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Preface

The k(GV ) problem has recently been solved, completing the work of a
series of authors over a period of more than forty years. The objective of
this book is to describe the developments, the ideas and methods, leading
to this remarkable result. All details of the proof will be presented.

Let G be a finite group. The number k(G) of conjugacy classes of G,
which is just the number of irreducible complex characters of G, is certainly
an invariant of G of special interest. For some families of finite groups, like
the symmetric groups and some of the finite classical groups, this invariant
is known to some extent. From the point of view of abstract group theory,
however, little can be said about k(G) in relation to the group G. Of
course k(G) ≤ |G|, with equality if and only if G is abelian. If N is a
normal subgroup of G, then it is easy to see that k(G) ≤ k(N) · k(G/N)
but there are examples where k(N) > k(G) (e.g. in the dihedral group of
order 10). This makes it difficult to bound k(G) by inductive methods.

A unifying notion in group theory is the concept of representation. So
finite groups often appear as subgroups of permutation groups or linear
groups. The “geometry” of a group (as permutation group or linear group,
or as a group of Lie type etc.) should be used in order to describe basic
invariants. Here we just assume that G is embedded into the linear group
GL(V ) of some finite vector space V over some prime field Fp = Z/pZ, and
we wish to bound k(G) by a function of |V | = pm. A weak form of the
k(GV ) problem is the question whether k(G) ≤ |V | − 1 in the case where
G is a p′-group (p - |G|). Here equality can happen since GL(V ) contains
cyclic subgroups of order |V |−1, the so-called Singer cycles. The restriction
to p′-groups is essential, because GL(V ) = GLm(p) has abelian subgroups
of order pb

m2
4 c.

Now consider the semidirect product GV (also written GnV or V : G).
Since k(GV ) > k(G), one can strengthen the question above by asking
whether k(GV ) ≤ |V | when G is a p′-subgroup of GL(V ). This is known
as the k(GV ) conjecture.

The k(GV ) conjecture is a special case of Brauer’s celebrated k(B)
problem [Brauer, 1956]. The k(B) conjecture predicts that the number
k(B) of ordinary irreducible characters in a p-block B is bounded above

vii



viii The Solution of the k(GV) Problem

by the order of a defect group D of B (Problem (X) in [Feit, 1982]). In
the situation of the k(GV ) conjecture, the group GV has a single p-block
with the unique defect group D = V . [Brauer and Feit, 1959] established
the general upper bound k(B) ≤ 1 + 1

4 |D|2. This bound has since only
been slightly improved. The conjectured estimate k(B) ≤ |D| has been
proved for cyclic and rank 2 abelian defect groups D, and for some families
of finite groups, including the symmetric and finite general linear groups.
There is reason to believe that the k(B) conjecture is one of the most
difficult problems proposed by Brauer.

[Nagao, 1962] noticed that the k(B) conjecture holds for p-solvable
groups provided it holds for semidirect products as discussed above. So the
k(GV ) theorem implies Brauer’s conjecture for such groups. This was the
original motivation for treating the k(GV ) problem which is, on the other
hand, of interest in its own right.

In the proof of the k(GV ) conjecture Clifford theory plays an impor-
tant role. This theory may be loosely described as using normal subgroups
to pass from the module of interest to lower-dimensional, more tractable
modules. This can be fruitfully applied to many problems in group repre-
sentation theory. In a typical sequence of reductions one tries to show that
the module in question may be assumed to be irreducible, then absolutely
irreducible, then primitive, then tensor indecomposable, and finally tensor
primitive. If one tries this approach on the k(GV ) problem, where V is a
faithful coprime FpG-module, the first two steps are easy, but the third is
not. Indeed, the final stage of the proof of the k(GV ) conjecture was the
rather difficult verification of the problem when V is induced from a certain
module with cardinality 52.

Nevertheless, Clifford theory is crucial, in a manner we now wish to ex-
plain. We consider the centralizers (stabilizers) CG(v) as v ranges over the
vectors in V . It is easy to see that k(GV ) is the sum over the k(CG(v)) when
v ranges over a set of representatives for the G-orbits on V . Remarkably,
however, the main theoretical results in the solution of the k(GV ) problem
assert that the existence of one vector v in V with CG(v) satisfying suitable
conditions is enough to imply that k(GV ) ≤ |V |.

The most elementary of these centralizer criteria asserts that it suffices
to find v ∈ V such that CG(v) = 1 (Theorem 1.5d of this book). Knörr
established two more general centralizer criteria which had great influence
on later work [Knörr, 1984]. He showed first that k(GV ) ≤ |V | if CG(v)
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is abelian for some v in V (Theorem 3.4d). Even more important was his
second criterion, because it allowed one to assume, in many cases, that
V is primitive, thus partially overcoming the major obstacle to the direct
Clifford-theoretic approach. Knörr’s ideas are related to some general tech-
niques developed in [Brauer, 1968].

Gow advantageously reworked Knörr’s ideas and proved the result in
the case that V is a self-dual G-module [Gow, 1993]. In [Robinson, 1995]
it was noticed that it suffices to find v ∈ V such that the restriction of
V to CG(v) is self-dual. The most powerful criterion then was established
in [Robinson and Thompson, 1996]. The Robinson–Thompson criterion
(Theorem 5.2b) asserts that k(GV ) ≤ |V | if there exists v in V such that
the restriction of V to CG(v) contains a faithful self-dual summand (with
real-valued Brauer character). Such a vector v will be called a real vector.

This criterion is sufficiently easy to verify, and it is compatible with
the Clifford-theoretic reduction, and so led to much progress towards a
solution of the k(GV ) problem. At the end of the reduction steps one is
left with a pair (G,V ) admitting no real vectors, such that the generalized
Fitting subgroup of G has the form E · Z(G), where E is normal in G and
absolutely irreducible on V , and where either E is a group of extraspecial
type or is quasisimple. Such a pair (G,V ) will be called nonreal reduced.
Robinson and Thompson already showed that this can happen only when
the characteristic p ≤ 530.

In Chapters 6 and 7, we use counting arguments to show that nonreal
reduced pairs do exist only when p is 3, 5, 7, 11, 13, 19 or 31 and V has
dimension 2, 3 or 4. It follows that the k(GV ) conjecture is true when the
characteristic p is not one of these seven primes. We give a new treatment
of the extraspecial case, using ideas from [Robinson, 1997], [Riese–Schmid,
2000], [Gluck–Magaard, 2002a] and [Riese, 2002]. In the quasisimple case
our approach is based on work of [Liebeck, 1996], [Goodwin, 2000], [Riese,
2001] and [Köhler–Pahlings, 2001]. Much is simplified by systematically
using properties of characters related to extraspecial groups (Heisenberg
groups). The counting techniques usually lead to “small” groups G and
modules V of “small” degrees, often affording minimal “Weil characters”.

After the analysis of the extraspecial and quasisimple cases was com-
pleted around 2000, one had to deal with arbitrary pairs (G,V ) admitting
no real vectors. In some Clifford-theoretic sense then (G,V ) “involves” a
nonreal reduced pair, but a priori this seemed to be hard to control. So it
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was striking, and a surprise, that V is just obtained by module induction
from a nonreal reduced pair, and that G is close to being a full wreath
product with respect to the corresponding imprimitivity decomposition of
V (Theorems 8.4 and 8.5c). This crucial result was accomplished in [Riese–
Schmid, 2003] using ideas developed in [Gluck–Magaard, 2002b].

In the final stages of the proof of the k(GV ) theorem, one therefore had
to treat imprimitive modules induced from nonreal reduced modules. Here
one requires bounds on the number of conjugacy classes in a permutation
group. Liebeck and Pyber have established the general upper bound 2n−1

for the number of conjugacy classes in a permutation group of degree n

(Theorem 9.3). In this manner the proof was completed by Riese and
Schmid for p 6= 5, and by Gluck, Magaard, Riese and Schmid for p = 5.

Chapter 11 addresses the question of when one can have equality
k(GV ) = |V |, without giving a conclusive answer, however. In the final
two chapters we briefly describe some consequences of the k(GV ) theorem
for general block theory and consider the problem of bounding k(GV ) when
G is completely reducible on V but |G| and |V | are not coprime.

At present the proof of the k(GV ) conjecture relies on the classification
of the finite simple groups; see Chapters 7 and 9. But often I argue on
the basis of general counting arguments, which do not refer to a certain
simple group and which reduce the discussion to groups of low order. Most
challenging are indeed the classical groups. For solvable groups the proof
is independent of the classification theorem.

I hope this monograph will be comprehensible to a graduate student
with some background in group theory and representation theory. Much of
this general background is provided by Isaacs’ book [Isaacs, 1976]. Some
knowledge of the finite simple groups is also needed; the “Atlas of Finite
Groups” [Conway et al., 1985] contains much of the necessary information.
For the convenience of the reader appendices are included on the cohomol-
ogy of finite groups, on parabolic subgroups of some finite classical groups,
and on the Weil characters of such groups.

I am indebted to Walter Feit for drawing my attention to the k(GV )
problem, and for his long-standing support. Thanks also to David Gluck,
Kay Magaard and Udo Riese for critical comments and valuable suggestions
during the preparation of this book.

March 2007 Peter Schmid, Tübingen
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Chapter 1

Conjugacy Classes, Characters,
and Cli�ord Theory

For the proof of the k(GV ) theorem many of the standard methods and
techniques from ordinary and modular representation theory will be ap-
plied. In this section we describe the necessary concepts and tools from
ordinary character theory. The reader is referred to [Isaacs, 1976] for the
relevant background and some basic results used but not proved here. This
book is cited as [I] in the text.

1.1. Class Functions and Characters

Fix a finite group X of order |X| and exponent exp (X) = e. Let K = Q(ε)
for ε = e2πi/e.

Each complex character χ of X has its values in K, even in its ring
of integers Z[ε], because for each x ∈ X there is a basis such that an
underlying representation carries x to a diagonal matrix consisting of eth
roots of unity, and χ(x) is the trace of this matrix. This χ is constant on
conjugacy classes of X, a class function, and if c = cx is the conjugacy
class of X containing x (cx = xX = {xt = t−1xt| t ∈ X}), we may write
χ(c) = χ(x). The distinct class sums ĉ =

∑
y∈c y form a basis of the

centre Z(CX) of the semisimple group algebra CX (and of Z(KX)). It
follows that the set C`(X) of conjugacy classes of X is in bijection with the
ordinary (complex) irreducible characters of X, i.e.,

(1.1a) k(X) = |C`(X)| = |Irr(X)|.

If χ, ψ are K-valued class functions on X, their inner product is denoted
by 〈χ, ψ〉 = 〈χ, ψ〉X = 1

|X|
∑

x∈X χ(x)ψ(x) = 1
|X|

∑
c∈C`(X) |c| · χ(c)ψ(c).

One knows that Irr(X) is an orthonormal basis for the K-vector space
of class functions on X [I, 2.17]. The (nonsingular) square matrix X =
(χ(c))χ∈Irr(X)

c∈C`(X)
(rows and columns somehow arranged) is the character table

of X. For some simple groups (of small order) these tables can be found in
[Conway et al., 1985], which we usually refer to as the [Atlas].

1



2 The Solution of the k(GV) Problem

Orthonormality of the irreducible characters may be expressed by the
matrix equation X ·T · X t

= I, where T is the diagonal matrix with entries
1

|CX(x)| for x ∈ c and CX(x) is the centralizer (|c| = |X : CX(x)|). This

gives X t · X = T−1 and hence the second orthogonality relations:

(1.1b)
∑

χ∈Irr(X) χ(x)χ(y) =
{
|CX(x)| if xX = yX

0 otherwise
.

In particular |X| =
∑

χ∈Irr(X) χ(1)2 is the sum over the squares of the
degrees of the irreducible characters.

A generalized character χ of X is a rational integer combination of
irreducible characters of X (χ ∈ Z[Irr(X)]). A subgroup E of X is called
p-elementary if E = P ×Z where P is a p-group for some prime p and Z is
a cyclic p′-group, and it is elementary if it is p-elementary for some prime
p. We have Brauer’s characterization of characters:

Theorem 1.1c (Brauer). Let χ be a complex valued class function on X.
Then χ ∈ Z[Irr(X)] if and only if the restriction ResX

E (χ) ∈ Z[Irr(E)] for
any elementary subgroup E of X. In fact, each generalized character of X

is a Z-linear combination of characters of X induced from linear characters
of elementary subgroups.

For a proof see [I, 8.10 and 8.12]. Induced characters will be discussed in
Sec. 1.2 below. Since linear characters (of degree 1) can be realized over
their value fields, using elementary properties of the Schur index we get:

Theorem 1.1d (Brauer). K is a splitting field for X, that is, for all
characters χ of X there is a matrix representation over K or, equivalently,
a KX-module affording χ.

It is immediate, then, that K is a splitting field for all subgroups of X. The
Schur index will be briefly discussed in Sec. 1.3.

If V and W are (right) KX-modules affording the characters χ, ψ,
then V ⊕W affords χ + ψ (sum), and the KX-module V ⊗K W (diagonal
X-action) affords χψ (product). V ⊗K V = Sym2(V )⊕Alt2(V ) decomposes
into the symmetric squares and alternating squares.
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1.2. Induced and Tensor-induced Modules

Suppose Y is a subgroup of X and W is a (right) KY -module affording
the character θ. Let n = |X : Y | be the index of Y in X, and let Y \X =
{Y t | t ∈ X} denote the (transitive) X-set with respect to right multipli-
cation (Y t, x) 7→ Y tx. Then the normal core N = CoreX(Y ) =

⋂
t∈X Y t

is the kernel of this permutation representation. Hence G = X/N is a
transitive subgroup of the symmetric group Sn. If Y 6= X (n > 1), then⋃

t∈X Y t 6= X and there are at least n− 1 permutations in G without fixed
points. See also [Serre, 2003] for a recent discussion of this classical result
by Jordan.

Theorem 1.2a (Frobenius). There is an embedding of X into the wreath
product Y wrSn = Y(n) : Sn, which is uniquely determined up to conjugacy.

The wreath product is defined by letting Sn act on the nth direct power
Y (n) of Y permuting the direct factors (so (yi)π

i = (yi)iπ = (yiπ−1)i, sending
an entry in the ith position to the iπth position). The wreath product may
be identified with the group of all monomial n× n-matrices with entries in
Y . “The” Frobenius embedding is obtained by choosing a right transversal
{ti}n

i=1 to Y in X. Associate then to x ∈ X the element (xi) · πx in the
wreath product, where πx : i 7→ ix in G ⊆ Sn and xi ∈ Y are defined
by tix = xitix. Replacing {ti} by {yiti} for certain yi ∈ Y leads to an
embedding conjugate under (yi)−1.

Now the base group B = Y (n) of the wreath product acts diagonally
onto W (n) = W ⊕ · · · ⊕W (n direct summands) via (wi) · (yi) = (wiyi),
and Sn through (wi)i · π = (wiπ−1)i. This makes W (n) into a K[Y wrSn]-
module. The induced KX-module V = IndX

Y (W ) is obtained through “the”
Frobenius embedding of X into Y wrSn (where conjugate embeddings yield
isomorphic module structures). Fixing a transversal {ti} the character of
X afforded by V is given by

(1.2b) IndX
Y (θ)(x) =

∑n
i=1 θ(tixt−1

i ),

where we set θ(·) = 0 for elements outside Y .

Induction and restriction are maps on class functions adjoint to each
other, namely related by the Frobenius reciprocity

(1.2c) 〈IndX
Y (θ), χ〉X = 〈θ, ResX

Y (χ)〉Y .
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In terms of modules this says that if W is a KY -module, V a KX-module,
every KY -homomorphism f : W → ResX

Y (V ) extends uniquely to a KX-
homomorphism IndX

Y (f) : IndX
Y (W ) → V .

We often will use Mackey decomposition for characters (and modules).
Suppose Y and H are subgroups of X. Then H acts on X\Y , and if {rj}
is a set of representatives for the distinct H-orbits (or double cosets of X

mod (Y, H)), for a character θ of Y we have

(1.2d) ResX
H(IndX

Y (θ)) =
∑

j IndH
Y rj∩H(ResY rj

Y rj∩H(θrj )).

Here for x ∈ X we define the (conjugate) character θx of Y x = x−1Y x by
θx(yx) = θ(y) for y ∈ Y .

One can define IndX
Y (W ) = W ⊗KY KX (viewing KX as a left KY -

module). Let now W⊗n = W ⊗ · · · ⊗W (n factors, the tensors over K).
Again B = Y (n) acts diagonally on W (n) via (⊗iwi) · (yi) = ⊗iwiyi, and Sn

acts as (⊗iwi) · π = ⊗iwiπ−1 . This makes W⊗n into a K[Y wr Sn]-module.
Then the tensor-induced KX-module V̂ = TenX

Y (W ) = W⊗n is obtained
through “the” Frobenius embedding of X into the wreath product. Mackey
decomposition (for modules) carries over to tensor induction in the obvious
(multiplicative) way. So if {rj} is a set of representatives for the cycles
(orbits) of an element x ∈ X in its action on Y \X, and if the jth cycle has
size nj (so that rjx

nj r−1
j ∈ Y ), then

(1.2e) TenX
Y (θ)(x) =

∏
j θ(tjxnj t−1

j )

describes the character χ̂ of X afforded by V̂ = TenX
Y (W ). In order to prove

this it suffices to consider the case where V̂ = W ⊗ Wx ⊗ · · · ⊗ Wxn−1

(with xn ∈ Y ). If b is a basis of W consisting of eigenvectors for xn,
then the wi0 ⊗ wi1x ⊗ · · · ⊗ win−1x

n−1, with wij ∈ b, form a basis of V̂

for which the matrix of x is monomial. Only basis vectors of the form
vi = wi ⊗ wix⊗ · · · · ⊗wix

n−1, with fixed wi ∈ b, are eigenvectors of x on
V̂ , and if wix

n = ciwi with ci ∈ K, then vix = civi. Hence χ̂(x) = θ(xn),
as desired.

1.3. Schur’s Lemma

Suppose V and W are KX-modules affording the characters χ, ψ, respec-
tively. Then

〈χ, ψ〉 = dim KHomKX(V, W).
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If χ, ψ are irreducible, HomKX(V,W ) = 0 if χ 6= ψ and EndKX(V ) ∼= K

if V = W (Schur’s lemma). Of course this yields the first orthogonality
relations. In particular, if ρ : X → GLn(K) is a (matrix) representation
of X affording χ ∈ Irr(X), only the scalar matrices are permutable with
all ρ(x), x ∈ X. Extending ρ linearly to KX we get a K-algebra homo-
morphism into Mn(K) and, by restriction to the centre, a homomorphism
ωχ : Z(KX) → K, the central character associated to χ. If c = cx = xX is
the conjugacy class of x ∈ X,

(1.3a) ωχ(ĉ) = χ(x)|X: CX(x)|
χ(1) = χ(c)|c|

χ(1) .

The values of ωχ are algebraic integers since the product of class sums is a
(nonnegative) integer linear combination of class sums. This is important
for block theory (Chapter 2). Writing 1 = 〈χ, χ〉 = χ(1)

|G|
∑

c∈C`(X) ωχ(ĉ)χ(c)

we see that |G|
χ(1) is an integer (being rational and an algebraic integer).

Clifford theory will even yield the following (see also [I, 3.12 and 6.15]).

Theorem 1.3b (Itô). The degree χ(1) of an irreducible character χ of X

divides |X : V | for any abelian normal subgroup V of X.

We used that irreducible representations over K are absolutely irre-
ducible. Replacing K by the field K0 = Q(χ) generated by the values of
χ, there is a unique irreducible K0X-module V , up to isomorphism, whose
character contains χ. Then V affords the character mχ where m = m(χ) is
the Schur index of χ (over the rationals). D = EndK0X(V ) is a K0-division
algebra with centre K0 and dimension m2 [I, 9.21].

We give some further examples where Schur’s lemma is involved. Let
x ∈ X and χ ∈ Irr(X), and let χ̄ be the complex conjugate character. Then
χ̄(x) = χ(x) = χ(x−1) (see Sec. 1.5). We assert that

(1.3c) |χ(x)|2 = (χχ̄)(x) = χ(1)
|X|

∑
y∈X χ([x, y]).

Here [x, y] = x−1xy denotes the commutator of x and y. Let ρ be a
representation of X affording χ. The sum on the right is the trace of
ρ(x−1)χ(1)

|X|
∑

y∈X ρ(xy) = ρ(x−1)χ(1)
|X| ωχ(ĉx)|CX(x)| = ρ(x−1)χ(x), and the

assertion follows.
We see that |χ(x)| = χ(1) if and only if χ([x, y]) = χ(1) for all y ∈ X.

Note that Ker(χ) = {x ∈ X|χ(x) = χ(1)} is the kernel of ρ, and Z(χ) =
{x ∈ X| |χ(x)| = χ(1)} consists of those x ∈ X for which ρ(x) is a scalar
matrix.
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Suppose next that X = 〈Y, x〉 for some subgroup Y , and that θ =
ResX

Y (χ) is (still) irreducible. We assert that then

(1.3d)
∑

y∈Y |χ(xy)|2 = |Y |.

The 1-character 1X is contained in χχ̄ with multiplicity 1, because we have
〈1X , χχ̄〉 = 〈χ, χ〉 = 1. Similarly 〈1Y ,ResX

Y (χχ̄)〉 = 〈1Y , θθ̄〉 = 1. Clearly
ResX

Y (1X) = 1Y . So if ψ 6= 1X is an irreducible constituent of χχ̄, ResX
Y (ψ)

does not contain 1Y . Hence if W is a KX-module affording ψ and τ is an
underlying representation, then

∑
y∈Y τ(y) = 0 as

dim KCW(Y) = dim KHomKY(K, W) = 〈1Y, ψ〉Y = 0.

It follows that
∑

y∈Y ψ(xy) = 0 by considering the trace of τ(x)
∑

y∈Y τ(y).
We conclude that

∑
y∈Y (χχ̄)(xy) =

∑
y∈Y 1X(xy) = |Y |.

1.4. Brauer’s Permutation Lemma

Suppose G is a finite group acting on the finite set Ω (from the right, by
permutations). Then we write C`(G|Ω) = orb(G on Ω) for the set of orbits
of G on Ω. So C`(X) = C`(X|X) with X acting by conjugation. By the
Cauchy–Frobenius fixed point formula

(1.4a) |C`(G|Ω)| = 1
|G|

∑
g∈G |CΩ(g)|.

This is sometimes also called Burnside’s lemma; it is easily proved by means
of the counting principle or using Frobenius reciprocity [Serre, 2003]. Each
orbit is a (transitive) G-set and so isomorphic to H\G for some subgroup
H, which is determined up to conjugacy in G (being a point stabilizer). The
isomorphism type of the G-set Ω is determined by the “marks” |CΩ(H)| for
all (nonconjugate) subgroups H of G [I, 13.23]. We associate to the G-set
Ω the permutation character πΩ of G, counting the fixed points of each
element.

Theorem 1.4b (Brauer). Suppose G is a finite group which acts on Irr(X)
and on C`(X) such that χg(cg) = χ(c) for all χ ∈ Irr(X), c ∈ C`(X)
and g ∈ G. Then for each g ∈ G, the number kg(X) = |CC`(X)(g)|
of g-invariant conjugacy classes agreas with the number |CIrr(X)(g)| of g-
invariant irreducible characters of X. In particular, the permutation char-
acters πC`(X) = πIrr(X) of G agree.
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The proof [I, 6.32] is based on the fact that the character matrix of X is
nonsingular. It follows, in view of Eq. (1.4a), that G has the same number
of orbits on Irr(X) and on C`(X). Of course, this does not mean that these
sets are permutation isomorphic (unless G is cyclic).

1.5. Algebraic Conjugacy

Let Γ = Gal(K|Q) be the Galois group of K over the rationals. We have a
natural action of Γ on Irr(X). We also have a permutation action on X as
Γ ∼= (Z/eZ)?, where xσ = xn if σ ∈ Γ corresponds to the coset of n modulo
e = exp (X). This preserves C`(X). Let χ ∈ Irr(X). If εi ∈ K are the
eigenvalues of x appearing in a representation to χ, the eigenvalues for xn

are the εn
i . It follows that

χσ(x) = χ(x)σ = χ(xn) = χ(xσ).

In order to apply Theorem 1.4b one has to alter the action of Γ on X (say)
by assigning (x, σ) 7→ xσ−1

. This works since Γ is abelian. Notice that if σ

is complex conjugation (restricted to K), χσ(x) = χ̄(x) = χ(x) = χ(x−1).

So the number of real-valued irreducible characters of X is equal to
the number of real conjugacy classes c of X, satisfying c−1 = c (Burnside).
X is called a real group if all its conjugacy classes are real, that is, if all
χ ∈ Irr(X) are real-valued.

Suppose X has odd order. Then {1} is the unique real class of X. Since

χ(1) = χ̄(1) is odd, we get |X| = ∑
χ∈Irr(X) χ(1)2 = 1+2

∑ k(X)−1
2

i=1 (1+2ni)2

for certain integers ni ≥ 1. Consequently

(1.5a) |X| ≡ k(X) (mod 16),

a well known result due to Burnside.

Recall that a character of X takes only values which are algebraic
integers. If α 6= 0 is such an algebraic integer with the distinct conjugates
αi over the rationals (1 ≤ i ≤ n), then

∑n
i=1 |αi| ≥ n, with equality only if

α is a root of unity. For by the arithmetic–geometric mean inequality we
have

(1.5b) 1
n

∑ |αi| ≥ (
∏ |αi|) 1

n = |N(α)| 1n ,



8 The Solution of the k(GV) Problem

with equality only if all |αi| are equal. But the norm N(α) =
∏

i αi is a
nonzero rational integer. Hence the assertion holds, with equality only if
all |αi| are equal and N(α) = ±1. In this case |αi| = 1 for all i, whence α

is a root of unity (since only finitely many powers of α are distinct).

Lemma 1.5c (Gallagher). Suppose y ∈ X is such that χ(y) 6= 0 for each
χ ∈ Irr(X). Let N = [〈y〉, X]. Then k(X) ≤ |CX(y)| − (|X/N | − k(X/N)).

Proof. We follow [Gallagher, 1962]. N is the (normal) subgroup of X

generated by all commutators [t, x], t ∈ 〈y〉, x ∈ X. By the second orthog-
onality relations (1.1b),

|CX(y)| =
∑

χ∈Irr(X)

|χ(y)2| = Σ1 + Σ2,

where the first sum is over those χ with |χ(y)| = χ(1) and the second sum
is over the others. Now |χ(y)| = χ(1) if and only if y ∈ Z(χ) (as described
in Sec. 1.3), and this happens if and only if N is in the kernel of χ and so χ

may be viewed as a character of X/N . Thus Σ1 = |X/N |, and the number
of irreducible characters of X in Σ1 is equal to k(X/N) = |Irr(G/N)|.

For each σ in Γ = Gal(K|Q) we have |χ2|σ = (χ · χ̄)σ = χσχσ = |χσ|2.
Thus Σ1 and Σ2 are Galois stable. By hypothesis the average over the
Galois class of |χ(y)2| is ≥ 1 (and is equal to 1 only if χ(y) is a root of
unity). Consequently Σ2 ≥ k(X)− k(X/N), and the result follows. ¤

Theorem 1.5d. Suppose X has an abelian normal Sylow p-subgroup, V ,
for some prime p. Then X = GV for some p-complement G in X, uniquely
determined up to conjugacy. For each v ∈ V ,

k(GV ) ≤ |CG(v)| · |V | − (|G| − k(G)
)
.

In particular, if CG(v) = 1 for some v ∈ V , then k(GV ) ≤ |V | and equality
only holds if G is abelian.

Proof. By a simple cohomological argument X = GV is as claimed
(Appendix A1; Schur–Zassenhaus theorem). Let v ∈ V . We assert that
χ(v) 6= 0 for each χ ∈ Irr(X). By Theorem 1.3b, χ(1) is not divisible by
p. Letting p be a prime ideal above p in the ring of integers of K, we
have χ(v) ≡ χ(1) (mod p) (cf. Chapter 2). Hence the assertion. Now
N = [〈v〉, X] = [v, G] is a normal subgroup of X contained in V , and
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CX(v) = CG(v)V . By an elementary counting argument, carried out in
Theorem 1.7a below, k(X/N) ≤ |V/N | · k(G). Thus by the preceding
lemma k(X) ≤ |CG(v)| · |V | − |V/N |(|G| − k(G)

)
.

From CG(v) = 1 it follows that k(X) ≤ |V |, and then k(X) = |V | only
if |G| = k(G), that is, if G is abelian. ¤

1.6. Coprime Actions

If G is a finite group and V is a finite G-module of order prime to |G|,
then all (Tate) cohomology groups Hn(G,V ) vanish (A1). For n = 1, 2 this
leads to the Schur–Zassenhaus theorem (already mentioned). For n = 0,−1
this tells us that the fixed module CV (G) is the image of the trace map
v 7→ ∑

g∈G vg on V and that the commutator module [V,G] = [V, G,G] is
its kernel. Then CV (G) ∩ [V,G] = 0 and so

(1.6a) V = CV (G)⊕ [V, G].

Irr(V ) = Hom(V,C?) is the character group of V , and |CIrr(V )(G)| =
|Irr(V/[V, G])| = |V/[V, G]| = |CV (G)|. The corresponding holds for all
subgroups of G. Hence we have the following.

Proposition 1.6b. If V is a G-module where V and G have coprime
order, then V and Irr(V ) are isomorphic G-sets.

The proposition is true without assuming that V is abelian. In fact, if G

acts on X by automorphisms and |G| and |X| are coprime, then Irr(X) and
C`(X) are isomorphic G-sets. This result is due to Isaacs and Dade. Its
proof makes use of the Feit–Thompson theorem. So either G is solvable,
in which case a proof can be found in [I, 13.24], or X is solvable, where
a proof can be found in [Isaacs, 1973]. We do not need this result in this
general form.

Theorem 1.6c (Glauberman). Suppose G is a cyclic group acting on X by
automorphisms where |G| and |X| are coprime. Let ξ be a character of the
semidirect product GX = X : G for which χ = ResX(ξ) is irreducible. Then
there is a unique irreducible constituent θ of the restriction to Y = CX(G)
of χ, a unique linear character µ of G and a unique sign ± such that

ξ(gy) = ±µ(g)θ(y)

for all generators g of G and all y ∈ Y . If G is a p-group for some prime
p, the sign is such that 〈χ, θ〉Y ≡ ±1 (mod p).
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This is a special case of a more general character correspondence. For a
proof we refer to [I, 13.6 and 13.14]. The character ξ̂ = ξ · µ̄ is the so-
called canonical extension to GX of χ, determined by the fact that its
determinantal character det(ξ̂) has X in its kernel.

1.7. Invariant and Good Conjugacy Classes

Let N be a normal subgroup of X, and let G = X/N . Then G acts on
C`(N) in the natural way, and kg(N) = |CC`(N)(g)| is the number of g-
invariant conjugacy classes of N for each g ∈ G. The conjugacy class gG

of g is called “good for N” provided CX(x)N/N = CG(g) for any (some)
x ∈ g (with Nx = g). This is well-defined. Suppose N is abelian. Then the
class of g is good for N if CX(x)/N = CG(g) for x ∈ g, that is, whenever
a commutator [x, y] ∈ N for some y ∈ X then [x, y] = 1. In this case each
conjugacy class of G is good for N if and only if N is central in X and no
nontrivial element of N is a commutator in X.

Theorem 1.7a (Gallagher). Let Y be a subgroup of X, and let N =
CoreX(Y ) be its normal core. Let G = X/N .

(i) k(Y ) ≤ |X : Y | · k(X) and k(X) ≤ |X : Y | · k(Y ), the latter
inequality being proper unless Y = N . Moreover,

(1.7b) k(X) ≤ k(N) · k(G),

where equality holds if and only if each conjugacy class of G is good for N .

(ii) Let g = Nx for some x ∈ X. The conjugacy class in C`(N)
of an element y ∈ N is fixed by g if and only if Cg(y) 6= ∅, and then
|Cg(y)| = |CN (y)|. The number of g-invariant conjugacy classes of N is

(1.7c) kg(N) = 1
|N |

∑
y∈N |CN (xy)|.

Proof. We follow [Gallagher, 1970]. By (1.4a) k(X) = 1
|X|

∑
x∈X |CX(x)|.

The first inequality in (i) is immediate from CY (x) ⊆ CX(x). Using the
inequality |CX(x)| ≤ |X : Y | · |CY (x)| and the counting principle we have

∑

x∈X

|CX(x)| ≤ |X : Y |
∑

x∈X

|CY (x)| = |X : Y |
∑

y∈Y

|CX(y)|,
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and this is at most equal to |X : Y |2 ∑
y∈Y |CY (y)|. We have equality if

and only if CX(x)Y = X for all x ∈ X, and in this case any two conjugate
elements of X are Y -conjugate. Then Y is normal in X.

Before proving (1.7b) we settle (ii). Let t ∈ N . Then tx ∈ Cg(y) ⇐⇒
y−1txy = tx ⇐⇒ xyx−1 = t−1yt ⇐⇒ yx−1

= yt. Hence Cg(y) 6= ∅ if
and only if yN is fixed by g−1 (or g), and then Cg(y) = CN (y)tx for some
t ∈ N . So |Cg(y)| = |CN (y)| if yN ∈ CC`(N)(g) and Cg(y) = ∅ otherwise.
We conclude that

kg(N) =
∑

y∈N :yN∈CC`(N)(g)

1/|N : CN (y)| = 1
|N |

∑

y∈N

|Cg(y)|.

Counting the pairs (tx, y) ∈ g × N satisfying (tx)y = y(tx) we see that∑
t∈N |CN (tx)| =

∑
y∈N |Cg(y)|. This proves Eq. (1.7c), and completes

the proof of (ii).
For each x ∈ X we have CX(x)/CN (x) ∼= CX(x)N/N ⊆ CG(Nx).

Hence∑

x∈X

|CX(x)| ≤
∑

x∈X

|CG(Nx)| · |CN (x)| =
∑

g∈G

|CG(g)|
∑
t∈g

|CN (t)|,

and
∑

t∈g |CN (t)| = ∑
y∈N |Cg(y)| ≤ ∑

y∈N |CN (y)| by (ii). Hence
∑

x∈X

|CX(x)| ≤
∑

g∈G

|CG(g)|
∑

y∈N

|CN (y)|,

where equality holds if and only if CX(Nx) = CX(x)N for each x ∈ X

(and each X-class of N is an N -class). We are done. ¤

Theorem 1.7d (Keller). Let Y be a proper subgroup of X, N = CoreX(Y )
and G = X/N . Let Ω = C`(N |X) with N acting by conjugation, which
is a G-set (with G acting by conjugation). Then we have a partition Ω =⊎

g∈G Ωg where Ωg is the set of N -orbits contained in the coset g.
(i) For each g ∈ G the centralizer CG(g) is the stabilizer in G of Ωg,

and |Ωg| = kg(N).
(ii) Let g1 = 1, g2, · · ·, gr, gr+1, · · ·, gk(G) be representatives for the

distinct conjugacy classes of G, the first r classes being just those meeting
H = Y/N . Then

k(X) =
k(G)∑

i=1

|C`(CG(gi)|Ωgi
)| ≤ k(Y ) + (k(G)− r) ·M

where M = max{kg(N)| g 6∈ ⋃
t∈G Ht}.
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Proof. This is a recent result due to [Keller, 2006]. Let g ∈ G. It is obvious
that CG(g) is the stabilizer in G of Ωg. By the Cauchy–Frobenius formula
(1.4a) and part (ii) of the preceding theorem,

|Ωg| = 1
|N |

∑

y∈N

|Cg(y)| =
∑

y∈N :yN∈CΩ1 (g)

1/|N : CN (y)| = kg(N).

This proves (i). Each G-orbit on Ω is of the form (xN )G for some unique
conjugacy class xX ∈ C`(X), and determines the conjugacy gG of G de-
fined by Nx = g or, equivalently, by xN ⊆ g (xN ∈ Ωg). In particular,
k(X) = |C`(G|Ω)|. For h ∈ G we have |C`(CG(gh)|Ωgh)| = |C`(CG(g)|Ωg)|.
This yields the identity given in (ii). For 1 ≤ i ≤ r we may pick the rep-
resentatives gi ∈ H, belonging then to certain distinct conjugacy classes of
H. Of course r ≤ k(H), and k(G) > r by Jordan’s theorem. By what is
already proved (applied to Y ),

r∑

i=1

|C`(CG(gi)|Ωgi
)| ≤

r∑

i=1

|C`(CH(gi)|Ωgi
)| ≤ k(Y ).

For the remaining k(G)− r conjugacy classes gG of G, for which g is not in⋃
t∈G Ht, we take the trivial estimate |C`(CG(g)|Ωg)| ≤ |Ωg|, and use the

fact that |Ωg| = kg(N). ¤

1.8. Nonstable Clifford Theory

Let N be a normal subgroup of X. Then X acts on N via conjugation
(as a group of automorphisms), and on Irr(N). We have induced actions
of G = X/N on C`(N) and on Irr(N), and Theorem 1.4b applies. Fix
θ ∈ Irr(N). The stabilizer of θ (in X) is called the inertia group T = IX(θ),
and T/N = IG(θ). If χ ∈ Irr(X|θ) is an irreducible character of X above
θ, that is, θ is a constituent of ResX

N (χ), there are just s = |X : T | distinct
X-conjugates θ = θ1, · · ·, θs of θ and

(1.8a) ResX
N (χ) = eχ

∑s
i=1 θi

for some integer eχ ≥ 1, the ramification index of χ with respect to N .

Theorem 1.8b (Clifford). Let T = IX(θ). The map ψ 7→ χ = IndX
T (ψ) is

a bijection from Irr(T |θ) onto Irr(X|θ). The ramification indices eχ = eψ

are divisors of |T/N |.

For a proof we refer to [I, 6.11 and 11.29].
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1.9. Stable Clifford Theory

Let again N be a normal subgroup of X, and let G = X/N . Suppose that
θ ∈ Irr(N) is G-invariant (IG(θ) = G). This is a necessary condition for
the existence of a character χ of X extending θ. If such a χ exists then
Irr(X|θ) = {χλ = χ ⊗ λ| λ ∈ Irr(G)}, and this has cardinality k(G) [I,
6.17]. Moreover, then {χλ|λ ∈ Irr(G), λ(1) = 1} is the set of all characters
of X extending θ, and this has cardinality |G/G′|. Here G′ = [G,G] is the
commutator subgroup of G, the kernel of the characters of G of degree 1.

In general we proceed as follows. Let K0 = Q(θ) be the field generated
by the values of θ, and let W be an irreducible K0N -module affording mθ,
where m = m(θ) is the Schur index. Then D = EndK0N (W ) is a centrally
simple K0-algebra with dim K0D = m2 (1.3). Since N is normal in X and
θ is stable under G, each conjugate module Wg = W ⊗ g (affording θg)
is a K0N -module isomorphic to W (g ∈ G). Choose K0N -isomorphisms
τg : Wg → W (with τ1 = idW ). We have ResX

N

(
IndX

N (W )
)

=
⊕

g∈G Wg,
and by Frobenius reciprocity (1.2c) the τg extend uniquely to units in the
G-graded ring EndK0X

(
IndX

N (W )
)

=
⊕

g∈G Dτg. Then τ−1
g Dτg = D for

all g ∈ G. By the Skolem–Noether theorem [Bourbaki, 1958, Chap. 8, §10]
we may choose the τg such that they centralize D (via conjugation). Then
τ−1
gh τgτh = τ(g, h) · idW for some nonzero scalar τ(g, h) ∈ K0.

We have a projective representation of G with 2-cocycle τ ∈ Z2(G,K?
0 ),

where the multiplicative group K?
0 = (K0 r {0}, ·) is viewed as a trivial G-

module. The cohomology class of τ depends only on θ, K0 and the group
extension N ½ X ³ G; it is written µK0G(θ). This “Clifford obstruction”
is functorial in that it maps onto the corresponding cohomology class when
replacing K0 by an extension field.

Proposition 1.9a. The Clifford obstruction µK0G(θ) ∈ H2(G,K?
0 ) van-

ishes if and only if there is a character χ of X extending θ and satisfy-
ing K0(χ) = K0. The order of µK0G(θ) is a divisor of the number of
|G|th roots of unity in K0. There is a distinguished central group extension
Z ½ G(θ) ³ G, where Z is a cyclic group of order exp (N), whose coho-
mology class maps onto µKG(θ) through an (appropriate) embedding of Z

into K?. The exponent of G(θ) is a divisor of e = exp (X).

Proof. If µK0G(θ) vanishes, by definition one can give W = Ŵ the struc-
ture of a K0X-module satisfying EndK0X(Ŵ ) = D. This Ŵ affords mχ

where χ ∈ Irr(X) extends θ, with m(χ) = m = m(θ). It follows that
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K0 = Q(χ). The converse is proved similarly. The order of µK0G(θ) divides
|G| by an elementary property of cohomology groups (Appendix A1). It
also divides the number of roots of unity in K0 [Dade, 1974] which, however,
will not be used here. We briefly discuss the further (basic) statements.

Replacing K0 by the complex number field we are just concerned with
Schur’s theory of lifting projective representations. The Schur multiplier
M(G) = H2(G,Z) of G fits into the natural universal coefficient exact se-
quence (Appendix A5)

0 → Ext(G/G′,K?
0 ) → H2(G,K?

0 ) → Hom(M(G),K?
0 ) → 0.

Passing to the complex number field, and noting that C? is divisible, we see
that H2(G,C?) is nothing but the dual of M(G). So there is a (complex)
character χ of X extending θ if M(G) = 1. Of course, then Q(χ) ⊆ K and
so µKG(θ) vanishes. Let K1 = Q(ε1) where ε1 is a primitive exp (N)th root
of unity, and let Z = 〈ε1〉. By Theorem 1.1d this K1 is a splitting field
for N . Let W be a K1N -module affording θ, and let τ(g, h) = τ−1

gh τgτh be
a 2-cocycle with class µK1G(θ). We wish to show that there is a unique
element in H2(G, Z) mapping onto this cohomology class.

Consider the long exact cohomology sequence to Z ½ K?
1 ³ K?

1/Z:

H1(G,K?
1/Z) δ→ H2(G,Z) → H2(G,K?

1 ) → H2(G,K?
1/Z).

Either K?
1/Z is torsion-free or |Z| is odd and (−1)Z is its unique torsion

element. At any rate, δ is the zero map, and it suffices to show that µK1G(θ)
has trivial image in H2(G, K?

1/Z). In order to prove this, as well as for the
proof of the final statement, we may assume that G is a p-group for some
prime p (A4). The construction of G(θ) will show that its exponent divides
exp (X). Arguing by induction on |X| we may also assume that θ is faithful,
because Ker(θ) is normal in X, and that there is no proper subgroup X0 of
X covering G such that N0 = X0∩N has a G ∼= X0/N0-invariant irreducible
character θ0 satisfying µK1G(θ0) = µK1G(θ) in H2(G,K?

1 ). This reduction
will lead us, in the case where G is a p-group, to X = G(θ).

On the basis of Theorem 1.1c, we find a p-elementary subgroup X0 of X

covering G and an X0-invariant irreducible character θ0 of N0 = X0∩N such
that 〈θ0, θ〉N0 is not divisible by p [I, 8.24]. But this implies that µK1G(θ0) =
µK1G(θ). In order to see this, let U be a K1N0-module affording θ0, and
consider the K1-space H = HomK1N0(U,W ). By Frobenius reciprocity
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each f ∈ H extends uniquely to a K1X0-morphism IndX0
N0

(U) → IndX
N (W ),

preserving the G-gradings. Since the G-graded ring EndK1X0

(
IndX0

N0
(U)

)
=⊕

g∈G K1σg is a crosssed product, the maps f 7→ σ−1
g fτg may be considered

as elements ψg ∈ GL(H). We obtain that

ψ−1
gh ψgψh = σ(g, h)−1τ(g, h) · idH

where σ(g, h) = σ−1
gh σgσh ∈ K?

1 is a factor set with class µK1G(θ0). Taking
determinants we get that σd and τd agree modulo the coboundary obtained
from g 7→ det(ψg). Here d = dim K1H = 〈θ0, θ〉N0 . Since G is a p-group,
hence so is H2(G,K?

1 ), and since p does not divide d, the cohomology classes
of σ and τ agree. Thus by our choice X = X0 is p-elementary.

Let next M be a G-invariant abelian subgroup of N of maximal order.
Since X is p-elementary and X/N a p-group, it follows that CN (M) =
M . Let λ ∈ Irr(M) be an irreducible (linear) constituent of ResN

M (θ) and
X1 = IX(λ), N1 = IN (λ) = X0 ∩ N . Let θ1 ∈ Irr(N1|λ) be the unique
character satisfying IndN

N1
(θ1) = θ (Theorem 1.8b). By a Frattini argument

X1 covers G and, by the same argument as before, µK1G(θ1) = µK1G(θ)
since 〈θ1, θ〉N1 = 1. Thus X = X1 and N1 = N . It follows that ResN

M (θ) =
θ(1)λ and that M ⊆ Z(N) as θ is faithful. But CN (M) = M . Hence
N = M is central in X and θ = λ is linear.

Now µK1G(θ) is the image of the cohomology class of the central exten-
sion N ½ X ³ G under the map induced by θ̄ = θ−1 : N → K?

1 . Indeed,
choose τg : w ⊗ tg 7→ w for some transversal {tg}g∈G to N in X. Letting
t(g, h) = t−1

gh tgth be the corresponding factor set, µK1G(θ) is the class of
the factor set (g, h) 7→ θ(t(g, h)−1) of G, which has its values in Z. ¤

Definition 1.9b. The group G(θ) in the preceding proposition is called the
representation group of θ (with respect to G). The extended representation
group is defined as the “fibre-product” (pull-back; “diagonal group” in the
terminology of the Atlas)

X(θ) = G(θ)∆GX

of G(θ) and X amalgamating G = X/N . Letting τ(g, h) = τ−1
gh τgτh be a

2-cocycle with values in Z (viewed as a group of scalar multiplications) and
class µKG(θ) in H2(G, K?), we may write G(θ) as the group consisting of all
pairs (g, z) ∈ G×Z with multiplication (g, z)(h, z′) = (gh, zz′τ(g, h)). Then
X(θ) consists of all elements ((g, z), x) for which Nx = g. By Proposition
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1.9a, X(θ) has the same exponent as X. Hence K is a splitting field for
X(θ) by Theorem 1.1d.

Suppose W is a KN -module affording θ. By construction W = Ŵ gets
the structure of a KX(θ)-module through w((g, z), x) = (zwx)τg = (zw)τgx

for w ∈ W ⊆ IndX
N (W ), g ∈ G, z ∈ Z and x ∈ X (with Nx = g). For

x ∈ N we have v((1, 1), x) = vx. Thus Ŵ is an extension of W when viewed
as a module for Ker(X(θ) ³ G(θ)) ∼= N .

We may replace K by any subfield which is a splitting field for θ. In
this manner we find a character θ̂ of X(θ) extending θ, when viewed as a
character of Ker(X(θ) ³ G(θ)), which can be written in this same field.
This applies in particular when the Schur index m(θ) = 1 (which is true in
prime characteristic).

Theorem 1.9c (Clifford). Let N be a normal subgroup of X, let G = X/N

and let θ ∈ Irr(N) be stable in X. Let θ̂ ∈ Irr(X(θ)) extend θ in the above
sense, and let θ̃−1 be the unique irreducible (linear) constituent of θ̂ on
Ker(X(θ) ³ X) ∼= Z. Then ζ ↔ χ = θ̂⊗ ζ is a 1-1 correspondence between
Irr(G(θ)|θ̃) and Irr(X|θ). Moreover |Irr(X|θ)| = |Irr(G(θ)|θ̃)| ≤ k(G).

Proof. Let χ ∈ Irr(X|θ), and view χ as a character of X(θ) by inflation.
Since θ̂ extends θ when viewed as a character of Ker(X(θ) ³ G(θ)) ∼= N ,
there is a unique (irreducible) character ζ of G(θ) such that χ = θ̂⊗ ζ (see
above). But Ker(X(θ) ³ X) ∼= Z is in the kernel of χ. It follows that
ζ ∈ Irr(G(θ)|θ̃) where θ̃ is as described. Conversely, every ζ ∈ Irr(G(θ)|θ̃)
gives rise to an irreducible character χ = θ̂ ⊗ ζ in Irr(X|θ).

For the final statement we may assume that X = G(θ), N = Z is
central in X and θ̃ = θ. By Frobenius reciprocity (1.2c) we then have
IndX

N (θ) =
∑

χ∈Irr(X|θ) χ(1)χ, and this vanishes outside N and agrees with

|G|θ on N . For χ ∈ Irr(X|θ) we have |χ(x)|2 = χ(1)
|X|

∑
y∈X χ([x, y]) by

(1.3c) and, of course, |X| = ∑
x∈X |χ(x)|2. Hence

|Irr(X|θ)| = 1
|X|

∑

x∈X

∑

χ∈Irr(X|θ)

|χ(x)|2 =
|G|
|X|2

∑
x,y∈X
[x,y]∈N

θ([x, y]).

This is at most equal to |G|
|X|2

∑
x∈X

∑
y∈CX(Nx) 1 = 1

|G|
∑

x̄∈G |CG(x̄)| =
k(G). ¤
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We now shall discuss Clifford theory of tensor induction. Suppose N

is a nonabelian normal subgroup of X which is the central product of the
X-conjugates of some (proper) subgroup N0. Let X0 = NX(N0) be the
normalizer, and let G = X/N and G0 = X0/N0. Assume θ ∈ Irr(N) is
stable in X, and let θ0 ∈ Irr(N0) be the unique irreducible constituent of
θ on N0. As θ0 is absolutely irreducible, θ is the (tensor) product of the
|X : X0| distinct X-conjugates of θ0 [I, 4.21].

Define X(θ) and X0(θ0) as before, with the same Z, and let Ẑ =
IndX

X0
(Z) be the (induced) permutation module.

Theorem 1.9d. Keeping these assumptions, let θ̂0 be an irreducible char-
acter of X0(θ0) extending θ0 (as above). Then there is a group extension

Ẑ ½ X̂ ³ X mapping onto X(θ) such that θ̂ = TenX̂

X̂0
(θ̂0) is a character

of X(θ) extending θ, X̂0 being the inverse image in X̂ of X0.

Proof. Let ρ0 : N0 → GL(W0) be a K-representation affording θ0 (Theo-
rem 1.1d). Let {ti}n

i=1 be a right transversal to X0 in X. Let h =
∏

i hti
i

be an element in N (with all hi ∈ N0). Then ρ(h) = ⊗n
i=1ρ0(hti

i ) is a
K-representation of N on W =

⊗n
i=1 W0ti affording θ. Since θ0 is stable

in X0, we may extend ρ0 to a projective representation ρ̂0 : X0 → GL(W0).
We may choose ρ̂0 such that its factor set τ0 ∈ Z2(X0, K

?), being inflated
from G0, has order dividing |Z| = exp (N0). Let x ∈ X, and let tix = xitix
be as in Sec. 1.2 (with xi ∈ X0). Then ρ̂(x) = ⊗n

ix=1ρ̂0(xi) defines a pro-
jective representation of X tensor induced from ρ̂0 which extends ρ and has
factor set

τ̂0(x, y) =
n∏

i=1

τ0(xi, yix).

This τ̂0 is co-induced from τ0 (and inflated from G). We have hx =∏
i(h

xi
i )tix and so

ρ(hx) = ⊗n
ix=1ρ0(hxi

i ) = ρ̂(x)−1ρ(h)ρ̂(x).

Thus the class of τ = τ̂0 in H2(G,K?) is nothing but µKG(θ), and ρ̂ lifts
to an ordinary representation of X(θ), say affording θ̂.

The group extension X̂ represents the cohomology class obtained from
X0(θ0) under the natural isomorphism H2(X0, Z) ∼= H2(X, Ẑ) underlying
Shapiro’s lemma (A3). Here the group X(θ) is the image of X̂ under the
map Ẑ → Z sending (zi)n

i=1 to
∏n

i=1 zi (zi ∈ Z). ¤
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1.10. Good Conjugacy Classes and Extendible Characters

Let N be a normal subgroup of X, and let G = X/N . Let θ ∈ Irr(N)
be G-invariant. The conjugacy class of an element g = Nx in G is called
“good for θ” provided θ can be extended to 〈N, x, y〉 for all y ∈ X satisfying
[x, y] ∈ N [Gallagher, 1970]. By virtue of Theorem 1.9c this may be studied
by passing to G(θ). Hence we may assume that N = Z is cyclic and central
in X and that θ = θ̃ is linear. Assume also that θ is faithful. If there is a
(linear) character λ of Y = 〈N, x, y〉 extending θ, then Y/N is abelian (as
[x, y] ∈ N), Y/Ker(λ) is abelian and N ∩ Ker(λ) = Ker(θ) = 1. Hence Y

is abelian. Conversely, if Y is abelian, then θ can be extended to Y . We
have proved the following.

Theorem 1.10a. Suppose θ ∈ Irr(N) is stable under G = X/N . Then
|Irr(X|θ)| is the number of conjugacy classes of G which are good for θ.

Combining this with Theorem 1.8b we obtain the Clifford–Gallagher for-
mula

(1.10b) k(X) =
∑

θ∈Irr(N) kθ

(
IG(θ)

)
/|G : IG(θ)|,

where kθ(IG(θ)) is the number of conjugacy classes of IG(θ) which are good
for θ. Observe that kθ(IG(θ)) = k(IG(θ)) whenever θ can be extended to
IX(θ), that is, whenever µKIG(θ)(θ) vanishes. This happens for instance if
all Sylow subgroups of IG(θ) are cyclic, because then its Schur multiplier
is trivial by (A4).



Chapter 2

Blocks of Characters and
Brauer's k(B) Problem

Keeping the assumptions and notation of the preceding chapter we proceed
now to modular representations and to block theory. The reader is referred
to [Feit, 1982] for the relevant background as well as for results not proved
here. This book is cited as [F] in the text. We describe some ideas of
Brauer and Feit when attacking the k(B) problem. The study of (major)
subsections will motivate us (once again) to consider point stabilizers when
dealing with the k(GV ) problem. On the basis of the Clifford theory of
blocks developed by Fong we shall verify the k(B) problem for p-blocks of
p-solvable groups, assuming that the k(GV ) theorem is already settled.

2.1. Modular Decomposition and Brauer Characters

Let p be a rational prime. Denote by |X|p = pa the p-part of the order
of X (= order of a Sylow p-subgroup of X), and let Xp ′ be the set of p ′-
elements (or p-regular elements) of X. Let Z(p) denote the localization of
the integers at the prime (p) = pZ. Then R = Z(p)[ε] is a Dedekind ring
with only finitely many nonzero prime ideals, all lying above p. Hence R is
a principal ideal domain, with quotient field K = Q(ε). Letting p be any
of the (Galois conjugate) nonzero prime ideals of R, the field F = R/p is
finite of characteristic p, and is a splitting field for all subgroups of X (as
follows from Theorem 1.1d, or from the fact that Schur indices are trivial).

If χ, ζ are K-valued class functions on Xp ′ , we define

〈χ, ζ〉p ′ = 〈χ, ζ〉Xp′ =
1
|X|

∑

x∈Xp ′

χ(x)ζ(x).

For irreducible characters χ, ζ of X we define mχζ = 〈χ, ζ〉p ′ (which is
symmetric), and we say that they belong to the same p-block, B, of X

provided their central characters agree mod p. See Eq. (1.3a); recall that
the central characters have their values in Z[ε] ⊆ R. This defines a partition
of Irr(X) (which turns out to be independent of the choice of the maximal

19
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ideal p). For the time being, the block B is just a certain nonempty set
Irr(B) of irreducible characters of X. Define

ωB(ĉ) = ωχ(ĉ) + p

for any χ ∈ Irr(B), and all conjugacy classes c of X.

If χ is a class function on X, we let χ̃ = χ̃(pa) be the class function
on X taking the value paχ(x) for x ∈ Xp′ , and zero otherwise. For χ, ζ in
Irr(X) we have pamχζ = 〈χ̃, ζ〉 = 〈χ, ζ̃〉.

Lemma 2.1a. If χ ∈ Z[Irr(X)] is a generalized character, then so is χ̃.
Then even 1

pa−d χ̃ ∈ Z[Irr(X)] where d ≤ a is the smallest integer (if any)

such that pd

|CX(x)|p χ(x) ∈ R for all x ∈ Xp′ .

Proof. We apply Theorem 1.1c. Let E = P×Q be an elementary subgroup
of X, where P is a p-group and Q is a p′-group. Then |P | = pb with b ≤ a.
Let ρ be the character of P afforded by the regular representation. Then
ResX

E (χ̃) = (pa−bρ)⊗ResX
Q (χ) is a generalized character of E. Thus χ̃ is a

generalized character of X. It follows that 1
pa−d χ̃ ∈ Z[Irr(X)] if and only if

〈 1
pa−d

χ̃, ζ〉 ∈ Z(p) = R ∩Q

for all ζ ∈ Irr(X). But for x ∈ Xp′ and c = xX we have |c| = |X : CX(x)|
and

1
|X|

∑
y∈c

1
pa−d

χ̃(y)ζ(y−1) =
pd

|CX(x)|p
χ(x) · ζ(x−1)

|CX(x)|p′ ∈ R.

Use finally the fact that χ̃ vanishes on p-singular elements of X. ¤

Reduction mod p is an isomorphism from the exp (X)p ′th roots of unity
in K to those in F . Let V be an FX-module. Each p-regular x ∈ Xp ′ is
semisimple (diagonalizable) on V , its eigenvalues being such roots of unity
in F . Lifting these eigenvalues, and summing up, we get a class function
ϕV : Xp ′ → K. This ϕV is called the Brauer character of X afforded by V

(with respect to p). If X is a p ′-group, ϕV is an ordinary character of X.
If V is an irreducible FG-module, ϕV is called an (absolutely) irreducible
Brauer character. The set IBr(X) = IBrp(X) of (absolutely) irreducible
Brauer characters of X is a basis for the K-vector space of class functions
on Xp ′ [I, 15.11], or [F, IV.3.4]. It follows that
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(2.1b) |IBr(X)| = |C`(Xp ′)|

is the number of p ′-classes in X. The reader is referred to [Jansen et al.,
1995] for tables of Brauer characters for some simple groups of small orders;
this book will be quoted as [B-Atlas].

Theorem 2.1c. Let χ ∈ Irr(X). Then χp ′ = ResX
Xp′

(χ) is a Brauer char-
acter, hence χp ′ =

∑
ϕ∈IBr(X) dχϕϕ for some unique nonnegative integers

dχϕ, called the decomposition numbers of χ.

Proof. By Theorem 1.1d, there is a KX-module W affording χ. Let {wj}
be a K-basis of W , and let U be the R-submodule of W generated by all
wjx, x ∈ X. Then U is finitely generated and torsion-free, hence a free
R-module. U must have rank χ(1) = dim KW, and U is stable under X.
Thus U is an RX-lattice affording χ. It follows that V = U/pU is an
FX-module affording the Brauer character χp ′ = ResX

Xp′
(χ). This χp ′ is

independent of the choice of the lattice U affording χ. ¤

2.2. Cartan Invariants and Blocks

Let B be a block of X. We say that an irreducible Brauer character ϕ of
X belongs to B, ϕ ∈ IBr(B), provided dχϕ 6= 0 for some χ ∈ Irr(B).

Theorem 2.2a. Let B be a block of X, and let ϕ ∈ IBr(B). Then dχϕ = 0
whenever χ does not belong to B, and ϕ is a Z-linear combination of the
χp ′ for χ ∈ Irr(B). Moreover:

(i) The associated “projective character” ϕ̂ =
∑

χ∈Irr(B) dχϕχ vanishes
off p-regular elements, its degree ϕ̂(1) is divisible by pa, and it satisfies
〈ϕ̂, ϕ〉p′ = 1 and 〈ϕ̂, ψ〉p′ = 0 for ϕ 6= ψ in IBr(X).

(ii) For ϕ, ψ in IBr(B) let cϕψ = 〈ϕ̂, ψ̂〉 be the “Cartan invariant”, and
let CB = (cϕψ)ϕ,ψ. The Cartan matrix CB of B is symmetric and positive
definite, and C−1

B = (〈ϕ,ψ〉p′)ϕ,ψ.

Proof. Suppose dχϕ 6= 0. Let V = U/pU be an FX-module affording
χp′ . Then some composition factor of V affords ϕ. Each class sum ĉ acts
as a scalar multiplication on V , thus defining a central character ωϕ (with
values in F ). This ωϕ must be the reduction mod p of ωχ. In other words,
ωϕ = ωB for some unique p-block B.
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For the second statement, observe that modular decomposition may be
seen as a map from generalized characters to generalized Brauer characters,
which commutes with restriction to subgroups and induction (defined for
Brauer characters like for ordinary characters). Hence by Brauer’s induc-
tion theorem it suffices to consider the case where X = P ×Q is elementary
(P a p-group, Q a p′-group). But in this case every ϕ ∈ IBr(X) has P in its
kernel, because CV (P ) 6= 0 for each irreducible FX-module V , and CV (P )
is X-invariant as P is normal in X. It follows that ϕ = χp′ for some unique
χ ∈ Irr(X).

The surjectivity of the decomposition map is equivalent to the state-
ment that the elementary divisors of the decomposition matrix DB = (dχϕ)
of B, with χ ∈ Irr(B) and ϕ ∈ IBr(B), are all 1. For ϕ, ψ in IBr(B) the
Cartan invariant

cϕψ = 〈ϕ̂, ψ̂〉 =
∑

χ∈Irr(B)

dχϕdχψ

and so CB = (DB)t · DB is a positive definite symmetric matrix with
nonnegative integer entries.

By the second orthogonality relations (1.1b), for any regular x ∈ Xp′

and any singular y ∈ X we have
∑

ϕ∈IBr(X)

ϕ(x)ϕ̂(y) =
∑

χ∈Irr(X)

χ(x)χ(y) = 0.

Since the irreducible Brauer characters are linearly independent, ϕ̂(y) = 0

for each ϕ. Thus if P is a Sylow p-subgroup of X, then 〈ϕ̂, 1P 〉P = ϕ̂(1)
|P | is

an integer. Varying c = cx over the p-regular conjugacy classes of X the
second orthogonality relations show that (ϕ(c))ϕ,c ·(ϕ̂(c))t

ϕ,c is the diagonal
matrix with cxth entry |CX(x)|. It follows that for ϕ,ψ in IBr(B),

〈ϕ̂, ψ〉p′ =
∑

c=cx∈C`(Xp′ )

1
|CX(x)| ϕ̂(x)ψ(x) = δϕψ.

From ϕ̂p′ =
∑

ψ∈IBr(B) cϕψψ we infer that C−1
B is as asserted. ¤

We define a graph with Irr(X) as its vertex set by linking χ, ζ in
Irr(X) if there exists ϕ ∈ IBr(X) such that dχϕ 6= 0 6= dζϕ. This is
called the Brauer graph (mod p). By Theorem 2.2a, Irr(B) is a union of
connected components of the Brauer graph. We also let eB =

∑
χ∈Irr(B) eχ

where eχ = χ(1)
|X|

∑
x∈X χ(x)x is the centrally primitive idempotent of KX

associated to χ (ωχ(eχ) = 1 and ωχ(eζ) = 0 for ζ 6= χ).
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Theorem 2.2b (Osima). We have eB =
∑

c∈C`(X) aB(c)ĉ for unique ele-
ments aB(c) in R, and we write eB and aB(c) also for the reductions mod
p . Then aB(c) = 0 (in F ) if c is a p-singular class, and ωB(eB) = 1. Also,
Irr(B) is a connected component of the Brauer graph.

Proof. By Theorem 2.2a we have aB(c) = 1
|X|

∑
ϕ∈IBr(B) ϕ(1)ϕ̂(c) = 0 if c

is not a p′-class. If c is a p′-class, then

aB(c) =
1
|X|

∑

ϕ∈IBr(B)

ϕ̂(1)ϕ(c)

is in R, because pa is divisor of ϕ̂(1) by Theorem 2.2a. Replacing Irr(B)
by a connected component B ⊆ Irr(B) of the Brauer graph, and IBr(B)
by {ϕ ∈ IBr(X)| dχϕ 6= 0 for some χ ∈ B}, the corresponding statement
holds for e =

∑
χ∈B eχ. Then an irreducible character χ of X belongs to

B if and only if ωχ(e) 6≡ 0 (mod p). We conclude that B = Irr(B). ¤

2.3. Defect and Defect Groups

Let χ ∈ Irr(B). By Theorem 1.3b, χ(1)p ≤ pa. If χ(1)p = pa−d is as small
as possible in Irr(B), then d = d(B) is the defect of B, and χ is said to be
of height zero in B. In general χ(1)p = pa−d+h with height h = hχ ≥ 0.

Theorem 2.3a. Let B be a block of X with defect d and let χ ∈ Irr(B)
be of height zero. Then for any ζ ∈ Irr(B), pdmχζ is a nonzero rational
integer whose p-part is equal to the height of ζ. In particular pdC−1

B is a
positive definite symmetric matrix with integer entries.

Proof. Let χ̃ ∈ Z[Irr(X)] be as in Lemma 2.1a. From Theorem 2.2a it
follows that mχζ = 0 if ζ 6∈ Irr(B). Hence χ̃ =

∑
ζ∈Irr(B)〈χ̃, ζ〉ζ is in

Z[Irr(B)]. Since ωχ(ĉ) = χ(x)
|CX(x)| · |G|χ(1) ∈ R for c = xX and x ∈ Xp′ , 1

pa−d χ̃

is a generalized character (in B) by Lemma 2.1a. But 1
pa−d+1 χ̃ is not in

Z[Irr(B)], because if P is a Sylow p-subgroup of X then

1
pa−d+1

〈χ̃, 1P 〉P = χ(1)/pa−d+1

is not an integer. It follows that there is θ ∈ Irr(B) such that 〈χ̃, θ〉/pa−d

is a unit in R. Then θ(1)p = pa−d. Let ζ ∈ Irr(B) and ζ(1)p = pa−d+h.
There are similar statements for ζ̃. By definition pamχζ = 〈χ̃, ζ〉 = 〈χ, ζ̃〉.
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Thus pdmχζ is an integer whose p-part equals ζ(1)p. Note that 〈χ̃,ζ〉
θ(1) ≡

〈χ̃,θ〉
θ(1) (mod p), because ωζ and ωθ agree mod p.

For the final statement observe that for χ, ζ ∈ Irr(B) we have

mχζ =
∑

ϕ,ψ∈IBr(B)

dχϕ · 〈ϕ,ψ〉p′ · dζψ.

Thus (pdmχζ)χ,ζ = DB(pdC−1
B )Dt

B . Now use the fact that by Theorem
2.2a all the elementary divisors of DB are equal to 1. ¤

Let c = xX be a conjugacy class of X. Then a Sylow p-subgroup of
CX(x) is a defect group for c. By Theorem 2.2b there exist c such that
aB(c) 6= 0 and ωB(ĉ) 6= 0. Then c is called a defect class for the block B.

Lemma 2.3b. Let B be a block of X and let D be a defect group of some
defect class for B. Let c be any conjugacy class of X.

(a) If aB(c) 6= 0 (in F ), then D contains a defect group for c.

(b) If ωB(ĉ) 6= 0, then D is contained in a defect group for c.

For a proof of this Min-Max lemma see [I, 15.31] .

It follows that the defect groups of the defect classes for B form a
single conjugacy class of p-subgroups of X, called the defect groups of B.
If D is a defect group of B then |D| = pd where d is the defect of B.
Indeed, let χ ∈ Irr(B) be of height zero, whence χ(1)p = pa−d. Let c = cx

be a defect class for B. Then ωχ(ĉ) 6≡ 0 (mod p) by definition. Since
χ(x) ∈ R, this shows that |c|/χ(1) ∈ R ∩ Q = Z(p) is not divisible by p.
Hence |D| ≥ pd as |c|p = pa/|D|. On the other hand, also aB(c) 6= 0 and
so in view of Theorems 2.2b and 2.2a there is some ζ ∈ Irr(B) such that
ζ(c) 6≡ 0 (mod p). Using that ωζ̄(ĉ) ∈ R it follows that ζ(1)p ≤ |c|p. Hence
|D| ≤ pd.

The principal block of X is the block containing the 1-character 1X .
Its defect groups are the Sylow p-subgroups of X.

Theorem 2.3c. Let B be a block of X with defect group D, and let P be
a normal p-subgroup of X. Then |D| = pd where d is the defect of B, and
D ⊇ P . The block idempotent eB of B is a central idempotent of FCX(P ),
and if CX(P ) ⊆ P , then B is the unique p-block of X and hence D a Sylow
p-subgroup of X.
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Proof. We have already proved the first statement. Let N = CX(P ),
which is normal in X. Let c ∈ C`(X). If some x ∈ c is contained in N ,
then c ⊆ N . Assume c 6⊆ N . Then each P -orbit on c (by conjugation) has
size divisible by p. Let V be an irreducible FX-module. Then P ⊆ CX(V )
(as seen above). It follows that V ĉ = 0. Consequently ĉ is in the Jacobson
radical of Z(FX), hence is nilpotent.

Now let c be a defect class for B with defect group D. Then ωB(ĉ) 6= 0
and so ĉ is not nilpotent. Thus c ⊆ N = CX(P ) and P ⊆ D.

Let eB =
∑

c aB(c)ĉ be as in Theorem 2.2b. We have seen that either
ĉ ∈ J(Z(FX)) or c ∈ C`(X) is centralized by P . Since eB is an idempotent,
it follows that eB ∈ Z(FX) ∩ FN .

Let b be a block of N covered by B, that is, some χ ∈ Irr(B) lies over
some θ ∈ Irr(b). It follows from Theorem 1.8b that the blocks of N covered
by B form a unique X-conjugacy class of blocks. Thus eB ·eb 6= 0 and eB is
the sum of the distinct X-conjugates of eb. Define ωX

b (ĉ) = ωb(
∑

x∈N∩c x)
for any conjugacy class c of X. If c 6⊆ N , then c∩N = ∅ and ωX

b (c) = 0 by
definition. Then also ωB(ĉ) = 0, for otherwise D ⊆ CX(x) for some x ∈ c by
the preceding lemma, whence x ∈ CX(D) ⊆ CX(P ) = N , a contradiction.
If c ⊆ N , then ĉ ∈ Z(FN) and ωB(ĉ) = ωb(ĉ) = ωX

b (ĉ), because central
characters agree if they agree on central idempotents (knowing that F is a
splitting field for Z(FN)). We conclude that ωB = ωX

b is determined by b,
i.e., B = bX is the unique block of X covering b.

In particular, if CX(P ) ⊆ P , then the principal block b is the unique
p-block of N = Z(P ) and so B is the unique p-block of X. ¤

2.4. The Brauer–Feit Theorem

In what follows we fix a block B of X with defect group D, |D| = pd.
We let k(B) = |Irr(B)| and `(B) = |IBr(B)|. We have k(B) ≥ `(B) since
the Cartan matrix CB is nonsingular. One even has k(B) > `(B) unless
d = 0, in which case k(B) = 1 = `(B) [F, IV.4.19]. Brauer’s celebrated
k(B) conjecture is the assertion that always k(B) ≤ pd.

Theorem 2.4 (Brauer–Feit). We have k(B) ≤ 1 + 1
4p2d. If B contains an

irreducible character of positive height, then even k(B) ≤ 1
2p2d−2.

Proof. Let kh = kh(B) be the number of irreducible characters in B of
height h, so that k(B) =

∑
h≥0 kh. Let χ ∈ Irr(B) be of height zero. By
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Theorem 2.3a, 1
pa−d χ̃ =

∑
ζ∈Irr(B) nζζ where each nζ = pdmχζ = 1

pa−d 〈χ̃, ζ〉
is a nonzero integer with p-part equal to phζ . From

pdnχ = pd(pdmχχ) = 〈 1
pa−d

χ̃,
1

pa−d
χ̃〉 =

∑

ζ∈Irr(B)

n2
ζ

we get pdnχ ≥ n2
χ + (k0 − 1) +

∑
h≥1 khp2h. It follows that

k(B) ≤
∑

h≥0

khp2h ≤ 1 + pdnχ − n2
χ ≤ 1 +

1
4
p2d,

because t 7→ pdt − t2 takes its maximum in t = 1
2pd. We also see that∑

h≥1 khp2h ≤ 1
4p2d and so

∑
h≥1 kh ≤ 1

4p2d−2.

Suppose there is a character ζ ∈ Irr(B) with height h = hζ > 0. Then
1

pa−d+h ζ̃ ∈ Z[Irr(B)]. Arguing as before this yields that k0p
2 ≤ pdu−u2 for

u = pd−hmζζ . Hence k0 ≤ 1
4p2d−2, and the result follows. ¤

2.5. Higher Decomposition Numbers, Subsections

In order to improve Theorem 2.4 one is led to pass to certain subgroups of
X and blocks related to B. Let Y be a subgroup of X and b be a block of
Y . We say that the induced block bX exists provided the map ωX

b , defined
by ωX

b (ĉ) = ωb(
∑

x∈Y ∩c x) for any conjugacy class c of X, is an F -algebra
homomorphism on the centre of FX. In this case ωX

b determines a unique
block B = bX of X.

Example 2.5a. Suppose b is a block of the subgroup Y of X containing
an irreducible character θ such that χ = IndX

Y (θ) is irreducible. Then,
by formula (1.2b) for induced characters, ωχ(ĉ) = ωθ(

∑
x∈Y ∩c x) for each

conjugacy class c of X. Thus in this case B = bX is defined, and χ ∈ Irr(B).

If Y contains DCX(D) for some p-subgroup D of X, then for any block
b of Y the induced block B = bX is defined, and the defect groups of b are
contained in certain defect groups of B [F, III.9.4 and 9.6]. If NX(D) ⊆ Y ,
then by Brauer’s First Main Theorem on blocks b 7→ bX is a bijection from
the blocks of Y with defect group D to the blocks of X with defect group
D [I, 15.45], or [F, III.9.7].

Let B be a block of X with defect group D, and let y ∈ Z(D) be a
central element of D, say of order pn. Let Y = CX(y). Then bX is defined
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for each p-block b of Y , and there exists b such that bX = B and D is a
defect group of b [F, V.9.2]. Fix such a block b. Since y is in the centre of
Y , for each irreducible character χ of X and any ϕ ∈ IBr(Y ), there exist
unique dy

χϕ ∈ Z[ε] ⊆ R such that

χ(xy) =
∑

ϕ∈IBr(Y )

dy
χϕϕ(x)

for all p′-elements x ∈ Y . The numbers dy
χϕ =

∑
θ∈Irr(Y )〈χ, θ〉Y ·λθ(y) ·dθϕ,

where ResY
〈y〉(θ) = θ(1)λθ, are called the higher decomposition numbers

with respect to y. They are algebraic integers in the field of pnth roots of
unity over the rationals. It follows from Brauer’s Second Main Theorem on
blocks [F, IV.6.1] that if dy

χϕ 6= 0 for some ϕ ∈ IBr(b), then χ belongs to
bX = B. Using the second orthogonality relations (1.1b) one checks that∑

χ∈Irr(B) dy
χϕdy

χψ is the (ϕ, ψ)-entry of the Cartan matrix Cb of b.

Definition 2.5b. The set of columns (dy
χϕ)χ∈Irr(B), with ϕ varying over

IBr(b), is called the (major) subsection (y, b) associated to bX = B (where
the term major indicates that b and B have a defect group in common).
For χ, ζ in Irr(B) we define

m
(y,b)
χζ =

∑

ϕ,ψ∈IBr(b)

dy
χϕ · 〈ϕ,ψ〉Yp′ · dy

ζψ.

By definition m
(y,b)
χζ = m

(y,b)
ζχ and, by Theorems 2.2a and 2.3a, pdm

(y,b)
χζ is

an algebraic integer in R and is nonzero if χ is of height zero in B. Let Qb

denote the quadratic form obtained from the Hermitian form defined by
the positive definite symmetric matrix pdC−1

b with integer entries. Then
by definition Qb(z) = pdm

(y,b)
χχ if z = (dy

χϕ)ϕ∈IBr(b).

Lemma 2.5c. Let (y, b) be a major subsection to B = bX , with defect d.
Then

∑
χ∈Irr(B) m

(y,b)
χχ = `(b) and, for each χ ∈ Irr(B), the trace

TrK|Q(pdm(y,b)
χχ ) ≥ [K : Q] ·min Qb(z),

where z = (zϕ) varies over all nonzero vectors with integral coordinates.
In the case that

∑
ϕ∈IBr(b) dy

χϕϕ(1) 6≡ 0 (mod p) for all χ ∈ Irr(B), it suf-
fices to take the minimum over those vectors for which

∑
ϕ∈IBr(b) zϕϕ(1) 6≡

0 (mod p).

Proof. Consider the k(B)× k(B)-matrix M = (m(y,b)
χζ )χ,ζ . By direct com-

putation, using that C−1
b = (〈ϕ, ψ〉Yp ′ )ϕ,ψ by Theorem 2.2a, one obtains

that M2 = M [F, V.9.4]. Since the rank of M equals the rank of pdC−1
b ,
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which is `(b), we infer that the trace of M is equal to `(b). It follows that∑
χ m

(y,b)
χχ = `(b). For the statement concerning the field traces we may

replace K by K0 = Q(ε0) where ε0 is a primitive pnth root of unity such
that all m

(y,b)
χζ ∈ K0. Then use that TrK0|Q(εj

0) = −pn−1 if j is divisible by
pn−1 but not by pn, and zero otherwise [F, V.9.14]. ¤

Theorem 2.5d (Brauer). Let (y, b) be a major subsection to B (defect d).
(i) Assume that Qb(z) ≥ `(b) for each nonzero vector z = (zϕ) with

integer coordinates; if
∑

ϕ∈IBr(b) dy
χϕϕ(1) 6≡ 0 (mod p) for all χ ∈ Irr(B),

consider only those vectors for which
∑

ϕ∈IBr(b) zϕϕ(1) 6≡ 0 (mod p). Then
k(B) ≤ pd.

(ii) If B contains no irreducible character of positive height, then we
have k(B) ≤ pd

√
`(b).

Proof. (i) By hypothesis and Lemma 2.5c, TrK|Q(pdm
(y,b)
χχ ) ≥ [K : Q]`(b)

for each χ ∈ Irr(B). Using that
∑

χ∈Irr(B) m
(y,b)
χχ = `(b) we get the estimate

pd[K : Q]`(b) ≥ k(B)[K : Q]`(b). Hence the result.
(ii) Now m

(y,b)
χζ 6= 0 for all χ, ζ in Irr(B). Therefore, varying σ over the

Galois group Γ = Gal(K|Q) and ζ over Irr(B), by the arithmetic–geometric
mean inequality (1.5b) we have

1 ≤ (
∏

ζ,σ

(pd|m(y,b)
χζ |σ)2)

1
k(B)|Γ| ≤ 1

k(B)|Γ|
∑

ζ,σ

p2d|(m(y,b)
χζ

)σ|2.

The term on the right equals 1
k(B)|Γ|

∑
σ(p2dm

(y,b)
χχ )σ. Use finally once more

that
∑

χ m
(y,b)
χχ = `(b). ¤

Remark . One knows that the k(B) conjecture is true for blocks with cyclic
defect groups, even for abelian defect groups of rank at most 2. The best
general result so far for p-blocks B of defect d ≥ 2 is the Brauer–Feit
bound k(B) ≤ p2d−2, which follows by combining Theorems 2.4 and 2.5b
[F, VII.10.13 and 10.14].

2.6. Blocks of p-Solvable Groups

X is called p-solvable provided each composition factor of X either is a
p-group or a p′-group. Then X contains a p-complement, G, and each p′-
subgroup of X is contained in a conjugate of G (P. Hall; the proof is easily
worked out by induction applying the Schur–Zassenhaus theorem). The
block theory for p-solvable groups has been developed in [Fong, 1962].
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A p-solvable group X is p-constrained, that is, if P is a Sylow p-
subgroup of Op′p(X), then CX(P ) ⊆ Op′p(X) (Hall–Higman lemma). Here
Op(X) and Op′(X) are the largest normal p-subgroup and p′-subgroup of
X, respectively, and Op′p(X)/Op′(X) = Op(X/Op′(X)).

Theorem 2.6a. Suppose X is p-solvable with Op′(X) = 1. Then X has
a unique p-block B. Assume the k(GV ) theorem has already been proved.
Then k(B) ≤ |D|. We even have k(B) < |D| unless X = Z(X) × GV

where G is a p-complement in X acting faithfully on the elementary abelian
p-group V , and if k(GV ) = |V |.
Proof. Let P = Op(X). Since Op′(X) = 1, we know that CX(P ) ⊆ P .
Hence by Theorem 2.3c the principal block is the unique p-block of X.
We first show that k(X) ≤ |D| and that this inequality is proper if D is
nonabelian. We argue by induction on |X|, following [Robinson, 2004].
Let G be a p-complement in X. Suppose GP 6= X. Then by induction
k(GP ) ≤ |P | and either P is abelian or k(GP ) < |P |. From part (i) of
Theorem 1.7a it follows that

k(X) ≤ k(GP ) · |X : GP | = k(GP ) · |D : P | ≤ |D|,

and that equality only holds if k(GP ) = |P |, N = GP is normal in X,
k(X/N) = |X : N | and kX(N) = k(N). Hence if equality holds, then P

and X/N ∼= D/P are abelian, and the p-group D/P fixes each conjugacy
class of the p′-group N/P ∼= G. Hence D/P centralizes N/P . But D/P

acts faithfully on N/P as Op(X/P ) = 1. Thus from k(X) = |D| it follows
that X = GP . We therefore may assume that D = P and X = GP .

Choose a minimal normal subgroup M of X, which is an elementary
abelian p-group. By induction k(X/M) ≤ |D/M | and k(X/M) < |D/M |
if D/M is nonabelian. Now the estimate (1.7b) yields that k(X) ≤ |M | ·
k(X/M) ≤ |D|, and equality only holds if D/M is abelian, M is central
in X and no nonidentity element of M is a commutator in X (see the
beginning of Sec. 1.7). But since D is nonabelian, M = D′ has order p and
is generated by commutators in D.

So let D = P be abelian (and normal in X = GD). We have Z(X) =
CD(G) as Op′(X) = 1, and D = Z(X)×V where V = [D, G] by Eq. (1.6a).
Let V̄ = V/U be the Frattini quotient of V , which is a faithful FpG-module.
By the k(GV ) theorem and (1.7b)

k(X) ≤ |Z(X)| · |U | · k(GV̄ ) ≤ |D|,
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and equality only holds if k(GV̄ ) = |V̄ | and U is central in X. But then
U = 1 and V = V̄ , completing the proof. ¤

Theorem 2.6b (Fong). Let X be p-solvable, N = Op′(G) and G = X/N .
Let B be a p-block of X. Suppose B covers some θ ∈ Irr(N).

(i) There is a unique block b of T = IX(θ) covering θ such that
bX = B, and b, B have a defect group in common. Induction defines a
bijection from Irr(b) and IBr(b) to Irr(B) and IBr(B), respectively.

(ii) Suppose θ is X-invariant (T = X). Then the Clifford correspon-
dence of Theorem 1.9c, restricted to Irr(B) resp. IBr(B), describes a bijec-
tion onto Irr(B0) resp. IBr(B0) for some unique p-block B0 of the repre-
sentation group G(θ) preserving decomposition numbers. In fact, Irr(B0) =
Irr(G(θ)|θ̃). The defect groups of B and B0 are Sylow p-subgroups.

Proof. (i) Let χ ∈ Irr(B) and let ψ ∈ Irr(T ) occur in ResX
T (χ). Then ψ ∈

Irr(T |θ) and so IndX
T (ψ) is irreducible by Theorem 1.8b. Thus IndX

T (ψ) = χ

by Frobenius reciprocity. Note that χ(1) = |X : T |ψ(1). Let b be the block
of T containing ψ. By Example 2.5a, B = bX . Let c be a defect class for
B with defect group D. Then ωB(ĉ) 6= 0 by definition and so ωb(ĉ0) 6= 0
for some conjugacyc class c0 ⊆ c of T . By Lemma 2.3b, a defect group D0

of b is contained in a defect group of c0, so that we may pick D0 ⊆ D. But
by character degrees both b and B have the same defect.

(ii) Let θ̂ be a character of X(θ) extending θ in the sense of Definition
1.9b. Like θ this θ̂ is irreducible as a Brauer character, and by Theorem
1.9c it defines a bijection from Irr(X|θ) onto Irr(G(θ)|θ̃) (where θ̃ is a
linear character of the cyclic central subgroup Z of G(θ) of order exp (N)).
The Clifford correspondence χ = θ̂ · ζ ↔ ζ extends to Brauer characters
preserving decomposition numbers. It follows that Irr(G(θ)|θ̃) is a union of
irreducible characters belonging to certain blocks of G(θ).

We may assume that p | |G|. Then P = Op(G(θ)) 6= 1 since Z =
Op′(G(θ)) is in the centre of G(θ) (and G(θ) is p-solvable). We have
CG(θ)(P ) = P × Z. There is a unique block b0 of PZ covering θ̃. Hence
by Theorem 2.3c, B0 = b

G(θ)
0 is the unique block covering b0 (and θ̃). Thus

Irr(B0) = Irr(G(θ)|θ̃). Let D be a Sylow p-subgroup of G(θ). There is a
character ψ of D×Z extending θ̃. Then p - ψ(1), and there is an irreducible
constituent ζ of IndG(θ)

DZ (ψ) whose degree is not divisible by p. Now ζ lies
over θ̃ and so ζ ∈ Irr(B0). Hence D is a defect group of B0.

Of course X, X(θ), G, G(θ) have isomorphic Sylow p-subgroups. ¤
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Theorem 2.6c (Nagao). Assume that the k(GV ) theorem has been already
proved. If X is a p-solvable group and B is a p-block of X with defect group
D, then k(B) ≤ |D| where the inequality is proper if D is nonabelian.

Proof. We proceed by induction on |X|p = pa [Nagao, 1962]. By Theorems
2.6a and 2.6b we may assume that Z = Op′(X) is nontrivial and central
in X, and that D is a Sylow p-subgroup of X (|D| = pa). Also Irr(B) =
Irr(X|θ) for some irreducible (linear) character θ of Z. Thus

k(B) = |Irr(X|θ)| ≤ k(X/Z)

by Theorem 1.9c. Now Op′(X/Z) = 1, and so Theorem 2.6a applies. Hence
k(X/Z) ≤ |D|, even k(X/Z) < |D| unless DZ/Z ∼= D is abelian. ¤

2.7. Coprime FpX-Modules

Let V be an irreducible FpX-module. By Wedderburn’s theorem F0 =
EndX(V ) is a (commutative) finite field, which we may embed into F .
Viewing V = V0 as an (absolutely) irreducible F0X-module, F0 ⊗Fp V =⊕

σ V σ
0 is the direct sum of its Galois conjugates over the prime field. Let

χ ∈ IBr(X) be the Brauer character of X afforded by V0. Let KI be the
subfield of K generated by the exp (X)p′-roots of unity, the inertia subfield
of K for p (or p), and let KD be the decomposition subfield. Thus KD ⊆ KI

and Gal(KI |KD) ∼= Gal(F |Fp) is cyclic generated by the Frobenius auto-
morphism. So F0 corresponds to the intermediate field K0 = KD(χ), and
we associate to V the trace character χ̆ = TrK0|KD

(χ) =
∑

σ∈Gal(K0|KD) χσ.
Now assume X is a p′-group (K = KI). Then χ is an ordinary ir-

reducible character of X. For each τ ∈ Gal(K|Q) there is an irreducible
FpX-module V τ affording χ̆τ = TrK0|KD

(χτ ), which is not isomorphic to
V unless τ ∈ Gal(K|KD). But V , V0 and V τ are isomorphic as G-sets. Use
the fact that the F0-dimension of F0 ⊗ CV (Y ) = CF0⊗V (Y ) equals

〈χ̆, 1Y 〉Y = [F0 : Fp]〈χ, 1Y 〉Y = 〈χ̆τ , 1Y 〉Y
for each subgroup Y of X. Thus |CV (Y )| = |CV0(Y )| = |CV τ (Y )|, which
gives the result (cf. Secs. 1.3 and 1.4).

Remark . Let X be p-solvable. The Fong–Swan theorem tells us that then
every (absolutely) irreducible Brauer character of X can be lifted to an
ordinary character. This is proved via Clifford theory [F, X.2.2], which
even yields a p-rational lift (having its values in KI). Arguing as above
one sees that every irreducible FpX-module has a lift affording a p-rational
character.



Chapter 3

The k(GV) Problem

Let p be a rational prime. We consider the situation where X = GV is the
semidirect product of a finite p ′-group G acting faithfully on an elementary
abelian p-group V . Then Op ′(X) = 1 and so V is the unique defect group
of the unique p-block of X (Theorem 2.3c). The k(GV ) problem is the
special case of the k(B) conjecture asking whether k(GV ) ≤ |V |, or not.

3.1. Preliminaries

We often write the FpG-module V additively. In this coprime situation V

is completely reducible (Maschke). All irreducible characters of X = GV

have degree prime to p by Theorem 1.3b and so are of height zero in the
unique p-block, B. For each v ∈ V the centralizer CX(v) = CG(v)V has a
unique p-block bv as well. We have bX

v = B, and the subsection (v, bv) is
major.

It follows from Theorem 1.5d that k(X) ≤ |V | provided there is a vector
v ∈ V such that CG(v) = 1, even k(X) < |V | unless G is abelian. This
may also be deduced from Theorem 2.5d. It will turn out that such regular
vectors v (belonging to regular G-orbits) exist fairly often. In Theorem
3.4d below we shall see that it even suffices to find a vector with abelian
point stabilizer, a result due to [Knörr, 1984].

Proposition 3.1a. Let V = V1 ⊕ V2 be the direct sum of FpG-modules Vi,
and let Gi = CG(V/Vi). Suppose k(GiVi) ≤ |Vi| and k((G/Gi)Vj) ≤ |Vj |
for i 6= j. Then k(GV ) ≤ |V |, and if k(GV ) = |V | then G = G1 ×G2 and
k(GiVi) = |Vi| for i = 1, 2.

Proof. Cleary Gi is faithful on Vi (i = 1, 2), and G/Gi is faithful on Vj for
j 6= i. Consider the normal subgroups Ni = GiVi of X = GV , and observe
that N = N1 ×N2 is a normal subgroup of X too. Applying (1.7b) to the
Ni yields that k(X) ≤ |V1||V2| = |V |. If we have equality, then necessarily
k(GiVi) = |Vi| for i = 1, 2, and k(X) = k(N) = |V |. Moreover, then
every conjugacy class of X/N is good for N (Theorem 1.7a). By Brauer’s

32
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permutation lemma (Theorem 1.4b) then every irreducible character θ of
N is invariant in X, and each conjugacy class of X/N is good for θ. Hence

|V | = k(X) =
∑

θ∈Irr(N)

k(X/N) = |V | · k(X/N)

by the Clifford–Gallagher formula (1.10b). Thus N = X. ¤

Each irreducible (linear) character λ of V can be extended to its in-
ertia group IX(λ); indeed there is a unique extension λ̃ having IG(λ) in
its kernel. For each irreducible character θ of IG(λ), inflated to IX(λ),
the induced character χλ,θ = IndX

IX(λ)(λ̃θ) is irreducible (Theorem 1.8b).
By Proposition 1.6b, V and Irr(V ) are isomorphic G-sets. We fix a G-
isomorphism v 7→ λv between these G-sets, with λ0 = 1V , and we write
χv,θ in place of χλv,θ. The Clifford–Gallagher formula gives the following.

Proposition 3.1b. k(GV ) =
∑

i k(CG(vi)) where {vi} is a set of rep-
resentatives of the G-orbits on V . More precisely, for each v ∈ V and
θ ∈ Irr(CG(v)) the character χv,θ of X = GV is irreducible of degree
|G : CG(v)| · θ(1), and these are just all the k(CG(v)) distinct irreducible
characters of X lying above λv.

In this manner the partition of V into G-orbits gives rise to a corresponding
partition of Irr(GV ). Since the p-section of any v ∈ V in X = GV , that is,
the elements in X whose p-part is conjugate to v, is the union of conjugacy
classes of X represented by certain p-regular elements in CX(v) = CG(v)V ,
the formula on k(GV ) likewise follows from this observation (by conjugacy
of the complements to V in CX(v)). (In the non-coprime situation, where
G is a complement of the abelian group V in X = GV , or where just
G = X/V , the corresponding formula holds replacing V by Irr(V ) and
centralizers by inertia groups.)

We may compute k(GV ) also as follows.

Lemma 3.1c. Let {gj} be a set of representatives for the conjugacy classes
of G (1 ≤ j ≤ k(G)). Then k(GV ) =

∑
j |C`(CG(gj)|CV (gj))|.

Proof. For g ∈ G let Ωg denote the set of V -conjugacy classes contained
in the coset V g. By Theorem 1.7d, |Ωg| = |CV (g)|. Since g is a p′-element,

V = CV (g)⊕ [V, g]
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by Proposition 1.6a, and this is a decomposition of CG(g)-modules. Of
course CG(g) acts on Ωg as well (by conjugation). Now for each v ∈ V

we have (vg)V = vgV = v[V, g]g. The assignment (vg)V 7→ v[V, g] is a
bijection from Ωg onto V/[V, g] ∼= CV (g) which is compatible with the
action of CG(g). Hence the result. ¤

Replacing CV (g) by V/[V, g] Lemma 3.1c also holds in the non-coprime
situation.

3.2. Transitive Linear Groups

Suppose G is transitive on V ] = V r {0}. Fix any v ∈ V ]. Then k(GV ) =
k(G) + k(CG(v)) by Proposition 3.1b. Such groups G exist. Identifying V

with the additive group of a finite field and G with its multiplicative group
we get a cyclic subgroup of GL(V ) of order |V | − 1 acting regularly on V ].
These Singer cycles in GL(V ) are conjugate since their generators have the
same irreducible minimum polynomial over the prime field.

Theorem 3.2. Suppose G is transitive on V ]. Then k(GV ) ≤ |V |, and if
k(GV ) = |V | then either G is a Singer cycle in GL(V ), or pm = 23 and
G is a Frobenius group of order 21, or pm = 32 and G is semidihedral of
order 16.

Proof. In the exceptional cases indeed k(GV ) = |V |. We shall appeal
to [Hering, 1985] for the classification of the transitive linear groups (see
also [Huppert–Blackburn, 1982, XII.7.5] for a summary of this work). By
Theorem 1.5b we may assume that H = CG(v) is nontrivial, so that G

is nonabelian (and not a Singer cycle). Let |V | = pm. Note that the
semidirect product GV = V : G is a 2-transitive permutation group (of
degree pm). Embed G into GL(V ) and let F be a maximal G-invariant
subfield of End(V ) containing the identity (with G acting via conjugation).
Let |F | = pr so that V is a vector space of dimension m

r over F . Using that
|G| is not divisible by p we obtain that one of the following holds:

(i) m = 2, r = 1 and p is equal to 11, 19, 29 or 59, and G contains a
normal subgroup N ∼= SL2(5).

(ii) m = 2 or 4, r = 1 (in both cases), and G contains a normal
extraspecial 2-subgroup E of order 2m+1 such that CG(E) = Z(E) and
G/E acts faithfully on E/Z(E). Moreover, if m = 2 then p = 3, 5, 7, 11 or
23, and if m = 4 then p = 3.

(iii) m = r and G is a subgroup of ΓL1(pm).
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In (i) N ∼= SL2(5) is a maximal subgroup of the perfect group SL2(p) as
follows from Dickson’s list of subgroups of PSL2(p) [Huppert, 1967, II.8.27].
Thus G/N maps injectively into GL2(p)/SL2(p) ∼= F?

p and has prime order.
Applying the estimate (1.7b) we get k(G) ≤ k(N) · k(G/N) ≤ k(SL2(5)) ·
(p−1) = 9(p−1). Since H = CG(v) is faithful and completely reducible on
V , it must be cyclic of order dividing p−1. Hence k(GV ) = k(G)+k(H) ≤
10 · (p− 1) < p2 = |V |.

Consider (ii). (Extraspecial groups are briefly discussed in Sec. 4.2
below.) Regard G as a subgroup of G0 = NGL(V )(E). If m = 2 and p = 3
then either E ∼= Q8 is a quaternion group, which is regular on V ], or E ∼= D8

is dihedral, which is not transitive on V ]. In both cases G0
∼= ΓL1(32) is

a (semidihedral) Sylow 2-subgroup of GL2(3), and we have G = G0. (This
possibility will come up also in (iii).) For m = 2 and p ≥ 5 we must have
E ∼= Q8, for otherwise G0 would not be transitive on V ]. The cases p = 5
and p = 7 are of special interest (cf. Sec. 6.1 below):

If p = 5, then G0 is a 5-complement in GL2(5) (of order 96) and CG0(v)
is cyclic of order 4. Either G = G0 or |G0 : G| = 2, and G0/Z(G0) ∼= S4.
If p = 7, then G0

∼= X ◦ Z6 = X × Z3 where X is a Schur cover of S4, and
|CG0(v)| = 3. In both cases k(GV ) ≤ k(G0V ) < |V | by (1.10b).

For m = 2 and p = 11 we have G0
∼= GL2(3) × Z5 and |CG0(v)| = 2

for any nonzero v ∈ V . Thus G = G0 by assumption, and k(GV ) < |V |.
The case m = 2, p = 23 is ruled out since then G = G0 is regular on V ].

Finally let m = 4, p = 3. Since |V ]| = 80 and O+
4 (2) is a 5′-group,

E ∼= 21+4
− is extraspecial of negative type (and order 25) and G/E is a

(3′-) subgroup of O−4 (2) ∼= S5 of order 5, 10 or 20 (determined up to con-
jugacy). Hence GV is one of the three exceptional 2-transitive solvable
(Bucht) groups [Huppert–Blackburn, 1982, XII.7.4]. Here H = CG(v) is
cyclic of order 2, 4 or 8, respectively. In all cases k(GV ) < |V |. The largest
Bucht group again is of special interest for us (Sec. 6.1).

It remains to consider (iii). So let G be a (nonabelian) subgroup of
ΓL1(pm), whence m ≥ 2. Then G is a subgroup of T = NGL(V )(S for some
Singer cycle S in GL(V ). This T ∼= ΓL1(pm) acts on S like the Galois group
of Fpm |Fp, so that T/S is cyclic of order m. In this case F = S ∪ {0} is
a maximal G-invariant subfield of End(V ). Let N = G ∩ S. Then G/N is
cyclic of order n, say, where n > 1 is a divisor of m. Note that n is not
divisible by p. Since S is regular on V ] and G is transitive, H = CG(v) is
cyclic of order dividing n. Hence k(GV ) ≤ k(G) + n.
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Assume CT (N) > S. Then there is a proper divisor d of m such that
|N | divides pd− 1. Since G is transitive on V ], we get that pm− 1 ≤ |G| ≤
m(pd − 1) and so m ≥ 1 + pm−d. This is impossible as d ≤ m

2 and m ≥ 2.
We conclude that N = CG(N) is irreducible on V . Just the elements in N

of order dividing pm/n − 1 are central in G, and if d | n then those of order
dividing pdm/n − 1 are centralized by the subgroup of G/N with index d.
Hence using (1.7b) we get the (crude) estimate

k(G) ≤
∑

d|n

n

d2
(pdm/n − 1) ≤ 1

n
(pm − 1) + n(pb

m
2 c − 1).

Here we used that m
n ≤ bm

2 c and
∑

n 6=d|n
n
d2 (pdm/n − 1) ≤ n

∑bm
2 c

j=1 pj .

Suppose we have pm = |V | ≤ k(G) + n. Then we must have n = m.
In particular, m is not divisible by p. The resulting inequality

pm ≤ 1
m

(pm − 1) + m(pb
m
2 c − 1) + m

forces that p ≤ 3, and that m ≤ 2 for p = 3, while m ≤ 4 for p = 2. We
conclude that pm = 32 or pm = 23. If G ∼= ΓL1(32) then k(G) = 7 and
k(G) + m = |V |, and if G ∼= ΓL1(23) then k(G) = 5 and k(G) + m = |V |
likewise. So in these two cases k(GV ) = |V |, otherwise k(GV ) < |V |. We
are done. ¤

3.3. Subsections and Point Stabilizers

In this section let K, R and p|p be as in the previous chapter, but we
let Γ denote the subgroup of Gal(K|Q) fixing the p′-roots of unity in K.
Since X = GV has the exponent exp (G) · p and G is a p ′-group, Γ ∼=
Gal(Q(εp)|Q) where εp = e2πi/p. The assignment gG 7→ gX is a bijection
from C`(G) onto C`(Xp′) (Schur–Zassenhaus). Let B be the unique p-
block of X. Identifying Irr(G) with IBr(X) = IBr(B) via inflation, for
ϕ ∈ Irr(G) and χ ∈ Irr(X) the decomposition number dχϕ = 〈χ, ϕ〉G. Thus
IndX

G (ϕ) =
∑

χ∈Irr(X) dχϕχ by Frobenius reciprocity (1.2c), and this may
be identified with the projective character ϕ̂ in view of Theorem 2.2a.

It follows from (2.1b) and Theorem 2.2a that the projective characters
form a basis of the class functions on X vanishing off p-regular elements of
X. Hence we have:
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Lemma 3.3a. Induction of class functions yields a bijection ϕ ↔ ϕ̂ between
generalized characters ϕ of G and those of X = GV vanishing off p-regular
elements. For ϕ ∈ Z[Irr(G)] and g ∈ G we have ϕ̂(g) = |CV (g)|ϕ(g).

Proof. It remains to verify the last statement. Let ϕ ∈ Z[Irr(G)]. By
formula (1.2b) for induced characters (and class functions), noting that V

is a (right) transversal to G in X, we have

ϕ̂(x) =
∑

v∈V :vxv−1∈G

ϕ(vxv−1) = |CV (g)|ϕ(g)

if x ∈ X is conjugate to some g ∈ G, and ϕ̂(x) = 0 otherwise. ¤

Let πV denote the permutation character of G on the set V (as usual).
Let ϕ,ψ be in Irr(G). Then Lemma 3.3a and Frobenius reciprocity tell us
that the corresponding Cartan invariant of B is given by

cϕψ = 〈ϕ̂, ψ̂〉X = 〈ϕπV , ψ〉G.

Let CB = (cϕψ) be the Cartan matrix. By Lemma 2.1a the class function
on X = GV taking the value |V | on p-regular elements, and the value zero
otherwise, is a generalized character of X. Thus by Lemma 3.3a

(3.3b) δV = |V |/πV

is a generalized character of G (δV (g) = |V : CV (g)| for g ∈ G). This
generalized character has been introduced (and studied) by [Knörr, 1984].
It follows from Theorem 2.2a that the (ϕ,ψ) entry of |V |C−1

B , viewing ϕ,ψ

as characters of X/V , is given by

1
|X|

∑

x∈Xp′

ϕ(V x)ψ(V x) =
|V |
|X|

∑

g∈G

ϕ(g)|V : CV (g)|ψ(g) = 〈ϕδV , ψ〉G,

because each element of Xp′ is conjugate to an element of G and δV (g) is
the number of conjugates of g ∈ G lying in the coset V g.

We apply this to HV where H = CG(v) for some v ∈ V .
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Theorem 3.3c (Knörr). Suppose there is v ∈ V such that for H = CG(v)
we have 〈θδV , θ〉H ≥ k(H) for all θ ∈ Z[Irr(H)] with θ(1) 6≡ 0 (mod p).
Then k(GV ) ≤ |V |, and equality only holds if 〈χδV , χ〉H = k(H) for all
χ ∈ Irr(G).

Proof. Let Cv be the Cartan matrix of the unique p-block bv of Y = HV ,
and let Qv be the quadratic form associated to |V |C−1

v . As seen above the
(ϕ,ψ) entry of |V |C−1

v is given by 〈ϕδV , ψ〉H . Of course k(H) = `(bv).

Let (v, bv) be the corresponding (major) subsection to the block B.
Define m

(v,bv)
χζ as in Sec. 2.5. For each irreducible character χ of X = GV

we have χ(v) ≡ χ(1) 6≡ 0 (mod p) by Theorem 1.3b. Hence

∑

ϕ∈Irr(H)

dv
χϕϕ(1) = χ(v) 6≡ 0 (mod p).

Thus k(X) ≤ |V | by hypothesis and Theorem 2.5d, and this equality is
proper provided TrK|Q(|V |m(v,bv)

χχ ) > [K : Q] · k(H) for some χ ∈ Irr(X).

Now let us investigate m
(v,bv)
χχ when χ ∈ Irr(G) (inflated to X). Then

the higher decomposition number dv
χϕ = 〈χ, ϕ〉H is nothing but the multi-

plicity of ϕ ∈ Irr(H) in the restriction to H of χ. Thus

|V |m(v,bv)
χχ =

∑

ϕ,ψ∈Irr(H)

〈χ, ϕ〉H〈ϕδV , ψ〉H〈χ, ψ〉H = 〈χδV , χ〉H .

This completes the proof. ¤

The reader is referred to [Knörr, 1984] for a proof of the above result
avoiding block theory. Knörr noticed that the hypothesis in Theorem 3.3c is
fulfilled if there is a generalized character ψ of H = CG(v) such that ψ(h) ∈
p for h ∈ H] but ψ(1) 6∈ p, and such that δV ≥ |ψ|2 on H (elementwise).
Then 〈θδV , θ〉H ≥ 〈θψ, θψ〉H for each θ ∈ Z[Irr(H)] with p - θ(1), and

|H|〈θψ, ζ〉H =
∑

h∈H

θ(h)ψ(h)ζ̄(h) ≡ θ(1)ψ(1)ζ(1) (mod p)

for each ζ ∈ Irr(H), where p - ζ(1) by Theorem 1.3b. So each ζ ∈ Irr(H) is
contained in θψ, which gives the result. Following [Robinson–Thompson,
1996] we use the following slightly different concept, which will turn out to
be fulfilled when v is a so-called real vector for G.
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Theorem 3.3d (Robinson–Thompson). Let H = CG(v) for some v ∈ V .
Assume there is a faithful FpH-submodule U of V and a rational-valued
generalized character ψ of H such that ψ2 = δU on H, or p is odd and
ψ2 = δU on a subgroup N of H with |H : N | = 2, while ψ(h)2 = 1

pδU (h)
for h ∈ H r N . Then k(GV ) ≤ |V |, even k(GV ) ≤ p+3

2p |V | in the latter
(odd) case, and in both cases the inequalities are proper unless [V, H] ⊆ U .

Proof. Let Y = HV , and observe that 〈v〉 is in the centre of Y . Suppose
σ ∈ Γ sends εp to εs

p. Then for each h ∈ H and each irreducible character χ

of X (or Y ) we have χσ(hv) = χ(hv)τ = χ(hvs) (choosing s ≡ 1 (mod |G|)
and representing hv = vh by a diagonal matrix with trace χ(hv)).

Suppose first that ψ2 = δU on H. Then ψ(h) is divisible by p for all
h ∈ H], as H is faithful on U , and ψ(1) = ±1. As in Lemma 3.3a let
ψ̂ = IndY

H(ψ), and let nζ = 〈ψ̂, ζ〉 for ζ ∈ Irr(Y ). Define

ψ̃ =
∑

ζ∈Irr(Y )

nζ
ζ(v−1)
ζ(1)

ζ.

So ψ̃ and Ψ = IndX
Y (ψ̃) are pth cyclotomic integer combination of characters

of Y and X, respectively. Hence 〈Ψ, χ〉 ∈ Z[εp] for each χ ∈ Irr(X). We
have ψ̃(y) = |CV (h)|ψ(h) if y ∈ Y is conjugate to hv for some (unique)
h ∈ H, and ψ̃(y) = 0 otherwise. Since there are |V : CV (h)| · |H : CH(h)|
elements in Y conjugate to hv for each h ∈ H, by Frobenius reciprocity

|H|〈Ψ, χ〉X = |H|〈ψ̃, χ〉Y =
∑

h∈H

ψ(h)χ(h−1v−1) ≡ χ(v−1) (mod p)

for each χ ∈ Irr(X). Thus 〈Ψ, χ〉 6= 0 as p - χ(1) by Theorem 1.3b.
Moreover, 〈Ψ, χσ〉 = 〈Ψ, χ〉σ 6= 0 for each σ ∈ Γ. Hence by the arithmetic–
geometric mean inequality (1.5b)

∑
σ |〈Ψ, χσ〉|2 ≥ p− 1.

Similarly Ψ(x) = |CV (h)|ψ(h) if x ∈ X is conjugate to hv for some
h ∈ H, and zero otherwise. It follows that

〈Ψ,Ψ〉X = 〈ψ̃, ψ̃〉Y =
1
|H|

∑

h∈H

|CV (h)|ψ(h)2.

Now ψ2 = δU on H, and δV = δU · δU ′ if V = U ⊕ U ′ as an H-module.
We conclude that 〈Ψ, Ψ〉 ≤ |V | and that this inequality is proper unless
δU ′ = 1H , that is, [V, H] ⊆ U . This gives the result in the first case, as
(p− 1)k(X) ≤ ∑

σ∈Γ

∑
χ∈Irr(X) |〈Ψ, χσ〉|2 = (p− 1)〈Ψ,Ψ〉 ≤ (p− 1)|V |.
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Let now p be odd and ψ2 = δU on N but ψ(h)2 = 1
pδU (h) for h ∈ HrN

(|H : N | = 2). Let µ be the linear character of H with kernel N , and
let ϕ = ψ + µψ. Then ϕ(h) = 2ψ(h) for h ∈ N , while ϕ vanishes on
H r N . Hence ϕ(h) is an integer multiple of p for each h ∈ H], while
ϕ(1) = 2ψ(1) is not divisible by p. Like above we define the class function
Φ on X by letting Φ(x) = |CV (h)|ϕ(h) if x is conjugate to hv for some
h ∈ H. Then, as before, 〈Φ, χσ〉 = 〈Φ, χ〉σ 6= 0 for each χ ∈ Irr(X) and
σ ∈ Γ, so that

∑
σ |〈Φ, χσ〉|2 ≥ p − 1 by (1.5b). Write Φ = Φ0 + Φ1,

where Φi(x) = µi(h)|CV (h)ψ(h) if x is conjugate to hv for some h ∈ H,
and 0 otherwise. Then at least one of 〈Φi, χ〉 6= 0, i = 0, 1, and then
〈Φi, χ

σ〉 = 〈Φi, χ〉σ 6= 0 for each σ ∈ Γ.

Let Si be the set of irreducible characters of X = GV which occur
with nonzero multiplicity in Φi. If χ ∈ Si then

∑
σ |〈Φi, χ

σ〉|2 ≥ p − 1 by
(1.5b). It follows that

(p− 1)|Si| ≤
∑

σ∈Γ

∑

χ∈Si

|〈Φi, χ
σ〉|2 = (p− 1)〈Φi,Φi〉,

where 〈Φi, Φi〉 = 1
|H|

∑
h∈H |CV (h)|ψ(h)2 is the same for i = 0, 1 and equals

1
|H|

∑

h∈N

|CV (h)|δU (h) +
1
|H|

∑

h∈HrN

|CV (h)|δU (h)/p ≤ |V |
2

+
|V |
2p

.

Thus |Si| ≤ p+1
2p |V | for i = 0, 1 and, as above, these inequalities are proper

unless [V, H] ⊆ U . We also see that

〈Φ0 − Φ1, Φ0 − Φ1〉 =
1
|H|

∑

h∈HrN

4|CV (h)|δU (h)/p ≤ 2
p
|V |.

Hence at most 2
p |V | irreducible characters of X occur with nonzero multi-

plicity in Φ0 − Φ1, and again we only can have equality when [V, H] ⊆ U .
We see that |S0 r S1|+ |S1 r S0| ≤ 2

p |V | (arguing as above considering the
Γ-classes in Irr(X)). Now k(GV ) = |S0 ∪ S1| = 1

2 (|S0|+ |S1|+ |S0 r S1|+
|S1 r S0|) ≤ |V |

2 (2 · p+1
2p + 2

p ) = p+3
2p |V |, completing the proof. ¤
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3.4. Abelian Point Stabilizers

Suppose H 6= 1 is an abelian p′-subgroup of GL(V ) = GLm(p). If H

is irreducible, then F = EndH(V ) is a finite field containing H. Hence
H = 〈y〉 is cyclic, F = Fp[y] and CGL(V )(H) is a Singer cycle in GL(V ). So
|H| divides pm − 1, but |H| does not divide pn − 1 for 1 < n < m. Also, H

acts semiregularly on V ]. In this irreducible case define

δH = (|H|+ 1)1H − ρH

where ρH is the regular character of H. If H is a Singer cycle, then δH =
δV is Knörr’s generalized character (on H). Otherwise let t ≥ 2 denote
the number of H-orbits on V ]. Then k(HV ) = t + |H| = t + |V |−1

t by
Proposition 3.1b. From 1 < t < |V | − 1 we get that k(HV ) < |V | and that

δV = (t|H|+ 1)1H − tρH ≥ (|H|+ 1)1H − ρH = δH

at each element of H, both functions taking only nonnegative real values.
Of course 〈δV , 1H〉 = t(|H| − 1) + 1 > |H| = 〈δH , 1H〉 by the choice of t.

Lemma 3.4a. Suppose H 6= 1 is an abelian p′-subgroup of GL(V ), and let
[V, H] =

⊕n
i=1 Vi be a decomposition into irreducible FpH-modules (so that

n ≥ 1 and no Vi is a trivial module). Let Hi = H/CH(Vi) for each i, and
define δH =

∏
i δHi , which is a generalized character of H. We have

δV ≥ δH

at each element of H, and 〈δV , 1H〉 > 〈δH , 1H〉 unless δV = δH and each
Hi is a Singer cycle in GL(Vi).

Proof. By Proposition 1.6a, V = CV (H)⊕ [V, H], and [V,H, H] = [V,H].
It is obvious that δV =

∏
i δVi

. The result follows. ¤

We mention that H has a regular orbit on V , because picking arbitrary
vi ∈ V ]

i for each i and letting v =
∑

i vi, then

(3.4b) CH(v) =
⋂

i CH(vi) =
⋂

Hi = 1.
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Proposition 3.4c. Keep the assumptions of the preceding lemma, embed
each Hi uniquely into the corresponding Singer cycle Gi on Vi and let G =∏

i Gi be the direct product. Then H embeds into G in a natural way. We
have 〈θδV , θ〉H ≥ |H| for each nonzero generalized character θ of H, and if
〈δV , 1H〉H = |H| then necessarily H = G.

Proof. Of course G is a p′-group and H is a certain fibre-product of the Hi

and so embeds into the direct product
∏

i Hi, which is a subgroup of G. For
the first statement in the lemma it suffices to show that 〈θδH , θ〉 ≥ |H| for
any generalized character θ 6= 0 of H (which will be fixed in what follows).

Let us write H∗ = Hom(H,C?) for the character group. Restriction
from G to H defines an epimorphism from the character group G∗ =∏n

i=1 G∗i (direct) onto H∗. For each subset I ⊆ N = {1, 2, · · ·, n} let
G∗I =

∏
i∈I G∗i (direct), and let H∗

I be its image in H∗. Here each λ ∈ G∗I
is sent to λI =

∏
i∈I λ(i) where λ(i) is the restriction of the ith component

of λ to Hi. Define

γλ =
∏

i∈I

(1H − λ(i)) =
∑

J⊆I

(−1)|J|λJ .

We assert that δ = δH =
∑

I⊆N 2−|I|
∑

λ∈G∗
I
|γλ|2. By Lemma 3.4a this is

true for n = 1 (since by definition γ∅ = 1H). Proceeding by induction on n,
the assertion follows. Using that 〈θ|γλ|2, θ〉 = 〈θγλ, θγλ〉 =

∑
χ∈H∗〈θγλ, χ〉2

we obtain that

〈θδ, θ〉 =
∑

I⊆N

2−|I|
∑

(λ,χ)∈G∗
I
×H∗

〈θ, γλχ〉2.

We define a map H∗ → P(N) assigning to each χ ∈ H∗ a subset I of N

of smallest cardinality, arbitrarily chosen, such that 〈θ, λIχ〉 6= 0 for some
λ ∈ G∗I . Such subsets exist since θ 6= 0 and H is faithful on [V, H]. Let
M(I) = M(I, θ) denote the inverse image in H∗ of the subset I of N with
respect to this map. For χ ∈ M(I) we have

〈θ, γλχ〉 =
∑

J⊆I

(−1)|J|〈θ, λJχ〉 = (−1)|I|〈θ, λIχ〉

for all λ ∈ G∗I , and there is λ ∈ G∗I such that 〈θ, λIχ〉 6= 0. Clearly
H∗ is the disjoint union of the fibres M(I), and it suffices to show that
2−|I|

∑
(λ,χ)∈G∗

I
×H∗〈θ, γλχ〉2 ≥ |M(I)| for all I.
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Fix I ⊆ N , and let ϕ ∈ H∗. The Boolean group B = P(I), which
is an elementary abelian 2-group with respect to the symmetric difference
J⊕J ′ = (J∪J ′)r(J∩J ′), acts on the set G∗I×ϕH∗

I via (µ, ζ)J = (µJ , µJζ)
where µJ ∈ G∗I is defined by µJ (i) = µ(i)−1 for i ∈ J and µJ(i) = ζ(i)
otherwise. Indeed (µJ)J ′ = µJ⊕J′ and µJ(µJ)J ′ = µJ⊕J′ . If (λ, χ) =
(µ, ζ)J is in the B-orbit of (µ, ζ) then

γλχ = γµJ µJζ = µ
∏

j∈J

µ(j)
∏

j∈J

(1− µ(j)−1)
∏

i∈IrJ

(1− µ(i)) = (−1)|J|γµζ,

so that 〈θ, γλχ〉2 = 〈θ, γµζ〉2. Moreover, if C is the stabilizer in B of (µ, ζ)
then |C|−1γµ is a generalized character of H. In fact, for J ∈ C and
J ′ ∈ B we have µJ⊕J′ = µJ and |J ⊕ J ′| ≡ |J | + |J ′| (mod 2), whence
γµ =

∑
J⊆I µJ =

∑
J∈C(−1)|J|τ for some generalized character τ of H.

If not all J ∈ C have even cardinality, those of even cardinality form a
subgroup of C of index 2 and then

∑
J∈C(−1)|J| = 0. It follows that

2−|I|
∑

(λ,χ)∈(µ,ζ)B

〈θ, γλχ〉2 = |C|−1〈θ, γµζ〉2

is a nonnegative rational integer. Consider the set M(I)∩ϕH∗
I , which can

be empty. We assert that the nonnegative integer

2−|I|
∑

(λ,χ)∈G∗
I
×ϕH∗

I

〈θ, γλχ〉2 ≥ |M(I) ∩ ϕH∗
I |.

Varying over the subsets I of N and the cosets of H∗ mod H∗
I this will

show that 〈θδ, θ〉 ≥ |H|.
We may assume that M(I)∩ϕH∗

I 6= ∅. Let χ = χ1, ···, χr be its distinct
elements. By construction there is λ = λ1 ∈ G∗I such that 〈θ, γλχ〉 =
(−1)|I|〈θ, λIχ〉 6= 0. Since each χχ−1

j ∈ H∗
I we find αj ∈ G∗I such that

(αj)I = χχ−1
j , and we put λj = λαj for j = 2, · · ·, r. We have

〈θ, γλj
χj〉 = (−1)|I|〈θ, (λj)Iχj〉 = (−1)|I|〈θ, λIχ〉 6= 0.

It now suffices to prove that the (λj , χj) belong to different orbits under
B = P(I). Suppose (λj , χj) = (λ, χ)J = (λJ , λJχ) for some J ⊆ I. Then
(αj)I = χχ−1

j = λ−1
J and so the image of λj = λαj in H∗

I is the identity on
H∗

J . From χj ∈ M(I) we can conclude that J = ∅. Hence λj = λJ = λ,
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αj = 1 and χj = χ. Replacing χ by χi we have λj = λiβj , where βj =
αjα

−1
i satisfies (βj)I = χiχ

−1
j . So the same argument applies.

Consider finally the case where θ = 1H . Then the map H∗ → P(N)
is uniquely determined, assigning to χ ∈ H∗ the support of χ, the smallest
subset I of N such that χ ∈ H∗

I . Suppose we have 〈δV , 1H〉H = |H|. By
Lemma 3.4a this forces that ResG

H(δV ) = δ and that Hi = Gi for each
i. Assume that H 6= G (so that there must be a certain amalgamation).
Then there is a subset I ⊆ N such that the map G∗I → H∗

I is not injective.
Consider the set M(I) = M(I, 1H) of characters in H∗ with support I.
Then ∅ 6= M(I) ⊆ H∗

I . Keep the notation of the preceding paragraph,
picking ϕ ∈ H∗

I . Hence for χ = χ1 in M(I) we have λI = χ−1 in H∗
I , and

so on. By assumption there is µ 6= λ in G∗I with µI = λI . It remains to show
that the B-orbit of (µ, χ) is different from the orbits of all (λj , χj), because
this will yield the desired contradiction 〈δ, 1H〉 > |H|. If (µ, χ)J = (λj , χj)
for some J ⊆ I, then χj = µJχ = λJχ and µJ = λj . Pick τ ∈ G∗IrJ such
that τIrJ = λIrJ . Then

〈1H , τIrJχj〉 = 〈1H , λIrJλJχ〉 = 〈1H , λIχ〉 6= 0.

We conclude that I r J = I, that is, J = ∅. Hence χj = λJχ = χ and
µ = µJ = λj = λ, against our choice. This completes the proof. ¤

Theorem 3.4d (Knörr). Suppose there is v ∈ V such that H = CG(v) is
abelian. Then k(GV ) ≤ |V |, and we have equality only if k(HV ) = |V | in
which case HV is the direct product of certain HiVi where Hi either is a
Singer cycle on Vi or Hi = 1, |Vi| = p.

Proof. This is immediate from the preceding proposition and Theorem
3.3c. ¤

Unfortunately the search for abelian vectors v ∈ V , for which CG(v) is
abelian, is not compatible with Clifford reduction. So Theorem 3.4d will
not be relevant for the proof of the k(GV ) theorem. We shall make use of
this theorem when discussing the question under which conditions we can
have equality k(GV ) = |V | (Chapter 11).



Chapter 4

Symplectic and Orthogonal Modules

The ultimate target of this chapter is to show that the assumptions made in
Theorem 3.3d are fulfilled if the module carries a nondegenerate G-invariant
symplectic or orthogonal form. This makes necessary a discussion of self-
dual modules and of automorphism groups (holomorphs) of extraspecial
groups, which in turn lead us to a useful new concept of goodness for
conjugacy classes, and to Weil characters.

4.1. Self-dual Modules

Let V be a coprime FG-module, where F = Fr is a finite field of char-
acteristic p. From Proposition 1.6b we know that V is isomorphic to
Irr(V ) = Hom(V,C?) as a G-set. But usually we do not have an isomor-
phism of G-modules. The FG-module V ∗ = HomF (V, F ), with diagonal
action λx(v) = λ(vx−1) for λ ∈ V ∗, x ∈ G, v ∈ V , is called the dual module
to V . The module V is self-dual provided V ∼= V ∗ (as FG-modules).

Lemma 4.1a. V is self-dual if and only if its Brauer character is real-
valued.

Proof. Let ρ be a matrix representation of G on V (to some basis of V ).
Then the matrix representation of G on V ∗ with respect to the dual basis
is contragredient to ρ, sending x ∈ G to ρ(x−1)t. So if V is self-dual, its
Brauer character is real-valued (Sec. 1.5). For the converse use that G is a
p′-group and so the Brauer character is an ordinary character (determining
the isomorphism type of V ). ¤

So the dual of a matrix representation ρ of G is obtained by applying ρ

followed by the inverse transpose automorphism of the linear group. If G

is a real group, every representation of G is self-dual. The FG-module
V is self-dual if and only if V carries the structure of a nondegenerate
G-invariant F -bilinear form, and in the coprime situation these forms are
symplectic or symmetric or orthogonal sums of those forms [Gow, 1993]:

45
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Theorem 4.1b (Gow). Let V be self-dual. Then V = U ⊕W where U is
a symplectic FG-module (with even F -dimension), affording a G-invariant
nondegenerate symplectic form, and where W is an orthogonal FG-module,
affording a G-invariant nondegenerate symmetric bilinear form. The action
of G on W can be chosen to be trivial when p = 2.

Proof. Without loss of generality V 6= 0. By hypothesis there exists an
isomorphism ϕ : V → V ∗ of FG-modules. Define

[v, w] = [v, w]ϕ = ϕ(v)(w)

for v, w ∈ V . This is a nondegenerate F -bilinear form on V . For x ∈ G we
have

[vx, wx] = ϕ(vx)(wx) = ϕ(v)x(wx) = ϕ(v)(wxx−1) = [v, w].

Hence the form is G-invariant. The form (v, w) 7→ [v, w]+[w, v] is symmetric
and G-invariant, its radical being an FG-submodule of V .

Suppose first that V is an irreducible FG-module. We assert that V

is a symplectic FG-module or that p 6= 2 and V is an orthogonal FG-
module. The above symmetric form is nondegenerate or is zero. If it
is zero and p 6= 2, the form [·, ·] is symplectic (alternating), and we are
done. So let p = 2. The symmetric form is now symplectic, too, and we
may thus assume that it is zero. Then [·, ·] is symmetric and the radical
V0 = {v ∈ V | [v, v] = 0} is an FG-submodule 6= 0 of V of codimension at
most 1. It follows that V0 = V and that our form is symplectic.

In the general situation let U be a (proper) irreducible FG-submodule
of V . If the form [·, ·] is nonzero on U , it is nondegenerate, as U is irre-
ducible. Then U is self-dual, and the preceding paragraph applies. Other-
wise U is contained in U⊥ = {v ∈ V | [v, U ] = 0}, which is an FG-module,
and we have dim FV = dim FU + dim FU⊥ as the form is nondegenerate.
By Maschke V = U⊥ ⊕ U0 for some FG-module U0. The map λ : U → U∗

0

given by
λ(u)(u0) = [u, u0]

is an FG-module homomorphism. Its kernel cannot be U for otherwise we
had U0 ⊆ U⊥. Hence λ is injective, and it is surjective since dim FU =
dim FU0 = dim FU∗

0 . Therefore U ∼= U∗
0 , whence U∗ ∼= (U∗

0 )∗ = U0. The
form on U ⊕ U0, given by

(u + u0, u
′ + u′0) 7→ [u0, u

′]− [u′0, u],

is symplectic and G-invariant. One verifies that this is nondegenerate using
again that U0 6⊆ U⊥. The result follows by induction on dim FV. ¤
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Lemma 4.1c. Suppose V is a faithful irreducible FH-module for the
abelian group H, and let n = dim FV. If n = 1 and V is self-dual (as
an FH-module), then |H| = 1 or 2. Let n ≥ 2. Then V is self-dual if and
only if n = 2m is even and |H| a divisor of rm + 1.

Proof. From Sec. 3.4 we know that H = 〈y〉 is cyclic and that CGL(V )(H) is
a Singer cycle in GL(V ). We may identify V = Frn = Fr[y]; |H| is a divisor
of rn − 1 but not of ri − 1 for 1 < i < n. Clearly y ∈ Frn is an eigenvalue
of the F -linear map on the extension field given by multiplication with
y. So the eigenvalues of y on V are the different conjugates yri

of Frn |Fr

(0 ≤ i ≤ n − 1). Suppose V is a self-dual FH-module. Then for each
eigenvalue the inverse must be an eigenvalue too. If n = 1 then necessarily
y = y−1 and |H| = 1 or 2. Let n > 1. Then |H| > 2, and no eigenvalue
to y is equal to its inverse. Hence n = 2m is even, and if y−1 = yrj

for
some j ≤ n − 1, then |H| is a divisor of rj + 1. It follows that |H| is a
divisor of r2j − 1 and so 2j = n = 2m. We conclude that |H| is a divisor of
rm + 1. Conversely, if n = 2m is even and |H| is a divisor of rm + 1, then
y−1 = yrm

. Then for each eigenvalue to y the inverse is an eigenvalue too,
whence V is a self-dual FH-module. ¤

It follows that V is a self-dual module for a Singer cycle in GL(V ) = GLn(r)
if and only if rn = 2 or 3. Since GL(V ) contains Singer cycles, the standard
module V is self-dual for GL(V ) only when n = 1, r = 2 or 3, or when
n = 2, r = 2. It is self-dual for SL(V ) only when n = 1 or 2, because the
intersection of a Singer cycle in GL(V ) with SL(V ) is irreducible and has
order (rn − 1)/(r − 1).

One knows that the symplectic group Sp2m(r) and the orthogonal
group O−2m(r) have unique conjugacy classes of Singer cycles, which by
definition are cyclic and irreducible. They have order rm + 1.

4.2. Extraspecial Groups

Let q be a prime (usually q 6= p). A finite nonabelian q-group E is called
extraspecial if the centre Z = Z(E) has order q and U = E/Z is elementary
abelian, hence a vector space over Fq. Thus E is a central product of
nonabelian groups of order q3. Let |E| = q1+2m.

Groups q1+2m : Let q be odd and E = Ω1(E), i.e., exp (E) = q.
Then E ∼= q1+2m = q1+2m

+ is determined by its order. Choosing a gen-
erator z of Z, E has the generators xi, x

∗
i for i = 1, · · ·,m, satisfying
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the relations [xi, x
∗
i ] = z, zq = xq

i = (x∗i )
q = 1 for all i, the other gen-

erators centralizing each other (and z is central). The commutator map
(xZ, yZ) 7→ [x, y] is a (well-defined) nondegenerate symplectic Fq-form on
U , identifying Z with Fq. Every symplectic transformation on U can be
lifted to an automorphism of E centralizing Z. Let A = CAut(E)(Z) and
C(E) = A/Inn(E) = COut(E)(Z). We have Aut(E) = A : 〈α〉 where α per-
mutes the elements in Z] transitively, induces on U ∼= Inn(E) a symplectic
similitude of order q − 1 and on C(E) ∼= Sp2m(q) the unique outer (diago-
nal) automorphism of order 2. In order to see this, let a be a generator of
F?

q and define α by xi 7→ xa
i , x∗i 7→ x∗i (i = 1, · · ·,m) and z 7→ za. This

preserves the defining relations and generates CSp2m(q)/Sp2m(q).

Groups 21+2m
± : Let q = 2. Then either E ∼= 21+2m

+ is the central product
of m dihedral groups of order 8, or E ∼= 21+2m

− is the central product of m

quaternion groups Q8. (Observe that D8◦D8
∼= Q8◦Q8.) The squaring map

xE′ 7→ x2 is a (well-defined) nonsingular quadratic form Q on U = E/Z

giving, together with the commutator map, a system of defining relations
on E. Thus C(E) = Out(E) ∼= O(U,Q), that is, C(E) ∼= O+

2m(2) if E is of
positive type and C(E) ∼= O−2m(2) otherwise. (This refers to the fact that
U has Witt index m (plus) or Witt index m − 1 (minus); cf. Appendix
B.) Except for O+

4 (2) ∼= S3wrS2 there is a unique subgroup Ω±2m(2) in
O±2m(2) with index 2, the kernel of the Dickson invariant. The extension
Inn(E) ½ Aut(E) ³ C(E) is nonsplit when m > 2 (Appendix A10).

Groups 21+2m
0 : We have 21+2m

+ ◦Z4
∼= 21+2m

− ◦Z4, and the isomorphism
type of this group is written 21+2m

0 . If E ∼= 21+2m
0 is such a group of

extraspecial type, its centre Z = Z(E) ∼= Z4. Let A = CAut(E)(Z) and
C(E) = A/Inn(E). An argument similar to before shows that C(E) ∼=
Sp2m(2) via the commutator map on U = E/Z. We have Aut(E) = A : 〈a〉
where α is the noninner central automorphism of E, which inverts the
elements of Z and centralizes U ∼= Inn(E) and C(E). Both U ½ A ³ C(E)
and U ½ Aut(E) ³ C(E)× 〈α〉 do not split for m ≥ 2 (Appendix A10).

We write E ∼= q1+2m
±,0 to indicate that E is one of the above groups.

These groups are, up to cyclic central factors, the q-groups of symplectic
type all of whose characteristic abelian subgroups are cyclic and central (P.
Hall); cf. [Aschbacher, 1986, (23.9)].

The character theory of E is easy. E has φ(|Z|) (Euler function) faith-
ful irreducible characters which are determined on Z = Z(E) and vanish
outside the centre. They have value field Q(e2πi/|Z|), degree qm and are
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conjugate under field and group automorphisms. Their Schur index is 1
except when E ∼= 21+2m

− , in which case it is 2 and then each field in which
−1 is a sum of two squares is a splitting field [I, 6.18 and 10.16].

4.3. Holomorphs

Let E ∼= q1+2m
±,0 , and let θ be a faithful irreducible character of E. A group

X is called a weak holomorph of E provided E is a normal subgroup of X

such that CX(E) = Z(E) = Z(X) and X/E ∼= C(E) is the resulting (full)
symplectic resp. orthogonal group on U = E/Z(E). Then X is determined
by E up to isoclinism, and E is the unique minimal nonabelian normal
subgroup of X unless q = 2,m = 1. By definition θ is stable in X, and we
call X a holomorph of E if, in addition, there is χ ∈ Irr(X) extending θ.
Then χ is faithful, of degree χ(1) = θ(1) = qm. Since the faithful irreducible
characters of E are algebraically conjugate, this does not depend on the
choice of θ. By stable Clifford theory each weak holomorph is a holomorph
if the Schur multiplier of C(E) is trivial.

Since C(E)/C(E)′ is of order 1 or 2 unless E ∼= 31+2
+ (where it has order

3) or E ∼= 21+4
+ (where it is elementary of order 4), the faithful irreducible

characters of degree qm of a holomorph X of E have the same value field.
We say that the holomorph X is standard if this character field is as small
as possible. It will turn out that standard holomorphs exist and that their
isomorphism type is determined by this field (which is the qth cyclotomic
field for odd q and contained in the 8th otherwise). Our approach is based
on work by [Griess, 1973], [Isaacs, 1973] and [Schmid, 2000].

Proposition 4.3a. Let X be a standard holomorph of E ∼= q1+2m
±,0 . Let

F be a field of prime characteristic p 6= q such that the character field of
X fits into F . Let V be an FE-module affording θ as a Brauer character,
embed E into GL(V ) through θ and let G0 = NGL(V )(E). Then G0 = X ◦Z

is a central product over Z(E) = Z(X) where Z = CG0(E) ∼= F ?.

Proof. Let χ ∈ Irr(X) extend θ. This χ is irreducible and faithful as a
Brauer character mod p as it is θ (p 6= q). Since Schur indices are 1 in prime
characteristic, there is an FX-module affording χ as a Brauer character,
and this may be identified with V . We may embed X into G0 through
χ. Since E is absolutely irreducible on V , CG0(E) = Z ∼= F ? consists of
scalar multiplications. Of course, G0 induces on E only automorphisms
centralizing Z(E) = Z ∩ E. Hence the result. ¤
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Examples 4.3b. (i) Let E = D8
∼= 21+2

+ . Then the dihedral and semidi-
hedral groups of order 16 are the unique (weak) holomorphs X of E, up
to isomorphism. The two faithful irreducible characters of X have Schur
index 1 and the value field Q(

√
2) if X is dihedral and Q(

√−2) otherwise.

(ii) Let E = Q8
∼= 21+2

− . Then GL2(3) = 2+S4 and (the binary
octahedral group) 2−S4 are the unique (weak) holomorphs of E. These
groups are the two Schur covers of S4. (We use the Atlas notation, writing
2+Sn for that extension in which the transpositions of Sn lift to involutions.)
The two faithful irreducible characters of degree 2 of 2+S4 have Schur index
1 and value field Q(

√−2), those of 2−S4 have index 2 and value field Q(
√

2).

(iii) Let E = Q8 ◦ Z4
∼= 21+2

0 . Embed E into GL2(5) via some faithful
irreducible character, and let X = NGL2(5)(E). We have seen in Theo-
rem 3.2 that X is transitive on the nonzero vectors of V = F(2)

5 . It is a
5-complement in GL2(5), unique up to conjugacy (|X| = 96). The represen-
tation of the 5′-group X on V can be lifted to a Q(i)-representation. Hence
X is a standard holomorph of E, and is the unique one up to isomorphism.

(iv) Let E = 31+2
+ . The symplectic group Sp4(3) has a subgroup

X = E : Sp2(3) mapping onto a maximal parabolic subgroup of PSp4(3) ∼=
Ω−6 (2). Here the centre Z = Z(X) is generated by elements in the classes
3A0B0, and |X/X ′| = 3 [Atlas, p. 26]. The image of X is contained in a
subgroup of type E : GL2(3) of PSp4(3).2 ∼= O−6 (2) which is nontrivial on
Z. So there is an automorphism α of X inverting the elements of Z. Note
that GL2(3) and SL2(3) have trivial Schur multiplier, and that all their
cohomology groups on the standard module vanish. Thus X is a weak
holomorph for E. Up to conjugacy under E, there is a unique complement
S ∼= Sp2(3) to E in X which is stable under α.

Let ξ be one of the two faithful irreducible characters of Sp4(3) of
degree 4, which are fused by α [Atlas]. Evidently ResX(ξ) = χ+λ for some
faithful irreducible character χ of X (of degree 3) and some linear character
λ. We have Q(χ) = Q(ξ) = Q(

√−3). Hence X is a standard holomorph
of E. There are two further holomorphs of E isoclinic to X. However,
these further holomorphs appear in X ◦ Z9 and their character value fields
require the 9th roots of unity. (Cf. [Atlas, p. xxiii], and observe that χ

does not vanish on all elements of XrX ′.) Thus X is the unique standard
holomorph, up to isomorphism. Each faithful irreducible character of E

has |X/X ′| = 3 extensions to X, but these are conjugate under central
automorphisms corresponding to Hom(X/X ′, Z(X)).
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Theorem 4.3c. Let E = q1+2m
+ , q odd. Up to isomorphism, there is a

unique standard holomorph X for E and its value field is K = Q(e2πi/q).
There is an automorphism α of X permuting the nontrivial elements in
Z = Z(E) transitively and leaving invariant a unique, up to conjugacy
under E, subgroup S ∼= Sp2m(q) complementing E in X. This α induces
on S the outer (diagonal) automorphism of order 2. The faithful irreducible
characters of X of degree qm have Schur index 1 and are conjugate under
automorphisms of X.

Proof. By the above we may assume that (m, q) 6= (3, 1). Then Sp2m(q)
is perfect, and its multiplier is trivial by (A6). Let A = CAut(E)(Z). Recall
from Sec. 4.2 that A/Inn(E) = C(E) ∼= Sp2m(q). Now Sp2m(q) contains
nontrivial scalar multiplications, which are fixed point free on U ∼= Inn(E)
in coprime action. Hence Hn(C(E), U) = 0 for all n by (A2). So there is
a faithful action of Sp2m(q) on E centralizing Z. Let X = E : Sp2m(q) be
the corresponding semidirect product. Here the complement S ∼= Sp2m(q)
to E in X is determined up to conjugacy. X is a weak holomorph of E,
and it is the unique one, up to isomorphism, as X = X ′ is perfect.

X is a standard holomorph of E. For each faithful irreducible character
θ of E is stable in X, and M(S) = 1 and X = X ′ imply that there is a
unique χ ∈ Irr(X) extending θ. This forces that K(χ) = K(θ) = K. It
remains to show that the automorphism α of E described above can be
extended to X. Since it will permute then the nontrivial linear characters
of Z transitively, and hence the faithful irreducible characters of E, this
will prove that all faithful irreducible characters of X of degree qm are
conjugate under automorphisms of X. Also we may alter it by an inner
automorphism, if necessary, such that it fixes S.

Recall that A ∼= X/Z = X̄. Using that X̄ and S are perfect and
M(S) = 1, and that H1(S, U∗) = 0 (U ∼= U∗ as S-modules) from (A2),
(A5) we infer that H2(X̄, Z) is the dual group of M(X̄) and that

Res : H2(X̄, Z) → H2(U,Z)

is injective. Since α fixes the conjugacy class of E in H2(U,Z), being
an automorphism of E, it therefore fixes the cohomology class of X in
H2(X̄, Z). This implies that α can be extended to X, as desired. We even
see that X = Â is the (universal) Schur cover of A, because the image of the
restriction map is centralized by S ∼= X̄/U , and H2(U,Z) ∼= U∗ ⊕ Λ2(U)∗

as an S-module by (A8). We conclude that |M(A)| = |H2(A,Z)| = |Z|,
which gives the result. ¤
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Theorem 4.3d. Let E = 21+2m
0 . Up to isomorphism, there is a unique

standard holomorph X for E and its value field is K = Q(i). The faith-
ful irreducible characters of X of degree 2m have Schur index 1 and are
conjugate under automorphisms of X.

Proof. Let Z = Z(E) and U = E/Z. Recall from Sec. 4.2 that Aut(E) =
A : 〈α〉 where A = CAut(E)(Z) and where α is an involution inverting the
elements of Z ∼= Z4 and centralizing U ∼= Inn(E) and C(E) = A/Inn(E) ∼=
Sp2m(2). Note that α is not an inner automorphism on A. Let θ ∈ Irr(E)
be one of the two faithful irreducible characters of E. Then Q(θ) = K.

Let first m ≥ 3. Then S = Sp2m(2) is a simple group, and the mul-
tiplier M(S) = 1 unless m = 3 (where it has order 2). In this situation it
suffices to show that a weak holomorph for E exists, and a holomorph when
m = 3. Embed E into GL2m(K) through θ (uniquely up to conjugacy). Let
B be the block ideal in the group algebra KE to θ. This B is a centrally
simple K-algebra isomorphic to M2m(K) which is stable under the action
A. By the Skolem–Noether theorem there is a function τ : A → GL2m(K)
such that conjugation with τx = τ(x) is application of x ∈ A. We have
τxy = τxτy · τ(x, y) for x, y ∈ A, where τ(x, y) is a scalar matrix. Thus τ

is a projective representation of A with 2-cocycle τ ∈ Z2(A, K?). We may
arrange matters such that 〈τ(Inn(E))〉 ∼= E.

Let X0 be the subgroup of GL2m(K) generated by τ(A). Since the
index |X0 : Z(X0)| = |A| is finite, by a transfer argument due to Schur
[Huppert, 1967, IV.2.3], X = X ′

0 is finite. Then Z(X) consists of scalar
matrices in K = Q(i) of finite order, that is, |Z(X)| is a divisor of 4. Since
A = A′ is perfect and contains τ(E) ∼= E, X is the desired holomorph.

The case m = 1 is already treated above. For m = 2 we have S ∼= S6.
In this case consider E0 = E◦Ẽ, where Ẽ ∼= E = 21+2

0 and where θ0 = θ⊗ θ̃

is a faithful irreducible character of E0. Let X0 be the standard holomorph
of E0 and χ0 ∈ Irr(X0) be the character extending θ0. Let X = CX0(Ẽ).
Then X ◦ Ẽ is a subgroup of X0 on which χ0 decomposes as χ ⊗ θ̃. Then
χ ∈ Irr(X) has its values in K. So X is a standard holomorph of E, and
its uniqueness follows by noting that the other extensions 4.A6.2 isoclinic
to X require the 8th roots of unity. Also, the two extensions of θ to X are
interchanged by a central automorphism of X.

It remains to show that α can be extended to an automorphism of X.
Let first m ≥ 4. Then H2(S, Z) = 0 by (A5) since S = S′ and M(S) = 1.
Also, U∗ = H1(U,Z) is the dual module for S, and H1(S,U∗) = H1(S, U)
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has order 2 by (A9). From (A2) we infer that the kernel of the restriction
map Res : H2(A,Z) → H2(U,Z) has order 1 or 2; its image is in the
fixed subspace under S. Now the inclusion F2 ½ Z induces the zero map
Ext(U,F2) → Ext(U,Z). It follows that the universal coefficient exact
sequence splits naturally and so by (A8) yields the decomposition

H2(U,Z) ∼= U∗ ⊕ Λ2(U)∗

of S-modules. As S is absolutely irreducible on U , HomS(U ⊗ U∗) ∼=
EndS(U) has order 2. Hence the commutator form to E in Λ2(U)∗ =
Hom(Λ2(U), Z) is the unique nontrivial element in H2(U,Z) fixed by S.
Consequently |M(A)| = |H2(A,Z)| has order dividing |Z| = 4. However,
Z ½ X ³ A is a proper extension (Z ⊆ X ′). Hence X = X ′ = Â is the
universal Schur cover of A. By (A5) α can be lifted from A to X, and this
lift cannot centralize Z as it is not inner on A.

For m ≤ 3 consider E0 = E ◦ Ẽ where Ẽ ∼= 21+2
0 . If X0 is the

standard holomorph of E0 and α0 a corresponding automorphism of X0,
then X = CX0(Ẽ) is the standard holomorph of E and α0 leaves Ẽ and X

invariant. Argue first for m = 3, then for m = 2, m = 1. ¤

Theorem 4.3e. Both E ∼= 21+2m
+ and E ∼= 21+2m

− have two isomorphism
types of standard holomorphs, with value fields Q(

√±2) and Schur indices
1 or 2, the latter occurring when E is of negative type and the value field is
Q(
√

2). The two standard holomorphs of either type (positive or negative)
agree on the inverse images of Ω±2m(2), and the faithful irreducible charac-
ters of degree 2m are rational-valued on these subgroups. These characters
are always conjugate under group automorphisms.

Proof. Let E be one of 21+2m
+ or 21+2m

− . We may assume that m ≥ 2.
Let θ be the unique faithful irreducible character of E. Let K = Q(

√−2).
Observe that K is, in each case, a splitting field for E (as −1 is a sum of 2
squares in K). Arguing as in the proof for Theorem 4.3d we get a subgroup
X0 of GL2m(K) for which Z(X0) consists of scalar matrices (including
±1) and X0/Z(X0) ∼= Aut(E), and we obtain that Y = X ′

0 represents an
extension of C(E)′ ∼= O±2m(2)′ by E.

Now O±2m(2)′ ∼= Ω±2m(2) is simple except when E ∼= 21+4
+ . At any

rate, let E0 = E ◦E1 with E1
∼= D8, and let Y0 = Y ′

0 be the corresponding
perfect subgroup of GL2m+1(K). So Y0/E ∼= C(E0)′ has index 2 in C(E0) ∼=
O±2(m+1)(2). There is x ∈ GL2m+1(K) interchanging two involutions in E1
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and centralizing E such that 〈E1, x〉 is the semidihedral holomorph for
D8 (which can be embedded into GL2(K)). So x induces an orthogonal
transvection on U0 = E0/Z(E0), and x2 ∈ E1. Since x is determined by
this action on E0 up to multiplication with a scalar matrix, [Y0, 〈x〉] ⊆ Y0

and X0 = 〈Y0, x〉 is a holomorph for E0. It follows that X = CX0(E1) is a
weak holomorph for E. The faithful irreducible character of X0 (given by
its embedding into GL2m+1(K)) remains absolutely irreducible on X ◦ E1.
We conclude that X is a holomorph of E.

By construction there is χ ∈ Irr(X) extending θ which can be written
in K = Q(

√−2). In particular Q(χ) ⊆ K. Let T be the inverse image in
X of Ω±2m(2). We assert that ResX

T (χ) is rational-valued. This is obvious
when X ′ = T , because θ is rational-valued and all extensions to X agree
on X ′. The case where E = 21+4

+ may be treated using that the elements of
Ω+

4 (2) are just those which are products of an even number of transvections
or reflections [Aschbacher, 1986, (22.14)], and appealing to Theorem 4.4
below. There are just two extensions of θ to X which agree on T , and these
are interchanged by a central automorphism of X.

We claim that X is a standard holomorph of E. Write E = E0 ◦ Ẽ

with Ẽ ∼= D8. Then X̃ = CX(E0) is a (standard) holomorph of D8. The
restriction of χ to E0◦X̃ is irreducible and its value field is that of X̃. Thus
Q(χ) = K if X̃ is a semidihedral group and Q(χ) ⊇ Q(

√
2) if it is dihedral.

But the latter cannot happen as Q(χ) ⊆ K. However, replacing X by the
isoclinic variant (with respect to T ) we obtain the value field Q(

√
2). ¤

4.4. Good Conjugacy Classes Once Again

We introduce a concept of “goodness” adapted to extraspecial groups. Sup-
pose X is a finite group containing some E ∼= q1+2m

±,0 as a normal subgroup.
Let Z = Z(E) and U = E/Z. Following [Isaacs, 1973] an element x ∈ X is
called “good for U” provided CU (x) = CE(x)/Z. In other words, whenever
[x, y] ∈ Z(E) for some y ∈ E then [x, y] = 1. This depends only on the
conjugacy class of Zx in X/Z, and also only on 〈Zx〉.

Theorem 4.4. Let x ∈ X. There are exactly |U : CU (x)| cosets of Z in
Ex which are good for U , and these are conjugate under E. Assume X has
a faithful character χ which is absolutely irreducible on E. Then x is good
for U if and only if χ(x) 6= 0, and then |χ(x)|2 = |CU (x)|. Furthermore,
if x is a q′-element, then x is good for U , and χ(x) is a rational number
provided χ is q-rational.
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Proof. Let CU (x) = C/Z and D = CE(C). Then D/Z = (C/Z)⊥ is
the orthogonal complement of CU (x) with respect to the (nondegenerate)
symplectic commutator form on U . Hence |E : D| = |C : Z| and, therefore,
|D : Z| = |E : C|. The group of automorphisms of C centralizing U = C/Z

and Z is isomorphic to

Hom(C/Z, Z) ∼= C/Z ∼= E/D,

because C/Z is elementary and Z cyclic. Hence there is y ∈ E inducing
the same central automorphism on C as it does x. It follows that xy−1

centralizes C. Clearly CU (xy−1) = CU (x). Hence xy−1 is good for U (and
in the coset Ex). Now suppose x itself is good for U (for simplicity). Then
all elements in the coset Dx are good for U . Conversely, to t ∈ ErD there
exists c ∈ C such that [t, c] = z for some z 6= 1 in Z. It follows that

[tx, c] = [t, c]x[x, c] = [t, c] = z,

whence t is not good for U . Thus Dx is the set of elements in Ex which
are good for U , and its cardinality is equal to |D| = |Z| · |E : C|.

Now let χ ∈ Irr(X) be as indicated. Suppose χ(x) 6= 0. Without loss
of generality assume that X = 〈E, x〉. Then [x, y] = x−1xy ∈ E for all
y ∈ X. If [x, y] 6∈ Z then χ([x, y]) = 0 (as χ is an extension of a faithful
irreducible character of E). If [x, y] = z for some z ∈ Z, then

χ(x) = χ(xy) = χ(xz) = χ(x)
χ(z)
χ(1)

.

We conclude that χ(z) = χ(1) and so [x, y] = z = 1, whence y ∈ CX(x). In
particular x is good for U . (The argument even shows that x is good for Z

or, equivalently, for the unique linear constituent of χ on Z.) Noting that
χ is irreducible on X and applying Eq. (1.3c) we get

|χ(x)|2 =
χ(1)
|X|

∑

y∈X

χ([x, y]) =
χ(1)
|X| χ(1)|CX(x)|.

Now use that χ(1)2 = |U | (by the character theory of groups of extraspecial
type) and that |X : CX(x)| = |E : CE(x)|.

Suppose x is good for U . The set Dx consists of |E : C| distinct cosets
mod Z, which are permuted by E via conjugation. But the stabilizer in E
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of Zx is C. So these cosets are permuted transitively by E. By virtue of
Eq. (1.3d) and using that χ vanishes on elements bad for U we therefore
have

|E| =
∑

y∈E

|χ(yx)|2 =
∑

y∈D

|χ(yx)|2 = |E : C|
∑

z∈Z

|χ(zx)|2.

But for z ∈ Z we have |χ(zx)| = |χ(x)|. Thus |χ(x)|2 = |CU (x)|.
Suppose x is a q′-element. Then CE(x)/Z = CU (x) by coprime ac-

tion. Moreover, we have an orthogonal decomposition U = CU (x)⊥[U, x]
with respect to the symplectic commutator form, and x acts faithfully and
symplectically on [U, x] = [U, x, x]. Hence |CU (x)| = q2n for some integer
n, and if E0 is the inverse image in E of CU (x), then E0 is of extraspecial
type (and CE(E0) maps onto [U, x]). It follows that |χ(x)| = qn, because
x is good for U . By Theorem 1.6c

χ(x) = ±µθ(1)

for some sign and some root of unity µ of order dividing o(x). Hence if in
addition χ is q-rational, then χ(x) is a rational number. ¤

4.5. Some Weil Characters

The classical groups GLm(q), Sp2m(q) (for odd q) and GUm(q) admit Weil
characters. Usually these are faithful irreducible characters of smallest pos-
sible degree. The Weil characters of the symplectic groups were discovered
by [Weil, 1964], [Ward, 1972] and [Isaacs, 1973].

Theorem 4.5a (Weil, Ward, Isaacs). Let S = Sp2m(qf ) for some power qf

of the odd prime q and some m ≥ 1, and let U be its standard module. Then
S has a pair of (disjoint) “generic” complex characters ξ 6= ξ¦, conjugate
under an outer diagonal automorphism of S, such that ξξ̄ = πU (= ξ¦ξ¦)
is the permutation character on U . We have ξ = ξ1 + ξ2 where the ξi are
irreducible characters of degree ξ1(1) = (qfm−1)/2 and ξ2(1) = (qfm+1)/2
(and similar statement for ξ¦). The following hold:

(i) The field of character values for ξ, ξ1 and ξ2 is Q
(√

(−1)(q−1)/2q
)

if f is odd, and Q otherwise. The characters take only rational values on
q′-elements of S.

(ii) Just one of ξ1, ξ2 is faithful for S, and ξ1 is faithful if and only if
qfm ≡ 1 (mod 4). Moreover, ξ1 is irreducible as a Brauer character in any
characteristic different from q, ξ2 in every characteristic different from q

and from 2, and ξ2 = 1S + ξ1 on 2′-elements of S.
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Proof. The trace map Fqf → Fq carries the symplectic Fqf -form on U to
one over Fq which remains nondegenerate and S-invariant. This yields an
embedding of S = Sp2m(qf ) into Sp2fm(q), hence an embedding of S into
the standard holomorph of E ∼= q1+2fm

+ (Theorem 4.3c). Let Z = Z(E) and
identify U = E/Z (as S-modules). The above discussion carries over to the
symplectic holomorph Xs = E : S (contained in the standard holomorph
of E). Recall the definition of the automorphism α of E in Sec. 4.2, via
a decomposition U = W ⊕W ∗ into totally isotropic subspaces. As before
we may extend this α to X and pick S to be α-invariant. Then α induces
the outer (diagonal) automorphism of order 2 on S and permutes the q− 1
nontrivial linear characters of Z transitively. The restrictions to S of (the)
q − 1 faithful irreducible characters of X of degree qfm lying above these
linear characters give rise to two distinct generic Weil characters ξ, ξ¦

of S conjugate under α. For (m, qf ) = (1, 3) we have additional central
automorphisms, and here we we pick ξ, ξ¦ such that they do not contain
the 1-character of S (cf. Example (iv) in 4.3b).

Let j be the central involution in S. Let x ∈ S. We claim that x is
good for U . Let t ∈ E such that Zt ∈ CU (x). Since j inverts the elements
in U , we have tj = t−1z for some z ∈ Z and

[x, t] = [x, t]j = [x, tj ] = [x, t−1z] = [x, t]−1.

Using that q is odd this implies that [x, t] = 1. Hence the claim. It follows
that (ξξ̄)(x) = |ξ(x)|2 = |CU (x)| by Theorem 4.4. Thus ξξ̄ = πU is the
permutation character of S on U . In particular |ξ(j)|2 = |CU (j)| = 1 and
so ξ(j) = ±1 as it is a rational number. Since S is transitive on U ] (by
Witt’s theorem), it follows that

〈ξ, ξ〉 = 〈ξξ̄, 1S〉 = 2.

Consequently ξ = ξ1 + ξ2 for two distinct irreducible characters ξi of S. So
ξi(j) = ±ξi(1) for i = 1, 2. It follows that just one of the characters ξi has
j in its kernel, and that ξi(1) = (qfm ± 1)/2. Choose notation such that
ξ2(1) = ξ1(1) + 1.

Let x ∈ S be a symplectic transvection. Then |ξ(x)|2 = |CU (x)| =
qf(2m−1). Since S is generated by the symplectic transvections, this gives
the result on the character field of ξ, up to the sign. For the precise sign
we refer to [Isaacs, 1973] (Theorem 5.7), from which one also infers that
ξ(j) = 1 if and only if qfm ≡ 1 (mod 4) (see also [I, 13.32]). Use further
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that 1S + ξ1 and ξ2 agree on q-elements (as proved in the next paragraph),
and that ξ1 is faithful if and only if ξ1(j) = −ξ1(1), that is, if and only if
ξ(j) = +1. (We mention that ξ¦ = ξ̄ if and only if f is odd.)

Let us pass to characteristic p for some prime p 6= q. Let F be the
residue class field of Z(p)[e2πi/q] modulo some maximal ideal, and let V be
an FS-module affording ξ as a Brauer character. Then, as before, V ⊗F V ∗

is the permutation module of S over F on the set U (with two orbits). Thus

EndFS(V ) ∼= HomFS(V ⊗F V ∗, F )

has F -dimension 2. If p 6= 2 then V = [V, j]⊕CV (j) is a proper decomposi-
tion into FS-modules, because j is in the kernel of just one ξi. So let p = 2.
Then j acts trivially on each irreducible FS-module, but it is nontrivial on
V as it is nontrivial on U . Hence CV (j) is a proper submodule of V and
V is not completely reducible. As before V/CV (j) ∼= [V, j] as FS-modules
(via the commutator map v 7→ [v, j]). We cannot have CV (j) = [V, j] as
q is odd. We cannot have CV (j) ⊂ [V, j] (properly), because then CV (j)
were irreducible and [V, j] = CV (j)⊕ 1S , which is impossible. We conclude
that [V, j] is irreducible and of codimension 1 in CV (j), the quotient being
the trivial module (affording 1S). The proof is complete. ¤

The characters ξ, ξ1, ξ2 of Sp2m(qf ) obtained in Theorem 4.5a, and their
conjugates, are called the Weil characters of the symplectic group. For
m ≥ 2 the irreducible Weil characters are the unique faithful irreducible
characters of Sp2m(qf ) of degree less than qfm − q (see Appendix C).

Theorem 4.5b. Let X be a standard holomorph of E ∼= 21+2m
+ , m ≥ 3,

and let χ be one (of the two) faithful irreducible characters of X of degree
2m. Write E as a central product of m dihedral groups 〈ai, a

∗
i 〉 of order 8,

with involutions ai, a
∗
i . Let A = 〈a1, · · ·, am〉 and A∗ = 〈a∗1, · · ·, a∗m〉.

(i) There exists a unique subgroup L ∼= Lm(2) of X normalizing both
A and A∗, so that A is the standard module for L and A∗ its dual. We
have NX(L) = ZL〈τ〉 where τ2 ∈ Z = Z(E) and where τ interchanges A

and A∗ and induces the inverse transpose automorphism on L.
(ii) ResX

L (χ) = πA = 2 · 1L + ξ where ξ is an (absolutely) irreducible
(Weil) character of L which is rational-valued (with Schur index 1). This ξ

is irreducible modulo every odd prime p not dividing 2m − 1, and reducible
otherwise.

Proof. We use the Atlas notation for the projective special linear groups.
So at present Lm(2) = PSLm(2). Let Z = Z(E) and U = E/Z.
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(i) Recall that X̄ = X/E ∼= O+
2m(2). Let W = AZ/Z and W ∗ =

A∗Z/Z. Then U = W ⊕ W ∗ is a decomposition into maximal totally
singular subspaces. Let P = NX̄(W ), a maximal parabolic subgroup of
Ω+

2m(2) (see Appendix B). Let L̄ = NP (W,W ∗) be a Levi complement, so
that L̄ ∼= Lm(2) and W is the standard L̄-module, W ∗ its dual.

See Appendix (C1) for the existence (and uniqeness) of the subgroup
L of X. This L is faithful on A and A∗, and maps isomorphically onto
L̄. For each i let ei = aiZ and e∗i = a∗i Z, and let τ̄i be the orthogonal
transvection of U with centre ei · e∗i . Then τ̄ = τ̄1 · · · τ̄m is an involution in
X̄ interchanging each ei, e

∗
i , hence W and W ∗. Also, τ̄ normalizes L̄ and

induces on it the inverse transpose automorphism.

The L̄-modules W and W ∗ are not isomorphic (Lemma 4.1c). Hence
NX̄(L̄) permutes {W,W ∗}. Since L̄ = NX̄(W,W ∗), we see that NX̄(L̄) =
L̄〈τ̄〉 = Aut(L̄). We observe that U = IndAut(L̄)

L̄
(W ) as an Aut(L̄)-module

and so
Hn(Aut(L̄), U) ∼= Hn(L̄,W ) ∼= Hn(L̄, W ∗)

by Shapiro’s lemma (A3). This vanishes for n = 1, 2 when m ≥ 6 by
(A9). Then we find τ ∈ X mapping onto τ̄ with τ2 ∈ Z, and replacing
τ by a suitable E-conjugate, if necessary, this τ normalizes L. Note that
NE(L) = Z as L has no fixed points on U = E/Z. It follows that NX(L) =
L〈τ〉NE(L) = L〈τ〉Z maps onto Aut(L̄). For 3 ≤ m ≤ 5 we argue as follows.
Consider E0 = E ◦ E1, with E1

∼= 21+2(6−m)
+ . Let X0 be the standard

holomorph of E0 having the same value field as X. Then X = CX0(E1) (by
uniqueness). Let L0

∼= L6(2) be the subgroup of X0 normalizing A0 = 〈a1, ··
·, a6〉 and A∗0 = 〈a∗1, ···, a∗6〉. Then L = CL0(E1), because this centralizer is a
subgroup of X isomorphic to Lm(2) which normalizes A and A∗. For each i

let τi ∈
⋂

j 6=i CX0(〈aj , a
∗
j 〉) be an element of the holomorph of 〈ai, a

∗
i 〉 within

X0 mapping onto τ̄i. Let τ0 = τ1 · · · τ6. Then L0Z and Lτ0
0 Z are conjugate

in EL0 = (EL0)τ0 (as H1(L0, U0) = 0 for U0 = E0/Z(E0)). Hence there
are yi ∈ 〈ai, a

∗
i 〉 such that for y0 = y1 · · ·y6 we have (L0Z)τ0y0 = L0Z, hence

Lτ0y0
0 = (Lτ0y0

0 Z)′ = L0. Also τ0y0 normalizes E1 and hence L = CL0(E1).
Now τ = τ1 · · · τmy1 · · · ym maps onto τ̄ and centralizes E1, hence is in
X = CX0(E1). Using that τi permutes with yi for j 6= i and that L is
centralized by τi, yi when i > m we see that τ normalizes L.

(ii) It follows from Appendix (C1) that ResX
L (χ) = πW = 2 · 1L + ξ for

some irreducible character ξ of L. Since L = L′ ⊆ X ′, the Weil character ξ

of L is rational-valued and independent of the choice of χ.
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Let p be an odd prime. We investigate the (transitive) permutation
character πW ] = 1L+ξ, and its reduction mod p. Let M be the permutation
FpL-module affording πW ] (as a Brauer character). If p - 2m − 1 then
M = M0⊕1L where M0 is (absolutely) irreducible (affording ξ as a Brauer
character). So let p | 2m− 1. Then 1L appears at least twice in M , namely
in the socle and in the head. (One can show that the “heart” M̃ of M , the
section remaining, is irreducible (and not trivial): Since L = L′ is perfect,
M̃ cannot have 1L in the socle or in the head. By [Seitz–Zalesskii, 1993]
each composition factor of M̃ either is trivial or has dimension ≥ 2m−m−1.
We have 2 · (2m −m− 1) > 2m − 3 = dim M̃. Hence M̃ is irreducible.) ¤

Remark . Replace E ∼= 21+2m
+ by E0 = E ◦ Z4

∼= 21+2m
0 (m ≥ 3). There

is a corresponding result for the standard holomorph X0 of E0. More
precisely, let Y = NX0(E). Then Y/E0

∼= O+
2m(2) is a maximal subgroup of

X̄0 = X0/E0
∼= Sp2m(2). As before we find L ∼= GLm(2) in Y normalizing

A and A∗. For L̄ = LE0/E0 we have NX̄0
(L̄) = L̄〈τ̄〉 as before, and we find

τ ∈ X0 mapping onto τ̄ , normalizing L and interchanging A, A∗ such that
τ2 ∈ Z(E0) and NX0(L) = L〈τ〉Z(E0).

4.6. Symplectic and Orthogonal Modules

Now we state and prove two results, due to [Isaacs, 1973] and [Gow, 1993],
which will be crucial for our approach to the k(GV ) theorem.

Theorem 4.6a (Isaacs). Let V is a coprime symplectic FpG-module. There
exists a rational-valued character χ of G with χ2 = πV , and this yields a
rational-valued generalized character ψ of G with ψ(1) = 1 and ψ2 = δV .

Proof. We may assume that G is faithful on V . Let |V | = p2m. In the odd
case let χ be the restriction to G of a generic Weil character of Sp2m(p)
(Theorem 4.5a). Otherwise identify V = E/Z(E) via the commutator form
on E = 21+2m

0 , and let T be the standard holomorph of E (Theorem 4.3d).
By the Schur–Zassenhaus theorem we may embed G into T . Let then χ be
the restriction to G of one of the (two) faithful irreducible characters of T

of degree 2m. Apply Theorem 4.4.
Let X = GV be the semidirect product, and view χ as a character of X

by inflation. By Lemma 2.1a, 1
pm χ̃ is a generalized character of X, because

χ(1) = pm and |X|p = |V | = p2m. Define ψ(x) = 1
pm χ̃(x)/|CV (x)| =

pmχ(x)/|CV (x)| for x ∈ G. By Lemma 3.3a, ψ is a generalized character
of G. We have ψ(1) = 1 and ψ2 = δV , and ψ is rational-valued. ¤
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Theorem 4.6b (Gow). Suppose V is a coprime orthogonal FpG-module
for some odd prime p. Let N = Ker(µ) be the kernel of the linear character
µ of G afforded by the determinant in its action on V (|G/N | = 1 or 2).
There is a rational-valued generalized character ψ of G such that ψ(1) = 1
and ψ2 = δV on N , ψ(x)2 = 1

pδV (x) for x ∈ GrN (if any).

By virtue of Lemmas 2.1a and 3.3a it suffices to construct a rational-valued
generalized character χ of G with the following properties: If dimV = 2m is
even, then χ(1) = pm, χ2 = πV on N and χ(x)2 = 1

p |CV (x)| for x ∈ GrN .
If dim V = 2m + 1 is odd, then χ(1) = pm+1, χ(x)2 = p|CV (x)| for x ∈ N

and χ(x)2 = |CV (x)| otherwise.

We need two lemmas. Let τ = [·, ·] be the G-invariant, nondegenerate
symmetric bilinear form on V . If dim V = 2m is even, we write ε(V ) = 1
if τ has Witt index m and ε(V ) = −1 otherwise. Similar notation for
nondegenerate subspaces of even dimension (ε(0) = 1 for the zero subspace).
We set d(V ) = 1 if the discriminant of τ is a square in F?

p and d(V ) = −1
otherwise. Thus ε(V )d(V ) = (−1)(p

m−1)/2 if dimV = 2m. In the odd
dimensional case dim V = 2m+1, we define ε(V ) = (−1)(p

m−1)/2d(V ), and
extend this definition to nondegenerate subspaces of odd dimension.

Lemma 4.6c. Let I(V ) be the set of vector v ∈ V for which τ(v, v) = 0,
and let J(V ) consist of those with τ(v, v) = 1.

(i) If dim V = 2m, then |I(V )| = p2m−1 + ε(V )(pm − pm−1) and
|J(V )| = p2m−1 − ε(V )pm−1.

(ii) If dim V = 2m+1, then |I(V )| = p2m and |J(V )| = p2m +ε(V )pm.

Proof. Recall that V = U1⊥ · · · ⊥Um−1⊥V0 with hyperbolic planes Ui =
〈ui, vi〉, satisfying τ(ui, ui) = 0 = τ(vi, vi) and τ(ui, vi) = 1, where either
V0 = Um is a hyperbolic plane (dim V = 2m and ε(V ) = 1), or V0 =
〈um, vm〉 with τ(um, vm) = 0, τ(um, um) = 1 and τ(vm, vm) = −c for some
nonsquare c in F?

p (dim V = 2m and ε(V ) = −1), or V0 = 〈vm〉 where either
τ(vm, vm) = 1 or τ(vm, vm) = c is a nonsquare (dim V = 2m+1). It is easy
to verify the assertions when dim V ≤ 2. Observe that if U is a hyperbolic
plane, to every isotropic u 6= 0 in U there exists a unique isotropic v 6= 0 in
U such that {u, v} is a hyperbolic pair, and then the set of vectors au, av

for a ∈ Fp are just all isotropic ones in U (including 0). Hence

|I(U)| = 2p− 1 and |J(U)| = p− 1.
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So let dim V ≥ 3, and write V = U⊥W where U is a hyperbolic plane. One
checks the following recursion formulas (dimW = k = dim V − 2):

|I(V )| = pk+1 − pk + p|I(W )|,
|J(V )| = (2p− 1)|J(W )|+ (p− 1)(pk − |J(W )|).

The lemma follows. ¤

Clearly I = I(V ) and J = J(V ) are stable under the action of G.
We consider the permutation characters πI and πJ of G on these sets, and
define

χ = ε(V )(πI − πJ )

if dim V = 2m is even. Then χ(1) = pm. Let dimV = 2m + 1. Then we
let χ′ = −ε(V )(πI − πJ) and define χ by χ = p+1

2 χ′ + p−1
2 χ′ · µ, that is,

χ = pχ′ on N and χ(x) = χ′(x) for x ∈ GrN . Then χ(1) = pm+1.

The computation of this rational-valued generalized character χ of G

will prove that it has the asserted properties, hence will complete the proof
of Theorem 4.6b.

Let x ∈ G. Since G is a p′-group, we have an orthogonal decomposition
V = [V, x]⊥CV (x) into nondegenerate subspaces. If det(x) = 1 then [V, x]
has even dimension, whence dim V and dim CV (x) the same parity, whereas
dim [V, x] is odd if det(x) = −1. Let dim CV (x) = rx and εx = ε([V, x]).

Lemma 4.6d. (i) Let dim V = 2m. Then χ(x) = ±εxpb
rx
2 c where the sign

+ holds if det(x) = 1 or det(x) = −1 and p ≡ 3 (mod 4).

(ii) Let dim V = 2m + 1. Then χ(x) = ±εxpb
rx+1

2 c where the + sign
holds if det(x) = 1.

Proof. Suppose first that det(x) = 1. If dimV = 2m, then rx is even
and by Lemma 4.6c, the very definition of χ, and elementary properties of
the Witt index, we get χ(x) = ε(V )ε(CV (x))prx/2 = εxprx/2. If dim V =
2m + 1, then rx is odd, and we obtain χ(x) = ε(V )ε(CV (x))p(rx+1)/2 =
εxp(rx+1)/2.

Suppose next that det(x) = −1. Then rx is even precisely when dimV

is odd (and then b rx+1
2 c = rx

2 ). We obtain that

χ(x) = −ε(V )ε(CV (x))pb
rx
2 c.

It is elementary to show that ε(V )ε(CV (x)) = εx if dim V = 2m + 1 and
ε(V )ε(CV (x)) = (−1)(p−1)/2εx if dim V = 2m. We are done. ¤



Chapter 5

Real Vectors

The Robinson–Thompson theorem shows that k(GV ) ≤ |V | provided there
is a real vector in V for G. This is fundamental for our approach to the
k(GV ) problem. Here a vector v ∈ V is called real for G if the restriction
to CG(V ) of V contains a faithful self-dual submodule (with a real-valued
Brauer character). The search for real vectors is compatible with Clifford
reduction and leads to the nonreal reduced pairs (which will be classified in
the next two chapters).

5.1. Regular, Abelian and Real Vectors

Throughout V is a coprime FG-module, not necessarily faithful, where
F = Fr is a finite field of characteristic p. Let v ∈ V and let H = CG(v).
The vector v is called regular for G provided H = CG(V ), and it is called
abelian (cyclic) if H/CG(V ) is abelian (cyclic). If G is faithful on V , then
k(GV ) ≤ |V | by Theorem 3.4d if there is an abelian vector in V for G.
We say that v is strongly real for G provided the restriction to H of V is
self-dual, and it is called real if ResG

H(V ) contains a self-dual submodule W

such that CH(W ) = CG(V ).

Of course regular vectors are abelian and are strongly real, whereas
there is no hierarchy between abelian and (strongly) real vectors. There
are examples (G,V ) where there are neither abelian vectors nor real ones,
or vectors of just one kind (see for instance Secs. 6.1, 7.1 below).

Example 5.1a. We are going to describe the permutation pairs (G,V ).
Let p > d + 1 and let E = Ad+1 be the alternating group of degree d + 1 ≥
5. Then the deleted (shortened) permutation FE-module V of degree d

is coprime, faithful and absolutely irreducible. It is the “heart” of the
permutation module W =

⊕d
i=0 Fwi, where {wi} is a permutation basis

(wis = wis for s ∈ E). It consists of all
∑

i ciwi with
∑

i ci = 0 in F (as
p - d+1). Embed E into GL(V ), and let G = NGL(V )(E). Then G = S×Z

where Z = Z(G) ∼= F ?, and where we may choose S ∼= Sd+1 such that it
acts on V as its natural shortened permutation module. (For d + 1 = 6
note that PGL2(9) and M10 do not have faithful actions on 5-dimensional
coprime modules.) There exist vectors of (almost) every kind here.
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(i) There is always a strongly real vector v ∈ V for G:

Let v = dw0 −
∑d

i=1 wi. If g = xz fixes v (x ∈ S, z ∈ Z), then zwix = wj

for some positive i, j, hence z = 1, and g = x must fix w0 and permute
{w0 − wi}d

i=1. Therefore H = CG(v) ∼= Sd and ResG
H(V ) is the natural

permutation over F , which gives the result.

(ii) There is always an abelian (cyclic) vector in V for G:

A vector u =
∑d

i=0 ciwi in W is regular for S if and only if all ci ∈ F

are distinct. So there are
∏d

i=0(r − i) regular vectors in W for S. If∑
i ci = c (6= 0), there is a (first) index j such that cj − c 6= ci for all i 6= j,

because p > d + 1. Hence there are
∏d

i=1(r− i) vectors in V regular for S.
If u is regular for S, then CG(u) is cyclic of order dividing |Z| = r − 1.

(iii) There is a regular vector in V for G if and only if r ≥ d + 4:

We have seen that there are 1
(d+1)!

∏d
i=1(r− i) = 1

d+1

(
r−1

d

)
regular S-orbits

on V ]. So we have one such orbit when r = d + 2, and r−1
2 orbits for

r = d + 3. In these two cases (where r = p) there cannot be a regular
G-orbit on V ], because each regular G-orbit on V ] is a disjoint union of
|Z| = r − 1 regular S-orbits. Let r ≥ d + 4 in what follows.

Suppose g = xz (x ∈ S, z ∈ Z) is an element in G of prime order s

which fixes a vector u =
∑

i ciwi in V belonging to a regular S-orbit. Then
cix = ciz for all i, hence jx = j if some (unique) cj = 0, and the other cycles
of x have the same size s = o(x) = o(z), with cix = ciz, · · ·, cixs = ciz

s = ci.
Hence s is a divisor of r − 1 and of either d or d + 1, and z is determined
by x. Let δ = δs ∈ {0, 1} be (unique) such that s | d + δ. We see that g

fixes at most
∏ d+δ

s −1
i=0 (r− 1− is) vectors in V regular for S. There are just

(d+1)!

s
d+δ

s ( d+δ
s )!

elements in S = Sd+1 of the cycle shape of x [James–Kerber,

1981, 1.2.15]. Using that each group of order s has s − 1 generators we
get that there are at most (d+1)!

s−1

(
(r−1)/s
(d+δ)/s

)
vectors in V belonging to regular

S-orbits which are fixed by subgroups of order s in G. Summing up over
the primes s dividing both d(d + 1), i.e., d + δs for some δs ∈ {0, 1}, and
r − 1 one obtains that

(d + 1)!
∑

s

1
s− 1

(
(r − 1)/s

(d + δs)/s

)
<

d∏

i=1

(r − i).

This implies that there is a regular vector in V for G, because there is
a vector regular for S which is not fixed by any nontrivial element of G.
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Confirm the inequality first for r = d + 4, where r = p is odd, d is even
and only s = 2, 3 can appear (the latter when 3 | r − 1); use that r ≥ 7
(even r ≥ 11). For any s we have r−1

2 − r−1
s ≥ d+δ2

2 − d+δs

s . Therefore(
(r−1)/s
(d+δs)/s

) ≤ (
(r−1)/2
(d+δ2)/2

)
, blowing up the (d+δs)/s-subsets of an (r−1)/s-set

to (d + δ2)/2-sets in an underlying (r − 1)/2-set. Hence it suffices to show
that

(
(r−1)/2
(d+δ)/2

)∑
s

1
s−1 < 1

(d+1)!

∏d
i=1(r − i) = 1

d+1

(
r−1

d

)
. Blowing up the

(d + δ)/2-subsets of an (r − 1)/2-set to d-sets in an underlying (r − 1)-set
we get that

(
r−1

d

)
> α

(
(r−1)/2
(d+δ)/2

)
where

α =
(

r − 1− (r − 1)/2
d− (d + δ)/2

)
≥

(
(r − 1)/2

2

)
= (r − 1)(r − 3)/8.

Here (r − 1)/2− [d− (d + δ)/2] ≥ 2 as we assume that d + 1 < r − 3. It is
thus enough to check that

∑
s

1
s− 1

≤ (r − 1)/8,

with s ranging over the primes dividing r − 1 (say). This is immediate
for r = 11, 13. If s is an odd prime divisor of r − 1, then 2s | r − 1 and

1
s−1 ≤ 1

s + 1
2s . Thus

∑
s

1
s−1 ≤

∑
t|r−1

1
t = 1

r−1

∑
t|r−1 t, which is known to

be O
(
(r − 1)ε

)
for each ε > 0. For r ≥ 17 we have

∑
t|r−1 t ≤ (r − 1)2/8.

Lemma 5.1b. Let G be faithful on V , and assume that G = X ◦ Z is a
central product over Z(X) where Z acts on V as a group of scalar multi-
plications. Let H = CX(v) for some v ∈ V ]. If |NX(H) : H| is relatively
prime to |Z : Z(X)|, or if NX(Zv) = H × Z(X), then CG(v) = H. Hence
if v is (strongly) real (or abelian, regular) for X, then it is so for G.

Proof. We write Zv = vZ regarding the elements of Z (acting) as scalars
(modules being right modules). Clearly N = NX(Zv) is contained in
NX(H), and CG(v) ⊆ NG(Zv) = NZ. To any y ∈ N there exists a
unique z = zy in Z such that yz ∈ CG(v). Conversely, each x ∈ CG(v)
may be written as x = yz with y ∈ X and z ∈ Z, and then y ∈ N and
z = zy. The assignment y 7→ zy is a homomorphism from N to Z with ker-
nel H = CX(v). Under either assumption the image of this homomorphism
is in Z(X), whence CG(v) ⊆ NZ(X) ⊆ X. ¤

Remark . We have CG(v) ∩ Z = 1 and CG(v)Z/Z = CG/Z(Zv) for each
nonzero vector v ∈ V . In most situations Z ∼= F ? will be the group of all
scalar multiplications. Then Zv = (Fv)] and CG/Z(Fv) = CG/Z(Zv) is
nothing but the stabilizer of the point Fv in the projective 1-space P1(V ).
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5.2. The Robinson–Thompson Theorem

We begin by combining Theorems 4.1b, 4.6a and 4.6b.

Lemma 5.2a. Suppose V is a coprime FpG-module and v ∈ V is real
for G. Let H = CG(v) and let U be a self-dual FpH-submodule of V with
CH(U) = CG(V ). Then there is a rational-valued generalized character ψ

of H and a subgroup N of H with |H : N | ≤ 2 such that ψ(1) = 1, ψ2 = δU

on N and ψ(h)2 = 1
pδU (h) whenever h ∈ H rN . We have N 6= H if and

only if p is odd and some element of H acts with determinant −1 on U .

Proof. According to Theorem 4.1b we may write U = U0⊕W0 where U0 is
a symplectic FpH-module and W0 is an orthogonal module, the action of H

on W0 being trivial when p = 2. By Theorem 4.6a there is a rational-valued
generalized character ψU0 of H satisfying ψU0(1) = 1 and ψ2

U0
= δU0 . If

H acts trivially on W0, then we let N = H and ψW0 = 1H . Otherwise
p 6= 2, and we let N be the kernel of the linear character of H afforded by
the determinantal action of H on W0 (and on U). By Theorem 4.6b there
is a rational-valued generalized character ψW0 of H satisfying ψW0(1) = 1,
ψ2

W0
= δW0 on N , and ψW0(h)2 = 1

pδW0(h) for h ∈ H r N . Now define
ψ = ψU0ψW0 . ¤

Theorem 5.2b (Robinson–Thompson). Suppose V is a faithful coprime
FpG-module and some v ∈ V is real for G. Then k(GV ) ≤ |V | and equality
can only hold when v is strongly real for G. Also, k(GV ) < |V | if p ≥ 5
and some element of H acts with determinant −1 on V .

Proof. Let H = CG(v), and let U , ψ be as in the preceding lemma. Since
V is faithful by hypothesis, U is a faithful (self-dual) FpH-submodule of
V here. Thus U and ψ are as assumed in Theorem 3.3d. It follows that
k(GV ) ≤ |V and that equality only holds when [V, H] ⊆ U . But in this
case V = U ⊕ U ′ as an FpH-module with H acting trivially on U ′. Thus
V itself then is self-dual for H.

Suppose p is odd and some element of H acts with determinant −1 on
V . Assume k(GV ) = |V |. Then V is self-dual for H, as seen above. So
Lemma 5.2a and Theorem 3.3d apply. We conclude that k(GV ) ≤ p+3

2p |V |,
and this is less than |V | when p ≥ 5. ¤

In [Robinson–Thompson, 1996] the conditions under which the as-
sumptions in Theorem 3.3d are fulfilled have been carefully studied. Let
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us describe this briefly. Assume (without loss of generality) that V is irre-
ducible (Proposition 3.1a), and faithful, and let χ̆ be the Brauer character of
G afforded by V . So, as in Sec. 2.7, χ̆ = TrKD(χ)|KD

(χ) for some ordinary
absolutely irreducible character χ of G, where KD is the decomposition
field of p in K = Q(e2πi/e) for e = exp (G). This χ is the Brauer charac-
ter of G afforded by some absolutely irreducible constituent of V , and it
is faithful as algebraically conjugate characters have the same kernel. Let
Γ = Gal(K|Q) and ΓD = Gal(K|KD). Let H = CG(v) for some v ∈ V .

If θ is an irreducible constituent of ResG
H(χ), then θ̆ = TrKD(θ)|KD

(θ) is
a Brauer character of H afforded by some irreducible constituent W = Wθ

of ResG
H(V ). By Lemma 4.1a, W is self-dual if and only if θ and θ̄ are

Galois conjugate over KD. (Use that Γ is abelian.) If τ ∈ Γ r ΓD, then
W τ = Wθτ affords TrKD(θ)|KD

(θτ ) and is an irreducible FpH-module not
isomorphic to W . But δW τ = δW (see Sec. 2.7). Moreover, W τ is self-dual
if and only if W is self-dual.

Now consider first all irreducible constituents θ of ResG
H(χ) for which

〈χ, θ〉H ≥ 2. Then ResG
H(V ) contains a submodule Uθ = Wθ ⊕ Wθ, and

δUθ
= δ2

Wθ
. Consider next those θ for which both θ and θτ are irreducible

constituents of ResG
H(χ) for some τ ∈ Γ r ΓD. Then ResG

H(V ) contains a
submodule Uθ,τ = Wθ ⊕W τ

θ , and again δUθ,τ
= δ2

Wθ
. Let U0 be the sum of

all these submodules Uθ, Uθ,τ of ResG
H(V ). Then there is a rational-valued

generalized (Knörr) character ψ0 of H such that ψ2
0 = δU0 .

If U0 is a faithful FpH-module, we are done. Otherwise we may search
for irreducible constituents θ of ResG

H(χ) for which θ and θ̄ are conjugate
over KD. In this case Uθ = Wθ is self-dual, and Theorems 4.1b, 4.6a and
4.6b apply. If we add all these modules to U0, the resulting FpH-module
U is a submodule of ResG

H(V ), and it can be faithful, or not.

Proposition 5.2c. Let V be a coprime, faithful, irreducible FpG-module
affording TrKD(χ)|KD

(χ) for some (absolutely) irreducible character χ of G.
Let H = CG(v) for some v in V . Suppose there are irreducible constituents
θi of ResG

H(χ) which are pairwise not algebraically conjugate and satisfy
one of the following: 〈θi, χ〉H ≥ 2, 〈θτ

i , χ〉H ≥ 1 for some τ ∈ Γ r ΓD,
or θ̄i is conjugate to θi over KD. If then

∑
i θi is a faithful character of

H, the assumptions in Theorem 3.3d are fulfilled (for appropriate U and ψ

determined by the θi).

Proof. Clear in view of the above discussion. ¤
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5.3. Search for Real Vectors

Let now V be an arbitrary coprime FG-module, not necessarily faithful. It
is obvious that if the direct summands of V admit (strongly) real vectors,
then so does the module itself. Our objective is to ensure that the search
for (strongly) real vectors is compatible with Clifford reduction.

Proposition 5.3a.. Let V = IndG
H(U) be induced from the FH-module U .

(i) If there is a (strongly) real vector in U for H, there is a (strongly)
real vector in V for G.

(ii) If there is a regular vector in V for N = CoreG(H), there is a real
vector in V for G.

Proof. Let {ti} be a right transversal to H in G (so that N =
⋂

i Hti).

(i) Let u ∈ U be real for H, and let v =
∑

i uti. Let W be a self-
dual FCH(u)-submodule of U with CH(W ) ∩ CH(u) = CH(U), and let
V0 =

⊕
i Wti. Then V0 is a subspace of V . Now CG(v)∩Hti centralizes uti

and so Wti is self-dual as an F [CG(v)∩Hti ]-module. Inducing up this self-
dual module to CG(v) yields a self-dual FCG(v)-module by Lemma 4.1a. By
Mackey decomposition (1.2d) V0 is a direct sum of such modules (taken over
a set of representatives for the orbits of CG(v) on the cosets Hti). It remains
to show that CG(V0)∩CG(v) = CG(V ). Now the centralizer in CG(v) of V0

preserves each coset Hti and so lies in N . It follows that CG(V0)∩CG(v) ⊆
N ∩ CH(W ) ∩ CH(u) = CN (U). Similarly CG(V0) ∩ CG(v) ⊆ CN (Uti) for
each i, and

⋂
i CN (Uti) = CG(V ). The statement for strongly real vectors

is treated similarly.

(ii) Let v =
∑

i uti be a regular vector in V for N . We may assume
that all vi = uti 6= 0. Let HtjCG(v) be the different double cosets of G

modulo (H, CG(v)). By Mackey decomposition once again

ResG
CG(v)(V ) =

⊕

j

IndCG(v)

CG(v)∩Htj
(Utj).

Let V0 =
⊕

j IndCG(v)

CG(v)∩Htj
(Fvj). Then V0 is a permutation module for

CG(v) over F , hence self-dual. Since each Fvj has a CG(v)∩Htj -invariant
complement in Utj (Maschke), and since module induction respects direct
sums, V0 is a direct summand of V . As before CG(V0)∩CG(v) ⊆ N . Hence
CG(V0) ∩ CG(v) ⊆ N ∩ CG(v) = CN (v) = CG(V ), as desired. ¤
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Proposition 5.3b. Suppose V = U⊗F W for some (coprime) FG-modules
U , W with 2 ≤ d = dim F U ≤ dim F W (say).

(i) If there are (strongly) real vectors in U and in W for G, there is a
(strongly) real vector in V for G. Similar statement for regular vectors.

(ii) Let {ui}, {wj} be F -bases of U and W , respectively. Let v =∑d
i=1 ui ⊗ wi, and let W0 be the subspace of W generated by w1, · · ·, wd.

Then V0 = U ⊗F W0 is a self-dual FCG(v)-module.

(iii) Assume that there is a (d−1)-dimensional subspace W̃ of W such
that CG(W̃ )/CG(W ) has a regular orbit on W . If G induces all scalar
multiplications on W , there is a real vector in V for G.

Proof. (i) We have CG(U)∩CG(W ) ⊆ CG(V ), the elements in CG(V ) being
those elements of G inducing on U and W scalar multiplications which are
inverse to each other. For if u ∈ U , w ∈ W are nonzero vectors, v = u⊗ w

and g ∈ CG(v), then v = vg = ug⊗wg implies that ug = cu and wg = c−1w

for some unique scalar c = cg(v) ∈ F ?. If u,w are regular vectors for G,
that is, CG(u) = CG(U) and CG(w) = CG(W ), then CG(v) = CG(V ).

Let u ∈ U and w ∈ W be real vectors for G. Let U0 and W0 be
self-dual submodules of U and W for CG(u) and CG(w), respectively, with
CG(u) ∩ CG(U0) = CG(U) and CG(w) ∩ CG(W0) = CG(W ). We may and
do assume that u ∈ U0 and w ∈ W0. (Otherwise replace U0 by U0 ⊕ Fu;
W0 by W0 ⊕ Fw.) Let v = u⊗ w and V0 = U0 ⊗F W0. If g ∈ CG(v) then,
for some c ∈ F ?, c−1g fixes u and cg fixes w and so g acts on V0. If g

centralizes V0, then g acts as scalar c on U0 and as the scalar c−1 on W0 (as
u ∈ U0 and v ∈ V0). Hence CG(v) ∩ CG(V0) = CG(V ). (For the statement
in parentheses take U0 = U and W0 = W .)

(ii) Let g ∈ CG(v). Let (aij) be the matrix of g on U with respect to
the given basis. Then

v = vg =
∑

i

uig ⊗ wig =
∑

i

(
∑

j

aijuj)⊗ wig =
∑

j

uj ⊗ (
∑

i

aijwi)g.

Thus wjg
−1 =

∑d
i=1 aijwi for each j = 1, · · ·, d. It follows that g acts on

W0 through the inverse transpose matrix (aij)−t. This shows that W0 and
V0 are FCG(v)-modules. Lifting the eigenvalues of g on U and on W0 to
characteristic 0, we see that if ϕ is the Brauer character of CG(v) on U ,
then ϕϕ̄ is that on U ⊗F W0. By Lemma 4.1a, V0 = U ⊗F W0 is a self-dual
FCG(v)-module.
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(iii) Choose notation such that W̃ is generated by w1, · · ·, wd−1. By
hypothesis we find w = wd in W outside W̃ such that CG(W0) = CG(W )
for the subspace W0 of W generated by W̃ and w. Define v and ϕ as before,
so that V0 = U ⊗F W0 is a self-dual FCG(v)-module affording ϕϕ̄ = |ϕ|2.
It remains to show that CG(v)/CG(V ) is faithful on V0. Let g ∈ CG(v)
act trivially on V0. Then |ϕ(g)|2 = d2 and so |ϕ(g)| = d. Thus g acts
on U by multiplication with some scalar c, whence on W0 via c−1. By
hypothesis there is g0 ∈ G acting as scalar multiplication with c−1 on W .
Then gg−1

0 ∈ CG(W0) = CG(W ) and so g = g0 on W and g ∈ CG(V ). ¤

Remark . Replacing G by G×Z for some suitable subgroup Z of Z(GL(W ))
(acting trivially on U) one can achieve that G induces all scalar transfoma-
tions on W . Every vector in V which is real for G× Z is real for G.

Proposition 5.3c. Suppose V = TenG
H(W ) for some (coprime) FH-

module W with dim F W ≥ 2. If there is a (strongly) real vector in W

for H, then there is also a (strongly) real vector in V for G.

Proof. We prove the lemma for the case of real vectors, the proof for
strongly real vectors being similar (and easier). Let {ti}n

i=1 be a right
transversal to H in G (with t1 = 1). For x ∈ G let i 7→ ix be the per-
mutation (on the indices) induced by x, as in Sec. 1.2. Let w0 ∈ W be
real for H, and let W0 be a subspace of W which is a self-dual FCH(w0)-
module satisfying CH(w0)∩CH(W0) = CH(W ). Without loss of generality
we assume that w0 6= 0 and, replacing W0 by W0 ⊕ Fw0 if necessary, that
w0 ∈ W0. Let v0 = w0t1 ⊗ · · · ⊗ w0tn and V0 = W0t1 ⊗F · · · ⊗F W0tn.
Then V0 is a subspace of V = Wt1 ⊗F · · · ⊗F Wtn. We assert that V0 is a
self-dual FCG(v0)-module satisfying CG(v0) ∩ CG(V0) = CG(V ).

Let x ∈ CG(v0). Then there are scalars ci ∈ F such that
∏n

i=1 ci = 1
and w0tix = ciw0tix for each i. Hence x acts on V0, and c−1

i tixt−1
ix ∈

CH(w0). Let Htj〈x〉 be the distinct double cosets of G modulo (H, 〈x〉).
Suppose the 〈x〉-orbit of Htj has size nj , and let the scalar bj be the product
of the scalars ci belonging to this orbit. Then

∑
j nj = n,

∏
j bj = 1,

tjx
nj t−1

j ∈ H and b−1
j tjx

nj t−1
j ∈ CH(w0) for each j. By formula (1.2e) the

Brauer character χ of G afforded by V takes the value

χ(x) =
∏

j

θ(tjxnj t−1
j ) =

∏

j

θ(b−1
j tjx

nj tj),
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where θ is the Brauer character of H afforded by W . Passing from H,W

to CH(w0), W0 (character θ0) we get the character χ0 of CG(v0) afforded
by V0. Thus χ0(x) =

∏
j θ0(b−1

j tjx
nj tj). Apply Lemma 4.1a.

Suppose x ∈ CG(v0) acts trivially on V0. Then i 7→ ix is be the identity
permutation, whence x ∈ CoreG(H). Also, for each i then c−1

i tixt−1
i acts

as a scalar on W0, and centralizes w0 ∈ W0. Hence c−1
i tixt−1

i ∈ CH(W0) ∩
CH(w0) = CH(W ). It follows that x acts on the ith component of V =
TenG

H(W ) as the scalar ci. Using that
∏

i ci = 1 we get that x ∈ CG(V ), as
desired. ¤

5.4. Clifford Reduction

Let V be a faithful, irreducible, coprime FG-module in characteristic p.
Assume there is no (strongly) real vector in V for G but that (G,V ) is a
minimal counterexample in the following sense:

• Whenever G0 is a central extension of a subgroup of G by a p′-group
and V0 is a F0G0-module for which char(F0) = p and dim F0V0 < dim F V ,
then there is a (strongly) real vector in V0 for G0. •

Theorem 5.4. Suppose (G,V ) is a minimal counterexample in the above
sense (for real or strongly real vectors). Then G has a unique minimal
nonabelian normal subgroup, say E, and this is either quasisimple or of
extraspecial type. Moreover E is absolutely irreducible on V , and all abelian
normal subgroups of G are cyclic and central.

Proof. We concentrate on real vectors, the argumentation for strongly real
vectors being similar. We only make use of results holding for both kinds
of vectors. It is clear that G is not abelian, because otherwise there were a
regular G-orbit on V by (3.4b), and d = dim F V ≥ 2 as G is faithful on V .
We proceed in several steps.

(1) V is an absolutely irreducible FG-module:

For otherwise embed F (properly) into the field F0 = EndFG(V ), and let
Γ = Gal(F0|F ). Then F0⊗F V =

⊕
σ∈Γ V σ

0 for some absolutely irreducible
F0G-module V0. Then V0 is faithful and dim F0V0 < d. Thus V0 contains a
real vector v0 for G, that is, ResG

CG(v0)(V0) has a faithful self-dual submodule
U , say. Let Γ0 be the stabilizer of U in Γ, and let W =

∑
σ∈Γ/Γ0

Uσ and
v =

∑
σ∈Γ/Γ0

uσ. V0 and V are isomorphic as G-sets (see Sec. 2.7). It
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follows that CG(v) = CG(v0) and, since field and group automorphisms
commute, that W is a self-dual FCG(v)-submodule of V . This contradicts
our choice of V .

(2) V is a primitive FG-module:

Otherwise V = IndG
H(U) for some proper subgroup H of G and some FH-

module U . Since dim F U < d there is a real vector in U for H by the choice
of V . But then by part (i) of Proposition 5.3a there is a real vector in V

for G, against our assumption.

(3) The irreducible constituents of ResG
N (V ) are absolutely irreducible

for all normal subgroups N of G:

Otherwise choose N maximal such that the assertion is false. Then N 6= G

by (1), and there is an irreducible submodule W of ResG
N (V ) such that

F0 = EndFN (W ) is a proper extension field of F . Let Γ = Gal(F0|F ),
and let F0 ⊗F W =

⊕
σ∈Γ Uσ for some absolutely irreducible F0N -module

U . By (2) W is G-invariant. Hence to every x ∈ G there exists a unique
σ = σx ∈ Γ such that (Ux)σ ∼= U , and the assignment x 7→ σx is a
homomorphism making F0 into a “G-field”. The kernel of this Galois action
of G is a normal subgroup N0 containing N . Let Γ0 be the image in Γ of
G (so that G/N0

∼= Γ0). Then W0 =
⊕

σ∈Γ0
Uσ is an irreducible FN0-

module with EndFN0(W0) ∼= F0. Hence N0 = N by the choice of N and so
G/N ∼= Γ. It follows that

F0 ⊗F V ∼= IndG
N (U)

and that ResG
N (V ) = W is irreducible. We have dim F0U < d. By the

choice of V there is a real vector in U for N , and thus there is a real vector
in F0 ⊗F V for G by part (i) of Proposition 5.3a. As in (1) we get a real
vector in V for G.

From (1), (2), (3) it follows that every abelian normal subgroup of G

is cyclic and central in G (acting by scalar multiplications). Without loss
of generality we may assume that G induces all scalar multiplications on
V . The generalized Fitting subgroup of G is nonabelian for otherwise G

were cyclic and so had a regular orbit on V .

(4) ResG
N (V ) is absolutely irreducible for all nonabelian normal sub-

groups N of G:

Otherwise, in view of (3), there is a nonabelian normal subgroup N of
G such that the restriction of V to N is a proper multiple eU of some
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absolutely irreducible FN -module U (e ≥ 2). This U is faithful. Let θ be
the Brauer character of N afforded by U , and let G(θ) be the extended
representation group of θ. By Theorem 1.9c there is an FG(θ)-module Û

extending U (in the usual sense), and there is an FG(θ)-module W such
that V ∼= Û ⊗F W (viewed as an FG(θ)-module). Thus dim F Û < d and
dim F W = e < d. By the choice of V there are real vectors for G(θ) in Û

and in W . But then by part (i) of Proposition 5.3b there is a real vector
in V for G.

(5) Conclusion:
Let E be a minimal nonabelian normal subgroup of G. By (4) ResG

E(V ) =
W is absolutely irreducible. In view of (2), (3) CG(E) = Z = Z(G) and
EZ is the generalized Fitting subgroup of G.

Suppose first that E is solvable. Then it is a q-group of “symplectic
type” for some prime q 6= p. Either q is odd and E = Ω1(EZ) is of exponent
q, or E is a 2-group of extraspecial type. Also, E is the unique minimal
nonabelian normal subgroup of G. This is clear when q is odd or q = 2
and |Z(E)| = 4 (E of type 0). Suppose E ∼= 21+2m

± for some m. Note that
G is irreducible on E/Z(E) as each proper G-invariant subgroup of E is
cyclic and central in G. Thus E cannot be dihedral of order 8, and E is
unique except possibly when |Z| is divisible by 4. But then E is the unique
minimal nonabelian G-invariant subgroup of E ◦ Z4.

Let E be nonsolvable. Then E is the central product of the distinct
G-conjugates of some quasisimple group E0, and W is the tensor prod-
uct of n = |G : NG(E0)| distinct G-conjugates of the unique absolutely
irreducible constituent W0 of ResE

E0
(W ). Assume E 6= E0 (n > 1). Let

θ, θ0 be the Brauer characters of N , N0 afforded by W , W0, respec-
tively, and let G(θ), G0(θ0) be the extended representation groups. So
G0(θ0) is a central extension of G0 by a cyclic p′-group. By Theorem 1.9c
there is an FG0(θ0)-module Ŵ0 extending W0 (in the usual sense). Since
dim F Ŵ0 = dim F W0 = (dim F W )

1
n = n

√
d < d, there is a real vector in Ŵ0

for G(θ0). Since ResG
N (V ) = W , we have G(θ) = G. By Theorem 1.9d there

is a finite extension Ĝ of G by an abelian p′-group, containing a subgroup
Ĝ0 mapping onto G0(θ), such that

V = TenĜ

Ĝ0
(Ŵ0)

(We may arrange matters such that the Clifford correspondent of θ is triv-
ial.) By Proposition 5.3c there is a real vector in V for G, a contradiction.
Hence E = E0 is quasisimple. ¤
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5.5. Reduced Pairs

The group G is said to be reduced if all abelian normal subgroups of G

are central and if G has a unique minimal nonabelian normal subgroup, E,
called the core of G, which is either of extraspecial type or is quasisimple.
If G is reduced with core E and V is a faithful, coprime FG-module, then
(G,V ) is a reduced pair (over F ) provided E is absolutely irreducible on
V . Then CG(E) = Z(G) acts as a group of scalar multiplications on V

and Z(G)E is the generalized Fitting subgroup of G. We say that the pair
(G,V ) is “large” if Z(G) ∼= F ?, that is, if G induces all scalar transforma-
tions on V .

The pair (G,V ) is nonreal reduced if it is reduced and if there is no
real vector in V for G. The minimal counterexample (G,V ) described
in Theorem 5.4 is a nonreal reduced pair. The objective of the next two
chapters is to give a complete classification of such pairs. In the quasisimple
case we even shall describe all reduced pairs (up to isomorphism) admitting
no regular vectors.

We say that two reduced pairs (G,V ) and (G̃, Ṽ ) over F are isomorphic
if there is a group isomorphism α : G → G̃ making Ṽ into an FG-module
isomorphic to V . In other words, identifying G = G̃ the Brauer characters
afforded by V and Ṽ are conjugate under an automorphism α of G.

It is immediate that this notion of “isomorphism” for reduced pairs
preserves (regular) orbits, (strongly) real vectors, and abelian vectors.

5.6. Counting Methods

The approach to the classification theorems generally is in two steps: First
we use counting arguments in order to reduce the discussion to “small”
groups, often Atlas groups. Then we proceed by a case-by-case analysis of
the remaining groups. Sometimes we use the computer, and then we refer
to [Groups, Algorithms, and Programming, 2006]. This will be briefly cited
as [GAP].

Let us describe the basic methods. Suppose (G, V ) is a reduced pair
over F = Fr, r being a power of the prime p not dividing |G|, and let
d = dim F V . Embed G into GL(V ), and let G0 = NGL(V )(E). Then
Z = Z(G0) = CG0(E) ∼= F ? is cyclic of order r− 1. Assume (G,V ) is large
(replacing G by GZ, if necessary). Let Ḡ0 = G0/Z and Ḡ = G/Z, which are



Real Vectors 75

subgroups of Aut(E) (as Z ∩ E = Z(E)). For each v ∈ V ], CG(v) ∩ Z = 1
and CG(v)Z/Z = CḠ(Zv). Hence there is a 1-1 correspondence between
the G-orbits on V ] and the Ḡ-orbits on the projective 1-space P1(V ), with
corresponding point stabilizers.

Define the bottom β(G) of G (and similarly for each finite group) as
the set of all noncentral subgroups of G of prime order. If there is v ∈ V

such that CG(v) 6= 1, the stabilizer contains at least one subgroup in β(G)
(Sylow). Hence if

⋃
γ∈β(G) CV (γ) 6= V , there is a regular vector in V for

G. Usually we show that
∑

γ∈β(G) |CV (γ)| < |V |, ignoring zero spaces or
possible intersections. But sometimes this will be improved using common
diagonalization, or arguing “projectively”, because if

(5.6a)
∑

γ̄∈β(Ḡ) |CP1(V )(γ̄)| < |P1(V )|,

then there is a regular G-orbit on V as well. Arguing in this manner,
for any given γ̄ ∈ β(Ḡ), choose a subgroup γ of G of smallest possible
order mapping onto γ̄. Then γ is a cyclic group of prime power order. If
G0 = X ◦ Z is a central product over Z(E), clearly we may pick γ as a
subgroup of X, and then γ either has prime order or γ ∩ Z(E) 6= 1.

Let β∗(G) denote the set of all noncentral subgroups of G which are
cyclic of order 4 or of odd prime order. Then

(5.6b)
⋃

γ∈β∗(G) CV (γ) 6= V

implies that there is some v ∈ V such that CG(v) is an elementary abelian
2-group. Then v is a strongly real vector for G (and CG(v) has a regular
orbit on V by Eq. (3.4b)). For a set ω of primes we denote by β∗ω(G)
the set of ω-subgroups in β∗(G); define βω(G) similarly. If for instance⋃

γ∈βω(G) CV (γ) 6= V , there is v ∈ V such that CG(v) is a ω′-group.

Let g ∈ G0. We define the fixed point ratio by

(5.6c) f(g) = f(g, V ) = dim F CV (g)/dim F V .

Of course f(g) = f(〈g〉) depends only on (the generators of) the group
〈g〉. For z ∈ Z = F ? the fixed space CV (z−1g) = Vz(g) is the eigenspace
of g on V to the eigenvalue z, or it is zero. (It is for instance zero if the
order o(z) of z does not divide o(g).) We have

⊕
z∈Z Vz(g) ⊆ V , with

equality if and only if g is a p′-element and F is large enough (containing
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all eigenvalues of g). Note that g is faithful on V . There are at most
d = dim F V distinct eigenspaces of g on V . Hence if f(zg) ≤ f for all
z ∈ Z then |⋃z∈Z CV (zg)| ≤ d · rdf .

The following estimate will be applied very often. Let g ∈ G0. Suppose
again that f(zg) ≤ f for all z ∈ Z, and assume that 1

2 ≤ f < 1. Then if
zi ∈ Z are the distinct eigenvalues of g on V ,

(5.6d)
∑

i |CV (z−1
i g)| ≤ rbdfc + rd−bdfc ≤ 2rdf .

In order to verify this, without loss of generality we may assume that g is
a p′-element and F is large enough, so g has the (distinct) eigenvalues zi

on V with the multiplicities di ≥ 1, 1 ≤ i ≤ n, such that
∑n

i=1 di = d.
Arrange these eigenvalues such that d1 ≥ d2 ≥ · · · ≥ dn. By assumption
d > df ≥ d/2 and df ≥ bdfc ≥ d1. Suppose d′j is another such decreasing

sequence of positive integers for j = 1, · · ·, n′, satisfying
∑n′

j=1 d′j = d and

df ≥ d′1. Then
∑n

i=1 rdi ≤ ∑n′

j=1 rd′j if and only if (d1, d2, · · ·) ≤ (d′1, d
′
2, · · ·)

in lexicographical ordering. Consequently
∑n

i=1 rdi ≤ rbdfc+rd−bdfc, which
is at most 2rbdfc if f > 1

2 , and at most 2rdf if f = 1
2 .

Notation. Suppose g has on V the eigenvalues zi with multiplicities di,
1 ≤ i ≤ n. Arrange these such that d1 ≥ d2 ≥ · · · ≥ dn. Then we indicate
the spectral pattern by writing

gV = [z(d1)
1 , · · ·, z(dn)

n ] = [d1, · · ·, dn],

the latter (weak form) in the case when only the dimensions of the eigen-
spaces are of interest. Thus

∑n
i=1 di ≤ d = dim F V , and we have equality

if and only if g is a p′-element of order dividing r − 1. It is obvious but
important in applications that each element of G0 in the conjugacy class
of g has the same spectral pattern of the first kind, and each element in
the coset Zg has the same weak pattern. In particular, |CP1(V )(Zg)| =

1
r−1

∑n
i=1(r

di − 1).

Now we turn to character theory. Let χ be the Brauer character of G0

afforded by V , and assume we know χ (to some extent). Let g ∈ G0 be a
p′-element of order s, say. Then V is a projective F 〈g〉-module, ResG0

〈g〉(χ)
an ordinary character and so (Sec. 1.3)

(5.6e) dim F CV (g) = 〈χ, 1〉〈g〉 = 1
s

∑s
i=1 χ(gi).
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Hence the fixed point ratio f(g) is just the average over the ratios χ(gi)/χ(1)
for i = 1, · · ·, s. Recall from Sec. 1.5 that the χ(gi) for the generators gi

of 〈g〉 are the algebraic conjugates of χ(g). If for instance s is a prime,
therefore the strong pattern gV is determined by χ(g) since the sth roots of
unity 6= 1 are linear independent over Z (and their sum equals −1). We can
compute the spectral pattern from the character table (in terms of F = Fr).

5.7. Two Examples

To illustrate the counting methods we discuss in some detail two reduced
pairs, one of extraspecial type and one of quasisimple type.

Example 5.7a. Let (G,V ) be a large reduced pair over F = Fr with core
E ∼= 51+2

+ . Since E is faithful and absolutely irreducible on V , we have
char(F ) = p 6= 5, d = dim F V = 5 and 5 | r − 1. Hence r ≥ 11. Embed G

into GL(V ) = GL5(r), and consider G0 = NGL(V )(E). From Theorem 4.3c
and Proposition 4.3a it follows that

G0 = X ◦ Z

is a central product over Z(E), where X is the standard holomorph of E

and where Z = Z(G0) ∼= F ?. We also know that X = E : S is a semidirect
product where the complement S ∼= Sp2(5) is determined up to conjugacy
(under E). We are going to show that there is a regular vector in V for G.

By definition of a reduced pair G is irreducible on U = E/Z(E) =
EZ/Z. If p = 2 or 3, then G/EZ has order 3 or is a quaternion group of
order 8, respectively, and it is easy to show that there is a regular G-orbit on
V . So let p > 5. Then G0 is a p′-group, and it is enough to consider G = G0.
(Usually we are treating this “worst” case ignoring whether G0 is a p′-group
or not, counting scalar products with the 1-character “symbolically” as
dimensions of fixed spaces.) Let χ be the Brauer character of X (and of G)
afforded by V . This χ is one of four faithful irreducible characters of degree
5 of the holomorph X which, however, are conjugate under automorphisms
of X by Theorem 4.3c, so lead to isomorphic reduced pairs. Therefore we
shall sometimes speak of “the” character associated to X. By Theorem
4.5a, ResX

S (χ) = ξ is “the” generic Weil character of S. In the terminology
of the [Atlas, p. 2], ξ = χ2 + χ7 or χ3 + χ6.

We may identify X̄ = X/Z(E) with G/Z. Each prime order element
Z(E)x of X̄ is represented either by a (noncentral) element of E (of order
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5) or lies in a coset Ex for some element x ∈ S of prime order. There
are (52 − 1)/4 = 6 subgroups of order 5 in U = E/Z(E), their generators
having weak spectral pattern [1(5)] as χ vanishes on noncentral elements
of E. Thus at most 6

r−1 · 5(r − 1) = 30 points in P1(V ), or 6(5r) = 30r

vectors in V , are fixed by these subgroups. There are two conjugacy classes
5A0B0 of elements in S of order 5, and if y belongs to 5A0, then ξ(y) =

√
5

(and y−1 belongs to 5B0 with ξ(y−1) = −√5). There are 1
2 |5A0B0| = 6

(conjugate) subgroups in S of order 5. By Theorem 4.4, y is good for U

and |E : CE(y)| = 5. We compute that dim F CV (y) = 1 and

yV = [ε(2)
1 , ε

(2)
2 , 1(1)] = [2, 2, 1]

for some primitive 5th roots of unity ε1 6= ε2 which are inverse to each other
(5 | r− 1 and ε1 + ε2 is a square root of 5 in F ). By Theorem 4.4 the coset
Ey contains just |U : CU (y)| = 5 good cosets of Z(E) (which are conjugate
under E). So there are 52−5 = 20 bad cosets of Z(E) in Ey. If an element
y0 in Ey is bad, then χ(y0) = 0 and so o(y0) = 5 and (y0)V = [1(5)] (weak
pattern). We therefore have

∑

γ∈β5(G)

|CV (γ)| ≤ 30r + 6
(
5(2r2 + r) + 20(5r)

)
.

Let x̄ ∈ X̄ have order 3, and let x ∈ S be such that x̄ is contained in
Ex. Then x belongs to the unique conjugacy class 3A0 of elements of order
3 in S. It determines the coset Ex in X, which in turn determines the coset
ZEx in G. There are |S : CS(x)| = |3A0| = 2·10 cosets of E in X conjugate
to Ex under S. By Theorem 4.4 the coset Z(E)x is good for U , and the
good cosets lying in Ex are conjugate under E (and so have the same weak
spectral pattern). From χ(x) = −1 we deduce that |CU (x)| = χ(x)2 = 1,
hence |U : CU (x)| = |U | = 52, and that

xV = [z(2)
1 , z

(2)
2 , 1] = [2, 2, 1]

if 3 | r − 1, where z1 6= z2 are primitive 3rd roots of unity, and xV = [1]
otherwise (dim F CV (x) = 1). It follows that in Ex there are just 52−5 = 20
bad cosets Z(E)x′. Since χ(x′) = 0, the bad element x′ cannot have (prime)
order 3. But each coset of Z(E) in X of order 3 can be represented by an
element of order 3. Hence we may ignore the bad cosets. We conclude that

∑

γ∈β3(G)

|CV (γ)| ≤ 10 · 52(2r2 + r)
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if 3 | r − 1, and we may replace 2r2 + r by r otherwise.

Let j ∈ S represent the unique (central) involution in S (belonging to
1A1). We have |CU (j)| = χ(1)2 = (−1)2 = 1 and so |U : CU (j)| = 52.
Arguing as before we get

∑
γ∈β2(G) |CV (γ)| ≤ 52(r3 + r2). Consequently∑

γ∈β(G) |CV (γ)| ≤ 25r3 + 585r2 + 940r. This is less than |V | = r5 for
r ≥ 10. Hence there is a regular G-orbit.

Example 5.7b. Suppose (G,V ) is a large reduced pair over F = Fr, with
core E = 2.A6, and d = dim F V = 4. Then p ≥ 7 by coprimeness, and V

affords, as an FE-module, one of the characters χ8, χ9 as a Brauer character
(Atlas, p. 5). These characters are the Weil characters ξ1, ξ

¦
1 of Sp2(9) in

the terminology of Theorem 4.5a. So they are rational-valued and fuse in
2.A6.22. But we are in an exceptional situation: The characters extend to
2.A6.21, requiring

√±3. More precisely, χ8 extends to 2+S6 requiring
√

3
and to 2−S6 requiring

√−3, and for χ9 it is vice versa. Recall that 2+S6

is that covering group of S6 in which transpositions lift to involutions (and
for which the characters are given in the Atlas).

In the following we assume that χ = χ9 on E, for convenience. Ex-
changing the conjugacy classes 3A, 3B leads from one character to the other.
Similarly, exchanging the conjugacy classes 6A, 6B leads from one isoclinic
variant of 2.A6.21 to the other. So the arguments will carry over.

Embed G into GL(V ), and let G0 = NGL(V )(E). Then Z = Z(G) =
CG0(E) ∼= F ?. In the counting argument we assume (implicitly) that F

contains a square root of 3 or −3 (or both, which happens when 4 | r− 1).
Let us consider the (worse) case that

√−3 ∈ F and that

G = G0 = X ◦ Z

where X = 2+S6. We ask whether there is a regular G-orbit on V , or a
real vector in V for G, at least.

Let x ∈ E be an element of order 3 belonging to 3A0 (mapping onto
3-cycles in S6). Then χ(x) = 1 and xV = [1(2), z(2)] for some primitive
3rd root of unity z (viewed as an element of Z). In particular W = CV (x)
has dimension 2. If an element in E fixes a nonzero vector in V , then
it is conjugate to x [Atlas]. Let y ∈ CE(x) be an element of order 3 in
the class 3B0 (mapping onto double 3-cycles). Then χ(y) = −2 and so
yV = [z(2), z̄(2)]. Of course W is stable under y, and we have

yW = [z(1), z̄(1)].
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In order to see this, we have to exclude that y acts as a scalar multiplication
on W . In that case, xy and xy2 would have nontrivial fixed points on V by
common diagonalization. But xy and xy2 do belong to the class 3B0. We
have |3A0| = |3B0| = 40. Since these are the unique conjugacy classes of
order 3 in E and in G, we have

∑
γ∈β3(G) |CV (γ)| ≤ 40

2 (r2 +2r)+ 40
2 (2r2) =

60r2 + 40r.

On the two conjugacy classes 5A0B0 of order 5 in E the character
χ = χ9 takes the value −1 and so the weak pattern is [1, 1, 1, 1] if 5 | r − 1
and empty otherwise. From |5A0| = |5B0| = 72 we see that there are
just 1

2 |5A05B0| = 72/((5 − 1)/2) = 36 subgroups of order 5 in E. Hence∑
γ∈β5(G) |CV (γ)| ≤ 36(4r).

Let g ∈ X be an element of order 6 in the class 6A0 such that g2 = x.
Then χ(g) = ±√−3, and j = g3 is an involution in the class 2B0 (mapping
onto transpositions), which satisfies χ(j) = 0. If an element in X r E

fixes a nonzero vector in V , then it is conjugate to j [Atlas]. Hence jV =
[1(2),−1(2)] and

gW = jW = [−1(2)],

because g = jx−1 = x−1j has no fixed points on V ]. The conjugacy classes
2A and 2C in S6 lift to classes of elements of order 4 in X, and these have
to be considered when 4 | r − 1. Using that χ vanishes also on 2A0 and
2C0, we then get the contribution

(|2B|+ |2A|+ |2C|)(2r2) = (15 + 45 + 15)(2r2) = 150r2.

There is a regular G-orbit on V provided (60r2 + 40r) + 144r + 150r2 <

r4 = |V |. This is true when r ≥ 16. Hence r = 7, 11 or 13. We cannot
have r = 11 since 3 | r − 1; we can exclude r = 11 also when assuming
that

√
3 ∈ F using that then 4 - r − 1, replacing the summand 150r2 by

30r2. One can also show that there is a regular G-orbit on V when r = 13.
Either one argues as in the r = 7 case below (where there is no regular
orbit, however), using that

dim F W = dim F CV (x) = 〈χ, 1〉〈x〉

is independent of F , or applying the method to be developed in Proposition
7.3c below.

So let r = 7 in what follows. For each nonzero vector v ∈ V we have
CE(v) = 〈x〉 if v ∈ W = CV (x) and CE(v) = 1 otherwise (see above). So
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we have E-orbits on V ] of size |E : 〈x〉| = 240 and regular orbits. Let ∆
be an E-orbit of size 240. Then ∆∩W 6= ∅ and |∆∩W | = |NE(W ) : 〈x〉|.
Since NE(W ) ⊇ NE(〈x〉) and |NE(〈x〉) : 〈x〉| = 12, we can infer that
NE(W ) = NE(〈x〉). Moreover, from |W ]| = 72 − 1 = 48 we deduce that
there are exactly four E-orbits ∆i of size 240, each satisfying |∆i∩W | = 12
(0 ≤ i ≤ 3). From |V ]| = 74 − 1 = 2.400 we conclude that there are just
two regular E-orbits Ω1, Ω2.

Write −j for the product of j with the generator of Z(X). We know
that −j centralizes W and acts as −1 on V/W . Hence each ∆i remains
an X-orbit, with point stabilizer 〈x,−j〉 ∼= Z6. The element x(−j) belongs
to the class 6A0 in X and is conjugate to g. Since χ(g) = ±√−3 and g is
diagonal on V , from Lemma 4.1c it follows that no vector in the ∆i is real
for X (as 6 does not divide 7 + 1 = 8). On the other hand, Ω1, Ω2 fuse in
X, because −j does not fix any vector in Ω1 or Ω2 and X = 〈E,−j〉. So
Ω = Ω1 ∪ Ω2 is a regular orbit for X.

From yW = [z, z̄] we see that there are just 6 + 6 = 12 (nonzero)
eigenvectors of y in W . The group 〈Z(X), y〉 ∼= Z6 acts semiregularly on
W ], and if ∆i∩W contains an eigenvector of y for some i, all six eigenvectors
of y to the given eigenvalue belong to ∆i ∩ U . Hence there exists ∆i such
that ∆i ∩ U does not contain an eigenvector of y.

Consider the action of 〈yz〉 on V ]. Clearly Ω1, Ω2 and Ω are fixed by
yz. Hence there is vj ∈ Ωj such that CEZ(vj) = 〈yz〉. From Lemma 4.1c it
follows that no vector in Ω is real for EZ, hence not real for G = XZ. Note
again that yz acts diagonally on V and that 3 does not divide 7 + 1. Also,
〈yz〉 acts on the E-orbits ∆i, and such a ∆i remains an EZ-orbit if and
only if there is wi ∈ ∆i ∩ W such that CEZ(wi) = 〈x, yz〉 (by conjugacy
of y, y−1 in E). From the observation in the preceding paragraph we infer
that just one orbit, say ∆0, is preserved by 〈yz〉, and the other ones are
fused. So ∆ = ∆1 ∪∆2 ∪∆3 is an EZ-orbit with point stabilizer 〈x〉, and
∆0 has the stabilizer 〈x, yz〉. The vectors in ∆ are real for EZ, those in ∆0

are not.

We conclude that Ω, ∆ and ∆0 are the distinct G-orbits on V ], with
point stabilizers conjugate to 〈yz〉 ∼= Z3, 〈x(−j)〉 ∼= Z6 and 〈x(−j), yz〉 ∼=
Z3 × S3 (= Z3wrS2), respectively. No vector in V is real for G.



Chapter 6

Reduced Pairs of Extraspecial Type

In this chapter we classify the nonreal reduced pairs of extraspecial type,
up to isomorphism. In terms of their cores we have just three types (Q8),
(25
−) and (33

+), the pairs being defined over certain prime fields (of order 3,
5, 7 or 13).

6.1. Nonreal Reduced Pairs

Throughout (G, V ) is a reduced pair over a finite field F = Fr of charac-
teristic p where the core E ∼= q1+2m

±,0 is of extraspecial type (Sec. 5.5). So
either E is an extraspecial q-group of odd exponent q 6= p and order q1+2m,
or q = 2 6= p and E is extraspecial of + or − type and order 21+2m, or E is
the central product of such a 2-group with a cyclic group of order 4 (type
0). By the character theory of E we have d = dim F V = qm. Furthermore
|Z(E)| is a divisor of r − 1. Without loss of generality we assume that
E ∼= 21+2m

0 when q = 2 and F contains the 4th roots of unity (4 | r − 1).

We now give a detailed description of certain nonreal reduced pairs,
including orbit structures and point stabilizers (which will be of relevance).
With one exception the pairs are large. The target will be to show that
there are no further nonreal reduced pairs of extraspecial type.

Type (Q8) : Let r = p be one of the primes 5, 7, 11 or 23. In Sec. 3.2 we
have seen that the quaternion group E ∼= Q8 embeds into GL2(p) such that
G = NGL2(p)(E) acts transitively on the nonzero vectors in V = F(2)

p . This
G is a p′-group. The stabilizer in G of any nonzero vector is cyclic of order
4, 3, 2 or 1, correspondingly. Complete reducibility and Lemma 4.1c imply
that (G,V ) is a nonreal reduced pair when p = 5 or p = 7.

For p = 5 this G is the standard holomorph of 21+2
0

∼= E ◦ Z4 (and a
5-complement in GL2(5)). For p = 7 we have G = X ◦ Z6 = X ×Z3 where
X ∼= 2−S4 is the standard holomorph of E ∼= 21+2

− with value field Q(
√

2)
(since 2 is a square mod 7). This G has a unique subgroup G1

∼= Sp2(3)×Z3

of index 2, which evidently gives rise to a further nonreal reduced pair
(G1, V ).

82



Reduced Pairs of Extraspecial Type 83

Let r = p = 13. Embed E into GL2(13). The normalizer G =
NGL2(13)(E) has two orbits on nonzero vectors in V = F(2)

13 , with cyclic
stabilizers of order 4 and 3. Again (G,V ) is a nonreal reduced pair.

Type (25
−) : Let GV be the largest Bucht group studied in Sec. 3.2.

Here G is faithful on V and transitive on V ], any point stabilizer H being
cyclic order 8. Also, F = F3, dim F V = 4, and G contains E ∼= 21+4

−
as a normal subgroup, which is absolutely irreducible on V (G ∼= E.(Z5 :
Z4)). Complete reducibility and Lemma 4.1c imply that (G,V ) is a nonreal
reduced pair (as 8 | 32 − 1 but 8 - 31 + 1).

Let r = p = 7. Embed E ∼= 21+4
− into GL4(7). Then G = NGL4(7)(E)

is isomorphic to X ◦Z6 where X is the standard holomorph of E with value
field Q(

√
2). Here G is a 7 ′-group and has two orbits on nonzero vectors

in V = F(4)
7 , with point stabilizers Z6 resp. SL2(3). No vector in V is real

for G (cf. Prop. 6.6b below). Similar statement for the unique subgroup
G1 = Y ◦ Z6 of index 2 in G, where Y/E ∼= Ω−4 (2).

Type (33
+) : Let X = E : Sp2(3) be the standard holomorph of E = 31+2

+ ,
and let χ be one of the faithful irreducible characters of X of degree 3,
which by Theorem 4.3c are conjugate under automorphisms of X. In view
of the discussions in Theorem 4.5a there is, up to conjugacy in X, a unique
complement S ∼= Sp2(3) to E in X such that ResX

S (χ) = 1S + ξ2 contains
the 1-character. Here ξ2 is an irreducible Weil character of degree 2, with
Q(ξ2) = Q(

√−3).

Let r = p = 7 or 13. Let V be a (coprime) FX-module affording χ

as a Brauer character. Embed E and X into GL(V ) through χ, and let
G = NGL(V )(E) = X ◦ Zr−1 (Proposition 4.3a). For r = 7 there are three
G-orbits on V ] with point stabilizers S.1, Z3.2 = Z6 and Z

(2)
3 .2 = Z

(2)
3 ×Z2

(where A.B indicates that A is the stabilizer taken in X). It follows that
both (X, V ) and (G,V ) are nonreal reduced pairs. For r = 13 we have
six G-orbits on V ], with point stabilizers S.1 (four X-orbits fusing in G),
Z3.2 = Z6 (3 times), Z

(2)
3 .2 = Z

(2)
3 × Z2 and Z1.4 = Z4 (one regular

X-orbit). Just the pair (G,V ) is nonreal reduced in this r = 13 case.

Theorem 6.1. Up to isomorphism there are just 9 nonreal reduced pairs
of extraspecial type, and these are described above. All other reduced pairs
(G,V ) of extraspecial type admit a strongly real vector v ∈ V for G such
that CG(v) has a regular orbit on V .

This will be established in the course of this chapter.
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6.2. Fixed Point Ratios

Let (G, V ) be reduced of extraspecial type, as above. We embed the core E,
and G, into GL(V ) and let G0 = NGL(V )(E). If r is odd and 4 - r − 1, the
field F contains a square root either of 2 or of −2. Hence from Theorems
4.3c, 4.3d and 4.3e we deduce, in view of Proposition 4.3a, that

(6.2a) G0 = X ◦ Z

is a unique central product over Z(E) where X is that standard holomorph
of E fitting into GL(V ). (This refers only to E ∼= 21+2m

± , where we have
two standard holomorphs determined by the value field Q(

√
2) or Q(

√−2).)
There is an ordinary irreducible character χ of G0 which agrees on p′-
elements with the Brauer character of G0 afforded by V . This is an obvious
extension to the central product of “the” character associated to X, that
is, of one of the faithful irreducible characters of X of degree qm (conjugate
under automorphisms of X and so leading to isomorphic reduced pairs).

(6.2b) U = E/Z(E) = EZ/Z

carries in the natural way the structure of a symplectic resp. orthogonal
FqG0-module. In fact, X̄ = X/E = G0/ZE = Ḡ0 may be identified with
Sp2m(q) for odd q and for q = 2 and r ≡ 1 (mod 4), and with O±2m(2)
otherwise (the sign depending on E). By definition Ḡ = GZ/ZE acts irre-
ducibly on U , because E is the unique minimal nonabelian normal subgroup
of G and all abelian normal subgroups are cyclic and central (contained in
Z(G) = Z ∩ G). The concept of “good” elements for U applies to all
(noncentral) elements of G0; in particular (4.4) applies.

Theorem 6.2c. Suppose g ∈ G0 is a noncentral p′-element of order s

where s is a prime or s = 4.

(i) Suppose q | s. Then dim F CV (g) ≤ 2qm−1 when s = q is odd, and
dim F CV (g) ≤ 1

s (2m + (s − 1) · 2m−1) otherwise. If g is not good for U ,
then even dim F CV (g) ≤ qm−1.

(ii) Suppose q - s. Then dim F CV (g) ≤ 1
s (qm + (s − 1)qm−1). If s is

odd and s ≥ q + 1, then even dim F CV (g) ≤ 1
s (qm + (s− 1)qm−2).

Proof. Of course we use that dim F CV (g) = 〈χ, 1〉〈g〉 by Eq. (5.6e).
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(i) If g is not good for U , then χ(g) = 0 by Theorem 4.4. Then χ

vanishes on each generator of 〈g〉 and so 〈χ, 1〉〈g〉 = qm

s = qm−1 when s = q

is a prime. For s = 4 (and q = 2) observe that χ(g2) = −qm if g2 ∈ Z, and
otherwise χ(g2) is an integer of absolute value at most qm−1 by Theorem
4.4. The result follows.

Suppose g is good for U . Then |χ(g)|2 = |CU (g)| by Theorem 4.4. Since
g is not central in G0, |χ(g)|2 = qn for some n ≤ 2m− 1. Consider first the
case q = 2. If s = 2, then χ(g) is an integer, hence n is even and χ(g) =
±2n/2. It follows that 〈χ, 1〉〈g〉 = 1

2 (2m ± 2n/2) ≤ 1
2 (2m + 2m−1). Suppose

next that g has order s = 4. Then χ(g) ∈ Z[i] (i2 = −1). If n is odd, there
are signs εi such that χ(g) = 2

n−1
2 (ε1+iε2). Then χ(g−1) = 2

n−1
2 (ε1−iε2).

Either the integer χ(g2) = 0 or = −2
n−1

2 if g2 ∈ E, and |χ(g2)| ≤ 22m−1

otherwise (Theorem 4.4). It follows that 〈χ, 1〉〈g〉 ≤ 1
4 (2m + 3 · 2m−1), as

desired. If n is even, then n
2 ≤ m− 1 and χ(g2) ≤ 2m−1, and we obtain the

same estimate.

Suppose that s = q ≥ 3. Then χ(g) ∈ Z[εq] (εq = e2πi/q). Let q be
the unique prime ideal in Z[εq] above q (totally ramified). Since q = q̄

and χ(g)χ(g) = |χ(g)|2 = qn, and since Q
(√

(−1
q )q

)
is the (unique)

quadratic number field contained in Q(εq), we infer that χ(g)/
(
(−1

q )q
)n

2

is a q-adic integer. It follows that this is even an integer in Z[εq]. From
|χ(g)/

(
(−1

q )q
)n

2 | = 1, and using that the conjugates over Q have absolute

value 1 likewise, we obtain that χ(g)/
(
(−1

q )q
)n

2 = ε is a root of unity (with
ε2q = 1). If n = 2a is an even integer, then χ(g) = ±εqa, and from a ≤ m−1
it follows that 〈χ, 1〉〈g〉 ≤ 1

s (qm + (s − 1)qm−1), which is not greater than

2qm−1. So let n = 2a + 1 be odd. Using that
√(−1

q

)
q =

∑q−1
k=1

(
k
q

)
εk

q

(Gauss) we obtain that

χ(g) = ±εqa

√(−1
q

)
q = ±εqa

q−1∑

k=1

(k

q

)
εk
q .

Adding or subtracting εqa
∑q−1

k=1 εk
q = 0 we see that the maximum possible

multiplicity of an eigenvalue of g on V is 2qa. Hence dim F CV (g) ≤ 2qa ≤
2q

n−1
2 ≤ 2qm−1.

(ii) In this coprime case, g is good for U and |χ(g)|2 = |CU (g)| (The-
orem 4.4). Also, E0 = CE(g) is a proper extraspecial subgroup of E, or
of extraspecial type (mapping onto CU (g)). Let |E0/Z(E0)| = q2n, and
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let θ be the unique irreducible constituent of ResG
E0

(χ). Then θ(1) = qn

(n ≤ m− 1). By Theorem 1.6c there is a sign ± and a linear character µ of
〈g〉 such that χ(y) = ±µ(y)θ(1) for all generators y of 〈g〉. Moreover, the
sign is such that

qm−n = 〈χ, θ〉E0 ≡ ±1 (mod s)

when s is an odd prime. In this case

〈χ, 1〉〈g〉 ≤
1
s
(qm + (s− 1)θ(1)),

and the result follows. For s = 4 use again that χ(g2) = −qm when g2 ∈ Z,
and apply Theorem 4.4 otherwise.

Assume in addition that s is odd and s ≥ q + 1. If θ(1) ≤ qm−2, the
result follows. So let θ(1) = qm−1 (n = m − 1). Then the sign must be
negative, s = q + 1, and χ(y) = −µ(y)θ(1) for all generators y. Indeed
s = 3 and q = 2. If µ is the trivial character of 〈g〉, even 〈χ, 1〉〈g〉 =
1
s (qm − (s − 1)qm−1) = 0. If µ is not trivial, 〈χ, 1〉〈g〉 = 1

3 (2m + 2m−1) as
the sum over the 3rd roots of unity is zero. ¤

Remark . The bounds given in Theorem 6.2c apply also to the eigenspaces of
g on V , replacing g by zg for the elements z ∈ Z of order dividing s = o(g).
For all γ ∈ β∗(G) (Sec. 5.5) we have the following “generic” upper bounds
for the fixed point ratios (depending only on q): f(γ) ≤ 1

3 (1 + 2
q ) when

q > 3, f(γ) ≤ 2
3 when q = 3, and f(γ) ≤ 5

8 for q = 2. Observe that
2
q ≤ 1

4 (1 + 3
q ) ≤ 1

3 (1 + 2
q ) for q > 3. If g is an involution, then f(g) ≤ q+1

2q .

6.3. Point Stabilizers of Exponent 2

Recall that Ḡ is an irreducible p′-subgroup of Ḡ0 = Sp2m(q) when q is odd
or q = 2 and 4 | r − 1, and of Ḡ0 = O±2m(2) otherwise. For small r this
usually implies that Ḡ is a proper subgroup of Ḡ0. So we require some
information on the maximal subgroups of these classical groups, but only
for m ≤ 7 and q ≤ 3. The reader is referred to [Aschbacher, 1984] and
[Liebeck, 1985] for thorough studies of this topic (see also [Kleidman and
Liebeck, 1990]). We quote from [Dickson, 1901, pp. 94, 206]:

|Sp2m(q)| = qm2
(q2m − 1)(q2(m−1) − 1) · · · (q2 − 1),

|O±2m(q)| = 2(qm ∓ 1)qm(m−1)(q2(m−1) − 1) · · · (q2 − 1).

This yields the estimates |Sp2m(q)| < q2m2+m and |O±
2m(q)| < q2m2−m+1.
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Lemma 6.3a. Assume Ḡ 6= Ḡ0. Then |Ḡ| < q4m+4 or Ḡ is isomorphic to a
subgroup of Ḡ0 from a certain distinguished finite list, the proper irreducible
subgroups of Ḡ0 of maximal order being known.

This refers to Theorems 4.2, 5.2, 5.4 and 5.5 in [Liebeck, 1985]. The cor-
responding lists of (nonparabolic) maximal irreducible subgroups can be
found in Tables 3.5.C, 3.5.E and 3.5.F in [Kleidman–Liebeck, 1990]. For
example, if Ḡ0

∼= Sp2m(2) the list consists of Sp2k(2)wr S` where m = k`

with ` > 1, Sp2k(2l).Z` where m = k` with ` prime, O±2m(2), and of S2m+2

when m is even, and O−2m(2) is “the” proper irreducible subgroup of maxi-
mal order (m ≥ 3).

Theorem 6.3b. There exist v ∈ V such that CG(v) is an elementary
abelian 2-group except possibly when q = 2 and m ≤ 5, or when q = 3 and
m ≤ 3.

Proof. Suppose V =
⋃

γ∈β∗(G) CV (γ). In view of the estimate (5.6b) it
suffices to show that then necessarily q = 2 and m ≤ 5, or q = 3 and m ≤ 3.
Our estimates will be rather crude, at first. Of course, it suffices to consider
only those γ where the CV (γ) are different. We use that each γ ∈ β∗(G)
has at least two generators.

Let first q > 3. Then f(γ) ≤ 1
3 (1 + 2

q ) by Theorem 6.2c. Using that
there are at most dim F V = qm distinct eigenvalues on V for each g ∈ G

we get 2|V | = 2rqm ≤ r(qm+2qm−1)/3qmq2m|Ḡ|. Since |Ḡ| = |GZ/EZ| ≤
|Sp2m(q)| < q2m2+m, this yields that

r ≤
(q3m

2
|Ḡ|

) 3
2(qm−qm−1)

<
(qm2+2m

√
2

) 3
qm−qm−1

.

The function m 7→ m2+2m
qm−1 is decreasing for m ≥ 1 (and q > 2). So it

suffices to consider the case m = 1 in order to see that we have r < 8 for
q ≥ 11. But |Z(E)| = q is a divisor of |F ?| = r− 1, so that we indeed have
q ≤ 7. For q = 7 we get r < 16 for m = 1, and r < 3 for m = 2. Since r

is a prime power congruent 1 mod 7, the only possibility is m = 1, r = 8.
But in this case Ḡ is an irreducible subgroup of Sp2(7) of (odd) order 21,
and we get a contradiction (namely r < 8).

For q = 5 we get r < 29 for m = 1 and r < 7 for m = 2, and so the
only possibilities are m = 1 and r = 16 or r = 11. We have seen in Example
5.7a that for m = 1 there is always a vector v ∈ V such that CG(v) is an
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elementary abelian 2-group (even with CG(v) = 1). So we are reduced to
the cases where q = 2, 3.

Let q = 3. Then f(γ) ≤ f = 2/3 for each γ ∈ β∗(G) by Theorem 6.2c.
Using (5.6d) we get 2|V | = 2r3m ≤ (r2·3m−1

+ r3m−1
)32m|Ḡ|, which gives

r3m−1 ≤ 32m

2

(
1 +

1
r3m−1

)
|Ḡ|.

From |Ḡ| ≤ |Sp2m(3)| < 32m2+m we obtain that m ≤ 5, and for m = 5 we
must have r = 2. But the case q = 3, r = 2 cannot happen.

It remains to rule out the case m = 4 (q = 3). The above estimate
yields that we must have r ≤ 5. Then r = 4 (as q = 3 | r − 1). Now
Ḡ is a proper irreducible subgroup of Sp8(3) (of odd order) and so |Ḡ| ≤
|Sp4(9).2)| = 210 · 38 · 52 · 41 by [Liebeck, 1985, Theorem 5.2]. This bound
suffices to get a contradiction.

Let q = 2. Then f(γ) ≤ f = 5
8 for each γ ∈ β∗(G) by Theorem

6.2c. Note that f2m is an integer for m ≥ 3. (For the time being we only
discuss the cases where m ≥ 6.) Applying (5.6d) we get 2|V | = 2r2m ≤
(r5·2m−3

+ r3·2m−3
)22m|Ḡ| and thus

r3·2m−3 ≤ 22m−1
(
1 +

1
r2m−2

)
|Ḡ|.

This yields at once that we must have m ≤ 8. For m = 8 we obtain that
r = 3 (since r is odd). In this case Ḡ0

∼= O±16(2). Knowing that Ḡ is a
3′-group and that 37 is a divisor of |O±16(2)| this case is ruled out.

For m = 7 we obtain that r ≤ 7. Again the case r = 7 is ruled
out using the upper bound for the order of O±14(2) in place of that for
Sp14(2). For r = 5 we also have |Ḡ| ≤ |O−14(2)|, by the comment after
(6.3a), and this suffices to get a contradiction. For r = 3 we use that the
order of a proper irreducible (3′-) subgroup of O±14(2) is bounded above by
|GU7(2)| = 221 · 39 · 5 · 7 · 11 · 43 [Liebeck, 1985, Theorems 5.4, 5.5]. We
obtain a contradiction.

Let m = 6. The usual estimate gives that r24 ≤ 289, hence r ≤ 13.
Since |Sp12(2)| is divisible by each (odd) prime p ≤ 13, we have |Ḡ| ≤
|O−12(2)| by Lemma 6.3a, and this leads to r ≤ 5. Consider r = 5. By
Lemma 6.3a we are led to a study of the irreducible 5′-subgroups of O±12(2)
and of S14 (viewing U as shortened S14-permutation module over F2). In
the first case we get |Ḡ| ≤ |GU6(2)| = 215 · 38 · 5 · 7 · 11 by the theorems of
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Liebeck quoted above, and this bound is good enough. There is no problem
with the bound |Ḡ| ≤ |S14|.

So let r = 3. We get the desired contradiction (to the above inequal-
ity) if we can show that that the order of an irreducible 3′-subgroup of
O±12(2) is bounded above by 227. Observe that 4m + 4 = 28. We argue by
inspection of the list of maximal subgroups of the orthogonal groups. The
maximal subgroups of O+

12(2) which are irreducible are either isomorphic to
O+

6 (2)wr S2, O+
4 (2)wr S3 or to almost simple groups for which the 3′-part

of the order is less than 227, like for GU6(2) or O+
6 (4).2 (cf. Table 3.5.E

in [Kleidman–Liebeck, 1985]). The maximal subgroups of O−12(2) which
are irreducible are either isomorphic to O−4 (2)wr S3 or to O−6 (4).2, or are
certain almost simple groups for which the 3′-part of the order is less than
227, like for S13 (cf. Table 3.5.F in [Kleidman–Liebeck, 1990]). From this
last table one infers that the 3′-subgroup of O−6 (4).2 have the desired small
order. Hence the result. ¤

Comments 6.3c. Theorem 6.3b reduces the discussion to some few cases.
One can show that then there are point stabilizers of exponent 2 (or 1)
when r is large enough:

Suppose q = 3 and m = 3. The crude bound
∑

γ∈β∗(G) |CV (γ)| ≤
1
2 (r

2
33m

+ r
1
33m

) · 32m · |Ḡ| used in the above proof is sufficient to show,
taking the upper bound |Ḡ| ≤ |Sp6(3)| = 210 · 39 · 5 · 7 · 13, that there is
v ∈ V such that CG(v) is an elementary abelian 2-group provided r > 19.
For m = 2 the corresponding holds provided r > 157, and for m = 1
whenever r > 211, but it is easy to improve these estimates on the basis of
Theorems 4.4, 4.5a. See Sec. 6.5 below.

Let q = 2. If m = 5, the analogous estimate, taking the upper bound
|Ḡ| ≤ |Sp10(2)| = 225 ·36 ·52 ·7·11·17·31, yields that there is v ∈ V such that
CG(v) is an elementary abelian 2-group provided r > 37. In the orthogonal
case, taking the upper bound |Ḡ| ≤ |O−10(2)| = 221 · 36 · 52 · 7 · 11 · 17, this
holds for r > 23. For m ≤ 4 we argue a bit more carefully:

m = 4: In Sp8(2) there are just a = 346.832.896 elements of order at
most 4 [Atlas, pp. 124, 125]. By Theorem 6.2c, |CV (γ)| ≤ r10, r8, r9 for
γ ∈ β3(G), β∗4(G) or βs(G) for a prime s ≥ 5, respectively. If there is no
vector v ∈ V such that CG(v) is an elementary abelian 2-group, then in
view of the estimate (5.6d)

2 · r16 ≤ 28a(r10 + r6) + 28 · (|Sp8(2)| − a)(r9 + r7).
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Using that |Sp8(2)| = 216 · 37 · 52 · 7 · 17 this forces that r ≤ 71.

m = 3: In Sp6(2) there are just a = 80.707 elements of order at most
4 [Atlas, p. 47]. By Theorem 6.2c, |CV (γ)| ≤ r4, r5, r4 for γ ∈ β3(G),
β∗4(G) or βs(G) for a prime s ≥ 5, respectively. From 2 ·r8 ≤ 26a(r5 +r3)+
26(|Sp6(2)|−a)(2r4) we get r ≤ 147. Hence there is v ∈ V such that CG(v)
is an elementary abelian 2-group provided r > 139.

m = 2: In Sp4(2) ∼= S6 there are just b = 480 elements of 2-power order
or of prime order. Hence at most 480 cosets of G0 mod Z contain noncentral
elements of order 4 or of odd prime order. From 2 · r4 ≤ 24 · 480(r2 + r2)
we get r ≤ 83.

m = 1: From 2 · r2 ≤ |G0/Z|(2r) = 48r we get r ≤ 23.

The corresponding bounds for the orthogonal cases are somewhat better.
We emphasize that a more careful computation yields much better estimates
which, however, do not suffice for our purposes.

This makes the following case-by-case analysis necessary. We attempt
to avoid computer calculations, and this is possible in the present situa-
tion. We shall use both (elementary) counting methods and theoretical
arguments.

6.4. Characteristic 2

Theorem 6.4. Let p = 2. Then there is a strongly real vector v ∈ V for
G such that CG(v) has a regular orbit on V .

Proof. Here G has odd order (by coprimeness) and so is solvable by the
Feit–Thompson theorem. By virtue of Theorem 6.3b we can assume that
q = 3 and that m ≤ 3 (and dim F V = 3m).

Of course, F is a field of order r where r is a 2-power and r − 1 is
divisible by 3. By Theorem 4.3c there is a subgroup S ∼= Sp2m(3) which
is a complement to E in X. Let H be the subgroup of S mapping onto
Ḡ = GZ/EZ. We know that H is faithful and irreducible on U = EZ/Z,
whence O3(H) = 1. Also, H has odd order. For m = 1 this forces that
H = 1. Hence it remains to examine the cases m = 2, 3. By Theorem 4.5a
ResX

S (χ) = ξ is a Weil character of S and ξ = ξ1 + ξ2 = 2ξ1 + 1S on 2′-
elements of S, where the ξi are irreducible characters of S. Thus there is v

in V ] such that CS(v) ⊇ H (by coprimeness). We have NE(Fv) 6= E as E is
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irreducible on V . Moreover, NE(Fv) is H-invariant and so NE(Fv) = Z(E)
as H is irreducible on U . It follows that

NHE(Fv) = H × Z(E).

Hence CGZ(v) = CHE(v) = H by Lemma 5.1b, and v is strongly real for
G provided ξ takes only real values on H. Recall from Theorem 4.5a that
ξ takes rational values on the 3′-elements of H.

Let m = 2. Then ξ = χ2+χ21 (resp. ξ̄ = χ3+χ22) in the Atlas notation
[Atlas, p. 26]. Checking the list of (irreducible) maximal subgroups of
Sp4(3) we see that H must be in a group of the form 2.(24 : A5) or of
the form 2.S6. In both cases necessarily |H| = 5 and ξ(x) = −1 for each
generator x of H (belonging to the conjugacy class 5A).

Let m = 3. The irreducible odd order group H can only be contained in
(almost maximal) subgroups of Sp6(3) of the following types: 2.A5, Sp2(13),
SL3(3), U3(3).2, Sp2(3)wr S3 and Sp2(27) : 3 [Atlas, p. 113]. Considering
the maximal (and second maximal) subgroups of these groups we get that
either H is cyclic of order 7 or is a Frobenius group of order 21. Note
that H cannot be of order 13 or of type 13 : 3, because 7 is the unique
Zsigmondy prime divisor of 36− 1 which divides 33 +1 = 28, the order of a
Singer cycle in Sp6(3). This implies that H is contained in groups of types
Sp2(13) or PGL2(7) (embedded in U3(3).2), which are real groups, or in a
group of type Sp2(27) : 3 (but not in Sp2(27) unless |H| = 7). Also, H is
uniquely determined in Sp6(3) up to conjugacy. By the character table of
Sp6(3) the elements h ∈ H of order 7 have ξ(h) = −1 and dim F CV (h) = 3.

We may assume without loss that H is Frobenius of type 7 : 3. We
have to show that ξ takes only real values on the elements of order 3, and
that there is a regular H-orbit on V . Inspection of the character tables
of Sp2(13), U3(3).2 ∼= G2(2) and Sp2(27) : 3 yields that we must have
ξ(y) = 0, 3 or −9 for each element y ∈ H of order 3, as desired. Since
the fixed spaces of h or y on V have dimension at most 11, and since
21 · r11 < r27 for r ≥ 4, there is a regular H-orbit on V . ¤

Remark . Theorem 6.4 solves the k(GV ) problem in characteristic 2, in
view of our previous results. The Robinson–Thompson Theorem 5.2b tells
us that it suffices to find a (strongly) real vector in V for G. Arguing by
induction on dim F V by Theorem 5.4 we are led to the situation that (G, V )
is a reduced pair, and then Theorem 6.4 applies. A different approach (for
groups G of odd order) has been given in [Gluck, 1984].
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6.5. Extraspecial 3-Groups

Theorem 6.5. Suppose p and q are odd. Then there exists a strongly
real vector v ∈ V such that CG(v) has a regular orbit on V , except when
(G,V ) is isomorphic to one of the three nonreal reduced pairs of type (33

+)
for r = p = 7, 13.

Proof. By Theorem 6.3b we may assume that q = 3 and m ≤ 3. Thus
p ≥ 5 and 3 | r − 1, whence r ≥ 7. By Theorem 4.3c, X = E : S is
a semidirect product of E ∼= 31+2m

+ with S ∼= Sp2m(3), the complements
being conjugate unless m = 1 (in which case S · Z(E)/Z(E) is determined
up to conjugacy in X/Z(E)). Also, each element of S · Z(E) is good for
U = E/Z(E). Recall also that ResX

S (χ) = ξ is a Weil character of S

(Theorem 4.5a). Let j be the central involution of S, which inverts the
elements of U .

Let m = 1. Then G0 is a p′-group. Without loss of generality let
G = G0. The character table of S ∼= Sp2(3) can be found in [I, p. 288].
Using the notation used there ξ = χ2 + χ7 (resp. ξ̄ = χ3 + χ6). We apply
the counting techniques described in Sec. 5.6. There is one conjugacy class
of elements x in S of order 4 with |S : CS(x)| = 2 · 3. We have ξ(x) = 1
and hence xV = [1, i,−i] if 4 | r − 1 and xV = [1] otherwise, and |U :
CU (x)| = 32. There are two conjugacy classes of elements of order 3 in S,
represented by y and y−1 where ξ(y) = i

√
3 say. So yV = [z(2), 1] for some

primitive 3rd root of unity z, and |E : CE(y)| = 3 (and |S : CS(y)| = 4).
By Theorem 4.4, E permutes the good cosets of Z(E) in Ey transitively by
conjugation, and so there are just 32 − 3 = 6 cosets of Z(E) in Ey which
are not good for U . Also, χ vanishes on the elements of order 3 in these bad
cosets (so that each eigenvalue has multiplicity 1). Similar statement for
the noncentral elements of E (of order 3). Since there are four subgroups
of order 3 in U = E/Z(E), we get

∑

γ∈β∗(G)

|CV (γ)| ≤ 3 · 32(3r) + 4 · 3(r2 + r) + (4 · 6 + 4)(3r).

This is less than |V | = r3 provided r > 20. For r = 19 we may replace the
first summand on the right by

∑
γ∈β∗4 (G) |CV (γ)| ≤ 3 · 32r (as 4 - 19 − 1).

This gives the result for r = 19. The remaining cases are r = 13 and r = 7,
which lead to the nonreal reduced pairs of type (33

+).

Let m = 2. Now S ∼= Sp4(3) has order 27 · 34 · 5. For p 6= 5 we
may assume that G = G0, and otherwise Ḡ is an irreducible (solvable)
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5′-subgroup of Sp4(3). We have ξ = χ2 + χ21 (resp. ξ̄ = χ3 + χ22) in the
Atlas notation [Atlas, p. 27].

The usual counting method yields that
∑

γ∈β∗(G) |CV (γ)| < |V | = r9

for r ≥ 10, but not for r = 7. An even more precise estimate gives this
inequality also for r = 7, but this requires the computer [GAP]. So we only
sketch the estimate, and then proceed by giving the (theoretical) argument
proposed in [Gluck–Magaard, 2002a] for m = 2 and m = 3.

There three conjugacy classes 2B0 and 4A0, 4A1 of elements of order
4 in S ∼= Sp4(3) lead, on the basis of (4.4), to the estimate

∑

γ∈β∗4 (G)

|CV (γ)| ≤ 34 · 135(r3 + 3r2) + 32 · 270(3r3) + 34 · 270(2r3 + r2 + r).

Similarly we obtain
∑

γ∈β5(G) |CV (γ)| ≤ 1.296 · 34(4r2 + r). There are
four conjugacy classes 3A0B0 and 3C0, 3D0 of elements of order 3 in S,
and there are 40 subgroups of order 3 in U . This yields the upper bound∑

γ∈β3(G) |CV (γ)| ≤ 3 · 40(r6 + r3) + 32 · 120(2r4 + r) + 32 · 240(r5 + 2r2) +
(40 + 40(34 − 3) + 120(34 − 32) + 240(34 − 32))(3r3). Now sum up.

In what follows let either m = 2 or m = 3. Let P be the stabilizer in
S of a maximal totally isotropic subspace W of U . Thus P = R : L is a
maximal parabolic subgroup of S where W is the standard module for L ∼=
GLm(3) and where the unipotent radical R ∼= Sym2(W ) is an irreducible L-
module and L′-module (Appendix B and Appendix A7). Also U = W⊕W ∗

where the dual L-module W ∗ is not isomorphic to W by Lemma 4.1c. For
m = 3 we know that W and W ∗ are not even isomorphic as modules for
L′ ∼= SL3(3) ∼= PSL3(3) (L = L′×〈j〉). For m = 2 the modules W = 〈e1, e2〉
and W ∗ = 〈e∗1, e∗2〉 are isomorphic L′-modules, but the unique further (L-
conjugate) irreducible L′-submodules 〈e1 +e∗2, e2−e∗1〉 and 〈e2 +e∗1, e

∗
2−e1〉

of U are nondegenerate. In terms of this hyperbolic basis, let τ ∈ S be the
linear (symplectic) map on U sending ei to e∗i and e∗i to −ei (as in Theorem
4.5b). Then τ2 = j and, at any rate, NS(L′) = NS(L) = 〈L, τ〉. Of course
τ interchanges W and W ∗. Each element of L is conjugate to its inverse
within NS(L). Hence χ = ξ is real-valued on L.

In view of (A2) H1(L,W ) = 0 = H1(L,W ∗) (as j ∈ L). Identifying
W ∗ = Hom(W,Z(E)), and W = (W ∗)∗, therefore by (A7) there exist L-
invariant elementary abelian subgroups A, A∗ of E mapping isomorphically
onto W,W ∗, respectively. Both CV (A) and CV (A∗) are 1-dimensional, and
distinct. Let Ṽ = CV (A)⊕CV (A∗). Since both direct summands of Ṽ are
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L-invariant, L′ acts trivially on Ṽ . Also, τ interchanges A = [A×Z(E), L]
and A∗ = [A∗ × Z(E), L], hence also CV (A) and CV (A∗). There is v ∈ Ṽ

outside CV (A) and CV (A∗) which is not an eigenvector of τ (as r ≥ 7).

Let H = CG0(v). We assert that H ∩ ZE = 1. Otherwise, since
CZ(v) = 1, H∩ZE is a nontrivial L′-invariant elementary abelian subgroup
of ZE whose image in U = ZE/Z is nonzero and totally singular and so
must be W or W ∗. Since H contains [H ∩ ZE, L], which is A or A∗, it
follows that A or A∗ centralize v. This contradicts the choice of v. Hence
the assertion.

We know that NG0(L
′) = NG(L) = 〈L, τ〉 ×Z. Assume H ⊆ NG0(L

′).
Using that H ∩ ZE = 1 and that 〈L, τ〉/L′ is elementary abelian (of order
4) then even H ⊆ L × 〈−1〉. In this case v is a strongly real vector for G.
Also, CG(v) = H∩G has a regular orbit on V . This is immediate for m = 2
(as r ≥ 7). For m = 3 and p 6= 13 the group L = GL3(3) is a p′-group
(p ≥ 5) and so has a regular orbit on each faithful irreducible L-submodule
of V (which exists) by Theorem 7.2a below (see also the remark after this
theorem). When p = 13 use a simple counting argument, noting that every
involution in L′ has r15 fixed points on V , and that every element of order
3 at most r12 (character table), and that dim F CV (j) = 14.

So the proof is accomplished if we can show that H ⊆ NG0(L
′) or, at

least, that v can be chosen in V0 such that this holds for its stabilizer. At
any rate we have H ′ ⊆ S. To see this use that τ2 = j. We have j ∈ L′,
even j ∈ L′′ ∼= Q8 when m = 2, whereas j 6∈ L′ for m = 3 (in which case
L = L′× 〈j〉). Since τ interchanges CV (A) and CV (A∗), we get that j acts
on V0 as 1 or −1. Hence j normalizes Fv and so [H, j] ⊆ H. But j maps
onto the central involution in G0/ZE ∼= Sp2m(3) and so [H, j] ⊆ H ∩ZE =
1. It follows that indeed H ′ ⊆ CG0(j)

′ = (SZ)′ = S′ = S.

Recall that L′ ⊆ H (but τ 6∈ H). Since H0 = H ′L′ centralizes v and
ξ does not contain the 1-character, H0 is a proper subgroup of S. Suppose
that H0 normalizes W . Then Λ = Hom(W,Z(E)) is an irreducible H0-
module which agrees with W ∗ = W τ on L′. We have H1(L′,Λ) = 0, either
by (A2) since j ∈ L′ (m = 2), or by (A9), (A7) since Λ ∼= W τ (m = 3).
We claim that H0 normalizes A. For m = 2 we know that j ∈ H0 and so
ExtH0(W,Z(E)) = 0 by (A2) and (A7). For m = 3 we have either H0 ⊆ L

or H0 is a subgroup of P containing the (irreducible) unipotent radical
R = O3(P ). In the latter case Λ and R are nonisomorphic irreducible H0-
modules. Application of the exact inflation–restriction sequence (Appendix
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A2) yields that H1(H0/R, Λ) ∼= H1(H0, Λ). In fact, the sequence

0 → H1(H0/R, Λ) → H1(H0, Λ) → HomH0(R,Λ) = 0

is exact. Now H0/R ∼= L or L′ and Λ ∼= W ∗ as L-module. We conclude
that ExtH0(W,Z(E)) = H1(H0, Λ) = 0, as before. It follows that there is
an H0-invariant subgroup of E mapping isomorphically onto W , and this
must be A = [A× Z(E), L′], as claimed. Hence H0 normalizes CV (A) and
H ′

0 centralizes V0 = CV (A)⊕Fv, whence CV (A∗). Clearly NE(CV (A∗)) ⊇
A∗Z(E), and we must have equality since |E : NE(CV (A∗))| ≥ dim F V =
|E : A∗Z(E)| and E is irreducible on V . Therefore H ′

0 normalizes W ∗

likewise, which implies that H ′
0 ⊆ L. We conclude that H0 ⊆ NS(L) =

NS(L′) and H ⊆ NG0(L
′), which gives the result. A similar argument

works when H ′ normalizes W ∗.

Let m = 3. Then NS(L) = L〈τ〉 is a maximal subgroup of S ∼= Sp6(3)
[Atlas, p. 113]. From τ 6∈ H we get that H ′ ⊇ L′ is contained in a maximal
parabolic subgroup stabilizing either W or W ∗. We are done in this case.

Thus it remains to consider the case m = 2 (and r = 7). We inspect
the overgroups of L′ in S which do not normalize L′ [Atlas, p. 26]. Let
y be an element in L′ of order 3. Since ξ(y) is real and y centralizes V0,
y belongs to the class 3D0 of S (see above). It follows that L′/〈j〉 cannot
be in a maximal subgroup of type 24 : A5 of S/〈j〉 ∼= PSp4(3), because
each element of order 3 in A5 centralizes a V4-subgroup in the shortened
permutation module 24 over F2, whereas |CS(y)| = 2 · 54. Also, L′ cannot
map into a maximal subgroup of PSp4(3) of type 31+2

+ : Sp2(3) as j ∈ L′. So
L′ must be contained in maximal subgroups X ∼= Sp2(3)wr Z2 or Y ∼= 2.S6

of S.

X permutes the two nondegenerate irreducible L′-submodules of U , so
is the unique overgroup of L′ of this kind. Further, L′ must be diagonally
embedded in the base group B = L1 × L2 of X (L′ ∼= Li

∼= Sp2(3)). We
claim that H0 ⊇ O2(X) ∼= Q8 × Q8. Otherwise H0 ∩ O2(Li) ⊆ Z(Li) for
each i, because L′ acts irreducibly on O2(Li)/Z(Li). A Sylow 3-subgroup of
H0 acts on O2(H0)∩B ⊆ O2(L′)Z(X) ∼= Q8×Z2, inducing at most an auto-
morphism group of order 3. We conclude that |H0|3 = 3, because otherwise
there is an element of order 3 in H0 rL′ centralizing L′ = 〈y, O2(L′)〉. We
infer that L′ has index 2 or 1 in H0∩B, which is impossible by assumption.
Now

ResS
B(ξ) = ξ1 ⊗ ξ2
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where ξi is an (appropriate) Weil characters of Li (corresponding to a cen-
tral decomposition E ∼= 31+2

+ ◦ 31+2
+ ; cf. Lemma 7.7b for more details).

Since each ξi is the sum of two irreducible Weil characters of degree 1 and
2, which remain irreducible on O2(Li), we obtain that O2(B) = O2(X)
fixes exactly one point in P1(V ), hence at most one point in P1(Ṽ ).

Suppose L′ ⊆ Y . Then Y is the unique 2.S6 subgroup of S contain-
ing L′. This may be seen by using that PSp4(3) ∼= Ω5(3) and noting that
Y/〈j〉 ∼= O−4 (3) is the stabilizer of a minus point in the orthogonal space
[Atlas]. Also, since L′ embeds into X, its central quotient group centralizes
a 1-dimensional plus type subspace [Atlas]. If L′ were contained in two
different 2.S6 subgroups of S, the fixed space of L′/〈j〉 ∼= A4 on the orthog-
onal space is (at least) 3-dimensional and so A4 has a faithful irreducible
module over F3 of dimension 5 − 3 = 2, which is not true. Now any two
A4 subgroups of A6 are conjugate under Aut(A6), and each A4 subgroup
is contained in exactly two A5 subgroups of A6 [Atlas, p. 4]. We conclude
that L′ is contained in exactly two 2.S5 subgroups of Y , each of which can
fix at most one point in P1(Ṽ ). Each solvable subgroup of Y above L′

normalizes L′.

Consequently, if we remove from P1(Ṽ ), besides CV (A), CV (A∗) and
the eigenspaces of τ , eventually further 3 = 1+2 points (|P1(Ṽ )| = r +1 ≥
8), there remains a 1-dimensional subspace Fv for which CG0(v) ⊆ L×〈−1〉.
This completes the proof. ¤

6.6. Extraspecial 2-Groups of Small Order

Proposition 6.6a. Let E ∼= 21+2
±,0 . There exists v ∈ V such that CG(v)

is an elementary abelian 2-group unless (G, V ) is isomorphic to one of the
four nonreal reduced pairs of type (Q8) for p = r = 5, 7, 13.

Proof. We cannot have E ∼= 21+2
+ , because then X either is dihedral

(r ≡ 7 (mod 8)) or semidihedral (r ≡ 3 (mod 8)) of order 16 and cannot be
irreducible on U = E/Z(E). So E ∼= Q8 or E ∼= Q8 ◦Z4 (in case 4 | r− 1).
In both cases |G0| = 24(r − 1) and G0/Z ∼= S4. Since Ḡ is an irreducible
p′-subgroup of Ḡ0

∼= S3, we have p 6= 3, and we may take G = G0.

There are at most six noncentral cyclic subgroups γ in G of order 4
(and at most three if 4 - r−1), each having a fixed space on V of dimension
at most 1, because dim F CV (γ) ≤ 1

4 (2 + 3 · 1) ≤ 5
4 by Theorem 6.2c. There

are at most eight noncentral subgroups of order 3 in G (and at most four
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such subgroups if 3 - r − 1), each having a fixed point space of dimension
at most 1 by Theorem 6.2c (with s = 3, q = 2). Hence

∑

γ∈β∗(G)

|CV (γ)| ≤ 14r < r2 = |V |

provided r > 14. For r = 11 the sum on the left is at most 7r. (For r = 11
we know from Sec. 3.2 that G = G0

∼= GL2(3)×Z5 is transitive on V ] and
that |CG(v)| = 2 for each non-zero vector v.) For r = 5, 7, 13 we get the
nonreal reduced pairs of type (Q8) described in Sec. 6.1. ¤

Proposition 6.6b. Let E ∼= 21+4
±,0 . There exists v ∈ V such that CG(v) has

a regular orbit on V , and this vector v is strongly real for G unless (G, V )
is isomorphic to one of the three nonreal reduced pairs of type (25

−).

Proof. We treat the three types for E separately.

(i) Let E ∼= 21+4
+ . Then Ḡ is an irreducible p′-subgroup of Ḡ0

∼=
O+

4 (2) ∼= S3wrS2
∼= 32 : D8. Therefore we have p 6= 3, and we may assume

that G = G0. Further r− 1 is not divisible by 4 and so r ≥ 7. For r = 7 by
[GAP] computation (or directly) one finds v ∈ V such that CG(v) ∼= D12,
which is a real group and has a regular orbit on V . So let r > 7 (hence
r ≥ 11).

Let S be a Sylow 3-subgroup of X (mapping onto O3(X̄)) and let
Y = NX(S). By the Frattini argument Y E = X. Hence Y is irreducible
on U = E/Z(E) and so Y ∩ E = Z(E). There are two Y -orbits on S] of
sizes 4. Let g1, g2 in S represent these orbits, and choose notation such that
|CU (g1)| = 1 and |CU (g2)| = 22. In fact, g1 permutes the 6 nonsingular
vectors in U in two orbits of size 3 and g2 fixes 3 of them. (Consider a
central decomposition E = Q8 ◦ Q8.) From Theorem 4.4 it follows that
χ(g1) = ±1 and χ(g2) = ±2. Computation of dim F CV (gi) = 1

3 (4+2χ(gi))
shows that χ(g1) = 1 and χ(g2) = −2. We have (g1)V = [1(2), z1, z2] and
(g2)V = [z(2)

1 , z
(2)
2 ], provided 3 | r−1, z1 6= z2 being the primitive 3rd roots

of unity. For each noncentral involution x in E we have xV = [1(2),−1(2)].
There are 9 = 15−6 singular points in U , hence 2 ·9 noncentral involutions
in E. We have

18r2 +
∑

γ∈β3(G)

|CV (g)| ≤ 18r2 + 2 · 24(r2 + 2r) + 2 · 32(2r2) < r4 = |V |

since r ≥ 11. Hence there is a vector v ∈ V such that H = CG(v) is a 2-
group satisfying H∩ZE = 1. It follows that H is isomorphic to a subgroup
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of a dihedral group D8. Hence χ takes only rational values on H, because
exp (H) | 4 and 4 - r − 1. It is obvious that H has a regular orbit on V .

(ii) Let E ∼= 21+4
− . By (A9) there is a subgroup T of X such that

T · Z(E) = X and T ∩ E = Z(E), and this is determined up to conjugacy.
(Here U = E/Z(E) is the projective Steinberg module for X̄ ′ ∼= Ω−4 (2).)
Assume T ′ ∼= A5. Then inspection of the character table, on the basis
of Theorem 4.4, shows that ResX

T ′(χ) = χ1 + χ2 or χ1 + χ3 or χ4 in the
Atlas notation [Atlas, p. 2]. However, in these cases the character χ takes
the value 1 on the conjugacy class 3A of elements of order 3 in A5 and
so these elements have trivial fixed space on U by Theorem 4.4. But the
elements of order 3 in O−4 (2) stabilize singular or nonsingular points in U .
Consequently T ∼= 2.S5 and

ResX
T ′(χ) = χ6 + χ7,

where χ6, χ7 are algebraically conjugate but fuse to a rational-valued char-
acter of T . (The characters χ8 of degree 4 are ruled out by their values
χ8(6A0) = ±√−3.) Let y represent the unique conjugacy class of ele-
ments in T of order 3. Then |T : CT (y)| = 2 · 10 and χ(y) = −2. Hence
dim F CV (y) = 1

3 (4 − 2 − 2) = 0 and, when 3 | r − 1, then yV = [z(2)
1 , z

(2)
2 ]

where z1 6= z2 are the primitive 3rd roots of unity. In view of Theorem 4.4,
y is good for U and |E : CE(y)| = 22. It follows that

∑
γ∈β3(G) |CV (γ)| ≤

22 · 10(2r2) = 80r2 if 3 | r − 1, and
⋃

γ∈β3(G) CV (γ) = 0 otherwise. There
are two conjugacy classes 5A0B0 in T of elements of order 5, represented
by g, g−1 say. Then |T : CT (g)| = 6 and χ(g) = −1. It follows that
|E : CE(g)| = 24, by (4.4), and that CV (g) = 0. Hence each noniden-
tity eigenvalue of g on V occurs with multiplicity 1 (if 5 | r − 1). Thus∑

γ∈β5(G) |CV (γ)| ≤ 24 · 6(4r) = 384r. There are five singular points in U ,
hence 5 · 2 noncentral involutions in ZE, each having a 2-dimensional fixed
space on V . Letting β̂(G) be the union of β3(G), β5(G) and the subgroups
generated by these involutions, we therefore have the estimate

∑

γ∈β̂(G)

|CV (γ)| ≤ 90r2 + 384r.

This is less than |V | = r4 if r > 11. For r = 11 the right hand side may
be replaced by 10r2 + 384r. Hence there is v ∈ V outside

⋃
γ∈β̂(G)

CV (γ)
when r ≥ 11. Then H = CG0(v) is a 2-group and H ∩ ZE = 1. So H is
isomorphic to a Sylow 2-subgroup of S5, which is dihedral of order 8. As
in (i) v is strongly real for G, and CG(v) has a regular orbit on V .
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It remains to examine the cases r = 3 and r = 7. In the former case
G is a 3′-group and so Ḡ maps into O−2 (4) ∼= 5 : 4, but O5(Ḡ) 6= 1 as it
is irreducible. If GV is not the largest Bucht group, CG(v) has order 1, 2
or 4 for each v ∈ V ]. Then v is strongly real for G by Lemma 4.1c. Let
r = 7. There is a subgroup S ∼= SL2(3) of T , containing the element y say.
Then χ splits up on S∆Z3Z3 the 1-character. If G ⊇ X ′ × Z3, we obtain a
vector v ∈ V ] such that CG(v) ∼= SL2(3), and v is not real for G. In this
case there is only one further orbit on V ], with point stabilizer Z3 or Z6

(depending on whether G = X ′ ×Z3 or X ×Z3), and Lemma 4.1c applies.
Exclude now these two nonreal reduced pairs of type (25

−) just described.
Then either G ⊆ X, or Ḡ must map again into O−2 (4). The above estimate
applies ignoring the elements of order 3 and 5.

(iii) Let E ∼= 21+4
0 (so that 4 | r − 1). By (A9) and the character

table of Ḡ0
∼= Sp4(2) ∼= S6 there is a subgroup T ∼= 2.A6 of X such that

Z(T ) = T ∩Z, and ResX
T (χ) = χ8 or χ9 in the Atlas notation [Atlas, p. 5].

Consider first the case p = 3. Then Ḡ is an irreducible 3′-subgroup of
Ḡ0. Inspection of the maximal and second maximal subgroups of S6 [Atlas,
pp. 4, 2] shows that Ḡ is isomorphic to a subgroup of O−2 (4).2 ∼= 5 : 4.
Without loss of generality we may assume that Ḡ ∼= O−2 (4).2, in which case
the elements of order 2 (and 5) in Ḡ belong to O−2 (4) ⊆ A6. Let x ∈ T be
an element of order 5 whose coset generates O5(Ḡ). Then χ(x) = −1 and
CV (x) = 0 [Atlas] and |E : CE(x)| = 24 by Theorem 4.4. It follows that∑

γ∈β5(G) |CV (γ)| ≤ 24(4r) (assuming the worse case 5 | r − 1). Let β̃4(G)
be the set of cyclic subgroups of G of order 4 or 2 mapping onto the five
subgroups of order 2 in Ḡ. Let ȳ be an involution in Ḡ. Then U = E/Z(E)
is the regular F4〈ȳ〉-module. There is y0 ∈ T mapping onto ȳ, and this
y0 has order 4 and satisfies y2

0 ∈ Z(E) and χ(y0) = 0 [Atlas]. Thus y0 is
bad for U , CV (y0) = 0 and (y0)V = [i(2),−i(2)]. Let 〈y〉 ∈ β̃4(G) be such
that y maps onto ȳ. If Z(E)y = Z(E)y0, then this coset describes one of
the |CU (ȳ)| = 4 complements to U in 〈U,Z(E)y0〉, which are all conjugate
to 〈Z(E)y0〉. So assume that Z(E)y 6= Z(E)y0. Then y cannot be an
involution and Z(E)y has order 4. If y is bad for U , then y2 is an involution
in ErZ(E) and so χ(y) = χ(y2) = 0 and yV = [i,−i, 1,−1]. If y represents
one of the four good cosets, then |χ(y)|2 = 4 and yV = [±i(2), 1,−1] or
[±1(2), i,−i]. Hence

∑

γ∈β̃4(G)

|CV (γ)| ≤ 5
(
4(2r2) +

1
2
8(4r) +

1
2
4(r2 + 2r)

)
.
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It follows that
∑

γ∈β5(G)∪β̃4(G)
|CV (γ)| ≤ 50r2 + 164r, which is less than

r4 = |V | since r ≥ 9 (as p = 3 and 4 | r − 1). Hence there is v ∈ V such
that CG(v) = CEZ(v) is an elementary abelian 2-group.

Let next p = 5. Then Ḡ is an irreducible 5′-subgroup of Sp4(2) ∼= S6,
and we may assume that Ḡ ∼= O+

4 (2) ∼= 32 : D8 [Atlas]. For r = 5 we find,
using a random search, v ∈ V such that H = CG(v) is a S4 group. Then
the nontrivial H-submodule W of V is the deleted permutation module or
its tensor product with the sign character, and H has a regular orbit on
W . So let r ≥ 25. We may argue as for (i), but using the character table
(for T ). We find v ∈ V such that CG(v) maps isomorphically into a Sylow
2-subgroup of Ḡ. Using that the elements in Ḡ of order 4 belong to A6 and
that χ vanishes on the elements of order 4 in T ∼= 2.A6 we see that v is
strongly real for G. Also, CG(v) has a regular orbit on V .

Let finally p > 5 (r ≥ 13), and let G = G0. Write E = E0 ◦ Z4 with
E0

∼= 21+4
+ . Let X0 = NG(E0). Then X̄0 = X0/ZE ∼= O+

4 (2). As in the
second paragraph of the proof for (i) let S be a Sylow 3-subgroup of X0,
which maps isomorphically onto S̄ = O3(X̄0), and let Y = NX0(S). Then
Y ·ZE = X0 and Y ∩ZE = Z. Let P be the stabilizer in X̄0 of a maximal
totally singular subspace W1 of U0 = E0/Z(E0). Thus P ∼= Λ2(W1) : L̄

where W1 is the standard module for L̄ ∼= GL(W1) ∼= S3 (Appendix B). Also
U0 = W1⊕W2 = W1⊕W3 where the Wi are all the distinct, but isomorphic,
irreducible L̄-submodules of U0

∼= U (noting that |HomL̄(U0/W1,W2)| = 2).
Since Hn(L̄, Wi) = 0 for all n ≥ 1, in view of (A2), there exist a subgroup L

of X0 = NGL(V )(E0) mapping onto L̄ and L-invariant elementary abelian
subgroups Ai of E mapping onto the Wi. By Appendix (C1) we may
choose L such that L ∼= GL(Ai) ∼= S3. The fixed spaces CV (Ai) are 1-
dimensional, pairwise distinct, and centralized by L′. Since an involution t

in L acts as ±1 on these spaces, we may replace t by tz for the generator
z of Z(E0), if necessary (and L correspondingly), so that L centralizes at
least two of these fixed spaces, say CV (A1) and CV (A2). We may choose
v ∈ CV (A1)⊕ CV (A2) outside all CV (Ai).

We claim that NZE(Fv) = Z. For otherwise NZE(Fv)/Z would be an
irreducible L-submodule of U ∼= U0 and hence one of the Wi. It follows
that LAi ⊆ NG0(Fv) and that Ai centralizes v, because L centralizes v and
[Ai, L] = Ai. Hence the claim. In particular CZE(v) = 1. Let H = CG(v),
and let H̄ be its isomorphic image in Ḡ.

From the character table we infer that H̄ 6= Ḡ. If H ∼= A6, S5 or A5,
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then H is a real group, and H has a regular orbit on V by Theorem 7.2a
below. H is a real group in the cases where H̄ is contained in a maximal
subgroup of S6 of type S4×Z2 or in a solvable subgroup of S5 (as H ⊇ L),
and then H has a regular orbit on V (as r ≥ 13). It remains to investigate
the case where H̄ is contained in a maximal subgroup of type O+

4 (2) ∼= X̄0

of S6. Then H̄ ⊆ X̄0 since X̄0 is the unique 3-Sylow normalizer in Ḡ0

containing L̄. We assert that H ⊆ L× Z2, which will complete the proof.

Otherwise O3(H̄) = O3(X̄0) and O3(H) ∼= S. Changing notation, if
necessary, we may let S = O3(H). Then H ⊆ Y = NX0(S) and Y/ZS ∼=
D8. Since S centralizes v and is faithful on V , by Proposition 1.6a we have
a proper decomposition

V = CV (S)⊕ [V, S]

of FY -modules (p 6= 3). This is impossible since Y is irreducible on V , as
follows from Theorem 1.8b. For ResY

S (V ) is the sum of four nonisomorphic
1-dimensional FS-modules corresponding to an Y -orbit on S] when 3 | r−1,
and of two 2-dimensional modules otherwise. ¤

Proposition 6.6c. Let E ∼= 21+6
− . There exists a strongly real vector v ∈ V

for G such that CG(v) has a regular orbit on V .

Proof. O−6 (2) contains no irreducible 3′-subgroup [Atlas, p. 26]. Hence
p > 3 and r ≥ 7 (as 4 - r − 1). For r = 7 by computation with [GAP] (or
directly) one finds v ∈ V such that CG0(v) ∼= S4, which is a real group and
which obviously has a regular orbit on V (dim F V = 8). So let r ≥ 11 in
what follows.

Let Ȳ ∼= 31+2
+ : GL2(3) be a maximal subgroup of X̄ ∼= O−6 (2) which

is irreducible. Let S ∼= 31+2
+ be a subgroup of X such that S̄ = SE/E =

O3(Ȳ ), and let Y = NX(S). By the Frattini argument Y covers Ȳ and so
is irreducible on U = E/Z(E). Each faithful irreducible representation of
S has degree 3 or 6 depending on whether the underlying field of scalars
contains a primitive 3rd root of unity or not. Since S is faithful on U (and
Z(S) fixed point free), therefore even S is irreducible on U . Note that
Y inverts the elements of Z(S). It follows that Y ∩ E = Z(E) and that
CX(Z(S)) = Y ′Z(E) has index 2 in Y , mapping onto the maximal subgroup
Ȳ ′ ∼= GU3(2) of Ω−6 (2). Using that GL2(3) has trivial Schur multiplier we
see that Y ′Z(E) = Y ′×Z(E) and that Y ′ is a weak holomorph of S ∼= 31+2

+

(as M(Sp2(3)) = 1).
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We show that Y ′ is the standard holomorph of S, that is, Y ′ splits
over S. In view of (A2) we find a subgroup L0 of Y ′ such that L0S = Y ′

and L0 ∩ S = Z(S). We have to exclude that L0/L′0 is cyclic (of order 9).
In this case L0, hence Ω−6 (2), had an element of order 18, which is false
[Atlas, p. 27]. Hence there is a subgroup L ∼= Sp2(3) in Y ′, and Y ′ = LS.

Since S is faithful on V and Y inverts the elements of Z(S), there
is a faithful irreducible FY -submodule V1 of V of dimension 6. In fact
V1 = [V, Z(S)] and the restriction to CX(Z(S)) = Y ′ × Z(E) of V1 affords
the sum of two distinct (absolutely) irreducible characters ϕ, ϕ̄ of degree 3,
which are faithful and which are interchanged by Y . Let V0 = CV (Z(S)),
so that

V = V0 ⊕ V1

is a decomposition of FY -modules (Proposition 1.6a). Since Y is transitive
on (S/S′)] (and dim F V0 = 2), it follows from Theorem 1.8b that V0 =
CV (S). We assert that L is faithful and irreducible on V0. Assume there is
an element x ∈ L of order 4 which is trivial on V0. We have ϕ(x) = 1 = ϕ̄(x)
as ResY ′

L (ϕ) is the sum of two irreducible characters of degrees 1 and 2. It
thus follows that χ(x) = 1+1+2 = 4, hence |CU (x)| = 16 = 42 by Theorem
4.4. Now the image x̄ of x in O−6 (2) has order 4 and preserves an F4-
structure on U , because x̄ ∈ SU3(2). Since x̄ is a unipotent transformation
on U ∼= F(3)

4 , it must have two Jordan blocks on U of sizes 1 and 2. But this
forces that x̄2 = 1, a contradiction. Thus x does not centralize V0. Since
L/Z(L) ∼= A4 has no faithful irreducible F -representation of degree 2, we
see that L is faithful and irreducible on V0, as asserted.

We infer that L maps injectively into Y/CY (V0). Since both Z(E)
and Z(L) act as −1 on V0, it follows that |CY (V0) : S| = 2. Moreover
CY (V0)′ = S as Z(E) centralizes S but Z(L) inverts the elements of S/Z(S).

At most 8 points in P1(V0) are fixed by some nonidentity element in
L/Z(L) ∼= A4, because the elements of order 4 in L do not fix any point
(as 4 - r − 1). We conclude that there is v ∈ V0 such that NL(Fv) = Z(L)
(as r ≥ 11). Since S ⊆ CY (V0) is irreducible on U = E/Z(E) and E

is irreducible on V , we have NE(Fv) = Z(E). It follows that the index
|CY (v) : CY (V0)| ≤ 2 and that CY (v)′ = S. Let H = CX(v). Since H ⊇ S

acts irreducibly on U , we have H ∩ E = 1. Thus H maps isomorphically
onto an irreducible subgroup H̄ of X̄.

By (A9), (A10) NX(Fv) maps onto a proper (irreducible) subgroup
of X̄ ∼= O−6 (2) and so its Sylow 3-subgroups have order |S| = 33 or 34.
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In the latter case S ⊂ S0 for some Sylow 3-subgroup S0 of NX(Fv). But
then S0 ⊆ NX(S) = Y , even S0 ⊆ Y ′ = LS. Since S centralizes V0, it
follows that NL(Fv) contains an element of order 3, contradicting the fact
that NL(Fv) = Z(L). Consequently NX(Fv)/CX(v) is a (cyclic) 2-group
(of order dividing r − 1). Now |NX(Fv) : CX(v)| = 2 as 4 - r − 1, and
NX(Fv) = CX(v) × Z(E). From Lemma 5.1b we infer that CG0(v) =
CX(v) = H. We shall prove that H ⊆ Y and so H/S has order 2 or 4.

Assume H 6⊆ Y . If H̄ is contained in a conjugate of Ȳ , the Sylow 2-
subgroups of H ′ are cyclic, because the Sylow 2-subgroups of Ȳ /S̄ ∼= GL2(3)
are semidihedral and S is a Sylow 3-subgroup of H. By a simple transfer
argument H ′ has a normal 2-complement. But then H ⊆ NX(S) = Y . So
H̄, being irreducible, is contained in a maximal subgroup P0 = 33 : (S4×Z2)
of X̄ ∼= O−6 (2) ∼= PSp4(3) [Atlas, p. 26]. Here S4 = PGL2(3) is irreducible
on R = 33, because P = R : GL2(3) is a maximal parabolic of Sp4(3)
stabilizing an isotropic line W , and R ∼= Sym2(W ). Now S̄ is a Sylow
3-subgroup of H̄ of order 33, which by assumption is not normal in H̄. We
may assume that |R ∩ S̄| = 32 (Sylow). No element of order 3 in P0/R

centralizes R∩ S̄ = R∩ H̄ and so |CH̄(R∩ H̄) : R∩ H̄| ≤ 2. It follows that
H̄/CH̄(R∩H̄) is a subgroup of GL2(3) having no normal Sylow 3-subgroups,
hence containing SL2(3). On the other hand, this is a homomorphic image
of a subgroup of S4 × Z2, which is impossible.

ResX
H(χ) is rational-valued, because on X the values of χ lie in Q(

√
2)

or Q(
√−2) by Theorem 4.3e, and the exponent of H is 6 or 12. Hence

it remains to show that H has a regular orbit on V . There are at most
3 · 33 = 81 involutions in H, each having at most r6 fixed points on V . If
y is one of the 2 · 13 elements of order 3 in H, then dim F CV (y) ≤ 4 by
Theorem 6.2c. As r ≥ 11,

∑
γ∈β(H) |CV (γ)| ≤ 81r6 + 13r4 < r8 = |V |. ¤

6.7. The Remaining Cases

We often shall use that certain groups cannot appear as subgroups of X,
e.g., by the nonsplitting properties stated in (A9), (A10). Other groups
will be ruled out on the basis of Theorem 4.4 and the character table. For
example, let m = 5 and let X be the holomorph to any of 21+10

±,0 . Assume
Y = A9 occurs as a subgroup of X. Then there must be a nonnegative
integer combination ResX

Y (χ) =
∑6

i=1 niχi of the first six irreducible char-
acters of A9 [Atlas, p. 37] such that

∑
i niχi(1) = 25 and |∑i niχi(y)|2 = 0

or a 2-power (y ∈ Y ). This is impossible.
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Proposition 6.7a. Let E ∼= 21+2m
+ for m ≥ 3. There exists a strongly real

vector v ∈ V for G such that CG(v) has a regular orbit on V .

Proof. By Theorem 6.3b it suffices to consider the cases m = 3, 4, 5.
By Theorem 4.5b there is a subgroup L ∼= Lm(2) of X normalizing two
elementary abelian subgroups A, A∗ of E yielding a decomposition U =
W ⊕ W ∗ into totally singular subspaces. Here A ∼= W is the standard
module of L and A∗ ∼= W ∗ its dual. Recall also that ResX

L (χ) = 2·1L+ξ for
some rational-valued irreducible (Weil) character ξ. We further know that
NX(L) = LZ(E)〈τ〉 where τ interchanges A and A∗ and induces the inverse
transpose automorphism on L (τ2 ∈ Z(E)). Now CV (A) and CV (A∗)
are distinct 1-dimensional subspaces of V , and L = L′ centralizes Ṽ =
CV (A) ⊕ CV (A∗). Also, τ interchanges CV (A) and CV (A∗) and fixes no
point in P1(Ṽ ) if τ2 6= 1 (as 4 - r − 1) and two points otherwise. We
choose v ∈ Ṽ outside CV (A) and CV (A∗) and, if possible, such that v is no
eigenvector of τ . Thus if τ stabilizes Fv, then r = 3 and τ is an involution.
Let H = CG0(v).

Assume H ∩ZE 6= 1. Since H ∩Z = 1, H ∩ZE then is an L-invariant
elementary abelian subgroup of ZE whose image in U = ZE/Z is nonzero
and totally singular and so must be W or W ∗, because U = W ⊕W ∗ and
W , W ∗ are irreducible and nonisomorphic L-modules (Lemma 4.1c). Since
H contains [H ∩EZ, L], which is A or A∗, it follows that A or A∗ centralize
v. This contradicts the choice of v. Hence H ⊇ L map injectively onto
subgroups H̄ ⊇ L̄ of Ḡ0

∼= O+
2m(2).

Let τ̄ = τZE. Suppose H̄ contains NḠ0
(L̄) = 〈L̄, τ̄〉. Then there

is an element τ0 ∈ H with τ0ZE = τ̄ , and then L = Lτ0 must agree
(within H). Thus τ0 and τ act on L in the same manner. We deduce that
ττ−1

0 ∈ CZE(L) = Z. As τ0 centralizes v, τ fixes Fv. Thus r = 3 and τ is
an involution.

By (A9), (A10) H̄ is neither Ḡ0 = O+
2m(2) nor Ω+

2m(2), nor is any sub-
group of odd index in these groups by (A4). If H̄ is contained in a maximal
parabolic P of Ω+

2m(2) stabilizing a maximal totally singular subspace of
U , this subspace must be W or W ∗ = W τ , by the action of L̄ on U , and
necessarily H = L as the Levi complement L̄ is irreducible on the unipotent
radical R ∼= Λ2(W ) resp. Λ2(W ∗) of P (Appendix B and Appendix A7).

Let m = 3. Then H = L or r = 3 and H = L〈τ〉 ∼= PGL2(7), the
further possibilities H ∼= A7, S7 being ruled out by Theorem 4.4 and the
character tables. The extensions of ξ to PGL2(7) take only real values



Reduced Pairs of Extraspecial Type 105

[Atlas, p. 3]. Also,
∑

γ∈β(H)

|CV (γ)| ≤ 21r6 + 28r5 + 28r4 < r8 = |V |

for r > 3. For r = 3, H ∩G is contained in groups of type D16 (not in L)
or 7 : 2 (not in L). An involution of H in L has r6 fixed points on V , an
involution outside r5. Use that 5r6 + 4r5 < r8 respectively 7r5 + r2 < r8.

Let m = 4. We assert that then H = L. We inspect the maximal
subgroups of O+

8 (2) [Atlas, p. 85]. The possibilities H ∼= A9, S9 are ruled
out by the character tables. H̄ cannot be in a maximal subgroup of O+

8 (2)
of type Sp6(2) × Z2, the stabilizer of a nonsingular point (as H̄ ⊇ L̄). If
H̄ 6= L̄, then H̄ must be contained in an (irreducible) Sp6(2) group [Atlas,
p. 46], which in turn contains an S8 subgroup. Thus if H 6= L, then τ̄ ∈ H̄,
r = 3 and either H = L〈τ〉 ∼= S8 or H ∼= Sp6(2). But in this case χ restricts
to an S8 subgroup as 2χ1 + χ3 (Atlas notation) where, by Theorem 4.4,
χ3(2C) = −4 on the involutions 2C outside A8. But then χ3(10A) = +1
and χ(10A) = 3, contradicting Theorem 4.4. Hence the assertion. The
counting method yields a regular orbit on V for H ∩ G for r > 3 (hence
r ≥ 7). For r = 3 use that H ∩ G is contained in groups of type 24 : 22,
23 : 7, 5 : 4 or 5 : 22 [Atlas], and that 26r12 < r16.

Let m = 5. Then H = L or r = 3 and H = L〈τ〉 ∼= L5(2) : 2 by
inspection of the maximal subgroups of O+

10(2) [Atlas, p. 146]. Observe
that ξ extends to real-valued characters of L5(2) : 2 [Atlas, p. 70]. As
before we get a regular orbit for H ∩G. ¤

Proposition 6.7b. Let E ∼= 21+2m
0 for m ≥ 3. There exists a strongly real

vector v ∈ V for G such that CG(v) has a regular orbit on V .

Proof. By Theorem 6.3b we only have to examine the cases m = 3, 4, 5.
Write E = E0◦Z4 where E0

∼= 21+2m
+ . Let Y = NX(E0). Then Ȳ = Y/E ∼=

O+
2m(2) is a maximal subgroup of X̄ ∼= Sp2m(2). As before pick a subgroup

L ∼= Lm(2) of Y and L-invariant elementary abelian subgroups A, A∗ of E0

of order 2m. Again ResX
L (χ) = 2·1L+ξ for some rational-valued irreducible

(Weil) character ξ. We also find τ ∈ X inducing the inverse transpose
automorphism on L such that NG0(L) = LZ〈τ〉 and τ2 ∈ Z(E) (see the
remark to Theorem 4.5b). This τ interchanges A = [Ω1(AZ(E)), L] and
A∗ = [Ω1(A∗Z(E)), L]. Now L = L′ centralizes Ṽ = CV (A)⊕CV (A∗), and
τ interchanges the 1-dimensional fixed spaces CV (A) and CV (A∗). Multiply
τ by a scalar in Z, if necessary, such that its order is as small as possible.
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Let m = 3. Choose w ∈ Ṽ outside CV (A) = and CV (A∗) and, if
possible, such that τ centralizes w. Let H = CG0(w). As before one
shows that H ∩ ZE = 1. So by (A10) H ⊇ L map injectively onto proper
subgroups H̄ ⊇ L̄ of Ḡ0

∼= Sp6(2). We cannot have H ∼= A7, S7 by the
character tables and (4.4). Similarly H is not isomorphic to Ω+

6 (2) ∼= A8.
It remains to study the situation where H̄ is contained in a maximal G2(2)
subgroup of Ḡ0 [Atlas, p. 46]. We cannot have H ∼= G2(2) by the character
table and (4.4). Suppose H ∼= G2(2)′. Then H = H ′ ⊆ G′0 = X ′ and [Atlas,
p. 14] ResX

H(χ) = χ1 + χ4 or χ1 + χ5, where χ4 and χ5 are algebraically
conjugate and not real-valued (but fuse in G2(2); ResX

H(χ) = χ1 + χ3 is
excluded by considering the value on the conjugacy class 6A). There is a
unique G2(2)′ overgroup of L̄ in Ḡ0, namely that normalized by τ̄ = τZE.
(To see this, recall that NḠ0

(L̄) = L̄〈τ̄〉 by Theorem 4.5b, and use that
Sp6(2) contains a unique conjugacy class of G2(2)′ subgroups and that each
G2(2)′ group has a unique conjugacy class of (maximal) L3(2) subgroups.)
Hence both H and Hτ contain L and map (isomorphically) onto H̄ (τ̄ 6∈ H̄).

Now U is the unique (absolutely) irreducible F2H-module of dimension
6 (arising naturally from the action of G2(2) on the F2 Cayley algebra
[Atlas, p. 14], [B-Atlas, p. 23]). One knows that H1(H, U) has order
2 [Sin, 1996]. Using that H ∼= G2(2)′ is perfect and has trivial Schur
multiplier we see that there are just 2 conjugacy classes of complements
to E in HE. If two such complements, say H and Hτ , are conjugate
under E, say Hτ = Hy−1

(y ∈ E), then Ly = {x[x, y] |x ∈ L} ⊆ H and
[L, y] ⊆ H ∩ E = 1, that is, y ∈ Z(E) ⊆ Z. We conclude that either
H = Hτ , or H 6= Hτ are the unique overgroups of L mapping onto H̄.

Clearly 〈H, A〉 ⊇ E as H̄ is irreducible on U = E/Z(E). Hence H = H ′

does not centralize CV (A). It follows that C
Ṽ

(H) = Fw. If τ fixes Fw,
then by the choices of τ and of w it centralizes w. But τ 6∈ H = CG0(w).
We conclude that τ does not fix Fw, whence H 6= Hτ , and these two groups
fix just the two points Fw and Fwτ in P1(Ṽ ). Note that |P1(Ṽ )| ≥ 6. If we
choose v ∈ Ṽ such that Fv is different from these two points, different from
CV (A) and CV (A∗), and if possible such that Fv is the eigenspace of τ on
Ṽ to the eigenvalue 1, then H0 = CG0(v) either is L or τ is an involution
and H0 = L〈τ〉 ∼= PGL2(7). This v is strongly real for G, and in the worst
case we get the estimate

∑

γ∈β(H0)

|CV (γ)| ≤ 21r6 + 28r5 + 28r4.
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This is less than |V | = r8 except when r = 5. But in this exceptional case
H0, being a 5′-group, has a regular orbit on V by Theorem 7.2a below.

For m = 4, 5 we choose v ∈ Ṽ outside CV (A) and CV (A∗) such that
Fv is not fixed by τ . Then H = CG0(v) agrees with L, and L ∩ G has
a regular orbit on V . In the m = 4 case this follows by inspection of the
maximal subgroups of Sp8(2) [Atlas, p. 123]. In the m = 5 case we deduce
from Lemma 6.3a (and Table 3.5.C in [Kleidman–Liebeck, 1990]) that the
(isomorphic) image of H in Sp10(2) must be properly contained in O±10(2)
subgroups, and inspection of the [Atlas, pp. 146, 147] yields H = L. ¤

Proposition 6.7c. Let E ∼= 21+2m
− with m ≥ 4. There exists a strongly

real vector v ∈ V for G such that CG(v) has a regular orbit on V .

Proof. By Theorem 6.3b we only have to consider the cases m = 4, 5.
Decompose E = E0 ◦ E1 where E0

∼= 21+2(m−1)
+ and E1

∼= Q8. Let X0 =
CX(E1) and X1 = CX(E0). Then X0 is the standard holomorph of E0 (in
F ) and X1 that of E1 (in F ). Moreover, the central product Y = X0 ◦X1

(amalgamating Z(E0) = Z(E1)) is a maximal subgroup of X. As an Y -
module we may decompose V = V0⊗F V1 where V0 is the natural module for
X0 and V1 that for X1. Recall that X1

∼= 2+S4 = GL2(3) if r ≡ 3 (mod 8)
and X1

∼= 2−S4 if r ≡ 7 (mod 8) (4 - r − 1). Let χ0 and χ1 denote the
obvious characters of X0 and X1, respectively, so that ResX

Y (χ) = χ0 ⊗ χ1.

Let L0
∼= Lm−1(2), A0, A

∗
0 and W0,W

∗
0 be defined for X0 as in Theorem

4.5b. Hence U0 = E0Z/Z = W0 ⊕W ∗
0 where W0 is the standard module

for L0 and W ∗
0 is its nonisomorphic dual. Here Ṽ0 = CV0(A0)⊕CV0(A

∗
0) is

a 2-dimensional subspace of V0 which is centralized by L0 = L′0. Further
NX0(L0) = L0Z(E0)〈τ0〉 for some τ0 which induces the inverse transpose
automorphism on L0 (τ2

0 ∈ Z(E0)). We know that ResX0
L0

(χ0) = 2 ·1L0 +ξ0,
where the Weil character ξ0 is rational-valued.

For r = 3 pick any v1 ∈ V ]
1 , so that CX1(v1) ∼= S3, and choose v0 ∈ Ṽ0

outside C
Ṽ0

(A0) ∪ C
Ṽ0

(A∗0), and let v = v0 ⊗ v1. Otherwise r ≥ 7, and we

choose v ∈ Ṽ = Ṽ0 ⊗F V1 which is not centralized by A0, A∗0 nor by any
element of prime order (2 or 3) in 〈τ0〉X1Z. (We have at most 12 subgroups
of order 3 and at most 2+2 ·12 involutions in 〈τ0〉X1Z outside Z, each with
at most r2 fixed points on Ṽ , and 38r2 < r4 = |Ṽ |.) Let L = L0×CX1(v1)
for r = 3 and L = L0 otherwise. Of course χ takes only rational values on
L. In view of the m = 3, m = 4 cases of the proof for Proposition 6.7a it is
clear that there there is a regular (L ∩G)-orbit on V .
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Let H = CG0(v), so that H ⊇ L. We assert that H ∩ ZE = 1.
Otherwise H ∩ ZE is an L0-invariant elementary abelian subgroup of ZE

mapping onto an L0-submodule 6= 0 of

U = U0⊥U1 = (W0 ⊕W ∗
0 )⊥U1.

U is a completely reducible F2L0-module, W0, W
∗
0 being irreducible and U1

centralized by L0, each point in U1 being nonsingular. Hence the image of
H∩ZE must be W or W ∗. But this implies that one of A or A∗ centralizes
v, in contrast to the choice of v. Therefore H ⊇ L map isomorphically onto
(proper) subgroups H̄ ⊇ L̄ of Ḡ0

∼= O−2m(2).

The element τ̄0 = τ0ZE of X̄0
∼= O+

2(m−1)(2) is not in H̄ when r > 3.
For otherwise H contains an element τ with τZE = τ̄0, both L = L0 and
Lτ being subgroups of H mapping onto L̄ = L̄τ̄0 . Thus L0 = Lτ

0 and both
τ0, τ induce the inverse transpose automorphism on L0. We conclude that
τ · τ−1

0 ∈ CZE(L0) = ZE1 and so τ = τ0x1z ∈ H for some x1 ∈ E1 and
z ∈ Z, against our construction.

Let m = 4. Inspection of the maximal subgroups of Ḡ0
∼= O−8 (2) [Atlas,

p. 89] shows that H̄ must be contained in subgroups of the following types:

(i) A Ḡ0-conjugate of Ȳ = Y Z/ZE, isomorphic to O+
6 (2) × O−2 (2) ∼=

S8 × S3.

(ii) A maximal parabolic stabilizing a maximal totally singular sub-
space of U .

(iii) The stabilizer Sp6(2)× Z2 of some nonsingular point in U .

Here we already ruled out the possibility that H̄ is contained in an irre-
ducible PGL2(7) subgroup of O−8 (2). In this case L̄ ∼= PSL2(7) would be
normal in H̄ ∼= PGL2(7) and act on U with irreducible constituents of
equal dimensions (Theorem 1.8). In (i) we have H̄ ⊆ Ȳ by the action of
L̄ on U and, as in the proof for Proposition 6.7a, we get H = L or r = 3
and H ∼= PGL2(7) × S3. In (ii) the parabolic P is the stabilizer of W0 or
W ∗

0 = W τ̄0
0 , and P ⊇ L̄ = L̄τ̄0 . So P = R : L̄, where the unipotent radical

R is a central extension of W0⊗U1 by Λ2(W0) if P = NḠ0
(W0) (Appendix

B2). H̄ cannot contain Λ2(W0) (resp. Λ2(W ∗
0 )) for otherwise H contains

an overgroup of L0 mapping isomorphically onto a maximal parabolic of
Ω+

6 (2), contradicting (A10). Using that L0 is irreducible on Λ2(W0) (resp.
Λ2(W ∗

0 )) we get H = L. In (iii) the nonsingular point must be in U1, hence
r > 3. Here H̄ is contained in an Sp6(2) group by the choice of v, because
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the direct factor Z2 is such that it preserves U1 and centralizes U0 = U⊥
1 .

We cannot have H̄ ∼= Sp6(2) or O+
6 (2), Ω+

6 (2) by (A10). By inspection of
the maximal subgroups of Sp6(2) and G2(2) [Atlas, pp. 46, 14], and using
that τ̄0 6∈ H̄, we obtain that either H = L or H ∼= G2(2)′. In the latter
case H ⊆ X and

ResX
H(χ) = 2χ1 + χ4 + χ5

in the notation of the Atlas (p. 14), where χ4 and χ5 are algebraically
conjugate and fuse in G2(2) to a rational-valued character. Also H ∩G has
a regular orbit on V in this case, because

∑

γ∈β(H)

|CV (γ)| ≤ 63r12 + 336r8 + (28 + 288)r4 < r16 = |V |.

Let m = 5. Consider the maximal subgroups of Ḡ0
∼= O−10(2) [Atlas,

p. 147]. Recall that A9 does not occur as a subgroup of G0. Furthermore,
O+

6 (2) × O−4 (2) and O−6 (2) × O+
4 (2) cannot be overgroups of H̄ (by their

action on U), nor M12 : 2 (missing in the [Atlas]) and GU5(2) : 2 (as they
do not have L4(2) subgroups). It remains to consider cases (i), (ii), (iii)
defined as in the m = 4 case. This leads to H = L or r = 3 and H is of type
S8×S3 or Sp6(2)×S3, which are ruled out as in the m = 4 case of the proof
for Proposition 6.7a. In (iii) H̄ is contained in a stabilizer Sp8(2) × Z2 of
a nonsingular point, necessarily in U1, which implies that r > 3. It follows
that either H = L = L0 or H ∼= Sp2(6) maps onto on irreducible subgroup
H̄ of O+

8 (2) [Atlas]. However, then H̄ contains L̄0〈τ̄0〉 ∼= S8, which has also
been ruled out. ¤

This completes the proof for Theorem 6.1.

At this stage the k(GV ) conjecture is settled for solvable groups G and
modules V in characteristic p 6= 3, 5, 7, 13 (by virtue of Theorems 5.2b and
5.4). Moreover, if G is a (solvable) group with a normal 2-complement, the
conjecture holds. For the property of having a normal 2-complement is pre-
served when passing to subgroups, quotient groups and central extensions,
so that Theorem 5.4 applies.

In particular, the k(GV ) conjecture holds for supersolvable groups
[Knörr, 1984], which have a normal 2-complement, and for groups of odd
order [Gluck, 1984].



Chapter 7

Reduced Pairs of Quasisimple Type

The main task of this chapter will be to determine the reduced pairs (G, V )
of quasisimple type where there is no regular G-orbit on V . The classifi-
cation of these pairs has been achieved by the efforts of [Liebeck, 1996],
[Goodwin, 2000], [Riese, 2001] and [Köhler and Pahlings, 2001]. From this
it is easy to classify the nonreal reduced pairs of quasisimple type.

7.1. Nonreal Reduced Pairs

Throughout (G,V ) will be a reduced pair over F = Fr with quasisimple
core, E. By coprimeness, and by the Feit–Thompson theorem, r is a power
of some odd prime p. Embed E and G into GL(V ) and let G0 = NGL(V )(E).
Again we distinguish these pairs by their cores. It turns out that, in this
sense, there are just 3 types of nonreal reduced pairs with quasisimple cores.
Here all characters involved are Weil characters and, up to three exceptions
in type (Sp4(3)), the pairs are large.

Type (2.A5) : Let r = p be one of the primes 11, 19, 29 or 59. We
have seen in Sec. 3.2 that then GL2(p) contains a subgroup E ∼= 2.A5 such
that G0 = NGL2(p)(E) acts transitively on the nonzero vectors in V = F(2)

p .
Here G = G0

∼= E ◦ Zp−1 is a p′-group, E is absolutely irreducible on V ,
and the centralizer in G of a nonzero vector is cyclic of order 5, 3, 2 or 1,
respectively. We conclude, in view of Lemma 4.1c, that (G,V ) is a nonreal
reduced pair for r = 11 and for r = 19.

The Brauer character of E afforded by V is one of the two faithful
irreducible Weil characters (of degree 2) of SL2(5), which are algebraically
conjugate and fuse in 2.A5.2. There are other primes p ≥ 11 where GL2(p)
contains a copy E of 2.A5 = SL2(5), because this only requires that 5 is
a square mod p. We get a further nonreal reduced pair (G,V ) for p =
31, where G ∼= 2.A5 × Z15 has two orbits on nonzero vectors with point
stabilizers of order 3 and 5.

Type (2.A6) : The group E = 2.A6 has two faithful irreducible characters,
χ8 and χ9, of degree 4 [Atlas, p. 5]. These are Weil characters for E ∼=

110
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Sp2(9), and they fuse in 2.A6.22. There is a nonreal extension of χ8 to
2−S6 (not given in the Atlas), and a nonreal extension of χ9 to the isoclinic
variant 2+S6, each requiring a square root of −3.

Let r = p = 7. Then
√−3 is in F = F7 but

√
3 is not. Let Vi be an

FE-module affording χi, embed E into GL(Vi) and let Gi = NGL(Vi)(E)
(i = 8, 9). Then Gi is isomorphic to (2−S6) × Z3 resp. to (2+S6) × Z3.
There are three orbits of Gi on V ]

i , the point stabilizers being of type
Z3, Z6 and Z3wrZ2

∼= Z3 × S3 (in both cases). This has been proved in
Example 5.7b, where we also showed that no vector in Vi is real for Gi. We
have two nonisomorphic nonreal reduced pairs (Gi, Vi) where, however, the
underlying groups are isoclinic and the modules behave similarly.

Type (Sp4(3)) : The group E = Sp4(3) has two faithful irreducible (Weil)
characters χ = χ21 or χ22 of degree 4 which are algebraically conjugate and
which fuse in Sp4(3).2 [Atlas, p. 27]. So the resulting reduced pairs are
isomorphic. There are unique conjugacy classes of subgroups S ∼= SL2(3)
and T ∼= 31+2

+ : Q8 of E on which χ splits off the 1-character, and no proper
overgroups have this property [Atlas]; Z(S) is generated by an element in
class 2A and Z(T ) by one in classes 3A0B0. By considering the elements of
E in the classes 6E, and their powers, one gets ResE

S (χ) = 1S +λ+ξ2 where
λ 6= 1S is linear and ξ2 is an irreducible Weil character (Q(ξ2) = Q(

√−3)).

Let F = Fr for r = p = 7, 13 or 19, and let V be a (coprime, faith-
ful) FE-module affording χ as a Brauer character. Embed E into GL(V )
through χ, and let G = NGL(V )(E) = E ◦ Zr−1. For r = 7 we have two
G-orbits on V ] with point stabilizers S.3 = S × Z3 and T.3 = T × Z3

(where A.B indicates that A is the point stabilizer taken in E). For r = 13
we have four G-orbits with stabilizers S.3 = S × Z3, T.3 = 31+2

+ : Sp2(3),
Q8.6 = SL2(3) ◦ Z4 and Z3.6 = Z3wrZ2. For r = 19 there are five G-
orbits with stabilizers S.3 = S × Z3, T.3 = 31+2

+ : Sp2(3), Q8.3 = SL2(3),
Z3.3 = Z

(2)
3 and 1.Z9. In each case (G,V ) is nonreal reduced, as it is (E, V )

for r = 7 and (E ◦ Z6, V ) for r = 13, 19.

Theorem 7.1. Up to isomorphism there are exactly 11 nonreal reduced
pairs of quasisimple type, and these are described above. All other reduced
pairs (G,V ) of quasisimple type admit a real vector v ∈ V such that CG(v)
has a regular orbit on V .

This theorem will be derived from the classification of the reduced pairs of
quasisimple type admitting no regular orbits.
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7.2. Regular Orbits

We have seen in Example 5.1a that if (G,V ) is a “permutation pair” over
F of degree d and r = p is equal to d + 2 or d + 3, then there is no regular
G-orbit on V . These reduced pairs admit always strongly real vectors, and
regular vectors if r ≥ d + 4.

Theorem 7.2a. Suppose the pair (G,V ) does not admit a regular orbit.
Then G0 = NGL(V )(E) is a p ′-group. Up to a few isoclinisms, the iso-
morphism class of (G0, V ) is determined by G0, d = dim F V , and possible
r = |F |. Excluding the isomorphism classes of the permutation pairs these
are listed below, together with the isomorphism type of a point stabilizer
H = CG0(v) of smallest possible order (depending on r):

G0 d r minimal stabilizer(s)
A5 × Z 3 11 Z2

2.A5 ◦ Z 2 11, 19, 29, 31, 41, 49, 61 Z5, Z3, Z2, Z3, Z2, Z2, Z2

3.A6 ◦ Z 3 19, 31 Z2, Z2

2.S6 ◦ Z 4 7 Z3

2.A7 ◦ Z 4 11 Z3

L2(7) × Z 3 11 Z2

Sp4(3) ◦ Z 4 7, 13, 19, 31, 37 H1, H2, Z9, Z3, Z2

PSp4(3) × Z 5 7, 13, 19 S4, V4, Z2

PSp4(3).2 × Z 6 7, 11, 19 D12, V4, Z2

Sp6(2) × Z 7 11, 13, 17, 19 Z
(3)
2 , V4, Z2, Z2

(U3(3) × Z).2 6 5 S3

U3(3) × Z 7 5 Z2

U3(3).2 × Z 7 5 Z2

61.U4(3).22 ◦ Z 6 13, 19, 31, 37 S4 × Z2, S3 × Z2, V4, Z2

(U5(2) × Z).2 10 7 V4

2.O+
8 (2) ◦ Z 8 11, 13, 17, 19, 23 S4 × Z2, S4, S3, V4, Z2

2.J2 ◦ Z 6 11 S3

Remarks. There are six isoclinic but not isomorphic pairs in the above list
(2±S6, the unitary groups 61.U4(3).22◦Z for r = 19, 31, and the orthogonal
groups for r = 11, 19, 23). For the groups Sp4(3) ◦ Z the point stabilizers
H1 = SL2(3) × Z3 (r = 7) and H2 = Z3wrZ2 (r = 13) already appear in
Sec. 7.1, and these are the only nonreal reduced pairs where there is no
cyclic point stabilizer. It is easy to determine the possible subgroups G of
G0 for which there is no regular orbit, too.
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Except for G0 = 2.A5 ◦ Z, d = 2, r = 49 always r = p is a prime.
Here we deal with the two Weil characters of E = 2.A5 of degree 2 , which
require

√
5 and which fuse in 2.S5. Their sum is the Brauer character of an

irreducible (but not absolutely irreducible) F7E-module Ṽ which extends
to G̃ = N

GL(Ṽ )
(E) ∼= (2.A5 ◦ Z48).Z2. There is no regular G̃-orbit on Ṽ

(minimal stabilizer H ∼= V4).

There is only one further example of this kind: E ∼= L2(7) has a
faithful irreducible module Ṽ of degree 6 over F = F5 which, as before, is
not absolutely irreducible (affording χ2 + χ3 in the Atlas notation, p. 3).
This extends to G̃ = N

GL(Ṽ )
(E) ∼= (L2(7)×Z24).Z2, and there is no regular

G̃-orbit on Ṽ (minimal stabilizer H ∼= Z2).

The proof for Theorem 7.2a will be carried out in Secs. 7.3 till 7.10.
We now state some consequences.

Corollary 7.2b. The reduced pairs described in Sec. 7.1 are the unique
ones, up to isomorphism, which are nonreal of quasisimple type.

Proof. It suffices to consider the reduced pairs listed in Theorem 7.2a. If
the minimal stabilizer H ∼= CG0(v) is a real group, the result follows. It
therefore remains to show that real vectors exist in the following two cases:

Case 1: G = 2.A7 × Z5, d = 4, F = F11

Let E = 2.A7. Note that χ = χ10 resp. χ11 in the notation of the
Atlas (p. 10). Straightforward computation shows that there is v ∈ V such
that H = CE(v) is generated by an element of order 3 in the conjugacy
class 3B, where χ takes the value 1. The normalizer NE(H) is a 5′-group.
Hence CG(v) = CE(v) by (5.1b) and so v is a strongly real vector for G.

Case 2: G = Sp4(3)× Z15, d = 4, F = F31

We prove that there is a real vector v ∈ V for G with CG(v) ∼= Z5.
(There is no strongly real vector in this case). Let E = Sp4(3). Note that
χ = χ21 resp. χ22 in the notation of the [Atlas, p. 27]. We first show that
there is a regular E-orbit on V = Vχ. The elements of order 4 and 5 in E do
not have nonzero fixed points on V . Each of the 45 noncentral involutions
in E has r2 fixed points, the 2 · 40 elements belonging to the classes 3A0B0

have r fixed points each, and the 2 · 240 elements belonging to 3D0 have
r2 fixed points on V . Now use that 45r2 + 40r + 240r2 < r4 = |V | (as
r = 31). So let v ∈ V ] belong to a regular E-orbit. Let y ∈ E be an
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element in the (unique) conjugacy class 5A0 of E of elements of order 5,
where χ takes the value −1. Then v, vy, vy2, vy3, vy4 are linearly dependent
(d = 4). Hence vy = vz for some z ∈ Z = Z30 of order 5. It follows that
H = CG(v) contains z−1y and that NE(Fv) contains y. But CE(y) = 〈y〉
and NE(Fv) is cyclic (isomorphic to a subgroup of F ? ∼= Z30). We conclude
that NE(Fv) = 〈y〉 and, in view of Lemma 5.1b, that H = 〈z−1y〉. We
have (z−1y)V = [1, z2, z3, z4] and so ResG

H(χ) affords 1H + λ2 + λ3 + λ4 for
some linear character λ of order 5. The FH-module affording 1H +λ2 +λ3

is self-dual, faithful, and is a submodule of ResG
H(V ), as desired. ¤

Corollary 7.2c. Suppose (G,V ) is a reduced pair of quasisimple type
having no regular orbit on V . Then there is v ∈ V such that CG(v) has a
regular orbit on V , and v can be chosen to be real for G unless (G,V ) is
nonreal reduced. Whenever H is a subgroup of G0 satisfying H ∩ Z = 1
which is isomorphic to a minimal stabilizer as given in Theorem 7.2a, then
H has a regular orbit on P1(V ).

Proof. From Eq. (3.4b) it follows that if H is abelian with H ∩ Z = 1,
then H has a regular orbit on P1(V ). If (G,V ) is a permutation pair (of
degree d), by Example 5.1a there exists v ∈ V such that H = CG(v) ∼= Sd

and ResG
H(V ) is the permutation module for Sd over F , which has a regular

orbit on V . The assertion also holds for the two pairs studied in Corollary
7.2b. The minimal stabilizers H appearing in Theorem 7.2a which are real
groups, are easily treated (with the help of the character tables).

Hence it remains to examine the nonreal reduced pair of type (Sp4(3))
for r = 7, 13, where H = H1 or H2. So let E = Sp4(3) and χ = χ21

resp. χ22 [Atlas, p. 27]. Consider first the situation where r = 7 and
H ∼= SL2(3) × Z3. The unique central involution in H must map into the
class 2A of EZ/Z ∼= U4(2) and so fixes just 2(r + 1) = 16 points in P1(V )
(since χ(2A0) = 0). There are four conjugacy classes of elements of order
3 in E. The elements in the classes 3A0B0 have spectral pattern [ε(3), 1]
for some primitive 3rd root of unity ε, hence fix (r3 − 1)/(r − 1) + 1 = 58
points in P1(V ). Elements in the class 3C0 fix 2(r + 1) = 16 points (since
χ(3C0) = −2), and those in 3D0 just (r + 1) + 1 + 1 = 10 points (as
χ(3D0) = 1). We assume the worst case that all elements of order 3 in
H belong to 3A0B0. Let Y be a noncentral subgroup in H of order 3.
Then the four H-conjugates of Y generate a subgroup S ∼= SL2(3) of H,
and the subgroups in S of prime order fix at most 16 + 4 · 58 = 248 points
in P1(V ). Noting that |P1(V )| = (r4 − 1)/(r − 1) = 400, there are thus
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at least 400 − 248 = 152 points which belong to regular orbits of S on
P1(V ). Hence there are at least 7 regular S-orbits on P1(V ), including a
total number of 7 · |S| = 168 points. There are three (central) subgroups (of
order 3) in H outside S. By common diagonalization the intersections of the
3-dimensional eigenspaces of their generators on V have dimension at least
2. Hence the three subgroups of H outside S leave at most 58+2 ·50 = 158
points in P1(V ) invariant. There is a point which is not fixed by any of
these subgroups and belongs to a regular orbit of S, as desired.

In the r = 13 case H ∼= Z3wr S2 has four subgroups of order 3 and
three subgroups of order 2, each fixing at most 1 + (r2 + r + 1) points in
P1(V ). The result follows. ¤

7.3. Covering Numbers, Projective Marks

For convenience we assume that the pair (G,V ) is large (Z ⊆ G). Recall
that its core E = E′ is perfect, L = E/Z(E) is nonabelian simple and
that Z(E) is part of the Schur multiplier M(L). So E is an epimorphic
image of the unique (universal) covering group of L (Appendix A). Usually
M(L) is “small”, and is cyclic in most cases. At any rate, Z(E) is a cyclic
part of M(L). The groups Ḡ = G/Z and Ḡ0 = G0/Z are subgroups of
Aut(L) containing L (as a normal subgroup). So Ḡ and Ḡ0 are almost
simple groups, and we say that G,G0 are almost quasisimple (just meaning
that they are almost simple over their centre). The group of (outer) auto-
morphisms Out(L) of L is known to be solvable (Schreier conjecture), and
usually it is “small” as well. For example, if L is one of the 26 sporadic
simple groups, then M(L) is cyclic and Out(L) has order 1 or 2, and if it
has order 2, then it inverts the elements in M(L).

We associate to (G,V ) the Brauer character χ of G afforded by V ,
which may be understood as an ordinary (absolutely) irreducible character
of E extended to G. So we are interested in the faithful irreducible char-
acters of E or, more generally, in the projective irreducible representations
of L. The character χ may be regarded as afforded by a faithful projective
representation of Ḡ. By Schur every projective C-representation of Ḡ can
be lifted to an ordinary representation of its Schur cover.

In order to prove Theorem 7.2a we have to work through the classi-
fication of the finite simple groups. Usually we proceed in two steps: We
use counting arguments as described in Sec. 5.6, as well as lower bounds
for d = dim F (V ), to reduce the discussion to “small” simple groups L and
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“small” degrees d, and “small” r. It turns out that in most of the remaining
cases G = G0 = X ◦ Z where either X = E.a is an Atlas groups or where
χ is a Weil character. Whenever this does not suffice to finish a proof, we
use computational methods following [Köhler–Pahlings, 2001].

Let R0(Ḡ) be the smallest integer d0 > 1 such that there is a projective
irreducible representation of Ḡ of degree d0 in characteristic 0. Since Ḡ

is a p′-group, R0(Ḡ) = Rp(Ḡ) (similarly defined), hence d ≥ d0. Lower
bounds for R0(Ḡ) are given in [Schur, 1911] and [Rasala, 1977] when Ḡ is
an alternating or symmetric group, and in [Tiep–Zalesskii, 1996] when Ḡ

is a simple classical group (Appendix C), for all simple groups of Lie type
by [Seitz–Zalesskii, 1993]. For linear groups GLm(q), symplectic groups
Sp2m(q), q odd, and unitary groups SUm(q) this minimal degree is, with
few exceptions, attained by the Weil characters (Appendix C and Theorems
4.5a, 4.5b). Being able to treat these Weil characters one can proceed to
the characters of the second and third lowest degrees.

We usually begin by applying the following crude estimate, already
used in [Liebeck, 1996]. For any nontrivial element x in the automorphism
group of the simple nonabelian group L let us define the covering number
c(x) as the minimum number of L-conjugates of x required to generate the
subgroup 〈L, x〉 of Aut(L). (This is not common terminology!) Let then

(7.3a) c(L) = max{c(x) : 1 6= x ∈ Aut(L)}.

Upper bounds for c(L) are available (see below).

Lemma 7.3b (Liebeck). The fixed point ratio f(g, V ) ≤ 1 − 1/c(Zg) for
any g ∈ Gr Z. If there is no regular G-orbit on V , then

r ≤ (2|Ḡ|)c(L)/d ≤ (2|Aut(L)|)c(L)/R0(L).

Proof. Write c(g) = c(Zg). Since the [V, g]x = [V, gx], x ∈ E, generate
V = [V, E], by definition dim F [V, g] ≥ d/c(g). By Proposition 1.6a, V =
[V, g]⊕CV (g). Hence dim F CV (g) ≤ d−d/c(g). Of course c(L) ≥ c(g) ≥ 2.
By (5.6d)

∑
z∈Z |CV (zg)| ≤ 2rd−d/c(g). If there is no regular G-orbit on V ,

therefore
rd ≤ 2|Ḡ|rd−d/c(L).

This gives the final statement. ¤
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Now suppose G = X ◦ Z where X = n.L.a is an Atlas group (and
Z(X) = Z ∩X has order n ). Then we may identify Ḡ with the almost
simple group X̄ = X/Z(X). Choose a set {X̄i}s

i=1 of representatives for
the conjugacy classes of the subgroups of X̄, and let Xi be any (small)
subgroup of X mapping onto X̄i. Define mij as the number of fixed points
of X̄j in its action on the transitive X̄-set X̄i\X̄ of right cosets mod X̄i.
The isomorphism type of X̄i\X̄ is determined by the ith row vector of the
table of marks (mij). Arranging matters such that |X̄i| ≤ |X̄j | for i ≤ j

this is a lower diagonal matrix with mii = |NX̄(X̄i) : X̄i| on the diagonal.

Proposition 7.3c. Let t be any positive integer divisible by n = |Z(X)|
and dividing exp (X). For each i there exists a distinguished rational poly-
nomial µt

χ,X̄i
of degree less than d = χ(1), with the following property:

Whenever r is a power of a prime not dividing |X| such that t | r−1 and χ

can be written in F = Fr, afforded by V = Vχ, then Gt = X ◦Zt has exactly
r−1

t · µt
χ,X̄i

(r) orbits on V ] admitting a point stabilizer mapping onto X̄i.

Proof. The crucial point will be the computation of these polynomials
(their existence being somehow evident). Given r we usually regard the
µt

χ,X̄i
as polynomials in r (omitting the argument). Of course, Zt denotes

the subgroup of order t of Z = Zr−1 and Gt is the central product over
Z(X). If for instance µt

χ,1 vanishes (at r), there is no regular Gt-orbit on
V , hence no regular orbit for G = X ◦Z. If µt

χ,1 does not vanish and t is a
proper divisor of r(X) = gcd(r − 1, exp (X)), we have to consider, finally,
the polynomial µ

r(X)
χ,1 . Sometimes it happens that CGt

(v) = CG(v) for each
v belonging to a regular orbit for Gt, that is, these orbits fuse to regular
orbits for G. Then µt

χ,1 = µ
r(X)
χ,1 , so the polynomial only depends on t.

Let us construct the polynomials. Identify Ḡt = Gt/Zt with X̄. Recall
that CGt

(v)∩Zt = 1 and CGt
(v)Zt/Zt = CḠt

(Ztv) for each nonzero vector
v ∈ V , so that the Gt-orbits on V ] are in 1-1 correspondence with the X̄-
orbits on Ω = {Ztv| v ∈ V ]}. (We have Ω = P1(V ) when Zt = Z.) As an
X̄-set, Ω ∼= ⋃

i µi ·(X̄i\X̄) for certain multiplicities µi, counting the number
of X̄-orbits with stabilizer conjugate to X̄i. Then |CΩ(X̄j)| =

∑
i µi ·mij

for each j. It is easy to compute these multiplicities once the row vector
(|CΩ(X̄1)|, · · ·, |CΩ(X̄t)|) of marks of X̄ on Ω is known, and this is given by

|CΩ(X̄j)| = |CΩ(Xj)| = 1
t

∑

λ

(r〈χ,λ〉Xj − 1)

for all j. Here the sum is taken over all linear characters λ of Xj of order di-
viding t (and dividing exp (X)). This is a polynomial in r of degree at most
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d. Solving (uniquely) the system of linear equations (µ1, · · ·, µs)(mij) =
(|CΩ(X1)|, · · ·, |CΩ(Xs)|) we obtain these multiplicities µi. Now, observ-
ing that |CP1(V )(X̄i)| = t

r−1 · |CΩ(X̄i)|, we define µt
χ,X̄i

= t
r−1 · µi (as a

polynomial in r). ¤

For almost all Atlas groups X̄ = X/Z(X) of interest for us the table of
marks is given in the [GAP] library, and these tables contain generators
for the X̄i which enable one to compute the character tables of the Xi

and hence the projective marks |CP1(V )(X̄i)|. On this basis Köhler has
implemented an algorithm for the computation of the polynomials [Köhler,
1999]. We shall also refer to the results given in [Köhler–Pahlings, 2001].

Example 7.3d. Let L = A5 = X̄. Then X̄1 = 1, X̄2
∼= Z2, X̄3

∼= Z3, X̄4
∼=

V4, X̄5
∼= Z5, X̄6

∼= S3, X̄7
∼= D10, X̄8

∼= A4, X̄9
∼= A5 is a set of repre-

sentatives for nonconjugate subgroups of X̄. The table of marks is given
by

(mij) =




60
30 2
20 0 2
15 3 0 3
12 0 0 0 2
10 2 1 0 0 1
6 2 0 0 1 0 1
5 1 2 1 0 0 0 1
1 1 1 1 1 1 1 1 1




.

Let us consider one of the (conjugate) Weil characters, χ, of degree 2 for
E = 2.L = SL2(5) = X (characters χ6, χ7 in [Atlas, p. 2]). Here exp (X) =
60 and G = G0 = X ◦ Z. Let V = Vχ over F = Fr (with r a power of a
prime p ≥ 7, and F containing a square root of 5).

Given any even, positive divisor t of exp (X) we compute the polyno-
mials µt

χ,X̄i
by picking r such that t = r(X) = gcd(r − 1, exp (X)). Thus

we consider the action of Ḡ = X̄ = A5 on Ω = P1(V ). For r(X) = 2,
the corresponding mark vector is (r + 1, 0, 0, 0, 0, 0, 0, 0, 0). This vector is
(r +1, 2, 0, 0, 0, 0, 0, 0, 0) for r(X) = 4, and it is (r +1, 0, 2, 0, 0, 0, 0, 0, 0) for
r(X) = 6. The mark vector is (r + 1, 2, 0, 0, 0, 0, 0, 0, 0) for r(X) = 10, (r +
1, 2, 2, 0, 0, 0, 0, 0, 0) for r(X) = 12, and (r+1, 2, 0, 0, 2, 0, 0, 0, 0) for r(X) =
20. It is (r+1, 0, 2, 0, 2, 0, 0, 0, 0) for r(X) = 30, and (r+1, 2, 2, 0, 2, 0, 0, 0, 0)
for r(X) = 60. We obtain the following polynomials (in r):
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µ2
χ,1 = (r + 1)/60, µ2

χ,X̄i
= 0 for i > 1,

µ4
χ,1 = (r − 29)/60, µ4

χ,X̄2
= 1, µ4

χ,X̄i
= 0 for i > 2,

µ6
χ,1 = (r − 19)/60, µ6

χ,X̄3
= 1, µ6

χ,X̄i
= 0 otherwise,

µ10
χ,1 = (r − 11)/60, µ10

χ,X̄5
= 1, µ10

χ,X̄i
= 0 otherwise,

µ12
χ,1 = (r − 49)/60, µ12

χ,X̄2
= 1 = µ12

χ,X̄3
, µ12

χ,X̄i
= 0 otherwise,

µ20
χ,1 = (r − 41)/60, µ20

χ,X̄2
= 1 = µ20

χ,X̄5
, µ20

χ,X̄i
= 0 otherwise,

µ30
χ,1 = (r − 31)/60, µ30

χ,X̄3
= 1 = µ30

χ,X̄5
, µ30

χ,X̄i
= 0 otherwise,

µ60
χ,1 = (r − 61)/60, µ60

χ,X̄i
= 1 for i = 2, 3, 5 and 0 otherwise.

Hence there is a regular G-orbit on V ] if and only if r is different from
11, 19, 29, 31, 41, 49, 61. One also can read off the minimal stabilizers
listed in Theorem 7.2a. There is no real vector in V for G if r ∈ {11, 19, 31},
because then there are only stabilizers of order 3 or 5. For r = 49 observe
that gcd(r − 1, 60) = 12, in which case we have four G-orbits on V ] with
point stabilizers of order 2 (and r−1

6 ·µ6
χ,1(49) = 4 regular orbits for X ◦Z6).

7.4. Sporadic Groups

Let L be a sporadic simple group. Then the (abbreviated) character table
of L and all possible groups n.L.a can be found in the [Atlas]. Using
the information given in the Atlas one can bound c(L). It turns out that
c(L) ≤ 6 except possibly for the Fischer groups (c(Fi22) ≤ 8, c(Fi23) ≤
7, c(Fi′24) ≤ 12). In view of Lemma 7.3b this reduces the discussion to
some few groups L admitting faithful projective representations of small
degrees.

Let L = M11 be the smallest Mathieu group. Then L = E and G =
G0 = E×Z. Consider the character χ = χ2 of degree 10 [Atlas, p. 18]. Let
x be one of the |2A| = 165 (conjugate) involutions in L. From χ(x) = 2 we
infer that xV = [1(6),−1(4)]. Let y be one of the |3A| = 2 · 220 (conjugate)
elements in L of order 3. From χ(y) = 1 we infer that yV = [1(4), z

(3)
1 , z

(3)
2 ]

where the zi are the primitive 3rd roots of unity (provided 3 | r − 1). Let
u be one of the |5A| = 4 · 396 (conjugate) elements in L of order 5. From
χ(u) = 0 we infer that each 5th root of unity occurs with multiplicity 2 as
eigenvalue of t on V (provided 5 | r− 1). Each primitive 11th root of unity
occurs with multiplicity 1 as eigenvalue of the elements of order 11 on V

(if 11 | r − 1). Assume that there is no regular G-orbit on V . Then

r10 ≤ 165(r6 + r4) + 220(r4 + 2r3) + 396(5r2) + 1.440(10r).
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But this implies that r < 5, a contradiction. All other 9 irreducible char-
acters χi of M11 are treated similarly. (Using that c(M11) ≤ 4 only the
characters of degree 10, 11, 16 need to be considered.)

Let L = M12, where M(L) and Out(L) have order 2 [Atlas, p. 33].
One checks that c(M12) ≤ 5 by considering the maximal subgroups. So as
before only the characters χ = χi of small degrees have to be examined,
namely χ2, χ3 of degree 11 and χ4, χ5 of degree 16 of M12 (which fuse in
Aut(M12)), and the characters of degree 10, 10, 12, 32 of 2.M12 (extendible
to 2.M12.2). In each case there is a regular orbit.

The other sporadic groups are treated in the same manner, except
when L = J2 is the second Janko group or L = Suz is the Suzuki group.
Let us treat these groups (briefly).

Let L = J2. One checks that c(J2) ≤ 5. Using Lemma 7.3b this reduces
the discussion to the case where E = 2.J2 and V = Vχ with χ = χ22 or
χ23 in the Atlas notation [Atlas, p. 43], both characters of degree 6 fusing
in 2.J2.2. Hence X = E is the Schur cover of L and G = G0 = E ◦ Z.
The usual counting technique yields the existence of a regular vector when
r ≥ 26. Since p > 7 by coprimeness, and since F = Fr contains a square
root of 5 by the values of χ on 5-elements, we must have r = p equal to 11
or to 19. On the basis of the table of marks for L = J2 [GAP] we compute
(observing that exp (2.J2)3 = 3)

µ2
χ,1 = (r − 11)(r + 1)(r + 11)(r2 − 193)/|L|,

µ6
χ,1 = µ2

χ,1 − (r2 − 14r + 265)/1.080,

µ10
χ,1 = µ2

χ,1 − 7(r − 11)/300.

This shows that there is a regular orbit for r = 19 but no regular orbit for
r = 11. In this latter case the smallest stabilizer H is isomorphic to S3 (as
is seen by computing the corresponding polynomials). Since the characters
χ22, χ23 involved are conjugate under a group automorphism of 2.J2, we
have a unique isomorphism type.

Let L = Suz. One checks that c(Suz) ≤ 6. As before this reduces the
discussion to the case where E = X = 6.Suz and χ = χ115 is of degree 12
[Atlas, p. 130]. Here G = G0 = X ◦Z and V = Vχ comes from the action of
X on the complex Leech lattice. The usual counting argument yields that
there is a regular orbit when r ≥ 23. Since p > 13 and 6 | r− 1, it remains
the case where r = p = 19. (Since an involution x of 6.Suz belonging to
the class 2A0 has the spectral pattern xV = [−18, 14] and |2A0| = 135.135,
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the counting method fails for r = 19.) The table of marks for Suz is not
available in [GAP], but [Köhler–Pahlings, 2001] indicate, on the basis of a
different orbit algorithm, that a regular orbit exists also in the r = 19 case.

Remark . As for Theorem 7.1 it suffices to find a (strongly) real vector v

such that CG(v) has a regular orbit on V ] (r = 19). The group X = 6.Suz

has a subgroup Y ∼= Z2× 36 : M11, which in turn has a subgroup H ∼= M11

of pure permutations acting transitively on the 12 coordinates of the Leech
lattice, a point stabilizer being a maximal L2(11) subgroup [Atlas, pp. 131,
18]. It follows that ResG

H(χ) = 1H +χ5 where χ5 is the irreducible character
of H ∼= M11 of degree 11 (which is rational-valued). Let CV (H) = Fv and
N = NX(Fv). Either H is contained in a 2.M12 subgroup of X, on which
χ is irreducible however, or N is in (a conjugate of) Y , with H acting
irreducibly on Y/Z(X) ∼= 35. We conclude that CX(v) = H and that
N = H × Z(X). Application of Lemma 5.1b yields that CG(v) = H. One
also easily checks that H has a regular orbit on V .

7.5. Alternating Groups

Let L = An for some n ≥ 5, acting on Ω = {1, · · ·, n}. Then Aut(L) = Sn

unles n = 6 (Out(A6) ∼= V4) and |M(L)| = 2 unless n = 6, 7 (M(A6) =
M(A7) = Z6). It is well known that c(x) ≤ n− 1 if x is a transposition (as
(12), (13), · · ·, (1n) generate Sn). For 1 6= x ∈ Sn we generally have

(7.5a) c(x) ≤ d n−2
n−|orb(〈x〉 on Ω)|e+ 2,

except when n = 6 and x is an involution of cycle shape (23), where c(x) =
5 [Hall et al., 1992]. In addition c(x) ≤ n/2 for n ≥ 7, unless x is a
transposition [Guralnick–Saxl, 2003].

As usual we exclude the deleted permutation module, which is the
Specht module S(n−1,1) for Sn and which for n ≥ 7 is the unique faith-
ful module of minimal degree. By [Rasala, 1977] for n ≥ 10 the Specht
module S(n−2,2) to the partition (n− 2, 2) is the unique faithful module of
the second minimal degree, n(n − 3)/2. This module is known to be irre-
ducible for Sn [James–Kerber, 1981, 7.3.23]. Using the branching rule for
Specht modules one shows, by induction, that S(n−2,2) is irreducible also
for An. From [Schur, 1911, Sec. 50] one knows that for n ≥ 7 the minimal
faithful character degrees for 2.An and 2.Sn are 2b(n−2)/2c and 2b(n−1)/2c,
respectively.
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Proposition 7.5b. For n ≥ 8 there exists a regular G-orbit on V .

Proof. The character table for An and its related groups is in the [Atlas]
for n ≤ 13. Assume first that n ≥ 14. Then by the above

(7.5c) d ≥ n(n− 3)/2

for n ≥ 16, because then 2b
n−2

2 c > n(n− 3)/2, and d ≥ 64 for n = 14, 15.
Suppose x ∈ Sn is nontrivial with n − |orb(〈x〉 on Ω)| > 3. Then by

(7.5a) c(x) ≤ dn−2
4 e + 2 ≤ (n + 9)/4 unless n = 14, x has cycle shape

(27) and c(x) ≤ 6. If n − |orb(〈x〉 on Ω)| ≤ 3, then x has cycle shape
(2), (3), (22), (4), (3, 2) or (23). Then c(x) ≤ n− 1, n/2, n/2 and, in view of
(7.5a), three times c(x) ≤ d(n−2)/3e+2 ≤ (n+6)/3. There are

(
n
2

)
, 2 ·(n

3

)
,

3 · (n
4

)
, 6 · (n

4

)
, 20 · (n

5

)
and 15 · (n

6

)
elements in Sn of these cycle shapes,

respectively. Assume there is no regular G-orbit on V . Let first n ≥ 16.
Then by Lemma 7.3b

rd/2 ≤ |Sn|rd(1− 4
n+9 ) +

(
n

2

)
rd(1− 1

n−1 ) +
[(n

3

)
+ 3

(
n

4

)]
rd(1− 2

n )

+
[
6
(
n
4

)
+ 20

(
n
5

)
+ 15

(
n
6

)]
rd(1− 3

n+6 ).

Since r > n ≥ 16 and d ≥ n(n− 3)/2 by (7.5c), it follows that

2n! > r4d/(n+9) − r3d/(n+9)+2 − r2d/(n+9)+4 − rd/(n+9)+6.

The second, third and fourth terms on the right are all less than 1
6r4d/(n+9).

Consequently nn > 4n! > r4d/(n+9) > n4d/(n+9) and so n > 4d/(n + 9) ≥
2n(n− 3)/(n + 9). But this implies that n < 12.

Let n = 14 or 15. We have the same estimate, replacing the term
|Sn|rd(1− 4

n+9 ) by |Sn|rd(1− 1
6 ). Since then the difference of the terms on the

left hand side and the right hand side is an increasing function of d, we
may pick d = 64. We get that

r64/2 ≤ 15!r53 + 105r59 + 5.005r56 + 2.761.670r54.

But this implies that r < 14, which is a contradiction (p > 14).
Let finally 8 ≤ n ≤ 13. Recall that r ≥ p > n. By Lemma 7.3b

we may assume that rd ≤ 2
(
n
2

)
rd(1− 1

n−1 ) + 2n!rd(1− 2
n ). So for n = 8 only

the characters χ = χ3, χ15 of degrees d = 20, 8, respectively, have to be
examined [Atlas, p. 22]. Here, as in all further cases, the counting method
works. ¤

It remains to investigate the cases n = 5, 6, 7.
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n = 5 : The Weil characters of 2.A5 = Sp2(5) of degree 2 have been already
treated in Example 7.3d. Let χ be one of the Weil characters of degree 3
of PSp2(5) ∼= A5. So χ = χ2 or χ3 [Atlas]. Further E = A5 = X and
G = G0 = E × Z, and exp (X) = 30. Let V = Vχ over F = Fr (so r is
any power of a prime p ≥ 7, and F contains

√
5). As above let r(X) =

gcd(r−1, exp (X)). If r(X) = 2, then r−1 = 2u for an odd u divisible only
by primes larger than 5, and the mark vector on P1(V ) is the row vector
given by (r2 + r + 1, r + 2, 1, 3, 1, 1, 1, 0, 0). This row vector is (r2 + r +
1, r+2, 3, 3, 1, 1, 1, 0, 0) for r(X) = 6, is (r2 +r+1, r+2, 1, 3, 3, 1, 1, 0, 0) for
r(X) = 10, and is (r2 + r + 1, r + 2, 3, 3, 3, 1, 1, 0, 0) for r(X) = 30. Using
the table of marks for A5 given in Example 7.3d we get:

µ2
χ,1 = (r − 9)(r − 5)/60, µ2

χ,X̄2
= (r − 5)/2, µ2

χ,X̄i
= 1 for i = 4, 6, 7,

µ6
χ,1 = (r2−14r+25)/60, µ6

χ,X̄2
= (r−5)/2, µ6

χ,X̄i
= 1 for i = 3, 4, 6, 7,

µ10
χ,1 = (r−11)(r−3)/60, µ10

χ,X̄2
= (r−5)/2, µ10

χ,X̄i
= 1 for i = 4, 5, 6, 7,

µ30
χ,1 = (r − 13)(r − 1)/60, µ30

χ,X̄2
= (r − 5)/2, µ30

χ,X̄i
= 1 for 3 ≤ i ≤ 7.

In all other cases µt
χ,X̄i

= 0. Using that F13 does not contain a square
root of 5, one concludes that there is a regular G-orbit on V ] if and only if
r 6= 11. For r = 11 there are point stabilizers of order 2.

The character χ = χ4 of A5 [Atlas, p. 2] is afforded by the deleted
permutation module, which case we have excluded. (There is no regular
G0-orbit if and only if G0 = S5 × Z with r = 7, in accordance with 5.1a.)

The character χ = χ5 of A5 of degree 5, which splits on S5, is treated
by the usual counting argument. For the characters χ = χ8 and χ9 of 2.A5

of degrees 4 and 6, which extend to any 2.A5.2, the counting argument
applies as well.

n = 6 : The counting method rules out all cases except the following ones.

(i) E = A6, χ = χ2 resp. χ3 of degree 5, which extend to A6.21 = S6

but fuse in A6.22 = PGL2(9) and A6.23 = M10. Here χ2 is the character of
A6 afforded by the deleted permutation module. So we have to investigate
χ3 only. But χ3 is obtained from χ2 via an (exceptional) outer automor-
phism of A6, and the same for the extensions to S6. So the corresponding
reduced pairs are isomorphic. (Therefore they do not appear in the list of
Theorem 7.2a !) Of course the polynomials for χ2, χ3 agree. We know from
Example 5.1a that there is no regular G0-orbit on Vχ, for χ = χ2 or χ3, if
and only if r = 7. From µ6

χ,〈(12)(34)(56)〉 = (r−1)(r−3)(r−5)/24 we obtain
two orbits with point stabilizers of order 2.
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(ii) E = 2.A6, χ = χ8 resp. χ9 of degree 4, which extend to both
isoclinic variants X = 2.A6.21 and fuse in the 2.A6.22. This has been
already treated in Example 5.7b, but let us argue also on the basis of
Proposition 7.3c. For χ = χ9 and X = 2+S6 the polynomials have 7 as the
only positive root coprime to |E|, and

µ6
χ,1 = (r − 3)(r − 7)(r + 11)/720.

Hence there is no regular orbit for r = 7. Considering the subgroups
X̄3 = 〈(123)(345)〉, X̄4 = 〈(123)(45)〉 and X̄4 = 〈(123)(456), (123)(45)〉
of X̄ = S6 we have

µ6
χ,X̄3

= (r − 1)/6, µ6
χ,X̄4

= µ6
χ,X̄5

= 1.

Hence there are just three G-orbits on V ] for r = 7, and the point stabilizers
are isomorphic to Z3, Z6, Z3 × S3. This is as stated in Theorem 7.2a, and
known from Example 5.7b. We have also seen that there exists no real
vector in this case.

(iii) There are four algebraically conjugate characters, χ, of E = 3.A6

of degree 3 which pairwise fuse in 3.A6.21, 3.A6.22 or 3.A6.23. So we have
to consider X = E and G = G0 = X ◦ Z. The splitting fields F = Fr for
χ require the 3rd roots of unity and the square roots of 5. The counting
argument yields that there are regular orbits when r ≥ 53. Hence if there
are no regular vectors, then r = 19, 31 or 49. It suffices to compute:

µ6
χ,1 = (r − 19)(r − 25)/360, µ6

χ,〈(12)(34)〉 = (r − 15)/4;

µ30
χ,1 = (r − 13)(r − 31)/360, µ30

χ,〈(12)(34)〉 = (r − 27)/4.

It follows that there is no regular orbit for r = 19 and r = 31, in which
cases there are orbits with stabilizer of order 2. For r = 49 observe that
there are r−1

6 · µ6
χ,1(47) = 16 regular E ◦ Z6-orbits on V ] by Proposition

7.3c. Using that exp (E) = 22 ·3 ·5 and that each involution of G is in E◦Z6

we see that these orbits fuse to 2 regular orbits for G. So the polynomial
µ48

χ,1 = µ6
χ,1 depends only on t = 6.

(iv) For E = 3.A6 there is a pair of algebraically conjugate irreducible
characters χ = χ15 of degree 6 [Atlas, p. 5], which extend to X = 3.A6.23

(requiring a square root of −2). So G = G0 = X ◦Z. Assuming that there
is no regular orbit,

r6 ≤ |2A0|(r4 + r2) + |3A0B0|(3r2) +
1
2
|5A0B0|(r2 + 4r)

= 45(r4 + r2) + 120r2 + 36(r2 + 4r).
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This implies that r < 8, hence r = 7. This is ruled out by the method of
Proposition 7.3c; in fact, the polynomial µ6

χ,1 has only the root 1.

n = 7 : The counting argument rules out all cases except when E = 2.A7,
χ = χ10 resp. χ11 of degree 4, which fuse in 2.S7. We get regular orbits
for r ≥ 23. Since p > 7 and a splitting field F = Fr for χ requires a square
root of −7, and since SL4(17) and SL4(19) are 7′-groups, we must have
r = 11. In this case the multiplicities µ10

χ,1 = (r − 11)(r2 + 12r − 7)/2.520
and µ10

χ,〈(123)(456)〉 = (r − 5)/6 give the result as stated in Theorem 7.2a.

7.6. Linear Groups

Let L = Lm(q) = PSLm(q) for some integer m ≥ 2 and some prime power q.
Since L2(3) is solvable and L2(4) = L2(5) ∼= A5, L2(9) ∼= A6 and L4(2) ∼=
A8, we may and do exclude the pairs (m, q) = (2, 3), (2, 4), (2, 5), (2, 9)
and (4, 2). [Guralnick and Saxl, 2003] have given upper bounds for c(L).
Ignoring the groups excluded one has c(Lm(q)) ≤ 4, 4, 6 for m = 2, 3, 4,
respectively, and

(7.6a) c(Lm(q)) ≤ m

in all other cases. From Appendix (C1) we know that

(7.6b) R0(Lm(q)) =
{

(q − 1)/gcd(q − 1, 2) if m = 2
(qm − 1)/(q − 1) if m > 2

except when (m, q) = (3, 2), (3, 4), (4, 3) (again ignoring the groups already
ruled out). One has R0(L3(2)) = 3, R0(L3(4)) = 6 and R0(L4(3)) = 26,
and otherwise R0(Lm(q)) is just attained by the degree of Weil characters.

Recall that Ḡ ⊆ Aut(L). The Schur multiplier and the automorphism
group of L (and of any group of Lie type) has been determined in [Steinberg,
1967]. Each automorphism is a product of an inner, a diagonal, a field
and a graph automorphism. In the present case the graph automorphism
(of the Dynkin diagram) is just the inverse transpose automorphism, and
the diagonal automorphisms are induced by conjugation with the diagonal
matrices in GLm(q) with determinant 6= 1. So Out(L) and M(L) are known.
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Proposition 7.6c. If there is no regular G-orbit on V , then m ≤ 3 or
L ∼= L4(3) and d ≤ 52, L ∼= L5(2) and d = 30, or L ∼= L6(2) and d = 62.

This readily follows from the above information by applying Lemma 7.3b.
Note that L6(2) is not an Atlas group. We know from Theorem 4.5b that
L6(2) has a Weil character of degree d = 26 − 2 = 62. This is the unique
irreducible character of this degree; the second lowest degree is 217.

m = 2 : Suppose that there is no regular G-orbit on V . Let first q be even.
Then Lemma 7.3b implies that q ≤ 16, hence q = 16 or q = 8. From the
character table one reads off that, for each character χ 6= 1L, of L = L2(16)
or a possible extension to Aut(L) = L.4, no element of prime order in
Aut(L) has eigenspaces of dimension greater than χ(1) − 6. Thus (5.6d)
yields that r6 ≤ 2|Aut(L)| in this case, giving the contradiction r < 6. It
remains to exclude the case L = L2(8). Consider for instance the character
χ = χ2 of degree d = 7 of E = L2(8) extendible to X = Aut(L) = L.2
[Atlas, p. 6], letting G = X × Z and V = Vχ over F = Fr. Determining
spectral patterns of elements of prime order we get

r7 ≤ |2A|(r4 + r3) +
1
2
|3A|(2r3 + r) +

1
2
|7ABC|(7r) +

1
2
|3B|(r3 + 2r2).

Here |2A| = 63, |3A| = 56, |7A| = |7B| = |7C| = 72, |3B| = 84, which
gives r7 ≤ 63r4 + 161r3 + 84r2 + 784r. We obtain that r < 5, which is
a contradiction since |L| = 23 · 32 · 7. The other characters are treated
similarly.

So let q be odd, q = sf for some (odd) prime s. Assume q ≥ 37.
Consider first the case where f = 1 (q = s). We assert that then d ≥ q− 1.
For otherwise χ is one of the Weil characters ξi 6= ξ̄i of Sp2(q) for i = 1, 2,
of degree (q ± 1)/2, where the pairs of algebraically conjugate characters
must fuse in GL2(q) (see Theorem 4.5a and Appendix C2; the character
table of Sp2(q) can be found in [Schur, 1911]). Hence Ḡ ∼= L = L2(q). From
Theorems 4.4 and 4.5a we infer that χ takes the value (−1±√±q)/2 on the
noncentral elements of order q. So these elements have (q ± 1)/2 distinct
eigenvalues on V = Vχ, whence no eigenspace has dimension greater than 1.
For a noncentral element g ∈ Sp2(q) of prime order 6= q we have χ(g) = 0 or
±1, which implies that no eigenspace has dimension greater than (q +5)/4.
Since q = s and |L| = q(q2 − 1)/2, it follows that

r(q−1)/2 ≤ q(q2 − 1)/2 · q(q+5)/4.
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From q ≥ 37 we infer that r < 5, a contradiction. So we indeed have
d ≥ q − 1. Using c(L) ≤ 4, Lemma 7.3b yields that r ≤ (

q(q2 − 1)
) 4

q−1 ,
which again leads to a contradiction. Hence we must have f > 1. Using
that |Aut(L)| = fq(q2 − 1) from Lemma 7.3b we now get

r ≤ (
2fq(q2 − 1)

)8/(q−1)
,

and this gives a contradiction as before. Consequently q < 37, that is,
q ≤ 31. Now L = L2(q) is an Atlas group, and with the usual counting
arguments one can rule out all cases except for q = 7.

So let L = L2(7). Let χ be one of the Weil characters χ2, χ3 = χ̄2 of
L of degree 3, which fuse in PGL2(7) [Atlas, p. 3]. Hence G = G0 = L×Z

in this case. If there is no regular G-orbit on V = Vχ, then

r3 ≤ |2A|(r2 + r) +
1
2
|3A|(3r) +

1
3
|7AB|(3r) = 21r2 + 129r.

Thus r < 26. Since χ, and hence F = Fr, requires a square root of −7, this
implies that r = 11, 23 or 25. Let H be generated by an involution of L (in
the unique class 2A). One finds:

µ2
χ,1 = (r − 9)(r − 11)/168, µ2

χ,H = (r − 7)/4,

µ6
χ,1 = (r2 − 20r + 43)/168, µ6

χ,H = (r − 7)/4.

Hence there is no regular orbit when r = 11, in which case there are r−1
2 ·

(r − 7)/4 = 6 orbits with point stabilizers of order 2 (conjugate to H).
Now gcd(r − 1, exp (L)) is 2 for r = 23, and is 12 for r = 25. It follows
that there are regular orbits in these cases. For r = 25 observe that the
r−1
6 · µ6

χ,1(r) = 4 regular orbits for L× Z6 must fuse in G = L× Z24 since
each involution in G is contained in L× Z6.

Let next χ = χ6 be of degree 6, which extends to X = PGL2(7)
(affording a square root of 2). We have to consider G = X × Z, and the
counting method yields that there is a regular orbit when r ≥ 11. Hence
the only questionable case is r = 5, which is ruled out by showing that
µ4

χ,1 > 0 at r = 5.

For all other characters the counting method applies and yields that
there are regular orbits.

m = 3 : Using that c(L) ≤ 4 and d ≥ R0(L) = (q3−1)/(q−1), application
of Lemma 7.3b shows that a regular orbit exists unless q ≤ 5. Thus we only
have to examine the cases L = L3(3) and L = L3(4).
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Let L = L3(3). If d 6= 12 or 13, no prime order element of Aut(L)
has an eigenspace of dimension greater than d − 8 [Atlas, p. 13]. Then
r8 ≤ 2|Aut(L)| forces that r < 4. Hence there is a regular orbit. For the
characters χ = χ2 and χ3 of degrees 12 and 13 the usual counting method
works.

Let L = L3(4). Recall that R0(L) = 6, and this minimal degree just
happens for the faithful irreducible characters χ = χ41 of X = 6.L.21 [Atlas,
p. 25]. This χ is rational-valued on E = 6.L and requires

√
2 or

√−2 on
X (depending on the isoclinism type of X). Of course also 6 | r − 1. Let
us describe the situation carefully. We have exp (X) = 23 · 3 · 5 · 7. The
conjugacy class 2A of L lifts to two conjugacy classes 2A0, 2A3 of involutions
in E (χ(2A0) = −2, χ(2A3) = 2). Since Z(E) ⊆ Z and |2A| = 315, this
gives the contribution 315(r4 + r2). From χ(2B0) = 0 and |2B| = 280 we
get the contribution 280(2r3). From χ(3A0) = 0 and |3A| = 2.240 we get
the contribution 1.120(3r2). The two conjugacy classes 5AB of L (|5A| =
|5B| = 4.032) lift to two conjugacy classes 5A0B0 of elements of order 5 in
E, with χ(5A0) = χ(5B0) = 1. Hence the contribution 1.120(r2 + 4r) if
5 | r − 1 and 1.120(r2) otherwise. The two conjugacy classes 7AB of L lift
to two conjugacy classes 7A0B0 of order 7, with χ(7A0) = χ(7B0) = −1.
From |7A| = |7B| = 2.280 we obtain the contribution 960(6r) if 7 | r − 1
and 960r otherwise. Thus if there is no regular orbit, then

r6 ≤ 315r4 + 560r3 + 4.795r2 + 10.240r.

This forces that r < 19. Since 3 | r−1 and r > 7, we must have r = 13. But
±2 are not squares mod 13. Therefore G = E ◦ Z or G = G0 = (E ◦ Z).2
(and r = 13). The table of marks for L = L3(4) is contained in the [GAP]
library, and one gets that the polynomial µ12

χ,1 does not vanish at r = 13.
So there is a regular vector v ∈ V for E ◦Z, and this is regular also for G0

since otherwise G0 = (CG0(v)E) ◦ Z.

All other irreducible characters for groups n.L3(4).a can be treated by
the usual counting method.

m ≥ 4 : By the proposition only the following cases have to be treated.

(i) L = L4(3) and d ≤ 52: In all cases where 26 < d ≤ 52, no eigenspace
of a noncentral prime order element of G has dimension greater than d−13
[Atlas]. Hence r13 ≤ 2 · |L| · 8 forces that r < 5. For the characters χ = χ2

resp. χ3 of L, which fuse in L.21 but split on X = L.22, we similarly
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conclude from
r26 ≤ |2D|r20 + |L.22|2r16

that necessarily r < 7. Thus there is a regular orbit for G = X ◦ Z.

(ii) L = L5(2) and d = 30: Here χ = χ2 is the unique minimal (Weil)
character (of degree 25 − 2) of L discussed in Theorem 4.5b. It is rational
and extends to X = L.2 requiring a square root of 2 [Atlas, p. 70]. So
G = L×Z or G = X ×Z. The largest dimension of an eigenspace on V of
a prime order element in X is 22 [Atlas]. From r8 ≤ 2 · |X| we obtain that
r < 9. There are regular orbits.

(iii) L = L6(2) and d = 62: Then again χ = ξ is the Weil character
of L studied in Theorem 4.5b (see also Appendix C1). Since L6(2) is not
an Atlas group, we must go into some details. By uniqueness ξ extends to
X = L.2 = Aut(L), and we consider G = G0 = X × Z. We assert that
dim F CV (g) ≤ 48 for each noncentral element g ∈ G of prime order. In
order to prove this we may enlarge F , if necessary, by adjoining the 8th
roots of unity. (If F0 is an extension field of F and V0 = F0 ⊗F V , then
dim F0CV0(g) = dim F CV (g).) Embed L into a standard holomorph T to
Q = 21+12

+ . By (4.5b) there is a subgroup 〈L, τ〉 of T mapping onto X and
satisfying τ2 ∈ Z(Q). There is z ∈ Z such that (zτ)2 = 1, so that X and
G appear as subgroups of TZ. Since ±2 are squares in F , by Theorem
4.3e there is a faithful irreducible F [TZ]-module W (of F -dimension 26),
and V is a constituent of its restriction to G since W affords the character
ξ + 2 · 1L on L by Theorem 4.5b. Applying Theorem 6.2c we get

dim F CV (g) ≤ dim F CW (g) ≤ 3
4
dim F W = 48,

as asserted. There is a regular since r62 > 2 · |L.2|r48 for r ≥ 11.

7.7. Symplectic Groups

Let L = S2m(q) = PSp2m(q) for some integer m and some prime power q.
Since S2(q) = L2(q) and S4(2) = A6 are already treated, we assume that
m ≥ 2 and exclude the pair (m, q) = (2, 2). From [Guralnick–Saxl, 2003]
one knows that then c(L) ≤ 2m+1 (and c(L) ≤ 2m if q is odd and m ≥ 3).
Up to few exceptions |M(L)| = (2, q − 1), and this is also the order of the
group of outer diagonal automorphisms, and for m ≥ 3 there is no proper
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graph automorphism [Steinberg, 1967]. As stated in Appendix (C2), one
has d ≥ (qm−1)/2 if q is odd and d ≥ (qm−1)(qm−q)/(2(q+1)) otherwise.

Proposition 7.7a. There is a regular G-orbit on V except possibly when
m ≤ 6 and one of the following holds:

• (m, q) = (2, 3) and d ≤ 30, (m, q) = (2, 4) and d ≤ 34, (m, q) = (2, 5)
and d ≤ 40, (m, q) = (3, 2) and d ≤ 35, or (m, q) = (4, 2) and d ≤ 85.

• (m, q) = (2, 7), (2, 9), (2, 11), (3, 3), (3, 5), (4, 3), (5, 3), (6, 3) and χ is
one of the irreducible Weil characters of the symplectic group.

This follows from the above information by applying Lemma 7.3b.

The groups S4(7), S4(9), S4(11) and S6(5), S8(3), S10(3), S12(3) are not
Atlas groups. From Theorem 4.5a we know a great deal about Weil char-
acters of symplectic groups (see also Appendix C). We need some more
details on fixed point ratios.

Let E = S2m(q) or E = Sp2m(q) for some m ≥ 2 and some odd q = qf
0

(q0 prime), assuming that χ is on E one of the irreducible Weil characters
ξ1, ξ2 of degree (qm − 1)/2 and (qm + 1)/2, respectively. Recall that just
one of these characters is faithful for Sp2m(q), and that ξ1 is faithful if
and only if qm ≡ 1 (mod 4). The characters are not invariant in E.2 and
require a square root of ±q if q is not a square Theorem 4.5a. In particular
G = G0 = E ◦ Z. Let U be the standard module for S = Sp2m(q).

Lemma 7.7b. Suppose the character χ of G afforded by V is a Weil
character on the (symplectic) core E. Let g ∈ G be a noncentral element of
prime order, say s.

(i) If s is odd, then dim F CV (g) ≤ 1
2s (qm + (s− 1)qm−1) if s 6= q, and

otherwise dim F CV (g) ≤ qm−1 − 1 or qm−1 depending on whether χ = ξ1

or χ = ξ2 on E.

(ii) Suppose E = L = S2m(q) and that g is an involution in L lifting
to an element of order 4 in S = Sp2m(q). Then χ(g) = ±1.

(iii) Suppose either that g = g′ is a (noncentral) involution in E = S =
Sp2m(q) or that E = S2m(q) and g is the image of such an involution g′ in
S. Let |CU (g′)| = q2m′

, so that m′ is an integer with 1 ≤ m′ < m, and let
m′′ = m−m′. Then CS(g′) ∼= Sp2m′(q)× Sp2m′′(q), and

ξ1(g′) = ±1
2
(qm′ − qm′′

) , ξ2(g′) = ±1
2
(qm′

+ qm′′
),

the positive signs holding precisely when qm′′ ≡ 1 (mod 4).



Reduced Pairs of Quasisimple Type 131

Proof. Pick ξ1, ξ2 such that ξ = ξ1 + ξ2 is a Weil character of S (and
χ = ξ1 or ξ2 on E). Let j be the central involution of S, as usual. Let
T be the standard holomorph to Q = (q0)

1+2mf
+ (Theorem 4.3c). Recall

from Theorem 4.5a that Q : S is a subgroup of T , that U = Q/Z(Q) is the
standard module for S, and that ξ is the restriction to S of some faithful
irreducible character of T , which will be also written ξ. Note that q is a
divisor of |E| and so q0 6= p by coprimeness. Enlarging F if necessary (so
that q0 | r − 1) there is an FT -module W affording ξ. Write ResT

S (W ) =
V1 ⊕ V2 with Vi affording ξi. Embed Z(Q) = Z(T ) into Z such that ξ and
χ lie over the same linear character of Z(Q).

(i) Since s is odd, we may identify g = xz where x ∈ S and z ∈ Z is
an sth root of unity. Let z act trivially on T , and extend ξ to a faithful
character of Tz = T 〈z〉 such that ξ(z)/ξ(1) = χ(z)/χ(1). (We have Tz = T

if s = q0 and Tz = T × 〈z〉 otherwise.) From Theorem 6.2c it follows that
dim F CW (g) ≤ b 1

s (qm + (s − 1)qm−1)c if s 6= q and dim F CW (g) ≤ 2qm−1

otherwise. Clearly
CW (g) = CV1(g)⊕ CV2(g).

By Theorem 4.5a, ξ2 = ξ1+1S on 2′-elements of S. The assertion follows by
using that dim F CW (g) = 〈ξ, 1〉〈g〉 = 〈ξ, ν〉〈x〉 where ν is the linear character
of 〈x〉 defined by ν̄(x) = χ(z)/χ(1), and similar statement for the Vi, ξi.
Note also that b(2qm−1 − 1)/2c = qm−1 − 1 and b(2qm−1 + 1)/2c = qm−1.

(ii) Let g̃ ∈ S have image g, so that g̃2 = j. Let V = Va afford the
Weil character ξa which is not faithful for S, and let Vb afford the the other
irreducible Weil character ξb (with ξ = ξa + ξb). Then j acts as −1 on
Vb, so that CVb

(g̃) = 0 and CV (g) = CW (g̃). By Theorem 4.5a, ξ(g̃) is an
integer, and ξa(g) = ξa(g̃) is an integer as g is an involution. Hence ξb(g̃) is
an integer. Since g̃2 = j, the eigenvalues of g̃ on Vb are ±i. We infer that
ξb(g̃) = 0. Further |CU (g̃)| = 1 and so ξ(g̃) = ±1 by Theorem 4.4, because
g̃ is good for U . Hence χ(g) = ξa(g) = ξ(g̃) = ±1.

(iii) Notice that g′ and g′j belong to different conjugacy classes of S

(but both mapping onto g if g 6= g′). So the following depends on the
choice of the inverse image. We have a proper (orthogonal) decomposition
U = [U, g′] ⊕ CU (g′) = U− ⊕ U+, where U−, U+ are the eigenspaces of g′

to the eigenvalues −1 and +1, respectively. This corresponds to a central
decomposition Q = Q′ ◦Q′′, where Q′ = (q0)

1+2m′f
+ and Q′′ = (q0)

1+2m′′f
+ ,

and yields embeddings of the standard holomorphs, and of the “Young
group” Y = Sp2m′(q)×Sp2m′′(q) into S. Since ξ is (absolutely) irreducible
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on (Q′ : Sp2m′(q)) ◦ (Q′′ : Sp2m′′(q)), we obtain a tensor decomposition

ResY (ξ) = ξ′ ⊗ ξ′′

of Weil characters. Just by considering character degrees we get that
ResY (ξ1) = ξ′1 ⊗ ξ′′2 + ξ′2 ⊗ ξ′′1 and ResY (ξ2) = ξ′1 ⊗ ξ′′1 + ξ′2 ⊗ ξ′′2 . Here
the irreducible Weil characters have to be chosen properly.

One knows that there are precisely m− 1 conjugacy classes of noncen-
tral involutions in S = Sp2m(q), the conjugacy class of an involution being
determined by the order of its fixed point group on U [Dieudonné, 1971,
pp. 25, 26]. This readily gives the statement for CS(g′). Moreover, the
conjugacy class of g′ is determined by the integer m′, and g′ is conjugate
in S to the element 1′ × j′′ in Sp2m′(q) × Sp2m′′(q), j′′ being the central
involution in Sp2m′′(q). The character values are obtained by using that ξ′′1
is faithful on Sp2m′′(q) by Theorem 5.4a, satisfying ξ′′1 (j′′) = −(qm′′−1)/2,
if and only if qm′′ ≡ 1 (mod 4). ¤

We now discuss the cases remaining by virtue of Proposition 7.7a.

m = 2 : We have to examine the following.

(i) L = S4(3) and d ≤ 30: Let us consider first the Weil characters. So
let χ be faithful for E = Sp4(3) of degree 4 (characters χ21, χ22 in [Atlas,
p. 27]). We have G = G0 = E ◦ Z, and F = Fr requires a square root
of −3, that is, r − 1 is divisible by 3. Of course r is coprime to |L| and
so not divisible by 2, 3, 5. The usual counting argument (on the basis of
the character table) yields that there is a regular G-orbit on V if r ≥ 61.
Hence r ∈ {7, 13, 19, 31, 37, 43, 49}. We proceed by computing the relevant
polynomials µt

χ,1. The table of marks for L ∼= U4(2) is in the [GAP] library.
We obtain:

µ6
χ,1 = (r − 7)(r − 13)(r − 19)/|L|,

µ12
χ,1 = (r + 11)(r − 13)(r − 37)/|L|,

µ30
χ,1 = (r − 31)(r2 − 8r + 223)/|L|.

We conclude that there is no regular orbit if and only if r ∈ {7, 13, 19, 31,

37}. For r = 43 note that gcd(r − 1, exp (E)) = 6, and for r = 49 by
Proposition 7.3c we have 4 · µ12

χ,1(49) = 4 regular orbits for E ◦ Z12 which
fuse in G = E ◦ Z48 as each involution of G is in E ◦ Z12.

Computing the polynomials for nontrivial subgroups of X̄ = L leads
to the results stated in Theorem 7.2a. We know from Corollary 7.2b that



Reduced Pairs of Quasisimple Type 133

for r = 31 the pair (G,V ) admits a real (but not strongly real) vector. The
information given in Sec. 7.1 for r = 7, 13, 19, basically obtained by a study
of the [Atlas], manifest that we have six nonreal reduced pairs here.

Let next χ = χ2 or χ3 for E = L = S4(3), a Weil character of degree
d = 5. Here G = G0 = L × Z and 3 | r − 1. By the counting principle
we get regular orbits unless r < 56. So r is as before. Computation with
[GAP] yields

µ2
χ,1 = (r − 7)(r − 9)(r − 13)(r − 15)/|L|,

µ6
χ,1 = (r − 5)(r − 7)(r − 13)(r − 19)/|L|,

µ10
χ,1 = µ2

χ,1 − 1
5 and µ30

χ,1 = µ6
χ,1 − 1

5 .

We conclude there are no regular orbits if and only if r ∈ {7, 13, 19}. We
similarly get the minimal stabilizers as stated in Theorem 7.2a.

Let χ = χ4 in the Atlas notation, a rational (Weil) character of L ∼=
U4(2) of degree 6 which extends rationally to X = L.2. So G = G0 = X×Z.
The counting argument yields the existence of a regular orbit unless r < 47.
The method of Proposition 7.3c shows that there are no regular orbits if
and only if r ∈ {7, 11, 13}, and one gets the minimal stabilizers listed in
Theorem 7.2a. For the remaining projective representations of S4(3) the
counting principle works.

(ii) L = S4(4) and d ≤ 34: Consider first the minimal character χ = χ2

of degree 18, which is rational and extends to X = Aut(L) = L.4 requiring√−1 [Atlas, p. 45]. Assuming that there is no regular orbit we have

r18 ≤ |2AB|(r12 + r6) + |2C|(r10 + r8) + |2D|(2r9) + |L|(3r6)

= 510(r12 + r6) + 3.825(r10 + r8) + 2.720r9 + 28 · 33 · 52 · 7r6.

This implies that r < 9, which is impossible (by coprimeness). For the
representations of L.2 of dimension 34, no prime order element has an
eigenspace of dimension greater than 22, and the result follows.

(iii) L = S4(5) and d ≤ 40: For the minimal Weil characters (of degree
12) of 2.L = Sp4(5) the counting argument (based on the character table
[Atlas, pp. 62–63]) gives a regular orbit (unless r < 6). For the other
Weil characters (of degree 13) of L the result is similar. For the character
χ = χ4 of L of degree 40, which extends to L.2, the largest dimension of
an eigenspace of a prime order element is 26, and the result follows.
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(iv) L = S4(7) and χ is a Weil character: Here L is not an Atlas group.
We argue on the basis of Lemma 7.7b. By Theorem 4.5a, F requires a
square root of −7. Either χ = ξ1 is faithful for E = Sp4(7) (of degree
d = (72 − 1)/2 = 24) and G = G0 = E ◦ Z, or χ = ξ2 , d = 25 and
G = G0 = L× Z. Let g ∈ G be a noncentral element of prime order s.

If g is not an involution, then dim F CV (g) ≤ 1
2s (72 + (s− 1)7) if s 6= 7

and dim F CV (g) ≤ 7 otherwise. So the fixed point ratio f(g, V ) < 1
2 , at

any rate. Suppose next that χ = ξ2 and x is an involution in E = L that
lifts to an element of order 4 in Sp4(7). Then χ(x) = ±1 by the lemma,
whence f(g, V ) ≤ 13

25 when g = xz for some z ∈ Z. Let finally x ∈ E be a
noncentral involution which is not of this type. By the lemma

χ(x) = −1
2
(7 + 7) = −7

if χ = ξ2, and χ(x) = 0 otherwise. So f(g, V ) ≤ 1
2 when χ = ξ1 (for any

g), in which case there is a regular orbit since r12 > 2|Sp4(7)| for r ≥ 6. So
let χ = ξ2. Then f(g, V ) ≤ 16

25 for each g, so that we have to inspect when
the inequality

r9 > 2|S4(7)| = 29 · 32 · 52 · 74

does hold. This indeed holds for r ≥ 9, implying that there is a regular
orbit also in this case.

(v), (vi) L = S4(9) and L = S4(11), with χ being a Weil character:
These are treated in exactly the same manner as (iv).

m = 3 : By Proposition 7.7a the following cases have to be examined.

(i) L = S6(2) and d ≤ 35. Consider first the character χ = χ2 of L

of degree 7 [Atlas, p. 47]. Here we have G = G0 = L × Z. The counting
argument shows that there is a regular orbit when r ≥ 80. So r = p can
be any prime between 11 and 79 at this stage (by coprimeness). We use
projective marks. The table of marks for L = Sp6(2) is in [GAP]. We get

µ2
χ,1 = (r − 5)(r − 7)(r − 9)(r − 11)(r − 13)(r − 17)/|L|,

µ6
χ,1 = (r − 7)(r − 13)(r − 19)(r3 − 23r2 + 187r − 325)/|L|,

µ14
χ,1 = µ2

χ,1 − 1
7 and µ42

χ,1 = µ6
χ,1 − 1

7 .

We deduce that there are no regular orbits if and only if r ∈ {11, 13, 17, 19}.
The minimal stabilizers listed in Theorem 7.2a are obtained from the cor-
responding polynomials to the appropriate nontrivial subgroups of L.
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Consider next the character χ = χ31 of degree 8 of E = 2.Sp6(2). The
counting method yields that there are regular orbits for G = E ◦ Z except
possibly when r = 11. This is handled by showing that the polynomial µ10

χ,1

is positive at r = 11.

(ii) L = S6(3) and χ is a Weil character: Here L is an Atlas group
[Atlas, pp. 110–113), and the usual counting arguments work. There is a
regular orbit.

(iii) L = S6(5) and χ is a Weil character: Here L is not an Atlas group.
By Theorem 4.5a the field F requires a square root of 5. Either χ = ξ1 is
faithful (of degree (53−1)/2 = 62) for E = Sp6(5) and G = G0 = E ◦Z, or
χ = ξ2 and G = G0 = L×Z. If g is a noncentral element in G of odd prime
order, then dim F CV (g) ≤ 1

6 (53 + 2 · 52) by Lemma 7.7b (taking the worst
case o(g) = 3), whence f(g, V ) < 1

2 . If G = L×Z and g ∈ L is an involution
which lifts to an element of order 4 in Sp6(5), we have χ(g) = ξ2(g) = ±1
by the lemma and so f(gz, V ) ≤ 32

63 for any z ∈ Z. If g ∈ L is an involution
which is not of this type, then χ(x) = ξ2(x) = 15. If χ = ξ1 and x ∈ E is a
noncentral involution, then χ(g) ∈ {10,−10} by Lemma 7.7b.

We conclude that f(g, V ) ≤ 36
62 for any noncentral element g ∈ G if

G = E ◦ Z, and f(g, V ) ≤ 39
63 if G = L× Z. In the second (worse) case we

verify that
r24 > 2|S6(5)| = 210 · 34 · 59 · 7 · 13 · 31

for r ≥ 5. Hence there are regular orbits.

m = 4 : By Proposition 7.7a the following has to be treated.

(i) L = S8(2) and d ≤ 85: Then d = 35, 51 or 85 [Atlas, p. 124].
If d = 35 or 85 (characters χ3, χ4 in the [Atlas]), then no prime order
element has an eigenspace on V of dimension greater than d − 15. From
r15 ≤ 2 · |S8(2)| we obtain that r < 6. Hence there is a regular orbit. For
d = 35 (character χ2) no prime order element, except the involutions in class
2A, have eigenspaces of dimension greater than 23, and the involutions in
2A have the spectral pattern [−1(28), 1(7)]. From

r35 ≤ |2A|r28 + 2|L|r23 = 255r28 + 217 · 35 · 52 · 7 · 17

we obtain that r < 9. Hence there is again a regular orbit.

(ii) L = S8(3) and χ is a Weil character: The field F requires a square
root of −3 by Theorem 4.5a, and ξ1 is faithful for E = Sp8(3) (of degree
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40). So G = G0 = E ◦ Z if χ = ξ1, and G = G0 = L × Z if χ = ξ2. Let g

be a noncentral element of G of prime order s. If s is odd, by Lemma 7.7b
we have dim F CV (g) ≤ 33 − 1 = 26 when χ = ξ1 and dim F CV (g) ≤ 27
otherwise, considering the worst case s = 3. If χ = ξ2 and g ∈ L is
an involution lifting to an element of order 4 in Sp8(3), then χ(g) ± 1
by the lemma. If g ∈ L is an involution which is not of this kind, then
χ(g) = ξ2(g) ∈ {9,−15}. If χ = ξ1 on E and g ∈ E is a (noncentral)
involution, then χ(g) ∈ {0, 12,−12} by Lemma 7.7b.

We conclude that, for all g, f(g, V ) ≤ 26
40 when χ = ξ1, and f(g, V ) ≤

28
41 when χ = ξ2. Assuming that there is no regular G-orbit on V , in the
first case we have

r15 ≤ 2|Sp8(3)| = 216 · 316 · 52 · 7 · 13 · 41,

which forces that r < 16. Since r is coprime to 13 (and to 2 · 3 · 5 · 7) and
since −3 is not a square modulo 11, we obtain the desired contradiction.
In the second case the inequality r13 ≤ 2|S8(3)| only holds if r < 21, and
it remains to rule out the case r = 19. We have to improve the estimate.
By (5.6d) we may replace the factor 2 by (1 + 1

r15 ), which is not sufficient,
however.

Consider the conjugacy class 2B of involutions in S8(3) where χ = ξ2

takes the value −15. By Lemma 7.7b, |2B| = |Sp8(3)|/(|Sp6(3)|·|Sp2(3)|) =
2 · 36 · 5 · 41. We may replace the above inequality by

r41 ≤ |2B|(r28 + r13) + |S8(3)|(r27 + r14).

This implies that r < 19, as desired.

m = 5,6 : By Proposition 7.7a we have merely to treat the Weil characters
for Sp2m(3). One argues as for Sp8(3).

7.8. Unitary Groups

Let L = Um(q) = PSUm(q) for some integer m ≥ 3 and some prime power
q. The case (m, q) = (3, 2) cannnot happen since L is simple, and we
exclude (m, q) = (4, 2) since U4(2) ∼= S4(3) has been already treated in
Sec. 7.7. The automorphism group of L, and its Schur multiplier, is known
[Steinberg, 1967]. Recall that the centre Z(SUm(q)) is (cyclic) of order
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gcd(q +1,m). By [Guralnick–Saxl, 2003] c(L) ≤ m+1 except when m = 4,
in which case c(L) ≤ 6, and c(L) ≤ m for m ≥ 5. By [Tiep–Zalesskii, 1996]

R0(Um(q))) =
{

(qm − q)/(q + 1) if m is odd
(qm − 1)/q + 1) otherwise ,

except when (m, q) = (4, 3) (see Appendix C3). Then if d = χ(1) ≤
R0(L)+1, χ is a Weil character of SUm(q). Using that d ≥ R0(L) one gets
the following, on the basis of Lemma 7.3b.

Proposition 7.8a. There is a regular G-orbit on V except possibly in the
following cases:

• (m, q) = (3, 3) and d ≤ 21; (m, q) = (4, 3) and d ≤ 45; (m, q) = (5, 2)
and d ≤ 55; (m, q) = (6, 2) and d ≤ 56.

• (m, q) = (3, 4), (3, 5), (3, 7), (4, 4), (5, 3), (7, 2), (8, 2), (9, 2) and χ is
one of the Weil characters of SUm(q).

The groups U4(4), U5(3), U7(2), U8(2) and U9(2) are not Atlas groups.
So we need some general information on their Weil characters. Some crucial
facts have been described in Appendix (C3). Let U be the standard module
for Gu = GUm(q), and let λu be a fixed linear character of Zu = Z(Gu)
of order q + 1 (noting that Zu is cyclic of order q + 1). There is a generic
Weil character ξu of Gu, which is rational-valued and satisfies ξ2

u = πU .
There are precisely q + 1 irreducible constituents ξ0, ξ1, · · ·, ξq of ξu, all
remaining irreducible and distinct when restricted to Su = SUm(q). The
Weil character ξj is the (irreducible) constituent of ξu lying above the linear
character λj

u, so that ξu =
∑q

j=0 ξj . We have ξ0(1) = qm+(−1)mq
q+1 and

ξj(1) = ξ0(1) − (−1)m for j > 0. Let ε = e2πi/(q+1), and let zu be the
generator of Zu satisfying λu(zu) = ε.

Lemma 7.8b. Suppose the character χ of G afforded by V agrees on the
(unitary) core E with an (irreducible) Weil character. Let g ∈ G be a
noncentral element of prime order s.

(i) Suppose g induces on E an inner or diagonal automorphism, and
assume that s - q + 1. Then dim F CV (g) ≤ 1

s(q+1) (q
m + (s− 1)qm−1) when

s - q or s = 2 | q, and dim F CV (g) ≤ 2
q+1qm otherwise.

(ii) Suppose g is an involution inducing an outer field automorphism
on E. Then either χ(g) = 0 or χ(g) = ±qa for some integer a ≤ m

2 .
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Proof. Let q = qf
0 , q0 prime. Since q is a divisor of |E|, q0 6= p by

coprimeness. Enlarging F , if necessary, we may assume that F contains the
q0th roots of unity when q is odd, and the 8th otherwise. Gu acts faithfully
on a q0-group Q such that Q/Z(Q) = U is the standard module and Z(Q)
is centralized by Gu, where Q ∼= (q0)

1+2fm
+ for odd q and Q ∼= 21+2fm

0

otherwise. Let T be the standard holomorph to Q, and let ξ be a faithful
irreducible character of T of degree qm. Then Q : Gu is a subgroup of
T , and ResT

Gu
(ξ) = ξu · µ where µ is the linear character of Gu of order

gcd(q + 1, 2) (Appendix C3). Embed Z(Q) = Z(T ) into Z such that ξ and
χ lie above the same linear character.

(i) By assumption g = xz for some sth root of unity z ∈ Z and
some x ∈ E, because Gu induces all diagonal automorphisms on E and
|Gu/Su| = q + 1. Since Z(Su) ⊆ Zu and s - |Zu| = q + 1, we may let
〈z〉 act trivially on T and regard ξ as a faithful character of T0 = T 〈z〉
with ξ(z)/ξ(1) = χ(z)/χ(1). (Either s = q0 and T = T0 or T0 = T × 〈z〉.)
Identify x with the (unique) element of Su of order s mapping onto x (so
that g = xz gets an element of T0). Let ν be the linear character of 〈x〉
with ν(x) = χ(z)

χ(1) . From Theorem 6.2c it follows that

〈ξu, ν〉〈x〉 = 〈ξ, 1〉〈g〉 ≤
1
s
(qm + (s− 1)qm−1)

if s 6= q or s = 2 | q, and 〈ξu, ν〉〈x〉 ≤ 2qm−1 otherwise. By hypothesis no
eigenvalue 6= 1 of x on U has order dividing q + 1. Hence letting d0 be the
dimension over Fq2 of CU (x), and letting dk = 0 otherwise, by Appendix
(C3)

ξj(x) =
(−1)m

q + 1

q∑

k=0

(−q)dkεkj =
(−1)m

q + 1
·
{(

(−q)d0 + q
)

if j = 0(
(−q)d0 − 1

)
if j > 0

.

We just use that εj 6= 1 for j = 1, · · ·, q and that
∑q

k=0 εjk = 0. We infer
that the ξj(x) for j > 0 agree, and that ξ0(x) − ξj(x) = (−1)m. There is
a corresponding statement replacing x by any power xi 6= 1. The assertion
follows noting that ξu =

∑q
j=0 ξj .

(ii) Exclude (also) the case (m, q) = (6, 2) (where χ(g) = 0 or χ(g) =
±23 by [Atlas, p. 117]). Then some distinguished group Y appears in T ,
where Y = Gu.2 is a field extension group in the odd case and Y/Z(T ) ∼=
Gu.2 otherwise (Appendix C3) Since Out(L) is the semidirect product of
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the cyclic groups of outer diagonal automorphisms (induced by Gu) with
that of field automorphisms, by assumption 〈L,Z(E)g〉 is isomorphic to a
subgroup of Gu.2/Zu. So 〈E, g〉 is a section of Y . Observe that Gu/Su

∼= Zu

as modules for the group of field automorphisms. The outer field automor-
phism of order 2 inverts the elements of Zu = 〈zu〉, because it sends zu to
zq
u = z−1

u .
Consider first the case that q is even (hence q + 1 odd). By the con-

struction of the irreducible Weil characters the outer field automorphism
of Gu of order 2 leaves ξ0 invariant and fuses the other characters pairwise.
Hence by assumption χ = ξ0 on E and E = L (as χ is faithful and Zu is the
kernel of ξ0). Let g′ ∈ Y map onto g. Then χ(g) = ξ0(g′), the character
ξ0 suitably extended to Y . We have ξ(g′) = ±ξ0(g′) as the ξj for j > 0
are fused pairwise by g′. Hence χ(g) = ±ξ(g′). By Theorem 4.4 either
ξ(g′) = 0 or g′ is good for U and ξ(g′)2 = |CU (g)|. Suppose χ(g) 6= 0.
Then

χ(g)2 = ξ(g′)2 = |CU (g′)| = |CU (g′z)|
for all z ∈ Zu. Certainly CU (g′) ∩ CU (g′zu) = 0. Hence dim Fq

CU (g′) ≤
1
2dim FqU = 1

22m = m and χ(g) = ±qa for some integer a ≤ m/2.
Let q be odd. Then the outer field automorphism of Gu of order 2

leaves ξ0 and ξ(q+1)/2 invariant and fuses the other irreducible Weil char-
acters pairwise. Hence χ = ξ0 or χ = ξ(q+1)/2 on E. Let ξa, ξb denote the
irreducible constituents of ResT

Y (ξ) having the kernels Zu = 〈zu〉 and 〈z2
u〉,

respectively. So ξa = ξ0 and ξb = ξ(q+1)/2 on Gu if m is even (Ker(µ) ⊇ Zu),
and vice versa otherwise. Also, E = L unless m is even, χ = ξb on E and
q ≡ 3 (mod 4), in which case 〈E, g〉 is isoclinic to a subgroup of Y/〈z2

u〉.
There is a 2-element g′ of Y mapping onto Zug (identified with Z(E)g).
We have χ(g) = ±ξa(g′) or ±ξb(g′), possibly χ(g) = ±iξb(g′) when E 6= L

and the isoclinism is proper. By Theorem 4.4, g′ is good for U (as q is odd).
From Theorem 4.5a we infer that ξ(g′z) is rational for all z ∈ Zu, because
g′z is a q′0-element.

We have ξ(g′) = ξ(g′z) = ξa(g′) + ξb(g′) when z is a square in Zu, and
ξ(g′z) = ξa(g′) − ξb(g′) otherwise. As before CU (g′) ∩ CU (g′zu) = 0. The
map u 7→ u(1 + zu) is an injection from CU (g′) into CU (g′zu), because

u(1 + zu)g′ = u(1 + z−1
u ) =

(
u(1 + zu)

)
z−1
u

for u ∈ CU (g′). Similarly, the map v 7→ v(1 + z−1
u ) is an injection from

CU (g′zu) into CU (g′). Hence dim Fq
CU (g′) = dim Fq

CU (g′zu) ≤ m. More-
over ξ(g′)2 = |CU (g′)| = |CU (g′zu)| = ξ(g′zu)2 and so ξ(g′) = ±ξ(g′zu) as
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both are integers. It follows that

ξa(g′) + ξb(g′) = ±(
ξa(g′)− ξb(g′)

)
.

Consequently ξa(g′) = 0 or ξb(g′) = 0. Thus if χ(g) 6= 0, then χ(g) = ±ξ(g′)
as both are integers, and

χ(g)2 = |CU (g′)| = q2a

for some integer a ≤ m/2, as desired. ¤

Because of Proposition 7.8a we have to examine only some few cases.
As before we proceed starting with the lowest rank of the groups involved.

m = 3 : We have to consider the following.

(i) L = U3(3) and d ≤ 21: Suppose first χ = χ2 is the Weil character
of (minimal) degree d = 6 [Atlas, p. 14]. This χ is rational-valued but
extends to X = L.2 ∼= G2(2) requiring the 3rd roots of unity. If there is no
regular orbit for X × Z, then

r6 ≤ |2A|(r4 + r2) +
1
2
|3A|(2r3) +

1
2
|3B|(3r2) +

1
2
|7AB|(6r) + |2B|(2r3)

= 63(r4 + r2) + 56r3 + 1.008r2 + 2.592r + 504r2.

This implies that r < 11. Hence r = 5 (by coprimeness), and these case
cannot happen for X × Z. So consider G = L× Z and r = 5. One checks
that µ4

χ,1 vanishes at r = 5, so there is no regular orbit for G. Also, the
minimal point stabilizers in G are cyclic groups of order 4 which however
get larger in G0 = NGL(V )(L) = G.2. (Consider elements in the classes 4C

and 8C of L.2). We show that there is v ∈ V such that CG0(v) ∼= S3, as
stated in Theorem 7.2a.

Let x be an element of L in the class 3B. Then NL(〈x〉) ∼= S3 has no
fixed points on V ], but x does. Let v be a nonzero vector fixed by x. Then
CL(v) = 〈x〉, and from Lemma 5.1b it follows that H = CG(v) ∼= S3. We
assert that CG0(v) = H. Otherwise H is of index 2 in this group, which
forces that CG0(v) ∼= H × Z2 since Z(S3) = 1 and Aut(S3) = S3. Here the
generator of Z2 belongs to the conjugacy class 2B of L.2, whose elements
do not centralize elements in the class 3A [Atlas]. Hence the assertion.
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Let next χ = χ3 be the Weil character of degree 7 which extends
(rationally) to X = L.2 = G2(2). So G = G0 = X × Z. The counting
argument yields regular vectors unless r < 8. For r = 5 we compute

µ4
χ,1 = (r − 5)(r5 + 6r4 + 31r3 − 159r2 − 1.760r + 2.457)/|X|,

and we get some point stabilizer of order 2. For the algebraically conjugate
(Weil) characters χ = χ4, χ5 of L, which fuse in G2(2), the counting argu-
ment again gives regular vectors unless r = 5. As before there is no regular
orbit for G = G0 = L× Z4 when r = 5, and a point stabilizer of order 2.

For all other irreducible characters of L = U3(3) no prime order ele-
ment of Aut(L) = G2(2) has an eigenspace of dimension greater than d−8,
and from r8 ≤ 2|G2(2)| it follows that r < 4.

(ii) L = U3(4) and χ is a Weil character: The character χ = χ2 of
degree 12 extends to X = L.4, and for G = X × Z the counting method
works. Similar statement for the other four Weil characters of L which fuse
pairwise in L.2 and together in L.4. There are always regular orbits.

(iii) L = U3(5) and χ is a Weil character: In each case no noncentral
element of Aut(L) = L.3 or of 3.L.3 of prime order has an eigenspace of
dimension greater that d− 8. From r8 ≤ 2|3.L.3| it follows that r < 7.

(iv) L = U3(7) and χ is a Weil character: In the representations of
degree at most 43 no prime element of Aut(L) = L.2 has an eigenspace of
dimension greater than n− 18. From r18 ≤ 2|L.2| it follows that r < 3.

m = 4 : By Proposition 7.8a we have to examine the following.

(i) L = U4(3) and d ≤ 45: Assume there is no regular orbit. For the
21-dimensional representations of Aut(L) = L.D8 (character χ = χ2 in the
[Atlas, p. 54]) we then have

r21 ≤ |2D|r15 + |2B|r14 + |2A|r13 + 2|Aut(L)| · r11

= 126r15 + 540r14 + 2.835r13 + 52.254.720r11,

which implies that r < 7, a contradiction. For the 35-dimensional represen-
tations of L.21 and L.22 no prime order element has an eigenspace of dimen-
sion greater than d − 10, and from r10 ≤ 2|Aut(L)| it follows that r < 6.
The 20-dimensional representations of 2.L and 4.L are treated similarly.
For the 15-dimensional representations of 31.L.22 (characters χ = χ56) the
counting method yields that r < 7, a contradiction. For the 36-dimensional
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representations of 32.L (or 32.L.23) and 122.L, and for the 45-dimensional
representations of the former group(s), the same method applies.

It remains to investigate the (faithful) 6-dimensional representations
of X = 61.L.22 (as a complex reflection group). The isoclinism type of X

does not matter, and the character χ of X is an extension of one of the
two algebraically conjugate characters χ72 (requiring

√−3) [Atlas]. The
counting argument gives the existence of regular orbits for G = G0 = X ◦Z

when r ≥ 157. Now the table of marks for L = U4(3) (and for L.21) is
available in [GAP], and from that it is not difficult to compute the table of
marks for X̄ = L.22 (extension by a diagonal automorphism). One obtains
that

µ6
χ,1 = (r − 13)(r − 19)(r − 25)(r − 31)(r − 37)/|L.22|,

and that µt
χ,1 = µ6

χ,1 for all multiples t of 6 dividing exp (X) = 23 · 32 · 5 · 7.
So there are no regular orbits if and only if r ∈ {13, 19, 31, 37}. Similar
computation leads to the minimal stabilizers as given in Theorem 7.2a.

The two isoclinic variants of X = 61.U4(3).22 get isomorphic in G =
X ◦ Z when r = 13 or r = 37, because then (r − 1)/6 is even.

(ii) L = U4(4) and χ = ξj is a Weil character: Here L = E = SU4(4)
is not an Atlas group, and Gu = GU4(4) = L × Zu where Zu = 〈zu〉 is
cyclic of order 5. Aut(L) = L.4 permutes cyclically the nontrivial elements
of Zu = Z(Gu), hence the Weil characters ξ1, ξ2, ξ3, ξ4 (of degree 51). Let
g ∈ G be a noncentral element of prime order s. If s 6= 5, by Lemma 7.8b
(picking s = 2)

dim F CV (g) ≤ 1
5s

(44 + (s− 1)43) ≤ 32.

Let s = 5. Write g = xz where x ∈ L and z ∈ Z. Let ε = e2πi/5, and
let dk = dk(x) = dim F16(z

−k
u x) for k = 0, · · ·, 4, where U is the standard

module for Gu. By Appendix (C3) ξj(x) = 1
5

∑4
k=0(−4)dkεkj . Since x is

faithful on U , dk ≤ 3 for each k. We conclude that the eigenspaces of x

(and of g) on V are at most 13-dimensional when χ = ξ0 on L, and at most
12-dimensional otherwise.

Let g ∈ G be an involution inducing an outer field automorphism on
E = L. Then χ = ξ0 on L (of degree 52), and we consider the worst case
G = G0 = L.4 × Z. By Lemma 7.8b either χ(g) = 0 or χ(g) = ±4a for
some integer a ≤ m

2 = 2. Hence dim F CV (g) ≤ 1
2 (52 + 42) = 34. From

r18 ≤ 2 · |L.4| = 215 · 32 · 53 · 13 · 17
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we obtain that r < 4. Hence there is a regular orbit, in all cases.

m = 5 : We only have to examine the following.

(i) L = U5(2) and d ≤ 55: We have to deal with the three Weil
characters ξ0 = χ2 (degree 10) and ξ1 = χ3, ξ2 = χ4 [Atlas, p. 72]. For
the other characters (χ5 of degree 44 and χ6 of degree 55), no prime order
element of L.2 has an eigenspace of dimension larger than d− 16, and the
result follows.

Let us consider first χ = ξ0. Suppose X = L.2 and G = G0 = X × Z.
The usual counting argument yields that there are regular vectors unless
r < 15. (The involutions in the class 2A have weak spectral pattern [8, 2],
so one cannot improve the estimate without additional arguments. On the
other hand, the counting argument yields the existence of strongly real
vectors.) The only possibilities are r = 7 and r = 13 (by coprimeness). But
the character ξ0 requires 2

√−2 on L.2 outside L, and −2 is not a square
mod 7 or 13. Hence we are left with the cases r = 7, 13, but we have to
consider G = L×Z (and G0 = (L×Z).2). The table of marks for L = U5(2)
is in [GAP] (but not that for U5(2).2). For U5(2) we obtain that the only
roots of the polynomials µ6

χ,1 and µ12
χ,1 are 1, 5 and 7. So there is no regular

orbit just when r = 7. In this case all polynomials µ6
χ,H for subgroups H

of order 2, 3 vanish at r = 7 but not for a Klein 4-group H ∼= V4. So there
is v ∈ V such that CG(v) = H. We assert that CG0(v) = H as well.

From the [Atlas] we read off that two involutions in H must belong
to the class 2B and one to 2A. If CG0(v) 6= H, it is a dihedral group
of order 8 containing an involution in the class 2C, which centralizes the
involution in H in class 2A and interchanges the other ones. Notice that the
elements in class 4D square to elements in class 2B and cannot exchange
two involutions in different classes. But N(2A) is enlarged when passing
from L to L.2 by replacing a split extension with 2.A4 on the top by a 2.S4

[Atlas], and for this one needs an element of order 8. Hence the assertion.

For χ = ξj , j > 0, we have to consider G = L × Z. The counting
argument yields regular vectors unless r = 7. Here the polynomial µ6

χ,1 is
irreducible over F7. Hence there is a regular orbit.

(ii) L = U5(3) and χ is a Weil character: Here L is not an Atlas group.
Let Gu = GU5(3) = L× Zu where Zu = Z(Gu) = 〈zu〉 has order 4. Recall
that ξ0(1) = 60 and ξj(1) = 61 for j > 0. Either G0 = L × Z and χ = ξ1

or ξ3 on L, or G0 = L.2 × Z and χ = ξ0 or ξ2. Let G = G0. Suppose g is
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a noncentral element of prime order s in G. If s 6= 2, then by Lemma 7.8b
(picking s = 3)

dim F CV (g) ≤ b 1
4s

(35 − (s− 1)34)c ≤ b 1
12

(35 + 2 · 34)c = 33.

If g = xz is an involution, with x ∈ L and z ∈ Z, then ξj(x) = −1
4 ((−3)d0 +

(−3)d1ij + (−3)d2i2j + (−3)d3i3j) by the formula given in Appendix (C3).
Here dk = dk(x) = dim F9CU (z−k

u x) (and i2 = −1). This yields that
|χ(x)| ≤ 1

4 (34 + 32 + 2) = 23 and so dim F CV (g) ≤ 42.

Suppose that g is an involution inducing an outer field automorphism
on L. Then by Lemma 7.8b either χ(g) = 0 or χ(g) = ±3a for some integer
a ≤ m

2 = 5
2 . So the eigenspaces of g on V are at most of dimension 30.

Since for any g the fixed point ratio f(g, V ) ≤ 42
60 , and since r17 > 2|L.2| =

213 · 310 · 5 · 7 · 61 for r > 10, there exist regular orbits in each case.

m = 6 : By the proposition we only have to examine L = U6(2), with d ≤
56. For the 56-dimensional representations of 2.L.2, the largest dimension
of an eigenspace of a noncentral element of prime order is 40, and we obtain
a regular orbit. So it remains to consider the Weil characters (ξ0 = χ2 of
degree 22, the others corresponding to χ78 in the Atlas notation [Atlas, p.
116–121]. The counting method applies.

m = 7 : By Proposition 7.8a we just have to examine the Weil characters
of L = SU7(2). Recall that Gu = GU7(2) = L × Z3 and that ξ0(1) = 42,
ξj(1) = 43 for j > 0. Consider G = G0, so either G = L×Z or G = L.2×Z

and χ = ξ0 on L. Let g ∈ G be a noncentral element of prime order s. If
s ≥ 5, then for any possibility for χ = ξj by Lemma 7.8b

dim F CV (g) ≤ b 1
3s

(27 + (s− 1)26)c ≤ 25.

Let s = 3, and let g = xz for x ∈ L and z ∈ Z. Let ε = e2πi/3 and dk =
dk(x) = dim F4CU (z−k

u x) for k = 0, 1, 2, where U is the standard module
for Gu. By Appendix (C3), χj(x) = −1

3

(
(−2)d0 + (−2)d1εj + (−2)d2ε2j

)
.

Using that ε + ε2 = −1 and that ξj(x) is an algebraic integer one obtains
that ξ0(x) ∈ {0,−3, 6, 9, 12,−21} and that ξj(x) ∈ {−2, 4, 10, 1 + 12ε, 1 +
12ε2,−5 + 3ε,−5 + 3ε2, 1− 21ε, 1− 21ε2} for j = 1, 2. We deduce that no
eigenspace of x (or g) on V has dimension greater than 21 when χ = ξ0,
and greater than 22 when χ = ξ1 or ξ2.
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Let s = 2. Consider first the case that g induces an outer field auto-
morphism on L. Then χ = ξ0 on L, and by Lemma 7.8b either χ(g) = 0 or
χ(g) = ±2a for some integer a ≤ m

2 = 7
2 . It follows that

dim F CV (g) ≤ 1
2
(42 + 23) = 25

in this case. Let finally g be an involution inducing an inner or diagonal
automorphism on L. We consider the worst case that χ = ξ0 on L, as
before. From Lemma 7.8b it follows that dim F CV (g) ≤ 32. There is a
unique conjugacy class 2A of unitary transvections t in Gu (which generates
SUm(q); see [Aschbacher, 1986, (22.3) and (22.4)]). For this we have d0(t) =
dim Fq2 CU (t) = m− 1 = 6 and ξ0(t) = −22 (C3). Hence if g = (−1)t, then
indeed dim F CV (g) = 32. For the other noncentral involutions t1, t2 in
Gu, up to conjugacy, we have d0(t1) = 5, χ(t1) = 10, and d0(t2) = 4,
χ(t2) = −6, so that the F -dimensions of their eigenspaces on V are at most
26. Hence, combining the previous estimates, there is a regular G-orbit on
V provided

r42 > 2|L.2|r26 + |2A|(r32 + r10)

for r ≥ 13. This is true since 2|L.2| = 223 ·38 ·5 ·7 ·11 ·43 and |2A| = 2.709.
Observing that the centre [U, t] of the transvection t consists of isotropic
vectors, the size of the conjugacy class 2A is nothing but (|I(U)|−1)/(q2−1)
where I(U) is the set of isotropic vectors in U . As in Lemma 4.6b one
computes |I(U)| = q2m−1 + (−1)m(qm − qm−1).

The remaining cases (Weil characters for SU8(2) and SU9(2)) are treat-
ed in the same manner.

7.9. Orthogonal Groups

Let L be a simple orthogonal group with associated module of dimension
m. Then the automorphism group and the Schur multiplier of L is known
[Steinberg, 1967]. By [Guralnick–Saxl, 2003] the covering number c(L) ≤
m + 1, and c(L) ≤ m for m ≥ 5. Furthermore R0(L) has been computed
by [Tiep–Zalesskii, 1996]. On the basis of Lemma 7.3b this readily gives
the following.

Proposition 7.9. There exists a regular orbit except possibly when L ∼=
Ω7(3) and d ≤ 78, or L ∼= Ω−8 (2) and d ≤ 52, or L ∼= Ω+

8 (2) and d ≤ 84.
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We have to examine these three cases and show that regular orbits exist
except when L ∼= Ω+

8 (2), d = 8.

Case 1: L = Ω7(3) and d ≤ 78: We use [Atlas, pp. 106–108]. In the
78-dimensional representations of L.2, the largest eigenspace of an element
of prime order is 56. Since r22 > 2|L.2| for r > 3 (even), we are done.
For the 27-dimensional representations of 3.L the usual counting argument
works as well.

Case 2: L = Ω−8 (2) and d ≤ 52: For the representations of L.2 of
degree 34 and 51, the largest eigenspace of elements in the class 2D ([Atlas,
p. 88]; |2D| = 136) has dimension at most d − 7, and no other element
of prime order has an eigenspace of dimension greater than d − 12. From
r12 ≤ 2|2D|+ 2|L.2| it follows that r < 7. Hence the result.

Case 3: L = Ω+
8 (2) and d ≤ 84: For the characters of L [Atlas, p. 86]

χ2 (degree d = 28, extendible to Aut(L) = L.S3), χ3 (d = 35, extendible to
L.2), χ6 (d = 50, extendible to L.S3), and χ7 (d = 84, extendible to L.2)
observe that the elements in the class 2F have no eigenspaces of dimension
greater than d − 7. All other elements of prime order have no eigenspaces
of dimension greater than d− 12, which holds also for the characters of the
above degrees which do not split in a proper extension of L. Since

r28 > |2F |(r21 + r7) + 2|L.S3|r16

for r > 7, there is a regular orbit. Similarly, for the 56-dimensional repre-
sentations of 2.L.2 none of the noncentral elements of prime order has an
eigenspace of dimension greater than 35, and the result follows.

It remains to consider some faithful character χ = χ54 of degree 8 of
E = 2.L, which is extendible to any X = 2.L.2. The multiplier M(L) is
elementary of order 4 but Aut(L) permutes its involutions. The isoclinic
type being irrelevant it suffices to consider X = W (E8), the Weyl group
of the root lattice E8. The spectral pattern of an involution g in the class
2F0 is gV = [1(7),−1(1)], and |2F | = 120. So it is clear that the counting
method cannot work. (We only get in this manner regular vectors when
r > 275.) The table of marks for X̄ = X/Z(X) is available in [GAP]. One
gets:

µ2
χ,1 = (r − 7)(r − 11)(r − 13)(r − 17)(r − 19)(r − 23)(r + 91)/|L|,

µ4
χ,1 = µ2

χ,1 − (r − 13)(r − 17)(r − 29)/11.520,

µ6
χ,1 = µ2

χ,1 − (r − 7)(r − 13)(r − 19)/38.880,
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µ10
χ,1 = µ2

χ,1 − (r − 11)/150,
µ12

χ,1 = µ6
χ,1 − (r − 9)(r − 13)(r − 37)/11.520,

µ20
χ,1 = µ4

χ,1 − (r − 41)/150,
µ30

χ,1 = µ6
χ,1 − (r − 31)/150, and

µ7t
χ,1 = µt

χ,1 − 1
7 for all positive even integers t.

One concludes that G = G0 = X ◦Z has no regular orbit on V if and only
if r ∈ {11, 13, 17, 19, 23}. Further inspection gives the minimal stabilizers
listed in Theorem 7.2a.

The existence of a (strongly) real vector can be seen also as follows. The
representation of X of degree 8 comes from the action of X as automorphism
group on the 8-dimensional root lattice E8. X is transitive on the 240
minimal vectors, and a point stabilizer is isomorphic to the real group
S6(2)× Z2.

7.10. Exceptional Groups

Let L be a simple exceptional group of Lie type (including the twisted
Suzuki and Ree groups). Then Aut(L) and M(L) are known. By [Guralnick
and Saxl, 2003] the covering number c(L) ≤ ` + 3, where ` is the untwisted
rank of L, except possibly when L = F4(q) with c(L) ≤ 8. From [Seitz–
Zalesskii, 1993] one has lower bounds for R0(L). On the basis of Lemma
7.3b this yields the following.

Proposition 7.10. There are regular orbits except possibly when L =
G2(3) and d ≤ 27, or L = G2(4) and d = 12, or L = Sz(8) and d ≤ 56,
or L =3D4(2) and d ≤ 52, or L =2F4(2)′ and d ≤ 52, or L = F4(2) and
d = 52.

The remaining groups to be examined are all Atlas groups, and the counting
method applies in each case.

This completes the proof of Theorem 7.2a.

At this stage, the k(GV ) problem is settled in all characteristics p

different from 3, 5, 7, 11, 13, 19 and 31. This is a consequence of the clas-
sification of the nonreal reduced pairs in Theorems 6.1, 7.1, in terms of
the Robinson–Thompson criterion (Theorem 5.2b) and Clifford reduction
(Theorem 5.4). The challenge now is to describe effectively the pairs (G, V )
admitting no real vectors, which must “involve” nonreal reduced pairs in
some Clifford-theoretic sense.



Chapter 8

Modules without Real Vectors

In solving the k(GV ) problem we may assume that G is irreducible on V

(Proposition 3.1a) and that no vector in V is real for G (Theorem 5.2b). We
show that then (G,V ) must be a “nonreal induced” pair, that is, obtained
by module induction from a nonreal reduced pair. This is an important
step towards the solution of the problem.

8.1. Some Fixed Point Ratios

As usual F = Fr is a finite field of characteristic p not dividing the order
of the finite group G, and V is a FG-module. Let Z ∼= F ? be the group of
scalar multiplications on V .

Lemma 8.1a. Suppose V = W1 ⊗F · · · ⊗F Wn is a tensor decomposition
into FG-modules. Let gi ∈ GL(Wi) and g = g1 ⊗ · · · ⊗ gn in GL(V ).

(i) If f(zgi,Wi) ≤ m for all z ∈ F ? and all i, then f(g, V ) ≤ m.

(ii) Let v = w1 ⊗ · · · ⊗ wn for nonzero vectors wi ∈ Wi. If G induces
all scalar transformations on the Wi, then CG(v)/CG(V ) is isomorphic to
a subgroup of CG(w1)/CG(W )× · · · × CG(wn)/CG(W ).

Proof. (i) If some gi is a scalar transformation on Wi, say with zi, then
f(z−1

i gi,Wi) = 1 and so the result is obvious (m ≥ 1). So exclude this.
We argue by induction on n, the statement being obvious for n = 1. So let
n > 1, and let the εj ∈ Z be the distinct eigenvalues of g1 on W1. Then

f(g, V ) =
∑

j

f(ε−1
j g1,W1) · f(εjg2 ⊗ g3 ⊗ · · · ⊗ gn, W2 ⊗ · · · ⊗Wn) ≤ m

by induction since
∑

j f(ε−1
j g1,W1) ≤ 1.

(ii) Let g ∈ CG(v), and let gi ∈ GL(Wi) be induced by g. Then
wig = wigi = ziwi for some zi ∈ Z, and z1 · · · zn = 1. By hypothesis
z−1
i gi is induced on Wi by some element in G (centralizing wi). Hence the

assignment g 7→ (z−1
1 g1, · · ·, z−1

n gn) is a homomorphism from CG(v) into

148
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CG(w1)/CG(W1)× · · · ×CG(wn)/CG(Wn). Its kernel is CG(V ), because if
gi = zi on Wi for each i, then g is the identity on V . ¤

Lemma 8.1b. Let X = HwrSn for some finite group H and some integer
n ≥ 2. Suppose V = W⊗n for some faithful FH-module W of dimension
d = dim FW ≥ 2, with X acting on V as usual (1.2). Let N = H(n) be the
base group of the wreath product. Then f(x, V ) ≤ 1− 1

d for x ∈ NrCX(V ),
and f(x, V ) ≤ 1− 1

2d for x ∈ XrN . Moreover, if x ∈ XrN is a p′-element,
then f(x, V ) ≤ d+1

2d .

Proof. Since f(h,W ) ≤ (d− 1)/d = 1− 1
d for each h ∈ H], the first state-

ment follows from Lemma 8.1a. Let x ∈ XrN , and observe that CX(V ) ⊆
N . There exists y ∈ N such that [x, y] 6∈ CX(V ). We have dim FCV(x) =
dim FCV(x−1) = dim FCV(y−1xy) and CV (x−1)∩CV (y−1xy) ⊆ CV ([x, y]).
Hence

2 dim FCV(x) ≤ dim FV + dim FCV([x, y]) ≤ dim FV(1 + (1− 1
d

))

as [x, y] ∈ N r CX(V ). Hence f(x, V ) ≤ 1− 1
2d .

Suppose finally that x ∈ X r N is a p′-element and Nx ∈ Sn is a
product of r disjoint cycles. Let χ be the Brauer character of X afforded
by V , and let θ be that of H afforded by W . Then χ = TenX

Y (θ) where Y

is the stabilizer in X of some tensor factor W of V (Y/N ∼= Sn−1). By the
character formula (1.2e), χ(x) is the product of r ≤ n−1 values of θ. Hence
|χ(x)| ≤ θ(1)r ≤ χ(1)/d. Now dim FCV(x) ≤ |χ(x)|+ ∑

i dim FCV(z−1
i x),

the sum taken over all eigenvalues zi 6= 1 of x on V , and dim FCV(x) +∑
i dim FCV(z−1

i x) ≤ dim FV = χ(1). This gives the asserted estimate
2f(x, V ) ≤ 1

d + 1. ¤

8.2. Tensor Induction of Reduced Pairs

Recall the Frobenius embedding of a group into a wreath product (Theorem
1.2a). We need a slight improvement.

Lemma 8.2a. Let Y be a subgroup of the group X with index n. Assume
that there is a normal subgroup C of Y such that CoreX(C) = 1. Then
there is an embedding of X into Ȳ wrSn where Ȳ = Y/C.

In the discussion of Theorem 1.2a replace the elements xi ∈ Y by their
cosets Cxi.
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Proposition 8.2b. Suppose V = TenG
H(W ) where (H/CH(W ),W ) is a

nonreal reduced pair of quasisimple type. If H is a proper subgroup of G,
then there is a strongly real vector in V for G.

Proof. As usual V is a coprime FG-module. We know from Theorems 7.1
and 7.2 that F = Fp with p ∈ {7, 11, 13, 19, 31} and that d = dim FW = 2
or 4. We may assume that H/CH(W ) = E ◦ Z is large, that is, Z ∼= F ?.
Here E is one of 2.A5, 2±S6 or Sp4(3). There exist pairs which are not large
only when E = Sp4(3) and p = 13 or 19. But we may certainly assume
that G induces all scalar multiplications on V = W⊗n (see the comment
after 5.3b). If g ∈ G induces the scalar c on V , it preserves each tensor
factor and induces certain scalars ci, with c = c1 · · · cn. Using that F ? is
cyclic we see that H induces all scalar transfomations on W .

Let n = |G : H|. By hypothesis n ≥ 2. By Lemma 8.2a there is
a (Frobenius) embedding of G/CG(V ) into T = (EZ))wr Sn. We regard
G/CG(V ) as a subgroup of G0 = T/CT (V ) (the wreath product acting in
the obvious way). Then

G0 = X ◦ Z

where X is the image in G0 of EwrSn. Let N and N0 be the images
in G0 of the base groups of EwrSn and T , respectively. Then N ⊆ X

and Z(N) = Z(X) ∼= Z(E) has order 2, and N0 = N ◦ Z. Of course
G0/N0

∼= X/N ∼= Sn. The elements of N will be written as n-tuples
(h1, · · ·, hn) with hi ∈ E (and the obvious central amalgamation).

Let Y be the stabilizer in X of some tensor factor W of V , so that
Y/N ∼= Sn−1. Let χ be the Brauer character of X afforded by V , and
let θ be that of E afforded by W . Then χ = TenX

Y (θ) as in (1.2e). We
sometimes view θ as a (faithful) character of N0 = N ◦ Z and χ as a
character of G0 = X ◦ Z.

We have |W | = pd and |V | = pdn

. Let f be the maximum of the
f(x) = f(x, V ) taken over all noncentral x ∈ X. Since |X/N | = |Sn| = n!
and |N/Z(N)| = |E/Z(E)|n, by (5.6d) there is a regular G0-orbit on V ,
hence a regular G-orbit, provided

n!|E/Z(E)|n(pbfdnc + pdn−bfdnc) < pdn

= |V |.

Now we examine each possible case.
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Type (2.A5) : Here E ∼= 2.A5
∼= Sp2(5), θ is a (faithful) Weil character of

E of degree d = 2, and p = 11, 19 or 31 (Sec. 7.1). Also |E/Z(E)| = 60,
and f ≤ 3

4 by Lemma 8.1b. There is a regular G-orbit on V if n!60n <

p2n−2

1+1/p2n−1 . This holds true for n ≥ 6, and all p. It remains to investigate
the cases n ≤ 5. Then G0 is a p′-group, and we may take G = G0. We use
that E, EwrSn and, therefore, X are real groups.

Let p = 31. Then G = X × Z15. The above estimate also holds for
n = 5. By Lemma 8.1b we have f(g) ≤ 1

2 if g ∈ N is noncentral. Let n = 4.
Then all 5-elements of G are in N0, and if x ∈ X r N has order 3, then
Nx ∈ S4 has two cycles (orbits) and so |χ(x)| ≤ θ(1)2 = d2 = 4. It follows
that x has the eigenvalue 1 on V with multiplicity at most 8, because the
primitive 3rd roots of unity have real part − 1

2 (and 9 − 7/2 > 4). Thus
f(x) ≤ 1

2 , as before. Now |G| = 24 · 604 · 30 < 318 = |V | 12 , whence
|G| · |V | 12 < |V |. We infer that there is v ∈ V such that CG(v) contains no
elements of order 3 or 5, that is, CG(v) is a 2-group. Thus CG(v) ⊆ X and
v is strongly real for G.

Let n = 3 (and p = 31). For x ∈ X r N of order 3 we have |χ(x)| =
θ(1) = 2 (as Nx is a 3-cycle). Hence xV = [4, 2, 2]. Fix an element h ∈ E

of order 5, and let g = (h, h, h) in N . Then CX(g) has order 2 · 53 · 6, and
CX(g) contains x. We infer that there are at most 2 · 53 = 250 subgroups
in X of order 3 outside N . There are 203 + 3 · 202 + 3 · 20 = 2 · 4.630
elements y ∈ N of order 3, all satisfying χ(y) = ±1 (as θ(3A0) = −1). We
get yV = [3, 3, 2]. There are 243 + 3 · 242 + 3 · 24 = 4 · 3.906 elements of
order 5 in N , all having eigenvalues on V with multiplicity at most 4 by
Lemma 8.1b. Since

250(p4 + 2p2) + 4.630(2p3 + p2) + 3.906(2p4) < p8 = |V |,
there exists v ∈ V such that CG(v) is a 2-group. We are done as before.
The n = 2 case is treated similarly.

Let p = 19. Then every 3′-subgroup of G is a real group. Let g ∈ G

be of order 3. If g ∈ N0, then f(g) ≤ 1
2 by Lemma 8.1b. If g 6∈ N0

then its image in Sn
∼= G/N0 is a product of at most n− 2 disjoint cycles.

Consequently the real part

Re(χ(g)) ≤ |χ(g)| ≤ θ(1)n−2 = 22n−2
.

Let gV = [1(a), z
(b)
1 , z

(c)
2 ] where z1 6= z2 are the primitive 3rd roots of unity

in F . Then f(g) = a/2n and Re(zi) = − 1
2 . For n = 5 we have Re(χ(g)) ≤ 8,
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which implies that a ≤ 16 and f(g) ≤ 1
2 . Similarly a ≤ 8 for n = 4, hence

f(g) ≤ 1
2 as before. For n = 4, 5 we have |G| = n!60n · 18 < 192n/2 = |V | 12

and so |G| · |V | 12 < |V |. We deduce that there is v ∈ V such that CG(v) is
a 3′-group, as desired.

The case p = 19, n = 3 is handled by showing that NX(Fv) is a 3′-
group for some v ∈ V . By Lemma 5.1b then v is strongly real for G. There
are 2 · 103 elements of order 3 in N . Since θ(h) = −1 for each h ∈ E of
order 3 [Atlas], for any y ∈ N of order 3 we have χ(y) = ±1 and necessarily
yV = [3, 3, 2] (so χ(y) = −1). As before we see that there are at most 4 ·303

subgroups of order 3 in X outside N (where we know the spectral pattern
already). Since

250(p4 + 2p2) + 4.630(2p3 + p2) < p8 = |V |,

there is v as required. In the n = 2 case we pick an element x = (h, h) in
X of order 5 (h ∈ E). If T is a subgroup of X containing x, then NX(T )/T

is a 3′-group. The character table of E ∼= 2.A5 gives that dim FCV(x) = 2.
Now let v be any nonzero vector in CV (x), and let T = CX(v). By Lemma
5.1b this v is strongly real for G0.

Let p = 11. Then G = X × Z5. Each 5′-subgroup of G is real. For
n = 5, 4 we claim that there is v ∈ V such that CG(v) is a 5′-group. Let
g ∈ G be an element of order 5. If g ∈ N0 then f(g) ≤ 1

2 by Lemma
8.1b. Otherwise n = 5 and N0g is a 5-cycle in S5. Then |χ(g)| = θ(1) = 2
and dim FCV(g) = 8 as each primitive 5th root of unity in F appears as
eigenvalue of g on V with multiplicity 6. Hence f(g) = 1

4 in this case.
Now use that |G| · |V | 12 < |V |, which gives the claim. Let n = 3, 2, and
let y = (h, h, h) resp. y = (h, h) for an element h ∈ Y of order 3. Then
χ(y) = θ(h)n = (−1)n, and we deduce that dim FCV(y) = 2 in both cases.
Let v be a nonzero vector in CV (y), and let C = CX(v). Then NX(C)/C

is a 5′-group. Now use that χ takes only real values on X, and use Lemma
5.1b. This shows that v is a strongly real vector for G.

Type (2.A6) : Here E ∼= 2±S6, d = 4 and p = 7. By Lemma 8.1b,
f ≤ 7

8 . We obtain that there is a regular G0-orbit on V provided n ≥ 6.
So let n ≤ 5. Then G0 is a p′-group, and we take G = G0. By Lemma
8.1b now f ≤ 3

4 . This yields the existence of a regular G-orbit on V for
n ≥ 3. So let n = 2. Inspection of the character table [Atlas, p. 5],
noting that θ = χ9 for E = 2+S6 and θ = χ8 for E = 2−S6, yields that
f(g) ≤ 1

2 for each noncentral element g ∈ G of order 3. (If g ∈ N either
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χ(g) = 1 and gV = [6, 5, 5], or χ(g) = −2 and gV = [4, 6, 6], or χ(g) = 4
and gV = [8, 4, 4].) The number of noncentral elements of order 3 in G is
at most 3 · (802 + 2 · 80) < 78 = |V | 12 . It follows that there is v ∈ V such
that CG(v) is a 3′-group (contained in N). The restriction to CG(v) of χ

is rational-valued [Atlas].

Type (Sp4(3)) : Here E ∼= Sp4(3), d = 4 and p ∈ {7, 13, 19} (Sec. 7.1).
Recall also that θ = χ21 or χ22 in the notation of the Atlas [Atlas, p. 27].
From the general estimate we get the existence of a regular G-orbit on V

when p = 13 or 19 and n ≥ 3, and when p = 7 and n ≥ 4.

Let p = 19 and n = 2. Then G0 = X ×Z9 is a p′-group. Each element
of order 3 in G0 lies in N0, and the number of such elements is at most
|G0|/2 < 198 = |V | 12 . Hence there is v ∈ V such that CG0(v) is a 3′-group.
Then the restriction to CG0(v) of χ is rational-valued [Atlas].

Let p = 13 and n = 2. Then G0 = X × Z6 is a p′-group. Let G = G0.
Each element in X of order 3 lies in N . If x = (h, 1) or (1, h) with h ∈ E

belonging to one of the conjugacy classes 3A0B0, then xV = [12, 4] . There
are 2·80 such elements. For the remaining 802+2402+2·240+4802+2·480 =
2 ·147.920 elements y of order 3 in X we have

∑
z∈Z |CV (zy)| ≤ p9 +p6 +p.

It follows that

∑

γ∈β3(G)

|CV (γ)| ≤ 80(p12 + p4) + 147.920(p9 + p6 + p).

Let g ∈ N be a noncentral involution. Then g = (h1, h2) where either both
hi ∈ E belong to the class 2A0 or one hi lies in 2A0 and the other is 1.
Then χ(g) = 0 [Atlas] and so gV = [8, 8]. There are 452 + 2 · 45 = 2.115
such involutions in N . It follows that

∑
γ∈β2(G) |CV (γ)| ≤ 2.115(2p8). We

have
∑

γ∈β2,3(G) |CV (γ)| < |V | = 1316. We conclude that there is v ∈ V

such that CG(v) = CX(v) is a {2, 3}′-group. The restriction to CX(v) of χ

is rational-valued [Atlas].

Let p = 7 and n = 2, 3. As before we prove that
∑

γ∈β3(G0)
|CV (γ)| <

|V | = 72n

. There is v ∈ V such that CG0(v) = CX(v) is a 3′-group, and
the restriction to CX(v) of χ is rational-valued [Atlas]. We are done. ¤

Proposition 8.2c. Suppose V = TenG
H(W ) is a coprime FG-module where

(H/CH(W ), W ) is a reduced pair of quasisimple type. There is v ∈ V such
that CG(v)/CG(V ) has a regular orbit on V .
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Proof. We may and do assume that H induces all scalar transformations
on W . Let d = dim FW and let n = |G : H|. In view of Corollary 7.2c we
may assume that n ≥ 2. Pick w ∈ W such that C = CH(w)/CH(W ) is a
point stabilizer of minimal order. That is, either C = 1 or C is as listed
in Theorem 7.2a, or (H/CH(W ),W ) is a permutation pair (Example 5.1a).
In this latter case either C = 1 or r = p = d + 2 or d + 3, in which case we
may choose w such that C is cyclic of order dividing p− 1. In each case let

v = w ⊗ · · · ⊗ w ∈ W⊗n = V.

Let N = CoreG(H). So S = G/N is a transitive permutation group of
degree n, which is a p′-group (like G).

By Lemma 8.1a, CN (v)/CN (V ) is isomorphic to a subgroup of C(n).
It follows that CG(v)/CG(V ) is isomorphic to a subgroup of CwrS. In
particular, |CG(v)/CG(V )| is a divisor of |C|n · n!. Let F = Fr, so that
|W | = rd and |V | = rdn

.

Suppose first that d ≥ 3. Then f(g) = f(g, V ) ≤ 1 − 1
d for each g ∈

GrCG(V ) by Lemma 8.1b. Hence the number of vectors in V centralized by
some nontrivial element in CG(v)/CG(V ) is at most equal to n!|C|n|V |1− 1

d .
There is a regular vector in V for CG(v) provided this number is less than
|V |, that is, if

n!|C|n < rdn−1
.

This is fulfilled for all n ≥ 2 when C = 1 or when |C| ≤ p − 1 (handling
the cases where (H/CH(W ),W ) is a permutation pair). Otherwise r = p

and |C| ≤ 72 by Theorem 7.2a. Then the above inequality is fulfilled for
all n if d ≥ 5. For d = 3 we even have p ≥ 11 and |C| ≤ 5, which gives
the result. Let d = 4. Then the above inequality holds for all n ≥ 3.
So let n = 2. If |C| ≤ 18, the result holds. Otherwise by Theorem 7.2a,
H/CH(W ) ∼= Sp4(3)×Z3, d = 4, r = 7, and by Corollary 7.2c there exists a
regular vector w̃1 ∈ W ] for C ∼= SL2(3)×Z3 such that 〈w̃1〉∩ w̃1C = {w̃1}.
Let w̃2 ∈ W be any vector linearly independent from w̃1. Then w̃1 ⊗ w̃2 is
a regular vector for CwrS2 and hence for CG(v)/CG(V ).

Let d = 2. Then f(g, V ) ≤ 3
4 for each nontrivial element in G/CG(V )

by Lemma 8.1b. There is a regular CG(v)/CG(V )-orbit on V provided

n!|C|n < r2n−2
.

Since r ≥ 3 is odd, this inequality holds when C = 1. So let C 6= 1, in
which case H/CH(W ) ∼= 2.A5◦Z by Theorem 7.2a. If r 6= 11, then |C| ≤ 3,
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and the inequality holds for all n ≥ 2. So let F = F11 and |C| = 5. Then
the estimate holds for n ≥ 5. Let n = 4. We have |P1(W )| = 12, and C

has on P1(W ) two fixed points Fw = Fw1 and Fw2, say, and two orbits of
length 5 represented by Fw3 and Fw4 (say). The vector w1⊗w2⊗w3⊗w4

is regular for CwrS4 and hence for CG(v)/CG(V ). The cases n = 3, 2 are
treated similarly. ¤

8.3. Tensor Products of Reduced Pairs

Proposition 8.3a. Suppose V = U ⊗F W where both (G/CG(U), U) and
(G/CG(W ),W ) are reduced pairs. Then there is a real vector in V for G.

Proof. Without loss we may assume that G induces on U and on W all
scalar transformations. By Proposition 5.3b we may also assume that one
of the reduced pairs is nonreal, say the first one. Then d = dim FU = 2, 3
or 4 and r = p ∈ {3, 5, 7, 11, 13, 19, 31} by the classification of the nonreal
reduced pairs (F = Fr). By Theorems 6.1 and 7.1, and by Corollary 7.2c,
there is w ∈ W such that CG(w)/CG(W ) has a regular orbit on W . Hence
the assertion follows from part (iii) of Proposition 5.3b provided dim FW ≥
d. But when dim FW < d, we may exchange the roles of U and W . ¤

Proposition 8.3b. Let W = TenG
H(W̃ ) where (H/CH(W̃ ), W̃ ) is a reduced

pair of quasisimple type. Suppose V = U ⊗F W where (G/CG(U), U) is a
reduced pair. Then there is a real vector in V for G.

Proof. Without loss of generality we may assume that G induces all scalar
transformations on U and on W . If H = G the result follows from Proposi-
tion 8.3a. So let n = |G : H| ≥ 2. Combining Propositions 8.2b and 5.3c we
see that there is a real vector in W for G, at any rate. If, in addition, there
is a real vector in U for G, the result follows from part (i) of Proposition
5.3b.

Hence we may assume that (G/CG(U), U) is a nonreal reduced pair.
By the results in Chapters 6, 7 then dim FU = 2, 3 or 4. On the other
hand, dim FW̃ ≥ 2 and so dim FW = ( dim FW̃ )n ≥ 4. By Proposition
8.2c there is w ∈ W such that CG(w)/CG(W ) has a regular orbit on W .
Therefore part (iii) of Proposition 5.3b applies again. ¤

Proposition 8.3c. Let V = U1 ⊗F U2 ⊗F U3 where the (G/CG(Ui), Ui)
are nonreal reduced pairs. Then there exists a real vector in V for G.
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Proof. We may assume that G induces all scalar transformations on the
Ui. Suppose first that there are abelian vectors ui ∈ Ui for G at least two
times, say for the indices i = 2, 3. Let W = U2 ⊗F U3 and let w = u2 ⊗ u3.
By part (ii) of Lemma 8.1a, w then is an abelian vector for G/CG(W ).
Since dim FW ≥ 4 ≥ dim FU1 by Theorems 6.1, 7.1, the assertion follows
from part (iii) of Proposition 5.3b.

It remains to examine the situations where there are no such abelian
vectors. By Theorems 6.1, 7.1 then at least two of the pairs are of type
(Sp4(3)), say the latter ones, and p = 7 or p = 13. Then U = U2 = U3 and
G acts on W = U2 ⊗F U3 = U⊗2 like the base group of (G/CG(U))wr S2.
Hence the result follows from Proposition 8.3b. ¤

8.4. The Riese–Schmid Theorem

We call a pair (G,V ) nonreal induced provided V is a faithful coprime FG-
module which admits no real vector for G and which is induced from some
nonreal reduced pair (H, W ), that is, V = IndG

G0
(W ) for some subgroup

G0 of G satisfying H ∼= G0/CG0(W ). From the classification of the nonreal
reduced pairs it follows that then V is an absolutely irreducible FG-module
and F = Fp for one of the primes p = 3, 5, 7, 11, 13, 19 or 31. Of course this
also forces that |G : G0| is not divisible by p.

Theorem 8.4 (Riese–Schmid). Let V be a faithful, irreducible, coprime
FG-module admitting no real vector for G. Then (G,V ) is nonreal induced.

Proof. Assume V is a counterexample with d = dim FV minimal. So
there is no real vector in V for G, hence G is nonabelian and d ≥ 2.
Furthermore, whenever V0 is an irreducible coprime F0G0-module for which
char(F0) = p = char(F ) and dim F0V0 < d, then there is a real vector in V0

for G0, that is, for G0/CG0(V0), or (G0, V0) is nonreal induced. We argue,
at first, like for Theorem 5.4.

(1) V is an absolutely irreducible FG-module:

For otherwise embed F (properly) into the field F0 = EndFG(V ). Then
F0 ⊗F V is the direct sum of the distinct Galois conjugates over F of
some absolutely irreducible F0G-module V0. This V0 is a faithful module
and dim F0V0 < d. Thus either V0 contains a real vector v0 for G, or
V0 = IndG

H(W ) where (H/CH(W ),W ) is a nonreal reduced pair (over F0).
In the former case the sum of the distinct Galois conjugates over F of v0 is
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a real vector in V for G. The second case cannot occur by the classification
of the nonreal reduced pairs, because F0 is not a prime field.

(2) V is a primitive FG-module:

Otherwise V = IndG
H(U) for some proper subgroup H of G and some FH-

module U . Then dim FU < d. Hence either there is a real vector in U

for H, which implies that there is a real vector in V for G by part (i)
of Proposition 5.3a, or U = IndH

Y (W ) where (Y/CY (W ),W ) is a nonreal
reduced pair. By transitivity of module induction V = IndG

Y (W ) in the
latter case.

(3) The irreducible constituents of ResG
N (V ) are absolutely irreducible

for all normal subgroups N of G:

Otherwise choose N maximal such that (3) is false. Then N 6= G by (1). As
in the proof for Theorem 5.4 one gets that ResG

N (V ) = W is an irreducible
FN -module with F0 = EndFN (W ) being a proper extension field of F .
Moreover G/N ∼= Gal(F0|F ) and

F0 ⊗F V ∼= IndG
N (U),

where U is an (absolutely) irreducible constituent of F0 ⊗F W . If there is
a real vector in U for N , then there is a real vector in F0 ⊗F V for G by
Proposition 5.3a, and we get a real vector in V . Hence by the choice of V

we have U = IndN
Y (U0) for some subgroup Y of N and some F0Y -module

U0, with (Y/CY (U0), U0) being a nonreal reduced pair. But such a pair
does not exist. Hence the assertion.

From (1), (2), (3) it follows that every abelian normal subgroup of G is
cyclic and central in G (acting by scalar multiplications). The generalized
Fitting subgroup of G is nonabelian for otherwise G were cyclic and so had
a regular orbit on V .

(4) There is a nonabelian normal subgroup N of G such that ResG
N (V )

is not (absolutely) irreducible:

Assume the contrary. Let E be a minimal nonabelian normal subgroup of
G. By assumption and (2), (3), ResG

E(V ) = W is absolutely irreducible.
Hence CG(E) = Z = Z(G) acts via scalar multiplications on V and EZ

is the generalized Fitting subgroup of G. Suppose first that E is solvable.
Then it is a q-group of “symplectic type” for some prime q 6= p. Either q

is odd and E = Ω1(EZ) is of exponent q, or E is an extraspecial 2-group
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or the central product of such one with a cyclic group of order 4 (when F

contains the 4th roots of unity). Hence (G,V ) is a nonreal reduced pair
with core E, a contradiction.

Suppose next that E is not solvable. If E is quasisimple, we get a
contradiction as before. Hence E is the central product of n ≥ 2 distinct
G-conjugates of some quasisimple group E0. Let G0 = NG(E0), so that
n = |G : G0|. Then W is the tensor product of n distinct G-conjugates of
the unique absolutely irreducible constituent W0 of ResE

E0
(W ). Let θ and

θ0 be the Brauer characters of E, E0 afforded by W , W0, respectively. By
Theorem 1.9c there is an FG0(θ0)-module Ŵ0 extending W0 (in the usual
sense). The pair

(
G0(θ0)/CG0(θ0)(Ŵ0), Ŵ0

)
is reduced with quasisimple

core isomorphic to E0. By Theorem 1.9d there is a finite extension Ĝ of
G = G(θ) by an abelian p′-group, containing a subgroup Ĝ0 mapping onto
G0(θ0), such that

V = TenĜ

Ĝ0
(Ŵ0).

If there is a real vector in Ŵ0 for Ĝ0, there is a real vector for G in V by
Proposition 5.3c. If there is no real vector in Ŵ0 for Ĝ0, by Proposition
8.2b there is a real vector in V for G as well. This proves (4).

(5) Over some central extension G̃ of G we have V = U ⊗F W where
the pair (G̃/C

G̃
(U), U) is nonreal reduced and where W is an absolutely

irreducible and primitive FG̃-module with dim FW ≥ 2:

By (4), (3) there is a nonabelian normal subgroup N of G such that the
restriction of V to N is a proper multiple eU of some absolutely irreducible
FN -module U (e ≥ 2). This U is faithful. Now argue as in the proof for
Theorem 5.4, on the basis of stable Clifford theory. This gives the tensor
decomposition V = U⊗F W as asserted where dim FU ≥ 2 and dim FW ≥
2. By (1), (2) both U and W are absolutely irreducible and primitive. For

if W = IndG̃

H̃
(W̃ ) were imprimitive, say, then V = IndG̃

H̃

(
ResG̃

H̃
(Ũ) ⊗F W̃

)
and (2) applies. Since both dim FU and dim FW are less than d, the
theorem holds for U and for W . At least one of these modules does not
contain a real vector by Proposition 5.3b, hence defines a nonreal reduced
pair by the choice of V . The situation being symmetric we assume that
(G̃/C

G̃
(U), Ũ) is a nonreal reduced pair.

(6) We have F = Fp for a certain odd prime p ≤ 31. There is a real
vector in W for G̃, and (G̃/C

G̃
(W ),W ) is neither reduced nor is obtained

by (proper) tensor induction from a reduced pair with quasisimple core:



Modules without Real Vectors 159

The first statement follows from (5) by the classification of the nonreal
reduced pairs. Apply furthermore Propositions 8.3a and 8.3b.

Now we proceed by showing that statements (3), (4) hold for W in
place of V .

(7) The irreducible constituents of ResG̃

Ñ
(W ) are absolutely irreducible

for all normal subgroups Ñ of G̃:

Otherwise there exists a proper normal subgroup Ñ of G̃ which is maxi-
mal subject to the property that W̃ = ResG̃

Ñ
(W ) has an irreducible sum-

mand which is not absolutely irreducible. Then W̃ is irreducible, F0 =
End

FÑ
(W̃ ) is a proper extension field of F and G̃/Ñ ∼= Gal(F0|F ) = Γ

(as before). Furthermore, denoting by W̃0 an (absolutely) irreducible con-

stituent of F0⊗F W̃ , we have F0⊗F W ∼= IndG̃

Ñ
(W̃0). Let Z̃ = C

G̃
(V ). Then

G = G̃/Z̃, as G is faithful on V , and Z̃ induces scalars from F ? on both U

and W . By the (maximal) choice of Ñ therefore Z̃ ⊆ Ñ . Let N = Ñ/Z̃.
Since G̃/Ñ ∼= G/N is cyclic, G̃/C

G̃
(U) contains a normal subgroup map-

ping onto the core of G̃/C
G̃

(U). It follows that Ũ = ResG̃

Ñ
(U) is absolutely

irreducible. Let Ũ0 = F0 ⊗F Ũ . We conclude that

F0 ⊗F V = (F0 ⊗F U)⊗F0 (F0 ⊗F W ) = IndG̃

Ñ
(Ũ0 ⊗F0 W̃0).

Hence, in view of (1), Ṽ0 = Ũ0 ⊗F0 W̃0 is an absolutely irreducible F0Ñ -
module, which is centralized by Z̃. By Mackey decomposition, identifying
Γ = G/N ,

F0 ⊗F ResG
N (V ) = ResG

N (F0 ⊗F V ) ∼=
⊕

τ∈Γ

Ṽ τ
0 .

By virtue of (3) and (2) this implies that ResG
N (V ) ∼= eṼ for some absolutely

irreducible FN -module Ṽ satisfying F0 ⊗F Ṽ ∼= Ṽ0, where the ramification
index e = |Γ| = |G/N |. However, e = 1 since Γ is cyclic. This may be seen
by observing that if θ is the Brauer character of N afforded by Ṽ , then
the representation group Γ(θ) is a central extension of the cyclic group Γ.
Hence Γ(θ) is abelian, and the Brauer character of G afforded by V is of
the form χ = θ̂ ⊗ ζ for some linear character ζ of Γ(θ), where θ̂(1) = θ(1).
We have the contradiction N = G.

(8) There is a nonabelian normal subgroup Ñ/C
G̃

(W ) of G̃/C
G̃

(W )

such that ResG̃

Ñ
(W ) is not absolutely irreducible:
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Otherwise consider a normal subgroup Ẽ of G̃ which is minimal subject
to the condition that its image in G̃/C

G̃
(W ) is nonabelian. As in step

(4) either (G̃/C
G̃

(W ),W ) is a reduced pair, its core being the image of Ẽ,
or W is obtained by (proper) tensor induction from a reduced pair with
quasisimple core. Both cases are excluded by (6).

(9) Conclusion:

By (8), (7) and stable Clifford theory we may write W ∼= U2⊗F U3 over some
central extension Ĝ of G̃, where both modules Ui are absolutely irreducible
and primitive with dim FUi < dim FW. Viewing U1 = U as an FĜ-module
we have

V ∼= U1 ⊗F U2 ⊗F U3.

Recall that the pair (Ĝ/C
Ĝ

(U1), U1) is nonreal reduced by (5). If the pairs
(Ĝ/C

Ĝ
(Ui), Ui) are nonreal reduced also for i = 2, 3, then V contains a real

vector for G by Proposition 8.3c. Hence, by the choice of V , one of these
modules, say U3, has a real vector.

Now Û = U1 ⊗F U2 is an absolutely irreducible and primitive FĜ-
module with dimension less than d = dim FV. Thus either Û contains a
real vector for Ĝ or (Ĝ/C

Ĝ
(Û), Û) is a nonreal reduced pair. In the first

case by Proposition 5.3b there is a real vector for G in V = Û ⊗F U3, a
contradiction. By the classification of the nonreal reduced pairs the latter
case can hold only when F = F7, dim FÛ = 4 and (Ĝ/C

Ĝ
(U1), U1) is

nonreal of type (Q8). However, then |U1| = |U2| = 72. Since GL2(7) is a
5′-group, Ĝ/C

Ĝ
(Û) is a 5′-group too. But (Ĝ/C

Ĝ
(Û), U) is of type (25

−),
(2.A6) or (Sp4(3)), and |Ĝ/C

Ĝ
(Û)| is divisible by 5 in each case. ¤

8.5. Nonreal Induced Pairs, Wreath Products

Let (G,V ) be a nonreal induced pair, say induced from the nonreal reduced
pair (H, W ). Suppose

V = W1 ⊕ · · · ⊕Wn

is an imprimitivity decomposition, where the G-conjugate reduced pairs
(NG(Wi)/CG(Wi),Wi) are isomorphic to (H,W ). Assume that n ≥ 2.
Let E be the core of (H,W ), and let Ei

∼= E be the core of Hi =
NG(Wi)/CG(Wi). Fix an isomorphism (H1,W1) ∼= (H, W ) of reduced pairs.
Inspection of Theorems 6.1, 7.1 yields that distinct normal subgroups of H
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are not isomorphic (and in most cases even determined by their order). Let
N =

⋂n
i=1 NG(Wi), and suppose that S = G/N acts (transitively) on the

set Ω = {1, · · ·, n} like on the {Wi}. For each i ∈ Ω let Ti = CN (Wi) and
Ni = N/Ti. Identifying each Ni with NCG(Wi)/CG(Wi) we have normal
subgroups of the Hi, which are G-conjugate, hence have a common image
N0

∼= Ni in H = H0.

Since G is faithful on V , by Lemma 8.2a we may identify G with a
subgroup of HwrS. Our objective is to show that G is not far from being
the full wreath product. Define Ri =

⋂
j 6=i Tj for each i ∈ Ω, which are

G-conjugate normal subgroups of N (and which would agree with a direct
factor Hi in the base group B = H(n) = H1 × · · · × Hn of the wreath
product). We have Ri ∩ Ti = 1, and

R = R1 × · · · ×Rn

is a normal subgroup of G. Let R0
∼= Ri

∼= RCG(Wi)/CG(Wi) be the
common image of the Ri and of R in H = H0. Observe that R0, N0 are
normal subgroups of H.

Lemma 8.5a. N0 has no regular orbit on W . Hence N0 is a nonabelian
normal (characteristic) subgroup of H and so N0 ⊇ E.

Proof. Assume that, for some i ∈ Ω, there is wi ∈ Wi such that CNi(wi) =
1. Since G is transitive on the {Wi}, this is true then for all i ∈ Ω. Then v =∑

i wi is a regular vector for N as CN (v) =
⋂

i∈Ω CN (wi) =
⋂

i∈Ω CN (Wi) =
1. But now by Proposition 5.3b (ii) there is a real vector in V for G, which
contradicts the (implicit) hypothesis in the lemma. The remainder follows
from (3.4b) and the definition of a reduced pair. ¤

For a subgroup Y of H we denote by Y S the “stabilizer residual”
of Y , the intersection of all normal subgroups T of Y for which Y/T is
isomorphic to a subgroup of CH(w) for some w ∈ W ]. We have to examine
these residuals only when (H,W ) is of extraspecial type.

Lemma 8.5b. Let (H,W ) be of extraspecial type. Suppose Y is a subgroup
of H which has no regular orbit on W . Then Y S 6⊆ Z(H) when p 6= 3, 5,
and Y ⊃ E for p = 5. If Y is assumed to be subnormal in H, then Y ⊇ E.
Further, then Y is irreducible on U = E/Z(E) except when p = 3 or 5, or
when p = 7 and (H, W ) is of type (33

+) with Y = E〈j〉 or E〈j〉Z(H) for
some involution j inverting the elements of U .



162 The Solution of the k(GV) Problem

Proof. Clearly Y is nonabelian. Let Z = Z(H). From Theorem 6.1 we
know that Z ∼= F?

p unless p = 7, E ∼= 31+2
+ and H = X = E : Sp2(3) is the

standard holomorph of E. Otherwise we have H = X ◦ Z where X is the
standard holomorph of E when 4 - p−1 and p 6= 3, and of E ◦Z4 otherwise,
or we have p = 7, E ∼= 21+2m

− and X/E ∼= Ω−2m(2) for m = 1, 2. Recall also
that for p = 3 we have type (25

−), and X ∼= 21+4
− : (Z5 : Z4) is related to

the largest Bucht group.

By Theorem 6.1 the point stabilizers either are abelian or (H, W ) is of
type (25

−) with p = 7, or of type (33
+) with p = 13, where SL2(3) = Q8 : Z3

can appear. Hence either Y S ⊇ Y ′ or we are in these latter situations, in
which cases Y S ⊇ Y ′′′ at least.

Let χ denote the Brauer character of H afforded by W . We work
through the various types, making use of the knowledge of the H-orbit
structure on W ] given in Sec. 6.1.

Type (Q8) : Here E = Q8 and X ∼= 2−S4 or SL2(3) for p = 7, and
X ∼= (Q8 ◦ Z4).S3 for p = 5 and p = 13. Let T = NH(P for some Sylow
3-subgroup P of H. Then H = ET , E ∩T = Z(E) and T/Z ∼= S3 or A3. If
y ∈ H is a noncentral element of order 3, then y is irreducible on U and so
|χ(y)| = 1 by Theorem 4.4. Hence 〈Zy〉 fixes 2 points in P1(W ) if 3 | p− 1,
and at most 1 otherwise. Each noncentral involution in H fixes 2 points in
P1(W ). It follows that T has a regular orbit on W for p = 13. The same
holds true for p = 7, because then P = Z3×CH(w) for some w ∈ W ] (Sec.
6.1), and the involutions in T/Z leave Fw invariant. For p = 5 any such
stabilizer CH(w) is cyclic of order 4, and either T is regular on W ] or has
two orbits of size 12. But in the latter case H/Z = (EZ/Z) : (T/Z) has an
element of order 4 whose square is in T/Z, which is impossible.

Let next T be a subgroup of H such that Z(E) ⊂ E ∩ T ⊂ E. Then
T contains no element of X of order 3 that is irreducible on U . It follows
that T/Z has order 4 and so has a regular orbit on P1(W ). For p = 5 argue
as above, in which case T can be dihedral of order 8 (having two regular
orbits).

Thus Y ⊇ E. Of course E ∼= Q8 has a regular orbit on W , and EZ

has a regular orbit on W if and only if p 6= 5. Hence Y S ⊇ Y ′ 6⊆ Z for
p 6= 5, as desired. Finally, if Y is subnormal in H and not irreducible on
U , then Y = EZ and p = 5.

Type (25
−) : Here E ∼= 21+4

− and X = E : (Z5 : Z4) for p = 3, and
X ∼= E.S5 or E.A5 for p = 7. The core E has 10 noncentral involutions
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corresponding to the 5 singular points in the orthogonal space U = E/Z(E).
Each such involution t has two eigenspaces on W , both of dimension 2, and
so fixes exactly 2 · (p + 1) points in P1(W ). Since t and tz for z ∈ Z(E)
have the same eigenspaces, the number of points in P1(W ) fixed by some
noncentral involution in E is at most 5 · 2 · (p + 1). This number is smaller
than |P1(W )| = p3 + p2 + p + 1 for p = 7 but not for p = 3.

Indeed for p = 3 there is no regular E-orbit on W . Here H is transitive
on W ], a point stabilizer being cyclic of order 8 (Sec. 6.1). Since E is normal
in H, the E-orbits on W ] have equal size, but |W ]| = 80 is not divisible by
|E| = 25. Each proper subgroup of E has a regular orbit on W , however.

Suppose Y is subnormal in H. Then (Y ∩E)/Z(E) cannot be a proper
subgroup of U , because the normal closure of Y in Y E then were a proper
subgroup of Y E and so Y centralizes a nontrivial quotient group of U . But
this implies that Y is a 5′-group, and that Y ⊂ EZ by the structure of H.
This in turn forces that p = 3 and Y = E. For p = 7 we obtain that Y = X

or X ′ and so Y is irreducible on U .

Let p = 7 in what follows, and assume that Y is not subnormal in H.
In the proof for Proposition 6.6b, part (ii), we have seen that there is, up
to conjugacy, a unique subgroup T ∼= 2.S5 of X such that X = TE and
T ∩E = Z(E), and ResX

T (χ) is the character obtained by fusing χ6 and χ7

in the Atlas notation (p. 2). Let y ∈ T be an element of order 3. Then
χ(y) = −2 and yW = [z(2)

1 , z
(2)
2 ] where z1 6= z2 are the primitive 3rd roots

of unity. Hence y fixes 2 · 8 = 16 points in P1(W ). The group EZ〈y〉 has a
regular orbit on W , because EZ〈y〉/Z contains |E : CE(y)| = |χ(y)|2 = 4
(conjugate) subgroups of order 3 and 80 + 4 · 16 < |P1(W )|.

Each noncentral involution x ∈ T (χ(x) = 0) fixes at most 2 · 8 = 16
points in P1(W ). There are 16 subgroups isomorphic to Z〈x〉/Z in EZ〈x〉/Z
complementary to EZ/Z. Hence EZ〈x〉 has a regular orbit on W since
80 + 16 · 16 < 400 = |P1(W )|. The subgroup T0

∼= 2.A5 of T has a regular
orbit on W but T ◦Z does not (see the remark to Theorem 7.2a). However
this does not matter since Y/Y S is solvable.

It remains to examine the situation that Y ∩ E ⊃ Z(E). We know
that Y ZE/ZE is not trivial and not of order 2 or 3. Suppose first that
Y maps onto SL2(3) or onto Q8. Then Y ZE/ZE is isomorphic to A4

resp. to Z2 × Z2. In both cases Y centralizes a singular point in U but no
nonsingular one [Atlas, p. 2]. By definition

Y S ⊆ Y ∩ E and [Y ∩ E, Y ] ⊆ Y S.
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Thus from Y S ⊆ Z it follows that (Y ∩E)/Z(E) does not contain nonsin-
gular points. In other words, Y ∩ E is elementary of order 4. But then a
simple counting argument shows that Y has a regular orbit on W .

Hence we are left with the case that Y S ⊇ Y ′. If |Y | is divisible by
5, then Y is irreducible on U . Then even Y ′ ⊇ E. Then Y S ⊆ Z implies
that Y Z/Z is abelian and that Y is a {2, 3}-group. Moreover, Y ZE/ZE

must be isomorphic either to Z2×Z2 or to S2×A3. The intersection of the
centralizers in S5

∼= O−4 (2) of a singular and a nonsingular point of U has
order at most 2 [Atlas]. We conclude that in the former case Y ∩E either is
elementary abelian of order 4, which is handled as above, or (Y ∩E)/Z(E)
does not contain singular points. In the S2 ×A3 case Y also centralizes no
nonsingular point. Thus Y ∩E is cyclic (of order 4) or isomorphic to Q8 in
these cases. Again a simple counting argument shows that Y has a regular
orbit on W , in contrast to our hypothesis.

Type (33
+) : Here E ∼= 31+2

+ , X ∼= E : Sp2(3) and p = 7 or 13. Each
noncentral element of E has 3 eigenspaces on W to different eigenvalues.
Hence every nontrivial subgroup of E/Z(E) fixes just 3 points in P1(W ).
There are 3 + 1 = 4 such subgroups. Thus the number of points in P1(W )
which are fixed by some nontrivial element of E/Z(E) is at most 4 ·3 = 12,
which is less than |P1(W | = (p3 − 1)/(p − 1) for p = 7 and for p = 13. So
EZ has a regular vector in W .

If x is an element of order 3 in X outside E, then by Theorem 4.4
either CE(x) = Z(E) and χ(x) = 0, or CE(y)/Z(E) = CU (x) has order
|χ(x)|2 = 3. In the former case x fixes just three points in P1(W ), otherwise
at most 1 + (p + 1) points, among them the eigenspaces of the noncentral
elements of E contained in CE(x). If j is an involution in X, then j

inverts the elements of U and |χ(j)| = 1 by Theorem 4.4. By Theorem
4.5a, or by inspection of the character table of Sp2(3), χ(j) = −1. Since
Sp2(3) has four elements of order 3 and a unique involution, and since
4 · (p + 2) + 1 · (p + 2) < |P1(W )| (for p = 7 and p = 13), every complement
to EZ/Z in H/Z has a regular vector in W .

If T is a subgroup of H with Z(E) ⊂ E ∩ T ⊂ E, then T/Z cannot
contain an element of order 4. So consider T = ZE0〈x, j〉 where x, j are
as above and E0 is a subgroup of E of order 32 normalized by x. Either
x centralizes E0, and then E0Z/Z and Z〈x〉/Z together fix at most p + 2
points in P1(W ), or these fix 2 · 3 ≤ p + 2 points. There are four subgroups
in T/Z of order 3, and there are 3 subgroups in T/Z of order 2. Thus at
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most 3 · (p + 2) + 3 · (p + 2) points in P1(W ) are fixed by some nontrivial
element of T/Z. It follows that T has a regular orbit on W .

Consequently Y ⊃ E. Assume that Y is subnormal in H but not
irreducible on U . Then Y does not contain an element of order 4, and no
element of order 3 outside E, whence |Y Z/EZ| = 2. There are |U | = 9
involutions j in Y , hence at most 9(p + 2) elements in P1(W ) are fixed
by any of them. Since the number of points in P1(W ) fixed by nontrivial
subgroups of EZ/Z is at most 12, and since 12 + 9 · (p + 2) < |P1(W )| for
p = 13, we have p = 7. In the p = 7 case the result is as stated.

In general Y ⊃ E contains an involution j inverting the elements of
U , or an element x ∈ X of order 3 outside E. In each case Y/Y ∩ Z is
nonabelian, and Y S 6⊆ Z as the nonabelian point stabilizers are isomorphic
to SL2(3). ¤

Remark . Let (H, W ) be the unique, up to isomorphism, nonreal reduced
pair in characteristic p = 5. Then H is a 5-complement in GL2(5); the pair
(H, W ) is of type (Q8) and will turn out to be exceptional (Chapter 10).
We have seen above that if Y is a subgroup of H having no regular orbit
on W , then Y properly contains the core E ∼= Q8 of H. Indeed either Y

is one (of three) normal subgroups of H containing O2(H) ∼= Q8 ◦ Z4, or
Y = P ∼= Z4wrZ2 is a Sylow 2-subgroup of H. Here P ′ is cyclic of order 4
and subnormal but not normal in H (see Lemma 10.4a below).

Theorem 8.5c (Riese–Schmid). Let (G,V ) be nonreal induced. Keeping
the notation introduced above we have R0 ⊇ E, except possibly when p = 3
or 5. In the exceptional cases at least R0 ⊇ Z(E) (and N0 ⊇ E).

Proof. Since there is no real vector in V for G, N has no regular orbit on
V by Proposition 5.3b. From Lemma 8.5a we know that N0 has no regular
orbit on W , and N0 ⊇ E. Our argumentation will be different depending
on whether the core E of (H, W ) is quasisimple or of extraspecial type.

Case 1: E is quasisimple

Assume the assertion is false. Then R0 6⊇ E. Since R0 is normal in
H, by definition of reduced pairs this implies that R0 is abelian and R0 ⊆
Z(H). So for each i ∈ Ω, using that G is transitive on Ω and identifying
Ni = N/Ti with a subgroup of Hi, we have Ni ⊇ Ei and R̄i ⊆ Z(Ni) where
R̄i = RiTi/Ti. Also, for i 6= j in Ω, Tij = TiTj is a normal subgroup of N
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with Tij/Ti
∼= Tij/Tj and

Tij/(Ti ∩ Tj) ∼= Tij/Ti × Tij/Tj .

Either Tij/(Ti ∩ Tj) is abelian and hence central in N/(Ti ∩ Tj), or Ei ⊆
Tij/Ti and Ej ⊆ Tij/Tj .

Define the subgroup Zi of N by Zi/Ti = Z(N/Ti) (i ∈ Ω), and define
a binary relation on Ω by letting i ∼ j if Zi = Zj . This is a G-invariant
equivalence relation on Ω. We assert that each equivalence class J has at
least two elements. In order to prove this we use that E is quasisimple.
Note that

⋂
i Ti = 1 and that

⋂
i Zi = Z(N).

There exists a quasisimple subnormal subgroup Y of N , a component
of N . Either Y Ti/Ti

∼= Ei or Y ⊆ Ti. In the former case Y ∼= Ei. (Use
that if the multiplier M(E) 6= 1, then E ∼= 2.A6 and M(E) = Z3, but Y

maps into N ′
i = Ei and Z(Y ) ⊆ ⋂

i Z̃i where Z̃i/Ti corresponds to Z(Ei).)
Let J = JY be the set of those j ∈ Ω for which Y is mapped isomorphically
onto Ej . Then J 6= ∅, and if J = {j} then Y ⊆ Rj =

⋂
i 6=j Ti were

abelian (as R̄j ⊆ Z(Hj)). Hence |J | > 1. Let i 6= j be in J . Assume
i 6∼ j. Then Y = Y ′ maps isomorphically onto a subnormal subgroup of
Tij/(Ti∩Tj) which in turn maps onto the normal subgroup Ei of Tij/Ti and
on the normal subgroup Ej of Tij/Tj . This is impossible since Tij/(Ti∩Tj)
has only 2 components [Aschbacher, 1986, (31.7)]. Alternately use that
in a direct decomposition of perfect groups the direct factors are uniquely
determined.

Thus J = JY is an equivalence class with respect to ∼, hence a G-block
on Ω, with |J | ≥ 2. For if g ∈ G is such that Y g = Y , then g stabilizes J ,
and if Y g 6= Y , then [Y, Y g] = 1 and Jg = JY g intersects J trivially. Pick
i 6= j in J , and write ZJ = Zi = Zj . We assert that there are nonzero
vectors wi ∈ Wi and wj ∈ Wj such that

CN (wi) ∩ CN (wj) ⊆ ZJ .

By Theorem 7.1 we may choose wi such that CN (wi)/Ti is cyclic, except
when (H, W ) is of type (Sp4(3)) with p = 7, 13. In the cyclic case the
group C = CN (wi)ZJ/Tj is abelian, and we pick wj in a regular C-orbit on
Wj . In the exceptional cases we treat the (worst) situation that Ni = N/Ti

is isomorphic to Sp4(3) × Z(p−1)/2 so that ZJ/Ti
∼= F∗p. By Theorem 7.1

we may pick wi ∈ Wi such that CN (wi)/Ti is isomorphic to SL2(3) × Z3
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(p = 7) resp. to Z3wrS2 (p = 13). By Corollary 7.2c, CN (wi)ZJ/ZJ has
a regular orbit on P1(Wi), and this depends only on the isomorphism type
of the point stabilizer. It follows that CN (wi)ZJ/Tj has a regular orbit on
Wj likewise. Hence the assertion.

Thus there is vJ =
∑

j∈J wj consisting of nonzero vectors wj ∈ Wj

such that CN (vJ) =
⋂

j∈J CN (wj) ⊆ ZJ . Let v be the sum of the distinct
G-conjugates of vJ . Then

CN (v) ⊆
⋂

g∈G

(ZJ)g = Z(N).

So CN (v) acts on each Wi as a group of scalar multiplications fixing a
nonzero vector. This implies that CN (v) = 1, a contradiction.

Case 2: E is extraspecial

Here we argue as follows. Let the base group B = H1 × · · · × Hn of
the wreath product HwrS act on V = W1⊕· · ·⊕Wn diagonally (as usual).
Suppose N is any subgroup of B which has no regular orbit on V and for
which the image Ni of N in Hi is a subnormal subgroup of Hi, for all i ∈ Ω.
Let Ti = CN (Wi), Ri =

⋂
j 6=i Tj and R̄i = RiTi/Ti (as usual). We assert

that Ni ⊇ Ei and R̄i ⊇ Z(Ei) for some i ∈ Ω, and even R̄i ⊇ Ei for some
i if p 6= 3 and p 6= 5. We argue by induction on |N |.

So we ignore, at first, the group G and its transitive action on Ω. Only
in a concluding step this will be used (yielding then the assertion for all
i ∈ Ω, hence for the common images N0 of the Ni and R0 of the Ri

∼= R̄i

in H = H0).

Assume that this assertion is false (so that R̄i 6⊇ Ei for all i ∈ Ω, and
even R̄i 6⊇ Z(Ei) when p = 3 or 5). If for each i, Ni has a regular orbit
on Wi, so does N on V . (Argue as for Lemma 8.5a.) So we may assume
that N1, say, does not have a regular vector in W1. Then N1 ⊇ E1 by
Lemma 8.5b. We have R1 ∩ T1 = 1, and T1 contains R2, · · ·, Rn. Similarly
T1 acts faithfully on Ṽ = W2 ⊕ · · · ⊕Wn. The group Ñ = R1 · T1 fulfills
all requirements. Since N1 contains E1 but Ñ/T1

∼= R1 does not, we have
|Ñ | < |N |. Since C

Ñ
(
⊕

j 6=i Wj) ⊆ Ri for all i, by induction there must be
a regular vector v ∈ V for Ñ . We may write uniquely v = w1 + ṽ with
w1 ∈ W1 and ṽ =

∑n
i=2 wi for wi ∈ Wi. Here without loss we may assume

that all wi 6= 0. Let

C1 = CN (ṽ) =
n⋂

i=2

CN (wi).
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Then C1 contains R1 as a normal subgroup. Clearly C1∩T1 = CN (v)∩T1 =
1. So C̄1 = C1T1/T1 is a subgroup H1 which is isomorphic to C1 and
contains R̄1. If there exists w1 in W1 which is regular for C1, then w1 + ṽ

is a regular vector in V for N , a contradiction. Consequently C1 has no
regular orbit on W1.

Consider the action of C1 on Wi for i = 2, · · ·, n. Let C̄i = C1Ti/Ti.
Then C̄i ⊆ CHi(wi) for i ≥ 2. These point stabilizers are well understood
by Theorem 6.1. It follows that CS

1 ⊆ R1.

Let first p 6= 3, 5. Suppose that N1 is irreducible on U1 = E1/Z(E1).
Then R̄1 ⊆ Z(N1) ⊆ Z(H1). But then C̄S

1 ⊆ Z(H1), which contradicts
Lemma 8.5b. Thus N1 is not irreducible on U1 (but still N1 ⊇ E1). From
Lemma 8.5b it follows that then (H, W ) ∼= (Hi,Wi) must be of type (33

+)
and p = 7. Moreover, then N1 = E1 · 〈j〉 or E1〈j〉Z(H1) for some involution
j of H1 inverting the elements of U1. Since C1 has no regular orbit on
W1, C̄S

1 6⊆ Z(H1) by Lemma 8.5b. Since C̄S
1 is contained in all (normal)

subgroups of C̄1 with index 3 (as Z6 is a point stabilizer) and E1 is a
3-group, this implies that C̄1 = E1〈j〉 or E1〈j〉Z(H1). Since j inverts the
elements of U1 and R̄1 6⊇ E1, C1/R1 has an S3 quotient group. However, by
the structure of the point stabilizers C1/CS

1 does not have an S3 quotient
group. This is the desired contradiction.

Let finally p = 3 (E ∼= 21+4
− ) or p = 5 (E ∼= Q8). Then all point

stabilizers of nonzero vectors are cyclic 2-groups by Theorem 6.1. By as-
sumption R̄1 6⊇ Z(E1). Since R̄1 is normal in N1 ⊇ E1, this forces that
R1 = 1 = CS

1 . Hence C1 is an abelian 2-group. But then C1 has a regular
orbit on W1, a final contradiction. This completes the proof. ¤

In the nonreal induced (imprimitive) situation k(GV ) ≤ k(NV ) · k(S)
by (1.7b). Here S = G/N is a transitive permutation group of degree n ≥ 2.
The class number k(S) will be investigated in the next chapter. When
p 6= 3, 5 by Theorem 8.5c the group N contains a normal subgroup of G

which is the direct product of n copies of the core E of (H, W ) permuted
transitively by S. So G is indeed not far from being the full wreath product
HwrS. Observe that if G = HwrS, then GV = (HW )wr S.

Let us compute k(XwrS) for an arbitrary finite group X and an ar-
bitrary transitive permutation group S of degree n ≥ 2. Let k = k(X),
and let Σn,s be the set of partitions of the n-set Ω = {1, · · ·, n} into s

parts, so that σn,s = |Σn,s| is the Stirling number of the second kind to n
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and s. Counting the ordered n-sets of a k-set with repetition one gets the
combinatorial identity

n∑
s=1

k(k − 1) · · · (k − s + 1)σn,s = kn.

This identity is valid even when k < n (where the summands for s > k

vanish). For a partition σ the stabilizer Sσ is the set of all elements of S

belonging to the Young subgroup of Sn determined by σ.

Proposition 8.5d. For k = k(X) we have

k(XwrS) =
∑n

s=1 k(k − 1) · · · (k − s + 1)
∑

σ∈Σn,s
k(Sσ)/|S : Sσ|.

If S = Zn is generated by an n-cycle, then k(Xwr S)=(kn − k)/n + kn if n

is a prime, and k(XwrS) ≤kn − k + kn in general.

Proof. Every irreducible character χ of the base group X(n) of G = XwrS
is of the form χ = χ1⊗···⊗χn for unique irreducible characters χi ∈ Irr(X).
This determines a partition σ(χ) of Ω consisting of those subsets on which
the components χi agree and which are maximal with this property. The
inertia group IS(χ) = Sσ(χ). One knows that χ can be extended to the
inertia group XwrSσ(χ) of χ in XwrS [James–Kerber, 1981, p. 154]. If
σ ∈ Σn,s is a partition of Ω into s parts, there are k(k − 1) · · · (k − s + 1)
irreducible characters χ of X(n) with σ(χ) = σ if k ≥ s, and none otherwise.
Hence k(G) is as stated.

Let S = Zn = 〈x〉. If n is a prime, then Sσ = 1 unless σ = Ω. Hence
k(G) = k|S| + (kn − k)/|S| by virtue of the above combinatorial identity.
In general the estimate follows, in a similar manner, once we have shown
that ∑

σ∈Σn,s

k(Ss)/|S : Sσ| ≤ σn,s

for each s ≥ 2. Suppose σ ∈ Σn,s is such that Sσ 6= 1. Let ∆ be a set in σ of
smallest cardinality. Then |∆| = t > 1 is a divisor of n and Sσ = 〈xn

t 〉 (and
each set belonging to σ has cardinality divisible by t). Pick any α ∈ Ωr∆,
say α ∈ Γ ∈ σ, and replace ∆ by ∆ ∪ {α}, Γ by Γ r {α} and leave the
other sets in σ unchanged. We obtain σα ∈ Σn,s with Sσα

= 1. Noting
that t ≤ n

s and that at most 1
n−n

s
σn,s partitions in Σn,s have nontrivial

stabilizer in S, the result follows since obviously n
s2

σn,s

n−n
s

+ σn,s

n ≤ σn,s. ¤



Chapter 9

Class Numbers of Permutation Groups

Let Ω = {1, · · ·, n} for some integer n ≥ 2. Permutation groups of degree
n are regarded as acting on Ω. For each such group S one has the upper
bound k(S) ≤ 2n−1, due to [Liebeck and Pyber, 1997]. We shall give a
sketch of proof for this theorem, and present a slight improvement.

9.1. The Partition Function

Since two elements of the symmetric group Sn are conjugate if and only if
they have the same cycle type, k(Sn) = p(n) where p(n) is the partition
function on positive integers. There is no simple formula for p(n). Hardy

and Ramanujan showed that asymptotically p(n) ∼ eπ
√

2n/3

4n
√

3
, which readily

yields the estimate

(9.1a) p(n) < π√
6(n−1)

· eπ
√

2n/3

for n ≥ 2 (cf. [Erdös, 1942] for an elementary approach). We get the upper
bound p(n) < 0.2735 · 23.701

√
n, which is fairly good for n ≥ 23. With

elementary means one can establish the following.

Proposition 9.1b. For n ≥ 5 we have k(An) < k(Sn) ≤ 2n−2.

Proof. The assertion is verified for 5 ≤ n < 10 by inspection [Atlas]. Let
n ≥ 10. Let kd be the number of conjugacy classes of elements in Sn with
shortest cycle length d, so conjugate to (12···d). Then either d = n (kn = 1)
or d ≤ bn

2 c. Consider the elementwise stabilizer S(d)
∼= Sn−d of {1, 2, · · ·, d}

for d 6= n in Sn. Evidently kd ≤ k(S(d)). By induction k(S(d)) < 2n−d−2

for n 6= d since then n− d ≥ 5. Thus

k(Sn) < 1 + 2n−3 + 2n−4 + · · ·+ 2d
n
2 e−2,

which is certainly less than 2n−2.

Let x ∈ An. If xSn = xAn , then associate to x the partition σ defined
by x ∈ Sn. If xSn 6= xAn , then σ is of the form (a1, · · ·, as) with a1 > a2 >

170
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··· > as and all aj being odd. In this case xSn consists of two An-classes, and
we associate to these the different partitions σ and σ′ = (a1−1, a2, ····, as, 1).
Hence k(An) ≤ k(Sn). Since the partition (n− 3, 3) is not associated to a
conjugacy class of An in this manner, we even have k(An) < k(Sn). ¤

One knows that roughly k(An) is half of k(Sn) (Erdös).

9.2. Preparatory Results

We need some preparations. For a simple group L we denote by P (L) the
smallest degree of a faithful permutation representation of L, that is, the
index of a proper subgroup of L of largest order. Thus P (L) ≥ R0(L) + 1
and P (L) ≥ Rp(L) + 1 for each prime p.

Lemma 9.2a. Suppose L is a finite simple group of Lie type of (untwisted)
rank ` = rk(L) over Fr , where r = qt for some prime q.

(i) If ` = 1, then L = L2(r) = PSL2(r) and P (L) ≥ r + 1 unless
r ≤ 11.

(ii) If L =2B2(r) = Sz(r) is a Suzuki group, then P (L) = r2 + 1, and
if L =2G2(r) is a Ree group, then P (L) = r3 + 1.

(iii) In general P (L) ≥ (r`+1 − 1)/(r − 1) except when L = L2(7),
L2(11), G2(4), 3D4(2), 2F4(2)′, 2B2(r) or 2G2(r).

Statement (i) is a classical result of Galois (and Dickson) [Huppert, 1967,
II.8.28]. The result on the Suzuki groups in (ii), where r = 2t with t ≥ 3
odd, is due to [Suzuki, 1962], and the result on the Ree groups, where
r = 3t with t ≥ 3 odd, can be found in [Ward, 1966]. (The Ree groups
2F4(2t), t ≥ 3 odd, are not exceptional here.) The general lower bounds for
P (L) can be found in Table 5.2A for L classical, and in Table 5.3A for L

exceptional in [Kleidman–Liebeck, 1990]. In the cases L = G2(4), 3D4(2)
and for the Tits group 2F4(2)′ one can take P (L) from the [Atlas], namely
P (L) = 416, 819 and 1.600 respectively.

Lemma 9.2b. Let L, ` = rk(L) and r = qt be as before. Then |Out(L)| ≤
2(` + 1)t exept when L ∼= PΩ±8 (r), in which case |Out(L)| ≤ 24t.

This is immediate from Steinberg’s description of the automorphisms of the
groups of Lie type in Chapter 10 of [Steinberg, 1967]. For L = L2(r) we
have |Out(L)| = 2t if r is odd and |Out(L)| = t otherwise.
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Lemma 9.2c. Let L, ` = rk(L) and r = qt be as before.

(i) k(L2(r)) ≤ r + 1, k(Sz(r)) = r + 3 and k(2G2(r)) = r + 8.

(ii) In general k(L) ≤ (6r)`.

[Schur, 1911] has already computed the character table of L2(r), [Suzuki,
1962] for the Suzuki groups (see also [Huppert–Blackburn, 1982, XI.5.10]),
and [Ward, 1966] for the Ree groups. Hence the statements in (i). State-
ment (ii) is due to [Liebeck and Pyber, 1997]. It is based on general results
on conjugacy classes in algebraic groups [Springer–Steinberg, 1970].

For a proof of the following fundamental result we refer to [Dixon–
Mortimer, 1996].

Theorem 9.2d (O’Nan–Scott). Suppose S is a primitive permutation
group of degree n. Then the socle of S has the form L(m) for some simple
group L, and one of the following holds:

• Affine type: |L| = q for some prime q, S is a subgroup of the affine
group AGLm(q) containing the translations, and a point stabilizer in S is
an irreducible subgroup of GLm(q).

• Diagonal type: L is nonabelian (simple), n = |L|m−1 with m ≥ 2
and S is a subgroup of a wreath product with the diagonal action. Also,
S/L(m) is isomorphic to a subgroup of Out(L)× Sm, and a point stabilizer
has a primitive action of degree m.

• Product type: L is nonabelian, n = bd for integers b, d greater than
1 and S is a subgroup of TwrSd, in product action, for some primitive
subgroup T of Sb.

• Almost simple type: S is almost simple (m = 1 and S ⊆ Aut(L)).

9.3. The Liebeck–Pyber Theorem

Theorem 9.3 (Liebeck–Pyber). If S is a permutation group of degree n,
then k(S) ≤ 2n−1.

Proof. We argue by induction on n. Suppose S is not transitive, and
let Ω1 be an S-orbit and Ω2 = Ω r Ω1. Then N = CS(Ω1) is faithfully
represented on Ω2 as a permutation group of degree n2 = |Ω2| < n, hence
k(N) ≤ 2n2−1 by induction. S/N is isomorphic to a subgroup of Sn1 where
n1 = |Ω1|, whence k(S/N) ≤ 2n1−1. By (1.7b)

k(S) ≤ k(N) · k(S/N) ≤ 2n1−1+n2−1 = 2n−2.
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Let T = S1 be a point stabilizer, and assume T is not maximal in S.
Choose a proper intermediate group T ⊂ H ⊂ S, and let C = CoreG(H).
Let |S : H| = b, |H : T | = d, and let b0 = |S : CT |, d0 = |CT : H|. By
induction k(S/C) ≤ 2b−1 as S/C is isomorphic to a subgroup of Sb. Also,
C has b0 orbits on Ω = {1, · · ·, n} of size d0, and the preceding argument
yields k(C) ≤ (2d0−1)b0 . By (1.7b)

k(S) ≤ 2(d0−1)b0 · 2b−1 = 2n+b−b0−1 ≤ 2n−1.

because b0d0 = n and b ≤ b0.

Hence we are reduced to the case that S is primitive. Let first S ⊆
AGLm(p) be of affine type (n = pm), and let M = CS(M) be a minimal
(regular) normal subgroup of S. By Theorem 2.3c the principal block is
the unique p-block of S. Therefore by the Brauer–Feit Theorem 2.4,

k(S) ≤ 1 +
1
4
|P |2

where P is a Sylow p-subgroup of S. Since P/M is isomorphic to a subgroup
of a Sylow p-subgroup of GLm(p), which has order pm(m−1)/2, we have
k(S) ≤ 1+ 1

4pm(m+1). We have to examine the cases where 1+ 1
4pm(m+1) >

2pm−1, that is, where pm(m+1) ≥ 2pm+1. This happens only when p = 2
and m ≤ 4. Here the cases m = 1, 2, 3 are easily treated. Note that
every subgroup of GL3(2) has at most 7 conjugacy classes. In the m = 4
case consider the stabilizer C = CS(w) for some w ∈ M ], so that C/M is
isomorphic to a subgroup of a parabolic subgroup R : GL3(2) of GL4(2),
with unipotent radical R ∼= Z

(3)
2 , and |S : C| ≤ 15. Using (1.7b) we

conclude that k(S/M) ≤ 15 · 7 · 8 < 210 and k(S) ≤ 214, as desired.

Let next S be of diagonal type. So the socle M of S is the direct product
of m > 1 copies of a nonabelian simple group L, and n = |L|m−1. Further
S/M is isomoprphic to a subgroup of Out(L) × Sm. Clearly k(L) ≤ |L|/2
and |L| ≥ 60. From the classification of the finite simple groups and Lemma
9.2b one has the very crude estimate |Out(L)| ≤ |L|. (If L is an alternating
or sporadic simple group, then |Out(L)| ≤ 2, except when L = A6 where
|Out(L)| = 4.) Consequently

k(S) ≤ k(L)m|Out(L)| · k(Sm) ≤ |L|m+1 · 2−m · 2m−1 ≤ |L|m+1,

which gives the result.
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Let S be of product type. So n = bd for integers b, d greater than 1,
and S is a subgroup of TwrSd for some primitive subgroup T of Sb. By
induction we know that every subgroup of T has at most 2b−1 conjugacy
classes. Hence every subgroup of the base group N = T (d) has at most
2(b−1)d conjugacy classes. Since S/S∩N is isomorphic to a subgroup of Sb,
we have k(S/S ∩N) ≤ 2d−1. By (1.7b) k(S) ≤ 2(b−1)d · 2d−1 ≤ 2bd−1. Of
course bd ≤ bd.

So let S be almost simple, say L ⊆ S ⊆ Aut(L) for some simple
nonabelian group L. If L = An for n 6= 6, then Aut(L) = Sn and the result
follows (see above). If L = A6 or if L is a sporadic simple group, the desired
conclusion follows by inspection of the Atlas. Use that n is larger than the
degree of each faithful character.

So let L be a group of Lie type over Fr, and L 6∼= An. Let r = qt

for some prime q, and let ` = rk(L). Clearly n ≥ P (L). We use Lemmas
9.2a, 9.2b and 9.2c, and we use (1.7b). The cases where L = L2(r) or
L is a Suzuki or Ree group are easily treated using the information given
above. The groups G2(4), 3D4(2) and 2F4(2)′ are treated with the help of
the Atlas. In the remaining cases we have

k(S) ≤ (6r)`|Out(L)| ≤ 2(r`+1−1)/(r−1)−1 ≤ 2n−1,

as desired. ¤

9.4. Improvements

Recently [Maróti, 2005] has shown that, for n ≥ 3, the Liebeck–Pyber
bound can be improved to k(S) ≤ √

3 n−1. When S is solvable or |S| not
divisible by 3, 5 or 7, this stronger bound had been established previously
by [Kovács–Robinson, 1993] and [Riese–Schmid, 2003], and this suffices for
our purposes.

Lemma 9.4a. Let p be any of the primes 3, 5 or 7. If S is a primitive
permutation group of order prime to p and of degree n ≥ 7, then k(S) ≤ 2

n
2 .

Proof. Of course we invoke the O’Nan–Scott Theorem 9.2d. Suppose first
that S is of affine type. Then S has a minimal normal q-subgroup M for
some prime q 6= p, with CS(M) = M and |M | = n = qm for some m. Also
S = M : H where H is an irreducible p′-subgroup of GLm(q). Arguing as
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before we have to examine the cases where 1 + 1
4qm(m+1) >

√
2

qm

, that is,
where

qm(m+1) ≥ 2(qm+4)/2.

This implies that q = 7, m = 1 or q = 3, m = 2, 3 or q = 2, m = 3, 4, 5
(noting that n = qm ≥ 7). If (q, m) = (7, 1), then p = 3 or 5 and k(S) ≤
n = 7. If (q, m) = (3, 2), then p = 5 or 7 and H may be any irreducible
subgroup of GL2(3). If 3 - |H|, then k(S) ≤ 1 + 1

434 by (2.4), hence
k(S) ≤ 21 ≤ 29/2. Otherwise H = GL2(3) or SL2(3), in which cases we get
k(S) = 11, 10, respectively.

Let (q, m) = (3, 3). Then again H may be any irreducible subgroup of
GL3(3). If H = GL3(3), then k(S) = k(GL3(3))+k(AGL2(3)) = 24+11 =
35 by (1.10b), because the stabilizer in H of any nontrivial linear character
λ of M is isomorphic to AGL2(3) and λ extends to IS(λ) [Atlas, p. 13].
For H = SL3(3) we get k(S) = 12 + 11 = 23. In the remaining cases H is
solvable of order dividing 72, and |S| ≤ 233/2.

Let (q, m) = (2, 3). If H = GL3(2), then p = 5 and k(S) = k(GL3(2))+
k(S4) = 6 + 5 = 11 by (1.10b) since the stabilizer IH(λ) ∼= S4 for any
nontrivial linear character λ of M . Otherwise H is cyclic of order 7 or is a
Frobenius group of order 21, and we get k(S) ≤ 8.

Let (q, m) = (2, 4). Then we must have p = 7 and, by inspection of
the possible irreducible 7′-subgroups of GL4(2), k(S) ≤ k(42 : GL2(4)) ≤
2 · (15 + 4) ≤ 2qm/2. For (q, m) = (2, 5), H must be cyclic of order 31 or a
Frobenius group of order 31 · 5 (when p 6= 5), and the result follows.

Suppose next that S is of product type. Here n = bd for certain integers
b, d greater than 1 and S is a subgroup of TwrSd, T being a primitive
subgroup of Sb. Let N denote the base group of TwrSd. By Theorem 9.3
each subgroup of T has at most 2b−1 conjugacy classes. Thus k(S ∩N) ≤
2(b−1)d. Since S/S ∩N is isomorphic to a subgroup of Sd we have k(S/S ∩
N) ≤ 2d−1, again by Theorem 9.3. The result follows if bd − 1 ≤ bd/2.
Since n = bd ≥ 7, this is true unless b = 2, d = 3 or b = 3, d = 2. The
primitive permutation p′-groups of degree 8 or 9 are solvable, hence are of
affine type and already treated.

Suppose that S is of diagonal type. Here the socle M of S is the direct
power of m > 1 copies of some simple p′-group L, n = |L|m−1 and S/M is
isomorphic to a subgroup of Out(L)× Sm. Hence

k(S) ≤ k(L)m · |Out(L)| · 2m−1 ≤ |L|m+1 ≤
√

2
|L|m−1

,
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because k(L) ≤ |L|/2, |Out(L)| ≤ |L| and |L| ≥ 60.

So we may assume that S is almost simple, say L ⊆ S ⊆ Aut(L)
for some simple p′-group L. The alternating groups are ruled out by as-
sumption. Also, the case p = 3 is easy since then L = Sz(q) is a Suzuki
group, and Lemmas 9.2a, 9.2c apply. The only sporadic groups meeting
the requirements are M11, M12 and J3 for p = 7, for which the result holds
[Atlas]. For groups of Lie type we argue as in the proof for Theorem 9.3.
The exceptional groups in Lemma 9.2a, including the Ree groups 2G2(r),
and the groups of rank 1 (L = L2(r)) are treated as before. Letting L be
defined over of Fr and ` = rk(L), as usual, we therefore have ` ≥ 2 and
n ≥ P (L) ≥ (r`+1 − 1)/(r − 1), and it suffices to verify the inequality

(6r)`|Out(L)| ≤ 2
1
2 (r`+1−1)/(r−1).

Using the bound for |Out(L)| given in Lemma 9.2b this inequality holds
unless ` = 2, r ≤ 4 or ` = 3, 4 and r = 2. The corresponding p′-groups L

are all in the Atlas, namely the 5′-groups A2(3), 2A2(3) ∼= G2(2)′, G2(3)
and 3D4(2), and the 7′-groups 2A3(2) ∼= Ω−6 (2), C2(4) = PSp4(4), 2A2(4),
2A4(2) and 2F4(2)′. The desired estimate holds in each case. (Except for
L = A2(3) one can even replace

√
2 by 5

√
2.) ¤

Proposition 9.4b. Let again p be any of the primes 3, 5, 7, and let S ⊆ Sn

be a p ′-group. Suppose S has r orbits of size 2 and s orbits not of size 2.
Then k(S) ≤ 2r · √3

n−2r−s
. In particular, k(S) ≤ √

3
n−1

for n ≥ 3.

Proof. Assume the proposition is false, and let S be a counterexample
with n minimal. Then S is transitive. For if S has an orbit of size 2, then
k(S) ≤ 2 · 2r−1 · √3

n−2−2(r−1)−s
by induction, using (1.7b). If S has no

orbit of size 2 but is not transitive, argue as in the proof for Theorem 9.3.
By inspection n ≥ 5.

Suppose we have shown that S is even primitive. Then Lemma 9.4a
yields that n ≤ 6. For n ≤ 4 the result follows by inspection. For n = 5 we
have k(S) ≤ 7. There are just four primitive (7′-) groups of degree n = 6,
which are isomorphic (as groups) to S5, A5, S6 or A6, and k(S) ≤ √

3
n−1

.

Consequently S is not primitive. Let T be a point stabilizer in S. We
first claim that if H is a proper intermediate group, T ⊂ H ⊂ S, then
|S : H| = 2 or |H : T | = 2. Let |S : H| = b and |H : T | = d, and assume
b > 2 and d > 2. Let C = CoreS(H) and |C : C ∩ H| = |CT : H| = d0,
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|S : CT | = b0. Then C has b0 orbits on Ω = {1, · · ·, n}, each of size d0. Of
course S/C is a transitive permutation group of degree b, 3 ≤ b < n, and
so k(S/C) ≤ √

3
b−1

. If d0 > 2, then by assumption and (1.7b)

k(S) ≤
√

3
(d0−1)b0 ·

√
3

b−1 ≤
√

3
n+b−b0−1 ≤

√
3

n−1
,

because n = b0d0 and b0 ≥ b. Thus d0 = 2 and b0 = n
2 . It follows that

C is an elementary abelian 2-group, with k(C) = |C| = 2
n
2 , and CT ⊂ H

(d > d0 = 2). Hence b ≤ n
4 . Since 2

1
2 · √3

1
4 <

√
3, we get the desired

result.

So letting H be a proper intermediate group, the following three pos-
sibilities have to be considered:

(i) T is maximal in H and |S : H| = 2;

(ii) H is maximal in S and |H : T | = 2;

(iii) There is a further intermediate subgroup X, such that T ⊂ H ⊂
X ⊂ S say, and then H is maximal in X and X is maximal in S, and
|H : T | = 2 = |S : X|.

Case (i): Let d = |H : T |, and let N = CoreH(T ). Suppose first
that d ≥ 7. Observe that H/N is a primitive permutation group of degree
d. Hence k(H/N) ≤ √

2
d

by Lemma 9.4a. For any x ∈ S r H we have
N ∩ Nx = 1 and k(N) = k(Nx) = k(N · Nx/N) ≤ √

3
m−1

by induction
(d ≥ 3). Thus by k(H) ≤ 2 ·k(H/N) ·k(N) ≤ √

2
d+2 ·√3

d−1
. Since we are

assuming that k(S) >
√

3
2d−1

, we have
√

2
d+2

>
√

3
d
. But this is false

for d ≥ 4 (even). Thus d ≤ 6.

Note that p = 7 when S is not solvable. Let d = 6. Then by inspection
k(N) ≤ k(H/N) ≤ 11 and k(S) ≤ 2 · k(H/N) · k(N) ≤ 242 <

√
3

11
. If

d = 5 then k(H/N) ≤ 7, k(N) ≤ 7 and k(S) ≤ 98 <
√

3
9
. For d ≤ 4,

H and hence S are solvable. Consider d = 3. Then |S| ≤ 2|H/N |2 ≤ 72.
Since k(S3wrS2) = 9 and k(S) >

√
3

2d−1 ≥ 16 by assumption, we have
|S| ≤ 36, even |S| = 36 (for otherwise S were abelian). Then |H| = 18 and
|N | = 3, and k(S) ≤ 3 · 3 · 2 = 12, a contradiction.

Let d = 4. Then by inspection k(H/N) ≤ 5, and k(N/N ∩ Nx) ≤ 5
for x ∈ S r H. This gives k(S) ≤ 50, However, we are assuming that
k(S) >

√
3

7
, hence k(S) ≥ 47. This forces that k(H/N) = k(H/Nx) = 5.

Since H/N and H/Nx are isomorphic to primitive permutation groups of
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degree 4, we see that H/N ∼= N ∼= S4. We conclude that S ∼= S4wrS2 and
k(S) = 20.

Case (ii): Let b = |S : H|, and let N = CoreS(H). Here S/N is a
primitive permutation group of degree b, and N is an elementary abelian
2-group of order at most 2b. If b ≥ 7 then k(S/N) ≤ √

2
m

by Lemma 9.4a.
It follows that k(S) ≤ √

2
+2b

. Since by assumption k(S) >
√

3
2b−1

this
forces that

√
2

3b
>
√

3
2b−1

and b < 10.

Let b = 9. If S/N is solvable, then S/N is of affine type and so
k(S/N) ≤ 11 as seen in the proof of Lemma 9.4a. This gives the result. If
S/N is a nonsolvable (primitive) 5′-subgroup of S9, then it is isomorphic
to a (subnormal) subgroup of L2(8) : 3 and so even k(S/N) ≤ 9 [Atlas].
There is no nonsolvable primitive 7′-subgroup of S9.

Let b = 8 or 7. If S/N is solvable (of affine type), then k(S/N) ≤ b,
which is as required. If S/N is a nonsolvable, primitive p′-subgroup of S8,
then p = 5 and S/N is isomorphic to L3(2) or to L3(2) : 2 and k(S/N) ≤ 9,
or it is the affine group 23 : L3(2) of degree 8. We know already that
k(23 : L3(2)) = 11. We get the desired contradiction here, as well as for
b = 7 where k(S/N) = k(L2(7)) = 6.

Let b = 6. Then S is solvable or p = 7 and k(S/N) ≤ 11, yielding the
result.

Let b = 5. If S/N is a nonsolvable (7′-) subgroup of S5, then it is S5 or
A5 and so k(S/N) = 7 or 5. From the [Atlas] we infer that S is isomorphic
to a subgroup of 25 : S5 = Z2wrS5, which has just 36 conjugacy classes.
Since 25 is the natural permutation module for S5 over F2, this may be
computed by means of formula (1.10b) and shows that S contains 24 : A5.
At any rate, k(S) ≤ 36 <

√
3

9
. The remainder is straightforward.

Case (iii): Let |X : H| = m and N = CoreX(H), M = CoreX(T ).
Then M∩Mx = 1 for any x ∈ SrX, N/M is an elementary abelian 2-group
of order at most 2m, and X/N is a primitive permutation group of degree
m (and order prime to p). Suppose that m ≥ 7. Then k(X/N) ≤ √

2
m

by
(9.4a), hence k(X/M) ≤ √

2
3m

. Further k(M) = k(MxM/M) ≤ √
3

2m−1

by induction. It follows that k(S) ≤ 2 · √2
3m · √3

2m−1
. Since k(S) >√

3
4m−1

, this forces that m < 12. If X/N is solvable (of affine type), one
even obtains m ≤ 9, and these cases are easily treated. So let X/N be not
solvable in what follows. Note that k(X/N) > 3m/2m+1 by assumption.
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Let m = 11. Then p = 7 and either X/N ∼= L2(11) and k(X/N) = 8,
or X/N ∼= M11 and k(X/N) = 10. We obtain the desired contradiction.

Let m = 10. Then p = 7 and X/N either is a (primitive) subgroup of
A6.22, in which case k(X/N) ≤ 22, or of S5 (in its primitive action on the
2-subsets of {1, · · ·, 5}).

The possibilities m = 9, 8, 7 are ruled out using the information given
in Case (ii). For m = 6 we have X/N ∼= S6 or A6, but we have to argue
more carefully. Choose x ∈ S rX. Then N ·Mx is a subnormal subgroup
of X. Thus either MNx ⊆ N and k(M) = k(MMx/M) ≤ 26, or NMx/N

is S6 or A6, that is, NMx is a subgroup of X of index 1 or 2. The latter
case cannot happen since 1 = M ∩ Mx = M ∩ (Mx ∩ N) and so M ∼=
M(Mx ∩N)/(Mx ∩N) would be an elementary abelian 2-group (but Mx

would not). Using (1.10b) we get k(S) ≤ 2 · 11 · 26 · 26 <
√

3
24−1

. The
same argument works for m = 5. This completes the proof. ¤

Examples 9.4c. The upper bound given in Lemma 9.4a can be improved
considerably for large degree n. For instance, in [Gluck et al., 2004] it has
been shown that if S is a primitive permutation 5′-group of degree n > 20,
then k(S) ≤ 2

n
5 . On the other hand, there are examples (of imprimitive

groups) where one has proper lower bounds.

(i) Let S = S4wrZm for some integer m ≥ 2, which is a transitive (but
imprimitive) permutation group of degree n = 4m. Since the base group of
the wreath product is a direct product of m copies of S4 and has index m

in S, by part (i) of Theorem 1.7a k(S) ≥ 5m

m = 4
n5

n
4 . By Proposition 8.5d,

k(S) ≤ 5
n
4 + 5n

4 − 5.

(ii) Let S = Zpwr Zp for some prime p, which is a (transitive) Sylow
p-subgroup of Sn, n = p2. By Proposition 8.5d, k(S) = pp−1 + p2 − 1 >

2log2 p (
√

n−1).

(iii) Let S be a Sylow p-subgroup of Sn where n = pm+1 for some
prime p and some m ≥ 2. One knows that S ∼= ZpwrZpwr · · · wrZp with
m + 1 occurrences of Zp. By induction one gets that k(S) ≥ p

1
p−1 · bpm−1

where logp b = (p− 2)/(p− 1). So for instance k(S) > 3
n
6 when p = 3.



Chapter 10

The Final Stages of the Proof

In proving the k(GV ) theorem we may assume that G is irreducible on
V (Proposition 3.1a). By the Robinson–Thompson Theorem 5.2b we may
assume that there is no real vector in V for G. Then, by the Riese–Schmid
Theorem 8.4, the pair (G,V ) is nonreal induced. The proof is accomplished
now using that the class numbers for the nonreal reduced pairs are rather
small, and using the Liebeck–Pyber Theorem 9.3 and its improvement.
This actually works except for one case (p = 5), where some additional
considerations are needed.

10.1. Class Numbers for Nonreal Reduced Pairs

Throughout we let (H, W ) be a nonreal reduced pair inducing the pair
(G,V ). Let E be the core of H.

Proposition 10.1. Let Y be a subnormal subgroup of H.

(i) If Y ⊇ E then k(Y W ) < |W |/2 unless (H,W ) is of type (Q8) for
p = 5 or p = 7. For the type (Q8) and p = 7 (where |W | = 49) we have
k(Y W ) ≤ k(HW ) = 27.

(ii) Let p = 3 (where (H, W ) is of type (25
−) and |W | = 81) and let

Y ⊇ Z(E). Then k(Y W ) ≤ k(Z(E)W ) = 42.

(iii) Let p = 5 (where (H,W ) is of type (Q8) and |W | = 25) and let
Y 6= 1. Then k(Y W ) ≤ k(HW ) = 20.

Proof. We make use of Proposition 3.1b and knowledge of the orbit struc-
ture of H on W , including knowledge of the point stabilizers (Secs. 6.1
and 7.1). The class numbers k(H), k(Y ) are computed using the Clifford–
Gallagher formula (1.10b). We carry out only a few cases. The assumption
that Y is subnormal in H is crucial. Let Z = Z(E) and U = E/Z.

Type (Q8) : Let p = 5. Then H ∼= (Q8 ◦ Z4).S3. There are k(S3) = 3
irreducible characters of H lying over each of the two faithful irreducible
characters of Y4 = Q8 ◦ Z4 (extendible to H since M(S3) = 1), and over

180
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each of its two S3-invariant linear characters. (We use the notation which
will be introduced in Lemma 10.4a below.) Two further linear characters of
Y4 are stable under a fixed involution in S3, each having two extensions to
this inertia group and induce up to H. Thus k(H) = 3 ·2+3 ·2+2 ·2 = 16.
Of course k(Q8) = 5, k(Y4) = 10 and k(H ′) = 7 (H ′ = Y3

∼= SL2(3)). For
the subgroup Y = Y2 of H with index 2 we have k(Y2) = 14. Now use that
H is transitive on W ] and that CH(w) ∼= Z4 for any w ∈ W ]. We obtain
that k(HW ) = 20 and k(Y2W ) = 16.

The cases p = 7, 13 are treated similarly.

Type (25
−) : Let p = 3. Then H ∼= (21+4

− ) : H̄ where H̄ = Z5 : Z4. There
are k(H̄) = 5 irreducible characters of H over the unique faithful irreducible
character of E ∼= 21+4

− (as M(H̄) = 1). Since Z5 is irreducible on U , Z4

fixes a unique singular point in U , and since the |H̄ : Z2| = 10 nonsingular
points have stabilizer Z2 in H̄, we get k(H) = 5 ·1+4 ·1+2 ·1+k(H̄) = 16.
Using that H is transitive on W ] and that CH(w) ∼= Z8 for each w ∈ W ]

we get k(HW ) = 16 + 8 = 24. Of course k(E) = 17, and E has 5 orbits on
W ] of size 16, whence k(EW ) = 17 + 5 · 2 = 27. Also Z = Z(E) has 40
orbits on W ] of size 2, so k(ZW ) = 42.

Observe that if Y is generated by a noncentral involution in E, then
k(Y W ) = 54. So the assumption Y ⊇ Z(E) cannot be omitted.

Type (33
+) : Let p = 7 and H ∼=

(
31+2
+ : Sp2(3)

) × Z2. There are three
H-orbits on W ] with point stabilizers Z6, Z2 × Z

(2)
3 and Sp2(3). Hence

k(H) = 2(2 · 7 + 1) = 30 and k(HW ) = 30 + 6 + 18 + 7 = 61 (whereas
|W | = 73). Similar computation for the subnormal subgroups Y containing
E ∼= 31+2

+ .

Type (2.A5) : Let p = 31. Then H ∼= 2.A5×Z15 and k(H) = 9 · 15 = 135.
There are two orbits of H on W ] with point stabilizers Z3, Z5, hence
k(HW ) = 135 + 3 + 5 = 143 (whereas |W | = 312). The group E = 2.A5

has 8 regular orbits on W ], hence even k(EW ) = 9 + 8 = 17.

Type (2.A6) : Here H ∼= 2±S6×Z3 and p = 7, and we have three H-orbits
on W ] with stabilizers Z3, Z6 and Z3wrS2. Apply Proposition 3.1b.

Type (Sp4(3)) : Let p = 7. Then H ∼= Sp4(3)×Z3 and k(H) = 3 ·34 = 102
(Atlas). There are two orbits on W ] with point stabilizers SL2(3)×Z3 and
(31+2

+ : Q8)× Z3, which have class numbers 21 and 33, respectively. Hence
k(HW ) = 156 (whereas |W | = 74). The remainder is done similarly. ¤
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10.2. Counting Invariant Conjugacy Classes

By assumption we have an imprimitivity decomposition

V = W1 ⊕ · · · ⊕Wn

for some integer n ≥ 1, where the pairs (NG(Wi)/CG(Wi),Wi) are isomor-
phic to (H, W ) and permuted transitively by G. From the classification
of the nonreal reduced pairs in Chapters 6 and 7 it follows that V is an
absolutely irreducible FpG-module, and that p ∈ {3, 5, 7, 11, 13, 19, 31}.

Let us write Gi = NG(Wi) and Hi = Gi/CG(Wi) for each i, and let
N =

⋂n
i=1 Gi be the normal core. Let E ∼= Ei be the cores of (H,W ) ∼=

(Hi,Wi). Identify (H, W ) with (H1,W1) say (as reduced pairs). Recall
that distinct normal subgroups of H are not isomorphic (and hence are
characteristic in H). Let S = G/N act (transitively) on the set Ω =
{1, · · ·, n} like on the {Wi}. Because of Proposition 10.1 we may assume
that n ≥ 2. The degree n of the permutation group S is also called the
degree of (G,V ). Since G is faithful on V , we may identify G with a
subgroup of the wreath product HwrS (Lemma 8.2a). Let Ti = CN (Wi)
and Ni = N/Ti for i ∈ Ω, and denote by N0

∼= Ni their common image in
H = H0. Let Ri =

⋂
j 6=i Tj = CN (

⊕
j 6=i Wj) so that

R = R1 × · · · ×Rn

is a subgroup of N whose direct factors are permuted transitively by G (or
S). Let R0

∼= Ri
∼= RCG(Wi)/CG(Wi) denote the common image in H.

We know from Theorem 8.5c that R0 ⊇ E except possibly when p = 3 or
p = 5. In the exceptional cases at least R0 ⊇ Z(E), and always N0 ⊇ E.
Of course R is normal in G, and both N0 and R0 are characteristic normal
subgroups of H = H0 (R0 ⊆ N0). We let Q = N/R and Q0 = N0/R0.

We need some bounds for the number kg(N) = |CC`(N)(g)| of conju-
gacy classes of N fixed by some element g ∈ G. Let us call a vector v ∈ V

an n-vector provided its support is Ω, that is, v = w1 + · · · ·+wn with all
components wi ∈ Wi being nonzero.

Proposition 10.2a. Suppose S = 〈Ng〉 is cyclic (g ∈ G). Then:

(i) kg(N) ≤ min{|N0|, k(R0) · kg(Q)}.
(ii) kg(NV ) ≤ min{|N0W |, k(R0W ) · kg(Q)}.
(iii) kg(NV ) ≤ kg(N)+

∑
j k(CN (vj)) where {vj} is a set of represen-

tatives of the N -orbits on V ] consisting of n-vectors.
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Proof. For later use we describe exactly the assumptions needed for the
argument. Of course g normalizes N and R, acts on Q and permutes the
{Ri} (and {Hi}) cyclically. The nth power gn normalizes each Ri (since
gn ∈ N or, what is essential, since gn induces the identity permutation on
the set {Ri}).

There is a corresponding embedding of GV into the wreath product
(HW )wr S, having base group BV = H1W1 × · · · × HnWn. Here RV =
R1W1 × · · · × RnWn is a normal subgroup of NV , with quotient group
Q = (NV )/(RV ), and g leaves NV and RV invariant and permutes the
{RiWi} cyclically. Therefore (ii) is immediate from (i).

Let us prove (i). For each y ∈ N , CN (gy) maps onto a subgroup of
CQ(gy) with kernel CR(gy). Hence |CN (gy)| ≤ |CQ(gy)|·|CR(y)|. By (1.7c)
therefore

kg(N) =
1
|N |

∑

y∈N

|CN (gy)| ≤ 1
|N |

∑

y∈N

|CQ(gy)| · |CR(gy)|.

Now CN (gy)∩CN (W1) = 1 for each y ∈ N , because gy permutes the {Wi}
cyclically and y leaves each Wi invariant. Hence CN (gy) maps injectively
into N1 = N/CN (W1) ∼= N0 and so |CN (gy)| ≤ |N0|, for all y ∈ N .
Consequently kg(N) ≤ |N0|.

Let α = 1
|N |

∑
y∈N |CQ(gy)|. Let {tj} be a transversal to R in N , and

let ḡ = Rg. Since CQ(gtjx) = CQ(gtj) for each x ∈ R, and since |R|
|N | = 1

|Q| ,
we get

α =
1
|Q|

∑

ȳ∈Q

|CQ(ḡȳ) = kg(Q),

again by Eq. (1.7c). Let β be the maximum of the 1
|R|

∑
x∈R |CR(gtjx)|,

with tj varying over the transversal, the maximum being obtained for tj =
t0 say. The estimate in the preceding paragraph shows that kg(N) ≤ α · β.
So we have to show that β ≤ k(R0). Let x = x1 · · · xn and h = h1 · · · hn

be elements of R (with xi, hi ∈ Ri). Assume g, and hence gt0 and g0 =
gt0(x/x1), map onto the cycle (12...n) in S. Then h is centralized by
gt0x = g0x1 if and only if hg0x1

1 = h2, · · ·, hg0x1
n−1 = hn and h1 = h

(g0x1)
n

1 .

Now (g0x1)n = gn
0 x

gn−1
0

1 x
gn−2
0

1 · · · x1 and so h
(g0x1)

n

1 = h
gn
0 x1

1 , because h1 is
centralized by Ri for i 6= 1. We conclude that |CR(gt0x)| = |CR(g0x1)| ≤
|CR1(g

n
0 x1)|. Just using that gn

0 normalizes R1, as before

1
|R1|

∑

x1∈R1

|CR1(g
n
0 x1)| = k(gn

0 )(R1) ≤ k(R1) = k(R0).
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Thus 1
|R1|

∑
x1∈R1

|CR(gt0x1x2 · · · xn)| ≤ k(R0) for all |R|
|R1| = |R0|n−1 ele-

ments (x2, ···, xn) ∈ R2×···×Rn. Consequently β = 1
|R|

∑
x∈R |CR(gt0x)| ≤

k(R0).

It remains to prove (iii). C`(NV ) and Irr(NV ) are isomorphic 〈g〉-
sets by Brauer’s permutation lemma (Theorem 1.4b). The partition V =⊎

j vjN into N -orbits corresponds to a partition Irr(NV ) =
⊎

j Irr(NV |λj),
with CN (vj) = IN (λj) when the λj ∈ Irr(V ) are chosen properly (Propo-
sition 3.1b). These partitions are preserved by g since Irr(NV |λj)g =
Irr(NV |λg

j ) for each j. Thus kg(NV ) is the sum of the fixed points under g

in Irr(NV |λj), the sum taken over those λj corresponding to 〈g〉-invariant
N -orbits on V . One such summand is kg(N), the number of fixed points
under 〈g〉 of Irr(NV |1V ) = Irr(N). Since g permutes the {Wi} cyclically,
only those N -orbits on V ] can be 〈g〉-invariant which are represented by
n-vectors. Hence the result. ¤

We would like to have a substitute for Proposition 10.2a in the general
case. Let g ∈ G. If B =

∏
J BJ is a decomposition of the base group

according to the cycle decomposition of the permutation ḡ = Ng in S,
the natural projection map N → ∏

J BJ is a 〈g〉-homomorphism, and it is
injective. However, letting NJ be the image of N in BJ , the induced map
C`(N) → ∏

J C`(NJ) need not be injective. (An enlightening example
is S3∆Z2S3.) So the map on the fixed point sets under 〈g〉 need not be
injective likewise. The following lemma is used only in the very last step
(p = 5) of the proof of the k(GV ) conjecture (and for NV in place of N).

Lemma 10.2b. Let g ∈ G. According to the the cycle decomposition of
Ω under the permutation ḡ = Ng in S, with orbits J , let NJ be the image
of N in BJ =

∏
i∈J Hi. Then RJ =

∏
i∈J Ri is a normal subgroup of NJ ,

and both RJ and NJ are stable under g. For each J let kJ be the maximum
of the |CC`(Y )(gt)| where Y varies over all subgroups of NJ containing RJ

which are normalized by gt for some t ∈ N . Then kg(N) ≤ ∏
J kJ .

Proof. Let J1, ···, Jr be the distinct 〈ḡ〉-orbits on Ω. We argue by induction
on r. For r = 1 the assertion is trivial. So let r > 1. Let M be the image of
N under the 〈g〉-projection of B onto

∏r−1
i=1 BJi

with respect to BJr
. Since

the maps N ³ NJi , 1 ≤ i ≤ r − 1, factor through N ³ M , the inductive
hypothesis applies showing that kg(M) ≤ ∏r−1

i=1 kJi
.

Fix ym ∈ M such that yM
m ∈ CC`(M)(g). Of course yM

m = yN
m . Let

Y be the image of CN (ym) under the 〈g〉-projection of B onto BJr
. Then
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Y ⊇ RJr . There exists t ∈ N such that ygt
m = ym. Since gt centralizes

ym and normalizes N , it normalizes CN (ym) and Y (as the projection is
compatible with the action of gt). Let yN be a 〈g〉-invariant conjugacy class
of N which maps onto yM

m . We may replace y ∈ N by an N -conjugate, if
necessary, such that y maps onto ym. Then y ∈ CN (ym), and we may write
uniquely y = ymyr = yrym where yr is the image of y in Y . There exists
t0 ∈ N such that ygt = yt0 , and we have

ymygt
r = ygt = yt0 = yt0

myt0
r .

We conclude that ym = yt0 and ygt
r = yt0

r (by uniqueness), hence t0 ∈
CN (ym) and yY

r ∈ CCl(Y )(gt).

Now let ỹN be another 〈g〉-invariant conjugacy class of N mapping
onto yM

m , and choose ỹ such that ym is its component in M . Write uniquely
ỹ = ymỹr = ỹrym with ỹr ∈ Y and ỹY

r ∈ CC`(Y )(gt), as before. If ỹY
r = yY

r ,
then

ỹCN (ym) = ymỹY
r = ymyY

r = yCN (ym)

and so ỹN = yN . The result follows since, by definition, kgt(Y ) ≤ kJr
. ¤

10.3. Nonreal Induced Pairs

Theorem 10.3 (Riese–Schmid). Let (G,V ) be properly induced (n ≥ 2)
from the nonreal reduced pair (H, W ). Then k(GV ) ≤ 1

2 |V |, except possibly
when p = 5.

Proof. We use the notation introduced in Sec. 10.2. In addition let
Yn = Tn = N/CN (Wn) and let

Yi = CN (Wi+1 ⊕ · · · ⊕Wn)/CN (Wi ⊕Wi+1 ⊕ · · · ⊕Wn)

for i = 1, · · ·, n−1. Since CN (Wi+1⊕···⊕Wn) ⊇ Ri and Ri∩CN (Wi⊕···⊕
Wn) = 1, Yi may be identified with a subnormal subgroup of Hi containing
Ri. So Wi is a faithful FpYi-module.

Suppose first that p 6= 3 (and p 6= 5). Then Yi ⊇ Ri ⊇ Ei by Theorem
8.5c. Hence k(YiWi) < 1

2 |W | by Proposition 10.1 (i) unless (H,W ) is of type
(Q8) with p = 7. In this exceptional case we have k(YiWi) ≤ 27 = 27

49 |W |.
Repeated application of (1.7b) yields that

k(NV ) ≤
n∏

i=1

k(YiWi) <
(1
2
)n|V |
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if (H,W ) is not of type (Q8) with p = 7. In the exceptional case k(NV ) ≤
( 27
49 )n|V |. Now by (1.7b) once again k(GV ) ≤ k(NV ) · k(S), and k(S) ≤

2n−1 by the Liebeck–Pyber Theorem 9.3. Moreover, in the exceptional case
S is a 7 ′-group and so k(S) ≤ √

3
n−1

for n ≥ 3 by Proposition 9.4b. This
gives the assertion except when (H, W ) is of type (Q8) with p = 7 and
n = 2, 3. Note that ( 27

49 )n
√

3
n−1 ≤ 1

2 for n > 3. This is less than 0.502 for
n = 3, and ( 27

49 )2 · 2 ≤ 0.61.

We have to improve the last bounds (for n = 2, 3). Here H ∼= 2−S4×Z3

(p = 7). By Theorem 8.5c, R0 ⊇ E ∼= Q8. Let n = 2, and let S = 〈Ng〉
be of order 2. Then Q = N/R is a quotient group of S3 × Z3. Hence
k(Q) ≤ 3 · 3 = 9, and if k(Q) = 9 then R0

∼= Q8 and k(R0W ) = 11. It
is easy to check that k(Q) · k(R0W ) ≤ 99 in each case. We know that
k(NV ) ≤ ( 27

49 )2|V | = 729. By Proposition 10.2a (ii) at most kg(NV ) ≤ 99
of the at most 729 conjugacy classes of NV are 〈g〉-invariant. By Theorem
1.4b at most 99 of the at most 729 irreducible characters of NV are stable
in GV . By (1.10b) therefore

k(GV ) ≤ 2 · 99 + (729− 99)/2 = 513,

which is less than 1
4 |V |. For n = 3 we have to examine the cases where

S ∼= A3 or S3. Use that k(NV ) ≤ 27 3 and that |H| · |W | = 3 · 48 · 27
conjugacy classes of NV are fixed by a 3-cycle in S by Proposition 10.2a.

Let p = 3. Then |W | = 34 and k(YiWi) ≤ 42 by Proposition 10.1. By
Proposition 9.4b, k(S) ≤ √

3
n−1

for n ≥ 3. Hence

k(GV ) ≤ k(NV ) · k(S) ≤ (42
81

)n√3
n−1|V | ≤ 1

2
|V |,

except when n = 2, in which case k(GV ) ≤ k(NV ) · 2 ≤ (42
81 )2 · 2 <

0.6|V |. Again this bound is easily improved. The worst case happens when
R0

∼= Z(H) has order 2, in which case Q ∼= H/Z(H). Then k(R0W ) =
42 and k(Q) = 12. Hence by Proposition 10.2a at most 42 · 12 = 504
of the k(NV ) ≤ 422 irreducible characters of NV are invariant in GV .
Application of (1.10b) gives k(GV ) ≤ 2 ·504+(422−504)/2 = 1.638, which
is less that 1

4 |V | (|V | = 812). The proof is complete. ¤

10.4. Characteristic 5

It remains to examine the case where (H, W ) is the nonreal reduced pair of
type (Q8) with p = 5. Having established Theorem 10.3 in 2001, published



The Final Stages of the Proof 187

in [Riese–Schmid, 2003], it took almost two years to handle this case too.
The thorough analysis made in [Gluck et al., 2004] yields in this case the
estimate k(GV ) ≤ 1

2 |V | as before (n ≥ 2). In what follows we argue, using
some ideas from [Keller, 2006], on the basis of Proposition 10.2a and Lemma
10.2b. This makes the approach considerably shorter (though the result is
weaker). We use the notation introduced in Sec. 10.2.

For convenience of the reader we give some additional information on
the group H, which is a 5-complement in GL2(5) (uniquely determined
up to conjugacy). As already seen in Sec. 3.2, H is transitive on the
nonzero vectors of the standard module W = F(2)

5 . Also, H is the standard
holomorph of Q8 ◦ Z4. Hence H/Z(H) ∼= S4, but the two covering groups
2±S4 are not involved in H (nor a Singer cycle).

Lemma 10.4a. Let (H,W ) be of type (Q8) with p = 5. There are up to
conjugacy just 11 subnormal subgroups Ya of H = Y0 containing the centre
of the core E of H (listed below). The numbering is such that whenever Ya

contains some conjugate of Yb then a ≤ b.

Ya k(Ya) k(YaW ) k(Ya/Y11)

Y0 = H 16 20 10
Y1 = O2,3(H) 14 16 8
Y2 = H ′ ∼= SL2(3) 7 8 4
Y3 = O2(H) ∼= Q8 ◦ Z4 10 16 8
Y4 = E = H ′′ 5 8 4
Y5
∼= D8 5 14 4

Y6
∼= Z4 × Z2 8 14 4

Y7 = Z(H) ∼= Z4 4 10 2
Y8
∼= Z4 4 10 2

Y9
∼= Z2 × Z2 4 16 2

Y10 = Z(E) 2 14 1

The statements are easily verified (arguing as for Proposition 10.1). The
normal subgroups of H are determined by their order. The subnormal but
not normal subgroups of H are of type Y5, Y6, Y8 and Y9, each having 3
conjugates under H. For each subgroup Y of H we have k(Y W ) ≤ 20,
except for two conjugacy classes of abelian groups Y = CH(w) respectively
CH(w) × Z(H) for some w ∈ W ], where k(Y W ) = |W |. If Y 6= H is a
nonabelian subgroup, then k(Y W ) ≤ 16 except when Y ∼= Z4wrZ2 is a
Sylow 2-subgroup of H (in which case k(Y W ) = 20).
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It is also easy to compute k(Ya/Yb) whenever Yb is a normal subgroup
of Ya. Knowing that |CYa(w)| = 1, 2 or 4 for each w ∈ W ], which may
be deduced from the first row of the table, application of Proposition 3.1b
enables us to compute from k(YaW ) − k(Ya) the number of Ya-orbits on
W ]. The subgroups of H of order greater than or equal to 8 have at most
5 orbits on W ]. (By direct computation or using [GAP] one can establish
the complete orbit structure for each subgroup of H.)

Lemma 10.4b. Let (H, W ) be of type (Q8) with p = 5, and let n = 2.
Then k(GV ) ≤ 1

2 |V |.
Proof. In this case S = 〈Ng〉 has order 2. Also G1 = N = G2 so that
N = H1∆QH2 is a fibre-product of the Hi

∼= H amalgamating Q = N/R

(R = R1×R2). We also have an extension R0 ½ H ³ Q. As in the proof of
Theorem 10.3 we have k(NV ) ≤ k(N1W1) · k(R2W2) ≤ 202 (R2 = CN (W1)
and N1 = N/R2

∼= H).

Suppose G = HwrS, that is, R0 = H = Y0. Then GV = (HW )wr S
and so by Proposition 8.5e and Lemma 10.4a

k(GV ) = 2 · k(HW ) + k(HW )(k(HW )− 1)/2 = 230.

Suppose R0 = Y1, Y2, Y3, Y4 or Y7. Application of Proposition 10.2a and of
Lemma 10.4a yields that

kg(NV ) ≤ k(R0W ) · k(Q) = 32, 32, 48, 48, 50,

respectively. In the worst case, in view of Theorem 1.4b, at most 50 of the
at most 202 irreducible characters of NV are stable in GV . On the basis
of the Clifford–Gallagher formula (1.10b) we therefore obtain the estimate
k(GV ) ≤ 2 · 50 + (400− 50)/2 = 275.

It remains to examine the case where R0 = Y10. Then kg(N) ≤ 2 ·10 =
20 by part (i) of Proposition 10.2a, and part (ii) gives kg(NV ) ≤ k(R0W ) ·
k(Q) = 14 · 10. We improve this latter bound by applying part (iii) of this
proposition. We know that N1 is transitive on W ]

1 and that CN (w1)/R2

is cyclic of order 4 for each w1 ∈ W ]
1 . Since R1 = CN (W2) is fixed point

free on W ]
1 , CN (w1) ∩ R1 = 1 and so CN (w1) is faithful on W2 (of order

8). Similarly, CN (v) = CN (w1) ∩ CN (w2) intersects R2 trivially for each
w2 ∈ W ]

2 , whence |CN (v)| = 1, 2 or 4. We also know from Lemma 10.4a
that CN (w1) has at most 5 orbits on W ]

2 . (Either CN (w1) is cyclic with
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3 regular orbits on W ]
2 , or it corresponds to Y9 having 4 orbits, or it is of

type CH(w)× Y10 for some w ∈ W ]
2 , in which case one has 5 orbits.) Thus

kg(NV ) ≤ kg(N) + 5 · 4 ≤ 40.

Noting that k(NV ) ≤ 20 · 14 = 280 here, formula (1.10b) yields that
k(GV ) ≤ 2 · 40 + (280− 40)/2 = 200. ¤

The last estimate can be easily improved. In fact, in Lemma 10.4b the
upper bound k(GV ) ≤ 152 holds unless G = HwrS2.

Proposition 10.4c. Let (H, W ) be of type (Q8) with p = 5, inducing the
nonreal pair (G, V ) as before (n ≥ 2). Then for any g ∈ G r

⋃n
i=1 Gi we

have kg(NV ) < |V | 23 .

Proof. By hypothesis ḡ = Ng is a permutation in S = G/N without
fixed points on Ω. According to the cycle decomposition of ḡ we obtain a
decomposition of the base group BV of (HW )wr S. By virtue of Lemma
10.2b we may replace ḡ by one of its cycles, in the following sense:

Suppose g ∈ (HW )wr S permutes W1, · · ·,Wn cyclically and leaves NV

and RV invariant. Let Y be any subgroup of NV containing RV which is
normalized by g. Then prove that |CC`(Y )(g)| ≤ |V | 23 .

The crucial point is that Y ⊇ RV . In particular V = O5(Y ) and Y/V

is a 5′-group. Note that RV is normal in Y as Y ⊆ NV . By the Schur–
Zassenhaus theorem we find a 5-complement Ñ in Y and, replacing g by
gv for some v ∈ V , if necessary, we may assume that g normalizes Ñ . Then
R̃ = Ñ ∩RV is a g-invariant normal subgroup of Ñ which is isomorphic to
R. In fact R̃i = C

Ñ
(
⊕

j 6=i Wj) is isomorphic to Ri for each i.

By abuse of notation we write Ñ = N , R̃ = R and R̃i = Ri. Then, as
before, R is a g-invariant normal subgroup of N mapping onto the normal
subgroup R0

∼= Ri of H = Y0, with R0 ⊇ Y10 in the notation of Lemma
10.4a. Let Ti = CN (Wi) and Ni = N/Ti for each i, as before, which are
permuted cyclically by g. In contrast to our previous experience the Ni

can be, at first, map onto subgroups of H which are not normal, possibly
not even subnormal. But they all contain R0. So we may define again
Q0 = N0/R0 (where N0 = N1 according to our convention).

In addition Q = N/R is a g-invariant quotient group as before. We do
not know whether gn is an element of the (new) group N (or NV ), but gn
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normalizes each Ni and each Ri. Consequently Proposition 10.2a applies.
In particular

kg(NV ) ≤ |N0W | = |N0| · |W | ≤ 96 · 25 = 2.400.

This is less than |V | 12 = |W |n
2 if n ≥ 5. For n = 4 we have b|V | 23 c = 5.343,

and |V | 23 = 625 for n = 3. Therefore we only have to consider the cases
n = 2, 3.

n = 2: Then b|V | 23 c = 73. Keep in mind that N0 may be any subgroup
of H = Y0 containing R0 ⊇ Y10 (unlike the situation in Lemma 10.4b).
Noting that T1 = R2, T2 = R1 and R = R1 × R2 we see that Q0 = Q and
that

N = N1∆QN2

is a fibre-product. We know from Lemma 10.4a that k(R0W ) ≤ 20, and
that kg(NV ) ≤ k(Q) · k(R0W ) by Proposition 10.2a. If k(R0W ) = 20,
then R0 = H, Q = 1 and kg(NV ) = 20. We may thus assume that
k(R0W ) ≤ 16, and that k(Q) > 4. Inspection of Lemma 10.4a yields that
R0 must be contained in Y3

∼= Q8 ◦ Z4. We distinguish two cases.

Case 1: Q is a 3′-group

Then N0 is a 2-group, hence contained in a Syow 2-subgroup P ∼=
Z4wr S2 of H. Note that P ′ = Y8 (up to conjugacy in H). Since R0 ⊇ Y10

is normal in H, we have k(Q) · k(R0W ) < 73 unless R0 = Y10 and either
N0 = P or N0 = Y3 (Lemma 10.4a). Let us consider the (worse) case where
N0 = P . Then k(Q) = 10, |R0| = 2 and k(R0W ) = 14. Hence kg(N) ≤
k(Q) · k(R0) = 20 by part (i) of Proposition 10.2a, and kg(NV ) ≤ 140 by
part (ii). This will be improved by using part (iii) of this proposition.

One checks that N0 = P has two orbits on W ], with point stabilizers
of order 2 and 4. Let v = w1 +w2 be a 2-vector in V (wi ∈ W ]

i for i = 1, 2).
Then CN1(w1) = CN (w1)/R2 has order 2 or 4. Since R1 = CN (W2) is fixed
point free on W ]

1 , CN (w1) is faithful on W2 (of order 4 or 8). Similarly,
CN (v)∩R2 = 1 and so |CN (v)| is a divisor of 2 or of 4. If CN (w1) is cyclic,
it has 6 regular orbits on W ]

2 when |CN (w1)| = 4, and 3 regular orbits
otherwise. If CN (w1) is not cyclic and of order 4, it is of type Y9 and has
4 regular orbits and 4 orbits of size 2. If |CN (w1)| = 8 we have at most 8
orbits (Lemma 10.4a). We conclude that there are at most 5 orbits of N

on 2-vectors of V with point stabilizers CN (v) of order dividing 4, and at
most 8 such orbits with stabilizers of order dividing 2. Hence

kg(NV ) ≤ kg(N) + 5 · 4 + 8 · 2 ≤ 56,
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as desired. The case where N0 = Y3 is treated similarly: The number of
N -orbits on V consisting of 2-vectors is at most 3 · 8 = 24, with point
stabilizers of order 2 or 1. This yields that kg(NV ) ≤ kg(N) + 24 · 2 ≤ 64
in this case.

Case 2 : |Q| is divisible by 3

Then |N0| ≥ 24. There are two conjugacy classes of subgroups in
H which act regularly on W ], namely Y3

∼= SL2(3), which is normal in
H, and the 3-Sylow normalizers Y ∼= S3 × Z4 in H. Since k(Q) > 4 and
R0 ⊇ Y10, we only have to treat the second case, with N0 = Y and R0 = Y10.
Then k(Q) = 6 and k(R0W ) = 14, and kg(N) ≤ 12, kg(NV ) ≤ 6 · 14 by
Proposition 10.2a. We have to improve the latter bound. For any 2-vector
v = w1 + w2 the stabilizer CN (w1) = R2 has 12 regular orbits on W ]

2 , so
that we get kg(NV ) ≤ kg(N) + 12 · 1 ≤ 24.

It remains to examine the cases where N0 = Y0 or Y1 (Lemma 10.4a).
Let us consider the worse case N0 = Y0 = H. Then we must have R0 = Y4,
Y7 or Y10. If R0 = Y4, then k(R0W ) = 8 and k(Q) = 6. If R0 = Y7, then
k(R0W ) = 10 and k(Q) = 5. Thus it remains to examine the case where
R0 = Y10. Here k(Q) = 10 and kg(N) ≤ k(Q) · k(R0) = 20 by part (i)
of Proposition 10.2a, and kg(NV ) ≤ k(Q) · k(R0W ) = 140 by part (ii).
Again we improve the latter bound by using part (iii) of this proposition.
Let v = w1 + w2 be a 2-vector in V . Then w1N = W ]

1 and CN (w1)/R2

is cyclic of order 4 (Lemma 10.4a). CN (w1) is faithful on W ]
2 since it

intersects R1 = CN (W2) trivially (being fixed point free on W ]
1). Similarly

CN (v) ∩ R2 = 1 and so |CN (v)| = 1, 2 or 4. As mentioned above CN (w1)
(being of order 8) has at most 5 orbits on W ]

2 . At any rate,

kg(NV ) ≤ kg(N) + (1 · 5) · 4 ≤ 40.

The case N0 = Y1 is treated similarly.

n = 3: By Proposition 10.2a we may assume that 25|N0| > 625 = |V | 23 .
Thus |N0| > 24 and so N0 = Y0 or Y1 by Lemma 10.4a, or N0 is a Sylow
2-subgroup of H = Y0. Note that g permutes the Ti = CN (Wi) cyclically
(i = 1, 2, 3). Let T = T1T2, and let T0 be the image of T/T1 (∼= T/T2)
in N0. Using that R3 = T1 ∩ T2 we see that T/R3

∼= T0 × T0. From
R = R1 × R2 × R3 we infer that the Ti are pairwise distinct, and from
T1R = T1R1 and R1 ⊆ T2 we get

T1R ∩ T2R = (T1R ∩ T2)R = (T1 ∩ T2)R1R = R.
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Thus T/R ∼= Q0 ×Q0, and

Q = (N1/R1)∆N/T (N2/R2) ∼= Q0∆N0/T0Q0

is a fibre-product, identifying the Ri with their images in Ni = N/Ti. We
have a group extension T0/R0 ½ Q ³ Q0. Thus k(Q) ≤ k(T0/R0) · k(Q0)
by (1.7b).

We assert that kg(Q) ≤ |Q0|. For any y ∈ N , the element gy does not
centralize a nontrivial element in T1R/R = T1R1/R. Hence CQ(gy) maps
injectively into N/T1R ∼= N0/R0 = Q0, and by (1.7c)

kg(Q) =
1
|Q|

∑

y∈Q

|CQ(gy)| ≤ |Q0|,

as asserted. By Proposition 10.2a, kg(NV ) ≤ kg(Q) · k(R0W ). Hence we
may assume that |Q0| ≥ 625/k(R0W ) ≥ 25. This forces that N0 = H = Y0

and that R0 = Y10.

Thus k(Q0) = 10 and k(R0W ) = 14. Further T0 is a normal subgroup
of H, and by Proposition 10.2a we may assume that k(Q0) · k(T0/R0) ≥
k(Q) > 625/k(R0W ). It follows that k(T0/R0) ≥ 5. This implies that
T0 = Y0, Y1 or Y3 (Lemma 10.4a).

Now T1/R3
∼= T0 has 1 or 3 orbits on W ]

2 (depending on whether
T0 = Y0, Y1 or Y3). Let v = w1 + w2 + w3 be a 3-vector in V (wi ∈ W ]

i

for i = 1, 2, 3). Then w1N = W ]
1 and CN (w1)/T1 is cyclic of order 4, and

CN (w1) has at most 3 orbits on W ]
2 . From the structure of N0/T0 we infer

that CN (w1)∩T2 properly contains R3 (which has 12 regular orbits on W ]
3).

It follows that CN (w1+w2) = CN (w1)∩CN (w2) has at most 8 orbits on W ]
3 .

Clearly CN (v)/CT1(v) is isomorphic to a subgroup of CN (w1)/T1. Similarly,
CT1(v) ⊆ CT1(w2) and so CT1(v)/CR3(v) is isomorphic to a subgroup of
CT1(w2)/R3. Since R3 is fixed point free on W ]

3 and R3 ⊆ CN (w1 + w2),
therefore CN (v) is a 2-group of order dividing 1 ·4·4 = 16, even |CN (v)| ≤ 8
unless T0 = H. In this latter case CN (w1) is transitive on W ]

2 . At any rate,
since (3 · 8) · 8 > (1 · 8) · 16, application of part (iii) of Proposition 10.2a
yields that

kg(NV ) ≤ kg(N) + (1 · 3 · 8) · 8 ≤ 288.

Here we use that kg(Q) ≤ |Q0| = 48 and so kg(N) ≤ kg(Q) · k(R0) ≤ 96,
in view of part (i) of that proposition. ¤
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Theorem 10.4d (Gluck–Magaard–Riese–Schmid). Let (G,V ) be induced
from the nonreal reduced pair (H, W ) in characteristic p = 5. Then we
have k(GV ) < |V |.
Proof. We argue by induction on the degree n of (G,V ), the degree of the
permutation group S = G/N . We may assume that n ≥ 3 (Lemma 10.4b).
We may also assume that k(XV ) ≤ |V | for each proper subgroup X of
G. For otherwise repeated application of (1.7b) yields that there exist a
subnormal subgroup Y of X and an irreducible Y -constituent U of V such
that k

(
(Y/CY (U)) · U)

> |U |. (Use that all modules are completely re-
ducible. Start with an irreducible X-submodule U1 of V , let X1 = CX(U1),
V1 = V/U1 and note that

k(XV ) ≤ k
(
(X/X1)U1

) · k(X1V1).

If k
(
(X/X1)U1

)
> |U1| take U = U1. Otherwise pick an irreducible X1-

submodule U2 of V1, and let X2 = CX1(U2), V2 = V1/U2, etc. .) By Theo-
rem 5.2b there is no real vector in U for Y . By Theorem 8.4, (Y/CY (U), U)
is induced from a nonreal reduced pair (in characteristic 5). But (H, W ) is
the unique, up to isomorphism, nonreal reduced pair in characteristic p = 5
by the classification of these pairs. Clearly the degree of (Y/CY (U), U) is
less than n. Thus by the inductive hypothesis k

(
(Y/CY (U)) · U)

< |U |, a
contradiction.

By Proposition 10.4c for any g ∈ Gr
⋃n

i=1 Gi we have kg(NV ) ≤ |V | 23 .
Let r be the number of conjugacy classes of S = G/N = (GV )/(NV ) which
are contained in

⋃n
i=1 Gi/N . We have k(S) > r ≥ 1 (Jordan). Application

of Theorem 1.7d yields that

k(GV ) ≤ k(G1V ) + (k(S)− r)|V | 23 .

By (1.7b) k(G1V ) ≤ k(H1W1) · k
(
CG(W1) · (W2 ⊕ · · · ⊕ Wn)

)
. Clearly

|CG(W1)| < |G|, hence k(CG(W1) · V ) ≤ |V |. On the other hand CG(W1) ·
V = W1×CG(W1) · (W2⊕· · ·⊕Wn), and so k

(
CG(W1) · (W2⊕· · ·⊕Wn)

) ≤
|W |n−1. It follows that k(G1V ) ≤ k(HW ) · |W |n−1 = 20 · |W |n−1. Since S

is a 5′-group and n ≥ 3, k(S) ≤ √
3

n−1
by Proposition 9.4b. Consequently

k(GV ) ≤ 20 · |W |n−1 + (
√

3
n−1 − 1)|W | 2n

3 = (0.8 + cn)|V | < |V |

for each n ≥ 3, because c3 = 0.08 and cn < 0.6n in general. We just use
that |W | = 25. ¤
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10.5. Summary

Let G be a p ′-subgroup of GL(V ) = GLm(p) for some prime p and some
integer m ≥ 1 (|V | = pm). With Theorem 10.4d the proof of the k(GV )
theorem is completed. Let us recall the basic steps:

• We may assume that G is irreducible on V (Proposition 3.1a).

• We may assume that there is no real vector in V for G (Theorem 5.2b).

• The minimal counterexamples (G, V ), with respect to |V |, which admit
no real vector, can be described via Clifford theory and lead to the so-called
nonreal reduced pairs (Theorem 5.4).

• The nonreal reduced pairs have been classified (Theorems 6.1 and 7.1).

• If G is irreducible on V and if there is no real vector in V for G, then
(G,V ) is induced from a nonreal reduced pair (H, W ), and G is not far from
being a wreath product Hwr S for some permutation group S (Theorems
8.4 and 8.5c).

• The cases where (G,V ) is nonreal induced, in the above sense, can be
treated using upper bounds for the class numbers of permutation groups
(Theorems 9.3 and 10.3, 10.4d).

Theorem 10.5a. We have k(GV ) ≤ |V |, where equality can hold only if
there is a strongly real vector in V for G.

Proof. We have proved that k(GV ) ≤ |V | (see above). Suppose we have
k(GV ) = |V |. Then k(GiVi) = |Vi| for each irreducible submodule Vi of
V and Gi = G/CG(Vi) (Proposition 3.1a), and G is the direct product of
the Gi. Combining Theorems 10.3, 10.4d and 8.4 we obtain that, for each
i, there is a real vector vi ∈ Vi for Gi, which by Theorem 5.2b must be
strongly real. Now v =

∑
i vi is strongly real for G. ¤

Theorem 10.5b. We have k(G) ≤ |V | − 1 = pm − 1, and equality holds if
and only if G is a Singer cycle in GLm(p).

Proof. Note that k(G) < k(GV ) as G is a proper quotient group of
GV = V : G. If k(G) = |V |−1, then G must be abelian and act transitively
on V ] by Proposition 3.1b. Hence G is a Singer cycle in GL(V ). The
converse is known from Sec. 3.2. ¤
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Possibilities for k(GV) = V

It appears to be rather intricate to characterize the pairs (G,V ) where
k(GV ) = |V | (in the usual coprime situation). By Proposition 3.1a it
suffices to consider the case that G is irreducible on V . Assuming k(GV ) =
|V | we shall establish certain congruences which indicate that, at least for
large characteristics, G should be a Singer cycle in GL(V ). Unfortunately
Clifford theory seems to fail in attacking this question.

11.1. Preliminaries

Let p be a prime, G a finite p ′-group, and let V be a finite faithful FpG-
module. Assume (without loss of generality) that G is irreducible on V .

Proposition 11.1a. Suppose that k(GV ) = |V |. Then we have the follow-
ing partial results:

(i) If G has a regular orbit on V , then G is abelian.

(ii) If G is transitive on V ], then either G is a Singer cycle in GL(V )
or |V | = 23 and G is the Frobenius group of order 21, or |V | = 32 and G

is semidihedral of order 16.

(iii) If there is v ∈ V such that H = CG(v) is abelian, then k(HV ) =
|V | and H acts on each irreducible H-submodule of [V,H] as a Singer cycle.

(iv) There is a strongly real vector in V for G.

Proof. This has been established in Theorems 1.5d, 3.4d and 10.5a. ¤

We know that k(GV ) = |V | if G is a Singer cycle, and also in the two
further cases described in (ii) above. (For the dihedral subgroups G of
GL2(3) = GL(V ) the equality also holds.)

Recall that Knörr’s generalized character δV of G is given by δV (x) =
|V : CV (x)|; cf. Eq. (3.3b). Let e = p · exp (G), K = Q(e2πi/e) and R

be the ring of integers of K. Let Γ be the subgroup of Gal(K|Q) fixing
each p′-root of unity in K. So Γ ∼= Gal(Q(εp)|Q) where εp = e2πi/p. Let
p|p be a prime ideal of R above p. Then p0 = p ∩ Q(εp) is the unique
(totally ramified) prime ideal of R0 = Z[εp] = R ∩Q(εp) above p. We have
p0 = (1− εp)R0.

195
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Lemma 11.1b. Suppose that k(GV ) = |V |. Let v ∈ V be strongly real
for G, and let p 6= 3. Then H = CG(v) maps into SL(V ), and there is an
integer-valued generalized character ψ of H such that ψ(1) = 1 and ψ2 = δV

(on H). We have 〈ψχ, θ〉H = ±1 for all χ ∈ Irr(G) and θ ∈ Irr(H).

Proof. If H does not map into SL(V ), clearly p is odd. Combining Theo-
rems 5.2a and 3.3d yields that then k(GV ) ≤ p+3

2 |V |. But this is impossible
by assumption. By Lemma 5.2a there exists ψ as asserted. From Theorem
3.3c it follows that 〈ψχ,ψχ〉H = k(H) for all χ ∈ Irr(G). Let θ ∈ Irr(H).
Then

|H|〈ψχ, θ〉H =
∑

h∈H

ψ(h)χ(h)θ(h−1) ≡ χ(1)θ(1) (mod p),

because ψ(h)2 = |V : CV (h)| is a proper power of p for h ∈ H], as H is
faithful on V , and ψ(1) = 1. On the other hand, χ(1)θ(1) is not divisible
by p (Theorem 1.3b). Thus 〈ψχ, θ〉H 6= 0, and the result follows. ¤

Keep the assumptions of the above lemma. As in Theorem 3.3d define the
class function Ψ = Ψv on X = GV by letting Ψ(x) = |CV (h)|ψ(h) if x ∈ X

is conjugate to hv for some h ∈ H, and letting Ψ(x) = 0 otherwise.

Lemma 11.1c. For every χ ∈ Irr(X) the multiplicity 〈Ψ, χ〉 = ±1 if
p = 2 or if V is in the kernel of χ, and otherwise it is a 2pth root of unity.
Moreover,

|H|〈Ψ, χ〉 = χ(v−1) + pα

for some α ∈ Z[εp].

Proof. We make use of Theorem 3.3d, and its proof. By its very con-
struction as an induced class function, Ψ is a Z[εp]-linear combination of
characters of X = GV . Let us write fχ = 〈Ψ, χ〉 for χ ∈ Irr(X). So
fχ ∈ Z[εp]. Using Frobenius reciprocity one gets

|H|fχ =
∑

h∈H

ψ(h)χ(h−1v−1) = χ(v−1) + pα

for some α ∈ R, because ψ(h) is divisible by p for all h ∈ H]. Observe
that χ(v−1) ∈ R0 = Z[εp] and χ(v−1) ≡ χ(1) 6≡ 0 (mod p0) since p does
not divide χ(1) (Theorem 1.3b). We see that α ∈ Q(εp) ∩ R = R0 and, of
course, that fχ 6= 0. As in Theorem 3.3d one also computes that 〈Ψ, Ψ〉 =
1
|H|

∑
h∈H |CV (h)|ψ(h)2 = |V |.
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Recall that for χ ∈ Irr(X), σ ∈ Γ and h ∈ H we have χσ(hv) =
χ(hv)σ = χ(hvs) if σ maps εp to εs

p. It follows that

fσ
χ = 〈Ψ, χσ〉 6= 0.

Let N denote the norm for Q(εp)|Q. We know that N(fχ) =
∏

σ∈Γ fσ
χ is a

nonzero integer. By the arithmetic–geometric mean inequality (1.5b)

1
p− 1

∑

σ∈Γ

|fσ
χ |2 ≥ |N(fχ)| 2

p−1 ,

and we have equality if and only if all |fσ
χ |, σ ∈ Γ, agree.

Now by hypothesis k(X) = |V |, that is, |Irr(X)| = |V |. Observe that

(p− 1)|V | = (p− 1)〈Ψ,Ψ〉 =
∑

χ∈Irr(X)

∑

σ∈Γ

|fσ
χ |2.

Thus, for each χ ∈ Irr(X), we have equality above with |N(fχ)| = 1, whence
|fσ

χ | = 1 for every σ ∈ Γ. Being a cyclotomic integer this implies that fχ is
a root of unity (in R0 = Z[εp]). Hence fχ = 〈Ψ, χ〉 = ±1 when p = 2, and
otherwise it is a 2pth root of unity. If V is in the kernel of χ, then

fχ = 〈Ψ, χ〉 =
1
|H|

∑

h∈H

ψ(h)χ(h−1) = 〈ψ, χ〉H = ±1

by the preceding lemma. This completes the proof. ¤

11.2. Some Congruences

We keep the assumptions made in the preceding section. In particular V

is an irreducible, faithful, coprime FpG-module, X = GV and k(X) = |V |.
The following congruences are established in [Schmid, 2005] and indicate
that G should be a Singer cycle when p is large enough. For p = 2, 3 the
congruences tell us nothing. For p = 2 the group G has odd order and so
the Burnside congruence (1.5a) applies.
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Theorem 11.2a. For any irreducible character χ of X = GV we have
χ(1) ≡ ±1 (mod p), and k(G) ≡ |G| ≡ ±1 (mod p).

Proof. We may assume that p ≥ 5. As above let v ∈ V be strongly real
for G, and let H = CG(v). Let ψ and Ψ be the generalized characters of H

and G studied in Lemmas 11.1b and 11.1c, respectively.

Let χ ∈ Irr(X) be an irreducible character of X. Then 〈Ψ, χ〉 = ±1
if p = 2 or if V is in the kernel of χ, and 〈Ψ, χ〉 is a 2pth root of unity
otherwise (11.1c). Letting R0 = Z[εp] and p0 = (1− εp)R0 be as before, we
have 〈Ψ, χ〉 ≡ ±1 (mod p0), at any rate. We have also seen that |H|〈Ψ, χ〉 =
χ(v−1) + pα for some α ∈ R0. We conclude that

±|H| ≡ |H|〈Ψ, χ〉 ≡ χ(1) + pα ≡ χ(1) (mod p0).

It follows that χ(1) ≡ ±|H| (mod p). Taking for χ the 1-character of X we
get that |H| ≡ ±1 (mod p), and this in turn shows that χ(1) ≡ ±1 (mod p)
in general. Picking χ = χv,1 as described in Proposition 3.1b, which is an
irreducible character of X of degree |G : H|, we get |G : H| ≡ ±1 (mod p).
Thus |G| = |H| · |G : H| ≡ ±1 (mod p). Finally

|G| =
∑

χ∈Irr(G)

χ(1)2 ≡ k(G) (mod p),

completing the proof. ¤

Theorem 11.2b. Let H = CG(v) for any vector v ∈ V . Then k(H) ≡
|H| ≡ ±1 (mod p) and θ(1) ≡ ±1 (mod p) for every θ ∈ Irr(H).

Proof. Let χ = χv,1 in the notation of Proposition 3.1b. So χ is an
irreducible character of X = GV with degree |G : H|. Thus |G : H| =
χ(1) ≡ ±1 (mod p) by the preceding theorem. Similarly, for every θ ∈
Irr(H) the degree χv,ζ(1) = χ(1) · θ(1) ≡ ±1 (mod p) likewise. Hence
θ(1) ≡ ±1 (mod p) and, therefore,

|H| =
∑

θ∈Irr(H)

θ(1)2 ≡ k(H) (mod p).

Use finally that |H| = |G|/|G : H|. ¤



Possibilities for k(GV)= V 199

11.3. Reduced Pairs

Though Clifford reduction seems to fail in attacking the present problem,
it is of some interest to examine the reduced pairs (G,V ). We use the
notation introduced in Sec. 5.5. Hence V is a faithful FG-module where
F = Fr for some power r of the prime p, the core E of G is absolutely
irreducible on V , and G0 = NGL(V )(E). Also Z = CG0(E) ∼= F ?, and χ is
the Brauer character of G (and of G0) afforded by V .

Proposition 11.3a. Suppose (G,V ) is a reduced pair of quasisimple type.
Then k(GV ) < |V |.
Proof. Assume k(GV ) = |V |. Then by Proposition 11.1a, (i) there is
no regular G-orbit on V . We may appeal to Theorem 7.2a. The minimal
point stabilizers H = CG0(v) listed there are abelian in most cases, in which
case part (iii) of Proposition 11.1a applies. If H is nonabelian, the desired
contradiction follows from Theorem 11.2b. For instance, the case r = 7,
H ∼= D12 is ruled out as there is ζ ∈ Irr(H) with ζ(1) = 2.

Hence it remains to examine the permutation pairs (G,V ), where the
core E is an alternating group Ad+1 and V is the deleted permutation
module over F of dimension d, with p ≥ d + 2 (Example 5.1a). Since there
is no regular vector in V for G, r = p = d + 2 or d + 3. At first, G can be
any subgroup of G0 = S × Z containing E, where S ∼= Sd+1 acts on V in
the natural way. We know that there is a vector u ∈ V such that CG0(u)
is cyclic of order dividing p − 1 (Example 5.1a). From k(GV ) = |V | and
Theorem 11.2b we infer that |CG(u)| = |CG0(u)| = p− 1. This forces that
p− 1 = d + 1.

We next pick a strongly real vector v ∈ V for G0 as in Example 5.1a,
namely v = dw0 −

∑d
i=1 wi (where {wi}d

i=0 is a permutation basis). Then
H0 = CG0(v) ∼= Sd and ResG0

H0
(V ) is the natural permutation module. Since

the transpositions in H0 act with determinant −1 on V and since p ≥ 7,
H = CG(v) ∼= Ad by assumption and Lemma 11.1b. So |H| = 1

2d! =
1
2 (p− 2)!, and from Theorem 11.2b we get that

(p− 2)! ≡ ±2 (mod p).

It follows that (p − 1)! ≡ ∓2 (mod p). On the other hand, (p − 1)! ≡
−1 (mod p). This forces that p = 3, a contradiction. ¤

Remark . Recently [Guralnick–Tiep, 2005] have shown that the inequality
k(GV ) ≤ 1

2 |V | holds for each reduced pair (G, V ) of quasisimple type.
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Proposition 11.3b. Suppose (G,V ) is reduced of extraspecial type. Then
k(GV ) < |V | except possibly when r = 3.

Proof. Assume that k(GV ) = |V | and that r 6= 3. Here E is a q-group
of extraspecial type for some prime q 6= p, and |E/Z(E)| = q2m for some
integer m ≥ 1. By Proposition 11.1a, (i) there is no regular G-orbit on
V . Similarly, there is no v ∈ V such that CG(v) 6= 1 is an elementary
abelian 2-group. For then r = 3 by part (iii) of Proposition 11.1a, which
has been excluded. There is also no strongly real vector v ∈ V such that
H = CG(v) 6= 1 is cyclic. For then k(HV ) = |V |, and from Proposition 3.1a
it follows that HV = H1V1×· · ·×HnVn where either Hi = 1 (and |Vi| = r)
or Hi 6= 1 is a Singer cycle on Vi. Since H is cyclic, the orders of the Hi are
pairwise prime to each other. Since V is self-dual as an FH-module, this
implies that each Vi is self-dual as an FHi-module (and H = Hi for some
i unless p = 2). From Lemma 4.1c it follows that |Hi| = 2 and |Vi| = 3 = r

for some i, against our assumption.

Probably the case r = 3 is not exceptional. But excluding r = 3
enables us to appeal to Theorem 6.3b. We get that q = 3, m ≤ 3 or q = 2,
m ≤ 5, and r and p are suitably bounded above (Comments 6.3c).

Let first p = 2. Then we make use of Theorem 6.4 (including its proof).
We have E ∼= 31+2m

+ for m = 2 or 3 and GZ = X ◦Z where X = E : H for
some point stabilizer H = CG(v), where v is strongly real for G. If m = 2
then H is cyclic of order 5, which is impossible. So we have m = 3, in
which case H either is cylic of order 7 or is a Frobenius group of order 21.
The former case cannot happen. From Theorem 6.4 we also know that the
Weil character χ = ξ takes the value χ(h) = −1 on the elements h ∈ H

of order 7, and χ(y) = 0, 3 or −9 for the elements y ∈ H of order 3. In
addition χ(y) = 0 for the noncentral elements y of E.

The dimensions of the eigenspaces on V of the noncentral elements of
X of prime order are not greater than 12. Since

2|X|r14 = 2 · 21 · 37r14 < r27

for r ≥ 4, there is a regular G-orbit on V , contradicting Proposition 11.1a.

Let next p be odd. If q = 3 then p ≥ 5, and we make use of Theorem
6.5 (and its proof). If m = 1, then either there is v ∈ V such that CG(v) is
an elementary abelian 2-group, or (G,V ) is nonreal reduced of type (33

+)
and k(GV ) ≤ 1

2 |V | by Proposition 10.1. If m = 2, then we find v as
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before, or r = p = 7 in which case χ is an irreducible character of G of
degree χ(1) = 32 6≡ ±1 (mod 7), contradicting Theorem 11.2a. Let m = 3.
We must have r = 19, 13 or 7 (Comments 6.3c). Here χ is an irreducible
character of G of degree χ(1) = 33, so that Theorem 11.2a applies for
r = p = 19. For r = 13 or 7 we have G 6= G0, and G maps onto a proper
irreducible subgroup Ḡ of Sp6(3). Checking the possible groups Ḡ and their
irreducible character degrees gives the result.

Let q = 2 (and p 6= 2). There is no problem with m = 1 (Proposition
6.6a). For m = 2 we have r ≤ 83 (Comments 6.3c). If E ∼= 21+4

+ , by
Proposition 6.6b we have p 6= 3, and there is a strongly real v ∈ V for
G such that CG(v) ∼= D12 when r = 7 and CG(v) ∼= D8 otherwise (as
point stabilizers cannot be cyclic or elementary abelian 2-groups). But
then CG(v) has an irreducible character of degree 2, in contrast to Theorem
11.2b. For E ∼= 21+4

− either we get nonreal reduced pairs of type (25
−) or

r ≥ 11 and we find v as before. For p = 3, G maps into a 3′-subgroup
of O−4 (2) ∼= S5, and we get a regular orbit. If E ∼= 21+4

0 , then we find a
strongly real v for G such that CG(v) is an elementary abelian 2-group for
p = 3 and, otherwise, is isomorphic to S3 or A3 or to other explicit given
groups. In all the p 6= 3 cases Theorems 11.2a and 11.2b apply.

Let E ∼= 21+6
− . Here we have the (crude) bound r ≤ 139 (Comments

6.3c). By Proposition 6.6c we have p 6= 3, and if r = 7 = p then there is
v ∈ V such that CG(v) ∼= S4. Of course 24 6≡ ±1 (mod 7). For r ≥ 11 there
is a strongly real vector v ∈ V for G such that H = CG(v) has a normal
Sylow 3-subgroup S ∼= 31+2

+ with index 2 or 4, and Theorem 11.2b applies.

Let E ∼= 21+2m
+ with m = 3, 4, 5. For p = 3, by considering the

irreducible 3′-subgroups of O+
2m(2), one gets an elementary abelian 2-vector

in V for G. Otherwise by Proposition 6.7a there is a strongly real vector
v ∈ V such that CG0(v) ∼= GLm(2). Similar statements when E ∼= 21+2m

0

(Proposition 6.7b). Apply Theorems 11.2a and 11.2b.

Let finally E ∼= 21+2m
− with m = 4, 5. As before one rules out the case

p = 3. Otherwise by Proposition 6.7c there is a strongly real vector v ∈ V

for G such that CG0(v) ∼= GLm(2), or m = 4 and CG0(v) ∼= G2(2)′. We
have r ≤ 71 for m = 4 and r ≤ 23 for m = 5 (Comments 6.3c). Again
Theorems 11.2a and 11.2b apply. ¤

Remark . The proof is less laborious once better upper bounds for r are
available, and these can be obtained by computations with [GAP]. In our
investigations in Chapter 6 we attempted to avoid computer calculations.



Chapter 12

Some Consequences for Block Theory

There are various long-standing conjectures in modular representation the-
ory. Presumably the most outstanding conjecture, and the most difficult
one, is Brauer’s k(B) problem discussed in Chapter 2 of this monograph. In
that chapter we already proved that the k(GV ) theorem implies Brauer’s
k(B) conjecture for p-solvable groups. We shall recover this in terms of
Brauer correspondence and blocks with normal defect groups.

12.1. Brauer Correspondence

Let p be a prime, and let B be a p-block of the finite group G with defect
group D. As usual k0(B) denotes the number of (ordinary) irreducible
characters belonging to B which are of height zero in the block. The Brauer
correspondent b of B for NG(D) refers to Brauer’s first main theorem on
blocks (mentioned in Sec. 2.5) and is that block of NG(D) with defect group
D for which bG = B; sometimes b is called the germ of B (with respect to
D). Observe that D = Op(NG(D)) by Theorem 2.3c.

Let us recall some conjectures in modular representation theory.

• Alperin–McKay conjecture: k0(B) = k0(b).

• Olsson conjecture: k0(B) ≤ |D : D′|.
• Brauer’s height zero conjecture: k0(B) = k(B) if and only if D is abelian.

• Broué conjecture: k(B) = k(b) if D is abelian.

The Broué conjecture would follow from the Alperin–McKay conjecture and
one-half of Brauer’s height conjecture. It would also be a consequence of
Alperin’s weight conjecture [Alperin, 1987], or of the overall conjectures by
[Dade, 1992]. From the k(GV ) theorem it follows that the above conjectures
hold at least locally:

Theorem 12.1a. We have k(b) ≤ |D| and k0(b) ≤ |D : D′|. Further
k0(b) = k(b) if and only if the defect group D is abelian.

202
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So if the Broué conjecture holds, Brauer’s k(B) problem would be settled
for abelian defect groups. The Alperin–McKay conjecture is known to be
true for p-solvable groups [Okayama–Wajima, 1980], and for some classes
of finite groups G (including the symmetric groups and certain groups of
Lie type). Brauer’s height conjecture has been also settled for p-solvable
groups [Gluck–Wolf, 1984]. Hence we have the following.

Corollary 12.1b. Suppose G is p-solvable. Then we have k(B) ≤ |D| and
k0(B) ≤ |D : D′|. Also, k0(B) = k(B) if and only if D is abelian.

12.2. Clifford Theory of Blocks

It has been shown by [Reynolds, 1963] that Brauer’s height zero conjecture
holds for blocks with normal defect groups. In order to prove Theorem
12.1a we have to appeal to his work. This is Clifford theory of blocks,
dealing with root blocks. If B is a p-block of G with defect group D, there
is a block b of H = DCG(D) with bG = B (Sec. 2.5). Each such b is a
called a root of B in H. It follows from the first main theorem on blocks
that these roots form a NG(D)-conjugacy class of blocks of H. Also, D

is the unique defect group of such a root b by Theorem 2.3c. The inertial
index of B is defined as the index of the inertia group in NG(D) of b (or
its canonical character, see below) over H, and it is crucial that this is a
p ′-number.

As in Chapter 2 we let Xp′ denote the set of p ′-elements of a finite
group X, and χp ′ = ResX

Xp′
(χ) for a character χ of X.

Lemma 12.2a. Suppose H = DCG(D) for some p-subgroup D of the
finite group G, and let b be a p-block of H with defect group D. Then b

contains a unique irreducible character θ having D in its kernel, and θp′

is the unique irreducible Brauer character in b. This canonical character θ

belongs to a block of H/D with defect zero and is of height zero in b. We
have k(b) = k(D); indeed Irr(b) consists of the characters θζ for ζ ∈ Irr(D),
defined by θζ(y) = θ(y)ζ(yp) if the p-part yp ∈ D and zero otherwise.

For a proof we refer to [F, V.4.7].

Lemma 12.2b. Let D, H, b and θ be as above. Let T = I(θ) be the inertia
group in NG(D) of θ. Then the block B = bG of G has defect group D if
and only if |T : H| is not divisible by p.
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Proof. By the first main theorem on blocks (and transitivity of block
induction) we may assume that G = NG(D). Hence T = IG(θ). Since θp′

is the unique irrreducible Brauer character in b, T is the inertia group in
G of the block b, that is, T is the stabilizer of the block idempotent eb to b

(by conjugation). Thus the central character ωb of b is stable in G.

We know that D ⊆ D0 for some defect group D0 of B (Sec. 2.5). By
Lemma 2.3b there exists a conjugacy class c0 of G with c0 ⊆ H, ab(c0) 6= 0
and ωB(ĉ0) 6= 0 (in characteristic p), such that D0 is a defect group of c0

(see also Theorem 2.2b). Let x ∈ c0 with D0 ⊆ CG(x), and let c = xH .
Then c0 =

⋃
i cti where the ti range over a right transversal of NG(c) in G.

As in the proof for Theorem 2.3c,

0 6= ωB(ĉ0) = ωb(ĉ0) =
∑

i

ωb(ĉ ti) = |G : NG(c)|ωb(ĉ).

Since NG(c) = CG(x)H and D0 is a Sylow p-subgroup of CG(x), it follows
that p does not divide |G : D0H|. Thus D0 ⊆ H if and only if |G : H| is
not divisible by p, and then Lemma 2.3b implies that c and b have a defect
group in common. ¤

Lemma 12.2c. Let N be a normal subgroup of the finite group X such
that G = X/N is a p′-group, and let Z = 〈ε〉 be generated by a primitive
exp (N)th root of unity ε. Suppose θ ∈ Irr(N) is G-stable and θp′ ∈ IBr(N).
Then the Clifford obstructions µG(θ) = µG(θp′) agree in H2(G, Zp ′).

Proof. Let K = Q(ε) and R = Z(p)[ε], and let p be a prime of R above p

and F = R/p. This R is a principal ideal domain. By Proposition 1.9a we
may identify the Clifford obstruction µG(θ) = µKG(θ) with an element of
H2(G,Z) = H2(G,Zp′) × H2(G,Zp). Since G is a p′-group by hypothesis,
H2(G,Zp) = 0. Clearly the Brauer character θp′ is G-invariant too.

By Theorem 1.1d there is a KN -module W affording θ. Now

EndKG

(
IndG

N (W )
)

=
⊕

g∈G

Kτg

is a crossed product for some units τg sending W ⊗ g to W (τ1 = 1). By
the preceding paragraph we may choose these units such that the factor set
τ(g, h) = τ−1

gh τgτh ∈ Zp′ for all g, h ∈ G. Let {tg}g∈G be a transversal to
N in X, with t1 = 1, and let t(g, h) = t−1

gh tgth be the corresponding factor
set. There are unique αg ∈ GL(W ) such that

(w ⊗ tg)τg = (w)αg
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for all w ∈ W , g ∈ G. For y ∈ N we have (wy)αg = (wy ⊗ tg)τg =
(w ⊗ tgy)τg = (w ⊗ tgy

tg )τg = (w ⊗ tg)τgy
tg = (w)αgy

tg (where we used
that the tensor product is over KN and that τg is a KX-automorphism).
One similarly shows that α(g, h) = α−1

gh αgαh is the map w 7→ τ(g, h)wt(g, h)
on W .

Let {wj} be a K-basis of W . Let U be the R-submodule of W gen-
erated by all (wjy)αg, y ∈ N , g ∈ G. Since U is finitely generated and
torsion-free, it is a free R-module. Since U contains a basis of W and is
contained in W , the rank of U is θ(1) = dim KW. From (w)αgy

tg = (wy)τg

for w ∈ W we infer that U is stable under N . From

(w)αgτh = wα(g, h)αgh =
(
τ(g, h)wt(g, h)

)
αgh

and τ(g, h) ∈ Zp′ ⊆ R? (unit group) we see that (U)αg ⊆ U for all g ∈ G.
Since αgαg−1 = α(g, g−1) is the map u 7→ τ(g, g−1)ut(g, g−1) on U , which
is invertible, we may view the αg, via restriction, as elements of GL(U) =
GLR(U). This in turn shows that U is a G-stable RN -lattice affording θ,
yielding a projective R-representation of G with the same factor set τ as
before.

The FN -module V = U/pU affords θp′ . Identifying Zp′ with the group
Zp′(1 + p)/(1 + p) we get that µG(θp′) = µFG(θp′) agrees with µKG(θ) in
H2(G,Zp′), as desired. ¤

Proposition 12.2d (Reynolds). Suppose B is a p-block of G with normal
defect group, D. Then there exists a group G0 having a normal Sylow p-
subgroup D0

∼= D and a p-block B0 of G0 such that the irreducible characters
and Brauer characters of B0 and B are in 1-1 correspondence preserving
heights, and B0, B have the same decomposition and Cartan matrices.

Proof. Let b be a root of B in H = DCG(D). By Theorem 2.3c, B is
the unique block of G covering b. Let θ be the canonical character of b,
and let T = IG(θ). Observe that D = Op(H) is the unique defect group
of b and that T contains the inertia groups of all irreducible characters or
Brauer characters in b. By Lemma 12.2b, p does not divide the inertial
index |T : H| of B. We have B = bG = (bT )G, and it follows from Theorem
1.8b that the blocks B and bT behave (via character induction) as asserted
for B, B0 (cf. Theorem 2.6b). Thus we may assume that T = G. Then b

is the unique block of H covered by B.

Let N = CG(D). Recall that the block idempotents to B and b are in
the group algebra for N (Theorem 2.3c). Let bN be the block of N having
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the same block idempotent as b. Then B is the unique block of G covering
bN , and bN is the unique block of N covered by B. Note that Z(D) = N∩D

is the unique defect group of bN .

Let Ḡ = G/H, and let Ḡ(θ) be the representation group of θ. Since Ḡ is
a p′-group, Ḡ(θ) may be understood as a central extension of Ḡ with a cyclic
group Zp ′ of order exp (N)p ′ (Lemma 12.2c). Let G(θ) = Ḡ(θ)∆ḠG be
the extended representation group. By Theorem 1.9c there is θ̂ ∈ Irr(G(θ))
extending θ when viewed as a character of Ker(G(θ) ³ Ḡ(θ)) ∼= N . Letting
θ̃−1 be the unique linear constituent of θ̂ on Ker(G(θ) ³ G) ∼= Zp′ we have
a 1-1 correspondence χ ↔ ζ between Irr(G|θ) and Irr(Ḡ(θ))|θ̃), given by
χ = θ̂ ⊗ ζ (Theorem 1.9c).

By Schur–Zassenhaus there is a complement Ȳ = Y/N to H/N in
G/N . The group Y acts on D in the natural way (with kernel N). Let
Ĝ = D : Y and G̃ = D : Ȳ be the semidirect products. Then Ĝ maps
onto G̃, and Ĝ maps onto G by replacing the direct product N ×D by the
central product H = N ◦ D over Z(D). The characters of Ĝ having the
“diagonal” of Z(D)×Z(D) (within N ×D) in the kernel correspond to the
characters of G.

The group of the proposition is nothing but the extended representa-
tion group G0 = G(θ). This G0 has a normal Sylow p-subgroup D0

∼= D

with CG0(D0) = Z(D0) × Zp′ . By Theorem 2.3c there is a unique p-
block B0 of G0 covering θ̃, and this has defect group D0. In particular
Irr(B0) = Irr(G0|θ̃). By Lemma 12.2a, θ is of defect zero in N/Z(D),
so that θ(1)p = |N/Z(D)|p. Also, θp ′ is the unique irreducible Brauer
character in bN , and Irr(bN ) consists of the characters θλ, for each (lin-
ear) λ ∈ Irr(Z(D)), satisfying θλ(y) = θ(y)λ(yp) if yp ∈ Z(N) and = 0
otherwise. We have (θλ)p ′ = θp ′ for each λ. Hence the above Clifford cor-
respondence gives, by restriction to p ′-elements, a bijection from IBr(B)
onto IBr(B0) = IBr(G0|θ̃). Note that (θ̂)p′ is irreducible and (θ̃)p′ = θ̃.

Fix λ ∈ Irr(Z(D)). Regard θλ ∈ Irr(bN ) as a character of (N×D)/D ∼=
N . The inertia group Tλ = I

Ĝ
(λ) = I

Ĝ
(θλ) contains N × D. By Lemma

12.2c, µT̄λ
(θλ) is the restriction to T̄λ = Tλ/(N ×D) of µḠ(θ). Hence we

may regard T̄λ(θλ) as a subgroup of Ḡ(θ). Let Gλ and Sλ be the subgroups
of G(θ) and G0, respectively, mapping onto T̄λ, so that |G(θ) : Gλ| = |G0 :
Sλ| = |G : Tλ|. By Lemma 12.2c we can further pick a character θ̂λ of Gλ

extending θλ (in the usual sense) such that

(θ̂λ)p ′ = ResG(θ)
Gλ

(θ̂p′).
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Hence on the p ′-group Zp ′ , embedded into Gλ, θ̂λ is a multiple of θ̃−1. By
Theorem 1.9c we have a 1-1 correspondence ψ ↔ ϕ between Irr(Tλ|θλ) and
Irr(G0|λ−1θ̃), given by ψ = θ̂λ⊗ϕ. Here we use that each ψ ∈ Irr(Tλ|θλ) lies
over λ and that the diagonal of Z(D)×Z(D) in Ĝ must be in the kernel of
ψ when inflated to a subgroup of this group. It follows that Sλ = IG0(λ

−1θ̃)
is the inertia group of λ−1θ̃, viewed as a linear character of Z(D0) × Zp′ .
By Theorem 1.8b, χ = IndG

Tλ
(ψ) and ζ = IndG0

Sλ
(ϕ) are irreducible. By

Frobenius reciprocity χ ∈ Irr(B), as B is the unique block of G covering
bN , and ζ ∈ Irr(B0) = Irr(G0|θ̃). Furthermore

χp ′ = IndG
Tλ

(ψ)p ′ = IndG
Tλ

(ψp ′) = (θ̂)p ′ ⊗ ζp ′ .

The correspondence χ ↔ ζ between Irr(B) and Irr(B0) preserves heights,
and B, B0 have the same decomposition and Cartan matrices. ¤

12.3. Blocks with Normal Defect Groups

In order to prove Theorem 12.1a we have to consider blocks with normal
defect groups. The following lifting property for blocks has been established
in [Külshammer, 1987].

Lemma 12.3a. Let D be a normal p-subgroup of G. Then the natural
map G ³ G/D′ induces a bijection beteween the p-blocks of G and that of
G/D′.

Proof. Let A = FG where F is a field of characteristic p. Let J be
the kernel of the natural map FG ³ F [G/D′]. Thus J is the (left) ideal
of A = FG generated by all t − 1, t ∈ D′. But D′ is generated by all
commutators [x, y] for x, y ∈ D, and

[x, y]− 1 = x−1y−1
(
(x− 1)(y − 1)− (y − 1)(x− 1) ∈ J(FD)2 ⊆ J(A)2,

and xy−1 = (x−1)(y−1)+(x−1)+(y−1) ≡ (x−1)+(y−1) (mod J(FD)2).
Consequently J ⊆ J(A)2. (Cf. [Jennings, 1941] for a more precise result;
in fact one may replace D′ by the Frattini subgroup of D.) For any central
idempotent e of A = FG, J + e is a central idempotent of A/J ∼= F [G/D′].
If J + e = J + f for a central idempotent f of A, then e− ef = (e− 1)f is
a central idempotent of A contained in J , hence is zero as J is nilpotent.
Hence e = ef and, similarly, f = ef , hence e = f .
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Now let ē be a central idempotent of A/J . By the usual lifting prop-
erties of idempotents there is an idempotent e of A such that ē = J + e [F,
I.12.3]. It remains to show that e is a central idempotent of A. Since ē is
central (and ē(1− ē) = 0),

J + eA(1− e) = J + e(1− e)A = J.

Hence eA(1 − e) ⊆ J ⊆ J(A)2 and eA(1 − e) ⊆ J(A)2(1 − e). Suppose
we know already that eA(1 − e) ⊆ eJ(A)n(1 − e) for some integer n ≥ 2.
Then eA(1− e) ⊆ eJ(A)n−1eJ(A)(1− e) + eJ(A)n−1(1− e)J(A)(1− e) ⊆
eJ(A)n+1(1 − e). Since J(A) is nilpotent, this shows that eA(1 − e) = 0.
Similarly (1 − e)Ae = 0. For any element a ∈ A we therefore have ea =
eae + ea(1 − e) = eae and, analogously, ae = eae. Consequently ea = ae.
Thus e is a central idempotent of A = FG, completing the proof. ¤

Theorem 12.3b. Suppose B is a p-block of G with normal defect group
D. Then k(B) ≤ |D| and k0(B) ≤ |D : D′|.
Proof. By Proposition 12.2d we may assume that D is a (normal) Sylow
p-subgroup of G. It follows that G is p-solvable. Thus k(B) ≤ |D| by
Theorems 2.6c/10.5a. By Lemma 12.3a there is a unique p-block B′ of
G/D′ corresponding to B. Clearly D/D′ is the unique defect group of B′.

Let χ ∈ Irr(B′). Then χ is an irreducible character of G (via inflation)
with kernel Ker(χ) ⊇ D′. Let θ be an irreducible (linear) constituent of
ResG

D(χ), and let T = IG(θ). By Theorem 1.8b,

χ(1) = eχ|G : T |θ(1) = eχ|G : T |
where the ramification index eχ is a divisor of |T/D|. Hence p does not
divide χ(1). Therefore χ is of height zero.

On the other hand, suppose χ ∈ Irr(B) is of height zero. Since the
defect group D of B is a Sylow p-subgroup of G, χ(1) is not divisible by p.
Let θ be an irreducible constituent of ResG

D(χ). By Theorem 1.8b, θ(1) is a
divisor of χ(1). Hence θ(1) is not divisible by p. Since D is a p-group, θ(1)
is a power of p. Hence θ(1) = 1 and so χ has D′ in its kernel. By definition
χ, as a character of G/D′, belongs to B′.

We have proved that k0(B) = k0(B′) = k(B′). From Theorem 10.5a
it follows that k(B′) ≤ |D/D′|. ¤

Remark . The proof that k(B) = k0(B) if and only if D is abelian [Reynolds,
1963] is quite similar.



Chapter 13

The Non-Coprime Situation

As already mentioned in the preface, the inequality k(GV ) ≤ |V | does not
hold if one drops the assumption of coprimeness (of |G| and |V |), in general.

Examples 13.1. Let p be a prime and m ≥ 2 be an integer.

(i) Suppose G is a Sylow p-subgroup of GLm(p), consisting of the ma-
trices with ones in the main diagonal and zeros above it, and let V = F(m)

p

be the standard module. The structure of G is well understood [Huppert,
1967, III. §16]. One knows that G has (elementary) abelian normal sub-
groups of order pm2/4 if m is even and of order p(m2−1)/4 otherwise. In
[Higman, 1960] it is proved that k(G) < (m − 1)!pb

m
4 c. Following Hig-

man we show that k(G) > p
1
13 m2

. Since k(G) ≥ k(G/G′) = pm−1, we
may assume that m ≥ 12. For positive integers r ≥ s and r ≥ t, with
2r + s + t = m, consider the elements of G consisting of block matrices of
the form 


Is

A Ir

J Ir

B It


 .

Here A is a r×s matrix having nonzero entries on the diagonal leading from
the bottom right corner and zeros below this diagonal, J an r × r matrix
with nonzero entries on its subsidiary diagonal and zeros otherwise, and B

is a t×r matrix having nonzero entries on the diagonal leading from the top
left-hand corner and zeros below this diagonal. Such (s, r, r, t) partitioned
matrices are conjugate in G only if they are equal. Now consider those
matrices where r = dm

3 e and s = bm
6 c. The number of freely disposable

positions in matrices of the above form is cm = r(s+ t)− s(s+1)/2− t(t+
1)/2 + 2, so that k(G) ≥ pcm . One verifies that cm > m2

13 .

(ii) G = GLm(p) acts irreducibly on V = F(m)
p . We claim that the affine

group GV = AGLm(p) has class number k(GV ) = k(G)+k
(
AGLm−1(p)

)
>

|V | (for m ≥ 2). It is known that pm − pm−1 < k(G) ≤ pm − 1 [Green,
1955]. For λ 6= 1V in Irr(V ) we have IG(λ) ∼= AGLm−1(p). Now argue
by induction using (1.10b) and the fact that G is transitive on Irr(V )]. Of
course k

(
AGL1(p)

)
= p.

209
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(iii) G = GL2(p)wrZm acts faithfully and irreducibly on V = F(2m)
p

(in the natural way). We have GV =
(
F(2)

p : GL2(p)
)
wrZm and

k(GV ) ≥ 1
m

(p2 + p− 1
p2

)m

|V |

by Theorem 1.7a, because the affine group AGL2(p) = F(2)
p : GL2(p) has

class number k(GL2(p))+k(AGL1(p)) = (p2−1)+p. (For p = 2 the group
GV ∼= S4wrZm has been already studied in Example 9.4c.) On the other
hand, k(G) ≤ (p2− 1)m + (p2− 1)m− (p2− 1) < p2m = |V | by Proposition
8.5d.

Proposition 13.2 (Liebeck–Pyber). If G is an irreducible subgroup of
GLm(p), then k(G) ≤ pcm for some constant c ≤ 10.

This is Theorem 4 in [Liebeck–Pyber, 1997]. One might conjecture that
here k(G) ≤ pm − 1, like in the coprime situation (Theorem 10.5b). The
recent work by [Guralnick–Tiep, 2005] gives some evidence that this might
be true at least when G is almost quasisimple.

We turn to the computation of k(GV ). Inspection of the proof for The-
orem 2.6c shows that if k(GV ) ≤ |V | holds in some more general situations,
the k(B) conjecture holds for a corresponding wider class of p-constrained
groups. First two general observations.

Lemma 13.3. Suppose the finite group X has an abelian normal subgroup
V . Let G = X/V , and let GV = V : G be the semidirect product (with G

acting as before). Then k(X) ≤ k(GV ).

Proof. This is immediate from formula (1.10b) since linear characters of
V can be extended to their inertia groups provided these split over V . ¤

Lemma 13.4. Let V be a faithful FpG-module, and let Op(G) = 1. Let
Ṽ be the direct sum of the composition factors of V (in a fixed composition
series). Then k(GV ) ≤ k(GṼ ).

Proof. Note that G is faithful on Ṽ since Op(G) = 1 (and since G is faithful
on V ). Let {gj} be a set of representatives for the conjugacy classes of G.
By Lemma 3.1c and (1.4a)

k(GV ) =
∑

j

|C`(CG(gj)|V/[V, gj ])| =
∑

j

1
|CG(gj)|

∑

h∈CG(gj)

|CV/[V,gj ](h)|.
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Hence k(GV ) = 1
|G|

∑
g∈G

∑
h∈CG(g) |CV/[V,g](h)|. There is a corresponding

identity for k(GṼ ). Hence it suffices to show that

dimCV/[V,g](h) ≤ dimC
Ṽ/[Ṽ,g]

(h)

for all elements g ∈ G and h ∈ CG(g). Let H = 〈g, h〉. For any short
exact sequence 0 → U → V → W → 0 of H-modules, U/[U, g] →
V/[V, g] → W/[W, g] → 0 is an induced exact sequence of 〈h〉-modules. This
in turn gives rise to the exact sequence 0 → (W/[W, g])∗ → (V/[V, g])∗ →
(U/[U, g])∗ for the dual 〈h〉-modules, and then 0 → C(W/[W,g])∗(h) →
C(V/[V,g])∗(h) → C(U/[U,g])∗(h) is exact. By Theorem 1.4b the cyclic group
〈h〉 has on any module M the same number of fixed points as on its dual
module M∗ = Irr(M). Consequently

dimCV/[V,g](h) ≤ dimCU/[U,g](h) + dimCW/[W,g](h).

Now apply this (inductively) to the given G-composition series of V . ¤

Proposition 13.5 (Kovács–Robinson). Suppose the finite group X has a
normal elementary abelian p-subgroup V of order pm. Assume G = X/V

is faithful and completely reducible on V . If G is p-solvable, then there is a
constant c, not depending on p or m, such that k(X) ≤ cm|V |.

This has been proved in [Kovács–Robinson, 1993, Theorem 4.1]. Indepen-
dence of the constant c from the prime p comes from the Fong–Swan the-
orem (mentioned in Sec. 2.7). In [Liebeck–Pyber, 1997] it has been shown
that one actually may take c = 103. But by assumption and Theorem 2.3c,
X has a unique p-block. Since the k(B) problem is solved for p-solvable
groups, application of the Fong–Swan theorem, lifting the Brauer charac-
ters afforded by the irreducible summands of V to p-rational characters of
G, and of a result by Schur [I, 14.19] therefore yields that

k(X) ≤ |X|p < pmp/(p−1)2 |V |

in this case, and k(X) ≤ |V | if m < p − 1. Of course the constant cp =
pp/(p−1)2 depends on the prime p, but cp < 2 for p 6= 2, 3 and cp ↘ 1
when p tends to infinity. One might conjecture that k(X) ≤ |V | in this
p-solvable situation, provided p ≥ 5 is large enough. (By Example 13.1,
(iii) this is false for p = 2, 3.) For arbitrary G a (weak) upper bound is
given in [Liebeck–Pyber, 1997].
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Proposition 13.6 (Robinson). Suppose the finite group X has a normal
abelian subgroup V such that CX(V ) is a p-group. For any integer s ≥ 0
let ks(X) be the number of irreducible characters of X such that psχ(1)p =
|X|p. If k(X) ≤ |V |, then

∑∞
s=0 ks(X)/p2s ≤ 1/|V |, and equality only holds

when V is a Sylow p-subgroup of X.

Proof. Let |V | = pm and |X|p = pa. Then pmχ(1)p ≤ pa for all χ ∈ Irr(X)
by Theorem 1.3b. Hence ks(X) = 0 for s < m, and

∞∑
s=0

ks(X)/p2s ≤ k(X)/p2m ≤ |V |/p2m = 1/|V |.

Assume the equality is attained. Then
∑a

s=m ks(X)p2s−2m = 1 and so
ks(X) = 0 for s > m. Thus pa = pmχ(1)p = pm, picking χ = 1X . ¤

In this proposition the group X again has a unique p-block, and ks(X) is the
number of irreducible characters of X with height pa−s in this block (|X|p =
p a). This is motivated from [Brauer–Feit, 1959], counting characters with
prescribed height (see also [F, V.§9]).

Epilogue: There are lots of open questions in this area, and work con-
tinues. [Guralnick and Tiep, 2005] have studied thoroughly the case where
G = X/V is almost quasisimple and faithful, irreducible on V . They proved
that k(X) ≤ 1

2 |V | provided G does not involve An for 5 ≤ n ≤ 16 or a group
of Lie type of (untwisted) rank at most 6 or a classical group with V related
to the standard module. The exceptional cases have still to be examined.
In a forthcoming paper D. Gluck has treated permutation pairs (Example
5.1a) in the non-coprime situation. As I understand, he is also investigating
the question whether k(G) ≤ pm − 1 when G is an irreducible subgroup of
GLm(p).

Although the status of the classification of the finite simple groups is
satisfactory [Aschbacher, 2004], a proof of the k(GV ) theorem independent
of that would be greatly appreciated. Likewise challenging is Brauer’s k(B)
problem. [Solomon, 2001] has the dream of returning in 100 years to ask
about the meaning of the sporadic simple groups. My dream is to return
in 100 years to ask, among others, about this mysterious Brauer problem.



Appendix A

Cohomology of Finite Groups

Let G be a finite group and let V be a (right) G-module. The (Tate) coho-
mology is a Z-sequence of abelian groups Hn(G,V ) defined by H0(G,V ) =
V G/V trG, where V G = CV (G) is the fixed module and trG =

∑
g∈G g in

the group algebra ZG, which all vanish if V = IndG
1 (U) for some abelian

group U , together with connecting homomorphisms declared functorially
for short exact sequences of G-modules. The existence is guaranteed via
projective resolutions of the trivial G-module Z. For an introduction see
[Hilton–Stammbach, 1971], which will be quoted as [HS].

In this book basically 1- and 2-cohomology is used, where we have the
following familiar interpretations. Suppose V ½ X ³ G is an extension
of the G-module V , so that X is a group with normal subgroup V and
quotient group G = X/V , and X induces by conjugation the given G-
module structure on V . Choosing a transversal {tg}g∈G to V in X we get
a factor set (2-cocycle) τ ∈ Z2(G,V ) by defining τ(g, h) = t−1

gh tgth. This
Z2(G,V ) is an (abelian) group by pointwise multiplication. Passing to other
transversals gives a congruence relation on Z2(G,V ), and H2(G,V ) is the
corresponding quotient group. Conversely, each τ ∈ Z2(G,V ) defines such
a group extension X = X(τ), with underlying set G×V and multiplication
(g, v) · (h,w) = (gh, vh + w + τ(g, h)). Thus H2(G,U) is in natural 1-1
correspondence with the (equivalence classes) of these group extensions,
the zero element describing the semidirect product GV = V : G.

In the semidirect product X = GV there may exist another subgroup
Gα = {gvg| g ∈ G} complementing V in X (Gα ∩ V = 1 and X = GαV ).
Then α : g 7→ vg is a crossed homomorphism (1-cocycle) of G in V , and
with respect to pointwise multiplication we get a group Z1(G,V ) acting
regularly on the complements. Conjugacy of the complements in X (under
V ) yields a congruence relation, and H1(G,V ) is the corresponding quotient
group. So H1(G,V ) = 0 if and only if all complements are conjugate.

Given any extension V ½ X ³ G of the G-module V , Z1(G, V )
may be identified with the group of all automorphisms of X centralizing
V and G, and H1(G,V ) accords with the quotient modulo those inner
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automorphisms of X coming from V . If V = V G is a trivial G-module (X
a central extension of G), then H1(G,V ) = Hom(G,V ).

Some general results on cohomology can be proved by describing them
in cohomological dimension zero, say, and extending them functorially by
dimension–shifting. This is due to the fact that there is a 1-induced G-
module V̂ = IndG

1

(
ResG

1 (V )
)

having V as quotient and as submodule. For
n ≥ 1 the groups Hn(G,V ) = H−(n+1)(G,V ) are called homology groups.

(A1) The exponent of Hn(G,V ) is a divisor of |G|. This is obvious for
n = 0, hence is true for all n. For n = 1, 2 it leads, together with Sylow’s
theorem (and Feit–Thompson), to the Schur–Zassenhaus theorem.

(A2) Inflation, restriction: In dimension zero the restriction map ResG
H

for a subgroup H of G is defined by v + V trG 7→ v + V trH (v ∈ V G), is
induced from H ½ G → V on 1-cocycles, and is extended to all dimensions
by dimension–shifting. Observe that ResG

H(V̂ ) is a 1-induced H-module by
Mackey decomposition. Let H be normal in G. Then V H is a G/H-
module in the obvious way, and so is H0(H, V ), and Hn(H,V ) for each n.
The inflation map is v + V HtrG/H 7→ v + V trG (v ∈ V G) in dimension 0,
is induced from G ³ G/H → V H ½ V on 1-cocycles, and is extended by
dimension–shifting. There is a natural exact sequence

0 → H1(G/H, V H) Inf→ H1(G,V ) Res→ H1(H,V )G/H → H2(G/H, V H) Inf→ K

where K is the kernel of Res : H2(G,V ) → H2(H,V ) [HS, VI.81]. One can
even describe the image of H2(G/H, V H) in K as the kernel of a certain
transgression map K → H1

(
G/H, H1(H, V )

)
, e.g., using spectral sequences.

(A3) Shapiro’s lemma: Let V = IndG
H(U) for some subgroup H of G and

some H-module U . Then restriction to H and H-projection of V onto U

gives rise to natural isomorphisms Hn(G,V ) ∼= Hn(H,U). This is easily
verified for n = 0, hence holds everywhere (see also [HS], pp. 164 and 224).

(A4) Restriction, corestriction: Let H be a subgroup of G. The corestric-
tion map CorGH is induced from the relative trace trH\G : V H → V G (with
respect to any right transversal to H in G) in dimension zero, hence in gen-
eral. Composition Cor◦Res is multiplication with |G : H| on Hn(G,V ) (see
also [HS, VI.16.4]). It follows that if p is a prime not dividing |G : H|, then
the restriction map Hn(G,V ) → Hn(H, V ) is injective on the p-components
(which gives Gaschütz’s splitting theorem).
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(A5) Ẑ = ZG is the regular module (group algebra) over Z, which maps
onto Z with kernel IG, the so-called augmentation ideal, and contains
ZtrG

∼= Z. One gets H1(G,Z) ∼= IG/I2
G
∼= G/G′ [HS, VI .4.1]. The Schur

multiplier of G is defined as M(G) = H2(G,Z) or, equivalently, by the Hopf–
Schur formula M(G) = R∩F ′/[R,F ] in any free presentation R ½ F ³ G

of G [HS, VI.§9]. Suppose Z is any trivial G-module. Then, by the universal
coefficient theorem [HS, VI.15.2], there is a natural exact sequence

0 → Ext(G/G′, Z) Inf→ H2(G,Z)
ρ→ Hom(M(G), Z) → 0.

Here Ext(G/G′, Z) governs the abelian extensions of G/G′ by Z, described
by symmetric 2-cocycles, and ρ sends the cohomology class of a central
extension Z ½ X ³ G to the (transgression) map M(G) → Z, which has
the image Z ∩ X ′. This may be derived on the basis of the Hopf–Schur
formula. Using that Ext(G/G′, Z) = 0 if Z is a divisible group we see that
H2(G,C?) is the dual group to M(G).

The central extension Z ½ X ³ G, with cohomology class x say, is
called proper if Z ⊆ X ′ (ρx epimorphic), and a covering group (or Schur
cover) if in addition M(G) ∼= Z (via ρx). If G = G′ is perfect, there
is a unique (universal) covering group Ĝ of G, up to isomorphism; every
automorphism of G can be lifted to Ĝ.

(A6) The Schur multipliers of all quasisimple groups are known (Schur,
Steinberg, Griess and others). In particular: M(An) = Z2 for n 6= 6, 7
(M(A6) = M(A7) = Z6); M(GLm(2)) = 1 for m 6= 3, 4; M(Sp2m(q)) =
1 for all m and all odd prime powers q except when (m, q) = (1, 9);
M(Sp2m(2)) = 1 for m ≥ 4; M(Ω±2m(2)) = 1 for m 6= 2, 3 and with
the exception M(Ω+

8 (2)) = Z2 × Z2; M(SUm(q)) = 1 for m ≥ 3 and
(m, q) 6= (4, 2), (4, 3), (6, 2).

(A7) Module extensions: Let U ½ V ³ W be an extension of G-modules.
We are only dealing with Z-split extensions. Even more, we shall be con-
cerned mostly with FG-modules over a finite field F . These extensions are
classified by ExtFG(W,U) = H1(G, HomF (W,U)). Here HomF (W,U) ∼=
W ∗⊗F U as FG-modules (via diagonal actions), and W ∗ = HomF (W,F ) is
the dual module to W . From projective resolutions of the trivial FG-module
F it is immediate that only irreducible modules belonging to the principal
block can have nontrivial cohomology. If γ is a group or field automorphism
and V γ is the twisted FG-module thus obtained, Hn(G,V γ) ∼= Hn(G, V )
via γ. (All Ext-groups vanish if char(F ) - |G|; Maschke’s theorem.)
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Remark . Let V be an FG-module and T 2(V ) = V ⊗F V . Identify
Λ2(V ) = Alt2(V ) with the alternating square, and let Sym2(V ) be the
symmetric square (fixed space of v ⊗ w 7→ w ⊗ v). Let G = SL(V ). If
char(F ) 6= 2, then both Λ2(V ) and Sym2(V ) are irreducible FG-modules
and T 2(V ) = Λ2(V ) ⊕ Sym2(V ), as in (1.1). Otherwise Λ2(V ) is a sub-
module of Sym2(V ) with quotient module isomorphic to the twist V γ of
V under the Frobenius automorphism γ of F , and T 2(V ) is a uniserial
FG-module with composition factors Λ2(V ), V γ , Λ2(V ).

(A8) Let V = F(2m)
p for some prime p and some m ≥ 1. Then M(V ) =

Λ2(V ) by the Künneth theorem [HS, V.3.1]. Letting R ½ F ³ V be a
free presentation of (minimal) rank 2m, we have a natural exact sequence
M(V ) ½ R/[R,F ]Rp ³ V . This sequence splits, and splits naturally
through the pth power map when p is odd. The dual of this sequence
agrees with the universal coefficient sequence V ∗ ½ H2(V,Fp) ³ Λ2(V )∗.
Now regard V ∼= V ∗ as the standard module for G = Sp2m(p). Since G is
absolutely irreducible on V , HomG(V ⊗ V ∗,Fp) = EndG(V ) = Fp. In the
odd case H2(V,Fp) ∼= V ∗ ⊕ Λ2(V )∗ as a G-module, and there is a unique
alternating form 6= 0, up to scalar multiples, which is G-invariant. This
defines the extraspecial group p1+2m

+ (since the group of exponent p2 does
not admit the symplectic group G). For p = 2 we have a similar result
replacing the symplectic group by O±2m(2), defining thus the groups 21+2m

± .

(A9) The cohomology of certain classical groups on their standard modules
and related modules is known [Griess, 1973], [Sah, 1977], [Bell, 1978]. It
vanishes by (A2) whenever a nontrivial scalar multiplication appears. Also,
H1(SLm(q),F(m)

q ) = 0 for (m, q) 6= (2, 2r) with r > 1 and (m, q) 6= (3, 2),
H2(SLm(q),F(m)

q ) = 0 for (m, q) 6= (2, 2r) with r > 2, (m, q) 6= (3, 3r) with
r > 1, and (m, q) 6= (3, 2), (4, 2), (5, 2), (3, 5); Hn(Sp2m(2),F(2m)

2 ) = Z2 =
Hn(Sp2m(2)×Z2,F(2m)

2 ) for m > 1 and n = 1, 2, but H2(Sp4(2)′,F(4)
2 ) = 0;

further H1(O±2m(2),F(2m)
2 ) = 0 except for m = 3 and positive type, and

H2(O±2m(2),F(2m)
2 ) = Z2 for m > 2 and the same result for Ω±2m(2) except

for Ω+
6 (2) where the 2-cohomology vanishes (as it does for m = 1, 2). – The

computer was needed to compute the 2-cohomology of some orthogonal
groups on the standard module, e.g., for Ω+

10(2) and Ω−12(2) (Derek Holt).

(A10) The nonzero element, if any, of the 2-cohomology of the orthog-
onal groups O±2m(2), Ω±2m(2) and the groups Sp2m(2), Sp2m(2) × Z2, on
the standard modules is represented by the automorphism group of the
corresponding 2-groups of extraspecial type [Griess, 1973].



Appendix B

Some Parabolic Subgroups

The nonabelian finite simple groups fall into the following four classes: The
alternating groups An (n ≥ 5), the finite classical groups, the exceptional
groups of Lie type, and the 26 sporadic groups. In this appendix we are
concerned only (for convenience) with the classical groups Sp2m(q) and
SO+

2m(q), SO−2m(q) (q a prime power, m ≥ 1). In Lie terminology the
symplectic group is the simply connected group of type Cm whereas the
orthogonal groups under consideration may be identified as those groups
of type Dm (plus type) and 2Dm (negative type) which are neither simply
connected nor adjoint. In the orthogonal case there is a subgroup Ω±2m(q)
of index 2 in SO±2m(q), which is the kernel of the Dickson invariant when q

is even, and this is the unique subgroup with index 2 unless we have plus
type and m = 2 = q.

Let U be the standard module for these classical groups, and write
G = G(U) for the related isometry group (introduced above; we write
G(U) = O±2m(q) in the even orthogonal case). Let F = Fq. Let τ denote
either the symplectic form on U or the symmetric form to the quadratic
form Q in the orthogonal case.

A nondegenerate symplectic form requires even dimension, and then
the form on U is uniquely determined up to isomorphism (and so is the
group). In the orthogonal case Q : U → F satisfies Q(cu) = c2Q(v)
for c ∈ F , u ∈ U , and τ(u, v) = Q(u + v) − Q(u) − Q(v) defines the
associated (symmetric) bilinear form on U . The form Q is nondegenerate
if τ is nondegenerate. If q is odd, the theory of quadratic forms is that
of symmetric bilinear forms. If q is even then τ necessarily is symplectic.
Actually we are interested in quadratic forms only in characteristic 2, hence
the assumption that dim FU = 2m is even. There are up to isomorphism
two distinct nondegenerate quadratic forms Q = Q+

2m (Witt index m) and
Q = Q−

2m on V (index m − 1). This means that U possesses maximal
totally singular subspaces of dimension m resp. of dimension m − 1; in
the symplectic case we have index m. Reference for all this is [Dieudonné,
1971].
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(B1) Suppose U has index m. Then there exist totally singular subspaces
W,W ∗ of dimension m such that U = W ⊕W ∗. Let P = NG(W ) and let
L = NG(W,W ∗) be the normalizer of both subspaces, R = CG(W,U/W ) be
the centralizer of both W and U/W . Then P = R : L where L ∼= GL(W )
and W is the standard module of L and W ∗ is the dual module. Also
R ∼= Alt2(W ) as module for L in the orthogonal case, and R ∼= Sym2(W )
in the symplectic case.

Proof. By hypothesis there is basis {e1, · · ·, em} ∪ {e∗1, · · ·, e∗m} of U such
that τ(ei, e

∗
i ) = 1 for all i and all other scalar products of the ei, e

∗
j vanish,

and that in adddition Q(ei) = 0 = Q(e∗j ) in the orthogonal case. Then
the 〈ei, e

∗
j 〉 are hyperbolic planes in U , and W = 〈e1, · · ·, em〉 and W ∗ =

〈e∗1, · · ·, e∗m〉 are maximal totally singular subspaces.

Let x ∈ GL(W ) and y ∈ GL(W ∗). Then
(

x 0
0 y

)
is an isometry of

the symplectic space U if and only if τ(eix, e∗jy) = τ(ei, e
∗
j ) = δij for all i, j.

This means that y = (x−1)t has to be the inverse transpose of x. In the

orthogonal case, observe that
(

x 0
0 x−t

)
preserves W and W ∗ and that

Q(w + w∗) = 0 for w ∈ W and w∗ ∈ W ∗ if and only if τ(w, w∗) = 0. So

L = {
(

x 0
0 x−t

)
| x ∈ GL(W )}

may be viewed as a subgroup of G in each case, and it is the stabilizer in
G of W and W ∗. Of course, L ∼= GL(W ) and W is the standard module,
W ∗ its dual.

It is clear that L ∩ R = 1. Let x ∈ P . We find y ∈ L such that xy

centralizes W . But U/W ∼= W ∗ and so xy centralizes U/W as well, that
is, xy ∈ R. Thus P = R : L.

By (A7) it is clear that R is an FL- submodule of

HomF (U/W,W ) ∼= HomF (W ∗, W ) ∼= T 2(W ).

Let α : U/W → W be a linear map. View α as an endomorphism of U via
inflation. Write e∗i α =

∑
j aijej . We have to examine when 1 + α is in G.

In the symplectic case this requires that

0 = τ(e∗i , e
∗
k) = τ(e∗i +

∑

j

aijej , e∗k +
∑

j

akjej) = akiτ(e∗i , ei)+aikτ(ek, e∗k)
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for all i, k. Thus the matrix (aik) has to be symmetric. It is well known that
T 2(W ) is naturally isomorphic to Mm(F ) (sending ei⊗ek to the elementary
matrix eik), in which case Sym2(W ) maps onto the symmetric matrices and
Alt2(W ) onto the skew symmetric matrices.

In the orthogonal case we compute

0 = Q(e∗i ) = Q(e∗i +
∑

j

aijej) = τ(e∗i ,
∑

j

aijej) = aii

and, for i 6= k, 0 = Q(e∗i + e∗k) = Q
(
e∗i + e∗k +

∑
j(aij + akj)ej

)
= aik + aki.

Thus in this case the (necessary and sufficient) condition is that the matrix
(aik) is skew symmetric. The proof is complete. ¤

(B2) Suppose W 6= 0 is a totally singular subspace of U , and let P =
NG(W ). There exists a totally singular subspace W ∗ of U such that U ′ =
W ⊕ W ∗ is nondegenerate. Let U ′′ = (U ′)⊥, L = NG(W,W ∗, U ′′) and
R = CG(W,W⊥/W,U/W⊥). Then P = R : L and L = Lw × G(U ′′),
where Lw

∼= GL(W ) acts naturally on W and W ∗ is the dual FLw-module,
and where G(U ′′) centralizes Rw = CR(W⊥). Moreover, Rw ⊆ Z(R),
R/Rw

∼= W ⊗F U ′′ as an L = Lw × G(U ′′)-module, and Rw
∼= Sym2(W )

as an Lw-module in the symplectic case and Rw
∼= Alt2(W ) otherwise.

Proof. By Witt’s theorem we may assume that W has the basis {e1, ···, en}
taken from the standard basis above (n ≤ m). Let then W ∗ = 〈e∗1, · · ·, e∗n〉.
So (B1) applies to U ′ = W ⊕W ∗, and U = U ′⊥U ′′ is an orthogonal sum
of nondegenerate spaces. Hence L = Lw ×GL(U ′′) is as asserted.

It is obvious that L ∩ R = 1. As a P -module U/W⊥ ∼= W ∗ (through
the given nondegenerate pairing). Thus to x ∈ P we find y ∈ Lw such that
xy centralizes W and U/W⊥. We have W⊥ = W⊕U ′′. Hence each element
in W⊥/W can be written as W + u′′ for some unique u′′ ∈ U ′′. We get a
linear map α : U ′′ → U ′′ satisfying (W + u′′)α = W + u′′xy. It is easy to
see that α ∈ G(U ′′). This proves that P = R : L.

The quotient R/Rw acts faithfully on W⊥, centralizing both W and
W⊥/W ∼= U ′′, whence may be identified with HomF (U ′′, W ). In fact, for
each linear map ϕ : W⊥/W → W consider its inflation to W⊥, and then
1 + ϕ gets an isometry of W⊥, which extends to an element of G by Witt’s
theorem. Thus R/Rw

∼= HomF (U ′′,W ) as an L = G(U ′′) × Lw-module.
Now use that U ′′ is a self-dual G(U ′′)-module.
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Since Rw centralizes W⊥ ∼= U/W and R centralizes U/W⊥ and W ,
we have [U,R, Rw] = 1 = [Rw, U,R]. It follows that [R, Rw, U ] = 1 (by
the 3-subgroups lemma) and so Rw ⊆ Z(R). Now Rw centralizes U ′′ and
acts on the nondegenerate space U ′ = W ⊕ W ∗ and centralizes W , with
U ′/W ∼= W ∗. Apply (B1) to U ′. ¤

Remark . From (A7) we infer that Lw acts irreducibly on Rw unless p = 2
and G(U) = Sp2m(q) is a symplectic group (in which case Rw is inde-
composable with 2 composition factors). Also, R/Rw

∼= W ⊗F U ′′ is an
irreducible Lw ×G(U ′′)-module unless G(U ′′) ∼= O+

2 (2) or SO+
2 (q) for odd

q, where G(U ′′) is not irreducible on the standard module.

(B3) Let W,P, R, L be as in (B2). Then P is a maximal parabolic subgroup
in G = G(U), with unipotent radical R and Levi complement L, except
when G(U) ∼= SO+

2m(q) and dim FW = m, in which case P is a maximal
parabolic in Ω+

2m(q). The maximal parabolics are all of of this form, and
are determined up to conjugacy by the dimension of W (which may vary
from 1 to the Witt index).

Proof. It follows from the construction, and from (B2), that P = NG(R) is
a proper subgroup of G and that R = Op(P ). The order of P is determined
by n = dim FW. Indeed dim FU′′ = 2m− 2n and so

|R| = |R/Rw| · |Rw| = qn(2m−2n)+n(n±1)/2,

where the positive sign holds in the symplectic case. One similarly computes
|L| = |GL(W )| · |G(U ′′)|. This shows that P contains a Sylow p-subgroup
of G, even a p-Sylow normalizer, except when n = m and G ∼= SO+

2m(q).
So P is a parabolic in G or, in the exceptional case, in Ω+

2m(q) (where there
are two classes which fuse in O+

2m(q)).
If P were not maximal in G (resp. in Ω+

2m(q)), there were a maximal
parabolic P0 = R0 : L0 properly containing P . Then at any rate R0 ⊂ R

and U0 = CU (R0) ⊇ W . We even have W ⊆ U0 ∩ U⊥
0 = U1, and U1 is

P0-invariant. Either U1 is totally singular or q is even, U is orthogonal, and
the subspace U ′

1 of U1 of singular vectors has codimension 1. But then U ′
1

is P0-invariant and U ′
1 ⊇ W . So P0 stabilizes a totally singular subspace

W0 ⊇ W of U . Since P0 is a maximal subgroup, P0 is the normalizer of
W0, and W0 6= W as P0 6= P . We get a contradiction by comparing the
orders of R and R0.

Witt’s theorem, and a survey of the Dynkin diagram, give the final
uniqueness statement. ¤



Appendix C

Weil Characters

Let G be any of the classical groups SLm(q), Sp2m(q) or SUm(q) for some
m ≥ 1 and some power q = pf of a prime p, and let U be the natural
G-module over Fq (resp. Fq2 in the unitary case). In the symplectic case
assume that q is odd. Let Gu be the associated universal group, that is,
Gu = GLm(q), CSp2m(q) or GUm(q), respectively. Then Gu/Z(Gu) is the
adjoint group, which may be identified with the normal subgroup of Aut(G)
generated by the inner and diagonal automorphisms. Stimulated by [Weil,
1964] one associates to Gu and G certain distinguished characters related
to extraspecial groups (or Heisenberg groups). It turns out that, with few
exceptions, these Weil characters are faithful of minimal degree.

If Z is a trivial (additive) U -module, every biadditive map τ : U×U →
Z is a factor set in Z2(U,Z), and if Z ½ E ³ U is an extension to τ , the
commutator map on E = E(τ) induces the alternating (symplectic) form
given by [u, u′] = τ(u, u′)− τ(u′, u).

(C1) Let G = SLm(q) and Gu = GLm(q) for some integer m ≥ 2. The
permutation character of Gu on U decomposes as πU = 2 · 1Gu

+
∑q−2

j=0 ξj ,

where the ξj are pairwise distinct (complex) irreducible characters of Gu

satisfying ξ0(1) = (qm−q)/(q−1) and ξj(1) = (qm−1)/(q−1) for j > 0. For
m ≥ 3, and excluding (m, q) = (3, 2), (3, 4), (4, 2), (4, 3), these characters
remain irreducible on G, and we have

R0(Lm(q)) = (qm − q)/(q − 1).

Each faithful projective irreducible character of Lm(q) = PSLm(q) of degree
at most qm−1

q−1 then is such a Weil character ξj.

Proof. Let U∗ be the dual FqGu-module to U , and let W = U ⊕ U∗. Let
further Fq ½ E ³ W be the associated Heisenberg group. Thus E = E(τ)
is the set of pairs (w, z) in W × Fq with (w, z) · (w′, z′) = (w + w′, z +
z′ + τ(w, w′)) where the factor set τ : W ×W → Fq is Fq-bilinear, given
by τ((u, λ), (u′, λ′)) = λ(u′). For g ∈ Gu we define (u, λ, z)g = (ug, λg∗, z)
where g∗ is the inverse transpose of g. It is immediate that in this manner
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Gu preserves the factor set τ and so Gu acts on E (faithfully) centralizing
Z(E) ∼= Fq. Even more, the subgroup A = U × {0} × {0} of E is Gu-
invariant and is the standard module, and A∗ = {0}×U∗×{0} is the dual
module.

Every nontrivial linear character λ of Z(E) ∼= Fq gives rise to an ir-
reducible character χ0 of E by inducing up to E the character 1A∗ × λ

of A∗ × Z(E). Inducing up to E : Gu the linear character 1A∗:Gu × λ of
(A∗ : Gu)×Z(E) we obtain an irreducible character χ of E : Gu extending
χ0. Let ξ be the restriction to Gu of this irreducible character. Using that
A is a set of right coset representatives for (A∗ : Gu) × Z(E) in E : Gu,
with Gu acting transitively on A], and using Mackey decomposition, we see
that ξ = π is the permutation character of Gu on the set A ∼= U . Of course
Gu is transitive on U ].

Z(Gu) ∼= F?
q has (qm − 1)/(q− 1) regular orbits (cycles) on U ]. Hence

we have q − 1 distinct constituents ξ′j of πU] lying over the distinct linear
characters λj of Z(Gu), and all these ξ′j have degree (qm − 1)/(q − 1).
The character ξ′0 lying above the 1-character of Z(Gu) is of the form ξ′0 =
1Gu

+ ξ0 with ξ0(1) = (qm − q)/(q − 1). Let ξ′j = ξj for j > 1.

The Gu-sets U , U∗ are isomorphic through the inverse transpose au-
tomorphism. Thus W ∼= U × U as Gu-sets and ξ2 = πW . Now Gu has
exactly q + 3 orbits on the set U × U (being transitive on the set of linear
independent pairs of vectors (u, u′) and on the sets (u, tu) for each t ∈ F?

q).
From ξ = 2 · 1Gu +

∑q−1
i=1 ξi and 〈ξ, ξ〉 = 〈ξ2, 1Gu〉 = q + 3 we conclude that

all ξi are irreducible and pairwise distinct.

The restrictions to G = SL(W ) = SLm(q) of these characters need
not be irreducible (nor distinct) for small m. We refer to [Tiep–Zalesskii,
1996, Theorem 3.1] for the final statements in (C1). One has R0(Lm(q)) =
3, 6, 7, 26 for (m, q) = (3, 2), (3, 4), (4, 2), (4, 3), respectively. ¤

(C2) Let G = Sp2m(q) and Gu = CSp2m(q) for m ≥ 2 and odd q. The
permutation character of G on U is of the form πU = ξ · ξ̄ = ξ¦ · ξ¦ for
Gu-conjugate “generic” Weil characters ξ 6= ξ¦. We have ξ = ξ1 + ξ2 and
ξ¦ = ξ¦1 + ξ¦2 with irreducible (Weil) characters ξ1, ξ

¦
1 and ξ2, ξ

¦
2 of degree

(qm − 1)/2 and (qm + 1)/2, respectively. Moreover,

R0(S2m(q)) = (qm − 1)/2,

and every faithful projective irreducible character of S2m(q) = PSp2m(q) of
degree less than 1

2(q+1) (q
m − 1)(qm − q) is one of ξ1, ξ2, ξ

¦
1 , ξ¦2 .
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The final statement is a result due to [Tiep–Zalesskii, 1996, Theorem
5.2]. The other assertions follow from Theorems 4.3c and 4.5a. Recall,
in particular, that ξ and ξ¦ are obtained by restriction to Sp2m(q) of the
faithful irreducible characters of degree qm of the symplectic holomorph
E : Sp2m(q), where E = p1+2fm

+ and where U = E/Z(E) may be identified
with the standard module.

(C3) Let G = SUm(q) and Gu = GUm(q), with m ≥ 3. For convenience
exclude (m, q) = (3, 2), (4, 2), (6, 2) and (4, 3). Let X be the (standard)
holomorph of E = p1+2fm

+ for odd p and of E = 21+2fm
0 otherwise, with

X/E ∼= Sp2m(q) (say). There is a distinguished subgroup Y of X such that
Y ∩ E = Z(E) and such that Y E/E ∼= Gu.2 is a field extension subgroup
of Sp2m(q). We have a unique decomposition Y = Y0 × Z(E) for odd q,
where we write Y0 = Gu.2 ⊇ Gu, and where Y ′ = Gu otherwise. In both
cases U = E/Z(E) is the standard module for Gu, and the “generic” Weil
character of Gu is defined as

ξu = ResX
Gu

(χ) · µ,

where χ is any faithful irreducible character of X of degree qm and where
µ is the linear character of Gu of order gcd(q + 1, 2). This ξu is well-
defined, rational-valued and satisfies ξ2

u = πU . Fixing a linear character
λu of Z(Gu) of order q + 1 (which exists) let ξj be the constituent of ξu

lying above λj
u (0 ≤ j ≤ q). Then ξ0(1) = (qm + (−1)mq)/(q + 1) and

ξj(1) = ξ0(1)− (−1)m for j > 0, and the ξj are pairwise distinct irreducible
(Weil) characters of Gu and remain so when restricted to G. We have

R0(Um(q)) =
{

(qm − q)/(q + 1) if m is odd
(qm − 1)/(q + 1) otherwise,

and each faithful projective irreducible character of Um(q) = PSUm(q) of
degree at most qm+1

q+1 for odd m, and qm+q
q+1 otherwise, is one of the ξj.

Proof. For existence (and uniqueness) of Gu.2 in Sp2m(q) see [Aschbacher,
1984]; in the odd case it is an (almost) maximal subgroup, and determined
up to conjugacy. Recall that Gu/G ∼= Z(Gu) are cyclic of order q + 1,
inverted by Gu.2 since the outer field automorphism of order 2 sends any z

to zq = z−1. Let Zu = Z(Gu) = 〈zu〉, which acts on U as a group of scalar
multiplications (with norm zu ·zq

u = 1). By assumption and (A6) the group
G = SUm(q) is perfect and M(G) = 1. Using (A2), (A5) one shows that
also M(Gu) = 1 = M(Gu.2), and that Hn(Gu.2, U) = 0 for all n.
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Let α be an automorphism of X permuting the faithful linear char-
acters of Z(X) = Z(E) transitively (Theorems 4.3c and 4.3d). By the
cohomological triviality stated above, we find Y in X as claimed, and α-
invariant. In the even case use that α is trivial on X/E. If |Z(E)| = p

is odd, p does not divide |Gu.2/G| = 2(q + 1). In the even case Gu.2/G

is dihedral (and q + 1 odd). Thus Y = Gu.2 × Z(E) when q is odd, and
Y ′ = Gu otherwise (A5), where Gu is α-invariant and α gets inner on Gu

in each case. So the faithful irreducible characters of X of degree qm agree
on Gu, defining ξu, and ξu is rational-valued. As in Theorem 4.5a each
element of Gu is good for U (use zu). Hence ξ2

u = πU by Theorem 4.4.

Let ε = e2πi/(q+1), and choose λu such that λu(zu) = ε. Now Zu has
on U ] just (qm−1)/(q+1) regular orbits. It follows from Theorems 4.4 and
1.6c that ξu(zu) = (−1)m (see also [I, 13.32]). Let ρ =

∑q
j=0 λj

u denote the
regular character of Zu. We know that ResGu

Zu
(ξ2

u) = λ0
u + qm−1

q+1 · ρ. Hence
ResGu

Zu
(ξ) is not a multiple of ρ. Using that ξu(zu) = (−1)m and ρ(zu) = 0,

and using elementary properties of sums of (q + 1)th roots of unity we get

ResGu

Zu
(ξu) =

{
a · ρ + λ0

u if m is even,
a · ρ +

∑q
j=1 λj

u otherwise

for some nonnegative integer a. Of course a = qm−1
q+1 when m is even,

and a = qm−q
q+1 otherwise. Let ξj denote the constituent of ξu lying over

the linear character λj
u of Zu. Then ξ0(1) = a + 1 when m is even, and

ξ0(1) = a otherwise, and ξj(1) = ξ0(1)− (−1)m for j > 0. So the ξj (6= 0)
are pairwise “disjoint”, and ξu =

∑q
j=0 ξj . One knows that G has just

q + 1 orbits on the set U [Aschbacher, 1986, (22.4)]. Hence 〈ξU , ξu〉G =
〈ξ2

u, 1Gu
〉G = 〈πu, 1G〉 = q + 1. This shows that the ξj are irreducible and

pairwise distinct even as characters of G = SUm(q). The final statements
in (C3) are due to [Tiep–Zalesskii, 1996]. ¤

Remark . The values of the character ξu and of the irreducible Weil char-
acters ξj on Gu = GUm(q) have been computed in [Gérardin, 1977] and
[Tiep–Zalesskii, 1996]. Suppose ξj lies over λj

u, as before, and let again
zu be the generator of Zu = Z(Gu) with λu(zu) = ε = e2πi/(q+1). Let
g ∈ Gu, and let dk = dk(g) be the dimension of CU (z−k

u g) over Fq2 . Then
ξu(g) = (−1)m(−q)d0 and, for j ∈ {0, · · ·, q},

ξj(g) =
(−1)m

q + 1

q∑

k=0

(−q)dkεkj .
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Schur, I. (1911), Über die Darstellungen der symmetrischen und alternieren-
den Gruppen durch gebrochene lineare Substitutionen,J. Reine Angew.
Math. 139, 155–250.

Seitz, G. M. and Zalesskii, A. E. (1993), On the minimal degrees of projec-
tive representations of the finite Chevalley groups, II, J. Algebra 158,
233–234.

Serre, J.-P. (2003), On a theorem of Jordan, Bull. Amer. Math. Soc. 40,
429–440.



Bibliography 229

Sin, P. (1996), Modular representations of the Hall–Janko group, Commun.
Algebra 24, 4513–4547.

Solomon, R. (2001), The classification of the finite simple groups, Bull.
Amer. Math. Soc. 38, 315–352.

Springer, T. A. and Steinberg, R. (1970), Conjugacy classes, in Seminar on
Algebraic Groups and Related Finite Groups, Lecture Notes in Math.
131, pp. 167-266, Springer, Berlin.

Steinberg, R. (1967), Lectures on Chevalley Groups, Yale University, Yale.
Suzuki, M. (1962), On a class of doubly transitive groups, Annals Math.

75, 105–145.
Tiep, P. H. and Zalesskii, A. E. (1996), Minimal characters of finite classical

groups, Commun. Algebra 24 (6), 2093–2167.
Tiep, P.H. and Zalesskii, A. E. (1997), Some characterizations of the Weil

representations of the symplectic and unitary groups, J. Algebra 192,
130–165.

Ward, H. N. (1966), On Ree’s series of simple groups, Trans. Amer. Math.
Soc. 121, 62–69.

Ward, H. N. (1972), Representations of symplectic groups, J. Algebra 20,
182–195.

Weil, A. (1964), Sur certain groupes d’opérateurs unitaire, Acta Math. 111,
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(Z/eZ)? unit group; 7 C(E) = COut(E)(Z(E)); 48
V = CV (G)⊕ [V, G]; (1.6a) ε(V ), I(V ), J(V ); 61
kg(N) = |CC`(N)(g)|; 10 P1(V ); 65
IX(θ), Irr(X|θ); 12 β(G), β∗(G); 75
µK0G(θ); 13 f(g, V ); 75
M(G) ∼= H2(G,C?); 14 gV = [d1, · · ·, dt]; 76
X(θ) = G(θ)∆GX; 15 R0(L); 116
R = Z(p)[ε]; 19 c(L); 116
ωB ; 20 µt

χ,H ; 117
|IBr(X)| = |C`(Xp′)|; (2.1b) Y S; 161
dχϕ, cϕψ; 21 p(n); 170
eB ; 22 P (L); 171

Group structures:

Zm = m cyclic group of order m,
Sm, Am symmetric and alternating group of degree m, respectively,
Qm, Dm quaternion and dihedral group of order m, respectively,
q1+2m
+ extraspecial group of order q1+2m and exponent q > 2,

21+2m
± central product of m copies of Q8, sign + for even m,

21+2m
0 = 21+2m

± ◦ Z4,
X × Y , X ◦ Y direct and central products, respectively,
X∆QY fibre-product of X, Y over their common quotient group Q,
GwrS wreath product of G with the permutation group S.

The notation for the classical groups (groups of Lie type) and sporadic
simple groups is standard and follows the [Atlas].
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Abelian vector, 44, 63 Elementary group, 2
Absolutely irreducible, 4 Extended representation group, 16
Almost quasisimple group, 115 Extraspecial group, 47–48
Almost simple group, 115
Alternating square, 2, 215 Fixed point ratio, 75, 86
Atlas, 1 Fong–Swan theorem, 31, 210

Frobenius embedding, 3, 149
Block, 19 Frobenius reciprocity, 3
Block induction, 26
Bottom (of a group), 74 Gallagher, 8, 10, 18
Brauer Atlas, 20 Glauberman, 9
Brauer character, 20 Good conjugacy classes, 10, 18, 54
Brauer correspondent, 26, 202 G-set, 6
Brauer graph, 22
Brauer’s first main theorem, 26 Hall–Higman lemma, 29
Brauer’s second main theorem, 27 Height of a character, 23, 202
Brauer–Feit theorem, 25 Higher decomposition numbers, 27, 38

Holomorph, 48–54
Cartan invariants, 21
Cauchy–Frobenius formula, 6 Induced block, 26
Central character, 5, 19–31 Induced character, 5
Centre, centralizer, 1, 2 Inertia group, 12
Class function, 1
Class sum, 1 Jacobson radical, 25
Clifford–Gallagher formula, 18
Clifford obstruction, 13 Knörr’s generalized character, 37, 196
Clifford theory, 12–18, 71, 156
Cohomology, 13, 213–216 Large reduced pair, 74
Commutator, 5, 8, 9 Liebeck–Pyber theorem, 173
Conjugacy class, 1
Core of a reduced pair, 74 Mackey decomposition, 3
Covering number, 116 Major subsection, 27, 38

Marks of a group, 6, 117
Decomposition numbers, 21, 37 Modular decomposition, 20
Defect, 23
Defect class, 24 Nagao, 31
Defect group, 24 Nonreal reduced pair, 74, 82, 110
Deleted permutation module, 63 Normal core, 3
Dual module, 45 n-vectors, 182
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O’Nan–Scott theorem, 172 Robinson–Thompson theorem, 66
Orthogonality relations, 1, 2 Root block, 203
Orthogonal modules, 45, 60

Schur cover, 16, 215
Parabolic subgroups, 95, 100–109 Schur index, 2, 5, 16
p-constrained groups, 29, 210 Schur multiplier, 14, 215
Permutation character, 6, 30 Self-dual module, 44
Permutation pair, 63, 112, 154, 199 Spectral pattern, 76
p-rational character, 31, 54 Stabilizer residual, 161
Principal block, 24 Standard holomorph, 49
Projective representation, 13 Singer cycle, 34, 195
Projective marks, 118 Spectral pattern, 76
p-solvable groups, 28, 203 Splitting field, 2

Strongly real vector, 63
Quasisimple groups, 71, 110–147 Subsection, 27, 38
Quaternion group, 35 Symmetric square, 2, 215

Symplectic group, 47, 56, 129–136
Ramification index, 12 Symplectic modules, 45, 60
Real conjugacy class, group, 7
Real vector, 63 Tensor induction, 4, 70
Reduced group, pair, 74 Trace character, 31, 38
Regular orbit, 8, 63, 112
Regular vector, 32, 63, 112 Weil characters, 56, 58, 231–226
Representation group, 15 Wreath product, 3, 169
Riese–Schmid theorem, 156
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