randomization.

For example, in a study of the relative
effectiveness of Gestalt therapy and psycho-
analysis, the researchers may assign at ran-
dom participants to the Gestalt therapy
treatment and others to the psychoanalysis
treatment condition. Any comparisons based
on these data alone simply compare the out-
comes of the two types of therapy condition.
This actually does not tell us if either is better
than no treatment at all. Typically, control
groups receive no treatment. It is the out-
comes in the treatment group compared with
the control group which facilitate interpreta-
tion of the value of treatment. Compared
with the control group, the treatment may be
better, worse or make no difference.

In research with human participants, con-
trol groups have their problems. For one
thing it is difficult to know whether to put
members of the control group through no
procedure at all. The difficulty is that they do
not receive the attention they would if they
were, say, brought to the laboratory and
closely studied. Similarly, if the study was of
the effects of violent videos, what should be
the control condition? No video? A video
about rock climbing? Or what? Each of the
listed alternatives has different implications.
See also: quasi-experiments; treatment

group

controlling: usually refers to eliminating the
influence of covariates or third variables. Our
research may suggest that there is a relation-
ship between variable A and variable B.
However, it may be that another variable(s) is
also correlated with variable A and variable B.
Because of this, it is possible that the relation-
ship between variable A and variable B is
the consequence of variable C. Controlling
involves eliminating the influence of variable
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C from the correlation of variable A and
variable B. This may be achieved through the
use of the partial correlation coefficient though
there are other ways of controlling for variable C.
Without controlling, it is not possible to assess
what the strength of the relationship of vari-
able A and variable B would be without any
influence of variable C. Controlling sometimes
refers to the use of a control group. See also:
controlling; partial correlation

convenience sample or sampling: a sample
or method of sampling in which cases are
selected because of the convenience of access-
ing them and not because they are thought to
be representative of the population. Unless
some form of representative or random sam-
pling has been employed, most samples are
of this nature.

convergent validity: the extent to which a
measure is related to other measures which
have been designed to assess the same con-
struct. For example, a measure of anxiety
would be expected to be related to other mea-
sures of anxiety.

coordinates: the position a case has on two
or more axes is its coordinates. This is much
as geographical location may be defined by
the coordinates of latitude and longitude. In
statistics, an example of coordinates would be
the lines of a scatterplot. These allow the pre-
cise position of an individual case on the two
variables to be pinpointed.

correlated groups or measures design:
see within-subjects design

correlated groups or samples: see
matching; within-subjects design

correlation or correlation coefficient:
an index of the linear or straight line relation-
ship between two variables which can be
ordered. Correlations can be either positive or
negative. A positive correlation indicates that
high scores on one variable go with high
scores on the other variable. A negative corre-
lation means that high scores on one variable
go with low scores on the other variable. The
size of a correlation can vary from a mini-
mum of —1.00 through 0 to a maximum of
1.00. The bigger the size of the correlation,
regardless of whether it is positive or nega-
tive, the stronger the linear relationship
between the two variables. A correlation of 0
or close to 0 means that there is either no or
no linear relationship between the two vari-
ables. There may, however, be a curvilinear
relationship between the two variables.
Consequently, when the correlation is 0 or
close to 0, it is useful to draw a scatter dia-
gram which is a graph of the relationship
between the two variables.

Correlations which differ substantially
from 0 are statistically significant. The bigger
the correlation, regardless of its sign, the
more likely it is to be statistically significant.
The bigger the sample, the more likely it is
that a correlation will be significant. Very
small correlations may be statistically signifi-
cant provided that the sample is big enough.

There are various kinds of correlations.
The most widely used is Pearson’s product
moment correlation coefficient. This name is
usually shortened to Pearson’s correlation
and is symbolized as r. It can be calculated by
multiplying the standardized scores of the
two variables to obtain their “product’. These
products are then summed and divided by
the number of cases minus one to give the
mean population estimate of the products.
A product moment is the expected or mean
value of a product of two variables. A
Pearson’s correlation is the same as a stan-
dardized regression coefficient. It is used to
determine the linear relationship between
two variables which are normally distributed.
Pearson’s correlation can be strongly affected
by extreme scores or outliers. Consequently,
if the scores are not normally distributed, the
scores can be ranked and a Pearson’s correla-
tion carried out on these ranked scores. This
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Table C.10 Correlations, percentage of
shared variance and minimum
size of sample for the two-tailed
0.05 statistical significance

Percentage of Size of
Correlation shared variance sample
1.00 100 3
0.90 8l 6
0.80 64 9
0.70 49 I
0.60 36 15
0.50 25 22
0.40 16 26
0.30 9 44
0.20 4 97
0.10 | 400
0.00 0

type of correlation is known as Spearman’s
rank order correlation coefficient. This name
is usually shortened to Spearman’s correla-
tion or rho and is symbolized with the Greek
letter p. A Pearson’s correlation between a
dichotomous variable (such as sex) and a nor-
mally distributed variable may be called the
point-biserial correlation. A Pearson’s corre-
lation between two dichotomous variables is
called phi.

Squaring a Pearson’s correlation gives the
coefficient of determination. This provides a
clearer indication of the meaning of the size
of a correlation as it gives the proportion of
the variance that is shared between two vari-
ables. For example, a correlation of 0.50
means that the proportion of the variance
shared between the two variables is 0.25
(0.50% = 0.25). These proportions are usually
expressed as a percentage, which in this case,
is 25% (0.25 X 100% = 25%). The percentage
of shared variance for 11 correlations which
each differ by 0.10 is shown in Table C.10.

We can see that as the size of the correlation
increases, the percentage of shared variance
becomes disproportionately larger. Although
a correlation of 0.60 is twice as large as a cor-
relation of 0.30, the percentage of variance
accounted for is four times as large.

Correlations of 0.80 or above are usually
described as being large, strong or high and
may be found for the same variable (such as
depression) measured on two occasions two
weeks apart. Correlations of 0.30 or less are

normally spoken of as being small, weak or
low and are typically found for different vari-
ables (such as depression and social support).
Correlations between 0.30 and 0.80 are typi-
cally said to be moderate or modest and are
usually shown for similar measures (such as
marital support and marital satisfaction).

Also shown in this table is the minimum
size that the sample needs to be for a
Pearson’s correlation to be statistically signifi-
cant at the two-tailed 0.05 level. As the corre-
lations become smaller, the size of the sample
that is required to reach this level of statistical
significance increases. For example, a very
weak correlation of 0.10 will be statistically
significant at this level with a sample of 400
or more.

The statistical significance of the correla-
tion can be calculated by converting it into a
t value using the following formula (though
there are tables readily available or signi-
ficance may be obtained from computer

output):

The statistical significance of the t value can
be looked up in a table of its critical values
against the appropriate degrees of freedom
which are the number of cases (N) minus
one.

Other types of correlations for two vari-
ables which are rank ordered are Kendall’s
tau a, tau b and tau ¢, Goodman and Kruskall’s
gamma and tau, and Somer’s d.

Measures of association for categorical
variables include the contingency coefficient,
Cramér’s V and Goodman and Kruskal’s
lambda. See also: simple or bivariate regres-
sion; unstandardized partial regression
coefficient

Cramer (1998)

correlation line: a straight line drawn
through the points on a scatter diagram of the
standardized scores of two variables so that it
best describes the linear relationship between
these variables. If the scores were not
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standardized, this would simply be the
regression line.

The vertical axis of the scatter diagram is
used to represent the standardized values of
one variable and the horizontal axis the stan-
dardized values of the other variable. To
draw this line we need two points. The mean
of a standardized variable is zero. So one
point is where the mean of one variable inter-
sects with the mean of the other variable. To
work out the value of the other point we mul-
tiply the correlation between the two vari-
ables by the standardized value of one variable,
say that represented by the horizontal axis, to
obtain the predicted standardized value of the
other variable. Where these two values intersect
forms the second point. See also: standardized
score; Z score

correlation matrix: a symmetrical table
which shows the correlations between a set of
variables. The variables are listed in the first
row and first column of the table. The diagonal
of the table shows the correlation of each vari-
able with itself which is 1 or 1.00. (In factor
analysis, these values in the diagonal may be
replaced with communalities.) Because the
information in the diagonal is always the same,
it may be omitted. The values of the correlations
in the lower left-hand triangle of the matrix are
the mirror image of those in the upper right-
hand triangle. Because of this, the values in the
upper right-hand triangle may be omitted.

correlations, averaging: when there is
more than one study which has reported the
Pearson’s correlation between the same two
variables or two very similar variables, it may
be useful to compute a mean correlation for
these studies to indicate the general size of
this relationship. This procedure may be car-
ried out in a meta-analysis where the results
of several studies are summarized. If the size
of the samples was exactly the same, we
could simply add the correlations together
and divide by the number of samples. If the
size of the samples are not the same but sim-
ilar, this procedure gives an approximation of

the average correlation because the different
sample sizes are not taken into account. The
more varied the size of the samples, the
grosser this approximation is.

The varying size of the samples is taken
into account by first converting the correla-
tion into a z correlation. This may be done by
looking up the appropriate value in a table or
by computing it directly using the following
formula where log, stands for the natural log-
arithm and r for Pearson’s correlation:

Z, =05Xlog, [(1+71)/(1—1)]

This z correlation needs to be weighted by
multiplying it by the number of cases in the
sample minus three. The weighted z correla-
tions are added together and divided by the
sum for each sample of its size minus three.
This value is the average z correlation which
needs to be converted back into a Pearson’s
correlation. This can be done by looking up
the value in the appropriate table or using the
following formula:

r=Q718 X z, —1)/2.718 X z, + 1)

The calculation of the average Pearson’s cor-
relation is given in Table C.11 for three corre-
lations from different-sized samples. Note
that Pearson’s correlation is the same as the z
correlation for low values so that when the
values of the Pearson’s correlation are low a
good approximation of the average correla-
tion can be obtained by following the same
procedure but using the Pearson’s correlation
instead of the z correlation. The average z cor-
relation is 0.29 which changed into a
Pearson’s correlation is 0.28.
Cramer (1998)

correlations, testing differences: nor-
mally, we test whether a correlation differs
significantly from zero. However, there are
circumstances in which we might wish to
know whether two different correlation coef-
ficients differ from each other. For example, it
would be interesting to know whether the
correlation between IQ and income for men is
different from the correlation between IQ and
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Table C.11 Averaging Pearson’s correlations

Sample r z, Size(N) N-3 z.X(N —3)

| 0.38 0.40 33 30 0.40 x 30 = 12.00
2 0.29 0.30 53 50 0.30 x 50 = 15.00
3 020 020 43 40 0.20 x40 = 8.00
Sum 120 35.00
Mean z, 35.00/120 = 0.29
Mean r 0.28

income for women. There are various tests to
determine whether the values of two correla-
tions differ significantly from each other.
Which test to use depends on whether the
correlations come from the same or different
samples and, if they come from the same sam-
ple, whether one of the variables is the same.

The z test determines whether the correla-
tion between the two variables differs
between two unrelated samples. For exam-
ple, the z test is used to see whether the cor-
relation between depression and social
support differs between women and men.

The Zj test assesses whether the correla-
tion between two different variables in the
same sample varies significantly. For
instance, the Z3 test is applied to determine
whether the correlation between depression
at two points differs significantly from the
correlation between social support at the
same two points.

The T, test ascertains whether the correla-
tions in the same sample which have a vari-
able in common differ significantly. For
example, the T, test is employed to find out
whether the correlation between social sup-
port and depression varies significantly from
that between social support and anxiety.

Cramer (1998)

count: another word for frequency or total
number of something, especially common in
computer statistical packages. In other
words, it is a tally or simply a count of the
number of cases in a particular category of
the variable(s) under examination. In this
context, a count would give the number of
people with blue eyes, for example. Generally

speaking, counts need statistics which are
appropriate to nominal (or category or cate-
gorical) data such as chi-square. See also:
frequency

When applied to a single individual, the
count on a variable may be equated to a score
(e.g. the number of correct answers an indi-
vidual gave to a quiz).

counterbalanced designs: counterbalanc-
ing refers to one way of attempting to nullify
the effects of the sequence of events. It uses
all (or many) of the various possible
sequences of events. It is appropriate in
related (matched) designs where more than
one measure of the same variable is taken at
different points in time. Imagine a related
designs experiment in which the same group
of participants is being studied in the experi-
mental and control conditions. It would be
common practice to have half of the partici-
pants serve in the experimental condition
first and the other half in the control condi-
tion first (see Table C.12).

In this way, all of the possible orders of
running the study have been used. This is a
very simple case of a group of designs called
the Latin Square design which allow partici-
pants to serve in a number of different condi-
tions while the number of different orders in
which the conditions of the study are run is
maximized.

There are a number of ways of analysing
these data including the following:

e Combine the two experimental conditions
(group 1 + group 2) and the two control
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Table C.12  Example of a simple,
counterbalanced design

Group | Experimental condition Control condition

first second
-
>
Group 2 Control condition Experimental condition
first second
»
>

conditions (group 1 + group 2). Then
there is just an experimental and control
condition to compare with a related ¢ test
or similar technique.

e The four conditions could be compared
using two-way analysis of variance
(mixed design). Keeping the data in the
order of Table C.12, then differences
between the experimental and control
treatment will be indicated by a signifi-
cant interaction. Significant main effects
would indicate either a general difference
between group 1 and group 2, or an order
effect if it is between first and second. This
approach is probably less satisfactory than
the next given the problems of interpret-
ing main effects in ANOVA.

o Alternatively, the table could be rearranged
so that the two experimental conditions
are in the first column and the two
control groups are in the second column.
This time, the main effect comparing the
experimental condition with the control
condition would indicate an effect of con-
dition. An interaction indicates that order
and condition are having a combined
effect.

These different approaches differ in terms of
their directness and statistical sophistication.
Each makes slightly different assumptions
about the nature of the data. The main differ-
ence is that some allow the issue of order
effects to be highlighted whereas others ignore
order effects assuming that the counter-
balancing has been successful.

Another context in which it is worth con-
sidering counterbalancing is when samples of
individuals are being measured twice on the
same variable. For example, the researcher
may be interested in changes of children’s IQs
over time. To give exactly the same IQ test

twice would encourage the claim that prac-
tice effects are likely to lead to increases in IQ
at the second time of measurement. By using
two different versions (forms) of the test this
criticism may be reduced. As the two differ-
ent versions may vary slightly in difficulty, it
would be wise to give version A to half of the
sample first followed by version B at the sec-
ond administration, and also give version B
first to the other half of the sample followed
by version A. Of course, this design will not
totally negate the criticism of practice effects.
There are more complex designs in which
some participants do not receive the first ver-
sion of the test which may be helpful in deal-
ing with this issue.

In counterbalanced designs, practicalities
will sometimes intervene since there may be
too many different orders to be practicable.
Partial counterbalancing may be the only
practical solution. See also: matching

covariance: the variance that is shared
between two variables. It is the sum of prod-
ucts divided by the number of cases minus
one. The product is the deviation of a score
from the mean of that variable multiplied by
the deviation of the score from the mean of
the other variable for that case. In other
words, covariance is very much like variance
but is a measure of the variance that two dif-
ferent variables share. The formal formula for
the covariance is

DX -X)y-Y)
N

covariance iy iy, =

Cramer (1998)

covariance, analysis of: see analysis of
covariance

covariate: a variable that is related to
(usually) the dependent variable. Since the
covariate is correlated with the other variable,
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it is very easy for the effects of the covariate to
be confused with the effects of the other vari-
able. Consequently, the covariate is usually
controlled for statistically where this is a prob-
lem. Hence, controlling for the covariant is an
important feature of procedures such as analy-
sis of covariance and hierarchical multiple
regression. See also: analysis of covariance

Cramer’s V: also known as Cramer’s phi.
This is a correlation coefficient applied to a
contingency or cross-tabulation table. As
such, it is similar in application to the contin-
gency coefficient. It can be used for any two-
variable contingency table. For a 2 X2
contingency table, Cramer’s V gives exactly
the same value as the phi coefficient.
The formula for the statistic is

2

X

Cramer’s V = m

Where x? is the chi-square value for the table,
N is the total number of cases in the table, and
S is the smaller of the number of columns or
the number of rows. Applying the procedure
to the data in Table C.13 which has a x? value

of 12.283, a total N of 139, and the smaller of
the number of rows or columns is 2:

Cramer’s V :\/ 12.283 \/12.283

139 X 2-1) V139 x 1

—_—

=,0.0884 = 0.297

Treating this as roughly analogous to
Pearson’s correlation coefficient, the value of
Cramer’s V suggests a modest correlation
between leisure activity and nationality.
There is an associated probability level but it
is recommended that Cramer’s V is calcu-
lated using a computer statistical package.
See also: correlation

Cramer (1998)

criterion variable: the variable whose values
are being predicted or understood on the basis
of information about related variables. So, if a

Table C.13 A contingency table showing
relationship between nationality
and favourite leisure activity

Sport Social Craft
Australian 29 16 19
British 14 22 39

Independent variable
Predictor variable
X variable

Dependent variable
Criterion variable
Predicted value
Y variable

Figure C.6  Synonyms for independent and criterion
variable

researcher wishes to predict the recidivism of
an offender, the criterion variable would be a
measure of recidivism. In other words, the cri-
terion variable is the dependent variable of this
analysis (Figure C.6). The predictor variable
might be use of illegal drugs. See also: logistic
regression; regression equation

The criterion variable is also known as the
dependent variable though this is a more
general term which does not have the impli-
cation of prediction.

critical values: in tests of significance such
as the t test, F ratio, etc., certain values of f or F
form the lower boundary for a particular
significance level. These are the values which
are tabulated in tables of significance. So,
from tables of the ¢ distribution, with degrees
of freedom of 10 and a two-tailed significance
of 0.05 (i.e. 5%), the minimum value of f to be
significant at this level is 2.228. It clearly
simplifies assessing statistical significance if
important levels of significance are provided
for each size of sample. Conventional statisti-
cal tables found in statistics textbooks are
really tables of such critical values. However,
with the widespread use of powerful com-
puter programs it is more common to have
available from the printout the exact statisti-
cal significance of the same statistical tests.
On balance, it is probably better in general to
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report the exact significance than the critical
values since these indicate extreme differences
much smaller than available tables of critical
values can. See also: analysis of variance;
chi-square; critical values; trend analysis in
analysis of variance

Cronbach’s alpha reliability: see alpha
reliability

cross-lagged correlations: the pattern of
correlations between two variables which are
both measured at two separate points in time.
It is consequently often employed in the
analysis of panel studies. Imagine the two
variables are the amount of TV viewed and
aggressiveness. These could be measured
when a child is 8 years old and again when
the child is 15 years old. So really we have
four variables: aggression age 8, aggression
age 15, viewing age 8 and viewing age 15.
There are a number of correlation coefficients
that could be calculated:

Aggression age 8 with viewing age 8
Aggression age 15 with viewing age 15
Aggression age 8 with aggression age 15
Viewing age 8 with viewing age 15
Aggression age 8 with viewing age 15
Aggression age 15 with viewing age 8

The first two correlations are regular correlation
coefficients measured at a single point in time.
The third and fourth correlations are lagged
correlations since there is a time lag in collecting
the first and second measures. The fifth and
sixth correlations are cross-lagged correlations.
This means that there is a time lag in their col-
lection but also the correlation crosses over to
the other variable as well as being lagged.

The point of this is that it may help assess
whether or not there is a causal relationship
between TV viewing and aggression. The cor-
relation between aggression age 8 and view-
ing age 8 does not establish a causal link. It
could be that TV viewing causes the child to
be aggressive but it could equally be that

aggressive children just choose to watch more
TV. However, what if we found that there was
a stronger correlation between aggression at
age 15 and viewing at age 8 than there was
between aggression at age 8 and viewing at
age 8? This would tend to suggest that view-
ing at age 8 was causing aggression at age 15.
By examining the strengths of the various
correlations, some researchers claim to be
able to gain greater confidence on issues of
causality.

cross-lagged panel correlation analysis:
a method which tries to ascertain the tempo-
ral predominance or order of two variables
which are known to be related to one another.
For example, we may be interested in know-
ing what the temporal relationship is between
mental health and social support. There are
four possible temporal relationships. One
relationship is that greater support precedes
or leads to greater mental health. Another
relationship is that greater mental health pre-
cedes or brings about greater support. A third
relationship is that both support and mental
health affect each other. A fourth relationship
is that the apparent relationship between the
two variables is spurious and is due to one or
more other variable which is related to the
two variables.

The two variables need to refer to the same
period of time and to be measured at least at
two points in time as depicted in Figure C.7.
If the cross-lagged correlation between sup-
port at time 1 and mental health at time 2 is
significantly more positive than the cross-
lagged correlation between mental health at
time 1 and support at time 2, this difference
implies that greater support precedes or
brings about greater mental health. If the
cross-lagged correlation between mental
health at time 1 and support at time 2 is signi-
ficantly more positive than the cross-lagged
correlation between support at time 1 and
mental health at time 2, this difference
implies that greater mental health precedes or
brings about greater support. If there is no
significant difference between the cross-
lagged correlations (one or both of which
must be significant), the relationship between
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Support —> Support

X

Mental health —> Mental health

Time 1 Time 2

Figure C.7 A two-wave two-variable panel design

Table C.14  Example of a cumulative
frequency table

Age range Cumulative frequency
5 year olds 12
5-6 year olds 32
5-7 year olds 46
5-8 year olds 57
5-9 year olds 62
5-10 year olds 71
5-11 year olds 71

the two variables is either reciprocal or spurious.
These interpretations depend on there being
no significant difference between the syn-
chronous correlations at time 1 and 2 and the
two auto- or test-retest correlations.

It is generally recommended that a more
appropriate method of analysing this kind of
design is structural equation modelling.

Kenny (1975); Rogosa (1980)

cross-sectional design or study: a study
where measures have been obtained at a
cross-section of, or single point in, time. In
such studies it is not possible to infer any
changes over time or the causal nature of any
relationship between the variables. For exam-
ple, if we had a sample of individuals which
varied in age from 18 to 75 and we found that
older people were more conservative in their
political views, we could not conclude that
people become more conservative as they

become older, because it could be that the
older group underwent experiences which
made them more conservative which may
not be the case for the younger group.

cross-tabulation or cross-tabulation
tables: see contingency table; log-linear
analysis; marginal totals

cube or cubed: in statistics used to refer to
a number multiplied by itself three times. For
example, 2.7 cubed is written as 2.7° and
means 2.7 X 2.7 X 2.7 = 19.683. Another way
of putting it is to say 2.7 to the power of 3. It
is also 2.7 to the exponent of 3. It is occasion-
ally met with in statistical calculations
though not the common ones.

cumulative frequencies: frequencies
which accumulate by incorporating earlier
values in the range. So in a class of children
whose ages range from 5 to 11 years, a cumu-
lative frequency distribution would be 5 year
olds; 5 and 6 year olds; 5, 6 and 7 year olds;
and so forth. So it answers the question how
many children are there up to age 8 years? A
frequency table would tell you the number of
8 year olds.

From Table C.14 the number of 6 year olds
is 20 (i.e. 32 — 12). Also in this table, it should
be noted that there are no 11 year olds (since
the cumulative frequency does not increase
over the final two categories). The cumula-
tive frequency can also be expressed as
cumulative percentage frequencies.

It is possible to have a bar chart which
accumulates in this fashion. See also:
Kolmogorov-Smirnov test for one sample

curvilinear relationship: mostly in the
social sciences the relationships between two
variables are assumed to be linear or straight
line in form. However, relationships can take
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Figure C.8 Linear relationship

the form of curved lines — that is, the best fit-
ting line through the points of the scattergram
between two variables is a curved shape such
as a U-shape or an inverted U-shape. Figure C.8
shows a linear relationship and Figure C.9
shows a curvilinear relationship.

Just as with a linear relationship, the close-
ness of the points to the curved line is the

Figure C.9 Curvilinear relationship

important factor in determining the size of
the correlation: the more the spread, the
lower the correlation.

The usually recommended correlation
coefficient for curvilinear data is eta, which is
related to ANOVA. See also: correlation; eta



data: (plural of datum) the information or
facts about something. Statistics employ data
which have in some way been expressed in a
numerical form as frequencies or scores. One
crucial step in the successful application of
statistics is to understand and recognize the
difference between score data and nominal or
categorical data. Score data collect informa-
tion from each case or participant in the form
of a numerical value which indicates the
quantity of a characteristic. Nominal data
involve the assignment of individuals to cat-
egories. The number of individuals placed in
each category is known as the frequency.
Statistical analysis of nominal data is largely
the analysis of these frequencies.

deciles: like percentiles except are the cut-off
points for the bottom 10%, 20%, 30%, etc., of
scores. Hence, the fifth decile or the 50%
decile is the score which separates the lowest
50% of scores from higher ones. A decile is
presented as a specific score though some-
times it is an estimated value, not an actual
value. See also: percentiles

decimal places (number of): decimals
are attractive since they add an appearance of
precision. Unfortunately, given the nature of
much of the data in many disciplines, this
precision is spurious or more apparent than
real. It is a matter of judgement, but for data

collected on whole-number scales, it is
usually sufficient to report statistics such as
the mean or standard deviation to two decimal
places at the most, and one decimal place will
suffice in most circumstances. With data col-
lected with a greater degree of accuracy (i.e.
involving decimals), the reporting of means
and standard deviations to one more decimal
place than in the data is again probably suffi-
cient accuracy.

Calculations, of course, should proceed
using as many decimals as the means of cal-
culation permits. Computers and calculators
can be safely left to work out decimals appro-
priately. Systematic rounding errors can
occur in hand calculations if too few decimal
places are used, which produce misleading
outcomes. A minimum of three more decimal
places than present in the data would seem a
very safe rule of thumb.

decimal places (rounding): see rounding
decimal places

decimals: a convenient way of writing frac-
tions or fractions of numbers without using
the fraction notation. Fractions are simply
parts of whole numbers such as a half, a fifth,
a tenth, a seventeenth, a hundredth and a
thousandth — or two-fifths or three-fifths and
so forth. The simplest way of writing fractions
11

is £ or % though this is not used generally in
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Figure D.I  The components of a decimal number

statistics. For many purposes this sort of
notation is fine. The difficulty with it is that
one cannot directly add fractions together.
Decimals are a notational system for
expressing fractions of numbers as tenths,
hundredths, thousands, etc., which greatly
facilitates the addition of fractions. In the dec-
imal system, there are whole numbers fol-
lowed by a dot which is then followed by the

fraction:
17.5

In the above number, 17 is the whole number,
the dot . indicates the beginning that a fraction
will follow and the number after the dot indi-
cates the size of the fraction.

The first number after the dot is the num-
ber of tenths that there are. In the above
example we therefore have five tenths which
is 1% which simplifies to % or a half.

In the following number we have two
numbers after the dot or decimal point:

160.25

In this example, the whole number is 160 and
the fraction after the decimal point . is 25. The
first number 2 is the number of tenths. The
second number 5 is the number of hun-
dredths. In other words, there are two tenths

NS

Nine
Seven thousandths

tenths

and five hundredths. Put more simply, the
25 after the decimal place is the number of
hundredths since two tenths (%) is the same
thing as twenty hundredths (%). A decimal of
0.25 corresponds to 25 hundredths which is a
quarter.

The following number has three numbers
after the decimal point:

14.623
Therefore we have 14 and § and ;3 plus some-
thing else. The final 3 refers to the number of
thousandths that we have. Thus, in full
14.623 = 14 and & and 3; and ;2 This is actu-
ally the same as 14 and £,

The system goes on to the number of ten
thousandths, the number of hundred-
thousandths, millionths and beyond.

Figure D.1 illustrates the components of
the decimal number 423.7591.

The addition and subtraction of decimals
are far simpler than the addition and subtrac-
tion of other forms of fractions. Thus,
0.53 + 0.22 can be directly added together to
become 0.75. Similarly with subtraction:
0.53 — 0.22 = 0.31. Because we are adding
fractions, sometimes the fraction will be big-
ger than one. So 0.67 + 0.92 = 1.59.

See also: decimal places (number of); round-
ing decimal places
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degrees of freedom: a difficult concept
which has a bearing on many of the basic
inferential statistical techniques. Statistical
estimates based on samples often contain
redundant information which if included
may lead to a systematic bias in the estimate.
For example, when calculating the variance
or standard deviation of a sample in order to
estimate the population characteristics, we
know both the scores in the sample and the
sample mean. The sample mean is used to
estimate the population mean. However, this
mean is also used in the estimation of the
variance or standard deviation of the popula-
tion. Take the following set of scores:

2,579

The mean of this sample is 23/4 = 5.75.

Imagine that we wish to calculate the vari-
ance based on this sample. It is basically the
square of each of the deviations from the
mean. So we take (2 —5.75)% (5 — 5.75)?%,
(7 — 5.75), etc., but a problem emerges when
we come to the score of 9. It actually contains
no new information. Since we know that the
sample mean is 5.75 then knowing the first
three scores allows us to know that the final
score has to be 9. No other number will fit.
So, the final number actually provides no
information that has not already been
accounted for. In this case there would be
three degrees of freedom since the final score
is fixed by the mean and the other three
scores.

The calculation method for degrees of free-
dom varies according to what is being esti-
mated and it is not possible to give general
rules which easily apply to any calculation.
Nevertheless, where degrees of freedom have
to be calculated, it is usually a simple matter.
Generally speaking, degrees of freedom are
only an issue in relation to hand calculation
of statistical tests because tables of critical
values are often distributed according to the
degrees of freedom. Computer calculations
rarely if ever require reference to such tables
by the user. See also: analysis of variance;
chi-square; estimated standard deviation; t
distribution, t test for unrelated samples;
variance estimate

De Moivre’s distribution: another term
for a normal distribution. See also: normal
distribution

dendrogram: a graphical representation of
the results of a cluster analysis in which lines
are used to indicate which variables or clus-
ters are paired at which stage of the analysis.

denominator:in a fraction such as 3 or & the
denominator is the number at the bottom —
that is, 7 in the first example and 17 in the
second. The numerator is the number at the
top. See also: numerator

dependent groups or samples: see
within-subjects design

dependent variable: a variable that is
assumed to ‘depend’ on, be affected by, or
related to the value of one or more indepen-
dent variables. See also: criterion variable;
multiple regression; regression equation

descriptive statistics: a wide variety of
techniques that allow us to describe the gen-
eral characteristics of the data we collect. The
central tendency (typical score) may be
assessed by the mean, median or mode. The
shape or spread of the distribution of scores
can be presented graphically (using his-
tograms, for example) and the spread can be
given as the range, standard deviation or
variance. They are key to and essential in
knowing the nature of the data collected.
They are too easily overlooked by those
impressed by the complexity of inferential
statistics.

Although descriptive statistics seem to be
much simpler than inferential statistics, they
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are essential to any data analysis. A common
mistake on the part of novices in statistics is
to disregard the descriptive analysis in favour
of the inferential analysis. The consequence
of this is that the trends in the data are not
understood or overlooked and the results of
the inferential statistical analysis appear
meaningless. A thorough univariate and
bivariate examination of the data is an initial
and key step in analysing any data. See also:
exploratory data analysis

design: see between-subjects design; cross-
sectional design or study; factorial design;
longitudinal design or study; non-
experimental design or study; true experi-
ment; within-subjects design

determinant, of a matrix: a value associ-
ated with a square matrix which is calculated
from it. It is denoted by two vertical lines on
either side of the letter which represents it
such as |DI. The determinant of a correlation
matrix may vary between 0 and 1. When it is
1, all the correlations in the matrix are 0. This
is known as an identity matrix in which the
main or leading diagonal of the matrix (going
from top left to bottom right) consists of ones
and the values above and below it of zeros.
When the determinant is zero, there is at least
one linear dependency in the matrix. This
means that one or more columns can be
formed from other columns in the matrix.
This can be done by either transforming a col-
umn (such as multiplying it by a constant) or
forming a linear combination (such as sub-
tracting one column from another). Such a
matrix may be called ill-conditioned.

deviation: the size of the difference between
a score and the mean (usually) of the set of
scores to which it belongs. Deviation is calcu-
lated to include the sign — that is, the devia-
tion of a score of 6 from the mean of 4 is 2,
whereas the deviation of a score of 2 from the

mean of 4 is —2 See also: absolute deviation;
difference score

dichotomous variable: a variable having
only two values. Examples include sex (male
and female being the values), employment
status (employed and non-employed being
the two values) and religion (Catholic and
non-Catholic being the values in the study).
There is no assumption that the two values
are equally frequent.

One reason for treating dichotomous vari-
ables as a special case is that they can be treated
as simple score variables. So, if we code male as
1 and female as 2, these are values on the vari-
able femaleness. The bigger the score, the more
female the individual is. In this way, a dicho-
tomous variable can be entered into an analysis
which otherwise requires scores.

It also explains that there is a close relation-
ship between some research designs that are
generally seen as looking at mean differences
and those which seek correlations between
variables. The ¢ test is commonly applied to
designs where there are an experimental
group and a control group which are com-
pared on a dependent variable measured as
scores. However, if we consider the indepen-
dent variable here (group) then it is easy to see
that it can be coded 1 for the control group
and 2 for the experimental group. If that is
done, the 1s and 2s (the independent variable)
can be correlated with the scores (the depen-
dent variable). This Pearson correlation coeffi-
cient gives exactly the same probability value
as does the ¢ test applied to the same data.

This is important since it allows any nomi-
nal variable to be recoded as a number of
dichotomous variables. For example, if par-
ticipants are given a choice of, say, six geo-
graphical locations for their place of birth, it
would be possible to recode this single vari-
able as several separate variables. So if
Northern England is one of the geographical
locations, people could be scored as being
from Northern England or not. If another
category is South West England then all
participants could then be scored as being
from South West England or not. These are
essentially dummy variables.
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difference score: in related designs in
which individuals are measured twice, for
example, a difference score is simply the dif-
ference between that individual’s score on
one variable and their score on another vari-
able. Difference scores can take positive or
negative values. See also: deviation

directional hypothesis: see hypothesis

directionless tests: (a) a test of significance
which is two tailed (see significant); (b) more
likely to refer to a test of significance which
can only yield absolute values and hence is
not capable of testing for direction. Examples
of this include chi-square (for bigger than
2 X 2 tables) and the F ratio.

discriminant function analysis: identifies
the pattern of variables which differentiates a
group of cases from other groups of cases. For
example, imagine the research issue is the
childhood and family factors which differen-
tiate criminal adolescents from their peers.
The obvious strategy is to collect information
about, say:

1 The extent of father’s nurturant behaviour
2 Family income
3 Mother’s IQ

It would be a simple matter to determine
whether delinquents differ from their non-
delinquent peers by using the unrelated ¢ test
or ANOVA on each variable to see whether
there is a significant difference on nurturant
behaviour between the two groups, then fam-
ily income, and then mother’s IQ. Up to a
point this is fine. Unfortunately it does nothing
to establish what are the really important
factors distinguishing the groups and what is
the best pattern for differentiating between
the various groups. Discriminant function
analysis attempts to rectify these difficulties
with the simpler approach.

In discriminant function analysis there is a
dependent or criterion variable (the particu-
lar group to which an individual actually
belongs) and a set of independent or predic-
tor or discriminating variables (things which
might differentiate between the groups
involved). A discriminant function is a
weighted combination of variables which
optimizes the ability of the predictors to dif-
ferentiate between the groups of cases. So a
discriminant function might be

discriminant (function) score = constant +
byx, + byx, + byx, + byx, + by o+ bx,

Wilks’s lambda is used to indicate the con-
tribution of each of the discriminating vari-
ables to the separation of the groups. The
smaller lambda is the greater the discriminat-
ing power of the predictor variable. The dis-
criminant function is made up by a weighted
combination of scores on different variables.
The bs in the above formula are the weights,
and the xs the scores an individual has on
particular measures. So in the above example
there are six predictor variables. This is essen-
tially little different from the formula for mul-
tiple regression, except we are predicting
which group a person with a particular pattern
will belong to rather than what score that
person will get on the dependent variable. As
with multiple regressions, regression weights
may be expressed in unstandardized or stan-
dardized form. When expressed in standard-
ized form, the relative impact of the different
variables on the classification of individuals
to the different groups can be seen much
more clearly from what are known as stan-
darized discriminant coefficients.

If there are more than two groups to differ-
entiate, the number of discriminant functions
increases. This is normally the number of
groups minus one but can be smaller if the
number of independent (predictor or dis-
criminating) variables is less.

The centroid is the average score on the
discriminant function of a person who
is classified in a particular group. For a
two-group discriminant function analysis
there are two centroids. Quite clearly, there
has also got to be cut-off points which sort
out which group the individual should
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belong to on the basis of the discriminant
function. This is midway between the two
centroids if the group sizes are equal but
weighted towards one if they are not.

There is also the important matter of how
well the discriminant function sorts the cases
into their known groups. Sometimes this may
be referred to as the classification table, con-
fusion matrix or prediction table. It tabulates
the known distribution of groups against the
predicted distribution of individuals between
the groups based on the independent vari-
ables. The better the fit between the actual
groups and predicted groups, the better the
discriminant function.

Discriminant function analysis is easily
conducted using a standard computer pack-
age such as SPSS. Despite this, its use is sur-
prisingly rare in many disciplines. See also:
hierarchical or sequential entry; Hotelling’s
trace criterion; multivariate normality;
Roy’s gcr; stepwise entry; Wilks’s lambda

Cramer (2003)

discriminant validity: the extent to which a
measure of one construct is less strongly
related to measures of other constructs than
measures of the same one. For example, we
would expect measures of anxiety to be less
strongly related to measures of intelligence
than other measures of anxiety — that is, if
our measure of anxiety is valid.

dispersion, measure of: a measure or
index of the spread or dispersion of values in
a sample. The three most common measures
of dispersion are the range, the variance and
the standard deviation.

distribution: the pattern of characteristics
(e.g. variable values). That is, the way in which
characteristics (values) of a variable are dis-
tributed over the sample or population.
Hence, the distribution of scores in a sample is
merely a tally or graph which shows the pat-
tern of the various values of the score. The

distribution of gender, for example, would be
merely the number or proportion of males
and females in the sample or population. See
normal distribution

distribution-free tests: generally used to
denote non-parametric statistical techniques.
They are distribution free in the sense that no
assumptions are made about the distribution
of the data in the population from which the
samples are drawn. Parametric tests assume
normality (normal distribution) and symme-
try which may make them inappropriate in
extreme cases of non-normality of asymmetry.
See non-parametric tests; ranking tests

drop-out rate: see attrition

dummy coding: a method for defining a
dummy variable in which membership of a
category is coded as 1 and non-membership
as 0. It is so called because the zero does not
specify, or is dumb to, the membership of the
other categories.

Cohen and Cohen (1983)

dummy variable: a common procedure,
where data have been collected as a complex
category (nominal/categorical/qualitative)
variable, is to employ dummy variables in
order to be able to analyse the variable using
regression and other techniques. Imagine the
following categories of a variable measuring
occupation:

Construction work
Forestry work
Office work
Medical work
Other

Classed as a single variable, this occupation
variable is not readily turned into numerical
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scores for the obvious reason that it is a
nominal variable. The different jobs can be
turned into dummy variables by creating sev-
eral dichotomous or binary variables. So, for
example, construction work could be turned
into a dummy variable by simply coding 0 if
the respondent was not in construction work
and 1 if the respondent was in construction
work. Forestry work similarly would be coded
as 0 if the respondent was not in forestry and
1 if the respondent was in forestry work.

There is no requirement that every possible
dummy variable is created from a nominal
variable. Once the dummy variables have been
coded as 0 or 1 (any other pair of values would
do in most circumstances), they can be entered
in correlational techniques such as Pearson’s
correlation coefficient (see phi coefficient and
point-biserial correlation coefficient) or espe-
cially regression and multiple regression. If
entering the dummy variables into multiple
regression, one would restrict the number of
dummy variables to one less than the number
of categories in the category variable. This is to
avoid the situation in which variables may be
strongly collinear in the regression analysis.
Strong collinearity is a problem for the proper
interpretation of predictions in multiple regres-
sion. A simple example might help explain why
we restrict the number of dummy variables to
the number of categories minus one. Take the
variable gender which has the values male and
female. We could turn this into two dummy
variables. One for male in which being male is
coded 1 and not being male is coded 0, and
another dummy variable for female in which
being female is coded 1 and not being male is
coded 0. There would be a perfect (negative)
correlation between the two. Entered into a
multiple regression, only one of these dummy
variables would emerge as being predictive
and the other would not emerge as predictive.
This is a consequence of the collinearity.

Dummy variables provide a useful means
of entering what is otherwise nominal data
into powerful techniques such as multiple
regression. Some confidence is needed to
manipulate data in this way but dummy vari-
ables are simple to produce and the benefits
of employing them considerable. See also:
analysis of variance; dichotomous variable;
effect coding; multiple regression

Duncan’s new multiple range test: a post
hoc or multiple comparison test which is
used to determine whether three or more
means differ significantly in an analysis of
variance. It may be used regardless of
whether the overall analysis of variance is
significant. It assumes equal variance and is
approximate for unequal group sizes. It is a
stepwise or sequential test which is similar
to the Newman-Keuls method, procedure or
test in that the means are first ordered in
size. However, it differs in the significance
level used. For the Newman-Keuls test the
significance level is the same for however
many comparisons there are, while for
Duncan’s test it becomes more lenient the
more comparisons there are. Consequently,
differences are more likely to be significant
for this test.

The significance level is 1 — (1 —a) !
where r is the number of steps the two means
are apart in the ordered set of means. For two
adjacent means, r is 2, for two means sepa-
rated by a third mean r is 3, for two means
separated by two other means r is 4, and so
on. For an a or significance level of 0.05, the
significance level for Duncan’s test is 0.05
when 7is 2 [1 — (1 —0.0521=1—-095' =
1 — 0.95 = 0.05]. It increases to 0.10 when r is
3[1-(1-0.05°"1=1-0952=1-090 =
0.10], to 0.14 when ris 4 [1 — (1 — 0.05)* ! =
1—-0.95=1—-0.86 = 0.14], and so on.

For the example given in the entry for the
Newman-Keuls method, the value of the
studentized range is 3.26 when ris 2, 3.39 when
ris 3, and 3.47 when r is 4. These values can
be obtained from a table which is available in
some statistics texts such as the source below.
Apart from the first value which is the same
as that for the Newman-Keuls method, these
values are smaller, which means that the dif-
ference between the two means being com-
pared does not have to be as large as it does
for the Newman-Keuls method when r is
more than 2 to be statistically significant. For
the example given in the entry for the
Newman-Keuls method, these differences are
5.97 when r is 3 (3.39 X 1.76 = 5.97) and 6.11
when r is 4 (3.47 X 1.76 = 6.11) compared
with 7.11 and 7.97 for the Newman-Keuls
method respectively.

Kirk (1995)
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Dunn’s test: the same as the Bonferroni t
test. It is an a priori or multiple comparison
test used to determine which of three or
more means differ significantly from one
another in an analysis of variance. It controls
for the probability of making a Type I error
by reducing the 0.05 significance level to take
account of the number of comparisons made.
It can be used with groups of equal or
unequal size.

Dunn-Sidak multiple comparison test:
an a priori or multiple comparison test used
to determine which of three or more means
differ significantly from one another in an
analysis of variance. It controls for the prob-
ability of making a Type I error by reducing
the 0.05 significance level to take account of
the number of comparisons made. It
assumes equal variances but can be used
with groups of equal or unequal size. It is a
slight modification of Dunn’s or the
Bonferroni ¢ test. This revision makes it very
slightly more powerful than this latter test,
which practically may make little difference.
For Dunn’s test the familywise or experi-
mentwise significance level is calculated by
dividing the conventional 0.05 level by the
number of comparisons to be made. So with
three comparisons this significance level is
0.0167 (0.05/3 = 0.0167). For the Dunn-Sidak
test the comparison level is computed with
the following formula where C is the num-
ber of comparisons:

1—(1-0.05)¢

For three comparisons this level is 0.0170
[1-(1-005%=1-095% =1-0.9830 =
0.0170]. The difference between these two sig-
nificance levels is only 0.0003. The difference
between the two significance levels becomes
progressively smaller the greater the number
of comparisons being made.

Kirk (1995)

Dunnett’s C test: an a priori or multiple
comparison test used to determine whether
the mean of a control condition differs from
that of two or more experimental conditions
in an analysis of variance. It can be used for
equal and unequal group sizes where the
variances are unequal. This test takes account
of the increased probability of making a Type
I error the more comparisons that are made.
Toothaker (1991)

Dunnett’s T3 test: an a priori or multiple
comparison test used to determine whether
the mean of a control condition differs from
that of two or more experimental conditions
in an analysis of variance. It can be used for
equal and unequal group sizes where the
variances are unequal. This test takes account
of the increased probability of making a Type
I'error the more comparisons that are made. It
is a modification of Tamhane’s T2 multiple
comparison test.
Toothaker (1991)

Dunnett’s test: an a priori or multiple com-
parison test used to determine whether the
mean of a control condition differs from that
of two or more experimental conditions in an
analysis of variance. It can be used for equal
and unequal group sizes where the variances
are equal. The formula for this test is the same
as that for the unrelated ¢ test where the vari-
ances are equal:

group 1 mean — group 2 mean

J(group 1 variance/group 1 1) + (group 2 variance/group 2 1)

However, the probability level of this ¢ test
has been reduced to take account of the
increased probability of making a Type I error
the more comparisons that are made.
Dunnett’s C or T3 test should be used when
the variances are unequal.

Kirk (1995)



Ebel’s intraclass correlation: see
between-judges variance

ecological validity: the extent to which a
study can be seen as representing the ‘real-
life” phenomenon it is designed to investi-
gate. For example, the way couples handle
their differences when asked to do so in a
laboratory may be different from the way
they would do this outside of this setting in
their everyday lives. In these circumstances,
ecological validity is poor.

effect: the influence of one variable on
another variable (though this may be zero). A
common phrase is to discuss ‘the effect of
variable X on variable Y’. The term may be
used in the sense of a causal effect in which
changes in one variable result directly or
cause changes in the other. However, more
generally the term is used to refer to the
extent of the relationship of one variable with
another — that is, simply their mathematical
relationship with no implications of social
science causality. Experimental effect refers to
the influence of the independent variable on
the dependent variable in an experiment.

effect coding: a method for coding nominal
variables in which the two categories or

groups to be identified are coded as 1 and
— 1 respectively and any other categories or
groups as 0. It is so called because it deter-
mines the effect of the groups or treatments
being compared. It is used in multiple
regression.

Cohen and Cohen (1983)

effect size:a term used in meta-analysis and
more generally to indicate the relationship
between two variables. The normal implica-
tion of the term effect size is that it indicates
the size of the difference between the means
of the conditions or groups on the dependent
variable. Such an approach does not readily
allow direct comparisons between studies
using different measuring instruments and so
forth. Consequently effect size is normally
reported as a more standardized index such
as Cohen’s d. Alternatively, and probably
much more usefully, effect size can be
expressed in terms of a Pearson’s correlation
coefficient. This is more intuitively under-
stood by researchers with modest statistical
knowledge. The point-biserial correlation
and eta may be used to calculate correlation
coefficients where the independent variable
is in the form of a small number of nominal
categories. Where both variables are scores,
then Pearson’s correlation is the appropriate
statistic. In this way, correlation coefficients
which are comparable with each other may
be obtained for the vast majority of studies.
The effect size expressed in this way, since it
is a correlation coefficient, gives the proportion
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of variance explained by the two variables if
the coefficient is squared. See coefficient of
determination. See also: meta-analysis

eigenvalue, in factor analysis: the amount
(not percentage) of variance accounted for by
the variables on a factor in a factor analysis. It
is the sum of the squared correlations or load-
ings between each variable and that factor.
The magnitude of a factor and its ‘signifi-
cance’ are assessed partly from the eigen-
value. See also: Kaiser’s (Kaiser-Guttman)
criterion; scree test, cattell’s

endogenous variable: a variable in a path
analysis which is assumed to be explained by
one or more other variables in the analysis.
As a consequence it has one or more arrows
leading either directly or indirectly to it from
other variables.

EQS: (pronounced like the letter X) the name
of one of the computer programs for carrying
out structural equation modelling. The name
seems to be an abbreviation for equation sys-
tems. Information about EQS can be found at
the following website:

http: /www.mvsoft.com/index.htm

See also: structural equation modelling

error: the variation in scores which the
researcher has failed to control or measure in
a particular study. Once it is measured as an
identifiable variable it ceases to be error. So
variations in the scores on a measure which
are the consequence of time of day, for exam-
ple, are error if the researcher does not appre-
ciate that they are due to variations in time of
day and includes time of day as a variable in
the study. Error may be due to poor research
design or methodology, but it is not a mistake
in the conventional sense. The objective of the

researcher needs to be to keep error to a
minimum as far as possible. Error makes the
interpretation of trends in the data difficult
since the greater the error, the greater the
likely variation due to chance or unknown
factors. Many factors lead to increased error —
poor measurement techniques such as
unclear or ambiguous questions and varia-
tions in the instructions given to participants,
for instance.

error mean square: the term used in
analysis of variance for dividing the effect
mean square to obtain the F ratio. It is the
error sum of squares divided by the error
degrees of freedom. The smaller this term is
in relation to the effect mean square, the big-
ger the F ratio will be and the more likely that
the means of two or more of the groups will
be statistically significant.

error sum of squares: the sum of squares
in an analysis of variance which remains after
the sum of squares for the other effects has
been removed. It represents the variance
which remains to be explained and so may be
referred to as the residual sum of squares. See
also: analysis of variance

error variance: see within-groups variance

estimated standard deviation: an esti-
mate of the ‘average’ amount by which scores
vary from the mean of scores. It is the likely
standard deviation of the population of
scores. It is based on the characteristics of a
known sample from that population. The for-
mula for calculating the estimated standard
deviation differs from that of the standard
deviation in that it features a correction for
bias in the estimate. This simply reduces the
sample size (N) by one, which then produces
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an unbiased estimate. So for the sample of
scores 3, 7 and 8, the formula and calculation
of estimated standard deviation is

estlr.na.ted standard _ Sx— XP
deviation -~ _1

N-1

where X is a score, X is the mean score, and
N is the number of scores. Thus

deviation 3 -1

_\/—32+12+22_\/9+1+4

B 2 B 2
4 =

=5 = 7=26

Thus, the value of the estimated standard
deviation is 2.65 units. So the average score
in the population differs from the mean of 6
by 2.65. The average, however, is not calcu-
lated conventionally but this is a helpful
way to look at the concept. However, since
there are a number of ways of calculating
averages in statistics (e.g. harmonic mean,
geometric mean) then we should be pre-
pared for the unusual. The estimated stan-
dard deviation is basically the square root of
the average squared deviation from the
mean.

Computer packages often compute the
estimated standard deviation but neverthe-
less and confusingly call it the standard
deviation. Since generally the uses of stan-
dard deviation are in inferential statistics,
we would normally be working with the
estimated standard deviation anyway
because research invariably involves sam-
ples. Hence, the unavailability of standard
deviation in some packages is not a prob-
lem. As long as the researcher understands
this and reports standard deviation appro-
priately as estimated when it is, few difficul-
ties arise.

estimated standard \/(3 — 6P+ (7 — 6)* + (8 — 6)*

estimated variance: see variance estimate,
estimated population variance or sample
variance

estimation: when we cannot know something
for certain then sometimes it is useful to esti-
mate its value. In other words, have a good
guess or an educated guess as to its value.
This is an informed decision really rather
than a guess. In statistics the process of esti-
mation is commonly referred to as statistical
inference. In this, the most likely population
value is calculated or estimated based on the
available information from the research
sample(s). Without estimation, research on
samples could not be generalized beyond the
individuals or cases that the research was
conducted on. The process of estimation
sometimes does employ some complex calcu-
lations (as in multiple regression), but for the
most part there is a simple relationship
between the characteristics of a sample and
the estimated characteristics of the popula-
tion based on this sample.

eta (m): usually described as a correlation
coefficient for curvilinear data for which
linear correlation coefficients such as Pearson’s
product moment correlation are not appro-
priate. This is a little misleading as eta
gives exactly the same numerical value as
Pearson’s correlation when applied to per-
fectly linear data. However, if the data are not
ideally fitted by a straight line then there will
be a disparity. In this case, the value of eta
will be bigger (never less) than the corre-
sponding value of Pearson’s correlation
applied to the same data. The greater the
disparity between the linear correlation
coefficient and the curvilinear correlation
coefficient, the less linear is the underlying
relationship.

Eta requires data that can be presented as a
one-way analysis of variance. This means
that there is a dependent variable which
takes the form of numerical scores. The inde-
pendent variable takes one of a number of
different categories. These categories may be
ordered (i.e. they can take a numerical value
and, as such, represent scores on the inde-
pendent variable). Alternatively, the cate-
gories of the independent variable may
simply be nominal categories which have no
underlying order.
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Data suitable for analysis using eta can be
found in Table E.1 and Table E.2. They clearly
contain the same data. The first table could be
directly calculated as a Pearson’s correlation
coefficient. The correlation coefficient is 0.81.
The data in the other table are obviously
amenable to a one-way analysis of variance.
The value of eta can be calculated from the
analysis of variance summary table since it is
merely the following:

between sum of squares

Table E.2 The data (from Table E.[) put in
the form of one-way ANOVA

Category of Independent Variable

Category | Category 2 Category 3 Category 4

3 3 7 12

4 6 6 12

2 7 4 I

5 5 8 10

4 9 6
8

eta = total sum of squares
Table E.3  Anadlysis of variance summary
Table E.I Data with four categories of the table for data in Table E.2
independent variable
Source of Sum of Degrees of Mean

Independent variable Dependent variable variance squares freedom square
| 3 Between 118.050 3 39.350
| 4 groups
| 2 Within or 54.750 16
| 5 Error
| 4 Total 172.800
2 3
2 6
2 7
2 5 The calculation of eta should be more rou-
3 7 tine than it is in current practice. In many dis-
3 6 ciplines it is rarely considered. However, its
3 4 calculation is easy on statistical computer
3 8 packages with data entered in a form suitable
; Z for calculating Pearson’s correlation (unre-
4 1 lated ANOVA). It gives an indication of
4 12 non-linearity when compared with Pearson’s
4 T correlation. It is important to stress again that
4 10 although our example deals with a linear
4 6 independent variable, nevertheless this is

Table E.3 gives the analysis of variance sum-
mary table for the data in Table E.2 as well as
the calculation of eta for that table. The analy-
sis of variance is a basic one-way Analysis of
Variance. Not every aspect of the summary
table is used to calculate eta — we do not use
the within subjects (i.e. error) sum of squares.
We find that the value of eta is 0.83 compared
with 0.81 for Pearson’s correlation. Thus, there
is virtually no departure from linearity since
the ‘curvilinear” eta is only marginally larger
than the linear correlation.

not a requirement. So the independent vari-
able may be nominal categories. With nomi-
nal data, the test of linearity is obviously
inapplicable.

[118.050  r—==
eta for above = 172800 J0.683 = 0.83

As we interpret the value of eta more or less
as a Pearson’s correlation coefficient then a
correlation of 0.83 indicates a strong relation-
ship between the independent variable and
the dependent variable. In light of the fact
that the linear relationship is almost as
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strong, we would hesitate to describe the
relationship as curvilinear in this example as
the departure from linearity is small. See also:
curvilinear relationship

Excel: a widely available spreadsheet pro-
gram for handling data which has good facil-
ities for graphics and offers some basic but
useful statistical procedures.

exogenous variable: a variable in a path
analysis which is not explained by any other
variables in the analysis but which explains
one or more other variables. As a conse-
quence, it has one or more arrows leading
from it but none leading to it.

expected frequencies: the counts or fre-
quencies expected if the null hypothesis were
true (or it is what is based on the statistical
model in some forms of analysis). Most com-
monly met in relation to the chi-square test. If
there is just one sample of scores (one-sample
or one-way chi-square) the expected frequen-
cies are based either on known distributions or
on the probabilities expected by chance under
the null hypothesis. In a two-way chi-square,
the expected frequencies are based on the null
hypothesis of no difference or relationship
between samples. The expected frequencies
are the distribution obtained by combining the
samples proportionately to give a single pop-
ulation estimate. See chi-square for the calcu-
lation of expected frequencies.

experiment: see also: condition; treatment
group

experimental conditions:

experiment

see quasi-

experimental design or study: see
between-subjects design; factorial design;
longitudinal design or study; true experi-
ment; within-subjects design

experimental effect: see effect

experimental group: see dichotomous
variable; treatment group

experimental manipulation: see fixed
effects

experimentwise error rate: see analysis
of variance; familywise error rate

exploratory data analysis: a philosophy
and strategy of research which puts the pri-
mary focus of the researcher on using the
data as the starting point for understanding
the matter under research. This is distinct
from the use of data as a resource for check-
ing the adequacy of theory. Classical or
conventional approaches to data analysis
are driven by a desire to examine fairly
limited hypotheses empirically but, as a con-
sequence, may ignore equally important
features of the data which require under-
standing and explanation. In conventional
approaches, the focus is on using techniques
such as the t test, ANOVA, and so forth, in
order to establish the credibility of the model
developed by the researcher largely prior to
data collection.

In exploratory data analysis, the emphasis
is on maximizing the gain from the data by
making more manifest the process of describ-
ing and analysing the obtained data in their
complexity. Many of the techniques used in
exploratory data analysis would be regarded as
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very basic statistical plots, graphs and tables —
simple descriptive statistics. Exploratory data
analysis does not require the powerful infer-
ential statistical techniques common to
research. The reason is that inferential statisti-
cal techniques may be seen as testing the
adequacy of hypotheses that have been
developed by other methods.

The major functions of exploratory data
analysis are as follows:

1 To ensure maximum understanding of the
data by revealing their basic structure.

2 To identify the nature of the important
variables in the structure of the data.

3 To develop simple but insightful models
to account for the data.

In exploratory data analysis, anomalous data
such as the existence of outliers are not
regarded as a nuisance but something to be
explained as part of the model. Deviations
from linearity are seen as crucial aspects to be
explained rather than a nuisance. See also:
descriptive statistics

exploratory factor analysis: refers to a
number of techniques used to determine the
way in which variables group together but it
is also sometimes applied to see how cases
group together. The latter may be called Q
analysis, methodology or technique, to dis-
tinguish it from the former which may be
referred to as R analysis, methodology or
technique. Variables which are related or
which group together should correlate highly
with the same factor and not correlate highly
with other factors. If the variables seem to be
measuring or sampling aspects of the same
underlying construct, they may be aggre-
gated to form a single variable which is a
composite of these variables. For example,
questions which seek to measure how anx-
ious people are may form a factor. If this is the
case, the answers to these questions may be
combined to produce a single index or score
of anxiety.

In a factor analysis there are as many fac-
tors as variables. The first factor explains the

greatest amount of the variance that is shared
by the variables in that analysis. The second
factor explains the next greatest amount of
the remaining variance that is shared by the
variables. Subsequent factors explain pro-
gressively smaller amounts of the shared
variance. The amount of variance explained
by a factor is called the eigenvalue, which
may also be called the characteristic or latent
root.

As the aim of factor analysis is to deter-
mine whether the variables can be explained
in terms of a number of factors which are
smaller than the number of variables, there
needs to be some criterion to decide the num-
ber of factors which explains a substantial
amount of the variance. Various criteria have
been proposed. One of the most widely used
is the Kaiser or Kaiser-Guttman criterion.
Factors which have an eigenvalue of more
than one are considered to explain a worth-
while amount of variance as this represents
the amount of variance a variable would have
on average. This criterion may result in too
few factors when there are few variables and
too many factors when there are many fac-
tors, although these numbers have not been
specified. It may be considered a minimum
criterion below which a factor cannot possi-
bly be statistically significant. An alternative
method for determining the number of fac-
tors is Cattell’s scree test. This test plots the
eigenvalues of the factors. The scree starts
where there appears to be a sharp break in the
size of the eigenvalues. At this point the size
of the eigenvalue will tend to be small and
appears to decrease in a linear or straight line
function for subsequent factors. Factors
before the scree tend to decline in substantial
steps of variance explained. The number of
the factor at the start of the scree is the num-
ber of factors that are considered to explain a
useful amount of the variance.

Often, these factors are then rotated so that
some variables will correlate highly with a
factor while others will correlate lowly with
it, making it easier to interpret the meaning of
the factors. There are various methods of
rotation. One kind of rotation is to ensure that
the factors are uncorrelated with or indepen-
dent of one another. Factors that are unre-
lated to one another can be visually depicted
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as being at right angles to one another.
Consequently, this form of rotation is often
referred to as orthogonal rotation as opposed
to oblique rotation in which the factors are
allowed to lie at an oblique angle to one
another. The correlations of the variables on a
factor can be aggregated together to form a
score for that factor — these are known as fac-
tor scores. The advantage of orthogonal rota-
tion is that as the scores on one factor are
unrelated to those on other factors, the infor-
mation provided by one factor is not similar
to the information provided by other factors.
In other words, this information is not redun-
dant. This is not the case with oblique rota-
tion where the scores on one factor may be
related to scores on other factors. The more
highly related the factors are, the more simi-
lar the information is for those factors and so
the more redundant it is. The advantage of
oblique rotation is that it is said to be a more
accurate reflection of the correlations of the
variables. Factors which are related to one
another may be entered into a new factor
analysis to form second-order or higher order
factors. This is possible because oblique fac-
tors are correlated with each other and so can
generate a correlation matrix. Orthogonal
factors are not correlated so their correlations
cannot generate further factors.

The meaning of a factor is usually inter-
preted in terms of the variables which corre-
late highly with it. The higher the correlation,
regardless of its sign, the more that factor
reflects that variable. To aid interpretation of
its meaning, a factor should have at least
three variables which correlate substantially
with it. Variables may correlate highly with
two or more factors, which suggests that
these variables represent two or more factors.
When aggregating variables together to form
a single index for a factor, it is preferable to
include only those variables which correlate
highly with that factor and to exclude vari-
ables which correlate lowly with it or correlate

highly with one or more other factor. In this
way, the index can be seen as being a clearer
representation of that factor.

It is usual to report the amount of variance
that is explained by orthogonal factors. This
is normally done in terms of the percentage
of variance accounted for by those factors. It
is not customary to describe the amount of
variance explained by oblique factors as
some of the variance will be shared with
other factors. The stronger the oblique factors
are correlated, the greater the shared variance
will be.

Cramer (2003)

exponent: a symbol or number written
above and to the right of another symbol or
number to indicate the number of times that
a quantity should be multiplied by itself. For
example, the exponent 3 in the expression 23
indicates that the quantity 2 should be multi-
plied by itself three times, 2 X 2 X 2. The
exponent 2 in the expression R? indicates that
the quantity R is multiplied by itself twice.
The exponent | in the expression C’ indicates
that the quantity C should be multiplied by
itself the number of times that | represents.
See also: logarithm

exponential: see natural or Napierian
logarithm

external validity: the extent to which the
findings of a study can be applied more gen-
erally to other samples, settings and times.
If the findings are specific to a contrived
research situation, then they are said to lack
external validity. See also: randomization



F ratio: the effect mean square divided
by the error mean square in an analysis of
variance.

effect mean square
"~ error mean square

It is used to determine whether one or more
means or some combination of means differ
significantly from each other. The bigger the
ratio is, the more likely it is to be statistically
significant. Tables for the value that the F
ratio has to be or to exceed are available in
many statistical texts. Some of these values
are shown in the entry on analysis of vari-
ance. The significance levels of the values
obtained for analysis of variance are usually
provided by statistical programs which com-
pute this test.

The F ratio in multiple regression can be
expressed in terms of the following formula:

R? change/number of predictors in that
change

F=
(1 - R?/(N — number of predictors — 1)

R? is the squared multiple correlation
between the criterion and all the predictors
that have been entered into the multiple
regression at that stage. Consequently, 1 — R
is the error or remaining variance. R* change
is the difference in R? between all the predic-
tors that have been entered into the multiple

regression and the predictor or predictors
that have been entered into the last step of the
multiple regression. In other words, R’
change is the variance accounted for by the
predictor(s) in the last stage. These two sets
of variance are divided by their degrees of
freedom. For R? change it is the number of
predictors involved in that change. For 1 — R?
it is the number of cases in the sample (N)
minus the number of predictors that have
been entered including those in the last
step minus one. See also: between-groups
variance
Cramer (1998)

F test for equal variances in unrelated
samples: one test for determining whether
the variance in two groups of unrelated
scores is equal or similar and does not differ
significantly. This may be of interest in itself.
It needs to be determined if a ¢ test is to be
used to see whether the means of those two
groups differ because which version of the ¢
test is to be used depends on whether the
variances are equal or not. The F test is the
larger variance divided by the smaller one:

larger variance
Ftest= ——————
smaller variance

The value that F has to be or to exceed to
be statistically significant at the 0.05 level is
found in many statistics texts. This test has
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Table E1 The 0.05 critical values for

the F test
df for
smaller
variance df for larger variance

10 20 30 40 50 o

10 372 342 331 326 322 3.08
20 277 246 235 229 225 209
30 251 220 207 201 197 179
40 239 199 194 180 1.75 .64
50 232 194 187 174 170 155
% 205 171 157 148 143 1.00

two degrees of freedom (df), one for the
larger variance and one for the smaller vari-
ance. These degrees of freedom are one
minus the number of cases in that group. The
critical value that F has to be or to exceed for
the variances to differ significantly at the 0.05
level is given in Table F1 for a selection of
degrees of freedom.

This test is suitable for normally distributed
data.

face validity: the extent to which a measure
appears to be measuring what it is supposed
to be measuring. For example, a measure of
self-reported anxiety may have face validity
if the items comprising it seem to be con-
cerned with aspects of anxiety.

factor: see analysis of variance; higher order
factors; principal axis factoring; scree test,
Cattell’s

factor analysis: see Bartlett’s test of
sphericity; confirmatory factor analysis;
eigenvalue, in factor analysis; exploratory
factor analysis; factor loading; factorial
validity; iteration; Kaiser’s (Kaiser-Guttman)
criterion; oblique rotation; Q analysis; prin-
cipal components analysis; R analysis; scree
test, Cattell’s; simple solution; varimax rota-
tion, in factor analysis

factor, in analysis of variance: a variable
which consists of a relatively small number of
levels or groups which contain the values or
scores of a measured variable. This variable is
sometimes called an independent variable as
this variable is thought to influence the other
variable which may be referred to as the
dependent variable. There may be more than
one factor in such an analysis.

factor, in factor analysis: a composite vari-
able which consists of the loading or correla-
tion between that factor and each variable
making up that factor. Factor analysis is used
to determine the extent to which a number of
related variables can be grouped together
into a smaller number of factors which sum-
marize the linear relationship between those
variables.

factor loading: a term used in factor analy-
sis. A factor loading is a correlation coeffi-
cient (Pearson’s product moment) between a
variable and a factor (which is really a cluster
of variables). Loadings can take positive and
negative values between — 1 and + 1. They
are interpreted more or less as a correlation
coefficient would be. So if a variable has a fac-
tor loading of 0.8 on factor A, then this means
that it is strongly correlated with factor A. If
a variable has a strong negative correlation of
— 0.9, then this means that the variable needs
to be reversed in order to understand what it
is about the variable which relates to factor A.
A factor loading of zero approximately
means that the variable has no relationship
with the factor.

Each variable has a different factor loading
on each of the different factors. The pattern of
variables which have high loadings on a fac-
tor (taken in conjunction with those which do
not load on that factor) is the basis for inter-
preting the meaning of that factor. In other
words, if there are similarities between the
variables which get high loadings on a par-
ticular factor, the nature of the similarity is
the starting point for identifying what the
factor is.
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Table F2 Factorials
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NOI234 5 6 7

8

9 10 I

N O I 2 6 24 120 720 5040 40,320 362,880 3,628,800 39,916,800

factor rotation: see oblique and orthogonal
rotation

factorial: the factorial of 6 is denoted as 6!
and equals 6 X 5 X 4 X 3 X 2 X 1 =720 while
the factorial of 4 is denoted 4! and equals
4 X3 X 2X1=24. Thus, a factorial is the
number multiplied by all of the whole numbers
lower than itself down to one (Table FE2).
The factorial of 1 is 1 and the factorial of 0 is
also 1. It has statistical applications in
calculating the Fisher exact probability test
and permutations and combinations. Unfor-
tunately, factorials rapidly exceed the capa-
bilities of calculators and their use can be
difficult as a consequence. One solution is to
look for terms which can be cancelled, so 6!/5!
whichis (6 X5 X4 X3X2X1)/(5X4X3X
2 X 1) simply cancels out to 6.
See Fisher (exact probability) test

factorial analysis of variance: see analysis
of variance

factorial design: a design which investigates
the relationship between two or more factors
on the scores of one or more other measured
variables. There are two main advantages in
studying two or more factors together. The
first is that error or unexplained variance in
the measured variables may be explained by
some of the other factors or their interactions,
thereby reducing it. This provides a more sen-
sitive test of that factor. The second advantage
is that the interaction between the factors can
be examined. See also: interaction

factorial validity: sometimes used to refer
to whether the variables making up a measure

have been shown to group together as a

unitary factor through the statistical technique

of factor analysis. A measure may be said to

be factorially valid or to have factorial valid-

ity if the variables comprising it have been

demonstrated to cluster together in this way:.
Nunnally and Bernstein (1994)

familywise error rate: the probability or
significance level for a finding when a family
or number of tests or comparisons are being
made on the data from the same study. It is
also known as the experimentwise error rate.
When determining whether a finding is sta-
tistically significant, the significance level is
usually set at 0.05 or less. If more than one
finding is tested on a set of data, the proba-
bility of those findings being statistically sig-
nificant increases the more findings or tests of
significance that are made. The following for-
mula can be used for determining the family-
wise error rate significance level or a (alpha)
where the tests are independent:

— _ number of comparisons
1-(1-«w P

For example, if three tests are conducted
using the 0.05 alpha level the familywise
error rate is about 0.14:

1-(1-005°=1-095=1-0.8574 =0.1426

There are various ways of controlling for this
familywise error rate. Some of the tests for
doing so are listed under multiple comparison
tests. One of the simplest is the Bonferroni test
where the 0.05 level is divided by the number
of tests being made. So, if three tests are being
conducted, the appropriate significance level is
0.0167 (0.05/3 = 0.0167) though this is reported
as 0.05. See also: analysis of variance

first-order partial correlation: see zero-
order correlation
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Table E3  Contingency table to illustrate calculation
of 2 X 2 Fisher exact test with letter symbols

added to ease calculation

Men Women
Employed a=6 b=2 W=a+b=8
Not employed c=1 d=4 X=c+d=5
Y=a+c=7 Z=b+d=6 N=13

Fisher (exact probability) test: a test of
significance (or association) for small contin-
gency tables. Generally known is the 2 X 2
contingency table version of the test but there
is also a 2 X 3 contingency table version
available. As such, it is an alternative tech-
nique to the chi-square in these cases. It
can be used in circumstances in which the
assumptions of chi-square such as minimal
numbers of expected frequencies are not met.
It has the further advantage that exact proba-
bilities are calculated even in the hand calcu-
lation, though this advantage is eroded by
the use of power statistical packages which
provide exact probabilities for all statistics.
The major disadvantage of the Fisher (exact
probability) test is that it involves the use of
factorials which can rapidly become unwieldy
with substantial sample sizes. The calculation
of a simple 2 X 2 Fisher test on the data in
Table E.3 begins as follows:
Fisher exact probability

WIXIY1Z!
Nlalblcld!
8151716!
13161211141

Fisher exact probability =

Taking the factorial values from Table F2,
this is

40,320 X 120 X 5040 X 720
6,227,020,800 X 720 X 2 X 1 X 24

= 0.082

This value (0.082) is the probability of getting
precisely the outcome to be found in Table E.3 -
that is, the data. This is just one component of
the calculation. In order to calculate the sig-
nificance of the Fisher exact test one must
also calculate the probability of the more
extreme outcomes while maintaining the
marginal totals as they are in Table E.3. Table F.4

gives all of the possible tables — the table
starts with the cases that are more extreme
than the data and finishes with the tables
that are more extreme in the opposite direc-
tion. Not all values are possible in the top
left-hand side cell if the marginal totals are
to be retained. So, for example, it is not pos-
sible to have 8, 1 or 0 in the top left-hand
cells.

We can use the probabilities calculated
using the formula above to calculate the
Fisher exact probabilities. It is simply a mat-
ter of adding the appropriate probabilities
together:

¢ One-tailed significance is assessed by
adding together the probability for the data
themselves (0.082) with any more extreme
probabilities in the same direction (there is
only one such table — the first one which has
a probability of 0.005). Consequently, in this
case, the one-tailed significance is 0.082 +
0.005 =0.087. This is not statistically signifi-
cant in our example.

e Two-tailed significance is not simply
twice the one-tailed significance. This
gives too high a value as the distribution
is not symmetrical. One needs to find all
of the extreme tables in the opposite direc-
tion from the actual data which also have
a probability equal to or smaller than that
for the data. The probability for the data
themselves is 0.082. As can be seen, the
only table in the opposite direction with
an equal or smaller probability is the final
table. This has a probability of 0.016. To
obtain the two-tailed probability one simply
adds this value to the one-tailed probabil-
ity value. This is 0.087 + 0.016 = 0.103.
This is not statistically significant at the
5% level.
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Table F4 All of the possible outcomes of
a study which maintain the
marginal totals of Table F.3

p = 0.005 — this is the only more extreme case than the
data in the same direction as the data

p = 0.082 — this is the same table as for the data

5 3
2 3
p=0326
4 4
3 2
p =0.408
3 5
4 [
p=0.163
2 6
5 0

p = 0.016 — this is the only more extreme case in the
opposite direction to the data

One important thing to remember about the
Fisher exact probability test is that the num-
ber obtained (in this case 0.082) is the signifi-
cance level — it is not a chi-square value which
has to be looked up in tables. While a signifi-
cance level of 0.082 is not statistically signifi-
cant, of course, it does suggest a possible
trend. See also: factorial

Fisher’s LSD (Least Significant
Difference) or protected test: a post hoc
or multiple comparison test which is used to
determine which of three or more means dif-
fer from one another when the F ratio in an
analysis of variance is significant. It is essen-
tially an unrelated ¢ test in which the signifi-
cance level has not been adjusted for the
number of comparisons being made. As a
consequence its use is generally not recom-
mended. The formula for this test is the same
as that for the unrelated t test where the vari-
ances are equal:

- group 1 mean — group 2 mean
J(group 1 variance/group 1 1) + (group 2 variance/group 2 1)

A version of this test is also used to ascertain
which of three or more adjusted means differ
from one another when the F ratio in an
analysis of covariance is significant. This test
has the following formula:

adjusted group 1 mean — adjusted group 2 mean

t = |adjusted : _ .
\/mea_n % {|:1 1 N (covariate group 1 mean — covariate group 2 mean)z—l}

—_—
:?r%im n, n, covariate error sum of squares J

See analysis of variance
Howell (2002); Huitema (1980)

Fisher’s z transformation: the logarithmic
transformation of Pearson’s correlation
coefficient. Its common use is in the z test
which compares the size of two correlation
coefficients from two unrelated samples.
(This is obviously different from the more
conventional test of whether a single correla-
tion coefficient differs from zero.) Without
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Table E5 r to z transformation

r z r z
0.00 0.00 0.60 0.69
0.10 0.10 0.70 0.87
0.20 0.20 0.80 I.10
0.30 0.31 0.90 1.47
0.40 0.42 1.00 3.00
0.50 0.55

the transformation, the distribution of
differences between the two correlation
coefficients becomes very skewed and
unmanageable.

This transformation may be found by look-
ing up the appropriate value in a table or by
computing it directly using the following for-
mula where log, stands for the natural loga-
rithm and r for Pearson’s correlation:

z,=0.5Xlog, [(1 +7)/(1—1)]

The values of Pearson’s correlation vary from
0 to £ 1 as shown in Table E.5 and the values
of the z correlation from 0 to about %3
(though, effectively, infinity).

fixed effects: the different levels of an
experimental treatment (experimental
manipulation) in many studies are merely a
small selection from a wide range of possible
levels. Generally speaking, the researcher
chooses a small number of different levels for
the treatment on the basis of some reasoned
argument about what is appropriate, practi-
cal and convenient. That is, the levels are
fixed by the researcher. This is known as
the fixed effects model. It merely indicates
that the different treatments are fixed by the
researchers. The alternative is the random
effects model in which the researcher selects
the different levels of the treatment used by a
random procedure. So, the range of possible
treatments has to be identified and the selec-
tion made randomly from this range. Fixed
effects are by far the most common approach
in the various social sciences. As all of the
common statistical techniques assume fixed
rather than random effects, there is little

point in deviating from the fixed effects
approach in terms of planning one’s own
research. It is difficult to find examples of the
use of the random effects model in many dis-
ciplines. Nevertheless, advanced textbooks in
statistics cover the appropriate procedures.
See also: random effects model

floor effect: occurs when scores on the
dependent variable are so low that the intro-
duction of an experimental treatment cannot
depress the scores of participants any further.
This, if it is not recognized, might be taken as
a sign that the experimental treatment is inef-
fective. This is not the case. For example, if
children with educational difficulties are
given a multiple-choice spelling test, it is
likely that their performances are basically
random so that they score at a chance level.
For these children, the introduction of time
pressure, stress or some other deleterious fac-
tor is unlikely to reduce their performance.
This is because their performances on the test
are at the chance level anyway:. It is the oppo-
site of a ceiling effect. The reasons for floor
effects are diverse. They can be avoided by
careful development of the measuring instru-
ments and by careful review of the appropri-
ate research participants.

frequency: the number of times a particular
event or outcome occurs. Thus, the frequency
of women in a sample is simply the total
number of women in the sample. The fre-
quency of blue-eyed people is the number of
people with blue eyes. Generally in statistics
we are referring to the number of cases with
a particular characteristic. An alternative term,
most common in statistical packages, is
count. This highlights the fact that the fre-
quency is merely a count of the number of
cases in a particular category.

Data from individuals sometimes may be
collected in the form of frequencies. This
might cause the novice some confusion. For
example, a score may be based on the fre-
quency or number of eye blinks a participant
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does in a 10-minute period. This is really a
score since it indicates the rate of blinking in
a 10-minute period for each participant.
Those with little knowledge or experience of
statistics may find frequencies hard to differ-
entiate from scores. This is because in order to
decide whether the number 23 is a score or a
frequency one needs to know how the number
23 was arrived at.

Data collected in the form of frequencies in
nominal categories (categorical or category
data) are analysed using tests such as chi-
square. See also: Bayesian inference; count;
marginal totals

frequency curve: a graphical frequency
distribution applied to a continuous (or near
continuous) score. It consists of an axis of fre-
quency and an axis corresponding to the
numerical value of the scores (Figure FE.1).
Since the steps on the value axis are small, the
frequency distribution is fitted well by using
a curved line rather than a succession of
blocks. The term frequency polygon is some-
times met to describe the line that connects
the points of a frequency curve. The most
famous frequency curve in statistics is the
bell-shaped, normal distribution.

frequency distribution: a table or diagram
giving the frequencies of values of any given
variable. For qualitative variables this is the
number of times each of the categories occurs
(e.g. depressive, schizophrenic and paranoid)
whereas for quantitative variables this is the
number of times each different score (or
range of scores) occurs. The importance of a
frequency distribution is simply that it allows
the researcher to see the general characteris-
tics of a particular variable for the cases or
participants in the research. The frequency
distribution may reveal important character-
istics such as asymmetry, normality, spread,
outliers, and so forth, in the case of score
data. For qualitative data, it may help reveal

Frequency

Score

Figure 1 Frequency curve

categories which are very frequent or so
infrequent that it becomes meaningless to
analyse them further.

Frequency distributions may be presented
in a number of different forms: simple fre-
quency distributions which are merely fre-
quencies, percentage frequency distributions
in which the frequencies are expressed as a
percentage of the total of frequencies for that
variable, cumulative frequencies, and even
probability curves in which the frequencies
are expressed as a proportion of the total (i.e.
expressed as a proportion or probability out
of one).

While frequency distributions reflect the
distribution of a single variable, there are
variants on the theme which impose a second
or third variable. These are compound fre-
quency distributions (more often compound
bar charts or compound histograms).

frequency polygon: see frequency curve

Friedman two-way analysis of variance
test: determines if the mean ranks of three or
more related samples or groups differ signifi-
cantly. It is a non-parametric test which is
used on ranked data. The test statistic
approximates a chi-square distribution where
the degrees of freedom are the number of
groups minus one.
Cramer (1998)



Gabriel simultaneous test procedure: a
post hoc or multiple comparison test which is
used to determine which of three or more
means differ from one another in an analysis
of variance. It is used with groups which
have equal variances. It is based on the
studentized maximum modulus rather than
the studentized range. The studentized max-
imum modulus is the maximum absolute
value of the group means which is divided by
the standard error of the means.
Kirk (1995)

Games-Howell multiple comparison
procedure: a post hoc or multiple comparison
test which is used to determine which of three
or more means differ from one another when
the F ratio in an analysis of variance is signifi-
cant. It was developed to deal with groups
with unequal variances. It can be used with
groups of equal or unequal size. It is based on
the studentized range statistic. See also:
Tamhane’s T2 multiple comparison test
Howell (2002); Kirk (1995)

Gaussian distribution: another term for a
normal distribution. See normal distribution

geometric mean: the nth root of the prod-
uct of 1 scores. So the geometrical mean of 2,
9,and 12 is

2 x9x12=3216 = 6.0

The geometric mean of 3 and 6 is

Bx6 =318=4.24

The geometric mean has no obvious role in
basic everyday statistical analysis. It is
important, though, since it emphasizes that
there are more meanings of the concept of
mean than the arithmetic mean or average.
See also: average

general factor: in factor analysis, a gen-
eral factor is one on which all of the vari-
ables in the analysis load to a significant
degree. If there is a general factor, it will
inevitably be the largest factor in terms of
variance explained (eigenvalue) and conse-
quently the first factor to emerge in the
analysis.

Goodman and Kruskal’s gamma (%y): a
measure of association for ranked or ordinal
data. It can range from —1 to +1 just like a
correlation coefficient. It takes no account of
the number of ranks for the two variables or
cases which have the same or tied ranks. See
also: correlation

Cramer (1998); Siegal and Castellan (1988)
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Table G.I Number of females and males
passing or failing a test
Pass Fail Row total
Females 108 12 120
Males 56 24 80
Column total 164 36 200

Goodman and Kruskal’s lambda ()A): a
measure of the proportional increase in accu-
rately predicting the outcome for one cate-
gorical variable when we have information
about a second categorical variable, assuming
that the same prediction is made for all cases
in a particular category. For example, we
could use this test to determine how much
our ability to predict whether students pass
or fail a test is affected by knowing their sex.

We can illustrate this test with the data in
Table G.1 which show the number of females
and males passing or failing a test.

If we had to predict whether a particular
student had passed the test disregarding
whether they were female or male, our best
bet would be to say they had passed as most
of the students passed (164 out of 200). If we
did this we would be wrong on 36 occasions.
How would our ability to predict whether a
student had passed be increased by knowing
whether they were male or female? If we pre-
dicted that the student had passed and we
also knew that they were female we would be
wrong on 12 occasions, whereas if they were
male we would be wrong on 24 occasions. If
we knew whether a student was female or
male we would be wrong on 36 occasions.
This is the same number of errors as we
would make without knowing the sex of the
student, so the proportional increase know-
ing the sex of the student is zero. The value of
lambda varies from 0 to 1. Zero means that
there is no increase in predictiveness whereas
one indicates that there is perfect prediction
without any errors.

This test is asymmetric in that the propor-
tional increase will depend on which of the
two variables we are trying to predict. For
this case, lambda is about 0.15 if we reverse
the prediction in an attempt to predict the sex
of the student on the basis of whether they
have passed or failed the test. The test

assumes that the same prediction is made for
all cases in a particular row or column of the
table. For example, we may assume that all
females have passed or that all males have
failed. Goodman and Kruskal’s tau presumes
that the predictions are randomly made on
the basis of their proportions in the row and
column totals. See also: correlation

Cramer (1998); Siegal and Castellan (1988)

Goodman and Kruskal’s tau (1): a mea-
sure of the proportional increase in accurately
predicting the outcome of one categorical
variable when we have information about a
second categorical variable where it is
assumed that the predictions are based on the
their overall proportions.

We can illustrate this test with the data in
Table G.1 (under the entry for Goodman and
Kruskal’s lambda) where we may be inter-
ested in finding out how much our ability to
predict whether a person has passed or failed
a test is increased by our knowledge of
whether they are female or male. If we pre-
dicted whether a person had passed on the
basis of the proportion of people who had
passed disregarding whether they were
female or male, we would be correct for 0.82
(164/200 = 0.82) of the 164 people who had
passed, which is for 134.48 of them (0.82 X
164 = 134.48). If we did this for the people
who had failed, we would be correct for 0.18
(36/200 = 0.18) of the 36 people who had
failed, which is for 6.48 of them (0.18 X 36 =
6.48). In other words, we would have
guessed incorrectly that 59.04 of the people
had passed (200 — 134.48 — 6.48 = 59.04)
which is a probability of error of 0.295
(59.04/200 = 0.295).

If we now took into account the sex of the
person, we would correctly predict that the
person had passed the test

for 0.90 (108/120 = 0.90) of the 108 females
who had passed, which is for 97.20 of them
(0.90 X 108 = 97.20),

for 0.70 (56/80 = 0.70) of the 56 males who
had passed, which is for 39.20 of them
(0.70 X 56 = 39.20),
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for 0.10 (12/120 = 0.10) of the 12 females
who had failed, which is for 1.20 of them
(0.10 X 12 = 1.20), and

for 0.30 (24/80 = 0.30) of the 24 males
who had failed, which is for 7.20 of them
(0.30 X 24 = 7.20).

In other words, we would have guessed
incorrectly that 55.20 of the people had
passed (200 — 97.20 — 39.20 — 1.20 — 7.20 =
55.20). Consequently, the probability of error
of prediction is 0.276 (55.20/200 = 0.276). The
proportional reduction in error in predicting
whether people had passed knowing
whether they were female or male is 0.064
[(0.295 — 0.276)/0.295 = 0.064].
Cramer (1998)

goodness-of-fit test: gives an indication of
the closeness of the relationship between the
data actually obtained empirically and the
theoretical distribution of the data based on
the null hypothesis or a model of the data.
These can be seen in the chi-square test and
log-linear analysis respectively. In chi-square
the empirically observed data and the
expected data under the null hypothesis are
compared. The smaller the value of chi-
square the better is the goodness of fit to the
theoretical model based on the null hypothe-
sis. In log-linear analysis, chi-square is used
to test the closeness of the empirically
observed data and a complex model based on
interactions and main effects. So a goodness-
of-fit test assesses the correspondence between
the actual data and a theoretical account of
that data that can be specified numerically.
See also: chi-square

grand: as in grand mean and grand total.
This is a somewhat old-fashioned term from
when the analysis of variance, for example,
would be routinely hand calculated. It refers
to the overall characteristics of the data — not
the characteristics of individual cells or
components of the analysis.

grand mean: see between-groups variance

graph: a diagram which illustrates the rela-
tionship between variables, usually two vari-
ables. Scattergrams are a typical example of a
graph in statistics.

grouped data: usually refers to the process
by which a range of values are combined
together especially to make trends in the data
more apparent. So, for example, weights in
the range 4049 kg could be combined into
one group, weights in the range 50-59 kg into
the second group, weights in the range 60-69 kg
into the third group, and so forth. There is a
loss of information by doing so since a person
who weighs 68 kg is placed in the same
group as a person who weighs 62 kg despite
the fact that their weights do differ. Grouping
is most appropriate for graphical presenta-
tions of data. The purpose of grouping is
basically to clarify trends in the distribution
of data. Too many data points with fairly
small samples can help disguise what the
major features of the data are. Grouping
smooths out some of these difficulties.

Grouping is sometimes used in the collec-
tion of data. For example, one commonly sees
age being assessed in terms of age bands
when participants are asked their age group,
such as 20-29 years, 30-39 years, etc. There is
no statistical reason for collecting data in this
form. Indeed, there is an obvious case for col-
lecting information such as age as actual age.
Modern computer analyses of data can
recode information in non-grouped form
readily into groups if this is required.

There are special formulae for the rapid
calculation of statistics such as the mean from
grouped data. These had advantages in the
days of hand calculation but they have less to
offer nowadays.



harmonic mean: the harmonic mean of 3
and 6 is
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In other words, the harmonic mean is the
number of scores, divided by the sum of 1/X
for each score.

The harmonic mean is rarely directly cal-
culated as such in statistics. It is part of the
calculation of the unrelated f test, for example.
See also: average

Hartley’s test or F__: one test used to
determine whether the variances of three or
more groups are similar (i.e. homogeneous)
when the number of cases in each group is
the same or very similar. It is the largest vari-
ance divided by the smallest variance. The
degrees of freedom for this F ratio are
the number of groups for the numerator. For
the denominator they are the number of cases
in a group minus one or, where the group
sizes differ slightly, the number of cases in the
most numerous group minus one.

heterogeneity: the state of being of incom-
parable magnitudes. It is particularly applied

to variance. Heterogeneity of variance is a
phrase that indicates that two variances are
very dissimilar from each other. This means
in practice that, since they are so very differ-
ent, it is misleading to try to combine them to
give a better estimate of the population vari-
ance, for example. The usual criterion is that
the two variances need to be significantly dif-
ferent from each other using such tests as the
F ratio, Levene’s test or the Bartlett—Box F test.

heteroscedasticity: most notably an issue
in connection with correlation and regression
which uses the least squares method of fitting
the best fitting straight line between the data
points. The variation of the data points of the
scattergram vertically can differ at different
points of the scattergram. For some points on
the horizontal of the scattergram there may
be a large amount of variation of the points,
for other points on the horizontal of the scat-
tergram there may be little variation. Such
variation at different points tends to make the
fit of the best fitting straight line rather poor
or less than ideal (though not consistently so
in any direction). Tests of heteroscedasticity
are available so that appropriate corrections
can be made.

Heteroscedasticity is shown in Figure H.1.
This is a scattergram of the relationship
between two variables X and Y. If we take the
first data point along the horizontal axis and
look at the four scores indicated above that
point, we can see that these data points vary
in their score on the vertical Y axis but this
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Y 14
12
10

Scores at this point on

Figure H.1 lllustrating heteroscedasticity

variation is relatively small (2 units on the
vertical axis). They all are at position 1 on the
horizontal axis. Look at the scores at data
point 5 on the horizontal axis. Obviously all of
these points are 6 on the horizontal axis but
they vary from 2 to 10 on the vertical axis.
Obviously the variances at positions 1 and 5
on the horizontal axis are very different from
each other. This is heteroscedasticity. See also:
multiple regression; regression equation

heuristic: this term has several different
meanings. It may be used as an adjective or a
noun. A general meaning is finding out or
discovering. Another meaning is to find out
through experience. A third meaning is a
process or method which leads to a solution.
See also: algorithm

hierarchical agglomerative clustering:
one of the more widely used methods of clus-
ter analysis in which clusters of variables
are formed in a series or hierarchy of stages.
Initially there are as many clusters as vari-
ables. At the first stage, the two variables that
are closest are grouped together to form one
cluster. At the second stage, either a third
variable is added or agglomerated to the first

X axis have biggest
x Spread of values on Y
axis

cluster containing the two variables or two
other variables are grouped together to form a
new cluster, whichever is closest. At the third
stage, two variables may be grouped together,
a third variable may be added to an existing
group of variables or two groups may be com-
bined. So, at each stage only one new cluster
is formed according to the variables, the vari-
able and cluster or the clusters that are closest
together. At the final stage all the variables are
grouped into a single cluster.
Cramer (2003)

hierarchical or sequential entry: a
method in which predictors are entered in an
order or sequence which is determined by the
analyst in statistical techniques such as logistic
regression, multiple regression, discriminant
function analysis and log-linear analysis.

hierarchical method in analysis of vari-
ance: see Type |, hierarchical or sequential
method in analysis of variance

hierarchical multiple regression: see
covariate; multiple regression
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higher order factors: these emerge from a
factor analysis of the correlations between the
first or first-order factors of a factor analysis
of variables. This is only possible when the
factors are rotated obliquely (i.e. allowed to
correlate). So long as the factors in a higher
order factor analysis are rotated obliquely,
further higher order factor analyses may
be carried out. Except where the analysis
involves numerous variables, it is unlikely
that more than one higher order factor analy-
sis will be feasible. See also: exploratory
factor analysis

higher order interactions: involve rela-
tionships between more than two factors
or variables. For example, the interaction
between the three variables of gender, social
class and age would constitute a higher order
interaction.

histogram: used to present the distribution
of scores in diagram form. They use rectan-
gular bars to illustrate the frequency of a
particular score or range of scores. Because
scores are based on numerical order, the bars
of a histogram will touch (unless there is zero
frequency for a particular bar). Unlike a bar
chart, the bars cannot be readily rearranged
in terms of order without radically altering
the interpretation of the data. A typical histo-
gram is to be found in Figure H.2. This dia-
gram is interpreted generally by looking at
the numerical frequency scale along the verti-
cal axis if there is one or simply the heights of
the histogram bars.

There is an important point to bear in mind
if one is using scores in short ranges such as
ages 20-29, 30-39, 40-49 years etc. These
ranges should be identical in width otherwise
there is a complication. For example, if the
researcher classified in the above data as
20-29 years, 30-39 years, 4049 years and
above 50-79 years, then one should examine
the area of the bar and not its height as the
width of the bar should be greater if the age
range is greater. However, this is commonly
not done by researchers.
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Figure H.2 Histogram

Although histograms are common in the
media in general and are used by non-
statisticians, it is important not to regard them
as having little or no place in sophisticated
statistical analyses. Quite the contrary: time
spent examining univariate data (and bivari-
ate data) using histograms, compound bar
charts, and the like, may reveal unexpected
features of the data. For example, it may be
that scores on a variable appear to be in two
distinct groups on a histogram. This sort of
information would not be apparent from the
most complex of statistical analyses without
using these simple graphical techniques.

Hochberg GT2 test: a post hoc or multiple
comparison test which is used to determine
which of three or more means differ from one
another in an analysis of variance. It is used
with groups which have equal variances. It is
based on the studentized maximum modulus
rather than the studentized range. The
studentized maximum modulus is the maxi-
mum absolute value of the group means
which is divided by the standard error of the
means.
Toothaker (1991)

homogeneity: the state of being uniform or
similar especially in terms of extent when
applied to statistics. Hence, homogeneity of
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variance means that the variances of two or
more sets of scores are highly similar (or not
statistically dissimilar). Homogeneity of
regression similarly means that the regres-
sion coefficients between two variables are
similar for different samples.

Some statistical techniques (e.g. the t test,
the analysis of variance) are based on the
assumption that the variances of the samples
are homogeneous. There are tests for homo-
geneity of variances such as the F ratio test. If
it is shown that the variances of two samples
of scores are not homogeneous, then it is
inappropriate to use the standard version of
the unrelated t test. Another version is
required which does not combine the two
variances to estimate the population vari-
ance. This alternative version is available in a
few textbooks and in a statistical package
such as SPSS.

homogeneity of regression: the regres-
sion coefficients being similar or homo-
geneous in an analysis of covariance or
multivariate analysis of covariance for the dif-
ferent categories or groups of an independent
variable. The results of such an analysis are
difficult to interpret if the regression coeffi-
cients are not homogeneous because this
means that the relationship between the
covariate and the dependent variable is not
the same across the different groups. One of
the assumptions of this type of analysis is that
the regression coefficients need to be homoge-
neous. See also: analysis of covariance

homogeneity of variance: the variances of
two or more groups of scores being similar
or homogeneous. Analysis of variance assumes
that the variances of the groups are similar.
These variances are grouped together to form
the error mean square or variance estimate. If
the variance of one or more of the groups is
considerably larger than that of the others, the
larger variance will increase the size of the
error variance estimate which will reduce
the chance of the F ratio being significant.
The means of the groups with the smaller

variances may differ from each other but this
difference is hidden by the inclusion of the
groups with the larger variances in the error
variance estimate. If the variances are dissim-
ilar or heterogeneous, they may be made
more similar by transforming the scores
through procedures such as taking their
square root. If there are only two groups, a
t test may be used in which the variances
are treated separately. See also: analysis of
variance

Hotelling’s trace criterion: a test used in
multivariate statistical procedures such as
canonical correlation, discriminant function
analysis and multivariate analysis of variance
to determine whether the means of the
groups differ on a discriminant function or
characteristic root. See also: Wilks’s lambda
Tabachnick and Fidell (2001)

hypergeometric distribution: a probabi-
lity distribution which is based on sampling
without replacement where once a particular
outcome has been selected it cannot be selected
again.

hypothesis: a supposition or suggestion
about the possible nature of the facts. It is
generally regarded as the starting point for
further investigation. Nevertheless, some
research is purely exploratory without any
formally expressed hypotheses. In such stud-
ies data are explored in order to formulate
ideas about the nature of relationships.

It should be noted that the researcher’s
hypothesis and the statistical hypothesis are
not necessarily the same thing. Statistical
hypotheses are made up of the null hypothesis
of no relationship between two variables and
the alternative hypothesis of a relationship
between the two variables. Failure of the
null hypothesis merely indicates that it is
more plausible that the relationship between
the two variables is not the result of chance
than it is the result of chance. Hence, the
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researcher’s hypothesis may be preferred in
these circumstances but there may be other
equally plausible hypotheses which cannot
be explained on the basis of chance either.

At the very least a hypothesis expresses a
relationship between two variables such as
‘Social support will be negatively related to
depression” or “Those with high support will
be less depressed than those with low sup-
port.” It is usual to express the direction of the
expected relationship between the variables
as illustrated here because the researcher
typically expects the variables to be related in
a particular way. Hypotheses may be non-
directional in the sense that a relationship
between the variables is expected but the
direction of that relationship is not specified.
An example of such a hypothesis is ‘Social
support will be related to depression.” In
some areas of research it may not be possible
to specify the direction of the hypothesis. For
example, people who are depressed may be
more likely to seek and to receive support or
they may be those individuals who have not
received sufficient support. In such circum-
stances a non-directional hypothesis may be
proposed.

With a true experimental design it is prefer-
able to indicate the causal direction of the rela-
tionship between the two variables such as
‘Greater social support will lead to less depres-
sion’ if at all possible. See exploratory data
analysis; hypothesis testing

hypothesis testing: generally speaking,
this is a misnomer since much of what is
described as hypothesis testing is really null-
hypothesis testing. Essentially in null-
hypothesis testing, the plausibility of the idea
that there is zero difference or zero relation-
ship between two measures is examined. If
there is a reasonable likelihood that the
trends in the obtained data could reflect a
population in which there is no difference or
no relationship, then the hypothesis of a rela-
tionship or a difference is rejected. That is, the
findings are plausibly explained by the null
hypothesis which suggests that chance fac-
tors satisfactorily account for the trends in the
obtained data.

Research which deals with small samples
(i.e. virtually all modern research) suffers
from the risk of erroneous interpretations of
any apparent trends in the data. This is
because samples are intrinsically variable.
Hypothesis testing generally refers to the
Neyman-Pearson strategy for reducing the
risk of faulty interpretations of data. Although
this approach is generally the basis of much
statistics teaching, it has always been a con-
troversial area largely because it is taken to
establish more than it actually does. In the
Neyman-Pearson approach, the alternative
hypothesis of a relationship between two
variables is rigorously distinguished from the
null hypothesis (which states that there is no
relationship between the same two variables).
The reason for concentrating on the null
hypothesis is that by doing so some fairly
simple inferences can be made about the pop-
ulation which the null hypothesis defines. So
according to the null hypothesis, the popula-
tion distribution should show no relationship
between the two variables (by definition).
Usually this means that their correlation is
0.00 or there is 0.00 difference between the
sample means. It is assumed, however, that
other information taken from the sample
such as the standard deviation of the scores
or any other statistic adequately reflects the
characteristics of the population.

Hypothesis testing then works out the
likely distribution of the characteristics of all
samples taken from this theoretical popula-
tion defined by the null hypothesis and aspects
of the known sample(s) studied in the
research. If the actual sample is very different
from the population as defined by the null
hypothesis then it is unlikely to come from
the population as defined by the null hypoth-
esis. (The conventional criterion is that sam-
ples which come in the extreme 5% are
regarded as supporting the hypothesis; the
middle 95% of samples support the null
hypothesis.) If a sample does not come from
the population as defined by the null hypoth-
esis, then the sample must come from a pop-
ulation in which the null hypothesis is false.
Hence, the more likely it is that the alternative
hypothesis is true. In contrast, if the sample(s)
studied in the research is typical of the vast
majority of samples which would be obtained
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if the null hypothesis were true, then the
more the actually obtained sample leads us to
prefer the null hypothesis.

One difficulty with this lies in the way that
the system imposes a rigid choice between
the hypothesis and the null hypothesis based
solely on a simple test of the likelihood that
the data obtained could be explained away as
a chance variation if the null hypothesis were
true. Few decisions in real life would be
made on the basis of such a limited number
of considerations and the same is true in
terms of research activity. The nature of
scientific and intellectual endeavour is that

ideas and findings are scrutinized and
checked. Hence, the test of the null hypothesis
is merely a stage in the process and quite a
crude one at that — just answering the ques-
tion of how well the findings fit the possibility
that chance factors alone might be responsi-
ble. Of course, there are any number of other
reasons why a hypothesis or null hypothesis
may need consideration even after statistical
significance testing has indicated a preference
between the hypothesis and null hypothesis.
For example, inadequate methodology includ-
ing weak measurement may be responsible.
See also: significant



icicle plot: one way of graphically presenting
the results of a cluster analysis in which the
variables to be clustered are placed horizon-
tally with each variable separated by a col-
umn. The number of clusters is presented
vertically, starting with the final cluster and
ending with the first cluster. A symbol, such
as X, is used to indicate the presence of a vari-
able as well as the link between variables and
clusters in the columns between the variables.

identification: the extent to which there is
sufficient information to estimate the para-
meters of a model in structural equation
modelling. In a just-identified model there is
just enough information to identify or esti-
mate all the parameters of the model. Such
models always provide a perfect fit to the
data. In an under-identified model there is
not sufficient information to estimate all the
parameters of the model. In an over-identified
model there is more than enough information
to identify all the parameters of the model
and the fit of different over-identified models
may be compared.

ill-conditioned matrix: see determinant

independent-samples t test: see t test for
unrelated samples

independent variable: a variable thought
to influence or affect another variable. This
other variable is sometimes referred to as a
dependent variable as its values are thought
to depend on the corresponding value of the
independent variable. See also: analysis of
variance; between-groups variance; depen-
dent variable; multiple regression; regres-
sion equation

inferential statistics: that branch of statis-
tics which deals with generalization from
samples to the population of values. It
involves significance testing. The other
main sort of statistics is descriptive statistics
which involve the tabulation and organiza-
tion of data in order to demonstrate their
main characteristics.

infinity: basically the largest possible num-
ber. Infinity can by definition always be
exceeded by adding one. It is usually sym-
bolized as %. The concept is of little practical
importance in routine statistical analyses.

integer: a whole number such as 1, 50 or
209. Fractions and decimals, then, are not
integers.
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interaction: a situation in which the influence
of two or more variables does not operate in a
simple additive pattern. This occurs when the
relationship between two variables changes
markedly when the values of another vari-
able(s) are taken into account. For example,
the relationship between gender and depres-
sion may vary according to marital status.
Never married women may be less depressed
than never married men whereas married
women may be more depressed than married
men. In other words, whether women are more
depressed than men depends on the third vari-
able of depression. It is not possible to account
for depression on the basis of the separate
influences of gender and marital status, in this
case. Particular combinations of the values of
the variable gender and of the variable marital
status tend to produce especially high or espe-
cially low depression levels. So, for example,
women are more depressed than men when
they are married and less depressed when they
have never been married. In this case there
is an interaction between gender and marital
status on depression.

The presence or absence of an interaction
may be more readily understood if the rele-
vant statistic for the different groups is dis-
played in a graph such as that in Figure L.1. In
this figure marital status is represented as two
points on the horizontal axis while gender is
represented by two types of lines. Which vari-
able is represented by the horizontal axis and
which variable is represented by the lines does
not matter. The vertical axis is used to repre-
sent the relevant statistic. In this case it is mean
depression score. There is no interaction when
the two lines in the graph are more or less par-
allel to one another. There is an interaction
when the two lines are not parallel as is the
case here. Whether this interaction is statisti-
cally significant depends on the appropriate
statistical test being applied, which in this case
would be a2 X 2 analysis of variance. See also:
analysis of variance; factorial design;log-linear
analysis; main effect; multiple regression

intercept: in a simple or bivariate regres-
sion, the intercept is the point at which the
regression line intercepts or cuts across the

High
l\
./. Women
‘m
Men
Low
1 1
Never Married
married
Figure I.1 A group showing an interaction

vertical axis when the value of the horizontal
axis is zero. The vertical or y axis represents
the criterion variable while the horizontal or
x axis represents the predictor variable. The
cut point is usually symbolized as a in the
regression equation.

More generally, the intercept is the para-
meter in a regression equation which is the
expected or predicted value of the criterion
variable when all the predictor variables are
zero. It is often referred to as the constant in a
regression analysis. See also: slope; unstan-
dardized partial regression coefficient

interjudge (coder, rater) reliability: the
extent to which two or more judges, coders or
raters are consistent or similar in the way
they make judgements about identical infor-
mation. These measures include Cohen’s
kappa coefficient for categorical variables
and Ebel’s intraclass correlation for non-
categorical variables. For example, does teacher
A rate the same children as intelligent as
teacher B does? See also: reliability

internal consistency: the extent to which
the items making up a scale are related to one
another. The most widely used test is
Cronbach’s alpha reliability or a. Essentially,
it should vary from 0 to 1. Measures with an
alpha of 0.75 or more are considered to be
internally consistent. The more similar the
items, the higher alpha is likely to be. Scales
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Lowest 25% of
scores

Middle 50% (or middle two
quarters) of scores

Highest 25% of
scores

Interquartile range

Figure 1.2 Interquartile range

with more items are also more likely to have
higher alpha values. An alpha with a negative
value may be obtained if items have not been
appropriately recoded. For example, if high
scores are being used to indicate greater anxi-
ety but there are some items which have been
worded so that high scores represent low anx-
iety, then these items need to be recoded. See
also: alpha reliability, Cronbach’s

internal validity: the extent to which a
research design allows us to infer that a rela-
tionship between two variables is a causal
one or that the absence of a relationship indi-
cates the lack of a causal relationship. The
implication is that the interpretation is valid
in the context of the research situation but
may simply not apply to non-research set-
tings. That is, the findings have no external
validity. See also: randomization

interquartile range: the range of the middle
50% of scores in a distribution. It is obtained
by dividing the scores, in order, into four dis-
tinct quarters with equal numbers of scores in
each quarter (Figure 1.2). If the largest and
smallest quarters are discarded, the interquar-
tile range is the range of the remaining 50% of
the scores. See also: quartiles; range

interval or equal interval scale or level of
measurement: one of several different types
of measurement scale — nominal, ordinal and
ratio are the others. An interval scale is a

measure in which the adjacent intervals
between the points of the scale are of equal
extent and where the measure does not have an
absolute zero point. It is thought that psycho-
logical characteristics such as intelligence or
anxiety do not have an absolute zero point in
the sense that no individual can be described as
having no intelligence or no anxiety. A measure
of such a construct may consist of a number of
items. For example, a measure of anxiety may
consist of 10 statements or questions which
can be answered in terms of, say, “Yes” or ‘No’.
If these two responses are coded as 0 or 1, the
minimum score on this measure is 0 and the
maximum 10. The intervals between the adja-
cent possible scores of this measure are of the
same size, namely 1. So, the size of the interval
between a score of 2 and a score of 3 is the
same as that between a score of 3 and a score
of 4. Let us assume that higher scores indicate
higher anxiety. Because a score of 0 does not
represent the absence of anxiety, we cannot
say that a person who has a score of 8 is twice
as anxious as someone with a score of 4.
Measures which have an absolute zero point
and equal intervals, such as age, are known as
ratio levels of measurement or scales because
their scores can be expressed as ratios. For
example, someone aged 8 is twice as old as
someone aged 4, the ratio being 8:4. It has been
suggested that interval and ratio scales, unlike
ordinal scales, can be analysed with paramet-
ric statistics. Some authors argue that in prac-
tice it is neither necessary nor possible to
distinguish between ordinal, interval and ratio
scales of measurement in many disciplines.
Instead they propose a dichotomy between
nominal measurement and score measure-
ment. See also: measurement; ratio level of
measurement; score
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intervening variable: a variable thought to
explain the relationship between two other
variables in the sense that it is caused by one
of them and causes the other. For example,
there may be a relationship between gender
and pay in that women are generally less well
paid than men. Gender itself does not imme-
diately affect payment but is likely to influ-
ence it through a series of intermediate or
intervening variables such as personal, famil-
ial, institutional and societal expectations and
practices. For instance, women may be less
likely to be promoted which in turn leads to
lower pay. Promotion in this case would be
an intervening variable as it is thought to
explain at least the relationship between gen-
der and pay. Intervening variables are also
known as mediating variables.

intraclass correlation, Ebel’s: estimates
the reliability of the ratings or scores of three
or more judges. There are four different forms
of this correlation which can be described and
calculated with analysis of variance.

If the ratings of the judges are averaged for
each case, the appropriate measure is the
interjudge reliability of all the judges which
can be determined as follows:

between-subjects variance — error variance

between-subjects variance

If only some of the cases were rated by all the
judges while other cases were rated by one of
the other judges, the appropriate measure is
the interjudge reliability of an individual
judge which is calculated as follows:

between-subjects variance — error variance

between-subjects variance + [error variance X
(number of judges — 1)]

The above two measures do not determine if
a similar rating is given by the judges but
only if the judges rank the cases in a similar
way. For example, judge A may rate case A as
3 and case B as 6 while judge B may rate case
A as 1 and case B as 5. While the rank order
of the two judges is the same in that both
judges rate case B as higher than case A, none

of their ratings are the same. Measures which
take account of the similarity of the ratings as
well as the similarity of their rank order may
be known as interjudge agreement and
include a measure of between-judges variance.
There are two forms of this measure which
correspond to the two forms of interjudge
reliability.

If the ratings of the judges are averaged for
each case, the appropriate measure is the
interjudge agreement of all the judges which
can be determined as follows:

between-subjects variance — error variance —
between-judges variance

between-subjects variance

If only some of the cases were rated by all the
judges while other cases were rated by one of
the other judges, the appropriate measure is
the interjudge reliability of an individual
judge which is calculated as follows:

between-subjects variance — error variance —
between-judges variance

between-subjects variance + [(error +
between-judges variance) X (number of
judges — 1)]

Tinsley and Weiss (1975)

iteration: not all calculations can be fully
computed but can only be approximated to
give values that can be entered into the equa-
tions to make a better estimate. Iteration is
the process of doing calculations which make
better and better approximations to the opti-
mal answer. Usually in iteration processes,
the steps are repeated until there is little
change in the estimated value over successive
iterations. Where appropriate, computer pro-
grams allow the researcher to stipulate the
minimum improvement over successive iter-
ations at which the analysis ceases. Iteration
is a common feature of factor analysis and
log-linear analysis as prime examples.

Generally speaking, because of the compu-
tational labour involved, iterative processes
are rarely calculated by hand in statistical
analysis.



joint probability: the probability of having
two distinct characteristics. So one can speak
of the joint probability of being male and rich,
for example.

just-identified model: a term used in struc-
tural equation modelling to describe a model

in which there is just sufficient information to
estimate all the parameters of the model. This
model will provide a perfect fit to the data
and will have no degrees of freedom. See
also: identification



Kaiser’s or Kaiser-Guttman criterion: a
criterion used in factor analysis to determine
the number of factors or components for con-
sideration and possible rotation. It may be
regarded as a minimal test of statistical signi-
ficance of the factor. The criterion is that fac-
tors with eigenvalues of greater than 1.00
should be retained or selected for rotation. An
eigenvalue is the amount of variance that is
explained or accounted for by a factor. The
maximum amount of variance that a variable
in a factor analysis can have is 1.00. So, the
criterion of 1.00 means that the factors
selected will explain the variance equal to
that of at least one variable on average. It has
been suggested that this criterion may select
too many factors when there are many vari-
ables and too few factors when there are few
variables. Consequently, other criteria have
been proposed for determining the optimum
number of factors to be selected, such as
Cattell’s scree test. See also: exploratory
factor analysis

kappa (x) coefficient, Cohen’s: an index
of the agreement between two judges in
categorizing information. It can be extended
to apply to more than two judges. The pro-
portion of agreement between two judges is
assessed while taking into account the pro-
portion of agreement that may simply occur
by chance. It can be expressed in terms of the
following formula:

observed proportion of agreement — chance-
expected proportion of agreement

1 — chance-expected proportion of agreement

which can be re-expressed in frequencies:

observed frequency of agreement — chance-
expected frequency of agreement

number of cases — chance-expected
frequency of agreement

Kappa can vary from -1 to 1. A kappa of
0 indicates agreement equal to chance levels.
A negative kappa indicates a less than chance
agreement and a positive kappa a greater
than chance agreement. A kappa of 0.70 or
more is usually considered to be an accept-
able level of agreement or reliability.
Siegal and Castellan (1988)

Kendall’s partial rank correlation
coefficient: a measure of partial association
for ordinal variables in which one or more
other ordinal variables may be partialled out or
controlled. Its calculation is similar to that of
partial correlation except that Kendall’s rank
correlation tau b is used instead of Pearson’s
correlation coefficient in the formula.

Kendall’s rank correlation or tau (7): a
measure of the linear association between
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two ordinal variables. A negative value
means that lower ranks on one variable are
associated with higher ranks on the other
variable. A positive value means that higher
ranks on one variable go together with higher
ranks on the other variable. A zero or close to
zero value means that there is no linear asso-
ciation between the two variables.

There are three forms of this measure
called tau a, tau b and tau c.

Tau a should be used when there are no ties
or tied ranks. It can vary from -1 to 1. It can
be calculated with the following formula:

number of concordant pairs — number of
discordant pairs

total number of pairs

A concordant pair is one in which the first
case is ranked higher than the second case,
while a discordant pair is the reverse in
which the first case is ranked lower than the
second case.

Tau b should be used when there are ties or
tied ranks. It can vary from -1 to 1 if the table
of ranks is square and if none of the row and
column totals are zero. It can be calculated
with the following formula:

number of concordant pairs — number of
discordant pairs

Jtotal number of pairs — T, X (total number
of pairs — T),)

where T, and T, are the numbers of tied ranks
for the two variables.

Tau ¢ should be used when the table of
ranks is rectangular rather than square as the
value of tau ¢ can come closer to -1 or 1. It can
be worked out with the following formula:

(number of concordant pairs — number of
discordant pairs) X 2 X S

number of cases® X (S — 1)

where S is the number of columns or rows
whichever is the smaller. See also: correlation
Siegal and Castellan (1988)

Kolmogorov-Smirnov test for one
sample: a non-parametric test for determin-
ing whether the distribution of scores on an
ordinal variable differs significantly from
some theoretical distribution for that vari-
able. For example, we could compare the dis-
tribution of the outcome of throwing a die
60 times with the theoretical expectation that
it will land with 1 up 10 times, with 2 up
10 times, and so forth, if it is an unbiased die.
The largest absolute difference between the
cumulative frequency of the observed and
the expected frequency of a value is used to
determine whether the observed and
expected distributions differ significantly.
Siegal and Castellan (1988)

Kolmogorov—-Smirnov test for two
samples: a non-parametric test which deter-
mines whether the distributions of scores on
an ordinal variable differ significantly for two
unrelated samples. The largest absolute dif-
ference between the cumulative frequency of
the two samples for a particular score or
value is used to determine whether the two
distributions differ significantly.
Siegal and Castellan (1988)

Kruskal-Wallis one-way analysis of
variance or H test: a non-parametric test
used to determine whether the mean ranked
scores for three or more unrelated samples
differ significantly. The scores for all the sam-
ples are ranked together. If there is little dif-
ference between the sets of scores, their mean
ranks should be similar. The statistic for this
test is chi-square which can be corrected for
the number of ties or tied scores.
Siegal and Castellan (1988)

kurtosis: a mathematically defined term
which reflects the characteristics of the tails
(extremes) of a frequency distribution. These
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Normal curve (mesokurtic curve) /\

Leptokurtic curve

Platykurtic curve

Figure K.1  Main types of kurtosis

tails may range from the elongated to the
relatively stubby (Figure K.1). The bench-
mark standard is the perfect normal distribu-
tion which has zero kurtosis by definition.
Such a distribution is described as mesokur-
tic. In contrast, a shallower distribution with
relatively elongated tails is known as a lepto-
kurtic distribution. A steeper distribution

—/\

with shorter, stubbier tails is described as
platykurtic.

The mathematical formula for kurtosis
is rarely calculated in many disciplines
although discussion of the concept of kurtosis
itself is relatively common. See also: moment;
standard error of kurtosis



large-sample formulae: when sample sizes
are small to moderate, there are readily avail-
able tables giving the critical values of many
non-parametric or distribution-free tests of
significance. These tables allow quick and
easy significance testing especially as many
of these statistics are easy to compute by
hand. Unfortunately, because of the demands of
space and practicality, most of these tables have
a fairly low maximum sample size which
reduces their usefulness in all circumstances. In
circumstances where the tabulated values are
insufficiently large, large-sample formulae
may be employed which can be used to assess
significance. Frequently, but not always, these
large-sample formulae give values which
approximate that of the z distribution. One dis-
advantage of the large-sample formulae is the
need to rank large numbers of scores in some
instances. This is a cuambersome procedure and
likely to encourage mistakes when calculating
by hand. An alternative approach in these
circumstances would be to use the parametric
equivalent of the non-parametric test since most
of the limitations on the use of parametric tests
become unimportant with large-sample sizes.

latent root: another term for eigenvalue.
See also: eigenvalue, in factor analysis

latent variable: the term used in structural
equation modelling to refer to a variable

which either has had its unreliability
adjusted for or is based on the variance
shared by two or more other measures and
thought to represent it (which is similar to
adjusting for unreliability). Many theoretical
constructs or variables cannot be directly
measured. For example, intelligence is a
theoretical construct which is measured by
one’s performance on various tasks which are
thought to involve it. However, performance
on these tasks may involve variables other
than intelligence, such as one’s experience or
familiarity with those tasks. Consequently,
the measures used to assess a theoretical vari-
able may be a partial manifestation of that
variable. Hence a distinction is made between
a manifest variable and a latent variable. In a
path diagram the latent variable may be signi-
fied by a circle or ellipse, while a manifest
variable is depicted by a square or rectangle.
The relationship between a latent variable
and a manifest variable is presented by an
arrow going from the latent variable to the
manifest variable as the latent variable is
thought partly to show or manifest itself in
the way in which it is measured. See also:
canonical correlation; manifest variable

Latin Square: a display of rows and
columns (i.e. a matrix or array) in which each
symbol occurs just once in each column and
each row. They are also known as ‘magic
squares’. An example of a magic square with
three different elements is shown in Table L.1.
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Table L.1 A simple Latin Square

Cl C3 2
2 Cl C3
c3 2 Cl

For our purposes, C1, C2 and C3 refer to dif-
ferent conditions of an experiment though
this is not a requirement of Latin Squares.

The statistical application of Latin Squares
is in correlated or repeated-measures designs.
It is obvious from Table L.1 that the three
symbols, C1, C2 and C3, are equally frequent
and that with three symbols one needs
three different orders to cover all possible
orders (of the different conditions) effectively.
So for a study with three experimental condi-
tions, Table L.1 could be reformulated as
Table L.2.

As can be seen, only three participants are
required to run the entire study in terms of all
of the possible orders of conditions being
included. Of course, six participants would
allow the basic design to be run twice, and
nine participants would allow three complete
versions of the design to run.

The advantage of the Latin Square is that
it is a fully counterbalanced design so any
order effects are cancelled out simply
because all possible orders are run and in
equal numbers. Unfortunately, this advan-
tage can only be capitalized upon in certain
circumstances. These are circumstances in
which it is feasible to run individuals in a
number of experimental conditions, where
the logistics of handling a variety of condi-
tions are not too complicated, where serving
in more than one experimental condition
does not produce a somewhat unconvincing

or even ludicrous scenario for the participants,
and so forth.

It is also fairly obvious that the more condi-
tions there are in an experimental design, the
more complex will be the Latin Square. Hence,
it is best considered only when the number of
conditions is small. The Latin Square design
effectively is a repeated-measures ANOVA
design. The statistical analysis of such designs
can be straightforward so long as it is
assumed that the counterbalancing of orders
is successful. If this is assumed, then the Latin
Square design simplifies to a related analysis
of variance comparing each of the conditions
involved in the study. See also: counter-
balanced designs; order effect; within-subjects
design

least significant difference (LSD) test:
see Fisher’s LSD (Least Significant
Difference) or protected test

least squares method in analysis of
variance: see Type Il, classic experimental
or least squares method in analysis of
variance

leptokurtic: a frequency distribution which
has relatively elongated tails (i.e. extremes)
compared with the normal distribution and is
therefore a rather flat shallow distribution
of values. A good example of a leptokurtic
frequency distribution is the ¢ distribution

Table L.2 An experimental design based on the Latin Square

Participant | Participant 2 Participant 3
Condition Cl C3 c2
run first
Condition c2 Cl C3
run second
Condition C3 C2 Cl

run third
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and especially for small numbers of degrees
of freedom. Although this distribution is the
same as the normal distribution (i.e. z distri-
bution) for very large numbers of degrees of
freedom, in general it is flatter and more lepto-
kurtic than the normal distribution. See also:
kurtosis

levels of treatment: the different condi-
tions or groups that make up an independent
variable in a research design and its analysis.
A factor or independent variable which has
two conditions may be described as having
two levels of treatment. It is a term normally
applied in the context of research using
experimental designs.

Levene’s test for equality of related
variances: a test of whether the variances of
two or more related samples are equal (i.e.
homogeneous or similar). This is a require-
ment for statistics which combine the vari-
ances from several samples to give a ‘better
estimate’ of population characteristics. The
assumption that these variances do not differ
is an assumption of the repeated-measures
analysis of variance, for example, which is
used to determine whether the means of two
or more related samples differ. Of course, the
test may be used in any circumstances where
one wishes to test whether variances differ.
For the Levene test, the absolute difference
between the score in a group and the mean
score for that group is calculated for all the
scores. A single-factor repeated-measures
analysis of variance is carried out on these
absolute difference scores. If the F ratio for
this single factor is significant, this means
that two or more of the variances differ sig-
nificantly from each other. If the assumption
that the variances are equal needs to be met,
it may be possible to do this by transforming
the scores using, for example, their square
root or logarithm. This is largely a matter of
trial and error until a transformation is found
which results in equal variances for the sets
of transformed scores. See also: analysis of
variance; heterogeneity

Levene’s test for equality of unrelated
variances: one applies this test when deal-
ing with unrelated data from two or more dif-
ferent samples. It tests whether two or more
samples of scores have significantly unequal
(heterogeneous or dissimilar) variances.
Usually this assumption of equality is
required in order to combine two or more
variance estimates to form a ‘better” estimate
of the population characteristics. The most
common application of the Levene test is in
the unrelated analysis of variance where the
variances of the different samples should not
be significantly different. However, it is
equally appropriate to test the hypothesis
that two variances differ using this test in
more general circumstances. For the Levene
test, the absolute difference between the score
in a group and the mean score for that group
is calculated for all the scores. A single-factor
analysis of variance is carried out on these
absolute difference scores. If the F ratio for
this single factor is significant, this means
that two or more of the variances differ sig-
nificantly from each other. If the assumption
that the variances are equal needs to be met,
it may be possible to achieve equal variances
by transforming all of the scores using, for
example, their square root or logarithm. This
is normally a matter of trying out a variety of
transformations until the desired equality of
variances is achieved. There is no guarantee
that such a transformation will be found.

likelihood ratio chi-square:a version of chi-
square which utilizes natural logarithms. It is
different in some respects from the more famil-
iar form which should be known in full as
Pearson chi-square (though both were devel-
oped by Karl Pearson). It is useful where the
components of an analysis are to be separated
out since this form of chi-square allows accu-
rate addition and subtraction of components.
Because of its reliance on natural logarithms,
likelihood ratio chi-square is a little more diffi-
cult to compute. Apart from its role in log—
linear analysis, there is nothing to be gained by
using likelihood ratio chi-square in general.
With calculations based on large frequencies,
numerically the two differ very little anyway.
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The formula for the likelihood ratio chi-
square involves the observed and expected
frequencies which are common to the regu-
lar chi-square test. It also involves natural
logarithms, which may be obtained from
tables, scientific calculators or statistical
software:

observed frequency

2 X Z natural logarithm of expected frequency

X observed frequency

It is difficult to imagine the circumstances in
which this will be calculated by hand. In its
commonest application in statistics (log—
linear analysis), the computations are too
repetitive and complex to calculate without
the aid of a computer.

Likert scaling: the name given to the
method of constructing measurement scales
involving a series of statements to which the
respondent is asked to respond on an ordered
scale such as

We should throw away the key for convicted
sex offenders.

Strongly Disagree  Neither Agree  Strongly

disagree agree

These response alternatives from strongly
disagree to strongly agree are then scored 1 to
5,1to 7, or 1 to9 according to the number of
points. The numerical scale is, in fact, arbi-
trary but seems to work well in practice and
it is conventional to score the responses using
the above system. Likert scales are extremely
familiar and have the big advantage that the
questions can simply be summed to obtain a
score. (Though it is probably better to trans-
form the scores to standard scores in order to
do so.)

The introduction of Likert scaling simpli-
fied an earlier type of scale developed by
Thurstone. The latter was cumbersome as
questions/items had to be developed which
covered the whole range of possible attitudes
using subtly worded questions/items.

line of best fit: see regression line

linear association or relationship: see
curvilinear relationship

LISREL: an abbreviation for linear struc-
tural relationships. It is one of several com-
puter programs for carrying out structural
equation modelling. Information about
LISREL can be found at the following
website:
http://www.ssicentral.com/lisrel/mainlis.
htm
See also: structural equation modelling

listwise deletion: a keyword used in some
statistical packages such as SPSS to confine
an analysis to those cases for which there are
no missing values for all the variables listed
for that analysis. When this is done where
there are some missing values, the number
of cases will be the same for all the analyses.
Suppose, for example, we want to correlate
the three variables of job satisfaction,
income and age in a sample of 60 people and
that 3 cases have missing data for income
and a different set of 4 cases have missing
data for age. All 7 cases will be omitted from
the analysis. So when using the listwise
procedure all the correlations will be based
on 53 cases as this number of cases has no
missing data on all three variables. An alter-
native procedure of analysis is to provide
correlations for those cases which do not
have missing values for those variables.
The keyword for this procedure is pairwise
deletion in a statistical package such as
SPSS. In this case, the correlations will be
based on different numbers of cases. The
correlation between job satisfaction and
income will be based on 57 cases, that
between job satisfaction and age on 56 cases
and that between income and age on 53
cases. See also: missing values; pairwise
deletion
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loading: see exploratory factor analysis;
factor, in factor analysis

log likelihood: determines whether the pre-
dictor variables included in a model provide
a good fit to the data. It is usually multiplied
by —2 so that it takes the approximate form of
a chi-square distribution. A perfect fit is indi-
cated by 0 while bigger values signify pro-
gressively poorer fits. Because the —2 log
likelihood will be bigger the larger the
sample, the size of the sample is controlled by
subtracting the —2 log likelihood value of
a model containing the predictors from
the —2 log likelihood value of a model not
containing any predictors.

The log likelihood is the sum of the proba-
bilities associated with the predicted and
actual outcome for each case which can be
calculated with the following formula:

(outcome X log of predicted probability) +
[(1 — outcome) X log of (1 — predicted
probability)]

See also: logistic regression

log-linear analysis: conceptually, this may
be regarded as an extension of the Pearson
chi-square test to cross-tabulation or contin-
gency tables involving three or more vari-
ables. It is recommended that the chi-square
test be studied in detail prior to attempting
the more complex log-linear analysis. Like
chi-square, log-linear analysis involves
nominal or category (or categorical) data (i.e.
frequency counts). However, log-linear
analysis can be used for score data if the
scores are subdivided into a small number of
divisions (e.g. 1-5, 6-10, 11-15, etc.).

Table L.3 contains a three-variable cross-
tabulation table for purposes of illustration.
This cannot be analysed properly using chi-
square because the table has too many
dimensions, though researchers in the past
commonly would carry out numerous
smaller two-variable chi-squares derived
from this sort of table. Unfortunately, such an

Table L.3 A three-variable contingency table

Male Female Male Female

Convicted of Never convicted

crime of crime

Rural 29 9 79 65
upbringing

Urban 50 17 140 212
upbringing

approach cannot fully analyse the data no
matter how thoroughly applied. There is no
simple way of calculating the expected fre-
quencies for three or more variables. In
log-linear analysis, the objective is to find the
model which best fits the empirical data. The
fit of the model to the empirical data is
assessed by using chi-square (usually likeli-
hood ratio chi-square). This version of the
chi-square formula has the major advantage
that the values of chi-square it provides may
be added or subtracted directly without intro-
ducing error.

Significant values of chi-square mean that
the data depart from the expectations of the
model. This indicates that the model has a
poor fit to the data. A non-significant value of
chi-square means that the model and the data
fit very well. In log-linear analysis, what this
means is that the cross-tabulated frequencies
are compared with the expected frequencies
based on the selected model (selected combi-
nation of main effects and interactions). The
closer the actual frequencies are to the
expected (modelled) frequencies, the better
the model is.

The models created in log-linear analysis
are based on the following components:

1 The overall mean frequency (sometimes
known as the constant). This would be the
equal-frequencies model. Obviously if all
of the individual cell means are the same
as the overall mean, then we would need
to go no further in the analysis since the
equal-frequencies model applies.

2 The main effects (i.e. the extent to which
the frequencies on any variable depart
from equality). A gender main effect would
simply mean that there are different
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numbers of males and females in the
analysis. As such, in much research main
effects are of little interest, though in
other contexts the main effects are impor-
tant. For example, if it were found that
there was a main effect of sex in a study of
an anti-abortion pressure group, this
might be a finding of interest as it would
imply either more men in the group or
more women in the group.

3 Two-way interactions — combinations of
two variables (by collapsing the cate-
gories or cells for all other variables)
which show larger or smaller frequencies
which can be explained by the influence
of the main effects operating separately.

4 Higher order interactions (what they are
depends on the number of variables
under consideration). In this example,
the highest order interaction would be
gender X rural X prison.

5 The saturated model — this is simply the
sum of all the above possible components.
It is always a perfect fit to the data by defi-
nition since it contains all of the compo-
nents of the table. In log-linear analysis, the
strategy is often to start with the saturated
model and then remove the lower levels
(the interactions and then the main effects)
in turn to see whether removing the com-
ponent actually makes a difference to the fit
of the model. For example, if taking away
all of the highest order interactions makes
no difference to the data’s fit to the model,
then the interactions can be safely dropped
from the model as they are adding nothing
to the fit. Generally the strategy is to drop
a whole level at a time to see if it makes a
difference. So three-way interactions would
be eliminated as a whole before going on
to see which ones made the difference if a
difference was found.

Log-linear analysis involves heuristic meth-
ods of calculations which are only possible
using computers in practice since they
involve numerous approximations towards
the answer until the approximation improves
only minutely. The difficulty is that the inter-
actions cannot be calculated directly. One
aspect of the calculation which can be
understood without too much mathematical

knowledge is the expected frequencies for
different components of a log-linear model.
These are displayed in computer printouts of
log-linear analysis.

Interaction in log-linear analysis is often
compared with interactions in ANOVA. The
key difference that needs to be considered,
though, is that the frequencies in the various
cells are being predicted by the model (or pat-
tern of independent variables) whereas in
ANOVA it is the means within the cells on the
dependent variable which are being pre-
dicted by the model. So in log-linear analysis,
an interaction between sex and type of
accommodation (i.e. owned versus rented)
simply indicates that, say, there are more
males living in rented accommodation than
could be accounted for simply on the basis of
the proportion of people in rented accommo-
dation and the number of males in the study.
See also: hierarchical or sequential entry;
iteration; logarithm; natural or Napierian
logarithm; stepwise entry

Cramer (2003)

log of the odds: see logit

logarithm: to understand logarithms, one
needs also to understand what an exponent is,
since a logarithm is basically an exponent.
Probably the most familiar exponents are
numbers like 22, 3%, 42, etc. In other words, the
squared * symbol is an exponent as obviously
a cube would also be as in 2°. The squared
sign is an instruction to multiply (raise)
the first number by itself a number of times:
22means 2 X 2 =4,2°means 2 X 2 X 2 = 8.

The number which is raised by the expo-
nent is called the base. So 2 is the base in 22 or
2% or 2¢, while 5 is the base in 5% or 5° or 5* The
logarithm of any number is given by a simple
formula in which the base number is repre-
sented by the symbol b, the logarithm may be
represented by the symbol ¢ (for exponent),
and the number under consideration is given
the symbol x:

x=b°
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So a logarithm of a number is simply the
exponent of a given base (which is of one’s
own choosing such as 10, 2, 5, etc.) which
gives that number. One regularly used base
for logarithms is 10. So the logarithm for the
base 10 is the value of the exponent (e) for
10 which equals our chosen number. Let’s
suppose that we want the logarithm of the
number 100 for the base 10. What we are
actually seeking is the exponent of 10 which
gives the number 100:

10° =100

In other words, the logarithm for 100 is 2
simply because 10 to the power of 2 (i.e. 10> or
10 X 10) equals 100. Actually the logarithm
would look more like other logarithms if we
write it out in full as 2.000.

Logarithm tables (especially to the base 10)
are readily available although their common-
est use has rather declined with the advent of
electronic calculators and computers — that
was a simple, speedy means of multiplying
numbers by adding together two logarithms.
However, students will come across them in
statistics in two forms:

1 Inlog-linear analysis, which involves nat-
ural logarithms in the computation of the
likelihood ratio chi-square. The base in
natural logarithms is 2.718 (to three deci-
mal places).

2 In transformations of scores especially
when the unmodified scores tend to vio-
late the assumptions of parametric tests.
Logarithms are used in this situation
since it would radically alter the scale.
So, the logarithm to the base 10 for
the number 100 is 2.000, the logarithm
of 1000 = 3.000 and the logarithm of
10,000 = 4.000. In other words, although
1000 is 10 times as large as the number
100, the logarithmic value of 1000 is 3.000
compared with 2.000 for the logarithm of
100. That is, by using logarithms it is pos-
sible to make large scores proportionally
much less. So basically by putting scores
on a logarithmic scale the extreme scores
tend to get compacted to be relatively
closer to what were much smaller scores
on the untransformed measure. Logarithms

Table L4 Logarithms to the base 10

Number Logarithm

0.00
0.30
0.48
0.60
0.70
0.78
0.85
0.90
0.95
1.00

© WONO U A WN —

to any base could be used if they produce a
distribution of the data appropriate for the
statistical analysis in question. For exam-
ple, logarithms could be used in some
circumstances in order to make a more
symmetrical distribution of scores. See also:
Fisher’s z transformation; natural or
Napierian logarithm; transformations

logarithmic scale: because the logarithm of
numbers increases relatively slowly to the
numbers that they represent, logarithms can
be used to adjust or modify scores so that
they meet the requirements of particular sta-
tistical techniques better. Thus, expressed as
one form of logarithm (to the base 10), the
numbers 1 to 10 can be expressed as loga-
rithms as shown in Table L.4.

In other words, the difference between
1 and 10 on a numerical scale is 9 whereas it
is 1.00 on a logarithmic scale.

By using such a logarithmic transforma-
tion, it is sometimes possible to make the
characteristics of one’s data fit better the
assumptions of the statistical technique. For
example, it may be possible to equate the
variances of two sets of scores using the
logarithmic transformation. It is not a very
common procedure among modern researchers
though it is fairly readily implemented on
modern computer packages such as SPSS.

logarithmic  transformation:  see

transformations
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logged odds: see logit

logistic (and logit) regression: a tech-
nique (logit regression is very similar to but
not identical with logistic regression) used to
determine which predictor variables are most
strongly and significantly associated with the
probability of a particular category in the cri-
terion variable occurring. The criterion vari-
able can be a dichotomous or binary variable
comprising only two categories or it can be a
polychotomous, polytomous or multinomial
variable having three or more categories. The
term binary or binomial may be used to
describe a logistic regression having a binary
criterion (dependent variable) and the term
multinomial to describe one having a crite-
rion with more than two categories. As in
multiple regression, the predictors can be
entered in a single step, in a hierarchical or
sequential fashion or according to some other
analytic criterion.

Because events either occur or do not
occur, logistic regression assumes that the
relationship between the predictors and the
criterion is S-shaped or sigmoidal rather than
linear. This means that the change in a pre-
dictor will have the biggest effect at the mid-
point of 0.5 of the probability of a category
occurring, which is where the probability of
the category occurring is the same as the
probability of it not occurring. It will have
least effect towards the probability of 0 and 1
of the category occurring. This change is
expressed as a logit or the natural logarithm
of the odds.

The unstandardized logistic regression
coefficient is the change in the logit of the
category for every change of 1 unit in the
predictor variable. For example, an unstand-
ardized logistic regression coefficient of 0.693
means that for every change of 1 unit in the
predictor there is a change of 0.693 in the logit
of the category. To convert the logit into the
estimated odds ratio, we raise or exponenti-
ate the value of 2.718 to the power of the
logit, which in this case gives an odds ratio of
2.00 (2.718°¢%* = 2.00). Thus, the odds change
by 2.00 for every change of 1 unit in the pre-
dictor. In other words, we multiply the odds

Table L.5 A binary criterion and predictor

Cancer No cancer
Smokers 40 20
Non-smokers 10 30

by 2.00 for every change of 1 unit in the
predictor. The operation of raising a constant
such as 2.718 to a particular power such as
the unstandardized logistic regression coeffi-
cient is called exponentiation and may be
written as exp (symbol for the unstandard-
ized logistic regression coefficient).

It is easiest to demonstrate the meaning of
a change in the odds with one predictor con-
taining only two categories. Suppose we
were interested in determining the associa-
tion between smoking and cancer for the data
shown in Table L.5 where the criterion also
consists of only two categories.

The odds of a smoker having cancer are 2
(40/20 = 2.00) while the odds of a non-smoker
having cancer are 0.33 (10/30 = 0.33). The
change in the odds of smokers and non-smokers
having cancer is about 6.00 which is the odds
ratio (2.00/0.33 = 6.06). In other words, smok-
ers are six times more likely to get cancer than
non-smokers. An odds ratio is a measure of
association between two variables. A ratio of 1
means that there is no association between
two variables, a ratio of less than 1 a negative
or inverse relationship and a ratio of more
than 1 a positive or direct relationship.

With a binary predictor and multinomial
criterion the change in the odds is expressed
in terms of each of the categories and the last
category. So, for the data in Table L.6, the
odds of being diagnosed as anxious are com-
pared with the odds of being diagnosed as
normal, while the odds of being diagnosed as
depressed are also compared with the odds
of being diagnosed as normal. The odds of
being diagnosed as anxious rather than as
normal for men are 0.40 (20/50 = 0.40) and
for women are 0.25 (10/40 = 0.25). So, the
odds ratio is 1.60 (0.40/0.25 = 1.60). Men are
1.6 times more likely to be diagnosed as anx-
ious than women. The odds of being diag-
nosed as depressed rather than as normal for
men are 0.20 (10/50 = 0.20) and for women
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Table L.6 A multinomial criterion and
binary predictor

Anxious Depressed Normal
Men 20 10 50
Women 10 30 40

are 0.75 (30/40 = 0.75). The odds ratio is about
0.27 (0.20/0.75 = 0.267). It is easier to under-
stand this odds ratio if it had been expressed
the other way around. That is, women are
about 3.75 times more likely to be diagnosed
as depressed than men (0.75/0.20 = 3.75).

The extent to which the predictors in a
model provide a good fit to the data can be
tested by the log likelihood, which is usually
multiplied by —2 so that it takes the form of a
chi-square distribution. The difference in the
—2 log likelihood between the model with the
predictor and without it can be tested for
significance with the chi-square test with 1
degree of freedom. The smaller this difference
is, the more likely it is that there is no differ-
ence between the two models and so the less
likely that adding the predictor improves the
fit to the data. See also: hierarchical or
sequential entry; stepwise entry

Cramer (2003); Pampel (2000)

logit, logged odds or log of the odds: the
natural logarithm of the odds. It reflects the
probability of an event occurring. It varies
from about —9.21, which is the 0.0001 proba-
bility that an event will occur, to about 9.21,
which is the 0.9999 probability that an event
will occur. It also indicates the odds of an
event occurring. A negative logit means that
the odds are against the event occurring, a

positive logit that the odds favour the event
occurring and a zero logit that the odds are
even. A logit of about —9.21 means that the
odds of the event occurring are about 0.0001
(or very low). A logit of 0 means that the odds
of the event occurring are 1 or equal. A logit
of about 9.21 means that the odds of the event
occurring are 9999 (or very high).

Logits are turned to probabilities using a
two-stage process. Stage 1 is to convert the
logit into odds using whatever tables or
calculators one has which relate natural loga-
rithms to their numerical values. Such
resources may not be easy to find. Stage 2 is
to turn the odds into a probability using the
formula below:

probability 2718 odds
of an = =

1+ 2718 1+ odds
event

Fortunately, there is rarely any reason to do
this in practice as the information is readily
available from computer output. See logistic
regression; natural logarithm

longitudinal design or study: tests the
same individuals on two or more occasions or
waves. One advantage of a panel study is that
it enables whether a variable changes from
one occasion to another for that group of
individuals.

Baltes and Nesselroade (1979)

LSD test: see Fisher’s LSD (Least
Significant Difference) or protected test



main effect: the influence of a variable
acting on its own or independently. It is to be
contrasted with an interaction effect which is
the conjoint influence of two or more vari-
ables which produce greater effects on the
data than the main effects would in a sum-
mative fashion. See also: analysis of variance;
within-groups variance

MANCOVA: see multivariate analysis of
covariance

manifest variable: a term used in structural
equation modelling to describe a variable
where the measure of that variable represents
that variable. For example, an IQ score may
be used as a direct measure of the theoretical
construct of intelligence. However, a mea-
sure, like an IQ score, is often not a perfect
representation of the theoretical construct as
it may not be totally reliable and may assess
other variables as well. For example, an 1Q
score may also measure knowledge in partic-
ular areas. Consequently, a manifest variable
is distinguished from a latent variable which
may take some account of the unreliability of
the manifest variable or which may be based
on the variance shared by two or more mani-
fest variables such as separate measures of
intelligence or subcomponents of an IQ test.
In a path diagram, the manifest variable may
be signified by a square or rectangle, while a

latent variable is depicted by a circle or
ellipse. The relationship between a latent
variable and a manifest variable is presented
by an arrow going from the latent variable to
the manifest variable as the latent variable is
thought partly to show or manifest itself in
the way in which it is measured.

manipulated variable: a variable which
has been deliberately manipulated or varied
to determine its effect on one or more other
variables. For example, if we are interested in
the effects of alcohol on performance, we
may manipulate or vary the amount of
alcohol consumed by different groups of
participants in a between-subjects design or
on different occasions in a within-subjects
design. If all other factors are held constant
apart from the manipulated variable and if
we find that there are statistical differences in
the measured effects of that manipulated
variable, we can be more certain that the dif-
ferent effects were due to the manipulation of
that variable.

Mann-Whitney U test: a non-parametric
test used to determine whether scores from
two unrelated samples differ significantly
from one another. It tests whether the num-
ber of times scores from one sample are
ranked higher than scores from the other
sample when the scores for both samples
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have been ranked in a single sample. If the
two sets of scores are similar, the number of
times this happens should be similar for the
two groups. If the samples are 20 or less, the
statistical significance of the smaller U value
is used. If the samples are greater than 20, the
U value is converted into a z value. The value
of z has to be 1.96 or more to be statistically
significant at the 0.05 two-tailed level or 1.65
or more at the 0.05 one-tailed level.
Howitt and Cramer (2000)

MANOVA: see multivariate analysis of
variance

margin of error: the range of means (or
any other statistic) which are reasonably
likely possibilities for the population value.
This is normally expressed as the confidence
interval.

marginal totals: the total frequency of
cases in the rows or columns of a contingency
or cross-tabulation table.

matched-samples t test: see t test for
related samples

matching: usually the process of selecting
sets (pairs, trios, etc.,) of participants or cases
to be similar in essential respects. In research,
one of the major problems is the variation
between people or cases over which the res-
earcher has no control. Potentially, all sorts of
variation between people and cases may
affect the outcome of research, for example
gender, age, social status, IQ and many other
factors. There is the possibility that these fac-
tors are unequally distributed between the
conditions of the independent variable and
so spuriously appear to be influencing scores

on the dependent variable. For example, if
one measured examination achievement in
two different types of schools, education
achievement would be the dependent vari-
able and the different types of schools differ-
ent values of the independent variable. It is
known that girls are more successful educa-
tionally. Hence, if there were more girls in
one type of school than the other, then we
would expect that the type of school with the
most girls would tend to appear to be the
most educationally successful. This is
because of the disproportionate number of
girls, not that one type of school is superior
educationally, though it might be.

Matching actually only makes a difference
to the outcome if one matches on variables
which are correlated with the dependent vari-
able. The matching variable also needs to be
correlated with the independent variable in
the sense that there would have to be a dis-
proportionate number in one condition
compared with the other. Sometimes it is
known from previous empirical research that
there are variables which correlate with both
the independent variable and the dependent
variable. More commonly, the researcher
may simply feel that such matching is impor-
tant on a number of possibly confounding
variables.

The process of matching involves identify-
ing a group of participants about which one
has some information. Imagine that it is
decided that gender (male versus female) and
social class (working-class versus middle-
class parents) differences might affect the
outcome of your study which consists of
two conditions. Matching would entail the
following steps:

e Finding from the list two participants
who are both male and working class.

e One member of the pair will be in one
condition of the independent variable, the
other will be in the other condition of the
independent variable. If this is an experi-
ment, they will be allocated to the condi-
tions randomly.

o The process would normally be repeated
for the other combinations. That is, one
selects a pair of two female working-
class participants, then a pair of two male
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middle-class participants, and then a pair
of two female middle-class participants.
Then more matched pairs could be
selected as necessary.

Of course, matching in this way is time con-
suming and may not always be practicable or
desirable. Because it reduces the uncontrolled
variation between groups in a study, it poten-
tially has the advantage of allowing the use
of smaller sample sizes. So where there are
potentially few appropriate participants
available, matching may be a desirable
procedure.

In an ideal study, participants in the dif-
ferent conditions ought to be matched in
terms of as many characteristics as possible
or practicable. One way of achieving this is
to use pairs of identical twins since these are
alike in a large number of biological, social
and psychological respects. They are geneti-
cally identical and brought up in similar
environments, for example. Another possi-
bility is to use participants as their own con-
trol. That is, use the same participants in
both (or more) conditions of the study if
practicable. If counterbalancing is applied,
this will often effectively match on a wide
range of variables. The terms correlated sub-
jects design or related subjects design are
virtually synonymous with matched subjects
designs.

Matching can be positively recommended
in circumstances in which there are positive
time and economic or other practical advan-
tages to be gained by using relatively small
samples. While it can be used to control for
the influence of unwanted variables on the
data, it can present its own problems. In par-
ticular, participants may have to be rejected
simply because they do not match others or
because the researcher has already found
enough of that matched set of individuals.
Furthermore, matching has lost some of its
usefulness with the advent of increasingly
powerful methods of statistical control aided
by modern computers. These allow many
variables to be controlled for whereas most
forms of matching (except twins and own-
controls) can cope with only a small number
of matching variables before they become
unwieldy and unmanageable.

matrix: a rectangle of numbers or symbols
that represent numbers. It consists of one or
more rows and one or more columns. It is
usual to refer to the rows first. So, a 2 X 3
matrix consists of two rows and three
columns. The numbers or symbols in a matrix
are called elements. The position of an ele-
ment is represented by a symbol and two
numbers in subscripts. The first number
refers to the row and the second to the col-
umn in which the element is. So, a, , refers to
the element in the second row of the third col-
umn. The position of an element may be
referred to more generally by its symbol and
the two subscripts, i and j, where i refers to
the row and j to the column.

matrix algebra: rules for transforming
matrices such as adding or subtracting them.
It is used for calculating more complicated
statistical procedures such as factor analysis,
multiple regression and structural equation
modelling. For example, the following two
matrices, A and B, may be added together to
form a third matrix, C:

R

Mauchly’s test of sphericity: like many
tests, the analysis of variance makes certain
assumptions about the data used. Violations
of these assumptions tend to affect the value
of the test adversely. One assumption is that
the variances of each of the cells should be
more or less equal (exactly equal is a practical
impossibility). In repeated-measures designs,
it is also necessary that the covariances of the
differences between each condition are equal.
That is, subtract condition A from condition
B, condition A from condition C etc., and cal-
culate the covariance of these difference
scores until all possibilities are exhausted.
The covariances of all of the differences
between conditions should be equal. If not,
then adjustments need to be made to the
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analysis such as finding a test which does not
rely on these assumptions (e.g. a multivariate
analysis of variance is not based on these
assumptions and there are non-parametric
versions of the related ANOVA). Alternatively,
there are adjustments which apply directly
to the ANOVA calculation as indicated
below.

Put another way, Mauchly’s test of
sphericity determines whether the variance—
covariance matrix in a repeated-measures
analysis of variance is spherical or circular,
which means that it is a scalar multiple of an
identity matrix. An identity or spherical
matrix has diagonal elements of 1 and off-
diagonal elements of 0. If the assumption of
sphericity or circularity is not met, the F ratio
is more likely to be statistically significant.
There are several tests which adjust this bias
by changing the degrees of freedom for the F
ratio — that is, making the ANOVA less signif-
icant. Examples of such adjustments include
the Greenhouse-Geisser correction and the
Huynh-Feldt correction.

maximum likelihood estimation,
method or principle: one criterion for esti-
mating a parameter of a population of values
such as the mean value. It is the value that is
the most likely given the data from a sample
and certain assumptions about the distribu-
tion of those values. This method is widely
used in structural equation modelling. To
give a very simple example of this principle,
suppose that we wanted to find out what the
probability or likelihood was of a coin turn-
ing up heads. We had two hypotheses. The
first was that the coin was unbiased and so
would turn up heads 0.50 of the time. The
second was that the coin was biased towards
heads and would turn up heads 0.60 of the
time. Suppose that we tossed a coin three
times and it landed heads, tails and heads in
that order. As the tosses are independent, the
joint probability of these three events is the
product of their individual probabilities. So
the joint probability of these three events for
the first hypothesis of the coin being biased is
0.125 (0.5 X 0.5 X 0.5 =0.125). The joint
probability of these three events for the

second hypothesis of the coin being biased
towards heads is 0.144 (0.6 X 0.6 X 0.4 =
0.144). As the probability of the outcome for
the biased coin is greater than that for the
unbiased coin, the maximum likelihood esti-
mate is 0.60. If we had no hypotheses about
the probability of the coin turning up heads,
then the maximum likelihood estimate
would be the observed probability which is
0.67 (2/3 = 0.67).
Hays (1994)

McNemar test for the significance of
changes: a simple means of analysing sim-
ple related nominal designs in which partici-
pants are classified into one of two categories
on two successive occasions. Typically, it is
used to assess whether there has been change
over time. As such, one measure can be
described as the ‘before” measure (which is
divided into two categories) and the second
measure is the ‘after” measure. Consider the
readership of the two newspapers The London
Globe and The London Tribune. A sample of
readers of these newspapers is collected.
Imagine that then there is a promotional cam-
paign to sell The London Tribune. The question
is whether the campaign is effective. One
research strategy would be to study the sam-
ple again after the campaign. One would
expect that some readers of The London Globe
prior to the campaign will change to reading
The London Tribune after the campaign. Some
readers of The London Tribune before the
campaign will change to reading The London
Globe after the campaign. Of course, there
will be Tribune readers who continue to be
Tribune readers after the campaign. Similarly,
there will be Globe readers prior to the cam-
paign who continue to be Globe readers after
the campaign. If the campaign works, we
would expect more readers to shift to the
Tribune after the campaign than shift to the
Globe after the campaign (see Table M.1).

In the test, those who stick with the same
newspaper are discarded. The locus of inter-
est is in those who switch newspapers — that
is, the 6 who were Globe readers but read the
Tribune after the campaign, and the 22 who
read the Tribune before the campaign but
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Table M.l Pre-test—post-test design
After campaign
Tribune Globe
Before campaign Tribune 19 22
Globe 6 19

switched to the Globe after the campaign. If
the campaign had no effect, we would expect
that the switchers would be equally repre-
sented for the Tribune and the Globe. The more
unequal the numbers switching to the Tribune
and the Globe, the more likely that the cam-
paign is having an effect. Since we expect half
switching in each direction if the null hypoth-
esis is true, then we know the expected fre-
quencies to enter the data into a one-sample
chi-square test. The data for the analysis
together with the expected frequencies are
given in Table M.2.

These observed and expected frequencies
may then be entered into the one-sample chi-
square formula:

(observed — expected)?

chl—squal‘e = Z expected
@1 6oy
T 14 14
82 _82 64 64
=—+—— ==+ —
14

=—+
14 14 14
= 4571 + 4571 = 9.14

With 1 degree of freedom (always) then this is
statistically significant at the 0.01 level.
Hence, the changers in newspaper readership
are predominantly from the Tribune to the
Globe. This suggests that the campaign is

counterproductive as the Tribune is losing
readers.

mean (M): see average; mean (M),
arithmetic

mean (M), arithmetic: the sum of scores
divided by the number of scores. So the mean
of 2 and 4 is the sum of 6 divided by 2 scores
which gives a mean of 3.00. The mean is
the central point in a set of scores in that the
sum of absolute deviations (i.e. ignoring the
negative signs) of scores above the mean
(4 —3.00 =1.00) is equal to the sum of
absolute deviations of scores below the mean
(2 = 3.00 = — 1.00). The mean is sometimes
called the arithmetic mean to distinguish it
from other forms of mean such as the har-
monic mean or geometric mean. Because it is
the most common form of mean it is usually
simply called the mean. It is sometimes abbre-
viated as M with or without a bar over it.

mean deviation: the mean of the absolute
deviations of the scores from the mean. For
example, the mean deviation of the scores of
2 and 6 is the sum of their absolute devia-
tions from their mean of 3.00 which is 2.00
[(4 —3.00 = 1.00) + (2 — 3.00 = —1.00) = 2.00]
divided by the number of absolute deviations
which is 2. The mean deviation of these two
deviations is 1.00 (2.00/2 = 1.00). The mean
deviation is not very widely used in statistics
simply because the related concept of standard
deviation is far more useful in practice.

Table M.2 Table M.| recast in terms of changing

Frequency of

Expected frequency
(half of all who
change newspapers

changers in either direction)
From the Tribune 22 14
to the Globe
From the Globe 6 14

to the Tribune
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mean score: arithmetic mean of a set of
scores. See also: coefficient of variation

mean square (MS): a measure of the esti-
mated population variance in analysis of
variance. It is used to form the F ratio which
determines whether two variance estimates
differ significantly. The mean square is the
sum of squares (or squared deviations)
divided by the degrees of freedom. See also:
between-groups variance

measurement: the act of classification of
observations is central to research. There are
basically two approaches to measurement.
One is categorizing observations such as
when plants are categorized as being in a par-
ticular species rather than another species.
Similar classification processes occur for
example when people are classified accord-
ing to their gender or when people with
abnormal behaviour patterns are classified as
schizophrenics, manic-depressives, and so
forth. Typically this sort of measurement is
described as qualitative (identifying the
defining characteristics or qualities of some-
thing) or nominal (naming the defining
characteristics of something) or categorical or
category (putting into categories). The sec-
ond approach is closer to the common-sense
meaning of the word measurement. That is,
putting a numerical value to an observation.
Giving a mass in kilograms or a distance in
metres are good examples of such numerical
measurements. Many other disciplines mea-
sure numerically in this way. This is known
as quantitative measurement, which means
that individual observations are given a
quantitative or numerical value as part of the
measurement process. That is, the numerical
value indicates the amount of something that
an observation possesses.

Not every number assigned to something
indicates the quantity of a characteristic it
possesses. For example, take the number
763214. If this were the distance in kilometres
between city A and city B then it clearly
represents the amount of distance. However,

if it were a telephone number the exact
significance of the numerical value is obscure.
For example, the letter sequence GFCBAD
could be the equivalent of the number and
have no implications of quantity at all.

Quantitative measurements are often sub-
divided into three types:

1 Ordinal or rank measurement: This is
where a series of observations are placed
in order of magnitude. In other words,
the rank orders 1st, 2nd, 3rd, 4th, 5th, 6th,
etc., are applied. This indicates the rela-
tive position in terms of magnitude.

2 Interval measurement: This assumes that
the numbers applied indicate the size of
the difference between observations. So if
one observation is scored 5 and another is
scored 7, there is a fixed interval of 2 units
between them. So something that is 7 centi-
metres long is 2 centimetres longer than
something which is 5 centimetres long,
for example.

3 Ratio measurement: This is similar in
many ways to interval measurement. The
big difference is that in ratio measure-
ment it should be meaningful to say
things like X is twice as tall as Y or A is a
quarter of the size of B. That is, ratios are
meaningful.

This is a common classification but has enor-
mous difficulties for most disciplines beyond
the natural sciences such as physics and
chemistry. This is because it is not easy to
identify just how measurements such as IQ or
social educational status relate to the numbers
given. IQ is measured on a numerical scale
with 100 being the midpoint. The question is
whether someone with an IQ of 120 is twice
as intelligent as a person with an IQ of 60.
There is no clear answer to this and no
amount of consideration has ever definitively
established that it is.

There is an alternative argument — that is to
say, that the numbers are numbers and can be
dealt with accordingly irrespective of how
precisely those numbers relate to the thing
being measured. That is, deal with the numbers
just as one would any other numbers — add
them, divide them, and so forth.
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Both of these extremes have adherents.
Why does it matter? The main reason is that
different statistical tests assume different
things about the data. Some assume that the
data can only be ranked, some assume that
the scores can be added, and so forth. Without
assessing the characteristics of the data, it is
not possible to select an appropriate test.

median: the score in the ‘middle’ of a set of
scores when these are ranked from the small-
est to the largest. Half of the scores are above
it, half below — more or less. Thus, for the fol-
lowing (odd number of) scores, to calculate
the median we simply rearrange the scores in
order of size and select the score in the centre
of the distribution:

19,17,23,29,12
Rearranged these read
12,17, 19, 23, 29

Since 19 is the score in the middle (equal dis-
tance from the two ends), then 19 is the
median.

When there are equal numbers of scores, it
becomes necessary to estimate the median as
no score is precisely in the middle. Take the
following six scores:

19,17,23,29,12,14
Rearranged in order these become
12,14,17,19, 23, 29

Quite clearly the median is somewhere
between 17 and 19. The simplest estimate of
the median is the average of these two scores
which is 18.

There are other ways of calculating the
median in these circumstances but they
appear to be obsolete. Look at the following
ordered sequence of scores:

17,17,17,19, 23,29

The above method gives the median as 18
again. However, it may seem that the median

should be closer to 17 than to 19 in this case.
See also: average

median test, Mood’s: a non-parametric test
used to determine whether the number of
scores which fall either side of their common
median differs for two or more unrelated
samples. The chi-square test is used to deter-
mine whether the number of scores differs
significantly from that expected by chance.

mediating variable: see intervening variable

mesokurtic: see kurtosis

meta-analysis: involves the consolidation
of data and findings from a variety of
research studies on a topic. Primarily it
involves the combination of the findings of
these various studies in order to estimate the
general or overall effect of one variable over
another. The secondary function, and proba-
bly the more illuminating, is to seek patterns
in the findings of the various studies in order
to understand the characteristics of studies
which tend to show strong relationships
between the variables in question and those
which tend to show weak or no relationship.
Meta-analysis does not always work, which
may reveal something about the state of
research in a particular area. Meta-analysis is
a systematic review of studies using rela-
tively simple statistical techniques. It can be
contrasted with the more traditional review
of the literature in which researchers subjec-
tively attempted to synthesize the research
using criteria which were and are difficult to
define or identify. Part of the gains of using
meta-analysis are to do with systematic defi-
nition of a research area and the meticulous
preparation of the database of studies.

It is important to be able to define fairly
precisely the domain of interest of the
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meta-analysis. The effectiveness of a particular
type of treatment programme or the effects of
the amount of delay between witnessing an
event and being interviewed by the police on
the quality of testimony might be seen as
typical examples. An important early stage is
defining the domain of interest for the review
precisely. While this is clearly a matter for the
judgement of the researcher, the criteria
selected clarify important aspects of the
research area. Generally speaking, the res-
earcher will explore a range of sources of
studies in order to generate as full a list of
relevant research as possible. Unpublished
research is not omitted on the basis of being
of poor quality; instead it is sought out
because its findings may be out of line with
accepted wisdom in a field. For example,
non-significant findings may not achieve
publication.

The notion of effect size is central to meta-
analysis. Effect size is literally what it says — the
size of the effect (influence) of the indepen-
dent variable on the dependent variable. This
is expressed in terms which refer to the
amount of variance which the two variables
share compared with the total variation. It is
not expressed in terms of the magnitude of
the difference between scores as this will vary
widely according to the measures used and
the circumstances of the measurement.
Pearson’s correlation coefficient is one com-
mon measure of effect size since the squared
correlation is the amount of variation that the
two variables have in common. Another com-
mon measure is Cohen’s d, though this has no
obvious advantages over the correlation coef-
ficient and is much less familiar. There is a
simple relationship between the two and one
can readily be converted to the other (Howitt
and Cramer, 2004).

Generally speaking, research reports do
not use effect size measures so it is necessary
to calculate them (estimate them) from the
data of a study (which are often unavailable)
or from the reported statistics. There are a
number of simple formulae which help do
this. For example, if a study reports t tests a
conversion is possible since there is a simple
relationship of the correlation coefficient
between the two variables with the t test. The
independent variable has two conditions — the

experimental group and the control group —
which can be coded 1 and 2 respectively.
Once this is done, the point-biserial correla-
tion coefficient may be applied simply by cal-
culating Pearson’s correlation coefficient
between these 1s and 2s and the scores on the
dependent variable. For other statistics there
are other procedures which may be applied
to the same effect. Recently researchers have
shown a greater tendency to provide effect
size statistics in their reports. Even if they do
not, it is surprisingly easy to provide usable
estimates of effect size from very minimal
statistical analyses.

Once the effect sizes have been calculated
in an appropriate form, these various estimates
of effect size can be combined to indicate an
overall effect size. This is slightly more
complex than a simple average of the effect
size but conceptually is best regarded as this.
The size of the study is normally taken into
account. One formula for the average effect
size is simply to convert each of the effect
sizes into the Fisher z transformation of
Pearson’s correlation. The average of these
values is easily calculated. This average
Fisher z transformation value is reconverted
back to a correlation coefficient. The table of
this transformation is readily available in a
number of texts. See also: correlations, aver-
aging; effect size

Howitt and Cramer (2004); Hunter and
Schmidt (2004)

Minitab: this software was originally written
in 1972 at Penn State University to teach
students introductory statistics. It is one of
several widely used statistical packages for
manipulating and analysing data. Information
about Minitab can be found at the following
website:

http: //www.minitab.com/

missing values or data: are the result of
participants in the research failing to provide
the researcher with data on each variable in
the analysis. If it is reasonable to assume that
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these are merely random omissions, the
analysis is straightforward in general.
Unfortunately, the case for this assumption is
not strong. Missing values may occur for any
number of reasons: the participant has inad-
vertently failed to answer a particular ques-
tion, the interviewer has not noted down the
participant’s answer, part of the data is
unreadable, and so forth. These leave the pos-
sibility that the data are not available for non-
random reasons — for example, the question
is unclear so the participant doesn’t answer,
the interviewer finds a particular question
boring etc., and has a tendency to overlook it.
Quite clearly the researcher should anticipate
these difficulties to some extent and allow the
reasons for the lack of an answer to a ques-
tion to be recorded. For example, the inter-
viewer records that the participant could not
answer, would not answer, and so forth.
Generally speaking, the fewer the missing
values the fewer difficulties that arise as a
consequence. It is difficult to give figures for
acceptable numbers of missing values and it
is somewhat dependent on the circumstances
of the research. For example, in a survey of
voting intentions missing information about
the participants” political affiliation may sig-
nificantly influence predictions.

Computer programs for the analysis of
statistical data often include a missing values
option. A missing value is a particular value
of a variable which indicates missing infor-
mation. For example, for a variable like age a
missing value code of 999 could be specified
to indicate that the participant’s age is not
known. The computer may then be instructed
to ignore totally that participant — essentially
delete them from the analysis of the data.
This is often called listwise deletion of miss-
ing values since the individual is deleted
from the list of participants for all intents and
purposes. The alternative is to select step
wise deletion of missing values. This
amounts to an instruction to the computer to
omit that participant from those analyses of
the data involving the variable for which they
supplied no information. Thus, the partici-
pant would be omitted from the calculation
of the mean age of the sample (because they
are coded 999 on that variable) but included
in the analysis of the variable gender

(because information about their gender is
available). Some statistical packages (SPSS)
allow the user to stipulate the value that
should be inserted for a missing score. One
approach is to use the average of scores on
that variable.

Another approach to calculating actual
values for missing values is to examine the
correlates in the data of missing data and use
these correlates to estimate what the score
would have been had the score not been
missing. See also: listwise deletion; sample
size

mixed analysis of variance or ANOVA:
an analysis of variance which contains at
least one between-subjects factor and one
within-subjects or repeated-measures factor.

mixed design: a research design which
contains both within-subjects and between-
subjects elements. For example, Table M.3
summarizes research in which a group of
men and a group of women are studied
before and after taking a course on coun-
selling. The dependent variable is a measure
of empathy.

The within-subjects aspect of this design is
that the same group of individuals have been
measured twice on empathy — once before the
course and once after. The between-subjects
aspect of the design is the comparison
between men and women — with different
groups of participants. See also: analysis of
variance

mode: one of the common measures of the
typical value in the data for a variable. The
mode is simply the value of the most fre-
quently occurring score or category in one’s
data. It is not a frequency but a value. So if in
the data there are 12 electricians, 30 nurses
and 4 clerks the modal occupation is nurses.
If there were seven 5s, nine 6s, fourteen 7s,
three 8s and two 9s, the mode of the scores is
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Table M.3  An example of a mixed design

Before course After course

Men Mean = 21.2
Women Mean = 24.3

Mean = 28.3
Mean = 25.2

7. The mode (unlike mean and median) can
be applied to category (categorical or nomi-
nal) data as well as score data. See also: aver-
age; bimodal; frequency; multimodal

model: a simplified representation of some-
thing. In statistics, a model is a way of
accounting for the data in question. Typically,
then, a statistical model is a mathematical
description of how several variables explain
the data in question. A good model fits
(explains) the data as closely as possible
without becoming so complicated that it
begins to obscure understanding.

moderating or moderator effect or
variable, moderated relationship:
where the relationship between two vari-
ables differs for the values of one or more
other variables. It represents an interaction
between the variables. For example, the rela-
tionship between gender and depression
may differ according to marital status.
Married women may be more depressed
than married men while never married
women may be less depressed than never
married men. In this case, the relationship
between gender and depression is moder-
ated by marital status. Marital status is the
moderating variable. See also: multiple
regression

moment: the mean or expected value of the
power of the deviation of each value in a dis-
tribution from some given value, which is
usually the mean. For example, the first
moment about the arithmetic mean is 0:

sum of (each value — mean value)’
m = =
1

number of values

If we raise the deviation of each value to the
power of 1, we have the mean deviation
which is 0.

The second moment about the arithmetic
mean is the variance:

sum of (each value — mean value)?
number of values

, = variance

The third moment about the arithmetic mean
is skewness:

_sum of (each value — mean value)’
number of values

1, = skewness

The fourth moment about the arithmetic
mean is kurtosis:

_ sum of (each value — mean value)*
number of values

m, = kurtosis

Monte Carlo methods: means of calculat-
ing, among other things, the probability of
outcomes based on a random process. So any
statistical test which is based on calculating
the probability of a variety of outcomes con-
sequent of randomly allocating a set of scores
is a Monte Carlo method. See bootstrapping

multicollinearity: see collinearity

multimodal: a distribution of scores having
more than two modes. See bimodal

multiple coefficient of determination
or R% the square of the multiple correlation.
It is commonly used in multiple regression to
represent the proportion of variance in a cri-
terion or dependent variable that is shared
with or explained by two or more predictor
or independent variables.

multiple comparison tests or proce-
dures: are used to determine which or which
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combinations of three or more means differ
significantly from each other. If there are
good grounds for predicting which means
differ from each other, an a priori or planned
test is used. Post hoc, a posteriori or unplan-
ned tests are used to find out which other
means differ significantly from each other. A
number of a priori and post hoc tests have
been developed. Particularly with respect
to the post hoc tests, there is controversy
surrounding which test should be used. See a
priori comparison or tests; Bonferroni test;
Bryant-Paulson simultaneous test proce-
dure; Duncan’s new multiple range test;
Dunn’s test; Dunn-Sidak multiple compari-
son test; Dunnett’s C test; Dunnett’s T3
test; Dunnett’s test; familywise error rate;
Fisher’s LSD (Least Significant Difference)
or protected test; Gabriel’s simultaneous
test procedure; Games-Howell multiple
comparison procedure; Hochberg GT2
test; Newman-Keuls method, procedure or
test; post hoc,a posteriori or unplanned tests;
Ryan or Ryan-Einot-Gabriel-Welsch F
(REGWF) multiple comparison test; Ryan
or Ryan-Einot-Gabriel-Welsch Q (REGWQ)
multiple comparison test; Scheffé test;
studentized range statistic q; Tamhane’s
T2 multiple comparison test; trend analysis
in analysis of variance; Tukey, or HSD
(Honestly Significant Difference) test;
Tukey, or WSD (Wholly Significant
Difference) test; Tukey-Kramer test;
Waller-Duncan t test

multiple correlation or R: a term used in
multiple regression. In multiple regression a
criterion (or dependent) variable is predicted
using a multiplicity of predictor variables.
For example, in order to predict IQ, the pre-
dictor variables might be social class, educa-
tional achievement and gender. For every
individual, using these predictors, it is possi-
ble to make a prediction of the most likely
value of their IQ based on these predictors.
Quite simply, the multiple correlation is the
correlation between the actual IQ scores of
the individuals in the sample and the scores
predicted for them by applying the multiple
regression equation with these three predictors.

As with all correlations, the larger the
numerical value, the greater the correlation.
See also: canonical correlation; F ratio; multi-
ple regression

multiple regression: a method designed to
analyse the linear relationship between a
quantitative criterion or dependent variable
and two or more (i.e. multiple) predictors or
independent variables. The predictors may
be qualitative or quantitative. If the predic-
tors are qualitative, they are turned into a set
of dichotomous variables known as dummy
variables which is always one less than the
number of categories making up the qualita-
tive variable.

There are two main general uses to this test.
One use is to determine the strength and the
direction of the linear association between
the criterion and a predictor controlling for the
association of the predictors with each other
and the criterion. The strength of the associa-
tion is expressed in terms of the size of either
the standardized or the unstandardized par-
tial regression coefficient which is symbolized
by the small Greek letter B or its capital equiv-
alent B (both called beta) although which letter
is used to signify which coefficient is not con-
sistent. The direction of the association is indi-
cated by the sign of the regression coefficient
as it is with correlation coefficients. No sign
means that the association is positive with
higher scores on the predictor being associated
with higher scores on the criterion. A negative
sign shows that the association is negative
with higher scores on the predictor being asso-
ciated with lower scores on the criterion. The
term partial is often omitted when referring to
partial regression coefficients. The standard-
ized regression coefficient is standardized so
that it can vary from —1.00 to 1.00 whereas the
unstandardized coefficient can be greater than
+1.00. One advantage of the standardized
coefficient is that it enables the size of the asso-
ciation between the criterion and the predic-
tors to be compared on the same scale as
this scale has been standardized to +1.00.
Unstandardized coefficients enable the value
of the criterion to be predicted if we know the
values of the predictors.
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Another use of multiple regression is to
determine how much of the variance in the
criterion is accounted for by particular pre-
dictors. This is usually expressed in terms of
the change in the squared multiple correla-
tion (R?) where it corresponds to the propor-
tion of variance explained. This proportion
can be re-expressed as a percentage by multi-
plying the proportion by 100.

Multiple regression also determines whether
the size of the regression coefficients and of
the variance explained is greater than that
expected by chance, in other words whether
it is statistically significant. Statistical signifi-
cance depends on the size of the sample. The
bigger the sample, the more likely that small
values will be statistically significant.

Multiple regression can be used to conduct
simple path analysis and to determine
whether there is an interaction between two
or more predictors and the criterion and
whether a predictor acts as a moderating
variable on the relationship between a pre-
dictor and the criterion. It is employed to
carry out analysis of variance where the
number of cases in each cell is not equal or
proportionate.

There are three main ways in which pre-
dictors can be entered into a multiple regres-
sion. One way is to enter all the predictors of
interest at the same time in a single step. This
is sometimes referred to as standard multiple
regression. The size of the standardized
partial regression coefficients indicates the
size of the unique association between
the criterion and a predictor controlling for
the association of all the other predictors that
are related to the criterion. This method is
useful for ascertaining which variables are
most strongly related to the criterion taking
into account their association with the other
predictors.

A second method is to use some statistical
criteria for determining the entry of predic-
tors one at a time. One widely used method is
often referred to as stepwise multiple regres-
sion in which the predictor with the most sig-
nificant F ratio is considered for entry. This is
the predictor which has the highest correla-
tion with the criterion. If the probability of
this F ratio is higher than a particular criterion,
which is usually the 0.05 level, the analysis

stops. If the probability meets this criterion,
the predictor is entered into the first step of
the multiple regression.

The next predictor that is considered for
entry into the multiple regression is the pre-
dictor whose F ratio has the next smallest
probability value. If this probability value
meets the criterion, the predictor is entered
into the second step of the multiple regres-
sion. This is the predictor that has the high-
est squared semi-partial or part correlation
with the criterion taking into account the
first predictor. The F ratio for the first predic-
tor in the second step of the multiple regres-
sion is then examined to see if it meets the
criterion for removal. If the probability level
is the criterion, this criterion may be set at a
higher level (say, the 0.10 level) than the cri-
terion for entry. If this predictor does not
meet this criterion, it is removed from the
regression equation. If it meets the criterion
it is retained. The procedure stops when no
more predictors are entered into or removed
from the regression equation. In many analy-
ses, predictors are generally entered in terms
of the proportion of the variance they account
for in the criterion, starting off with those that
explain the greatest proportion of the vari-
ance and ending with those that explain the
least. Where a predictor acts as a suppressor
variable on the relationship between another
predictor and the criterion, this may not
happen.

When interpreting the results of a multiple
regression which uses statistical criteria for
entering predictors, it is important to remem-
ber that if two predictors are related to one
another and to the criterion, only one of the
predictors may be entered into the multiple
regression, although both may be related to a
very similar degree to the criterion. Conse-
quently, it is important to check the extent to
which this may be occurring when looking at
the results of such an analysis.

A third method of multiple regression is
called hierarchical or sequential multiple
regression in which the order and the number
of predictors entered into each step of the
multiple regression are determined by the
researcher. For example, we may wish to group
or to block predictors together in terms of sim-
ilar characteristics such as socio-demographic
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variables (e.g. age, gender, socio-economic
status), personality variables (e.g. extrover-
sion, neuroticism) and attitudinal variables
and to enter these blocks in a particular order
such as the order presented here. In this case,
the proportion of variance explained by the
second block of personality variables is that
which has not already been explained by the
first block of socio-demographic variables. In
effect, when we are using this method we are
controlling or partialling out the blocks of
variables that have been previously entered.

Hierarchical multiple regression is used to
determine whether the relationship between
a predictor and a criterion is moderated by
another predictor called a moderator or
moderating variable. The predictor and the
moderator are entered in the first step and
the interaction which is the product of the
predictor and the moderator is entered into
the second step. If the interaction accounts for
a significant proportion of the variance in the
criterion, the relationship between the predic-
tor and the criterion is moderated by the
other variable. The nature of this moderated
relationship can be examined by using the
moderator variable to divide the sample into
two groups and to examine the relationship
between the predictor and the criterion in
these two groups.

The particular step of a statistical or hierar-
chical method of multiple regression is, in
effect, a standard multiple regression of the
predictors in that step. In other words,
the partial regression coefficients represent
the association between each predictor and
the criterion controlling their association
with all the other predictors on that step. The
regression coefficient of a predictor is likely
to vary when other predictors are entered or
removed.

Multiple regression, like simple regression
and Pearson’s product moment correlation, is
based on the assumption that the values of
the variables are normally distributed and
that the relationship between a predictor and
the criterion is homoscedastic in that the vari-
ance of one variable is similar for all values of
the other variable. Homoscedasticity is the
opposite of heteroscedasticity where the vari-
ance of one variable is not the same for all
values of the other variable. See also: dummy

coding; hierarchical or sequential entry;
logistic regression; multiple coefficient of
determination; multiple regression: predic-
tor variable; standardized partial regression
coefficient; stepwise entry; unstandardized
partial regression coefficient

Cramer (2003), Pedhazur (1982)

multiplication rule: a basic principle of
probability theory. It really concerns what
happens in a sequence of random events such
as throwing dice. What is the probability of
throwing a 6 on two successive throws? Since
there are six possible outcomes (1, 2, 3, 4, 5
and 6 spots) for the first throw then the prob-
ability of obtaining 6 is 1/6 = 0.167. Once we
have thrown a 6, then the probability of the
next throw being a 6 is governed by the same
probability. The multiplication rule is basi-
cally that the likelihood of getting the two 6s
in a row is 0.167 X 0.167 = 0.028. Put another
way, there is one chance in six of getting 6
spots on the first toss and a one chance in
six of getting another 6 spots on the second
toss. That is, 1 divided by 6 X 6 or 1 divided
by 36 = 0.028.

multiply: increasing a number by a number
of times. So 3 X 2 is 3 increased two times —
thatis, 3 + 3 = 6. See also: negative values

multistage sampling: a method of sam-
pling which proceeds in two or more stages.
This term is often used with cluster sam-
pling in which an attempt is made to reduce
the geographical area covered. For example,
if we were to sample people in a city,
the first stage might be to select the elec-
toral wards in that city. The next step might
be to select streets in those wards. The
third stage might be to select households in
those streets. The fourth and final stage
might be to select people in those house-
holds. This would be a four-stage cluster
sample.
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multivariate analysis: an analysis involving
three or more variables at the same time.

multivariate analysis of covariance or
MANCOVA: an analysis of covariance
(ANCOVA) which is carried out on two or
more dependent variables at the same time
and where the dependent variables are
related to each other. One advantage of this
method is that the dependent variables
analysed together may be significant whereas
the dependent variables analysed separately
may not be significant. When the combined
or multivariate effect of the dependent vari-
ables is significant, it is useful to know which
of the single or univariate effects of the
dependent variables are significant.

multivariate analysis of variance or
MANOVA: an analysis of variance
(ANOVA) which is conducted on two or
more dependent variables simultaneously
and where the dependent variables are inter-
related. One advantage of this procedure is
that the dependent variables analysed together
may be significant whereas the dependent
variables analysed on their own may not
be significant. When the combined or multi-
variate effect of the dependent variables is

significant, it is usual to determine which of
the single or univariate effects are also signif-
icant. See also: analysis of variance;
Hotelling’s trace criterion; multivariate
normality; Roy’s gcr; Wilks’s lambda

multivariate normality: the assumption
that each variable and all linear combinations
of the variables in an analysis are normally
distributed. As there are potentially a very
large number of linear combinations, this
assumption is not easy to test. When the data
are grouped as in multivariate analysis of
variance, the sampling distribution of the
means of the dependent variables in each of
the cells has to be normally distributed as
well as the variables’ linear combinations.
With relatively large sample sizes, the central
limit theorem states that the sampling distri-
bution of means will be normally distributed.
If there is multivariate normality, the sam-
pling distribution of means will be normally
distributed. When the data are ungrouped as
in discriminant function analysis and struc-
tural equation modelling, if there is multi-
variate normality each variable will be
normally distributed and the relationship of
pairs of variables will be linear and
homoscedastic.
Tabachnick and Fidell (2001)



natural or Napierian logarithm: of a
particular number (such as 2) this is the expo-
nential or power of the base number of 2.718
which gives rise to that particular number.
For example, the natural logarithm of 2 is 0.69
as the base number of 2.718 raised to the
power of 0.69 is 2.00. As the base number is a
constant, it is sometimes symbolized as e
(after Euler’s number). The natural logarithm
may be abbreviated as log e or In. Natural
logarithms are used in statistical tests such as
log-linear analysis. They may be calculated
from tables, scientific electronic calculators
or statistical software such as SPSS. Few
researchers ever have to use them personally.
See also: correlations, averaging; Fisher’s z
transformation; logarithm; logit; odds

negative: a value less than zero. See also:
absolute deviation

negative correlation: an inverted relation-
ship between two variables (Figure N.1).
Thus, as the scores on variable A increase the
scores on variable B decrease. This means
that people with high scores on variable A
will tend to get the lower scores on variable B.
Those with lower scores on variable A tend to
get higher scores on variable B. Sometimes
confusion can arise if the researcher is not
clear what a high score on each variable indi-
cates. This is especially so when variables

Income

IQ

Figure N.I A negative correlation between two

variables

have not been clearly named or where they
consist of a list of questions which vary in
terms of what agreement and disagreement

imply.

negative values: a value less than zero.
Negative values are fairly common in statisti-
cal calculations simply because differences
between scores or values above or below the
mean are used. For this reason, students are
likely to use negative values in calculations
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than when collecting their data. Little data in
the social science disciplines have negative
values in the form that they are collected.
Negative values are like being in debt — they
are amounts you owe other people. Positive
values are like having money to spend. The
basic mathematical operations that involve
positive and negative signs and which are at
all common in statistical calculations are as
follows.

Adding
If one adds two positive numbers one ends
up with a positive outcome:

5+2=7

If one adds two negative numbers, one ends
up with a negative number (you owe money
to two people not just one):

—4+-7=-11

If one adds a negative number to a positive
number then one ends up with either a posi-
tive or negative number depending on
circumstances. For example, if you have 5
euros in your pocket and you owe 2 euros to
someone else, you would have 3 euros when
you paid that person back:

5+-2=3

but if you owed someone 7 euros and only
paid them back 5 euros you would still owe
2 euros:

5+ -7=-2

Subtracting

Taking away minus numbers is effectively
the same as adding them. So, 5[—]3 = 2.
Hence, 5 — —3 = 8 since the formula tells us
to remove —3 from 5. The implication of this
is that the 5 was obtained by giving away 3 to
another person. If that person gives us that 3
back (minuses the minus 3) then we get 8.
Another example:

—-8§—-—-3=-5
Multiplying

A negative number multiplied by a positive
number gives a negative number:

—4 X 3means -4 + -4+ —4=—-12

A negative number multiplied by a positive
number yields a positive number:

—4 X -3=12

negatively skewed: see skewness

nested model: a model which is similar to
the one it has been derived from except that
one or more of the parameters of the original
model have been removed or restricted to
zero. It is a simplification of the original
model. Because the original model has more
parameters (i.e. it has more features to
explain the data) it might be expected to pro-
vide a better fit to the data. The statistical fit
of a nested model may be compared with that
of the original model. If the statistical fit of
the nested model to the data is significantly
poorer than that of the original model, the
original model gives a better fit to the data.
That is, the extra feature of the original model
is of value. If, however, there is no significant
difference in the fit of the two models, the
nested model provides a simpler and more
parsimonious model for the data. In that
sense, it would be the preferred model since
the removed or restricted features of the
model seem not to contribute anything to the
power of the model to explain the data.
Nested models are often compared in struc-
tural equation modelling. See structural
equation modelling

Newman-Keuls method, procedure or
test: a post hoc or multiple comparison test
which is used to determine whether three or
more means differ significantly in an analysis
of variance. It may be used regardless of
whether the analysis of variance is signifi-
cant. It assumes equal variance and is
approximate for unequal group sizes. It is a
stepwise or sequential test which is similar to
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Table N.| Individual scores and mean Table N.2  Newman—Keuls test
scores for four unrelated groups
4 | 3 2
Group | Group2 Group3 Group4 Group Means 2 6 12 14 W r
6 10 10 0 4 2 - 4 10* 12* 797 4
2 15 12 2 | 6 - 6* 8t 7.1 3
10 17 14 4 3 12 - 2 574 2
Sum 18 4?2 36 6 2 14 -
Mean 6 14 12 2

Duncan’s new multiple range test in that the
means are first ordered in size. However, it
differs in the significance level used. For the
Newman-Keuls test the significance level is
the same no matter how many comparisons
there are, while for Duncan’s test the signifi-
cance level becomes more lenient the more
comparisons there are. Consequently, differ-
ences are less likely to be significant for
this test.

The use of this test will be illustrated with
the data in Table N.1 which shows the indi-
vidual and mean scores for four unrelated
groups. The means for the four groups are 6,
14, 12 and 2 respectively. See also: Duncan’s
new multiple range test; Ryan F and Q
tests; Scheffé test; trend analysis in analysis
of variance

A one-way analysis of variance indicates
that there is an effect which is significant at
less than the 0.01 level.

To conduct a Newman-Keuls test the
groups are first ordered according to the
size of their means, starting with the small-
est and ending with the largest as shown in
the second row and column of Table N.2.
Group 4 is listed first followed by groups 1,
3 and 2.

The absolute differences between the
means of the four groups are then entered into
the table. So the absolute difference between
groups4and 1is4 (2 — 6 = —4), groups 4 and
3is 10 (2 — 12 = —10), and so on.

The value that this difference has to exceed
is symbolized as W. It is based on the number
of means that separate the two means being
compared. This number is symbolized by r
and includes the two means being compared.
So the minimum number that r can be is 2.
The maximum number it can be is the
number of groups which in this case is 4. As r

becomes smaller, so does W. In other words,
the more means that separate the two means
being compared, the bigger the difference
between those means has to be in order to be
statistically significant.

The formula for calculating this critical dif-
ference is the value of the studentized range
multiplied by the square root of the error
mean square divided by the number of cases
in each group:

W = studentized range X | error mean square/group n

The error mean square is obtained from the
analysis of variance and is 9.25. The number
of cases in each group is 3. So the value of the
studentized range needs to be multiplied by
1.76 [/(9.25/3) = 3.083 = 1.76]. This value is
the same for all the comparisons.

The value of the studentized range varies
according to the value of r (and the degrees of
freedom for the error mean square but this
will be the same for all the comparisons being
made). This value can be obtained from a
table which is available in some statistics
texts such as the source below. The degrees of
freedom for the error mean square for this
example are 8. This is the number of groups
subtracted from the number of cases (12 —
4 = 8). For these degrees of freedom and the
0.05 significance level, the value of the
studentized range is 3.26 when r is 2, 4.04
when r is 3, and 4.53 when 7 is 4.

Consequently, the value that W has to be is
797 when r is 4 (4.53 X 1.76 =7.97), 7.11
when 7 is 3 (4.04 X 1.76 = 7.11) and 5.74
when 7 is 2 (3.26 X 1.76 = 5.74). These values
have been inserted in Table N.2.

We now start with the third row of Table N.2
and the biggest difference between the four
groups which is 12. As 12 is bigger than
the value of W when r is 4 (7.97), the difference
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in the means between groups 4 and 2 is
statistically significant. That this difference
is significant is indicated by an asterisk in
Table N.2. If this difference were not statisti-
cally significant, the analysis would stop here.

As it is significant, we proceed to the next
biggest difference in this row which is 10. As
r is 3 for this comparison, we need to com-
pare this difference with the value of W when
ris 3 (7.11) which is in the next row. As 10 is
bigger than a W of 7.11, the difference
between groups 2 and 3 is also significant. If
this difference had not been significant, we
would ignore all comparisons to the left of
this comparison in this row and those below
and move to the biggest difference in the
next row.

As this difference is significant, we exam-
ine the last difference in this row which is 4.
As ris 2 for this comparison, we need to com-
pare this difference with the value of W when
ris 2 (5.74) which is in the next row. As 4 is
smaller than a W of 5.74, this difference is not
significant.

We now follow the same procedure with
the next row. The biggest difference is 8. As r
is 3 for this comparison, we compare this dif-
ference with the value of W when r is 3,
which is 7.11. As 8 is larger than a W of 7.11,
the difference in the means between groups 1
and 2 is statistically significant. The next
biggest difference is 6 which is bigger than a
W of 5.74 when r is 2.

In the last row the difference of 2 is not
bigger than a W of 574 when r is 2.
Consequently, this difference is not statisti-
cally significant.

We could arrange these means into two
homogeneous subsets where the means in a
subset would not differ significantly from
each other but where means in one subset
would differ significantly from those in the
other. We could indicate these two subsets by
underlining the means which did not differ
as follows:

26 1214

Kirk (1995)

nominal data: see nominal level of mea-
surement; score nominal level of measure-
ment, scale or variable: a measure where
numbers are used simply to name or nominate

the different categories but do not represent
any order or difference in quantity. For exam-
ple, we may use numbers to refer to the coun-
try of birth of an individual. The numbers
that we assign to a country are arbitrary and
have no other meaning than labels. For exam-
ple, we may assign 1 to the United States and
2 to the United Kingdom but we could assign
any two numbers to label these two coun-
tries. The only statistical operation we can
carry out on nominal variables is a frequency
analysis where we compare the frequency of
cases in different categories.

non-directional or direction-less hypo-
thesis: see hypothesis

non-parametric tests: any of a large
number of inferential techniques in statistics
which do not involve assessing the character-
istics of the population from characteristics of
the sample. These involve ranking procedures
often, or may involve re-randomization and
other procedures. They do not involve the
use of standard error estimates characteristic
of parametric statistics.

The argument for using non-parametric
statistics is largely in terms of the inapplica-
bility of parametric statistics to much data.
Parametric statistics assume a normal distrib-
ution which is bell shaped. Data that do not
meet this criterion may not be effectively
analysed by some statistics. For example, the
distribution may be markedly asymmetrical
which violates the assumptions made when
developing the parametric test. The paramet-
ric test may then be inappropriate. On the
other hand the non-parametric test may
equally be inappropriate for such data.
Furthermore, violations of the assumptions
of the test may matter little except in the most
extreme cases. The other traditional argu-
ment for using non-parametric tests is that
they use ordinal (rankable) data and do not
require interval or ratio levels of measure-
ment. This is an area of debate as some statis-
ticians argue that it is the properties of the
numbers which are important and not some
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abstract scale of measurement which is
deemed to underlie the numbers. Both argu-
ments have their adherents. The general
impression is that modern researchers err
towards using parametric analyses as often
as possible, resorting to non-parametric
tests only when the distribution of scores is
exceptionally skewed. This allows them to
use some of the most powerful statistical
techniques.

Once non-parametric tests had ease of cal-
culation on their side. This no longer applies
with the ready availability of statistical com-
puter packages. See also: distribution-free
tests; Kruskal-Wallis one-way analysis of
variance; Mann-Whitney U-test; median
test, Mood’s; ranking tests; skewness

non-random sample: see convenience
sample; quota sampling

non-reciprocal relationship: see uni-
directional relationship

non-recursive relationship: see bi-

directional relationship

normal curve or distribution: a bell-
shaped curve or distribution, like that shown
in Figure N.2. It is a theoretical distribution
which shows the frequency or probability of
all the possible values that a continuous vari-
able can take. The horizontal axis of the dis-
tribution represents all possible values of the
variable while the vertical axis represents
the frequency or probability of those values.
The distribution can be described in terms of
its mean and its standard deviation or vari-
ance. The exact form of the distribution will
depend on the values of the mean and its
standard deviation. Its shape will become
flatter, the bigger the variance is. The tails of
the distribution never touch the horizontal

Figure N.2  The normal distribution curve

axis, indicating that these extreme values
may occur but are very unlikely to do so.
Most of the scores will fall within three stan-
dard deviations of the mean. About 68.26% of
the scores will fall within one standard devi-
ation of the mean, 95.44% within two stan-
dard deviations and 99.70% within three
standard deviations.

If the distribution of a variable approxi-
mates normality, we can determine what pro-
portion or percentage of scores lies between
any two values of that variable or what the
probability is of obtaining a score between
those two values by converting the original
scores into standard scores and determining
their z values. See also: Gaussian distribu-
tion; parametric tests

null hypothesis: in statistical inferences the
null hypothesis is actually the hypothesis
which is tested. It is often presented as being
the nullification of the researcher’s hypothe-
sis but really is the claim that the indepen-
dent variable has no influence on the
dependent variable or that there is no corre-
lation between the two variables. The null
hypothesis assumes that the samples come
from the same population or that the two
variables come from a population where
there is zero correlation between the two
variables. Thus, the simplest ways of writing
the null hypothesis are “There is no relation-
ship between variable A and variable B’, or
‘The independent variable has no influence
on the dependent variable.” Unfortunately, by
presenting the adequacy of the null hypothe-
sis as being in competition with the adequacy
of the alternative hypothesis, the impression
is created that the disconfirmation of the null
hypothesis means that the hypothesis as pre-
sented by the researcher is true. This is
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misleading since it merely suggests that the
basic stumbling block to the hypothesis can be
dismissed — that is, that chance variations are
responsible for any correlations or differences
that are obtained. See also: confidence inter-
val; hypothesis testing; sign test; significant

number of cases: see count

numerator: the number at the top of a
fraction such as +. The numerator in this case
is 4. The denominator is the bottom half of the
fraction and so equals 7. See also: denominator

numerical scores: see score



oblique factor: see oblique rotation

oblique rotation: a form of rotating factors
(see orthogonal rotation) in factor analysis.
In oblique rotation, the factors are allowed
to correlate with each other; hence the axes
can cease to be at right angles. There are var-
ious methods of orthogonal rotation of
which Promax is a typical and well-known
example. One important consequence of
oblique rotation is that since the factors may
correlate, it is possible to calculate a correla-
tion matrix of the correlations of the oblique
factors one with each other. This secondary
correlation matrix can then itself be factor
analysed yielding what are known as second-
order factors or higher order factors. See
also: axis; exploratory factor analysis

odds: the ratio of the probability of an event
occurring to the probability of it not occur-
ring. It can also be expressed as the ratio of
the frequency of an event occurring to the fre-
quency of other events occurring. Suppose,
for example, that six out of nine students
pass an exam. The probability of a student
passing the exam is about 0.67 (6/9 = 0.667).
The probability of a student failing the exam
is about 0.33 (3/9 = 0.33 or 1 — 0.67 = 0.33).
Consequently, the odds of a student passing
the exam are about 2 (0.667/0.333 = 2.00).
This is the same as the number of students

Table O.1 Mental illness and family
background
No mental illness Mental illness
in family in family

Person suffers 30 4|

mental illness
Person does 180 27

not suffer

mental illness

passing the exam divided by the number of
students failing it (6/3 = 2). See also: logit

odds ratio: an indicator of relative probabil-
ities when outcomes are dependent (condi-
tional) on another factor. For example, what
is the probability of mental illness in a person
who comes from a family in which at least
one member has been in a mental hospital
compared with one in which no members
have been in a mental hospital? The imagi-
nary data in Table O.1 might be considered.
See also: logistic regression

The probability of a person suffering
mental illness if there is no mental illness in
the family is 30/(30 + 180) = 0.143. The
probability of a person suffering mental ill-
ness if there is mental illness in the family is
41/68 = 0.603.

The odds ratio for suffering mental illness
is obtained simply by dividing the larger
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probability by the smaller probability. In our
example, the odds ratio is 0.603/0.143 = 4.2.
In other words, one is over four times more
likely to suffer mental illness if there is mental
illness in one’s family than if there is not.

The odds ratio is a fairly illuminating way
of presenting relative probabilities. It is a
feature of logistic regression.

omnibus test: a test to determine whether
three or more means differ significantly from
one another without being able to specify in
advance of collecting the data which of those
means differ significantly. It is the F ratio in
an analysis of variance which determines
whether the between-groups variance is
significantly greater than the within-groups
or error variance. If there are good grounds
for predicting which means differ from each
other, an a priori or planned test should be
carried out to see whether these differences
are found. If differences are not expected, post
hoc or unplanned tests should be conducted
to find out which means or combination of
means differ from each other.

one-sample t test: see t test for one sample

one-tailed level or test of statistical
significance: see chi-square; significant

one-way relationship: see uni-directional
relationship

operationalization: a procedure for mea-
suring or manipulating a variable. There is
often more than one way of measuring or
manipulating a variable. For example, the
variable of anxiety may be assessed through
self-report, ratings by observers, physiological
indices, projective methods, behavioural

tests, and so on. It may also be manipulated
in various ways such as subjecting people to
frightening experiences or asking them to
imagine being in frightening situations.
While it is very difficult to provide concep-
tual definitions of variables (e.g. just what is
intelligence?), it is more practical to describe
the steps by which a variable is measured or
manipulated in a particular study.

order effect: the order in which a participant
etc. is required to undertake two or more tasks
or treatments may affect how they respond.
For example, participants may become less
interested the more tasks they carry out or
they may become more experienced in what
they have to do. When requiring participants
to conduct more than one task, it may be
important to determine whether the order in
which they carry out the tasks has any effect
on their performance. If the number of tasks
is very small, it is possible to have each task
carried out in all possible orders. For example,
with three tasks, A, B and C, there are six dif-
ferent orders: ABC, ACB, BAC, BCA, CAB and
CBA. This is known as counterbalancing and it
assumes that by varying the order in such a
systematic fashion, order effects are systemati-
cally cancelled out. If there are a large number
of tasks, it may be useful to select a few of
these either at random or on some theoretical
basis to determine if order effects exist.
Assessing order effects essentially requires
that comparisons are made according to the
order of carrying out the tasks, not according
to type of task.

ordinal level of measurement, scale or
variable: this is data which are collected in
the form of scores. Its distinguishing feature
is that these scores only allow the data to be
put into ranks (rank order). Rank order is
based on ordinal numbers which refer to the
1st, 2nd, 3rd, 4th, 5th etc., scores. These repre-
sent the smallest score to the largest one but it
is not known how much the 3rd and
5th scores actually differ from each other in
any meaningful sense. The ordinal scale of
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measurement is the basis for many
non-parametric  tests of significance.
Researchers rarely actually collect data that
are in the form of ranks. Ordinal measure-
ment refers to the issue of the nature of the
measurement scale that underlies the scores.
Some statisticians argue that the scores col-
lected in the social sciences and some other
disciplines are incapable of telling us any-
thing other than the relative order of individ-
uals. In practice, one can worry too much
about such conceptual matters. What is of
importance is to be aware that non-parametric
tests, some of which are based on ranked data,
can be very useful when one’s data are inade-
quate for other forms of statistical tests. See
also: chi-square; Kendall’s rank correlation;
Kolmogorov-Smirnov test for one sample;
measurement; partial gamma; score

ordinary least squares (OLS) regres-
sion: see multiple regression

ordinate: the vertical or y axis on a graph. It
usually represents the quantity of the depen-
dent variable. See also: y-axis

orthogonal: indicates that right angles are
involved. Essentially it means in statistics
that two variables (or variants of variables
such as factors) are unrelated to each other.
As such, this means that they can be repre-
sented in physical space as two lines (axes) at
90° to each other. See orthogonal rotation

orthogonal factors: see orthogonal rotation

orthogonal rotation: the process by which
axes for pairs of variables which are uncorre-
lated (at right angles) are displaced around a
centre point from their original position while

retaining the right angle between them. This
occurs in factor analysis when the set of factors
emerging out of the mathematical calculations
is considered unsatisfactory for some reason. It
is somewhat controversial, but it should be
recognized that the first set of factors to emerge
in factor analysis is intended to maximize the
amount of variation extracted (or explained).
However, there is no reason why this should
be the best outcome in terms of interpretation
of the factors. So many researchers rotate the
first axes or factors. Originally rotation was
carried out graphically by simply plotting
the axes and factors on graph paper, taking
pairs of factors at a time. These axes are moved
around their intersection (i.e. the axes are spun
around). Only the axes move. Hence, the
rotated factors have different loadings on the
variables than did the original factors. There
are various ways of carrying out rotation and
various criteria for doing so. The net outcome
is that a new set of factors (and new factor load-
ings) are calculated. Seem Figure O.1 (a) and (b)
which illustrate an unrotated factor solution
for two factors and the consequence of rotation
respectively. The clearest consequence is the
change in factor loadings. Varimax is probably
the best known orthogonal rotation method.
See also: exploratory factor analysis; ortho-
gonal rotation; varimax rotation, in factor
analysis

outliers: cases which are unusually extreme
and which would have an undue and mis-
leading influence on the interpretation of data
in a naive analysis of the data. They are gener-
ally a relatively minor problem in a non-
parametric analysis (because the scores are
‘compacted” by turning them into ranks). In
parametric analyses they can be much more
problematic. They are particularly important
in bivariate analyses because of the extra
weight placed on extreme values in calculat-
ing covariance. Figure O.2(a) shows a scatter-
gram for a poor or near zero correlation
between two variables — variable A and vari-
able B. Any attempt to fit a best fitting straight
line is difficult because there is no apparent
trend in the data as the correlation is zero.
Figure O.2(b) shows the same data but another
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(a) Unrotated

(b) Rotated

Unrotated and rotated factors

Figure O.1

case has been included. This shows the
characteristics of an outlier — it is high on
the two variables (though equally an outlier
may have low scores on the two variables). A
mechanical application of statistical tech-
niques (correlation and best fitting straight
line) would lead to an apparent correlation
between variables A and B and a line of best fit
as shown in Figure O.2(b). However, we know
that the correlation and significance are the
result of the outlier since without the outlier
there is no such trend. So a correct interpreta-
tion of the data has to resist the temptation to
interpret the data in Figure O.2(b) as reflecting
a positive trend. Unfortunately, unless a
researcher examines the scattergram, there is
no automatic check for outliers. Some authors
(e.g. Howitt and Cramer, 2004) recommend

running the parametric analysis (using
Pearson’s correlation coefficient) in parallel
with a non-parametric analysis (e.g. using
Spearman’s correlation coefficient — a ranking
test). If both analyses produce the same broad
findings and conclusions then there is no prob-
lem created by outliers. If the non-parametric
analysis yields substantially different findings
and conclusions to the parametric analysis
then the influence of outliers should be sus-
pected. An alternative procedure is to delete
the suspected outliers to see whether this
makes a difference. If the complete data pro-
duce significant findings and the partial analy-
sis produces very different non-significant
(or very much less significant) findings then
the influence of outliers is likely. See also:
transformations

over-identified model: a term used in struc-
tural equation modelling to describe a model
for which there is more information than nec-
essary to identify or estimate the parameters of
the model. See also: identification

(a) Without outlier

(b) With outlier

Figure O.2 The effects of outliers



paired-samples t test: see t test for
related samples

pairing: see matching

pairwise deletion: a keyword used in some
statistical packages such as SPSS to restrict an
analysis to those cases for which there are no
missing values on the variable or variables
for that analysis. When this is done where
there are some missing values, the number of
cases may not be the same for all the analyses.
Suppose, for example, we want to correlate
the three variables of job satisfaction, income
and age in a sample of 60 people and that
three cases have missing data for income and
a different set of four cases have missing data
for age. The correlation between job satisfac-
tion and income will be based on 57 cases,
that between job satisfaction and age on
56 cases and that between income and age on
53 cases. An alternative procedure of analysis
is to provide correlations for those cases
which do not have missing values on any of
those variables in which the number of cases
will be the same for all the analyses. The key-
word for this procedure is listwise deletion in
a statistical package such as SPSS. Using this
procedure with this example, all the correla-
tions will be based on 53 cases. See also: list-
wise deletion

panel design or study: see cohort analysis;
longitudinal design or study

parameter: a numerical characteristic of a
population or a model. For example, the
mean and standard deviation are two para-
meters of a population. The regression
coefficient in a model is a parameter. The
term statistic is used for the equivalent
characteristics of samples rather than
populations.

parametric statistics: see parametric tests;
ratio level of measurement

parametric tests: tests of significance
which assume that the distribution of the
population values has a particular shape
which is usually a normal distribution. For
example, the t test, which is based on esti-
mating the variance of the population,
assumes that the population values are nor-
mally distributed.

part correlation: see multiple correlation;
semi-partial correlation coefficient
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partial correlation: the correlation between
two variables (a predictor and criterion or inde-
pendent and dependent variable) adjusted for a
third (control) variable. Partialling is a way of
controlling for the effects of other variables. It is
used as a simple form of causal modelling.
For example, it is believed that adult criminality
is determined by adolescent delinquency.
Imagine the correlation between the two mea-
sures is 0.5. This appears to support the model.
However, it is possible that a better explanation
of the relationship is that both of these are
the consequences of another (or third variable).
People who live their lives in families that are
prone to crime may themselves be encouraged
in their criminal ways both as adolescents and
as adults. What would be the correlation
between adult and adolescent criminality if
family criminality could be controlled (i.e. vari-
ation in family criminality eliminated)? There
are a number of ways of doing this.

One simple way is to separate family
criminality into different levels (high and low
will do for illustration). If family criminality
is not involved then there should be a corre-
lation of 0.5 between adolescent delinquency
and adult criminality for the high-criminality
families and a similar correlation size for the
low-criminality families. If the two correla-
tions become zero or near zero, this is evi-
dence that criminality in the family is
responsible for the correlation between ado-
lescent delinquency and adult criminality.

A more common method to achieve more or
less the same end is the use of partial correla-
tion. This can be used to control for a number
of control variables (five or six is probably the
practical limit). This is complex without a
computer package but simple enough if we
only wish to control for a single variable at a
time. The formula is

Correlation Correlation Correlations

between x between x of variables x

and y with and y and y with

variable ¢ the third

controlled variable ¢
rxylc — rxy - (rXC >< rl/C)

M2 1,2
Vl T’XCvl ryc

Adolescent | | 0.5 | Adult
delinquency criminality
06|
Family
crime

Figure P.I  Correlations between three variables

In our example we know that adult criminal-
ity (variable x) correlates with adolescent
delinquency (r = 0.5). Imaging that adult
criminality correlates 0.4 with family crimi-
nality and adolescent delinquency correlates
0.6 with family criminality. This could be pre-
sented in a diagram such as Figure P.1. There
are double arrows between the various points
because it is not known what, if anything, is
the cause of what. Some points can be elimi-
nated logically. For example, adult crime
could not cause adolescent delinquency
because a cause must precede an effect.

Entering these values into the above
formula:

05— (0.6 X 0.4)

rxy,u ANzl a2
1 —061-04

_ 0.5 — 0.24
J1 —0.36/1 — 0.16

_ 02
J0.64,0.84

026
0.800 X 0.917

=0.35

As can be seen, the correlation has become
smaller as a consequence of partialling (i.e.
controlling for family crime). Nevertheless
the remaining correlation of 0.35 still indicates
a relationship between adolescent delinquency
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Table P.I

Some possible changes as a result of partialling and their implications

Correlation between
x and y partialling for c

Initial correlation
between x and y

Description

Conclusion

r,=05 rye = 0.5 (no change)
ry=05 rye=00
r,=0.0 lye =05

There is no significant
change following
partialling

Correlation declines
significantly or
becomes 0

Correlation changes
from a low value to
a high value after
partialling

Partialling makes no difference
so c is neither the cause of
nor an intervening variable

in the relationship

between x and y

¢ could be an antecedent*®
(cause) of the relationship
between x and y; or it could
be an intervening variable in
the relationship

¢ is a suppressor variable in
the relationship between

x and y, i.e. it hides the
relationship which is revealed
when the effects of ¢ are
removed

*For ¢ to be an antecedent or cause of the relationship between x and y, one needs to ask questions about the
temporal order and logical connection between the two. For example, the number of children a person has
cannot be a cause of that person’s parents’ occupation. The time sequence is wrong in this instance.

and adult crime. Consequently the net effect
of controlling for the third variable in this
example leaves a smaller relationship but one
which still needs explaining. Table P.1 gives
some examples of the possible outcomes of
controlling for third variables.

Partial correlation is a common technique in
statistics and is a component of some impor-
tant advanced techniques in addition. Because
of the complexity of the calculation (i.e. the
large number of steps) it is recommended that
computer packages are used when it is inten-
ded to control for more than two variables.
Zero-order partial correlation is another name
for the correlation coefficient between two
variables, first-order partial correlation occurs
when one variable is controlled for, second-
order partial correlation involves controlling
for two variables, and so forth. The higher
order partial correlations are denoted by
extending the notation to include more control
variables. Consequently r,, ,, means the partial
correlation between variables x and y control-
ling (partialling out) for variables ¢, d and e.

Partial correlation is a useful technique.
However, many of its functions are possibly
better handled using, for example, multiple

regression. This allows for more subtlety in
generating models and incorporating control
variables. See also: Kendall’s partial rank
correlation coefficient; multiple regression

partial gamma: a measure of partial associ-
ation between two ordinal variables control-
ling for the influence of a third ordinal
variable. It is the number of concordant pairs
minus the number of discordant pairs for the
two variables summed across the different
levels of the third variable divided by the
number of concordant and discordant pairs
summed across the different levels of the
third variable. A concordant pair is one in
which the first case is ranked higher than the
second case, while a discordant pair is the
reverse, in which the first case is ranked
lower than the second case.

Cramer (1998); Siegal and Castellan (1988)

participant: the modern term for subject.
The term participant more accurately reflects
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the active role of the participant in the
research process. The term subject implies
subjugation and obedience. Unfortunately,
many terms in statistics use the term subject
(e.g. related-subjects, between-subjects, etc.)
which makes it difficult to replace the term
subject.

partitioning: another word for dividing
something into parts. It is often used in analy-
sis of variance where the total sum of squares
is partitioned or divided into its component
parts or sources such as the between- or
within-groups sum of squares.

partitioning chi-square: denotes the process
by which a large cross-tabulation/contingency
table is broken down into smaller tables. This
helps the researcher to assess just exactly
where differences are occurring. Large contin-
gency tables such as 2 X 3 or 4 X 2 are difficult
to analyse since differences may occur in just
sections of the table. Other parts of the table
may show no trends at all. Table P2 gives a
3 X 3 contingency table. It can probably be
seen that sample 1 and sample 3 are virtually
indistinguishable. In both cases apples are
favourites with bananas second. Sample 2
seems very different. Bananas are by far the
favourite in sample 2 with apples hardly
selected by anyone. Through all of the samples,
grapes show similar rates of choice. So it
would not really be correct to suggest that all
of the samples differ from each other (even if
chi-square applied to these data were signifi-
cant) since differences occur in only parts of
the table.

One solution to identifying precisely where
in the table a difference occurs is to partition
the contingency table into a number of
smaller tables. Each of these smaller tables is
then interpretable since it will produce either
significant or non-significant results. Table P.3
shows one smaller table that the data could be
partitioned into. Here we have a 2 X 2 table
that is not ambiguous as to interpretation
since sample 1 and sample 2 are different in
respect of what fruits they like.

Table P2 Data on favourite fruits in three
samples

Favourite fruit Sample | Sample 2 Sample 3

Apple 35 4 32
Banana 22 54 23
Grape 12 16 13

Table P3 A small table taken from
Table P2 to illustrate one
partition of the data

Favourite fruit Sample | Sample 2
Apple 35 4
Banana 22 54

Such partitioning does only what common
sense tells us to do when examining some-
thing as complex as Table P.2. We simply look
at a smaller part of the whole. A2 X 2 table is
the smallest unit for analysing two variables
at a time. The chi-square based on this 2 X 2
table gives its significance level.

The main difficulties in employing parti-
tioning lie in the quantity of partitioned tables
that may be produced and the consequent
question of what the correct significance level
should be for each one. One solution is to use
the Bonferroni inequality, which gives the
maximum number of outcomes that would be
expected by chance with the increased testing
rate. In effect this means taking the exact sig-
nificance levels of the 2 X 2 chi-squares and
multiplying by the number of times the origi-
nal contingency table was partitioned.

Partitioning may help reduce erroneous
interpretations of large chi-square or contin-
gency tables. Typical among the errors is the
assumption that significant values of chi-square
for large tables indicate that that all groups or
samples are different from each other. The dif-
ferences may only occur in parts of the data.

path analysis: an analysis in which three or
more variables are ordered by the researcher
in terms of their presumed causal relationships.
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The causal relationship between the variables
is more readily understood when presented in
terms of a path diagram, in which arrows are
used to indicate the direction and existence of
a relationship between variables. Variables
may be ordered in more than one way. Each
arrangement of variables is called a model.
The size and sign of these relationships are
estimated. The simplest way of estimating
these relationships is with correlation and mul-
tiple regression. However, these methods do
not take account of the fact that the reliability
of the measurement of the variables may dif-
fer. The relationship for a measure with lower
reliability will be less strong than for one with
higher reliability. Consequently, the relation-
ships for less reliable measures may be under-
estimated. Structural equation modelling
takes account of measurement error and so is
a more appropriate method for estimating
these relationships although it is more compli-
cated. It also provides an index of the extent to
which the relationships assumed to hold fit
the data. A variable where no account is taken
of its reliability is known as a manifest vari-
able and may be represented by a square or
rectangle in a path diagram. A variable where
its reliability is taken into consideration is
known as a latent variable and may be repre-
sented by a circle or ellipse. See also: endoge-
nous variable; exogenous variable; structural
equation modelling
Cramer (2003)

path diagram: shows the presumed causal
relationships between three or more variables.
An example of a path diagram in presented in
Figure P.2. The variables are usually ordered
from left to right in terms of their causal
sequence, a uni-directional causal relation-
ship being indicated by a straight, single
right-pointing arrow. So variables to the left of
other variables are assumed to influence vari-
ables to their right. For example, variables a
and b influence variable ¢ which in turn influ-
ences variable e. There is no causal relation-
ship between variable b and variable e or
between variable b and variable f because
there is no arrow between them. There is an
indirect relationship between b and e which is

d

\ 4

Figure P2 An example of a path diagram

mediated through c. There is a direct and an
indirect relationship between a and c. The
indirect relationship is also mediated through
c. A reciprocal or bi-directional relationship
between two variables is indicated by two
arrows between them, such as those between
e and f indicating that e influences f and f
influences e. A curved line with an arrow at
either end, such as that between a and b,
shows that two variables are related to one
another but there is no causal relationship
between them. Although not shown here, a
variable enclosed in a square or rectangle is a
manifest variable and one enclosed in a circle
or ellipse is a latent variable. See also: mani-
fest variable; path analysis
Cramer (2003)

Pearson chi-square: see chi-square; likeli-
hood ratio chi-square

Pearson’s correlation coefficient: see
correlation; eta; outliers; phi coefficient;
point-biserial correlation coefficient; T,
test; z test

Pearson’s partial correlation: see partial
correlation

Pearson’s product moment correlation
coefficient: see correlation
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percentage: the proportion or fraction of
something expressed as being out of 100 —
literally ‘for every hundred’. So another way
of saying 65% is to say sixty-five out of every
hundred or 5. This may be also expressed as
65 per cent. The way of calculating percent-
ages is the fraction X 100. Thus, if a sample
has 25 females out of a total of 60 cases, then
this expressed as a percentage is 2 x
100 = 0.425 X 100 = 42.5%.

percentage probability: probabilities are
normally expressed as being out of one event, —
for example one toss of a coin or die. Thus, the
probability of tossing a head with one flip of a
coin is 0.5 since there are two equally likely
outcomes — head or tail. Percentage probabili-
ties are merely probabilities expressed out of
100 events. Thus, to calculate a percentage
probability, one merely takes the probability
and multiplies it by 100. So the percentage
probability of a head on tossing a coin is 0.5 X
100 = 50%. See also: probability

percentiles: if a set of scores is put in order
from the smallest to the largest, the 10 per-
centile is the score which cuts off the bottom
10% of scores (the smallest scores). Similarly,
the 30th percentile is the score which cuts off
the bottom 30% of scores. The 100th per-
centile is, of course, the highest score by this
reasoning. The 50th percentile is also known
as the median. Percentiles are therefore a way
of expressing a score in terms of its relative
standing to other scores. For example, in itself
a score of 15 means little. Being told that a
score of 15 is at the 85th percentile suggests
that it is a high score and that most scores are
lower.

There are a number of different ways of
estimating what the percentile should be
when there is no score that is actually the
percentile. These different methods may give
slightly different values. The following
method has the advantage of simplicity. We
will refer to the following list of 15 scores in
the estimation:

1,3,4,4,6,7,8,9, @ 15,16, 16, 17, 19, 22

1 Order the scores from smallest to largest
(this has already been done for the list
above).

2 Count the number of scores (N). This is
15.

3 To find the percentile (p) calculate p X
(N + 1). If we want the 60th percentile,
the value of p is 0.6 (i.e. the numerical
value of the percentile required divided
by 100).

4 So with 15 scores, the calculation gives
us 0.6 X (15 + 1) = 0.6 X 16 = 9.6.

5 The estimate of the 60th percentile is
found by splitting the 9.6 into an integer
(9) and a fraction (0.6).

6 We use the integer value to find the score
corresponding to the integer (the Ith
score). In this case the integer is 9 and so
we look at the 9th score in the ordered
sequence of scores. This is the score of 14.

7 We then find the numerical difference
between the 9th score and the next
higher score (the score at position I + 1)
in the list of scores. The value of this
score is 15. So the difference we calculate
is the difference between 14 and 15 in
this case. Thus, the difference is 1.

8 We then multiply this difference by the
0.6 that we obtained in step 5 above. This
givesus 1 X 0.6 = 0.6.

9 We then add this to the value of the 9th
score (i.e. 14 + 0.6) to give us the esti-
mated value of the percentile. So, this
estimated value is 14.6.

10 Quite clearly the 60th percentile had to
lie somewhere between the scores of 14
and 15. However, this estimate places it
at 14.6 rather than 14.5 which would be
the value obtained from simply splitting
(averaging) the scores.

Percentiles are a helpful means of presenting
an individual’s score though they have
limited utility and show only a part of the
total picture. More information is conveyed
by a frequency distribution, for example.
Percentiles are a popular way of presenting
normative data on tests and measurements
which are designed to present information
about individuals compared with the general
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Figure P3 lllustrating a perfect correlation coefficient

population or some other group. Quartiles
and deciles are related concepts. See also: box
plot

perfect correlation: a correlation coeffi-
cient of 1.00 or —1.00 in which all the points
of the scattergram for the two variables lie
exactly on the best fitting straight line
through the points. If a perfect correlation is
obtained in a computer analysis, it is proba-
bly worthwhile checking the corresponding
scattergram (and the other descriptive statis-
tics pertinent to the correlation) as it may be
suspiciously high and the result of, say, some
sort of coding error. A perfect correlation
coefficient is an unrealistically high ideal in
most disciplines given the general limited
adequacy of measurement techniques. Hence
if one occurs in real data then there is good
reason to explore why this should be the case.
Figure P.3 gives the scattergram for a perfect
positive correlation — the slope would be
downwards from the left to the right for a
perfect negative correlation.

permutation: a sequence of events in prob-
ability theory. For example, if the sequence of
events were the toss of a coin, then one per-
mutation of events mightbe T, T, T, T, T, H, H,

H. This is a distinct permutation from the
series T, H, T, T, H, T, H, T despite the fact that
both series contain exactly three heads and
five tails each. (If we ignore sequence, then
the different possibilities are known as com-
binations.) Permutations of outcomes such as
taking a name from a hat containing initially
six names can be calculated by multiplying
the possibilities at each selection. So if we
take out a name three times the number of
different combinations is 6 X 5 X 4 = 120.
This is because for the first selection there are
six different names to choose from, then at
the second selection there are five different
names (we have already taken one name out)
and at the third selection there are four dif-
ferent names. Had we replaced the name into
the hat then the permutations would be 6 X
6 X 6. See also: combination

Permutations are rarely considered in routine
statistical analyses since they have more to do
with mathematical probability theory than
with descriptive and inferential statistics
which form the basis of statistical analysis
in the social sciences. See also: combination;
sampling with replacement

phi coefficient: a variant of Pearson’s corre-
lation applied to two variables each of which
takes one of two values which may be coded
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1 or 2 (or any other pair of values for that
matter). As such, its most common applica-
tions are in correlating two items on a ques-
tionnaire where the answers are coded yes or
no (or as some other binary alternatives), and
in circumstances in which a 2 X 2 chi-square
would alternatively be employed. While there
is a distinct formula for the phi coefficient, it is
simply a special case of Pearson’s correlation
with no advantage in an era of computer sta-
tistical packages. In cases where it needs to be
computed by hand, simply applying Pearson’s
correlation formula to the variables coded as
above gives exactly the same value. Its advan-
tage was that it made the calculation of the phi
coefficient a little more speedy, which saved
considerable time working by hand on large
questionnaires, for example. See also: correla-
tion; Cramer’s V; dummy coding

pictogram: essentially a form of bar chart in
which the rectangular bars are replaced by a
pictorial representation appropriate to the
measures being summarized. For example,
the frequencies of males and females in a
sample could be represented by male and
female figures of heights which correspond to
the frequencies. This is illustrated in Figure P4.
Alternatively, the figures could be piled
above each other to give an equivalent, but
different, representation.

Sometimes a pictogram is used to replace a
bar chart, though attempts to do this are
likely to be less successful. A frequent diffi-
culty with pictograms lies in their lack of cor-
respondence to the bars in a bar chart except
in terms of their height. Classically, in a bar
chart the area of a bar actually relates directly
to the number of cases. Hence, typically the
bars are each of the same width. This corre-
spondence is lost with any other shape. This
can be seen in Figure P4 where the male fig-
ure is not just taller than the female figure,
but wider too. The net effect is that the male
figure is not about twice the height of the
female, but four times the area. Hence, unless
the reader concentrates solely on height in
relation to the frequency scale a misleading
impression may be created. Nevertheless, a
pictogram is visually appealing, communicates

Frequency

Figure P4 Pictogram indicating relative frequencies
of males and females

the nature of the information fairly well, and
appeals to non-statistically minded audi-
ences. See also: bar chart

pie chart: a common way of presenting fre-
quencies of categories of a variable. The com-
plete data for the variable are represented by
a circle and the frequencies of the subcate-
gories of the variable are given as if they were
slices of the total pie (circle). Figure P.5 illus-
trates the approach although there are many
variations on the theme. The size of the slice
is determined by the proportion of the total
that the category represents. For example, if
130 university students are classified as
science, engineering or arts students and 60
of the students are arts students, they would
be represented by a slice which was £ of the
total circle. Since a circle encompasses 360°,
the angle for this particular slice would be
&5 X 360° = 0.462 X 360° = 166°.

Pie diagrams are best reserved, in general,
for audio-visual presentations when their
visual impact is maximized. They are much
less appropriate in research reports and the
like where they take up rather a lot of space
for the information that they communicate.
Pie diagrams are most effective when there
are few slices. Very small categories may be
combined as “others’ to facilitate the clarity of
the presentation. See also: bar chart; fre-
quency distribution

Pillai’s criterion: a test used in multivariate
statistical procedures such as canonical
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Pie-diagrams may also include the frequency
in each slice or percentage frequencies. This
diagram is clear because of the small number
of slices. Slices may be ‘exploded’ out for
emphasis
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Figure P5 Types of cases taken on by psychological counsellors

correlation, discriminant function analysis
and multivariate analysis of variance to deter-
mine whether the means of the groups differ
on a discriminant function or characteristic
root. This test is said to be more robust than
Wilks’s lambda, Hotelling’s trace criterion and
Roy’s gcr criterion when the assumption of the
homogeneity of the variance-covariance
matrix is violated. This assumption is more
likely to be violated with small and unequal
sample sizes. See also: Wilks’s lambda
Tabachnick and Fidell (2001)

planned comparison or test: see analysis
of variance

platykurtic: see kurtosis

point-biserial correlation coefficient: a
variant of Pearson’s correlation applied in
circumstances where one variable has two
alternative discrete values (which may be
coded 1 and 2 or any other two different
numerical values) and the other variable has
a (more or less) continuous distribution of
scores. This is illustrated in Table P.4. The dis-
crete variable may be a nominal variable so
long as there are only two categories. Hence a

Table P4 lllustrating how a binary nominal
variable may be recoded as a score
variable to enable a correlation
coefficient to be calculated

Gender Recode gender Linguistic aptitude

(discrete | for female, (continuous

variable) 2 for male variable)

Female | 49

Female | 17

Male 2 15

Male 2 21

Male 2 19

Female | 63

Female | 70

Male 2 29

variable such as gender (male and female) is
suitable to use as the discrete variable. See
also: dummy coding

Pearson’s correlation (which is also known
as the point-biserial correlation) between the
numbers in the second and third columns =
—0.70. The minus is purely arbitrary and the
Table P4 of consequence of the arbitrary value
for females being lower than that for males, but
the females typically have the higher scores on
linguistic aptitude. See also: correlation

point estimates: a single figure estimate
rather than a range. See also: confidence
interval
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pooled variances: combined or averaged
variances. Variances are pooled to provide a
better population estimate in the ¢ test for
unrelated samples where the variances are
equal but the number of cases is unequal in the
two groups. The formula for pooling variances
is as follows where the size of the sample is
indicated by n and the two samples are
referred to by the two subscripts 1 and 2:

—_t —
nl nZ

\/[variancel X (n, — 1)] + [variance, X (1, — 1)]>< (1 1)

n +n, =2

See also: variance

population: a deceptively simple concept
which actually means two quite distinct
things in research and statistics respectively.
Hence, it can cause a great deal of confusion.
In research, population means much the same
as in everyday language — a population is all
of a particular type of individual. This may be
limited by geographical location or one or
more other characteristics. So populations
would include all children attending schools
in London, or all gay people in the country,
and so forth. The nature of a population
changes according to the nature and purpose
of the research.

In statistics, this sort of concept of popula-
tion would be somewhat cumbersome.
Consequently, the term is applied to a vari-
able rather than an identifiable group of indi-
viduals or cases. So a population in statistics
really refers to a population of scores on a
particular variable. This could be the IQs of
the geographical grouping which is the popu-
lation of the British Isles in everyday terms.
But it can be much more abstract than that.
Variables often do not exist separate from the
process of measuring them, so populations in
statistics can be difficult to define. That is,
until a researcher invents, say, an attitude
scale and gives it to a sample, the variable
which the scale measures simply does not
exist. Each time a researcher tries to measure
something new with a sample of people, a new
population is created. Nevertheless, despite
the intangible nature of some populations in

statistics, the concept of population is essential
since it describes the wider set from which
the research’s sample is regarded as being
drawn. See also: convenience sample; esti-
mated standard deviation; parameter; sam-
ple; significant

population standard deviation: see stan-
dard deviation

population variance: see variance or
population variance

positivism: a major aspect of the philosophy
of science. It has as its basic principle that
knowledge should be obtained from observa-
tion as a means of assessing the value of our
notions about the nature of things. It then is
very different from non-scientific thought
such as theism, which holds that knowledge
resides in religion and religious teachings,
and metaphysics, which holds that knowl-
edge emerges from philosophical thought
about issues. It has its origins as a formal
philosophy of science in the work of August
Comte in the nineteenth century. Some
researchers virtually equate statistical analy-
sis with positivism though there is little in
statistics itself (rather than the way it has
been applied) which justifies this. Possibly
the major difficulty that positivism has pre-
sented is that it has historically been associ-
ated with the idea of universalism, which is
the view that the object of science is to
develop universal laws of nature which apply
anywhere — such that the principles of gravity
should apply throughout the universe.
Unfortunately, universalism when applied to
human nature does not work very well.
Human beings operate in the context of a cul-
tural system such that cultural factors need to
be taken into account when studying society
and human activity. To some extent, then,
social science needs to be culturally specific:
in other words, not universal. Classic examples
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of universalism are abundant in psychology,
for example, when the researcher seeks to dis-
cover ‘the laws of human behaviour’. Labora-
tory experiments encourage such an enterprise
since they divorce the participants from
the context in which they usually operate. In
a nutshell, the subject statistics does not
equate to positivism although it has tradi-
tionally been a common feature of positivistic
research.
Owusu-Bempah and Howitt (2000)

post hoc, a posteriori or unplanned tests
or multiple comparison tests: statistical
tests applied after the data have been col-
lected without any prior consideration of
what comparisons are essential to the research
questions. They are comparisons done after
the facts (data) have been collected and where
overall the analysis of variance has indicated
that the null hypothesis that there is no differ-
ence between the means is not sustainable (i.e.
where the F ratio is statistically significant).
The point is that statistical significance merely
means that some but not necessarily all of the
treatment means are unequal. The question is
which ones are unequal? The post hoc tests
allow comparisons between pairs of treat-
ment means in order to indicate which of the
pairs of means are statistically significantly
different from each other.

The risk is, of course, simply dredging
through the data in order to find significant
findings without making any allowance for
the fact that the more significance tests one
does the more likely one is to obtain signifi-
cance due to chance rather than ‘true” effects.
Hence, to do repeated ¢ tests, for example
between all possible pairs of means, is
frowned upon. One can employ the Bonferroni
correction, which basically says that if one
does three t tests, for example using a 5% sig-
nificance level, this is in the worst instance
like really testing at the 15% level of signifi-
cance. That is, the 15% level of significance is
extremely conservative and is the highest
value it could be.

So all post hoc tests make some correction
for the number of comparisons involved.
These adjustments tend to be rather large and

are described as being conservative (i.e.
tending to support the null hypothesis of no
difference). There is a variety of post hoc tests
which is rather bewildering. A lack of con-
sensus about where and when to apply the
different measures is another limitation.
Some have limitations such as being inapplic-
able where the groups are of different size
(e.g. Tukey’s HSD test) and others are
regarded as being too biased towards detect-
ing no differences (e.g. the Scheffé test). A rea-
sonable recommendation, given that few will
calculate the values of post hoc tests without
the use of a computer, is to do a range of post
hoc tests. Where they all indicate the same
conclusions then clearly there is no problem.
If they indicate very different conclusions for
a particular set of data, then the reasons and
importance of this have to be assessed.
However, in this way the problem has been
identified as existing. See also: analysis of
variance; Bonferroni test; Duncan’s new
multiple range test; Fisher’s LSD test;
Gabriel’s simultaneous test procedure;
Games-Howell multiple comparison pro-
cedure; Hochberg GT2 Test; multiple com-
parison tests; Newman-Keuls method;
Ryan F and Q tests; Scheffé test; Tamhane’s
T2 multiple comparison test; Tukey, and
Tukey, tests; Tukey-Kramer test; Waller-
Duncan t test

post-test: the measurement made immedi-
ately after the experimental treatment or the
control for the experimental treatment has
been made. See pre-test

power: the number of times that a quantity
or number is multiplied by itself. It is usually
written as an exponent, which is a number or
symbol placed above and to the right of that
quantity. For example, the exponent 2 in the
expression 3? indicates that the quantity 3 is
raised or multiplied to the second power or
the power of 2, which is 3 X 3. The exponent
3 in the expression 3° indicates that the quan-
tity 3 is raised to the third power or the
power of 3, which is 3 X 3 X 3. See exponent
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power of a test: the probability of a statistical
test of finding a relationship between two
variables when there is such a relationship.
The maximum power a test can have is 1 and
the minimum 0 with 0.80 indicating an
acceptable level of power. The power of a test
is generally greater for one- than two-tailed
hypotheses, parametric than non-parametric
tests, lower (e.g. 0.05) than higher (e.g. 0.001)
significance levels and larger samples.

predictive validity: the extent to which a
variable predicts or is related to another vari-
able which is measured subsequently. It may
be distinguished from concurrent validity in
which the two variables are measured at the
same or similar time.

predictor variable: often used to refer to the
variables in a multiple regression which are
employed to predict the values of the criterion
or criterion variable. This criterion variable may
be measured at the same time as some or all of
the predictor variables or it may be measured
subsequently to them. This term is also used
more generally to refer to variables that are
employed to predict a variable which is mea-
sured subsequently. See also: log likelihood;
logistic regression; regression equation

pre-test: a measurement stage preceding the
administration of the experimental treatment.
It provides a baseline measurement against
which change due to the experimental treat-
ment can be assessed. Without a pre-test, it is
not possible to know whether scores have
increased, stayed the same or reduced. It also
shows whether the means of the groups are
similar prior to the subsequent measurement.
If the pre-test means differ significantly and if
the pre-test is correlated with the post-test,
these pre-test differences need to be taken into
account when examining the post-test differ-
ences. The recommended statistical test for
doing this is analysis of covariance.

Pre-test \—:> Post-test

Experimental treatment or merely
passage of time

Figure P6 The pre-test design

Research designs involving pre-tests are not
without their problems. For one thing, the pre-
test may sensitize the participants and affect
the degree of influence of the experimental
treatment (Figure P.6). For example, if the
study is about changing attitudes, forewarn-
ing participants by giving them a pre-test mea-
sure of their attitudes may make them realize
that their susceptibility to influence is being
assessed. Consequently, they may try their
hardest not to change their attitude under the
experimental treatment. Hence, sometimes a
pre-test design also includes additional groups
which are not pre-tested to see whether the
pre-test may have had an influence. See also:
baseline; quasi-experiments

pre-test—post-test design: involves a pre-
test and a post-test. See pre-test

principal axis factoring: a form of factor
analysis in which only the variance shared
between the variables is analysed. Variance
which is unique to a variable or is error is not
analysed. The shared variance or communal-
ity can vary from a minimum of 0 to a maxi-
mum of 1. It is generally less than 1.

principal components analysis: a form of
factor analysis in which all the variance of the
variables is analysed. The communality of
each variable is 1.

probability: the mathematical chance or
likelihood that a particular outcome will
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occur. It is expressed in terms of the ratio of a
particular outcome to all possible outcomes.
Thus, the probability of a coin landing heads
is 1 divided by 2 (the possible outcomes are
heads or tails). Probability is expressed per
event so will vary between 0 and 1. Probabili-
ties are largely expressed as decimals such
as 0.5 or 0.67. Sometimes probabilities are
expressed as percentage probabilities, which
is simply the probability (which is out of a
single event) being re-expressed out of 100
events (i.e. the percentage probability is the
probability X 100).

The commonest use of probabilities is in
significance testing. While it is useful to
know the basic ideas of probability, many
researchers carry out thorough and appropri-
ate analyses of their data without using other
than a few very basic notions about probabil-
ity. Hence, the complexities of mathematical
probability theory are of little bearing on the
practice of statistical analysis of psychologi-
cal and social science data.

probability level: see significant

probability sampling: a form of sampling
in which each case or element in the popula-
tion has a known probability of being
included in the sample. In the simplest situa-
tion of simple random sampling each case
has the same probability of being sampled. In
stratified random sampling each case may
not have the same probability of being
included as the population is divided into
different strata or groups which may not

have the same probability of being chosen.
Probability sampling may be distinguished
from non-probability sampling in which the
probability of a case being selected is unknown.
Non-probability sampling is often euphemis-
tically described as convenience sampling.

probability theory: see Bayesian infer-
ence; Bayes’s theorem; odds; percentage
probability; probability

proband: see subject

proportion: the frequency of cases in a cat-
egory divided by the total number of cases.
It varies from a minimum of 0 to a maximum
of 1. For example, if there are 8 men and
12 women in a sample, the proportion of men
is 0.40 (8/20 = 0.40). A proportion may be
converted into a percentage by multiplying
the proportion by 100. A proportion of 0.40
represents 40% (0.40 X 100 = 40).

prospective design or study: see cohort
analysis; longitudinal design or study

pseudo-random number or tables: see
random number tables



Q analysis, methodology or technique:
the usual strategy in factor analysis is to look
for patterns in the data supplied by the par-
ticipants. For example, a questionnaire may
be factor analysed to see what groupings of
questions tend to be responded to similarly.
An alternative to this involves looking for
patterns in the participants. That is, to form
the factors on the basis of which people show
similar patterns in their replies to the ques-
tions compared with others in the sample. In
its simplest form, this involves producing a
correlation matrix in which the different par-
ticipants are the variables and their answers
to the questions are the equivalent of differ-
ent cases in normal factor analysis. In other
words, the data are entered such that the
rows become the columns and the columns
become the rows compared with normal fac-
tor analysis. This will then generate a correla-
tion matrix of correlations between people
rather than one of correlations between vari-
ables. The factors are then interpreted in
terms of the individuals who load highly on
a factor (rather than variables which load
highly on a factor).

It is possible to carry out Q analysis on any
data which have been analysed using factor
analysis by simply using the facility of com-
puter packages such as SPSS to transpose the
data matrix (spreadsheet). This option essen-
tially moves the matrix through 90° so that
the rows become the columns and vice versa.
The transposed matrix can then be factor
analysed yielding Q factors. See also: explo-
ratory factor analysis

qualitative research: generally research
where there is little or no attempt to summarize
the data and/or describe the relationships
found using numbers. It is difficult to discuss
qualitative research briefly since it varies
enormously in its style, scope, methods and
theoretical underpinnings. Some researchers
regard it as a prelude to quantitative research
in which the researchers familiarize them-
selves with the matter of their research with
the intention of developing much more struc-
tured ways of collecting data. Other researchers
regard qualitative methods as a means of cor-
recting what they see as the fundamental
errors in quantification. Qualitative research
is largely concerned with the development of
coding categories to describe fully the data in
question. In grounded theory, for example,
the researcher employs data analysis meth-
ods which essentially require numerous revi-
sions of codings of textual data in order to
force a close fit between the data and the ana-
lytic scheme being developed.

In terms of statistical analysis, in many ways
the distinction between qualitative and quanti-
tative data analysis is misleading. Research
which analyses data in terms of coding cate-
gories is potentially amenable to the use of sta-
tistical techniques for nominal (category or
categorical) data. This form of data has some-
times been referred to as qualitative data in the
statistical literature. In this sense, qualitative
researchers may not always be right to reject
statistics as part of the analysis of their data.

There are lessons for quantitative researchers
to learn from qualitative research. Perhaps
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the most important of these is the importance
of closely matching the analysis to the detail
of the data. It is interesting to note that
exploratory data analysis stresses this sort of
detailed fit in quantitative data analysis.

qualitative variables: see categorical
(category) variable; frequency distribution

quantitative measurement: see

measurement

quantitative research: generally research
where there is some attempt to summarize
the data and/or describe the relationships
found using numbers. Statistical analysis is
certain to accompany such data collection.

quantitative variables: see categorical
variable; frequency distribution

quartile deviation or semi-interquartile
range: a measure of dispersion (spread of
data) which is sometimes used instead of the
interquartile range. It is the interquartile
range divided by 2.

quartiles: scores which cut off the bottom
25%, 50% and 75% of scores in a sequence of
scores ordered from the smallest to the
largest. They are known as the first, second
and third quartiles. They refer to specific val-
ues of scores. The second quartile is also
known as the median. They are calculated in
the same way as the 25th percentile, the 50th
percentile and the 75th percentile would be
(see percentiles). The interquartile range is
the range of scores from the 25th percentile to

the 75th percentile or the 1st quartile (lower
quartile) to the 3rd quartile (upper quartile).
See also: interquartile range; percentile

quasi-experiments: research designs
which may be regarded as close to proper or
true experiments. In many areas of research,
it is not possible to allocate participants ran-
domly to experimental and control con-
ditions in order to study the influence of the
independent variable. That is, true experi-
ments are not practical or feasible or the
researcher may be unsympathetic to the use
of invasive experimental techniques when
studying real-world phenomena. Quasi-
experiments are a number of research designs
which by various means attempt to improve
the researcher’s ability to identify causal
influences compared with a correlational
study. There may be ethical difficulties in ran-
dom assignment (e.g. in a study of the effects
of medical treatment, to withhold treatment
from a control group may result in deaths or
other serious consequences for the control
group). There may be practical difficulties.
For example, in a study of the effects of man-
agement style in different organizations,
companies may be unwilling to take the
financial risk associated with changing their
management style in accordance with the
desires of researchers. Some random alloca-
tions are also simply impossible — people can-
not be assigned to different genders
randomly. Laboratory-based research is the
most amenable in general to randomized
experiments, whereas field-based disciplines
may find such designs inappropriate.

Quasi-experiments attempt to emulate the
strengths of randomized experiments by the
following means:

1 By obtaining pre-test (baseline) measure-
ments on the dependent variable, it is
possible to adjust statistically for pre-test
differences between the groups in the
study. In other words, there are experi-
mental and control groups but participants
could not be randomly assigned so are
allocated to the groups on some other
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basis. Sometimes the research will employ
pre-existing groups such as when, say,
students at two different types of school
are compared by school type.

2 By observing the effects of interventions
over a series of temporal points (time
series), it is possible to assess whether
change occurs following the intervention.
For example, if a researcher was studying
the effects of the introduction of incen-
tives on office morale, the morale of office
workers could be assessed monthly for a
year. At some stage (perhaps at random),
the management would introduce the
incentive scheme. Later it could be removed.
And perhaps later still reintroduced. One
would expect that if the incentive scheme
was effective, morale would increase
when it is introduced, decrease when it
is taken away, and increase on its
reintroduction.

Variations are possible and, for example, the
time-series feature may be combined with a
control time series which does not have
the intervention. Since quasi-experimental
design is a term which covers a large propor-
tion of research designs which are not experi-
ments, it is a major aspect of research design.
Of course, there is a lot of research which
does not set out to address issues of causality.

questionnaire: a list of written questions
or statements which is given to a person to

complete (self-completion questionnaire) or
may be read to the participant by a researcher
or interviewer who records their response.
Questionnaires vary greatly in their degree of
structure. Perhaps the majority of question-
naires structure the replies by supplying a
range of alternative responses from which the
participant chooses.

quota sampling: a non-random sample of
a population which has been divided into
various categories of respondent (e.g. males
and female, employed and unemployed). The
purpose of quota sampling is to ensure that
certain categories of person are included in
sufficient proportions in the data. For each of
the categories a certain number or quota of
cases are specified and obtained. This ensures
that there is sufficient cases in each of these
categories. (Random sampling, in theory,
may result in inadequate samples for some
purposes. Random sampling from a popula-
tion containing equal numbers of males and
females may result in a sample with few males.)
For example, we may want to have a certain
number of gay and lesbian people in the sam-
ple. Samples obtained in this way are nor-
mally not random samples and are obtained
through a range of practical means. Conse-
quently, we do not know how representative
these cases are of their categories.



R analysis, methodology or technique:
R equates to regular factor analysis in which
the correlations between variables are fac-
tored and the factors account for clusters of
variables measuring similar things. This is
different from the Q technique in which the
objective is to identify groups of cases which
are highly similar to each other. In other
words, R analysis groups variables, Q analy-
sis groups cases.

random allocation: see randomization

random assignment: see quasi-experiments;
randomization

random effects model: a term used in
experimental design and the analysis of
variance to denote the selection of levels of
the experimental treatment at random. It
requires selection from the full possible range
of levels. It is relatively uncommon to find it
employed in practice but it is of conceptual
importance. The difficulties include that the
full range of treatments may not be known
(especially if the independent variable is
essentially nominal categories rather than
particular values of a score). More generally,
researchers tend to use a fixed effects model
in which the researcher selects which levels

of treatment to use on the basis of some
reasoned decisions (which do not involve
random selection). The type of model has a
bearing on ANOVA calculations in particular.
Generally speaking, the random effects
model is rarely employed in branches of
many social science disciplines simply
because of the practical and conceptual diffi-
culties of identifying different levels of the
independent variable from which to sample
randomly. See also: fixed effects; levels of
treatment

random number tables: sometimes
known as pseudo-random number tables.
These were particularly useful in the past
when researchers did not have ready access
to computers capable of generating random
sequences. As the name implies, these are
tables of random sequences of the digits 0, 1,
2,3,4,5,6,7,8 and 9. Typically they consist
of many pages of numbers. Usually the
sequences are listed in columns with, say,
every six digits separated from the next by a
space. For example,

901832 143912 861543 672315 531250
167321 784321 422649 216975 356217
636298 157823 916421 436126 752318
264843 652365 132863 254731 534174

To use the table, typically the researcher
would choose a starting point (with eyes shut
using a pin, for example) and a pre-specified
interval. So if the starting point selected was
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the 8 underlined above and numbers in the
range 01 to 90 were needed for selection, then
the first number would be 84. Assume that
the interval selected was seven digits. The
researcher would then ignore the next seven
digits (4321 422) and so the next chosen num-
ber would be 64 and the one after that 35.If a
selection were repeated by chance, then the
researcher would simply ignore the repetition
and proceed to the next number instead. So
long as the rules applied by the researcher are
clear and consistently applied then these
tables are adequate. The user should not be
tempted to depart from the procedure chosen
during the course of selection in any circum-
stances otherwise the randomness of the
process is compromised. The tables are some-
times known as pseudo-random numbers
partly because they were generated using
mathematical formulae that give the appear-
ance of randomness but at some level actually
show complex patterns. True random
numbers would show no patterns at all no
matter how hard they are sought. For practical
purposes, the problem of pseudo-randomness
does not undermine the usefulness of
random number tables for the purposes of
most researchers in the social sciences since
the patterns identified are very broad. See
also: randomization

random sampling: see simple random
sampling

random sampling with replacement:
see sampling with replacement

random selection: see randomization

random variable: one meaning of this term
is a variable whose values have not been cho-
sen. For example, age is a random variable if
we simply select people regardless of what

age they are. The opposite of a random
variable is a fixed variable for which particu-
lar values have been chosen. For example, we
may select people of particular ages or who
lie within particular age ranges. Another
meaning of the term is that it is a variable
with a specified probability distribution.

randomization: also known as random
allocation or assignment. It is used in experi-
ments as a means of ‘fairly” allocating partic-
ipants to the various conditions of the study.
Random allocation methods are those in
which every participant or case has an equal
likelihood of being placed in any of the vari-
ous conditions. For example, if there are two
different conditions in a study (an experi-
mental condition and a control condition),
then randomization could simply be
achieved by the toss of a coin for each partici-
pant. Heads could indicate the experimental
condition, tails the control condition. Other
methods would include drawing slips from a
container, the toss of dice, random number
tables and computer-generated random num-
ber tables. For example, if there were four
conditions in a study, the different conditions
could be designated A, B, C and D, equal
numbers of identical slips of paper labelled
A, B, C or D placed in a container, and the
slips drawn out one by one to indicate the
particular condition of the study for a partic-
ular participant.

Randomization can also be used to decide
the order of the conditions in which a parti-
cular individual will take part in repeated-
measures designs in which the individual
serves in more than one condition.

Randomization (random allocation) needs
to be carefully distinguished from random
selection. Random selection is the process of
selecting samples from a population of poten-
tial participants. Random allocation is the
process of allocating individuals to the condi-
tions of an experiment. Few experiments in the
social sciences employ random selection
whereas the vast majority use random alloca-
tion. Failure to select participants randomly
from the population affects the external valid-
ity of the research since it becomes impossible
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to specify exactly what the population in
question is and, hence, who the findings of the
research apply to. The failure to use random-
ization (random allocation) affects the internal
validity of the study - that is, it is impossible
to know with any degree of certainty why the
different experimental conditions produced
different outcomes (or even why they pro-
duced the same outcome). This is because ran-
domization (random allocation) results in each
condition having participants who are similar
to each other on all variables other than the
experimental manipulation. Because each par-
ticipant is equally likely to be allocated to any
of the conditions, it is not possible to have sys-
tematic biases favouring a particular condition
in the long run. In other words, randomization
helps maximize the probability that the
obtained differences between the different
experimental conditions are due to the factors
which the researcher systematically varied (i.e.
the experimental manipulation).
Randomization can proceed in blocks. The
difficulty with, for example, random alloca-
tion by the toss of a coin is that it is perfectly
possible that very few individuals are allo-
cated to the control condition or that there is
a long run of individuals assigned to the con-
trol condition before any get assigned to the
experimental condition. A block is merely a
subset of individuals in the study who are
treated as a unit in order to reduce the possi-
ble biases which simple randomization can-
not prevent. For example, if one has a study
with an experimental condition (A) and a
control condition (B), then one could operate
with blocks of two participants. These are
allocated at the same time — one at random to
the experimental group and the other conse-
quently to the control group. In this way, long
runs are impossible as would be unequal
numbers in the experimental and control
groups. There is a difficulty with this
approach - that is, it does nothing to prevent
the possibility that the first person of the two
is more often allocated to the experimental
condition than the control condition. This is
possible in random sampling in the short
term. This matters if the list of participants is
structured in some way — for example, if the
participants consisted of the head of a household
followed by their spouse on the list, which

could result in more employed people being
in the experimental condition. Consequently,
the researcher might consider using a system
in which runs are eliminated by running par-
ticipants in fours with the first two assigned
randomly to AB and the next two to BA.

Failure to understand the importance of
and careful procedures required for random-
ization can lead to bad practices. For exam-
ple, it is not unknown for researchers to
speak of randomization when they really
mean a fairly haphazard allocation system.
A researcher who allocates to the experimental
and control conditions alternate participants
is not randomly allocating. Furthermore, ide-
ally the randomization should be conducted
by a disinterested party since it is possible
that the randomization procedure is ignored
or disregarded for seemingly good reasons
which nevertheless bias the outcome. For
example, a researcher may be tempted to put
an individual in the control condition if they
believe that the participant may be stressed
or distressed by the experimental procedure.

Randomization may be compromised in
other ways. In particular, the different condi-
tions of an experiment may produce differen-
tial rates of refusal or drop-out. A study of the
effects of psychotherapy may have a treated
group and a non-treated group. The non-
treated group may have more drop-outs sim-
ply because members of this group are
arrested more by the police and are lost to the
researchers due to imprisonment. This, of
course, potentially might effect the outcome
of the research. For this reason, it is important
to keep notes on rates of refusal and attrition
(loss from the study).

Finally, some statistical tests are based on
randomized allocations of scores to condi-
tions. That is, the statistic is based on the pat-
tern of outcomes that emerge in the long run
if one takes the actual data but then ran-
domly allocates the data back to the various
conditions such as the experimental and con-
trol group. In other words, the probability of
the outcome obtained in the research is
assessed against the distribution of outcomes
which would apply if the distribution of
scores were random. Terms like resampling,
bootstrapping and permutation methods
describe different means of achieving statistical
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tests based on randomization. See also:
control group

randomized block design: see matching

range: the size of the difference between the
largest and the smallest score in a set of
scores. Thus, if the highest value obtained is
18 and the lowest value is 11 then the range is
18 — 11 = 7. There is also the interquartile
range which is the range of the middle 50% of
scores.

One common misunderstanding is to pre-
sent the range as the largest value to the
smallest value. This is not the range — the
difference numerically between the extreme
values constitutes the range. See also: disper-
sion, measure of

rank measurement: see measurement

rank order: see ordinal level of

measurement

ranking tests: a term often used to denote
non-parametric statistical tests in general but
more appropriate for those techniques in which
scores or differences are converted into ranks
prior to the application of the statistical formu-
lae. It should really refer to tests where ranking
is carried out. For example, there are versions of
the ¢ test which utilize ranks whereas the ¢ test
is usually regarded as operating directly with
scores. See distribution-free tests

ratio: a measure which shows the relative
size of two numbers. It can be expressed as
two numbers separated by a colon, as one

number divided by another or as the result of
that division. For example, the ratio of 12 to 8
can be expressed as 12:8, 12/8 or 1.5. See also:
score

ratio level of measurement, scale or
variable: a measure in which the adjacent
intervals between the points of the scale are
of equal extent and where the measure has an
absolute zero point. For example, the mea-
sure or scale of age in years has adjacent
intervals of equal extent. The extent of the
interval between age 7 and 8 is the same as
that between age 8 and 9, namely 1 year. It
also has an absolute zero point in that the
lowest possible age is 0. It is called a ratio
measure because ages can be expressed as
ratios. Age 10 is twice as old as age 5
(10:5 = 2:1). It is frequently suggested that
ratio and interval levels of measurement,
unlike ordinal ones, should be analysed with
parametric statistics. See also: measurement

reciprocal relationship: see bi-directional
relationship

recursive relationship: see uni-directional
relationship

refusal rates: participation in research is
essentially a voluntary action for virtually
all studies actively involving people.
Participants may refuse to take part in the
research study at all or refuse to take part in
aspects of the research (e.g. they may be
happy to answer any question but the one to
do with their age). Researchers should keep a
record of the persons approached and as
much information as possible about their
characteristics. Rates of refusal should be
presented and any comparisons possible
between participants and refusers identified.
Some forms of research have notoriously
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high refusal rates such as telephone surveys
and questionnaires sent out by post.
Response rates as low as 15% or 20% would
not be unusual.

Refusal rates are a problem because of the
(unknown) likelihood that they are different
for different groupings of the sample.
Research is particularly vulnerable to refusal
rates if its purpose is to obtain estimates of
population parameters from a sample. For
example, if intentions to vote are being
assessed then refusals may bias the estimate in
one direction or another. High refusal rates are
less problematic when one is not trying to
obtain precise population estimates. Experi-
ments, for example, may be less affected than
some other forms of research such as surveys.

Refusal rates are an issue in interpreting
the outcomes of any research and should be
presented when reporting findings. See also:
attrition; missing values

regression: see heteroscedasticity; inter-
cept; multiple regression; regression equa-
tion; simple or bivariate regression standard
error of the regression coefficient; stepwise
entry; variance of estimate

regression coefficient: see standardized
or unstandardized partial regression coeffi-
cient or weight

regression equation: expresses the linear
relationship between a criterion or depen-
dent variable (symbolized as Y) and one or
more predictor or independent variables
(symbolized as X if there is one predictor and
as X, X, to X, where there is more than one
predictor).

Y can express either the actual value of the
criterion or its predicted value. If Y is the pre-
dicted value, the regression equation takes
the following form:

Y=a+BX, +BX, + -+ BX,

If Y is the actual value, the regression equation
includes an error term (or residual) which is
symbolized as e. This is the difference
between the predicted and actual value:

Y=a+BX +B,X,+ - +BX,*+e

X represents the actual values of a case. If we
substitute these values in the regression
equation together with the other values, we
can work out the value of Y.  is the regres-
sion coefficient if there is one predictor and
the partial regression coefficient if there is
more than one predictor. It can represent
either the standardized or the unstandard-
ized regression coefficient. The regression
coefficient is the amount of change that takes
place in Y for a specified amount of change in
X. To calculate this change for a particular
case we multiply the actual value of that pre-
dictor for that case by the regression coeffi-
cient for that predictor. a is the intercept,
which is the value of Y when the value of the
predictor or predictors is zero.

regression line: a straight line drawn
through the points on a scatter diagram of the
values of the criterion and predictor variables
so that it best describes the linear relationship
between these variables. If these values are
standardized scores the regression line is the
same as the correlation line. This line is some-
times called the line of best fit in that this
straight line comes closest to all the points in
the scattergram.

This line can be drawn from the values of
the regression equation which in its simplest
form is

predicted value = intercept + (regression
coefficient X predictor value)

The vertical axis of the scatter diagram is used
to represent the values of the criterion and the
horizontal axis the values of the predictor. The
intercept is the point on the vertical axis
which is the predicted value of the criterion
when the value of the predictor is 0. This pre-
dicted value will be 0 when the standardized
regression coefficient is used. To draw a
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straight line we need only two points. The
intercept provides one point. The other point
is provided by working out the predicted
value for one of the other values of the
predictor.

related designs: also known as related sam-
ples designs, correlated designs and corre-
lated samples designs. This is a crucial
concept in planning research and its associ-
ated statistical analysis. A related design is
one in which there is a relationship between
two variables. The commonest form of this
design is where two measures are taken on a
single sample at two different points in time.
This is essentially a test-retest design in
which changes over time are being assessed.
There are obvious advantages to this design
in that it involves fewer participants.
However, its big advantage is that it poten-
tially helps the researcher to gain some con-
trol over measurement error. All measures can
be regarded as consisting of a component
which reflects the variable in question and
another component which is measurement
error. For example, when asked a simple
question like age, there will be some error in
the replies as some people will round up,
some round down, some will have forgotten
their precise age, some might tell a lie, and so
forth. In other words, their answers will not
be always their true age because of the diffi-
culties of measurement error.

The common circumstances in which
related designs are used are:

e ones in which individuals serve as their
own controls;

e where change over time in a sample is
assessed;

e where twins are used as members of pairs
one of which serves in the experimental
condition and the other serves in the con-
trol condition;

e where participants are matched according
to characteristics which might be related
to the dependent variable.

See also: counterbalanced designs; matching

related t test: see analysis of variance; t
test for related samples

relationship: see causal relationship;
correlation; curvilinear relationship; uni-
directional relationship

reliability: a rather abstract concept since it is
dependent on the concept of ‘true” score. It is
the ratio of the variation of the ‘true” scores
when measuring a variable to the total varia-
tion on that measure. In statistical theory, the
‘true’ score cannot be assessed with absolute
precision because of factors, known as ‘error’,
which give the score as measured. In other
words, a score is made up of a true score plus
an error score. Error is the result of any num-
ber of factors which can affect a score — chance
fluctuations due to factors such as time of day;,
mood, ambient noise, and so forth. The influ-
ence of error factors is variable from time of
measurement to time of measurement. They
are unpredictable and inconsistent. As a con-
sequence, the correlation between two mea-
sures will be less than perfect.

More concretely, reliability is assessed in a
number of different ways such as test-retest
reliability, split-half reliability, alpha reliability
and interjudge (coder, rater) reliability. Since
these are distinctive and different techniques
for assessing reliability, they should not be
confused with the concept itself. In other
words, they will provide different estimates
of the reliability of a measure.

Reliability is not really an invariant charac-
teristic of a measure since it is dependent on
the sample in question and the circumstances
of the measurement as well as the particular
means of assessing reliability employed.

Not all good measures need to be reliable
in every sense of the term. So variables which
are inherently stable and change from occa-
sion to occasion do not need good test-retest
reliability to be good measures. Mood is a
good example of such an unstable variable.
See also: attenuation, correcting correla-
tions for; Spearman-Brown formula
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repeated-measures analysis of variance
or ANOVA: an analysis of variance which is
based on the same or similar (matched) cases
and where cases are tested more than once on
one or more factors. For example, each case
or a matched case may take part in each of
three different conditions.

repeated-measures design: see analysis
of variance; carryover or asymmetrical
transfer effect; randomization; within-
groups variance; within-subjects design

representative sample: a sample which is
representative of the population from which
it is drawn. For example, if 55% of the popu-
lation is female, then a similar percentage of
the sample should be female. Some form of
random sampling should be used to ensure
that the cases are representative of those in
the population.

resampling techniques: involve the use of
the scores obtained in the study to produce a
‘sampling’ distribution of the possible out-
comes of the study based on that data. Take
the simple example of a study comparing two
groups (A and B) on the variable C. The data
might look as in Table R.1.

If the null hypothesis were true (that
there is no difference between group A and
group B), then the distribution of scores
between group A and group B is just haphazard.
If this is so, then what we can do is to collect
together the scores for group A and group B
and then randomly allocate each score to
either group A or group B. This will produce
two samples which can be compared.
Repeating the process will produce increas-
ing numbers of pairs of samples each of
which are easily compared. So, based on the
data above, it is possible to produce a sam-
pling difference between all of the possible
combinations of scores in the table. This, in
effect, is like any other sampling distribution

Table R.1 Possible data for resampling

Group A Group B
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except that it is rigidly limited by the scores
in the data. They are the same scores but
resampling assigns them to group A and
group B differently.

There are a number of statistical techniques
which employ such procedures. Their major
difficulty is that they require computer soft-
ware capable of generating the random sampling
distribution. See also: bootstrapping

residual: the difference between the actual
value of a criterion or dependent variable
and its predicted value. Larger differences or
residuals imply that the predictions are less
accurate. The concept is commonly used to
indicate the disparity between the data and
the statistical model for that data. It has the
big advantage of simplicity. Careful scrutiny
of the residuals will help a researcher identify
where the model or statistic is especially poor
at predicting the data.

The variance of the residual (scores) is
quite simply the residual variance.

response rate: the proportion or percent-
age of cases who take part in a study or in
different stages of a study. People or organi-
zations may not be contactable or may not
agree to participate in a study when approached
to do so. If the sample is supposed to be a
representative one or if it is to be tested on
more than one occasion, a low response rate
will increase the chances of the sample being
less representative.
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response sets: see acquiescence or
yea-saying response set or style

robust: a robust test means that a significant
relationship will be found to be statistically sig-
nificant when there is such a relationship even
when the assumptions underlying the test
about the distribution of the data are not met.

rotation of factors: see exploratory factor
analysis; simple solution; varimax rotation,
in factor analysis

rounding decimal places: the process by
which long strings of decimals are shortened.
To avoid systematic biases in reporting find-
ings (albeit very small ones in most terms),
there are rules in terms of how decimals are
shortened. These involve checking the deci-
mal place after the final decimal place to be
reported. If that ‘extra’ decimal place has a
numerical value between 0 and 4 then we
simply report the shortened number by delet-
ing the extra decimals. Thus

17.632 = 17.63 (to two decimal places)
103.790 = 103.79 (to two decimal places)
12.5731 = 12.573 (to three decimal places)

However, if the “additional” decimal place is
between 5 and 9 then the last figure reported
in the decimal is increased by 1. For example,

17.639 is reported as 17.64 (to two decimal
places)

103.797 is reported as 103.80 (to two
decimal places)

12.5738 is reported as 12.574 (to three
decimal places)

In general it is bad practice not to adopt this
scheme. While much of the time it will not
matter much, failure to do so leaves the
researcher open to criticism — for example,
when reporting exact significance levels at
the margins of being statistical significance.

rounding errors: many fractions of
numbers cannot be handled with absolute
precision in decimal form. No matter the
number of decimal places, the figure will be
slightly imprecise. Rounding errors occur
when a calculation produces a slightly inac-
curate value simply because of the use of too
few decimal places, though some calculations
are especially prone to such problems.
Rounding errors can be seen, for example, when
calculating percentages of cases. By rounding
each percentage properly using the appropri-
ate rules, sometimes the sum of the percent-
ages will differ from 100%. Some researchers
will draw attention to the fact that their fre-
quencies do not sum to 100% because of
rounding errors.

Rounding errors occasionally occur in
computer statistical packages giving what
might be regarded as a slightly incorrect out-
come. Mostly users will be unaware of these
and rarely is it of material importance.

Roy’s gcr or greatest characteristic root
criterion: a test used in multivariate statisti-
cal procedures such as canonical correlation,
discriminant function analysis and multivari-
ate analysis of variance to determine whether
the means of the groups differ on a discrimi-
nant function or characteristic root. As the
name implies, it only measures differences on
the greatest or the first canonical root or dis-
criminant function. See also: Wilks’s lambda
Tabachnick and Fidell (2001)

r to z transformation: see Fisher’s z
transformation

run: an uninterrupted series of one or more
identical events in a sequence of events which
is followed and preceded by different events
or no events. For example, the following
sequence of heads (H) and tails (T), HHTHH,
contains a run of two heads, followed by a
run of one tail and a run of two heads. The
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total number of runs in the sequence of
events indicates whether the sequence of
events is likely to be random. A run would
indicate non-randomness. For example, the
following sequence of heads and tails, HHH-
HTTTT, consists of two runs and suggests
that each event is grouped together and not
random.

Ryan or Ryan-Einot-Gabriel-Welsch F
(REGWF) multiple comparison test: a
post hoc or multiple comparison test which is
used to determine whether three or more
means differ significantly in an analysis of
variance. It may be used regardless of whether
the analysis of variance is significant. It
assumes equal variance and is approximate

for unequal group sizes. It is a stepwise or
sequential test which is a modification of the
Newman-Keuls method, procedure or test. It
is based on the F distribution rather than the
Q or studentized range distribution. This test
is generally less powerful than the Newman—
Keuls method in that differences are less likely
to be statistically significant.
Toothaker (1991)

Ryan or Ryan-Einot-Gabriel-Welsch Q
(REGWQ) multiple comparison test:
This is like the Ryan or Ryan-Einot-Gabriel-
Welsch F (REGWF) multiple comparison test
except that it is based on the Q rather than the
F distribution.

Toothaker (1991)



sample: a set of cases drawn or selected
from a larger set or population of cases, usu-
ally with the aim of estimating characteristics
of the larger set or population. For example,
we may be interested in finding out what the
relationship is between childhood sexual
abuse and subsequent psychiatric disorder.
Because it would not be possible or practical
to investigate this relationship in the popula-
tion, we take a sample of the population and
study this relationship in the sample. From
this sample we can determine to what extent
this relationship is likely to be found in the
population from which the sample was
drawn. There are various ways of sampling a
population. See also: convenience sample

sample size: the number of cases or indi-
viduals in the sample studied. Usually repre-
sented by the symbol N. Sometimes because
of missing data the sample size for parts of
the statistical analysis is reduced. In com-
puter analysis, care is needed to check on
final sample sizes because of this. In inferen-
tial statistics, sample size is important as the
test distribution often varies with sample size
(or the degrees of freedom which are some-
times based on an adjustment to sample size).

sample size (minimum): the minimum
size of sample needed to run a study is a
complex matter to assess. Nevertheless it is a

frequently asked question. It depends on a
range of factors. The most important is the
researcher’s expectations of the likely size of
the trend in the data. The greater the trend the
smaller the appropriate sample size. Experi-
enced researchers in a particular field are
likely to be able to estimate an appropriate
sample size based on experience and conven-
tion in the particular field of study. In terms
of estimating the minimum sample size to
use, the most practical advice is to use a sam-
ple size which has proven effective in other
research using similar measures, samples and
methods to the proposed study.

Other researchers may have an idea of the
minimum effect or relationship that would be
of practical or theoretical interest to them. If
one requires a fairly large effect to make the
outcome of the research of value, one could
use a commensurately smaller sample size.

Small sample sizes with a large trend in the
data are adequate to establish statistical sig-
nificance. Unfortunately, small sample sizes
lack intuitive credibility in the minds of other
researchers, the public and research users
and are best avoided unless the scarcity of
appropriate participants for the study in
question makes it impracticable to obtain a
larger sample. Sample sizes should never
be so small that statistical significance is
not properly testable. These minimal sample
sizes can be estimated by examining tables
of significance for particular statistical
techniques.

Very large samples, apart from the obvious
time and cost disadvantages, have an obvi-
ous drawback. That is, very minimal trends
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in the data may prove to be statistically
significant with very large samples. For
example, with a sample size of 1000 a
Pearson correlation coefficient of 0.062 is sig-
nificant at the 5% level of significance. It only
explains (accounts for) four-thousandths of the
variation. Such a small correlation is virtually
negligible or negligible for most purposes.
The equally difficult issue of what size of cor-
relation is worthy of the researcher’s attention
becomes more central in these circumstances.

The first concern of the researcher should
be to maximize the effectiveness of the mea-
sures and procedures used. Poor measures
(ones which are internally unreliable) of a
variable will need larger sample sizes to pro-
duce statistically significant findings, all
other things being equal. The maximum
value of correlations, for example, between
two unreliable measures (as all measures are
to a degree in practice) will be limited by the
reliabilities of the two measures involved.
This can be corrected for if a measure of the
reliability of each measure is available. Care
in the wording and piloting of questionnaires
is appropriate in an attempt to improve relia-
bility of the measures. Poor, unstandardized,
procedures for the conduct of the study will
increase the uncontrolled variability of
responses in the study. Hence, in some fields
of research rigorous and meticulous proce-
dures are adopted for running experiments
and other types of study.

The following are recommended in the
absence of previous research. Carry out small
pilot study using the procedures and materi-
als to be implemented in the full study.
Assess, for the size of effect found, what the
minimum sample size is that would be
required for significance. For example, for a
given t value or F value, look up in tables
what N or df would be required for signifi-
cance and plan the final study size based on
these. While one could extend the sample
size if findings are near significance, often the
analysis of findings proceeds after the study
is terminated and restarting is difficult.
Furthermore, it is essentially a non-random
process to collect more data in the hope that
eventually statistical significance is obtained.

In summary, the question of appropriate
sample size is a difficult one for a number of

reasons which are not conventionally
discussed in statistics textbooks. These
include:

—_

the purpose of the research

the costs of poor statistical decisions

3 the next stage in the research process — is
this a pilot study, for example?

N

sample standard deviation: see estimated
standard deviation

sample variance: see variance estimate

sampling: see cluster sample; convenience
sample or sampling; multistage sampling;
probability sampling; quota sampling; rep-
resentative sample; simple random sam-
pling; snowball sampling; stratified random
sample; systematic sample

sampling distribution: the characteristics
of the distribution of the means (etc.,) of
numerous samples drawn at random from a
population. A sampling distribution is
obtained by taking repeated random samples
of a particular size from a population. Some
characteristic of the sample (usually its mean
but any other characteristic could be chosen)
can then be studied. The distribution of the
means of samples, for example, could then be
plotted on, say, a histogram. This distribution
in the histogram illustrates the sampling
distribution of the mean. Different sample
sizes will produce different distributions (see
standard error of the mean). Different popu-
lation distributions will also produce differ-
ent sampling distributions. The concept of
sampling distribution is largely of theoretical
importance in terms of the needs of practi-
tioners in the social sciences. It is most usually
associated with testing the null hypothesis.
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sampling error: the variability of samples
from the characteristics of the population
from which they came. For example, the
means of samples will tend to vary from the
mean of the population from which they are
taken. This variability from the population
mean is known as the sampling error. It
might be better termed sampling variability
or sampling uncertainty since it is not a
mistake in the usual sense but a feature of
random sampling from a population.

sampling frame: in surveys, the sampling
frame is the list of cases from which the sam-
ple is selected. Easily obtained sampling
frames would include telephone directories
and lists of electors. These have obvious
problems in terms of non-representativeness —
for example, telephone directories only list
people with telephones who are responsible
for paying the bill. It is extremely expensive
to draw up a sampling frame where none is
available - hence the willingness of
researchers to use less than optimum sources.
See quota sampling; sampling with replace-
ment; simple random sampling; stratified
random sample

sampling with replacement: means that
once something has been selected randomly,
it is replaced into the population and, conse-
quently, may be selected at random again.
Curiously, although virtually all statistical calcul-
ations are based on sampling with replace-
ment, the practice is not to replace into the
population. The reasons for this are obvious.
There is little point in giving a person a
questionnaire to fill in twice or three times
simply because they have been selected two
or three times at random. Hence, we do not
replace.

While this is obviously theoretically unsat-
isfactory, in practice it does not matter too
much since with fairly large sampling frames
the chances of being selected twice or more
times are too small to make any noticeable
difference to the outcome of a study.

SAS: an abbreviation for Statistical Analysis
System. It is one of several widely used
statistical packages for manipulating and
analysing data. Information about SAS can be
found at the following website:

http: /www.sas.com/products/index.html

scale: generally a measure of a variable
which consists of one or more items where
the score for that scale reflects increasing
quantities of that variable. For example, an
anxiety scale may consist of a number of
questions or statements which are designed
to indicate how anxious the respondent is.
Higher scores on this scale may indicate
higher levels of anxiety than lower scores.

scatter diagram, scattergram or scat-
terplot: a graph or diagram which plots the
position of cases in terms of their values on
two quantitative variables and which shows
the way the two variables are related to one
another as shown in Figure S.1. The vertical
or Y axis represents the values of one variable
which in a regression analysis is the criterion
or dependent variable. The horizontal or X
axis represents the values of the other vari-
able which in a regression analysis is the pre-
dictor or independent variable. Each point on
the diagram indicates the two values on those
variables that are shown by one or more
cases. For example, the point towards the bot-
tom left-hand corner in Figure S.1 represents
an X value of 1 and a Y value of 2.

The pattern of the scatter of the points indi-
cates the strength and the direction of the
relationship between the two variables. Values
on the two axes are normally arranged so that
values increase upwards on the vertical scale
and rightwards on the horizontal scale as
shown in the figure. The closer the points are
to a line that can be drawn through them, the
stronger the relationship is. In the case of a
linear relationship between the two variables,
the line is a straight one which is called a
regression or correlation line depending on
what the statistic is. In the case of a curvilinear
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Figure S.I  An example of a scatter diagram

relationship the line is a curved one. If there
does not appear to be a clear linear or curvi-
linear relationship between the two variables,
there is no relationship between the vari-
ables. A straight line sloping from lower left
to upper right, as illustrated in the figure,
indicates a positive or direct linear relation-
ship between the two variables. A straight
line running from upper left to lower right
indicates a negative or inverse linear relation-
ship between the two variables. See also:
correlation; perfect correlation

Scheffé test: a post hoc or multiple comparison
test which is used to determine whether three or
more means differ significantly in an analysis of
variance. Equal variances are assumed but it is
suitable for unequal group sizes. Generally, it is
regarded as one of the most conservative post
hoc tests. The test can compare any contrast
between means and not just comparisons
between pairs of means. It is based on the F sta-
tistic which is weighted according to the num-
ber of groups minus one. For example, the 0.05
critical value of F is about 4.07 for a one-way
analysis of variance comprising four groups
with three cases in each group. For the Scheffé
test this critical value is increased to 12.21
[4.07 X (4 — 1) = 12.21]. In other words, a com-
parison has to have an F value of 12.21 or greater
to be statistically significant at the 0.05 level.
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The following formula is used to calculate
the F value for the comparison:

[(group 1 weight X group 1 mean) + (group 2 weight
X group 2 mean) + - ?
group 2 weight?
+ ..
group 2 n

mean X

~ error group 1 weight?
+
square

group 1 n

The numerator of the formula represents the
comparison. If we take the case where there
are four groups and we wanted to compare
the mean of groups 1 and 2, the weights for
this comparison could be

1-100

Suppose the means for the four groups are 6,
14,12 and 2 respectively as shown in the exam-
ple for the entry under the Newman-Keuls
method. As multiplying a number by 0 gives 0,
the comparison reduces to subtracting the
group 2 mean from the group 1 mean and
squaring the difference. This gives a value of 8.

[(1X6)+(—1X14)+ (0X12) + (0 X 2)]*=
[6 + (—14) + 0 +0]* = (—8)* = 64

The denominator represents the weighted
error mean square. The error mean square for
this example is 9.25. As dividing 0 by a num-
ber gives 0, we are weighting the error mean
square by groups 1 and 2.

12 12 1 0
925 X | —+ — +— + —925>< -4+ -+ -
3 3 3

1+1+0+)

o

=9.25 X 0.67 = 6.20

The F value for this comparison is the
squared difference of 64 divided by the
weighted error mean square of 6.20, which
gives 10.32 (64/6.20 = 10.32). As this F value
is smaller than the critical value of 12.21,
these two means do not differ significantly.
See also: analysis of variance
Kirk (1995)

score: a numerical value which indicates the
quantity or relative quantity of a variable/
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construct. In other words, it is normally the
data collected from an individual case on a
particular variable or measure. Scores include
ratio, interval and ordinal measurement. The
alternative to scores is nominal data (or cate-
gorical or category or qualitative data).

In statistics, there is a conceptual distinction
drawn between two components — the ‘true’
score and the ‘error’ score. A score = ‘true’
score + ‘error’ score. These two components
can, at best, only be estimated. The true score
is really what the score would be if it were
possible to eliminate all forms of measurement
error. If one were measuring the weight of an
individual, measurement error would include
inconsistencies because of inconsistencies of
the scales, operator recording errors, varia-
tions in weight according to the time of day
the measure was taken, and other factors.

Error scores and true scores will not corre-
late by definition. If they did correlate, then
the two would be partially indistinguishable.
The greater the proportion of true score in a
score the better in terms of the measure’s abil-
ity to measure something substantial.

Often the ‘true’ score is estimated by using
the ‘average’ of several different measures of
a variable just as one might take the average
of several measures of length as the best
measure of the length of something. Thus, in
some research designs (related designs) the
measurement error is reduced simply
because the measure has been taken more
than once. The term measurement error is a
little misleading since it really applies to
aspects of the measurement which the
researcher does not understand or over
which the researcher has no control.

It is also important to note that measure-
ment error is uncorrelated with the score and
the true score. As such, consistent biases in
measurement (e.g. a tape measure which con-
sistently overestimates) is not reflecting mea-
surement error in the statistical sense. These
errors would correlate highly with the correct
measures as measured by an accurate rule. See
also: categorical (category) variable; error

scree test, Cattell’s: one test for determin-
ing the number of factors to be retained for

Eigenvalue

0
1 2 3 45 6 7 8 910111213
Factor number

Figure S.2 An example of a scree test

rotation in a factor analysis. The eigenvalue
or the amount of variance accounted for by
each factor is plotted against the number of
the factor on a graph like that shown in
Figure S.2. The vertical axis represents the
eigenvalue while the horizontal axis shows
the number of the factors in the order they are
extracted, which is in terms of decreasing size
of their eigenvalue. So, the first factor has the
greatest eigenvalue, the second factor the
next largest eigenvalue, and so on. Scree is a
geological term to describe the debris that
accumulates at the bottom of a slope and that
obscures it. The factors to be retained are
those represented by the slope while the fac-
tors to be discarded are those represented by
the scree. In other words, the factors to be
kept are the number of the factor just before
the scree begins. In Figure S.2 the scree
appears to begin at the factor number 3 so the
first two of the 13 factors should be retained.
The point at which the scree begins may be
determined by drawing a straight line
through or very close to the points repre-
sented by the scree as shown in Figure S.2.
The factors above the first line represent the
number of factors to be retained. See also:
exploratory factor analysis
Cattell (1966)

second-order factors: factors obtained in
factor analysis from factor analysing the
results of an oblique factor rotation which
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allows the factors to correlate. The correlation
matrix of the factors can then be factor
analysed to give new factors which are fac-
tors of factors. Hence, they are termed
second-order factors. Care should be taken to
recognize the difference as some researchers
and theorists report second-order factors that
seem materially different from the factors of
other researchers. That is, because they are a
different order of factor analysis. See also:
exploratory factor analysis; oblique rotation;
orthogonal rotation

second-order interactions: an interaction
between three independent variables or fac-
tors (e.g. A X B X C). Where there are three
independent variables, there will also be
three first-order interactions which are inter-
actions between the independent variables
taken two at a time (A X B,A X Cand B X A).
Obviously, there cannot be an interaction for
a single variable.

semi-interquartile range: see quartile
deviation

semi-partial correlation coefficient:
similar to the partial correlation coefficient.
However, the effect of the third variable is
only removed from the dependent variable.
The independent variable would not be
adjusted. Normally, the influence of the third
variable is removed from both the indepen-
dent and the dependent variable in partial
correlation. Semi-partial correlation coeffi-
cients are rarely presented in reports of statis-
tical analyses but they are an important
component of multiple regression analyses.
What is the point of semi-partial correla-
tion? Imagine we find that there is a relation-
ship between intelligence and income of 0.50.
Intelligence is our independent variable and
income our dependent variable for the pre-
sent purpose. We then find out that social
class is correlated with income at a level 0.30.

In other words, some of the variation in
income is due to social class. If we remove the
variation due to social class from the variable
income, we have left income without the
influence of social class. So the correlation of
intelligence with income adjusted for social
class is the semi-partial correlation. But there
is also a correlation of social class with our
independent variable intelligence — say that
this is the higher the intelligence, the higher
the social class. Partial correlation would take
off this shared variation between intelligence
and social class from the intelligence scores.
By not doing this, semi-partial correlation
leaves the variation of intelligence associ-
ated with social class still in the intelligence
scores. Hence, we end up with a semi-partial
correlation in which intelligence is exactly the
variable it was when we measured it and
unadjusted any way. However, income has
been adjusted for social class and is different
from the original measure of income.

The computation of the partial correlation
coefficient in part involves adjusting the cor-
relation coefficient by taking away the varia-
tion due to the correlation of each of the
variables with the control variable. For every
first-order partial correlation there are two
semi-partial correlations depending on
which of the variables x or y is being
regarded as the dependent or criterion
variable.

This is the partial correlation coefficient:

_ rxy - (rxc X ryc)
da-=r2J1-17

xe V ye

The following are the two semi-partial
correlation coefficients:

er - (er X rl/[,‘)
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Table S.1
sign of the difference

llustrating data for the sign test plus calculating the

Condition A Condition B  Difference

Sign of difference

18 22
12 I5
15 18
29 29
22 24
I 10
18 26
19 27
21 24
24 27

_4 _
-3 _
-3 _

0 0 (zero differences are

dropped from analysis)
) _
+1 +
-8 _
) _
-3 _
-3 _

The difference between the formulae for partial
and semi-partial correlation is obvious — the
bottom of the semi-partial correlation formula
is shorter. This is because no adjustment is
being made for the variance shared between
the control and predictor variables in semi-
partial correlation. This in effect means that the
semi-partial correlation coefficient is the corre-
lation between the predictor and criterion vari-
ables with the correlation of each with the
control variable removed. The amount of vari-
ation in the criterion variable is adjusted for by
its correlation with the control variable. Since
this adjustment is only applied to the criterion
variable, the adjustment is smaller than for the
partial correlation in virtually all cases. Thus,
the partial correlation is almost invariably larger
than (or possibly equal to) the semi-partial
correlation. See also: multiple regression

sequential method in analysis of variance:
see Type |, hierarchical or sequential method
in analysis of variance

sequential multiple regression: see
multiple regression

Sidak multiple comparison test: see
Dunn-Sidak multiple comparison test

sign test: a very simple test for differences in
related data. It is called a sign test because the
difference between each matched pair of scores
is converted simply into the sign of the differ-
ence (zero differences are ignored). The smaller
of the numbers of signs (i.e. the smaller of the
number of pluses or the number of minuses) is
identified. The probability is then assessed from
tables or calculated using the binomial expan-
sion. Statistical packages also do the calculation.

Despite its simplicity, generally the loss of
information from the scores (the size of the
differences being ignored) makes it a poor
choice in anything other than the most excep-
tional circumstances.

The calculation of the sign test is usually
presented in terms of a related design as in
Table S.1. In addition, the difference between
the two related conditions is presented in the
third column and the sign of the difference is
given in the final column.

We then count the number of positive signs
in the final column (1) and the number of
negative signs (8). The smaller of these is then
used to check in a table of significance. From
such a table we can see that our value for the
sign test is statistically significant at the 5%
level with a two-tailed test. That is, there is a
significant difference between conditions A
and B.

The basic rationale of the test is that if the
null hypothesis is true then the differences
between the conditions should be positive
and negative in equal numbers. The greater
the disparity from this equal distribution of
pluses and minuses the less likely is the null
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hypothesis to be true; hence, the hypothesis is
more supported.

significance level or testing: see significant

significance testing: see probability;
significant

significant: implies that it is not plausible
that the research findings are due to chance.
Hence, the null hypothesis (of no correlation
or no difference) is rejected in favour of the
(alternative) hypothesis. Significance testing
is only a small part of assessing the implica-
tions of a particular study. Failure to reach
significance may result in the researcher re-
examining the methods employed especially
where the sample appears of a sufficient
size. Furthermore, where the hypothesis
under test is deemed important for some
theoretical or applied reason the researcher
may be more highly motivated to re-examine
the research methods employed. If signifi-
cance is obtained, then the researcher may
feel in a position to examine the implications
and alternatives to the hypothesis more
fully.

The level at which the null hypothesis is
rejected is usually set as 5 or fewer times out
of 100. This means that such a difference or
relationship is likely to occur by chance 5 or
fewer times out of 100. This level is generally
described as the proportion 0.05 and some-
times as the percentage 5%. The 0.05 proba-
bility level was historically an arbitrary
choice but has been acceptable as a reason-
able choice in most circumstances. If there is
a reason to vary this level, it is acceptable to
do so. So in circumstances where there might
be very serious adverse consequences if the
wrong decision were made about the hypoth-
esis, then the significance level could be
made more stringent at, say, 1%. For a pilot
study involving small numbers, it might be
reasonable to set significance at the 10% level
since we know that whatever tentative

conclusions we draw they will be subjected to
a further test.

Traditionally the critical values of a statis-
tical test were presented in tables for specific
probability levels such as 0.05, 0.01 and 0.001.
Using these tables, it is possible to determine
whether the critical value of the statistical test
was equal to or lower than one of these less
frequent probability levels and to report this
probability level if this was the case, for
example as 0.01 rather than 0.05. Nowadays,
most statistical analyses are carried out using
statistical packages which give exact proba-
bility levels such as 0.314 or 0.026. It is
common to convert these exact probability
levels into the traditional ones and to report
the latter. Findings which have a probabil-
ity of greater than 0.05 are often simply
described as being non-significant, which
is abbreviated as ns. However, it could be
argued that it is more informative to present
the exact significance levels rather than the
traditional cut-off points.

Significance levels should also be
described in terms of whether they concern
only one tail of the direction of the results or
the two tails. If there are strong grounds for
predicting the direction of the results, the
one-tailed significance level should be used.
If the result was not predicted or if there were
no strong grounds for predicting the result,
the two-tailed level should be used. The signi-
ficance level of 0.05 in a two-tailed level of
significance is shared equally between the
two tails of the distribution of the results. So
the probability of finding a result in one
direction (say, a positive difference or correla-
tion) is 0.025 (which is half the 0.05 level)
while the probability of finding a difference
in the other direction (say, a negative differ-
ence or correlation) is also 0.025. In a one-
tailed test, the 0.05 level is confined to the
predicted tail. Consequently, the probability
of a particular result being significant is half
as likely for a two-tailed than a one-tailed test
of significance. See also: confidence interval;
hypothesis testing; probability

significantly different: see confidence
interval; significant
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simple or bivariate regression: describes
the size and direction of a linear association
between one quantitative criterion or depen-
dent variable and one quantitative predictor
or independent variable. The direction of the
association is indicated by the sign of the
regression coefficient in the same way as with
a correlation coefficient. The lack of a sign
denotes a positive association in which
higher scores on the predictor are associated
with higher scores on the criterion. A nega-
tive sign shows a negative or inverse associa-
tion in which higher scores on the predictor
go with lower scores on the criterion.

The size of the linear association can be
expressed in terms of a standardized or an
unstandardized regression coefficient. The
standard regression coefficient is the same as a
correlation coefficient. It can vary from — 1.00
to 1.00. The unstandardized regression coeffi-
cient can be bigger than this as it is based on
the original rather than the standardized
scores of the predictor. The unstandardized
regression coefficient is used to predict the
scores of the criterion. The bigger the coeffi-
cient, the stronger the association between
the criterion and the predictor. Strength of the
association is more difficult to gauge from the
unstandardized regression coefficient as it
depends on the scale used by the predictor. For
the same-sized association, a scale made up of
more points will produce a bigger unstan-
dardized regression coefficient than a scale
comprised of fewer points. These two regres-
sion coefficients are signified by the small
Greek letter 8 or its capital equivalent B (both
called beta) although which letter is used to
represent which coefficient is not consistent.

These two coefficients can be calculated
from each other if the standard deviation of
the criterion and the predictor are known. A
standardized regression coefficient can be
converted into its unstandardized coefficient
by multiplying the standardized regression
coefficient by the standard deviation (SD) of
the criterion and dividing it by the standard
deviation of the predictor:

unstan(.iardized standaljdized criterion SD
regression = regression _—
coefficient coefficient predictor SD

An unstandardized regression coefficient can
be converted into its standardized coefficient
by multiplying the unstandardized regres-
sion coefficient by the standard deviation of
the predictor and dividing it by the standard
deviation of the criterion:

standardized unstandardized
regression = regression
coefficient coefficient

predictor SD

criterion SD

The statistical significance of these two coeffi-
cients is the same and can be expressed as a ¢
value. One formula for calculating the f value
for the standardized regression coefficient is

standardized number of cases — 2

t = | regression
coefficient

X 1 — squared standardized
regression coefficient

A formula for working out the ¢ value for the
unstandardized regression coefficient is

unstandardized regression coefficient

~ standard error of the unstandardized
regression coefficient

simple random sampling: in random
sampling every case in the population has an
equal likelihood of being selected. Suppose,
for example, that we want a sample of 100
people from a population of 1000 people.
First, we draw up a sampling frame in which
every member of the population is listed and
numbered from 1 to 1000. We then need to
select 100 people from this list at random.
Random number tables could be used to do
this. Alternatively, slips for the 1000 different
numbers could be put into a big hat and 100
slips taken out to indicate the final sample.
See also: probability sampling; systematic
sample

simple solution: a term used in factor
analysis to indicate the end point of rotation
of factors. The initial factors in factor analysis
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are the product of a purely mathematical
process which usually has the maximization
of the amount of variance accounted for by
each of the factors in turn. What this means in
practice is that the factors should have as
many variables as possible with reasonably
high factor loadings. Unfortunately, such a
mathematically based procedure does not
always lead to factors which are readily inter-
pretable. A simple solution is a set of criteria
proposed by the psychologist L.L. Thurstone
to facilitate the interpretation of the factors.
The factors are rotated to a simple structure
which has the key feature that the factor load-
ings should ideally be either large or small in
numerical value and not of a middle value. In
this way, the researcher has factors which can
be defined more readily by the large loadings
and small loadings without there being a con-
fusing array of middle-size loadings which
obscure meaning. See also: exploratory
factor analysis; oblique rotation; orthogonal
rotation

single-sample t test: see t test for one
sample

skewed: see skewness

skewness: the degree of asymmetry in a fre-
quency distribution. A perfectly symmetrical
frequency distribution has no skewness. The
tail of the distribution may be longer either to
the left or to the right. If the tail is longer to
the left then this distribution is negatively
skewed (Figure S.3): if it is longer to the right
then it is positively skewed. If the distribu-
tion of a variable is strongly skewed, it may
be more appropriate to use a non-parametric
test of statistical significance. A statistical for-
mula is available for describing skewness
and it is offered as an option in some statistical
packages. See also: moment; standard error
of skewness; transformations

30

20

Frequency

10

0

Figure S.3  lllustrating negative skewness

Length of dotted line divided by
length of dashed line = slope

Figure S.4 The slope of a scattergram

slope: the slope of a scattergram or regression
analysis indicates the ‘angle’ or orientation of
the best fitting straight line through the set of
points. It is not really correct to describe it as
an angle since it is merely the number of units
that the line rises up the vertical axis of the
scattergram for every unit of movement
along the horizontal axis. So if the slope is
2.0 this means that for every 1 unit along the
horizontal axis, the slope rises 2 units up the
vertical axis (see Figure S.4).

The slope of the regression line only par-
tially defines the position of the line. In addi-
tion one needs a constant or intercept point
which is the position at which the regression
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line cuts the vertical or i axis. See also: multiple
regression; regression line

Somers’ d: a measure of association
between two ordinal variables which takes
account of ties or tied pairs of scores. It pro-
vides an asymmetric as well as a symmetric
measure. The formula for the asymmetric
measure for the first variable is

C-D
C+D+T,

where C is the number of concordant pairs, D
the number of discordant pairs and T, the
number of tied pairs for the first variable. A
concordant pair is one in which the first case
is ranked higher than the second case, a dis-
cordant pair is where the first case is ranked
lower than the second case and a tied pair is
where they have the same rank. The formula
for the asymmetric measure for the second
variable is the same as the first except that T
is the number of tied ranks for the second
variable. The formula for the symmetric
measure is

C-D
C+D+T,+C+D+T,)/2

See also: correlation
Siegal and Castellan (1988)

small expected frequencies: a term used
in chi-square especially to denote expected
frequencies of under five. If too many cells
(greater than about 20%) have expected fre-
quencies of this size, then chi-square ceases
to be an effective test of significance. See
chi-square

snowball sampling: a method of obtaining
a sample in which the researcher asks a par-
ticipant if they know of other people who
might be willing to take part in the study who
are then approached and asked the same

question. In other words, the sample consists
of people who have been proposed by other
people in the sample. This technique is par-
ticularly useful when trying to obtain people
with a particular characteristic or experience
which may be unusual and who are likely to
know one another. For example, we may use
this technique to obtain a sample of divorced
individuals.

Spearman’s rank order correlation or
rho (p): see correlation

Spearman-Brown formula: indicates the
increase in the reliability of a test follow-
ing lengthening by adding more items. The
formula is

B k(ry,)
T (- Dyl

where 7, is the reliability of the test length-
ened by a factor of k, k is the increase in length
and ry, is the original reliability.

Thus, if the reliability of the original test is
0.6 and it is proposed to double the length of
the test, the reliability is likely to be

. 2(0.6)
O+ (2 - 1)0.6]
12 12
“1r06 16 07

Thus, having doubled the length of the test,
the reliability increases from 0.6 to 0.75.
Whether this increase is worth the costs of
lengthening the scale so much depends on a
range of factors such as the deterrent effect
this would have on participants.

specific variance: the variance of a variable
that is not shared with other variables and
does not represent random error. The vari-
ance of a variable may be thought of as made
up of three components:
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1 common variance — that is, variance that
it shares with another identified variable;

2 error variance — that is, variance which
has not been identified in terms of its
nature or source;

3 specific variance — that is, variance on a
variable which only is measured by that
variable and no other.

These notions are largely conceptual rather
than practical and obviously what is error vari-
ance in one circumstance is common variance
in another. Their big advantage is when under-
standing the components of a correlation
matrix and the perfect self-correlations of 1.000
found in the diagonals of correlation matrices.

split-half reliability: a measure of the internal
consistency of a scale to measure a variable. It
consists of scoring one half of the items on the
scale and then scoring separately the other
half of the items. The correlation coefficient
between the two separate halves is essentially
the split-half reliability, though typically a sta-
tistical adjustment is made for the fact that the
scale has been effectively halved. Split-half
reliability is sometimes assessed as odd-even
reliability in which the scores based on the
odd-numbered items are correlated with the
scores based on the even-numbered items.
Split-half reliability is a measure of the inter-
nal consistency of the items of a scale rather
than a measure of consistency over time
(test-retest reliability). See also: alpha reliability,
Cronbach’s; internal consistency; reliability

SPSS: an abbreviation for Statistical Package
for the Social Sciences. It is one of several
widely used statistical packages for manipu-
lating and analysing data. Information about
SPSS can be found at the following website:
http: /www.spss.com/

spurious relationship: a relationship
between two variables which is no longer

apparent when one or more variables are
statistically controlled and do not appear to be
acting as intervening or mediating variables.
For example, there may be a positive rela-
tionship between the size of the police force
and amount of crime in that there may be a
bigger police force where there is more crime.
This relationship, however, may be due
entirely to size of population in that areas
with more people are likely to have both
more police and more crime. If this is the case
the relationship between the size of the police
force and the amount of crime would be a
spurious one.

square root: of a number is another number
which when squared gives the first number.
Thus, the square root number of 9 is 3 since 3
multiplied by itself equals 9. The sign | isan
instruction to find the square root of what fol-
lows. It is sometimes written as 2\ and as the
exponent 1/2. Square roots are not easy to
calculate by hand but are a regular feature of
even the most basic hand-held calculators.

squared or squaring: multiplying a number
by itself. It is normally written as 2% or 3* or 3.2>
indicating 2 squared, 3 squared and 3.2
squared respectively. This is simply another
way of writing 2 X2, 3 X3 and 3.2 X 3.2.
Another way of saying the same thing is to say
two to the power of two, three to the power of
two, and three point two to the power of two.
It is very commonly used in statistics.

squared Euclidean distance:a widely used
measure of proximity in a cluster analysis. It is
simply the sum of the squared differences
between the scores on two variables for the
cases in a sample. See also: cluster analysis

stacked or component bar chart: see
compound bar chart
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standard deviation (SD): quite a difficult
concept to understand because of its non-
intuitive nature. Possibly the easiest while
still accurate way to regard it is as the average
amount by which scores in a set of scores dif-
fer from the mean of that set of scores. In
other words, it is similar to the average devi-
ation from the mean. There are a couple of
problems. The first is that we are speaking of
the average absolute deviation from the mean
(otherwise, the average deviation would
always be zero). Second, the way in which the
average is calculated is not the common way
of calculating the average.

The formula for the calculation of the stan-
dard deviation is, of course, the clearest defi-
nition of what the concept is. The formula for
standard deviation is

>'(score — mean)?

standard deviation = ;
sample size

(X -X)
N

The formula would indicate the mean devia-
tion apart from the square sign and the
square root sign. This is a clue to the fact that
standard deviation is merely the average
deviation from the mean but calculated in an
unusual way.

There is no obvious sense in which the
standard deviation is standard since its value
depends on the values of the observations on
which it is calculated. Consequently, the size
of standard deviation varies markedly from
sample to sample.

Standard deviation has a variety of uses in
statistical analyses. It is important in the cal-
culation of standard scores (or z scores). It is
also appropriate as a measure of variation
of scores although variance is a closely
related and equally acceptable way of doing
the same.

When the standard deviation of a sample is
being used to estimate the standard deviation
of the population, the sum of squared devia-
tions is divided by the number of cases minus
one: (N — 1). The estimated standard devia-
tion rather than the standard deviation is
used in tests of statistical inference. See also:

bias; coefficient of variation; dispersion,
measure of; estimated standard deviation

standard error of the difference in
means: an index of the degree to which the
difference between two sample means will
differ from that between other samples. The
bigger this standard error is, the more likely it
is that this difference will vary across sam-
ples. The smaller the samples, the bigger is
the standard error likely to be. The standard
error is used to determine whether two
means are significantly different from one
another and to provide an estimate of the
probability that the difference will fall within
specified limits of this difference.

The way that the standard error is calcu-
lated depends on whether the scores from the
two samples are related or unrelated and, if
they are unrelated, whether the variances of
the scores for the two samples differ from
each other. Unrelated samples consist of dif-
ferent cases or participants while related sam-
ples consist of the same cases on two
occasions or similar or matched cases such as
wife and husband.

One formula for the standard error for
related means is

sum of (mean deviation — deviation)?
number of scores

The deviation or difference between pairs of
related scores is subtracted from the mean
difference for all pairs of scores. These differ-
ences are squared and added together to form
the deviation variance. The deviation vari-
ance is divided by the number of scores. The
square root of this result is the standard error.

A formula for the standard error for
unrelated means with different or unequal
variances is:

variance of one sample
- +
size of one sample

The formula for the standard error for unre-
lated means with similar or equal variances is

variance of other sample

size of other sample
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more complicated. Consequently, the terms
in the formula are abbreviated so that the size
of the sample is indicated by n and the two
samples are referred to by the two subscripts
1 and 2:

x|—+—
n,on

\/[Variancel X (n, — 1)] + [variance, X (n, — 1)] (1 1)

n +mn,—2

To determine whether the two means differ
significantly, a t test is carried out in which the
two means are subtracted from each other
and divided by the appropriate standard
error. The statistical significance of this f value
is looked up against the appropriate degrees
of freedom. For the related f test this is the
number of cases minus one. For the unrelated
t test with unequal variances it is the number
of cases in both samples minus two. For the
unrelated t test the formula is more compli-
cated and can be found in the reference below.

The calculation of the estimated probabil-
ity of the confidence interval for this differ-
ence is the same as that described in the
standard error of the mean. See also: sampling
distribution

Cramer (1998)

standard error of the estimate: a mea-
sure of the extent to which the estimate in a
simple or multiple regression varies from
sample to sample. The bigger the standard
error, the more the estimate varies from one
sample to another. The standard error of
the estimate is a measure of how accurate the
observed score of the criterion is from the
score predicted by one or more predictor
variables. The bigger the difference between
the observed and the predicted scores, the
bigger the standard error is and the less accu-
rate the estimate is.

The standard error of the estimate is the
square root of the variance of estimate. One
formula for the standard error is as follows:

sum of squared differences between the
criterion’s predicted and observed scores

Vnumber of cases — number of predictors — 1

standard error of kurtosis: an index of
the extent to which the kurtosis of a distri-
bution of scores varies from sample to sam-
ple. The bigger it is, the more likely it is to
differ from one sample to another. It is likely
to be bigger for smaller samples. The standard
error is used to determine whether the
kurtosis of a distribution of scores differs
significantly from that of a normal curve or
distribution.

One formula for this standard error is as
follows, where N represents the number of
cases in the sample:

variance of skewness X 4 X (N? — 1)
(N—=3) X (N+5)

To ascertain whether the kurtosis of a distrib-
ution of scores differs significantly from that
for a normal curve, divide the measure of
kurtosis by its standard error. This value is a
z score, the significance of which can be
looked up in a table of the standard normal
distribution. A z value of 1.96 or more is
statistically significant at the 95% or 0.05 two-
tailed level.
Cramer (1998)

standard error of the mean: a measure of
the extent to which the mean of a population
is likely to differ from sample to sample. The
bigger the standard error of the mean, the
more likely the mean is to vary from one sam-
ple to another. The standard error of the
mean takes account of the size of the sample
as the smaller the sample, the more likely
it is that the sample mean will differ from
the population mean. One formula for the
standard error is

variance of sample means
number of cases in the sample

The standard error is the standard deviation
of the variance of sample means of a particu-
lar size. As we do not know what is the vari-
ance of the means of samples of that size, we
assume that it is the same as the variance of
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that sample. In other words, the standard
error is the standard deviation of the variance
of a sample taking into account the size of
that sample. Consequently, one formula for
the standard error is

\/ variance of sample

number of cases in the sample

The standard error of the mean is used to
determine whether the sample mean differs
significantly from the population mean. The
sample mean is subtracted from the popula-
tion mean and this difference is divided by
the standard error of the mean. This test is
known as a one-sample ¢ test.

population mean — sample mean

standard error of the mean

The standard error is also used to provide an
estimate of the probability of the difference
between the population and the sample
mean falling within a specified interval of
values called the confidence interval of
the difference. Suppose, for example, that
the difference between the population and the
sample mean is 1.20, the standard error of the
mean is 0.20 and the size of the sample is 50.
To work out the 95% probability that this
difference will fall within certain limits of a
difference of 1.20, we look up the critical
value of the 95% or 0.05 two-tailed level of ¢
for 48 degrees of freedom (50 — 2 = 48),
which is 2.011. We multiply this ¢t value by
the standard error of the mean to give the
interval that this difference can fall on either
side of the difference. This interval is 0.4022
(2.011 X 0.20 = 0.4022). To find the lower
limit or boundary of the 95% confidence
interval of the difference we subtract 0.4022
from 1.20 which gives about 0.80
(1.20 — 0.4022 = 0.7978). To work out the
upper limit we add 0.4022 to 1.20 which
gives about 1.60 (1.20 + 0.4022 = 1.6022). In
other words, there is a 95% probability that
the difference will fall between 0.80 and 1.60.
If the standard error was bigger than 0.20,
the confidence interval would be bigger.

standard error of the regression
coefficient: a measure of the extent to which
the unstandardized regression coefficient in
simple and multiple regression is likely to
vary from one sample to another. The larger
the standard error, the more likely it is to dif-
fer from sample to sample.

The standard error can be used to give an
estimate of a particular probability of the
regression coefficient falling within certain
limits of the coefficient. Suppose, for exam-
ple, that the unstandardized regression coeffi-
cient is 0.50, its standard error is 0.10 and the
size of the sample is 100. We can calculate,
say, the 95% probability of that coefficient
varying within certain limits of 0.50. To do
this we look up the two-tailed 5% or 0.05
probability level of the t value for the appro-
priate degrees of freedom. These are the num-
ber of cases minus the number of predictors
minus one. So if there is one predictor the
degrees of freedom are 98 (100 — 1 — 1 = 98).
The 95% two-tailed f value for 98 degrees of
freedom is about 1.984. We multiply this ¢
value by the standard error to give the inter-
val that the coefficient can fall on one side of
the regression coefficient. This interval is
0.1984 (1.984 X 0.10 = 0.1984). To find the
lower limit or boundary of the 95% confi-
dence interval for the regression coefficient
we subtract 0.1984 from 0.50 which gives
about 0.30 (0.50 — 0.1984 = 0.3016). To work
out the upper limit we add 0.1984 to 0.50
which gives about 0.70 (0.50 + 0.1984 =
0.6984). For this example, there is a 95% prob-
ability that the unstandardized regression
coefficient will fall between 0.30 and 0.70. If
the standard error was bigger than 0.10, the
confidence interval would be bigger. For
example, a standard error of 0.20 for the same
example would give an interval of 0.3968
(1.984 X 0.20 = 0.3968), resulting in a lower
limit of about 0.10 (0.50 — 0.3968 = 0.1032)
and an upper limit of about 0.90 (0.50 +
0.3968 = 0.8968).

The standard error is also used to deter-
mine the statistical significance of the
regression coefficient. The t test for the
regression coefficient is the unstandard-
ized regression coefficient divided by its
standard error:
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unstandardized regression coefficient

F=
standard error of the unstandardized
regression coefficient

For this example with a standard error of
0.10, the t value is 10.00 (0.50/0.10 = 10.00).
As this value of 10.00 is greater than the two-
tailed 0.05 critical value of t, which is about
1.984, we would conclude that the regression
coefficient is statistically significant at less
than the 0.05 two-tailed level.

One formula for the standard error is as
follows:

variance of estimate
sum of squares of the predictor X (1 — R?

where R? is the squared multiple correlation
between the predictor and the other predictors.
Pedhazur (1982)

standard error of skewness: a measure of
the extent to which the skewness of a distrib-
ution of scores is likely to vary from one sam-
ple to another. The bigger the standard error,
the more likely it is that it will differ from one
sample to another. The smaller the sample,
the bigger the standard error is likely to be.
It is used to determine whether the skewness
of a distribution of scores is significantly
different from that of a normal curve or
distribution.

One formula for the standard error of
skewness is

6 X NX(N-1)
(N=2)x(N+1) X (N +3)

where N represents the number of cases in
the sample.

To determine whether skewness differs
significantly from the normal distribution,
divide the measure of skewness by its stan-
dard error. This value is a z score, the signifi-
cance of which can be looked up in a table of
the standard normal distribution. A z value of

1.96 or more is statistically significant at the
95% or 0.05 two-tailed level.
Cramer (1998)

standard normal or z distribution: a
normal distribution with a mean of 0 and a
standard deviation of 1. It is a normal distrib-
ution of standard scores. See also: standardized
score; Z score

standardized partial regression coeffi-
cient or weight: the statistic in a multiple
regression which describes the strength and
the direction of the linear association
between a predictor and a criterion. It pro-
vides a measure of the unique association
between that predictor and criterion, control-
ling for or partialling out any association
between that predictor, the other predictors
in that step of the multiple regression and
the criterion. It is standardized so that its val-
ues vary from -1.00 to 1.00. A higher value,
ignoring its sign, means that the predictor
has a stronger association with the criterion
and so has a greater weight in predicting it.
Because all the predictors have been stan-
dardized in this way, it is possible to com-
pare the relative strengths of their association
or the weights with the criterion. The direc-
tion of the association is indicated by the
sign of the coefficient in the same way as it is
with a correlation coefficient. No sign means
that the association is positive with high
scores on the predictor being associated with
high scores on the criterion. A negative sign
indicates that the association is negative with
high scores on the predictor being associated
with low scores on the criterion. A coefficient
of 0.50 means that for every standard devia-
tion increase in the value of the predictor
there is a standard deviation increase of 0.50
in the criterion.

The unstandardized partial regression
coefficient is expressed in the unstandardized
scores of the original variables and can be
greater than *+1.00. A predictor which is
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measured in units with larger values is more
likely to have a bigger unstandardized partial
regression coefficient than a predictor mea-
sured in units of smaller values, making it
difficult to compare the relative weights of
predictors when they are not measured in
terms of the same scale or metric.

A standardized partial regression coefficient
can be converted into its unstandardized
coefficient by multiplying the stand-
ardized partial regression coefficient by the
standard deviation (SD) of the criterion and
dividing it by the standard deviation of the
predictor:

unstandardized  standardized

partial partial criterion SD
regression = regression o
coefficient coefficient predictor 5D

The statistical significance of the standard-
ized and the unstandardized partial coeffi-
cients is the same value and can be expressed
in terms of either a ¢ or an F value. The ¢ test
for the partial regression coefficient is the
unstandardized partial regression coefficient
divided by its standard error:

unstandardized regression coefficient

t=
standard error of the unstandardized
regression coefficient

standardized regression coefficient or
weight: see correlation; regression equa-
tion; standardized partial regression coeffi-
cient or weight

standardized, standard or z score: a
score which has been transformed to the stan-
dard scale in statistics. Just as measures of
length can be standardized into metres, such
as when an imperial measure is turned into
a metric measure (i.e. 1 inch becomes 25.4
millimetres), so can scores be converted to the
standard measuring scale of statistics. Here
the analogy with physical scales breaks down
as in statistics scores are standardized by con-
verting into new ‘standardized” scores with a
mean of 0 and a standard deviation of 1. For
any set of scores such as

5,9,14,17 and 20

it is a relatively easy matter to convert them
to a sample of scores with a mean of 0. All
that is necessary is that the mean of the sam-
ple of scores is calculated and then this mean
subtracted from each of the scores. The mean
of the above five scores is 65/5 = 13.0.
Subtract 13.0 from each of the above scores:

5-13.0,9 —13.0,14 — 13.0,17 — 13.0 and
20 — 13.0

This gives the following set of scores in which
the mean score is 0.0:

-8,-4,1,4and 7

By doing this, only the mean has been
adjusted. The next step would be to ensure
that the standard deviation of the scores
equals 1.0. The standard deviation of the
above scores as they stand can be calculated
with the usual formula and is 5.404. If we
divide each of the adjusted scores (deviations
from the mean) by the standard deviation of
5.404 we get the following set of scores:

—1.480, —0.740, —0.185, —0.740 and 1.295

If we then calculate the standard deviation
of these new scores, we find that the new
standard deviation is 1.0. Hence, we have
transformed a set of scores into a new set of
scores with a mean of 0 and a standard devi-
ation of 1. Hence, the new scores correspond
to the standard normal distribution by defin-
ition since the standard normal distribution
has a mean of 0 and a standard deviation of 1.

It follows from this that any distribution of
scores may be transformed to the standard
normal distribution. This allows us to use a
single generic frequency distribution (the
standard normal distribution) to describe the
frequency distribution of any set of scores
once it has been transformed to the standard
normal distribution. Table S.2 gives a short
version of this distribution.

Thus, if we know what a score is on the
standard normal distribution we can use the
table of the standard normal distribution to
assess where it is relative to others. So if the
score transformed to the standard normal
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Table S.2  Standard normal distribution (z distribution)
z % lower z %lower z %lower z %lower z %lower z %lower z % lower
40 000 -22 139 -13 968 -04 3446 05 69.05 14 9192 23 9893
30 043 21 179 -12 1151 -03 3821 06 7257 |5 9332 24 99.18
29 019 -20 228 -l 1357 -02 4207 07 7580 16 9452 25 9938
28 026 19 287 —10 1587 -0.I 4602 08 7881 17 9554 26  99.53
27 035 I8 359 -09 184l 00 5000 09 8159 18 9641 27  99.65
26 047 -17 446 -08 2119 01 5398 10 8413 19 9713 28 9974
25 062 —16 548 —07 2420 02 5793 || 8643 20 9750 29 998l
24 082 -I5 668 -—06 2743 03 6179 12 8849 21 9772 30 9987
—23 107 -14 808 -05 3085 04 6554 13 9032 22 9821 40 100.00
Special values: a z of 1.64 has 95% lower;a z of —1.64 has 5% lower;a z of 1.96 has 97.5% lower;and a
z of —1.96 has 2.5% lower.
distribution is 1.96, Table S.2 tells us that only ~ Table S.3 Symbols for population and
2.5% of scores in the distribution will be sample values
bigger than it. Svmbol f. Svmbol f
The quicker way of doing all of this is sim- ymnbo? for ym 2ot for
. population value sample value
ply to wc?rk out the following formula fo¥ the Concept (parameter) (statistic)
score which comes from a set of scores with a
known standard deviation: Mean u (mu) X
— Standard G (sigma) s
score — mean X=X o
7 score = = deviation
Standard deviation SD Correlation P (rho) r
coefficient

The z score is a score transformed to its
value in the standard normal distribution. So
if the z score is calculated, Table S.2 will place
that transformed score relative to other
scores. It gives the percentage of scores lower
than that particular z score.

Generally speaking, the requirement of the
bell shape for the frequency distribution is
ignored as it makes relatively little difference
except in conditions of gross skewness. See
also: standard deviation; z score

statistic: a characteristic such as a mean,
standard deviation or any other measure
which is applied to a sample of data. Applied
to a population exactly the same charact-
eristics are described as parameters of the
population.

statistical inference: see estimated stan-
dard deviation; inferential statistics; null
hypothesis

statistical notation: the symbols used in
statistical theory are based largely on Greek
alphabet letters and the conventional (Latin
or Roman) alphabet. Greek alphabet letters
are used to denote population characteristics
(parameters) and the letters of the conven-
tional alphabet used to symbolize sample
characteristics. Hence, the value of the popu-
lation mean (i.e. a parameter) is denoted as p
(mu) whereas the value of the sample mean
(i.e. the statistic) is denoted as X. Table S.3
gives the equivalent symbols for parameters
and statistics.

Constants are usually represented by the
alphabetical symbols (g, b, ¢ and similar from
the beginning of the alphabet).

Scores on the first variable are primarily
represented by the symbol X. Scores on a sec-
ond variable are usually represented by the
symbol Y. Scores on a third variable are usu-
ally represented by the symbol Z.

However, as scores would usually be tabu-
lated as rows and columns, it is conventional
to designate the column in question. So X,
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would be the first score in the column, X,
would be the fourth score in the column and
X, would be the final score in the column. The
rows are designated by a second subscript if
the data are in the form of a two-dimensional
table or matrix. X, ; would be the score in the
first column and fifth row. X,, would be the
score in the fourth column and second row.

statistical package: an integrated set of
computer programs enabling a wide range of
statistical analyses of data usually using a
single spreadsheet for the data. Typical
examples include SPSS, Minitab, etc. Most
statistical analyses are now conducted using
such a package. See also: Minitab; SAS;
SPSS; SYSTAT

statistical power: see power of a test

statistical significance: see hypothesis
testing; significant; t distribution

stem and leaf diagram: a form of statisti-
cal diagram which effectively enables both
the illustration of the broad trends of the data
and details of the individual observations. It
can be used to represent small samples of
scores. There are no foolproof ways of con-
structing such a diagram effectively apart
from trial and error. Take a look at the follow-
ing diagram:

STEM LEAF

7
8
9
10
11
12
13
14

N — WK~ NN O
W O\ Ul = W N
N o W N
PSS
Ul

Imagine that the diagram represents the 1Q of
a class of schoolchildren. The first column is
the stem labelled 07, 08, ..., 14. These are IQ
ranges such that 07 represents IQs in the 70s,
13 represents IQs in the 130s. The leaf indi-
cates the precise IQs of all of the children in
the sample. So the row represents a child with
an IQ of 75 and a child with an IQ of 77. The
last row indicates a child with an IQ of 142
and another with an IQ of 143. Also notice
how in general the pattern seems to indicate
a roughly normal distribution.

Choosing an appropriate stem is crucial.
That is, too many or too few stems make
the diagram unhelpful. Furthermore, too
many scores and the diagram also becomes
unwieldy.

stepwise entry: a method in which predic-
tors are entered according to some statistical
criteria in statistical methods such as logistic
regression, multiple regression, discriminant
function analysis and log-linear analysis. The
results of such an analysis may depend on
very small differences in predictors meeting
those criteria. One predictor may be entered
into an analysis rather than another predictor
when the differences between the two predic-
tors are very small. Consequently, the results
of this method always need to be interpreted
with care.

stratified random sample: straight-
forward random sampling may leave out a
particular class of cases. Thus, it is conceiv-
able that a random sample drawn, say, from a
list of electors will consist overwhelmingly of
women with few men selected despite the
fact that the sexes are equally common on the
electoral list. Random sampling, theoretically,
may lead to a whole range of different out-
comes some of which are not representative
of the population. One way of dealing with
this is to stratify the population in terms of
characteristics which can be assessed from
the sampling frame. For example, the sam-
pling could be done in such a way that 50% of
the sample is male and the other 50% is
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female. For example, males may be selected
from the list and then randomly sampled,
then the process repeated for females. In this
way, variations in sample sex distribution are
circumvented. See also: cluster sample;
probability sampling

structural equation modelling: a sophisti-
cated and complex set of statistical procedures
which can be used to carry out confirmatory
factor analysis and path analysis on quantita-
tive variables. It enables the statistical fit of
models depicting the relationship between
variables to be determined. Various statistical
packages have been developed to carry it out
including AMOS, EQS and LISREL. See also:
AMOS; attenuation, correcting correlations
for; confirmatory factor analysis; discrimi-
nant function analysis; EQS; identification;
just-identified model; LISREL; manifest vari-
able; maximum likelihood estimation; over-
identified model

Cramer (2003)

Student’s t test: see t test

Student Newman-Keuls multiple com-
parison test: see Newman-Keuls method,
procedure or test

studentized range statistic q: used in
some multiple comparison tests such as the
Tukey, or HSD (Honestly Significant
Difference) test which determine which of
three or more means differ significantly from
one another. It is the difference or range
between the smallest and the largest mean
divided by the standard error of the range of
means which is the square root of the divi-
sion of the error mean square by the number
of cases in a group:

largest mean — smallest mean

Jerror mean square/number of cases in a group

Table S.4 The 0.05 critical values of the
studentized range

df for

error

mean

square df for number of means

2 3 4 5 6 7

8 326 4.04 453 489 517 540
12 3.08 377 420 451 475 495
20 295 358 396 423 445 462
30 289 349 384 410 430 446
40 286 344 379 404 423 439
60 283 340 374 398 4.6 43I
120 280 336 369 392 410 424
©o 277 331 363 386 403 417

It is called ‘studentized” after the pseudonym
‘Student’ — the pen name of William Sealey
Gossett who also developed the t test.

The distribution of this statistic depends
on two sets of degrees of freedom, one for the
number of means being compared and the
other for the error mean square. With four
groups of three cases each, the degrees of
freedom for the number of groups being
compared are 4 and for the error mean square
is the number of cases minus the number of
groups, which is 8 (12 — 4 = 8). The table for
this distribution can be found in some statis-
tics texts such as the one listed below. Values
that this statistic has to be or exceed to be sig-
nificant at the 0.05 level are given in Table S.4
for a selection of degrees of freedom. See
also: Duncan’s new multiple range test;
Newman-Keuls method; Tukey, and Tukey,
tests

Kirk (1995)

subject: a traditional and increasingly
archaic word for participant which denotes a
person taking part in a study. Participant is a
more acceptable term because it denotes the
active participation of individuals in the
research process as opposed to subject which
tends to denote someone who obeys the will
of the researcher. Case is commonly used in
statistical packages as they need to be able to
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deal with other units of interest such as
organizations. The term subject cannot totally
be discarded because statistics include terms
like related subjects design. Proband is
another term sometimes used to describe a
subject or person. This term is more com-
monly found in studies examining the influ-
ence of heredity. The term is derived from the
Latin meaning tested or examined.

The term subject should be avoided except
where traditional use makes it inevitable (or
at least its avoidance almost impossible).

subject variable: a term which is some-
times used to describe the characteristics of
subjects or participants which are not mani-
pulated such as their gender, age, socio-
economic status, abilities and personality
characteristics. A distinction may be made
between subject variables, which have not
been manipulated, and independent vari-
ables, which have been manipulated.

subtract: deduct one number from another.
Take one number away from the other. See
also: negative values

sum of squares (SS) or squared deviations:
a statistic in analysis of variance which is used
to form the mean square (MS). The mean
square is the sum of squares divided by its
degrees of freedom. Square is short for squared
deviations or differences. What these differ-
ences are depends on what term or source of
variation is being calculated. For the between-
groups source of variation it is the squared
difference between the group mean and the
overall mean which is then multiplied by the
number of cases in that group. The squared dif-
ferences for each group are then added together
or summed. See also: between-groups vari-
ance; error sum of squares

suppressed relationship: the apparent
absence of a relationship between two vari-
ables which is brought about by one or more
other variables. The relationship between the
two variables becomes apparent when these
other variables are statistically controlled.
For example, there may be no relationship
between how aggressive one is and how
much violence one watches on TV. The lack of
a relationship may be due to a third factor
such as how much TV is watched. People
who watch more TV may also as a result see
more violence on TV even though they are
less aggressive. If we statistically control for
the amount of TV watched we may find a
positive relationship between being aggres-
sive and watching violence on TV.

suppressor variable: a variable which sup-
presses or hides the relationship between two
other variables. See also: multiple regression;
suppressed relationship

survey: a method which generally refers to a
sample of people being asked questions on
one occasion. Usually the purpose is to obtain
descriptive statistics which reflect the popu-
lation’s views. The collection of information
at one point in time does not provide a strong
test of the temporal or causal relationship
between the variables measured.

symmetry: usually refers to the shape of a
frequency distribution. A symmetrical fre-
quency distribution is one in which the halves
above and below the mean, median or mode,
are mirror images of one another. They would
align perfectly if folded around the centre of the
distribution. In other words, symmetry means
exactly what it means in standard English.
Asymmetry refers to a distribution which is
not symmetric or symmetrical.
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SYSTAT: one of several widely used statistical
packages for manipulating and analysing
data. Information about SYSTAT can be
found at the following website:

http: /www.systat.com/

systematic sample: a sample in which the
cases in a population are consecutively num-
bered and cases are selected in terms of their
order in the list, such as every 10th number.

Suppose, for example, we need to select 100
cases from a population of 1000 cases which
have been numbered from 1 to 1000. Rather
than selecting cases using some random pro-
cedure as in simple random sampling, we
could simply select every 10th case (1000/
100 = 10) which would give us a sample of
100 (1000/10 = 100). The initial number we
chose could vary anywhere between 1 and
10. If that number was, say, 7, then we would
select individuals numbered 7, 17, 27 and so
on up to number 997.



t distribution: a distribution of t values
which varies according to the number of cases
in a sample. It becomes increasingly similar
to a z or normal distribution the bigger the
sample. The smaller the sample, the flatter
the distribution becomes. The t distribution is
used to determine the critical value that t has
to be, or to exceed, in order for it to achieve
statistical significance. The larger this value,
the more likely it is to be statistically signifi-
cant. The sign of this value is ignored. For
large samples, t has to be about 1.96 or more
to be statistically significant at the 95% or 0.05
two-tailed level. The smaller the sample, the
larger t has to be to be statistically significant
at this level.

The critical value that t has to be, or to be
bigger than, to be significant at the 0.05 two-
tailed level is shown in Table T.1 for selected
samples increasing in size. Sample size is
expressed in terms of (df) rather than number
of cases because the way in which the
degrees of freedom are calculated varies
slightly according to the f test used for deter-
mining statistical significance. For samples of
20 or more this critical value is close to 2.00.

t test: generally determines whether two
means are significantly different from each
other or the mean of a sample is significantly
different from that of the population from
which it may have been drawn. It is also used
to ascertain the statistical significance of
correlations and partial correlations, and
regression and partial regression coefficients.

Table T.I The 0.05 two-tailed critical value

of t
df Critical value
| 12.706
5 2.571
10 2.228
20 2.086
50 2.009
100 1.984
1000 1.962
o 1.960

The exact nature of the test depends on the use
to which it is being put. The sign of the t test is
ignored since it is arbitrary and depends on
what mean is subtracted from the other. The
larger the t value of the test, the more likely the
test is statistically significant. The test can be
two tailed or one tailed. A one-tailed test is
used when there are good grounds for pre-
dicting the direction or sign of the difference
or the association. When there are no such
grounds a two-tailed test is applied. The ¢
value has to be higher for a two- than a one-
tailed test. So, the two-tailed test is less likely
to be statistically significant than the one-
tailed test. See also: t test for one sample; t
test for related samples; t test for related
variances; t test for unrelated samples

t test for one sample: determines whether
the mean of a sample differs significantly
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from that of the population. It is the difference
between the population mean and the sample
mean divided by the standard error of the
mean:

population mean — sample mean

standard error of the mean

The larger the t value, disregarding its
sign, the more likely the two means will be
significantly different. The degrees of free-
dom for this test are the number of cases
minus one.

t test for related samples: also known as
the paired-samples t test. It determines
whether the means of two samples that come
from the same or similar cases are signifi-
cantly different from each other. It is the dif-
ference between the two means divided by
the standard error of the difference in means:

mean of one sample — mean of other sample

standard error of the difference in means

The larger the t value, ignoring its sign, the
more likely the two means differ significantly
from each other. The degrees of freedom for this
test are the number of pairs of cases minus one.

t test for related variances: determines
whether the variances of two samples that
come from the same or similar cases are sig-
nificantly different from each other. The fol-
lowing formula can be used to calculate it,
where r is the correlation between the pairs of
scores:

(large variance — smaller variance) X
Jnumber of cases — 2

J(1 = 7% X (4 X larger variance X smaller
variance)

The larger the t value, the more likely it is
that the variances will differ significantly
from each other. The degrees of freedom are
the number of cases minus one.

McNemar (1969)

t test for unrelated samples: also known
as the independent-samples ¢ test. It is used
to determine whether the means of two sam-
ples that consist of different or unrelated
cases differ significantly from each other. It is
the difference between the two means
divided by the standard error of the differ-
ence in means:

mean of one sample — mean of other sample

standard error of the difference in means

The larger the t value, ignoring its sign, the
more likely the two means differ significantly
from each other.

The way in which the standard error is cal-
culated depends on whether the variances
are dissimilar and whether the group size is
unequal. The standard error is the same
when the group sizes are equal. It may be dif-
ferent when the group sizes are unequal. The
way in which the degrees of freedom are cal-
culated depends on whether the variances
are similar. When they are similar the degrees
of freedom for this test is the number of cases
minus one. When they are dissimilar, they are
calculated according to the following for-
mula, where n refers to the number of cases
in a sample and where subscripts 1 and 2
refer to the two samples:

[(variance,/n,)* + (variance,/n,)]?

(variance, /n,)?
(n, — 1)

(variance,/n,)*
(7’12 - 1)

This formula in many cases will lead to
degrees of freedom which are not a whole
number but which involve decimal places.
When looking up the statistical significance
of the f values for these degrees of freedom, it
may be preferable to round up the degrees of
freedom to the nearest whole number making
the test slightly more conservative. See also:
pooled variances
Pedhazur and Schmelkin (1991)

T, test: determines whether Pearson’s corre-
lation between one variable and two others
differs significantly when all three variables
are measured in the same sample. For example,
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the correlation between relationship satisfaction
and relationship conflict may be compared with
the correlation between relationship satis-
faction and relationship support. The statistical
significance of the T, test is the same as the
t test except that the degrees of freedom are
the number of cases minus three.
Cramer (1998); Steiger (1980)

Tamhane’s T2 multiple comparison
test: a post hoc or multiple comparison test
which is used to determine which of three
or more means differ from one another
when the F ratio in an analysis of variance is
significant. It was developed to deal with
groups with unequal variances. It can be used
with groups of equal or unequal size. It is
based on the unrelated t test as modified
in the Dunn-Sidak multiple comparison
test and degrees of freedom as calculated in
the Games-Howell multiple comparison
procedure.
Kirk (1995)

test-retest reliability: the correlation coef-
ficient between the scores on a test given to a
sample of participants at time A and their
scores at a later time B. It is then essentially a
measure of the consistency of the scores from
one time to the next. It allows one to assess
whether the scores remain stable over time.
Test—retest reliability indicates how likely it
is that a person’s score on the test will be
similar relative to the scores of other partici-
pants from one administration to the next. In
other words, it does not measure whether the
actual scores are similar. For variables which
ought to be stable over time (such as, say,
intelligence) high test-retest reliability is a
good thing. However, there are variables
which may be fairly unstable over time (e.g.
how happy a person feels) and may be
expected to vary from day to day. In that
case, a good and valid measure might be
expected to be fairly unstable over time and
hence have low test-retest reliability. See also:
reliability

ties or tied scores: two or more scores which
have the same value on a variable. When we
rank these scores we need to give all of the tied
scores the same rank. This is calculated as being
the average rank which would have been allo-
cated had we arbitrarily ranked the tied scores.
For example, if we had the five scores of 5,7, 7,
7 and 9, 5 would be given a rank of 1, 7 a rank
of 3[(2+3 +4)/3=23]and 9 a rank of 5.

total: the amount obtained when a series of
numbers or frequencies are added together. It
is also known as the sum.

transformations: these are mathematical pro-
cedures or adjustments applied to scores in an
attempt to make the distribution of the scores fit
requirements. Statistical procedures are often
affected by the presence of skewness or outliers.
A transformation will often reduce the impact
of these. The nature of the transformation will
depend on the nature of the problem and they
range from trimming to logarithmic transfor-
mations. Table T.2 illustrates some transforma-
tions though none may be ideal for a particular
purpose. The transformations for values of 0
can be problematic and it is best to adjust the
scores to give a minimum value of 1 before
transforming them. Adding a constant to every
score does not affect the outcome of the statisti-
cal calculations but one needs to readjust
means, for example by subtracting the constant
when reporting the findings. Variance is unaf-
fected by adding a constant to every score.
There is nothing intrinsically good about
carrying out a data transformation particu-
larly as transformed scores cease to have any
of the obvious meaning that they may have
had in their original form. They are there to
deal with difficult data. As such, they have a
place but their use is relatively uncommon in
modern practice. See also: logarithm

treatment group or condition: also known
as the experimental group/condition. The
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Table T.2 Some examples of transformations

Log 10 Natural log Reciprocal Square root
Score transformation transformation transformation transformation
| 0.000 0.000 1.000 1.000
5 0.699 1.609 0.200 2.236
10 1.000 2.303 0.100 3.162
50 1.699 3.912 0.020 7.071
100 2.000 4.605 0.010 10.000
500 2.699 6.215 0.002 22.361
1000 3.000 6.908 0.001 31.623
5000 3.699 8.517 0.0002 70.711
10,000 4.000 9.210 0.0001 100.000

condition to which higher levels of the
independent variable are applied as opposed
to the control condition which receives no
increased level of the independent variable. The
treatment condition is the direct focus of the
investigation and the impact of a particular
experimental treatment. There may be several
treatment groups each receiving a different
amount or type of the treatment variable.

trend analysis in analysis of variance:
may be used in analysis of variance to deter-
mine the shape of the relationship between
the dependent variable and an independent
variable which is quantitative in that it repre-
sents increasing or decreasing levels of
that variable. Examples of such a quantita-
tive independent variable include increasing
quantities of a drug such as nicotine or alco-
hol, increasing levels of a state such as sleep
deprivation or increasing intensity of a vari-
able such as noise. If the F ratio of the analy-
sis of variance is statistically significant, we
may use trend analysis to find out if the rela-
tionship between the dependent and the
independent variable is a linear or non-linear
one and, if it is non-linear, what kind of non-
linear relationship it is.

The shape of the relationship between two
variables can be described in terms of a poly-
nomial equation. A first-degree or linear
polynomial represents a linear or straight line
relationship between two variables where the
values of one variable either increase or

decrease as the values of the other variable
increase. For example, performance may
decrease as sleep deprivation increases. A lin-
ear trend can be defined by the following
equation, where y represents the dependent
variable, b the slope of the line, x the inde-
pendent variable and a a constant.

y=(@, Xx)+a

A minimum of two groups or levels is neces-
sary to define a linear trend.

A second-order or quadratic relationship
represents a curvilinear relationship in which
the values of one variable increase (or
decrease) and then decrease (or increase) as
the values of the other variable increase. For
instance, performance may increase as back-
ground noise increases and then decrease as
it becomes too loud. A quadratic trend can be
defined by the following equation:

y=(b, X x)*+ (b, X x) +a,

A minimum of three groups or levels is nec-
essary to define a quadratic trend.

A third-order or cubic relationship repre-
sents a curvilinear relationship in which
the values of one variable first increase (or
decrease), then decrease (or increase) and then
increase again (or decrease). A cubic trend can
be defined by the following equation:

y = (b X x)* + (b, X x)* + (b, X x) + a5

A minimum of four groups or levels is neces-
sary to define a cubic trend.
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A fourth-order or quartic relationship
represents a curvilinear relationship in which
the values of one variable first increase (or
decrease), then decrease (or increase), then
increase again (or decrease) and then finally
decrease again (or increase). A quartic trend
can be defined by the following equation:

y = (b, X x)* + (by X x)* + (b, X x)?
+ (b, X x) +a,

A minimum of five groups or levels are nec-
essary to define a quartic trend.

These equations can be represented by
orthogonal polynomial coefficients which are
a special case of contrasts. Where the number
of cases in each group is the same and where
the values of the independent variable are
equally spaced (such as 4, 8, 12 and 16 hours
of sleep deprivation), the value of these coef-
ficients can be obtained from a table which is
available in some statistics textbooks such as
the one listed below. The coefficients for three
to five groups are presented in Table T.3. The
procedure for calculating orthogonal coeffi-
cients for unequal intervals and unequal
group sizes is described in the reference listed
below. The number of orthogonal polynomial
contrasts is always one less the number of
groups. So, if there are three groups, there are
two orthogonal polynomial contrasts which
represent a linear and a quadratic trend.

The formula for calculating the F ratio for a
trend is as follows:

[(group 1 weight X group 1 mean) + (group 2 weight
X group 2 mean) + ]2

mean X

square group 1 n

F=
Error group 1 weight®  group 2 weight?
+ + o
( group 2 n )

For the example given in the entry for the
Newman-Keuls method there are four
groups of three cases each. We will assume
that the four groups represent an equally
spaced variable. The four means are 6, 14, 12
and 2 respectively. The error mean square is
9.25. As there are four groups, there are three
orthogonal polynomial contrasts which rep-
resent a linear, a quadratic and a cubic trend.
The F ratio for the linear trend is 3.18:

Table T.3  Coefficients for orthogonal
polynomials

Trends

Three groups:

Linear -1 0 |
Quadratic | -2 |

Four groups:
Linear -3 -1 | 3
Quadratic | -1 =1 |
Cubic - 3 -3 |

Five groups:
Linear -2 -1 0 | 2
Quadratic 2 -1 -2 -1 2
Cubic -1 2 0 -2 |
Quartic | —4 6 —4 |

[(-3%6)+ (-1 x14) + (1 X 12) + 3 X 2)]?

_12 12 2 2
9.25><<—3+—1+1 3)
3 3

_+_
3 3
(18 + —14 + 12 + 6)?
9.25 X 2+}+1+?
3'3 3 3
—14?
9,25X(L+1+9>
3
196 196 196
B 20 925 %667 6170 P
925 % = : : :

This F ratio has two sets of degrees of free-
dom, one for the contrast or numerator of the
formula and one for the error mean square
or denominator of the formula. The degree
of freedom is 1 for the contrast and the
number of cases minus the number of
groups for the error mean square, which is
8 (12 — 4 = 8). The critical value of F that
the F ratio has to be or to exceed to be sta-
tistically significant at the 0.05 level with
these two degrees of freedom is about 5.32.
This value can be found in a table in many
statistics texts and is usually given in statis-
tical packages which compute this contrast.
As the F ratio of 3.18 is less than the critical
value of 5.32, the four means do not repre-
sent a linear trend.
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The F ratio for the quadratic trend is 26.28:

[(AXx6)+ (—1x14) + (-1 x12) + (1 X 2)]?

12 _12 _12 12
9.25><<—+—+—+—>
3 3 3 3

6+ —14 + —12 + 2y

9.25 X l+l+l+l
3737373

18

+
995 x (ﬂ)

3
324 324 324
- 1 905123 1233 0

925 %% : :

As the F ratio of 26.28 is greater than the criti-
cal value of 5.32, the four means represent a
quadratic trend in which the means increase
and then decrease.

The F ratio for the cubic trend is 0.06:

[(=1 X 6) + (3 x 14) + (=3 X 12) + (1 X 2)]

_12 2 _n2 12
9.25 X <—+i s +—>
3 3 3 3

(-6 + 42 + =36 + 2)

1 1
9.25 X <§+2+2+—>

3 3 3
22
<1+9+9+1)

9.25 X

4 4 4

20 925x% 667 6170
925 x =

0.06

As the F ratio of 0.06 is less than the critical
value of 5.32, the four means do not represent
a cubic trend.

Kirk (1995)

trimmed samples: sometimes applied to
data distributions which have difficulties
associated with the tails, such as small

numbers of extreme scores. A trimmed sample
is a sample in which a fixed percentage of
cases in each tail of the distribution is deleted.
So a 10% trimmed sample has 10% of each
tail removed. See also: transformations

true experiment: an experiment in which
one or more variables have been manipulated,
all other variables have been held constant
and participants have been randomly assigned
either to the different conditions in a between-
subjects design or to the different orders of the
conditions in a within-subjects design. The
manipulated variables are often referred to as
independent variables because they are
assumed not to be related to any other vari-
ables that might affect the measured variables.
The measured variables are usually known as
dependent variables because they are assumed
to depend on the independent ones. One
advantage of this design is that if the depen-
dent variable differs significantly between the
conditions, then these differences should only
be brought about by the manipulation of the
variables. This design is seen as being the most
appropriate one for determining the causal
relationship between two variables. The rela-
tionship between the independent and the
dependent variable may be reciprocal. To
determine this, the previous dependent vari-
able needs to be manipulated and its effect on
the previous independent variable needs to
be examined. See also: analysis of covariance;
quasi-experiments
Cook and Campbell (1979)

true score: the observed score on a measure
is thought to consist of a true score and random
error. If the true score is assumed not to vary
across occasions or people and the error is ran-
dom, then the random error should cancel out
leaving the true score. In other words, the true
score is the mean of the scores. If it is assumed
that the true score may vary between individ-
uals, the reliability of a measure can be defined
as the ratio of true score variance to observed
score variance. See also: reliability



172 THE SAGE DICTIONARY OF STATISTICS

Tukey, or HSD (Honestly Significant
Difference) test: a post hoc or multiple com-
parison test which is used to determine
whether three or more means differ signifi-
cantly in an analysis of variance. It assumes
equal variance in the three or more groups
and is only approximate for unequal group
sizes. This test is like the Newman-Keuls
method except that the critical difference that
any two means have to be bigger than, to be
statistically significant, is set by the total
number of means and is not smaller the closer
the means are in size. So, if four means are
being compared, the difference that any two
means have to exceed to be statistically sig-
nificant is the same for all the means.

The formula for calculating this critical dif-
ference is the value of the studentized range
multiplied by the square root of the error
mean square divided by the number of cases
in each group:

W = studentized range

X |Jerror mean square/group n

The value of the studentized range varies
according to the number of means being com-
pared and the degrees of freedom for the
error mean square. This value can be
obtained from a table which is available in
some statistics texts such as the source below.

For the example given in the entry for the
Newman-Keuls method there are four
groups of three cases each. This means that
the degrees of freedom for the error mean
square are the number of cases minus the
number of groups, which is 8 (12 — 4 = 8).
The 0.05 critical value of the studentized
range with these two sets of degrees of free-
dom is 4.53. The error mean square for this
example is 9.25.

Consequently, the critical difference that
any two means need to exceed to be signifi-
cantly different is about 7.97:

453 X /9.25/3 = 4.53 X /3.083
=453 X 1.76 =7.97

The means of the four groups are 6, 14, 12 and
2 respectively. If we look at Table N.1 which
shows the difference between the four means,
we can see that the absolute differences

between groups 2 and 4 (14 — 2 = 12), groups
3and 4 (12 — 2 = 10) and groups 2 and 1 (14 —
6 = 8) exceed this critical difference of 7.97
and so differ significantly.

Because the Tukey, test does not make the
critical difference between two means smaller
the closer they are, this test is less likely
to find that two means differ significantly
than the Newman-Keuls method. For this
example, in addition to these three differ-
ences being significant, the Newman-Keuls
method also finds the absolute difference
between groups 3and 1 (12 — 6 = 6) to be sta-
tistically significant as the critical difference
for this test is 5.74 and not 7.97.

We could arrange these means into three
homogeneous subsets where the means in a
subset would not differ significantly from
each other but where some of the means in
one subset would differ significantly from
those in another subset. We could indicate
these three subsets by underlining the means
which did not differ as follows.

26 1214
Kirk (1995)

Tukey, or WSD (Wholly Significant
Difference) test: a post hoc or multiple com-
parison test which is used to determine
whether three or more means differ signifi-
cantly in an analysis of variance. It assumes
equal variances in each of the three or more
means and is approximate for unequal group
sizes. It is a compromise between the Tukey,
or HSD (Honestly Significant Difference) test
and the Newman—-Keuls method. Both the
Tukey, and the Newman-Keuls test use the
studentized range to determine the critical
difference two means have to exceed to be
significantly different. The value of this range
differs for the two tests. For the Tukey, test it
depends on the total number of means being
compared whereas for the Newman-Keuls
test it is smaller the closer the two means are
in size in a set of means. In the Tukey, test, the
mean of these two values is taken.

The formula for calculating the critical dif-
ference is the value of the studentized range
multiplied by the square root of the error
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mean square divided by the number of cases
in each group:

W = studentized range

X Jerror mean square/group 7

The value of the studentized range varies
according to the number of means being
compared and the degrees of freedom for the
error mean square. This value can be
obtained from a table which is available in
some statistics texts such as the source below.

For the example given in the entry for the
Newman-Keuls test there are four groups of
three cases each. This means that the degrees
of freedom for the error mean square are the
number of cases minus the number of
groups, which is 8 (12 — 4 = 8). The 0.05 crit-
ical value of the studentized range with these
two sets of degrees of freedom is 4.53. For the
Tukey, test, this value is used for all the com-
parisons. For the Newman—Keuls test, this
value is only used for the two means that are
furthest apart, which in this case is two
means apart. The closer the two means are in
size, the smaller this value becomes. So, for
two means which are only one mean apart,
this value is 4.04 whereas for two adjacent
means it is 3.26.

The Tukey, test uses the mean of these two
values which is 4.53 [(4.53 + 4.53)/2 =
9.06/2 = 4.53] for the two means furthest
apart, 4.29 [(4.53 + 4.04)/2 =8.57/2 = 4.29]
for the two means one mean apart and 3.90
[(4.53 +3.26)/2 = 7.79/2 = 3.90] for the two
adjacent means.

To calculate the critical difference we need
the error mean square which is 9.25. The
value by which the value of the studentized
range needs to be multiplied is the same for
all comparisons and is 1.76 (,9.25/3 = J3.083 =
1.76).

The critical difference for the two means
furthest apart is about 7.97 (4.53 X 1.76 = 7.97).
For the two means one mean apart it is about
7.55 (4.29 X 1.76 = 7.55), whereas for the two
adjacent means it is about 6.86 (3.90 X 1.76 =
6.86).

The means of the four groups, ordered in
increasing size, are 2, 6, 12 and 14. If we take
the two means furthest apart (2 and 14),
we can see that their absolute difference of

12 (2 —14 = —12) exceeds the critical value of
7.97 and so these two means differ signifi-
cantly. If we take the two pairs of means one
mean apart (2 and 12, and 6 and 14), we can
see that both their absolute differences of 10
(2-12=-10) and 8 (6—14 = —8) are
greater than the critical value of 7.55 and so
are significant differently. Finally, if we take
the three pairs of adjacent means (2 and 6, 6
and 12, and 12 and 14), we can see that none of
their absolute differences of 4 (2 — 6 = —4), 6
(6 =12 = —6) and 2 (12 — 14 = —2) is greater
than the critical value of 6.86 and so they do
not differ significantly.

We could arrange these means into three
homogeneous subsets where the means in a
subset do not differ significantly from each
other but where some of the means in one
subset differ significantly from those in
another subset. We could indicate these three
subsets by underlining the means which did
not differ as follows:

26 1214
Howell (2002)

Tukey-Kramer test: a post hoc or multiple
comparison test which is used to determine
whether three or more means differ signifi-
cantly in an analysis of variance. It assumes
equal variance for the three or more means
and is exact for unequal group sizes. It uses
the studentized range to determine the criti-
cal difference two means have to exceed to be
significantly different. It is a modification of
the Tukey, or HSD (Honestly Significant
Difference) test.

The formula for calculating this critical dif-
ference is the value of the studentized range
multiplied by the square root of the error
mean square which takes into account the
number of cases in the two groups (1, and n,)
being compared:

W = studentized range

J )]
X [|error mean square x|—+— / 2
ny mn,

The value of the studentized range varies
according to the number of means being
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compared and the degrees of freedom for the
error mean square. This value can be
obtained from a table which is available in
some statistics texts such as the source below.

For the example given in the entry for the
Newman-Keuls method there are four
groups of three cases each. This means that
the degrees of freedom for the error mean
square are the number of cases minus the
number of groups, which is 8 (12 — 4 = 8).
The 0.05 critical value of the studentized
range with these two sets of degrees of free-
dom is 4.53. The error mean square for this
example is 9.25.

Consequently, the critical difference that
any two means need to exceed to be signifi-
cantly different is about 7.97:

453 X J[9.25 X (1/3 + 1/3)]/2
=453 % |[9.25 X 0.667] /2
=453 x [6.17/2 = 453 X 3.09
=453 X 1.76 = 7.97

This value is the same as that for the Tukey,
or HSD (Honestly Significant Difference) test
when the number of cases in each group is
equal.

The means of the four groups are 6, 14, 12
and 2 respectively. If we look at Table N.1
which shows the difference between the four
means, we can see that the absolute differ-
ences between groups 2 and 4 (14 — 2 = 12),
groups 3 and 4 (12 — 2 = 10) and groups 2
and 1 (14 — 6 = 8) exceed this critical differ-
ence of 7.97 and so differ significantly.

Kirk (1995)

two-tailed level or test of statistical
significance: see correlation; directionless
tests; significant

two-way relationship: see bi-directional
relationship

Type | or alpha error: the probability of
assuming that there is a difference or association

between two or more variables when there is
none. It is usually set at the 0.05 or 5% level.
See also: Bonferroni test; Dunn’s test;
Dunnett’s T3 test; Waller-Duncan t test

Type |1, hierarchical or sequential
method in analysis of variance: a method
for determining the F ratio for an analysis
of variance with two or more factors with
unequal or disproportionate numbers of
cases in the cells. In this situation the factors
and interactions are likely to be related and
so share variance. In this method the factors
are entered in an order specified by the
researcher.
Cramer (2003)

Type Il or beta error: the probability
of assuming that there is no difference or
association between two or more variables
when there is one. This probability is gener-
ally unknown. See also: Bonferroni test;
Waller-Duncan t test

Type Il, classic experimental or least
squares method in analysis of variance:
a method for determining the F ratio for an
analysis of variance with two or more factors
with unequal or disproportionate numbers of
cases in the cells. In this situation the factors
and interactions are likely to be related and so
share variance. In this method main effects
are adjusted for all other main effects (and
covariates) while interactions are adjusted for
all other effects apart from interactions of a
higher order. For example, none of the vari-
ance of a main effect is shared with another
main effect.
Cramer (2003)

Type lll, regression, unweighted means
or unique method in analysis of variance:
a method for determining the F ratio for an
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analysis of variance with two or more factors
with unequal or disproportionate numbers of
cases in the cells. In this situation the factors
and interactions are likely to be related and
so share variance. In this method each effect
is adjusted for all other effects (including
covariates). In other words, the variance
explained by that effect is unique to it and is
not shared with any other effect.
Cramer (2003)

Type IV method in analysis of variance:
a method for determining the F ratio for an
analysis of variance with two or more factors
with unequal or disproportionate numbers of
cases in the cells. In this situation the factors
and interactions are likely to be related and
so share variance. This method is similar to
Type III except that it takes account of cells
with no data.



under-identified model: a term used in
structural equation modelling to describe a
model in which there are not sufficient vari-
ables to identify or to estimate all the para-
meters or pathways in the model. See also:
identification

unequal sample size: generally speaking,
there is little difficulty created by using
unequal sample sizes in research although
equal sample sizes should be regarded as an
ideal. Some statistical techniques have their
optimum effectiveness (power) when sample
sizes are equal. Statistically unequal samples
may lead to less precise estimates of popula-
tion values but this is not a matter of great
concern as the effect is usually small. However,
some statistical calculations are much more
difficult with unequal sample sizes. This is
particularly the case for the analysis of vari-
ance. Of course, computer analyses of data
are not affected by the issue of computational
labour or difficulty. Nevertheless, researchers
may come across publications in which calcu-
lations were done by hand. These probably
will have ensured equal sample sizes for no
reason other than to ease the difficulty of the
computation. There is little reason to use
equal sample sizes when carrying out analy-
ses with computers. It is essential to have
equal sample sizes when counterbalancing
order, though equal sample sizes are an ideal
to aim for when collecting data for maximum
precision in many statistical analyses. See
also: analysis of variance

uni-directional relationship: a relation-
ship between two variables in which the
direction of the causal relationship between
the two variables is thought to be one-way in
that one variable, A, is thought to cause the
other variable, B, but the other variable, B, is
not thought to cause the first variable, A. A
bi-directional relationship is one in which both
variables are thought to influence each other.

uni-lateral relationship: see uni-
directional relationship

unimodal distribution: a distribution of
scores which has one mode as opposed to two
(bimodal) or more than one mode (multimodal).

unique method in analysis of variance:
see Type lll, regression, unweighted means
or unique method in analysis of variance

univariate: the analysis of single variables
without reference to other variables. The com-
monest univariate statistics are descriptive
statistics such as the mean, variance, etc. There
are relatively few univariate inferential statis-
tics other than those which compare a single
sample against a known population distribution.
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Examples would be the one-sample chi-square,
the runs test, one sample f test, etc.

unplanned or post hoc comparisons: see
Bonferroni test; multiple comparison tests;
omnibus test; post hoc, a posteriori or
unplanned tests

unrelated t test: see t test for unrelated
samples

unrepresentative sample: see biased
sample

unstandardized partial regression coef-
ficient or weight: an index of the size and
direction of the association between a predic-
tor or independent variable and the criterion
or dependent variable in a multiple regression
in which its association with other predictors
and the criterion has been controlled or par-
tialled out. The direction of the association is
indicated by the sign of the regression coeffi-
cient in the same way as it is with a correlation
coefficient. No sign means that the association
is a positive one with high scores on the pre-
dictor going with high scores on the criterion.
A negative sign shows that the association is a
negative one in which high scores on the pre-
dictor go with low scores on the criterion.

The size of the regression coefficient indi-
cates how much change there is in the original
scores of the criterion for each unit change of
the scores in the predictor. For example, if the
unstandardized partial regression coefficient
was 2.00 between the predictor of years of
education received and the criterion of
annual income expressed in units of 1000
euros, then we would expect a person’s
income to increase by 2000 euros (2.00 X 1000 =
2000) for every year of education received.

The size of the unstandardized partial
regression coefficient will depend on the

units or the scale used to measure the predictor.
If income was measured in the unit of a sin-
gle euro rather 1000 euros, and if the same
association held between education and
income, then the unstandardized partial
regression coefficient would be 2000.00 rather
than 2.00.

Unstandardized partial regression coeffi-
cients are used to predict what the likely
value of the criterion will be (e.g. annual
income) when we know the values of the pre-
dictors for a particular case (e.g. their years in
education, age, gender, and so on). If we are
interested in the relative strength of the asso-
ciation between the criterion and two or more
predictors, we standardize the scores so that
the size of these standardized partial regres-
sion coefficients is restricted to vary from
—1.00 to 1.00. A higher standardized partial
regression coefficient, regardless of its sign,
will indicate a stronger association.

An unstandardized partial regression coeffi-
cient can be converted into its standardized
coefficient by multiplying the unstandardized
partial regression coefficient by the standard
deviation (SD) of the predictor and dividing it
by the standard deviation of the criterion:

standardized unstandardized

partial partial predictor SD
. _ . %

regre'ss.lon regre.ss'lon criterion SD

coefficient coefficient

The statistical significance of the standard-
ized and the unstandardized partial coeffi-
cients is the same value and can be expressed
in terms of either a t or an F value. The t test
for the partial regression coefficient is the
unstandardized partial regression coefficient
divided by its standard error:

unstandardized regression coefficient

standard error of the unstandardized
regression coefficient

See also: regression equation

unweighted means method in analysis
of variance: see Type Ill, regression,
unweighted means or unique method in
analysis of variance



valid per cent: a term used primarily in
computer output to denote percentages
expressed as a proportion of the total number
of cases minus missing cases due to missing
values. It is the percentage based on the
actual number of cases used by the computer
in the calculation. See also: missing values

validity: the extent to which a measure can be
shown to measure what it purports or intends
to measure. Various kinds of validity have
been distinguished. See also: concurrent
validity; construct validity; convergent valid-
ity; discriminant validity; ecological validity;
external validity; face validity; factorial
validity; internal validity; predictive validity

variable: a characteristic that consists of two
or more categories (such as occupation or
nationality) or values (such as age or intelli-
gence score). The opposite of a variable is a
constant, which consists of a single value. See
also: categorical variable; confounding vari-
able; criterion variable; dependent variable;
dichotomous variable; dummy variable; inde-
pendent variable; intervening variable; oper-
ationalization; population; predictor variable,
subject variable; suppressor variable

variance or population variance: a mea-
sure of the extent to which the values in a

population of scores vary or differ from the
mean value of that population. The larger the
variance is, the more the scores differ on
average from the mean. The variance is the
sum of the squared difference or deviation
between the mean score and each individual
score which is divided by the number of
scores:

sum of (mean score — each score)?

number of scores

The variance estimate differs from the vari-
ance in that the sum is divided by the number
of scores minus one. The variance estimate is
usually provided by statistical packages such
as SPSS and is used in many parametric sta-
tistical tests. The difference in size between
these two measures of variance is small,
which becomes even smaller the larger the
sample.

variance estimate, estimated popula-
tion variance or sample variance: a mea-
sure of the degree to which the values in a
sample vary or differ from the mean value of
the sample. It is used to estimate the variance
of the population of scores from which the
sample has been taken. The larger the variance
is, the more the scores differ from the mean.
The variance estimate is the sum of the
squared difference or deviation between the
mean score and each individual score which is
divided by the number of scores minus one:
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sum of (mean score — each score)?

number of scores — 1

The variance estimate differs from the variance
in that the sum is divided by one less than
the number of scores rather than the number
of scores. This is done because the variance of
a sample is usually less than that of the pop-
ulation from which it is drawn. In other
words, dividing the sum by one less than the
number of scores provides a less biased esti-
mate of the population variance.

The variance estimate rather than variance
is used in many parametric statistics as these
tests are designed to make inferences about
the population of scores from which the sam-
ples have been drawn. Many statistical pack-
ages, such as SPSS, give the variance estimate
rather than the variance. See also: dispersion,
measure of; Hartley’s test; moment; stan-
dard error of the difference in means; vari-
ance or population variance

variance of estimate: a measure of the
variance of the scores around the regression
line in a simple and multivariate regression. It
can be calculated with the following formula:

sum of squared residuals or squared
differences between the criterion’s predicted
and observed scores

number of cases — number of predictors —1

It is also called the mean square residual. The
variance of estimate is used to work out the
statistical significance of the unstandardized
regression or partial regression coefficient.
The square root of the variance of estimate is
the standard error of the estimate.

Pedhazur (1982)

varimax rotation, in factor analysis: a
widely used method of the orthogonal rota-
tion of the initial factors in a factor analysis in

which the variance of the loadings of the
variables within a factor are maximized. High
loadings on the initial factors are made higher
on the rotated factor and low loadings on the
initial factors are made lower on the rotated
factor. Differentiating the variables that load
on a factor in this way makes it easier to see
which variables most clearly define that fac-
tor and to interpret the meaning of that factor.
Orthogonal rotation is where the factors are
at right angles or unrelated to one another.

Venn diagram: a system of representing the
relationship between subsets of information.
The totality is represented by a rectangle.
Within that rectangle are to be found circles
which enclose particular subsets. The circles
may not overlap, in which case there is no
overlap between the subsets. Alternatively,
they may overlap totally or partially. The
amount of overlap is the amount of overlap
between subsets. So, Figure V.1 shows all
Europeans. One circle represents English
people and the other citizens of Britain. The
larger circle envelops the smaller one because
being British includes being English. However,
not all British people are English. See also:
common variance

Figure V.I  lllustrating Venn diagrams



Waller-Duncan t test: a post hoc or
multiple comparison test used for determin-
ing which of three or more means differ sig-
nificantly in an analysis of variance. This test
is based on the Bayesian f value, which depends
on the F ratio for a one-way analysis of vari-
ance, its degrees of freedom and a measure of
the relative seriousness of making a Type I
versus a Type II error. It can be used for
groups of equal or unequal size.

weighted mean: the mean of two or more
groups which takes account of or weights the
size of the groups when the sizes of one or
more of the groups differ. When the size of
the groups is the same, there is no need to
weight the group mean for size and the mean
is simply the sum of the means divided by
the number of groups. When the size of the
groups differ, the mean of each group is mul-
tiplied by its size to give the total or sum for
that group. The sum of each group is added
together to give the overall or grand sum.
This grand sum is then divided by the total
number of cases to give the weighted mean.

Take the means of the three groups in
Table W.1. The unweighted mean of the three
groups is 6 [(4 +5 +9)/3 = 6]. If the three
groups were of the same size (say, 10 each),
there would be no need to weight them as size
is a constant and the mean is 6 [(40 + 50 +
90)/30 = 6]. If the sizes of the groups differ, as
they do here, the weighted mean is higher at
8.33 than the unweighted mean of 6 because
the largest group has the highest mean.

Table W.I  Weighted and unweighted
mean of three groups

Groups Means Size Sum
| 4 10 40
2 5 20 100
3 9 40 360
Sum 18 500
Number 3 60 60
Mean 6 833

Wilcoxon matched-pairs signed-ranks
test: a non-parametric test used to determine
whether the scores from two samples that
come from the same or similar cases are sig-
nificantly different from each other. The dif-
ferences between pairs of scores are ranked in
order of size, ignoring the sign or direction of
those differences. The ranks of the differences
with the same sign are added together. If
there are no differences between the scores of
the two samples, the sum of positive ranked
differences should be similar to the sum of
negative ranked difference. The bigger the
differences between the positive and negative
ranked differences, the more likely the two
sets of scores differ significantly from each
other.

Wilcoxon rank-sum or Wilcoxon-
Mann-Whitney W test: see Mann-
Whitney U test
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Wilks’s lambda or \: a test used in multi-
variate statistical procedures such as canonical
correlation, discriminant function analysis and
multivariate analysis of variance to determine
whether the means of the groups differ on a
discriminant function or characteristic root.
It varies from 0 to 1. A lambda of 1 indicates
that the means of all the groups have the same
value and so do not differ. Lambdas close to 0
signify that the means of the groups differ. It
can be transformed as a chi-square or an F
ratio. It is the most widely used of several such
tests which include Hotelling’s trace criterion,
Pillai’s criterion and Roy’s gcr criterion.

When there are only two groups, the F
ratios for Wilks’s lambda, Hotelling’s trace,
Pillai’s criterion and Roy’s gcr criterion are
the same. When there are more than two
groups, the F ratios for Wilks’s lambda,
Hotelling’s trace and Pillai’s criterion may
differ slightly. Pillai’s criterion is said to be
the most robust when the assumption of the
homogeneity of the variance-covariance
matrix is violated.

Tabachnick and Fidell (2001)

within-groups variance: a term used in
statistical tests of significance for related/
correlated/repeated-measures designs. In
such designs participants (or matched groups
of participants) contribute a minimum of two
separate measures for the dependent vari-
able. This means that the variance on the
dependent variable can be assessed in terms
of three sources of variance:

1 That due to the influence of the indepen-
dent variables (main effects).

2 That due to the idiosyncratic characteris-
tics of the participants. Since they are
measured twice, then similarities between
scores for the same individuals can be
assessed. The variation on the dependent
variable attributable to these similarities
over the two measures is known as the
within-groups variance. So there is a sense
in which within-groups variation ought
to be considered as variation caused by
within-individuals factors.

3 That due to unsystematic, unassessed factors
remaining after the two above sources of
variation, which is called the error vari-
ance or sometimes the residual variance.

Another way of conceptualizing it is that
within-groups variance is the variation attri-
butable to the personal characteristics of the
individual involved — a sort of mélange of
their personality, intellectual and social char-
acteristics which might influence scores on
the dependent variable. For example, if the
dependent variable were verbal fluency then
we would expect intelligence and education
to affect these scores in the same way for any
individual each time verbal fluency is assessed
in the study over and above the effects of the
stipulated independent variables. There is no
need to know just what it is that affects verbal
fluency in the same way each time just so
long as we can estimate the extent to which
verbal fluency is affected.

The within-groups variance in uncorre-
lated or unrelated designs simply cannot be
assessed since there is just one measure of the
dependent variable from each participant in
such designs. So the influence of the within-
groups factors cannot be separated from error
variance in such designs.

within-subjects design: the simplest and
purest example of a within-subjects design is
where a single case (participant or subject) is
studied on two or more occasions. Changes
between two occasions would form the basis
of the analysis. More generally, changes in
several participants are studied over a
period of time. Such designs are also known
as related designs, related subjects designs or
correlated subjects designs. They have the
major advantage that since the same indivi-
dual is measured on repeated occasions, many
factors such as intelligence, class, personality,
and so forth are held constant. Such designs
contrast with between-subjects designs in
which different groups of participants are
compared with each other (unrelated designs
or uncorrelated designs). See also: between-
subjects design; carryover or asymmetrical
transfer effect; mixed design



x axis: the horizontal axis or abscissa of a
graph. See also: abscissa



y axis: the vertical axis or ordinate in a graph.
See also: ordinate

Yates’s correction: a continuity correction.
Small contingency (cross-tabulation) tables
do not fit the theoretical and continuous chi-
square distribution particularly well. Yates’s
correction is sometimes applied to 2 X 2 con-
tingency tables to make some allowance for
this and some authorities recommend its uni-
versal application to such small tables. Others
recommend its use when there are cells with

an (observed) frequency of less than five. It is
no longer a common practice to adopt it and
it is possibly less misleading not to make any
adjustment. If the correction has been applied,
the researcher should make this clear. The
correction is conservative in that the null
hypothesis is favoured slightly over the
hypothesis.

yea-saying: see acquiescence



z score: another name for a standardized
score. A z score is merely the difference
between the score and the mean score of the
sample of scores then divided by the stan-
dard deviation of the sample of scores:

score — sample mean

Z score = —
standard deviation

The computation is straightforward. z scores
may have positive or negative values. A pos-
itive value indicates that the score is above
the sample mean, a negative value indicates
the score is below the sample mean. The
importance of z scores lies in the fact that the
distribution of z has been tabulated and is
readily available in tables of the distribution
of z. The z distribution is a statistical distribu-
tion which indicates the relative frequency of
z scores. That is, the table indicates the num-
bers of z scores which are zero and above, one
standard deviation above the mean and
above, and so forth. The distribution is sym-
metrical around the mean. The only substan-
tial assumption is the distribution is normal
in shape. Technically speaking, the z distribu-
tion has a mean of 0 and a standard deviation
of 1.

To calculate the z score of the score 11 in a
sample of three scores consisting of 5, 9 and
11, we first need to calculate the mean of the
sample = 25/3 = 8.333. The standard devia-
tion of these scores is obtained by squaring
each score’s deviation, summing them and
then finding their average, and then finally

taking their square root to give a value for the
standard deviation of 2.494:

Y(X — XP

standard deviation = N

= [(5-8333)2+ (9 — 8.333) + (11 — 8.333)?
3

- \/ —3.3332 + 0.6672 + 2.667
3

\/ 11.109 + 0.445 + 7.113

3
[ 18.667
3

=/6222
= 2.494

So the standard score (z score) of the score 11 is

11—8333  2.667
2494 2494

=1.07

Standardized or z scores have a number of
functions in statistics and occur quite com-
monly. Among their advantages are that:

1 As variables can be expressed on a com-
mon unit of measurement, this greatly
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facilitates the addition of different
variables in order to achieve a composite
of several variables.

2 As z or standardized scores refer to a dis-
tribution of known characteristics, the
relative standing of a person’s score
expressed as a z score is easily calculated.
For example, if a person’s standardized
score is 1.96 this means that the score is in
the top 2.5% of scores. This is simply
obtained from the table of the distribution
of z scores.

See also: correlation; standardized scores

z test: determines whether Pearson’s corre-
lation from two unrelated samples differs sig-
nificantly. When the correlation in the
population is not 0, the sampling distribution
of the correlation is not approximately nor-
mal. It becomes progressively skewed as the
population correlation approaches £1.00. As a
consequence it is difficult to estimate its stan-
dard error.

To overcome this problem Pearson’s corre-
lation is transformed into a z correlation
using the following formula, where log,
stands for the natural logarithm and r for
Pearson’s correlation:

z,= 05 X log, [(1 + /(1 — 1]

This transformation makes the sampling dis-
tribution approximately normal and allows
the standard error to be calculated with the
formula

INn-3

where 1 is the size of the sample.

The z test is simply a ratio of the difference
between the two z correlations to the stan-
dard error of the two samples:

21T %

B B OEE)

z has to be 1.65 or more to be statistically sig-
nificant at the one-tailed 0.05 level and 1.96 or
more at the two-tailed 0.05 level.

Table Z.1 z to r transformation

z r z r
0.00 0.00 0.80 0.66
0.10 0.10 0.90 0.72
0.20 0.20 1.00 0.76
0.30 0.29 1.50 091
0.40 0.38 2.00 0.96
0.50 0.46 2.50 0.99
0.60 0.54 3.00 1.00
0.70 0.60

Z, test: determines whether Pearson’s
correlation between two variables differs sig-
nificantly from that between two other vari-
ables from the same sample. For example, the
one-year test-retest or autocorrelation for
relationship satisfaction may be compared
with that for relationship conflict. The statis-
tical significance of this test is the same as
that for the z test.
Cramer (1998); Steiger (1980)

z to r transformation: the change of a z
correlation into Pearson’s product moment
correlation. This can be done by looking up
the value in the appropriate table or using the
following formula:

r= (27182 %% — 1)/ (2.718 %% + 1)

The values of the z correlation vary from 0
to about +3 (though, effectively, infinity), as
shown in Table Z.1, and the values of
Pearson’s correlation from 0 to £1.

z transformation: see Fisher’s z

transformation

zero-order correlation: a correlation
between two variables in which one or more
variables are not partialled out. A first-order
partial correlation is one in which one other
variable has been partialled out, a second-order



186 THE SAGE DICTIONARY OF STATISTICS

partial correlation one in which two variables
have been partialled out, and so on.

zero point: the score of 0 on the measure-
ment scale. This may not be the lowest possible

score on the variable. Absolute zero is the
lowest point on a scale and the lowest possible
measurement. So absolute zero temperature is
the lowest temperature that can be reached.
This concept is not in general of much practi-
cal significance in most social sciences.
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