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Preface to the Second Edition

Astroparticle physics is an arena where things are rapidly evolving. When
we, four years after the first edition, were editing the text we found many
places where the first edition was already obsolete. This is in particular true
in Chapter 4 which treats cosmological models. Since the first edition, the
presence of ‘dark energy’ has become much more established, so we include
a new section on that topic in the new edition. In Chapter 4 we have also
included a section on the distance scale of the Universe.

We have also rearranged the sections slightly, moving the chapter on phase
transitions (Chapter 10) to become Chapter 7. In that way, we assemble the
particle physics material together in Chapters 6 and 7. We have also included
a summary page for Chapter 6, which was missing in the previous version.

We have included a discussion of a topical field, that of weak gravitational
lensing, in Chapter 5.

In Chapter 10, we have put together some of the material concerning the
presently accelerating Universe with that of primordial inflation, and have
added a section about dark energy and quintessence models.

Also in the neutrino sector much development has taken place, with two
experiments SNO and KamLAND presenting new results that pin down the
solar neutrino sector quite accurately. We have added some comments about
these experimental results in Chapter 14, and also introduced a section on
the Mikheev-Smirnov-Wolfenstein (MSW) mechanism and defined the MSW
large angle solution as indicated by the results.

The subject where the most activity is taking place at present is that
of the cosmic microwave background radiation (CMBR). During the last few
years there has been a flurry of balloon- and ground-based experiments which
have measured the angular dependence of the CMBR and used its dependence
on cosmological parameters to limit a large number of such parameters. In
February, 2003 the WMAP satellite released its first set of data. We have
added a section which discusses these new developments in Chapter 11. We
have also included a new Appendix, which deals with the problem of pri-
mordial structure formation in terms of quantum fluctuations of a scalar
field, such as predicted in theories of inflation, and which is supported by the
WMAP data. We think that this is one of the greatest intellectual triumphs
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of modern cosmology. The less sophisticated reader may, however, prefer to
skip the details.

For the convenience of the reader, we have expanded the index consider-
ably.

Finally, we have tried to correct all printing and other errors that existed
in the book. Of course, new ones will most probably be found, so it is always
wise to check on the book’s homepage www.physto.se/˜lbe/cosm book.html.

For finding the errors so far and for discussions that have improved the
contents of the book we wish to thank R. Amanullah, J. Edsjö, D. En-
ström, M. Eriksson, M. G̊alfalk, U. Goerlach, Anne Green, C. Gunnarsson,
M. Gustafsson, P.O. Hulth, L. Liljestad, and E. Mörtsell. We wish to thank
John Mason for a careful reading of the manuscript, suggesting many im-
provements.

Stockholm, October 2003 Lars Bergström & Ariel Goobar



Preface to the First Edition

The fields of cosmology and particle astrophysics (sometimes collectively
named astroparticle physics) are currently experiencing an era which will
most probably be remembered as ‘the golden age’. The developments during
the last few years have been truly astonishing, and the planning and building
of new detectors, telescopes and other experimental facilities will guarantee
an interesting decade to follow.

When attempting to convey to students our enthusiasm for these exciting
developments, and when trying to teach some of the material to undergradu-
ate and beginning graduate students, we found that a textbook of the appro-
priate level and scope was simply missing. It is our hope that this book will
be found to successfully fill the gap. In addition, we think the book will also
be very helpful for researchers in these areas and especially for those from
the many related fields of science.

It is true that there exist many excellent textbooks both in particle physics
and cosmology (many of them mentioned at the end of the first chapter), but
none which brings the student rapidly to the fields where the most exciting
developments are taking place today. We think this may be especially prob-
lematical for astronomy students, who will hardly have the time and energy
to take advanced field theory courses just to acquire some knowledge, for
instance, about the meaning of the cosmological constant. Neither will he
or she be likely to master the full gauge theory machinery of the Standard
Model of particle physics to be able to compute the cross-section for solar
neutrino scattering. Still, these are two examples of subjects of relevance to
the present-day astronomer and astrophysicist where a university education
should not leave them completely without knowledge.

A major problem we encountered when giving a course of this kind is
the very diverse background of students. To grasp the material in this book
the student should have some knowledge of advanced quantum mechanics
and classical field theory. However, not all students have this – especially
not astronomy students. To solve this without having to load the first chap-
ters with material that would be repetitious for many readers, we decided to
make fairly extended appendices, with summaries at the end, which provide
the required background. It is easily possible to use the book for an introduc-
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tory course in relativistic quantum mechanics by just using Chapter 1 and
appendices B, C and D.

We have aimed at making the book self-contained, which means that most
of the phenomena discussed in the later chapters of the book may be under-
stood from ‘first principles’. Of course this means that we have had to narrow
down the scope of the book to those areas where we think the recent devel-
opments and future prospects are especially exciting. This includes neutrino
astrophysics, structure formation and the microwave background, gamma-ray
astronomy, gravitational lensing, determination of cosmological parameters,
and gravitational waves. In addition, more ‘traditional’ topics like Big Bang
cosmology, thermodynamics, nucleosynthesis, dark matter and inflation are
treated. A chapter on phase transitions is also provided, which explains in
elementary terms how ‘exotic’ objects like cosmic strings and textures may
have been produced.

We have tried to be as up to date as possible. Among other things we
treat the technique that uses distant supernovae to determine the energy den-
sity components of the Universe. We also explain the principles behind the
atmospheric neutrino oscillation detection by the Super-Kamiokande collab-
oration, which seems to indicate that neutrinos are not massless. We present
the ideas behind the large neutrino telescopes, perhaps reaching sizes of cubic
kilometres, which are currently being planned.

Of course, the risk we take by including very new material is that the
book may age more rapidly than if we had only included standard material.
On the other hand, if the book becomes successful, the chances are high that
we will update it in the not too distant future. For small changes, additions
and other comments, please check our internet homepage for the book, at the
internet web address http://www.physto.se/˜lbe/cosm book.html.

According to our experience, the book can serve as a textbook for a one-
semester course. If the students have little previous experience with relativity,
one should devote at least two weeks each to Chapters 2 and 3. As the material
in the later chapters is quite extensive, the lecturer probably has to make
a decision as to which topics to include. The chapter on phase transition
(Chapter 7) is fairly advanced and can be omitted without affecting the
understanding of the later chapters. It gives, however, a flavour of the exciting
links between cosmology and condensed matter physics which at present are
growing stronger. Chapters 12 – 15 are also quite independent and may be
included or omitted in a course according to preference.
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The authors are grateful to several colleagues, including J. Bahcall,
P. Carlson, J. Edsjö, T.H. Hansson, P.O. Hulth, E. Mörtsell, H. Rubinstein,
G. Smoot, H. Snellman, M. Tegmark and P. Ullio for many useful comments
and suggestions, and to many students taking our course at Stockholm Uni-
versity, especially E. Dalberg, C. Gunnarsson, M. Kaufmann and L. Samuels-
son, for a careful reading of the manuscript. Special thanks go to R.A. Mar-
riott for many useful suggestions on the style of presentation.

Stockholm, November 1998 Lars Bergström & Ariel Goobar
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1 The Observable Universe

1.1 Introduction

One of the most impressive achievements of science is the development of
a quite detailed understanding of the physical properties of the Universe,
even at its earliest stages. Thanks to the fruitful interplay between theoreti-
cal analysis, astronomical observations and laboratory experiments, we have
today very successful ‘Standard Models’ of both particle physics and cosmol-
ogy. The Standard Model of particle physics involves matter particles: quarks
which always form bound states such as neutrons and protons, and leptons
such as the electron which is charged and therefore can make up neutral
matter when bound to nuclei formed by neutrons and protons. There are
also neutral leptons, neutrinos, which do not form bound states but which
play a very important role in cosmology and particle astrophysics as we shall
see throughout this book. The other important ingredients in the Standard
Model of particle physics are the particles which mediate the fundamental
forces: the photon, the gluons and the W and Z bosons.

The Standard Model of cosmology is the Hot Big Bang model, which
states that the Universe is not infinitely old but rather came into existence
some 13 to 14 billion years ago. It started out in a state which after a small
fraction of a second was enormously compressed and therefore very hot. No
bound states could exist because of the intense heat which caused immediate
dissociation even of protons and neutrons into quarks if they, by chance,
were formed in the so-called quark-gluon plasma. Subsequently, the Universe
expanded and cooled making possible the formation of a sequence of ever
more complex objects: protons and neutrons, nuclei, atoms, molecules, clouds,
stars, planets,. . . . As we shall see, the observational support for the Big Bang
model is overwhelming. The key observations are:

• the present expansion of the Universe,
• the existence of the cosmic microwave background radiation, CMBR,

the relic radiation from the hot stage of the early Universe,
• the relative abundance of light elements in the Universe, which

agrees accurately with what would be synthesized in an initially
hot, expanding Universe.
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Also, the fact that the oldest objects found in the Universe – globular clusters
of stars and some radioactive isotopes – do not seem to exceed an age around
13 billion years gives strong evidence for a Universe with a finite age, as
predicted by the Big Bang model.

Although there are still many puzzles and interesting details to fill in, both
in the Standard Model of particle physics and in the Big Bang model, they
do an amazingly good job at describing the majority of all phenomena we can
observe in nature. Combined, they allow us to follow the history of our Uni-
verse back to only about 10−10 seconds after the Big Bang using established
physical laws. Extending the models, there are scenarios that describe the
evolution back to 10−43 seconds after the Big Bang! Behind this remarkable
success are the theories of General Relativity and Quantum Field Theory,
which we shall explain thoroughly in this book. However, many fundamental
aspects of the laws of nature remain uncertain and are the subject of modern
research. The key problem at present is to find a valid description of quan-
tized gravity, something which is needed to push our limit of knowledge even
closer to (and maybe eventually explaining) the Big Bang itself.

In this chapter we shall review some of the most striking observational
facts about our Universe. Many observations and underlying physical phe-
nomena will be explained in detail in later chapters.

1.2 Baryonic Matter

Ordinary matter, made of protons and neutrons, is generically called baryonic
matter. The particle physics definition of baryonic matter also includes other
shortlived particles (see Chapter 6) but those are not stable over cosmological
time scales. In normal matter, electrons are of course also present in equal
numbers as protons. However, being almost 2000 times lighter, they do not
contribute much to the present mass density of the Universe. Baryons are
found in a variety of forms: in gaseous clouds, either of neutral atoms or
molecules, or in ionized plasma, in frozen condensations in comets and in
dense, hot, environments such as planets, stars and stellar remnants such as
white dwarfs, neutron stars and presumably in black holes. Except for planets
and stellar remnants, baryonic condensations consist mainly of hydrogen and
helium. One of the most striking confirmations of the Standard Model of
cosmology is the observed relative mass abundances of the light elements:
helium 4He (24 per cent), deuterium 2H (3·10−5), and lithium 7Li (10−9).
The synthesis of the light elements, nucleosynthesis, from neutrons and

protons, which according to the Standard Model took place through nuclear
reactions in the first hundred seconds after the Big Bang, cannot be explained
by any other known astrophysical model. The observed abundance of 4He,
for example, is significantly higher than could have possibly been produced
in stars. Heavier nuclei, on the other hand, were produced much later in
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astrophysical environments,1 and in fact only make up a very small fraction
of the total baryonic content of a typical galaxy (in that respect, the Earth
is a highly unusual place in the Universe!). The combined set of abundances:
helium, deuterium and lithium, agree nicely with observations provided that
there were many more photons than baryons during nucleosynthesis, ηB =
nB

nγ
≈ 10−9, where nB and nγ are the respective number densities.
The agreement between the data and the theory of nucleosynthesis also

has implications for particle physics. The rate of reactions involved in the
production of the light elements is sensitive to the ratio of the neutron and
proton densities (n/p) in the early Universe. As (n/p) depends on the number
of neutrino species, it is possible to constrain the existence of additional
neutrino types. The details will be explained in Chapter 9.

Example 1.2.1 Estimate how much helium could have been formed by stars
in our Galaxy assuming that the age of the Milky Way is 1010 years and that
is has been radiating all the time at its current power, L∗ = 4 · 1036 W. The
conversion of one kilogram of hydrogen to helium yields an energy production
of 6 · 1014 J.

Answer: The total produced mass of helium through hydrogen burning2 in
stars of the Milky Way becomes:

MHe =
4 · 1036 × 1010 × 3 · 107

6 · 1014
= 2 · 1039 kg

The total mass of our Galaxy is believed to be about 3 · 1041 kg, thus
hydrogen burning in stars can account for less than 1 per cent helium abun-
dance, much below the observed 24 per cent. In addition, there is no known
mechanism that can expel large quantities of helium from hydrogen burning
stars without also (like in supernovae) generating more mass in the form of
heavy elements than is observed.

1.3 Antimatter

Astronomical observations indicate that there is not much antimatter (that
is antiprotons, antineutrons, positrons, etc.) in the Universe. For example,
if sizeable amounts of antimatter were present in our Galaxy, it would be
disclosed by powerful explosions as a result of matter-antimatter annihilation.
Even more strikingly, if matter and antimatter had existed in equal amounts
at the time, say, of nucleosynthesis, they would have rapidly annihilated each
1 As a poetic side-remark, you may notice that this means that most of the atoms

in your body have resided in stars – you are made from star-stuff!
2 Hydrogen burning refers to the nuclear reactions in stars that convert hydrogen

into helium
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other due to the high density, and stable matter would never have formed.
However, there seems to have been a small excess of matter compared with
antimatter. In fact, the small baryon to photon ratio ηB ≈ 10−9, is roughly a
measure of the baryon antibaryon asymmetry that must somehow have been
created in the early evolution of the Universe. The origin of this asymmetry
has been a major puzzle for cosmologists. Today, there are particle physics
models that explain this type of depletion of antimatter in the Universe. A
key element of these models is that there are differences in the interactions
of particles and antiparticles (charge-parity or CP violation), a fact that was
discovered in the laboratory by experimental particle physicists. The detailed
mechanism at work in the early Universe is not known, however, but is the
topic of intense research at present.

1.4 The Expansion of the Universe

The crucial observational fact of modern cosmology is that the Universe is
expanding. This revolutionary idea was first proposed by Alexander Alexan-
drovich Friedmann, a young Russian mathematician and meteorologist. Fried-
mann in 1922 and, independently in 1927, Georges Lemâıtre (a Belgian priest
and scholar) found that the solutions of the equations of general relativity
of gravity in an isotropic and homogeneous Universe were not static. Thus,
the Universe should be either contracting or expanding. This prediction was
confirmed when the Universe was in fact observed to be expanding – distant
galaxies were found to be moving away from us (and from each other) with
velocities proportional to their relative distances, v = H0 ·d. This is known as
the Hubble law after its discoverer, Edwin Hubble, who published this result
in 1929. The so-called Hubble constant, H0, is one of the most fundamen-
tal parameters of modern cosmology.3 The dynamics of the expansion in the
Friedmann solution is governed by two additional parameters: the mass den-
sity of the Universe, ΩM , and the energy density associated with the so-called
cosmological constant, ΩΛ. The latter has an interesting history. As we shall
see in Chapter 4, it was introduced by Einstein in order to make a static
Universe possible. When the Hubble expansion was established, Einstein is
said to have regarded the introduction of this constant as a big mistake. It
has not been easy to remove it from the theory, however. There is nothing
that really prevents it from existing, and during several epochs of cosmology
it has been fashionable to introduce it and analyse the consequences. In fact,
as we shall se, there are today several observations which indicate that the
cosmological constant is indeed present and non-zero.
3 Note that the modern cosmological models are homogeneous and isotropic on

large scales. This means that all observers in all galaxies will find themselves to
be at the ‘centre’ of the expansion, with all other distant galaxies moving away.
A better way to express it is that there is no centre and no preferred position.
We will return to this later.
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M

m

v=
H

  d0
Fig. 1.1. A test particle on the surface of spherical piece of space escapes falling
back into the gravitational field if the mass density of space is smaller than ρc.

While the presence of a mass density slows down the expansion due to the
mutual gravitational attraction of massive bodies, the cosmological constant
ΩΛ > 0 has the reverse effect. Both ΩM and ΩΛ are dimensionless parameters
defined as ΩM = ρM/ρc and ΩΛ = Λ/3H2

0 , where ρc is the critical density
dividing an ever expanding Universe from one bound to collapse in the future
for Λ = 0. The focus of modern observational cosmology is to measure H0, ΩM

and ΩΛ with ever better precision. Today, as we will see throughout this
book, the parameters are constrained to be H0 = 60 – 80 km s−1Mpc−1,
0.2 < ΩM < 0.6 and ΩΛ ≥ 0. (One megaparsec, Mpc, is 3.26 · 106 light
years; one light year is 9.46 · 1015 m, so in SI units H0 is given in units of
3.2 · 10−20 s−1.)

Note that the energy density components of the Universe change with
time as the Universe expands. We use capital indices, e.g. ΩM , ΩΛ whenever
we refer to the density at the present time. Sometimes the index 0 is used to
denote current values of a parameter, e.g. H0. Lower case indices (Ωm, Ωλ)
denote energy densities at arbitrary times.

A ‘concordance model’, which is currently used to compare with observa-
tion very successfully, has ΩM = 0.3 and ΩΛ = 0.7.

A number of ongoing and future measurements will likely reduce the un-
certainties of all three parameters to just a few per cent. The measurements
giving ΩΛ > 0, if correct, imply that the expansion rate of the Universe is in
fact accelerating.4 This will be investigated in detail in Chapter 4.

Example 1.4.1 Use ordinary Newtonian gravity to show that a massive par-
ticle outside a spherical piece of the Universe expanding with a velocity
v = H0d (as shown in Fig. 1.1) will escape the gravitational attraction if
the density of space is ρM ≤ ρc = 3H2

0
8πG . (This result, as we will see later, is

4 The condition for positive acceleration is ΩΛ > ΩM
2

.
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the same as in a full analysis based on Einstein’s general relativity theory.
However, as Einstein noticed, there may appear a cosmological constant in
the Universe, the presence of which could change the result.)

Answer: For a test particle with exactly the escape velocity conservation
of energy implies that:

mv2

2
− GMm

d
= 0 (1.1)

where the first term is the kinetic energy and the second is the gravitational
potential energy due to the matter within the sphere of radius d. That is, as
the test particle reaches infinity it has lost all its kinetic and gravitational
energy.

Inserting the Hubble law, v = H0d and M = 4πρcd3

3 we find the expression
for the critical mass density:

ρc =
3H2

0

8πG
(1.2)

Numerically, 1.2 gives the present value of the critical density (it is, as we
will see later, time-dependent, and was much larger during earlier epochs of
the Universe)

ρ0
crit = 1.9 · 10−29h2 g cm−3 (1.3)

where it is very convenient (we will do so throughout the book) to put the
observational uncertainty of the present Hubble expansion rate into the di-
mensionless parameter h, defined as

h =
H0

100 km s−1 Mpc−1
(1.4)

where observations of H0 presently restrict h to be in the range between 0.6
and 0.8.

1.5 Dark Matter

The success of the theory of primordial nucleosynthesis makes it also pos-
sible to put limits on the density of matter in the Universe in the form
of baryons, ΩB = ρB/ρc. Using h defined as in (1.4), or equivalently
H0 = h · 100 km s−1Mpc−1, the obtained limits from the comparison of
the abundance data to the theory can be written as: 0.014 ≤ ΩBh2 ≤ 0.026
[11]. Actually, the analysis of new data which we will describe in Chapter 11,
gives the result ΩBh2 = 0.0224 ± 0.009.

Using the value of h between 0.6 and 0.8 we find that the mass density of
baryons thus appears to be significantly lower (by a factor 5 – 8) than the to-
tal matter density, ΩM ∼ 0.3, which is our first contact with the dark matter
problem. There is a large amount of astronomical evidence indicating that
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a)

b)

Fig. 1.2. Rotation curves of spiral galaxies. a) Optical image of the galaxy
NGC1097 where the 4 arcmin distance from the core is shown in the right-hand
side. (One arcminute is 1/60 of one degree; one arcsec is 1/60 of 1 arcmin.) To the
left, a composite rotation curve made of radio observations of the Doppler shifts
in CO line emission and the HI (21 cm) line. b) Similarly for the edge-on NGC891
galaxy, with a scale reaching 5 arcminutes from the galaxy center. Courtesy of Y.
Sofue, Institute of Astronomy, Tokyo [45].

there is more matter than what can be associated with the luminous parts
of the galaxies. For example, the orbital velocity of stars and gas clouds as a
function of their distance from the galaxy core in spiral galaxies contradicts
Kepler’s third law unless the distribution of mass extends far beyond the
visible galaxy core. For distances beyond the visible galaxy disk, the orbital
velocities should decrease with the distance as vorb ∝ r−

1
2 . Instead, the ob-

servations indicate that the rotation curves flatten out, that is vorb ≈ const,
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as shown in Fig. 1.2, based on CO and neutral hydrogen (so-called HI) line
emission outside the disk region. Then, unless classical Newtonian mechanics
breaks down at scales of the size of spiral galaxies, a new massive source of
gravity that does not emit any radiation, therefore called dark matter, has
to be introduced. The rotation curves can be made compatible5 with expec-
tations if the galaxy cores are surrounded by a dark ‘halo’ with ρDM ∝ r−2

over some intermediate range of r. The mass density in luminous matter in
galaxies is found to be only ΩLUM ≈ 0.01. The dark matter halo is at least
ten times as massive, ΩHALO ≈ 0.1 − 0.3.

Example 1.5.1 Use Kepler’s third law to show that orbital velocities of stars
far from a massive core should fall as vorb ∝ r−

1
2 , where r is the distance to

the core.

Answer: According to Kepler’s third law:

GM(r) = v2
orb · r (1.5)

Thus, for radial distances far from the galaxy core with mass M one expects
to find:

vorb =

√
GM

r
(1.6)

In fact, the amount of dark matter needed to explain the rotation curves
may be in excess of what is consistent with the limits on baryonic matter from
primordial nucleosynthesis. Although some fraction of the ‘invisible’ matter
is certainly baryonic – for example, faint stars and black holes – other dark
matter candidates have been proposed, for example exotic putative particles
produced in connection with the Big Bang such as axions, massive neutrinos,
neutralinos, monopoles or primordial black holes.

Dynamical tests of mass densities at even larger scales – for example,
studies of the motions of galaxies in galaxy clusters – indicate that the mass
density is possibly larger, ΩM ≥ 0.2. Through the study of gravitational lens-
ing and X-ray emission from the hot gas in such clusters it can be concluded
that most of this matter is dark.

It should be noted that these arguments for a lower density of baryonic
matter than what seems to be inferred for ΩM from observations are some-
what indirect, depending on the observed luminosity density and then using
estimates for the mass to light ratio of certain objects. On the largest scales,
observations of the cosmic microwave background and the study of the growth
of large-scale structure in the Universe also point to the existence of large
amounts of dark, non-baryonic, matter.
5 Modifications of the theory have been proposed to explain the rotation curves

without changing the mass distribution of galaxies. These modifications are,
however, incompatible with other types of astronomical observations.
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Currently, the most accurate global measurements of the mass density
and vacuum energy density of the Universe stem from the combined studies
of brightness of high-redshift supernovae as a function of redshift and the
anisotropies of the cosmic microwave background radiation. The principles
and results of these methods are described in detail in Chapters 4 and 11.
These methods, in particular the analysis of the microwave background, are
based on fundamental physics to larger extent than other methods to deter-
mine mass and energy densities, but are on the other hand more dependent
on a proper understanding of cosmology on the largest scales in the Universe.

The recent exciting progress in optical astronomy is mainly due to the
development of large CCD cameras and telescopes such as the 2.4-metre
Hubble Space Telescope (HST), the 10-metre ground-based Keck telescopes
and the Very Large Telescope (VLT) at the European Southern Observatory
(ESO) site in Chile, an array of four 8-metre telescopes which can work
together forming the largest optical/IR telescope in the world. The imaging
power of HST can be appreciated in colour Plate 1.6 A next generation space
telescope (the James Webb Space Telescope, JWST) is being designed and
it will eventually replace NASA’s successful Hubble Space Telescope.

1.6 The Age of the Universe

The equations of the Standard Model of cosmology due to Friedmann allow
us, as we will see, to calculate the time tU since the beginning of the expansion
of the Universe. Of course, tU as such is not a directly measurable number.
Moreover, it depends on the entire history of the Universe, parts of which
are unknown, in particular for the earliest history close to the Big Bang.
However, in most models this only affects the estimated value of tU by a
completely negligible amount like a fraction of a second or so. We can thus
compare calculations of tU using simple cosmological models with estimates
(or, rather, lower limits) of the age of the Universe, such as the ages of the
oldest stars in the Milky Way, or the age of radioactive nuclei in cosmic rays.

The numerical answer to the age of the Universe for a given cosmology
requires the knowledge of the three observable cosmological parameters H0,
ΩM and ΩΛ: tU = H−1

0 ·F (ΩM , ΩΛ). The functional dependence is such that
the age of the Universe increases with ΩΛ and decreases with ΩM . With the
present observational uncertainties, the age of the Universe is in the range 13–
14 billion years. The range coincides roughly with the estimates of the ages
of the oldest stars in our Galaxy. Stellar ages are measured by comparing
models of stellar evolution to ensembles of stars in star clusters, the oldest of
which are the globular clusters. Globular clusters are believed to be among
the oldest gravitationally bound systems in the Universe, formed within one
or two billion years after the Big Bang. The age of the solar system has been
6 The colour plate section is positioned in the middle of the book.
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determined through radioactive dating of terrestrial rocks and meteorites
to be about 4.5 billion years (or giga-years, Gyr). The radioactive dating
method can be extended to extract the age of the Galaxy provided one has a
model of the time history of the production of the heavy long-lived isotopes of
uranium, thorium and lead. The derived age of the Galaxy from such models
also ranges between 10 and 20 Gyr. The consistency between the different
dating methods and the estimate of the age of the Universe based on the
present expansion rate is again an impressive example of the success of the
Big Bang model.

1.7 The Left-Overs from the Big Bang

The discovery of the cosmic microwave background radiation (CMBR) in
19647 was crucial for the Standard Model of cosmology. Along with the dis-
covery of the expansion it marked the beginning of a new era also for obser-
vational cosmology. The radiation, a relic from the hot Big Bang, has been
cooling along with the expansion of the Universe. Its existence had been pre-
dicted by George Gamow and collaborators in the 1940s, but had been largely
forgotten. Its measured Planck spectrum reveals an astonishing homogene-
ity at a temperature of 2.7 Kelvin. The angular variations in temperature
are only ∆T/T ∼ 10−5 and are of great importance for the understanding of
structure formation and for the determination of the cosmological parameters
(see Chapter 11).

About four hundred thousand years after the Big Bang, the expanding
Universe became transparent to radiation, and the thermal photons which
existed then as an effect of the hot early epochs could start to move freely.
Today, there are around 400 such ‘left-over’ photons per cubic centimetre
and the uniformity in the spectrum at all angles reflects the high level of ho-
mogeneity in the early Universe. The CMBR has been studied with ground-
based and balloon-borne experiments for many years, recently with radi-
cally increased precision. However, the need for large sky coverage and good
signal-to-noise ratio has also focused the observational efforts towards satel-
lite experiments. NASA’s first satellite dedicated for cosmology, Cobe, was
launched in 1989 and its successor, WMAP, presented its first set of data in
2003. Along with the planned European Planck mission, these are likely to
become major milestones in the history of observational cosmology.

1.8 New Windows to Cosmology and Particle Physics

Besides electromagnetic radiation, a relic density of neutrinos and, possibly,
other weakly interacting massive particles (Wimps) are expected to populate

7 The results were published in 1965.
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the Universe, explaining the dark matter. The physics behind such hypothet-
ical relics is easy to understand. In the earliest Universe, the temperature
was so high that thermal kinetic energies of the constituents of the ‘cosmic
soup’ were high enough to pair-produce these particles, if they exist. Once
created, they could also annihilate each other to produce ordinary particles.
However, as the Universe expanded the number density was diluted, eventu-
ally making it improbable that two particles would meet and annihilate. If
these Wimps are stable (or at least have a lifetime which is not much shorter
than the age of the Universe) a population of such particles should thus have
survived until today. It can be shown (Chapter 9) that massive particles with
weak interactions indeed would contribute an amount to ΩM which is close
to what seems to be needed according to observations.

As these Wimps do not interact with radiation they do not emit or ab-
sorb light and are therefore excellent dark matter candidates. Probing their
existence is clearly of interdisciplinary interest. While they might solve the
dark matter puzzle and could be of critical importance for understanding
the growth of large structures in the Universe, they are potentially equally
fundamental in the subatomic world.

The Standard Model of particle physics has been extremely successful in
explaining most of the experimental results from non-gravitational interac-
tions of particle beams with energies up to about 1 TeV (1012 eV, that is
1000 times the rest energy of the proton). However, the model fails to ex-
plain a number of fundamental facts such as why there are three fundamental
interactions (gravity, electroweak, and strong interaction). The total number
of particles in nature as well as their masses and electric charge are also im-
portant features that are not predictable by the theory. The Standard Model
is therefore believed to be a low energy manifestation of a more fundamen-
tal theory, a ‘Theory of Everything’. Attempts at formulating such theories
reveal that they require the existence of more particles in the Universe than
the ones yet observed and are therefore consistent with the astrophysical
observation of the missing mass.

What experiments can prove (or disprove) their existence? The European
particle physics laboratory CERN has launched an ambitious programme for
this quest. The Large Electron Positron Collider (LEP), which was operating
from 1989 until the year 2001 managed to explore the mass range up to
around 115 GeV/c2, with no new particles found. (As the beams collided
their kinetic energy was available for the creation of new particles.) The same
accelerator complex outside Geneva will be upgraded to accelerate protons
to 8 TeV. This Large Hadron Collider (LHC), planned to be operational by
2007, has two interaction points were the beams from opposite directions
interact. The centre-of-mass energy at the LHC collision points correspond
to the temperature of the Universe just 10−11 seconds after the Big Bang!

If there are stable Wimps of cosmological origin in the solar system they
could be detected by two types of experiment. The ‘direct’ detection method
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is to look for nuclear recoils or ionization in a sensitive detector stored in
an underground site (to shield it from cosmic rays which penetrate the at-
mosphere). The detector can then be excited by the weak elastic collisions
caused by the passage of neutral Wimps. One of the ‘indirect’ methods re-
lies on the fact that since Wimps lose energy through collisions inside the
Sun and Earth, some will be gravitationally trapped. Neutrinos produced in
Wimp annihilations in the centre of the Sun and the Earth may one day be
detected with the large neutrino telescopes being constructed, as discussed
in Chapter 14. Current results, based on experiments with a much smaller
detection volumes, are shown in Fig. 1.3. The marked regions indicate the pa-
rameters for putative Wimps, predicted in so-called supersymmetric models,
presently excluded by the experiments.

Wimp annihilations in the galactic halo can also be searched for. A possi-
ble signature is a non-negligible flux of low-energy antiprotons or positrons.
As we have remarked, there seems to be very little antimatter present in the
Universe. A small amount of antiprotons and positrons has been detected in
the cosmic rays, but this can be explained by pair-production when high-
energy cosmic rays (mainly protons and nuclei) interact with gas in the in-
terstellar medium. There will be several space experiments in the near future
which will search for such a signal [3].

A striking experimental signature would be a monoenergetic gamma-ray
line from χχ → γγ, i.e. Wimp annihilations into two photons (each with Eγ =
Mχc2) in the Galaxy halo. Such a signal can be searched for with gamma-ray
telescopes with good energy resolution, such as the future GLAST satellite
[15] or the planned large arrays of ground-based gamma-ray telescopes.

1.9 Problems

1.1 Use Kepler’s Third Law to estimate the orbital speed of the solar system
at about 8 kpc from the centre of the Milky Way.

1.2 Use Newtonian gravity to calculate the escape velocity for a particle at
the surface of the Earth and the Sun.

1.3 Show that a galaxy mass distribution ρ ∝ r−2 is consistent with flat
rotation curves.

1.4 The estimated mass energy density of dark matter in the solar neigh-
bourhood is around 0.3 GeV/cm3. Suppose that it is made of Wimps of rest
energy (mass energy) 100 GeV.

(a) How many Wimps are roughly inside your body at any particular
time?

(b) What is the flux, i.e. the number of particles per cm2 per second if
they move with typical galactic velocities, v ∼ 200 km/s?
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Fig. 1.3. Predicted rates and limits from direct and indirect Wimp detection. Each
point represents one set of supersymmetric parameters. The figure on the left shows
the predicted scattering cross-section on protons or neutrons in picobarns (1 pb =
10−36 cm2) for supersymmetric Wimps, neutralinos, as a function of neutralino
mass. The shaded area is the region explored by current detectors which are sensi-
tive to the ‘wind’ of Wimps which the Earth traverses when the whole solar system
moves through the Milky Way. The right-hand figure shows the muon flux from the
direction of the centre of the Earth stemming from neutrinos generated in annihila-
tions of accumulated Wimps. Models above the lines, from current experiments, are
excluded by upper limits on such a muon flux. Figures produced by L. Bergström,
J. Edsjö, P. Gondolo and P. Ullio.



2 Special Relativity

2.1 Introduction

Much of the excitement in present-day particle astrophysics and cosmology
has to do with energetic processes, where particles of high energy are in-
teracting with each other and with ambient matter and radiation. We shall
thus need to treat a number of processes where particles move with velocities
very close to the speed of light. For those processes classical physics cannot
provide reliable answers. Therefore we need to use the framework of spe-
cial relativity. The theory of special relativity, developed by Einstein in the
early 20th century, is essential for formulating a correct theory of elementary
particles and their interactions (the other necessary ingredient is quantum
mechanics). The marriage between special relativity and quantum mechanics
was achieved in the 1940s and resulted in quantum field theory, the prime
example being quantum electrodynamics (QED), which has been extremely
successful in describing all electromagnetic phenomena. In the 1970s and 80s,
the strong and weak interactions of elementary particles were also success-
fully formulated as relativistic quantum field theories, which we will discuss
in Chapter 6.

In fact, there is one familiar interaction for which neither special rela-
tivity nor quantum mechanics is applicable, namely gravitation. In order to
treat classical (that is non-quantum mechanical) gravity, Einstein succeeded
in generalizing special relativity to a framework that is known as general
relativity, which is a cornerstone of modern cosmology and which we shall
return to in Chapter 3. The problem of constructing a quantum theory of
gravitation remains unsolved, however – even if there is now hope that the
so-called string theories or ‘M theory’ may finally provide a solution.

In this chapter, we give a brief review of some aspects of special relativity
needed for this book. For a more thorough treatment, see standard textbooks
[23, 39].

2.2 Frames, Coordinates and Metric

An important concept in special relativity is that of an inertial frame. This
is a reference system where a body that is not subject to any forces remains
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at rest or in steady, rectilinear motion. Of course, such a system is strictly
an idealization since there exist long-range forces in nature that cannot be
screened. Also, for example, the rotation of the Earth around its axis and
around the Sun means that there are inertial forces, so an object at rest
with respect to the Earth’s surface is not in an inertial frame. However, for
practical purposes, this is rarely an important effect, and a frame at rest or in
steady motion with respect to distant stars is an even better inertial frame.

Postulates of Special Relativity

The theory of special relativity rests on two innocent-looking postulates:

• The laws of physics take the same form in all inertial frames.
• The velocity of light in vacuum, c, is a universal constant, which

has the same value (∼ 3 · 108 m/s) in all inertial frames.

2.2.1 Coordinates

To develop the consequences of these postulates it is convenient to introduce
four coordinates that parametrize space-time, x0 = ct, x1 = x, x2 = y,
x3 = z, or

xµ = (ct, r) = (ct, xi) (2.1)

where the Greek index µ runs over the values 0, 1, 2, 3 and the latin index i
takes the values 1, 2, 3 (we will use this convention throughout the book for
Greek and Latin indices, respectively).

The second postulate means that if we follow one and the same light-ray
in two inertial coordinate systems, with sets of coordinates xµ and x′µ, and
look at the time difference ∆t, ∆t′ of the passage of the light-ray through a
distance |∆r|, |∆r′|, the velocity of light has to be the same, that is,

c =
|∆r|
∆t

=
|∆r′|
∆t′

(2.2)

Or, put in another way, when we transform between two inertial systems the
combination (the so-called line element)

ds2 = c2dt2 − |r|2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 (2.3)

has the same value in both systems. In the case of a light-ray, this value is
ds2 = 0, and the separation in space and time (space-time, for short) is said
to be light-like. We characterize a space-time event by a value of time at
a point in space. This could be an instant flash from a point source, or the
passage of a particle at a particular point in space at a particular time. It is
easy to see that ds2 calculated between two nearby space-time events can, in
contrast to the positive-definite three-dimensional Euclidean case, either be
positive or negative:
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ds2 > 0 time − like separations
ds2 < 0 space − like separations
ds2 = 0 light − like separations

(2.4)

2.2.2 Metric and Transformations

With the use of the line element (2.3) we have a way to quantify the ‘dis-
tance’ between nearby space-time events. The equation for the line element
has certain interesting properties when we change our coordinate system, our
reference frame. We will soon discuss how to transform between two differ-
ent inertial frames. Before doing this, it is useful to compare with the more
elementary example of rotations in three-dimensional Euclidean space. The
distance squared between two neighbouring points in space is

ds2 = (dx1)2 + (dx2)2 + (dx3)2 =⎛⎝dx1

dx2

dx3

⎞⎠T ⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠⎛⎝dx1

dx2

dx3

⎞⎠ = (dr)T G(dr) (2.5)

Here we have introduced a 3 × 3 matrix G (in this case, equal to the unit
matrix I), which tells us how to construct the quadratic form in the dxi which
corresponds to (the square of) the distance. This matrix is called the metric
tensor. If we did not use orthogonal axes, or if the basis vectors were not
unit vectors, the matrix would be more complicated (but still symmetric). A
more compact way of writing this equation is

ds2 =
3∑

i,j=1

Gijdxidxj ≡ Gijdxidxj (2.6)

where the last form utilizes the Einstein summation convention: any index
that is repeated twice is summed over. In cartesian coordinates, the elements
of the G matrix are constant (that is independent of xi), and are in fact equal
to

Gij = δij (2.7)

where δij is the Kronecker delta function:

δij =
{ 1, if i = j;

0 otherwise
(2.8)

We know, however, that we can equally well use spherical coordinates r,
θ and φ to parametrize Euclidean space, and then G is a function of the
coordinates. Since in spherical coordinates

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2 (2.9)
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we see that Grr = 1, Gθθ = r2, and Gφφ = r2sin2θ. These coordinates are
still orthogonal, which means that we obtain a volume element dV by in turn
varying one of r, θ and φ while keeping the other two coordinates fixed. This
gives dV = r2 sin θdrdθdφ, which can be written

dV =
√

detG drdθdφ (2.10)

a formula that is more generally valid for any curvilinear coordinate system.
Returning to the cartesian case, suppose that we rotate the coordinate

system

r′ = Rr (2.11)

with R a 3 × 3 matrix, which keeps the axes orthogonal and normalized. As
is known from basic linear algebra, this means that

R−1 = RT (2.12)

and we know that just rotating the coordinate system should not change
distances between points. Thus,

ds′2 = (dx
′1)2 + (dx

′2)2 + (dx
′3)2 = (dr′)T Gdr′

= (Rdr)T G (Rdr) = drT RT GRdr = drT Gdr = dr2 = ds2 (2.13)

The distance between neighbouring points is invariant under rotations,
and this is assured since the rotation matrices fulfil the condition

RT GR = G (2.14)

or in component notation (remember the implicit summation over repeated
indices)

RkiGklRlj = Gij (2.15)

As an example, the orthogonal matrix that rotates an angle θ around the
x3-axis can be written

R(z; θ) =

⎛⎝ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞⎠ (2.16)

The fact that R−1 = RT is obvious in this case, since we see that taking
the transpose is the same as letting θ → −θ, and rotating by a negative
angle around a given axis is obviously the inverse operation to rotating by
the same, but positive, angle.

2.3 Minkowski Space

What are the transformations in space-time that generalize rotations in three-
dimensional Euclidean space? Of course, even if we consider one and the same
inertial frame moving with a fixed velocity, we may still rotate the spatial
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part of the coordinate system. The four-dimensional (4 × 4) rotation matrix
then factorizes as

Λrot =
(

1 0
0 R

)
(2.17)

where R is a 3 × 3 rotation matrix.

x

y

z z'

y'

x'

v

Fig. 2.1. Two inertial frames moving with relative velocity v.

Suppose that instead we keep the directions of the axes fixed, but let a
new inertial system move with constant velocity v in the direction of the
x1-axis (see Fig. 2.1). This system is said to be Lorentz-boosted along the
x1-axis with respect to the first. Then the four-dimensional ‘rotation’ (or
Lorentz boost) is given by

Λ(x1; v/c) =

⎛⎜⎜⎝
γ −βγ 0 0

−βγ γ 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ , (2.18)

where

β =
v

c
(2.19)

γ =
1√

1 − β2
(2.20)

We can rewrite it in a convenient form by introducing

β = tanh ζ (2.21)

Then
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Λ(x1; ζ) =

⎛⎜⎜⎝
cosh ζ − sinh ζ 0 0
− sinh ζ cosh ζ 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎠ (2.22)

We can see (Problem 2.2) that this transformation leaves the form ds2 =
(dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 invariant; specifically it will also then leave
the velocity of a light-ray invariant, as required by the second postulate of
special relativity. The four-dimensional metric for an inertial frame that is
the analog of the 3× 3 matrix Gij in (2.5) in three-dimensional space is thus

ηµν =

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠ (2.23)

where µ and ν run from 0 to 3. This metric is called the Minkowski metric,
and space-time with this metric is called Minkowski space. The reader should
be warned that there is unfortunately no universal definition of the Minkowski
metric. Quite often the definition ds2 = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2

is used, and then all the components of (2.23) change sign. Of course, no
physical result will depend on this convention, however, some intermediate
results may look different.

If we define xµ ≡ ηµνxν (we see that for the Minkowski metric this just
amounts to changing the sign of the three space-components), then we can
conveniently write ds2 = dxµdxµ = dxµdxµ.

The condition for any Lorentz transformation (rotation or boost)

xµ → x′µ = Λµ
νxν (2.24)

to preserve the ‘distance’ ds2 can be derived in a similar way as for (2.14):

ΛT ηΛ = η (2.25)

or

Λρ
µηρσΛσ

ν = ηµν (2.26)

Taking the determinant of both sides of this equation, one sees that det(Λ) =
±1. Usually, we will only consider so-called pure Lorentz transformations
which have det(Λ) = +1. They can be continuously connected to the trivial
unit transformation through a formal sequence of infinitesimal transforma-
tions.

An example of a transformation which has det(Λ) = −1 and which there-
fore cannot be continuously connected to the unit transformation, is the
reflection operator Λr, which takes xµ = (x0, r) to xµ = (x0,−r). Unlike the
pure Lorentz transformations, which depend on a continuous set of parame-
ters (the velocities v and the rotation angles), the reflection operator is an
example of a discrete operator. Acting twice with that operator gives back
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the original coordinates, that is Λ2
r = I, with I the unit operator (that is the

unit matrix). From a mathematical point of view, Lorentz transformations
form a group, and the reflection transformation together with the unit oper-
ator corresponds to a discrete subgroup of the full Lorentz group. The term
discrete, as opposed to continuous, means that the subgroup contains a finite
set of elements – in this case only the two elements I and Λr. (This group is
sometimes called Z2.)

When studying properties of the pure Lorentz transformations it is usually
enough to look at infinitesimal transformations. We then write

Λµ
ν = δµ

ν + λµ
ν (2.27)

Here δµ
ν is the four-dimensional Kronecker delta function, defined in the same

way as the three-dimensional one, meaning that it is unity only for the two
indices being the same; otherwise it is zero. The quantites λµ

ν are all assumed
to be infinitesimally small. If we now demand a2 = aµaµ = a′2 = a′µa′

µ for
an arbitrary four-vector aµ, we find by inserting (2.27) in the transformation
rule a′µ = Λµ

νaν

a2 = a′2 = a2 + λµ
νaνaµ + λ ν

µ aµaν + O(λ2) (2.28)

Thus,

λµ
νaνaµ + λ ν

µ aµaν =
(λµ

ν + λ µ
ν ) aνaµ = (λµν + λνµ) aµaν = 0

which means

λµν = −λνµ (2.29)

That is, λµν is an antisymmetric tensor which implies that it has 6 indepen-
dent components. In particular, the diagonal elements are zero. There are
thus 6 independent parameters (for example 3 rotation angles and 3 boost pa-
rameters) characterizing the part of the Lorentz group which is continuously
connected to the unit transformation. If we also had considered translations
(‘inhomogeneous transformations’) of the coordinates, xµ → λµ

νxν +bµ with
bµ a constant four-vector, we would have four additional parameters. The full
inhomogeneous Lorentz group (or the Poincaré group) is thus described by
10 parameters.

Since the Lorentz transformations are linear transformations of the coor-
dinates

xµ → x′µ =
∂x′µ

∂xν
xν (2.30)

we see that the matrix Λµ
ν can be expressed as

Λµ
ν =

∂x′µ

∂xν
(2.31)

and the inverse transformation (see Problem 2.6)

Λ µ
ν =

∂xµ

∂x′ν (2.32)
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2.3.1 Causal Structure of Space-Time

The light-cone with respect to an event P1, say, at the origin of an inertial
reference frame at time t = 0, is defined by ∆s2 = 0, where ∆s is the space-
time distance between P1 and another event P2 (see Fig. 2.2).

x
y

t

P1

Fig. 2.2. The light-cone through a space-time event P1. The points inside the cone
for t > 0 (the future light-cone) can be reached by an observer travelling with a
velocity smaller than that of light. Likewise, the points inside the past light-cone
(t < 0) are causally connected to P1.

Points inside the light-cone have ∆s2 > 0, and are said to be causally
connected to the observer. This is because c∆t > ∆r so that the event P2

can be reached from P1 by signals travelling slower than with the velocity
of light. If ∆s2 < 0 (on the outside of the lightcone) P1 and P2 cannot be
connected by any means – the events are causally disconnected.

2.3.2 Vectors, Scalars and Tensors

A set of four quantities that transform in the same way as the differential
dxµ under Lorentz transformations is called a contravariant four-vector. A
set that transforms like dxµ is called a covariant four-vector. A quantity that,
like ds2, is invariant under Lorentz transformations is called a four-scalar or
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Lorentz scalar. An important example of a covariant four-vector (see Problem
2.5) is provided by the four-gradient of a four-scalar:

φ,µ ≡ ∂φ

∂xµ
(2.33)

In general, we can for any contravariant four-vector Aµ use the metric
tensor ηµν to ‘lower the index’ of Aµ to obtain the covariant four-vector
Aµ = ηµνAν . The usefulness of four-vectors and scalars in special relativity
is due to the fact that if we can write the laws of nature in terms of such
objects, they will have the same form in all inertial systems (they will be
so-called manifestly covariant), in agreement of Einstein’s first postulate. It
is easy to generalize to higher tensors. One example is the direct product of
two four-vectors, which is called a second-rank tensor, Tµν = AµBν . There
are second-rank tensors that cannot be written as simply a direct product
of two four-vectors, but in each index the transformation property is as if
it was. If Cµν is a second-rank tensor, it thus changes under the Lorentz
transformation xµ → x′µ = Λµ

νxν as

C ′µν(x′) = Λµ
αΛν

βCαβ(x) (2.34)

Out of two four-vectors one can also form a four-scalar, the scalar product
of the two vectors, S = A.B ≡ ηµνAµBν = AµBµ = AµBµ. This can also be
seen as the contraction of indices of the tensor Tµν = AµBν , Tµ

µ = AµBµ.
As a special example, the scalar obtained by contracting a four-vector with
itself, A2 ≡ A.A = AµAµ is an invariant under Lorentz transformations: that
is, its numerical value is unchanged when we change inertial system.

In special relativity, it may seem rather luxurious to introduce both covari-
ant and contravariant versions of the same four-vector, since they only differ
in the sign of the space components, Aµ = ηµνAν = (A0,−A1,−A2,−A3).
However, often it provides a useful check of the relativistic covariance of a set
of equations. In general relativity the relation between the two will be less
trivial, as we shall see in Chapter 3 and Appendix A.

2.4 Relativistic Kinematics

For a point particle of mass m, an important four-vector is the four-
momentum pµ,

p0 = E/c, p1 = px, p2 = py, p3 = pz (2.35)

where E is the total energy of the particle

E = γmc2 (2.36)

and p the relativistic linear momentum

p = γmv (2.37)
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This means that

v =
c2p
E

(2.38)

We see that the relativistic γ factor for a particle of given energy can be
written

γ(v/c) =
E

mc2
(2.39)

We saw in (2.20) that γ can also be written as γ = 1/
√

1 − β2, with β = v/c.
As β → 1 this diverges, which shows that a massive particle can never attain
the speed of light, since it would cost infinite energy to accelerate it to that
speed. The variation of γ with β, or rather 1 − β, is shown in Fig. 2.3.
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Fig. 2.3. The dependence of the relativistic gamma factor γ(β), where β = v/c,
on the velocity v. The quantity on the horizontal axis is 1−β = 1− v/c. As can be
seen, in a logarithmic scale the dependence is close to being a straight line except
for β close to zero.

We can also solve for β to find
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β =
v

c
=
√

1 − 1
γ2

(2.40)

For v/c close to one, that is for large gamma factors γ 	 1, this can be
expanded to give

(1 − β)γ�1 ∼ 1
2γ2

(2.41)

Example 2.4.1 At the electron positron collider LEP at CERN outside Ge-
neva, electrons were accelerated to more than 100 GeV. What is the velocity
of an electron of 100 GeV total energy? The rest energy of an electron is 511
keV.

Answer: The γ factor is

γ(v/c) =
E

mec2
=

100GeV
0.511 · 10−3 GeV

= 1.96 · 105

From Fig. 2.3 (or (2.41)) we find 1− v/c ∼ 1.3 · 10−11. These electrons thus
travel with 99.999999999 per cent of the speed of light!

Example 2.4.2 Calculate the value of the four-scalar p2.

Answer: Let us determine the four-momentum in a particularly simple inertial
system, namely that in which the particle is at rest. Then pµ = (mc,0),
which means that p2 = m2c2. Since this is a scalar, it has to have this value
in any inertial system. Let us check with the general expression in (2.35):
p2 = γ2m2c2 − γ2m2v2 = m2c2γ2(1 − (v/c)2) = m2c2.

From this example we see that another four-vector is given by pµ/m =
γ(c,v). This is called the four-velocity v,

vµ = (γc, γv) (2.42)

which has the invariant length squared v2 = c2, and the relation between
momentum and velocity is the familiar p = mv, with now both p and v being
four-vectors (we shall often suppress the Lorentz index; the equation is really
pµ = mvµ, which of course means that the equality holds separately for all
values of the index µ).

The four-distance between two events on the trajectory of a massive par-
ticle moving with constant velocity v is time-like and is most easily calculated
in the rest frame of the particle ∆s2 = (∆x0)2 = (c∆τ)2, where τ is the time
measured by a clock following the particle, called the proper time. Thus, for
a clock that moves with the particle dxi = 0, we find in such a frame trivially
that

ds2 = c2dτ2 = ηµνdxµdxν (2.43)

and since this is written in an explicitly Lorentz-invariant (or covariant) form,
it has to be valid in all inertial frames.
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Since the differential of the proper time

dτ =
1
c

√
ηµνdxµdxν (2.44)

is Lorentz invariant, we can use it to form other four-vectors. As an example,
the four-velocity v can also be defined as v = dx/dτ , which is the obvious four-
dimensional generalization of the non-relativistic three-velocity v = dr/dt.
Using p2 = m2c2, it is easy to see that

E =
√

p2c2 + m2c4 (2.45)

In particular, for a massless particle (such as the photon), E = c|p|.
Just as in elementary mechanics, there are conservation laws in relativistic

mechanics, the most important one being the conservation of four-momentum
which is valid in the absence of external forces. In any elementary collision
process, the sum of the four-momenta of the initial state particles is equal
to the sum of the four-momenta of the final state particles. In addition, all
particles travelling freely before and after the collision process fulfil the so-
called mass-shell condition p2 = m2c2.

With p = mv, we can write Newton’s force law in the four-dimensional
form

fµ =
dpµ

dτ
(2.46)

which defines the four-vector force f . Using pµ = mvµ = mdxµ/dτ , we find

fµ = m
d2xµ

dτ2
(2.47)

In particular, if we have a free particle so that fµ = 0, it will follow a path
given by

d2xµ

dτ2
= 0 (2.48)

We can easily solve this equation:

xµ(τ) = vµ
0 τ + xµ

0 (2.49)

which is the equation for a straight line in Minkowski space.

2.4.1 Kinematics for 2 → 2 Processes

A common processes of interest in particle physics, astrophysics and in the
physics of the early Universe, is the collision between a pair of particles
of masses m1 and m2 and four-momenta p1 and p2. In relativistic physics,
neither the number nor the type of particles need to be preserved. However, let
us treat the simplest 2 → 2 process, with particles 1 and 2 in the initial state
and 3 and 4 in the final state. If we neglect possible spin degrees of freedom
of the particles, the kinematic state of the particles is described by their
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respective four-momenta. According to special relativity, the basic scattering
process should be determined by Lorentz-invariant quantities. Starting with
four four-momenta, we can form six Lorentz-invariant products pi.pj with
i 
= j. However, overall four-momentum conservation means p1 + p2 = p3 +
p4, which imposes four relations (one for each component). Thus, there are
only two independent kinematical four-scalars which for historical reasons
are usually taken to be

s = (p1 + p2)2 t = (p1 − p3)2 (2.50)

Example 2.4.3 Show that the invariant u = (p1 − p4)2 is not independent of
s and t.

Answer: u = (p1 − p4)2 = p2
1 + p2

4 − 2p1.p4 = m2
1c

2 + m2
4c

2 − 2p1.p4. Now,
p1 = p3+p4−p2, and multiplying this equation by p4, and using s = (p3+p4)2,
t = (p1 − p3)2, one finds (fill in the missing steps!)

s + t + u =
(
m2

1 + m2
2 + m2

3 + m2
4

)
c2

which means that u is linearly dependent on s and t. The set {s, t, u} is
usually referred to as the Mandelstam variables.

Example 2.4.4 Show that c
√

s is the total energy in the centre of momentum
frame of the two incoming particles.

Answer: In the centre of momentum frame, the three-momenta of the particles
are of equal magnitude but of opposite direction, thus pcm

1 = (Ecm
1 /c,pcm),

pcm
2 = (Ecm

2 /c,−pcm). Thus,
√

s = (Ecm
1 + Ecm

2 )/c, or c
√

s = Ecm
1 + Ecm

2 ,
which indeed is the total energy in the centre of momentum frame.

Example 2.4.5 Suppose that two protons collide head-on, each with the same
energy, 100 GeV. How much energy is needed for a proton that collides with
a proton at rest to give the same total energy in the centre of momentum
frame. The proton mass is 0.94 GeV/c2.

Answer: In the first case, c
√

s = 200 GeV. In the second case, p1 = (E/c,p),
p2 = (mpc, 0). Thus s = (E/c + mpc)2 − p2 = 2m2

pc
2 + 2mpE, where (2.45)

was used. Thus, 200 GeV = c
√

s =
√

2 · 0.942 + 2 · 0.94E, which solved for
E gives E = 21300 GeV. The high energy needed explains the popularity
in particle physics to use colliders rather than fixed-target accelerators. The
physical interpretation of this result is that, due to momentum conservation,
in the latter case a lot of energy is ‘wasted’ on the overall motion of the
particles in the laboratory system.
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2.4.2 System of Units

Sometimes it is convenient not to have to keep track of all the factors of c, the
velocity of light, in relativistic formulae. One way to achieve this is to choose
units such that c = 1. (Alternatively, this simply means that one measures all
velocities in fractions of the light velocity.) In the particle physics literature,
this is very common. In addition, h̄, Planck’s constant divided by 2π, is
conveniently put equal to unity in quantum mechanical problems. Since all
physical units can be expressed using combinations of length, time and mass,
and we have made two units dimensionless, it means that we can choose just
one to fix all physical dimensions. Usually, mass is used for this purpose.

Example 2.4.6 What is the dimension of length and time in a system of units
where h̄ = c = 1?

Answer: In SI units, [h̄]=kgm2s−1 and [c] = ms−1. Since we have chosen c
to be dimensionless, length and time must have the same dimensions. Since
h̄ is also chosen to be dimensionless, and thus also the ratio h̄/c, with [h̄/c]
=kg·m, we see that mass and length must have inverse dimensions. Thus
[time]=[length]=[mass]−1.

2.4.3 Some Relativistic Kinematics for 2 → 2 Processes

Putting now c = 1, we derive some useful kinematical relations for 2 → 2
processes. In Example (2.4.5) we saw that we could choose to calculate, for
example, s in two different inertial frames. Since we know that s is Lorentz-
invariant, this usually gives a convenient way of relating kinematical variables
in the two frames. In the laboratory frame where particle 2 is at rest, we had

s = m2
1 + m2

2 + 2Elab
1 m2 (2.51)

while in the centre of momentum frame pcm
1 = −pcm

2 , so that

s = (Ecm
1 + Ecm

2 )2 (2.52)

Equating the two expressions (2.51) and (2.52) gives, after some algebra
(Problem 2.7)

|pcm| =
m2|plab|√

s
(2.53)

From (2.52) one can also derive

|pcm| =

√
λ(s, m2

1,m
2
2)

2
√

s
(2.54)

where λ is the ‘triangle function’
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λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz (2.55)

It is also easy to derive (or guess from symmetry) the corresponding expres-
sion for the cm momentum of the final state particles:

|pcm
3 | =

√
λ(s, m2

3,m
2
4)

2
√

s
(2.56)

and the expression for Elab
3

Elab
3 =

m2
2 + m2

3 − u

2m2
(2.57)

which is useful for deriving a relation between the invariant t and the scat-
tering angle θ in the lab frame,

cos θlab
13 =

(s − m2
1 − m2

2)(m
2
2 + m2

3 − u) + 2m2
2(t − m2

1 − m2
3)√

λ(s, m2
1,m

2
2)
√

λ(u,m2
2,m

2
3)

(2.58)

For a 2 → 2 process, the kinematically allowed region in s is

s > (m3 + m4)2 (2.59)

which can be understood from energy conservation: In the cm frame, where
we have seen that

√
s corresponds to the total energy, at least the rest mass

energy m3 + m4 has to be provided.
The kinematical limits for t are more complicated and are most easily

obtained from the condition | cos θcms
13 | ≤ 1, with

cos θcm
13 =

s(t − u) + (m2
1 − m2

2)(m
2
3 − m2

4)√
λ(s, m2

1,m
2
2)
√

λ(s, m2
3,m

2
4)

(2.60)

2.5 Relativistic Optics

When making observations in the Universe, one often deals with moving
sources which emit light. In some cases the motion of the observer with
respect to some frame also has to be taken into account. Due to the form of
the Lorentz transformations this usually means that there will be a change in
appearance of a beam of light emitted from a source. There are two immediate
effects that appear: aberration and Doppler shift.

2.5.1 Aberration

Consider a light-ray which according to one observer arrives at the origin at
an angle θ at t = 0. Due to the properties of the Lorentz transformations,
this angle of incidence will have another value θ′ in a frame that moves with
velocity v with respect to the first observer. This change of apparent direction
is called aberration (see Fig. 2.4).
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Fig. 2.4. A light-ray arriving at the common origin at time t = t′ = 0 in two
inertial frames. The primed frame is moving with velocity v with respect to the
unprimed frame, and the measured angles of incidence are θ′ and θ, respectively.

We first derive the transformation properties of velocities (that is, the
addition law for relativistic velocities). Looking at a massive particle with
velocity u = dr/dt in one reference frame, we can compute u′ = dr′/dt′

by taking the differentials of the Lorentz transformation (2.18). This gives
(remember that we have put c = 1, that is all velocities are measured in units
of the velocity of light)

u′
1 =

u1 − v

1 − u1v

u′
2 =

u2

γ(v) (1 − u1v)

u′
3 =

u3

γ(v) (1 − u1v)
(2.61)

If we now insert u′
1 = −c cos θ′ = − cos θ′, u′

2 = − sin θ′, u1 = − cos θ,
u2 = − sin θ in (2.61), we obtain

cos θ′ =
cos θ + v

1 + v cos θ

sin θ′ =
sin θ

γ(v) (1 + v cos θ)
(2.62)

It is interesting to note the factor 1/γ(v) which enters the expression for
sin θ′. Also, we see that if we change v → −v and u → −u, the denominator
in (2.61) is unchanged. It means that, for instance, light-rays which are either
incident or emitted isotropically in one system are driven to small angles in
a moving frame. This ‘relativistic beaming’ of light is seen, for example, in
some of the jets emanating from active galactic nuclei.
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2.5.2 Doppler Effect

To discuss the Doppler effect, it is convenient to use four-velocities of ob-
servers and the wave four-vector of a photon. The latter is defined as
kµ = (ω,k), where ω = 2πν is the angular frequency, and

k =
2π

λ
n (2.63)

with λ the wave-length and n a unit vector in the direction of propagation.
According to quantum mechanics, E = h̄ω and p = h̄k, so we see that in
our units where h̄ = 1, kµ is simply the momentum four-vector. (Note that
kµkµ = 0 since photons propagate on light-like trajectories; the photon is
massless.) Suppose now in the general case that we have a light source with
four-velocity

uµ = γ(u) (1,u)

and an observer with four-velocity

vµ = γ(v) (1,v)

In the rest frame of the light source, we easily compute kµuµ = ω0, since in
that frame uµ = (1,0). Since this is a four-scalar and thus an invariant, we
find by computing it in the given frame

ω0 = γ(u)ω (1 − n · u) (2.64)

Similarly for the frequency ω′ measured in the rest frame of the observer:

ω′ = γ(v)ω (1 − n · v) (2.65)

Taking the ratio between (2.65) and (2.64) we find

ω′

ω0
=

γ(v) (1 − n · v)
γ(u) (1 − n · u)

(2.66)

Here ω can be exchanged for ν, or if we instead consider wavelengths,

λ′

λ0
=

γ(u) (1 − n · u)
γ(v) (1 − n · v)

(2.67)

As an example, suppose that we observe light emitted from a source mov-
ing away from us. Then v = 0, n · u = −ur where ur is the radial velocity
(that is the projection of the recession velocity on the radial direction) and
we measure a wavelength λ which is longer (that is redshifted) by a factor D
(the Doppler factor),

D = γ(u) (1 + ur) (2.68)

Note that even for ur = 0, there is a redshift, the so-called transverse Doppler
effect, which is of relativistic origin and can be traced to the time dilation
(the frequency of radiation can be viewed as the ticking of a ‘clock’, and we
know that time goes more slowly in a moving frame). The factor γ(u) gives
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an effect of second order in v/c, and is therefore often less important than
the first-order Doppler factor D1, which from (2.67) is, with c reinserted,

D1 ∼ 1 + ur/c (2.69)

2.6 Electromagnetic Vectors and Tensors

According to the postulates of special relativity, physical laws should have the
same form in all inertial frames. We have seen that if we can formulate these
laws in terms of four-scalars, vectors and tensors, this relativistic covariance is
automatic. Such laws are sometimes said to be manifestly Lorentz invariant.

To build a theory which fulfills the requirements of special relativity, we
should thus try to identify the relevant scalars, vectors and tensors. In elec-
tromagnetism, an important four-vector is the four-potential

Aµ = (φ,A) (2.70)

where φ is the electrostatic potential and A the three-vector potential. The
electric field vector E and magnetic field vector B are, one the other hand,
parts of an antisymmetric second-rank tensor Fµν ,

Fµν =

⎛⎜⎜⎝
0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0

⎞⎟⎟⎠ (2.71)

Fµν can be expressed in terms of Aµ through

Fµν = ∂µAν − ∂νAµ (2.72)

The current four-vector is given by

jµ = (ρ, j) (2.73)

where ρ is the electrostatic charge density and j is the three-current density.
Maxwell’s equations can be summarized by

∂µFµν = jν (2.74)
∂λFµν + ∂µF νλ + ∂νFλµ = 0 (2.75)

We see that the antisymmetry of Fµν gives from (2.74) ∂νjν = 0. This is
the continuity equation for the electric current, which integrated over all
space expresses the conservation of global electric charge. Thus, consistency
requires that we only couple the electromagnetic field to conserved currents.

A special tensor is of course ηµν , which has the same constant value in all
inertial frames. Another important tensor is the four-dimensional generaliza-
tion of the Levi-Civita tensor εijk, namely εαβγδ, which is antisymmetric in
all indices and has ε0123 = 1. With its help we can, for instance, define the
so-called dual tensor ∗F to F :
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∗Fµν =
1
2
εµναβFαβ (2.76)

Then the second Maxwell equation (2.75) can simply be written as

∂µ
∗Fµν = 0 (2.77)

In terms of Aµ the first set of Maxwell equations becomes

�Aµ − ∂µ (∂νAν) = jµ, (2.78)

where the d’Alembertian operator is defined as

� ≡ ∂µ∂µ =
(

1
c2

∂2

∂t2
−∇2

)
. (2.79)

Since (2.72) is unchanged if we make the gauge transformation

Aµ → Aµ + ∂µf(r, t) (2.80)

we can use this freedom to impose a gauge condition on Aµ, for example,
∂µAµ = 0 (Lorentz gauge), ∇ ·A = 0 (Coulomb gauge) or A0 = φ = 0 (axial
gauge). In the absence of charges, both the axial and Coulomb gauge con-
ditions can be chosen simultaneously (radiation gauge). Then the Maxwell
equations for the freely propagating electromagnetic vector field Aµ in vac-
uum simply become

�Aµ = 0 (2.81)

which is a relativistic wave equation describing propagation with the speed
of light. Solutions can easily be found of the form

Aµ (r, t) = εµe±i(ωt−k·r) = εµe±ik.x (2.82)

Here k is the wave-vector which describes the direction of propagation and
where the four-vector index is carried by the constant polarization vector εµ.
Inserting this into (2.81) gives kµkµ = 0, which we have seen is the mass-shell
condition for a massless particle, the photon. It can thus be seen that the
reason that the photon is massless is the property of gauge invariance, or
gauge symmetry, of the Maxwell theory.

The axial and Coulomb gauge conditions mean that of the four com-
ponents of the vector potential Aµ, only two remain as physical degrees of
freedom. We see that A0 = 0 and ∇ · A = 0 translate into ε0 = 0 and
k · ε = 0, showing that only the two physical degrees of freedom are trans-
verse to the direction of propagation. Choosing the latter as the z-direction,
we can for example use εµ

1 = (0, 1, 0, 0) and εµ
2 = (0, 0, 1, 0) as the basis states

in which we can express an arbitrary polarization. Sometimes it is, how-
ever, more convenient to use the so-called circular polarization four vectors
εµ
± = (0, 1,∓i, 0)/

√
2 as basis states.

The fact that Aµ is a four-vector means that it couples to vector-type
sources: for example, a varying electric dipole field. In Chapter 15 we shall
use a similar reasoning to show that there exist gravitational waves as well.
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In that case, it is a tensor field which is propagating which means that a
quadrupole moment instead of a dipole moment will be acting as a source.

2.7 Summary

• Special relativity is based on two postulates, formulated by Ein-
stein. The first states that the laws of nature take the same form in
all inertial frames. The second states that the velocity of a light-
ray in vacuum has the universal value of around 3 · 108 m/s in
all inertial frames, irrespective of the velocity of the source or the
observer.

• Space and time can be treated in a unified way by introducing
space-time which is parameterized by the position four-vector xµ =
(x0, x1, x2, x3), where x0 = ct. If other physical quantities are also
grouped into similar four-vectors, scalars or tensors, the laws of
physics can be written in a form which is the same in all inertial
frames in agreement with Einstein’s postulate.

• The line element in special relativity is

ds2 =
(
dx0
)2 − (dx1

)2 − (dx2
)2 − (dx3

)2
It has the same value (is invariant) in all inertial reference frames
related by Lorentz transformations.

• In collision processes, it is convenient to choose Lorentz invariant
kinematical variables. One of the most important is

s = (p1 + p2)
2

which is related to the available energy in the centre of momen-
tum system of particles 1 and 2 with four-momenta p1 and p2,
respectively.

• The relativistic Doppler factor for a source moving with four-
velocity u is given by

D = γ(u) (1 + ur)

where ur is the projection of the recession velocity on the radial
direction.

• In electromagnetism, an important four-vector is the four-potential

Aµ = (φ,A) (2.83)

where φ is the electrostatic potential and A the three-vector po-
tential. The electric field vector E and magnetic field vector B are
parts of an antisymmetric second-rank tensor,

Fµν = ∂µAν − ∂νAµ
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The current four-vector is given by

jµ = (ρ, j)

where ρ is the electrostatic charge density and j is the three-current
density.

2.8 Problems

2.1 Show that R(z; θ) of (2.16) fulfills (2.12).

2.2 Show that the Lorentz transformation (2.18) leaves ds2 invariant.

2.3 Let Aµ be a light-like four-vector. Show that A0 has the same sign in
all inertial frames.

2.4 Show that the sum of two orthogonal space-like four-vectors is space-
like.

2.5 Show that the four-gradient of a four-scalar transforms as a covariant
four-vector.

2.6 Show from the expressions (2.31) and (2.32) that Λ µ
ν is the inverse of

Λµ
ν , meaning that Λµ

σΛ σ
ν = δµ

ν , where δµ
ν is the Kronecker delta.

2.7 Derive (2.53) from (2.51) and (2.52).

2.8 When a charged π− meson with very low velocity reacts with a proton, a
neutron and a neutral pi meson are produced, π−+p → π0 +n. Suppose that
the proton, neutron and π− masses are known: mp = 938.3 MeV, mn = 939.6
MeV, mπ+ = 139.6 MeV. Determine the mass of the π0, if the neutron kinetic
energy is measured to be Tn ≡ En − mn = 0.4 MeV.

2.9 According to quantum electrodynamics, there is a small but finite prob-
ability that two photons may scatter against each other. Suppose two pho-
tons, with wavelengths λ1 and λ2, collide head-on. Compute the wavelength
of one of the photons after the collision, if its scattering angle is θ. (The
energy of a photon with wavelength λ is h̄ω, where ω = 2πc/λ.)

2.10 What is the value of H0 (∼ 70 km s−1Mpc−1) expressed as a mass, in
a system of units where h̄ = c = 1?

2.11 Show that a free electron and a free positron, both with mass me,
cannot annihilate into a single freely propagating photon.
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2.12 The cosmic microwave background radiation (CMBR) consists of pho-
tons of typical energy 3 ·10−4 eV. How high an energy must a cosmic gamma
photon γc have if pair production on this background γc + γCMB → e+e− is
to be kinematically allowed?

2.13 In special relativity, one can define the kinetic energy T of a particle
of mass m and velocity v as T = E − m = γ(v)m − m (we have put c = 1).
Use four-momentum conservation to determine the final kinetic energy of a
particle of mass m, velocity v, which collides elastically with an equally heavy
particle at rest, if the scattering angle is θ.

2.14 Consider a particle of four-momentum pa = (ma,0) which decays at
rest into three other particles of masses mb, mc and md with four-momenta
pb, pc and pd, respectively. Introduce the variable sbc = (pb + pc)2. Use four-
momentum conservation and:
(a) Determine the maximum and minimum values that sbc can have.
(b) For a given value of sbc, calculate the energy of particle d in the rest
frame of the decaying particle.



3 General Relativity

3.1 Introduction

We have seen in Chapter 2 that inertial systems seem to play an important
role in physics. The postulates of special relativity tell us that the laws of
physics should look the same in all inertial frames. However, there are many
cases when we would like to treat non-inertial frames. For instance, a compact
neutron star may spin with a rotation velocity which is high enough that
matter on the equator moves with a speed close to the speed of light. The
‘inertial forces’ in a frame fixed to the surface of the neutron star can certainly
not be neglected. Likewise, near such a star there are strong gravitational
forces, and it is not obvious how to treat such a situation using only special
relativity.

It was Einstein who, in a magnificent work, succeeded in formulating a
theory, the general theory of relativity, which can deal also with accelerated
frames and with gravitation. In fact, Einstein even realised how the laws of
gravitation had to be modified from Newton’s form, and at the same time
gave a new geometrical interpretation of gravitational forces.

3.2 The Equivalence Principle

Einstein used a number of thought experiments to formulate and illustrate
the basic principles of general relativity. Suppose first that we are on board a
window-less rocket far from the solar system and other sources of gravitation.
Assume that it accelerates with a constant acceleration which is numerically
exactly equal to the gravitational acceleration g at the Earth’s surface. Can
we then, by performing experiments on board this spacecraft, determine if the
rocket is moving or just standing still on the surface of the Earth? Certainly
the two situations should be very similar. If, for example, we duplicated
Galileo’s experiments with falling bodies (say one iron ball and one wooden
ball) inside the rocket, we would obtain his results. Since after releasing the
test bodies the floor of the rocket accelerates towards the balls with the value
g, they will simultaneously hit the floor, just as Galileo’s experiment on Earth
showed (neglecting air resistance, of course).
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This brings us to a strange fact about the Newtonian law of gravity.
According to the force law, a test body with ‘inertial’ mass mi in the Earth’s
gravitational field will be accelerated by

a =
F

mi
(3.1)

where the gravitational force F according to Newton is

F = mgg (3.2)

with mg the ‘gravitational’ mass on which the gravitational force acts. It is
easy to solve for the acceleration:

a =
mg

mi
g (3.3)

A priori, there is nothing that would require that the ratio mg

mi
is the same

for all bodies irrespective of the composition. However, numerous experiments
verify this equality, and therefore it is natural to choose units such that
mg = mi. This equality of the gravitational and inertial mass is called the
weak equivalence principle.

The equality of the inertial and gravitational mass has been tested to a
level of one part in 1012 in modern free-fall experiments.1

Returning to the example of the rocket, we can also ask what would
happen if we let it hover at a fixed height above the Earth and then suddenly
stop the engines and let the spacecraft fall freely back towards the Earth.
Since according to the weak equivalence principle everything inside the rocket
will be accelerated towards the Earth with identical value of the acceleration
the situation will be very similar to one without any gravitational field at
all (this is in fact what gives the ‘weightlessness’ of astronauts in orbit –
such an orbit is a free-fall situation). However, there is a difference. Since the
gravitational field has the Earth as its source, the trajectories of objects inside
the spacecraft will converge slightly (see Fig 3.1), a phenomenon known as
tidal attraction. The larger the separation of the bodies, the bigger the tidal
attraction.

If one restricts oneself to nearby objects, meaning to perform local me-
chanical experiments, the gravitational field can be regarded as homogeneous
and there will be no difference between free fall and the situation of no gravi-
tational field. Einstein elevated this principle to the postulates of the strong
equivalence principle:

• The results of all local experiments in a freely falling frame are
independent of the state of motion, and the results are the same for
all such frames. The results in freely falling frames are consistent
with the special theory of relativity.

1 For a review of tests of the weak equivalence principle, see [12].
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Fig. 3.1. Tidal attraction of two bodies in free fall inside a spacecraft.

3.3 Gravitational Redshift and Bending of Light

With the postulates of the strong equivalence principle, we can without much
mathematics derive two of the most astonishing consequences of general rel-
ativity: the fact that times goes slower in the presence of a gravitational field
and that a straight light-ray is bent by a gravitating body near its path. (Our
numerical estimates will then indicate that on the surface of the Earth, both
of these effects are very tiny but non-zero.)

The concept of time is difficult to define rigorously. However, some pro-
cesses in nature, such as the oscillation of certain molecules and the pulsations
of distant magnetized neutron stars, give us a practical way to define time
as, for example, what is measured by an atomic clock. Given one clock, we
can synchronize all other processes with it. In particular, biological processes
will occur at a pace which has a fixed relation to the atomic clock (since
biological activity is governed by atomic and molecular processes). Thus, if
we can show that an atomic clock goes slower in a given situation it means
that all other clocks synchronized with it go slower; in particular, aging of
humans will be slower.

Consider a rocket in free fall with acceleration g, starting with zero veloc-
ity in the Earth’s gravitational field. An atomic clock at the floor of the rocket
controls a pulsed laser. Each pulse defines a ‘tick’ of a clock and thus a time
as measured at the location of the laser. Suppose then that the pulses are
received at a height ∆h above the source (Fig. 3.2). What is the time interval
between the arrival of the pulses at height ∆h; that is, what is the relation be-
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∆h

t = 0
v = 0

t=∆h/c

v =g∆h/c

b)a)

Fig. 3.2. (a) Light transmitter and receiver in a rocket which starts to fall freely
in the Earth’s gravitational field at the time t = 0, when the emitter sends a light
pulse (a ‘tick’ of a clock). (b) The same rocket at the time ∆t = ∆h/c when the
light pulse reaches the receiver at a height ∆h above the transmitter.

tween the pace of time at height ∆h and at the floor of the rocket? According
to the strong equivalence principle, light travels with the constant velocity
c in all directions in the freely falling rocket, so after a time ∆t = ∆h/c
as measured in the rocket, light reaches the receiver. During this time, the
rocket has accelerated to a velocity

∆v = g∆t =
g∆h

c
(3.4)

so that an outside observer at the same position as the receiver but at rest
with respect to the Earth’s surface will see the pulses Doppler shifted to lower
frequency by the relative amount

∆ν

ν
=

∆v

c
=

g∆h

c2
(3.5)

We assume that ∆v/c  1, so that we need only include the first-order
Doppler shift (2.69). Also, special relativistic effects such as the Lorentz con-
traction of the rocket are of second order in v/c and can thus be neglected.

Comparing this slower rate with the rate of a stationary atomic clock at
the position of the receiver, the observer will find that the stationary clock
makes more ticks in a given time period than the number picked up from
the emitter. This must mean that the atomic clock, and therefore all clocks
synchronized with it, runs slower than a stationary clock at the height ∆h
above it by the fractional amount g∆h/c2. Time runs slower in the basement!

To further clarify this result, suppose that the gravitational field is such
that g∆h/c2 is 1 per cent. Let an observer synchronize his clock with a clock
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in the basement and then climb the gravitational field. During movement,
there may of course be special relativistic time dilation effects, but these can
be made very small by moving slowly. Staying at the higher level for, say, 24
hours and then descending again to the basement, the observer finds his clock
to show a time which is about 14 minutes more advanced. Had he stayed in
the basement, he would have been 14 minutes younger!

Example 3.3.1 Estimate how much slower a clock runs at the bottom of the
Harvard University tower (height 22.6 m) than a clock at the top

Answer:
∆ν

ν
=

g∆h

c2

with g = 9.8 ms−2, h ∼ 22.6 m, c = 3 · 108 ms−1 gives ∆ν/ν = 2.46 · 10−15,
that is, less than 1 second in 100 million years.

The tiny gravitational timeshift was measured by Pound and Rebka in 1960
in a classic experiment at Harvard University. Using the Mössbauer effect,
they were able to measure a gravitational redshift over 22.6 m of ∆ν/ν =
(2.57±0.26)·10−15, which compares well with the prediction of Example 3.3.1
of 2.46 · 10−15.

Let us return to the freely falling rocket. Suppose that a passenger on
board shines a laser beam horizontally across the rocket (Fig. 3.3 (a)). An
observer at rest with respect to the Earth will see the rocket move downwards
a little before the light-ray hits the rocket’s wall (Fig. 3.3 (b)). To the observer
in the Earth’s gravitational field it thus seems that light follows a bent path.
According to the laws of optics, light follows the path that takes the shortest
time (Fermat’s principle), and we have seen that in a gravitational field this
path is not straight. This is a first indication that a massive body like the
Earth makes space-time curved instead of flat.

We have a very simple analogy of this situation when determining the
shortest flight route between two cities on Earth. For instance, flying between
Stockholm and New York by the shortest route takes the plane well into the
polar region. This trajectory, the shortest path between two points on a
sphere, is certainly not a straight line. It is a part of a great circle with the
same curvature as the curvature of the Earth. The fact that the shortest
path between two points on Earth is not a straight line is of course a direct
consequence of the fact that the Earth is not flat (although it may look quite
flat locally).

To analyse curvature caused by gravity more quantitatively we need, how-
ever, to find the equation that relates the curvature of space-time to the en-
ergy and momentum of matter that is present in a given situation. Before
doing this, we should make ourselves familiar with curved spaces, starting
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with the two-dimensional case such as the surface of a sphere or a cylinder,
where our everyday intuition can be used as a guide.

(a) (b)

Fig. 3.3. (a) Path of a light beam in a freely falling rocket in the Earth’s gravita-
tional field, as seen by an observer in the rocket. (b) The same light beam seen by
an external observer at rest with respect to the surface of the Earth.

3.4 Curved Spaces

We are all familiar with the difficulty of representing the Earth on a planar
map. The surface of a two-dimensional sphere cannot, in contrast to that of a
cylinder, be cut and laid flat on a plane. The curvature of the sphere can be
determined in several ways. One very important way is shown schematically
in Fig. 3.4 (a). Starting, for example, at the North Pole N of the sphere,
we choose an arbitrary direction of a vector V and move down the path P1

following the meridian along which V points down to the equator. This line
of longitude is part of a great circle on the sphere, thus it is the shortest
possible way between N and the equator. Such a shortest possible line on a
curved surface is called a geodesic. We keep the direction, that is, we parallel-
transport the vector to a point on the equator (which is another great circle).
We then parallel-transport the vector along the path P2 on the equator.
Finally, we parallel-transport the vector back to the North Pole N along the
meridian P3. When we compare the direction of the resulting vector V’ after
the round-trip with the original direction we find that its direction has been
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rotated by an amount θ which is, in this case, equal to the enclosed area
divided by the radius squared of the sphere.

On the other hand, making a round-trip on the surface of a cylinder
(Fig. 3.4 (b)), we see that no displacement of the direction occurs. As Gauss
showed, this construction of round-trips with parallel-transported vectors
can be generalized to determine the curvature of arbitrarily curved two-
dimensional surfaces. If the curvature is not constant, we will of course have
to make small closed curves and take suitable limits of the infinitesimal dis-
placement divided by the infinitesimal enclosed area.

(a) (b)

N

P1

P2

P3

θ

Fig. 3.4. (a) A vector, parallel-transported around a closed curve on the surface of
a sphere, starting at the North Pole N and going along the paths P1P2P3, will be
rotated by an angle θ which depends on the enclosed area. (b) A vector, parallel-
transported around a closed curve on a cylinder will point in the original direction
after a full loop.

3.5 Coordinates and Metric

We are used to introducing coordinates to label points in a manifold like
the Euclidean plane or the surface of a sphere. However, it is not only the
labels of points we are interested in, but also distances between points in
the manifold. Just like we did for Minkowski space in Section 2.3, a metric
g(P1, P2) is introduced to give a real number, the square of the distance,
between two arbitrary points P1 and P2. For instance, on the sphere with
radius a we may introduce spherical coordinates θ and φ, and the square of
the distance between points (θ,φ) and (θ + dθ,φ + dφ) is given by the line
element or metric equation
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ds2 = a2dθ2 + a2 sin2 θdφ2 (3.6)

which is quadratic in dθ and dφ. Since φ and θ are orthogonal coordinates,
there are no cross terms of the type dθdφ.

The surface of a sphere is an example of a Riemann space since it has
a metric equation between neighbouring points which is quadratic in the
coordinate separations. In the two-dimensional case, with general coordinates
u and v, we can write the most general metric equation as

ds2 = g11du2 + 2g12dudv + g22dv2 (3.7)

or in matrix form

ds2 = (du, dv)
(

g11 g12

g21 g22

)(
du
dv

)
(3.8)

where the metric matrix may always be chosen to be symmetric, g12 = g21,
since dudv=dvdu. We note that, if we have scaled the metric such that g11 is
positive, and if det(g) = g11g22 − g2

12 
= 0, we can write the metric equation
(3.7)

ds2 =
(√

g11du +
g12dv√

g11

)2

+
(

g22 − g2
12

g11

)
dv2 (3.9)

which means that we can write it locally as the flat equation

ds2 = dξ2
1 + dξ2

2 (3.10)

with

dξ1 =
√

g11du +
g12dv√

g11
; dξ2 =

√
g22 − g2

12

g11
dv (3.11)

However, this only works if det(g) > 0; if det(g) < 0 we have to extract a
minus sign and write

ds2 = dξ2
1 − dξ2

2 (3.12)

In both cases, we get locally flat spaces. This means that we can locally
match the curved space with a flat ‘tangent space’. In the first case, the
metric is positive definite and the tangent space is just like the Euclidean
plane. In the second case, the metric is not positive definite (similar to the
metric of space-time in special relativity), and the tangent space is called
pseudo-Euclidean (and the curved space pseudo-Riemannian).

To repeat, we have found the important result that given a point P on our
two-dimensional Riemannian manifold, we can find a local coordinate system
(ξ1, ξ2) with corresponding metric gik(P ) = ηik (we will generically denote

a flat Euclidean or pseudo-Euclidean metric by the symbol η), where gik(P )
does not depend on (ξ1, ξ2), that is,

∂gik

∂ξ1
(P ) =

∂gik

∂ξ2
(P ) = 0 (3.13)
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Example 3.5.1 Perform the construction leading to (3.10) for the unit sphere
with spherical coordinates θ and φ.

Answer: Since the metric corresponding to the line element (3.6) is di-
agonal, with gθθ = a2 and gφφ = a2 sin2 θ, we just choose dξ1 = adθ
and dξ2 = a sin θ0dφ as locally flat coordinates near a point P : (θ0, φ0).
Since the determinant det g = gθθgφφ ≥ 0, the line element then becomes
ds2 = dξ2

1 + dξ2
2 . The only problem appears for θ = 0, where φ is undefined.

This is a so-called coordinate singularity, since it can be avoided by choosing
another point as the North Pole on the sphere.

Of course it is important to notice that although the metric of a sphere
can be made locally Euclidean (which is why our ancestors thought for such
a long time that Earth is flat), it is impossible to cover an extended region
of the sphere using Euclidean (cartesian) coordinates. We need a continuum
of locally Euclidean coordinate systems which have to be patched together
consistently to fully describe the curved space of the sphere.

We have spent a long time on this seemingly trivial example because as
we shall see, the curved space-time of general relativity can be constructed
similarly by patching together locally pseudo-Euclidean free-fall frames.

3.5.1 Measures of Curvature

Staying with two-dimensional examples, we shall investigate another method
of measuring the curvature besides the one using parallel transport of a vector
which we discussed in Section 3.4.

Look first at a circle drawn out on a sphere (Fig. 3.5 (a)). Will an observer
confined to live on the surface of the sphere be able to deduce from local mea-
surements that the surface is curved? Yes, we saw that parallel-transporting a
vector around a closed curve and checking whether the direction has changed
after a full loop gives such an intrinsic measurement of curvature. Alterna-
tively, one may measure the length of the circumference of a circle, and its
radius. Since the latter is a part of a great circle on the sphere, it is clear from
the figure that the ratio of the circumference to the radius will be less than
the Euclidean value 2π. It may be seen from Fig. 3.5 (b) that if we make the
corresponding construction on the surface of a saddle, the value of the ratio
will be greater than 2π. In fact, given the measured radius s of the circle on
the surface and the length of the circumference c one may define the local
curvature of a two-dimensional surface as the limit

K =
3
π

lim
s→0

(
2πs − c

s3

)
(3.14)

Example 3.5.2 Suppose a circle is drawn around the North Pole on a sphere
with radius a (see Fig. 3.5 (a)). Show that the curvature of the sphere defined
as in (3.14) is equal to 1/a2.
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N

r’

a

φ

θ

s

a)

b)

Fig. 3.5. (a) The circumference 2πr′ and radius s of a circle drawn out on a sphere
have a ratio less than 2π. (b) The circumference and radius of a circle drawn out
on a saddle surface have a ratio greater than 2π.

Answer: Let the circle subtend a half-angle of θ = s/a (see Fig. 3.5 (a)).
Then the circumference of the circle is

c = 2πr′ = 2πa sin θ ≈ 2πa

(
s

a
− 1

6
s3

a3
+ . . .

)
= 2πs

(
1 − s2

6a2
+ . . .

)
Thus, the curvature K is

K =
3
π

lim
s→0

⎛⎝2πs − 2πs
(
1 − s2

6a2

)
s3

⎞⎠ =
1
a2

We may introduce coordinates (r′, φ) on the sphere with the property (see
Fig. 3.5 (a)) that the circumference of a circle around the North Pole has the
value exactly equal to 2πr′. With the auxiliary angle θ = s/a, we see that
r′ = a sin θ, so
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s = a arcsin(r′/a) (3.15)

The fact that the sphere is curved then appears in the metric for the coor-
dinates (r′, φ). Keeping r′ fixed (that is dr′ = 0) and varying φ we see that
ds = r′dφ. Keeping instead φ fixed and varying r′ we find by differentiating
(3.15) ds = dr′/

√
1 − (r′/a)2, so that

ds2 = gr′r′dr′2 + r′2dφ2 (3.16)

with, introducing the curvature K = 1/a2,

gr′r′ =
1

1 − Kr′2
(3.17)

For flat space, the same formula applies, with the curvature K = 0. A similar
construction will show that a two-dimensional space with constant negative
curvature K = −1/a2 also obeys this metric equation. Since in the curved
case the dimensioned parameter a is used, it may be convenient to measure
all lengths in units of a, that is: we introduce the dimensionless variable

r =
r′

a

which gives the metric equation

ds2 = a2

(
dr2

1 − kr2
+ r2dφ2

)
(3.18)

with k = Ka2 = −1, +1, 0 depending on whether the space is negatively
curved, positively curved or flat.

A couple of features are worth noticing for this two-dimensional example.
First of all, we see that a appears as an overall scale factor in the metric
equation. We derived the equation for k = +1 using a third coordinate since
we could embed the sphere in Euclidean three-dimensional space. However,
there is no need to do so – we could use (3.18) as the definition of the metric
for the two coordinates (r, φ) without reference to a third coordinate. In
fact, it turns out that the space with constant negative curvature cannot be
embedded in Euclidean three-space, yet the metric is described by (3.18) with
k = −1.

Let us compute the path length s when going from r = 0 to a finite value
of r along a meridian dφ = 0:

s = a

∫ r

0

dr√
1 − kr2

= aS(r) (3.19)

Here

S(r) =

⎧⎨⎩ arcsin(r) k = +1
r k = 0
arcsinh(r) k = −1

(3.20)

This result of course agrees with (3.15) for the closed case k = +1.
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The circumference 2πr′ = 2πa sin(s/a) of the circle on the sphere is first
increasing with s until s = πa/2, and then it is decreasing until reaching
zero at s = πa. The reason for this behaviour is obvious when we look at
a sequence of circles on a sphere, starting at the North Pole, then growing
in size towards the equator, and then shrinking again towards the South
Pole. This phenomenon is typical for a positively curved, closed space like
the sphere. For a space of negative curvature, the situation is quite different
(see Problem 3.2). There the circumference grows indefinitely with increasing
s, showing that such a space has infinite extent (i.e., it is an open space).

As a final note, we see that we could have parameterized the sphere also
by using coordinates (x, y, z) and using the constraint x2 + y2 + z2 = a2 to
eliminate z from the expressions for the path length (see Problem 3.3). Also,
since we have been dealing with homogeneous spaces, we could have taken
any point (and not only the North Pole on the sphere, for example) as the
starting point with identical results.

3.5.2 Three-Dimensional Space

In three dimensions, the situation is similar in principle but rather more
complicated in practice since there are more numbers needed to describe
the curvature than just the one number K in the two-dimensional case. We
know how to parametrize the usual flat Euclidean three-space using cartesian
coordinates (x, y, z) or spherical coordinates (r, θ, φ), where we have again
made the radial coordinate dimensionless by dividing out a scale factor a. In
the latter case, the square of the line element distance (the metric equation)
is given by

ds2 = a2(dr2 + r2dΩ2) (3.21)

with

dΩ2 ≡ dθ2 + sin2 θdφ2 (3.22)

This three-dimensional flat space is, as we know, homogeneous and isotropic.
That is, it looks the same at every point and in every direction, and the
local curvature is the same (in this case zero) at all points. In cosmology,
this feature is usually assumed for the Universe as a whole: as a kind of
extended Copernican principle our position in the Universe should not have
a particular significance. This is called the cosmological principle. Apart from
local inhomogeneities like stars, planets, galaxies, clusters etc., it seems that
on average, matter is indeed quite smoothly distributed everywhere. This is
particularly true on the very large scales probed by the microwave background
observations where inhomogeneities are of the order of only a few times 10−5.

In a curved isotropic homogeneous space we can make the same type of
analysis as in the previous section. Thus, we choose angular variables θ and
φ, and define a dimensionless radial coordinate r such that a surface passing
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through the coordinate r will have area 4π(ar)2. Analogously with the two-
dimensional case, the metric equation will then contain an r-dependent grr:

ds2 = a2(grrdr2 + r2dΩ2) (3.23)

For a positively curved three-space such as the so-called three-sphere param-
eterized by the equation x2 + y2 + z2 + w2 = a2 we can essentially repeat
everything we did for the two-sphere identically to obtain the metric equation

ds2 = a2

(
dr2

1 − r2
+ r2dΩ2

)
(3.24)

In fact, one can show that every isotropic, homogeneous three-space can be
parameterized (perhaps after performing a coordinate transformation) with
coordinates of this form giving the metric equation

ds2 = a2

(
dr2

1 − kr2
+ r2dΩ2

)
(3.25)

with k = −1, 0, +1. For a given value of k, we see that this defines a one-
parameter family of similar spaces, where the scale factor a is the parameter.

We have now, in fact, come a long way towards building a cosmological
model that has a chance of describing our Universe. At a given value of time t,
the space-like part of the four-dimensional space-time metric should be given
by (3.25), with a possibly depending on t, so that we have to write a = a(t).
However, to specify the model completely we need both the value of k and
at each time t the value of the scale factor a(t). To do this we will need to
develop more powerful methods to formulate the theory of general relativity.

3.6 Curved Space-Time

In the previous section, we saw how three-dimensional space curvature could
be described in the isotropic and homogeneous case through the introduction
of the metric equation (3.25), which we generalize to four-dimensional space-
time by allowing the scale factor a depend on time, a = a(t):

ds2 = dt2 − a2(t)
(

dr2

1 − kr2
+ r2dθ2 + r2 sin2 θdφ2

)
(3.26)

where from now on we set c = 1.
We recall that r is dimensionless and k can be chosen to be +1, 0, or −1

depending on whether the constant curvature is positive, zero or negative,
respectively. For k = 0 we recognize flat Minkowski space. The coordinates
(3.26) are such that the circumference of a circle corresponding to t, r and
θ all being constant is 2πa(t)r, the area of a sphere corresponding to t, r
constant is 4πa2(t)r2, but the physical radius of this circle and sphere is
given by (see (3.19))
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rphys = a(t)
∫ r

0

dr√
1 − kr2

(3.27)

In particular, for k = +1, the Universe will be closed (but without boundary,
just like the two-sphere), and a(t) can be interpreted (see (3.19)) as the radius
of the Universe at time t. If k = 0 or k = −1 the Universe would be open
and plausibly of infinite extent.

We will return to this metric, the Robertson Walker line element, as a
model for the space-time of our Universe in Section 4.2. However, we need to
develop some machinery for treating differentiation of space-time dependent
quantities in curved space-time. This is done in Appendix A. As this is fairly
technical, we summarize the main results here for students who do not want
to enter too deeply into the subject of general relativity.

According to the equivalence principle, we can always locally at a space-
time point P find a reference frame with coordinates ξµ = (ξ0, ξ1, ξ2, ξ3) such
that (see (3.10), (3.13))

ds2 = gµνdξµdξν (3.28)

with

gµν(P ) = ηµν (3.29)

∂gµν

∂ξρ
(P ) = 0 (3.30)

This is the free-fall frame at P . To transfer to such a frame from any ar-
bitrary space-time coordinate system with coordinates xµ = (t, x1, x2, x3) =
(x0, x1, x2, x3) we need to perform a coordinate transformation of a more
general type than the Lorentz transformations of special relativity. This is
derived in Appendix A. Free-fall motion in the ξµ coordinates is simply (see
(2.48))

d2ξµ

dτ2
= 0 (3.31)

where, as in (2.43)

dτ2 = ηµνdξµdξν (3.32)

In the general coordinate system xµ, (3.31) is replaced by the geodesic equa-
tion

d2xσ

dτ2
+ Γ σ

µν

dxµ

dτ

dxν

dτ
= 0 (3.33)

where the metric connections (sometimes called affine connections or Christof-
fel symbols) Γ σ

µν are given by derivatives of the metric gµν(x):

Γ σ
µν =

gρσ

2

(
∂gνρ

∂xµ
+

∂gµρ

∂xν
− ∂gνµ

∂xρ

)
(3.34)

where gµν is the inverse of gµν :
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gρµgµν = δ ν
ρ (3.35)

The metric connections may be used for performing covariant derivatives
usually written in the so-called semicolon convention:

V µ
;ν =

∂V µ

∂xν
+ Γµ

νρV
ρ (3.36)

For instance, the covariant divergence of V µ is given by

V µ
;µ =

∂V µ

∂xµ
+ Γµ

µρV
ρ (3.37)

This can in fact be rewritten in a form that is usually easier to use in practice:

V µ
;µ =

1√−g

∂

∂xµ

(√−gV µ
)

(3.38)

where g = det(gµν).
Unlike the first term on the right-hand side of (3.36), V µ

;ν transforms as a
tensor quantity in both the indices µ and ν. This is the basic key to setting up
formulae that are general relativistic; that is, in accordance with the strong
equivalence principle. According to this principle, the laws of nature in a free-
fall frame are the usual tensor formulae of special relativity. To make them
applicable to any frame, we just have to substitute the Minkowski metric ηµν

by gµν , and the ordinary derivatives like (2.33) by covariant derivatives like
(3.36).

By comparing the geodesic equation of motion (3.33) with Newton’s equa-
tions of motion in a gravitational field (see A.2), one finds in the weak-field
limit (and for velocities much smaller than the speed of light)

g00 = 1 +
2φ

c2
(3.39)

where φ is the ordinary Newtonian gravitational potential, φ = −GM
r .

Example 3.6.1 Show that in the weak-field limit, the gravitational time dila-
tion is given by

dt = dτ

(
1 − GM

rc2

)−1

(3.40)

Answer: Using the definition of proper time (2.44) with the metric of the
weak-field limit (3.39) we find that two events with coordinate separations
(cdt, 0, 0, 0) give

dτ =
√

g00 dt =

√
1 +

2φ

c2
dt (3.41)

Thus, for very weak fields, φ  c2, we find we arrive at (3.40).
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From the affine connections (3.34), a measure of the curvature of space-
time can be obtained, by a combination of partial derivatives and index con-
tractions (see Appendix A). The object obtained, the Riemann curvature
tensor Rµ

σβα, has the geometrical interpretation of telling how much the di-
rection a vector is changed when it is parallel-transported around a closed
curve (so that it is zero for flat space-time).

The Riemann tensor can be a complicated object, and in fact for a given
metric gµν(x) it is wise to use any of the symbolic algebra computer programs
available for its calculation. However, due to a large number of symmetries,
the number of independent components which naively looks like 44 = 256 is
reduced to 20. These symmetries are most easily summarized for the associ-
ated tensor Rαβγδ = gαρR

ρ
βγδ formed by lowering the first index:

• Symmetry in the exchange of the first and second pairs of indices:

Rαβγδ = Rγδαβ (3.42)

• Antisymmetry:

Rαβγδ = −Rβαγδ = −Rαβδγ (3.43)

• Cyclic property:

Rαβγδ + Rαδβγ + Rαγδβ = 0 (3.44)

Through contraction of the first and third index of the Riemann tensor one
obtains the Ricci tensor

Rµν = gαγRαµγν (3.45)

which is symmetric in its indices. By contracting the two indices of the Ricci
tensor one gets the Ricci scalar

R = gµνRµν (3.46)

From the Ricci tensor and the Ricci scalar one can form another symmetric
tensor, which by construction has vanishing covariant divergence, the Einstein
tensor Gµν :

Gµν = Rµν − 1
2
gµνR (3.47)

3.6.1 The Energy-Momentum Tensor

The basic idea behind general relativity is that the presence of matter makes
space-time curved. This curvature can be mathematically summarized in the
Riemann tensor Rµ

σβα (see (A.48) for its exact form) and its contractions.
Before setting up the Einstein equations we must now find a way to describe
the energy and momentum content of matter (and radiation) in tensor form.
It is instructive to first consider special relativity only. For a collection of N
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point particles, with four-momenta pµ
i , which follow trajectories r = ri(t), we

can define a momentum density by

Tµ0 ≡
N∑

i=1

pµ
i (t)δ(3)(r − ri(t)) (3.48)

and the corresponding momentum ‘current’ by

Tµk ≡
N∑

i=1

pµ
i (t)

dxk
i (t)
dt

δ(3)(r − ri(t)) (3.49)

or, written as one tensor equation (from now on we set c = 1, and since
dxk

i /dt = pk
i /Ei; see (2.38)):

Tµν =
N∑

i=1

pµ
i pν

i

Ei
δ(3)(r − ri(t)) (3.50)

We see from (3.50) that the energy-momentum tensor Tµν is symmetric,

Tµν = T νµ (3.51)

For free (non-interacting) particles, one can show (see Problem 3.4) that the
energy-momentum tensor fulfils a conservation equation

∂

∂x0
Tµ0 + ∇iT

µi =
∂

∂xν
Tµν ≡ Tµν

,ν = 0 (3.52)

For particles that interact, for example, through electromagnetic forces one
has to include contributions from the electromagnetic fields to Tµν (see, for
example [51]).

If there are many particles present, a hydrodynamical treatment should be
adequate for the ‘fluid’ of particles. A so-called perfect fluid has the property
that viscous forces (that would correspond to non-vanishing T ij with i 
= j)
are absent, and in the rest frame of a fluid element the energy-momentum
tensor takes the form

T ij = pδij

T i0 = 0
T 00 = ρ (3.53)

To get the expression for Tµν in a frame where the four-velocity of the fluid
element is uµ we just have to write (3.53) in terms of tensor quantities. This
could be done by making a Lorentz transformation on (3.53), or just by
guessing: from the available tensors ηµν and uµuν we see that

Tµν = (p + ρ)uµuν − pηµν (3.54)

reduces to (3.53) in the rest frame of the fluid (where uµ = (1, 0, 0, 0)). Since
it is a tensor, it has this form in all inertial systems. The continuity equation
of hydrodynamics is embedded in the conservation equation
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Tµν
,ν = 0 (3.55)

In the presence of gravity, we know from the principle of covariance how to
construct the corresponding energy-momentum tensor. We just replace ηµν

by gµν :

Tµν = (p + ρ)uµuν − pgµν (3.56)

and replace the four-divergence in (3.55) by the covariant divergence

Tµν
;ν = 0 (3.57)

3.7 Einstein’s Equations of Gravitation

If we, as Einstein did, want to view matter and energy as the source of the
curvature of space-time, we now have a suitable tensor that could serve as the
source of the curvature and therefore of the gravitational field – the energy-
momentum tensor. Since it is symmetric and divergenceless, the equations
we require should be of the form

Gµν = const · Tµν (3.58)

where we know that

• Gµν should be symmetric since Tµν is symmetric.
• Gµν

;ν = 0 since Tµν
;ν = 0.

• The constant on the right-hand side should be such that Newton’s
law of gravity is recovered in the Newtonian limit.

We have previously noticed that the Einstein tensor (3.47) is symmetric
and divergence-free. This is why Einstein conjectured that

Gµν = Rµν − 1
2
gµνR (3.59)

is what should be proportional to Tµν . By demanding that the Newtonian
limit is correctly obtained, the value of the constant in (3.58) is found to be
8πGN (or 8πGN/c4 if we had not put c = 1), where GN is Newton’s constant.
Thus, the celebrated Einstein equations of general relativity can be written

Rµν − 1
2
gµνR = 8πGNTµν (3.60)

This can be written in a slightly different form. First, we raise one index and
contract with the other:

R − 1
2
Rgµ

µ = 8πGNTµ
µ (3.61)

which, since gµ
µ = ηµ

µ = 4 (it is a scalar and can therefore be evaluated in
a free-fall frame with the Minkowski metric ηµν) gives

R = −8πGNTµ
µ. (3.62)
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This inserted into (3.60) gives

Rµν = 8πGN (Tµν − 1
2
T ρ

ρgµν) (3.63)

Since there will be no more risk of confusion between the Einstein tensor G
and Newton’s constant, we shall return to calling the latter G from now on.

3.7.1 The Schwarzschild Solution

In (3.39) we have given the Newtonian limit of general relativity in a static
gravitational potential φ. In fact, the Einstein equations for the space-
time metric outside a static massive body, mass M , were solved exactly by
Schwarzschild in 1916. The solution is (see Problem 3.5)

ds2 = (1 − rS/r)dt2 − 1
1 − rS/r

dr2 − r2(dθ2 + sin2 θdφ2), (3.64)

with the Schwarzschild radius given by

rS = 2GM/c2. (3.65)

A number of interesting features can be derived from the Schwarzschild
solution (see, for example [51]):

• A test particle which orbits the central mass on an elliptical or-
bit will undergo ‘perihelion motion’, meaning that the long axis of
the ellipse rotates slowly with respect to distant stars. The calcu-
lated perihelion motion for the innermost planet Mercury agrees
with observation and was one of the earliest triumphs of general
relativity.

• A passing light-ray which travels at a closest distance b from the
central body will be deflected by an angle ∆θ = 4GM/b (gravita-
tional bending of light). In 1919 an expedition to observe a total
solar eclipse from the island of Principe, led by A.S. Eddington,
set out to measure the deflection of starlight near the obscured
Sun during the eclipse. The value, 1.74 arcseconds, agreed with
the Einstein prediction and brought immediate worldwide fame to
Einstein.

• Look at a photon with ds2 = 0 travelling radially in the Schwarzs-
child metric. Then cdt = dr/(1−rS/r), and the time taken to leave
from r = rS to an outside point becomes formally infinite. Thus,
if an object is so dense that its radius is inside the Schwarzschild
radius, the object does not emit any light – it becomes a black hole.
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3.8 Summary

• General relativity relies on a postulate of Einstein, the strong equiv-
alence principle, namely, that there is no way by local experiments
to distinguish different free-fall frames.

• Gravitational redshift and bending of light are important predic-
tions of general relativity which have been verified by experiments.

• A curved space-time needs a rank-four tensor, the Riemann tensor,
for its description. It is formed by various partial derivatives of the
metric tensor gµν , which defines invariant local distances in curved
space-time through the line element

ds2 = gµνdxµdxν .

• By contracting two indices of the Riemann tensor, the Ricci ten-
sor Rµν is obtained. In the presence of matter or other forms of
energy and momentum defined by the energy-momentum tensor
Tµν , Einstein’s equations of general relativity are given by

Rµν = 8πG

(
Tµν − 1

2
T ρ

ρg
µν

)
,

where G is Newton’s constant of gravitation.
• The Schwarzschild radius of a black hole is given by

rS =
2GM

c2
.

3.9 Problems

3.1 Estimate the gravitational redshift of a photon of given frequency ν
emitted from the surface of the Sun (mass 2 · 1030 kg, radius 7 · 108 m)

3.2 (a) Derive the expression for the circumference of a circle on a surface
with constant negative curvature, that is k = −1 in (3.18). (b) If K = −5
m−2, what is the circumference of a circle with physical radius 3 m?

3.3 Derive an expression for the line element ds2 on the two-sphere by using
x2 + y2 + z2 = a2 and eliminating z.

3.4 Use the definition (3.50) of the energy-momentum tensor for free parti-
cles to derive (3.52).

3.5 (This problem requires study of Appendix A for its solution.) We want
to construct a solution to Einstein’s equations for space-time outside a static
massive body (for example, a star) of mass M . From symmetry, we can guess
that the line element should be of the form
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ds2 = A(r)dt2 − B(r)dr2 − r2(dθ2 + sin2 θdφ2)

(a) Which values should A and B approach as r → ∞ if we want to have an
asymptotically flat solution?
(b) Calculate the connections Γµ

νρ (many of them will vanish).
(c) Use the Einstein equations Rµν = 0 for the vacuum outside the massive
body to obtain a set of equations for A(r) and B(r).
(d) By combining the equations obtained in (c), show that A′(r)B(r) +
B′(r)A(r) = 0, that is, A(r)B(r) = const. Use the result in (a) to fix this
constant. Show that d2

dr2 (rA(r)) = 0, and solve this to give A(r) = (1−rS/r),
with rS a constant. By comparing with the Newtonian limit, show that
rS = 2GNM .

In this way, you have constructed the so-called Schwarzschild solution,
which has many important applications in relativistic astrophysics.
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4.1 Space without Matter – the de Sitter Model

The Einstein equations (3.60) when applied to cosmology in a homogeneous
and isotropic Universe, do not permit static solutions, only expanding or
contracting. This was considered a failure at the time, since it was gener-
ally taken for granted that the Universe would be static and eternal. This
prompted Einstein to try to modify his equations in such a way that static
solutions would be possible. He found that nothing really forbids a term pro-
portional to gµν in the equations. (The only argument against this would
be that the equations become less simple and therefore ‘uglier’.) The full
Einstein equations, including such a cosmological constant term can thus be
written

Rµν − 1
2
gµνR − Λgµν = 8πGTµν (4.1)

If we wish, we can move the cosmological constant term over to the right-
hand side of the equation, and then we see that in a local free-fall frame (where
gµν = ηµν) it acts exactly like a contribution to the energy-momentum tensor
of the form

TΛ
µν =

⎛⎜⎜⎝
ρΛ 0 0 0
0 −ρΛ 0 0
0 0 −ρΛ 0
0 0 0 −ρΛ

⎞⎟⎟⎠ (4.2)

with ρΛ = Λ/(8πG). Comparing this to (3.53) we see that this vacuum energy
has very unusual properties: if ρΛ is positive it corresponds to negative pres-
sure! Below we will see that this indeed means that it will cause the Universe
to expand at an ever accelerating rate.

Later, when Hubble discovered the expansion of the Universe, Einstein is
said to have regretted ever introducing the cosmological constant. However,
since no symmetry principle forbids it, it has been considered wise to keep
it and to use cosmological observations to try to bound or eventually give a
numerical value to Λ. In fact, as we shall see, many observations today must
be interpreted as favouring a non-zero value. Also very important is the role
such a constant may have played in the early Universe.
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Let us try to find solutions to Einstein’s equations with no matter or
radiation (that is, Tµν = 0), as was first done by de Sitter.

The equations to solve are thus

Rµν − 1
2
gµνR = Λgµν (4.3)

To satisfy the cosmological principle (see Section 3.5.2), we try to find
solutions that are isotropic and homogeneous in space, and which look like
Minkowski space locally. This means that the line element should have the
form (3.26)

ds2 = dt2 − a2(t)
(

dr2

1 − kr2
+ r2dθ2 + r2 sin2 θdφ2

)
(4.4)

Since this metric is diagonal, gµµ = 1/gµµ (no summation over µ), and we
read from (4.4)

gµν =

⎛⎜⎜⎝
1 0 0 0
0 −a2/(1 − kr2) 0 0
0 0 −a2r2 0
0 0 0 −a2r2 sin2 θ

⎞⎟⎟⎠ . (4.5)

The metric connections are easy to calculate according to (3.34), for example,

Γ 1
01 =

g11

2

(
∂g11

∂x0
+

∂g01

∂x1
− ∂g10

∂x1

)
=

g11

2
∂g11

∂t
=
(
−1 − kr2

2a2

)(
− 2aȧ

1 − kr2

)
=

ȧ

a
(4.6)

With some more algebra (Problem 4.1) one finds the 00 and 11 components
of (4.3) to give

3
(

ȧ

a

)2

+
3k

a2
= Λ (4.7)

and

2
ä

a
+
(

ȧ

a

)2

+
k

a2
= Λ (4.8)

with the 22 and 33 components giving the same equation as (4.8).
We see that for k = 0 and Λ > 0, it is easy to find a solution to the

equation

H2(t) ≡
(

ȧ

a

)2

=
Λ

3
, (4.9)

namely

a(t) = eHt (4.10)
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with H =
√

Λ/3. This means an exponentially increasing scale factor, a
behaviour caused by the negative pressure of the cosmological constant term,
which is called inflation. It is customary to include, as we did, Λ in Tµν ,
and it turns out that in theories of particle physics there appear scalar fields
whose potential energy may include just such a term, which could have driven
inflation at an early epoch, if that contribution to Tµν dominated over matter
and radiation. We return to this later, when we shall also see that even after
a short period of inflation the curvature term proportional to k in (4.7) may
in fact be neglected, even for k = 1 or k = −1. Physically, the explanation
for this is that the exponential growth of the scale factor makes the Universe
look flat (just like a small sphere when expanded by a huge factor will locally
look very flat).

4.2 The Standard Model of Cosmology

We now derive the equations that govern the Standard Model of present-
day cosmology, namely, the isotropic and homogeneous Friedmann-Lemâıtre-
Robertson-Walker model (or FLRW model, for short). Like the de Sitter
model it is based on a line element of the type (4.4), but it is more general
in that also it allows for other forms of energy than vacuum energy, such
as matter and radiation. The properties of the FLRW model will be seen to
provide the basis for the Hot Big Bang model that has been so successful in
explaining many important features of the observable Universe.

With little further work, we can in fact derive the Einstein equations for
the FLRW model (sometimes called the Friedmann equation). The terms that
enter the left-hand side of the Einstein equations (4.1) have already been
calculated in the previous section. It just remains to add the contribution
to the energy-momentum tensor Tµν from matter and radiation. In the early
Universe, the energy density was very smooth, as witnessed by the isotropy of
the cosmic microwave background radiation. It should therefore be adequate
to use the perfect fluid hydrodynamical approximation of the cosmic fluid.
In fact, even today when there are large density contrasts in the form of
galaxies and other structures, the overall expansion of the Universe is still well
described by the equations of (in this case pressureless) hydrodynamics. In
today’s cosmological research this approximation has been tested by making
supercomputer calculations of the evolution of the particles that make up the
‘cosmic fluid’.

In a perfect fluid, there exists a frame, the comoving frame, where the
fluid looks perfectly isotropic. For the FLRW line element

ds2 = dt2 − a2(t)
(

dr2

1 − kr2
+ r2dθ2 + r2 sin2 θdφ2

)
(4.11)
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there is indeed such a preferred frame, which corresponds to constant values
of the coordinates r, θ and φ. It is easy to show (Problem 4.2) that a particle
at rest in the comoving frame satisfies the geodesic equation

d2xi

ds2
+ Γ i

µν

dxµ

ds

dxν

ds
= 0 (4.12)

with the line element given by ds2 = dt2. The world line of such a particle
therefore corresponds to free fall in the cosmic fluid. It can also be shown that
a particle which has a ‘peculiar velocity’ with respect to the comoving frame
will come to rest as the Universe expands. At every point a comoving frame
can be found, where the Universe (in particular, the microwave background)
looks maximally isotropic. This is an attractive feature of a homogeneous
model like the FLRW model: all observers in the Universe will see an isotropic
Universe (and therefore it will appear that they are all at the ‘centre’ of the
Universe!) from wherever they look, if they are at rest (that is having constant
r, θ and φ) in the local comoving frame.

We saw in Section 3.6.1 that the general relativistic energy-momentum
tensor for a perfect fluid is of the form (see (3.56))

Tµν = (p + ρ)uµuν − pgµν (4.13)

which fulfils the vanishing covariant divergence condition

Tµν
;µ = 0 (4.14)

The 00 component of the Einstein equations will then only differ from
(4.7) by the addition of the term 8πρ on the right-hand side, where ρ is the
total energy density in matter and radiation ρm and ρrad. Or, by defining
the vacuum energy density

ρvac = ρΛ =
Λ

8πG
(4.15)

we can write the Friedmann equation(
ȧ

a

)2

+
k

a2
=

8πG

3
ρtot, (4.16)

with

ρtot = ρm + ρrad + ρvac. (4.17)

The second equation (see (4.8)) becomes

2ä

a
+
(

ȧ

a

)2

+
k

a2
= −8πGp (4.18)

It is linearly related to (4.16) and the relation that comes from the vanish-
ing covariant divergence (4.14). As the two independent equations, (4.16) is
usually chosen together with Tµν

;µ = 0, which gives (see Problem 4.3):
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ṗa3 =
d

dt

(
a3[ρ + p]

)
(4.19)

where ρ and p are the total energy density and the total pressure of the fluid.
By writing the left-hand side of (4.19) as

ṗa3 =
d

dt
(pa3) − p

d

dt
a3 (4.20)

we obtain
d

dt
(ρa3) = −p

d

dt
a3 (4.21)

which has a very simple physical interpretation: the rate of change of total
energy in a volume element of size V = a3 is equal to minus the pressure
times the change of volume, −pdV .

Usually, there is a simple relation, the so-called equation of state, between
ρ and p, generally

p = α · ρ (4.22)

where α is a constant. For non-relativistic matter, ρ is dominated by the
rest mass energy mc2 (=m, since we put c = 1) which is huge compared to
the pressure which is proportional to the velocity v  c. Thus, to a good
approximation non-relativistic matter is pressureless and α = 0. (This is
sometimes called a dust Universe.) For radiation, v = c = 1, and p = ρ/3,
since the pressure is averaged over the three spatial directions, i.e. α = 1/3.
For vacuum energy, p = −ρ so α = −1. For p = αρ, (4.21) gives (see Example
4.2.1)

ρ = const · a−3(1+α), (4.23)

with the corresponding relation for energy conservation given by

ρ̇ + 3(1 + α)Hρ = 0 (4.24)

Thus, for a radiation dominated Universe (which we shall see was the case
the first several thousand years after the Big Bang)

ρ ∼ 1
a4

(radiation domination) (4.25)

and for a matter dominated Universe

ρ ∼ 1
a3

(matter domination) (4.26)

In fact, this behaviour of ρ is not difficult to understand. Since stable mat-
ter (like baryons) is not spontaneously created or destroyed, a given density
at a particular time will be diluted proportionally to the volume factor a3(t)
as the scale factor a(t) increases. For photons, there is an additional factor
of a(t) since the energy of each photon gets redshifted due to the expansion.
(See (4.57) and (4.58) below).
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The cosmological constant gives a scale factor-independent contribution
to the energy density, so that

ρ ∼ const (vacuum energy domination) (4.27)

Example 4.2.1 Show that (4.23) and (4.24) follow from (4.21) and (4.22).

Answer: Introducing (4.22) into (4.21) and performing the time derivatives
one obtains, collecting terms,

ρ̇a3 = −3(1 + α)ρa2ȧ

or
ρ̇

ρ
= −3(1 + α)

ȧ

a
= −3(1 + α)H,

which integrated gives

log ρ = −3(1 + α) log a + const

Exponentiating both sides of this equation gives

ρ = const · a−3(1+α)

which is (4.23).

Taking the difference between (4.16) and (4.18) gives

ä

a
=

−4πG

3
(ρ + 3p) (4.28)

This can be used together with the equation of state (4.22) to determine the
time evolution of the scale factor. By making the ansatz a ∼ tβ (which should
be valid for ‘small’ t but not necessarily asymptotically) and inserting into
(4.28) one obtains (Problem 4.4)

a(t) ∼ t
2

3(1+α) (4.29)

that is,

a(t) ∼ √
t (radiation domination) (4.30)

and for a matter dominated Universe

a(t) ∼ t2/3 (matter domination) (4.31)

As we saw in (4.10), vacuum energy domination drives an exponentially in-
creasing scale factor,

a(t) ∼ eHt (vacuum energy domination). (4.32)

The more general solution for an arbitrary mixture of matter, radiation and
vacuum energy cannot be given in closed form. In Section 4.3.2 we will study
some simple cases.
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Example 4.2.2 What is the time dependence of the density components ρm

and ρrad for radiation and matter domination?

Answer:

– During radiation domination the scale factor changes as a(t) ∼ t
1
2 . We

had also seen that ρrad ∝ a−4 ∝ t−2 and ρm ∝ a−3 ∝ t−
3
2 .

– For matter domination, a(t) ∼ t
2
3 , i.e., ρrad ∝ a−4 ∝ t−

8
3 and ρm ∝ a−3 ∝

t−2.

4.3 The Expanding Universe

From Hubble’s observations of redshifts we know that galaxies move away
from each other. Thus, if a(t0) is, say, the distance between the Milky Way
and another galaxy far away, we know that this distance is increasing: that is,
ȧ(t0) > 0. If we want to describe the Universe by an isotropic, homogeneous
model like the FLRW model of the last section we thus have to use this fact
as a condition on the metric

ds2 = dt2 − a2(t)
(

dr2

1 − kr2
+ r2dθ2 + r2 sin2 θdφ2

)
(4.33)

However, to completely specify the model, we need to know the curvature k
and the behaviour of a(t) for all times, both in the past and in the future.
Since the evolution of a is governed by (4.16) and (4.18) which depend on
the matter content ρ (and p which is, however, in general calculable from ρ
through the equation of state) we also need to know ρ(t). In addition, as we
shall see later, structure formation in the Universe depends not only on the
total value of ρ but on the various contributions to it (ordinary matter, dark
matter, radiation and vacuum energy). It is an important task of modern
cosmology to try to determine these parameters.

It may seem that we treat time very differently from space in (4.33).
However, we can make a transformation of the time coordinate to conformal
time η defined by dη = dt/a(t) to obtain

ds2 = a2(η)
(

dη2 − dr2

1 − kr2
− r2dΩ2

)
(4.34)

This is sometimes useful when one analyses the causal properties of space-
time. For instance, in the flat case k = 0 space-time looks just like ordinary
Minkowski space times the conformal factor a(η).

Let us point out some important basic facts about the FLRW model. It
was constructed assuming spatial isotropy and homogeneity, which means
that it looks the same to all observers at a specific cosmic time t. That
is, an observer in a galaxy billions of light years away from us would see
the same pattern as Hubble observed: all other galaxies move away from



66 4 Cosmological Models

that galaxy with the same slope of the velocity versus distance relation as
that found by Hubble. Of course, the observations would have to be made
at the same time, so the question arises of how to synchronize clocks that
are so far away. Fortunately, there are phenomena in the Universe that can
be used as cosmic clocks. For instance, the microwave background radiation
has a definite temperature which has been monotonically decreasing since it
was emitted a few hundred thousand years after the Big Bang. Since there
is a definite relation between this temperature and time (we will return to
this later), we can in principle specify the cosmic time by specifying the
temperature.

Similarly, there is a preferred frame (comoving frame or cosmic rest frame)
at each point, which has the property that the microwave background radia-
tion looks maximally isotropic in that frame. Indeed, from the Milky Way this
background is isotropic to within a few parts in 10−3, so we are almost at rest
in the cosmic frame. It is interesting that the few parts in 10−3 anisotropy is
of the dipole type (that is, the radiation has higher frequency in one specific
direction and lower frequency in the diametrically opposite direction). The
natural interpretation of this is that we are not exactly at rest in the cosmic
frame. We know that the Earth moves around the Sun, the Sun moves around
the Milky Way, and the whole Milky Way is gravitationally attracted by the
Virgo cluster of galaxies, which in turn is attracted to an even larger assem-
bly of galaxies (the so-called ‘Great Attractor’). Our velocity with respect
to the cosmic rest frame, the peculiar velocity, is most likely caused by this
gravitational pull from ‘nearby’ concentrations of matter.

The form of the FLRW metric (4.33) means that for a fixed-time ‘slice’
t = t0 of the Universe, the Universe looks like one of the fundamental models
with k = −1, 0, 1. In particular, we could associate, say, to each galaxy i a
set of coordinates (ri, θi, φi). As the Universe evolves, the galaxies stay at
the same coordinates (ri, θi, φi) (apart from the small peculiar motions). The
only thing that happens is that all cosmological distances (large enough that
local peculiar motions are insignificant) are stretched by the factor a(t). A
useful two-dimensional analogy is that of a balloon where the location of
‘galaxies’ at a certain cosmic time t1 is indicated. (see Fig. 4.1). At a later
time t2, the pattern of galaxies remains the same, but all distances have been
stretched by the ratio of scale factors a(t2)/a(t1). It is easy to see that in a
uniformly expanding Universe Hubble’s law is valid,

v = Hd (4.35)

with the Hubble parameter

H(t) =
ȧ(t)
a(t)

. (4.36)

(See Example 4.3.1 for the two-dimensional case.) Sometimes the Hubble
parameter H0 ≡ H(t0) at the present cosmic time t0 is called the Hubble
constant. As we explained in Chapter 1.1, present observations give
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H0 = h · 100 km s−1 Mpc−1, (4.37)

where h = 0.70 ± 0.10.

a(t2)

(a) (b)

a(t1)

Fig. 4.1. (a) A two-dimensional (closed) ‘Universe’, where the the locations of
‘galaxies’ at a given cosmic time t1 are indicated. (b) The same ‘Universe’ at a
later time t2. The size and pattern of location of individual galaxies are the same,
but all distances have been stretched by the ratio of scale factors a(t2)/a(t1).

Example 4.3.1 Show that Hubble’s law is fulfilled for the balloon model.

Answer: Choose one arbitrary point on the balloon as the location of our
Galaxy. Let another galaxy at time t1 be distant by an amount d1 = a(t1)s,
where s is the arclength distance between us and the other galaxy in nor-
malized coordinates (that is, rescaling to the unit sphere). At the time t2 the
distance to the other galaxy is d2 = a(t2)s, so the recession velocity is

v =
d2 − d1

t2 − t1
=

a(t2) − a(t1)
t2 − t1

s.

Taking the limit ∆t = t2 − t1 → 0 gives

v =
ȧ

a
(as) = Hd,

which is Hubble’s law with H = ȧ/a (and the physical distance d = as).
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4.3.1 The Deviation from the Linear Hubble Law

Equation (4.28)

ä

a
= −4πG

3
(ρ + 3p) (4.38)

shows that if matter alone drives the expansion, the expansion rate is
presently decelerating (since p ∼ 0 and ρ > 0). However, if vacuum energy
plays an important role (as we shall see that some observations indicate) then
the expansion may in fact accelerate. We may expand the scale factor a(t) in
a Taylor series around the present time t0:

a(t) = a(t0)
(

1 + H0(t − t0) − 1
2
q0H

2
0 (t − t0)2 + . . .

)
(4.39)

which defines the deceleration parameter (the name is of historical origin) q0:

q0 = − ä

aH2
0

(4.40)

Define the critical density ρcrit of the Universe by

ρcrit ≡ 3H2

8πG
(4.41)

(As we saw in (1.3), its present value is ρ0
crit = 1.9 · 10−32h2 kg cm−3.) Then

we can write (4.16) in the form

k

H2a2
+ 1 =

ρ(
3H2

8πG

) ≡ Ωt, (4.42)

where

Ωt ≡ ρ

ρcrit
(4.43)

or
k

H2a2
= Ωt − 1 (4.44)

This means that the overall geometry of the Universe is determined by the
total energy density parameter Ωt. We see that for Ωt > 1, k is positive,
which means that the Universe is closed (and a(t) can be chosen as the
physical ‘radius’ of the Universe which is still without boundary; see the
two-dimensional spherical analogy). If Ωt < 1, the Universe has constant
negative curvature and is open and could be of infinite extent (although one
can construct models where the global topology is non-trivial and even an
open Universe could be of finite extent). The limiting case Ωt ≡ 1 would
mean that the Universe is flat on large scales (of course local aggregations
of matter like galaxies, stars etc., still cause local curvature). It is important
to note that Ωt in general depends on time. The present value is sometimes
denoted by Ω0 or ΩT . We shall see that in standard cosmology the left-hand
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side of (4.44) goes to zero rapidly as t → 0. This means that the curvature
effects can be neglected in many of the early-Universe calculations.

From (4.38), using the equation of state pi = αiρi, where the subscript
i represent a type of fluid, e.g. non-relativistic matter, radiation or vacuum
energy density, and all energy densities refer to the present time values one
finds:

q0 =
∑

i

Ω0i

2

(
1 +

3pi

ρi

)
=

1
2

∑
i

Ω0i (1 + 3αi) (4.45)

Since a cosmological constant corresponds to α = −1, q0 may be negative
(the expansion accelerates) if the energy density of the Universe is dominated
by ρΛ. In general, acceleration of the Universe is possible for αi < − 1

3 .

4.3.2 The Fate of the Universe

The full solutions to the Friedmann equation (4.16) for the scale factor a(t) at
all times t can be quite complicated due to the different a-dependence of the
individual terms contributing to ρtot (and due to the partly unknown physics
in the earliest Universe). However, it is instructive to study the behaviour
of a in a few generic cases. In particular, it may be of interest to determine
the long-term behaviour of a(t) for t → ∞, that is the fate of the Universe.
One immediate simplification is then that we know that radiation plays no
major role today (and due to the continuing redshift of the cosmic microwave
background will be even less important in the future). We thus only need to
consider the matter contribution ρm and vacuum energy ρvac.

We start by considering the case where the cosmological constant Λ = 0
(that is, ρvac = 0). Since ρm = ρ0a

3
0/a(t)3 with ρ0 the present matter density

and a0 the scale factor now, that is at t = t0, the Friedmann equation becomes

ȧ2(t) =
8πGρ0a

3
0

3a(t)
− k (4.46)

Suppose (unrealistically, of course!) that ρ0 = 0. Then real-valued so-
lutions for a(t) demand k = −1. This is the so-called Milne model. The
solutions are simply

aMilne(t) = t, (4.47)

which means a linearly expanding Universe. (Since the Friedmann equation is
symmetric under t → −t, a ∼ −t is also a solution, which can be interpreted
as a contraction since ȧ < 0. In the following we will not explicitly display
such time-symmetric solutions.)

For ρ0 > 0 and small t, where the ansatz a ∼ tβ should be valid, we have
seen in (4.31) that the solution behaves as β = 2/3, for all k. The solutions
for larger t will depend on k. For k = 0, we easily solve (4.46) and find that

a(t) = a0

(
t

t0

) 2
3

(4.48)
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is the solution also for large values of t. This cosmological model is usually
called the Einstein de Sitter model.

For ρ0 > 0 and negative curvature, k = −1, (4.46) shows that ȧ2 is
always positive, which means an ever-increasing a(t). This in turn means
that eventually the matter term on the right-hand side will be negligible
compared to the k (curvature) term. During this latter stage of curvature
domination, the Universe will expand like the Milne model with a(t) ∼ t.

If k = +1, that is positive space curvature, and ρ0 > 0, we see that ȧ2 > 0
only up to a critical (largest) value of a(t) given by

acrit =
8πGρ0a

3
0

3
. (4.49)

Since (4.18) shows that ä ≤ 0 for all a it means that the Universe will start to
contract at that point and enter a period of contraction to a ‘Big Crunch’.1

For Λ 
= 0, there is a richer ‘zoo’ of cosmological models. We now have to
solve

ȧ2(t) =
8πGρ0a

3
0

3a(t)
− k +

Λa(t)2

3
(4.50)

It is often useful to resolve the contributions to Ωt today (ΩT or Ω0) from
non-relativistic matter and from the cosmological constant:

ΩM =
8πGρ0

3H2
0

, (4.51)

ΩΛ =
Λ

3H2
0

, (4.52)

where ρ0 is the matter density at t0. Note that ΩM can also be written

ΩM =
ρ0

ρ0
crit

, (4.53)

where ρ0
crit is the present value of the critical density (see (1.3)). As we shall

see later the contributions to ΩT from relativistic matter,

ΩR =
8πGρrad

3H2
0

(4.54)

is negligible at the present epoch.
An amazing property of the cosmological constant Λ is seen from (4.50)

to be that it was completely negligible for small a(t), that is, in the early
Universe, but it will eventually dominate over all other forms of matter (and
curvature) for large a(t). This is in fact one of the main puzzles today, when
1 There could in principle be a new period of expansion after that: that is, an

oscillating Universe. There are, however, thermodynamical arguments against
the hypothesis that our Universe is of this type - at each period of expansion
and contraction more and more heat would be generated, making nucleosynthesis
and the CMBR quite different from what is observed.
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observations may favour a non-zero value of Λ. Why is it that we live in such
a special epoch when ρvac just happens to be of similar magnitude as ρ0?

If Λ < 0, (4.50) shows that a(t) cannot become arbitrarily large, since ȧ(t)
has to be real. For the largest possible value acrit of a (when the right-hand
side of (4.50) is zero), we again find from (4.18) that ä < 0, so that we have
an oscillating Universe. (This conclusion does not depend on k, although the
value of acrit does.)

For Λ > 0, and k = 0 or k = −1 we see directly that for large a(t) the
Universe will enter a period of exponential expansion: that is, the cosmological
model will be similar to the de Sitter model of Section 4.1. For Λ > 0, and
k = +1, the interplay between the three terms in (4.50) is more subtle. It is
possible to fine-tune Λ such that ȧ = 0 and ä = 0 simultaneously (exercise: do
this!). This means a static solution, in fact the one that motivated Einstein to
introduce the cosmological constant in the first place. Of course, this model
does not agree with observations (in particular, it predicts no redshifts).
For Λ larger than this fine-tuned value, the repulsive force provided by the
cosmological constant will dominate over the gravitational attraction due to
the matter density, and the Universe will expand forever. For smaller Λ, there
is a range of a where the right-hand side of (4.50) is negative, and which is
thus forbidden. Depending on the initial conditions, the Universe will then
either oscillate with a scale factor between zero and the lower limit of this
range, or always expand (or perhaps contract with a ‘bounce’) with a scale
factor larger than the upper limit of this range. (In the latter case, there
would be no Big Bang.) In Fig. 4.2 the solutions for Λ = 0 with ΩM = 0.2,
1 and 2 are displayed, corresponding to k = −1, 0, and 1, respectively. Also
shown is the exponentially growing solution, ‘the lonely Universe’, for k = 0,
with ΩM = 0.2 and ΩΛ = 0.8 (rather close to what is presently favoured
by observations). The solutions have been arbitrarily normalized to unity at
tH = H−1

0 .

4.3.3 Particle Horizons

Light travels, as we have seen, on light-like geodesics ds2 = 0. Let us choose
our local cosmic coordinates such that we are located at r = 0. Consider a
light-ray that moves radially towards us, that is, θ, φ = const. If this light-ray
was emitted from r = rE at time t = tE it will reach us at a time t0 given
by (since ds2 = 0 gives dt = a(t)dr/

√
1 − kr2)∫ t0

tE

dt

a(t)
=
∫ rE

0

dr√
1 − kr2

(4.55)

Choosing the time coordinate such that t = 0 when a = 0 (the moment of
the ‘Big Bang’), we see that the farthest physical distance dH we can observe
today (called the horizon distance) is given by multiplying (4.55) by today’s
physical scale factor a(t0), and taking the limit tE → 0 (see (3.27)):
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Fig. 4.2. The schematic behaviour of a(t) for vanishing cosmological constant,
Λ = 0, and ΩM = 1, 2 and 0.2, corresponding to k = 0, 1 and −1. Also shown is
the case ΩM = 0.2, ΩΛ = 0.8 (that is k=0), which gives an exponentially growing
solution.

dh(t0) = a(t0)
∫ rE

0

dr√
1 − kr2

= a(t0)
∫ t0

0

dt

a(t)
(4.56)

Since in standard cosmology a(t) → 0 slower than t as t → 0 (see (4.29)),
dH is finite (dH ∼ t), and our past light-cone is limited by a particle horizon.
For example, in a radiation dominated epoch a(t) ∼ t1/2, which inserted in
(4.56) gives dH = 2t. In a matter dominated Universe (with Ω = 1), dH = 3t.

The geodesic equation of motion for a particle with peculiar four-momen-
tum p can be shown to imply that |p| decreases as 1/a (the peculiar motion
is said to ‘redshift away’). In particular, since |p| = h̄ω for a photon, the
frequency (and therefore the energy) will decrease as the Universe expands.

Example 4.3.2 Derive the redshift formula λobs/λemit = a(tobs)/a(temit) di-
rectly by considering (4.55) for two emission times temit and temit + δtemit

corresponding to two successive wave-crests of radiation.
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Answer: The right-hand side of (4.55) does not change for a source at given
comoving coordinates. However, on the left-hand side the integration limits
are tobs and temit for the first wave crest, and tobs + δtobs and temit + δtemit

for the second. Thus∫ temit

tobs

=
∫ temit+δtemit

tobs+δtobs

.

Comparing here the right-hand side with the left-hand side, we see that we
have lost the integration interval from tobs to tobs + δtobs but gained the
interval from temit to temit + δtemit. Since the full integral is unchanged, it
means that∫ tobs+δtobs

tobs

=
∫ temit+δtemit

temit

,

or
δtobs

a(tobs)
=

δtemit

a(temit)

Since δtobs/δtemit = λobs/λemit the redshift law follows.

Usually, the redshift parameter z is introduced, defined by

1 + z ≡ λobs

λemit
(4.57)

where we have seen that in the FLRW model the redshift law is simply

1 + z =
a(tobs)
a(temit)

(4.58)

For small distances, the redshift in the FLRW model can be interpreted as a
Doppler effect. The radial recession velocity is vr = ȧ(t0)r, and the first order
Doppler shift is given just by this value (or vr/c if we reinstate the velocity
of light), see (2.69). From (4.58) we find for small tobs − temit

z ≈ ȧ(tobs)(tobs − temit)
a(tobs)

≈ rȧ(tobs) ≈ vr (4.59)

4.4 Cosmological Distances: Low Redshift

There are various ways of determining the present values of the cosmological
parameters. Most of them rely on various observations of distant light (or
other electromagnetic radiation). It is therefore important to discuss how a
light source at large distance will appear here on Earth, and in particular
how its properties depend on the cosmological model.
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4.4.1 Luminosity Distance

We have seen that in the FLRW class of models a redshift appears caused by
the expansion of the Universe with the simple rule (4.58). However, distance
is a derived concept (we have no direct means of obtaining distances to cos-
mological objects) while redshift, flux and angular diameter of sources are
directly measurable. To obtain information on the cosmological parameters
we can use measurements such as the intensity of a source of known intrinsic
strength, a standard candle, as a function of the redshift. Then we can use
our underlying general relativistic framework to compare these measurements
with what would be expected for a class of models with different values of
the cosmological parameters.

The total power of light received by a telescope on Earth from a standard
candle of the total emitting power L at the source (called luminosity) can
be calculated as follows. Suppose first that a ‘flash’ with a given number of
photons Nγ was emitted isotropically at one particular time temit from the
source with radial (dimensionless) coordinate r in our cosmic frame. If there
were no expansion of the Universe, the telescope with area A would intercept
a fraction A/4π(a(temit)r)2 of the photons. However, due to the expansion
of space, at the detection time t0 = tobs the area of the spherical shell where
the photons are has increased to 4π(a(tobs)r)2, so

Ndetected

Nγ
=

A

4π(a(tobs)r)2
(4.60)

To compute the power we must, however, take two additional effects into
account. First, all photons are redshifted by the factor 1+z = a(tobs)/a(temit),
which means that their energy has decreased by the corresponding factor.
Second, if the time between ‘flashes’ was δτ at the source, this time interval
will also be increased by the redshift factor, so that the flux F measured at
the telescope, i.e. the total power per unit area at the telescope will be

F =
L

4πa2(t0)r2(1 + z)2
≡ L

4πd2
L

(4.61)

which defines the luminosity distance

dL =

√
L

4πF = a(t0)r(1 + z) (4.62)

to the source.
In (4.61), the coordinate r is unknown, but we can eliminate it in terms

of the redshift z by using (4.55), (4.58) and (4.62). The general solution will
be derived in (4.85), but let us first use an approximation for small z based
on (4.39). Inserting (4.58) in (4.39) gives

z = H0(t0 − t1) +
(
1 +

q0

2

)
H2

0 (t0 − t1)2 + . . . (4.63)

which can be inverted to give
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t0 − t1 = H−1
0

[
z −

(
1 +

q0

2

)
z2 + . . .

]
(4.64)

From (4.56) one finds, by writing 1/a(t) = 1/a(t0)(a(t0)/a(t)) and using
(4.39) (see Problem 4.5)

r =
1

a(t0)
(t0 − t1 +

1
2
H0(t0 − t1)2 + . . .) (4.65)

which, inserting (4.64), finally gives

r =
1

H0a(t0)

(
z − 1

2
(1 + q0)z2 + . . .

)
(4.66)

From this expression and (4.62) we obtain

dL =
1

H0

(
z +

1
2
(1 − q0)z2 + . . .

)
(4.67)

We see that (4.67) can be interpreted as a difference from the linear
Hubble law, and since q0 depends on the cosmological model (see (4.45)),
this gives an observational way of determining the fate of the Universe.

4.4.2 Angular Distance

Another frequently used measurement of distance is the angular distance, dA:

dA =
D

δθ
(4.68)

where δθ is the angular size of an object of known proper size D. According
to the FLRW metric (4.4), this is given by

dA = a(t1)r =
a(t0)

(1 + z)
r (4.69)

which means that there is only a difference of a factor (1 + z)2 between the
angular and luminosity distances:

dA =
dL

(1 + z)2
(4.70)

Another way to see this is that the latter ‘loses’ a factor (1 + z) since
energy of the photons become redshifted in the expansion, and yet another
factor (1+z) because the rate of photon emission is slowed when viewed from
an observer at the Earth (see the way that (4.61) was derived).

Unfortunately, we can thus not learn anything about the cosmological
parameters by just comparing the distance measures dL and dA to a single
object. However, if we have a number of sources at different redshifts, we
can use the dependence on z of either dL, dA or both, to determine the
cosmological parameters.
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4.5 Cosmological Distances: High Redshift

Let us return to the Friedmann equation (4.16), written in a slightly different
form. At the present epoch, the energy density in the form of radiation ρrad

can be neglected in comparison with the matter density ρm, so we can write

H2 ≡
(

ȧ

a

)2

=
8πG

3
(ρm + ρvac) − k

a2
(4.71)

Thus the expansion rate of the Universe depends on the matter density,
the cosmological constant and the geometry of the Universe. It is also custom-
ary to rewrite (4.71) so that it instead contains the fractional energy density
contributions at the present epoch – see (4.43,4.51 and 4.52) – where we now
also introduce the contribution,

ΩK =
−k

a2
0H

2
0

(4.72)

from the curvature term.
There are only two independent contributions to the energy density. Equa-

tion (4.71) implies that (Problem 4.6):

ΩM + ΩΛ + ΩK = 1 (4.73)

As the matter density scales with the inverse third power of the scale
factor a(t), by using the definition of redshift and (4.71) we find that the
expansion rate of the Universe at any epoch at redshift less than about 1000
can be related to the one at the present epoch by (Problem 4.7):

H2 = H2
0 [ΩM (1 + z)3 + ΩK(1 + z)2 + ΩΛ] (4.74)

4.5.1 The Lookback Time and the Age of the Universe

We can now derive the expression for the lookback time: that is, the time dif-
ference between the present epoch t0 and the time of an event that happened
at a redshift z. From the definitions of the Hubble parameter and redshift it
follows that

H =
d

dt
log
(

a(t)
a0

)
=

d

dt
ln
(

1
1 + z

)
=

−1
1 + z

dz

dt
(4.75)

Combining (4.74) and (4.75) we thus find:

dt

dz
=

−(1 + z)−1

H0[ΩM (1 + z)3 + ΩK(1 + z)2 + ΩΛ]
1
2

(4.76)

Thus, we arrive at the formula for the lookback time from the present:

t0 − t1 = H−1
0

∫ z1

0

dz

(1 + z)[ΩM (1 + z)3 + ΩK(1 + z)2 + ΩΛ]
1
2

(4.77)
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By choosing t1 = 0 (that is, z → ∞) in this equation, we obtain the present
age of the Universe as a function of H0, ΩM , and ΩΛ (neglecting the ‘short’
early period of a few hundred thousand years when the Universe was radiation
dominated and the even shorter possible period of inflation). Note that the
scale of this age is set by H−1

0 (sometimes called the Hubble time), with the
integral giving a number of order unity.

Example 4.5.1 Calculate the age of the Universe in a ΩM = 1, ΩΛ = 0 (Ein-
stein de Sitter) Universe.

Answer: We simply integrate (4.77) with from the present epoch z = 0 to the
beginning of time at z = ∞:

H0τ =
∫ ∞

0

1
(1 + z)5/2

dz =
2
3

(4.78)

that is, the age of the Universe is

t0 =
2

3H0

For H0 = 65 km s−1Mpc−1 this gives an age of around 10 billion years.

In Fig. 4.3 we show the lookback time (or the expansion age) of the
Universe for the two cases ΩΛ = 0 and ΩM + ΩΛ = 1 (a flat Universe),
respectively, as a function of ΩM . As can be seen, the age of the Universe
for a given ΩM is always larger in the flat case (which means in the presence
of a cosmological constant). Also, the age is always larger for smaller values
of ΩM . If dating of the Universe by other means (for example through the
analysis of the age of stellar systems like globular clusters, or isotope analysis
of long-lived radioactive nuclei) would give a value substantially larger than
2H−1

0 /3, one could rule out a matter-dominated Universe with ΩM ∼ 1. At
present, these alternative dating methods are not reliable enough to enforce
this conclusion.

We finally note from (4.77) that to determine the age at a certain epoch
with z 	 ΩM , ΩΛ, only the third power of z in the square bracket in that
equation becomes important. This gives the estimate of the age of the Uni-
verse at the epoch with redshift z

tU (z) ∼ 2
3H0

√
ΩM

1
(1 + z)3/2

(4.79)

The fact that ΩΛ does not enter into the equation is related to the dominance
according to (4.74) of the matter contribution to the expansion rate.
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Fig. 4.3. The age of the Universe in units of H−1
0 as as function of the matter

density ΩM for the two cases ΩΛ = 0 and ΩM + ΩΛ = 1. The value 2/3 at ΩM = 1
corresponds to an age of around 10 billion years, if the Hubble parameter h is 0.65.

4.5.2 Measuring Cosmological Parameters

We have seen in Section 4.4, (4.62) that the luminosity distance to an event
at r = r1, t = t1 can be written as

dL = a(t0)(1 + z)r1 (4.80)

where a, r and t are related by the equation of the radial, null (light-like)
geodesic of the FLRW metric (that is, dθ = dφ = 0):

dr

dt
=

√
1 − kr2

a(t)
(4.81)

Multiplying (4.81) by a0 ≡ a(t0), using (4.58) and rearranging terms we
write:

a0
dr√

1 − kr2
= (1 + z)dt (4.82)

Using (4.76) to change variables from t into z we thus find:
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a0

∫ r1

0

dr√
1 − kr2

=
∫ z1

0

dz

H0[ΩM (1 + z)3 + ΩK(1 + z)2 + ΩΛ]
1
2

(4.83)

where the left-hand-side integral has the solution:

a0 ×

⎧⎪⎨⎪⎩
arcsin (r1

√
k)√

k
(for k > 0)

r1 (for k = 0)
arcsinh(r1

√−k)√−k
(for k < 0)

(4.84)

Thus, we can extract an expression for r1 as required by the definition of
luminosity distance in (4.80).

Finally, by inserting the definition ΩK = −k/a2
0H

2
0 and writing explicitly

the speed of light c we arrive at the expression of the luminosity distance
versus redshift (Problem 4.8)

dL(z;H0, ΩM , ΩΛ) =
c(1 + z)

H0

√|ΩK |S
(√

|ΩK |
∫ z

0

dz′

H ′(z′)

)
(4.85)

where S(x) is defined as sin(x) for ΩK = 1−ΩM −ΩΛ < 0 (closed Universe),
sinh(x) for ΩK > 0 (open Universe) and S(x) = x, and the factor

√|ΩK | is
removed for the flat Universe; and

H ′(z) =
H(z)
H0

=
√

ΩM (1 + z)3 + ΩK(1 + z)2 + ΩΛ (4.86)

In the general case, replacing ΩΛ by a fluid ΩX with an non-constant
equation of state parameter αX(z), (4.86) becomes

H ′(z) =
√

ΩM (1 + z)3 + ΩK(1 + z)2 + ΩXf(z), (4.87)

where the redshift dependence f(z) is given by

f(z) = exp
[
3
∫ z

0

dz′
1 + αX(z′)

1 + z′

]
. (4.88)

4.5.3 Redshift Dependence of the Particle Horizon

We can now return to the discussion about particle horizons. We generalize
(4.56) to any time t in a Friedmann-Lemâıtre-Robertson-Walker Universe:

dH(t) = a(t)
∫ t

0

dt′

a(t′)
= a(t)

∫ a(t)

0

da(t′)
ȧ(t′)a(t′)

(4.89)

Adding the energy density contribution from radiation in the expression in
(4.87) and inserting it into (4.89) together with the definition of redshift
yields:

dH(z) =
1

H0(1 + z)

∫ ∞

z

f(z′)dz′ (4.90)
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with

f(z) =
1√

g(z,ΩR, ΩM , ΩK , ΩX)
(4.91)

where

g(z,ΩR, ΩM , ΩK , ΩX) =
ΩR(1 + z)4 + ΩM (1 + z)3 + ΩK(1 + z)2 + ΩX(1 + z)3(1+α) (4.92)

We have here been very general and also included the (presently small) con-
tribution from radiation ΩR and a hypothetical ‘X-matter’ which we just
parametrize by its equation of state p = α · ρ (see (4.23)).

Example 4.5.2 Evaluate the deceleration parameter q(z) (neglect radiation).

Answer: Generalizing the definition in (4.40) to apply at all times we find,
q(z) = − ä

aH2 , which together with (4.23) and (4.45) leads to

q(z) =
1
2

[
ΩM (1 + z)3 + (1 + 3α)ΩX(1 + z)3(1+α)

]
(4.93)

We note that with the concordance model, ΩM ∼ 0.3 and ΩΛ ∼ 0.7, the
expansion did slow down until z ∼ 0.7 at which point it began to accelerate
(i.e., q < 0).

4.6 Observations of Standard Candles

The evidence of structures beyond our own Galaxy, the so-called spiral neb-
ulae, originated in observations by Charles Messier in the 18th century. It
took until 1925 before Edwin Hubble demonstrated that these were galaxies,
just like the Milky Way. Hubble also showed that all galaxies did not have
spiral shape but form three morphological classes: spirals, ellipticals and ir-
regulars. Establishing the distances to other galaxies has been one of the
main efforts of observational cosmology since then. Hubble studied Cepheid
stars in neighbouring galaxies to deduce their distance from Earth. These
pulsating stars have a known correlation between the period with which they
brighten and fade and their intrinsic brightness, which may be combined with
their apparent brightness to deduce their distance. Still today Cepheids play
a critical role in establishing the extragalactic distance scale. The Hubble
Space Telescope (HST) has been used to obtain distances to galaxies up to
25 Mpc away. Secondary methods are used to extend the distance ladder fur-
ther. This is necessary to reach the Hubble flow, i.e. the distance range where
the velocities of the galaxies are dominated by the cosmological expansion.
For nearby galaxies, the peculiar velocities due to the gravitational interac-
tions with neighbours, typically a few hundred km·s−1, introduce significant
uncertainties.
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One the most common secondary methods exploits the homogeneity of the
peak brightness of Type Ia supernovae (SNe Ia). These powerful explosions
are empirically found to behave as standard candles with approximately a
20% brightness intrinsic dispersion. Type Ia supernovae are believed to result
from accreting white dwarfs in a binary system. A thermonuclear explosion
is triggered when the white dwarf mass exceeds the so-called Chandrasekhar
mass, M ∼ 1.4M�. Unlike Cepheids, the absolute brightness of SNe Ia cannot
be deduced directly with sufficient precision. However, they have been found
in galaxies also hosting Cepheid stars and therefore with known distances.
Thus an indirect estimate of the intrinsic intensity of SNe Ia is possible.
The extragalactic distance scale is then established by the relative distances
provided by the measured fluxes from supernovae in more distant galaxies.
This makes it possible to build a Hubble diagram, as shown in Fig. 4.4 for
a sample of 80 Type Ia supernovae with recession velocities vr > 2500 km/s.
The fitted slope yields H0 = 66 ± 7 km s−1Mpc−1.

Fig. 4.4. Hubble diagram for 80 Type Ia supernovae with recession velocities ex-
ceeding 2500 km/s. The fitted slope (solid line) yields H0 = 66 ± 7 km s−1Mpc−1.
The small shaded box in the left bottom corner shows the extent of Hubble’s original
diagram. Courtesy of Saurabh Jha.
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Optical astronomers measure luminosities in logarithmic units, magni-
tudes.2 Thus, the Hubble relation expressed in bolometric magnitudes be-
comes (with dL measured in Mpc):

m(z) = M + 5 log dL + 25 (4.94)

where M is the absolute magnitude (apparent magnitude of the object if it
would be at 10 pc distance from the observer) and the Hubble parameter is
measured in units of km s−1Mpc−1. By measuring the apparent magnitudes
of standard candles as a function of redshift one can solve for the unknown
cosmological parameters.

The quantity m − M = 5 log dL + 25 is called the distance modulus.
The magnitude versus redshift relation for Type Ia supernovae (believed

to be standard candles) measured with broad optical filters out to z ∼ 1 is
shown in Fig. 4.5. The data favours a Universe with a positive cosmological
constant, ΩΛ = 0.75 ± 0.08 in a flat Universe [25]. The current data set of
high-redshift Type Ia supernovae is insufficient to break the degeneracy of
the density terms, as shown in Fig. 4.6. The results can be approximated by
the linear combination 0.8ΩM−0.6ΩΛ ≈ −0.2±0.1 [35]. The estimates of the
energy density terms, depend solely on relative distances and are therefore
independent of the value of the Hubble parameter.

4.7 Meaning of the Cosmological Constant

The cosmological constant, whatever its origin might be, could play a major
role in the dynamics of the Universe. Next we will re-examine the Friedmann
equations (4.16) and (4.18) separating the contributions from mass density
and the vacuum energy density to the time evolution of the scale factor of
the Universe. Thus, we write explicitly:(

ȧ

a

)2

+
k

a2
=

8πG

3
(ρm + ρvac), (4.95)

and (see (4.18))

2ä

a
+
(

ȧ

a

)2

+
k

a2
= 8πGρvac, (4.96)

where we have inserted the equation of state for vacuum energy, pvac = −ρvac.
The pressure term from non-relativistic matter is negligible and was therefore
dropped. The difference between the two equations becomes (see (4.28):

2 The brightness of an object through a filter f in the magnitude system is de-
fined as mf = −2.5 log

(∫∞
0

Tf (ν)F(ν)dν
)
+Cf , where Tf (ν) is the transmission

function of the filter used and Cf is a constant specific to the choice of filter.
Note that brighter objects have lower magnitudes.
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Fig. 4.5. Hubble diagram for high-redshift Type Ia supernovae from the Supernova
Cosmology Project [25], and low-redshift Type Ia supernovae from the CfA [38] and
Calán/Tololo Supernova Survey [19]. The inner error bars show the uncertainty due
to measurement errors, while the outer error bars show the total uncertainty when
the intrinsic luminosity dispersion (0.17 mag) is added in quadrature. Filled circles
represent supernovae measured with the Hubble Space Telescope, i.e. in general
with higher accuracy. The curves are the theoretical effective mB(z) for a range of
cosmological models with and without a cosmological constant. It is called ‘effective
mB ’ because the measured intensity corresponds to the restframe B-band (blue).
Because of cosmological redshift, the photons are observed at longer wavelengths.
The best fit to the data (for a flat Universe) corresponds to the FLRW Universe
with (ΩM, ΩΛ)=(0.25, 0.75), as shown in [25].

ä

a
= −4πG

3
ρm +

Λ

3
, (4.97)

where Λ = 8πGρvac. Let us now consider a sphere of space with comoving ra-
dial coordinate r: that is, of physical radius ar (neglecting curvature effects).
A test particle with mass m at the boundary of the sphere will accelerate as
space evolves as:

d2(ar)
dt2

= −4πG

3
ρm(ar) +

Λ

3
(ar), (4.98)



84 4 Cosmological Models

0 1 2 3
1

0

1

2

3

ΩM

Ω
Λ

7.
5

9.
0

11
.013

.616.5

20.0

C
losedO

pen

No Big Bang

Flat

Ac
cel
era
tin
g

De
cel
era
tin
g

Expands Forever

Recollapses Eventually

Fig. 4.6. Best-fit coincidence regions in the ΩM–ΩΛ plane from the analysis of the
Supernova Cosmology Project supernova Hubble diagram shown in Fig. 4.5. The
dark and light ellipses show the 68 per cent and 90 per cent confidence regions.
The outer ellipses show the 95 and 99 per cent confidence levels. A flat Universe
(ΩK = 0) would fall on top of the diagonal solid line passing through the Einstein
de Sitter solution. To the right of that line the Universe is closed, and to the left it is
open. The dashed line shows the division between acceleration and deceleration for
the Universe. Also shown are isochrones of constant age of the Universe in units of
billion of years (h=0.71 was assumed). The data suggests that the rate of expansion
of the Universe is currently accelerating. Courtesy of Robert Knop.

By recognizing that the mass of the sphere is M = 4π(ar)3

3 ρm we find:

d2(ar)
dt2

= − GM

(ar)2
+

Λ

3
(ar) (4.99)

The first term on the right-hand side is the familiar Newtonian force,
attractive and inversely proportional to distance squared. The second term
shows that the force associated with the cosmological constant is repulsive
and proportional to distance. Thus, it is only at the largest scales (comparable
to the size of the Universe) that the effects of the vacuum energy density could
become sizeable for ΩΛ = O(1).
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To explain the smallness of the cosmological constant is one the most
outstanding challenges in modern theoretical physics. In natural units, with
h̄ = c = 1, the vacuum energy density for ΩΛ ∼ 1 becomes ρvac ≈ 10−46

GeV4. Physically, this should correspond to m4, where m is some fundamen-
tal mass scale in nature. As will be discussed in Chapter 6, the mass scale
for gravity in natural units is the Planck mass, mPl = 1.2 · 1019 GeV. For
dimensional reasons, one could therefore expect a vacuum energy density of
the order of m4

Pl ∼ 1076 GeV4 to emerge from an eventual quantum theory of
gravity. The observed vacuum energy density is thus smaller by 122 orders of
magnitude! In physics, this is regarded as a severe fine-tuning problem: How
is it that a number, naively expected to be of order 10122, comes out to be
of order unity, (but still non-zero)? Usually, it is much easier to explain why
a number is exactly zero rather than very small but non-zero. For instance,
we saw in Section 2.6 that the photon mass is believed to be exactly zero
because of a symmetry, gauge invariance. There have been hopes of finding
some symmetry which would give Λ ≡ 0, but none has so far been found. The
present observational indications of ΩΛ 
= 0, if confirmed, have added to the
seriousness of the cosmological constant problem. It is conceivable that the
solution to this problem is intimately related to the so far unsolved problem
of finding a correct theory of quantum gravity.

4.8 Summary

• Standard cosmology is based on Einstein’s general relativity, and
the Universe is treated as homogeneous and isotropic.

• Events and objects in the Universe are characterized by their red-
shift. The relation between the emitted and observed wavelength
scales with the scale ratio of the Universe:

a0

ae
=

λo

λe
= 1 + z

• The time evolution of the scale factor and thus of the entire Uni-
verse is a function of the cosmological parameters H2

0 , ΩΛ, ΩM

and ΩK , and is given by the Friedmann equation:{
H2 = H2

0 [ΩM (1 + z)3 + ΩK(1 + z)2 + ΩΛ]
ΩM + ΩK + ΩΛ = 1

At redshifts of the order of 1000 or greater, a contribution from
radiation should also be included, which scales like (1 + z)4.

• The cosmological parameters can be extracted from distance mea-
surements: for example, through the magnitude redshift relation
for standard candles.
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4.9 Problems

4.1 Derive (4.7) and (4.8) for the de Sitter model from Einstein’s equations
(4.1).

4.2 Show that a particle at rest with respect to the comoving coordinates
r, θ and φ satisfies the geodesic equation (4.12). (Hint: Since dxi = 0, only
Γ i

00 has to be computed.)

4.3 Use the definition of the covariant divergence

Tµν
;µ = Tµν

,µ + Γµ
µσT σν + Γ ν

ρσT ρσ

and the condition Tµν
;µ = 0 to derive (4.19).

4.4 Derive (4.29).

4.5 Fill in the missing steps leading to (4.67).

4.6 Show that the relation ΩM + ΩΛ + ΩK = 1 follows from (4.71).

4.7 Show that the Hubble parameter at redshift z is related to the present
epoch cosmological parameters as shown in (4.74).

4.8 Fill in the details to arrive at (4.85).

4.9 Show that the Friedman-Lemâıtre-Robertson-Walker line element can
also be written

ds2 = dt2 − a2(t)
(
dχ2 + Σ2(χ)dΩ2

)
,

with Σ2(χ) = sin2 χ, (for k = 1), Σ2(χ) = χ2 (for k = 0) or Σ2(χ) = sinh2 χ
(for k = −1).

4.10 Compute the Ricci scalar for the FLRW metric.

4.11 How large was the presently observable Universe (the volume within
the present horizon) one millisecond after the Big Bang? Of course, you only
need to give an order of magnitude estimate. Assume standard FLRW cos-
mology, ΩM + ΩR = 1, ΩΛ = 0, and H0 = 65 km/s per Mpc (that is
h = 0.65).

4.12 In a flat FLRW Universe, the physical coordinate distance d is related
to the redshift z through the formula

d =
2

H0

(
1 − 1√

1 + z

)



4.9 Problems 87

The apparent angular diameter δθA is given by the true diameter D divided
by the coordinate distance times (1 + z):

δθA =
D

d
(1 + z)

(a) What is the relation between apparent angular diameter of a fixed-size
object and redshift in this cosmological model?

(b) At what redshift does the apparent angular diameter have a minimum?
Do you have any idea why objects which are further away than this can
actually appear to be bigger?

4.13 A galaxy has an apparent magnitude of 18 and an absolute magnitude
of −17. Show that its distance to us is around 100 Mpc.

4.14 Show that given an equation of state pX = αρX , where the energy
density ρ does not include the vacuum energy, the evolution equation of the
Hubble parameter becomes:

H2(z) = H2
0 [(1 + z)2

(
1 + ΩX(1 + z)1+3α − 1)

)− z(2 + z)ΩΛ]



5 Gravitational Lensing

5.1 The Bending of Light

The idea that light may be bent gravitationally when passing near massive
bodies is old, stemming at least back to Newton and Laplace. In a corpuscular
model of light, such as the one of Newton, it is natural that the gravitational
attraction will make an otherwise straight light path bend like the trajectory
of any material body (see Fig. 5.1).

Sun Earth

1.74"

Apparent position

True position

Fig. 5.1. The deflection of light from a star behind the Sun. Since the ray of light is
bent towards the Sun, the apparent position of the star is shifted by 1.74 arcseconds
according to general relativity. This prediction was first verified by Eddington in
1919.

The gravitational bending of light by the Sun computed in Newtonian
theory for a massive photon, with the limit of the mass going to zero, turns
out to be 0.87 arcseconds – exactly one half of the value predicted by general
relativity. When Eddington measured the true value during a solar eclipse ob-
served from the island of Principe in 1919, he obtained a result which agreed
with that of Einstein’s theory within error bars, whereas the Newtonian pre-
diction was a factor of 2 too small. It was this success (‘Newton was wrong –
Einstein was right’) that brought world fame to Einstein. Today, the general
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relativistic value of the deflection angle has been proven correct to the five
per cent level.

Much later it was realised that in fact the bending of light by massive
objects provides a powerful technique to measure the mass, for example, of
galaxies and galaxy clusters. In analogy with the refraction of light by optical
lenses, individual galaxies, stars, or planets may act as gravitational lenses.
Even though the lensing may be too weak to give noticeable multiple images,
the increase in light caused by the focusing of a gravitational lens may be
observable. A particularly important example is provided by a sub-solar mass
dark object in the Milky Way galactic halo (a so-called MACHO: Massive
Astrophysical Compact Halo Object) which could be a candidate for the
galactic dark matter. If such an object would transit, for example, the line
of sight towards one of the stars in the nearby galaxy the Large Magellanic
Cloud (LMC), the luminosity of the background star would appear to rise
during the passage. Since bending of light according to general relativity
is a purely geometrical effect it does not depend on the energy – that is,
the wavelength – of the photons. Therefore the signature of such a so-called
microlensing event is a time-symmetric achromatic luminosity bump. We
shall return to this and other applications in Section 5.2.

We now investigate how the gravitational bending of light is calculated
in general relativity.

We saw in (3.33) the geodesic equation that a free, massive particle has
to follow in a given metric. There is a problem in using this directly for
photons, however, since ds = cdτ vanishes along a light-like path. Therefore,
we have to choose another parameter, a so-called affine parameter λ which
parametrizes the path of the photon. One such choice is to make use of the
local four-momentum vector kα, and define λ by

dxα

dλ
= kα (5.1)

The geodesic equation for a light-ray then becomes

d2xσ

dλ2
+ Γ σ

µν

dxµ

dλ

dxν

dλ
= 0 (5.2)

If we want to investigate the bending of light caused by a spherically
symmetric body, such as the Sun, we may employ the Schwarzschild solution
(3.64). Since the effects we are considering are very small, we can write the
metric approximately as

ds2 = (1 + 2ϕ(r))dt2 − (1 − 2ϕ(r))dr2 − r2(dθ2 + sin2 θdφ2) (5.3)

since

rS/r = 2GM/r = −2ϕ(r) (5.4)

with ϕ(r) = −GM/r the ordinary Newtonian gravitational potential, and
where we have used
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1
1 − rS/r

= 1 + rS/r + O
(

r2
s

r2

)
(5.5)

Since we have spherical symmetry we can let the light-ray move at a constant
polar angle θ = π/2: that is, in the equatorial plane. Then the angular part of
the metric is given by −r2dφ2. The solution of (5.2) is now straightforward,
but tedious (see [51]). Introducing w = 1/r, the geodesic equation for a
photon becomes

d2w

dφ2
+ w = 3GMw2 (5.6)

The effect of space-time curvature is given by the right-hand side, which is
very small for: for example, the mass of the Sun. We can therefore solve this
equation by iteration. A zero-order solution is given by putting M = 0, which
gives

w0(φ) =
cos(φ + φ0)

b
(5.7)

where we can rotate the φ coordinate to put φ0 = 0 without loss of generality.
The equation w = 1/r = cos(φ)/b describes the trajectory of a straight
light-ray in the xy-plane, passing at a closest distance (the so-called impact
parameter) b, as φ varies from π/2 to −π/2. To solve (5.6), we insert w0 on
the right-hand side. The resulting equation

d2w

dφ2
+ w = 3GMw2 =

3GM cos2(φ)
b2

(5.8)

has the particular solution

wpart(φ) =
2GM(1 − cos2(φ)/2)

b2
(5.9)

and the full solution is the sum of this particular solution and the solution
to the homogeneous equation with M = 0:

w(φ) = w0(φ) + wpart(φ) =
cos(φ)

b
+

2GM(1 − cos2(φ)/2)
b2

(5.10)

At distant points on the photon trajectory, w = 1/r → 0 and φ is very close
to ±π/2. Therefore, the cos2(φ) terms can be neglected and (5.10) to first
order becomes

cos(φ)φ�±π/2 =
−2GM

b
(5.11)

This means that the asymptotic values of φ are +π/2 + 2GM/b and −π/2−
2GM/b, and the deflection caused by the mass M is given by

∆φ =
4GM

b
(5.12)
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For the Sun, if one takes b equal to the solar radius (that is, if we consider
rays from distant stars that graze the solar surface), this deflection becomes
1.74 arcseconds.

There is another way to derive the law of deflection which is of general
applicability. This starts from a general relativistic version of Fermat’s princi-
ple, which states that light-rays follow paths which minimize the travel time.
From the optics point of view, the gravitational potential ϕ causes a time
delay (called the Shapiro delay) which can be represented by a refractive
index

n = 1 − 2ϕ (5.13)

so that light travels slower than c by a factor n, veff = c/n � c(1−2|ϕ|). Just
as in optics, the deflection is the integral of the gradient of n perpendicular
to the direction of propagation, along the light path:

∆φ = −
∫

∇⊥ndl = 2
∫

∇⊥ϕdl (5.14)

Returning to our example of a point mass, the Newtonian potential for a
light-ray travelling along the y axis in the xy-plane is given by

ϕ(b, y) =
−GM√
b2 + y2

(5.15)

which inserted into (5.14) gives ∆φ = 4GM/b as before.

Dds D d

Ds

O

α

θ
β

M

S ξ

Fig. 5.2. The geometry of gravitational lensing. The direction of the source in the
absence of lensing is specified by the angle β, the deflection angle is α and the
observed direction is θ. The distance to the source is Ds, the distance to the lens
is Dd, and the distance between the lens and the source is Dds. The ray passes
the lens at a transverse distance ξ, which for small deflections is equal to the
nearest distance between the ray and the lens, the impact parameter b. It is seen
that βDs = ξDs/Dd − αDds, from which the lens equation (5.16) follows by using
ξ ∼ θDd and α ∼ 4GM/ξ.
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Now that we know the deflection caused by a mass M , simple geometry
(see Fig. 5.2) produces the lens equation

β(θ) = θ − Dds

DdDs

4GM

θ
(5.16)

where Ds, Dd and Dds are the distances to the source, the lens (deflector)
and the distance between the source and the lens respectively, and β is the
undeflected angle. In general, this equation may have several solutions: that is,
the source object has multiple images. In particular, setting β = 0, azimuthal
symmetry requires that we acquire a ring-like image, the Einstein ring, with
angular radius

θE =
√

4GM

c2

Dds

DdDs
(5.17)

as shown in Fig. 5.3. For clarity, we have here explicitly written the speed of
light, c, otherwise set to unity throughout the text. If the source is not exactly
behind the lens (that is, β 
= 0), one obtains two solutions for a point-mass
lens,

θ± =
1
2

(
β ±

√
β2 + 4θ2

E

)
(5.18)

θ
E

Source ObserverLens

Einstein ring

Fig. 5.3. A circularly symmetric lensing object exactly in the line of sight to a
distant star causes the source to be imaged as a ring with angular radius θE .

In many cases, the angular separation between these two images is too
small to be detectable by telescopes. However, the focusing effect of the gra-
vitational lens means that the intensity of the image is magnified. In the case
of a double image from a point source, the total magnification is given by

µ =
u2 + 2

u
√

u2 + 4
(5.19)

where u = β/θE . This magnification effect is important for the microlensing
experiments to be discussed in Section 5.2.1. As can be seen, the Einstein
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angular radius θE sets an angular scale which determines whether a noticeable
magnification occurs. If the line of sight passes far outside the Einstein radius
of an intervening object, lensing effects from that object become very weak.

Compared to the optical lenses found in cameras and binoculars, gravita-
tional lenses are very bad if considered as optical instruments, with essentially
all types of distortions and aberrations present. However, they are perfectly
achromatic (producing the same deflection for light of any wavelength), which
is a useful signature when searching for them. The reason for this property
is of course that the geodesic deviation of light-rays is a purely geometrical
effect, independent of photon energy.

5.2 Observation of Gravitational Lensing

What new can be learned from gravitational lenses? In 1936 Einstein dis-
cussed the creation of multiple images from a single source due to lensing
effects caused by stars, but concluded that the effect was of little interest
because of its rarity. He also noted that the image splitting was too small to
be resolved by a ground-based telescope. One year later, Zwicky pointed out
that if the lensing mass was a galaxy rather than a star, the angular deflec-
tion would be large enough to be observed for very distant sources. Moreover,
Zwicky showed that lensing of such sources should occur in about 1 per cent
of the cases. Today, lensing both by stars and galaxies has become a major
observational field in astronomy.

There are at least three possible scenarios in which lensed systems can
add to our knowledge of astrophysics and cosmology.

• Lensing properties depend on the mass distribution of the lens, and
the studies of such systems can thus provide information about
dark matter.

• The lensing probability for individual high redshift objects to be
lensed is a function of the cosmological parameters. Thus it allows
limits to be set on the mass density ΩM and the vacuum energy
density (from a cosmological constant), ΩΛ. Studies of the time
delay between images originating at cosmological distances are also
used to measure the Hubble parameter, H0.

• Gravitational lensing also helps to enhance the power of telescopes.
Because of the magnification effect, one can observe intrinsically
faint or very distant objects that would otherwise not be observ-
able.

5.2.1 Galactic Dark Matter Searches: Lensing of Stars

The possibility of studying the population of non-luminous astrophysical ob-
jects in the Milky Way through gravitational lensing was proposed by Paczyn-
ski in 1986. By monitoring the light from millions of stars in the Magellanic
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Clouds and in the galactic bulge it is possible to detect the magnification in
light intensity caused by the passage of a compact lensing star in the galactic
halo. This type of gravitational lensing, where a star is lensed by another star,
is called microlensing. The Einstein radius for galactic microlensing (D ∼ 10
kpc and M ∼ M�) by a solar mass lensing star is about 1 milliarcsecond,
nearly 1000 times too small to be resolved from ground-based telescopes. The
lensed images are thus observed together as one image with increased bright-
ness. Several groups (EROS, MACHO, OGLE and DUO) are currently using
this technique to map the galactic density of objects such as brown dwarfs
(stars with too little mass for fusion to turn on), faint stars, neutron stars,
black holes, and possibly even planets.

There are three measurable quantities: the probability of lensing of stars,
the time duration, and magnification of the source image.

The rate of microlensing events is measured in terms of the optical depth,
defined as the probability at any instant of time that the line of sight of an
individual star is within an angle θE from a lens. Thus, the expression for
optical depth becomes (Problem 5.1):

τ =
∫ Ds

0

πD2
dθ2

Enl(Dd)dDd (5.20)

where nl(Dd) is the number density of lenses.
Inserting the expression for the Einstein radius from (5.17) and assuming

Euclidean space locally: that is, Dds = Ds − Dd, the expression for optical
depth can be simplified to

τ =
4πG

c2
D2

s

∫ 1

0

ρl(x)x(1 − x)dx (5.21)

where x = DdD
−1
s , and ρl is the mass density of lenses. Notice that this

result does not depend on the mass of the individual objects which make up
the mass density.

If ρl is constant along the line of sight, the optical depth is

τ(Ds) =
2π

3
Gρl

c2
D2

s (5.22)

Example 5.2.1 Show that if the mass of our Galaxy is mainly in the form of
compact objects homogeneously distributed in the halo, the optical depth for
lensing at the edge (Ds = Rgal) becomes τ ≈ ( v

c

)2, where v is the rotational
speed of the Galaxy.

Answer: Describing the halo as a homogeneous sphere of mass Mgal =
4πR3

gal

3 ρ, the optical depth becomes (from (5.22))

τ =
GMgal

2c2Rgal
(5.23)
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We can now make use of Kepler’s third law to relate the mass of the Milky
Way to its rotational speed:

GMgal

Rgal
= v2 (5.24)

Combining(5.23) and (5.24) we thus find τ = 1
2

(
v
c

)2.
With the simplifications described in the previous exercise we found that

the optical depth at the edge of the Milky Way, with a rotational speed ∼
200 km/s, is τ ≈ 10−7. It is thus required to study tens of millions of stars in
the Magellanic Clouds at about ∼ 50 kpc from the Earth in order to be able
to detect microlensing events. Only with the help of computerized automatic
search methods has such a task become technically feasible.

The time scale for the star magnification induced by a microlensing event
is given by the angular size and speed of the lens:

T =
DdθE

v
(5.25)

Inserting the expression of the Einstein radius from (5.17) the microlens-
ing time scale becomes

T = 2.6 months×
(

Ml

M�

) 1
2

·
(

Dd

10kpc

) 1
2

·
(

Dds

Ds

) 1
2

·
(

200 kms−1

v

)
(5.26)

For stars in the Magellanic Clouds and halo lenses, Dds

Ds
is close to 1. As

the experiments can resolve microlensing events with durations from an hour
to about a year, MACHOs can be searched for in the mass range between
10−6 M� and 102 M�. If the lensing object moves with constant transverse
speed with respect to the line of sight the light-curve of a microlensing event
can be calculated from (5.19):

u2(t) = u2
min +

(
t − t0

T

)2

(5.27)

where umin is the angle of closest approach in units of the Einstein radius
θE . Fig. 5.4 shows the duration of a microlensing event for umin = 0.1, 0.5
and 1.0; the smaller the angle separation the larger the magnification.

Several microlensing events have now been observed. A high amplification
event towards the Large Magellanic Cloud is shown in Fig. 5.5. In its first year
of data collection, the MACHO collaboration observed three events towards
the LMC. The corresponding optical depth measured in the mass range:
10−4 ≤ M ≤ 10−1M� was τ = 9+7

−5 · 10−8 [1]. With the low statistics yet
available it is still too early to reach a definitive conclusion about the MACHO
density of the galactic halo. Among the uncertainties we can mention the
possibility that some lenses reside not in the halo of the Milky Way, but are



5.2 Observation of Gravitational Lensing 97

u      = 0.1min

0.5

1.0

Fig. 5.4. Light-curve shape of microlensed star. The duration of the event is sensi-
tive to the mass of the lens, while the maximum amplification depends on the mass
of the lens and the minimum angular distance between the source and the lensing
object. The separation umin = 0.1, 0.5 and 1.

associated with either the LMC or intervening debris from tidally disrupted
stellar clusters.

5.2.2 Lensing of Objects at Cosmological Distances

Quasars (QSOs) can be considered as point sources at cosmological distances.
The probability of a QSO being lensed by a point mass in the line of sight
can be easily derived following the recipes derived in the previous section. If
we assume that the dark matter of the Universe consists of a homogeneous
population of point masses with mass density ΩM , we can compute the optical
depth towards a QSO at a redshift zs. Let us first do this for small redshifts
to illustrate the ideas. From (5.22) and the Hubble law, H0Ds = czs we find
that the probability for lensing of a source which by assumption is located
at redshift zs  1 is (Problem 5.2)

τ =
1
4
ΩMz2

s (5.28)

where, as usual, ΩM = ρρ−1
c . In general, the probability of gravitational

lensing by compact objects homogeneously distributed in a matter dominated
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Fig. 5.5. Light curves in two filters, blue and red, of a microlensing event discovered
by the MACHO collaboration. The lensed star in the Large Magellanic Cloud was
magnified by about a factor 8 at maximum (independently of wavelength) and the
time scale was about a month. Credits: The MACHO collaboration. Reprinted by
permission from Nature[2] copyright (1993) Macmillan Magazines Ltd.

Universe can be shown to be proportional to the comoving mass density of
lenses, ΩM . For ΩM close to unity it should happen in a large fraction of the
distant sources.

The image splitting is given by (see (5.18))

∆θ = θE

√
u2 + 4 (5.29)

where θE is the size of the corresponding Einstein radius. For cosmological
distances, D ∼ 1 Gpc, and for typical galaxy masses, M = 1011M�, we
obtain

θE = 0.9′′ ×
(

M

1011M�

) 1
2
(

Ds

1 Gpc

)− 1
2
(

Dds

Dd

) 1
2

(5.30)

Gravitationally lensed quasars (by foreground galaxies) are observed. One
of the most remarkable images of lensed quasars is the so called Einstein
Cross, shown in colour Plate 2.1 The lens is in this case a spiral galaxy
1 The colour plate section is positioned in the middle of the book.
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at z = 0.04. The four images show uncorrelated time variations which are
thought to be caused by microlensing from the passage of individual stars in
the foreground galaxy.

When estimating the probability of cosmological objects being lensed by
finite size galaxies, a model for the mass distribution within the lens has to be
understood. In particular, the lensing properties are sensitive to the galaxy
type. However, the general features of the lensing probabilities and how they
depend on cosmological parameters can be understood from the point mass
approximation.

Next, we generalize the expression of the optical depth for gravitational
lensing of a source at any redshift, including the contributions from a non-
vanishing vacuum density, ΩΛ.

The differential optical depth dτ for a beam encountering a lens in a path
from zl to zl − dzl is

dτ = nl(1 + zl)3πθ2
ED2

dc
dt

dzl
dzl (5.31)

where nl is the number density of lenses at z = 0. Inserting (5.17) and
nl = Ωl3H2

0
8πGMl

the equation above simplifies to

dτ =
3
2
Ωl(1 + zl)3

H0

c
· DdsDd

Ds
· H0

dt

dzl
dzl (5.32)

where dt
dzl

was derived in (4.76) and the angular distance terms Dd, Ds and
Dds can be expressed as a function of cosmological parameters as shown in
(4.70) and (4.85):

Dab(za, zb) = [(1 + zb)H0

√
|ΩK |]−1S

(√
|ΩK |

∫ zb

za

dz′

H ′(z′
)
)

(5.33)

with S and H ′(z) as defined in Section 4.5.2 (if k = 0, |ΩK | is replaced by
1).

In Fig. 5.6 (a) it is shown how, for any given redshift, the angular distance
Ds in (5.33) depends strongly on ΩΛ and much less on ΩM . As distance in-
creases with ΩΛ, the volume available to be filled with lenses with a comoving
mass density Ωl is larger. As a consequence, the optical depth is much larger
in a Universe with an energy density dominated by ΩΛ, as shown in Fig. 5.6
(b). For the highest redshifts where quasars have been observed at z ∼ 4, the
rates of gravitationally lensed sources differ by an order of magnitude for the
two extreme values of the cosmological constant. Thus, measurements of the
optical depth τ versus redshift can be used to set limits on ΩΛ.

While the rate of lensed events can be used to establish limits on the
energy density terms of the Universe, the time difference between multiply
lensed sources is given by the geometric path lengths of the beams and are
thus proportional to the distance scale in the Universe, i.e., to the inverse
of the Hubble parameter, H0, as sketched in Fig. 5.7. For simple spherically
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Fig. 5.6. (a) Angular distance to a source at zs for three combinations of cos-
mological parameters. (b) Optical depth for the same combination of cosmological
parameters. A non-zero cosmological constant has a large effect on the distance
estimate for any given redshift.

symmetric lenses, the time difference between two images separated by an
angle ∆θ and with flux ratio r is given by:

∆t =
∆θ2

2
DdDs

Dds
(1 + zl)G(r), (5.34)

which indicates that ∆t ∝ H−1
0 . The function G(r) depends on the mass

profile of the lens, which needs to be modeled. Another difficulty with this
technique is the measurement of the time difference between lensed images
of quasars, as these objects do not normally have regular time structures.

5.2.3 The Mass Density in Galaxy Clusters

Galaxy clusters are the largest well-defined structures in the Universe. With
masses around 1014 M� galaxy clusters may cause image separations up to
one arcminute, as shown schematically in Fig. 5.8 and in a real Hubble Space
Telescope image of the galaxy cluster CL0024+1654 at a redshift z = 0.39,
in colour Plate 3.2 Clusters are ‘weighed’ by modeling the distortion of the
background galaxies, and it is found that their mass is predominantly ‘dark’.
Masses may also be determined from cluster images not showing giant lumi-
nous arcs as in Fig. 5.8, but rather a statistical behaviour of the background
sources. If all galaxies were round, their images would look elliptical due
to the tidal components of the gravitational field. This is known as weak
lensing (discussed further in the next section) . In practice, with galaxies be-
ing intrinsically elliptical, the effect is still detectable under the assumption
that their orientation is random. Thus, statistical studies of the brightness,
shapes and orientation of background galaxies provide an estimate of the
tidal gravitational fields and by extention, the mass profile of galaxy clusters.
2 The colour plate section is positioned in the middle of the book.
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Fig. 5.7. The scale of the Universe and the path length of a gravitationally lensed
image is inversely proportional to the Hubble parameter, H0.

The distribution of mass shows two distinct components. First, around each
galaxy there is a halo of dark matter which has a more extended distribution
than the stars, gas and dust of the galaxies. There is also a broad dark matter
distribution associated with the cluster as a whole. The mass-to-light ratio
of these clusters is several hundred times the mass-to-light ratio of the Sun.

In fact, in many of the clusters most of the baryons are not in the form
of stars, but rather in gas which is hot and therefore emitting X-rays. The
reason for the high temperature is that when the gas molecules move in
the gravitational potential of the cluster, they obtain a velocity which grows
with cluster mass. Some of the kinetic energy is transferred to radiation,
for example through collisions between molecules. By studying the X-ray
temperature and intensity one may therefore get an independent estimate
of the total cluster mass. This type of estimate typically agrees with that
obtained by lensing within a factor of two.

By generalizing the observations of several galaxy clusters to the entire
Universe, a mass density ΩM ∼ 0.2 − 0.3 is deduced.

5.2.4 Weak Gravitational Lensing

Since the turn of the millennium, several independent observations of weak
lensing by large scale structures have been made. These observations provide
a way to probe the mass content in the Universe as a whole, by seeing how
ellipticities of galaxies are changed by the lensing potentials. To understand
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Fig. 5.8. Lensing of distant objects by a foreground galaxy cluster.

this, we must have a closer look at the lensing equation. Defining a length
scale ξ0 in the lens plane and a corresponding length scale η0 = ξ0Ds/Dd in
the image plane, we can rewrite the lens equation (see the caption of Fig. 5.2)
in the coordinates η = Dsβ and ξ = Ddθ (where we have extended β and θ
to two dimensions, i.e., they span the lens and image planes) as

y = x − α(x), (5.35)

where y = η/η0, x = ξ/ξ0 and

α(x) =
DdDds

Ds

α̂(ξ0x)
ξ0

. (5.36)

Here the deflection angle is given by

α̂(ξ) =
∫

d2ξ′4GΣ(ξ′)
ξ − ξ′

|ξ − ξ′|2 (5.37)

where Σ(ξ) is the projection of the volume density of the deflector onto the
lens plane.

In (5.35) we thus have a formula that we can use for any given, continuous
mass distribution, such as the predicted large scale structure of galaxies and
galaxy clusters (which is currently being probed by large galaxy surveys).
Looking at the structure of equation, we can compute its Jacobian matrix:

Aij(x) =
∂yi

∂xj
=
(

1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

)
, (5.38)
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where the convergence κ and the shear components γ1 and γ2 can be com-
puted from (5.35).

One can convince oneself the the magnification of the mapping is given
by

µ(x) =
1

detA(x)
=

1
(1 − κ)2 − γ2

1 − γ2
2

. (5.39)

Thus, a circular source will be changed in two ways by weak lensing: it will
be magnified with magnification given by µ, and it will become elliptical
due to the effects of γ1 and γ2. The direction of ellipticity will mostly be
tangentially around the lens (as indicated by the extreme case: the Einstein
ring). The analysis is complicated by the fact that galaxies may have ellipical
shape even before the lensing, but by collecting a large number of images and
analyzing their shape statistically, a signal has been found, with magnitude
in accordance with the ‘Standard Model’, ΩM ∼ 0.3.

5.3 Black Holes

The most extreme example of light bending in a gravitational field occurs for
black holes, objects smaller than their Schwarzschild radius, rs = 2.95

(
M

M�

)
km (see (3.65)). Within the known laws of physics nothing will prevent an
object from becoming a black hole if the gravitational force from its own
mass cannot be balanced by an outward pressure. Very heavy stars are thus
expected to end their evolution as black holes. As stars collide and coalesce,
black holes are also believed to form in the centre of globular star clusters
and in the nuclei of galaxies.

For example, the energy release observed from active galactic nuclei
(AGN) suggests that stars, dust and gas form an accretion disk around black
holes with M∼ 108M�. The infall of matter towards the black hole would gen-
erate the observed electromagnetic radiation and could also be responsible for
the highest energy cosmic rays. The detection of high-energy photons, neu-
trinos and other types of radiation from AGN is of great importance for the
understanding of astrophysical acceleration sites. Such black hole candidates
have been observed in the centre of the Virgo galaxies M84 and M87, about
50 million light years from the Earth. By looking at the central region of the
galaxies with a spectrograph onboard the Hubble Space Telescope (HST),
rapid rotation of gas, vr ∼ 550 km/s, has been observed 60 light years from
the core, as shown in colour Plate 4.3

Observational evidence for stellar mass black holes is sought for by search-
ing for collapsed stars in binary systems. It would appear as the visible star
orbits a compact, invisible, object with a mass larger than the maximum
mass for a neutron star. Candidates for such a system exist: for example, the
X-ray source Cygnus X–1.
3 The colour plate section is positioned in the middle of the book.
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5.3.1 Primordial Black Holes

It is conceivable that ‘mini’ black holes (rs ≈ 10−15 m) could have formed
during the Big Bang. These objects are sometimes called primordial black
holes. What can be said about the density of such objects today? Hawking
[20] showed in a celebrated paper that once quantum effects are taken into
account, black holes do radiate and therefore have a finite lifetime. According
to quantum mechanics, pair production of virtual particles (∆E = 2mc2) may
take place in the vacuum, provided that they annihilate within the short time
allowed by the uncertainty principle: ∆t ∼ h̄/2mc2. Such vacuum fluctuations
will take place also in the neighbourhood of black holes. In the presence of the
strong gravitational field the particles can be separated fast enough that one
of them falls beyond the event horizon. They thus escape annihilation and
one of them thereby becomes a ‘real’ particle. In the process, gravitational
energy from the black hole has been converted into rest energy and kinetic
energy of the produced particle, so that energy of the order of ∆E has been
transferred from the black hole to the outside world. Thus black holes are said
to evaporate. Hawking also showed that the radiation has a thermal spectrum
with temperature inversely proportional to the mass of the black hole:

T =
h̄c3

8πkGM
= 10−7

(
M�
M

)
K (5.40)

The lifetime of black holes then becomes (Problem 5.5):

τ ≈ 1010

(
M

1015g

)3

years (5.41)

Thus, black holes with masses much below 1015 g have a lifetime shorter
than the present age of the Universe and should therefore have already evap-
orated. For stellar mass black holes and heavier, the evaporation rate is negli-
gible. It is therefore not clear whether this interesting process, which includes
elements of special and general relativity, quantum mechanics and thermo-
dynamics, can be observationally confirmed. Black holes and their Hawking
evaporation are, however, great ‘theoretical laboratories’ where current ideas
of quantum gravity are tested.

Example 5.3.1 Derive the relation T ∝ M−1 from the Heisenberg uncer-
tainty principle and the fact that the size of a black hole is given by the
Schwarzschild radius.

Answer: The position of quanta inside a black hole can only be known
within ∆x ≈ 2rs. Thus, ∆t = 2rs/c. According to the uncertainty principle,
∆E∆t ≈ h̄. Thus,

∆E ≈ h̄c3

4GM
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and the relation for temperature (except for a numerical factor) follows di-
rectly.

The energy of the radiated quanta from a ‘mini’ black hole is E ∼
100

(
1015g

M

)
MeV (see (5.40)). The observed low flux of gamma-rays with

energies around ∼ 100 MeV can be translated into an upper limit on the
density of primordial black holes to about ΩBH(M ≤ 1015g) ≤ 10−8.

5.4 Summary

• Light beams are bent, independently of wavelength, as they pass
in the neighbourhood of massive objects. For a point-mass lens,
the bending angle becomes

∆φ =
4GM

bc2

where b is the closest distance from the light-ray to the lens.
• A source can be multiply imaged, in particular if the observer, lens

and source are perfectly aligned. The resulting image becomes an
Einstein ring with radius

θE =
√

4GM

c2

Dds

DdDs

• Microlensing of stars in the Milky Way and neighbouring galaxies
is used to study the population of faint compact objects in the
Galaxy.

• Gravitational lensing is a useful tool to measure cosmological pa-
rameters.

5.5 Problems

5.1 Calculate the number of lenses within an Einstein radius in a thin layer
Dd along the line of sight of observation assuming a number density nl. Use
this to derive (5.20).

5.2 Derive the expression for microlensing of cosmological point sources by
point-like lenses (5.28).

5.3 Estimate the Einstein radius and time duration for the lensing of a
bright point source at cosmological distance assuming the lens is a faint point
object in the Milky Way halo.
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5.4 Use dimensional analysis to construct a density out of c, h̄ and G. Com-
pare this ‘Planck density’ to the mass density of a stellar mass object with
rS .

5.5 Show that the lifetime of black holes (T ∝ M−1) is proportional to M3.



6 Particles and Fields

6.1 Introduction

One of the most fascinating aspects of modern cosmology is the interplay
between that subject and particle physics. It is perhaps somewhat paradoxical
that the study of the smallest things we know, the elementary particles,
can have applications in the study of the largest structures in the Universe.
This is, however, the case, and the interface between particle physics and
cosmology is a growing area of scientific study today. It sometimes goes under
the name of astroparticle physics, which usually also includes the study of
cosmic rays and relativistic astrophysics. All this is a good motivation for
today’s astrophysicist to become familiar with some of the basic features of
current particle physics models.

One main discovery during the twentieth century was the importance
of fields for the understanding of the fundamental interactions in nature. Of
course, current theories are formulated such that they are consistent with rel-
ativity and quantum mechanics. In this book, we do not present a full-fledged
version of relativistic quantum field theory. However, by using the knowledge
you have accrued from the previous chapters, and if you at this point also
study Appendix B Relativistic Dynamics and Appendix C The Dirac Equa-
tion in this book, you will acquire a rather complete basis for understanding
the particle physics relevant to cosmology and relativistic astrophysics. On
the other hand, if you are ready to accept some results without derivation,
it is enough to have a quick look at the Summary sections of these Appen-
dices. Some topics such as quantized fields in curved space-time are beyond
the scope of this book. However, in Appendix E we treat the quantization of
scalar field in an expanding (de Sitter) Universe.

6.2 Review of Particle Physics

Let us begin our introduction to particle physics by reviewing some basic facts
about the elementary constituents of matter. According to the extremely
successful Standard Model of particle physics, the basic building blocks of
matter are quarks and leptons, of which six of each are known to exist (see
Table 6.1). As can be seen, the quarks and leptons are naturally grouped into
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Table 6.1. The quarks and leptons of the Standard Model. Notice that since
quarks are confined, the quark mass is not a uniquely defined parameter. The
neutrino mass limits are given by laboratory experiments. There are cosmological
and astrophysical data which indicate that they are much lower, but non-zero (see
Sections 11.6 and 14.4).

Electric charge Q = 0 Q = −1 Q = +2/3 Q = −1/3

First family: νe e u d

Mass: < 3 eV 511 keV 1.5–4.5 MeV 5–8.5 MeV

Second family: νµ µ c s

Mass: < 170 keV 106 MeV 1.0–1.4 GeV 80–155 MeV

Third family: ντ τ t b

Mass: < 18 MeV 1.78 GeV 170–180 GeV 4.0–4.5 GeV

three families, each consisting of an electrically neutral lepton (such as the
electron neutrino νe), one lepton with charge -e (such as the electron), one
quark with charge +2/3 e (such as the u-quark), and one quark with charge
−1/3 e (such as the d-quark). A curious fact of quarks is that they appear not
to exist as free particles. A proton consists of two u-quarks and one d-quark,
a neutron of one u-quark and two d-quarks (check that this gives the correct
electric charges!). The forces that bind these quarks together are so strong
that a single quark cannot be extracted from the bound system. This feature
of the strong interaction between quarks is called confinement. Nevertheless
there are methods to experimentally ‘shake’ the quarks within a proton and
in this way prove that they exist as point-like constituents. The fact that the
strongly bound quarks within nucleons (that is, protons or neutrons) can
act as free particles during very short time intervals, as experimentally seen,
is an intriguing property of the modern theories called asymptotic freedom.

The particular pattern of charges and other quantum numbers in a family
of two leptons and two quarks means that the theory will be consistent quan-
tum mechanically. If one particle were missing, a so-called anomaly would be
generated with catastrophic consequences for the theory. (Essentially, noth-
ing would be calculable, due to infinite quantities appearing which cannot be
cancelled, ‘renormalized’, in a controlled way.) This was the reason for the
firm belief among particle physicists that the top quark had to exist even
long before it was finally discovered in 1995.

In Table 6.1, we have suppressed some quantum numbers: for example,
each quark has three internal degrees of freedom called colours. The theory
of the strong interaction, quantum chromodynamics (QCD), describes how
coloured quarks interact. Also, quarks and leptons have spin 1/2 (in units
of h̄, Planck’s constant divided by 2π). They are thus fermions which obey
the Pauli exclusion principle. Finally, for each known species of particle there
exists a corresponding antiparticle with the same spin and mass but with
opposite sign of the charge. Neutrinos, which have zero electric charge, have
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still another type of charge, weak hypercharge, which means that a neutrino
and an antineutrino are different particles. However, all neutrinos seem to
have only left-handed spin (or helicity, which is the projection of the spin on
the direction of the momentum). Likewise, all antineutrinos are right-handed.
This is the way neutrinos appear in the Standard Model. However, the

neutrino sector is very difficult to study experimentally due to the very feeble
interactions of neutrinos with ordinary matter. It is possible (see Appendix C)
that neutrinos are their own antiparticles – so-called Majorana neutrinos.

6.3 Quantum Numbers

The concept of a quantum number is important in particle physics. Since
quantum mechanics tells us that, for example, the internal angular momen-
tum s of a particle is quantized with value being an integer or half-integer
times h̄, this internal angular momentum (spin) is a quantum number. Usu-
ally the existence of conserved quantum numbers can be traced back to an
invariance of the theory under some set of transformations. For example, an-
gular momentum conservation follows from the invariance under rotations of
the form discussed in Section 2.3. A given system of particles can have a total
angular momentum that is given by the total spin of the constituent parti-
cles coupled to the total orbital angular momentum according to the rules of
quantum mechanics. One practical use of this conservation is the general rule
that a system which has a total angular momentum which is a half-integer,
cannot decay to an integer-spin system.

There are other types of transformations, acting on internal degrees of
freedom, which may also lead to conserved quantum numbers. One prime
example is electric charge, whose conservation follows from the invariance
under gauge transformations (2.80). In addition, there are other ‘charges’
such as baryon number, which seem to be conserved to a very high accuracy
(the lifetime of the proton must be at least 1033 years to fit with experimental
data). There, the invariance causing the conserved baryon number is less
well understood (in fact, according to some theories there should not be an
exact conservation law for baryon number), but it can be regarded as an
empirical law which tells us which processes involving baryons are allowed.
The normalization is usually fixed by defining the baryon number of a proton
as +1 (and thus −1 for the antiproton). Thus, a quark has baryon number
+1/3.

Also for leptons there seem to be quantum numbers that are at least
approximately conserved. One may define an ‘electron lepton number’ which
is +1 for an electron and an electron neutrino, and similarly for the other
leptons. It seems that each such lepton number is conserved to a very good
approximation. Their sum, the total lepton number, seems to be even more
well-conserved. However, again there is no strong theoretical motivation for
the absolute conservation of lepton number (in contrast to electric charge,
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where gauge invariance is a very powerful constraint). It is possible that
the lepton number is violated at some level, although this has not yet been
experimentally verified. The individual lepton numbers are very likely not to
be conserved, as we shall see in Chapter 14.

Example 6.3.1 Explain why the following decay processes are not allowed.

a. µ− → e− + nothing.
b. t → s̄ + b̄.
c. b → s̄ + s + d + e− + ν̄e. (The bar denotes an antiparticle.)

Answer: (a) Lepton number conservation (and also energy and momentum
conservation).
(b) Baryon number conservation.
(c) Charge conservation.

6.4 Degrees of Freedom in the Standard Model

One very useful way to look at the spin degrees of freedom of a particle
is to regard a state with any one of the 2s + 1 possible values of ms as a
separate ‘particle’. This is justified because, as we shall see in Chapter 8,
each such spin state adds independently to, for example, the energy density.
Lorentz transformations act not only on space-time but also on the internal
spin states: they mix with each other. Here ms is the spin projection on a
fixed, but arbitrary, axis. Usually it is taken to be the z-axis. However, an
even better choice which makes it easy to deal also with massless particles
such as (perhaps) neutrinos is to use the helicity, the projection of the spin
on the direction of motion.

Let us count the number gfam of independent helicity states of one family
of quarks and leptons. Each quark comes in three colours and two spins. This
means 2 · 3 · 2 = 12 states for the u and d quarks and antiquarks. The
charged lepton has two states, and the neutrino one state. Thus, one family
consists of gfam = 15 helicity states, meaning 45 states. If we also include
the antiparticles, we obtain

gtot
fermions = 90 (6.1)

Above a certain temperature, of the order of 100 − 300 MeV, where the
quark-gluon phase transition is thought to occur, it is believed that quarks
and gluons are not confined anymore but act as free particles.

6.5 Mesons and Baryons

Below the QCD phase transition temperature only colour-neutral systems
seem to be allowed. One way to achieve this is for a quark to bind together
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with an antiquark, forming a strongly bound but colour-neutral system, called
a meson. The lightest such systems are the π-mesons, or pions. The pion
mass (or rest energy) is around 140 MeV. A π+ particle consists of one u-
quark and one d-antiquark. Usually a bar over the particle name is used to
denote the antiparticle, so the composition of a π+ is written (ud̄). The π−,
which is the antiparticle of π+, is of course made of one d-quark and one
u-antiquark instead, (dū). There is also a neutral pion, the π0, which is a
quantum mechanical mixture of (uū) and (dd̄).

Another way to produce a colour-neutral state is to take three quarks, each
of a different colour which gives, for instance, the proton or the neutron.

Thus, particles containing quarks and therefore strongly interacting,
hadrons, are of two types: either baryons consisting of three quarks like the
nucleons (the proton and neutron), or mesons consisting of one quark and
an antiquark like the pions. There is speculation over the existence of more
‘exotic’ particles consisting, for example, of two quarks and two antiquarks,
but so far none have conclusively been proven to exist.

When the quark model appeared in the 1960s, it provided a solution to
the puzzle of the nature of all the hundreds of particles which had by then
been discovered in accelerators. Out of a few quarks (and antiquarks) a large
number of meson and baryon states can be constructed, using the rules of
quantum mechanics when building up the states. The most important ones
are the meson and baryon octets shown in Fig. 6.1, which are the lowest-
lying (that is the least massive) meson and baryon states. The classification
makes use of a quantum mechanical symmetry SU(3) which is based on the
principle that all the three light quarks u, d and s enter on equal footing.1

A K+ meson, for instance, consists of a u quark and an s antiquark (us̄),
whereas a π+ meson consists of (ud̄). The π0 and η mesons contain linear
combinations of (dd̄), (uū) and (ss̄) states.

Additional combinations are produced by excited states of the fundamen-
tal ground state mesons and baryons. For example, the proton is the ground
state of a system made up by the quark combination (uud), with the quarks
having a total angular momentum � = 0 (S-wave), and total spin 1/2. Then
there should also exist a state with the same quark content but with the total
spin equal to 3/2. Indeed, such a particle exists. It is the ∆+ baryon, which
in fact plays an important role in astrophysics. Since it is so closely related
to the proton, it is easy to excite it by colliding, for example, a proton with a
photon. We shall see later (Section 12.3) that such interactions between very
energetic cosmic ray protons and the cosmic microwave background photons
1 Since the classification in terms of octets, decuplets and singlets assumes an exact

symmetry between the light u, d and s quarks, and that symmetry is in practice
broken due to somewhat different quark masses (the s quark is heavier), there
occurs mixing between states. For instance, the η0 and η′ mesons are mixtures
of singlet and octet states.
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Fig. 6.1. The meson (on the left) and baryon (on the right) octets obtained in the
SU(3) classification of three-quark bound states.

determines how far a high-energy proton can travel in intergalactic space
without interacting.

For mesons and baryons containing c, b and t quarks, the classification
in terms of SU(N) is not very useful, since the rest masses are completely
determined by the quark masses. However, the spectroscopy of states can
be understood from simple combinatorial mathematics, with baryons always
containing three quarks and mesons containing a quark and an antiquark.

As yet there is no deep understanding of why there are precisely three
families of quarks and leptons in nature. The solution to this and many
other puzzles of particle physics will probably have to await a full theory
of all particles and interactions in nature, including quantum gravity. This
theory is not yet known, but it is speculated that there may exist a hitherto
unknown theory, called M -theory, which under certain circumstances has
solutions which appear as strings or higher-dimensional objects, so-called D-
branes. Once the correct theory is found, it is hoped that the particle content
(such as the number of families), charges, masses and other quantities will
be explained by geometric properties in the high-dimensional space in which
the theory ‘lives’. 2

6.6 Gauge Fields

A Universe consisting of only quarks and leptons and nothing else would be
quite boring. What brings dynamics into the picture is the fact that they in-
2 The reader is directed to the appropriate bulletin boards on the World Wide

Web, such as http://arxiv.org/hep-th, for the most recent developments in this
rapidly evolving field.
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teract with each other: in particular, that they form bound states like hadrons
and atoms. An interesting consequence of relativity and quantum mechan-
ics is that interactions must be described by exchange of mediator particles.
This is not difficult to understand. Consider two electrically charged parti-
cles, let us say a proton and an electron, separated by a finite distance. Since
they are both charged, they influence each other through the electromag-
netic (Coulomb) interaction. Suppose now that we suddenly move the proton
a short distance. Then the electromagnetic field surrounding it changes, and
this will influence the electron. However, special relativity tells us that the
information about the disturbance cannot reach the electron with a velocity
larger than the speed of light. In particular, there can be no instantaneous
‘action at a distance’.

The modern description of forces is based on the notion of fields: that is,
the disturbances cause ‘ripples’ in the fields between the proton and electron.
According to quantum mechanics, such ripples represent dynamical degrees
of freedom and therefore have to be quantized like all other dynamical de-
grees of freedom. The lowest excitations of the field can be interpreted as
particles, and the interaction between a proton and an electron is described
by the exchange of these particles. Since the electromagnetic field is known
from Maxwell’s equations to permit wave solutions, where visible light is one
example, these exchange particles are naturally identified with the photons
that Einstein introduced to explain the photoelectric effect.3

The quantum theory describing the interaction between photons and elec-
trons is called Quantum Electro Dynamics, QED. It has been, and still is,
a tremendously successful theory which matches experiment to an accuracy
better than one part in a million. It turns out that classical electromagnetism,
and also QED, can be ‘derived’ by postulating symmetries, gauge symmetries,
in the theory of free electrons. QED is therefore the prime example of a gauge
theory.

Let us see how this works in a simple example, which also introduces
the concept of a field, that is a function of space-time whose quantization
gives rise to the elementary excitations that can be interpreted as particles.
We present a description based only on special relativity here (the general
relativistic formulation is mathematically rather more involved and is seldom
needed except for very extreme conditions, such as near a black hole). A
much more complete treatment of relativistic field theory is presented in
Appendices B and C

A pion, a π+ for instance, has spin 0, and should be describable by a
scalar field φ(x) (where x stands for the space-time coordinate xµ). Under a
Lorentz transformation x → x′ the field should then transform as

φ′(x′) = φ(x) (6.2)

3 The fact that dynamical degrees of freedom of a system are always quantized is
familiar from condensed matter physics, where the quantized vibrational states
of a lattice are called phonons.
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In relativistic field theory, we should also be able to simultaneously describe
the antiparticle π−. This is because in energetic processes, pairs of pions
could appear ‘from nowhere’. For example, in proton-proton collisions, the
process p + p → p + p + π+ + π− is possible if the total kinetic energy of the
initial proton pair in the centre of momentum frame is greater that 2mπc2.
In principle, we could introduce two scalar fields φ1(x) and φ2(x) to describe
π+ and π− respectively. However, a more elegant way is to let φ1(x) and
φ2(x) be the real and imaginary parts of a complex field φ(x) = ρ(x)eiθ(x) =
(φ1(x) + iφ2(x))/

√
2. If the field has no interactions, it should satisfy the

relativistic equation of motion

�φ(x) ≡
(

∂2

∂t2
−∇2

)
φ(x) = −m2φ(x) (6.3)

where m is the pion mass (with the same equation applying for the complex
conjugate field φ∗, which together with φ can be used as the two independent
states instead of φ1(x) and φ2(x)). This equation is invariant under Lorentz
transformations since both the d’Alembertian operator � = ∂2/∂t2 − ∇2 =
∂µ∂µ and m2 are invariant. It is in fact the simplest possible relativistic wave
equation for a free scalar field (that is, without interactions).

Equation (6.3) can be derived as the Euler Lagrange equation (see (B.27))

∂L
∂φ∗ − ∂

∂xµ

(
∂L

∂φ∗
,µ

)
= 0 (6.4)

if we choose the Lorentz-invariant Lagrangian density L(x) to be

L(x) =
1
2

(∂µφ(x))∗ (∂µφ(x)) − m2

2
φ∗(x)φ(x) (6.5)

We see that (6.5) remains unchanged if we change the phase of φ by
the same amount everywhere, φ → eiαφ with α constant. This is called a
global invariance of the Lagrangian. Suppose that we now demand that the
theory should also be invariant if we change the phase by a different amount
at different space-time points, that is, if we let α = α(x). This is called
local invariance or gauge invariance. Then the derivatives in (6.5) spoil the
invariance, unless we add another set of fields Aµ(x) to the derivative ∂µ,

∂µ → Dµ ≡ ∂µ − iAµ(x) (6.6)

and let

Aµ(x) → Aµ(x) + ∂µα(x) (6.7)

when φ(x) → eiα(x)φ(x). The field Aµ that we introduced in this way is the
electromagnetic potential!

Equation (6.6) defines the gauge covariant derivative, and has obvious
similarities to the covariant derivative we introduced in general relativity
(see ( 3.36)). The equation of motion for φ becomes(

DµDµ + m2
)
φ(x) = 0 (6.8)
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which describes the electromagnetic properties of a charged scalar field.
A very common and practical pictorial way to describe interactions

through particle exchange is by means of Feynman diagrams, named after
the late American physicist Richard P. Feynman, one of the inventors of
QED. In Fig. 6.2, we show an example of such a diagram representing the
scattering of two electrons by photon exchange.

e-

e-e-

e-

γ

time

Fig. 6.2. A Feynman diagram representing the scattering of two electrons through
photon exchange. Time runs from left to right: that is, the initial state is to the left
and the final state to the right.

It was known from studies of neutron decay that there has to exist another
interaction, much weaker than electromagnetism, therefore called the weak
interaction. This is also the interaction that makes neutrinos experimentally
detectable. However, a neutrino of 1 MeV energy interacts so weakly that the
mean free path in ordinary matter is of the order of a light year!

6.7 Massive Gauge Bosons and the Higgs Mechanism

Since QED had been so successful, it was natural to generalize it to other
interactions as well. In the 1970s, a gauge theory of the weak interactions was
worked out, and indeed it is so intimately related to QED that the two in-
teractions are nowadays considered as one electroweak interaction. Of course,
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for the interaction between, for example, neutrinos there are corresponding
exchange particles, the W± and Z0 bosons. In 1982 these were experimen-
tally discovered at CERN, the European Laboratory for Particle Physics in
Geneva, Switzerland. In Fig. 6.3 the Feynman diagram describing neutron
β decay through the exchange of a W boson is shown. As can be seen in
this figure, the quark flavour can change through the so-called weak charged
current mediated by W±-bosons.

u
d
d

u

u
d

e

W

-

-

ν
_
e

neutron proton

Fig. 6.3. Feynman diagram showing the decay of a neutron into a proton, an
electron and a neutrino. To be precise, an antineutrino is produced, which is why
the arrow for that particle is drawn in the backward direction. This is a general
convention in Feynman diagrams. The vertical line shows an intermediate state at
one particular time.

The masses of these particles were found to be very high, 80-90 GeV, in
distinct contrast to the photon which is believed to be strictly massless. This
asymmetry of mass of the respective exchange particles in the electroweak
theory necessitates a mechanism for symmetry breaking, called the Higgs
mechanism. It is one final part of the electroweak theory which is not yet
proven experimentally. If it is correct, there has to exist a new field, the
Higgs field, with its corresponding particle, which has the property of giving
mass to the W and Z bosons. It is also needed to give quarks and leptons
their mass.

The Higgs field in the Standard Model is a scalar field which means that it
has a Lagrangian density as given by (6.5). An important difference is, how-
ever, that it also has a self-interaction which can be described by a potential
V (φ) of the form
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V (φ) = b|φ|2 + λ|φ|4 + const (6.9)

where λ must be positive to have a stable theory (V should be bounded
from below). However, b can have either sign. If it is positive, we see that
the minimum is given by φ = 0; this is the unique symmetric vacuum state.
However, if b is negative we can write

V (φ) = λ
(|φ|2 − v2

)2
+ const (6.10)

with

v =

√
−b

2λ
(6.11)

which means that the ground state or vacuum state – that is, the state of
lowest energy – is given not by a vanishing field φ = 0, but rather |φ| = v. The
form of the Higgs potential (6.10), shown in Fig. 6.4, is typical of spontaneous
symmetry breaking, and it is the non-vanishing vacuum expectation value of
the Higgs field that can be shown (see, for example [31]) to give rise to masses
of fermions and the W and Z bosons.

The Higgs mechanism is the only one known that can give mass to the
gauge bosons. Gauge invariance means, as it does for the photon, that the
exchange particle has to be massless. If one would try to introduce mass
‘by hand’, that is introducing a quadratic term in the boson fields, gauge
invariance is spoiled which gives rise to a theory that cannot be treated
(in particular, renormalized) using any known methods. Arguably, the Higgs
mechanism seems a bit ad hoc, but it works and the hunt for the predicted
Higgs particle has top priority at the biggest accelerators, at Fermilab and
CERN. Results from the now discontinued Large Electron Positron collider
(LEP) at CERN have now pushed the lower limit of the Higgs mass to above
115 GeV.

Without going too deep into field theory, it is useful for cosmological
applications to display the expression for the energy-momentum tensor of a
scalar field with a Lagrangian of the form

L =
1
2
∂µφ∂µφ − V (φ) (6.12)

It is given by

Tµν = ∂µφ∂νφ − Lgµν (6.13)

an expression that we shall use when discussing inflation.
The large mass scale of the weak bosons explains very nicely the feebleness

of the weak interaction. This is not difficult to understand qualitatively. If
we look at an ‘intermediate state’ in Fig. 6.3 (indicated by the vertical line
in the figure), we see that it looks as though the neutron has decayed into a
proton and a W boson. However, since the rest energy of the neutron is 0.94
GeV, and that of the W boson 80 GeV, this is not energetically possible.
Have we done something wrong when drawing the diagram? No, we have to
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Fig. 6.4. The form of the Higgs potential that causes spontaneous symmetry break-
ing.

remember that in quantum mechanics energy need not be conserved during
short periods of time. According to Heisenberg, we can ‘borrow’ energy ∆E
during a time ∆t as long as the uncertainty relation ∆E∆t ∼ h̄ is fulfilled.
However, such a large energy fluctuation is quite improbable, which explains
why weak interactions are rare, meaning weak. A particle of mass M in a
Feynman diagram which cannot exist as a real particle due to energy and
momentum conservation (a so-called virtual particle) causes a suppression in
the transition amplitude by a factor 1/M2, and therefore a factor 1/M4 in
the interaction probability (the cross-section of a scattering process or decay
rate for a decaying particle) since according to the laws of quantum mechanics
this probability is proportional to the square of the amplitude.
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6.8 Gluons and Gravitons

As a final triumph for the idea of a quantized field theory of basic interactions
came the fundamental theory of the strong interactions, Quantum Chromo-
Dynamics, QCD. According to QCD, the interactions between quarks are
mediated by gauge bosons called gluons. Unlike the photons in QED (but
similar to the W and Z bosons of the weak interactions), the gluons also
interact directly with each other (see Fig. 6.5). This is because the gluons
themselves carry the ‘colour’ charges of the strong interactions. In contrast,
the photon couples to electrically charged particles, but is itself electrically
neutral.

In fact, there are eight differently coloured charged gluons. The aforemen-

g

gg

gg

g

g

Fig. 6.5. Feynman diagrams showing self-interacting gluons.

tioned property of asymptotic freedom can be proven to exist in QCD, which
explains why quarks and gluons appear almost as if they were free particles
when probed during short times, despite the fact that they cannot survive as
free particles during long periods of time. Also confinement is believed to be
due to the self-interacting property of the gluons, but this has not yet been
rigorously proven due to the complicated analytical structure of the theory.
There exist, however, very strong indications from numerical calculations in
so-called lattice gauge theory that this is indeed the case.

The gauge particles of the Standard Model are displayed in Table 6.2. In
addition to these particles, the graviton is believed to exist. This is the medi-
ator of the gravitational interaction, but since no consistent quantum theory
of gravitation has yet been constructed its existence is still hypothetical. Ein-
stein’s classical theory of gravitation, general relativity, indeed has a structure
that makes it very similar to a gauge theory with the gauge transformations
corresponding to general coordinate transformations. The expression for the
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Riemann tensor in general relativity looks very similar to the field strength
of a non-abelian gauge theory like QCD, with the metric connections playing
the role of the gauge potential.

We may mention that there have recently been very exciting developments
in certain classes of gauge theory, which show the promise of elucidating the
mechanism behind confinement (so-called duality properties). The reader is
again directed to the electronic bulletin boards for the latest updates.

Table 6.2. The gauge particles of the Standard Model. Notice that since gluons
are confined, the gluon mass is not a uniquely defined parameter.

Particle Interaction Mass Electric charge

Photon Electromagnetic 0 0
Z0 boson Weak (neutral current) 91 GeV 0

W± bosons Weak (charged current) 80 GeV ±1
gi, i=1,2,..8 (gluons) Strong 0 0

Let us continue our counting of the number of helicity states in the Stan-
dard Model. To the 90 states we found for fermions (including antiparticles)
we add two for the photon and two for each of the eight gluons. They have
spin 1 which means that they should each have 2s + 1 helicity states with
s = 1 giving three states, but since they are massless the only allowed he-
licities are +1 and −1, which means two states each. The W+, W− and
Z0 bosons are massive spin one particles, and therefore each have 3 helicity
states. The physical Higgs boson is spinless and electrically neutral, with just
one state. The total count thus becomes gtot = 90 + 18 + 9 + 1 = 118. It
is one of the most important tasks of modern particle theory to produce an
explanation of the existence of these 118 states, Maybe there exists a grander
structure which will unify these states into some more fundamental object,
perhaps also having degrees of freedom in other dimensions.

6.9 Beyond the Standard Model

The Standard Model has been extremely successful in explaining all exper-
iments and observations concerning the three fundamental forces: electro-
magnetism, weak interactions and strong interactions. Still, there are many
unsolved fundamental problems which hint at a more complete theory, yet to
be found:

• What determines the masses and couplings of all the particles of
the Standard Model? Does there exist some unifying principle?

• There are indications that the coupling constants of the electro-
magnetic, weak and strong interactions are energy-dependent in
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such a way that they would all be equal when extrapolating to an
extremely high energy of around 1015 − 1016 GeV. Is this a co-
incidence, or is there a Grand Unification Theory (GUT) at this
energy scale which unifies them all into one force?

• Why is the GUT scale and the mass scale of gravity, the Planck
mass 1.2 · 1019 GeV, so much higher than all the masses of the
Standard Model? In particular, if one calculates the contribution to
the Higgs boson mass that would come from quantum corrections
(virtual particles) at the GUT scale, the Higgs mass, and therefore
also the Z0 and W± masses become huge. What is it that prevents
these masses from becoming large?

• How can one describe quantum gravity? How does one unify grav-
ity with the other three fundamental forces?

• Why is there more matter than antimatter in the Universe? In the
Standard Model, there is a very tiny difference between particles
and antiparticles (so-called CP violation), but this small difference
does not seem to be enough to explain the baryon asymmetry of
the Universe (see Section 1.3).

These questions are still unanswered, but there are great expectations
that string theory and its extensions could provide some or all of the answers.
While waiting for a complete theory to be constructed, there are some features
which one already can deduce that such a theory should have. In particular,
the problem of the disparate mass scales of Grand Unification and gravity
on one hand and the Standard Model particles on the other, can be solved if
there exists a whole new type of symmetry, called supersymmetry, in the new
theory. Interestingly enough, supersymmetry also seems essential to unify
gravity with the other forces.

6.9.1 Supersymmetry

Supersymmetry is a symmetry between fermions and bosons. In a super-
symmetric theory there should first of all be an equal number of helicity
states of fermions and bosons. Thus, to the spin-1 photon there should corre-
spond a spin-1/2 particle called the photino. To the spin-1/2 fermions there
should correspond spin-0 sfermions (squarks and sleptons). The supersym-
metric partners of the Z0, W±, the gluons and Higgs bosons, are the spin-1/2
zino, wino, gluino and higgsino. The neutral particles of these are Majorana
particles (see Section C.14) which means that they are their own antiparticles.

Secondly, if supersymmetry is unbroken the particles should have the
same mass as their respective superpartners. This last property is obviously
wrong (a selectron of 511 keV mass is definitely ruled out – present lower
bounds from accelerator experiments are of the order of 100 GeV!). It is
interesting, however, that it is possible to break supersymmetry in such a
way that the Higgs mass problem is solved but the other attractive features
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of Grand Unification and so on are retained. For this to work, however, the
lightest supersymmetric particle should not weigh more than a few hundred
GeV, a fact that has initiated a dedicated search for supersymmetric particles
in present and planned accelerators.

In many supersymmetric models there emerges a conserved multiplica-
tive quantum number (called R-parity) which has the value +1 for ordinary
particles and −1 for supersymmetric particles. This means that supersym-
metric particles can only be created or annihilated in pairs. This implies in
turn that a single supersymmetric particle cannot disappear by decaying into
ordinary particles only. If it is heavy, it can decay into a lighter supersym-
metric particle plus ordinary particles. From this it follows that the lightest
supersymmetric particle is stable, since it has no allowed state to decay into.

If supersymmetry exists, it could have important consequences for cosmol-
ogy. In the early Universe, the contribution from the supersymmetric fields
to the effective potential energy could have been very important, perhaps
driving inflation and other phenomena. Shortly after the Big Bang, when
thermal energies were high compared to the supersymmetric particle masses,
these particles should have been pair produced at a large rate. When the
Universe then cooled and expanded, most of them decayed except the stable
lightest supersymmetric particle. These particles could today still exist in
the Universe as relics of the Big Bang. If they are electrically neutral they
would have very weak interactions (like neutrinos), but if massive they could
contribute to the dark matter of the Universe. Later we will show how to
compute the relic density of such particles.

In supersymmetric theories, the most likely dark matter candidate is a
quantum mechanical superposition, called the neutralino χ of electrically
neutral supersymmetric fermions:

χ = N1γ̃ + N2Z̃
0 + N3H̃

0
1 + N4H̃

0
2 (6.14)

where γ̃ is the photino, Z̃0 is the zino and H̃0
1 and H̃0

2 are the superpartners
of the two different neutral scalar Higgs particles which can be shown to be
needed in supersymmetric theories. The coefficients Ni are normalized such
that

4∑
i=1

|Ni|2 = 1 (6.15)

Sometimes one defines the gaugino parameter

Zg = |N1|2 + |N2|2 (6.16)

and the higgsino parameter

Zh = |N3|2 + |N4|2 (6.17)

The mass and composition of the lightest neutralino depends on several
presently unknown parameters of the supersymmetric models. The approach
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usually taken is to make large scans in that parameter space and to compute
all the relevant quantities for each set of chosen parameters. The cosmolog-
ically interesting models generally have the lightest neutralino as a higgsino
if the mass is high (above several hundred GeV up to a few TeV), and a
gaugino or full mix of gaugino and higgsino for low-mass models (the lower
mass limit consistent with accelerator data is somewhere between 20 and 30
GeV). At present, the neutralino is considered to be one of the most plausible
candidates for the dark matter, and there are many experimental searches
going on around the world to try to detect it. We shall return to this later.

6.10 Some Particle Phenomenology

In the previous sections, we encountered various particles like protons, neu-
trons, pions and their constituents, the quarks. The leptons: electrons, muons
and τ -leptons and their respective neutrinos are as far as we know elementary.
All of them played important roles in the early Universe when the temper-
ature was very high, and many of them are still important today in various
astrophysical processes.

Although the quarks and leptons enter the Standard Model on equal foot-
ing, the particle phenomenology generated by the quarks is quite a lot richer
than that of the leptons. This is of course due to the fact that quarks are
forced by the strong interactions to form bound states.

Since the u, d and s quarks are so much lighter than the other three, the
hadrons (baryons and mesons) they form are most easily studied in acceler-
ators, and were the first to be investigated experimentally. Before 1973, they
were the only known quarks.

Since the strong interactions (in contrast to the electroweak ones) are
the same for all quarks irrespective of their ‘flavour’, this should reflect itself
in the properties of the hadrons. Indeed, the neutron and the proton are
very similar particles. They have the same spin (h̄/2), very similar strong
interactions and the same mass within a fraction of one per cent. The only
big difference is the electric charge, which we saw could be explained by the
charges of the quarks. Actually, the small mass difference is also believed to
be a consequence of the mass difference of the u and d quarks, plus perhaps
an electromagnetic contribution generated by the difference in charges. Thus,
it seems that hadrons should reflect a symmetry, meaning that exchanging
u and d quarks should produce very similar hadrons (in particular, the mass
should not change much).

In quantum mechanics, symmetries like the (approximate) one of ex-
change of quark flavours, are generated by so-called unitary operators. If
we restrict ourselves to u and d quarks only, it seems that we can replace the
doublet (u, d) by a linear combination(

u′

d′

)
=
(

cos θ sin θ
− sin θ cos θ

)(
u
d

)
(6.18)
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without changing the strong interactions. This implies a symmetry, called
isospin invariance, for strong interactions at low energy. However, the other
quarks are much more massive and therefore higher flavour symmetries are
not so good.

6.10.1 Estimates of Cross-Sections

The calculation of collision and annihilation cross-sections, and decay rates
of particles, is an important task in particle physics. Here we will present
only a brief outline of how this is done, and focus on ‘quick-and-dirty’ esti-
mates which may be very useful in cosmology and astrophysics. For the local
microphysics in the FLRW model, only three interactions – electromagnetic,
weak and strong – between particles need to be considered. The gravitational
force is completely negligible between individual elementary particles – for
instance, the gravitational force between the proton and the electron in a
hydrogen atom is around 1040 times weaker than the electromagnetic force.
However, gravity, due to its coherence over long range, still needs to be taken
into account through its influence on the metric. This means that the dilution
of number densities due to the time dependence of the scale factor a(t) has
to be taken into account. In the next chapter we will see how this is done.

Let us begin with the interaction strengths. The strength of the electro-
magnetic interaction is governed by the electromagnetic coupling constant
gem, which is simply the electric charge. As usual, we take the proton charge
e as the basic unit and can thus write

gem = Qe (6.19)

where Q is the charge of the particle in units of the proton charge (for a
u-quark, for example, Qu = +2/3). In our system of units,

e2

4π
≡ αem (6.20)

where αem is the so-called fine structure constant which has the value of
around 1/137 at low energies.4 (Usually, it is denoted just α without the
subscript.) The weak coupling constant is of similar magnitude:

gweak =
e

sin θW
(6.21)

with θW the weak interaction (or Weinberg) angle, which has the numerical
value sin2 θW ∼ 0.23. The fact that the weak and electromagnetic coupling
constants are of the same order of magnitude is of course related to the fact
that they are unified in the Standard Model to the ‘electroweak’ interaction.
4 This coupling constant, as all others, depends on the energy scale, for example,

the energy transfer, of the process – at 100 GeV energy αem ∼ 1/128.
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The coupling constant of the strong interaction, gs, is somewhat higher.
Also, it runs faster (it decreases) with energy than the electromagnetic cou-
pling. At energies of a few GeV,

αs ≡ g2
s

4π
∼ 0.3 (6.22)

Let us look at the Feynman diagram for a simple process like e+e− →
µ+µ− (Fig. 6.6). The amplitude will be proportional to the coupling con-
stants at both vertices, which in this case are both equal to e. The cross-
section, being proportional to the square of the amplitude, is thus propor-
tional to e4 ∝ (α/4π)2.

e

e

µ

µ

γ

+

+

-

-

time

Fig. 6.6. A Feynman diagram representing the annihilation of an electron and a
positron to a muon pair.

If we look at the total energy of the e+e− pair in the centre of momentum
frame, we saw in Chapter 2 that it can be expressed as Ecm(e+)+Ecm(e−) =√

s. Since the total momentum in this frame is zero, the four-momentum
pµ = (

√
s, 0, 0, 0) is identical to that of a massive particle of mass M =

√
s

which is at rest. Energy and momentum conservation then tells us that the
photon in the intermediate state has this four-momentum. However, a freely
propagating photon is massless, which means that the intermediate photon
is virtual by a large amount. In quantum field theory one can show that the
appearance of an intermediate state of virtual mass

√
s for a particle with real

rest mass Mi is suppressed in amplitude by a factor (called the propagator
factor)

P (s) = 1/(s − m2
i ) (6.23)
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In this case (mγ = 0), which means a factor of 1/s. The outgoing particles (in
this case the muons) have a large number of possible final states to enter (for
example, all different scattering angles in the centre of momentum frame).
This is accounted for by the so-called phase space factor φ, which generally
grows as s for large energies. For the cross-section σ

σ(e+e− → µ+µ−) = const · φ ·
(

α2

s2

)
(6.24)

with φ the phase space factor. If s is large compared to m2
e and m2

µ, φ ∝ s,
and

σ(e+e− → µ+µ−) ∼ α2

s
(6.25)

This is not an exact expression. A careful calculation (see next section and
Appendix D.2) gives 4πα2/(3s)), but it is surprisingly accurate and often
precise enough for the estimates we need in Big Bang cosmology.

Since the weak coupling strength is similar to the electromagnetic strength,
the same formula is valid for, for example, νe + e → νµ + µ which goes
through W exchange (see Fig. 6.7). The only replacement we need is
1/s → 1/(s − m2

W ) for the propagator, thus

σ(ν̄e + e− → ν̄µ + µ−) ∼ α2s

(s − m2
W )2

(6.26)

When s  m2
W , this gives σweak ∼ α2s/m4

W , which is a very small cross-
section for, as an example, MeV energies (but notice the fast rise with energy
due to the factor s). This is the historical reason for the name ‘weak interac-
tion’, which as we see is really not appropriate at high energies (much larger
than mW ), where the two types of cross-sections become of similar size.

Note that once one remembers the factors of coupling constants and the
propagators, the magnitude of cross-sections can often be estimated by simple
dimensional analysis. A cross-section has the dimension of area, which in our
units means (mass)−2. It is very useful to check that the expressions (6.25)
and (6.26) have the correct dimensions.

A fermion has a propagator that behaves as 1/m (instead of 1/m2) at
low energies. This means that the Thomson cross-section σ(γe → γe) at low
energies Eγ  me can be estimated to be (see Fig. 6.8)

σT ≡ σ(γe → γe) ∼ α2

m2
e

(6.27)

6.11 Examples of Cross-Section Calculations

The foregoing simple estimates are in many cases sufficient for cosmological
and astrophysical applications. However, there are cases when one would like
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e
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e
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+

Fig. 6.7. A Feynman diagram representing the annihilation of an electron neutrino
and a positron to a muon neutrino and a muon.

e e

e

γ γ

Fig. 6.8. A Feynman diagram representing the γe → γe process (Thomson scat-
tering).

to have a more accurate formula (or when there are ambiguities concerning
which mass scales to use for the simple estimates). Here we will provide only
a couple of examples, relevant to later applications in the book. The detailed
calculations require knowledge of the Dirac equation and are discussed in
Appendix D. We summarize here the general framework and the main results.
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6.11.1 Definition of the Cross-Section

In Appendix D, it is shown that the differential cross-section dσ/dt for 2 → 2
scattering a + b → c + d is given by the expression

dσ

dt
=

|T̃ |2
16πλ (s, m2

a,m2
b)

(6.28)

where (see Section 2.4.3) t = (pa − pc)2 and s = (pa + pb)2. Here |T̃ |2 is the
polarization-summed and squared quantum mechanical transition amplitude.
The integration limits for the t variable were given in (2.60). A typical cal-
culation (Appendix D) involves computing the matrix element in terms of s
and t and carrying out the t integration to obtain the total cross-section.

In the one-photon exchange approximation, the cross-section for e+e− →
µ+µ− is

σ(e+e− → µ+µ−) =
2πα2

s
v

(
1 − v2

3

)
(6.29)

where the only approximation made is to neglect me (this is allowed, since
m2

e/m2
µ  1). Here v is the velocity of one of the outgoing muons in the

centre-of-momentum frame, v =
√

1 − 4m2
µ/s. In the relativistic limit of

s 	 m2
µ, (v → 1), this becomes

σ
(
e+e− → µ+µ−)

large s
=

4πα2

3s
(6.30)

as noted previously.

6.11.2 Neutrino Interactions

For the neutrino process ν̄ee
− → ν̄µµ− the cross-section is found to be

σ
(
ν̄ee

− → ν̄µµ−)
m2

µ
s
m2
W

=
g4

weaks

96πm4
W

(6.31)

Before it was known that W bosons existed, Fermi had written a phe-
nomenological theory for weak interactions with a dimensioned constant (the
Fermi constant) GF . The relation is

GF√
2

=
g2

weak

8m2
W

� 1.166 · 10−5 GeV−2 (6.32)

Using this, the cross-section can simply be written as

σ
(
ν̄ee

− → ν̄µµ−)
m2

µ
s
m2
W

=
G2

F s

3π
(6.33)

We note that the cross-section rises with s � 2Eνme (c. f. Example 2.4.5)
and thus linearly with neutrino energy. When s starts to approach mW , the W
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propagator 1/(s−m2
W ) has to be treated more carefully. It can be improved

by writing it in the so-called Breit Wigner form
1

s − m2
W

→ 1
s − m2

w + iΓmW
(6.34)

where Γ is the total decay width (around 2 GeV) of the W . We see from this
that a substantial enhancement of the cross-section is possible for s � m2

W .
This is an example of a resonant enhancement in the s-channel. For a tar-
get electron at rest, this resonance occurs at around 6.3 PeV (the so-called
Glashow resonance) If there exist astrophysical sources which produce elec-
tron antineutrinos with such high energies, the experimental prospects of de-
tecting them would be correspondingly enhanced. Well above the resonance,
this particular cross-section will again start to decrease like 1/s, just as the
electromagnetic e+e− → µ+µ− one does.

We should remark that the latter process, e+e− → µ+µ−, also receives
a contribution from an intermediate Z boson. At low energies this is com-
pletely negligible, but due to the resonant enhancement it will dominate near
s � m2

Z . This is the principle behind the Z studies performed at the LEP ac-
celerator at CERN (where all other fermion-antifermion pairs of the Standard
Model can also be produced except tt̄, which is not kinematically allowed).
In a full calculation, the two contributions have to be added coherently and
may in fact interfere in interesting ways, producing for example, a backward
forward asymmetry between the outgoing muons.

6.11.3 The γγee System

By different permutations of the incoming and outgoing particles, the basic
γγee interaction (shown in Fig. 6.8) can describe γγ → e+e−, e+e− → γγ,
and γe± → γe±. For γγ → e+e− the result is

σ
(
γγ → e+e−

)
=

πα2

2m2
e

(
1 − v2

) [(
3 − v4

)
ln
(

1 + v

1 − v

)
+ 2v

(
v2 − 2

)]
(6.35)

where v now is the velocity of one of the produced electrons in the centre-of-
momentum frame, v =

√
1 − 4m2

e/s. Near threshold, that is, for small v the
expression in square brackets can be series expanded to 2v +O(v2), and thus

σ
(
γγ → e+e−

)
small v

� πα2

m2
e

(6.36)

In the other extreme, v → 1,

σ
(
γγ → e+e−

)
s�4m2

e
� 4πα2

s

[
ln
(√

s

me

)
− 1
]

(6.37)

Again we notice with some satisfaction that we could have guessed most
of this to a fair degree of precision by the simple dimensional and vertex-
counting rules. At low energy, the only available mass scale is me, so the
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factor α2/m2
e could have been guessed for that reason. The factor v could also

have been guessed with some more knowledge of non-relativistic partial wave
amplitudes. At low energy, the � = 0 (S-wave) amplitude should dominate,
and this contributes to the cross-section proportionally to v. A partial wave �
contributes to the total cross-section with a term proportional to v2�+1.5 At
high energy, when me can be neglected, the dimensions have to be carried by
s. Only the logarithmic correction factor in (6.37) could not have been very
easily guessed.

We see from these formulae that the γγ → e+e− cross-section rises from
threshold to a maximum at intermediate energies and then drops roughly as
1/s at higher energy (see Fig. 6.9).

The results for the reverse process e+e− → γγ are of course extremely
similar. Now, the process is automatically always above threshold. For v → 0
(with v now the velocity of one of the incoming particles in the cm-system,
still given by the formula v =

√
1 − 4m2

e/s), the flux factor ∼ 1/v in (D.7)
diverges. Since the outgoing photons move away with v = c = 1 there is no
partial-wave suppression factor, and we can thus expect the cross-section at
low energy to behave as

σ
(
e+e− → γγ

)
low energy

∼ α2

vm2
e

(6.38)

and the high-energy behaviour by the same formula, with m2
e replaced by s

(and possibly a logarithmic factor). These expectations are borne out by the
actual calculation, which gives

σ
(
e+e− → γγ

)
=

πα2
(
1 − v2

)
2vm2

e

[
3 − v4

2v
ln
(

1 + v

1 − v

)
− 2 + v2

]
(6.39)

Note the similarity with (6.35)
As the final example, we consider Compton scattering γ + e− → γ + e−.

Usually, one then has an incoming beam of photons of energy ω which hit
electrons at rest. For scattering by an angle θ with respect to the incident
beam, the outgoing photon energy ω′ is given by energy-momentum conser-
vation to be

ω′ =
meω

me + ω (1 − cos θ)
(6.40)

In this frame, the unpolarized differential cross-section, as first computed by
Klein and Nishina, is

dσ

dΩ
=

α2

2m2
e

(
ω′

ω

)2 [
ω′

ω
+

ω

ω′ − sin2 θ

]
(6.41)

Integrated over all possible scattering angles this gives the total cross-section
5 We see from (6.29) that in the case of e+e− → µ+µ− the S-wave dominates at

low energy, but when v → 1, the P -wave contribution is 1/3.
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σ(γ + e → γ + e) =
πα2 (1 − v)

m2
ev

3
×[

4v

1 + v
+
(
v2 + 2v − 2

)
ln
(

1 + v

1 − v

)
− 2v3 (1 + 2v)

(1 + v)2

]
(6.42)

where v is now the incoming electron velocity in the centre of momentum
frame, v = (s − m2

e)/(s + m2
e). If one expands this result around v = 0, one

recovers the Thomson scattering result

σThomson =
8πα2

3m2
e

(6.43)

and the large-s, so-called Klein Nishina regime gives

σKN =
2πα2

s

[
ln
(

s

m2
e

)
+

1
2

]
(6.44)

We see that for photon energies much larger than me – that is, in the Klein
Nishina regime – the Compton cross-section falls quite rapidly.

These formulae have many applications. In the classical Compton scat-
tering situation, the outgoing photon energy is always less than the incoming
one. Thus, energetic photons travelling through a gas of cold electrons will
be ‘cooled’ by Compton scattering. In other cases (for example for the cosmic
microwave background radiation passing through a galaxy cluster with hot
gas) energetic electrons may transfer energy to photons, thereby ‘heating’
them. This is sometimes called inverse Compton scattering in the literature
(although if we just express the energies in terms of s, it is the same formula
which applies in the two cases).

When computing actual numbers for the cross-sections (which should have
the dimensions of area) in our units, a useful conversion factor is

1 GeV−2 = 0.389 · 10−27 cm2 (6.45)

In Fig. 6.9 the numerical results are summarized. The cross-sections are
shown (in cm2) for γγ → ee, ee → γγ and γe → γe as a function of the
available energy in the c.m.s., in units of the electron mass:

y =
√

s −√
smin

me
(6.46)

where
√

smin = 2me for γγ → ee and ee → γγ, and
√

smin = me for Compton
scattering γe → γe. We see in this figure the different behaviours at low
energy (small y) already discussed, but that they show a similar decrease at
high energy.

Another process of great astrophysical importance is that of bremsstrah-
lung. This is the emission of photons from charged particles when they are
accelerated or decelerated. If this acceleration is due to circular motion in a
magnetic field, the term synchrotron radiation is used. Through these pro-
cesses (unlike Compton scattering) the number of photons can change. This



132 6 Particles and Fields

2

4

6

8
10

-26

2

4

6

8
10

-25

2

4

6

8
10

-24

 C
ro

ss
 s

e
ct

io
n

 (
cm

2
)

0.01 0.1 1 10

 y

e+e- →  γγ 
 γ  e-→   γ  e-

   γ  γ →   e+e-

Fig. 6.9. The cross-sections (in cm2) for photon-photon annihilation, e+e− → γγ
and Compton scattering as a function of the scaled available centre of momentum
energy y.

is needed if thermal equilibrium is to be maintained, since the number density
of photons depends strongly on temperature. Most of the produced photons
have very low energy (long wavelength). If fast electrons pass through a re-
gion where synchrotron radiation and bremsstrahlung occur, these low-energy
photons may have energy transferred to them through the inverse Compton
process. This may explain the observations of very high-energy photons in
active galactic nuclei (see Chapter 13).

(For a detailed discussion of these and other QED processes, see standard
textbooks on quantum field theory, for example, [22].)

6.12 Processes Involving Hadrons

Since protons and neutrons are among the most common particles in the
Universe, it is of course of great interest to compute processes where these
and other hadrons (such as pions) are involved. This is, however, not easy
to do from first principles. The reason that in the previous section we could
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compute weak and electromagnetic processes so accurately is that we could
use perturbation theory (as summarized, for example, in the Feynman dia-
grams). The expansion parameter, the electroweak gauge coupling constant
g or rather αew = g2/(4π) ∼ 10−2, is small enough such that a lowest-order
calculation is sufficient to obtain very accurate results.

In QCD, we also have a coupling constant αs, but it is large (∼ 0.2 at
scales of order 10 GeV). The ‘running’ of the coupling constant with energy
scale means that it is smaller than this at high energies but larger at small
energies. The energy scale is set, for example, by the energy or momentum
transfer Q (Q2 ≡ −t with t the Mandelstam variable introduced in Sec-
tion 2.4) in the process. So, for processes with large Q2, we should be able to
use perturbative QCD, although the results may not be as accurate as those
of QED due to the importance of higher-order corrections. At low energies,
say 1 GeV and below, the QCD coupling becomes of the order unity and
perturbation theory breaks down. In this nonperturbative regime we have
to rely on empirical methods or eventually on large computer simulations,
where QCD is solved as accurately as possible by being formulated as a field
theory on a lattice. Despite some early optimism, progress in this field has,
however, been slow during the last few years.

For processes such as proton-proton scattering at low energies, the pic-
ture of strong interactions being due to the exchange of gluons breaks down.
Instead one may approximate the exchange force as being due to pions and
other mesons with surprisingly good results (this is in fact what motivated
Yukawa to predict the existence of pions). If one wants to make crude approxi-
mations of the strong interaction cross-section in this regime, σstrong ∼ 1/m2

π

is not a bad estimate.
In the perturbative regime at high Q2, the scattering, for example, of

an electron by a proton (‘deep inelastic scattering’) may be treated by the
successful so-called parton model. According to this description, the mo-
mentum of a hadron at high energy is shared between its constituents. The
constituents are of course the quarks that make up the hadron (two u and
one d quarks in the case of the proton). These are called the valence quarks.
In addition, there may be pairs of quarks and antiquarks created through
quantum fluctuations at any given time. The incoming exchange photon sent
out from an electron may happen to hit one of these sea quarks, which will
therefore contribute to the scattering process (see Fig. 6.10).

Since the partons interact with each other, they can share the momentum
of the proton in many ways. Thus, there will be a probability distribution,
fi(x,Q2), for a parton of type i (where i denotes any quark, antiquark or
gluon) to carry a fraction x of the proton momentum. These functions cannot
be calculated from first principles. However, if they are determined (by guess
or by experimental information from various processes) at a particular value
of Q2

0, then the evolution of the structure functions with Q2 can be predicted.
This analysis, first performed by Altarelli and Parisi, gives rise to a predicted
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Fig. 6.10. Deep-inelastic scattering of an electron by a proton in the parton picture
of the proton, valid at high energy and momentum transfers. The exchange photon
can hit any of the constituents, and also one of the virtual sea quarks (here an
ss̄ quark pair created by a virtual gluon). The total scattering cross-section is a
sum over all constituents and an integral over x, where x is the fraction of the
proton momentum P carried by an individual constituent. The hit parton (and
also the ‘spectator quarks’) develop a cascade which ultimately ends up in hadrons.
This ‘jet’ of particles is a distinct signature of perturbative QCD processes which
has been experimentally verified to exist, and agree extremely well with the QCD
predictions.

variation of the deep inelastic scattering probability with Q2 (so-called scaling
violations) which has been successfully compared with experimental data.

With the QCD parton model, we can now compute many electromagnetic
and weak processes, including when hadrons are involved. For instance, the
neutrino proton scattering cross-section will be given by the scattering of a
neutrino on a single quark and antiquark. This calculation is easily done in
a way similar to how we computed the ν̄e + e− → ν̄µ + µ− cross-section. The
only change is that the contributions from all partons have to be summed
over, and an integral of x performed.

Example 6.12.1 Give an expression for the electromagnetic cross-section p +
p → µ+µ− in the QCD parton model. (This is called the Drell-Yan process.)

Answer: The fundamental process must involve charged partons (since we
neglect the weak contributions), q+q̄ → γ∗ → µ+µ−, with a quark taken from
one of the protons and an antiquark from the other proton. The momentum
transfer in the process can be taken to be Q2 = ŝ, where ŝ = (pµ+ + pµ−)2.
We know from (6.30) that the parton level cross-section is 4παe2

q/3ŝ (where
we have taken into account that the quark charge eq is not the unit charge).
Since the parton from proton 1 carries the fraction x1 and that from proton 2
x2 of the respective parent proton, ŝ = x1x2s, with s = (p1 + p2)2. The total
cross-section for producing a muon pair of momentum transfer ŝ is thus
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dσ

dŝ
=

4πα2

3ŝ
kc×∑

q

e2
i

∫ 1

0

dx1

∫ 1

0

dx2 [fq(x1, ŝ)fq̄(x2, ŝ) + fq̄(x1, ŝ)fq(x2, ŝ)] δ(ŝ − x1x2s)

Here kc is a colour factor, which takes into account that for a given quark of
a given colour, the probability to find in the other proton an antiquark with
a matching (anti-) colour is 1/3. Thus, in this case kc = 1/3. In the reverse
process, µ+ + µ− → q + q̄, all the quark colours in the final state have to
be summed over (each contributes to the cross-section), so in that case kc = 3.

6.13 Vacuum Energy Density

The absolute energy concept is not relevant in classical mechanics as the dy-
namics of a system depends only on energy differences, e.g. F = −dU

dx , which
remain unchanged for the transformation U → U + U0. However, quantum
mechanical systems are subject to a lowest possible energy level: the vacuum
energy . For example, the energy levels in a quantum harmonic oscillator are
En = (n + 1

2 )h̄ω. Thus, the zero-point energy of the n = 0 ground state is
finite, i.e. the system cannot be completely at rest. This is a consequence of
the uncertainty principle which states that the location and momentum of
a particle cannot be known simultaneously. The generalization to quantum
field theory implies that a relativistic field may be viewed as a collection of
harmonic oscillators. Thus, a massless scalar field has a vacuum energy which
is given by the sum of all the frequency modes:

E0 =
∑

i

1
2
h̄ωi (6.47)

The sum is performed by putting the system in a box of volume V = L3.
Boundary conditions are imposed such that L = λi · ni, for some integers
ni, or in terms of the wave vector k, we can write n = Lk

2π . The number of
frequency modes in the interval (k,k + dk) is therefore L3d3k

(2π)3 , and the sum
of the energy modes becomes:

E0 =
1
2

h̄L3

(2π)3

∫
ωkd3k (6.48)

Letting L → ∞, the vacuum energy density is obtained by performing
the integral including all the energy modes for which we are confident in our
theory, i.e. up to some value kmax:

ρvac = lim
L→∞

E0

L3
=

1
2

h̄

(2π)3

∫ kmax

0

k · 4πk2dk =
h̄k4

max

16π2
, (6.49)
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which diverges for kmax → ∞. However, it is believed that beyond the
Planck energy, EPl = 1.2 · 1019 GeV, conventional field theory breaks down,
i.e. kmax ∼ EPl/h̄. Hence, ρvac ≈ 1074 GeVh̄−3 = 1092 g/cm3. In Section 4.1,
it was shown that the configuration with no matter or radiation contribution
to the the energy momentum tensor, the vacuum energy density, could be
described with an equation of state parameter αvac = −1, i.e. pvac = −ρvac,
hence the association with the cosmological constant, ρvac = ρΛ ≡ Λ/8πG.
Our mere existence rules out such a large vacuum energy density at the
present epoch, since it would induce an expansion rate of the Universe incon-
sistent with the existence of any structure. This is known as the cosmological
constant problem. Astronomical observations suggest that there is compo-
nent of the Universe with negative pressure but then the cut-off energy is
only at the 10−3 eV, more than 30 orders of magnitude below the Planck
energy! We see that the effect of the vacuum energy is proportional to h̄, i.e.,
it is not a problem for classical physics, where h̄ → 0. Probably a solution to
the cosmological constant problem has to come from a theory that can unify
classical general relativity with quantum mechanics, such as string theory.

In the 1980s when supersymmetry was proposed, it was argued that a can-
cellation of the cosmological constant was possible as bosons and fermions
would yield contributions with opposite signs to the integral in (6.49). How-
ever, as supersymmetry is clearly broken in the Universe of today, no theoret-
ical explanation exists for the measured value of the cosmological constant.

6.14 Summary

• The Standard Model contains quarks and leptons.
• Quarks are confined to live within hadrons. The colour charge be-

ing non-zero, they cannot be free outside. However, at large mo-
mentum transfers, quarks effectively behave as free particles.

• Quarks have electric charges equal to +2/3 (for the three up-type
quarks) and -1/3 (for the three down-type quarks). Leptons have
charge -1 (for all the three electron-like leptons) and 0 (for the
three neutrinos).

• Fundamental quark states are either composed of three quarks
(baryon) or a qq̄ (meson) states.

• The forces of the Standard Model can be obtained by postulating
certain space-time dependent gauge symmetries.

• The potential of the fields of the Standard Model is such that W±

and Z0 become massive.
• The supersymmetric extension of the Standard Model is a plausible

new framework, which will be testable at the new accelerator at
CERN.
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• To compute the order of magnitude of a cross-section for a pair
of Standard Model particles, it is usually a good approximation to
use the momenta and charges of the external particles.

• One useful quantity when computing cross-sections is 1 GeV−2 =
0.389 · 10−27 cm2.

• Our present field theory does not tell us anything about the value
of the cosmological constant.

6.15 Problems

6.1 Show that with ∂µ replaced by the covariant derivative Dµ ≡ ∂µ −
iAµ(x) and the rule Aµ(x) → Aµ(x)+∂µα(x), the Lagrangian (6.5) is invari-
ant under local gauge transformations φ(x) → eiα(x)φ(x).

6.2 In the minimal supersymmetric extension of the Standard Model (called
the MSSM), the ‘ordinary’ particles are the same as in the Standard Model,
with the exception of five Higgs particles (three neutral and two charged)
instead of only one (plus of course the supersymmetric partners of all ordinary
particles). Compute the total number of helicity states in the MSSM.

6.3 Give a quick estimate of the size of the following cross-sections: (a)
e+ + e− → γ + γ, (b) u + ū → g + g, (c) u + d̄ → νµ + µ+, (d) u + ū → d + d̄.

6.4 Derive (D.9).



7 Phase Transitions

7.1 Introduction

With the advent of relativistic quantum field theory as the most accurate de-
scription of the fundamental particles and their interactions at energy scales
all the way up to the Grand Unification scale of around 1015 GeV, a number
of interesting consequences for cosmology were soon identified. One of them,
which we shall treat in Chapter 10, is the possibility that the vacuum energy
of some fields generated an extremely fast expansion (inflation) of the very
early Universe. Another is the observation that since the Universe started
out from a very hot state and subsequently cooled, there could have been
a whole series of phase transitions in the primordial ‘soup’, just like water
will successively exist in the states of vapour, liquid and solid when cooled
from a temperature above the boiling point to below the freezing point under
standard conditions of temperature and pressure.

Although some ‘defects’ formed during phase transitions such as mono-
poles and domain walls are excluded because they would overclose the Uni-
verse, there are others – strings and textures – that may have formed after
inflation (if there was inflation – this is an attractive but not compulsory
possibility). They could have had striking effects on structure formation, and
have been searched for in balloon-borne and satellite experiments on the mi-
crowave background. No signal has been found so far, which means that if
cosmic defects exist, they must play a subdominant role. Anyway, the study
of cosmological phase transitions is a fascinating branch of cosmology which
has strong ties both to particle and condensed matter physics.

7.2 Phase Transitions in Condensed Matter

In statistical physics, one generally distinguishes between first order or dis-
continuous and second order or continuous phase transitions. In a first order
phase transition (such as the boiling of water), there is latent heat involved,
and the phase transition often proceeds through the nucleation of bubbles.
In continuous phase transitions the change of phase is less dramatic, and
when it takes place the regions of the new phase become larger and larger,
as quantified by the so-called correlation length.
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In any type of phase transition one can, for the other external parameters
fixed (pressure, volume, magnetic field. . . ), identify a critical temperature Tc.
Near the critical temperature many of the quantities can be expanded in the
reduced temperature

ε =
T − Tc

Tc
(7.1)

where, for example, the behaviour of the correlation length ξ as one ap-
proaches Tc from above in a second order phase transition is

ξ = ξ0ε
−ν (7.2)

where ν > 0 and ξ0 is a constant that depends on the details of the interac-
tions.

Obviously, it would be useful to be able to estimate ν and other critical
exponents. In fact, very powerful theoretical methods have been developed
to analyse the behaviour of the system as the length scale is successively
changed: the renormalization group approach (see [16]). A more intuitive,
but less powerful, method was developed by Landau in the 1950s. To analyse
a system, Landau’s prescription was to write down an effective Hamiltonian
that should reflect the symmetries and essential dynamics of the system.

7.2.1 The Landau Description of Phase Transitions

We shall give an example of Landau’s method that will also prepare us for
the description of cosmic string formation in the early Universe. The first
task is to identify some quantity that can describe the state of the system we
are considering, and that can tell in which phase a particular portion of the
system resides. A quantity with these properties is called an order parame-
ter. For example, in liquid 4He a phase transition to a superfluid state can
occur at very low temperatures (of the order of 2 K). In the low-temperature
phase the helium atoms form a Bose Einstein condensate which can be de-
scribed by a coherent, macroscopic ‘wave function’ Ψ(r) = ηeiφ(r), where η2

is related to the density of the superfluid. (It is different from an ordinary
Schrödinger wave function since the superposition principle is not valid.) At
high temperature the motion of the atoms is random, so that η = 0. At lower
temperatures, below the critical temperature Tc, the condensate develops,
and η 
= 0.

To describe the dynamics of this simple system, we choose Ψ(r) as the
order parameter, and notice that since Ψ has the expectation value zero in
the high-temperature phase and non-zero below the critical temperature, the
effective Hamiltonian near Tc should be very similar to that of the Higgs field
that we encountered in Section 6.6. Ψ is a complex field, and we want the
system to be described by a real-valued, globally U(1)-invariant Hamiltonian
(U(1) being the group of multiplications of complex numbers eiα on the unit
circle which we encountered in Section 6.6, Ψ → eiαΨ). In other words, the
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free energy of the system should not depend on the overall phase of the wave
function. The simplest possible terms are then uniquely given by

Heff = |∇Ψ|2 + b(T )|Ψ|2 + c(T )|Ψ|4 (7.3)

As we saw in Section 6.7, spontaneous symmetry breaking occurs if the co-
efficient b of the second-order term is negative. Symmetry breaking at T=Tc

is thus guaranteed by the assumption

b(T ) = b′ · (T − Tc) (7.4)

with b′ > 0.
Above the phase transition temperature, the minimum of the effective

potential is achieved by |∇Ψ| = |Ψ| = 0, whereas below Tc it is given by
|∇Ψ| = 0, |Ψ|2 = v2, with v =

√−b/2c. Thus the state of lowest energy,
the vacuum state per definition, has both constant phase θ and magnitude
v. However, any value θ = const is as good as any other; the vacuum state is
not unique, in contrast to the unique vacuum state Ψ = 0 above the phase
transition.

Here we note a very important property of a system described by (7.3).
It has a correlation length ξ associated with it, which can be shown to vary
with temperature in accordance with the rule ξ(T ) = ξ0ε

−ν , where ν ∼ 0.5.
The significance of the correlation length is that the field is not correlated
for larger distances than ξ, so that when the system cools and the vacuum
expectation value of Ψ develops, regions separated by a distance larger than
ξ will obtain different values of θ. Loosely speaking, there is no way for one
corner of the system to know what is going on at another corner, if the two
are separated by more than a correlation length. Fig. 7.1 shows what can
happen in this case as the system cools and the regions of different phase
come close together. There can be a ‘clash’ of phases, or a defect, which can
be stable over long periods of time if the structure of the effective potential
has certain properties.

If we imagine that we have a region such as the one shown in Fig. 7.1,
and we compute the change of phase ∆θ of Ψ as we go one turn around the
point C in a closed loop, we find it to be an integer multiple of 2π (this is
required to obtain a single-valued Ψ). Thus, ∆θ = 2nπ with n an integer.
Let us say that we have one unit of winding number (that is, n = 1). If
we now gradually shrink the size of the loop, the winding number will not
change unless we cross a singularity of undefined phase. This is so because the
winding number can be written as a line integral of the gradient of the phase,
and is thus an analytic mapping of the phase field θ(r) onto the integers. A
continuous change of line contour cannot generate a discontinuous change of
the winding number unless a singularity is crossed. However, it must then be
possible to shrink the size of the loop to zero, without changing the winding
number. In this way, we have located a point in space where the phase has
to be undefined, and the only possibility is that v = 0 at this point and
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C

Fig. 7.1. The phase in each region is represented by the direction of the arrow.
A topological defect forms when there is a ‘clash’ of directions in neighbouring
regions, here most apparent at the point C.

therefore the phase is undefined. Thus, at this point the field sits in the
‘wrong’, symmetric, vacuum at Ψ = 0.

By the same kind of reasoning, we realise that there has to be a line-
like set of singular points, a topological string, because otherwise we could
continuously deform the loop to pass beside the singular point. U(1) strings
like these can only be closed or infinite (that is, in a real condensed matter
system, ending at a boundary). They are very stable, since the ‘unwrapping’
of the string would mean that the field has to coherently rearrange itself
on a macroscopic scale. The energetics of a string can be easily investigated
by dimensional arguments. Since the core of the string represents the wrong
vacuum with v = 0, having a large core increases the energy. On the other
hand, if the core is made smaller the gradients of the field become larger,
which also increases the energy (according to (7.3)), so it is not difficult to
understand that there is a core radius which minimizes the energy per unit
length.

When strings form during a continuous phase transition, one may expect a
density of the order of one string per coherence volume from this reordering
mechanism. One point may need clarification here. We have said that the
correlation length goes to infinity at the critical temperature Tc. Then the
strings would be separated by the infinitely large correlation length: that is,
formed at a negligible density! In fact this is not so, for several reasons. First,
for already formed strings to unwind, thermal energy is needed to overcome
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the potential barrier. When the temperature is below the so-called Ginzburg
temperature, defects are ‘frozen in’ and do not evolve further. Secondly, in
a real situation the cooling time past the transition may be shorter than
the dynamical time scale needed for the string network to rearrange itself
according to the new temperature (so there is a ‘freeze-out’ of the network
strings).

The formation of strings has been experimentally verified in superfluid
3He (the subject of the 1996 Nobel prize in physics) where the microscopic
description is more complicated (pairs of 3He atoms bind together similar
to Cooper pairs in superconductivity) but the effective Hamiltonian contains
a vacuum manifold with the same U(1) structure as discussed above. It is
reassuring that the experimental results verify the existence of string-like
defects and the formation mechanism we have just presented. This research
produces very interesting analogies between condensed matter physics and
cosmology.

7.3 Domain Walls, Strings and other Defects

The idea that the vacuum structure of the fundamental fields in nature de-
pends on temperature and maay therefore give rise to a series of phase transi-
tions in the evolution of the Universe has been very fruitful. Not only can one
obtain mechanisms for generating structure in the Universe – the absence of
certain types of topological defects also places constraints on the underlying
theory. Let us remind ourselves of the Lagrangian that we used before to
illustrate the Higgs mechanism in particle physics as well as the formation of
strings in condensed matter systems.

To make the discussion rather more general, let us introduce an arbitrary
number of real components of the field φ. Another way to express this is that
we have a whole set of real-valued fields φi(x), i = 1 . . . N which interact in
such a way that it is natural to group them all together in a column vector

φ =

⎛⎜⎜⎝
φ1(x)

.

.
φN (x)

⎞⎟⎟⎠
The O(N) model is defined as being invariant under orthogonal rotations

of the ‘coordinates’ φi(x), for fixed x. A simple way to guarantee this rotation
invariance (in ‘internal’, that is, field space) is to write the potential energy
density for the fields as functions of the ‘squared length’

|φ|2 = φT φ

V (φ) = −µ2φT φ +
λ

2
|φ|4 + const. (7.5)
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Here we only consider x-independent (global) transformations of the fields, so
for the kinetic term we just choose ∂µφT ∂µφ. The Lagrangian for our O(N)
model is thus

L(x) = ∂µφT ∂µφ + µ2φT φ − λ

2
(φT φ)2 + const (7.6)

The sign of µ, which we saw can be temperature-dependent, determines
whether the vacuum is trivial (φi = 0 for all i), or given by the manifold in
the space spanned by the φi (field space) defined by the equation

φT φ = v2

with

v2 =
µ2

λ

For the simplest case N = 1, the equation for the vacuum state (denoting
the only component φi by φ) is

φ2
vac = v2 (7.7)

which has the two solutions φvac = φ+ = v and φvac = φ− = −v. Suppose
now that after the phase transition, one region of the Universe went into the
state φ+ and a causally disconnected region into the state φ−. As the horizon
expanded with the Hubble expansion, the two regions would have met with
a ‘mismatch’ between the two values of φvac. A discontinuous change from
φ+ to φ− would require infinite energy (because the gradient part of the
energy density would diverge). It would also require (almost) infinite energy
to transform one state into the other (because of the energy barrier separating
the two states). Therefore the configuration of lowest energy will involve a
continuous change of the field from φ+ to φ− over a length scale δ. This
configuration is called a domain wall. Suppose we have a wall in the yz
plane. Then the equations of motion (6.4) for the Lagrangian (7.6) take the
form

∂2φ

∂x2
− λφ(φ2 − v2) = 0 (7.8)

with boundary conditions φ(x = −∞) = φ− = −v, φ(x = +∞) = φ+ = v.
This equation has the ‘kink’ solution

φkink = v tanh
(x

δ

)
(7.9)

with the width parameter δ given by

δ =

√
2

λv2
(7.10)

Since the field φ leaves the vacuum manifold in the region characterized
by δ, the surface energy density σ in such a domain wall is of the order of
λv4 (see (7.6) for φ = 0) times the width δ, thus σ ∼ √

λv3. A wall dividing
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the present Universe in half: that is, of area proportional to H−2
0 , would give

a contribution to Ω of around 1013 for v ∼ 1 TeV! This is, of course, in gross
violation of observational bounds Ω ∼ 1, which puts constraints on models
of, for example, supersymmetry breaking at these mass scales. One cannot
allow models where the scalar fields have a potential corresponding to (7.6)
with N = 1.

For N = 2, the situation is a little more interesting. As we noted in Sec-
tion 6.6, two scalar fields coupled in this way can be equally described as
one complex field. Since electromagnetism involves this type of complex field
(with somewhat different, local, that is, space-time dependent U(1) transfor-
mations), it can be expected to appear generically when gauge symmetries are
broken. This is of course the model we have already encountered in Section
7.2.1, which we saw allows string solutions.

The equation for the vacuum manifold when N = 2 is

φ2
1 + φ2

2 = v2 (7.11)

which defines a circle in the (φ1, φ2) field space. When one turn around this
circle in field space is performed as one goes around a closed loop in real
space, a string is present. The mass density of such a string is not at all
catastrophically large (especially not for local U(1) strings – gauge strings).
The mass density µ per unit length of string is of the order of

√
λv2, which

is large enough to seed structure in the Universe but small enough not to
violate bounds on the total energy density. For v ∼ EGUT ∼ 1015 GeV, this
means a mass density of 1016 kg/cm.

Strings have very interesting gravitational properties. The Einstein equa-
tion for a straight infinite string in the z direction with energy momentum
tensor

Tµν = µδ(x)δ(y)

⎛⎜⎜⎝
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

⎞⎟⎟⎠ (7.12)

can be solved, and gives the metric (in cylindrical coordinates (ρ, φ, z))

ds2 = dt2 − dz2 − dρ2 − (1 − 4Gµ)2ρ2dφ2 (7.13)

By making the variable substitution φ → (1 − 4Gµ)φ this becomes the
Minkowski metric, but with the angle φ only running from 0 to 2π(1− 4Gµ).
This is called a conical space, and leads to various interesting effects such
as double images of quasars behind a string, fluctuations in the microwave
background, and a compression of matter where a moving string is passing.

N = 3 can be shown to correspond to monopole defects, which we said are
more or less excluded because of their large energy density. N = 4 and higher
gives a vacuum manifold that has a non-trivial structure, but no stable defects
are formed. (The ‘knots’ that can appear, have the possibility of unwinding
because of the extra internal field dimensions.) However, even these unstable
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textures can have cosmologically interesting effects on, for example, structure
formation, and will be searched for in the next generation of cosmic microwave
background experiments.

7.4 Summary

• The Universe may have gone through a series of phase transitions.
• The Landau description of phase transitions utilizes an order pa-

rameter with an effective Hamiltonian similar to that of the Higgs
field. The coefficients are temperature-dependent, which can ex-
plain the occurrence of different phases.

• Cosmic strings and textures are defects associated with a non-
trivial vacuum manifold of some set of scalar fields. They may play
a role for structure formation in the Universe. Domain walls and
monopoles generally contribute too highly to the energy density
of the Universe, and are thus excluded (or diluted to negligible
density by inflation).
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8.1 Introduction

We shall now explore the consequences of the Hot Big Bang model based
on the FLRW metric according to which the Universe started out from a
much hotter and more compressed state than that which we observe today.
In particular, we shall see how we can follow the evolution of the number
densities of different kinds of particles and radiation throughout the history
of the early Universe. This will enable us to derive certain predictions for the
abundance of various light elements, photons and neutrinos that should be
present in the Universe we observe today. The agreement of the calculations
with observations of the concentrations of helium, deuterium and lithium is
one of the cornerstones of the Big Bang scenario.

We shall again choose units in such a way that the equations become as
simple as possible. In particular, as usual we set

c = h̄ = 1 (8.1)

meaning, as we saw in Section 2.4.1, that all quantities with dimension can
be expressed in terms of mass energy, eV (or, more often, MeV or GeV).
To obtain results expressed in the usual SI units one then has to reinsert
appropriate powers of h̄ and c in the final expressions. Which powers of
h̄ and c to use can, for example, be determined by dimensional analysis
(Section 2.4.2).

For instance, to write Newton’s gravitational constant in terms of the
Planck mass, we first look at the SI value

G = 6.673 · 10−11 m3kg−1s−2 (8.2)

We then try to write this as a product h̄αcβmγ
Pl, where the constants α, β

and γ can be determined by demanding that this combination has the same
dimension as the expression for G. (Problem 8.1.) This then defines a mass,
the Planck mass, such that

G =
h̄c

m2
Pl

(8.3)

with the numerical value
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mPl =

√
h̄c

G
= 1.221 · 1019 GeV/c2 (8.4)

or, again within the convention of putting c = 1,

mPl = 1.221 · 1019 GeV (8.5)

This is a huge mass scale (we saw in section 6.2 that the heaviest ele-
mentary particle found today, the t quark, has a mass of ‘only’ 175 GeV).
When we discuss thermodynamics in the early Universe, it is also convenient
to measure temperature in units of energy or mass, which means that we set
the Boltzmann constant kB = 1 (a useful conversion factor is then 1 MeV =
1.1605 · 1010 K).

We consider only the Friedmann-Lemâıtre-Robertson-Walker metric, from
which the Friedmann equation (4.16) followed from the time-time component
of the Einstein equation:

H2(t) +
k

a2
=

8πGρ

3
(8.6)

where, as usual, the Hubble parameter is H = H(t) = ȧ(t)/a(t), with
H(now) ≡ H0 = h · 100 km s−1 Mpc−1, and where according to present
observational data h ∼ 0.7 ± 0.1.

As we saw in Section 4.5, there can be various different contributions
to Ω = ρ

ρcrit
, such as radiation ΩR, matter ΩM and vacuum energy ΩΛ. In

this chapter we shall, however, keep the curvature term (proportional to k
in (8.6)) explicit and not introduce ΩK as was done in Section 4.5. When
treating the earliest Universe, the curvature turns out to be less important,
as shown below. The equations of motion for the matter in the Universe are
given by the vanishing of the covariant divergence of the energy-momentum
tensor

Tαβ
;β = 0 (8.7)

This gave, for the FLRW metric, (see (4.21))

d

dt
(ρa3) = −p

d

dt
a3 (8.8)

which shows that the change of energy in a comoving volume element is equal
to minus the pressure times the change in volume. (We also saw in Section
4.2 that this can be rewritten as

a3 dp

dt
=

d

dt
[a3(ρ + p)] (8.9)

which we shall see can be interpreted as a conservation law for the entropy in
a volume a3(T ).) For radiation, where p = ρ/3, (8.8) gives ρ ∼ a−4. Note that
all particle species which are light enough such that their average thermal
kinetic energies at a certain temperature are larger than the rest mass have
the equation of state of radiation.
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For matter domination, where p = 0, ρ ∼ a−3. In either case, we see
that in the early Universe (that is, for small a) the curvature term ∼ k/a2

was much less important than the energy density term ∼ ρ. Of course, the
cosmological constant which today gives a contribution of at most ρ0

crit, was
completely negligible then (except in a hypothetical early period of inflation
when the value of Λ must have been huge (see Chapter 10)).

The Friedmann equation for the early Universe is thus simplified to

H2(t) =
8πGρ

3
(8.10)

where as a good approximation only the relativistic species contribute appre-
ciably to ρ. (We shall make this more quantitative in the following section.)
Note that the Hubble parameter H(t) has units of 1/(time). This means in
our units that it has dimensions of mass (see Problem 2.10). In Section 4.5.1
we saw that at any time the age of the Universe is of the order of H−1, at
least when the scale factor increases as a power of t.

We now want to treat the thermodynamics of an expanding Universe. The
first question to ask is whether this is at all possible. A crucial point here is
the microscopic understanding of thermodynamics in terms of the statistical
mechanics of a large number of elementary particles or quanta. Generally,
thermodynamic equilibrium requires very frequent interactions between the
constituents of the system we are considering. If these interactions are fre-
quent enough then the description of the Universe as evolving through a
sequence of states of local thermal equilibrium is good; and we can use the
thermodynamical quantities, temperature T , pressure p, entropy density s,
and other quantities, at each time t to describe the state of the Universe.
If the Universe has constituents with number density n and typical relative
velocities v, and if they interact through scattering processes that have a
cross-section σ, the interaction rate per particle Γ is given by Γ = nσv. The
condition that the interactions maintain equilibrium is that the interaction
rate should be much larger than the expansion rate of the Universe:

Γ 	 H (8.11)

Typically, the number density of particles decreases faster with temperature
and therefore with time than does the Hubble parameter. This means that
at certain epochs some particles will leave thermodynamic equilibrium. Their
number density will then be ‘frozen’ at some particular value which then only
changes through the general dilution due to the expansion. As we shall see,
such ‘freeze-out’ of particles is a very important mechanism that can explain
much of the particle content of the Universe we observe today.

8.2 Equilibrium Thermodynamics

We work in the dilute, weakly interacting gas approximation, where the dis-
tribution function fi(p) for particle species of type i is given by
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fi(p) =
1

e
(Ei−µi)

T ± 1
(8.12)

where Ei =
√

p2 + m2
i is the energy, µi is the chemical potential and T

is the temperature (remember that we put kB = 1). The minus sign is for
particles that obey Bose Einstein statistics (bosons) and the plus sign is for
particles obeying the exclusion principle and therefore Fermi Dirac statis-
tics (fermions). It is usually assumed that the chemical potentials may be
neglected in the very early Universe (see [51] for a full discussion).

Another important quantity is the number gi of internal degrees of free-
dom of the particle, since each adds independently to the number and energy
densities, pressure, etc. In the previous chapter we enumerated the degrees of
freedom of the particles in the Standard Model. The photon has two polar-
ization states and therefore gγ = 2. The neutrinos only have one polarization
state, giving gν = 1, electrons and muons have ge,µ = 2 (and the same num-
bers for the antiparticles).

With these definitions, we can write for a species i its number density

ni =
gi

(2π)3

∫
fi(p)d3p (8.13)

its energy density

ρi =
gi

(2π)3

∫
Ei(p)fi(p)d3p (8.14)

and its pressure

pi =
gi

(2π)3

∫ |p|2
3Ei(p)

fi(p)d3p (8.15)

As the distribution functions only depend on |p|, we let d3p → p2dpdΩ,
(with p ≡ |p|) where the integral over dΩ just gives a factor 4π. By differ-
entiating the relation (see (2.45)) E2

i = p2 + m2
i , we obtain pdp = EidEi, so

that

d3p → 4π
√

E2 − m2
i EdE (8.16)

The resulting expressions for n(T ) and ρ(T ) are shown in Fig. 8.1 (a) and
(b). Note that for small T/m – that is, when the thermal motion of the
particles is non-relativistic – firstly there is no difference between bosons and
fermions, and secondly the densities decrease very rapidly (exponentially)
with decreasing temperature.

In the non-relativistic limit T/m  1 one can solve the integrals analyti-
cally, with the result (both for Fermi Dirac and Bose Einstein particles)

nNoRe = gi

(
mT

2π

) 3
2

e−
m
T (8.17)

ρNoRe = m · nNoRe (8.18)
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Fig. 8.1. The energy (a) and number density (b) for fermions and bosons, as a
function of T/m. The quantities have been normalized to the relativistic expressions

for bosons, nR(BE) = ζ(3)

π2 giT
3 and ρR(BE) = π2

30
giT

4, respectively.

pNoRe = T · nNoRe  ρNoRe (8.19)

Non-relativistically, 〈E〉 = m + 3T/2. (If we re-insert units, this is written
mc2 +3kBT/2. This produces the well-known result that apart from the rest
mass energy mc2, the average thermal energy of a point particle is 3kBT/2.)

In the ultra-relativistic approximation, T/m 	 1, the integrals can also
be performed with the results

ρRe =
gi

6π2

∫ ∞

0

E3dE

e
E
T ± 1

=

⎧⎨⎩
π2

30 giT
4, Bose Einstein

7
8

(
π2

30 giT
4

)
, Fermi Dirac,

(8.20)

nRe =

⎧⎨⎩
ζ(3)
π2 giT

3, Bose Einstein
3
4

(
ζ(3)
π2 giT

3

)
, Fermi Dirac,

(8.21)

where ζ(x) is the Riemann zeta function, ζ(3) = 1.20206... The average
energy for a relativistic particle is obtained by forming the ratio ρ/n, which
gives

〈E〉BE ∼ 2.70 · T (8.22)

and

〈E〉FD ∼ 3.15 · T (8.23)

For photons, with the mass mγ = 0, and gγ = 2, the expression for
ργ(T ) ∼ T 4 is the famous Stefan Boltzmann law for electromagnetic black-
body radiation.
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We now come to the problem of calculating the total contribution to the
energy and number density of all kinds of particles in the early Universe. Since
we have seen that the energy and number density of a non-relativistic species
is exponentially suppressed compared to a relativistic species, it is often a
good approximation at a given temperature to sum only over the relativistic
particles which are in equilibrium at that temperature. This means that the
energy density will be of the form of the Stefan Boltzmann law,

ρRe(T ) =
π2

30
geff(T )T 4 (8.24)

pRe(T ) =
1
3
ρRe(T ) =

π2

90
geff(T )T 4 (8.25)

where the effective degeneracy factor geff(T ) counts the total number of in-
ternal degrees of freedom (such as spin, colour, etc.) of the particles that are
relativistic and in thermal equilibrium at temperature T (that is, whose mass
mi  T ). The expression for geff(T ) also contains the factor 7/8 for fermions
that enters formula (8.20) for ρ(T ) (see (8.27) below).

It may be instructive to calculate geff(T ) for a temperature of, say, 1 TeV
when all the particles of the Standard Model were relativistic and in thermal
equilibrium. The total number of internal degrees of freedom of the fermions
is 90 and for the gauge and Higgs bosons 28, so the total expression for geff

is

geff(T = 1TeV) = 28 +
7
8
· 90 = 106.75 (8.26)

If it happens (as we shall see it does for neutrinos) that the interaction
rate becomes smaller than the expansion rate, then those particles will have
a lower temperature than the photons, but will still be relativistic (the neu-
trinos will be unaffected by heating that takes place for photons after the
neutrinos have decoupled). This can be handled by introducing a specific
temperature Ti for each kind of relativistic particle, which can be included
in the effective gi.

The total number of effective degrees of freedom geff is then

geff =
∑

i=bosons

gi

(
Ti

T

)4

+
7
8

∑
j=fermions

gj

(
Tj

T

)4

(8.27)

If we insert this expression into the Friedmann equation (8.10) we get for
the radiation-dominated epoch in the early Universe

H2 =
8πG

3
ρRe =

8πG

3
π2

30
geffT 4 = 2.76

geffT 4

m2
Pl

(8.28)

or

H = 1.66
√

geff
T 2

mPl
(8.29)



8.3 Entropy 153

This is one of the most important formulae of the physics of the early Uni-
verse.

From the relations between the scale factor a and the time t derived in
Section 4.2 we obtained (see (4.29))

a(t) ∼ √
t radiation domination (8.30)

that is, for the equation of state p = ρ/3. For matter domination, that is, for
p ∼ 0, one finds

a(t) ∼ t
2
3 matter domination. (8.31)

Thus, for radiation domination,

H = ȧ/a =
1
2t

radiation domination (8.32)

and the time temperature relation becomes

t = 0.30
mPl√
geffT 2

∼
(

1 MeV
T

)2

sec (8.33)

This is a convenient formula to memorize, valid during the important temper-
atures around 1 MeV, when most of nucleosynthesis and neutrino decoupling
occurred, as we shall see.

8.3 Entropy

We now have to determine which particles are in thermal equilibrium at a
given temperature, so that we can calculate geff(T ). It is useful to first go
through some basic thermodynamic relations. In particular, we will show
that in the case of thermal equilibrium the entropy within a volume a3(t) is
conserved.

The entropy S(V, T ) is introduced in one of the central equations of ther-
modynamics through the definition of its differential

dS(V, T ) =
1
T

[d(ρ(T )V ) + p(T )dV ] (8.34)

Identifying the coefficient functions multiplying dT and dV in this expression
with the general form of the differential

dS(V, T ) =
∂S(V, T )

∂V
dV +

∂S(V, T )
∂T

dT (8.35)

we find
∂S(V, T )

∂V
=

1
T

(ρ(T ) + p(T )) (8.36)

and
∂S(V, T )

∂T
=

V

T

dρ(T )
dT

(8.37)
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Equality of the mixed derivatives,

∂2S(V, T )
∂V ∂T

=
∂2S(V, T )

∂T∂V
(8.38)

then gives

∂

∂T

(
1
T

(ρ(T ) + p(T ))
)

=
∂

∂V

(
V

T

dρ(T )
dT

)
(8.39)

This can be simplified to

dp(T )
dT

=
1
T

(ρ(T ) + p(T )) (8.40)

which could alternatively have been derived (Problem 8.5) directly from equa-
tions (8.14) and (8.15). Inserting this into (8.34) gives

dS(V, T ) =
1
T

d[(ρ(T ) + p(T ))V ] − V

T 2
(ρ(T ) + p(T ))dT (8.41)

which can be integrated to show that the entropy S(V, T ) is, up to an inte-
gration constant, given by

S(V, T ) =
V

T
(ρ(T ) + p(T )) (8.42)

We now recall (8.9):

a3 dp(T )
dt

=
d

dt
[a3(ρ(T ) + p(T ))] (8.43)

which combined with (8.40) can be written

d

dt

(
a3

T
[ρ(T ) + p(T )]

)
= 0 (8.44)

Identifying the volume V with a3(t) and comparing with (8.42) we then
finally have the advertised law of conservation of entropy in the volume a3(t).
Sometimes it is more useful to work with the entropy density s(T ) rather than
the total entropy S(V, T ) within the volume V . The definition is thus:

s(T ) ≡ S(V, T )
V

=
ρ(T ) + p(T )

T
(8.45)

(This section has been rather formal. The important things to remember
are the expressions (8.42) for the entropy, (8.45) for the entropy density, and
the conservation equation (8.44).)

In the early Universe, both the energy density ρ and the pressure p were
dominated by relativistic particles with the equation of state p = ρ/3. Using
(8.45) and the relativistic expressions (8.24, 8.25) for the energy density and
the pressure, we find for the entropy density s

s =
2π2

45
gs
effT 3 (8.46)
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where gs
eff is defined in a similar way to geff :

gs
eff =

∑
i=bosons

gi

(
Ti

T

)3

+
7
8

∑
j=fermions

gj

(
Tj

T

)3

(8.47)

Since s and nγ both vary as T 3 there is a simple relationship between
them. With

nγ =
2ζ(3)
π2

T 3 (8.48)

one finds

s =
π4

45ζ(3)
gs
effnγ ∼ 1.8gs

effnγ (8.49)

We now turn to the question of the decoupling of neutrinos from the ther-
mal ‘bath’ in the early Universe. As previously mentioned, weakly interacting
particles like neutrinos decouple below some temperature Tdec when the rate
of interaction between particles is not fast enough to keep pace with the Hub-
ble expansion. The weak interactions are mediated by the W and Z particles
that are massive, mW ∼ 80 GeV and mZ ∼ 91 GeV. At temperatures much
smaller than 80–90 GeV the exchanged W and Z bosons are virtual so that
their propagators behave like 1/m2

W (see Section 6.10.1).
The cross-section for the weak interactions was found in Section 6.10.1

to be proportional to α2s/m4
W . For relativistic neutrinos (in the probably

excellent approximation that neutrinos are massless this is always the case,
since massless particles always have to move at the speed of light; in general,
the requirement is mν  T ) and for relativistic charged leptons a typical
process maintaining thermal equilibrium like νe + e+ → νµ + µ+ will have
the cross-section σweak ∼ α2T 2/m4

W . This is because s is given by the energy
squared of the reacting particles, and the average energy is proportional to
T . The interaction rate Γ = σ|v|n is thus, since |v| = c = 1 and n ∼ T 3

Γweak ∼ α2T 5

m4
W

(8.50)

This now has to be compared with the expansion rate H. As we saw in (8.29),
H ∼ T 2/mPl, so the ratio becomes

Γ

H
∼ α2mPlT

3

m4
W

(8.51)

Decoupling occurs when this ratio drops below unity, meaning

Tdec ∼
(

m4
W

α2mPl

) 1
3

∼ 4 MeV (8.52)

What happens after the neutrinos have decoupled? All neutrinos will move
as free particles following the general Hubble expansion. This means, just as
for photons, that their energies redshift by the factor a/adec. They will thus
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remain in a thermal (Fermi Dirac) distribution with an effective temperature
given by

Tν = Tdec
adec

a
∼ a−1 (8.53)

If we recall the conservation of entropy for particles in thermal equilibrium

gs
eff(aT )3 = const

we see that

T ∼ (gs
eff)−1/3

a−1

Thus, the neutrino distribution after decoupling will look as if it is still
in thermal equilibrium as long as gs

eff does not change. However, gs
eff will

change when the electrons and positrons become non-relativistic and anni-
hilate through e+e− → γγ. This happens at a temperature around 1 MeV,
since below that temperature the inverse process γγ → e+e− is no longer
kinematically possible (the rest mass of an electron positron pair is 1.02
MeV). We thus calculate the number of degrees of freedom before and after
e+e− annihilation. The neutrinos have already decoupled, so at temperatures
somewhat higher than 1 MeV the relativistic species in thermal equilibrium
are e+, e− and γ, which gives (gs

eff)before = 2 · 2 · 7/8 + 2 = 11/2 and below
1 MeV only the photons are in equilibrium giving (gs

eff)after = 2. Since the
total entropy for the equilibrium particles is conserved,(

gs
eff(aT )3

)
before

=
(
gs
eff(aT )3

)
after

(8.54)

meaning

(aT )T≤1 MeV =
(

11
4

) 1
3

(aT )T≥1 MeV ∼ 1.4 (aT )T≥1 MeV (8.55)

There is an entropy transfer from the decoupling e+e− particles to the pho-
tons, usually called reheating (although the temperature actually does not
rise, it only decreases less rapidly for the photons due to the entropy transfer).
The already decoupled neutrinos, on the other hand, do not benefit from this
reheating. They just follow the redshift relation (aTν)before = (aTν)after.
This can be interpreted as saying that the neutrino entropy is separately
conserved after decoupling. It means that there will be a difference in tem-
perature for neutrinos and photons after e+e− decoupling, namely

Tν =
(

4
11

) 1
3

Tγ (8.56)

Since the cosmic microwave background photons now have a temperature of
2.73 K, there should also exist a cosmic neutrino background having a Fermi
Dirac energy spectrum with a temperature of Tν = 1.95 K. As neutrinos of
such low energies interact extremely weakly with matter, it will be a tremen-
dous challenge for experimental physicists of the coming century to detect this
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cosmic neutrino background directly. Indirectly, neutrinos of non-zero mass
could leave an imprint on the large scale structure, in particular suppressing
structure on small scales.

What is the total entropy and radiation energy density today? It is given
by the contributions from the photons and the three species of neutrinos
(νe, νµ and ντ , assumed massless), thus

gtot
eff (today) = 2 +

7
8
· 2 · 3 ·

(
4
11

) 4
3

= 3.36 (8.57)

and

(gs
eff)tot (today) = 2 +

7
8
· 2 · 3 ·

(
4
11

)
= 3.91 (8.58)

In the case that neutrinos have mass (as we shall see in Chapter 14 is most
likely) they would most probably be nonrelativistic by now.

The total (current) radiation energy density in the form of photons is

ρRγ
=

π2

30
gtot
eff T 4 = 4.8 · 10−34 g/cm3 (8.59)

which corresponds to a contribution to Ω = ρ/ρcrit of

ΩRγ
h2 = 2.6 · 10−5 (8.60)

The number density of microwave background photons is

nγ =
2ζ(3)
π2

T 3 ∼ 410 cm−3 (8.61)

for T = T0 = 2.725 K. Despite contributing numerically a very small fraction
of Ω today, the CMBR at the time of its emission was much more important
dynamically. However, the most important use of the CMBR today is that it
essentially provides a ‘snapshot’ of the Universe at a redshift of around 1100.
In Section 11.2 we shall see how tiny differences of CMBR temperature in
various directions on the sky provides a clue as to how the first structures
formed in the Universe.

Could there be any other type of radiation present as a relic of the
early Universe? Yes, there are strong reasons to believe that gravitons, the
gauge particles of gravitation, exist. Since they are connected to gravity,
the mass scale for their interaction is the Planck mass, σgrav ∼ T 2/m4

Pl,
and Γgrav/H ∼ T 3/m3

Pl, so that the decoupling temperature was enormous,
Tdec ∼ mPl ∼ 1019 GeV. We saw before that the number of degrees of free-
dom of the Standard Model was very large (106.75) at high temperature. At
the Planck mass it was most probably much larger due to many additional
heavy particles connected with supersymmetry and Grand Unification. This
means that

Tgrav =
(

(gs
eff)now

(gs
eff)Planck

) 1
3

· T0 ≤
(

3.9
106.75

) 1
3

· 2.73 K = 0.9 K (8.62)
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The contribution to the present energy density is then, since ρ ∼ T 4, ρgrav ≤
0.012ργ .

After relativistic particles have decoupled, their contribution to the energy
density goes down as 1/a4 (since ρ ∼ T 4 and aT ∼ const). For non-relativistic
matter, however, the energy density is given by

ρmatter ≡ ρm = mNoRe · nNoRe (8.63)

and for a stable particle (such as a baryon) nNoRe ∼ 1/a3 ∼ T 3. Therefore,
eventually the Universe became matter dominated. When did that occur?
With ρM denoting the present matter density, the matter contribution to the
energy density is now written as

ρM = 1.9 · 10−29 ΩMh2 g/cm3 (8.64)

Then, for arbitrary times,

ρm = ρM

(
a0

a

)3

= ρM (1 + z)3 (8.65)

with the usual expression for the redshift factor 1 + z = a0/a. Similarly (ρR

being the present value of the radiation energy density ρr),

ρr = ρR

(
geff

gnow
eff

)
(1 + z)4 (8.66)

Equating (8.65) and (8.66) gives

(1 + zeq) ∼ ρM

ρR
= 2.3 · 104ΩMh2 (8.67)

Teq = T0(1 + zeq) = 5.5ΩMh2 eV (8.68)

and (see 4.79))

teq ∼ 2
3
H−1

0 Ω
−1/2
M (1 + zeq)−

3
2 ∼ 1.9 · 103/(ΩMh2)2 years (8.69)

As will be explained in the section on structure formation, the time of the
onset of matter domination is very important, since it was only then that
structures could begin to grow.

8.4 Summary

• In the earliest Universe, only relativistic particles were important
for the cosmic expansion rate. The contribution to the energy den-
sity by relativistic particles is

ρRe(T ) =
π2

30
geff(T )T 4

where
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geff =
∑

i=bosons

gi

(
Ti

T

)4

+
7
8

∑
j=fermions

gj

(
Tj

T

)4

Here the possibility of particles having different effective tempera-
tures has been taken into account.

• In the radiation-dominated epoch (the first few hundred thousand
years), the expansion rate is given by

H = 1.66
√

geff
T 2

mPl

and the relation between temperature and time around 1 MeV was

t = 0.30
mPl√
geffT 2

∼
(

1 MeV
T

)2

sec

• The total entropy S(V, T ) in a region of the Universe was conserved
during periods of thermal equilibrium,

dS

dt
=

d

dt

(
a3

T
[ρ(T ) + p(T )]

)
= 0

The entropy density is given by

s =
2π2

45
gs
effT 3

with

gs
eff =

∑
i=bosons

gi

(
Ti

T

)3

+
7
8

∑
j=fermions

gj

(
Tj

T

)3

• Neutrinos decoupled at a temperature around 4 MeV, but their dis-
tribution functions were still of the thermal form, only redshifted
with the cosmic expansion. However, they did not participate in the
reheating when electrons and positrons became non-relativistic.
The ‘cosmic neutrino background’ therefore after this epoch had a
temperature which is somewhat lower than that of the microwave
background,

Tν =
(

4
11

) 1
3

Tγ ∼ 0.71Tγ

• The contribution of the cosmic microwave background to the
present energy density of the Universe is just

ΩRγ
h2 = 2.5 · 10−5

and the number density is

nγ =
2ζ(3)
π2

T 3 ∼ 410 cm−3
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8.5 Problems

8.1 Perform the dimensional analysis leading to (8.3).

8.2 Use dimensional analysis to show that the energy density of a photon
gas has to be proportional to T 4 and the number density proportional to T 3.

8.3 Estimate roughly at what temperature strong interaction processes in-
volving quarks and gluons would leave thermal equilibrium if they were to
be unconfined and interacting with strength αs ∼ 0.3 at all temperatures.

8.4 Suppose one finds a theory for massless gravitons where they interact by
exchanging particles of mass mPl with electromagnetic interaction strength.
Would they be in thermal equilibrium at temperatures T < mPl?

8.5 Derive (8.40) directly from (8.14) and (8.15).

8.6 (a) What was the energy density in radiation (photons and neutrinos)
expressed in units of the critical density, at the time when the first quasars
formed, at z ∼ 5? Use h = 0.65.
(b) Suppose there now exists a homogeneous magnetic field B0 in the Uni-
verse. How strong (measured in Gauss) would it have to be, if the energy
density is the same as that in the cosmic microwave background? (Hint:
ρB = const · B2

0 ; you may have to refer to a book on electromagnetism to
find the constant in suitable units.)

8.7 Estimate the effective number of degrees of freedom geff in the Standard
Model in the early Universe when the temperature was 50 GeV.



9 Thermal Relics from the Big Bang

The Universe has gone through a sequence of important events, where traces
of its history, so called ‘relics’, have been left behind. In this chapter we
shall look at the mechanisms involved in the freeze-out of hypothetical non-
baryonic dark matter particles, that contribute 20 to 30 % of the matter in
the Universe today. We shall also go through the basic processes that con-
verted the neutrons and protons to light elements such as 4He and deuterium.
One of the most important epochs in the early Universe was when the Uni-
verse suddenly became transparent to optical photons. This happened when
neutral hydrogen and helium gas formed, since a neutral gas is transpar-
ent, as compared with an ionized plasma. The radiation which could start
to propagate freely at that time is still travelling through the Universe in all
directions, and is now redshifted to the microwave region. This is of course
the CMBR, which has been and will be an extremely important relic from a
few hundred thousand years after the Big Bang. In this chapter we shall also
study this process, leaving the details to Chapter 11.

9.1 Matter Antimatter Asymmetry

After the annihilation of electrons and positrons (that is, at temperatures
much lower than 1 MeV), the number of positrons in the Universe was ex-
tremely small since they became non-relativistic and their number density
was exponentially suppressed. However, there was an excess of electrons – just
enough to balance the electric charge of the protons. The exact origin of the
asymmetry between matter and antimatter in the Universe is still unknown.
However, in the modern theories of particle physics, several mechanisms exist
that may create such an asymmetry. The Russian physicist Andrei Sakharov
showed that to obtain a matter antimatter asymmetry in the Universe, even
from an initial state that was symmetric, three conditions are necessary:

• There have to exist CP violating processes. C is the charge conju-
gation operator and P is the parity operator. After the discovery
of P violation in the weak interactions (as we remember from Sec-
tion 6.2 only left-handed neutrinos seem to exist in nature), it was
realised that the transformation which takes one from a particle
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state to an antiparticle state is not only C, but the combined ac-
tion CP . (A CP transformation on a left-handed neutrino gives
a right-handed antineutrino, which also exists in nature.) If there
were to be no CP violation, particles and antiparticles would al-
ways interact in the same way, and an asymmetry could not arise.
In the Standard Model, CP violation exists because of interfer-
ence between the three families of quarks and leptons – only two
families would not be enough! In the K0-meson system, (a bound
state of a d quark and an s antiquark) CP violation was discov-
ered experimentally by Fitch and Cronin in the 1960s. Recently,
CP violating decay have also been found in mesons containing a b
quark.

• Baryon number violating processes. Since today there is an asym-
metry between baryons and antibaryons (that is, a net baryon
number NB − NB̄ > 0), some interactions must have taken place
that violated baryon number conservation. In Grand Unified Theo-
ries (GUT) aimed at unifying the weak, strong and electromagnetic
interactions there exist such interactions. A prediction, not yet ex-
perimentally verified, from these theories is that the proton should
also decay. However, the average lifetime of a proton has to be
longer than 1033 years to be consistent with present experimental
bounds (compared with the age of the Universe, 1010 years!). Also
in the minimal Standard Model there turns out to exist baryon
number violating processes. These are nonperturbative so-called
instanton processes found by G. ‘t Hooft. Today they are even
smaller than the GUT processes because of a large energy barrier
which makes quantum mechanical tunneling difficult, but in the
early Universe thermal energies could have helped pass the barrier.
This is at present an intensive field of theoretical research, and the
details have not yet been worked out. It seems that the CP viola-
tion present in the minimal Standard Model is not enough for the
mechanism to work, but it may be sufficient to introduce an extra
doublet of Higgs fields, as is required in supersymmetric theories.
In most of the models, the baryon asymmetry is exactly balanced
by a lepton asymmetry. In fact, in some of the most promising
models the primary source is lepton asymmetry, which then gives
the baryon asymmetry through decay.

• Deviation from strict thermal equilibrium. This is necessary, be-
cause CPT symmetry, believed to be exact in nature (T is the time
reversal operator) requires the masses of particles and antiparticles
to be the same, and the abundance of a particle species in thermal
equilibrium at a constant temperature depends only on the mass.
In the Big Bang model this is not a problem, since as we have seen
the steady decrease in temperature means that many species of
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particles successively leave thermal equilibrium. As we shall see,
the matter antimatter asymmetry need only be of order 10−10 to
explain observations.

9.2 Freeze-Out and Dark Matter

There are several important examples of freeze-out in the early Universe, for
instance at the synthesis of light elements one second to a few minutes after
the Big Bang, and the microwave photons from the surface of last scattering
several hundred thousand years later. Before we calculate these processes, it
is convenient to introduce a formalism which considers freeze-out in general:
that is, what happens when a particle species goes out of equilibrium. A
rigorous treatment has to be based on the Boltzmann transport equation in
an expanding background, but here we give a simplified treatment (see, for
example, the book by Kolb and Turner [26] for a more complete discussion).

We first consider a case of great interest for the dark matter problem.
Suppose that there exists some kind of unknown particle χ, with antiparti-
cle χ̄, that can annihilate each other and be pair created through processes
χ + χ̄ ↔ X + X̄, where X stands for any type of particle to which the χs
can annihilate.1 We further assume that the X particles have zero chemical
potential and that they are kept in thermal equilibrium with the photons and
the other light particles in the early Universe (the X particles can be quarks,
leptons etc.)

How will the number density nχ evolve with time (and therefore with
temperature)? It is clear that in exact thermal equilibrium the number of χ
particles in a comoving volume Nχ = a3nχ will be given by the equilibrium
value nEQ

χ (T ) (see (8.13)). (In exact thermal equilibrium the rate for the
process χ+ χ̄ ↔ X + X̄ is the same in both directions.) If the actual number
density nχ(T ) is larger than the equilibrium density the reaction will go
faster to the right: that is, the χ particles will annihilate faster than they
are created. The depletion rate of χ should be proportional to σχχ̄→XX̄ |v|n2

χ

(quadratic in the density, since it should be proportional to the product of
nχ and nχ̄, and these are equal). However, χ particles are also created by the
inverse process, with a rate proportional to (nEQ

χ )2. We have thus ‘derived’
the basic equation that governs the departure from equilibrium for the species
χ:

dnχ

dt
+ 3Hnχ = −〈σχχ̄→XX̄ |v|〉[n2

χ − (nEQ
χ )2] (9.1)

1 The supersymmetric neutralino is actually its own antiparticle (just as the pho-
ton is its own antiparticle). The formalism is very similar in this case. In par-
ticular, a neutralino can annihilate with another neutralino giving other, non-
supersymmetric particles in the final state.
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The left-hand side comes from 1
a3

d
dt [nχa3]; the term proportional to 3H just

expresses the dilution that automatically comes from the Hubble expansion.
The expression 〈σχχ̄→XX̄ |v|〉 stands for the thermally averaged cross-section
times velocity. This averaging is necessary, since the annihilating particles
have random thermal velocities and directions. Summing over all possible
annihilation channels gives

dnχ

dt
+ 3Hnχ = −〈σA|v|〉[n2

χ − (nEQ
χ )2] (9.2)

where σA is the total annihilation cross-section.
Using the time-temperature relation (8.33) (for radiation dominance)

t = 0.30
mPl

T 2√geff
(9.3)

this can be converted to an evolution equation for nχ as a function of tem-
perature. Introducing the dimensionless variable x = mχ/T , and normalizing
nχ to the entropy density:

Yχ =
nχ

s
(9.4)

gives after some intermediate steps (Problem 9.1)

dY

dx
= −mχmPlceff

x2

√
π

45
〈σA|v|〉(Y 2

χ − (Y EQ
χ )2) (9.5)

where

ceff =
gs
eff√
geff

(9.6)

or after some rearrangement

x

Y EQ
χ

dY

dx
= −ΓA

H

[(
Yχ

Y EQ
χ

)2

− 1
]

(9.7)

where ΓA = nEQ
χ 〈σA|v|〉. This equation can be solved numerically with the

boundary condition that for small x, Yχ ∼ Y EQ
χ (since at high temperature

the χ particles were in thermal equilibrium with the other particles). We see
from (9.7) that, as expected, the evolution is governed by the factor ΓA/H,
the interaction rate divided by the Hubble expansion rate.

The solutions to these equations have to be obtained numerically in the
general case to find the temperature Tf and therefore the value of xf of freeze-
out and the asymptotic value Yχ(∞) of the relic abundance of the species χ.
There are, however, some simple limiting cases. If the species χ is relativistic
at freeze-out (xf ≤ 3, say), then Y EQ

χ is not changing with time during the
period of freeze-out, and the resulting Yχ(∞) is just the equilibrium value at
freeze-out,

Yχ(∞) = Y EQ
χ (xf ) =

45ζ(3)
2π4

geff

gs
eff(xf )

(9.8)
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where geff = g for bosons and 3g/4 for fermions. A particle that was rela-
tivistic at freeze-out is called a hot relic. A typical example is the neutrino.
The present mass density of a hot relic with mass m is

Ωχh2 = 7.8 · 10−2 geff

gs
eff(xf )

(
mχ

1 eV

)
(9.9)

Note that today the motion of a particle with mass greater than the small
number T0 = 2.73 K = 2.4 ·10−4 eV is of course non-relativistic and therefore
the contribution to the energy density is dominated by its rest mass energy.
An ordinary neutrino has geff = 2 · 3/4 = 1.5 and decouples at a few MeV
(see (8.52)), when gs

eff = geff = 10.75. Demanding that the neutrinos do
not overclose the Universe (Ωνν̄h2 < 1; this can alternatively be stated as a
condition on the age of the Universe; see Section 4.5.1) produces a famous
condition on the neutrino mass (or, really, the sum of the masses of the three
different kinds of neutrino in nature):∑

i

mνi
< (94 eV) · ΩMh2 (9.10)

This analysis has been valid for hot relics, or hot dark matter. For cold
relics (particles that were non-relativistic at freeze-out) (9.7) has to be found
numerically. Solutions to this equation are shown in Fig. 9.1, for different
values of 〈σA|v|〉.

As can be seen, the value of xf (when Yχ leaves the equilibrium curve) is
lower for a smaller cross-section σA: that is, more weakly interacting parti-
cles decouple earlier. Since the equilibrium curve for a non-relativistic species
drops fast with increasing x, this means that the more weakly coupled parti-
cles will have a higher relic abundance.

Going through the numerical analysis one finds that a hypothetical neu-
trino with mass mν ∼ 3 GeV would also have about the right mass to close
the Universe. On the other hand, the range between 90 eV and 3 GeV is
cosmologically disallowed for a stable neutrino. There are arguments from
large-scale structure formation that favour cold relics over hot relics, so such
a neutrino would be a good dark matter candidate. Data from the LEP ac-
celerator at CERN have, however, excluded any ordinary neutrino with a
mass in the GeV range.

So, what could the dark matter be? It turns out that in particle physics,
there are hypothetical particles, like supersymmetric partners of ordinary
particles discussed in Section 6.9.1, that have the right interaction strength
and mass range to be promising dark matter candidates. In particular, the
neutralino (6.14), has all the properties of a good dark matter candidate.
Since it is electrically neutral it does not emit or absorb radiation which
makes it ‘dark’ (invisible matter is thus a better term than dark matter).
The couplings of neutralinos are generally of weak interaction strength, but
the large number of possible annihilation channels, which depends on the
unknown supersymmetry breaking parameters, makes an exact prediction of
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Fig. 9.1. The freeze-out of a massive particle. At a certain value xf = mχ/Tf the
number density Y (normalized to the entropy density s, and in the figure arbitrarily
normalized to the value at x = 1) leaves the equilibrium abundance curve Yeq (the
solid line) and gives an actual abundance Yreal shown by the dashed lines. As can be
seen, a higher annihilation rate σv means a smaller relic abundance, since the actual
curve tracks the equilibrium curve to smaller temperatures. For weakly interacting
massive particles, xf is of the order of 20. Adapted from [26].

mass and relic abundance uncertain. Scans of parameter space show, however,
that a neutralino in the mass range between 30 GeV and a few TeV could
give a relic density close to the critical density. This is currently an active
area of research, and there are several experiments being conducted around
the world to try to detect supersymmetric dark matter, if it exists.

Another candidate for the dark matter is provided by the axion, a hypo-
thetical light boson which was introduced for theoretical reasons to explain
the absence of CP violation in the strong interactions (as far as we know,
CP violations only take place in the weak interactions). It turns out that for
a mass range between 10−6 and 10−3 eV, the axion could make a sizeable
contribution to ΩM . It couples very weakly to ordinary matter, but it may
be converted into a photon in a cavity containing a strong magnetic field (the
basic coupling is to two photons, but here the magnetic field takes the role of
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one photon). Experiments in the USA and Japan are currently probing parts
of the interesting mass region.

9.3 Nucleosynthesis

One of the cornerstones of Big Bang cosmology is the observational fact that
the mass fraction of 4He is about 24 per cent, whereas hydrogen makes up
the remaining part of nuclei except for very small abundances of 3He, 2H
(deuterium, D), and 7Li. Heavier elements, which are common in our imme-
diate surroundings, only make up a small fraction of the baryonic matter in
the Universe as a whole. The generally accepted picture is that all elements
heavier than 7Li have been produced in the interior of stars or in other as-
trophysical processes (supernova explosions, spallation by cosmic rays, etc.).
Evidence for this general picture comes from many places. Firstly, the amount
of heavy elements is consistent with estimates based on known star-formation
rates and inferred star-formation history. Secondly, the large amount of he-
lium is impossible to explain by such stellar processing (see Example 1.2.1).
Recent observations (for example, from the Hubble Space Telescope) of ‘un-
processed’ gas in the form of clouds at high redshift, show abundances of
helium and deuterium that agree with Big Bang nucleosynthesis predictions.
Similarly, when looking at old, metal-poor stars one finds the abundance of
4He and 7Li to reach ‘plateaux’: that is, values which are independent of the
abundance of heavy elements. The idea is that stellar production of 4He and
7Li inevitably also leads to production of heavier elements such as oxygen.
(The jargon is such that anything heavier than helium is called a ‘metal’, and
the abundance of such elements is called ‘metallicity’). If lithium were only
synthesized in stars, one would thus expect its abundance to decrease with
the metallicity of the observed stars. The only natural interpretation of the
observed plateaus is that they represent the primordial abundances of these
elements.

Big Bang nucleosynthesis is a mature field which has been treated very
carefully using numerical methods which enable one to follow the number
density of various nuclei with time during the first few seconds after the
Big Bang when the light elements were synthesized. A very important and
non-trivial test is provided by the agreement between calculations and obser-
vations for all the four elements 4He, 3He, D and 7Li. This agreement works
for a small range of the baryon-to-photon ratio ηB. Since the number density
of photons is dominated and experimentally fixed by the cosmic microwave
background radiation (CMBR), the upper limit of ηB from nucleosynthesis
gives the maximum allowed contribution ΩB (in fact, ΩBh2) to the total en-
ergy density of the Universe. Since this appears to be smaller than dynamical
estimates of the total mass density of, for example, galaxy clusters, it gives
an indication that dark matter may be needed. (The computation of the dark
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matter density for some hypothetical particles will be carried out in the next
section.)

We shall not go into the details of nucleosynthesis here – the equations are
non-linear and can in practice only be solved numerically. It is, however, not
so difficult to give a schematic outline of how the most important abundance,
that of 4He, can be estimated.

At the earliest times, (t  1 s) neutrinos, electrons and positrons were
still in equilibrium through weak interactions such as

n ↔ p + e− + ν̄e

νe + n ↔ p + e−

e+ + n ↔ p + ν̄e (9.11)

These reactions are all governed by the weak interaction, and correspond
to typical cross-sections of order σweak = α2s/m4

W . When the temperature
of the Universe was much larger than the mass difference between the proton
and the neutron, ∆m ≡ mn−mp = 1.29 MeV, the reactions went equally fast
in both directions, and there were equally many neutrons and protons. When
the temperature decreased towards 1 MeV, the suppression of the number
density of neutrons because of their higher mass started to become important.
Since protons and neutrons were non-relativistic at these temperatures (T ∼
1 MeV  mn, mp ∼ 940 MeV) we can use (8.17) to compute the ratio:

nn

np
= e−∆m/T = e−(1.29 MeV)/T (9.12)

(since the number of helicity states gp = gn = 2). This shows that at high
temperature the ratio is close to unity. If equilibrium were to be maintained,
the ratio would decrease to a very small value at low temperature. How-
ever, we know from the recombination calculation that what determines the
abundance is often the ‘freeze-out’ of the abundance due to the fact that the
reaction rate such as

Γ (νe + n ↔ p + e−) ∼ 2.1
(

T

1 MeV

)5

sec−1 (9.13)

falls below the expansion rate when T < 0.8 MeV. Therefore, neutrons are
not destroyed (or created) by the two last reactions in (9.11), but may still
be destroyed by neutron decay (the first reaction in (9.11)). However, this
is governed by the same process that causes a free neutron to decay, and
its average lifetime is measured in laboratory experiments to be rather long
(around 890 seconds). The neutron abundance is therefore ‘frozen in’ at the
value around the temperature of 0.8 MeV, which gives

nn

np
∼ e−1.29/0.8 ∼ 0.2 (9.14)

Before having time to decay, most neutrons will end up in helium nuclei
through either of the two chains
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p + n ↔ d + γ

d + d ↔ 3He + n
3He + d ↔ 4He + p (9.15)

or

d + d ↔ 3H + p
3H + d ↔ 4He + n (9.16)

The ratio of the rate for p + n ↔ d + γ to the expansion rate is given by

Γpn

H
∼ 2 · 103

(
T

0.1 MeV

)5
np

np + nn
ΩBh2 (9.17)

which is a large ratio for T 	 0.1 MeV. Since the number density of pho-
tons was so high, photodisintegration of deuterium was very efficient, and the
deuterium abundance was held below 10−10 during equilibrium. This caused
the d+d reactions to go very slowly (the rate was proportional to the square
of the small deuterium abundance), so that not much helium was produced
for T > 0.1 MeV. Below this temperature, photodisintegration became inef-
ficient, and the deuterium abundance rose to ∼ 10−5 − 10−3, which led to
rapid d + d fusion of helium. This consumed most of the neutrons, so a good
estimate of the 4He abundance is given by

Y (4He) ≡ 4nHe

ntot
=

4(nn/2)
nn + np

=
2nn/np

1 + nn/np
(9.18)

The ratio nn/np was found to be around 0.2 at T ∼ 0.8 MeV. After that
time, some neutrons decay, so the ratio at the end of nucleosynthesis (T ∼
0.01 MeV) was around 0.13. This gives an abundance of around Y (4He) ∼
0.24, which also emerges after a full calculation. This is precisely the value
that measurements of the helium abundance in stars and metal-poor gas
clouds give within measurement uncertainties.

The agreement between calculations and observations of the helium abun-
dance, besides being a strong piece of evidence in favour of the Big Bang
model, can also be used to constrain the laws of physics that were valid dur-
ing this early epoch of the Universe. An important effect for the value of
Y (4He) was the depletion of the neutron-to-proton ratio due to neutron de-
cay. If the expansion of the Universe was faster than the standard analysis
gives, fewer neutrons would have had time to decay before being ‘saved’ into
the stable existence inside helium nuclei, and the helium abundance would
have increased. Since according to the Friedmann equation the expansion
rate H2 ∝ ρ, and ρ is dominated by relativistic species, additional neutrinos
(besides the three of the Standard Model) would speed up the expansion to
make the helium abundance higher than allowed by observations. This fact
was used before the LEP accelerator at CERN (near Geneva) went into op-
eration to limit the number of neutrinos to less than or equal to four. (LEP
subsequently determined the number to be Nν = 3.)
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Some traces of 3He and D also remain (being frozen out when the reactions
in (9.15) and (9.16) dropped out of equilibrium), at the level of 10−5 − 10−4.
Recently, the deuterium abundance has been in focus thanks to new mea-
surements by D. Tytler and collaborators. With the Keck Telescopes and the
Hubble Space Telescope, absorption lines corresponding to deuterium have
been detected at high redshift. The light from distant quasars occasionally
passes through intervening clouds. If these are also at high redshift, the ma-
terial in the clouds should closely reflect the primordial abundance. (At least
one obtains a good lower bound on the abundance, since deuterium is very
fragile and can, as far as is known, only be destroyed, not produced, in stel-
lar processes.) Deuterium is a very sensitive probe of the baryon-to-photon
ratio, since the curve is very steep as a function of ηB, and therefore to ΩBh2

(see Fig. 9.2). The current measurements indicate a quite high value of ηB ,
corresponding to

ΩBh2 ∼ 0.02 (9.19)

This is still far from what is needed to explain the observations of the total
matter density, however.

An abundance of the order of 10−10−10−9 of 7Li is also predicted through
the reactions

4He + 3H ↔ 7Li + γ
4He + 3He ↔ 7Be + γ

7Be + n ↔ 7Li + p (9.20)

Heavier elements are produced in truly negligible quantities, since there
are no stable elements with A = 5 and A = 8 that could serve as inter-
mediate steps. (Also, for nuclei with more than three protons, the Coulomb
repulsion is too strong to be overcome by the thermal energies at the time of
nucleosynthesis.)

9.4 Photon Recombination and Decoupling

9.4.1 Ionization Fraction – the Saha Equation

Nucleosynthesis took place during the first few minutes after the Big Bang, at
temperatures between 1 MeV and 0.01 MeV. We now look at what happened
long after that, when the temperature had fallen to the eV scale. To a good
approximation we may, incorporating the asymmetry between matter and
antimatter, set ne+ = 0, np̄ = 0 and ne− = np. The electrons and the
photons were thermally coupled to each other until their interaction rate fell
below the expansion rate of the Universe.

The basic mechanism for scattering low-energy (Eγ  me) photons on
electrons is Thomson scattering γ + e− → γ + e−, which according to the
estimate (6.27) has a cross-section of



9.4 Photon Recombination and Decoupling 171

Cr
itic

al 
de

ns
ity 

for
h  

= 0
.65

ΩB h
210.10.010.001

Ab
un

da
nc

e 
by

 m
as

s f
ra

cti
on

Fig. 9.2. The Big Bang nucleosynthesis predictions for the abundances of the light
elements, as a function of the quantity ΩBh2, which is the baryonic contribution to
the present matter density. The vertical band indicates where the primordial deu-
terium abundance measurements lie. The observed helium and lithium abundances
are in accordance with this range, given the measurement uncertainties. See [44]
for further details.

σT =
α2

m2
e

(9.21)

The total interaction rate per photon is then (since v = c = 1 for photons)

Γγ = neσT (9.22)

and when Γγ/H < 1 the photons decouple. This takes place at a temperature
somewhere between 1 and 10 eV.

When we try to calculate ne as a function of temperature a new feature
appears. Electrons may ‘disappear’ by combining with protons to give atoms
of neutral hydrogen plus photons. The hydrogen thus formed could then
be reionized by photons. We thus have to consider reactions of the type
p + e− ↔ H + γ in the primordial plasma. This means that the chemical
potentials fulfil

µp + µe = µH (9.23)
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in equilibrium (photons have zero chemical potential). Since the baryons (pro-
tons) can either be free or bound as hydrogen, we introduce the total baryon
density nB

nB = np + nH (9.24)

Charge neutrality also implies that

np = ne (9.25)

Since we are interested in processes that appear at temperatures of at most
10 eV (compare the binding energy of the ground state of hydrogen B1 = 13.6
eV) e, p, and H are all non-relativistic to a very good approximation. We can
therefore use (8.17) in the integrals defining ni to find, in the non-relativistic
limit,

ni = gi

(
miT

2π

) 3
2

e
µi−mi

T (9.26)

for i = e, p,H. Using (9.23) and the relation mH = me + mp − B which
defines the binding energy B, we can solve for nH to find

nH =
gH

gegp
nenp

(
mempT

2πmH

)− 3
2

e
B
T (9.27)

This can be simplified further by noting that ne = np and to a good approx-
imation mp/mH = 1. Defining the ionization fraction Xe as

Xe ≡ np

nB
=

np

np + nH
(9.28)

and the baryon to photon ratio ηB

ηB ≡ nB

nγ
(9.29)

one obtains (Problem 9.5)

1 − Xe

X2
e

=
4
√

2ζ(3)√
π

ηB

(
T

me

) 3
2

eB/T (9.30)

This is the so-called Saha equation for the fractional ionization at equilibrium.
It can be solved to express Xe as a function of T and therefore as a function
of redshift z (since T = 2.73(1 + z) K). The baryon-to-photon ratio ηB is
related to the baryon contribution ΩB to the density of the Universe by (see
(8.59) and (8.64))

ηB ≡ nB

nγ
= 2.7 · 10−8ΩBh2 (9.31)

We shall see that Big Bang nucleosynthesis (the synthesis of the light nuclei
helium, deuterium and lithium) constrains ηB to be in the interval (5 − 6) ·
10−10, corresponding to ΩBh2 ∼ 0.02.
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As shown in Fig. 9.3, the ionization fraction drops below 10 per cent at
a redshift somewhere in the range 1200 - 1300. The process when the elec-
trons are captured by the protons to form a hydrogen bound state is called
recombination.

We have just shown that the redshift zrec of the recombination is

zrec ∼ 1300 (9.32)
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Fig. 9.3. The equilibrium fractional ionization as a function of redshift z, for a
value of ΩBh2 = 0.02.

This corresponds to a temperature at recombination of

Trec = T0(1 + zrec) ∼ 2.7 · 1300 K = 3500 K ∼ 0.3 eV (9.33)

and a time at recombination of (see (8.69))

trec =
2
3
H−1

0 (1 + zrec)−
3
2 ∼ 1.4 · 105/h years (9.34)

(If ΩM 
= 1, the right-hand side should be divided by
√

ΩM .)
Naively, one would expect that recombination occurs around T = 13 eV,

since this corresponds to the binding energy of hydrogen. However, the Bose
Einstein distribution of photons produces a long tail of energies higher than
T . Since there are so many photons compared to the number of baryons (see
equation (9.31) which is one of the most remarkable numbers in cosmology)
they were efficient in ionizing hydrogen down to a temperature of 0.3 eV.
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Our treatment has been based on the Saha equation, which is valid for
processes that are in thermal equilibrium. Thus, we have to demand that the
rate for the process p + e− ↔ H + γ is faster than the Hubble expansion
rate. We shall soon see that this is the case down to redshifts around 1100.
After that, equilibrium could not be maintained and the ionization fraction
was frozen at the value it had around z = 1100. Also, the number density of
photons per comoving volume was fixed, and it is the redshifted population of
photons from this epoch that we can observe today as the cosmic microwave
background radiation.

The residual ionization determines the mean free path of photons after
recombination (since the dominant mechanism is Thomson scattering), and
one can calculate that the mean free path becomes larger than the radius
of the observable Universe at redshifts less than around 1050. The region
around zdec ∼ 1100 is therefore sometimes referred to as the surface of last
scattering of the cosmic microwave background photons.

We can finally address the question of the photon decoupling: that is,
the ‘freeze-out’ of the ionization fraction. By comparing the formalism of
χ + χ̄ ↔ X + X̄ with e + p ↔ H + γ we can immediately write down the
simplified Boltzmann equation for ne:

ṅe + 3Hne = −〈σrec|v|〉[n2
e − (nEQ

e )2] (9.35)

with 〈σrec|v|〉 the thermally averaged recombination cross-section which can
be calculated to be

〈σrec|v|〉 = 4.7 · 10−24

(
1 eV
T

) 1
2

cm2 (9.36)

The numerical analysis of solving (9.35) gives

Tf ∼ 0.25 eV (9.37)

and the residual ionization fraction

Xe(∞) ∼ 2.7 · 10−5(ΩBh)−1 (9.38)

It is quite plausible that this value increased when the first epoch of star-
formation occurred, due to the injection into the primordial gas of radiation
with high enough energy to re-ionize the gas.

Recombination is a very important process that took place a few hundred
thousand years after the Big Bang. The details of the recombination history
were worked out by Peebles [34]. The most important change from the very
simplified calculation given here involves a more realistic treatment of the
photon emission for electron capture. For instance, capture directly to the
ground state immediately causes emission of a very energetic photon that
directly can ionize another atom, leaving no net change. Also, capture to
a highly excited state causes Lyman series photons to be produced in the
allowed decays to the ground state, and these Lyman photons excite other
atoms to states where they are photoionized again.
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The production of atomic hydrogen rather occurs by two-photon decay
from the metastable 2s level to the ground state. The loss of Lyman-α reso-
nance photons by the cosmological redshift is also important, and has to be
included in a full analysis [34].

We have seen that there exist many interesting relics from the Big Bang
which appeared (froze out) at epochs with very different temperature, and
where the effective number of relativistic species geff varied by two orders
of magnitude. In Fig. 9.4 this number is shown as a function of time and
temperature, and three very important epochs are indicated (we shall treat
the cosmic microwave background in Chapter 11).

Nucleosynthesis
Cosmic
Microwave
Background

Freeze-out of

dark matter?

Fig. 9.4. The behaviour of the effective number of relativistic species geff com-
puted according to the Standard Model, as a function of time and temperature. The
three important epochs of the freeze-out of dark matter, synthesis of light elements,
and release of the cosmic microwave background, are indicated. The numbers at the
earliest epochs may be different, depending on the particle spectrum of the sector
that accounts for the dark matter.

9.5 Summary

• The matter antimatter asymmetry of the Universe is of order
10−10. Although the ingredients needed to generate such an asym-
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metry in the Universe exist in particle physics models, a detailed
understanding of its origin is still lacking.

• Any stable neutral particle with weak interactions should have
been produced in large quantities in the early Universe and would
make a non-negligible contribution to the matter density in the
Universe today, perhaps explaining the dark matter problem.

• Stable neutrinos in the mass range between 90 eV and 3 GeV are
excluded for cosmological reasons.

• Big Bang nucleosynthesis took place during the first few minutes
after the Big Bang. The observed abundances of helium, deuterium
and lithium agree well with the predictions of the Big Bang model.

• Photons decoupled from thermal equilibrium at a redshift around
1100. Since that time of last scattering they have been redshifted
by a corresponding factor and are observed today as the cosmic
microwave background, one of the cornerstones of the Big Bang
model.

9.6 Problems

9.1 Derive equation (9.7). (Hint: Use that ṅχ + 3Hnχ = sẎχ due to the
conservation of entropy, sa3 = const.)

9.2 Suppose there exists a very light stable fermion (g = 2) which only
had interactions with ordinary matter in the early Universe caused by the
exchange (with the same coupling strength as the ordinary W, Z bosons) of
a very heavy mediator (gauge boson) B, with mB ∼ 10 TeV.
(a) Estimate the decoupling temperature of the fermion.
(b) How heavy can the fermion maximally be not to overclose the Universe
(that is, we demand ΩMh2 < 1), if it was relativistic at freeze-out?

9.3 Assume that at T1 = 150 MeV the scale factor was a1 and the relativistic
particles in thermal equilibrium were µ+, µ−, e+, e−, neutrinos and photons.
At T2 = 10 MeV, the µ+ and µ− particles had all annihilated or decayed,
and the scale factor was a2. Compute a2/a1.

9.4 Estimate the change in 4He abundance that would be caused by a 10
per cent increase of the neutron proton mass difference.

9.5 Derive (9.30).
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10.1 Problems of the Standard Big Bang Model

As the historic measurements by the Cobe (Cosmic Background Explorer)
satellite, beginning in 1991, have shown, the Universe is extremely isotropic
on large scales (of the order of 1000 Mpc). The first anisotropy one sees
when analyzing the data is a dipole pattern – the microwave background
is somewhat colder than the average 2.73 K in one direction and warmer
by the same fraction (of order 10−3) in the diametrically opposite direction
– explained by our peculiar motion with respect to the cosmic rest frame.
Subtracting this dipole component, the temperature fluctuations that have
been measured by Cobe correspond to

∆T

T
∼ 2 · 10−5 at an angular scale of 10 degrees (10.1)

This is one of the motivations for using, as we have done, the Friedmann-
Lemâıtre-Robertson-Walker metric for the expanding Universe.

We have seen that local thermal equilibrium could be maintained as long
as the interaction rates were greater than the Hubble expansion rate. How-
ever, as discussed in Section 4.3.3, there are causal horizons which prevent
regions that are far apart from interacting with each other. For matter dom-
ination in a flat (k = 0) Universe, the horizon distance grows as dH(t) = 3t,
whereas for radiation domination dH(t) = 2t. Since a(t) ∼ t2/3 (matter dom-
ination) or a(t) ∼ t1/2 (radiation domination), we see that dH/a ∼ t1/3

or ∼ t1/2: that is, in the past a much smaller fraction of the Universe was
causally connected than it is today. (Note that as an estimate for both the
matter and radiation eras one may take horizon size to be the Hubble time
H−1(t) ∼ t.) How then is it possible that in well-separated regions in the sky
the temperature is equal to such a high accuracy?

We can make this problem more quantitative by introducing the total
entropy as a measure of the size of the causally connected region of the
Universe. During radiation domination,

s =
2π2

45
gs
effT 3 (10.2)

so that
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SaD
Hor ∼ 4π

3
d3

Hs ∼ 0.1
1√
gs
eff

(
mPl

T

)3

(10.3)

whereas during matter domination s = s0(1 + z)3 ∼ 3000(1 + z)3 cm−3 and

SMD
Hor ∼ 4π

3
d3

Hs ∼ 1088(1 + z)−
3
2 (10.4)

This means that at recombination the entropy within the horizon was about
1083, a factor of 105 smaller than the entropy of the observable Universe
today. It must be explained therefore, how 105 regions, which were causally
disconnected when the light was emitted, can have the same temperature
to such a high accuracy. This is sometimes called the horizon problem. The
angle subtended today by the horizon at photon decoupling is only around
0.8 degrees, which is thus the largest scale on which there should be causal
smoothing of the microwave background. Yet it is isotropic over all angular
scales.

Another problem is the mismatch between the smoothness on the largest
scales and the inhomogeneities observed on smaller scales, such as galaxies,
clusters of galaxies, superclusters and perhaps even larger structures. What
is the mechanism that can generate the seeds of the perturbations that evolve
into these structures?

Perhaps the most difficult problem for standard cosmology is that we
cannot determine whether the Universe is flat, open or closed although the
Universe is very old. That is, we know from observation that ΩT is, to be
generous, somewhere in range 0.2−2. If we remember that Ω varies with time,
this has striking consequences. We have already made use of the fact that
in the early Universe the curvature term ∼ k/a2 in the Friedmann equation
was less important than the energy density term 8πGρ/3. We can make this
more quantitative by writing approximately

Ωt(t) − 1 = δ(t) (10.5)

with

δ(t) =
k/a2

8πGρ/3
∼
{

a(t), matter domination
a2(t), radiation domination (10.6)

This shows that for early times (small a) Ωt must have been very close to
unity. For example, at the time of nucleosynthesis (around 1 sec), Ωt(1sec) =
1 ± 10−16, and in the earliest Universe at the Planck time t = 10−43 sec,
Ωt(10−43 sec) = 1 ± 10−60.

Another way to express this is that the Universe must have been extremely
flat at early times. Defining the physical radius of curvature of the Universe
by acurv = a(t)/

√|k| (this means that for a closed Universe it is just the
physical radius of the three-sphere), one can show (see Appendix A)

acurv =
1
H

√
k

Ωt − 1
, k 
= 0 (10.7)
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Note that although we have scaled the metric so that k = 0,+1,−1, the closed
and open models represent infinite classes of models, where one particular
representative is given by specifying the acurv at some given epoch.

From (10.7) and (10.6), we see that acurv must have been enormous com-
pared to the Hubble radius H−1:

acurv(1 sec) > 108 H−1 (10.8)

and

acurv(10−43 sec) > 1060 H−1 (10.9)

The difficulty in explaining this remarkable flatness of the early Universe
is sometimes called the flatness problem.

One should note that the horizon and flatness problems are not in con-
tradiction with the Big Bang model itself: it is just a problem of initial con-
ditions. Since the initial conditions for our observable Universe were set up
at an epoch where physics is unknown, it is not clear how serious these prob-
lems are. However, it would be attractive to have a physical mechanism that
gives such smooth initial conditions generically, without having to fine-tune
the parameters of the model. Inflation is such a mechanism.

Another problem that is rather more technical, but which is also solved
by inflation, is the so-called monopole problem. There are strong reasons to
believe (as G. ’t Hooft and A. Polyakov showed) that the grand unification
of forces in nature implies that superheavy magnetic monopoles should have
been produced at T ∼ 1015 GeV. Calculating their relic abundance one finds
that they would have overclosed the Universe by a large factor unless there
is some mechanism to dilute their number density. Inflation provides such a
dilution mechanism.

Finally, there exists another problem in cosmology that is related to infla-
tion but is not solved by it. This has to do with the extremely small value of
the cosmological constant. We go back to the full Friedmann equation (4.16),
showing explicitly the contribution of the cosmological constant Λ:(

ȧ

a

)2

=
8πGρ

3
− k

a2
+

Λ

3
(10.10)

and we see that the relevant comparison between the matter term ∼ ρ and
the cosmological constant (vacuum energy) term ∼ Λ is given by their ratio:

rΛ(T ) ≡ Λ

8πGρ(T )
(10.11)

From observation, we know that r0
Λ < 1, which means that at the Planck

epoch, rPlanck
Λ < 10−122, one of the smallest dimensionless numbers encoun-

tered in physics! The cosmological constant represents vacuum energy, and
since the energy scale for gravity is mPl one would expect Λ/8πG ∼ m4

Pl,
which is thus wrong by 122 orders of magnitude (see the discussion in Sec-
tion 4.7). The reason for the smallness of the cosmological constant is still
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unknown, and therefore it is customary to just assume that today it is zero
or very close to zero. However, at phase transitions (as in the Higgs mecha-
nism), vacuum energy may be released. So, if the vacuum energy is close to
zero today it may have been different from zero in the early Universe, before
the phase transition. This is what led A. Guth (1981) to consider what hap-
pens to a cosmological model during a phase transition when vacuum energy
is released.

10.2 The Inflation Mechanism

The Einstein equation including a cosmological constant reads

Rµν − 1
2
gµνR = 8πGTµν + Λgµν (10.12)

which shows that a cosmological term acts as a stress-energy tensor with the
unusual equation of state pvac = −ρvac. (We have noted before that one may
include vacuum energy in the term proportional to G, with ρΛ = Λ/(8πG).)
This means that the entropy density s ∼ ρ + p ∼ 0 – that is, when vacuum
energy dominates – we have a vanishing entropy.1 In a situation where a
constant vacuum energy dominates the expansion the Friedmann equation
(10.10) becomes very simple:

H2 =
(

ȧ

a

)2

=
Λ

3
(10.13)

or

H =
ȧ

a
=

√
Λ

3
= const (10.14)

with the solution

a ∼ eHt (10.15)

This is the meaning (also in economic theory!) of inflation: the expansion
rate is constant, leading to an exponential growth of the scale factor (which
in economics is the price of a given commodity).

In typical models for inflation, the phase transition of a scalar field (some-
times called the inflaton field) took place at temperatures around the Grand
Unification scale TGUT ∼ 1015 GeV, when the Hubble time H−1 ∼ 10−34

sec. Suppose that the Universe remained in the inflationary state for 10−32

sec. (This may appear to be a short time, but remember that the relevant

1 This can be understood from statistical mechanics. Entropy is related to the
total number of degrees of freedom, and the vacuum (at least if it is unique) is
just one state, that is only one degree of freedom. Of course, the entropy that
was in a patch before inflation will be there after inflation – but it will be diluted
by an exponential factor.
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timescale in cosmology is the Hubble time, so inflation then lasted for 100
Hubble times: that is, 100 times the age of the Universe at the time inflation
started.) After inflation stopped, the vacuum energy of the inflaton field was
transferred to ordinary particles, so a reheating of the Universe took place.
(During inflation itself, the Universe supercooled, since the entropy was con-
stant, and low, meaning aT was constant so that T ∼ e−Ht.) The reheating
temperature is of the order of the temperature of the phase transition, so
TRH ∼ 1015 GeV (if the inflaton is strongly enough coupled to ordinary
matter, as it is in successful models of inflation).

Consider a small region with radius around, say, 10−23 cm before inflation.
The entropy within that volume is only around 1014. After inflation, the
volume of the region has increased by a factor of (e100)3 = 1.9 ·10130, so after
the entropy generation provided by reheating, the total entropy within the
inflated region has grown to around 10144. The entropy is generated because
the equation of state changes from p = −ρ to p = ρ/3, which means that the
entropy density s ∼ p + ρ increases dramatically.

This huge entropy increase solves three of the four problems mentioned
above. The horizon problem is solved since our whole observable Universe
may have arisen from a very small volume that was in thermal contact before
inflation. The smooth region after inflation has more than enough entropy to
encompass our observable Universe many times over.

During inflation the energy density of the Universe is constant, whereas
the scale factor a increases exponentially. This means (see (10.6)) that Ωt

after inflation must have been exponentially close to unity, and the present
value Ωt(t0) ≡ ΩT = 1 to an accuracy of many decimal places. Inflation
thus solves the flatness problem. (Another way to see this is that all local
curvature of the original volume is smoothed out by the expansion.) Even if
ΩT = 1 is predicted to high accuracy, there is nothing a priori which tells us
the subdivision of ΩT into contributions from radiation, matter and vacuum
energy. As we have noted, however, the ‘natural’ contribution of ΩΛ is either
extremely small or extremely large. Only during very brief epochs can ΩΛ be
of similar magnitude as the matter contribution ΩM (see Section 4.3.2).

The monopole problem is also solved, since the number density of such
objects is diluted by a factor of the order of e300 by the inflation. The same
is true for cosmic strings and all other topological defects. (However, if there
were other phase transitions after the epoch of inflation, defects could have
been formed again.)

The period of inflation and reheating is strongly non-adiabatic, since there
is an enormous generation of entropy at reheating. After the end of inflation,
the Universe ‘restarts’ in an adiabatic phase with the standard conservation
of aT , and it is because the Universe automatically restarts from very spe-
cial initial conditions that the horizon, flatness and monopole problems are
avoided. This is schematically shown in Fig. 10.1.
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time
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Standard FLRW cosmology
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period of

reheating
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Fig. 10.1. The schematic evolution of a and T in inflationary cosmology. During
the inflation epoch, T decreases exponentially as the scale factor a increases expo-
nentially. At the end of inflation, an enormous amount of entropy is generated, and
the Universe starts out in a phase which is similar to ordinary FLRW cosmology
from then on.
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10.3 Models for Inflation

Inflation is a very attractive scenario, and there is even some observational
support for it (the pattern of fluctuations in the cosmic microwave back-
ground seem consistent with the predictions from inflation). However, it has
proven to be quite difficult to construct theoretical models which give the
right amount of inflation, and which end the inflationary epoch in the re-
quired way with huge entropy generation.

Remember (see (6.12)) that a Lagrangian density of the form

L =
1
2
∂µφ∂µφ − V (φ) (10.16)

gives a contribution to the energy-momentum tensor Tµν of the form

Tµν = ∂µφ∂νφ − Lgµν (10.17)

For a homogeneous state, the spatial gradient terms vanish, and Tµν

becomes that of the perfect fluid type2 with

ρ =
φ̇2

2
+ V (φ) (10.18)

and

p =
φ̇2

2
− V (φ) (10.19)

as can be seen by inserting (10.16) and (10.17) and comparing with (3.53).
The equations of motion of φ can be derived from the condition of van-

ishing covariant divergence of the energy-momentum tensor, Tµν
;ν = 0, which

gives (Problem 10.2)

φ̈ + 3Hφ̇ + V ′(φ) = 0 (10.20)

This is similar to the equation of motion of a ball in a potential well with ‘Hub-
ble friction’ ∼ 3Hφ̇, and can be solved by elementary methods. We assume
that at very high temperatures, φ = 0 gives the minimum of the potential,
but temperature-dependent terms in the effective potential generate another
minimum for φ = φvac 
= 0 (spontaneous symmetry breakdown). To produce
a long enough period of inflation and a rapid reheating after inflation, the
potential V (φ) has to look something like the one shown in Fig. 10.2.

In the beginning, on the almost horizontal slow ‘roll’ towards the deep
potential well, φ̈ can be neglected, and the slow-roll equation of motion

3Hφ̇ + V ′(φ) = 0, (10.21)

together with the Friedmann equation
2 If one keeps the gradient terms, one sees that they are divided by a(t)2, which

means that after a short period of inflation they are exponentially suppressed.
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V(   )φ

φ

Fig. 10.2. Approximate shape of the inflaton potential V (φ) needed to produce
an acceptable time evolution during and after inflation.

H2 =
8πG

3

[
1
2
φ̇2 + V (φ)

]
, (10.22)

which during slow roll can be approximated by

H2 =
8πG

3
V (φ), (10.23)

gives (Problem 10.4) a convenient expression for the number Nφ of e-folds
of the scale factor. Here we use the near constancy of H to write a2/a1 =
exp(

∫ t2
t1

H(t)): that is,

Nφ ≡ log
(

a2

a1

)
=
∫

Hdt = −8πG

∫ φ2

φ1

V (φ)
V ′(φ)

dφ (10.24)

Thus, for a large growth of the scale factor, V (φ) has to be very flat
(V ′(φ) ∼ 0). At present, there is no natural explanation for such a potential
except perhaps in some supersymmetric theories where ‘flat directions’ can
occur because of the pattern of supersymmetry breaking. In a situation of
such a slow roll of the inflaton field, the exact form of the potential does not
matter so much, and the relevant physics can be expressed in terms of the
so-called slow-roll parameters [28]

ε = − Ḣ

H2
= 4πG

φ̇2

H2
=

1
16πG

(
V ′

V

)2

(10.25)

η =
1

8πG

(
V ′′

V

)
=

V ′′

3H2
(10.26)
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where the second equation in (10.25) comes from taking the derivative of
(10.22) and inserting into (10.20). The variable ε is a measure of the change
of the Hubble expansion during inflation; for inflation to happen at all, ε < 1
is needed (Problem 10.3).

In the picture of the rolling ball, reheating corresponds to oscillations in
the potential well. Thus, for enough entropy to be generated the well has
to be rather steep. The problem of constructing a suitable potential is to
simultaneously have it flat near φ = 0 and steep near φ = φmin.

A way to avoid a phase transition, and in fact the simplest model of infla-
tion is the chaotic inflation model of Andrei Linde [29]. It relies on the fact
that the key thing for inflation to occur is that the field is rolling slowly, so
that the energy density is nearly constant while the scale factor grows expo-
nentially. Since the rolling is damped by the presence of the term proportional
to H in (10.20), and H according to the Friedmann equation is given by the
height of the potential (if kinetic terms can be neglected), inflation will be
possible for any positive, power-law potential V (φ), for example the simplest
V (φ) = 1

2m2φ2, as long as the field values start out large. As Linde has
argued, this may not be unreasonable since these initial values may be given
randomly (‘chaotically’) at the Planck epoch, and those regions where the
field values are large start to inflate rapidly dominating the volume of the
Universe.

Inflation is very close to becoming an ingredient in the Standard Model
of cosmology. Active research is going on to solve the theoretical problem of
generating a suitable potential, and to describe reheating in a more detailed
way than has been sketched here.

If a value of the total energy density ΩT = 1 is found observationally in
the future3, the most natural explanation would be that the Universe has
indeed gone through a period of inflation. Another indirect test of inflation
may be produced by the upcoming measurements of the detailed pattern of
temperature fluctuations in the cosmic microwave background radiation. We
will see in Chapter 11 that inflation predicts a nearly scale-invariant spectrum
of such fluctuations on large scales.

10.4 Dark Energy

Current observations from distant Type Ia supernovae as well as the com-
bination of the sub-degree anisotropies of the CMBR (described in Chapter
11) and mass energy density estimates from galaxy clusters, weak lensing and
large scale structure suggest that the Universe is also going through an infla-
tionary phase at present. More specifically, the density in some sort of dark
energy, ρQ, with a negative equation of state parameter, αQ = pQ/ρQ < 0,

3 Current measurements of the CMBR anisotropy yield ΩT = 1.02 ± 0.02, as
discussed in Chapter 11
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should have overcome the ever diluting matter content at about a redshift
z ∼ 1. It is unclear if the dark energy is identical with the vacuum energy
density related to the cosmological constant, ρΛ, or if it is in the form of some
new type of matter: ‘quintessence’. The most popular models of quintessence
invoke what we so far have considered for the inflation of the early Universe:
a scalar field Q slowly rolling in a potential. Thus, quintessence models are
dynamical as opposed to the case of the cosmological constant. This presents
some advantages while trying to match the current observations. A dynami-
cal energy density may evolve with time towards zero, and the current small
values measured may be explainable in such scenarios. Moreover, a successful
quintessence model could shed light on the coincidence problem related to Λ.
While Ωm and Ωλ are very comparable at present, they were not in the early
Universe (a → 0) nor in the future (a → ∞). As the Universe expands the
relative abundances change as:

ρλ

ρm
∝ a3 (10.27)

In the cosmological constant scenario, it would seem that there is some-
thing very special and possibly unnatural about the present time. An observer
on one of the first galaxies, z ∼ 10, would have probably been unable to de-
tect the existence of a non-vanishing Λ. In the future, the Λ term would be
the only thing that would be noticed. In fact, eventually will distant galaxies
reach exponentially large redshifts and the Universe become cold and dark.
Thus, the ability of an observer to deduce the ‘true’ content of the Universe
would be optimal at about this time.

Following these considerations, it seems useful to explore the dynamical
dark energy models, as these may ease the cosmological constant problems.
The dark energy may have been decreasing since the start of time, ρde ∝ t−β ,
and could therefore be very small today.

Invoking the relations in (10.18) and (10.19) for a homogeneous scalar
field fluid in a potential V (Q), we find that the equation of state parameter
for the fluid becomes:

αQ =
Q̇2/2 − V (Q)
Q̇2/2 + V (Q)

. (10.28)

Thus, for Q̇2  V , αQ → −1, i.e. like αΛ case. In general we find −1 ≤ αQ ≤
1. Recalling (4.28) we notice that an accelerating Universe is only possible
when the dominating fluid fulfills αQ < − 1

3 :

ä

a
=

−4πG

3

∑
i

ρi(1 + 3αi) (10.29)

Some scalar field potentials are particularly interesting as they produce
solutions where the dark energy scale with the matter or radiation energy
independently of initial conditions. In addition, they may be derived from
particle-physics models. Examples are V (Q) ∝ e−Q and V (Q) ∝ Q−1. The
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scalar field couples with the other fluids through the Friedmann equation
(4.16), the equation of motion of Q (10.20) and the energy conservation equa-
tion (4.24):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
H2 = 8πG

3

(
ρ + 1

2 Q̇2 + V
)

Q̈ + 3HQ̇ + V ′(Q) = 0

ρ̇ + 3(1 + α)Hρ = 0,

(10.30)

where ρ and α refer to the background dominant fluid of standard cosmol-
ogy, i.e. radiation in the early Universe and later non-relativistic matter.
Solutions to the coupled equations in (10.30) for exponential potentials yield
ρde =

(
V + 1

2 Q̇2
)
∝ t−2, just like ρm and ρrad. Thus, the fraction of dark

energy in the Universe is constant in time. For other potentials there are
solutions for which the dark energy density falls less rapidly with time than
the background density, ρde ∝ t−(2−δ), leading to a transition from matter to
dark energy domination. The exact epoch at which the dark energy overtakes
the background density is not predicted by the models, thus the coincidence
problem is not completely solved.

Fig. 10.3. Schematic view of a rolling quintessence scalar field.

Example 10.4.1 Show that ρde ∝ t−2 for the exponential potential, V = e−Q.
Use the ansatz a = tβ and Q = Q0 ln t.
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Answer: With the ansatz on Q we find the derivatives Q to be Q̇ = Q0t
−1

and Q̈ = −Q0t
−2. The potential and its gradient become V ′ = dV/dQ =

−t−Q0 = −V .
Inserting these expressions into the equation of motion with H = ȧ

a =
βt−1 we arrive at the equation:

−Q0

t2
+ 3β

Q0

t2
− 1

tQ0
= 0,

which is fulfilled for β = 1
2 ;Q0 = 2.

Inserted into the expression for the dark energy density, ρde = V + 1
2 Q̇2

we find the anticipated result, ρde ∝ t−2.

The behaviour of the slowly rolling ‘quintessence’ field shown in Fig. 10.3,
approximately tracking the energy density of the dominant background fluid,
may be qualitatively understood examining the coupled equations in (10.30).
The size of the force term V ′(Q) scales with −V , or even a higher power
of V . It can be shown that the friction is subdominant during this period.
Thus, for a large value of V the dark energy decreases rapidly, faster than
matter or radiation. On the other hand, if ρm 	 ρde or ρrad 	 ρde, the force
is small in comparison with the friction term 3HQ̇ and Q comes nearly to a
halt until the radiation or matter density is small enough. Thus, stability is
approached when the dark energy density is comparable to the leading term
of the background fluid.

Unfortunately, the dynamical energy models introduce new problems. For
example, in order for the scalar field Q to play a an important role at this
time it should have a mass comparable to the current Hubble scale, mQ ∼
H0 ∼ 10−33 eV. Such a light scalar appears extremely unnatural.

10.5 Summary

• Inflation is a generic mechanism which can solve many of the prob-
lems of standard cosmology. Among these are the smoothness, flat-
ness and monopole problems.

• The most solid predictions from inflation are that ΩT = 1 to
high accuracy, and that fluctuations in the microwave background
should be nearly scale-invariant.

• The simplest particle physics models for inflation utilize a potential
for a hypothetical inflaton field which is temperature-dependent
and similar to a Higgs potential. However, to make inflation work
quantitatively the potential must have unusual properties. No com-
pelling explicit model has yet been found.

• Dark energy may be causing the present Universe to accelerate
in a similar fashion as the inflation of the early Universe. This
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behaviour may be due to a cosmological constant or a dynamical
scalar field ‘rolling’ in a suitable potential.

10.6 Problems

10.1 Derive (A.58).

10.2 Derive the equation of motion φ̈+3Hφ̇+V ′(φ) = 0 from the vanishing
covariant divergence of the energy-momentum tensor.

10.3 Show that ä
a = Ḣ + H2, and use this to show that inflation only takes

place when the slow-roll parameter ε < 1.

10.4 Derive (10.24).

10.5 Compute Nφ = log(a2/a1) for a potential of the form V (φ) = λφ4+c1,
with λ small and c1 a constant. Express the solution in terms of H and λ.



11 The Cosmic Microwave Background
Radiation and Growth of Structure

11.1 The First Revolution: the 2.7 K Radiation

The detection of the cosmic microwave radiation was the most spectacular
evidence supporting the Big Bang theory after Hubble’s discovery of the
expansion of the Universe. Two radio astronomers at the Bell Telephone
Laboratories, Arno Penzias and Robert Wilson, submitted their revolutionary
result for publication in May 1965. By then, they had ‘failed’ to eliminate an
excess noise1 at 4080 MHz in their 20-foot antenna at Holmdel, New Jersey
(USA). The background ‘noise’ came from all directions, and the authors
estimated that the excess signal corresponded to a residual temperature of
3.5 ± 1.0 Kelvin.2

The explanation for the source of the observed signal was published in
an accompanying paper in the same volume of the Astrophysical Journal by
the Princeton group consisting of R.H. Dicke, P.J.E. Peebles, P.G. Roll and
D.T. Wilkinson.3 Let us recap on the origin of the CMBR (cosmic microwave
background radiation). In a hot and dense medium, such as the early Universe
soon after the Big Bang, we have seen that thermal electromagnetic radiation
was generated and kept in equilibrium through reactions of the type γ +
γ ↔ e+ + e− for temperatures T ∼ me. In the subsequent expansion of
the Universe the radiation cooled adiabatically. Below the threshold for pair-
production the photons were kept in thermal equilibrium through processes
such as Compton scattering on free electrons:

e− + γ → e− + γ

The electrons, in turn, were thermally linked to the protons through elec-
tromagnetic interactions. Eventually, as the temperature fell well below the
photoionization energy for hydrogen, the reaction
1 Now recognized as a signal.
2 Penzias and Wilson shared the 1978 Nobel prize in physics.
3 The Princeton group had already started the construction of their own radiome-

ter to look for the cosmic microwave background radiation when, by chance,
they heard about the ‘problems’ that Penzias and Wilson were having with an
unexplained source of isotropic noise in the telescope at Holmdel, at just the
right temperature level to be consistent with the relic cosmic radiation.
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H + γ ↔ p + e−

was no longer in thermal equilibrium, and the photons ‘decoupled’ from mat-
ter and still move essentially unscattered through the entire Universe. We
saw in (9.37) that this happened a few hundred thousand years after the Big
Bang at the freeze-out temperature of Tf ∼ 0.25 eV. These photons have
thus been travelling on geodesics, without scattering, through the Universe
for 13 - 14 billion years and have by now cooled to just below 3 K due to the
expansion.

The existence of a residual electromagnetic radiation from the Big Bang in
the microwave range had already been predicted in 1946 by George Gamow
and co-workers. In spite of their assumptions being partially wrong, their
estimate of the relic radiation temperature was very close to the temperature
measured 19 years later. Gamow’s result was a by-product as he tried to
establish that all nuclei, including the heavy ones, were produced during the
Big Bang.4

At present, the relic temperature of the Universe has been measured with
amazing precision: 2.725 ± 0.004 K (95 per cent confidence level) [14], mainly
through air-borne radiometers. Ground-based detectors are at a disadvantage
as they have to subtract the ambient 300 K radiation from the environment.
Fig. 11.1 shows the result of the compiled data from 1985 to 1996. The bulk
of the data comes from the Firas instrument on board the Cobe satellite
launched in late 1989.

The cosmic microwave background radiation decoupled from matter at
some value of z ∼ 1000, when the scale factor of the Universe was about
1000 times smaller than its current size. Thus, the original wavelength of the
radiation was 1000 times smaller, and the energy consequently 1000 times
larger, than that observed today (see (4.57)).

11.1.1 Thermal Nature of the CMBR

In the hot Big Bang picture, photons in the early Universe were continuously
created, absorbed or annihilated and re-emitted: that is, the Universe was an
almost perfect black-body.

Under such physical conditions, where an ensemble of photons is main-
tained at thermal equilibrium with the environment at some temperature T ,
the mean number of photons per oscillation mode is given by the Planck
distribution:

n̄ =
1

e2π/Tλ − 1
=

1
eω/T − 1

(11.1)

4 As we saw in Section 9.3, it is now believed that only the light elements up to
7Li were produced in the Big Bang. The heavier elements have been produced
in stars.
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Fig. 11.1. Precise measurements of the CMBR spectrum. The line represents a
2.73 K black-body, which describes the spectrum very well, especially around the
peak in intensity. The spectrum is less well constrained at frequencies of 3 GHz and
below (10 cm and longer wavelengths). From G. Smoot, astro-ph/9705101 (1997),
updated according to [14].

where ω = 2π/λ = 2πν is the angular frequency of the oscillation mode with
wavelength λ = 1/ν (we put c = h̄ = kB = 1, as usual).

We gave the expression for the well-known black-body radiation spec-
trum in section 8.2, but here we provide some more details to introduce a
Fourier mode description which is useful when we later discuss fluctuations
in the CMBR. To obtain the total spectrum we must multiply (11.1) with
the number of oscillation modes per unit volume.

To obtain this we first, for a given cosmic time t, divide the entire space
into an array of identical boxes with volume V = L3, where the length of
each side, L, is such that

L 	 λ (11.2)

where λ = 2π/k is the longest wavelength under consideration.
Next we impose the boundary condition that the plane wave of each single

oscillation mode, ψ = eikr = ei(kxx+kyy+kzz), should be identical in each box:
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ψ(x + L, y, z) = ψ(x, y, z)
ψ(x, y + L, z) = ψ(x, y, z)
ψ(z, y, z + L) = ψ(x, y, z)

(11.3)

Note that the requirement of periodicity does not affect the physics of
interest as long as the box dimensions are large compared to the wavelength
under consideration, as specified in (11.2).

By imposing the periodic boundary conditions in (11.3) the propagation
vector becomes quantized:

k =
2πn
L

(11.4)

where the components of n, (nx, ny, nz), are any set of integers: positive,
negative or zero.

Thus, the number of possible states (plane waves) with propagation vector
between k and k + dk is

∆Nk = ∆nx∆ny∆nz

=
(

L
2π dkx

) (
L
2π dky

) (
L
2π dkz

)
= V

(2π)3 d3k
= V

(2π)3 4πk2dk

(11.5)

where in the last step we have taken into account that the radiation is emitted
in all directions and the integrated solid angles is therefore 4π.

We can thus conclude that there are (2π)−34πk2dk photon states with
energy E = k = ω per unit volume. Since the mean number of photons
with energy E is given by (11.1) we are ready to compute the mean number
of photons per unit volume with angular frequency between ω and ω + dω
in a photon gas at temperature T . Taking into account that there are two
possible polarization states for each photon with angular frequency ω (that
is, gγ = 2) we find from (11.1) and (11.5), for completeness temporarily
re-inserting factors of c, h̄ and kB :

n(ω;T )dω =
1

π2c3

ω2dω

eh̄ω/kBT − 1
(11.6)

We have produced a full derivation of this result, but we could have taken it
directly from (8.12) and (8.13).

What happens to the temperature of the photons as the Universe ex-
pands? In order to predict what can be observed today, billions of years after
the decoupling of the radiation, we have only to carry out a small exercise.
From (4.57) it follows that, at a later epoch, the angular frequency ω0 is
redshifted to

ω0 =
ω

1 + z
(11.7)

After decoupling, the Universe was essentially transparent to radiation. As
the radiation is free of interactions the number of photons must be conserved.
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To obtain the currently observable density of photons per unit frequency
we introduce the variable transformation in (11.7) into the function in (11.6):

n(ω;T )dω =
1

π2c3

[ω0(1 + z)]2dω0 · (1 + z)

e
h̄ω0(1+z)

T − 1
= n(ω0;T0) · (1 + z)3 (11.8)

i.e, the density of photons preserves the black-body spectrum and scales
proportionally to the inverse volume of the Universe. The black-body tem-
perature decreases linearly with the radial scale; that is, with (1 + z)

T0 = Te
1

1 + z
. (11.9)

The differential energy spectrum for the black-body radiation, u(ω)dω, is
obtained by multiplying the photon energy, h̄ω, in (11.6)

u(ω;T )dω =
h̄

π2c3

ω3dω

eh̄ω/kT − 1
. (11.10)

Example 11.1.1 Estimate the fraction of the total energy density of the Uni-
verse, ΩT , which is in the form of relic photons from the Big Bang, by inte-
grating (11.10).

Answer:
The total energy density in the form black-body radiation, ργ , in all fre-

quencies is given by the integral over all frequencies:

ργ =
∫ ∞

0

u(ω;T )dω (11.11)

To simplify this calculation we introduce a dimensionless parameter, ξ:

ξ =
h̄ω

kT
(11.12)

Equation (11.11) can then be re-written as

ργ =
h̄

π2c3

(
kT

h̄

)4 ∫ ∞

0

ξ3dξ

eξ − 1
(11.13)

where the definite integral is just a numerical constant:∫ ∞

0

ξ3dξ

eξ − 1
=

π4

15
(11.14)

Thus we arrive at the familiar Stefan Boltzmann relation:

ργ = σT 4,
σ = 4.72 · 10−3eV/cm3/K4
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We have seen in Section 4.3 that the critical density separating an open
from a closed Universe is:

ρc =
3H2

0

8πG
= 1.9 · 10−29h2 g/cm3 = 1.1 · 104h2 eV/cm3 (11.15)

The fraction of total energy in the Universe in the form of relic radiation
(T = 2.73 K) is thus (see (8.60)):

Ωγh2 ≈ 4 · 10−5

The energy density at present is thus dominated by matter. The contribution
from radiation is negligible.

11.2 The Second Revolution: the Anisotropy

Although the isotropic nature of the CMBR supports the Big Bang scenario,
it poses difficulties in explaining the Universe at the present epoch. Clearly,
if we look around us in the sky, what we see is far from homogeneous. The
average temperature and density of galaxies differ dramatically from that of
the space between them.5

11.2.1 Temperature Fluctuations and Density Perturbations

In the Big Bang model, the structure that we observe today is formed by
gravitational instability. Small perturbations of density in the otherwise ho-
mogeneous matter distribution of the early Universe will, due to gravitational
attraction, grow and eventually form the stars and galaxies known to exist
today.

The observation of such seeds of density fluctuations by the Cobe DMR
instrument (colour Plate 5, in the middle of the book) thus propelled ob-
servational cosmology into a new era. Anisotropies at the 10−5 level in tem-
perature were detected in the all-sky maps collected over several years, and
were first announced in 1992. Temperature differences between patches of the
sky appear when photons from a region close to a density enhancement get
redshifted as they climb out of the gravitational potential well in the surface
of last scattering.

On large scales, such as the ones probed by the DMR instrument on board
the COBE satellite (with angular resolution about 10 degrees), deviations
from temperature isotropy in the cosmic microwave background are due to
the gravitational effects on the energy of the radiated photons: the Sachs
5 A more subtle problem with the high degree of isotropy in the CMBR is that

some of the patches of the sky that have the same temperature could not have
been in causal contact at the time of decoupling. This problem was referred to
as the horizon problem and was dealt with in the chapter about inflation.
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Wolfe effect. Next we derive this relation between the observable temperature
fluctuations in the sky and the underlying gravitational potential.6

Energy conservation implies that photons travelling through a changing
gravitational potential φ lose energy as(

∆T

T

)
0

=
(

∆T

T

)
e

+ φe (11.16)

where the subscript 0 defines the observed temperature fluctuations, and the
terms with subscript e describe the physical temperature fluctuation and
gravitational field at the point of emission.

The first term on the right-hand side corresponds to an intrinsic temper-
ature fluctuation in the early Universe, and the second is the potential well
surrounding the photons.

For adiabatic fluctuations, the number of photons inside the potential
well is expected to be larger than average: that is, one expects the temper-
ature to be higher than in the surrounding regions. Therefore, one expects
the two terms in (11.16) to partially cancel. In particular, because the over-
density inside the potential well corresponds to a hot spot one expects the
intrinsic temperature fluctuation to be proportional to the strength of the
gravitational potential:(

∆T

T

)
e

∼ −φe (11.17)

We found in (11.9) that temperature is inversely proportional to the scale
factor of the Universe, aT = const: that is, ∆(aT ) = 0. This in turn implies

∆T

T
= −∆a

a
(11.18)

For an equation of state, p = αρ, it follows from Einstein’s equations of
the expansion of a flat Universe that the scale factor dependence with time
is (see (4.29))

a(t) ∼ t
2

3(1+α) (11.19)

which means
∆a

a
=

2
3(1 + α)

δt

t
(11.20)

Recalling that in the neighbourhood of strong gravitational fields time is
slowed according to (3.39):

dτ =
√

1 + 2φdt � (1 + φ)dt (11.21)

so that
6 This simplified derivation, more intuitive than the one in Sachs and Wolfe (1967)

was originally described by White and Hu (1996).
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δt

t
� φ (11.22)

we find by insertion of (11.20) and (11.18) into (11.17):(
∆T

T

)
e

= −∆a

a
= − 2

3(1 + α)
δt

t
= − 2

3(1 + α)
φe (11.23)

Combined with (11.16) we reach the general result of this calculation:(
∆T

T

)
0

=
1 + 3α
3 + 3α

φe (11.24)

For a matter dominated Universe, α = 0, thus the measured temperature
fluctuations correspond to the size of the potential well times a factor of 1/3:(

∆T

T

)
0

=
1
3
φe (11.25)

Note that there are two effects competing: the gravitational redshift which
decreases the measured temperature of dense regions, and the heating caused
by the local compression of the matter in dense regions. They partly cancel,
but the net effect is that overdense regions appear cooler.

The DMR instrument measured temperature fluctuations of about ∆T
T ∼

10−5. These can be interpreted as being due to a spatially varying gravita-
tional potential at the time the CMBR was emitted. We have seen that this
happened at z ∼ 1000, which corresponds to some 300,000 years after the
Big Bang.

To summarize this section: the study of fluctuations in the CMBR allows
us to determine the gravitational potential at the time the photons decoupled
(the ‘surface of last scattering’). The large-angle (> a few degrees) observa-
tions of Cobe represent truly primordial fluctuations in the gravitational
potential, since the causal horizon at the time of decoupling subtends less
than a degree on the sky today.

11.3 The New Generation of Observations

In spite of all the excitement generated by the 2.73 K spectrum and the
temperature anisotropies measured by the Cobe satellite, the best CMBR
physics might be yet to come! While the temperature fluctuations between
portions of the sky at separation of 10 degrees are crucial for the understand-
ing of structure formation, they are not very sensitive to the parameters of
the Standard Model of cosmology: the energy density due to the curvature
parameter ∼ k/a2, the contribution from matter (also dark matter), ΩM ,
the energy density contribution due to a non-zero cosmological constant, ΩΛ

and the Hubble parameter H0. However, at much smaller angular separations,
small enough to contain causally-connected regions at the surface of last scat-
tering, the measurement of the power spectrum of temperature fluctuations
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might be sensitive to the Standard Model parameters with unprecedented
precision.

As discussed in the previous section, fluctuations in density cause photons
and matter to fall into potential wells. Within a horizon volume, the infall will
be slowed and even reversed by radiation pressure. The baryon photon fluid
starts making acoustic oscillations. Regions of compression (hot spots) and
rarefaction (cold spots) will thus populate causally-connected volumes. As
photons scattered for the last time at the decoupling redshift zdec ≈ 1100, a
‘snap-shot’ of the oscillating fluid can be deduced from CMBR measurements
at angular scales below 1 degree.

So what is the connection with the cosmological parameters? The oscil-
lations of the fluid are confined to the Hubble radius H−1

dec at the redshift of
recombination. Thus, in order to estimate the principal feature of the CMBR
anisotropy spectrum at small scales we must compute the angle subtended
today by H(z = zrec)−1:

∆θ(zdec) =
1

dA · H (11.26)

with the angular size distance dA in a Friedmann-Lemâıtre-Robertson-Walker
Universe defined by (4.85) and (4.70). The position of this First Acoustic Peak
of the CMBR anisotropy spectrum is expected to be at an angular scale ∆θ
which is sensitive to ΩM and ΩΛ, as shown in Fig. 11.2.

The amplitude of the peak (that is, the size of the anisotropy) increases
with the baryon density fraction, ΩB and depends also sensitively on H0 and
ΩΛ. CMBR fluctuations at yet smaller angles are a result of higher frequency
acoustic oscillations of the baryon and photon fluid. Their relative strength
and angular position yield further information on the fractional contributions
to the energy density of the Universe. In particular, the higher order acous-
tic peaks provide information about the nature of dark matter. In the next
sections, we shall analyse this in more detail.

11.4 Fluid Equations

The analysis of how structure formed and grew in the early Universe is one
of the most important and interesting activities in modern cosmology. The
fact that the initial density perturbations as measured in the CMBR were
so small simplifies things substantially. If we only give a zero-order (homo-
geneous) solution to the equations governing the cosmic ‘fluid’, we can use
perturbation theory to write down and solve the hydrodynamical equations
for the deviations from homogeneity. We shall solve a simplified model with
only one species which makes up the cosmic fluid.

In the FLRW model the dynamics is essentially Newtonian for length
scales much smaller than H−1, if only the scale factor a(t) is kept in the
equations. The relevant equations are the continuity equation
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Fig. 11.2. Angular size of regions in causal contact (rH = H−1) at zdec = 1100 as
a function of ΩM . In the left-hand plot ΩΛ = 0 and in the right-hand side for a flat
Universe, ΩΛ = 1 − ΩM .

ρ̇ + ∇ · (ρv) = 0 (11.27)

the Euler equation of hydrodynamics

v̇ + (v · ∇)v = −∇
(

Φ +
p

ρ

)
(11.28)

and the Poisson equation of Newtonian gravity

∇2Φ = 4πGρ (11.29)

These equations have the zero-order solution

ρ0(t, r) =
ρ0

a3(t)

v0(t, r) =
ȧ(t)
a(t)

r

Φ0(t, r) =
2πGρ0r

2

3
(11.30)

The first of these just shows the dilution of the mass density that is caused by
the cosmic expansion, and the second shows again the homogeneous ‘Hubble
flow’ according to the law v0(t, r) = H(t)r, valid for all observers locally at
rest in the cosmic frame. The third simply follows from solving (11.29) with
a constant ρ (see Problem 11.3).

Since we have spatially homogeneous equations, we try to find plane-wave
solutions for the perturbations: that is, we take the Fourier transforms. It is
convenient to ‘take out’ the expansion by using comoving space coordinates
x=r/a(t). Then, for instance, ρ0(t, r) → ρ0(t,x) = ρ0(t): that is, in comoving
coordinates the background density is independent of the scale factor a(t).

We now write the first-order expanded quantities as

ρ(t,x) = ρ0(t) + ρ1(t,x) ≡ ρ0(t) [1 + δ(t,x)]
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v(t,x) = v0(t,x) + v1(t,x)
Φ(t,x) = Φ0(t,x) + Φ1(t,x) (11.31)

where |δ|, |v1| and |Φ1|  1. Taking the Fourier transform of all quantities,
for example,

δ(t,x) =
1

(2π)
3
2

∫
eik·xδ(t,k)d3k (11.32)

with the inversion formula

δ(t,k) =
1

(2π)
3
2

∫
e−ik·xδ(t,x)d3x (11.33)

one finds after some algebra (Problem 11.4)

δ̈(t,k) + 2
ȧ(t)
a(t)

δ̇(t,k) +
(

k2v2
s

a2(t)
− 4πGρ0

)
δ(t,k) = 0 (11.34)

where vs is the speed of sound,

v2
s =

(
∂p

∂ρ

)
adiabatic

(11.35)

That the speed of sound enters the equations is natural, since it governs how
fast perturbations in the fluid can propagate. For a relativistic fluid with
equation of state p = ρ/3, we see that

vs =
1√
3

(11.36)

(that is, of the order of the velocity of light), whereas for a gas of neutral
hydrogen

vs =

√
5T

3mp
(11.37)

which is much smaller (Problem 11.5).
We note that by using the Fourier transform of the linearly perturbed

version of (11.29),

∇2Φ1 = 4πGρ0δ, (11.38)

using the first-order Friedmann equation (for a flat Universe),

H2 =
8πG

3
ρ0, (11.39)

we find the relation

δ(t,k) = −2
3

(
k

aH

)2

Φ1(t,k) (11.40)

which is of use when relating a density perturbation to a perturbation of the
Newtonian potential, as we will do in Chapter 11.
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11.5 The Jeans Mass

We see from (11.34) that the sign of the quantity

κJ ≡
(

k2v2
s

a2(t)
− 4πGρ0

)
(11.41)

will determine whether the solutions are growing or oscillating. The sudden
drop in the velocity of sound during the epoch of decoupling has many inter-
esting consequences. The term proportional to v2

s is the pressure force, which
is felt by charged particles, i.e. the baryons. Before decoupling vs is very
large, which means that the baryons will only undergo damped oscillations.

As usual with Fourier transforms, to a given Fourier wave vector k corre-
sponds a comoving wavelength λcom = 2π/|k|: that is, a physical wavelength

λphys =
2πa(t)
|k| (11.42)

It is seen from (11.34) that only physical scales larger than the Jeans
length λJ can grow (for smaller values of λphys the solutions are damped
oscillations), where

λJ = vs

√
π

Gρ0
(11.43)

The mass within a sphere of radius λJ/2 is called the Jeans mass and is given
by

MJ =
4π

3

(
λJ

2

)3

ρ0 =
π5/2v3

s

6G3/2√ρ0
(11.44)

11.6 Structure Growth in the Linear Regime

For small k (lengths much larger than the Jeans length), or for cold dark
matter which does not feel the electromagnetic pressure, the term propor-
tional to k2 in (11.34) can be neglected. For a flat, matter dominated FLRW
model, a(t) ∝ t2/3, ȧ/a = 2/(3t) and ρ0 = 1/(6πGt2), so that

δ̈(t,k ∼ 0) +
4
3t

δ̇(t,k ∼ 0) − 2
3t2

δ(t,k ∼ 0) = 0 (11.45)

which produces the solution

δ(t,k ∼ 0) = c+t2/3 + c−t−1 (11.46)

Thus, one mode is growing with time as t2/3, and one is decaying as 1/t.
Obviously the growing mode is the interesting one for structure formation: it
makes a small initial density perturbation grow under the action of gravity.
Since the growing mode has the same time dependence proportional to t2/3

as the scale factor a(t), the density contrast grows linearly with the scale
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factor. Perturbations in cold dark matter can grow during matter domina-
tion, whereas the baryons oscillate until decoupling. This means that cold
dark matter plays a crucial role for structure formation - they form potential
wells in which the baryons can fall as soon as they escape the pressure after
decoupling.

An initially overdense region in a FLRW Universe with Ωm = 1 will be-
have as a ‘mini-Universe’ with Ωm > 1: that is, it will expand to a maximal
radius, and then re-collapse. This re-collapsed region can be identified with
the halo of a galaxy or of a galaxy cluster. The detailed dynamics after the
density contrast has become greater than unity (that is, in the nonlinear
regime) is quite complicated, since it involves an interplay of dark and ordi-
nary matter. The only way so far to obtain a description of this phase is to
carry out N-body simulations on large computers.

The density field δ(x) at a given time is generally assumed to be a Gaus-
sian random field. In fact, this is what is predicted in models of inflation,
where quantum fluctuations in the inflaton field are created by the exponen-
tial expansion as we will see in the next section, and could be the ‘seeds’ of
cosmic structure. Defining the rms fluctuations by

σ2 = 〈δ(x)2〉 (11.47)

the autocorrelation function ξ(|x2 − x1|) ≡ ξ(x) is defined as

ξ(x) =
1
σ2

〈δ(x2)δ(x1)〉 (11.48)

In the random phase approximation, all the Fourier modes δ(k) are uncorre-
lated, which means that

〈δ∗(k)δ(k′)〉 = (2π)3δ3(k − k′)P (k) (11.49)

The function P (k) is the power spectrum of the fluctuations. In most models
P (k) = kn, with the spectral index n varying between 0.7 and 1.3. The value
n = 1 corresponds to so-called scale-invariant fluctuations, since it can be
shown that for such a spectrum the fluctuations δ are of the same amplitude
for all length scales. As we will see, inflation predicts almost scale-invariant
perturbations.

The fluctuations measured through the power spectrum P (k) in the
CMBR are usually described in terms of a ‘primordial’ part Pi(k), which
represents the curvature fluctuations generated (perhaps by inflation) at a
very early epoch. To obtain the density field actually measured one needs to
know how the fluctuations in the photon field have been influenced by var-
ious other effects near the time of decoupling and matter domination. This
depends on the nature of the dark matter, but can be expressed in terms of
a transfer function T (k), defined such that

P (k) = T 2(k)Pi(k) (11.50)

If the Universe were still radiation dominated, T (k) = 1 for all k, and
the spectrum of fluctuations today would be the primordial spectrum. Before
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recombination, the speed of sound was of the order of the speed of light, and
the Jeans mass was extremely large (see (11.44)). In fact, the Jeans length
was larger than the horizon size, so all perturbations within the horizon grew
very slowly (at most, logarithmically). At the time of equality of matter
and radiation energy density (z ∼ 4 · 103), perturbations in the dark matter
could start to grow, but the photons and baryons were still strongly coupled
and affected by pressure until photon decoupling. At that point, the speed
of sound dropped by a huge factor (from 108 m/s to 104 m/s) so that the
Jeans length suddenly became smaller than the size of present galaxies. Thus,
perturbations in the ordinary matter could start to grow on all scales.

As the Universe expands, the horizon continues to increase. This means
that the comoving scale of any perturbation sooner or later becomes smaller
than the horizon scale (it is said to enter the horizon). Cold dark matter fluc-
tuations that entered the horizon after matter and radiation equality should
not have been modified much from the primordial spectrum, so that T (k) ∼ 1
for these modes. The comoving length scale corresponding to the horizon at
equality is roughly

λeq ≈ 13
ΩT h2

Mpc (11.51)

For scales smaller than this, it can be shown that there is a suppression
T (k) ∼ k−2. For hot dark matter, the suppression at small scales is much
larger, since relativistic particles ‘free-stream’ out of small density enhance-
ments. Recent data from the distribution of galaxies measured by the 2dF
collaboration [13] agree excellently with cold dark matter. This has been used
to put an upper limit on the relic density of neutrinos (see (9.10)) correspond-
ing to around 2 eV for the sum of the masses of neutrinos.

11.7 Connection to Fluctuations in the CMBR

The density contrast field δ is defined over all space and time. However, when
we study fluctuations in the CMBR temperature, we only sample a projection
on the celestial sphere, at the time of last scattering of the photons. In this
situation, it is convenient to use a spherical decomposition. As is well known,
any function f(θ, φ) (or equivalently f(n̂) with n̂ a unit vector) on the unit
sphere can be expanded in spherical harmonics Ylm(θ, φ):

f(n̂) =
∞∑

l=0

m=l∑
m=−l

almYlm(θ, φ) (11.52)

In particular, the temperature fluctuations ∆T/T (n̂) can be expanded

∆T (n̂)
T

=
∞∑

l=2

m=l∑
m=−l

almYlm(θ, φ). (11.53)
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(Here the dipole, l = 1, is usually excluded since it is indistinguishable from
the effects of the peculiar motion of the Earth with respect to the cosmic rest
frame.)

Observationally, from a measured set of alm we can form the angular
average Cl:

Cl = 〈alma∗
lm〉 =

1
2l + 1

l∑
m=−l

alma∗
lm (11.54)

The set of coefficients Cl for all l is the basic information-containing set
of the microwave background. (There is also, a much smaller, effect on polar-
ization which can be measured.) By comparing these measured Cl with the
theoretical ones obtained by varying all cosmic parameters one may obtain
very good accuracy on many parameters. The only way to compute these
coefficients for all scales is to integrate the transport equations numerically.
The result will depend on the initial (primordial) fluctuation spectrum, the
nature of the dark matter, the fraction of baryonic matter, the Hubble con-
stant and some other parameters. This means that if one has measurements
of, say, several hundred of the Cl’s, there would be enough redundancy to
determine the cosmological parameters to high accuracy.

To a considerable extent this has now been done, both in balloon exper-
iments and in the satellite experiment WMAP – something that has revolu-
tionized cosmology. The Planck satellite is scheduled for launch in 2007 and
will be equipped with an 1.3-meter mirror with an angular resolution of 10
arcminutes and a frequency range between 30 and 850 GHz. If all goes well,
it should determine all the above-mentioned parameters to an accuracy of
about 1 per cent.

The shape of the spectrum of the Cl contains several features – a plateau
at low l, and then a series of peaks (‘acoustic peaks’) at higher l (that is,
smaller angular scales). The physical reason for these peaks is that the cos-
mic fluid oscillates due to the competing actions of the gravitational attrac-
tion and the photon pressure. For this to happen, the initial conditions for
the perturbations have to be set at an early time, so that gravity can act
coherently. If perturbations were generated in the earliest Universe, at the
epoch of inflation, so they were driven outside the horizon by the exponential
expansion, we can understand the mechanism heuristically. As the Universe
expands, successively larger scales of perturbations, dominated by dark mat-
ter, enter the horizon, at which point they start to grow. But baryons are
coupled through gravity to the dark matter and through electromagnetic in-
teractions to the photons and electrons. When the baryonic mass has been
compressed enough, the photon pressure acts as a repulsive, harmonic force,
causing the baryonic fluid to expand again. Then eventually gravity takes over
again and the sequence is repeated. That the plasma of the early Universe
should contain these ‘acoustic’ oscillations was predicted by Sakharov in the
early 1960’s, but the connection to observations of the microwave background
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was not made until the 1970’s by several groups. After last scattering, the
microwave background photons propagate essentially freely through the Uni-
verse, but are of course affected by the gravitational potential of the region
they left (the Sachs-Wolfe effect), and regions they passed through on the
way (the integrated Sachs-Wolfe effect), the Doppler motion of the plasma,
and a small but important scattering by hot electrons in galaxy clusters they
pass (the Sunyaev-Zeldovich effect). The CMBR is then like a snapshot pic-
ture of the oscillating photon field in the Universe at a redshift of around
1100. In this picture, or rather in the power spectrum of it, we would expect
to see a series of peaks, corresponding to compression and rarefaction of the
baryon fluid, with the first peak being a compression peak with a scale that
is given by the size of the sound horizon at decoupling. It is a great triumph
of cosmology that these predicted peaks have now definitively been observed.

A particularly simple prediction is that the location of the first peak is
very sensitive to the total energy density of the Universe, ΩT = ΩM + ΩΛ.
This is an effect of gravitational lensing of the horizon size at the epoch of
the formation of the CMBR (the last scattering surface). For a low-density
Universe, a geodesic bundle of photons from the last scattering surface of
the CMBR would be focused less, causing the effects to be seen at a smaller
angle, i.e. a higher value of l, than in a high-density Universe. Balloon and
ground-based experiments found in 1998 - 2002 that the peak location corre-
sponded to an excellent accuracy to a flat Universe, ΩT = 1.0 ± 0.1, exactly
as predicted by inflation. Taken together with the supernova data, which
favour the existence of a cosmological constant, a ‘concordance model’, with
ΩM ∼ 0.3, ΩΛ ∼ 0.7, has emerged during the last few years.

11.8 Primordial Density Fluctuations

The remaining question is what caused the primordial density fluctuations
with δρ/ρ ≈ 10−5, which could then be processed by causal physics once they
entered the horizon. An intriguing possibility is that they were generated at
the inflationary epoch, through quantum fluctuations of the inflaton field.
This is one of the most exciting ideas of present cosmology: that the largest
structures we see on the sky today were tiny quantum fluctuations that were
stretched by inflation to gigantic scales. In Appendix E we give a brief account
of how this mechanism works.7

According to Appendix E, the relation between the curvature perturba-
tion generated by inflation Rk and the Newtonian potential perturbation Φ1k

(see (11.31)) is given by

Rk = −5 + 3α
3 + 3α

Φ1k (11.55)

7 This Appendix is somewhat more advanced than the rest of the book, and can
be skipped by the casual reader.



11.9 Present Experimental Situation 207

where α is the equation of state parameter (4.22). The Newtonian potential
perturbation is related to the density perturbation by (11.40) giving

δ(k) =
2
3

(
k

aH

)2 3 + 3α
5 + 3α

Rk (11.56)

At radiation domination after inflation, α = 1/3, and

δ(k) =
4
9

(
k

aH

)2

Rk (11.57)

On the very largest scales that enter the horizon after the Universe has be-
come matter dominated, α = 0 and

δ(k) =
2
5

(
k

aH

)2

Rk. (11.58)

On these large scales, the Cobe satellite measured the adiabatic fluctuation
directly, and δ2

COBE = 4/25PR, with the power spectrum of the curvature
perturbation given in (E.52). Using the Cobe large-scale average rms value,
δCOBE � 1.9 · 10−5, gives the normalization of the slow-roll potential V as

1
m2

Pl

√
32V

75ε
= δCOBE = 1.9 · 10−5, (11.59)

where ε is the slow-roll parameter (10.25). Thus,

V
1
4

ε
1
4

= 5.4 · 10−3mPl = 6.5 · 1016 GeV. (11.60)

In terms of the slow-roll parameters ε and η, the slope of the spectrum is
(see (E.53))

ns = 1 − 6ε + 2η. (11.61)

This shows that the prediction of inflaton is generally a close to scale-invariant
spectrum of density perturbations, which as explained in Appendix E are
gaussian and adiabatic. This prediction has recently vindicated by observa-
tions, as we now will see.

11.9 Present Experimental Situation

The present situation (2003) regarding observations of the cosmic microwave
background is that the regions of the first and the second peak have been
quite accurately mapped out, with even the third peak starting to be seen.
In February 2003, the WMAP satellite (Wilkinson Microwave Anisotropy
Probe) released its first data sets, which cover the range from l = 2 (the
quadrupole) over the first two acoustic peaks to l ∼ 800. This was the first
space project to map the cosmic microwave background since the COBE satel-
lite. The WMAP data has shown a wealth of interesting data, and with some
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additional information from other experiments (such as demanding h > 0.5),
many cosmological parameters have been determined to remarkable precision,
most notably ΩT = 1.02 ± 0.02.

In Table 11.1 are shown the values of some other cosmological parameters
obtained by WMAP [5].

Table 11.1. The cosmological parameters as estimated by the first set of data from
the WMAP satellite [5].

Parameter Value

ΩM 0.27 ± 0.04

ΩΛ 0.73 ± 0.04

ΩB 0.044 ± 0.004

Baryon to photon ratio, η (6.1 ± 0.3) · 10−10

Ωνh2 < 0.0076 (95 % c.l.)

ns (see (11.49) and (11.61)) 0.93 ± 0.03

Age of Universe 13.7 ± 0.2 Gyr

Decoupling redshift, zdec 1089 ± 1

Examples of predicted spectra (before any of the present data were known)
in various models are shown in Fig. 11.3.

The WMAP data, and the best fit model using the parameters in Ta-
ble 11.1 are shown in Fig. 11.4. The impressively detailed all-sky map of the
CMBR presented by the WMAP team is shown as colour Plate 6.8 In the
last few years, cosmology has entered a new epoch, one of precision measure-
ments. What is appearing from the measurements is a concordance model,
which has less than 5 % baryons, almost 25 % cold dark matter and 70 % vac-
uum, or ‘dark’ energy. It is not unreasonable to claim that the golden age of
cosmology has just started. While the observational content of the Universe
is being pinned down, we are still waiting for cosmologists to find answers to
the burning questions: what is the dark matter, and the dark energy?

11.10 Summary

• The observation of the cosmic microwave background (CMBR)
constitutes a remarkable corroboration of the Big Bang theory

• The temperature of the relic radiation at present, T0 = Te/(1+ z),
has been measured to be 2.725 ± 0.004 K (95 % CL).

• The observed anisotropy of the CMBR of about 10−5 at the angu-
lar scale of several degrees confirms the existence of small-density
perturbations in the early Universe (z ≥ 1000). These were the

8 The colour plate section is positioned in the middle of the book.
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Fig. 11.3. Examples of theoretically predicted �(� + 1)C� (normalized to � = 10)
or CMBR anisotropy power spectra. sCDM is the standard cold dark matter model
with h = 0.5 and ΩB = 0.05. ΛCDM is a model with ΩT = ΩΛ + ΩM = 1
where ΩΛ = 0.3 and h = 0.8. OCDM is an open model with ΩM = 0.3 and
h = 0.75. ‘Strings’ is a model where cosmic strings are the primary source of
large-scale structure. The plot indicates that precise measurements of the CMBR
anisotropy power spectrum at � > 100, which will be possible with the Planck
and WMAP satellites, could distinguish between current models. From G. Smoot,
astro-ph/9705135 (1997). As shown in Fig. 11.4, only the model labeled ΛCDM is
now viable, due to WMAP data.

seeds necessary to form the structure seen today in the Universe:
for example, stars and galaxies.

• Ongoing and future measurements of the anisotropy of the CMBR
at sub-arcminute scale are likely to improve significantly our knowl-
edge of the cosmological parameters.

• Thanks to the small amplitude of the anisotropy of the CMBR, a
linear analysis of the early growth of structure in the Universe can
be used. The growing modes grow linearly with the scale factor
a(T ).

• The size of the perturbations which can grow due to the action of
gravity is given by the Jeans length,
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Fig. 11.4. The data on the CMBR measured by the WMAP satellite [5], together
with the best fit ΛCDM model, with parameters given according to the list in
Table 11.1. Courtesy of the NASA/WMAP Science Team.

λJ = vs

√
π

Gρ0

which in turn depends on the speed of sound vs, where

v2
s =

(
∂p

∂ρ

)
adiabatic

After photon decoupling, the speed of sound, and therefore the
Jeans length, drops suddenly.

• Cold dark matter gives power on all length scales after matter
dominance, whereas hot dark matter (like neutrinos) free-stream
out of small regions due to their relativistic velocities.

• The best way to observe the primordial density fluctuations is
through the fluctuations of the temperature of the microwave
background that they induce. New satellite experiments, of which
WMAP is the first, may distinguish between dark matter models
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and determine all the classical cosmological parameters to a per
cent accuracy.

• Two important predictions of inflation, a total energy density close
to unity, and a nearly scale-invariant spectrum of gaussian primor-
dial fluctuations, have been verified by new measurements of the
CMBR.

11.11 Problems

11.1 Integrate (11.6) over all frequencies and show that the total photon
density is:

nγ = 410(1 + z)3cm−3

11.2 Calculate the angular size of the region in causal contact at z = 1100
in a radiation dominated Universe.

11.3 Solve (11.29) for a constant ρ = ρ0 using spherical coordinates.

11.4 Perform the intermediate steps leading to (11.34).

11.5 Compute, in SI units, the speed of sound after recombination.

11.6 Compute the Jeans mass before and after photon decoupling.



12 Cosmic Rays

12.1 Introduction

So far, we have mostly been dealing with information obtained about our
Universe through the use of various forms of electromagnetic radiation. How-
ever, there exist other carriers of information, some of which we shall describe
in the following chapters.

The existence of ionizing particles continually bombarding the Earth’s
atmosphere was first noticed during a balloon flight in 1912 by Victor Hess1

and the term ‘cosmic rays’ was first used by Robert Millikan in 1925. Later on,
it was discovered that the cosmic rays (CR) at the top of the atmosphere are
mainly atomic nuclei (including hydrogen nuclei, protons, and helium nuclei,
alpha particles). Only about 2 per cent of the particles are electrons (and
positrons). At energies above a few TeV, where cosmic rays are undeflected
by the magnetic fields within the solar system, their distribution is nearly
isotropic (but see the later discussion about ultra-high energy CR).

Example 12.1.1 Show that protons above 5 TeV are essentially unaffected by
a solar system magnetic field of 10 µG.

Answer: The largest deflection occurs if the proton’s motion is perpendicular
to the magnetic field. For a particle with charge Ze, the relation between the
gyroradius r, the magnetic field B and the orthogonal particle momentum p
becomes:

r =
p

ZeB
(12.1)

Inserting numerical values for a proton (Z=1) one finds that the gyromagnetic
radius becomes:( r

1 a.u.

)
= 2 · 102

( p

1 TeV

)
/

(
1 µG

B

)
(12.2)

where 1 a.u. (astronomical unit) is the mean distance between the Earth and
the Sun, 1.5 · 1011 metres. For p = 5 TeV and B = 10 µG the gyromagnetic
1 Hess shared the 1936 Nobel prize with Carl D. Anderson, who discovered the

positron in cosmic rays.
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radius is r ≈ 100 a.u., far greater than the distance from the Sun to Pluto
(the planet furthest away from the Sun).

Cosmic rays have historically been very important for the development
of particle physics. Before the emergence of man-made high-energy particle
accelerators, they were the only means of studying energetic collision and
decay processes. The muon, the pion, the positron and particles containing s
quarks were first discovered in cosmic-ray induced reactions.

In spite of over 85 years of research, many important questions about
cosmic rays remain unanswered. Where do they come from? What are the
cosmic accelerators capable of emitting nuclei with energies exceeding 1019

eV? What is the nuclear composition at high energies?

12.2 The Abundance of Cosmic Rays

The energy spectrum of cosmic ray nuclei at the top of the atmosphere spans
over many decades, and can be described by a segmented power-law formula
above 10 GeV/nucleon, as shown in Fig. 12.1:

dN

dE
∝ E−α (12.3)

with the following values for the spectral index:

α =
{

2.7 E < 1016 eV
3.0 1016 < E < 1018 eV (12.4)

For the highest energies, above 1019 eV, the index appears to be somewhat
smaller: that is, the distribution is flatter. The two breaks in the spectrum,
around 1015 − 1016 eV (the ‘knee’) and at 1018 − 1019 eV (the ‘ankle’) may
indicate the energy limits of different cosmic accelerators.
The chemical composition of cosmic rays is interesting as it may offer clues

for understanding their origin. Data from mass spectrometers on board satel-
lites and balloons exhibit clear differences when compared to solar system
abundances (see Fig. 12.2):2

• The relative abundance of protons and helium nuclei in cosmic rays
is smaller than in the solar system.

• Two groups of elements, Li, Be, B, and Sc, Ti, V, Cr, Mn are
significantly more abundant in cosmic rays.

2 The solar system abundances are derived from the spectral features in the pho-
tosphere of the Sun and from the studies of meteorites, which are believed to
have the same chemical composition.
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Fig. 12.1. Compilation of measurements of the differential energy spectrum of cos-
mic rays [47]. The dotted line shows an E−3 power-law for comparison. Approximate
integral fluxes (per steradian) are also shown. Courtesy of Jim Matthews.

The relative underabundance of hydrogen and helium in the cosmic rays
is not fully understood: it could either reflect the primordial composition
of the cosmic ray sources or simply be due to the difference in propagation
properties of the elements and the fact that the heavier elements are more
easily ionized, thereby being more readily accessible for acceleration. The
overabundance of Li, Be and B is known to be due to spallation of carbon and
oxygen. As these common elements travel through the interstellar medium,
they are fragmented in collisions with the hydrogen and helium gas in the
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interstellar medium into elements with somewhat smaller atomic number.
Similarly, Sc, Ti, V, Cr and Mn result from the spallation of iron.

Among the interesting similarities between the solar system and cosmic
ray abundances are:

1. There are peaks in the abundance for carbon, nitrogen, oxygen and iron.
2. An even odd mass number effect in the abundances is seen in both data

sets. This is understood as being due to the relative stability of the nuclei
according to their atomic numbers.

Although the results are inconclusive, it seems plausible that the primary
composition of the source of cosmic rays at energies below the first break
(∼ 1015 − 1016 eV) is similar to the local abundance of elements.

Fig. 12.2. The relative abundance of cosmic rays at the top of the atmosphere
(dashed curve) compared with solar system and local interstellar abundance (solid
curve), all arbitrarily normalized to silicon (=100). From [30] and references therein.
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Example 12.2.1 Show that the number of cosmic rays above a certain energy,
E0, is also a power-law if α > 1 in (12.3).

Answer: Integrating (12.3) yields:

N(E > E0) =
∫ ∞

E0

E−αdE ∝ E−α+1
0 (12.5)

The small amounts of electrons and positrons in cosmic rays are thought
to be of galactic origin. Energy depletion through Compton scattering with
the cosmic microwave background radiation prevents their propagation over
intergalactic distances (Problem 12.3). The positron fraction, e+/(e+ +e−),
has only been measured at low energies (below 50 GeV) and found to be
just a few per cent, indicating that electrons are accelerated by primary
sources. If their origin had been secondary, i.e through hadronic decays (π± →
µ± → e±) there should be comparable fractions of electrons and positrons.
Positrons, on the other hand, are likely to be produced in secondary processes,
like pair production γ + γ → e+ + e−.

12.3 Ultra-High Energies

While balloon and satellite experiments are very well suited for the study
of cosmic rays at low energies, the steep spectrum shown in Fig. 12.1 re-
veals that it is virtually impossible to gather sufficient statistics at energies
above the knee of the spectrum with the relatively small detectors that may
be accomodated in flown devices. The study of the highest energy events
are, however, very interesting, as these particles are only weakly affected by
galactic magnetic fields (∼ µG) and intergalactic (∼ nG) magnetic fields. For
a source at a distance L, the trajectory of a charged particle in a uniform
magnetic field is deflected by (Problem 12.2):

θ ≈ 3◦Z
(

L

1 kpc

)
×
(

B

1 µG

)
×
(

1019 eV
E

)
(12.6)

The mapping of the directionality of highest energy cosmic rays is of great
interest for the understanding of cosmic accelerators.

12.3.1 Extensive Air-Showers

Although the Earth’s atmosphere prevents primary cosmic rays and gamma-
rays from reaching sea level or even mountain tops, there is a technique for
studying high-energy cosmic rays from the ground. As the primary particles
hit the atmosphere, their energy is transferred through subsequent collisions
to a ‘cascade’ of particles, as shown schematically in Fig. 12.3. The pic-
ture can be understood as follows: a gamma-ray, for instance, will split into
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Fig. 12.3. Schematic view of the creation of a particle ‘shower’ in the atmosphere.

an electron positron pair within approximately one interaction length3. In
the next interaction length, the electron and positron will each radiate one
bremsstrahlung photon which, in turn, will interact in the next radiation
length, and so on. To simplify the situation, the energy is assumed to be split
equally at every vertex. The multiplication process stops when the energy of
the shower particles falls below some critical energy εc. For an electromag-
netic shower – that is, one consisting only of photons, electrons and positrons
– the critical energy is reached when the cross-section for bremsstrahlung be-
comes smaller than for ionization. To summarize, the number of particles
along the shower profile coordinate x is

N(x) = 2
x
λ (12.7)

where λ is the average distance between interactions. At ‘shower maximum’
for a primary of energy E, the number of particles with the critical energy,
εc, is

Nmax =
E

εc
(12.8)

The number of shower particles falls almost exponentially beyond maximum
as the particles successively stop. Combining (12.7) and (12.8) it can be seen

3 For particles interacting electromagnetically, such as gamma-rays, the interaction
length is normally referred to as radiation length.
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that the position of the shower maximum grows as the logarithm of the
primary energy:

xmax =
λ

ln 2
· ln E

εc
(12.9)

The general features of the particle cascades are also approximately cor-
rect for hadronic showers, generated by nuclear primaries. In addition to the
electromagnetic part, the cascades also includes hadrons and muons. Muons
interact electromagnetically but, because of their higher mass, have a much
greater range than electrons and positrons. Thus, at sea-level, the cosmic-ray
fluxes are dominated by muons with a mean energy of ∼ 2 GeV, but with
a steep spectrum reaching up to nearly the same energies as the primary
cosmic rays.

Extensive ‘air-showers’ can thus be used for studying primary cosmic rays
above about one TeV. The main features of the particle cascades are:

(1) Nmax ∝ E
(2) xmax ∝ lnE
(3) The relative arrival times of the shower particles can be used to recon-

struct the direction of the particles hitting the top of the atmosphere, as
shown in Fig. 12.4.

While (3) indicates that extensive air-showers can be used to trace the
origin of VHE cosmic rays, the shower properties (1) and (2) can be used to
reconstruct the energy of the incident particles at the top of the atmosphere.

In practice, Monte Carlo simulation programs are used to model the de-
velopment of particle cascades in the atmosphere and compare with experi-
mental data. Two types of technique are used to study air-showers:

(I) Particle detectors (for example, scintillators) that count the muons, elec-
trons and positrons at the surface. The Agasa experiment in Japan, with
an area of 100 km2, is the largest operating extended air-shower surface
array.

(II) The charged particles in the shower excite nitrogen in the atmosphere
causing fluorescence emission. Optical telescopes can be used to detect
these photons allowing a full reconstruction of the particle cascade. An
example of one such instrument in operation is the Fly’s Eye experiment
in Utah.

12.3.2 Interaction with CMBR

The Universe becomes opaque for cosmic-ray protons when the resonant re-
action with CMBR photons

p + γCMBR → ∆+ → N + π
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Fig. 12.4. Schematic view of an air-shower. The arrival times for the wavefront
of shower particles at the detector surface are used to reconstruct the angle of the
primary particle. The shower particles arrive at the ground in narrow ‘pancake’-like
sheets.

becomes energetically allowed. The final states could be either p + π0 or
n+π+. To estimate the cut-off energy we assign four-momenta to the incom-
ing particles as measured by an observer at rest:

{
γ : (q, q, 0, 0)

proton : (
√

p2 + m2
p, p cos θ, p sin θ, 0) (12.10)

where the proton with momentum p hits the photon moving along the x-axis
with momentum q at an angle θ in the xy-plane.

The energy requirement is met if the centre-of-mass energy is at least as
large as the sum of the pion and proton mass: that is, s ≥ (mp + mπ)2 (see
(2.59)). With some algebra this can be shown to give the inequality (Problem
12.1):

mpmπ +
m2

π

2
≤ q

(√
p2 + m2

p − p cos θ
)

(12.11)
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As the pion mass is much smaller than the proton (and neutron) mass the
expression above can be simplified to

Ep − p cos θ ≥ mpmπ

q
(12.12)

Since, for a thermal gas of relativistic bosons 〈q〉 ∼ 2.7 T (see (8.22)) and
TCMBR � 2.74 K, corresponding to only 2.36 · 10−4 eV, the cut-off energy
for nucleons becomes very large:

Ep ∼ 1020 eV (12.13)

This is known as the Greisen Zatsepin Kuzmin limit or GZK limit.
Next we want to estimate the mean free path for nucleons above the

GZK limit. The general expression for the mean free path for a particle in
a scattering region is derived as follows: Consider a particle incident on a
region of area A containing n scatterers per unit volume. The mean free path
λ is defined as the average distance travelled by the incident particle before
hitting a scatterer. If each such scatterer has a cross-section σ, the probability
of a particular one being hit is p1 = σ/A. Approximately, unit probability
that at least one will be hit is reached when N · p1 = 1, where the total
number of scatterers in the volume Aλ is N = Aλn. This happens when

λ =
1

nσ
(12.14)

The cross-section for the pγCMBR reaction is σpγ ≈ 10−28 cm−2 and
the density of microwave photons was found to be n = 410 · (1 + z)3 cm−3

(problem 11.1). Thus, the mean-free-path of protons with Ep ∼ 1020 eV is

λGZK ≈ 8 Mpc (12.15)

about half the distance to the Virgo cluster, the nearest large cluster of galax-
ies. If the protons lose about 20 per cent of their energy in each encounter,
almost all the energy is lost after about 100 Mpc.

Although still inconclusive, the observation of a handful of events above
the GZK limit has been reported. One such case is shown in Fig. 12.5. It
is intriguing that no candidate sources are found in the direction of these
events. New larger experiments with close to two orders of magnitudes greater
collection area are being planned to further investigate these results. The
AUGER experiment, for example, a hybrid detector employing both surface
arrays and atmospheric fluorescence telescopes to cover an area of 6000 km2,
is to be built in Argentina for studying the VHE CR southern sky.

12.4 Particle Acceleration

A major puzzle ever since the discovery of cosmic rays has been their exact
origin. The fact that particles with energies exceeding 1020 eV have been
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Fig. 12.5. Extensive air-shower event registered at the AGASA array [18]. The
reconstructed energy of the air-shower spread over 4×4 km2 is 2·1020 eV. The radii
of the circles are proportional to the logarithm of the particle density per m2 at the
detector location.

detected shows that there have to exist very powerful sites of acceleration in
the Universe. In fact, it is plausible that particles with energies above the
knee (1016 eV) originate from outside the Milky Way (since the magnetic
fields are not strong enough to confine them), whereas galactic sources most
likely have to be found for the lower-energy part.

A galactic event with great energy release is of course a supernova explo-
sion. The total power in the form of cosmic rays leaving the galactic disk can
be estimated to be of the order of 1034 W [8]. Since the average energy output
of a supernova is around 1046 J, and the frequency of supernova explosions
in the Galaxy is of the order of one per 50 to 100 years, only about 1 per cent
of the energy released needs be used for cosmic-ray particle acceleration. The
most promising mechanism is acceleration near the shock which is formed
by the expanding envelope when it sweeps through the interstellar medium
surrounding the exploding star. Recent X-ray data from the remnant of the
supernova which was observed by Chinese astronomers to explode in the year
1006 confirm that acceleration of electrons still occurs, making it plausible
that also protons and heavier nuclei are accelerated there (see Fig. 12.6).
(Electrons are easier to detect since they radiate X-rays and γ-rays much
more easily than do protons.)

It was Fermi who first realised that particles can be accelerated in a
stochastic way to very high energies. Subsequently, several improvements to
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Fig. 12.6. X-ray emission from the supernova of 1006. The bright spots mark
regions where intense emission occurs. The intensity and energy distribution is
consistent with the hypothesis that electrons are accelerated to high energies at the
shock front of the still-expanding envelope of the supernova. Credit: E. Gotthelf
(GSFC), The ASCA Project, NASA.

his idea have been made, and there are now convincing models that describe
acceleration in various environments. The basic idea is quite simple. Suppose
that cosmic-ray particles travelling in interstellar space collide with much
larger objects (for example, magnetized clouds) which move with random
velocity and direction. Depending on the exact relative motion of the two
types of object, the cosmic-ray particles can either lose or gain energy (to
a good approximation, the energy of the large object is unchanged at each
collision). A distribution of energies will then be obtained. Since there is a
floor Ekin = 0 but no ceiling for the possible final kinetic energy, the average
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energy of the cosmic rays will tend to increase. The shape of the energy
distribution will depend on the details, but Fermi showed that in many cases
a power-law is expected.

A problem with the initial Fermi idea was that acceleration was quite slow
and inefficient, with only O(v2) gains of energy at each collision (so-called
second-order Fermi acceleration). Due to losses at each stage (in particular
ionization losses, which are very high for slow particles) it was difficult to
obtain a working model. Much more efficient are first-order (that is, linear
in v) processes, which may occur near shock fronts. Again, the basic idea is
simple. Suppose that a strong shock is propagating through the interstellar
medium surrounding, for example, a supernova. The shock represents a thin
region where a pressure and density gradient exists, and it propagates much
faster than the speed of sound in the medium. The medium in front of the
shock and that behind the shock differ in density by a factor which depends
on the equation of state (for a fully ionized gas, this pressure ratio is equal
to 4). Also, kinetic energy is transferred from the shock to the gas, which
means a bulk motion of the gas after the shock. However, on each side of the
shock, particles diffuse (perform a random walk) with a diffusion constant
that depends, among other things, on the energy of the particle and average
value of magnetic fields present. A cosmic-ray particle downstream of the
shock may pass the shock front, gain kinetic energy, and then scatter back
downstream. This may then be repeated during many cycles. If a fraction
ξ of energy is gained at each cycle, and the cycle time T is proportional to
energy (and inversely proportional to the magnetic field strength), which is
reasonable in a diffusion model, the equation

dEp

dt
=

ξEp

T
(12.16)

implies a constant acceleration rate. Numerically, one finds [48]

dEp

dt
∼ 1012

(
B

1 Gauss

)
v2
1 eV s−1 (12.17)

where v1 is the flow velocity of the shocked gas.
This acceleration continues until energy losses (which depend on the am-

bient medium) balance the acceleration rate. The energy spectrum becomes a
power law with spectral index around −2 in this type of acceleration. Taking
into account energy-dependent containment time in the galactic disk (higher-
energy particles escape more easily), this primary index would be modified,
perhaps to the required −2.7 which is observed.

The shock-acceleration mechanism is expected to be active in many dif-
ferent types of shock: the termination shock of the solar wind and the galactic
wind, accretion shock near a supermassive black hole (as is believed to exist
at the centre of an AGN), intergalactic shock waves etc.
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12.5 Summary

• The Earth’s atmosphere is bombarded by a non-thermal power-
law distributed flux of atomic nuclei reaching up to 1020 eV, about
eight orders of magnitude higher than the most powerful man-
made accelerators. However, the flux follows a steep power-law,
dN/dE ∼ E−2.7 up to around 1016 eV. At the highest energies
observed, ∼ 1021 eV, an excess of events has been detected, but so
far with very low statistics.

• Ultra-high energy cosmic rays are of great interest, as they provide
directional information about their origin.

• First-order Fermi acceleration near shock-fronts caused by super-
nova explosions is a plausible mechanism which may explain the
existence of galactic cosmic rays up to an energy of 1016 eV.

12.6 Problems

12.1 Derive the inequality (12.11).

12.2 Derive the expression for the deflection from a straight line for a
charged track in a uniform magnetic field (12.6) assuming small deflections:
that is, sin θ ≈ θ.

12.3 Show that the mean free path of electrons is smaller than typical galaxy
sizes. The main source of interaction in the intergalactic medium is assumed
to be through Compton scattering on the 2.7 K radiation, σ ≈ 10−24 cm2.
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13.1 The Sky of High-Energy Photons

The search for the origin of cosmic high-energy particles has naturally led to
the investigation of the sky at the high energy end of the spectrum of electro-
magnetic radiation, using gamma-rays as information carriers. Absorption by
the Earth’s atmosphere prevents the study from the ground of photons with
far-ultraviolet or shorter wavelengths. The progress of the field has therefore
followed the launch of dedicated satellite experiments. A major breakthrough
was achieved when the Compton Gamma-Ray Observatory (CGRO) was
launched in April 1991.

The CGRO was a satellite mission carrying four instruments with large
angular acceptance which together are sensitive in the energy range 30 keV
< Eγ < 30 GeV, as shown in Table 13.1.

Table 13.1. Parameters for instruments on board the CGRO satellite.

Instrument Energy range (MeV) Field of view Source location

BATSE 0.03 – 1.2 4π sr ∼ 2◦

OSSE 0.06 – 10 4◦×11◦ -

COMPTEL 1 – 30 1 sr ∼ 10 arcmin

EGRET 20 – 30000 0.6 sr ∼ 5 arcmin

These detectors have detected gamma-rays from very distant corners of
the Universe. The strongest feature of the all-sky map from the EGRET
instrument, shown in Plate 7 (the colour plate section is positioned in the
middle of the book), is the emission from the galactic plane, mainly due to
interactions between cosmic rays and interstellar gas and photons (through
processes such as p + p → p + p + π0 + ..., followed by π0 → γ + γ decays).
Other resolved objects in the Milky Way are the known Crab, Geminga and
Vela pulsars, also observed in other wavelengths. Gamma-rays within the
energy range of EGRET propagate freely through intergalactic space with
very little absorption.

The detection of 100 MeV gamma-rays from several active galactic nuclei
(AGN) with redshifts ranging from z = 0.03 to z = 2.2 has generated a
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great deal of interest. Most of these AGN are blazars. AGN are believed to
be very massive black holes (∼ 108 solar masses). The violent processes near
the black hole sometimes cause two relativistic, diametrically opposite jets to
emanate from the vicinity of the black hole. Blazars are AGN which happen
to have one of the jet axes pointing towards the Earth. One of them, 3C279,
at a redshift z = 0.538, is particularly bright and variable. The peak flux is
about 2 gamma-rays per m2 per minute.

The emission has a characteristic time variability on scales as short as
a day, in some cases even shorter than an hour, indicating that the region
of emission is very small: that is, R ≤ c∆t/(1 + z), is very small compared
with galaxy sizes. It is believed that the radiation originates either from small
hot regions in the jets or from the accelerated matter in the accretion disk
surrounding the very massive black hole.

The CGRO will be followed by a new satellite, Glast, which is presently
under construction, for a planned launch date at the end of 2006. Glast will
have an order of magnitude larger gamma-ray collection area than CGRO,
and many other parameters such as the energy range, the energy resolution
and the angular resolution will be far superior to those of CGRO.

13.2 Gamma-Ray Bursts

One of the most exciting fields in gamma-ray astronomy and arguably in
all of contemporary high-energy astrophysics is the ‘puzzle’ of the origin
of Gamma-Ray Bursts (GRB). The existence of rapid flares of gamma-rays
from all directions, without association to any known astronomical object,
has been known since the 1960s. The American Vela satellite, the purpose
of which was to monitor possible clandestine tests of nuclear weapons, did
in fact discover the first GRB. The information was, however, not disclosed
to the astronomy community until 1973. The nature of GRB, whether they
were galactic or of cosmological origin, remained unknown until the CGRO
came into operation. The BATSE detector (see Table 13.1) showed very soon
that, unlike the EGRET sources in colour Plate 7, GRB populated all the
directions evenly, as shown in Fig. 13.1. The BATSE observations suggested
very strongly that GRB sources are not within the Milky Way. Moreover, the
strong isotropy of the signal indicated that the sources must come from truly
large distances, comparable to the size of the Universe.

Definite proof that GRB originate at cosmological distances could only
be achieved if the source could be resolved. This was not initially possible
due to the poor angular resolution at gamma-ray wavelengths (several de-
grees of arc). This shortcoming was finally remedied when BeppoSAX, an
Italian Dutch satellite, came into operation in 1997. BeppoSAX, equipped
with wide-field X-ray cameras, could both detect X-ray counterparts of GRB
and pinpoint the location of the source within a few arcminutes. This error
box is small enough for it to be quickly scanned with CCD cameras on optical
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Fig. 13.1. More than 1600 bursts have been detected by the BATSE. The unifor-
mity of the distribution of sources indicates that they have an extragalactic origin.
Figure from http://cossc.gsfc.nasa.gov/cossc/burst.html.

telescopes on the ground. The first historical detection of a GRB with Bep-
poSAX took place on 28 February, 1997. The detection image and a similar
exposure of the same spot just a few days later are shown in colour Plate 8.1

Less than 24 hours after the burst, a transient was seen in optical images.
The signal faded very quickly both in X-rays and at optical wavelengths.
Nevertheless, the source could be studied with the Hubble Space Telescope,
and with the 10-metre Keck telescopes on Hawaii, which showed a faint nebula
underlying the fading source. Spectroscopic studies revealed clear magnesium
and iron absorption features at a redshift z = 0.835. Thus the cosmological
nature of GRB was established, ending a scientific debate that had lasted for
almost 25 years.

Since then, more observations have been made including the detection
of one gamma-ray optical counterpart at z = 3.4 following a BeppoSAX
observation.

13.2.1 What Are GRB?

Gamma-ray bursts are among the most energetic known objects, matched
only by supernova explosions. Core collapse supernovae, however, release
most of their energy as neutrinos, as will be discussed in Chapter 14. While
the electromagnetic radiation (light) from supernovae is also large, often out-
shining the host galaxy, it is emitted over several weeks. Gamma-ray bursts
often last for just a few seconds, as shown in Fig. 13.2.
1 The colour plate section is positioned in the middle of the book.
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Fig. 13.2. GRB brightness (vertical axis) versus time (horizontal axis, 2 seconds)
for twelve relatively short bursts. Bursts last a few tens of milliseconds to hundreds
of seconds, with no two bursts showing exactly the same development in time. From
http://cossc.gsfc.nasa.gov/cossc/burst.htm.

One possible explanation for the different time scales is that while a heavy
star mantle acts as a ‘shock absorber’ in a supernova explosion, thereby
stretching out the energy release over a long period of time, GRB could be
associated with a much thinner matter envelope.

Assuming that a large amount of energy is transferred to a thin star
envelope, the latter will expand at highly relativistic speeds, v ≈ c. For
example, for an envelope containing just 0.01 per cent of the star’s mass, the
energy of material in the expanding shell could be 1000 times larger than its
rest mass.

The short time durations of GRB can be understood with the model
shown in Fig. 13.3. A shell of matter is thrown with highly relativistic speed
γ ∼ 103 at the same time as a flash of light escapes the source. The next flash
is emitted when the expanding envelope encounters material that decelerates
its motion, typically a month later in the rest frame of the centre of the
expansion. For an observer at the centre of the shell with radius R, it takes
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∆t = R/c for the original flash to reach the location of the second emission.
For γ 	 1, the speed of the expanding shell becomes (see (2.41)):

v ≈ c(1 − 1
2γ2

) (13.1)

Thus, the time difference between the two flashes becomes:

∆τ ≈ R

2γ2c
=

∆t

2γ2
(13.2)

which corresponds to a few seconds for ∆t ∼ 1 month and γ ∼ 103. Finally,
because of the cosmological time dilation factor (1+z), the duration of GRB
will increase (statistically) with redshift.

Although the exact nature of the gamma-rays is not well understood, it is
likely that the emitted gamma-rays originate from the shock-wave generated
by the expanding shell. The ‘fireball’ model, first proposed by Martin Rees
and Peter Meszaros, implies that as the shock-wave moves, it compresses
and heats up the surrounding gas, and synchrotron radiation is emitted as
electrons spiral in the magnetic fields thought to be present in these environ-
ments. As the shell expands it is slowed down by the interactions with the
surroundings, and the radiation becomes less energetic. This phase is called
the ‘afterglow’ and is first dominated by X-ray emission for a few minutes,
followed by UV and visible emission for a period of some days or weeks.
Infrared and radio waves can be emitted for several months after the GRB.

In at least one recently discovered GRB (030329) at redshift z=0.17, spec-
tral studies of the optical afterglow about 1 week after the gamma ray emis-
sion show broad peaks in flux, characteristic of supernovae (SN2003dh). The
spectra lack hydrogen, silicon and helium features and may therefore be as-
sociated with Type Ic supernovae.

Example 13.2.1 Show that if a star’s rest energy can be converted to kinetic
energy with about 10 % efficiency, a star envelope containing only 0.01% of
the star’s mass can be boosted with a Lorentz factor γ = 103.

Answer: The converted energy is Ekin = (1 − 10−4) · Mc2 · ε, where ε is the
efficiency of the system. If all of the kinetic energy is fed to the mantle with
rest energy Erest = 10−4 · Mc2 the Lorentz factor becomes:

γ =
(1 − 10−4)ε

10−4
= 103 (13.3)

for ε = 0.1.

It has been suggested that GRB might be the result of colliding neu-
tron stars. The emission of gravitational radiation forces the orbits of binary
neutron stars to shrink, as will be discussed in Chapter 15. It is therefore
expected that at some point the two stars should merge. The expectation for
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Fig. 13.3. Model to explain the short time duration of a gamma-ray burst. A shell
of matter (solid circle) expands with a velocity v close to the speed of light: that
is, γ � 1. At the same time a flash of radiation is emitted. After some time ∆t,
typically a month or so, the expanding shell will be slowed down by surrounding gas,
causing a new emission of radiation. The original flash (dotted circle) has by then
propagated a distance c∆t. As both flashes reach the Earth their time separation
is just ∆t/(2γ2), which is typically a few seconds for γ ∼ 103.

such mergers is that they should take place once every 106 years in an average
galaxy, about four orders of magnitude less often than supernova explosions.
The rate of GRB detections are a good match with that rate.

13.3 Very High-Energy Gamma-Rays

Just as for hadronic cosmic rays, satellite-borne experiments can be used
for the study of gamma-rays up to ∼100 GeV, while the higher energies are
studied from the ground with detectors having larger collection area.

The most successful method for studying gamma-initiated atmospheric
air-showers is through the detection of Cherenkov radiation, mainly UV and
blue light, emitted from the very energetic electrons and positrons in the
particle cascade described in Section 12.3.1. The origin of Cherenkov radia-
tion and its application in building telescopes for high-energy particles will
be discussed in detail in Section 14.10 (see also Problem 14.13).

Telescopes for detecting VHE gamma-rays consist of arrays of optical
telescopes operated at night, such as the 10-metre Whipple telescope shown
in Fig. 13.4. The particles in the electromagnetic shower have strong forward
momentum, and the Cherenkov radiation is emitted within about one degree
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of these. Thus the collected light closely follows the direction of the incident
photon.

An experimental difficulty for air Cherenkov telescopes is the identifica-
tion of the incident particles. Hadronic air-showers are about 1000 times more
frequent than those originating from gamma-rays of the same energy. On the
other hand, gamma-rays do carry directional information while hadronic cos-
mic rays are nearly isotropic, as discussed in Chapter 12. Sources of gamma-
rays are therefore identified through the accumulation of events in a fixed
direction in the sky. The particle discrimination and energy resolution can be
enhanced when several telescopes are used to view the shower simultaneously,
in particular if the reflector information is gathered into an imaging camera
which captures the shape of the particle cascade. Gamma-ray ‘images’ are
typically smaller and more elongated than background hadronic showers.

Fig. 13.4. The 10-metre aperture Whipple telescope in Southern Arizona detects
gamma-rays with energy above around 300 GeV.

13.3.1 Resolved Sources

TeV gamma-rays from the Crab nebula have been detected by several at-
mospheric Cherenkov detectors, similar to the Whipple telescope shown in
Fig. 13.4. This was predicted in the mid-sixties, as it became clear that at the
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centre of the supernova remnant2 was a pulsar emitting polarized synchrotron
radiation at all wavelengths: radio, optical and X-rays. High-energy gamma-
rays are produced as electrons transfer momentum to synchrotron produced
photons through inverse Compton scattering. Thus, the flux of gamma-rays
emitted depends on the magnetic field of the nebula, estimated to be of the
order of ∼10−3 G.

More recently, high-energy gamma-rays from two extragalactic sources
have been identified as being low redshift, z ≈ 0.03, AGN blazars in the
Markarian catalogue: Mkn421 and Mkn501. As opposed to the Crab nebula,
the observed AGN showed large time variability in the gamma-ray flux.

The Whipple telescope, however, failed to detect TeV gamma-rays from
most of the AGN observed at GeV energies by EGRET. This is despite the
fact that some of them, for example 3C279, were much brighter at lower
energies and had a similar energy dependence in the spectrum measured at
low energies. Extrapolation indicated that they should have been well above
threshold for detection at Whipple.

What makes Mkn421 and Mkn501 special is not that they are particu-
larly bright but rather that they are at relatively low redshifts: that is, at
small distances. The non-detection of 3C279 and other bright AGN at higher
redshifts indicates that the TeV gamma flux is attenuated along the way.

Recently, a few more TeV blazars have been discovered, and the evolu-
tion of the field is rapid, with larger telescopes being built, such as the 17 m
MAGIC telescope at the Canary Islands, which recently started to operate,
and also groups of powerful telescopes such as HESS in Namibia, CANGA-
ROO in Australia and VERITAS in the United States. These new telescopes
and telescope arrays have a larger area and lower energy threshold which
means that they will complement in a nice way the all-sky satellite gamma-
ray telescope GLAST, which has a scheduled launch date of 2006.

13.3.2 Interaction with IR Photons

Since gamma-rays interact with electromagnetic coupling strength (in con-
trast, for example, to neutrinos which only interact weakly), they cannot
travel arbitrarily long distances without being scattered or absorbed. In Sec-
tion 6.11.3, we saw that for a given available energy in the centre of mass,
Compton scattering and γγ → e+e− have similar cross-sections (in particu-
lar, dropping quite rapidly at high energies). Of course, this is not true near
the threshold for e+e− production, where the latter process is suppressed by
the small available phase space. Therefore, absorption of high-energy gamma-
rays will be determined by the Compton cross-section at energies below the
pair production threshold. Above the threshold, the fact that photons are so
much more numerous than electrons in the Universe (this is in particular the

2 The explosion was observed by Chinese astronomers in 1054.
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case for the cosmic microwave background) means that pair production will
be the limiting factor determining the absorption length.

We saw in Fig. 6.9 that the pair production cross-section is maximal for
y � 0.8, where y = (

√
s − 2me)/(2me).

For a head-on collision of a gamma-ray of energy Eγ on an ambient pho-
ton, this maximal cross-section occurs for a target photon energy of

Etarget ∼ (1.8me)
2

Eγ
∼ 0.8

(
1 TeV

Eγ

)
eV (13.4)

This means that above 1 TeV, the optical and infrared (IR) photons
will be the ones which determine the absorption length, while the CMBR
will dominate completely above around 100 TeV. Using (6.35) for the cross-
section, it is not difficult to compute the absorption length for a gamma-ray
of a given energy passing through a target photon ‘gas’ of, say, IR photons
of density n(EIR), where the energy distribution is a power-law

n(EIR) =
n0

E0
IR

(
EIR

E0
IR

)−ν

(13.5)

where EIR is the energy of the IR photons.
The probability of absorption (the inverse absorption length) of high-

energy photons with energy Eγ is given by [6]

dW

dl
=

4
E2

γ

∫ ∞

me

dωcσ(ωc)ω3
c

∫ ∞

ω2
c/Eγ

dω
n(ω)
ω2

(13.6)

where ωc is the photon energy in the centre of momentum system of two
colliding photons, and σ(ωc) is the cross-section (6.35) for γγ → e+e−.

After some calculations one obtains (see, for example, [46])

l−1
abs =

2Φν

1 + ν
n0

πα2

m2
e

(
Eγω0

m2
e

)ν−1

(13.7)

where

Φν =
∫ 1

0

vdv(1 − v2)ν−1

[
(3 − v4) ln

(
1 + v

1 − v

)
+ 2v(v2 − 2)

]
(13.8)

For integer values of ν this integral can be solved, for example,

Φ1 = 14/9, Φ2 = 22/45, Φ3 = 56/225 (13.9)

There are two ways in which these results can be used. For a known
intensity and spectral index of the intergalactic IR background, (13.7) can
be used to predict the furthest distance at which TeV gamma-rays can be
expected to be detected. However, the IR distribution is presently not very
well known, and one may use the fact that multi-TeV gamma-rays have been
observed from several sources, such as the active galaxies Markarian 421
and 501, to limit the density of the IR photon field. Putting in reasonable
numbers for the expected IR background flux, it seems difficult to detect
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10 TeV gamma-rays from sources further than z ∼ 0.1. A complication in
this and many similar applications is that it is difficult to separate eventual
absorption in the source of gamma-rays from absorption along the way (see
problem 13.2).

A similar calculation to the one above shows that a gamma-ray of 80
TeV or above cannot propagate further than from z ∼ 0.01 without being
absorbed by the intense CMBR.

13.4 Summary

• Gamma-rays are photons of MeV energies and higher, and thus
propagate on geodesics, making them suitable for detecting ener-
getic processes in supernova remnants, AGNs and other astrophys-
ical sources.

• Gamma-ray bursts were long an enigmatic phenomenon. With new
observations their cosmological origin has been established. The
exact mechanism for their generation is still unknown, however.

• Gamma-rays with energies exceeding several TeV have been de-
tected from the Crab nebula (a supernova remnant) and a few
active galactic nuclei of the blazar type.

13.5 Problems

13.1 Calculate the cut-off energy at which gamma-rays are absorbed by the
CMBR (γγCMBR → e+e−).

13.2 A high-energy photon, a gamma-ray of energy Eγ ∼ 100 GeV, coming
from a very distant galaxy, can interact with optical (starlight) photons in the
Universe through reactions of the type γ + γ → e+ + e−, with a cross-section
roughly equal to the Thomson cross-section α2/m2

e. It can be assumed for
simplicity that the number density n0 of starlight photons has not changed,
apart from the cosmic expansion.
(a) Use relativistic kinematics to deduce the threshold energy of the starlight
photons needed to produce an e+e− pair at redshift z, if the high-energy and
starlight photons collide at an angle θ.
(b) (More difficult) Give an order of magnitude estimate of how large the
number density n0 of photons with energy higher than the threshold energy
can be, if sources at z ∼ 1 are observed.
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14.1 Introduction

We have seen in Section 9.3 that neutrinos could provide an important con-
tribution to the total energy density of the Universe if they have a mass in
the 10 eV range. Neutrinos are also very important information carriers from
violent astrophysical processes, which is why we now devote some time to the
study of neutrino properties. For a complete review of weak interactions in
astrophysical environments, see [37, 4].

As we saw in Section 6.10, neutrinos are the neutral counterparts of the
charged leptons: e, µ and τ . There are therefore three types of neutrino in
nature: νe, νµ and ντ . Neutrinos are fermions as are the rest of the leptons
and quarks: that is, spin-1

2 particles. Apart from their possible gravitational
interactions, νs interact with matter only through the exchange of the medi-
ators of the weak force, the W and Z bosons. They are fundamental particles
(without constituents, as far as is known), have extremely small masses (if
any at all) and lack electric charge. Paradoxically, because neutrinos only
interact weakly with matter, they are very important in astrophysics. Where
other particles become trapped or can only propagate through very slow dif-
fusive processes, neutrinos are able to escape. Neutrinos can thus connect
regions of matter that would otherwise be isolated from each other. Because
they are massless (or almost massless), they move at the speed of light, which
makes the energy transfer very efficient.

For example, neutrinos produced near the centre of the Sun can be de-
tected at the Earth after a time of flight of around 8 minutes, and permit
the study of the nuclear reactions that take place in the core of ‘our star’.
The photons generated by the energy-producing nuclear reactions at the cen-
tre, however, diffuse slowly to the surface with an average diffusion time of
around a million years!

The lack of electric charge allows neutrinos (like photons) to move in
straight lines (or geodesics) even in the presence of strong magnetic fields.
According to the Standard Model of particle physics, the magnetic moment
of a neutrino is extremely small. They therefore point back to the sites of
production, and offer a unique potential for obtaining information about
where particle production and acceleration takes place in the Universe.
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14.2 The History of Neutrinos

Neutrinos were postulated in 1930 by Wolfgang Pauli to explain a supposed
anomaly in the energy spectrum of β-decay. While at the time only two
emerging particles from the nuclear decay could be detected:

A
ZX → A

Z+1Y + e−

the energy of the produced electron was not monochromatic, as it should be
if the original nucleus decays at rest into only two bodies. To save the princi-
ple of energy conservation, Pauli suggested that a third particle was always
produced in β-decay, but that it was not detectable. The third particle had
to be neutral (or else the conservation of charge would have been violated!)
and have very small mass, since the total energy of the detected particles
accounted for almost all the mass of the parent nuclei. For these reasons,
Fermi called the ‘invisible’ particle the neutrino.1

The proper description of β−-decay is thus
A
ZX → A

Z+1Y + e− + ν̄e (14.1)

If energetically allowed, a proton within a nucleus can transform into a
neutron under the emission of a positron:

A
ZX → A

Z−1Y + e+ + νe (14.2)

The ν̄e in (14.1) is the antineutrino. The production of an antiparticle in
β− decay is necessary for the conservation of lepton number, as discussed in
Section 6.3. The reverse happens in β+ decay, where a positron (anti-electron)
is emitted, thus a neutrino is needed to reset the lepton number to what it
was prior to the decay.

The existence of neutrinos was finally demonstrated by the observation
of the reaction:

p + ν̄e → n + e+ (14.3)

The original experiment was performed by Clyde Cowan and Fred Reines
in 1955. For this fundamental discovery Reines was awarded the 1995 Nobel
prize in physics.2 The experiment was performed in an underground labora-
tory, 11 metres below one of the nuclear reactors at Savannah River. The sig-
nal of an antineutrino capture was the simultaneous detection of the positron,
as it annihilated with an electron in the target,3 and a recoiling neutron.
1 Pauli was quite uneasy about predicting a particle whose existence nobody, in-

cluding himself, thought could ever be proven. Only some 25 years later, when
the first powerful nuclear reactors were put into operation, was the time ripe for
its experimental discovery.

2 The prize was shared between Reines (Cowan had died many years earlier) and
Martin Perl for his discovery of the τ lepton.

3 The result of the annihilation is two 511 keV photons in opposite directions.
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Muon neutrinos were first observed in 1962 in an experiment led by Leon
Lederman, Melvin Schwartz and Jack Steinberger. They received the Nobel
prize in physics in 1988.

14.3 Neutrino Interactions with Matter

Neutrino interactions with matter are divided into two kinds. Neutral current
(NC) interactions are mediated by the neutral Z bosons. Charge current (CC)
interactions, on the other hand, involve the exchange of W+ and W− bosons.

NC interactions are responsible for annihilation reactions involving neu-
trinos,

e+ + e− → νµ + ν̄µ

for example, and interactions such as

νµ + e− → νµ + e−

where neutrinos scatter with matter and thereby gain or lose energy from the
collision partner without any additional matter being created or destroyed.
Such collisions are called elastic scatterings. Both types of interaction are
shown in Fig. 14.1.

νµ νµ

e- e-

Zo

ν

ν
-e-

e+

Zo

Fig. 14.1. Feynman graphs for NC interactions: elastic e−ν scattering and electron
positron annihilation into neutrinos.

In CC interactions there is an exchange of lepton partners. For example,
an antineutrino can be absorbed by a proton, producing a neutron and a
positron in the final state as shown in Fig. 14.2.
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Fig. 14.2. Feynman diagram for antineutrino absorption. One of the quarks inside
the proton changes flavour thereby transforming the nucleon into a neutron.

14.3.1 The Cross-Sections

Neutrino interactions involve the production of very high mass virtual parti-
cles, and are therefore heavily suppressed at low energies. The matrix element
of the reaction has a propagator term which includes the mass squared of the
mediator particle (see (6.23)):

1
q2 − M2

where q is the momentum transfer of the reaction.
The Z0 mass is about 91 GeV: that is, almost 100 times heavier than the

proton. W -bosons are somewhat lighter, around 80 GeV.
A rough estimate of the cross-section for weak processes, such as

ν̄µµ− → ν̄ee
− (14.4)

for energies well below the masses of the Z and W particles, can be derived
from purely dimensional grounds. We found in Section 6.10.1 that the effec-
tive coupling constant in weak interactions is g2

weak/m2
W ∼ 10−5. Before the

discovery of the W and Z bosons, the weak interactions had been parame-
terized by the so-called Fermi constant GF , which governs the muon decay
µ− → e− + νµ + ν̄e and is just of this order (see also Appendix D.3):

GF = 1.1664 · 10−5 GeV−2.
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The approximate expression for high-energy neutrino interactions with
matter can thus be written (see (6.26)):

σ ∼ α2s

m4
W

∼ G2
F E2

cm (14.5)

where Ecm is the centre of momentum energy of the incoming neutrino.

Example 14.3.1 Give a numerical expression for (14.5)

Answer: We use the standard recipe to convert back from natural units. To
obtain an answer in units of length squared we have to multiply (14.5) by
(h̄c)2. A useful relationship to remember is:

h̄c ≈ 2 · 10−11 MeV cm (14.6)

We therefore arrive at the numerical expression:

σweak = [2 · 10−11 × 1.1664 · 10−11 × Ecm]2

∼ 5 · 10−44

(
Ecm

1 MeV

)2

cm2 (14.7)

Next we calculate the cross-section for neutrino interactions expressed in
terms of the laboratory energy. In a target experiment designed to detect
neutrino interactions through processes of the type4 νXe− → νXe−, only the
beam particles (νX) have finite momentum. In a water tank, for example,
the electrons in the target atoms have extremely small net velocities. The
centre of momentum energy squared, s, is the sum of the four-momenta of
the colliding particles squared:

s = (Pe + Pν)2 = [(Ee, p̄e) + (Eν , p̄ν)]2

= [(me,0) + (Eν , Eν p̂)]2

where p̂ indicates the direction of the neutrino momentum, and we have
recognized that for a massless particle |p̄| = E in natural units (c = 1).

Thus, we find that in the laboratory frame:

s = 2meEν + m2
e (14.8)

For very high neutrino energies, Eν 	 me, the last term can be neglected,
leaving us with the expression:

σ(νe) ≈ 2G2
F meEν (14.9)

In other words: the cross-section for neutrino interactions rises linearly
with neutrino energy.
4 The experimental signature is given by the recoiling electron
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A detailed calculation for neutrino energies above 5 MeV shows that the
total cross-section for the reaction νXe− → νXe− is well approximated by
[37]:

σνe = CX · 9.5 · 10−45 ·
(

Eν

1 MeV

)
cm2 (14.10)

where the flavour-dependent constants CX are

Ce = 1 (14.11)

and

Cµ = Cτ =
1

6.2
(14.12)

The cross-section is larger for electron neutrinos, as they can, unlike the
other neutrino species, couple to the electrons in the target through both NC
and CC interactions, as shown in Fig. 14.3.

νe
νe

e- e-

Zo

νe e-

e- νe

W

Fig. 14.3. Feynman diagrams for νee interactions. The NC-interaction graph is
shown in the left diagram. The right diagram shows the CC-interaction with the
exchange of a charged W boson.

14.4 Neutrino Masses

Laboratory experiments have, so far, not succeeded in measuring the mass of
any neutrino. Instead, the negative results have been expressed in the form of
upper limits, due to the finite resolution of the experiments. The best (lowest)



14.5 Stellar Neutrinos 243

upper limits on the mass of the electron neutrino come from the studies of
the electron energy spectrum in tritium decay:

3H →3 He + e− + ν̄e

As the minimum amount of energy taken by the νe is its mass, the end-
point energy of the emitted electron is a measurement of mνe

. According to
these experiments the mass of the electron neutrino is lower than 3 eV at the
95 per cent confidence level.

Limits on the mass of the muon neutrino, νµ, are extracted from accurate
measurements of the muon momentum pµ in the decay of charged pions:

π+ → µ+ + νµ

For pions decaying at rest one obtains (Problem 14.1):

m2
νµ

= m2
π + m2

µ − 2mπ

√
m2

µ + p2
µ (14.13)

Inserting the measured masses for pions and muons, an upper limit on
mνµ

is found to be 170 keV at the 90 per cent confidence level.
The existence of ντ is only established indirectly from the decay of τ

leptons, as the ντ has not yet been observed directly. Mass limits on the ντ

are set through studies of the missing energy and momentum in the charged
τ lepton decays such as

τ → 5π± + ντ

and

τ → 5π± + π0 + ντ

The current best laboratory mass limit is mντ
< 18 MeV.

As shown in Table (11.1), a combination of the data sets from WMAP and
the large scale structure survey 2dFGRS allows to set an upper bound to the
total energy density contribution from neutrinos, Ωνh2 < 0.0076. Equation
(9.10) can be inverted to extract an upper limit on the mass of all neutrino
species added:∑

i

mνi
< 94 · Ωνh2(eV) ∼ 1 eV. (14.14)

14.5 Stellar Neutrinos

Neutrinos are very efficient in the process of the cooling of stars, in spite of
their low probability of interaction with matter. Next we compute the mean
free path of neutrinos in stellar environments.

As seen from (14.10), neutrinos in the MeV range have a cross-section of
σν ≈ 10−44 cm2 for matter interactions. The mean free path for neutrinos is
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related to the density of matter and the cross-section for interaction as (see
(12.14)):

λν =
1

nσν
(14.15)

where n is the number of nucleons per cubic centimetre.
For a hydrogen star with mass density ρ, the number density is given by

n =
ρ

mH
=
(

ρ

1 g cm3

)
· 6 · 1023 cm−3 (14.16)

Inserting (14.16) in (14.15) we find

λν ≈ 2 · 1020

ρ/(1 g cm3)
cm (14.17)

For normal stellar matter, ρ ≈ 1 g/cm3, the mean free path becomes 100
pc, and even at ρ ≈ 106 g/cm3 λν is still 3000 solar radii! In other words,
neutrinos with MeV-scale energies escape from the stellar interior without
scattering even for extremely high densities. This is what makes neutrinos so
special in astrophysical environments.

Example 14.5.1 In very hot stellar environments, photons are produced with
enough energy to create large numbers of e+e− pairs.5

Estimate the fraction of events where an e+e− annihilation results in a
production of neutrinos instead of the dominant two-photon production.

Answer: The relevant energy scale in a stellar environment where electron
positron pairs are thermally produced is Ecm ≈ 2me = 1 MeV. From Fig. 6.9
we see that the two-photon cross-section at these energies is roughly 10−25

cm2. We can therefore obtain a rough estimate of the neutrino production
ratio by taking the ratio of the cross-sections:

P =
σweak(1 MeV)
σem(1 MeV)

≈ 10−44

10−25
∼ 10−19

While the rate of electromagnetic processes is overwhelmingly larger, weak
interactions are important in the energy balance of a star, as neutrinos, once
created, escape from the star, thereby reducing its available energy.
5 Eventually, an equilibrium density of positrons is reached as most of the electron

positron pairs annihilate, mostly creating two photons.
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14.5.1 Solar Neutrinos

The low cross-sections of weak interactions allow stars to burn their fuel
slowly instead of exploding soon after formation. Our Sun, for example, is
believed to be 4.5 billion years old, and is predicted to continue in its present
luminous state for at least as long. The main source of energy in hydrogen-
burning stars (as the Sun) is through the pp-fusion reaction:

4p + 2e− → 4He + 2νe + 26.731 MeV

where, on average, only about 2 per cent (0.6 MeV) of the energy is carried
by the neutrinos according to the ‘standard solar model’, SSM. The details of
the nuclear reaction – what is called the pp or proton proton chain – and the
spectrum of the produced neutrinos are shown in Table 14.1 and Fig. 14.4.6

Table 14.1. Nuclear reaction for solar neutrinos [4]. The (hep) reaction, 3He + p
→ 4He + e+ + νe, is several orders of magnitude less common than the others. Yet,
it is important as it provides the high-energy tail of the solar neutrino spectrum.

Reaction Neutrino energy

p + p → 2H + e+ + νe ≤ 0.42 MeV
1 or

p + e− + p → 2H + νe 1.442 MeV

2 2H + p → 3He + γ
3He +3He → 4He + p + p

3 or
3He + 4He → 7Be+γ
or
3He + p → 4He + e+ + νe ≤ 18.8 MeV
7Be + e− → 7Li + νe 0.86 MeV
7Li + p → 4He + 4He

4 or
7Be + p → 8B + γ
8B → 8Be∗ + e+ + νe < 15 MeV
8Be∗ → 4He + 4He

Next, we calculate the expected flux of neutrinos from the Sun. The total
luminosity of the Sun is:
6 Here we may notice that the processes in stellar interiors are very similar to

the ones that took place in the early Universe when the light elements 4He,
3He, deuterium and 7Li were synthesized (Section 9.3). A difference is that the
higher density and temperature in the interior of a star make the processes stay
longer in thermal equilibrium, so that heavier elements (up to iron) can also be
synthesized.
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L� = 3.92 · 1026 Watts = 2.4 · 1039 MeV/sec

Thus, according to the SSM, the Sun should emit around 2·1038 electron
neutrinos (νe) per second. At the Earth, 1.5 · 108 km away, the neutrino flux
becomes:

φνe
= 6.5 · 1014 m−2 s−1

Although this is a huge flux, the extremely low interaction cross-section makes
its detection very difficult. Several detection techniques have been developed
to observe solar neutrinos. The experiments can be divided into two classes:
absorption and scattering experiments.

Neutrino Absorption Experiments

The field of observational neutrino astronomy started with the pioneering
experiment of Ray Davis and collaborators in the early 1960s. A tank filled
with 615 tons of a cleaning fluid, C2Cl4, was installed at the Homestake Mine
in South Dakota, USA, about 1.5 km below ground. The nuclear reaction that
makes neutrino detection possible is:

νe + 37Cl → 37Ar + e−

The high threshold for the reaction, 0.814 MeV, permits the observation
of only a small fraction of the solar spectrum, as shown in Fig. 14.4. From
the accumulation of argon in the tank, the flux of electron neutrinos can be
calculated. The argon is chemically extracted, and single atoms are counted
through their subsequent decay.7

In about 4 · 105 litres of target, containing 130 tons of 37Cl, less than 15
argon atoms are produced every month! After subtracting the known back-
ground rates, mainly due to cosmic ray muons interacting with the liquid
target and producing 37Ar, the flux of incoming νe can be measured. As the
Sun is the dominant source of neutrinos, it is assumed that the measured flux
of neutrinos originates from the Sun. There is no sensitivity of directionality
in the absorption experiments. For every six counted argon atoms, one is
estimated to be due to background.

The experimental and theoretical rates for absorption of solar neutrinos
per target atom are expressed in Solar Neutrino Units, SNU. For convenience:

1 SNU = 10−36 s−1

The estimate involves the integral over the solar neutrino flux and the absorp-
tion cross-section:

∫ dφ(Eν)
dEν

σ(Eν)dEν . In particular, the theoretical estimate
requires detailed calculations of the cross-sections for neutrino absorption by
7 The argon counting relies on detecting the 2.82 keV so-called Auger electrons

from the electron capture decay of 37Ar.
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the target atoms that take into account transitions to different states of the
final nuclei.

While the predicted rate for neutrino capture at the chlorine experiment is
7.9±2.6 SNU, the observed rate averaged over more than 20 years is only 2.6±
0.2 SNU, as shown in Fig. 14.5. This long-standing disagreement has been
called the ‘solar neutrino problem’. Several other experimental techniques
have been pursued to verify the nature of the disagreement.

Neutrino energy (MeV)

N
eu

tri
no

 fl
ux

Gallium Chlorine Super-Kam

Fig. 14.4. Energy spectrum of neutrinos produced in the Sun by the various nuclear
reactions, as predicted by the ‘standard solar model’ of J. Bahcall and collaborators
[4].

The most efficient solar neutrino absorption experiments to date have
been performed with the gallium detectors, SAGE and Gallex. The nuclear
reaction that takes place in these detectors is:

νe + 71Ga → 71Ge + e−

The energy threshold for the reaction is only 0.233 MeV – significantly
lower than for the 37Cl experiment, as shown in Fig. 14.4. The gallium exper-
iments are therefore sensitive to a much larger fraction of the total spectrum
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Fig. 14.5. Observational results from the Homestake neutrino experiment as a
function of time. The line at 7.9 SNU shows the prediction of the ‘standard solar
model’.

of solar neutrinos. In particular, they probe the main reaction in the chain:
p + p →2 H + e+ + νe, which produces neutrinos with E ≤ 0.420 MeV.

The Gallex experiment is located in the underground Gran Sasso Lab-
oratory near Rome, Italy, and uses 30 tons of gallium in an aqueous solution
of gallium chloride and hydrochloric acid. The Sage experiment uses 55 tons
of metallic gallium and is situated in the Baksan Neutrino Observatory, in
the Caucasus Mountains, in Russia. Sage has been taking data since 1990,
and Gallex (now discontinued) since 1991.

While the theoretical prediction for the gallium experiment is about 130
SNU for variants of solar models, the observed rates, combining the two ex-
periments, is 70.3±7 SNU, at least 7.5 standard deviations from the standard
solar model [4].

The deficit of neutrino captures in the gallium experiments, although
smaller than in the chlorine detector, is significant, and has kept the ‘solar
neutrino problem’ alive.
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Neutrino Scattering Experiments

In the Japanese mine at Kamioka a large water tank was fitted with thou-
sands of photomultipliers (PMs). This enabled the detection of solar neutrinos
through the elastic scattering process:

ν + e− → ν + e−

The recoiling electrons emit Cherenkov light, detectable with the PMs,
and can thus be counted. (In Section 14.10 the Cherenkov process will be
explained in detail.) The method is very attractive because of its relative
simplicity (water is cheap) and because the scattered electrons, on average,
follow the direction of the incoming neutrinos. That allows the experimenters
to verify that the signal really comes from the Sun, as demonstrated in
Fig. 14.6. One disadvantage is that there is an experimental threshold for
the detectability of the recoiling electron corresponding to Eν > 7−9 MeV.8

Therefore, only the highest-energy neutrinos emitted from the Sun can be
measured, thereby reducing the detectable flux by about 104. Another diffi-
culty is the indistinguishable detector signal from gamma-rays generated by
radioactive impurities in the water or induced by cosmic rays, implying a
high rate of background events, as shown in Fig. 14.6.

On the other hand, one clearly superior aspect of the scattering experi-
ments is that they are sensitive to all neutrino species, although with different
cross-sections (see equation (14.10)).

Example 14.5.2 Calculate the minimum necessary mass of water that a neu-
trino telescope must have in order to detect about one solar neutrino per day
assuming that the detection threshold Eν ∼ 10 MeV reduces the observable
flux by 104 and that the cross-section σνe where the electron recoil energy is
at least 5 MeV is about 10 per cent of the total cross-section, given in (14.10).

Answer: The number of target electrons in M kg of water is:

Ntarget =
M · NA · 10

A
(14.18)

where NA = 6.022 · 1026 kmol−1 is Avogadro’s number, A is the atomic
weight and the factor 10 appears because there are ten electrons for each
H2O molecule in the target. Given the neutrino flux φν and the cross-section
σνe, the number of interactions within a volume Ntarget electrons in a time
interval ∆t is:

Nνe = φν∆tσνeNtarget

= φν∆tσνe
M · NA · 10

A
(14.19)

8 For the new version of the experiment, Super-Kamiokande, which began in April
1996, the threshold has been lowered to 6.5 MeV.
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Fig. 14.6. Angular distribution of neutrino events in the Super-Kamiokande de-
tector with respect to the angle to the Sun. The data points show the results of 504
days of exposure, with an electron energy threshold of 6.5 MeV. For an electron
energy of 10 MeV the experimental resolution of the measurement of the electron
direction is about 28 degrees. For that energy, the intrinsic spread of the angle
between the original neutrino direction and the electron path is about 18 degrees.
Adapted from Y. Suzuki, presentation on behalf of the Super-Kamiokande collab-
oration at the conference Neutrino98, Takayama, Japan, 1998.

The cross-section for electron neutrino interactions with electrons for the
relevant energies is about 10−44 cm2 (from (14.10)) and the reduced flux is
φν = 6.5 · 106 cm−2s−1. Inserting A=18 kg/kmol and ∆t = 86400 seconds
(in one day) one finds

M ≈ 0.5 · 106 kg

In summary, about a kiloton of water is required in order to detect solar
neutrinos at a reasonable rate. This points to yet another disadvantage for
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the water experiments: the scattering cross-section is much smaller than the
neutrino absorption cross-section for suitable targets (only 30 tons of gallium
are sufficient).

The Kamiokande II experiment contained a total 2.1 ktons of water, al-
though only 680 tons were used to detect solar neutrinos. Super-Kamiokande,
operating since April 1996, is about 10 times larger.

Just as for the absorption experiments, the water experiment at Kamioka
has found a deficit of solar neutrinos. The observed flux is about half of
that predicted by the SSM. This low flux has been verified by the Super-
Kamiokande experiment. In fact, another important solar neutrino experi-
ment has just started operating. This is the Sudbury Neutrino Observatory
(SNO), which is using heavy water as the detector medium. This has the
advantage of larger neutrino cross-sections, especially for neutral current in-
teractions. By combining information on the CC and NC reactions, it has
been conclusively determined that the electron neutrinos that seem to be
missing from the Sun have been transformed into another neutrino species
through quantum mechanical mixing (see Section 14.6).

The ‘solar neutrino problem’ constituted a fascinating puzzle, which has
now been solved when a whole set of new experiments with increased sensi-
tivity have acquired data.

14.5.2 Supernova Neutrinos

Young and middle-aged stars like the Sun produce energy mainly through
the fusion of hydrogen nuclei into helium, thereby releasing nuclear binding
energy. At high enough temperatures and densities, three helium nuclei may
fuse to produce carbon. Through successive contractions and reheating, very
massive stars (M > 8 M�) also ignite carbon and, in turn, the remains of
its combustion: Ne, Mg, O, Si. The sequence ends when iron is produced.
Then, an ‘onion-like’ structure exists with the iron in the core followed by
successive layers of lighter elements. Unlike the lighter elements, fusion of iron
nuclei does not release binding energy. Radiation pressure can thus no longer
balance the pressure from the outer layers. Instead, equilibrium is maintained
by the pressure generated by the motion of degenerate electrons.

The iron core, steadily being ‘fed’ more and more mass, eventually reaches
the Chandrasekhar mass (around 1.4 times the solar mass): as the velocity
of the degenerate electrons approaches the speed of light, no further increase
in electron pressure can be obtained. Instead, as the gravitational pressure
increases, electrons and protons fuse through the weak interactions to produce
neutrons and neutrinos. As the latter escape, a collapse of the core occurs
until it reaches nuclear density: a neutron star with 15 − 20 km radius is
formed. The neutron pressure then prevents the star from becoming a black
hole. The in-going wave bounces, generating the explosion that sweeps away
the star’s mantle: that is, the onset of a so-called type II (core-collapse)
supernova.
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One can make a rough estimate of the energy release and the number of
neutrinos produced in the process of neutron star formation in connection
with a type II supernova. The gravitational binding energy released as the
star’s radius shrinks is (Problem 14.4):

Eb ≈ 3
5

GNM2
ns

Rns
= 2 · 1046 J (14.20)

for Rns=15 km and Mns=1.4 M�, the Chandrasekhar mass. In spite of the
spectacular optical images of supernovae, sometimes outshining an entire
galaxy, only a small fraction of the energy, about ∼ 1 per cent, is transferred
to the ejected star mantle, and a hundred times less to power the visible
light curves. The ‘easiest’ way for the star to cool is through the emission
of neutrinos. It is therefore a good approximation to assume that the total
energy carried by neutrinos is approximately Eb. In the core, the density and
temperature are high enough to make the weak interaction rates so fast as to
keep all neutrino types roughly in thermal equilibrium for several seconds. If
the energy is distributed evenly between νe, νµ, ντ , ν̄e, ν̄µ and ν̄τ , each kind
of particle will carry a total of ∼ 0.3·1046 J.

We estimate the thermal energies within the newborn neutron star by
invoking the virial theorem which relates the thermal and potential energy
of a self-gravitating system. For instance, for a nucleon on the surface of a
neutron star, the average kinetic energy must be one half of its gravitational
potential energy:

< Ek > =
1
2

GNMnsmN

Rns
≈ 25 MeV (14.21)

Neutrinos in thermal equilibrium with their environment (T = 2
3 < Ek >)

will have similar energies. Thus, from (14.20) and (14.21) it follows that about
1058 neutrinos produced are produced in a supernova explosion!

Example 14.5.3 Estimate the total number of neutrinos that reach the Earth
from a supernova explosion in the Large Magellanic Cloud, roughly 50 kpc
distant.

Answer: At a distance of 5 · 104 parsecs: that is, 1.55 · 1021 metres, the
integrated flux of neutrinos becomes

Fν =
1058

4π(1.55 · 1021)2
= 2 · 1014 m−2 (14.22)

Example 14.5.4 Calculate the mean free path of 25 MeV neutrinos during the
collapse that precedes a type II supernova for a density of ρ = 1014 g·cm−3.
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Answer: With σweak(25 MeV ) ≈ 10−41 cm2 inserted in (14.15) together
with m=mN , we find λν(25MeV ) ≈ 4 metres.

Clearly, with a mean free path (for the energetic neutrinos) of only a few
metres, the escape from the neutron star is slowed down to the level of a
diffusive process. The number of scatterings is given by ratio between the
star’s radius and the mean free path, squared.

n =
(

Rc

λν

)2

(14.23)

and the time scale for the neutrinos to diffuse out of the star is

τ ≈ nλν

c
∼ 1 second (14.24)

Adding to this the actual collapse time, also about a second (not much
longer than the free-fall collapse time), we can deduce that the burst of
neutrinos from a new supernova should have a signal width of a few seconds.

As the density of nucleons increases, eventually reaching about 3·1014

g/cm3, the mean free path of neutrinos shrinks. Because of the energy depen-
dence of neutrino cross-section, neutrinos of higher energy will scatter more
times on average, thereby delaying their escape time from the high-density
region.

The burst of neutrinos which first escape from the collapsing core will
therefore have an energy corresponding to a neutrino mean free path λ � Rns:

λ = Rns =
mn

ρnsσweak
(14.25)

Beyond ρn ≈ 1012 g/cm3, the star becomes opaque for neutrinos. Inserting
the cross-section formula from (14.7) and the nucleon mass, mn = 1.7 · 10−24

g, one then finds that the typical energy for a burst of supernova neutrinos
is

Eν ≈
√

mn

ρns · Rns · 5 · 10−44
= 10 MeV (14.26)

In other words, one expects the observable neutrino spectrum from a
supernova explosion to be centered around a value just above 10 MeV: that
is, just above the detection threshold for water Cherenkov detectors.

A spectacular confirmation of these expectations took place in February
1987. The closest supernova since the one sighted by Kepler in 1604 was
spotted optically in the Large Magellanic Cloud, which together with the
Small Magellanic Cloud is our nearest neighbour galaxy, about 50 kpc distant.
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Core collapse neutrinos from this famous supernova (SN1987A) were de-
tected in the underground water detectors at Kamioka and at the Irvine
Michigan Brookhaven (IMB) 6.8 kton water Cherenkov detector.

Both detectors were originally designed to look for proton decays (pre-
dicted in Grand Unification Theories), such as p → e+ +π0 , which still have
not been observed. Instead, they could confirm the model of supernova explo-
sions by detecting the positrons produced in the absorption of antineutrinos
by the protons in the water target:

ν̄e + p → n + e+

The cross-section for antineutrino absorption at a few tens of MeV is be-
tween 20 and 100 times larger than the one for elastic scattering on electrons,
and is therefore the dominant process for detection of supernova neutrinos.
As opposed to the elastic scattering collisions, the ν̄ep interactions produce
isotropic positrons. The primary neutrino direction can thus not be measured
through this process.

A total of 11 detected positrons at Kamiokande and eight at IMB9, with
energies up to 40 MeV, are believed to be due to the capture of antineutri-
nos from SN1987A. The arrival times and measured energies of the recoiling
positrons are shown in Fig. 14.7.

14.6 Neutrino Oscillations

The long-standing ‘solar neutrino problem’ has forced particle physicists and
astronomers to review their calculations and look for possible scenarios that
explain the deficit of detected νes in the solar neutrino experiments. The
approaches have been twofold. On one hand, the ‘astrophysics’ part of the
calculations have been challenged: that is, the model predictions of the rate
of nuclear reactions in the interior of the Sun. However, new results on the
different acoustic oscillation modes observed at the solar surface (‘helioseis-
mology’) indicate that the standard solar model works very well. Particle
physicists, on the other hand, have suggested an intriguing alternative expla-
nation: νes are produced in the interior of the Sun just as all the astrophysics
models predict, but they change identity somewhere between the Sun and
the detector. For example, a fraction of νes convert into νµs, ντ s (or some-
thing else!) thereby decreasing the flux of electron neutrinos at the Earth.
Current solar neutrino experiments are mostly sensitive to νes. This weakness
has been resolved as the next generation of solar neutrino experiments with
different target materials, SNO (deuterium) (and soon BOREXINO (11B)),
has measured the total neutrino flux, integrated over all neutrino species.
Their finding is that the total flux of neutrinos is in good agreement with
9 The IMB detector had a higher detection threshold.
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Fig. 14.7. Neutrino signals detected at Kamiokande (filled circles) and IMB (empty
circles) from SN1987A. The figure show the positron energies. There is possibly an
offset between the clocks of the two experiments [9, 21].

calculations based on the standard solar model, thus supporting the idea of
oscillations, which we will now discuss.

If neutrinos are massless they are by definition stable: that is, they cannot
decay into any other lighter particle. There is, however, no compelling reason
why they cannot have finite masses. For ν masses less than an MeV or so,
the radiative decay of a heavier νa to a lighter νb through νa → νb + γ is
kinematically possible, but the estimated lifetime in the Standard Model is
much longer than the age of the Universe.

In such a scenario, mixing of neutrino species may occur if the weak-
interaction eigenstates, νe, νµ and ντ , are not mass eigenstates: that is, the
states in which neutrinos propagate in vacuum.

In general, any flavour or weak-interaction neutrino eigenstate, νf , can be
expressed as a linear superposition of orthogonal mass eigenstates, νm:

|νf >=
∑
m

cfm|νm >
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For example, let us consider the situation where there are two neutrino
mass eigenstates associated with two flavour eigenstates.

The unitary transformation matrix connecting the mass eigenstates with
the flavour eigenstates can be described with one parameter, the mixing angle
θ. (

νµ

νe

)
=
(

cos θ sin θ
− sin θ cos θ

)(
ν1

ν2

)
(14.27)

Although the states |νe > and |νµ > (and their antiparticles) are produced
in weak interactions, such as in the decay µ− → e−ν̄eνµ, the physical states:
that is, the eigenstates of the Hamiltonian with definite masses, are ν1 and
ν2.

Therefore, the time evolution of a muon neutrino wave function with
momentum p is

|νe(t) >= − sin θe−iE1t|ν1 > + cos θe−iE2t|ν2 > (14.28)

where E1 and E2 are the energies of the two mass eigenstates. Two energy
levels arise if ν1 and ν2 have different masses, as they must have the same
momentum, p. Then, for very small neutrino masses: that is, mi  Ei,

Ei = p +
m2

i

2p
(14.29)

The probability P (νe → νe) = | < νe|νe > |2, that an electron neutrino
remains a νe after travelling a time t is (Problem 14.7):

P (νe → νe) = 1 − sin2 (2θ) sin2 [
1
2
(E2 − E1)t] (14.30)

For very small neutrino masses, inserting (14.29) we get

P (νe → νe) = 1 − sin2 (2θ) sin2

[(
m2

2 − m2
1

4E

)
t

]
(14.31)

where E is the energy of νe.
It thus follows that the probability that the electron neutrino becomes a

muon neutrino at a time t is

P (νe → νµ) = sin2 (2θ) sin2

[
∆m2

4E
t

]
(14.32)

where ∆m2 = |m2
2 − m2

1|.
From (14.32) and Fig. 14.8 it is seen that the probability function for

flavour change oscillates, with an amplitude given by sin2(2θ) and oscillation
frequency ∼ ∆m2/E. Therefore, for suitable neutrino masses and mixing
angles, the presumed deficit of solar electron neutrinos can be explained by
the oscillation phenomenon.
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To summarize, the amplitude and oscillation length of the flavour oscilla-
tion are (reinserting factors of h̄ and c):{

A = sin2 (2θ)
Lν = 4πEh̄

∆m2c3

(14.33)

Numerically, the oscillation length becomes

Lν = 1.27
(

E

1MeV

)(
1 eV2

∆m2

)
metres. (14.34)

Fig. 14.8. Probability distribution for νe → νµ.

A number of terrestrial experiments have been designed to look for neu-
trino oscillations. They use a known source of neutrinos, either from a nuclear
reactor or from an accelerator beam.

In the reactor experiments, the ν̄e energies are so small (typically a few
MeV) that the charged current reaction ν̄µ → µ is kinematically impossible
even if a ν̄e → ν̄µ conversion has taken place. The best oscillation signal
in reactor experiments is therefore the disappearance of νes as a function of
distance from the source.

In accelerator experiments νµ beams are created by a secondary beam
of decaying pions, π → µνµ. One then looks for the appearance of νe and
ν̄e. Currently, no convincing signal of oscillation has been seen, with the



258 14 The Role of Neutrinos

possible exception of an experiment at Los Alamos, which has not yet been
independently confirmed by other experiments.

It is believed to be very likely that the answer to the solar neutrino prob-
lem involves neutrino oscillations. This issue has recently been emphasized
when SNO has probed, with large statistics, all the neutrino flavours.

14.6.1 Neutrinos Propagating Through Matter

For the physics of solar neutrinos, there is another effect that is interesting,
and according to present models preferred, namely the Mikheev-Smirnov-
Wolfenstein (MSW) effect. It is a resonant conversion, in the solar matter,
of the electron neutrino into the two other neutrinos depending on the mass
differences and mixing angles. The reason for this conversion is the existence
of two diagrams (the ones shown in Fig. 14.3) in the scattering process for an
electron neutrino on an electron, one with Z0 the other with W± exhange. If
the electron neutrino has oscillated into a muon or tau neutrino, the graph
corresponding to the W± exchange does not contribute. After being produced
near the centre of the Sun, the average energy of the neutrinos will be affected
by this. The ‘charged current’, W± exchange, gives a contribution HCC =√

2GF Ne, where Ne is the electron density. (The Z0 exchange is the same for
all neutrinos and gives no contribution to neutrino oscillations.) The net effect
of this oscillation in matter is that the vacuum mixing angle θ is replaced by
a matter mixing θm:

sin2(2θm) =
sin2(2θ)

(cos(2θ) − a)2 + sin2(2θ)
(14.35)

where

a =
2EHCC

∆m2
. (14.36)

This formula shows that even if the vacuum mixing angle is very small, there
will be maximum mixing (‘resonance’) if the electron density is such that
a = cos(2θ). If, as is the case in the Sun, the matter density varies, there is
plausably a resonance, and the width of the resonance is roughly corresonding
to matter densities such that |a − cos(2θ)| < | sin(2θ)|.

According to the present experimental situation, the MSW effect is taking
place for solar neutrinos, with a ‘large mixing angle’ θ ≈ 33 degrees, and
∆m2 ∼ 7 · 10−5 eV2 preferred.

The recent data which has pinned down these properties for solar neutri-
nos are, besides the Davis, Super-Kamiokande, GALLEX and SAGE data,
new results from SNO and KamLAND. KamLAND is a liquid scintillator
neutrino detector near Super-Kamiokande, which is sensitive to the fluxes of
antineutrinos produced in a number of Japanese nuclear power reactors. In
a disappearance experiment, they confirmed the oscillation solution of the
solar neutrino problem, namely, they observed the decrease in neutrino flux
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generated by oscillations ν̄e → ν̄µ,τ and obtained consistency with the values
given by the MSW large mixing angle solution to the solar neutrino problem.

After decades of hard experimental work, the neutrino sector is now get-
ting established, showing interesting patterns of mixing. To exactly under-
stand the cause and magnitude of these mixing remains a very active field of
research.

14.7 Atmospheric Neutrinos

Neutrinos are produced by hadronic and muonic decays following the inter-
action of cosmic ray nuclei with the Earth’s atmosphere:⎧⎨⎩

p/n + N → π+/K+ + ...
π+/K+ → µ+ + νµ

µ+ → e+ + ν̄µ + νe,⎧⎨⎩
p/n + N → π−/K− + ...

π−/K− → µ− + ν̄µ

µ− → e− + νµ + ν̄e

(14.37)

Here K± are mesons containing the strange quark (K+, for example, is com-
posed of a u quark and an s-antiquark). From these cascade reactions one
expects that there are about twice as many muon neutrinos than electron
neutrinos produced in the atmosphere:

ϕνµ
+ ϕν̄µ

ϕνe
+ ϕν̄e

= 2 (14.38)

This expectation holds at low energies. At higher energies, additional
effects have to be taken into account: for example, the competition between
scattering and decay of the produced pions and the possibility that muons
hit the ground before decaying, due to time dilation (see Problem 14.9).

As the energy spectrum of the primary nuclei extends out to ∼1020 eV
(Chapter 12), one expects neutrinos to be produced to comparable energies.
The spectrum must fall faster, though, as it seldom happens that the full
energy of the primary is transferred to one of the particles in the cascade.

Due to the complicated chain of reactions in the cascade, a Monte Carlo
simulation is needed in order to calculate the differential spectrum of atmo-
spheric neutrinos. The general features are: a broad peak around 0.1 GeV
(∼1 cm−2 s−1) and, at very high energies, Eν 	 1 TeV, the flux falls as
E−3.7.

The cross-section for a neutrino nucleon interaction in a target can be
calculated by inserting the nucleon mass (instead of me) in equation (14.9).
In the region of the maximum flux of atmospheric neutrinos the cross-section
is σνN ∼10−39 cm2. We can thus estimate the minimum target size required
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to detect νs produced in atmospheric cascades. As for solar neutrinos, a
‘kiloton size’ detector is required (see Problem 14.6).

Atmospheric neutrinos are also useful to test the oscillation hypothesis.
The relationship in (14.38) can be compared with the observed ratio. It is
often possible to determine the direction of the neutrinos in a detector. The
neutrinos that move ‘upwards’– that is, those that have crossed the entire
Earth diameter L≈ 104 km – can probe mass differences as small 10−5 eV2,
as shown in the example below.

Example 14.7.1 Show that ‘upward-moving’ atmospheric neutrinos of about
100 MeV are useful for looking for neutrino oscillations in the region ∆m2 ≥
10−5 eV2.

Answer: In order to be able to detect a significant deviation in the ratio
between neutrino flavours (14.38), the path length that the neutrinos travel
must be comparable or larger than the one-half oscillation length.

L ≥ 1
2
Lν (14.39)

Thus, combining (14.39) and (14.34) one finds that the ‘minimal’ detectable
mass difference, ∆m2

min is

∆m2
min = 5 · 10−5eV−2 (14.40)

In fact, there are at present indications that atmospheric neutrinos indeed
do oscillate. Results from, among others, the Super-Kamiokande experiment
seem to be best interpreted as a deficit of muon neutrinos, with one of the
possibilities being oscillation νµ → ντ with a large mixing angle (sin2(2θ) ∼
0.8 − 1.0) and ∆m2 ∼ 5 · 10−3 eV2. There are several other experiments
which have confirmed a lack of muon neutrinos relative to electron neutrinos,
which could be explained if oscillations νµ → ντ take place. The reason for
this is that due to the high τ± lepton mass (1.8 GeV) the ντ s generated by
mixing will not have enough energy on average to make the charged current
interaction ντ +N → τ +X kinematically possible. (Their contribution to the
neutral current events is also too small to be easily detected.) Of course, there
is a possibility that a ‘sterile’ neutrino exists which does not couple to the W±

and Z0 bosons. Maybe the muon neutrinos mix with such a neutrino, but this
is a less economical model since it involves a hypothetical, not yet detected,
particle species. When more detailed data on neutral current interactions
become available this hypothesis may be tested experimentally.

The Super-Kamiokande collaboration has recently released data on the
zenith-angle distribution of the detected muons. We see from (14.34) that
for given values of the mixing angle and mass difference, the probability for
finding a muon neutrino will depend on the ratio E/L of neutrino energy over
distance travelled. The average energy E can be estimated from the energy
of the detected muon, and the average value of L can be calculated from the



14.8 Neutrinos as Tracers of Particle Acceleration 261

direction of the detected muon. This is a simple consequence of the fact that
if the neutrinos are produced at height d in the atmosphere (realistically,
d ∼ 20 km) then if they arrive at zenith angle θz, the length of travel is given
by simple geometry:

L =
√

2Rd + (R − d)2 cos2 θz − (R − d) cos θz (14.41)

where R is the radius of the Earth (see Fig. 14.9). Since neutrinos are pro-
duced with a large spread of energies and angles, one has to integrate over
these distributions to extract the predicted signal. The main effect for the
parameters given above for νµ → ντ oscillations is a depletion of the muon
neutrino flux by a factor of around 2 for upward-going muons compared to
downward-going, with a smooth zenith-angle distribution for intermediate
angles (see Fig. 14.10).

Fig. 14.9. Schematic picture of atmospheric neutrino oscillation experiments.
While all neutrinos are produced in the Earth’s atmosphere (thickness about 30
km), the distance to the detector varies with zenith angle, up to a maximum length
of the Earth’s diameter (13,000 km) for directly upward-moving neutrinos. The
probability for flavour oscillation is therefore larger for upward-moving events.

14.8 Neutrinos as Tracers of Particle Acceleration

We have seen in the previous sections that a kiloton-size detector is neces-
sary to observe neutrinos from sources as close as the Earth’s atmosphere,
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Fig. 14.10. The rate of muons detected in the Super-Kamiokande experiment as
a function of zenith angle. If there were no neutrino oscillations the data points
would have been expected to lie in the boxes. As can be seen, the experimental
results agree better with the hypothesis of neutrino oscillations with mixing angle
sin2(2θ) ∼ 1 and ∆m2 ∼ 2.2 · 10−3 eV2 (indicated by the dashed lines). Adapted
from T. Kajita, talk presented on behalf of the Super-Kamiokande collaboration,
Neutrino98, Takayama, 1998.

the Sun or a type II supernova as far as the nearest galactic neighbours to
our own Galaxy. In order to attempt to study a broader class of astrophys-
ical objects, the required detector volume becomes practically unattainable.
Fortunately, there is a way to overcome this difficulty. The detector volume
estimates above were carried out for contained events: that is, for neutrinos
that interact inside the detector volume. Consider instead a process where
a neutrino interaction results in the production of a particle that interacts
electromagnetically and that, once created, traverses a very large distance.
The detection of the newly created particle is an indirect neutrino detection,
even at a great distance from the interaction point. In fact, this is the way
very high-energy (VHE) neutrino detectors operate: by looking for neutrino-
induced muons. The process is one of a charged current interaction

νµ + N → µ + ...,
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where N is a nucleon in the material surrounding the detector. The muon
range rises with energy, and around 1 TeV (1012 eV) is more than one kilo-
metre. The detection area is therefore greatly enhanced at high energies. In
water, a good approximation of the muon range as a function of energy is
given by

Rµ ≈ 2.5 ln
(

2 · Eµ

1 TeV
+ 1
)

km (14.42)

Moreover, the muon produced conserves, on average, the direction of
the incoming neutrino. The root-mean-squared of the νµ-µ angle is approxi-
mately:

√
< θ2 > ≈ 2

(
1 TeV

Eν

) 1
2

deg. (14.43)

We have also seen that the cross-section for neutrino interaction with
a target at rest rises linearly with energy. VHE neutrino telescopes become
efficient at a few GeV, where the product of the neutrino-matter cross-section
and the muon range rises approximately as E2

ν . Above 1 GeV, the induced flux
of muons from atmospheric neutrinos, for example, is about 1 m−2 year−1.

This detection scheme does not work as well for other types of neutri-
nos. Electrons (from νe + N → e + . . . ), because of their much smaller
mass, have a very short range since they lose energy through the emission
of bremsstrahlung photons. τ leptons, the heaviest known charged leptons
(mτ = 1.78 GeV), are produced in charged current interactions of ντ s but
are very short lived (the lifetime is tτ ∼ 3·10−13 seconds) and therefore not
suitable for detection (except for the fraction of times where the τ decays into
µν̄µντ , which happens in 18 per cent of the cases). However, if large neutrino-
detectors are built, there may be a possibility of detecting contained ultra-
high-energy electron and τ neutrino events by the intense cascade of light
that is produced by secondary electrons, positrons and photons. In the case
of τ neutrinos, special relativity may help to produce a good signature. If
sources of PeV (1015 eV) τ neutrinos exist, the produced charged τ lepton
would have a relativistic γ factor of (see (2.36))

γ ∼ Eν

mτ
∼ 106 (14.44)

which means, thanks to time dilation, that in the detector reference frame
the τ lepton will travel a distance

� ∼ γctτ ∼ 100 m (14.45)

The ‘double bang’ created by the charged current interaction (which breaks
up the hit nucleon and gives rise to a hadronic cascade) and the subsequent
decay of the τ lepton, separated by 100 m, would be the signature of PeV τ
neutrinos [27].
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If neutrinos oscillate, very energetic τ neutrinos could be produced by
mixing with muon neutrinos created in high-energy pion decays in cosmic
accelerators.

In present detectors, only neutrino-induced muons moving upwards in the
detectors (or downwards but near the horizon) are safe tracers of neutrino
interactions. Most muons moving downwards have their origin in cosmic-ray
nuclei interacting with the Earth’s atmosphere.

At the surface of the Earth, the flux of downward-moving muons produced
in the atmosphere is about 106 times larger than the flux of neutrino-induced
upward-moving muons.

By going underground, the material (rock, water, ice, etc.) above the
detector attenuates the flux of atmospheric muons. In addition, if it is ex-
perimentally possible to select events where a muon is moving upwards,10

the Earth itself acts as a perfect filter: only neutrino-induced muons can
be produced close enough to the detector. Atmospheric muons produced in
the opposite hemisphere, a whole Earth diameter away, have no chance of
reaching the detector.

14.9 Indirect Detection of CDM Particles

Neutrinos may give clues to the dark matter problem in another way than
just being a part of the dark matter (if neutrinos have a mass). If the dark
matter has a component that is massive and weakly coupled (electrically neu-
tral) it will be non-relativistic at freeze-out: cold dark matter (CDM).11 The
prime example of such a dark matter candidate is the lightest supersymmetric
particle – the neutralino χ (see Section 6.9.1).

Neutralinos (or other Wimps) have interactions with ordinary matter
which are equally as small as those of neutrinos. However, since they move
with non-relativistic velocity there is a chance that they become gravitation-
ally trapped inside, for example, the Sun or the Earth. A neutralino which
scatters on the ordinary particles that make up the celestial body in question
will lose energy and fall further inside the body. In the end, neutralinos will
assemble near the centre of the Earth or the Sun. Since they are their own an-
tiparticles, they can annihilate with each other, resulting in ordinary particles
(quarks, leptons, gauge particles). Most of these annihilation products create
no measurable effect; they are just stopped and contribute somewhat to the
energy generation.12 However, neutrinos have the unique property that they
can penetrate the whole Sun (and/or Earth) without hardly being absorbed.
10 This is by no means an easy task, especially since a bundle of downward-going

muons can, in some cases, mimic the signals from a single upward-moving muon.
11 As we have seen, sometimes the acronym Wimp – Weakly Interacting Massive

Particle – is given to this kind of hypothetical dark matter particle.
12 When Wimps were first discussed, in the late 1970s, it was thought that they

could be numerous enough that the temperature of the interior of the Sun would
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An annihilating neutralino pair of mass mχ would thus give rise to high-
energy neutrinos of energy around mχ/3 or so (the reason that Eν 
= mχ is
that other particles created in the annihilation process share the energy). The
signal of high-energy neutrinos (tens to hundreds of GeV – to be compared
with the ‘ordinary’ MeV solar neutrinos) from the centre of the Sun or Earth
would be an unmistakable signature of Wimp annihilation (see Fig. 1.3).

Calculations show, however, that the detection of such neutrinos requires
a neutrino detector (‘neutrino telescope’) with an area of more than 105 m2.

14.10 Neutrino Telescopes: the Cherenkov Effect

The detection of the neutrino burst from supernova 1987A marked a new
era in the field of observational high-energy astronomy. Several new neutrino
telescopes were born in the wake of this event. Most experiments are set up
to detect the ‘blue flashes’ radiated by charged particles produced in neutrino
interactions: for example, muons. The coherent emission of UV and optical
photons from a charged track is known as the Cherenkov effect.

In the middle of the 1930s Pavel Cherenkov discovered the emission of blue
light from radioactive sources in water. The interpretation of the ‘Cherenkov
effect’ was provided by two of his colleagues in Moscow, Ilja Frank and Igor
Tamm.13 Charged particles moving faster than the speed of light in the
medium, c/n, where n is the index of refraction of the medium, generate
an electromagnetic shock-wave along their path: that is, a coherent wave-
front of radiation similar to the more familiar effect of a sonic boom from
supersonic aircraft.

The coherent emission follows a characteristic angle given by the Mach
relation:

cos θ =
1

βn
(14.46)

where β is the speed of the particle traversing the medium in units of the
speed of light (v = β ·c). Thus, the condition for the Cherenkov effect to take
place is that

β >
1
n

(14.47)

The relation in (14.46) can be easily visualized through the Huygens con-
struction in Fig. 14.11. The numbers in the figure indicate the order in which

rise, thereby perhaps explaining the solar neutrino problem. However, the exper-
imental limits on their coupling strength makes this solution of the solar neutrino
problem impossible.

13 Frank, Tamm and Cherenkov were awarded the 1958 Nobel prize in physics for
the discovery and explanation of the ‘Cherenkov effect’.
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the radiation is emitted, which in turn corresponds to the direction of the
moving charged particle.

The direction of the track can be deduced from the Cherenkov wave front
cone, making this effect very useful for building telescopes. The intensity of
photons, on the other hand, is low. The number of photons per unit wave-
length and unit distance travelled by the charged particle is14

Fig. 14.11. (a) Cherenkov emission for a charged particle moving above threshold,
β ≥ 1

n
. The circles (spheres) show the isotropic emission of light along the charged

track. After time t the charged particle has moved a distance βct. In that time the
light sphere has grown by c

n
t. The angle of propagation of the Cherenkov wavefront

is thus cos θ = 1
βn

, as stated in equation (14.46). (b) Below threshold, β < 1
n
, the

light spheres do not support coherent emission.

dN

dλdx
=

2παZ2

λ2

(
1 − 1

n2β2

)
(14.48)

where Z is the charge of the moving particle and α is the fine structure
constant.

Example 14.10.1 Most photomultipliers are sensitive to photons in the wave-
length range 300− 600 nm. Calculate the number of photons per unit length
over that wavelength interval emitted along the path of a muon with β ≈ 1,
assuming that the index of refraction is constant over that wavelength range.

Answer:
Integrating the expression in (14.48) over wavelength yields

14 A complete, classical derivation can be found in [23].
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dN

dx
= 2πα sin2 θ

(
1
λ1

− 1
λ2

)
(14.49)

which for 300 − 600 nm corresponds to:

dN

dx
= 764 ·

(
1 − 1

β2n2

)
photons/cm (14.50)

Cherenkov radiation constitutes a very small fraction of the total energy
loss of a charged particle as it crosses a medium. The superluminal condition
is fulfilled only between the UV and near-infrared region of the electromag-
netic spectrum. In water or ice, for example, where the index of refraction for
UV and optical wavelengths averages around 1.3, the Cherenkov radiation
cut-off in the UV region is around 70 nm. For shorter wavelengths the index
of refraction is smaller than 1, indicating that the phase velocity of the radi-
ation is larger than c.15 The differential energy loss into Cherenkov photons
in water or ice is just a few per cent of the total differential energy loss of a
charged particle moving with a speed very close to c.

14.10.1 Water and Ice Cherenkov Telescopes

Neutrinos can be detected indirectly by the Cherenkov radiation from scat-
tered, fast, charged leptons and hadrons produced in neutrino interactions
with matter. Water and ice are convenient detector materials because of the
low cost, suitable index of refraction and low absorption for UV and optical
photons. The extremely large detector volumes needed to detect neutrinos
from distances beyond our Sun makes the use of any other material practi-
cally impossible.

A detector typically consists of an array of photomultipliers with good
time resolution (∼ 1 ns) distributed in the medium. The pattern of the hit
PMs, as well as the relative times of arrival, are used to fit the direction of
the particle that generated the Cherenkov cone, as shown in Fig. 14.12.

Because of the correlation between the original direction of the neutrino
and the produced charged lepton ((14.43)) it is possible to reconstruct the
direction of the neutrino source.

15 But not the signal velocity!
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Fig. 14.12. Schematic picture of a detector for a high-energy neutrinos. The differ-
ence in arrival time of the wave front at the photomultipliers is used to reconstruct
the muon track and, indirectly, the neutrino direction.

Fig. 14.13. Typical model for a source of high-energy neutrinos: a compact star
with a companion. Protons are accelerated towards the massive companion, and
neutrinos as well as gamma-rays are produced in the interactions. While gamma-
rays can penetrate only a small amount of material, neutrinos can cross an entire
star.
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14.11 Potential Sources of High-energy Neutrinos

Where could high-energy neutrinos (Eν 	 1 GeV) be produced? Whereas
photons are produced by both hadronic and electromagnetic interactions,
VHE neutrinos can only be produced in hadronic processes such as those in
the Earth’s atmosphere: that is, through cascades following the interaction
of fast nucleons on some target. One can therefore expect neutrinos to be
produced in the neighbourhood of astrophysical sources of acceleration of
nuclei, such as binary stars, supernova remnants and accreting black holes.
The detection of neutrinos can thus be used to understand the nature of
cosmic ray particle acceleration, as shown schematically in Fig. 14.13.

Since gamma-rays can be absorbed inside or around the acceleration
source, neutrinos offer a new observational window with the potential to
discover unknown point sources.

There are also extragalactic sources, such as gamma-ray bursts and active
galactic nuclei (AGN), which could produce high-energy neutrino radiation.
AGN are generally believed to be massive (∼ 108 solar mass) black holes
which accrete matter from the galaxy in which they reside. In this process
strong shocks are formed, in which particles may be accelerated to enormous
energies. Protons that are accelerated may interact with photons or other
nucleons to produce very energetic pions. The pions decay in flight, producing
photons, charged leptons and neutrinos.

14.12 Status of High-energy Neutrino Telescopes

The ‘small’ (area of order 1000 m2) neutrino telescopes that are presently
acquiring data, the US Japanese Super-Kamiokande experiment being the
prime example, have an excellent energy and angular resolution, and detect
atmospheric neutrinos at the rate of one or a few per day. These are, however,
mainly of low energy – at energies above a few hundred GeV the flux of
atmospheric neutrinos is simply too small for detection. For the study of
more energetic atmospheric neutrinos, and also the search for neutrinos from
AGN and other sources, the effective area has to be much larger.

Three approaches are currently being followed for the observation of high-
energy neutrinos. Because of the enormous volumes that are required to ex-
plore the most likely sources, around 1 km3, only naturally existing targets
are under consideration. That limits the possibilities to deep lakes, ocean
water or glacier ice.

The first possible detection of upward-moving neutrino induced muons
in a natural water detector has been reported by the Baikal collaboration
operating in Lake Baikal. Strings of photomultipliers are deployed at about
1.4 km depth.

Two collaborations are pursuing the use of ocean water: Nestor and
Antares, both in the Mediterranean. The Dumand collaboration, which
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was the first group to attempt to build a VHE neutrino telescope (outside
the island of Hawaii), had to be discontinued due to various difficulties with
deployment in the demanding open-ocean environment.

The Amanda experiment (in which groups from the USA, Sweden and
Germany are involved) is situated in the geographical south pole in Antarc-
tica. The disadvantages related to the remote location of the telescope are
compensated by the virtues of the glacier ice, found to be the clearest natural
solid on Earth. The Cherenkov photons emitted along the path of a muon
can be seen, at some wavelengths, hundreds of metres away from the charged
track. Some neutrinos have already been detected, proving the principle of
operation (see Fig. 14.14).

The Amanda experiment will be surrounded by an even larger detector,
the IceCUBE, with 80 strings that will encompass a cubic kilometer of ice.
Construction will start in 2004.

14.13 Summary

• Neutrinos play an important role in astrophysics because of their
weak coupling with matter. This allows them to escape from dense
regions, whereas photons are trapped.

• The cross-section for neutrino interactions with ordinary matter is
approximately 5 · 10−32

(
Ecm

1 MeV

)2
cm2.

• MeV neutrinos of astronomical origin have been detected from the
Sun and from supernova 1987A.

• Solar neutrino experiments, as well as the measurements of the
fluxes of atmospheric neutrinos, are used to bound the neutrino
masses and mixing between the flavours. There are some indica-
tions from both types of experiment that such oscillations indeed
occur.

• If neutrinos are massive they may play an important role in cos-
mology and structure formation.

• High-energy neutrino astronomy, based on the Cherenkov tech-
nique, might provide fundamental information about acceleration
sites in the Universe, as well as probe the particle physics solutions
to the dark matter puzzle.

14.14 Problems

14.1 Derive (14.13)

14.2 Discuss the advantage of building a neutrino detector deep under-
ground.
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Fig. 14.14. One of the events recorded in 1997 by the Amanda detector, inter-
preted as being due to an upward-moving atmospheric muon neutrino. The muon
was created by a charged current weak interaction below the detector, and the
Cherenkov light emitted by the muon was detected by the indicated optical mod-
ules of the 10-string detector. The time sequence of the hits is shown as well as the
relative intensity of photons, indicated by the radius of the coloured spheres. (More
strings with optical modules have since been added to the detector.)

14.3 Calculate the neutrino energy for which the interaction length is as
large as the Earth’s diameter. What does that mean for experiments looking
for neutrinos coming ‘from below’?

14.4 Derive (14.20). A Newtonian analysis is sufficient.

14.5 Calculate the expected number of positrons from ν̄ep → ne+ in the
Kamiokande II detector (2.1 kton) from type II supernovae 10 and 50 kpc
away. The cross-section for the reaction is σ=10−41 cm−2.
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14.6 Estimate the volume of water necessary to detect 100 atmospheric
neutrinos a year.

14.7 Derive (14.30) using (14.28)

14.8 a) What regions in ∆m2 can be studied with down-moving atmo-
spheric neutrinos, L ∼ 10 km ?
b) What regions in ∆m2 can be studied with solar neutrinos?

14.9 The average muon lifetime at rest is 2.2 µs. Estimate at what energy a
vertically travelling muon, produced at 20 km height in the atmosphere, has
a probability higher than 50 per cent of reaching the ground before decaying
in flight.

14.10 a) Show that the muon range should have the analytical form stated
in quation (14.42) if the muon energy loss per unit length is described by
dE
dx ≈ −[α + βEµ], where α and β are material constants.
b) Compare the muon range for a 1 TeV muon as given by the formula in
(14.42) with the pathlength the muon would reach before decaying in vacuum.

14.11 Write a Monte Carlo programme to simulate the angular response to
electrons produced by solar neutrinos in a water experiment. Assume that the
angle between the incoming neutrino and the outgoing electron is normally
distributed with σ=18 degrees and that the instrumental resolution is σ=28
degrees. Estimate then the signal-to-background ratio necessary to describe
the angular distribution in Fig. 14.6. The background is assumed to be from
radioactive impurities in the water and therefore isotropic.

14.12 a) Show that the differential energy loss in the form of Cherenkov
radiation along a relativistic charged particle track in the wavelength interval
[λ1, λ2] is

dE

dx
= 2π2remec

2 sin2 θ

(
1
λ2

1

− 1
λ2

2

)
(14.51)

where re (=e2/mec
2) is the classical electron radius.

b) Show that for water or ice, with a cut-off at 70 nm, the energy loss into
Cherenkov photons is 25 keV/cm.

14.13 a) Estimate the relative yield of Cherenkov photons for an electron
moving in water and air with β ≈ 1. At sea-level nair − 1 = 2.7 · 10−4.
b) What is the direction of the Cherenkov photons emitted in air?
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15.1 Introduction

In the preceding chapters we have discussed several types of radiation which,
besides the extraordinarily useful electromagnetic quanta – photons – may
convey information to us about processes in the Universe. We shall now
discuss one more type of radiation which is deeply linked to the theory of
general relativity on which modern cosmology rests: gravitational radiation.

As we have mentioned, there does not yet exist a full theory of quantum
gravity. Therefore we cannot be fully sure about the existence and detailed
properties of quantized mediator particles – gravitons (although it would
be very surprising if they do not exist). However, this does not mean that
we can say nothing about gravitational radiation. The situation is somewhat
similar to that of electromagnetism when Maxwell proposed his equations but
before quantum mechanics was developed. Of course, much could be deduced
about electromagnetic radiation without knowing anything about photons.
In particular, by analysing the solutions of his equations Maxwell could make
the probable connection between electromagnetism and electromagnetic wave
radiation such as light. We shall follow a similar approach here, and analyse
Einstein’s classical equations for the gravitational field in the search for, and
finding of, wave solutions.

As we shall see, there exists already convincing indirect evidence for the
existence of gravitational waves, and several large sophisticated detectors of
gravitational waves are presently under construction which could give the
first direct detection of such waves in the next few years.

15.2 Derivation of the Gravitational Wave Equation

Due to the nonlinearity of Einstein’s equations, it is virtually impossible
to find exact solutions to the metric tensor gµν(r, t) corresponding to the
dynamics, for example, of a massive star which collapses to a black hole near
the strong gravitational field of the star (using supercomputers, numerical
studies can, however, be made). Far from the source of the gravitational field,
it is on the other hand reasonable to use a first-order approximation along the
lines we indicated in connection with the Newtonian approximation (3.39) for
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the case of a static source. As we shall see, the gravitational deformation of
space-time at the Earth due to conceivable astrophysical processes is indeed
extremely small, which justifies such a perturbative approach.

We first recall the way we derived the existence of electromagnetic waves
in Maxwell’s theory in Section 2.6. There, we inserted the vector potential
Aµ in the equations of motion (2.74) for a vanishing current jµ (that is, in
vacuum) to obtain

�Aµ − ∂µ (∂νAν) = 0 (15.1)

Through the use of the gauge freedom Aµ → Aµ + ∂µf , we could choose Aµ

to fulfil the axial condition A0 = 0 and the Lorentz condition ∂νAν = 0. This
immediately led to the simple wave equation

�Aµ = 0 (15.2)

which was found to have solutions of the form

Aµ(r, t) = εµe±i(ωt−k·r) = εµe±ikµxµ (15.3)

where kµkµ = 0 (light-like propagation) and the gauge conditions A0 = 0 and
∂νAν = ∇ · A = 0 translate into ε0 = 0 and k · ε = 0, showing that the two
physical degrees of freedom are transverse to the direction of propagation. By
superposition of, for example, a wave linearly polarized in the x-direction and
one in the y-direction phase shifted by 90 degrees (obtained by multiplication
of the amplitude by i), we obtained circularly polarized states, corresponding
to definite helicity.

In the case of gravity waves, we make a first-order expansion of the dy-
namical degrees of freedom, the components of the metric tensor field gµν ,
around the constant Minkowski metric ηµν :

gµν = ηµν + hµν (15.4)

where we work only to first non-vanishing order in hµν .
Inserting this expression into the Einstein field equations (3.63) appropri-

ate for vacuum: that is, Tµν = 0, we find simply that

Rµν = 0 (15.5)

Now we have to compute the Ricci tensor Rµν in terms of the perturbations
hµν . With the help of the formulae in Appendix A, this can be shown to be
(Problem 15.1)

2Rρν = ∂ρ∂µhµ
ν + ∂ν∂µhµ

ρ − �hνρ − ∂ρ∂νhµ
µ = 0 (15.6)

In analogy with the electromagnetic case, we now try to make some of
these terms vanish by choosing a particular gauge. It is not difficult to prove
(see Problem 15.2) that under a local coordinate change xµ → xµ + ξµ(x),
the metric transforms as

hµν → hµν − ∂µξν − ∂νξµ (15.7)
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We now use this freedom to demand that the trace of hµν vanishes:

hµ
µ = 0 (15.8)

and transverse (similar to the Lorentz condition for Aµ):

∂µhµν = ∂µhνµ = 0 (15.9)

Then (15.6) reduces to the simple wave-equation form

�hµν = 0 (15.10)

In fact we can also, as in the electromagnetic case, impose an axial-like gauge
condition

h0ν = hν0 = 0 (15.11)

Exactly as for the electromagnetic waves we can now search for solutions
of the type

hµν = Eµνe±ikρxρ

(15.12)

where insertion in (15.10) shows that kµkµ = 0: that is, the propagation
vector is light-like. Gravitational waves thus propagate with the speed of
light (the graviton, if it exists, is massless like the photon). As usual, we may
of course combine terms with the two signs of the exponential into a real
expression which will oscillate like, for example,

hµν = Eµν cos (ωt − k · r) (15.13)

The constant polarization tensor Eµν has to be traceless, Eµ
µ = 0, and

transverse, kµEµν = 0, because of the gauge conditions. Also, E0ν = 0 (and
E has to be symmetric because the metric and hence h are symmetric). It
is not difficult to construct constant polarization tensors of this kind. If we
again choose the z-direction as the direction of propagation, we find only two
possible polarization basis states:

E+
µν =

⎛⎜⎜⎝
0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

⎞⎟⎟⎠ (15.14)

and

E×
µν =

⎛⎜⎜⎝
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞⎟⎟⎠ (15.15)

We can now write an arbitrary wave amplitude at a fixed location, for example
at a detector, as a time-dependent Eµν(t) which is a linear combination of
these two fundamental quadrupole modes:

Eµν(t) = h+(t)E+
µν + h×(t)E×

µν (15.16)
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15.3 Properties of Gravitational Waves

Having found plane-wave solutions characterized by the amplitudes h+ and
h×, we now investigate the physical meaning of these distortions of Minkowski
space-time. We suppose that the distances between, for example, various
parts of a gravity wave detector we consider are much smaller than the wave-
length of the gravitational wave, so that we do not need to deal with retar-
dation effects.

Let us see how the unit circle in the xy plane is distorted by a gravitational
wave of the h+ type. The distance between a diametrically opposed pair of
points (cos θ, sin θ) and (− cos θ,− sin θ) is in the unperturbed case

d0 =
√

−
∑

i,k=1,2

ηik∆xi∆xk = 2
√(

cos2 θ + sin2 θ
)

= 2 (15.17)

regardless of the position on the unit circle. In the presence of h+, the result
is for t = r = 0,

d+ =
√

−
∑

i,k=1,2

gik∆xi∆xk =
√

−
∑

i,k=1,2

(
ηik + h+E+

ik

)
∆xi∆xk (15.18)

Here we use (15.14) and the expansion for small δ,
√

4 − δ � 2 − δ/4, to
obtain

d+ � 2 − h+

(
cos2 θ − sin2 θ

)
= 2 − h+ cos 2θ (15.19)

From this we see that the distance between two points on the x-axis is larger
by the relative amount h+/2, while the distance between two points on the
y-axis is smaller by the same amount: see the middle diagram of Fig. 15.1 (a).
Since the sign and size of the perturbation will oscillate with time according
to (15.13), there will be an oscillating distortion of points on the unit circle
into an ellipse, with its major and minor axes alternatingly being the x and
y axes (but never any other axis).

For the h× case, the behaviour is very similar. This is most easily seen by
rotating the coordinate system by an angle π/4 around the z-axis so that E×

µν

becomes diagonal (exercise: perform this diagonalization). In that new frame,
E×

µν looks exactly like E+
µν did in the old frame. The pattern of deformation is

thus the same, except that the main axes of the elliptical deformation make a
45-degree angle to the x and y axes (see Fig. 15.1 (b)). By superposing the two
types of fundamental mode, phase-displaced by 90 degrees (just as in the case
of circularly polarized light), one may construct circularly polarized gravity
waves which represent deformations in the form of an ellipse which rotates
either clockwise or anti-clockwise with angular frequency ω, maintaining its
shape.

Sources which can excite these waves should ideally have the same type
of quadrupole symmetry, such that the energy-momentum tensor (or rather
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Fig. 15.1. (a) The deformation of the unit circle caused by gravity waves propor-
tional to the polarization amplitude h+. Shown are the unperturbed circle and the
maximally stretched configurations along the two axes of symmetry, the x and y
axes. (b) The corresponding pattern for the orthogonal polarization state described
by the amplitude h×. Note that the axes along which stretching and compression
occur form 45-degree angles to the x and y axes.

transverse and symmetric part of it) which is to be inserted on the right-
hand side of (15.5) should represent a time-varying quadrupole moment. (In
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particular, a spherically symmetric source does not contribute.) An order-
of-magnitude estimate (exercise: motivate this on dimensional grounds) pro-
duces

h ∼ GQ̈

d
(15.20)

where Q is the quadrupole moment of the source and d is the distance to
the source. A non-symmetric source of mass M and size l has a quadrupole
moment Q = Ml2, which means Q̈ ∼ 2Mv2 with v the internal velocity. Thus,
since the internal (non-spherically symmetric) kinetic energy is Mv2/2, we
can estimate

h ∼ 4GEkin

d
(15.21)

However, there is in most cases a direct proportionality between the gravi-
tational energy and the kinetic energy (through the virial theorem), as we
shall show below. The most promising sites for the generation of gravitational
radiation should therefore be very compact objects, where the gravitational
fields are strong.

A prime example is that of a coalescing binary star system. In some
cases, it is expected that the non-symmetric kinetic energy may be as large
as the rest energy of the Sun. For d ∼ 3 Gpc: that is, of the order of the
Hubble radius, (15.21) gives h ∼ 10−22, for the Virgo galaxy cluster (d ∼ 15
Mpc) h ∼ 10−20, and for the Milky Way (d ∼ 10 kpc) h ∼ 10−17. Note the
extremely tiny amplitudes even for Milky Way sources: a 100 m rod would
stretch and compress with an amplitude around one nuclear diameter!

Not only are the conceivable sources very weak: they are also expected to
be transient due to the rapid energy loss from gravitational radiation (and
maybe the process stops through the formation of a black hole).

15.4 The Binary Pulsar

The fact that binary systems (where either or both companions can be a
neutron star or a black hole) lose energy as a result of the emission of gravi-
tational radiation has turned out to be a very useful tool for testing Einstein’s
theory of relativity, including its prediction of gravitational radiation.

If the typical separation between two neutron stars in a binary system is
l, the mass of each of them is M , and they rotate around each other with
angular frequency ω, the luminosity (energy lost in the form of gravitational
radiation per unit time) can be shown to be (see [51])

L =
16Gω6M2l4

5
(15.22)
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It was with the pioneering discovery in 1974 of the binary pulsar PSR
1913+16 by R.A. Hulse and J.H. Taylor, using the 300-metre radio tele-
scope at Arecibo, Puerto Rico, that the first useful test of the hypothesis of
gravitational radiation was possible.1

The unique feature of pulsars is the very regular emission of radio waves,
which makes an accurate determination of orbital and spin parameters possi-
ble. For the pair PSR 1913+16, a steady decrease in the orbital period time
has been observed [49]:

dP

dt
= (−2.4225 ± 0.0056) · 10−12 (15.23)

If the pair loses energy due to gravitational radiation, such a decrease in
orbital time can be expected. As we are dealing with a rather weak process,
a Newtonian analysis of the energy loss should be sufficient. The total energy
of the pair is

Etot = Mv2 − GM2

l
(15.24)

and from the virial theorem (or from the results in Example 15.4.1 below)
one can deduce that the first term, the kinetic energy, has a magnitude which
is half that of the potential term. Thus,

Etot = −GM2

2l
(15.25)

So, if the total energy decreases due to gravitational radiation, we see from
(15.25) that the distance l between the two stars will decrease, and therefore
the angular frequency ω will increase.

Example 15.4.1 How does the angular frequency ω change when the distance
l between the two neutron stars, each of mass M , decreases?

Answer: By demanding the balancing of the centrifugal and attractive
gravitational forces on one of the masses in the pair one obtains

Mv2

l/2
=

GM2

l2

or v2 = GM/2l, which produces

ω2 =
v2

(l/2)2
=

2GM

l3
(15.26)

Thus,

ω ∼ l−3/2

1 Hulse and Taylor were awarded the 1993 Nobel prize in physics for their discovery.
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Note that our result v2 = GM/2l can be inserted into (15.24) to derive the
virial theorem result (15.25).

Since E ∼ l−1 and (Example 15.4.1) the orbital period P ∼ ω−1 ∼
l3/2, we see that P ∼ |E|−3/2, so that by taking the time derivative of the
logarithm of this last relation,

1
P

dP

dt
= −3

2
1
|E|

d|E|
dt

= −3
2

L

|E| (15.27)

where the luminosity L was given in (15.22). Thus,

1
P

dP

dt
= −24

5
ω6l5 (15.28)

With the measured period P � 7.75 hours, and diameter of the orbit (mea-
sured from time delay) l ∼ 4 lightseconds, this simple estimate gives a factor
of about 10 smaller value than that measured according to (15.23). However,
this discrepancy can be fully explained by the non-equality of the two masses
and the non-circular shape of the orbit. By measuring the Doppler shift of the
pulsation rate in various parts of the orbit, the eccentricity of the elliptical
orbit has been measured to be around 0.62. A full calculation including the
effects of this as well as so-called post-Newtonian corrections (i.e., beyond
the linear approximation) [36] gives

dPGR

dt
= −2.40 · 10−12 (15.29)

in striking agreement with (15.23). In fact the agreement is so good that it
can be used to constrain various proposed modifications to general relativity.

15.5 Gravitational Wave Detectors

We see from (15.22), (15.26) and (15.28) that the more energy that is radiated
in the form of gravitational waves for a binary system, the closer the two stars
approach one another, and the faster they orbit, increasing the luminosity.
The situation is thus unstable, and will eventually have to end, perhaps in
a dramatic way such as the collapse to a black hole. Of course, for a system
such as PSR 1913+13, it will take a long time before this regime is entered.
However, there may be other pairs that are about to coalesce in such a violent
way. Those events could be likely sources of gravitational waves that would
possibly be detected at Earth. However, we saw in Section 15.3 that the
amplitude of such waves is in the range h ∼ 10−22−10−20 for the extragalactic
distances which are necessary to have a reasonable probability of detecting
at least a handful of events per year.

We have seen that for a detector with arm length a, the amplitude of a
gravitational wave is proportional to
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∆a(t)
a

= c+h+(t) + c×h×(t) (15.30)

with c+ and c× constants of order unity which depend on the exact orientation
of the detector arm with respect to the two polarization directions. Detectors
therefore require a sensitivity reaching one part in 1022 to establish a signal.
The most promising technique today for acquiring this phenomenal sensitivity
is through the use of laser interferometry of the Michelson type (see Fig. 15.2).
Light from a powerful laser is split into two long orthogonal paths and is
reflected against mirrors attached to test weights at the end of the two arms.
The two returning light beams are then made to interfere with each other,
creating interference fringes which would be stationary if the test bodies
were perfectly at rest, and the distance between them did not change. In the
presence of gravitational radiation, the disturbances of the metric caused by
the h+ and h× amplitudes will, as we have seen, typically stretch the length
of one of the two perpendicular arms and squeeze the other, causing a shift
in the pattern of interference fringes.

Beam splitterLaser

L1

L2

Photo-detector

Mirror

Mirror Mirror Mirror

Fig. 15.2. A schematic view of the Ligo and Virgo type of laser interferometer.
The beam from the laser is split into two perpendicular long arms, of kilometre-
scale length L1 and L2, each forming a resonant cavity. A small portion of the laser
light is taken out from the beams, and the phases of the two beams are compared
at the photo-detector. A passing gravitational wave will periodically change the
length difference L1 −L2 (the sensitive frequency being between 10 Hz and 1 kHz)
which causes an oscillating phase difference at the photo-detector.

To increase the sensitivity, the two cavities are of resonant (Fabry Perot)
type. This means that light is allowed to travel many times back and forth
between the laser and the mirrors, increasing the number of photons in the
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beams, which enables a higher resolution of the relative phase of the two
beams (that is, the location of the interference fringes). Present-day technol-
ogy allows measurements to an accuracy reaching 10−18 m, which means that
with arms of 1−10 km length the accuracy may be sufficient for the detection
of coalescing neutron stars or black holes. There are several such detectors
currently being constructed, with the most ambitious ones, the American
Ligo and the French Italian Virgo projects, recently starting to acquire
data.

Ligo (see Fig. 15.2) will consist of two facilities with 4-km long arms, one
in Hanford, Washington (in the north-western United States) and the other
in Livingston, Louisiana (in the south-eastern United States). The Virgo
collaboration is building one facility near Pisa in Italy, with 3-km long arms.

The main background problem is that of various types of noise. The dom-
inant contributions are noise from the environment (seismic noise) at low
frequencies, thermal noise from the test weights and mirrors at intermediate
frequencies, and shot noise from the laser system at high frequencies. The
latter is related to the fact that the definition of the location of the laser
interference fringes necessitates the detection of many photons. When the
number of photons decreases, stochastic effects will smear the measurements.
To keep all the possible sources of background noise below the tiny gravi-
tational wave signals represents a formidable technological challenge. The
increase in both the amplitude and frequency of the gravitational waves orig-
inating from the final stages of a coalescing binary system may be used as a
‘template’ to discriminate against this noise.

One way to avoid the seismic noise, and also to have longer interferome-
ter arms, would obviously be to develop a satellite-borne system. There are
plans (LISA – laser interferometer space antenna) to launch three satellites
with laser emitters and receivers which would constitute a giant interferom-
eter with the arms in an equilateral triangle of side length 5 million km. If
approved, the launch could take place in 2008.

According to estimates (see [50]), Ligo’s first interferometers should be
able to detect waves from the inwards spiral of a binary pulsar out to a
distance of 30 Mpc (90 million light years) and from the final collision and
merger of two 25 solar mass black holes out to about 300 Mpc. Ligo and
Virgo together, operating as a coordinated international network, will be
able to locate a source through time delays and the beam patterns of the in-
terferometers to within a few degrees, the exact value depending on the source
direction and on the amount of high-frequency structure in the waveforms.
They will also be able to monitor both waveforms h+(t) and h×(t) (except
for frequency components above about 1 kHz and below about 10 Hz, where
noise becomes the limiting factor).

If gravitational waves can be experimentally discovered, a whole new field
of applications would open up, and many interesting new facts about the most
violent processes in the Universe would be known.
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Finally, we remark that there is also a possibility of detecting gravita-
tional waves that are relics of dramatic processes in the early Universe, such
as during the epoch of inflation or during the formation of cosmic strings,
if such exist. In that case, the most promising method is through analysing
the imprints they have made in the cosmic microwave background radiation
(CMBR). Because gravitational waves carry a quadrupole moment it is pos-
sible to distinguish their effects through studies of CMBR polarization. With
the planned Planck satellite there will be a possibility of searching for gravi-
tational waves of very long wavelength generated through these hypothetical
processes.

15.6 Summary

• The existence of gravitational radiation is a firm prediction from
Einstein’s theory of general relativity. In the transverse and trace-
less gauge, the equation of free propagation is simply

�hµν = 0

where a first-order expansion of the metric gµν = ηµν + hµν has
been made.

• Gravitational waves are of quadrupole type with two independent
polarization modes, with their amplitudes labeled h+ and h×, re-
spectively.

• Strong indirect evidence for the existence of gravitational radiation
comes from the study of binary pulsars, where the energy loss due
to gravity waves agrees with observations.

• Gravitational wave detectors are being built which may be sensitive
enough to detect coalescing binary neutron stars or black holes at
distances of several Mpc. The two most ambitious detector projects
are Ligo in the United States and Virgo in Europe. They will use
laser interferometry over distances of several kilometres to detect
quadrupole deformations of space due to gravity waves.

15.7 Problems

15.1 Show equation (15.6).

15.2 By using (A.17), show that to first order the metric transforms as
(15.7) under a coordinate change xµ → xµ + ξµ.

15.3 Suppose that you have at your disposal a device for measuring lengths
with the same accuracy as Ligo or Virgo. How far away would an object
have to be to produce an uncertainty of 1 mm in the distance determination?
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A.1 Metric for Curved Space-Time

We know from the strong equivalence principle that even if space-time
has a complicated structure due to curvature effects, we can always lo-
cally at a space-time point P find a reference frame with coordinates xµ =
(t, x1, x2, x3) = (x0, x1, x2, x3) such that (see (3.10) and (3.13))

ds2 = gµνdxµdxν (A.1)

with

gµν(P ) = ηµν (A.2)

∂gµν

∂xρ
(P ) = 0 (A.3)

This is the free-fall frame at P . To transfer to such a frame from any ar-
bitrary space-time coordinate system we need to perform a coordinate trans-
formation of a more general type than given by the Lorentz transformations
of special relativity. For large space-time regions, these transformations are
usually highly non-linear and very difficult to perform. However, for small
regions around a given space-time point P we can use much of the tensor
machinery developed for special relativity. Thus, changing from coordinates
xµ to coordinates x′µ, small coordinate distances dx′µ will transform linearly:

dx′µ =
∂x′µ

∂xν
dxν (A.4)

where as usual we use the summation convention (in this case over the index
ν). We see that this is of the form (2.18)

dx′µ = Λµ
νdxν (A.5)

if we define

Λµ
ν =

∂x′µ

∂xν
(A.6)

Using the chain rule

∂x′µ

∂xν

∂xν

∂x′ρ = δµ
ρ (A.7)
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where δµ
ρ is the usual Kronecker δ (which has the value 1 if µ = ρ, the value

0 if µ 
= ρ), we see that we can write the inverse transformation matrix

Λ ν
µ =

∂xν

∂x′µ (A.8)

that is

Λµ
σΛ σ

ν = δµ
ν (A.9)

Let us look at the motion of a test particle moving freely in a gravitational
field. According to the equivalence principle, we can at each moment find a
frame (the free-fall frame) where the motion is that of a free particle in special
relativity: that is, according to (2.48) it moves in a straight line in those
space-time coordinates. If we call the free-fall coordinates ξµ, the equations
of motion are thus

d2ξµ

dτ2
= 0 (A.10)

whereas in (2.43)

dτ2 = ηµνdξµdξν (A.11)

Now suppose that we have another set of coordinates xµ that may be
curvilinear. What are the local equations of motion for the particle in these
coordinates? Again, we just use the transformation

dξµ =
∂ξµ

∂xν
dxν (A.12)

to obtain
dξµ

dτ
=

∂ξµ

∂xν

dxν

dτ
(A.13)

and

0 =
d2ξµ

dτ2
=

d

dτ

(
∂ξµ

∂xν

dxν

dτ

)
=

∂ξµ

∂xν

d2xν

dτ2
+

∂2ξµ

∂xν∂xρ

dxν

dτ

dxρ

dτ
(A.14)

We can also express the proper time τ in the new coordinates by using

dτ2 = ηµνdξµdξν = ηµν
∂ξµ

∂xρ

∂ξν

∂xσ
dxρdxσ (A.15)

or

dτ2 = gρσdxρdxσ (A.16)

with the metric gρσ given by

gρσ =
∂ξµ

∂xρ

∂ξν

∂xσ
ηµν (A.17)

The first term in (A.14) is almost the same as in (A.10). To make it
exactly the same, we need to dispose of the factor ∂ξµ/∂xν . But this we can
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do (see (A.7)) by multiplying the whole equation (A.14) with ∂xσ/∂ξµ (and
summing over µ). Doing this, we obtain the geodesic equation

d2xσ

dτ2
+ Γ σ

µν

dxµ

dτ

dxν

dτ
= 0 (A.18)

where the metric connections (sometimes called affine connections or Christof-
fel symbols) Γ σ

µν are given by

Γ σ
µν =

∂xσ

∂ξρ

∂2ξρ

∂xµ∂xν
(A.19)

Note that the metric connections are symmetric in µ and ν:

Γ σ
µν = Γ σ

νµ (A.20)

We see that the geodesic equation (A.18) can be interpreted as a kind of
force equation

d2xσ

dτ2
= fσ (A.21)

with

fσ = −Γ σ
µν

dxµ

dτ

dxν

dτ
(A.22)

The brilliant observation of Einstein was that since Γ σ
µν are purely geometrical

objects (they depend only on the metric and its derivatives), it will be possible
to view gravity as not really an ordinary force but the result of an influence
of massive bodies on space-time, making it curved in a particular way. If
the ratio between inertial and gravitational mass were not the same for all
massive bodies this would not have been possible, because then we would
need different free-fall coordinates for different bodies, preventing the elegant,
unified description of general relativity.

To arrive at a geometrical view of gravity it remains to show that Γ σ
µν

are indeed geometrical, that is, related to the metric gµν , and also to find
the physical law that gives gµν for a given distribution of mass. The latter
problem was solved by Einstein who proposed a set of equations, the Ein-
stein equations, which we studied in Section 3.7. The proof that Γ σ

µν can
be expressed in terms of gµν is straightforward, although technically a little
involved (see Problem A.2). It is found that

Γ σ
µν =

gρσ

2

(
∂gνρ

∂xµ
+

∂gµρ

∂xν
− ∂gνµ

∂xρ

)
(A.23)

where gµν is the inverse of gµν :

gρµgµν = δ ν
ρ (A.24)

From linear algebra, it is known that a solution to (A.24) is provided by

gµν = Cµν/g (A.25)
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with g the determinant of gµν , and Cµν the cofactor of gµν in this determi-
nant. In the particular case when gµν is diagonal, gµµ (no summation over µ
here) is simply given by gµµ = 1/gµµ (simple exercise: prove this!).

A.2 The Newtonian Limit

Let us study our expression for the geodesic equation for a particle moving
slowly (compared to the speed of light) in a weak, stationary (that is, time-
independent) gravitational field such as that of the Earth. We know from
Newton’s result that we should obtain a force equation in this limit which is
of the form

d2xi

dt2
= − ∂φ

∂xi
(A.26)

with φ the gravitational potential, which for a spherically symmetric body of
mass M is given by

φ = −GM

r
(A.27)

where G is Newton’s gravitational constant.1 Look at the geodesic equation

d2xσ

dτ2
+ Γ σ

µν

dxµ

dτ

dxν

dτ
= 0 (A.28)

Since the particle is slow, dxi  dx0 = cdt, so the dominant components
of the geodesic equation are

d2xσ

dτ2
+ Γ σ

00

(
dt

dτ

)2

= 0 (A.29)

Since the field is stationary, all time derivatives of gµν vanish. Also, since the
field is weak we should be able to expand around the Minkowski metric ηµν :

gµν = ηµν + hµν (A.30)

and we see from (A.23) that to first order in the small quantities hµν the
metric connection is

Γ σ
00 = −ησρ

2
∂h00

∂xρ

and the equations of motion become

d2xi

dτ2
= −1

2

(
dt

dτ

)2
∂h00

∂xi
(A.31)

d2t

dτ2
= 0 (A.32)

1 G has the value 6.67 · 10−11 m3kg−1s−2 in SI units. In the set of units where
c = h̄ = 1, G = 1/m2

Pl, with mPl = 1.221 · 1019 GeV, the so-called Planck mass.
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Thus, (A.32) tells us that dt/dτ is constant, so dividing (A.31) by (dt/dτ )2

we obtain

d2xi

dt2
= −1

2
∂h00

∂xi
(A.33)

This is exactly of the same form as the Newtonian gravitational force (A.26)
if

h00 = 2φ + const (A.34)

Far from the gravitating body the coordinate system should become pseudo-
Euclidean, which means that the constant has to be set to zero. Reinserting
c, the metric is thus (see (A.30))

g00 = 1 +
2φ

c2
. (A.35)

A.3 The Curvature Tensor

Let us look at another way for arriving at the geodesic equation (A.18). To
begin with, let us consider ordinary flat, Euclidean space. When forming the
derivative of a space-time dependent contravariant vector quantity V µ along
a curve parameterized by the path length s in a cartesian coordinate system,
we just compute the rate of change of the components ∆V µ and divide by
∆s. However, if we instead use curvilinear coordinates (for example, spherical
coordinates), there will be an additional contribution to the change of the
components of V measured in these coordinates due to the fact that the coor-
dinate system has changed when moving along the curve. This is particularly
apparent if we consider a constant vector field in Euclidean space. In carte-
sian coordinates the derivative will be trivially zero since ∆V µ vanishes (see
Fig. A.1 (a)). In polar coordinates there is a change δV µ 
= 0 (Fig. A.1 (b)).
The latter change is thus ‘unphysical’ in the sense that it depends on the co-
ordinate system – different curvilinear coordinate systems will give different
values of δV µ/∆s for a given ∆s.

The natural definition of the derivative in this situation (and which gener-
alizes to curved spaces) is to subtract the frame-dependent quantity δV µ/∆s
from ∆V µ/∆s to obtain the covariant derivative

DV µ

Ds
= lim

∆s→0

∆V µ − δV µ

∆s
(A.36)

To compute the quantities δV µ we need to determine the rate of change of the
components of a vector field that does not change its ‘physical’ direction as
we move along the curve s. We say that we need to parallel transport it along
the curve. This is what we considered in Section 3.5.1 when we discussed
curvature of the sphere, but now we have to define the procedure of parallel
transport in mathematical terms. In a space of the Riemann type, we can
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Fig. A.1. (a) A constant vector field in cartesian coordinates has the derivative
∆V µ/∆s = 0 since ∆V µ = 0 everywhere, in particular along the curve. (b) The
same vector field has a non-vanishing derivative when computed in curvilinear co-
ordinates, since the direction of the basis vectors changes from point to point along
the curve.

always do this locally by choosing locally cartesian coordinates at a point
A, and carrying the vector V µ to a neighbouring point A′ without changing
its cartesian coordinates. Then the vector components are re-transformed to
the relevant frame at A′. This defines parallel transport of a local vector in
space-time.

Mathematically, it works as follows. If V µ is a vector, the change δV µ

when V is parallel transported ∆xν in the ν-direction should be bilinear in
V and ∆x:

δV µ = −Γµ
ρνV ρ∆xν (A.37)

where it can be shown (see the derivation of (A.18)) that Γµ
ρν are precisely

the metric connections we encountered previously.
The covariant derivative along the curve can thus be written as

DV µ

Ds
=

dV µ

ds
+ Γµ

ρνV ρ dxν

ds
(A.38)

and it can be shown that it transforms as a contravariant vector under the
change xµ → x′µ of coordinate system:
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DV ′µ

Ds
=

∂x′µ

∂xν

DV ν

Ds
(A.39)

Using the fact that the variation of the scalar product δ(V µVµ) = 0, one
finds similarly (see Problem A.1) that

DVµ

Ds
=

dVµ

ds
− Γ ν

ρµVν
dxρ

ds
(A.40)

transforms like a covariant vector. For higher-rank tensors, the rules are ob-
vious generalizations of these rules, for instance:

DTµ
ν

Ds
=

dT µ
ν

ds
+ Γµ

ρσT σ
ν

dxρ

ds
− Γ σ

ρνTµ
σ

dxρ

ds
(A.41)

Returning to the geodesic equation (A.18), we see that since the four-
momentum pµ = mdxµ/dτ , it can be interpreted as the condition that the
particle’s momentum pµ is parallel transported along itself,

Dpµ

Dτ
= 0 (A.42)

As a particular case, we may consider the covariant derivative in one of the
coordinate directions, usually written in the so-called semicolon convention:

V µ
;ν =

∂V µ

∂xν
+ Γµ

νρV
ρ (A.43)

By using the results of Problems A.6 and A.7 this can be rewritten in a form
that is much easier to use in practice:

V µ
;µ =

1√−g

∂

∂xµ

(√−gV µ
)

(A.44)

where g = det(gµν).
Unlike the first term on the right-hand side of (A.43), V µ

;ν transforms as a
tensor quantity in both the indices µ and ν. This is the basic key to setting up
formulae that are general relativistic: that is, in accordance with the strong
equivalence principle: According to this principle, the laws of nature in a free-
fall frame are the usual tensor formulae of special relativity. To make them
applicable to any frame, we just have to substitute the Minkowski metric ηµν

by gµν , and the ordinary derivatives like (2.33) by covariant derivatives like
(A.43).

Now we are prepared to investigate whether or not a given space-time
is curved, using the infinitesimal version of the round-trip parallel transport
discussed in Section 3.4. If we parallel transport a vector V µ over a small
rectangle P1P2P3P4 (Fig. A.2), the total change δV µ will be

δV µ = −Γµ
βν(x)V ν(x)∆aβ − Γµ

βν(x + ∆a)V ν(x + ∆a)∆bβ

+Γµ
βν(x + ∆b)V ν(x + ∆b)∆aβ + Γµ

βν(x)V ν(x)∆bβ (A.45)

This can be rewritten
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∆

Fig. A.2. Closed path P1P2P3P4 around which a vector V µ is parallel transported
to determine the local curvature.

δV µ =
∂(Γµ

βνV ν)
∂xα

∆bα∆aβ − ∂(Γµ
βνV ν)

∂xα
∆aα∆bβ (A.46)

Expanding a partial derivative like ∂(Γµ
βνV ν)/∂xα one finds, using the fact

that for parallel transport DV µ = 0, so that dV µ = −Γµ
νρV

ρdxν ,

δV µ = ∆aα∆bβV σRµ
σβα (A.47)

where the Riemann curvature tensor Rµ
σβα is given by

Rµ
σβα =

∂Γµ
σα

∂xβ
− ∂Γµ

σβ

∂xα
+ Γµ

ρβΓ ρ
σα − Γµ

ραΓ ρ
σβ (A.48)

The Riemann tensor appears to be a complicated object, and in fact for
a given metric gµν(x) it is wise to use any of the symbolic algebra computer
programs available for its calculation. However, due to a large number of
symmetries, the number of independent components which naively looks like
44 = 256 is reduced to 20. These symmetries are most easily summarized for
the associated tensor Rαβγδ = gαρR

ρ
βγδ formed by lowering the first index:

• Symmetry in the exchange of the first and second pairs of indices:

Rαβγδ = Rγδαβ (A.49)

• Antisymmetry:

Rαβγδ = −Rβαγδ = −Rαβδγ (A.50)
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• Cyclic property:

Rαβγδ + Rαδβγ + Rαγδβ = 0 (A.51)

Through contraction of the first and third index of the Riemann tensor one
obtains the Ricci tensor

Rµν = gαγRαµγν (A.52)

which is easily seen to be symmetric in its indices. By contracting the two
indices of the Ricci tensor one obtains the Ricci scalar

R = gµνRµν . (A.53)

From the Ricci tensor and the Ricci scalar one can form another symmetric
tensor, which by construction has vanishing covariant divergence, the Einstein
tensor Gµν :

Gµν = Rµν − 1
2
gµνR (A.54)

If we look at the three-dimensional curvature: that is, we disregard the
time coordinate, we obtain, using (A.48) the three-dimensional version of the
Riemann tensor for the Friedmann-Lemâıtre-Robertson-Walker metric

3Rijkl =
k

a2(t)
[gikgjl − gilgkj ] (A.55)

for the Ricci tensor (using the spatial part of the metric gij to make the
contraction of indices)

3Rij =
2k

a2(t)
gij (A.56)

and for the spatial curvature three-scalar

3R =
6k

a2(t)
(A.57)

Using the Friedmann equation we can write this as
3R = 6H2(Ω − 1) (A.58)

A.4 Summary

• The geodesic equation for a particle travelling freely along a tra-
jectory with proper time τ reads

d2xσ

dτ2
+ Γ σ

µν

dxµ

dτ

dxν

dτ
= 0

Here the metric connections, or Christoffel symbols, are given by

Γ σ
µν =

∂xσ

∂ξρ

∂2ξρ

∂xµ∂xν
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• The Christoffel symbols can be computed for a given metric
through the formula

Γ σ
µν =

gρσ

2

(
∂gνρ

∂xµ
+

∂gµρ

∂xν
− ∂gνµ

∂xρ

)
• Writing the metric gµν = ηµν + hµν , where hµν represent small

perturbations, the effects of a Newtonian gravitational potential ϕ
is to replace g00 = 1 by

g00 = 1 + 2ϕ

• The Riemann curvature tensor is given by

Rµ
σβα =

∂Γµ
σα

∂xβ
− ∂Γµ

σβ

∂xα
+ Γµ

ρβΓ ρ
σα − Γµ

ραΓ ρ
σβ

• The Ricci tensor is

Rµν = gαγRαµγν

• The Ricci, or curvature, scalar is

R = gµνRµν

• The Einstein tensor

Gµν = Rµν − 1
2
gµνR

is symmetric and has vanishing covariant divergence.

A.5 Problems

A.1 Use the fact that the scalar quantity V µVµ has vanishing variation to
derive (A.40).

A.2 Derive (A.23). Hint: start with

Dgµν

Dxσ
= 0

which is easy to prove in a free-fall frame, and is valid in any frame since
it is a tensor equation. Use the equation that follows from this, and the two
related equations obtained by cyclic permutation. Finally, use the symmetry
in the indices of Γ to obtain (A.23).

A.3 Show that the metric tensor gµν is covariantly constant, meaning that
gµν;σ = 0.
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A.4 (a) Show that Rµ
νρσ = 0 for the two-dimensional Euclidean plane,

using any suitable coordinates.
(b) Show that Rµ

νρσ = 0 for the Minkowski space-time parameterized by
spherical coordinates.

A.5 Calculate gµν for the two-dimensional surface of a sphere of radius a,
using the metric (3.18).

A.6 Let g = det(gµν). By writing the determinant in terms of co-factors,
and taking into account that gµν is the inverse of gµν , show that

∂g

∂xµ
= ggρσ ∂gρσ

∂xµ

A.7 Use the result of Problem A.6 to show that

Γµ
νµ =

∂

∂xν
log

√−g



B Relativistic Dynamics

B.1 Classical Mechanics

In classical mechanics, we are usually interested in how some coordinates
change with time. This may be the positions of a set of point particles, but
also, for instance, the angle that a pendulum makes with respect to the
vertical direction. Thus, we use some set of generalized coordinates to describe
the motion as a function of time. For instance, if we consider N particles
moving in three space dimensions, we describe their positions by generalized
coordinates qi (i = 1, 2, . . . N). For example, we can use

{qi} = {ri} (B.1)

or

{qi} = {ri, ϕi, θi} (B.2)

For each of the generalized coordinates, we define the generalized velocities
by

q̇i ≡ dqi

dt
(B.3)

We can thus formulate the fundamental dynamical problem in classical me-
chanics:

• Given {qi, q̇i} at a time t = t0, what is the time development that
follows?

It is shown in textbooks in classical mechanics (for example [17]) that the
solution is given by Hamilton’s principle:

There is a quantity L (called the Lagrangian) such that the integral (the
action)

S =
∫ t1

t0

L(qi, q̇i, t)dt (B.4)

takes an extremum when the system moves from {qi(t0)} to {qi(t1)}. The
path followed by the system along this extremal solution is called the classical
path qcl

i (t).
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Let us see how Hamilton’s principle will give us the equations of motion
of the system. We shall perturb the classical path in the action integral by
an amount δqi(t) (see Fig. B.1):

qi(t) = qcl
i (t) + δqi(t) (B.5)

q (t)
i

cl

0(t  )q
i

1(t  )q
i

δq (t) +
i

cl
(t)q

i

Fig. B.1. Variation of the path followed by a system, around the classical path.
Note that the end-points are required to be fixed.

According to Hamilton’s principle, the classical path is at an extremum,
and therefore δS = 0,

δS =
∫ t1

t0

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i

)
dt = 0 (B.6)

Noting that δq̇i = d/dtδqi, integrating by parts, and using that δqi = 0 at
the end-points, this becomes

δS =
∫ t1

t0

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
δqidt = 0 (B.7)

Since this has to be true for an arbitrary variation δqi(t) the only possibility
is that the integrand in (B.7) vanishes: that is

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0 (B.8)

These are the equations of motion of the system, the Euler Lagrange equa-
tions. Since they are a system of second-order differential equations, the so-
lutions are specified by giving both {qi} and {q̇i} at a given time t0.
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The fundamental problem of classical mechanics is now reduced to the
problem of finding the Lagrangian and solving the Euler Lagrange equations.
As a simple example we look at a single particle of mass m moving in a
potential V (q). In this case the Lagrangian is given by [17]

L =
1
2
mq̇2 − V (q) (B.9)

(according to the general rule L = T − V where T is the kinetic and V the
potential energy). The Euler Lagrange equation (B.8) then gives

mq̈ = −∂V (q)
∂q

≡ F (B.10)

which is nothing but Newton’s law (F is the force).
We have treated coordinates and velocities in this Lagrangian formulation

of classical mechanics. Sometimes we also require the Hamiltonian formula-
tion, which involves coordinates and momenta. We therefore start by defining
canonically conjugate momenta to {qi} by

pi ≡ ∂L(q, q̇)
∂q̇i

(B.11)

We assume that this relation is invertible so that the q̇i can be expressed
in terms of the qi and pi. We now form the Hamiltonian by

H ≡
∑

i

piq̇i − L(q, q̇(p, q)) (B.12)

We now compute how H is changed if we make a small change of the
coordinates and momenta:

dH =
[
q̇i +

∂q̇j

∂pi

(
pj − ∂L

∂q̇j

)]
dpi +

[
− ∂L

∂qi
− ∂q̇j

∂qi

(
∂L

∂q̇j
− pj

)]
dqi(B.13)

Both the expressions in round brackets vanish because of (B.11), and by
comparing (B.13) with the general expression

dH =
∂H

∂pi
dpi +

∂H

∂qi
dqi (B.14)

we find{
q̇i =

∂H

∂pi
; − ∂L

∂qi
=

∂H

∂qi
(B.15)

But according to (B.8) and (B.11), we can replace ∂L/∂qi by ṗi to arrive at
the Euler Lagrange equations in the Hamiltonian formulation:{

q̇i =
∂H

∂pi
; ṗi = −∂H

∂qi
(B.16)

Let us return to our simple example. We had

L =
1
2
mq̇2 − V (q) (B.17)
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which gives

p =
∂L

∂q̇
= mq̇ (B.18)

that is, q̇ = p/m. Then

H = pq̇ − L =
p2

2m
+ V (q) = T + V (B.19)

The Euler Lagrange equations{
q̇ =

∂H

∂p
=

p

m
; ṗ = −∂H

∂q
=

−∂V

∂q
= F (B.20)

then give mq̈ = F , as before.

B.2 Classical Fields

Let us consider an interesting application of our formalism. We look at a
system of N particles, moving in one dimension, connected to each other by
almost massless springs with force constant k (see Fig. B.2). The particles
are separated from each other by a distance a in equilibrium. Let φi be the
displacement from the equilibrium position of particle i. Then the Lagrangian
is

L =
∑

i

(Ti − Vi) =
1
2

∑
i

[
mφ̇2

i − k(φi+1 − φi)2
]

=

a
∑

i

1
2

[
m

a
φ̇2

i − ka

(
φi+1 − φi

a

)2
]

=
∑

i

aLi (B.21)

where Li is the Lagrangian density (Lagrangian per unit length) contributed
by particle i. We can now take the continuum limit, i → x,

∑
i → ∫

dx,
φi → φ(x), (φi+1 − φi)/a → ∂φ/∂x, m/a → ρ (mass density) and ka → κ
(Young’s modulus). The continuum Lagrangian then becomes

L =
∫

dx
1
2

[
ρφ̇2 − κ

(
∂φ

∂x

)2
]

(B.22)

We can thus write the action

S =
∫

dtL =
∫

dt

∫
dxL

(
φ, φ̇,

∂φ

∂x

)
(B.23)

with the Lagrangian density

L
(

φ, φ̇,
∂φ

∂x

)
=

1
2

[
ρφ̇2 − κ

(
∂φ

∂x

)2
]

(B.24)
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a

m
Fig. B.2. A system of identical classical particles of mass m, connected by springs
with force constant k. The distance between the particles in equilibrium is a.

In this example, φ(x, t) is the displacement field. A field is a function of
space and time: that is, it contains an infinite number of degrees of freedom.
(To completely specify a field, we have to give its value in every point in space,
at every time.) The construction we made in this one-dimensional example
is easy to generalize to three space dimensions. Then

S =
∫

dtL =
∫

dt

∫
d3xL

(
φ, φ̇,∇φ

)
(B.25)

which gives rise to the Euler Lagrange equations
3∑

k=1

∂

∂xk

∂L
∂(∂φ/∂xk)

+
∂

∂t

∂L
∂(∂φ/∂t)

− ∂L
∂φ

= 0 (B.26)

In fact, we notice that (B.26) can be written in the relativistically invari-
ant form

∂

∂xµ

[
∂L

∂(∂φ/∂xµ)

]
− ∂L

∂φ
= 0 (B.27)

This is Lorentz invariant if L is a scalar density (that is, if L′(x′µ) = L(xµ)).
As the first realistic example we consider a real scalar field ϕ(x) (this can,

for instance, be the so-called Higgs field of particle physics). The simplest
non-trivial Lagrangian density is given by

L =
1
2
[
(∂µϕ) (∂µϕ) − µ2ϕ2

]
(B.28)

The Euler Lagrange equation (B.27) gives the equation of motion

∂µ∂µϕ + µ2ϕ = 0 (B.29)

or

(� + µ2)ϕ = 0 (B.30)

which, as we remarked before, is a relativistic wave equation, the Klein Gor-
don equation.
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There is also a Hamiltonian formulation of classical field theory. Corre-
sponding to the generalized coordinate ϕ(r, t) at the space-time point (t, r)
there is a canonical momentum,π(r, t), defined by

π(r, t) = π(r, t) =
∂L

∂ϕ̇(r, t)
(B.31)

For the real scalar field with time-independent potential this gives

π(r, t) =
∂L

∂ϕ̇(r, t)
= ϕ̇(r, t) (B.32)

The Hamiltonian density is now

H = πϕ̇ − L =
1
2
[π2 + (∇ϕ)2 + µ2ϕ2] (B.33)

By integrating this density over space, we obtain the full Hamiltonian, H =∫
V

d3rH, which produces the total energy of the field.

B.3 Relativistic Quantum Fields

An important application of scalar field theories is in condensed matter
physics. It should be clear from the derivation of the classical scalar field
theory in Section B.2 that it describes vibrations in a crystal: that is, sound
waves. If we replace the speed of light with the speed of sound, we can use the
scalar quantum field theory to be developed below to describe the quantized
vibrations called phonons..

B.3.1 The Klein Gordon Field

When we quantize a point particle in elementary quantum mechanics, we
treat the generalized coordinates q (in the simplest case, the three carte-
sian coordinates xi) and momenta pi as operators. They fulfil the quantum
mechanical commutation relations

[xi, pj ] = ih̄δij (B.34)

and the wave function Ψ is a representation of the state vector, on which
these operators act.

The Klein Gordon equation, being a wave equation, should have plane-
wave solutions. We can imagine that our system is enclosed in a large box of
volume V , and we impose periodic boundary conditions (we will eventually
take the limit V → ∞, of course). We then expand the real scalar field ϕ at
a given time t in terms of plane waves:

ϕ(r, t) =
∑
k

1√
2V ω

[ake−i(ωt−k·r) + a∗
kei(ωt−k·r)] (B.35)
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where we have introduced 1/
√

2V ω as a convenient normalization, and where
insertion into the Klein Gordon equation shows that ω = ω(k) =

√
µ2 + k2,

which describes the energy of a relativistic particle with mass µ and momen-
tum k. We can thus write the factors in the exponentials as kx ≡ kµxµ with
k0 = ω.

Since the K-G field is written as a sum of independent components which
all fulfil a wave equation – that is, have harmonic motion – it is natural to
quantize each mode in the same way as we usually quantize the harmonic
oscillator. By inserting (B.35) into the expression (B.33) for the Hamiltonian
density and performing the integration over the whole volume V , we obtain

H =
∑
k

h̄ω(k)a∗
kak (B.36)

where we have temporarily reinserted a factor h̄ to show the similarity with
the expression of the energy of the quantum harmonical oscillator. Indeed, if
we interpret ak and a∗

k → a†
k as lowering and raising operators, fulfilling the

commutation relations[
ak, a†

k′

]
= δk,k′ (B.37)

then ϕ and π will fulfil the commutations relations (B.34). Re-computing the
Hamiltonian using (B.37) one finds

H =
∑
k

h̄ω(k)(a†
kak +

1
2
) (B.38)

Usually, we will just ignore the constant contribution coming from summing
the zero-modes (that is, the terms h̄ω/2). There are cases, however, when
they should be kept, as we shall see later.

Now we can use all the machinery that we have learned when studying
the harmonic oscillator in non-relativistic quantum mechanics. We define the
ground state as the one annihilated by all ak: that is

ak|0〉 = 0 (B.39)

for all k. A normalized state with nk excitations in the mode k is given by

|nk〉 =
[ak]nk

√
nk!

|0〉 (B.40)

Since H is a sum of non-interacting harmonic oscillators, the eigenstates are
direct products:

| . . . nki
, . . . nkj

, . . .〉 =
∏
ki

|nki
〉 (B.41)

The (enormous) Hilbert space spanned by all of these basis states is called a
Fock space.

To produce a physical interpretation of the states (B.41), we note
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H| . . . nki
, . . . nkj

, . . .〉 =
∑
k

nkε(k)| . . . nki
, . . . nkj

. . .〉 (B.42)

where ε(k) = h̄ω(k). Thus we can interpret (B.41) as a state with many par-
ticles, each of mass m, where nk1 have momentum k1, nk2 have momentum
k2, etc. This is also why the raising and lowering operators, a†

k and ak, are
usually referred to as creation and annihilation operators: a†

k acting on the
vacuum state creates one particle with wave vector k. With this formalism we
will be able to treat processes where particles of given momenta are created
or destroyed: for example, in collision processes.

B.3.2 Electromagnetic Field

The method used to quantize the real scalar field is very general. We can use
it almost without change to quantize the electromagnetic field Aµ(r, t). We
saw in (2.82) how we could describe the classical four-vector potential field in
the radiation gauge k.A = 0, A0 = 0. It contains only two physical degrees of
freedom for a given four-momentum kµ. We introduced polarization vectors
εµ
1,2 which are orthogonal to each other and to the direction of propagation

k. The Fourier expansion of Aµ can thus be written

Aµ(r, t) =
∑

i=1,2

∑
k

1√
2V ω

[εµ
i ai,ke−i(ωt−k·r) + εµ∗

i a∗
i,kei(ωt−k·r)] (B.43)

We now let the Fourier coefficients become annihilation and creation op-
erators, fulfilling[

aik, a†
jk′

]
= δk,k′δij (B.44)

The physical interpretation is thus that a†
ik creates a photon with polarization

vector εµ
1 and wave vector k. Then Fock states can be built in exactly the

same way as for the scalar field.

B.3.3 Charged Scalar Field

It turns out that we cannot describe electrically charged particles with a real
scalar field. To do so, we must use a complex scalar field. The calculations
are very similar, however. A suitable classical Lagrangian density is given by

L =
[
(∂µϕ∗) (∂µϕ) − µ2|ϕ|2] (B.45)

Treating ϕ and ϕ∗ as independent fields, the Euler Lagrange equations be-
come(

� + µ2
)
ϕ(x) = 0 (B.46)

(x now denotes xµ) and(
� + µ2

)
ϕ∗(x) = 0 (B.47)
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The Fourier expansion must now describe a non-hermitian field, and takes
the form

ϕ(x) =
∑
k

1√
2V ω

[ake−ikx + b†keikx] (B.48)

and from the canonical commutation relations of the classical fields ϕ and ϕ∗

one deduces

[ak, a†
k′ ] = [bk, b†k′ ] = δkk′ (B.49)

It thus appears that we have two types of ‘particles’, of the same mass µ,
created by a† and b†, respectively. When we couple electromagnetism to this
complex scalar field, it can be seen that the a-particles and b-particles have
opposite signs for the electric charge. This formalism can thus include (and
in fact even predicts) the existence of antiparticles!

Coupling to electromagnetism is most easily performed by using the min-
imal coupling prescription pµ → pµ − eAµ, where according to quantum
mechanics pµ → i∂µ. Inserting this into (B.45) and using the expansions in
terms of creation and annihilation operators both for ϕ and Aµ, we find in-
teraction terms of many different types. When integrating over space-time,
some of these terms disappear (due to energy and momentum conservation),
but we obtain, for instance, a term which can destroy a photon, and create
a positive and a negative scalar boson or vice versa. These terms carry a
factor of e. From the squared terms in Aµ comes a contribution which cor-
responds to a coupling between two photons and two ϕ bosons at one point
(a so-called seagull or contact term). This is proportional to e2. These types
of basic coupling form the basis of determining the Feynman rules of the
theory. For scalar quantum electrodynamics (scalar QED) we thus have the
Feynman diagrams shown in Fig. B.3.

In addition, the propagators which we encountered in Section 6.10 are
given by the inverse (in Fourier space) of the quadratic forms in the fields.
Thus, they are the Green’s functions for the theory. For instance, the Klein
Gordon equation(

� + m2
)
ϕ(x) = iδ4(x) (B.50)

can be inverted trivially, since the Fourier transform of the δ function is unity.
Thus

P (k) =
−i

k2 − m2 + iε
(B.51)

Here the imaginary part is added to define how to treat the propagator ‘on-
shell’: that is, when the mass shell condition k2 = m2 is fulfilled. It turns
out that by adding a small positive imaginary part we arrive at a state cor-
responding to a free particle with positive energy.

Since we have seen that the photon field in the radiation (or Feynman)
gauge obeys the simple wave equation �Aµ = 0 (2.81), it corresponds to the
propagator
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Pµν(k) =
−igµν

k2 + iε
(B.52)

γ

γ

γ

φ

φ

φ+ +

φ− −

Fig. B.3. Feynman diagrams for the interaction between photons and a charged
scalar field (scalar QED). The diagram on the left is proportional to e, and the one
on the right is proportional to e2.

B.4 Summary

• The Euler Lagrange equations for a field φ read

∂

∂xµ

[
∂L

∂(∂φ/∂xµ)

]
− ∂L

∂φ
= 0.

• For a scalar field, the simplest relativistically invariant Lagrangian
density is

L =
1
2
[
(∂µϕ) (∂µϕ) − µ2ϕ2

]
.

The equation of motion that follows from this Lagrangian is the
Klein Gordon equation

(� + µ2)ϕ = 0

a relativistic wave equation for a scalar (spinless) field of mass µ.
• Quantization is most easily performed by making a Fourier mode

expansion, where each mode with wave vector k contributes inde-
pendently to the Hamiltonian:



B.4 Summary 307

H =
∑
k

h̄ω(k)(a†
kak +

1
2
)

• An electrically charged scalar field is best described by a complex-
value φ with Lagrangian density

L =
[
(∂µϕ∗) (∂µϕ) − µ2|ϕ|2]

The physical interpretation requires two types of particle, both of
mass µ. The appearance of such antiparticles is a generic feature
of relativistic quantum field theories.



C The Dirac Equation

C.1 Introduction

With the Friedmann-Lemâıtre-Robertson-Walker model of Chapter 4 we have
a tool for studying the evolution in space and time of the Universe. Since
ȧ > 0 today, and ä < 0, it is clear that at an earlier time, conveniently chosen
as t = 0, a was vanishingly small. This was the moment of the Big Bang, a
singularity in the present models which we have no tools to handle (and which
may not be possible to treat even using Einstein’s theory of gravitation).
Not only the energy density but also the temperature was singular in that
limit, which means that the thermodynamics was undefined. By necessity,
the description of the very first moments of time after the Big Bang involve
elements of speculation. However, with accelerators, particle reactions up to
TeV energies have been studied, which means that the particle reactions that
took place in the early Universe after around 10−10 seconds after the Big
Bang can be described by laboratory-tested physical laws.

During the first few seconds after the Big Bang the Universe went through
many different phases, some of which have left traces that may still be stud-
ied today. We shall see that a thermodynamical treatment of early Universe
physics shows that the temperature must have been extremely high: for ex-
ample, around 1010 K one second a.b. (after the Bang), and 1015 K at the
earliest time we can describe with tested laws of nature, 10−10 s a.b. At these
high temperatures, the kinetic energies of particles were so high that particle
production was possible, and the cosmic plasma contained many different
types of particles in near equilibrium. In Chapter 8 we calculated how impor-
tant quantities like number density, energy density and entropy depend on
temperature, and how temperature has evolved with time in the Universe.

In the Universe today, only stable or very long-lived particles remain
as relics of the Big Bang. However, at the earliest times all fundamental
particles of nature were active players in cosmic evolution. We therefore need
to familiarize ourselves with some basic facts about the modern theories of
particles and fields, which is the topic of this appendix. Some particles, like
neutrinos, may act as messengers from astrophysical processes and are well
worth studying for that reason.

As the constituents of matter we know today all have spin 1/2 (in units
of h̄), in contrast to the force carriers (like the photon) which have spin 1
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(and in the case of the hypothetical carrier of the gravitational force – the
graviton – spin 2), it is worthwhile to first discuss some relevant features
of the relativistic equation describing spin-1/2 particles. This is the Dirac
equation.

The English physicist P.A.M. Dirac (1902-1984) was one of the founders of
the modern quantum field theory. Many of his papers belong to the category
of ‘classical papers’ today, and are still well worth reading. His most impor-
tant contribution to physics is the relativistic equation for spin-1/2 particles
(like the electron, the quarks, the neutrinos and so on) which bears his name.
It is ironic that it was introduced partly for the wrong reasons, but the equa-
tion itself has stood the test of time. We will follow partly the historical path
in which the equation was for quite some time regarded as a Schrödinger-like
single-particle equation, before being seen as the equations of motion for a
relativistic quantum field, similar to the scalar field ϕ(xµ) that we treated in
appendix B.3. It is amazing that for spin-1/2 particles (fermions) which obey
the Pauli principle, one can in fact obtain a relativistic single-particle equa-
tion which makes sense, by postulating that all the negative-energy states,
which caused the problems for the scalar field, are already occupied (forming
the so-called ‘Dirac sea’). The Pauli principle will then forbid positive-energy
particles from making transitions to the negative-energy states in the Dirac
sea. For many applications, there is therefore no need to use the full ma-
chinery of quantum field theory. We will thus treat Dirac particles similarly
to how we treated the classical radiation field in elementary quantum me-
chanics (that is, before turning the classical vector potential field into a field
operator). We will present a couple of simple examples with astrophysical
applications using this approach. Towards the end of the appendix we shall,
however, carry out the quantization of the Dirac field. Then you will have all
the basic tools needed for a full course in quantum field theory.

C.2 Constructing the Dirac Equation

The Schrödinger equation for a free particle (V (r) = 0) is based on the non-
relativistic expression of kinetic energy

Ekin =
p2

2m
(C.1)

which inserted into the energy equation H = Ekin produces, with the pre-
scription H → ih̄∂/∂t, p → −ih̄∇,

−h̄2∇2

2m
ψ(r, t) = ih̄

∂ψ(r, t)
∂t

(C.2)

An important property of this equation, and the reason why we can interpret
it as a single-particle equation, is that it implies a conserved current (the
probability current). The continuity equation for this current can be derived
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by multiplying (C.2) from the left by ψ∗, its complex conjugate from the
right by ψ, and subtracting:

∂ρ

∂t
+ ∇ · j = 0 (C.3)

where the probability current is

j(r, t) =
−ih̄

2m
(ψ∗∇ψ − ψ∇ψ∗) (C.4)

and the probability density

ρ(r, t) = |ψ(r, t)|2 (C.5)

Thus, if we start with a particle described by a wave function normalized
to unity, it will remain normalized during the time evolution.

We now check what will happen if we instead use the relativistic Klein
Gordon equation (B.30)(−h̄2∇2 + m2c2

)
ϕ = −h̄2 ∂2ϕ

c2∂t2
(C.6)

thus(
� + µ2

)
ϕ = 0 (C.7)

with µ = mc/h̄. We now set h̄ = c = 1, so that µ = m. Multiplying (C.7)
from the left by ϕ∗, the complex conjugate of (C.7) from the right by ϕ, and
subtracting, we find

∂ρ

∂t
+ ∇ · j = 0 (C.8)

with

j(r, t) =
−i

2m
(ϕ∗∇ϕ − ϕ∇ϕ∗) (C.9)

and

ρ(r, t) = i

(
ϕ∗ ∂ϕ

∂t
− ϕ

∂ϕ∗

∂t

)
(C.10)

Although (C.8) looks like a continuity equation, it is not possible to in-
terpret ρ in (C.10) as a probability density since it is not positive definite.
For instance, a plane wave with time dependence eiEt produces a negative
value of ρ, whereas the time dependence e−iEt does not have this problem.
The solution is, as we saw in appendix B.3, to interpret ϕ as a quantum field
whose excitations can be an arbitrary number of particles. Since the number
of particles can change, there is no reason to have a single-particle equation.
Also, the Hamiltonian of the quantum field (B.38) is in fact positive definite.
This was not known to Dirac, however, and he tried another solution. The
problem of the negative energies arises from the fact that the time derivative
in (C.7) is of second order. In the Schrödinger equation, we have a first-order
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time derivative but a second order space derivative. Could we perhaps find
a first-order equation? For a long time, this was thought to be impossible,
because relativity theory demands that we treat space and time in a similar
way, and a linear equation in space derivatives is not, for instance, invariant
under space rotations, as is the Schrödinger equation.

The crucial step forward taken by Dirac was to introduce several wave-
function components into the theory and to find a system of first order dif-
ferential equations in both space and time. Thus, he proposed the expression

Hψ = i
∂ψ

∂t
= −i

(
α1

∂

∂x1
+ α2

∂

∂x2
+ α3

∂

∂x3

)
ψ + βmψ (C.11)

where α and β are some constant N × N matrices to be determined, and ψ
is a column vector with N components (as usual we do not write the unit
matrix explicitly). The idea is that each of the components ψσ should satisfy
the relativistic Klein Gordon equation (� + m2)ψσ = 0. Multiplying (C.11)
by i∂/∂t, and using the equation itself to replace the time derivative on ψ on
the right-hand side, we find

−∂2ψ

∂t2
= −Mij

∂2ψ

∂xi∂xj
− iNjm

∂ψ

∂xj
+ m2β2ψ (C.12)

(remember that we use the summation convention), where

Mij =
αiαj + αjαi

2
(C.13)

and

Ni = αiβ + βαi (C.14)

We see that (C.12) becomes the diagonal Klein Gordon equation only if

Mij = δij (C.15)

and

Ni = 0 (C.16)

thus, introducing the anticommutator {, }:
{A,B} ≡ AB + BA (C.17)

{αi, αj} = 2δij (C.18)

{αi, β} = 0 (C.19)

In addition, we must have

β2 = 1 (C.20)

From (C.18) it also follows that

α2
i = 1 (C.21)
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for all i.
Of course, we still have to show that there exist matrices fulfilling these

relations. Also, we have to show that (C.12) is Lorentz invariant: that is, that
it has the same form in all inertial frames. Some properties of the matrices
are easy to derive. Since the square of any of them is the unit matrix, the
eigenvalues have to be ±1. From (C.19) we see that αi = −βαiβ. Taking the
trace of this equation and using Tr(AB) = Tr(BA) it is seen that the trace
of αi has to be zero. In the same way, Tr(β) = 0 is proven. Since the trace
is the sum of the eigenvalues, which are +1 or −1, we see that we must have
an even number of dimensions. The Pauli matrices σi would almost fulfil the
requirements. Since

{σi, σj} = 2δij (C.22)

they could serve the role of αi. However, the Pauli matrices span the space of
2×2 matrices together with the unit matrix σ0 = 1. The unit matrix can not
be used as β, however, since it commutes with all matrices in contradiction
to the requirement (C.19). We must therefore consider 4 × 4 matrices. By
trial-and-error, Dirac found a solution which uses the Pauli matrices as 2× 2
blocks in the 4 × 4 matrices:

αi =
(

0 σi

σi 0

)
(C.23)

and

β =
(

1 0
0 −1

)
(C.24)

The Dirac wave function Ψ can thus be considered as a column vector
consisting of four components ψσ, σ = 1, 2, 3, 4. As usual, we define the
hermitian conjugate wave function ψ†ψ as a row vector with components
(ψ∗

1 , ψ∗
2 , ψ∗

3 , ψ∗
4). Let us check that we can now form a positive-definite prob-

ability from ψ†ψ. We multiply (C.11) from the left by ψ† and the hermitian
conjugate of the equation from the right by ψ and subtract the two equations
thus obtained. This gives (using the fact that both the αi and β matrices are
hermitian)

∂ρ

∂t
+ ∇ · j = 0 (C.25)

where ρ is indeed the positive definite quantity ψ†ψ, and

j = ψ†αψ (C.26)

where we have assembled the ‘component matrices’ αi to a ‘vector of matrices’
α.

To show Lorentz invariance, it is convenient to multiply (C.11) from the
left by β, and rearrange the terms to obtain

i

(
γ0 ∂

∂x0
+ γ1 ∂

∂x1
+ γ2 ∂

∂x2
+ γ3 ∂

∂x3

)
ψ − mψ = 0 (C.27)
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Here we have introduced the very convenient notation γ0 = β and γi = βαi.
This allows us to write the anticommutation relations in the suggestive form

{γµ, γν} = 2ηµν (C.28)

In terms of block matrices,

γi =
(

0 σi

−σi 0

)
(C.29)

and

γ0 =
(

1 0
0 −1

)
(C.30)

The Dirac equation (C.27) can now be written in a form that looks manifestly
Lorentz invariant:

(i 
∂ − m)ψ = 0 (C.31)

where the ‘slash’ symbol will be used for an arbitrary contraction of a four-
vector with the set of γ matrices, 
A ≡ γµAµ.

C.3 Plane-Wave Solutions

Let us consider solutions to the free Dirac equation (C.31) that can describe
plane waves of positive energy and momentum p, thus

ψp (r, t) =
1√

2EV
u(p)e−i(Et−p·r) (C.32)

where u(p) is a four-column vector. Inserting this into (C.31) we find the
Dirac equation in momentum space for u(p):

( 
p − m) u(p) = 0 (C.33)

In particular, we can ask for solutions at rest, p = 0. Then only the γ0∂/∂t
term contributes, and we find with the representation (C.30) for the γ0 matrix

−2m

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠u(0) = 0 (C.34)

which shows that we can take as basis states only

u1(0) =

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠ (C.35)

and
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u2(0) =

⎛⎜⎜⎝
0
1
0
0

⎞⎟⎟⎠ (C.36)

The two lowest components have to be zero to satisfy (C.34), but this leaves
us with the problem that we only have a basis for the two-dimensional sub-
space spanned by the upper two components. Again, it is the negative energy
states that have to be involved. If we try instead the plane-wave expres-
sion corresponding to negative energy (that is, we let the four-momentum
p → −p)

ψp (r, t) =
1√

2EV
v(−p)e+i(Et−p·r) (C.37)

then the Dirac equation at rest becomes

2m

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ v(0) = 0 (C.38)

which has solutions

v1(0) =

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠ (C.39)

and

v2(0) =

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠ (C.40)

(We will see later that the negative-energy solutions are related to antiparti-
cles.) We can thus expand an arbitrary four-component Dirac-spinor at rest
as

ψ(t) = e−iEt

(
ϕ
0

)
+ e+iEt

(
0
χ

)
(C.41)

with ϕ and χ being two-component spinors.
Let us now check what happens when p 
= 0. Then we can still write

u(p) =
(

ϕ
χ

)
(C.42)

where ϕ and χ now will depend on p. The Dirac equation was constructed
to give E = ±p0 where we define p0 to be the positive quantity p0 =
+
√

m2 + p2. If we consider positive-energy solutions, inserting (C.42) into
(C.33) implies
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χ =
σ · p

p0 + m
ϕ (C.43)

and therefore

u(p) = N

(
ϕ

σ·p
p0+mϕ

)
(C.44)

where N is a normalization constant. Similarly, the negative energy solutions
v(−p) are given by

v(−p) = N

( σ·p
p0+mχ

χ

)
(C.45)

The Dirac equation becomes, for these spinors

( 
p − m) u(p) = 0 (C.46)

and

( 
p + m) v(−p) = 0 (C.47)

respectively.
Let us define the conjugate Dirac spinor ψ̄ by

ψ̄(x) ≡ ψ†(x)γ0 (C.48)

and thus

ū(p) ≡ u(p)†γ0 (C.49)

and

v̄(−p) ≡ v(−p)†γ0 (C.50)

Then using the identity

γ0 (γµ)† γ0 = γµ (C.51)

which can be easily verified, we obtain for the conjugate spinors ū and v̄ the
equations

ū(p) ( 
p − m) = 0 (C.52)

and

v̄(−p) ( 
p + m) = 0 (C.53)

By multiplying (C.46) from the left by ūγµ, (C.52) from the right by γµu,
summing these equations and using the anticommutation relation

{γν , 
p} = 2pν (C.54)

we find

mū(p)γµu(p) = pµū(p)u(p) (C.55)

and



C.4 Coupling to Electromagnetism 317

mv̄(−p)γµv(−p) = −pµv̄(−p)v(−p) (C.56)

Normalizing the two-spinors ϕ and χ to unity (ϕ†ϕ = χ†χ = 1), we choose
to normalize the four-spinors not to unity but rather by the condition

ū(p)u(p) = 2m (C.57)

v̄(−p)v(−p) = −2m (C.58)

which are relativistically covariant conditions. This means, for instance, that
u†u = 2E. Then, according to (C.55) and (C.56)

ū(p)γµu(p) = 2pµ (C.59)

and

v̄(−p)γµv(−p) = 2pµ (C.60)

This fixes the normalization constant N as
√

p0 + m, so that

ur(p) =
√

p0 + m

(
ϕr

σ·p
p0+mϕr

)
(C.61)

where we choose the two independent two-spinor basis states to be

ϕ1 =
(

1
0

)
(C.62)

and

ϕ2 =
(

0
1

)
(C.63)

Similarly,

vs(−p) =
√

p0 + m

( σ·p
p0+mχs

χs

)
(C.64)

C.4 Coupling to Electromagnetism

The easiest way to introduce electromagnetism is as usual to make the min-
imal coupling substitution

pµ → pµ − eAµ (C.65)

where Aµ is the electromagnetic four-potential. Going back to the Dirac equa-
tion in Hamiltonian form (C.11), this gives

i
∂ψ

∂t
= [α· (p − eA) + βm + eΦ] ψ (C.66)
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C.5 Lorentz Invariance

Although we have written the Dirac equation (C.31) in a way that looks
Lorentz invariant:

(iγµ∂µ − m) ψ(x) = 0 (C.67)

we have to demand that the Dirac matrices and the Dirac wave function
transform in the required way. According to the relativity postulate, we have
to find in a primed system

xµ → x′µ = Λµ
νxν (C.68)

(for example a Lorentz-boosted inertial frame) an equation of the same form:(
iγ′µ∂′

µ − m
)
ψ′(x′) = 0 (C.69)

(m′ = m because the rest mass is itself an invariant quantity). Let us try to
use the same constant Dirac matrices (that is, γ′µ = γµ – it can be proved
that this is possible) but make a linear transformation of the Dirac spinor:

ψ′(x′) = Sψ(x) (C.70)

with inversion

ψ(x) = S−1ψ′(x′) (C.71)

Then insertion into (C.31) gives(
iγµΛν

µ∂′
ν − m

)
S−1ψ′(x′) = 0 (C.72)

where we used (2.31). Multiplying from the left by S we find(
iSγµS−1Λν

µ∂′
ν − m

)
ψ′(x′) = 0 (C.73)

This is of the required form (C.69) if we can find an S such that

SγµS−1Λν
µ = γν (C.74)

or

Λµ
νγν = S−1γµS (C.75)

We now have to find S such that (C.75) is fulfilled. We first consider a
Lorentz boost along the x1 direction (see equation (2.22)), and write again
for convenience

β = tanh ζ (C.76)

Then

Λ(x1; ζ) =

⎛⎜⎜⎝
cosh ζ − sinh ζ 0 0
− sinh ζ cosh ζ 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎠ (C.77)
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and we see that for (C.75) to be fulfilled

S−1γ0S = (cosh ζ)γ0 − (sinh ζ)γ1

S−1γ1S = −(sinh ζ)γ0 + (cosh ζ)γ1

S−1γ2S = γ2 (C.78)
S−1γ3S = γ3

(C.79)

Using the anticommutation relations of the γ matrices, this can be summa-
rized as (exercise: prove this!)

S−1γµS =
(

cosh
ζ

2
+ γ0γ1 sinh

ζ

2

)
γµ

(
cosh

ζ

2
− γ0γ1 sinh

ζ

2

)
(C.80)

which shows that

S = cosh
ζ

2
− γ0γ1 sinh

ζ

2
(C.81)

The transformation matrices S for other Lorentz transformations can be
found in a similar way, and can be summarized by

S = cosh
ζ

2
− γ0γi sinh

ζ

2
(C.82)

for a boost with boost parameter ζ along the xi axis and

S = cos
ω

2
− γjγk sin

ω

2
(C.83)

for a rotation of an angle ω around the xi-axis (i, j, k = 1, 2, 3 cyclic).
In a similar way, it can be shown that the conjugate Dirac equation

i∂µψ̄(x)γµ + mψ̄(x) = 0 (C.84)

will be of the same form in a primed system provided that

ψ̄′(x′) = ψ̄(x)S−1 (C.85)

C.6 Bilinear Forms

To summarize, we have found the transformation matrix S that specifies how
the four components of a Dirac spinor mix under a Lorentz transformation.
Since S is not equal to Λ, the Dirac spinors are not four-vectors (in fact, the
four spinor components live in an ‘internal’ space which is not space-time).

However, there is an interesting result from (C.75). Using the fact that ψ
and ψ̄ transform as (C.70) and (C.85) respectively, it is seen that

V µ(x) ≡ ψ̄(x)γµψ(x) (C.86)

transforms as a four-vector:
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V ′µ(x′) = Λµ
νV ν(x) (C.87)

Similarly, we see that with

s(x) ≡ ψ̄(x)ψ(x) (C.88)

s′(x′) = s(x) (C.89)

that is, s(x) is a scalar quantity.
There exists an important 4 × 4 matrix, which is linearly independent

from the set γµ of four matrices, but can be constructed from their product:

γ5 ≡ iγ0γ1γ2γ3 (C.90)

In our standard representation it becomes

γ5 =
(

0 1
1 0

)
(C.91)

It satisfies(
γ5
)2

= 1 (C.92)

and

{γ5, γµ} = 0 (C.93)

The γ5 matrix plays an important role when discussing how Dirac spinors
transform under parity. Let us see if we can find an operator P acting on
a Dirac spinor that can represent the parity transformation of the space-
time coordinates t → t, r → −r: that is, xµ → x′µ = (t,−r). The Lorentz
transformation matrix which achieves this is

(ΛP )µ
ν =

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠ (C.94)

which has det(Λ) = −1 and is thus not a proper transformation (the latter
is defined as one which can be continuously reached from the unit transfor-
mation). The requirement that the Dirac equation has the same form in the
primed system, (C.75), is seen to be solved by

P = ηP γ0 (C.95)

where ηP is a phase factor.1

Since the γ5 matrix anticommutes with γ0,

P−1γ5P = −γ5 = det(ΛP )γ5 (C.96)

1 A spin-1/2 particle can be shown to have the possible values ±1 and ±i. This
means that in general it takes four reflections to bring the wave function back
to its original value; similar in the case of rotations, where for fermions it takes
a rotation through 4π radians.
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For a general Lorentz transformation the γ5 matrix thus transforms as

S−1γ5S = det(Λ)γ5 (C.97)

It therefore changes sign if we make a parity transformation x → −x, (but
t → t) and remains unchanged for proper Lorentz transformations. It has the
same properties as the box product a · b × c for three-vectors. The bilinear
form

s5(x) ≡ ψ̄(x)γ5ψ(x) (C.98)

consequently behaves as a pseudoscalar quantity. The bilinear

Aµ ≡ ψ̄(x)γµγ5ψ(x) (C.99)

transforms under proper Lorentz transformations like a four-vector, but is a
pseudovector under parity transformations. Thus,

A′µ(x′) = det (Λ) Λµ
νAν(x) (C.100)

Let us compute how many 4 × 4 matrices we have now introduced. Each of
the sets γµ and γµγ5 contains four matrices. Together with γ5 and the unit
matrix we thus have 10 matrices. There should thus exist six more linearly
independent matrices to span the 16-dimensional space of 4 × 4 matrices. A
convenient choice of the remaining matrices is

σµν ≡ i

2
[γµ, γν ] (C.101)

Since this set is antisymmetric in µ and ν, it indeed contains six independent
matrices. The bilinear constructed from σµν ,

Tµν(x) ≡ ψ̄(x)σµνψ(x) (C.102)

can be shown to transform like a rank-2 tensor (it is an antisymmetric tensor):

T ′µν(x′) = Λµ
ρΛ

ν
σT ρσ(x) (C.103)

C.7 Spin and Energy Projection Operators

Since the Dirac equation describes spin-1/2 particles, we should be able to
find four-dimensional analogs to the 2×2 Pauli matrices σi. In fact, they are
not difficult to find. If we define Σi by

Σi =
1
2
εijkσjk =

i

2
εijkγjγk (C.104)

they have the form (in our usual representation of the γ matrices)

Σi =
(

σi 0
0 σi

)
(C.105)

The commutation relations for Σi are then the same as for σi
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Σi, Σj

]
= 2iεijkΣk (C.106)

which means that Σi/2 satisfies the commutation relations of angular mo-
mentum. We also find trivially (since it is the same as for the σ matrices)
that∑

i

(
Σi

2

)2

=
3
4

=
1
2

(
1
2

+ 1
)

(C.107)

so that we are indeed dealing with a spin-1/2 particle.
In calculations it is sometimes helpful to use the formula

Σi = −γ5γiγ0 (C.108)

which is easy to derive using the definition of γ5. We have in (C.108)
only defined the space-like part of the spin operator. To describe the spin
operator in a covariant way we should find a four-vector that becomes
Σµ = (0, Σ1, Σ2, Σ3) in the rest frame. The four-dimensional generaliza-
tion of εijk is the four-dimensional Levi-Civita tensor εµνρσ. Since the four-
momentum vector is pµ = (m, 0, 0, 0) in the rest frame we see that

σµ =
1

2m
εµνρσpνσρσ (C.109)

is the operator we are looking for. To obtain the spin operator for a given
direction n̂ we can similarly introduce a four-vector nµ which has the value
nµ = (0, n̂) in the rest frame. Then the covariant operator nµΣµ will refer
to this spin direction in any inertial frame. In particular, we can find the
relativistic analog of the two-component spin-up and spin-down projection
operators in the z-direction

P± =
1 ± σz

2
(C.110)

by introducing nµ
z = (0, 0, 0, 1) and writing

P± =
1 ± Σµnµ

z

2
=

1 ± γ5 
nzγ
0

2
(C.111)

Here we can write the γ0 matrix as 
p/m, and use that 
p acting on a free
spinor produces ±m. If we define the spinor u1(p) to have spin-up in the
z-direction and v1(−p) to have spin-down, and vice versa for u2(p), v2(−p)
(we will later see the motivation for this opposite assignment of spin), we
can, for both types of spinor, use

P± =
1 ± γ5 
nz

2
(C.112)

as spin projection operators.
We can also find projectors for positive and negative energies. The Dirac

operator for positive-energy spinors ( 
p−m) gives zero on any spinor which has
been multiplied by ( 
p + m) (see (C.46); use p2 = m2) and since the operator
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(− 
p + m) in a similar way gives negative-energy spinors (see C.47), we can
expect them to be suitable projection operators, apart from normalization.
Let us call the normalized projection operators Λ− and Λ+ respectively. Then
we must have (as for all projection operators) Λ2

− = Λ−, Λ2
+ = Λ+, Λ−+Λ+ =

1 and Λ−Λ+ = Λ+Λ− = 0. We see that

Λ+ =

p + m

2m
(C.113)

and

Λ− =
− 
p + m

2m
(C.114)

have these required properties.
A related set of equations, often convenient to use in calculations, is∑

r

ur
α(p)ūr

β(p) = ( 
p + m)αβ (C.115)

and∑
s

vs
α(−p)v̄s

β(−p) = (− 
p + m)αβ (C.116)

Another set of projection operators which are important, for example,
when describing the weak interactions of fermions, are the so-called chirality
operators

PL ≡ 1 − γ5

2
(C.117)

and

PR ≡ 1 + γ5

2
(C.118)

They enable a Lorentz-invariant decomposition of an arbitrary Dirac spinor
in left- and right-chirality components:

ψL,R ≡ PL,Rψ (C.119)

It can be shown that in the limit of zero mass, chirality is equal to helicity:
that is, the projection of the spin onto the direction of motion. An eigenstate
of PL, for instance, has its spin oriented opposite to the direction of motion
(and is said to describe a left-handed fermion). In the modern theory of ele-
mentary particles (quarks and leptons) it seems that the chiral states are the
fundamental states of the theory. (For instance, the left- and right-chirality
states may interact with different strength – for neutrinos it seems that the
right-handed states do not interact at all!)
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C.8 Non-Relativistic Limit

We now investigate the non-relativistic limit of the Dirac equation coupled
to electromagnetism

i
∂ψ

∂t
= [α· (p − eA) + βm + eΦ] ψ (C.120)

If we start with a positive-energy solution the time-dependent Dirac spinor
wave function is of the form

ψ = e−mt

[
ϕ
χ

]
(C.121)

where we have taken out the large t dependence arising from the rest energy
m, and where thus ϕ and χ should be slowly varying functions of t. Inserting
this into (C.120) one finds

i
∂

∂t

[
ϕ
χ

]
= σ· (p − eA)

[
χ
ϕ

]
+ eΦ

[
ϕ
χ

]
− 2m

[
0
χ

]
(C.122)

Here we can approximate the solution to the lower equation by

χ =
σ · (p − eA)

2m
ϕ (C.123)

which, inserted into the upper equation, gives

i
∂ϕ

∂t
=
(

σ · (p − eA) σ · (p − eA)
2m

+ eΦ

)
ϕ (C.124)

which produces the correct Pauli term for a spin-1/2 particle. This is seen
even more clearly by checking what the equation produces for the interaction
with a weak magnetic field B, in which case A = 1

2B× r, expanding (C.124)
to lowest order in A:

i
∂ϕ

∂t
=
(

p2

2m
− e

2m
[L + 2S] · B

)
ϕ (C.125)

Here we see that the total angular momentum J consists of two parts: the
orbital angular momentum L = r × p and a spin part gS with Si = σi/2,
the spin operator appropriate for a spin-1/2 particle, and the gyromagnetic
ratio g = 2.

Thus, we see that the Dirac equation has the attractive property of being
a relativistic equation with the correct non-relativistic limit to describe spin-
1/2 particles like electrons.

If we want to compute the next-order corrections to (C.124), it is conve-
nient to choose a slightly different basis for the Dirac matrix which makes
the Hamiltonian diagonal to that order. A systematic scheme for carrying
this out order by order was devised by Foldy and Wouthuysen in 1950. The
idea is to transform

ψ → ψ′ = eiSψ (C.126)
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leading to

i
∂ψ′

∂t
=
(

eiS

[
H − i

∂

∂t

]
e−iS

)
ψ′ = H ′ψ′ (C.127)

By using

H ′ = H + i[S,H] +
(i)2

2!
[S, [S,H]] + . . . (C.128)

and choosing S so that the non-diagonal terms vanish, one finds after a
straightforward though tedious calculation (see [7]) to second order:

H2nd = β

(
m +

(p − eA)2

2m
− p4

8m3

)
+ eΦ

− e

2m
βσ · B − ie

8m2
σ · (∇× E)

− e

4m2
σ · (E × p) − e

8m2
∇ · E (C.129)

(C.130)

In this formula one observes relativistic corrections to the kinetic energy and
spin-orbit interactions. The last term (the so-called Darwin term) is specific
to the Dirac equation and can be interpreted as a smearing of the electrostatic
potential caused by the very fast vibrations (‘zitter bewegung’) of the electron
at short distances.

C.9 Problems with the Dirac Equation

C.9.1 The Dirac Sea

We have seen that we can find a relativistic first-order linear wave equation
which describes spin-1/2 particles such as electrons. The problem is that, as
we have seen, it also allows negative-energy solutions. How shall we interpret
them? Dirac found a suitable intermediate solution before quantum field the-
ory for electrons was constructed. He postulated the existence of a ‘sea’ of
electrons occupying all the negative-energy states. Since electrons obey the
Pauli exclusion principle, there is no risk that positive-energy electrons will
make transitions into this sea by radiating photons (gamma-rays) of huge
energy > 2m, thus avoiding a catastrophic instability of the theory. However,
the inverse process should be possible in this picture: by absorbing a gamma-
ray of energy greater than 2m, a negative-energy electron could be lifted to
a positive-energy unoccupied state, leaving behind a hole in the Dirac sea
(see Fig. C.1). If the sea electron had negative-energy −E, charge −e, and
momentum p, the new sea state has energy +E, charge +e and momentum
−p more than the original sea state. The hole will thus behave as a positive-
energy particle with positive charge, with momentum −p. It thus behaves as
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a positron! The process where one negative-electron is lifted by a gamma-ray
to a positive-energy state can thus be interpreted as the creation of an e+e−

pair from the vacuum (allowed by the energy provided by the gamma-ray).
Indeed, if there is a hole already present, a positive-energy electron can fall
into that hole under emission of a gamma-ray. It is then equivalent to electron
positron annihilation.

E

+m

-m

Fig. C.1. The energy spectrum of the free Dirac equation. Solutions with E > m
and E < m are possible (there is a ‘mass gap’ of size 2m). However, in the picture
of the Dirac sea, the negative-energy states are all occupied. By absorption of a
photon of energy greater than 2m, one of the negative-energy electrons can be
lifted to an unoccupied positive-energy state, leaving a hole behind. The physical
interpretation of such a process is the production of an electron positron pair

How can we describe the presence of positrons (that is, the absence of
negative-energy electrons in the Dirac sea) by the Dirac equation? The key
point is that the charge is opposite. Therefore, since the negatively charged
electrons are described by

(i 
∂ − e 
A − m) ψ = 0 (C.131)

we would like to find a ‘charge conjugation’ transformation on ψ such that
the transformed Dirac wave function ψc instead fulfils

(i 
∂ + e 
A − m) ψc = 0 (C.132)

If we take the complex conjugate of (C.131) we find, using that Aµ is real-
valued,[(

i
∂

∂xµ
+ eAµ

)
(γµ)∗ + m

]
ψ∗ = 0 (C.133)
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This produces the possibility of obtaining (C.132) if we can find a matrix SC

with the property

SC(γµ)∗S−1
C = −γµ (C.134)

It is a good exercise to check that the matrix

SC = iγ2 (C.135)

fulfils this equation. Consequently, the charge conjugate Dirac field ψc can
be represented by

ψc = iγ2ψ
∗ (C.136)

If we introduce C by SC = Cγ0, we see that we can also write

ψc = Cψ̄T (C.137)

where we recall the definition (C.48) for ψ̄.
Let us check how the charge-conjugation operator acts on our basis states.

Consider a free negative-energy electron at rest with spin-down: that is

ψ ∼

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠ e+imt (C.138)

The charge-conjugated state will have the wave function

ψc = Cψ̄T =

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠ e−imt (C.139)

We see that ψc are the appropriate wave functions to use for the hole states,
and we obtain the reasonable result that the absence of a spin-down negative-
energy electron is equivalent to the presence of a spin-up positive-energy
positron.

C.10 Central Potentials

For a central potential, the angular momentum operator

L = r × p (C.140)

commutes with the Hamiltonian and can therefore be simultaneously diago-
nalized with it. For a given l we can couple the spin of an electron to a given
j = l ± 1/2. Let us see if we can do the same in the Dirac theory. With

H = α · p + βm + V (r) (C.141)

where V (r) is a spherically symmetric potential, we find that



328 C The Dirac Equation

[H,L] = −iα × p (C.142)

so L does in fact not commute with H. However, if we compute the commu-
tator of H with the spin operator Σ (see (C.105)) we find

[H,Σ] = 2iα × p (C.143)

so that the total angular momentum operator

J = L +
1
2
Σ (C.144)

commutes with the Hamiltonian. This is a general feature in quantum me-
chanics: rotational invariance of the potential is related to the conservation
of total angular momentum.

C.11 Coulomb Scattering

We now compute the differential cross-section for the scattering of an electron
on a heavy nucleus. If the electron energy is low compared to the mass of the
nucleus, we can consider the latter as stationary. The effect of the nucleus
can therefore be represented by a static Coulomb potential

V (r) =
−Zα

r
(C.145)

(we now drop the subscript on αem).
To use the formalism of time-dependent perturbation theory, we should

write the Hamiltonian as H = H0 + HI , where H0 is the free Dirac Hamilto-
nian, and (see (C.141)) HI = V (r). The transition matrix element between
initial momentum and spin pi, r and final momentum and spin pf , s caused
by HI is thus

Mfi = 〈pf ; s|HI |pi; r〉 =
∫

d3rψ†
f (r)V (r)ψi(r) (C.146)

Here we insert our unperturbed plane-wave Dirac spinors:

ψi(r) =
1√

2EiV
u(r)(pi)e−(Eit−pi·r) (C.147)

ψf (r) =
1√

2EfV
u(s)(pf )e−(Ef t−pf ·r) (C.148)

where we have quantized in a large volume V , and where the four-spinor u
is normalized such that u†u = 2E.

When inserting these expressions into (C.146) we find the integration over
d3r to give essentially the Fourier transform of the potential V (r) (this is, of
course, the Born approximation):∫

d3r

r
e−iq·r =

4π

q2
(C.149)
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where q = pf − pi. According to Fermi’s golden rule, we should now sum over
the possible final states of the same energy. In the momentum interval d3pf

there are V d3pf/(2π)3 such states. Using the energy δ function δ(Ef − Ei),
which follows from the time independence of the Coulomb potential, using
pfdpf = EfdEf (which follows from the energy equation E2 = p2 + m2), we
find after inserting the various factors in the golden rule (exercise: fill in the
intermediate steps)

dσ

dΩ
=

(Zα)2

q4

∣∣∣u(s)†(pf )u(r)(pi)
∣∣∣2 (C.150)

For given initial and final momenta and spins, we can compute the value
of |u†u|2 to obtain the differential cross-section. Often, however, we are inter-
ested in the unpolarized cross-section, which means that we take the average
over the two possible initial spins and sum over the two possible final spins.
Thus, we want to compute

dσunpol

dΩ
=

(Zα)2

q4

1
2

∑
r,s

∣∣∣u(s)†(pf )u(r)(pi)
∣∣∣2 (C.151)

We can do this by inserting all the four combinations of spins r, s and sum-
ming them separately. We will, however, introduce a technique which has
also proven to be very useful in more complicated cases (and which is easy
to implement using computer algebra). First, we note that (since ū = u†γ0

and (γ0)2 = 1)

u(s)†(pf )u(r)(pi) = ū(s)(pf )γ0u(r)(pi) (C.152)

Also, for any 4 × 4 matrix Γ , we can write∣∣∣ū(s)(pf )Γu(r)(pi)
∣∣∣2 =

(
ū(s)(pf )Γu(r)(pi)

)∗ (
ū(s)(pf )Γu(r)(pi)

)
(C.153)

However,(
ū(s)(pf )Γu(r)(pi)

)∗
=
(

u(r)†(pi)Γ †
[
ū(s)(pf )

]†)
=
(
ū(r)(pi)Γ̃ u(s)(pf )

)
(C.154)

with

Γ̃ = γ0Γ †γ0 (C.155)

We now use∑
s

u(s)(pf )ū(s)(pf ) = 
pf + m (C.156)

so that (writing out the Dirac indices α and β – remember that we use the
summation convention for them also)



330 C The Dirac Equation

∑
r,s

∣∣∣u(s)†(pf )u(r)(pi)
∣∣∣2 =

∑
r

ū(r)
α (pi)

(
γ0 [ 
pf + m] γ0

)
αβ

u
(r)
β (pi) (C.157)

Here we can move ū
(r)
α (pi) to the far right, and using∑

r

u(r)(pi)ū(r)(pi) = 
pi + m (C.158)

we see that the unpolarized spin sum can be written as∑
r,s

∣∣∣u(s)†(pf )u(r)(pi)
∣∣∣2 = Tr

[
γ0 ( 
pf + m) γ0 ( 
pi + m)

]
(C.159)

C.12 Trace Formulae

We see that according to (C.159) an unpolarized cross-section can be written
in terms of a trace of a product of matrices acting in the four-dimensional
Dirac spinor space. Since this is a very general method to compute cross-
sections, it is convenient to summarize some of the properties of such traces.
We first note that

Tr(I) = 4 (C.160)

where I is the 4 × 4 unit matrix. Also, we saw before that due to the anti-
commutation relations

Tr (γµ) = 0 (C.161)

for all the four γ matrices. Also

Tr
(
γ5
)

= 0 (C.162)

as is obvious from the representation (C.91). We can use the fact that (γ5)2 =
I and that γ5 anticommutes with all γµ to prove that the trace of any product
of an odd number of γ matrices vanishes (here we do not write which index
µ each γ matrix has):

Tr (γ1γ2 . . . γ2k+1) = Tr
(
γ5γ5γ1γ2 . . . γ2k+1

)
=

Tr
(
γ5γ1γ2 . . . γ2k+1γ

5
)

= (−1)2k+1Tr (γ1γ2 . . . γ2k+1) = 0 (C.163)

where in the second step we used the cyclic property of the trace, and in the
final step we anticommuted one of the γ5 matrices through all the 2k + 1 γ
matrices, each step giving a factor of (−1).

For the product of two γ matrices, the result is easy to compute:

Tr (γµγν) = Tr (γνγµ) =
1
2
Tr (γµγν + γνγµ) = ηµνTr(I) = 4ηµν (C.164)

If a four-vector pn is contracted with each γ matrix this formula can be
written
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Tr ( 
p1 
p2) = 4 (p1.p2) (C.165)

For an even number n > 2 we can use a recursion formula:

Tr ( 
p1 
p2 . . . 
pn) = p1.p2Tr ( 
p3 
p4 . . . 
pn)
−p1.p3Tr ( 
p2 
p4 . . . 
pn) + . . . + p1.pnTr ( 
p2 
p3 . . . 
pn−1) (C.166)

This formula is proven by using


p1 
p2 = − 
p2 
p1 + 2p1.p2 (C.167)

to move p1 successively one step at a time to the right until it is last in the
product. When that is the case we use the cyclic property to move it back to
the first position, and then the formula follows.

An important example is for n = 4, which gives

Tr ( 
p1 
p2 
p3 
p4) = 4 (p1.p2p3.p4 − p1.p3p2.p4 + p1.p4p2.p3) (C.168)

It is easy to show that (exercise: do this, using the definition of γ5)

Tr
(
γ5 
p1 
p2

)
= 0 (C.169)

The trace of a product of γ5 with four γ matrices is, however, non-zero:

Tr
(
γ5 
p1 
p2 
p3 
p4

)
= iεµνρσpµ

1pν
2pρ

3p
σ
4 (C.170)

a rule that can be verified for one particular order of gamma matrices (for
example, γ0γ1γ2γ3), and using the antisymmetry property of the result.

With this detour, we are now ready to compute the result (C.151),
(C.159). It becomes

dσunpol

dΩ
=

(Zα)2

2q4
Tr
[
γ0 
pfγ0 
pi + m2

(
γ0
)2]

(C.171)

Using our rules for computing traces, this can now be evaluated:

dσunpol

dΩ
=

(Zα)2

2q4

[
8EfEi − 4pf .pi + 4m2

]
(C.172)

Introducing spherical coordinates with the polar axis along the incident di-
rection, one finds, with β = v/c = p/E

dσunpol

dΩ
=

(Zα)2

4p2β2 sin4
(

θ
2

) [1 − β2 sin2

(
θ

2

)]
(C.173)

This is called the Mott cross-section, and reduces to the Rutherford formula
in the non-relativistic limit β → 0.



332 C The Dirac Equation

C.13 Quantization of the Dirac Field

So far, we have treated the Dirac field ψ as a classical field, without quantizing
it. The first guess would be that to quantize the Dirac field we can use
the canonical formalism and interpret the z coefficients of the plane-wave
expansion as creation and annihilation operators. Since we have a complex
field with four components ψα, we would need to introduce aα and b†α similarly
to how we treated the complex Klein Gordon field in (B.48). However, this
does not really work for the Dirac field, which as we have seen describes spin-
1/2 particles. This is due to the requirement of Fermi statistics, which means
that the Pauli principle has to be obeyed. For instance, a two-particle state
must be antisymmetric in the exchange of the two particles. Also, we cannot
have more than one particle in any state of given spin and momentum.

We have seen that in our description of scalar field quanta in terms of
elementary excitations obtained by acting on the vacuum with creation oper-
ators a†

k, we can obtain a state with n quanta of the same energy and momen-
tum by acting n times with a†

k. This is perfectly acceptable for bosons, but
of course violates the Pauli principle for fermions. Moreover, if we describe
a state with two particles of different momenta k and k′ by acting on the
vacuum state:

|0 . . . 1k . . . 1k′ . . .〉 = a†
ka†

k′ |0〉 (C.174)

we see that it is symmetric when we exchange the particle labels:

a†
ka†

k′ |0〉 = a†
k′a

†
k |0〉 (C.175)

because of the commutation relation[
a†
k, a†

k′

]
= 0 (C.176)

If we want to describe fermions with creation operators c†r,k and c†s,k′ , we
would instead expect antisymmetry:

c†r,kc†s,k′ |0〉 = −c†s,k′c
†
r,k |0〉 (C.177)

Furthermore, we should have(
c†r,k
)2

= 0 (C.178)

for all r and k, since we can only put one particle in each state. Both of these
requirements can be met if we postulate that the creation and annihilation
operators for fermions obey anticommutation relations instead of commuta-
tion relations:{

c†r,k, c†s,k′

}
= {cr,k, cs,k′} = 0 (C.179)

Instead of[
ar,k, a†

s,k′

]
= δrsδk,k′ (C.180)
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it is then also reasonable to postulate{
cr,k, c†s,k′

}
= δrsδk,k′ (C.181)

Indeed, it turns out that this way of quantizing the Dirac field is the
correct one. To describe the quantized complex Dirac we thus write

ψ (r, t) =
∑
r,p

1√
2EV

[
cr,pu(r) (p) e−ipµxµ

+ d†r,pv(r) (−p) eipµxµ
]

(C.182)

where{
c†r,p, c†s,p′

}
= {cr,pcs,p′} =

{
d†r,p, d†s,p′

}
= {dr,pds,p′} = 0 (C.183)

and{
cr,p, c†s,p′

}
=
{

dr,p, d†s,p′

}
= δrsδp,p′ (C.184)

C.14 Majorana Particles

We have assumed that the Dirac field is complex, which is indeed necessary to
describe charged particles, as we saw also for the scalar Klein Gordon field.
However, there are other spin-1/2 particles in nature which do not carry
electric charge. Examples are neutrons and neutrinos. Are they their own
antiparticles, and can they in that case be described by a real Dirac field? In
the case of the neutron, the answer is ‘no’. There is another type of charge,
called the baryon number, which seems to be conserved to accuracy in nature,
and which distinguishes a neutron from an antineutron.

In the case of neutrinos, the question is still open. In the Standard Model
of particle physics, neutrinos carry a lepton number which also makes a differ-
ence between particles and antiparticles. However, in extensions of the model,
neutrinos could be their own antiparticles and should then be described by a
real field, called a Majorana field. Actually, whether the field is real depends
on the choice of the representation of the γ matrices. There exists one repre-
sentation: the Majorana representation, where the γ matrices are in fact real,
and then the Dirac Majorana field in that representation is real. If we stick
to our standard representation of γ matrices, the requirement (the so-called
Majorana condition) is that the field is equal to its charge-conjugate: that is,
(see (C.137))

ψ = ψc = Cψ̄T (C.185)

with C = iγ0γ2. Since (check this using explicit expressions for u and v!)

u(s)(p) = Cv̄(s)T (−p) (C.186)

and

v(s)(−p) = Cū(s)T (p) (C.187)
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it follows that the appropriate expansion of a Majorana field ψM is

ψM (r, t) =
∑
r,p

1√
2EV

[
cr,pu(r) (p) e−ipµxµ

+ c†r,pv(r) (−p) eipµxµ
]
(C.188)

Whether or not the neutrino is a Majorana particle can have observable con-
sequences. Since a Majorana particle can have no conserved additive quantum
number (like electric charge or lepton number), exotic decays of nuclei are
possible which violate lepton number conservation. One example is neutrino-
less double β decay, where a nucleus changes its charge by two units upon
emission of two β particles (electrons). So far, none has been observed.

In so-called supersymmetric theories, Majorana fermions play a crucial
role. In particular, the supersymmetric partner of the photon, which can be
stable and perhaps make up the dark matter in the Universe, is a Majorana
particle.

C.15 Lagrangian Formulation

You now have all the basic tools for computing quantities in quantum field
theory. What you will learn in courses on that subject is how to carry out
perturbation theory (and sometimes even estimate non-perturbative effects)
in a Lorentz invariant way. It has turned out to be very convenient to use the
Lagrangian formulation of field theory, since that makes Lorentz invariance
manifest (and also various other symmetries that may exist in the theory).

It is not difficult to find a Lagrangian density which has the Dirac equation
as its Euler Lagrange equations of motion. If we consider the complex Dirac
field, we should treat ψα and ψ∗

α as independent variables, just as we treated
ϕ and ϕ∗ as independent variables for the complex scalar field. Since ψ∗ and
ψ̄ are the same degrees of freedom (linearly related by the matrix γ0), and ψ̄
is more useful when constructing Lorentz covariant bilinears, we prefer to use
ψα and ψ̄α as independent variables. You should check that the Lagrangian
density

L = ψ̄ (x) [i 
∂ − m] ψ (x) (C.189)

produces the Dirac equation. From this we can also verify that the Hamil-
tonian has the form that we expect from (C.11). The canonically conjugate
momenta are

πα =
∂L
∂ψ̇α

= iψ†
α. (C.190)

and

π̄α =
∂L
∂ ˙̄ψα

≡ 0 (C.191)

The Hamiltonian is then
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H =
∫

d3rψ̄ (x)
[
−iγj ∂

∂xj
+ m

]
ψ (x) (C.192)

Inserting the quantized Dirac field (C.182) and performing the integration,
one finds with the use of the anticommutation relations (excluding the zero-
mode contribution)

H =
∑
r,p

E(p)
[
c†r,pcr,p + d†r,pdr,p

]
(C.193)

and the total electric charge

Q =
∫

d3rj0 =
∫

d3rψ̄γ0ψ = −e
∑
r,p

[
c†r,pcr,p − d†r,pdr,p

]
(C.194)

These relations show that although negative energy states appear in the
solutions to the Dirac equation, the total energy associated with the quantized
complex Dirac field is positive definite. Also, although the energy contributed
by the ‘d-particles’ is positive, the charge has the opposite sign to that of
the ‘c-particles’. Thus, the natural interpretation is that the theory contains
positive energy electrons and positive energy positrons.

Since the Dirac equation is first-order in the space-time derivative, there
are a couple of differences when determining the Feynman rules for spinor
QED as opposed to scalar QED (Section B.3). First, since this means that
after minimal coupling the interaction Lagrangian is also linear in the electro-
magnetic field Aµ, there are no contact terms in the Feynman rules. Second,
the propagator obtained from inverting the Green’s function of the Dirac
equation in Fourier space: that is, by solving

(iγµ∂µ − m) ψ(x) = iδ4(x) (C.195)

is proportional to 1/p for large p instead of 1/p2 which is the case for bosons.
Formally, we find from (C.195) for the Dirac propagator

P (p) =
i


p − m + iε
(C.196)

where this expression should be interpreted as

P (p) =
i ( 
p + m)

p2 − m2 + iε
(C.197)

C.16 Summary

• The free Dirac equation for a spin 1/2 particle of mass m reads

i

(
γ0 ∂

∂x0
+ γ1 ∂

∂x1
+ γ2 ∂

∂x2
+ γ3 ∂

∂x3

)
ψ − mψ = 0
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• The 4 × 4 matrices {γµ} fulfil the anticommutation relations

{γµ, γν} = 2ηµν

• Plane-wave solutions are of the form

ψp (r, t) =
1√

2EV
u(p)e−i(Et−p·r)

which have positive energy, or

ψp (r, t) =
1√

2EV
v(−p)e+i(Et−p·r)

of negative energy.
• The four-spinors u and v fulfil the equations

( 
p − m) u(p) = 0

and

( 
p + m) v(−p) = 0

• Explicit forms of the spinor functions are

ur(p) =
√

p0 + m

(
ϕr

σ·p
p0+mϕr,

)
and

vs(−p) =
√

p0 + m

( σ·p
p0+mχs

χs

)
Here φr and χs are two-spinors of the Pauli type, and r and s are
spin indices.

• Coupling to electromagnetism is performed through the minimal
coupling prescription

pµ → pµ − eAµ

• Quantization of the Dirac field is performed through anticommu-
tation instead of commutation relations between the field variable
and its canonical momentum.

• By imposing the so-called Majorana condition

ψ = ψc = Cψ̄T

on the solutions of the Dirac equation, half of the degrees of free-
dom are eliminated. What remains is a self-conjugate field which
can describe Majorana particles: neutral spin-1/2 particles which
are their own antiparticles.

• A Lagrangian density which has the Dirac equation as its equation
of motion is

L = ψ̄ (x) [i 
∂ − m] ψ (x)



D Cross-Section Calculations

D.1 Definition of the Cross-Section

In a quantum mechanical system, transitions between different quantum
states are described by transition matrix elements, the squares of which de-
fine the probability for the transitions to occur. Formally, for an initial state
i and a final state f

Pi→f = |wfi|2 = |〈f |i〉|2 (D.1)

The main complication when we deal with free particles in the initial
and/or final state is that due to symmetries of the problem (for example,
rotational and translational invariance) there is a large degree of degeneracy
involved. This means, for instance, that the transition amplitude for scatter-
ing is not determined unless we specify boundary conditions for the incoming
and outgoing states. The usual assumption is that the initial state is part
of a Hilbert space Hin, which is characterized by the fact that we have at
time t → −∞ plane waves which converge to a region where scattering takes
place, and the outgoing states belong to an Hout with plane waves at t → +∞
which diverge from the region of scattering. However, these two Hilbert spaces
should really mean the same: there should exist a unitary matrix transferring
between the two. The S matrix is defined by

wfi = 〈f, out|i, in〉 = 〈f, in|S|i, in〉 = Sfi (D.2)

Translational invariance means that the overall four-momentum is con-
served. Thus, (D.2) should be non-zero only if pi = pf , meaning that we
should be able to extract a δ-function δ4(pf − pi). Also, one possibility is
that the incoming plane waves just pass each other and no scattering oc-
curs. This uninteresting part is just a unit matrix. We can thus define the
transition matrix, or T matrix, by the expression

Sfi = δfi + i (2π)4 δ4 (pf − pi) Tfi (D.3)

To each Feynman diagram there is a set of rules, the Feynman rules,
from which the T -matrix elements can be obtained. We use Lorentz-invariant
normalization of the plane waves, which means

〈p|p′〉 = 2E (2π)3 δ3 (p − p′) (D.4)
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or 2E particles per volume element in r-space. Corresponding to this normal-
ization of states there is a Lorentz invariant measure in momentum space

dµ =
d3p

2E (2π)3
(D.5)

When we insert (D.2) and (D.3) into (D.1) we run into the problem of
‘squaring the δ function’. This is related to the use of plane waves and can
be solved by performing the integral which defines the δ function

(2π)4 δ4 (p) =
∫

dtd3re−i(p0t−p·r) (D.6)

only over a finite (but large) time T and volume V . We see by inserting
p = 0 in this equation that formally δ4(0) = V T . Of course, when doing this,
we should make sure that our final results do not depend on the auxiliary
quantities V and T .

Let us treat the most common process of practical application, namely
the collision of two particles giving n particles in the final state, a + b →
c1 + c2 + . . . + cn.

For simplicity, assume that the particles of type b are at rest, and the
velocity of the particles a is v = |pa|/Ea. The number of particles of type b
per target volume is, due to our normalization, 2Eb = 2mb (since b is at rest,
it only has rest energy). The incident flux is the velocity of the particles a
times their number density 2Ea: that is 2|pa|. If the reaction volume is V and
the reactions take place during the time T , we should obtain the transition
rate per unit time and unit volume as the target density times the incident
flux times the cross-section σ (this defines σ): that is, 2mb ·2|pa| ·σ. However,
it should also be given by |wfi|2/(V T ). Equating the two, and summing over
all available momenta for the final state using the invariant measure dµ, we
thus obtain the ‘master formula’ for computing cross-sections

σ(a + b → c1 + . . . + cn) =
1

4mb|pa|
∫

dµ1 . . . dµn (2π)4 δ4 (pa + pb − p1 − . . . − pn) |T̃ |2 (D.7)

Here we usually have to take into account that the colliding particles are
unpolarized, and also that we are not interested in the final particle polar-
izations; so we have defined an effective square of the T -matrix element by

|T̃ |2 =
1
S

1
(2sa + 1) (2sb + 1)

∑
final spins

|〈f |T |i〉|2 (D.8)

Here sa and sb are the spins of the initial state particles.1 We have also
introduced a symmetry factor S, which is needed due to the impossibility
in quantum mechanics of distinguishing between two final states where the
1 The photon has spin 1, but since it is massless it has only two polarization states,

not three.
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only difference is the exchange of identical particles. There is thus a risk of
overcounting the number of available final states. In the cases we will treat we
will have at most two identical particles in the final state. For that case S = 2.
In general, if there are k groups of ni (i = 1, 2, . . . , k) identical particles in
the final state, S = n1!n2! . . . nk!

The formula (D.7) still has the drawback that it is not manifestly Lorentz
invariant. However, it can be made so by writing (Problem 6.4)

mb|pa| =
√

(pa.pb)2 − m2
am2

b (D.9)

An additional advantage with this form is that it can be also used for mb = 0,
which is the case for photons. Notice that in our system of units the cross-
section has dimensions of (mass)−2, a fact which is very useful when checking
results of computations.

For decay, a → c1 + c2 + . . . + cn, the same formulae apply with the only
exception being 4mb|pa| → 2ma (in this case, the natural frame is the rest
frame), and (2sa + 1) (2sb + 1) → (2sa + 1). The quantity thus obtained is
called the partial decay rate Γa→n. Summing the partial decay rates over all
possible decay channels one obtains the total decay rate Γ , which is related
to the average lifetime τ by

τ =
1
Γ

(D.10)

Thus, an ensemble of N0 particles at rest at time t = 0 will decay according
to the law

N(t) = N0e
−Γt (D.11)

Sometimes the term branching ratio for a certain decay channel n is used.
This is simply defined as

B.R. (a → n) =
Γn

Γ
(D.12)

and can be interpreted as the probability that a given particle of type a
decays into the final state n. We now proceed to compute the cross-section
of some interesting processes.

D.2 The Process e+e− → µ+µ−

As a first example, we compute the cross-section for e+e− → µ+µ−, which
we estimated on dimensional grounds in Section 6.10.1. Let us call the initial
four-momenta p−, p+ and the final state momenta k−, k+.

We need the Feynman rules for the process seen in Fig. 6.6. It breaks down
into the vertices of the type fermion photon fermion (where the fermion is
e in the first vertex and µ in the second vertex), and a photon propagator.
With the minimal coupling prescription and the Lagrangian density for a
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Dirac field given in Appendix C, it is seen that the coupling at a vertex is of
the form

V = ie
(
ψ̄γµψ

)
Aµ (D.13)

Here e is the elementary charge, fulfilling

e2 = 4πα (D.14)

in our units, with α � 1/137 the fine-structure constant. The Feynman rule
can more or less be read off from this, giving lµ = ev̄(−p+)iγµu(p−), where
the appearance of v(−p+) can be shown using methods of quantum field
theory, but can also be inferred from the Dirac hole theory (a positron of
momentum p+ is equivalent to a negative energy spinor of momentum −p+).
If we instead had considered scattering of an electron off a muon, the Feynman
rule would have given ū(p′−)iγµu(p−).

For the muon photon muon vertex, we similarly obtain

Lν = ū(k−)iγνv(−k+) (D.15)

The photon propagator is a tensor function Pµν(s) which connects the two
vertices. Its appearance depends on the gauge chosen for the computation. A
very convenient choice is the Feynman gauge, in which

Pµν(s) =
−igµν

s
(D.16)

Here s is the usual Mandelstam variable, s = (p− + p+)2 = (k− + k+)2.
We can thus write the T -matrix element

T (e+e− → µ+µ−) = −i
lµLµ

s
(D.17)

Since the electron and muon spinors act in different spinor spaces, we see
that the matrix element is factorized. We now have to take the initial spin
average, and sum over the final state spins. As is explained in the section
on trace formulae in Appendix C, such a spin sum becomes a trace in the
respective spinor space,

|T̃ |2 =
1
4
lµνLµν (D.18)

where 1/4 is from the initial spin average, and

lµν = Tr (γµ( 
p− + me)γν( 
p+ − me)) (D.19)

and a similar expression for Lµν , with obvious substitutions of momenta and
masses. Using the trace formulae, it is not difficult to compute

lµν = 4
[
pµ
−pν

+ + pν
−pµ

+ − (p−.p+ + m2
e

)
gµν
]

(D.20)

and a corresponding expression for Lµν .
The contraction of lµν with Lµν will generate Lorentz invariant scalar

products which can be expressed in terms of s, t and u (see Section 2.4.1).
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For a two-to-two process and unpolarized particles only two of these are
independent. Since the usual situation is that the initial energy, and therefore
s, is given, there is only one independent variable, which we take to be t. To
obtain the differential cross-section dσ/dt from our master formula we need
only introduce a δ function δ(t − (p− − k−)2) in the phase-space integral.
This makes it possible to perform this integral, and by using the formulae of
Section 2.4.3,

dσ

dt
=

|T̃ |2
16πλ (s, m2

a,m2
b)

(D.21)

(in our case, ma = mb = me). The integration limits for the t variable were
given in (2.60). At this point, it is an excellent exercise for the dedicated
student to assemble the results obtained so far and perform the t-integration
to obtain

σ(e+e− → µ+µ−) =
2πα2

s
v

(
1 − v2

3

)
(D.22)

where the only approximation made is to neglect me (this is allowed, since
m2

e/m2
µ  1). Here v is the velocity of one of the out-going muons in the

centre-of-momentum frame, v =
√

1 − 4m2
µ/s.

D.3 The Process ν̄ee
− → ν̄µµ−

Now we have the machinery to compute the cross-section ν̄ee
− → ν̄µµ− with

small modifications. One change is that antineutrinos always have positive
helicity (spin projection on the direction of motion), so there is no average
over initial spin for the antineutrino. On the other hand, the fact that only
right-handed antineutrinos take part in the interactions means that there is a
helicity projection PL = (1−γ5)/2 in the vertex (again, we can regard the pos-
itive energy right-helicity antineutrino as a negative energy negative-helicity
hole). The W boson propagator, which replaces the photon propagator can,
for s  m2

W , be approximated by

Pµν
W ∼ igµν

m2
W

(D.23)

and the electromagnetic coupling e is replaced by gweak = e/ sin θW , see
(6.21). Again neglecting the fermion masses, a very similar calculation as for
e+e− → µ+µ− gives

σ
(
ν̄ee

− → ν̄µµ−)
m2

µ
s
m2
W

=
g4

weaks

96πm4
W

(D.24)
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D.4 The Processes eeγγ

We now consider the electromagnetic processes, which are perhaps the most
important processes in astrophysics. They are γ+e± → γ+e±, e++e− → γγ
and γ + γ → e+ + e−. They are all 2 → 2 processes which differ only in the
combination of initial and final state particles. Therefore, the calculation of
the T matrix elements is essentially one and the same for all processes. (In
fact, there are systematic so-called crossing rules for how to go from one
amplitude to another by just changing the direction of four-momenta in the
expressions for the amplitude.)

p  -  k

k1

k2

-

p+

p-

1 p  -  k- 2

p+
k2

k1

p-

(a) (b)

Fig. D.1. Feynman diagrams for the process γ + γ → e+e−. The only difference
between (a) and (b) is the order in which the photons are attached to the fermion
vertices.

Let us indicate how the calculation is carried out for γ + γ → e+e−. A
new feature is that to conserve charge in the process, and using only the
fermion photon fermion vertex (which is the only fundamental interaction in
QED), we have to have a fermion propagator in the process (see Fig. D.1
(a)). There is also an ambiguity in which order to attach the two photons
in the graph, and according to the basic principles of quantum mechanics
we must add the one in Fig. D.1 (b) coherently to the one in Fig. D.1 (a).
For the external spinors we use, as before, ū(p−) and v(p+), and the wave
function for a free plane-wave photon of four-momentum k is just one of the
constant polarization vectors εµ

1,2(k) encountered in Section 2.6. (They are
transverse: that is, kµεµ

1,2 = 0.) The propagator for a fermion of mass m and
four-momentum p is given by
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SF (p;m) = i

p + m

p2 − m2
(D.25)

This means that we can write the amplitude as

T = ū(p−)Fµνv(−p+)εµ
1 εν

2 (D.26)

with

Fµν = −e2 [γµSF (p− − k1;me)γν + γνSF (p− − k2;me)γµ] (D.27)

The sum over initial photon polarizations is very simple in the Feynman
gauge, which gives∑

i=1,2

εµ
i εν

i = −gµν (D.28)

The sum over final state electron and positron polarizations again produces a
trace. This time there are quite a few terms of products of up to six γ matrices,
so it is advisable to perform this calculation using a symbolic manipulation
program.2 However, once this is done the result may again be expressed as a
function of s and t (s > 4m2

e is of course required for kinematical reasons),
and inserted into (D.21). The result is

σ
(
γγ → e+e−

)
=

πα2

2m2
e

(
1 − v2

)×[(
3 − v4

)
ln
(

1 + v

1 − v

)
+ 2v

(
v2 − 2

)]
(D.29)

Here v =
√

1 − 4m2
e/s is the velocity of one of the out-going fermions in the

centre of momentum system.
The computation of the reverse process e+e− → γγ is very similar, and

gives

σ
(
e+e− → γγ

)
=

πα2
(
1 − v2

)
2vm2

e

[
3 − v4

2v
ln
(

1 + v

1 − v

)
− 2 + v2

]
(D.30)

Note the similarity with (D.29), especially after taking into account that for
e+e− → γγ, a symmetry factor S = 2 has to be divided out because of the
presence of two identical particles in the final state.

As the final example, we consider Compton scattering γ+e− → γ+e− (see
Fig. D.2 (a) and (b)). Usually, there is an incoming photon beam of energy ω
which hits electrons at rest. For scattering by an angle θ with respect to the
incident beam, the out-going photon energy ω′ is given by energy-momentum
conservation to be

ω′ =
meω

me + ω (1 − cos θ)
(D.31)

2 The first full calculation of this type was performed by Klein and Nishina in 1928.
Klein later described how they spent several summer weeks doing the calculation
by hand, comparing at the end of each day the intermediate results.
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(a) (b)

Fig. D.2. Feynman diagrams for the process γ + e− → γ + e−. The only difference
between (a) and (b) is the order in which the photons are attached to the fermion
vertices.

In this frame, the unpolarized differential cross-section, as first computed by
Klein and Nishina, is

dσ

dΩ
=

α2

2m2
e

(
ω′

ω

)2 [
ω′

ω
+

ω

ω′ − sin2 θ

]
(D.32)

We can integrate this over the scattering angle to obtain

σ(γ + e → γ + e) =
πα2 (1 − v)

m2
ev

3

[
4v

1 + v
+
(
v2 + 2v − 2

)
ln
(

1 + v

1 − v

)
− 2v3 (1 + 2v)

(1 + v)2

]
(D.33)

where v is now the incoming electron velocity in the centre of momentum
frame, v = (s − m2

e)/(s + m2
e).



E Quantum Fluctuations of the Inflaton

E.1 Quantum Fields in General Relativity

We shall now investigate how a single scalar field, the inflaton field in the
simplest models for inflation, evolves during a cosmological inflationary

epoch of rapid expansion. It may be instructive to first read Appendix B,
where quantization of a scalar field is carried out for a static Minkowski
background. We now want to generalize this to a general space-time metric
gµν(x), where x = xµ are the four space-time coordinates. Defining

g ≡ det gµν(x), (E.1)

we can make a Lagrangian that is consistent with general relativity and which
has the correct flat-space limit by replacing (B.28) by

L(x) =
1
2
√−g

(
gµν(x)∂µϕ∂νϕ(x) − [m2 + ξR(x)]ϕ2(x)

)
. (E.2)

Here we have multiplied by
√−g which is a Jacobian factor which makes

L(x) a scalar density and thus the action

S =
∫

L(x)d4x (E.3)

a scalar. For a scalar field, the general relativistic covariant derivative is
just the ordinary partial derivative, and the only difference with (B.28) is
that we use the metric gµν(x) to contract the derivatives. The mass of the
field is m, but there is an additional quadratic term possible ξR(x)ϕ2, which
vanishes in Minkowski space (where the Ricci scalar R(x) = 0), but which
may exist here. If ξ = 0 we say that the scalar field is minimally coupled
to gravity, if ξ = 1/6 it turns out that the Lagrangian is invariant under
so-called conformal rescalings of the metric,

gµν(x) → Ω2(x)gµν(x), (E.4)

if m = 0 and ϕ is chosen to transform as ϕ(x) → Ω−2(x)ϕ(x). Without losing
generality for our application, we shall use the minimally coupled case here.
The potential terms for the inflaton, have been taken into account through
their influence on the scale factor, which enters the metric. (Therefore this
analysis also applies to any other kind of scalar field during inflation.) We will
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later see the changes caused by the slow roll of ϕ. To get inflation, we need
a patch of the Universe where the average value of the field is homogenous,
so the metric is of the FLRW type

gµν(x) = diag(1,−a2(t),−a2(t),−a2(t)), (E.5)

so that
√−g = a3(t). (E.6)

Now we can use the general relativistic version of the Euler Lagrange equa-
tions (B.27)

∂

∂xµ

[
∂
√−gL

∂(∂φ/∂xµ)

]
− ∂

√−gL
∂φ

= 0 (E.7)

to derive the equation of motion for the field ϕ,(
�g + m2

)
ϕ(x) = 0, (E.8)

where

�gϕ(x) = gµν(x)DµDνϕ(x) =
1√−g

∂µ[
√−ggµν(x)∂νϕ(x)]. (E.9)

Equation (E.8) is the general relativistic Klein Gordon equation. In the di-
agonal metric (E.5) we obtain

ϕ̈(x) + 3Hϕ̇(x) − ∇2ϕ(x)
a2

+ m2ϕ(x) = 0. (E.10)

E.2 Evolution in de Sitter Space-Time

We can now evaluate how the field evolves for different behaviour of the scale
factor a(t). As we saw in Chapter 10, the generic inflation involves a nearly
constant Hubble parameter, and an exponential scale factor

a(t) = a0e
H(t−t0), (E.11)

where H = ȧ/a ∼ const during inflation. This means that the de Sitter
space-time is a good approximation. We can simplify the analysis somewhat
by using instead of the cosmic time t the conformal time η (see (4.34)),
dt = adη so that the FLRW metric is the same as the Minkowski metric
apart from a conformal factor

ds2 = a2(η)[dη2 − dr2]. (E.12)

In our case, we can derive how the scale factor depends on conformal time
by computing

η =
∫ t dt

a(t)
= − 1

a0HeH(t−t0)
+ c = − 1

a(η)H
+ c (E.13)
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Choosing the constant c = 0, we find

a(η) = − 1
ηH

, (E.14)

with 0 < a < ∞ obtained in the interval −∞ < η < 0.
To quantize the field, we have to find its canonical momentum (B.31)

(from now on, in this section the dot means derivative with respect to con-
formal time)

π =
∂L
∂ϕ̇

= a2(η)ϕ̇ (E.15)

and impose the canonical quantization condition at equal conformal time

[ϕ, π]η = a2(η)[ϕ(η, r), ϕ̇(η, r′)] = iδ3 (r − r′) (E.16)

(there should really be a factor h̄ on the right hand side, but as usual we are
putting it to unity).

Now we insert a mode expansion for the field, similar to (B.35)

ϕ(η, r) =
∫

d3k

(2π)
3
2

[
akφk(η)eik·r + a†

kφ∗
k(η)

]
e−ik·r. (E.17)

To fulfil the quantization condition (E.16), we then have to demand

a2(η)
(
φkφ̇∗

k − φ∗
kφ̇k

)
= i. (E.18)

All the unknown physics which comes from the expansion of the Universe
now has been put into the functions φk(η). In the Minkowski case, we would
have followed a similar procedure, writing ϕ(t, r) = φk(t)e±ik·r, and finding
by using the equations of motion

φ̈k(t) + [k2 + m2]φk(t) = 0, (E.19)

which has the well-known solutions

φk(t) = c+φ+
k (t) + c−φ−

k (t) = c+e−iωkt + c−eiωkt, (E.20)

where ωk =
√

k2 + m2. Here the term proportional to c+ has positive energy,
and we expand the field as

ϕ(t, r) =
∫

d3k

(2π)
3
2

[
akφ+

k (t)eik·r + a†
kφ−

k (t)e−ik·r
]
. (E.21)

E.3 The Vacuum State

A vacuum state of the theory |0〉 is obtained by demanding ak|0〉 = 0 for
all values of k, which means that no positive energy particles are present in
any of the Fourier modes. Since the Minkowski space is time independent,
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the vacuum state, which if Lorentz invariant, remains the same empty state
forever.

In an expanding Universe, however, the situation is different. Through
the expansion there is a dependence on the scale factor in all our expressions.
Even if we demand that all the annihilation operators annihilate a state at
one time, the time evolution means that at another time this is no longer the
case. Particles may be spontaneously produced in an expanding Universe!
Also, as we will see, the evolution of a particular vacuum state, called the
adiabatic or Bunch Davies vacuum, is such that after the inflationary period
quantum fluctuations have survived in the form of nearly scale-invariant adi-
abatic density perturbations, which is just what is observed in the microwave
background.

Let us go back to (E.17) and write φk(η) = χk(η)/a(η). The equation of
motion (E.8) for our de Sitter space background then becomes

χ̈k +
(

k2 +
m2

H2η2
− ä

a

)
χk = 0, (E.22)

where in the de Sitter case,

ä

a
=

2
η2

(E.23)

The equation (E.22) then has well-known solutions in terms of Hankel func-
tions,

χk(η) =
√−η

(
c1H

(1)
ν (−kη) + c2H

(2)
ν (−kη)

)
, (E.24)

where H
(1)∗
ν = H

(2)
ν and ν2 = 9/4−m2/H2. How shall we choose the vacuum

state? We want to identify the positive energy states χ+
k (η) and chose the

‘in’ vacuum as one which is annihilated by all positive energy (or positive
frequency) annihilation operators. Using the property of the Hankel functions

H(1)
ν (x >> 1) →

√
2

πx
ei(x−ν π

2 −π
4 ) (E.25)

we see that the asymptotic behaviour for kη → −∞, that is an ‘in state’
corresponding to very early times, or large k which means small distances, is

χk(kη → −∞) →
√

2
πk

(
c1e

−ikη + c2e
ikη
)
. (E.26)

The ‘adiabatic’ or Bunch Davies vacuum is now obtained by choosing as
positive frequency states those with c2 = 0 and c1 =

√
π/2 so that

χ+
k (η → −∞) → 1√

2k
e−ikη, (E.27)
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and the vacuum state is the one which is annihilated by all annihilation
operators of these positive frequency plane waves.1

The inflaton field can then finally be expanded as

ϕ =
√−πη

2a(η)

∫
d3k

(2π)
3
2

[
akH(1)

ν (−kη)eik·r + a†
kH(2)

ν (−kη)e−ik·r
]
, (E.28)

where the normalization is such that (E.16) is fulfilled.

E.4 Connection to Observations

To make a connection between the fluctuations in a scalar field and the
density changes they cause is a delicate subject with many pitfalls having to
do with gauge invariance. Here we only give a flavour of the subject, directing
the interested reader to specialized treatises [28, 32, 40].

The simplest gauge to choose is the so-called conformal Newtonian gauge,
where the gauge freedom (i.e. invariance under reparametrization of the co-
ordinates) can be used to put the metric in the form

ds2 = a2(η)
[
(1 + 2Φ)dη2 − (1 − 2Ψ)δijdxidxj

]
, (E.29)

where in addition Φ = Ψ from the variation of the i 
= j part of the Einstein
equations, δGij = 0 in the absence of anisotropic stress. (We can also write
Ψ = φ1 connecting to (11.40).) From the other components,

δG0
j = 8πGδT 0

j (E.30)

one obtains [40], using Tµν for a single scalar field,

Tµν = ∂µϕ∂νϕ − gµν

[
1
2
gρσ∂ρϕ∂σϕ − V (ϕ)

]
, (E.31)

Ψ̇ + HΨ = 4πGϕ̇δϕ = εH2 δϕ

ϕ̇
, (E.32)

where ε is the slow-roll parameter introduced in (10.25). From analysing the
perturbation δGij one can see that Ψ̇ is very small (proportional to slow-roll
parameters) on super-horizon scales, so that

Ψ ∼ εH
δϕ

ϕ̇
. (E.33)

1 In principle, there is a loophole in this argument. For a given conformal time η,
the smallest distance we can speak about in conventional theory is the Planck
length. It is not excluded that the field enters from the Planck length in some
other state through violent, unknown physics. This state is then evolved by the
inflationary expansion. This may give rise to ‘transplanckian’ effects that may
be searched for in the microwave background, for example.
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This fluctuation in Ψ can be regarded as a curvature perturbation, since
we may replace the lowest-order Friedmann equation for a flat Universe

H2 =
8πG

3
ρ0, (E.34)

by a perturbed one (cf. (4.16))

H2 =
8πG

3
(ρ0 + ρ1) − δk

a2
, (E.35)

where δk is a perturbation in the parameter which defines the curvature in
(4.16). Forming the difference between the two at epochs when the two values
of H are equal, we find

δρ

ρ
=

ρ1

ρ0
=

δk

a2H2
(E.36)

This shows that variations in the total energy density, such as in the inflaton
field which governs the expansion during inflation, has a geometric nature.
The perturbation δk is sometimes written

δk

a2
=

2
3
∇2R, (E.37)

which defines what is usually called the curvature perturbation, R. For a
perfect fluid, with stress-energy tensor given by (3.54) we can deduce the
general relativistic versions of the continuity equation from the vanishing
divergence of the energy-momentum tensor,

∂tρ = −3H (ρ + p) (E.38)

and similarly the general relativistic Euler equation

ai = − ∂ip

p + ρ
, (E.39)

where a is the acceleration. (This shows that in general relativity it is the
sum of p and ρ that acts as source for acceleration, not just ρ as in Newtonian
mechanics.) In the presence of a pressure perturbation δp, the equation for
the acceleration, (4.28), sometimes called the Raychaudhuri equation takes
the form

ä

a
=

−4πG

3
(ρ + 3p) − 1

3
∇2δp

p + ρ
. (E.40)

We can now use the time derivative of (E.35) together with (E.38), (E.40)
and (11.40) to obtain

Ṙk = −H
δpk

p + ρ
. (E.41)

It can be shown [28] that the right hand side of this equation is very small
compared to HRk on super-horizon scales, so that Rk stays essentially con-
stant. That is in fact the great virtue of the curvature perturbation, which
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makes it very useful when analysing cosmological perturbations. In addition,
a simple relation between Rk and the Newtonian potential perturbation Φ1k

is found:

Rk = −5 + 3α
3 + 3α

Φ1k (E.42)

where as usual we have used the equation of state parameter α to write
p = αρ. In the slow-roll case, connecting to (E.33), one finds

Rk = Ψk + H
δϕk

ϕ̇
= (1 + ε)

δϕkH

ϕ̇
≈ δϕkH

ϕ̇
, (E.43)

and the power spectrum

PR(k) ≡ k3

2π2
|Rk|2 =

k3

2π2

H2

ϕ̇2
∆2

ϕ(k), (E.44)

where the field fluctuation is ∆2
ϕ(k) ≡ |δϕk|2.

We now return to the computation of this vacuum fluctuation of the
inflaton field which we compute as

〈|δϕ|2〉 = 〈0in|ϕ†(η, r)ϕ(η, r)|0in〉 =∫ ∞

0

k2dk

2π2
|φk(η)|2 =

−η

8πa2(η)

∫ ∞

0

k2dk|H(1)
ν (−kη)|2. (E.45)

The fluctuation per logarithmic k range, d ln k = dk/k then is

∆2
ϕ(k) =

k3

2π2
|φk(η)|2 =

H

8π
(−kη)3 |H(1)

ν (−kη)|2. (E.46)

During inflation, −kη = k/(aH) → 0 exponentially fast. That means that
the physical linear size of the fluctuation a/k becomes super-horizon, i.e.,
larger than 1/H. By using the small argument expansion

H(1)
ν (x << 1) ∼ −i

Γ (ν)
π

(x

2

)−ν

, (E.47)

we find for the super-horizon scale fluctuations

∆2
ϕ(k) =

(
H

2π

)2

22ν−3

(
Γ (ν)
Γ
(

3
2

))2(
k

aH

)3−2ν

. (E.48)

When inflation ends, these fluctuations again come inside the horizon and
will act as primordial seeds for structure formation. If we remember that
ν2 = 9/4 − m2/H2, we see that the massless limit is particularly simple,

∆2
ϕ(k) =

(
H

2π

)2

. (E.49)

This does not depend on k, so it is a scale-invariant fluctuation. Since its
origin is in a set of uncoupled harmonic oscillators representing the vacuum
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fluctuation of the inflaton, these fluctuations are also gaussian and indepen-
dent for each mode k. They contribute to the curvature perturbation which
means that they are adiabatic.

In the slow-roll approximation, we can insert in (E.22)

ä

a
= a2(2 − ε)H2 (E.50)

and a(η) = −1/(Hη[1− ε]) instead of (E.23). Using also m2/H2 = 3η with η
the second slow-roll parameter (10.26), one finds

ν � 3
2

+ ε − η, (E.51)

and inserted into (E.44) the result is

PR(k) =
G

2ε

(
H

2π

)2(
k

aH

)nR−1

, (E.52)

where we find the spectral index to be

nR = 1 − 6ε + 2η. (E.53)

We see that the deviations from scale invariance are small and a generic
prediction of inflation is thus an almost scale-invariant, gaussian, adiabatic
spectrum of primordial fluctuations. This prediction has recently been vin-
dicated by observations of the microwave background, as explained in Chap-
ter 11.
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Plate 1. With the most modern optical telescopes such as the Hubble Space
Telescopes (HST) we can see objects over 2 billion times fainter than with the
unaided eye. This picture, containing hundreds of distant galaxies, shows a
part of the Hubble Deep Field, a small region on the sky in the direction of
Ursa Major which was in the focus of HST for more than 10 consecutive days.
Since the finite speed of light means that the more distant objects are seen
as they appeared at much earlier time than the present, pictures such as this
can be used to learn about how galaxies formed in the early Universe and
how they have since evolved. Credit: R. Williams, The HDF Team (STScI),
NASA.

Plate 2.CCD imaging of the the Einstein Cross gravitational system seen
over a three year period. A distant QSO is split into four images as its light
passes through a foreground galaxy at z = 0.04. The brightness variations
on the individual images are thought to be caused by passing stars in the
foreground galaxy, thereby microlensing the QSO. Images from G. Lewis and
M. Irwin at the William Herschel Telescope.



Plate 3. Gravitational lensing by the cluster of galaxies CL0024+1654. The
cluster produces four or possibly five separate images of the conspicuous blue
galaxy which happens to be located behind the cluster. Analyses of images like
this shows that the mass of galaxy clusters is dominated by dark matter. HST
image, credit: W.N. Colley and E. Turner (Princeton), J.A. Tyson (Lucent
Technologies), HST, NASA.



Plate 4. Hubble Space Telescope image of the active galaxy M87. About
60 light years from the centre of the galaxy the gas is moving at 550 km/s
towards the Earth on one side and in the opposite direction on the other side.
Courtesy of STScI/NASA.



Plate 5. Microwave image of the entire sky as seen by the DMR instrument
on board the COBE satellite, after removal of foreground objects and effects
due to the local motion. The red ’spots’ show regions with higher measured
temperature. Credit: The COBE/DMR Team, NASA.

Plate 6. The all-sky map of the cosmic microwave background as measured
by the Wilkinson Microwave Anisotropy Probe (WMAP). Notice the dramatic
increase in angular resolution compared with the COBE data in Plate 6.
Credit: The WMAP Science Team, NASA.



Plate 7. The EGRET all-sky map shows an image of the sky at gamma-
ray energies above 100 MeV. The map uses Galactic coordinates such that
the centre of the Galaxy is at the centre of the map. The diffuse emission,
which appears brightest along the Galactic plane, is primarily due to cosmic
ray interactions with the interstellar medium. The Vela, Geminga, and Crab
pulsars are clearly visible as bright knots of emission in the Galactic plane in
the right portion of the map. The AGN 3C279 is seen as the brightest knot of
emission above the plane. From http://cossc.gsfc.nasa.gov/cossc/allsky.html.



Plate 8. BeppoSAX observations of GRB970228. On the left is the original
observation of the burst on 28 February 1997. On the right is the same region
of the sky on 3 March showing the burst object has dimmed. The bright
spot at the location of the GRB is pinpointed with just a few arc minutes
uncertainty. Credit: BeppaSAX Team, ASI, ESA.
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