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III. Title. IV. Series.

QA169.A31993 2010
512′.62 – dc22 2010018289

ISBN 978-0-521-11922-1 Hardback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to

in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.



To Susy, Radka, and Ale





Contents

Foreword page ix
F. W. Lawvere

Preface xv

PART I: ABSTRACT ALGEBRAIC CATEGORIES

0 Preliminaries 3

1 Algebraic theories and algebraic categories 10

2 Sifted and filtered colimits 21

3 Reflexive coequalizers 30

4 Algebraic categories as free completions 38

5 Properties of algebras 46

6 A characterization of algebraic categories 54

7 From filtered to sifted 65

8 Canonical theories 74

9 Algebraic functors 80

10 Birkhoff’s variety theorem 89

PART II: CONCRETE ALGEBRAIC CATEGORIES

11 One-sorted algebraic categories 103

12 Algebras for an endofunctor 117

vii



viii Contents

13 Equational categories of �-algebras 127

14 S-sorted algebraic categories 139

PART III : SPECIAL TOPICS

15 Morita equivalence 153

16 Free exact categories 163

17 Exact completion and reflexive-coequalizer completion 182

18 Finitary localizations of algebraic categories 195

Postscript 204

Appendix A Monads 207

Appendix B Abelian categories 227

Appendix C More about dualities for one-sorted algebraic
categories 232

References 241
List of symbols 245
Index 247



Foreword

The study Birkhoff initiated in 1935 was named general algebra in Kurosh’s
classic text; the subject is also called universal algebra, as in Cohn’s text.
The purpose of general algebra is to make explicit common features of the
practices of commutative algebra, group theory, linear algebra, Lie algebra,
lattice theory, and so on, to illuminate the paths of those practices. In 1963,
less than 20 years after the 1945 debut of the Eilenberg–Mac Lane method of
categorical transformations, its potential application to general algebra began
to be developed into concrete mathematical practice, and that development
continues in this book.

Excessive iteration of the passage

T ′ = theory of T

would be sterile if pursued as idle speculation without attention to that funda-
mental motion of theory: concentrate the essence of practice to guide practice.
Such theory is necessary to clear the way for the advance of teaching and
research. General algebra can and should be used in particular algebras (i.e.,
in algebraic geometry, functional analysis, homological algebra, etc.) much
more than it has been. There are several important instruments for such appli-
cation, including the partial structure theorem in Birkhoff’s Nullstellensatz, the
commutator construction, and the general framework itself.

Birkhoff’s theorem was inspired by theorems of Hilbert and Noether in alge-
braic geometry (as indeed was the more general model theory of Robinson
and Tarski). His greatest improvement was not only in generality: beyond the
mere existence of generalized points, he showed that they are sufficient to give
a monomorphic embedding. Nevertheless, in commutative algebra his result
is rarely mentioned (although it is closely related to Gorenstein algebras).
The categorical formulation of Birkhoff’s theorem (Lawvere, 2008; Tholen,
2003), like precategorical formulations, involves subdirect irreducibility and

ix



x Foreword

Zorn’s lemma. Finitely generated algebras in particular are partially dissected
by the theorem into (often qualitatively simpler) finitely generated pieces. For
example, when verifying consequences of a system of polynomial equations
over a field, it suffices to consider all possible finite-dimensional interpreta-
tions, where constructions of linear algebra such as the trace construction are
available.

Another accomplishment of general algebra is the so-called commutator
theory (named for its realization in the particular category of groups); a cate-
gorical treatment of this theory can be found in the work of Pedicchio (1995)
and Janelidze and Pedicchio (2001). In other categories this theory specializes
to a construction important in algebraic geometry and number theory, namely,
the product of ideals (Hagemann & Hermann, 1979). In the geometrical clas-
sifying topos for the algebraic category of K-rigs, this construction yields an
internal multiplicative semilattice of closed subvarieties.

In the practice of group theory and ring theory, the roles of presentations
and of the algebras presented have long been distinguished, giving a syntactic
approach to calculation, in particular algebraic theories. Yet many works in
general algebra (and model theory generally) continue anachronistically to
confuse a presentation in terms of signatures with the presented theory itself,
thus ignoring the application of general algebra to specific theories, such as
that of C∞-rings, for which no presentation is feasible.

Apart from the specific accomplishments mentioned previously, the most
effective illumination of algebraic practice by general algebra, both classical
and categorical, has come from the explicit nature of the framework itself. The
closure properties of certain algebraic subcategories, the functorality of seman-
tics itself, the ubiquitous existence of functors adjoint to algebraic functors, and
the canonical method for extracting algebraic information from nonalgebraic
categories have served (together with their many particular ramifications) as
partial guidance to mathematicians dealing with the inevitably algebraic content
of their subjects. The careful treatment of these basics by Adámek, Rosický,
and Vitale will facilitate future mutual applications of algebra, general algebra,
and category theory. The authors have achieved in this book the new resolution
of several issues that should lead to further research.

What is general algebra?

The bedrock ingredient for all of general algebra’s aspects is the use of finite
Cartesian products. Therefore, as a framework for the subject, it is appropriate to
recognize the 2-category of categories that have finite categorical products and
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of the functors preserving these products. Among such categories are linear
categories whose products are simultaneously coproducts; this is a crucial
property of linear algebra in that maps between products are then uniquely
represented as matrices of smaller maps between the factors (though of course,
there is no unique decomposition of objects into products, so it would be
incorrect to say inversely that maps “are” matrices). General categories with
products can be forced to become linear, and this reflection 2-functor is an
initial ingredient in linear representation theory. However, I want to emphasize
instead a strong analogy between general algebra as a whole and any particular
linear monoidal category because that will reveal some of the features of the
finite product framework that make the more profound results possible.

The 2-category of all categories with finite products has (up to equivalence)
three characteristic features of a linear category such as the category of modules
over a rig:

1. It is additive because if A × B is the product of two categories with finite
products, it is also their coproduct, the evident injections from A,B having
the universal property for maps onto any third such category.

2. It is symmetric closed; indeed Hom(A,B) is the category of algebras in the
background B according to the theory A. The unit I for this Hom is the
opposite of the category of finite sets. The category J of finite sets itself
satisfies Hom(J, J ) = I, and the category Hom(J, B) is the category of
Boolean algebras in B. As dualizer, the case in which B is the category of
small sets is most often considered in abstract algebra.

3. It is tensored because a functor of two variables that is product preserving in
each variable separately can be represented as a product-preserving functor
on a suitable tensor product category. Such functors occur in the recent
work of Janelidze (2006); specifically, there is a canonical evaluation A ⊗
Hom(A,B) → B, where the domain is “a category whose maps involve
both algebraic operations and their homomorphisms.”

A feature not present in abstract linear algebra (though it has an analog in
the cohesive linear algebra of functional analysis) is Street’s bo-ff factorization
of any map (an abbreviation for “bijective on objects followed by full and
faithful”; see Street, 1974; Street & Walters, 1978). A single-sorted algebraic
theory is a map I → A that is bijective on objects; such a map induces a single
“underlying” functor Hom(A,B) → B on the category of A algebras in B. The
factorization permits the definition of the full “algebraic structure” of any given
map u: X → B, as follows: the map I → Hom(X,B) that represents u has its
bo-ff factorization, with its bo part being the algebraic theory I → A(u), the
full X-natural structure (in its abstract general guise) of all values of u. The
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original u lifts across the canonical Hom(A(u), B) → B by a unique u#. This is
a natural first step in one program for “inverting” u because if we ask whether
an object of B is a value of u, we should perhaps consider the richer (than
B) structure that any such object would naturally have; that is, we change
the problem to one of inverting u#. Jon Beck called this program “descent”
with respect to the “doctrine” of general algebra. (A second step is to consider
whether u# has an adjoint.)

Frequently, the dualizing background B is Cartesian closed; that is, it has
not only products but also finite coproducts and exponentiation, where expo-
nentiation is a map

Bop ⊗ B → B

in our 2-category. This permits the construction of the important family of
function algebras Bop → Hom(A,B) given any A algebra (of “constants”)
in B.

On a higher level, the question whether a given C is a value of the 2-functor
U = Hom(−, B) (for given B) leads to the discovery that such values belong
to a much richer doctrine, involving as operations all limits that B has and all
colimits that exist in B and preserve finite products. As in linear algebra, where
dualization in a module B typically leads to modules with a richer system of
operators, conversely, such a richer structure assumed on C is a first step toward
2-descent back along U.

The power of the doctrine of natural 2-operations on Hom(−, B) is enhanced
by fixing B to be the category of small sets, where smallness specifically
excludes measurable cardinals (although they may be present in the categorical
universe at large).

A contribution of Birkhoff’s original work had been the characterization
of varieties, that is, of those full subcategories of a given algebraic category
Hom(A,B) that are equationally defined by a surjective map A → A′ of theo-
ries. Later, the algebraic categories themselves were characterized. Striking
refinements of those characterization results, in particular the clarification
of a question left open in the 1968 treatment of categorical general algebra
(Lawvere, 1969), are among the new accomplishments explained in this book.
As Grothendieck had shown in his very successful theory of Abelian categories,
the exactness properties found in abstract linear algebra continue to be useful
for the concretely variable linear algebras arising as sheaves in complex anal-
ysis; should something similar be true for nonlinear general algebras? More
specifically, what are the natural 2-operations and exactness properties shared
by all the set-valued categories concretely arising in general algebra? In partic-
ular, can that class of categories be characterized by further properties, such as
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sufficiency of projectives, in terms of these operations? It was clear that small
limits and filtered colimits were part of the answer, as with the locally finitely
presentable categories of Gabriel and Ulmer. But the further insistence of gen-
eral algebra on algebraic operations that are total leads to a further functorial
operation, needed to isolate equationally the correct projectives and that is also
useful in dealing with non-Mal’cev categories – that further principle is the
ubiquitous preservation of Linton’s reflexive coequalizers, which are explained
in this book as a crucial case of Lair’s sifted colimits.

F. W. Lawvere





Preface

F. W. Lawvere’s introduction of the concept of an algebraic theory in 1963
proved to be a fundamental step toward developing a categorical view of general
algebra in which varieties of algebras are formalized without details of equa-
tional presentations. An algebraic theory as originally introduced is, roughly
speaking, a category whose objects are all finite powers of a given object. An
algebra is then a set-valued functor preserving finite products, and a homo-
morphism between algebras is a natural transformation. In the almost half a
century that has followed Lawvere’s introduction, this idea has gone through
a number of generalizations, ramifications, and applications in areas such as
algebraic geometry, topology, and computer science. The generalization from
one-sorted algebras to many-sorted algebras (of particular interest in computer
science) leads to a simplification: an algebraic theory is now simply a small
category with finite products.

Abstract algebraic categories

In Part I of this book, consisting of Chapters 1–10, we develop the approach in
which algebraic theories are studied without reference to sorting. Consequently,
algebraic categories are investigated as abstract categories. We study limits and
colimits of algebras, paying special attention to the sifted colimits because they
play a central role in the development of algebraic categories. For example,
algebraic categories are characterized precisely as the free completions under
sifted colimits of small categories with finite coproducts, and algebraic functors
are precisely the functors preserving limits and sifted colimits. This leads to an
algebraic duality: the 2-category of algebraic categories is dually biequivalent
to the 2-category of canonical algebraic theories.

xv
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Here we present the concept of equation as a parallel pair of morphisms
in algebraic theory. An algebra satisfies the equation iff it merges the parallel
pair. We prove Birkhoff’s variety theorem: subcategories that can be presented
by equations are precisely those that are closed under products, subalgebras,
regular quotients, and directed unions. (The last item can be omitted in case of
one-sorted algebras.)

Concrete algebraic categories

Lawvere’s original concept of one-sorted theory is studied in Chapters 11–13.
Here the categories of algebras are concrete categories over Set, and we prove
that up to concrete equivalence, they are precisely the classical equational
categories of �-algebras for one-sorted signatures �. More generally, given
a set S of sorts, we introduce in Chapter 14 S-sorted algebraic theories and
the corresponding S-sorted algebraic categories that are concrete over S-sorted
sets. Thus we distinguish between many-sorted algebras, where sorting is not
specified, and S-sorted algebras, where a set S of sorts is given (and this
distinction leads us to consider categories of algebras as concrete or abstract).

This discussion is supplemented by Appendix A, in which we present a
short introduction to monads and monadic algebras. In Appendix C we prove a
duality between one-sorted algebraic theories and finitary monadic categories
over Set and again, more generally, between S-sorted algebraic theories and
finitary monadic categories over Set S.

Abelian categories are shortly treated in Appendix B.
The non-strict versions of some concepts, such as morphism of one-sorted

theories and concrete functors, are treated in Appendix C.

Special topics

Chapters 15–18 are devoted to some more specialized topics. Here we introduce
Morita equivalence, characterizing pairs of algebraic theories yielding equiv-
alent categories of algebras. We also prove that algebraic categories are free
exact categories. Finally, the finitary localizations of algebraic categories are
described: they are precisely the exact locally finitely presentable categories.

Other topics

Of the two categorical approaches to general algebra, monads and algebraic
theories, only the latter is treated in this book, with the exception of the short
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appendix on monads. Both of these approaches make it possible to study
algebras in a general category; in our book we just restrict ourselves to sets and
many-sorted sets. Thus, examples such as topological groups are not treated
here.

Other topics related to our book are mentioned in the Postscript.

Interdependance of chapters

Until Chapter 7 inclusive every chapter is strongly dependent on the previous
ones. But some topics in the sequel of the book can be studied by skipping
Chapters 2–7 (and consulting them just for specific definitions and results):

algebraic duality in Chapters 8–9
Birkhoff’s variety theorem in Chapter 10
one-sorted theories in Chapters 11–13
S-sorted theories in Chapter 14 (after reading Chapter 11)
Morita equivalence of theories in Chapter 15

Acknowledgments
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their suggestions on the final text, particularly to Michel Hébert, Alexander
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PART I

Abstract algebraic categories

It should be observed first that the whole concept of category is essentially
an auxiliary one; our basic concepts are those of a functor and a natural
transformation.

– S. Eilenberg and S. Mac Lane (1945), General theory of
natural equivalences, Trans. Amer. Math. Soc. 58: 247
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Preliminaries

The aim of this chapter is to fix some notation and recall well-known facts
concerning basic concepts of category theory used throughout the book. The
reader may well skip it and return to it when needed. Only the most usual
definitions and results of the theory of categories are mentioned here; more
about them can be found in any of the books mentioned at the end of this
chapter.

0.1 Foundations In category theory, one needs to distinguish between small
collections (sets) and large ones (classes). An arbitrary set theory making such
a distinction possible is sufficient for our book. The category of (small) sets
and functions is denoted by

Set.

All categories with which we work have small hom-sets. It follows that every
object has only a set of retracts (see 0.16) up to isomorphism.

0.2 Properties of functors A functor F : A → B is

1. faithful if for every parallel pair of morphisms f, g: A ⇒ A′ in A, one has
f = g whenever Ff = Fg

2. full if for every morphism b: FA → FA′ in B, there exists a morphism
a: A → A′ in A such that Fa = b

3. essentially surjective if for every object B in B, there exists an object A in
A with B isomorphic to FA

4. an equivalence if there exists a functor F ′: B → A such that both F · F ′

and F ′ · F are naturally isomorphic to the identity functors; such a functor
F ′ is called a quasi-inverse of F

3



4 Chapter 0

5. an isomorphism if there exists a functor F ′: B → A such that both F · F ′

and F ′ · F are equal to the identity functors
6. conservative if it reflects isomorphisms; that is, a: A → A′ is an isomor-

phism whenever Fa: FA → FA′ is

0.3 Remark Let F : A → B be a functor.

1. If F is full and faithful, then it is conservative.
2. F is an equivalence iff it is full, faithful, and essentially surjective.
3. If F is an equivalence and F ′ a quasi-inverse of F, it is possible to choose

natural isomorphisms η: IdB → F · F ′ and ε: F ′ · F → IdA such that

Fε · ηF = F and εF ′ · F ′η = F ′

see 0.8 below. (Observe that in equations like Fε · ηF = F , we write F for
the identity natural transformation on a functor F. We adopt the same con-
vention in diagrams having functors as vertices and natural transformations
as edges.)

4. F is an isomorphism iff it is full, faithful, and bijective on objects.

0.4 Functor categories and Yoneda embedding

1. Given a category A and a small category C, we denote by AC the category
of functors from C to A and natural transformations.

2. In case A = Set, we have the Yoneda embedding:

YC: Cop → SetC YC(X) = C(X,−),

which is full and faithful. This follows from the Yoneda lemma, which states
that for every X ∈ C and for every functor F : C → Set, the map assigning to
every natural transformation α: YC(X) → F the value αX(idX) is a bijection
natural in X and F.

0.5 Diagrams

1. A diagram in a category K is a functor from a small category into K.

2. A finite diagram is a diagram D: D → K such that D is a finitely generated
category. This means that D has finitely many objects and a finite set of
morphisms whose closure under composition gives all the morphisms of D.

3. A category is complete if limits of all diagrams in it exist and cocomplete
if all colimits exist.



Preliminaries 5

4. Limits commute with products: given a set C and a collection of diagrams

Dc: D → A, c ∈ C

in a complete category A, the product of their limits is the same as the
limit of their product. This can be formalized by viewing C as a discrete
category and considering the limit of the obvious diagram D: C × D →
A. The statement is that the canonical morphism from limD to �(limDc)
is an isomorphism.

5. Limits commute with limits. This generalizes item 4 to the case when C
is an arbitrary small category: given a complete category A and a diagram
D: C × D → A, the canonical morphisms

lim
C

(lim
D

D(c, d)) � lim
D

(lim
C

D(c, d))

are mutually inverse isomorphisms. Moreover, each one of these isomorphic
objects is a limit of D.

0.6 Colimits in Set In the category of sets:

1. Coproducts are disjoint unions.
2. Coequalizers of p, q: X ⇒ Z can be described as the canonical maps c:

Z → Z/ ∼, where ∼ is the smallest equivalence relation with p(x) ∼
q(x) for every x ∈ X. This equivalence relation merges elements z and z′

of Z iff there exists a zigzag of elements

x ′
0

f0

����
��
��
� f1

���
��

��
��

�
x ′

1

f2

����
��
��
�� f3

���
��

��
��

� ······
x ′

n

f2n

����
��
��
�� f2n+1

���
��

��
��

z y1 y2

···
yn z′

where each fk is equal to p or q for k = 0, . . . , 2n + 1.

3. A category D is called filtered if every finitely generated subcategory has
a cocone inD (for more about this concept, see Chapter 2). Filtered diagrams
are diagrams with a filtered domain. A colimit of a filtered diagram D: D →
Set is described as the quotient ∐

x∈objD
Dx/ ∼

where for elements ui ∈ Dxi , we have u1 ∼ u2 iff there exist morphisms
fi: xi → y in D such that Df1(u1) = Df2(u2).
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0.7 Construction of colimits In a category A with coproducts and coequaliz-
ers, all colimits exist. Given a diagram D: D → A form a parallel pair

∐
f ∈morD

Dfd

i
��

j

��
∐

x∈objD
Dx

where fd and fc denote the domain and codomain of f. The f -component of
i is the coproduct injection of Dfd ; that of j is the composite of Df and the
coproduct injection of Dfc.

1. If

c:
∐

x∈objD
Dx −→ C

is the coequalizer of i and j, then C = colim D and the components of c

form the colimit cocone.
2. The preceding pair i, j is reflexive; that is, there exists a morphism

δ:
∐

x∈objD
Dx −→

∐
f ∈morD

Dfd

such that i · δ = id = j · δ. Indeed, the x-component of δ is the coproduct
injection of idx .

0.8 Adjoint functors Given functors U: A → B and F : B → A, then F is
a left adjoint of U, with notation F � U, if there exist natural transformations
η: IdB → UF and ε: FU → IdA (called unit and counit) satisfying

εF · Fη = F and Uε · ηU = U.

This is equivalent to the existence of a bijection

A(FB,A) 	 B(B,UA)

natural in A ∈ A and B ∈ B.

1. Every left adjoint preserves colimits.
2. Dually, every right adjoint preserves limits.
3. A solution set for a functor U: A → B and an object X of B is a set

of morphisms fi: X → UAi (i ∈ I ) with Ai ∈ A such that every other
morphism f : X → UA has a factorization f = Uh · fi for some i ∈ I and
some morphism h: Ai → A in A.

4. The adjoint functor theorem states that if A has limits, then a functor
U: A → B has a left adjoint iff it preserves limits and has a solution set for
every object X of B.
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0.9 Reflective subcategories Given a category B, by a reflective subcategory
of B is meant a subcategory A such that the inclusion functor A → B has a
left adjoint (called a reflector for B). We denote by R: B → A the reflector
and by rB: B → RB the reflections, that is, the components of the unit of the
adjunction.

0.10 Representable functors A functor from a category A to Set is repre-
sentable if it is naturally isomorphic to a hom-functor A(A,−).

1. If A has coproducts, then A(A,−) has a left adjoint assigning to a set X a
coproduct of X copies of A.

2. The colimit of A(A,−) is a singleton set.
3. If F : A → Set has a left adjoint then it is representable.

0.11 Examples of left adjoints

1. For every set X, the functor X × − : Set → Set is left adjoint to Set(X,−).
2. For a category A, the diagonal functor

�: A → A × A , A 
→ (A,A)

has a left adjoint iff A has finite products. Then the functor

A × A → A , (A,B) 
→ A × B

is a left adjoint to �.

0.12 Remark The contravariant hom-functors B(−, B): B → Setop, B ∈
objB, collectively reflect colimits; that is, for every cocone C of a diagram
D: D → B, we have the following: C is a colimit of D iff the image of C under
any B(−, B) is a colimit of the diagram B(−, B) · D in Setop.

0.13 Slice categories Given functors F : A → K and G: B → K, the slice
category (F ↓ G) has as objects all triples (A, f,B) with A ∈ A, B ∈ B, and
f : FA → GB, and as morphisms (A, f,B) → (A′, f ′, B ′), all pairs a: A →
A′, b: B → B ′ such that Gb · f = f ′ · Fa.

1. As special cases, we have K ↓ G and F ↓ K , where an object K ∈ K is
seen as a functor from the one-morphism category to K.

2. If F is the identity functor on K, we write K ↓ K instead of idK ↓ K.



8 Chapter 0

0.14 Set functors as colimits of representables Every functor A: T → Set
(T small) is in a canonical way a colimit of representable functors. In fact, con-
sider the Yoneda embedding YT : T op → Set T and the slice category El A =
YT ↓ A of “elements of A.” Its objects can be represented as pairs (X, x) with
X ∈ obj T and x ∈ AX, and its morphisms f : (X, x) → (Z, z) are morphisms
f : Z → X of T such that Af (z) = x. We denote by �A: El A → T op the
canonical projection that to every element of the set AX assigns the object X.

Then A is a colimit of the following diagram of representable functors

El A
�A

�� T op
YT

�� Set T .

Indeed the colimit injection YT (�A(X, x)) → A is the natural transformation
corresponding, by Yoneda lemma, to the element x ∈ AX.

0.15 Kernel pair A kernel pair of a morphism f : A → B is a parallel pair
f1, f2: N (f ) ⇒ A, forming a pullback of f and f.

0.16 Classification of quotient objects A quotient object of an object A is
represented by an epimorphism e: A → B, and an epimorphism e′: A → B ′

represents the same quotient iff e′ = i · e holds for some isomorphism i: B →
B ′. We use the same adjective for quotient objects and (any of) the representing
epimorphisms e: A → B:

1. Split means that there exists i: B → A with e · i = idB . Then B is called a
retract of A.

2. Regular means that e is a coequalizer of a parallel pair with codomain A.

3. Strong means that in every commutative square

A
e

��

u

��

B

d

��
v

��
X

m

�� Z

where m is a monomorphism, there is a “diagonal” morphism d: B → X

such that m · d = v and d · e = u.
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4. Extremal means that in every commutative triangle

A
e

��

u ���
��

��
��

B

X

m

���������

where m is a monomorphism, m is an isomorphism.

Dually, a subobject of A is represented by a monomorphism m: B → A, and a
monomorphism m′: B ′ → A represents the same subobject iff m′ = m · i holds
for some isomorphism i: B ′ → B.

0.17 Remark Let us recall some elementary facts on extremal, strong, and
regular epimorphisms.

1. Every regular epimorphism is strong, and every strong epimorphism is
extremal. If the category A has finite limits, then extremal = strong.

2. If the category A has binary products, then the condition of being an
epimorphism in the definition of a strong epimorphism is redundant. The
same holds for extremal epimorphisms if the category A has equalizers.

3. If a composite f · g is a strong epimorphism, then f is a strong epimor-
phism. The same holds for extremal epimorphisms, but in general, this fails
for regular epimorphisms.

4. If f is a monomorphism and an extremal epimorphism, then it is an
isomorphism.

0.18 Concrete categories Let K be a category.

1. By a concrete category overK is meant a categoryA together with a faithful
functor U: A → K.

2. Given concrete categories (A, U ) and (A′, U ′) over K, a concrete functor
is a functor F : A → A′ such that U = U ′ · F.

Further reading

For standard concepts of category theory, the reader may consult Adámek et al.
(2009), Borceux (1994), or Mac Lane (1998).
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Algebraic theories and algebraic categories

Algebras are classically presented by operations and equations. For example,
the theory of groups is presented by three operations:

a binary operation ◦ (multiplication)
a unary operation −1 (inverse)
a nullary operation e (unit)

and by the equations

x ◦ (y ◦ z) = (x ◦ y) ◦ z,

x ◦ x−1 = e,

e ◦ x = x,

x−1 ◦ x = e,

x ◦ e = x.

The whole equational theory of groups consists of all consequences of these
five equations; for example, it contains the equation

x ◦ (x−1 ◦ x) = x.

The preceding presentation is not canonical: the first three equations are in
fact sufficient, and so is the first one and the last two. There does not seem to
exist any canonical minimal presentation of groups. But we can consider the
equational theory as such. Following the idea of F. W. Lawvere from the 1960s,
let us view the three basic group operations as maps:

◦: G × G → G,
−1: G → G,

e: G0 → G.

10
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All derived operations can be obtained via composition. For example, the
operation x ◦ (y ◦ z) is the composite

G × (G × G)
idG ×◦

�� G × G
◦

�� G,

whereas the operation (x ◦ y) ◦ z is the composite

(G × G) × G
◦×idG

�� G × G
◦

�� G.

The first equation in the above presentation is then an equality of these
two compositions. The whole equational theory of groups is a category with
finite products whose objects are integers 0, 1, 2, . . . (representing the objects
G0,G1,G2, . . .). The product corresponds to the addition of integers. Every
n-ary operation correponds to a morphism from n to 1, while morphisms
from n to m correspond to m-tuples of n-ary operations. For example, there
is a morphism G × (G × G) → G × G that corresponds to the pair of ternary
operations

(x, y, z) 
→ x

(x, y, z) 
→ y ◦ z.

Lawvere based his concept of an algebraic theory on these observations:
algebraic theories are categories T with finite products whose objects are
the natural numbers 0, 1, 2, . . . . Algebras are then functors from T to the
category of sets that preserve finite products. Homomorphisms of algebras are
represented by natural transformations.

We now introduce a more general definition of an algebraic theory and its
algebras. See Chapter 11 for Lawvere’s original concept of a one-sorted theory
and Chapter 14 for S-sorted theories. In the present chapter, we also study
basic concepts such as limits of algebras and representable algebras, and we
introduce some of the main examples of algebraic categories.

1.1 Definition An algebraic theory is a small category T with finite products.
An algebra for the theory T is a functor A: T → Set preserving finite products.
We denote by Alg T the category of algebras of T . Morphisms, called homo-
morphisms, are the natural transformations; that is, Alg T is a full subcategory
of the functor category Set T .

1.2 Definition A category is algebraic if it is equivalent to Alg T for some
algebraic theory T .
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1.3 Remark An algebraic theory is by definition a small category. However,
throughout the book, we do not take care of the difference between small and
essentially small: a category is essentially small if it is equivalent to a small
category.

We will see in 10.15, 13.11, and 14.28 that algebraic categories corre-
spond well to varieties, that is, equational categories of (many-sorted, finitary)
algebras.

1.4 Example: Sets The simplest algebraic category is the category of sets
itself. An algebraic theory N for Set can be described as the full subcategory
of Setop whose objects are the natural numbers n = {0, 1, . . . , n − 1}. In fact,
since n = 1 × . . . × 1 in Setop, every algebra A: N → Set is determined, up to
isomorphism, by the set A1. More precisely, we have an equivalence functor

E: AlgN → Set, A 
→ A1.

The category Set has other algebraic theories – we describe them in
Chapter 15, see Example 15.8.

1.5 Example: Many-sorted sets For a fixed set S, the power category Set S

of S-sorted sets and S-sorted functions is algebraic. A theory for Set S can be
described as the following category:

S∗,

whose objects are finite words over S (including the empty word). Morphisms
from s0 . . . sn−1 to s ′

0 . . . s ′
k−1 are functions a: k → n such that sa(i) = s ′

i (i =
0, . . . , k − 1). When S is the terminal set 1, this theory is nothing else than the
theory N of Set described in 1.4. The fact that S∗ is a theory of S-sorted sets
will be seen in 1.18.

1.6 Example: abelian groups An algebraic theory for the category Ab of
abelian groups is the category Tab having natural numbers as objects, and
morphisms from n to k are matrices of integers with n columns and k rows.
The composition of P : m → n and Q: n → k is given by matrix multiplica-
tion Q · P = Q × P : m → k, and identity morphisms are the unit matrices.
If n = 0 or k = 0, the only n × k matrix is the empty one [ ]. Tab has finite
products. For example, 2 is the product 1 × 1 with projections [1, 0]: 2 → 1
and [0, 1]: 2 → 1. (In fact, given one-row matrices P,Q: n → 1, there exists a
unique two-row matrix R: n → 2 such that [1, 0] · R = P and [0, 1] · R = Q :
the matrix with rows P and Q.) Here is a direct argument proving that the
category Ab of abelian groups is equivalent to Alg Tab. Every abelian group G

defines an algebra Ĝ: Tab → Set in the sense of 1.1 whose object function is
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Ĝn = Gn. For every morphism P : n → k, we define ĜP : Gn → Gk by matrix
multiplication:

Ĝ(P ):

 g1
...

gn

 
→ P ·

 g1
...

gn

 .

The function G 
→ Ĝ extends to a functor (̂−): Ab → Alg Tab in a rather obvi-
ous way: given a group homomorphism h: G1 → G2, denote by ĥ: Ĝ1 → Ĝ2

the natural transformation whose components are hn: Gn
1 → Gn

2. It is clear that
(̂−) is a well-defined, full, and faithful functor. To prove that it is an equiva-
lence functor, we need, for every algebra A: Tab → Set, to present an abelian
group G with A 	 Ĝ. The underlying set of G is A1. The binary group opera-
tion is obtained from the morphism [1, 1]: 2 → 1 in Tab by A[1, 1]: G2 → G,

the neutral element is A[ ]: 1 → G for the morphism [ ]: 0 → 1 of Tab,

and the operation of inverse is given by A[−1]: G → G. It is not difficult
to check that the axioms of abelian group are fulfilled. For example, the
axiom x + 0 = x follows from the fact that A preserves the composition of[

1
0

]
: 1 → 2 with [1, 1]: 2 → 1. Clearly A 	 Ĝ (consider the canonical iso-

morphism An = A(1 × . . . × 1) 	 A1 × . . . × A1 = Gn = Ĝn).

1.7 Example: Groups As mentioned at the beginning of this chapter, an alge-
braic theory of groups consists of all derived operations and all equations that
hold in all groups. Viewed as an algebraic theory Tgr, we have, as in the previous
example, natural numbers as objects. Morphisms can be described by consid-
ering a standard set of variables x0, x1, x2, . . . and defining the morphisms
from n to 1 in Tgr to be precisely all terms in the variables x0, . . . , xn−1 (see
Remark 13.1 for a formal definition of the concept of a term). The morphisms
from n to k in general are all k-tuples of morphisms in Tgr(n, 1). The identity
morphism in Tgr(n, n) is the n-tuple of terms (x0, . . . , xn−1), and composition
is given by substitution of terms. We will see in Chapter 13 the reason why the
category of groups is indeed equivalent to Alg Tgr.

1.8 Example: Modules Let R be a ring with unit. The category R-Mod
of left modules and module homomorphisms is algebraic. A theory directly
generalizing that of abelian groups has as objects natural numbers and as
morphisms matrices over R. Algebraic categories of the form R-Mod are
treated in greater detail in Appendix B.
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1.9 Example: One-sorted �-algebras Let � be a signature, that is, a set �

(of operation symbols) together with an arity function

ar: � → N .

A �-algebra consists of a set A and, for every n-ary symbol σ ∈ �, an n-
ary operation σA: An → A. A homomorphism of �-algebras is a function
preserving the given operations. The category

�-Alg

of �-algebras and homomorphisms (as well as its equational subcategories)
are algebraic, as we demonstrate in Chapter 13. Clearly groups and abelian
groups enter into this general example as well as many other classical algebraic
structures such as Boolean algebras and Lie algebras.

1.10 Example: Many-sorted �-algebras Let S be a set (of sorts). An
S-sorted signature is a set � (of operation symbols) together with an arity
function

ar: � → S∗ × S,

where S∗ is the set of all finite words on S. We write σ: s1 . . . sn → s for
an operation symbol σ of arity (s1 . . . sn, s). In case n = 0, we write σ: s.

(In 1.5, we have used the symbol S∗ to denote a category, but there is no
danger of confusion: it will always be clear from context whether we mean
the category S∗ or just the set of its objects.) A �-algebra consists of an
S-sorted set A = 〈As〉s∈S and, for every symbol σ ∈ � of arity (s1 . . . sn, s),
an operation σA: As1 × . . . × Asn

→ As. Homomorphisms of �-algebras are
S-sorted functions (i.e. morphisms of Set S) preserving the given operations.
The category

�-Alg

of �-algebras and homomorphisms is algebraic, and so are all equational
subcategories, as we demonstrate in Chapter 14. Following is a concrete
example.

1.11 Example: Graphs We denote by Graph the category of directed graphs
G with multiple edges: they are given by a set Gv of vertices, a set Ge of edges,
and two functions from Ge to Gv determining the target (τ ) and the source (σ )
of every edge. The morphisms are called graph homomorphisms: given graphs
G and G′, a graph homomorphism is a pair of functions hv: Gv → G′

v and
he: Ge → G′

e such that the source and the target of every edge are preserved.
A theory for Graph will be described in 1.16.
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1.12 Remark Every object t of an algebraic theory T yields the algebra YT (t),
representable by t :

YT (t) = T (t,−): T → Set.

Following 0.4, this and the Yoneda transformations define a full and faithful
functor

YT : T op → Alg T .

1.13 Lemma For every algebraic theory T , the Yoneda embedding

YT : T op → Alg T

preserves finite coproducts.

Proof If 1 is a terminal object of T , then T (1,−) is an initial object of Alg T :
for every algebra A, we know that A1 is a terminal object, and thus there is a
unique morphism T (1,−) → A.

Given two objects t1, t2 in T , T (t1 × t2,−) is a coproduct of T (t1,−) and
T (t2,−) since for every algebra A, the morphisms T (t1 × t2,−) → A corre-
spond to elements of A(t1 × t2) = A(t1) × A(t2). �

1.14 Example: Set-valued functors If C is a small category, the functor
category Set C is algebraic. An algebraic theory of Set C is a free completion TC
of C under finite products. This means that there exists a functor ETh : C → TC
such that TC is a category with finite products and for every functor F : C → B,

where B is a category with finite products, there exists an essentially unique
functor (i.e., unique up to natural isomorphism) F ∗: TC → B, preserving finite
products with F naturally isomorphic to F ∗ · ETh .

In other words, composition with ETh gives an equivalence between the cat-
egory of finite product–preserving functors from TC to B and the category of
functors from C to B. In particular, the categories Set C and Alg TC are equiva-
lent.

1.15 Remark

1. The free finite-product completion TC can be described as follows: objects
of TC are all finite families

(Ci)i∈I, I finite

of objects of C, and morphisms from (Ci)i∈I to (C ′
j )j∈J are pairs (a, α)

where a: J → I is a function and α = (αj )j∈J is a family of morphisms
αj: Ca(j ) → C ′

j of C. The composition and identity morphisms are defined
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as expected. A terminal object in TC is the empty family, and a product
of two objects is the disjoint union of the families. Finally, the func-
tor ETh : C → TC is given by ETh (C) = (C). It is easy to verify the uni-
versal property: since for every object (Ci)i∈I in TC , we have (Ci)i∈I =
�IETh (Ci), then necessarily, F ∗((Ci)i∈I ) = �IFCi.

2. Equivalently, TC can be described as the category of all words over obj C (the
set of objects of C); that is, objects have the form of n-tuples C0 . . . Cn−1,
where each Ci is an object of C (and where n is identified with the set
{0, . . . , n − 1}), including the case n = 0 (empty word). Morphisms from
C0 . . . Cn−1 to C ′

0 . . . C ′
k−1 are pairs (a, α) consisting of a function a: k → n

and a k-tuple of C-morphisms α = (α0, . . . , αk−1) with αi: Ca(i) → C ′
i .

1.16 Example The category of graphs (see 1.11) is equivalent to Set⇒, and its
theory Tgraph is the free completion of

eide

σ

τ

v idv

under finite products.

1.17 Remark Since the Yoneda embedding YTC: TCop → Alg TC 	 Set C pre-
serves finite coproducts (1.13), the category TCop is equivalent to the full sub-
category of Set C given by finite coproducts of representable functors.

1.18 Example

1. The algebraic theory N for Set described in 1.4 is nothing else than the
theory TC of 1.14 when C is the one-object discrete category.

2. More generally, if in 1.14 the category C is discrete, that is, it is a set S,
TC is the theory S∗ for S-sorted sets described in 1.5. Following 1.17, S∗ is
equivalent to the full subcategory of Set S of finite S-sorted sets (an S-sorted
set 〈As〉s∈S is finite if the coproduct

∐
S As is a finite set).

1.19 Example Another special case of Example 1.14 is the category M-Set
of M-sets for a monoid M: if we consider M as a one-object category whose
morphisms are the elements of M, then M-Set is equivalent to SetM. As we
will see in 13.15, M-Set is a category of unary algebras. More generally, the
category Set C can be presented as a category of unary S-sorted algebras: choose
S = obj C as set of sorts, choose � = mor C as set of operation symbols, and
define ar(f ) = (s, s ′) if f ∈ C(s, s ′). Then Set C is equivalent to the subcategory
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of �-Alg of those algebras satisfying the equations

u(v(x)) = (uv)(x) (u, v composable morphisms of C)

and

ids(x) = x (s ∈ S) .

1.20 Remark

1. In the example of abelian groups, we have the forgetful functor U: Ab →
Set assigning to every abelian group its underlying set. Observe that the
groups Zn are free objects of Ab on n generators, and the full subcategory
of all these objects is the dual of the theory Tab in 1.6.

2. Analogously, if the category C of Example 1.14 has the object set S, then we
have a forgetful functor that forgets the action of A: C → Set on morphisms:

U: Set C → Set S, UA = 〈A(s)〉s∈S.

That functor U has a left adjoint

F : Set S → Set C, F (〈As〉s∈S) =
∐
s∈S

∐
As

C(s,−)


(this easily follows from the Yoneda lemma because F preserves coprod-
ucts). Following 1.17, the objects of the theory TC are precisely the finitely
generated free objects; this is the image of finite S-sorted sets under F.

3. In Chapters 11 and 14, we will see that this is not a coincidence: for every
S-sorted algebraic category A, the free objects on finite S-sorted sets form
a full subcategory whose dual is a theory for A (see 11.22 for one-sorted
algebraic categories and 14.13 for S-sorted algebraic categories).

The category of algebras of an algebraic theory is quite rich. We already know
that every object t of an algebraic theory T yields the representable algebra
YT (t) = T (t,−). Other examples of algebras can be obtained, for example,
by the formation of limits and colimits. We will now show that limits always
exist and are built up at the level of sets. Also, colimits always exist, but they
are seldom built up at the level of sets. We will study colimits in subsequent
chapters.

1.21 Proposition For every algebraic theory T , the category Alg T is closed
in Set T under limits.
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Proof Limits are formed objectwise in Set T . Since limits and finite products
commute (0.5), given a diagram in Set T whose objects are functors preserving
finite products, a limit of that diagram also preserves finite products. �

1.22 Corollary Every algebraic category is complete.

1.23 Remark

1. The previous proposition means that limits of algebras are formed object-
wise at the level of sets. For example, a product of two graphs has both the
vertex set given by the Cartesian product of the vertex sets and the set of
edges given by the Cartesian product of the edge sets.

2. Monomorphisms in the category Alg T are precisely the homomorphisms
that are componentwise monomorphisms (i.e., injective functions) in Set.
In fact, this is true in Set T , and Alg T is closed under monomorphisms
(being closed under limits) in Set T .

3. In every algebraic category, kernel pairs (0.15) exist and are formed object-
wise (in Set).

1.24 Example One of the most important data types in computer science is a
stack, or finite list, of elements of a set (of letters) called an alphabet. Here we
consider stacks of natural numbers: we will have elements of sort n (a natural
number) and s (a stack) and the following two-sorted signature:

succ: n → n, the successor of a natural number
push: sn → s, which adds a new letter to the leftmost position of a stack
pop: s → s, which deletes the leftmost position
top: s → n, which reads the top element of the stack

We will also have two constants: e: s, for the empty stack, and 0: n. For
simplicity, we put top(e) = 0 and pop(e) = e.

This leads us to the concept of algebras A of two sorts s (a stack) and
n (a natural number) with operations

succ: An → An,

push: As × An → As,

pop: As → As,

top: As → An

and with constants 0 ∈ An and e ∈ As.

We can consider stacks as equationally specified algebras of sorts {s, n}, and
the algebraic theory is then obtained from the corresponding finitely generated
free algebras.
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1.25 Example: Sequential automata Recall that a deterministic sequential
automaton A is given by a set As of states, a set Ai of input symbols, a set Ao

of output symbols, and three functions:

δ: As × Ai → As (next-state function),
γ : As → Ao (output),
ϕ: 1 → As (initial state).

Given two sequential automata A and A′ = (A′
s , A

′
i , A

′
o, δ

′, γ ′, ϕ′), a morphism
(simulation) is given by a triple of functions:

hs: As → A′
s , hi: Ai → A′

i , ho: Ao → A′
o,

such that the diagram

As × Ai

δ
��

hs× hi

��

As

γ
��

hs

��

Ao

ho

��

1

ϕ
����������

ϕ′ ���
��

��
��

�

A′
s × A′

i
δ′

�� A′
s

γ ′
�� A′

o

commutes. This is the category of algebras of three sorts s, i, and o, given by
the signature

δ: si → s, γ : s → o, ϕ: s.

Again, an algebraic theory of automata is formed by considering finitely gen-
erated free algebras.

Historical remarks

Algebraic theories were introduced by F. W. Lawvere in his dissertation (1963).
He considered the one-sorted case, which we study in Chapter 11. This corre-
sponds to (one-sorted) equational theories of Birkhoff (1935), which we treat
in Chapter 13.

Many-sorted equational theories were first considered by Higgins (1963–
1964) and were later popularized by Birkhoff and Lipson (1970). In a review
of Higgins’s paper, Heller (1965) suggested to look for the connection with
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Lawvere’s approach. This was done by Bénabou (1968), who dealt with many-
sorted algebraic theories. Our definition of an algebraic theory is given without
reference to sorting. This sort-free approach corresponds to the more general
theory of sketches initiated by Ehresmann (1967) (see Bastiani & Ehresmann,
1972, for an exposition). The S-sorted approach is presented in Chapter 14.

The interested reader can find expositions of various aspects of algebraic
theories in the following literature:

finitary theories and their algebras in general categories (Barr & Wells,
1985; Borceux, 1994; Hyland & Power, 2007; Pareigis, 1970; Pedicchio
& Rovatti, 2004; Schubert, 1972).

infinitary theories (Linton, 1966; Wraith, 1970).
applications of theories in computer science (Barr & Wells, 1990; Wechler,

1992).

Manes (1976) is, in spite of its title, devoted to monads, not theories; an
introduction to monads can be found in Appendix A.
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Sifted and filtered colimits

Colimits in algebraic categories are, in general, not formed objectwise. In
this chapter, we study the important case of sifted colimits, which are always
formed objectwise. Prominent examples of sifted colimits are filtered colimits
and reflexive coequalizers (see Chapter 3).

2.1 Definition A small category D is called

1. sifted if finite products in Set commute with colimits over D
2. filtered if finite limits in Set commute with colimits over D

Sifted (or filtered) diagrams are diagrams with a sifted (or filtered) domain.
Colimits of sifted (or filtered) diagrams are called sifted (or filtered) colimits.

2.2 Remark

1. Explicitly, a small category D is sifted iff, given a diagram

D: D × J → Set,

where J is a finite discrete category, the canonical map

δ: colim
D

(∏
J

D(d, j )

)
→

∏
J

( colim
D

D(d, j )) (2.1)

is an isomorphism. D is filtered iff it satisfies the same condition, but
with respect to every finitely generated category J , see 0.5 (replace

∏
J

by limJ in (2.1)).
2. The canonical map δ in (2.1) is an isomorphism for every finite discrete

category J iff δ is an isomorphism when J is the empty set and when J is
the two-element set. The latter means that for every pair D,D′: D → Set

21
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of diagrams, the colimit of the diagram

D × D′: D × D → Set, (d, d ′) 
→ Dd × D′d ′

is canonically isomorphic to colim D × colim D′.

2.3 Example

1. Colimits of ω-chains are filtered. Here the categoryD is the partially ordered
set, or poset, of natural numbers, considered as a category.

2. More generally, colimits of chains (whereD is an infinite ordinal considered
as a poset) are filtered. These are the typical filtered colimits: a category
having colimits of chains has all filtered colimits – see 1.5 and 1.7 in
Adámek and Rosický (1994).

3. Generalizing still further: directed colimits are filtered. Recall that a poset
is called (upward) directed if it is nonempty and every pair of elements has
an upper bound. Directed colimits are colimits of diagrams whose schemes
are directed posets.

4. An example of filtered colimits that are not directed are the colimits
of idempotents. Let f be an endomorphism of an object A which is
idempotent, that is, f · f = f. This can be considered as a diagram
whose domain D has one object and, besides the identity, precisely one
idempotent morphism. This category is filtered. In fact, the colimit of the
preceding diagram is the coequalizer of f and idA. It is not difficult to verify
directly (or using 2.19) that in Set, these coequalizers commute with finite
limits. We return to colimits of idempotents in Chapter 8: they are precisely
the splitting of idempotents studied there.

There exist, essentially, no other finite filtered colimits than colimits
of idempotents. In fact, whenever a finite category D is filtered, it has a
cone fX: Z → X (X ∈ objD) over itself. It follows easily that fZ: Z → Z

is an idempotent, and a colimit of a diagram D: D → A exists iff the
idempotent DfZ has a colimit in A.

5. Filtered colimits are, of course, sifted.
6. Coequalizers are colimits that are not sifted (see 2.17). As we will see

in Chapter 3, reflexive coequalizers are sifted (but not filtered); these are
coequalizers of parallel pairs a1, a2: A ⇒ B for which d: B → A exists
with a1 · d = idB = a2 · d.

In fact, in a sense made precise in Chapter 7, we can state that

sifted colimits = filtered colimits + reflexive coequalizers.
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2.4 Remark Sifted categories have an easy characterization: they are
nonempty and have, for every pair of objects, the category of all cospans
connected.

This will be proved in 2.15. Before doing that, we need to recall the standard
concepts of connected category and final functor. But we first present a result
showing why sifted colimits are important.

2.5 Proposition For every algebraic theory T , the category Alg T is closed in
Set T under sifted colimits.

Proof Since sifted colimits and finite products commute in Set, they do so in
Set T (where they are computed objectwise). It follows that a sifted colimit in
Set T of functors preserving finite products also preserves finite products. �

2.6 Example Coproducts are not sifted colimits. In fact, for almost no alge-
braic theory T is Alg T closed under coproducts in SetT . A concrete example:
if Tab is the theory of abelian groups (1.6), then binary coproducts in Alg Tab

are products, and in SetTab , they are disjoint unions.

2.7 Corollary In every algebraic category, sifted colimits commute with finite
products.

In fact, this follows from the fact that the category Alg T is closed under limits
and sifted colimits in Set T , and such limits and colimits in Set T are formed
objectwise.

2.8 Example In the category of abelian groups,

1. a directed union of abelian groups carries a canonical structure of an abelian
group: this is the directed colimit of the diagram of inclusion homomor-
phisms and

2. let a1, a2: A ⇒ B be a pair of homomorphisms with a common splitting
d: B → A (i.e., a1 · d = idB = a2 · d) and let c: B → C be its coequalizer
in Set; the set C carries a canonical structure of abelian group (the unique
one for which c is a homomorphism).

Reflexive coequalizers will be studied in detail in Chapter 3.

2.9 Remark Generalizing 2.8.1, a directed union in Alg T is a directed colimit
of subalgebras; that is, an algebra A is a directed union of subalgebras mi: Ai →
A (i ∈ I ) provided that the poset on I given by i ≤ j iff mi ⊆ mj is directed,
and A is the colimit (with colimit cocone mi) of the directed diagram of all
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Ai, i ∈ I and all connecting morphisms mij:

A

Ai

mi

����������

mij

�� Aj

mj

���������

Thus Alg T is closed under directed unions in SetT .

2.10 Definition A category A is called connected if it is nonempty, and
for every pair of objects X and X′ in A, there exists a zigzag of morphisms
connecting X and X′:

X

���
��

��
��

�
X2

����
��
��
��

		�
��

��
��

�
. . . . . . Xn−1

����
��
��
��



�
��

��
��

�
X′

����
��
��
��

X1 . . . Xn

This is equivalent to saying that A cannot be decomposed as a coproduct (i.e.,
a disjoint union) of two nonempty subcategories.

2.11 Remark A small category A is connected iff the constant functor
A → Set of value 1 has colimit 1.

2.12 Definition A functor F : D′ → D is called final if, for every diagram
D: D → A such that colim (D · F ) exists inA, colim D exists and the canonical
morphism colim D · F → colim D is an isomorphism.

2.13 Lemma The following conditions on a functor F : D′ → D are equiva-
lent:

1. F is final.
2. F satisfies the finality condition with respect to all representable functors

D = D(d,−).
3. For every object d of D, the slice category d ↓ F of all morphisms d →

Fd ′, d ′ ∈ objD′, is connected.

Proof The implication 1 ⇒ 2 is trivial and 2 ⇒ 3 follows from the usual
description of colimits in Set (see 0.6) and the fact that since the diagram
D(d,−) has colimit 1 (see 0.10), so does the diagramD(d, F−) = D(d,−) · F.

To prove 3 ⇒ 1, let D: D → A be a diagram and let cd ′: D(Fd ′) →
C (d ′ ∈ objD′) be a colimit of D · F. For every object d of D, choose a mor-
phism ud: d → Fd ′ for some d ′ ∈ objD′ and put gd = cd ′ · Dud: Dd → C.
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We claim that gd: Dd → C (d ∈ objD) is a colimit of D. In fact, since d ↓ F

is connected, it is easy to verify that gd does not depend on the choice of d ′

and ud and that these morphisms form a cocone of D. The rest of the proof is
straightforward. �

2.14 Remark Following 2.13, the finality of the diagonal functor �: D →
D × D means that for every pair of objects A,B of D, the category (A,B) ↓ �

of cospans on A,B is connected; that is;

1. a cospan A → X ← B exists
2. every pair of cospans on A,B is connected by a zigzag of cospans.

Therefore the statement

D is nonempty and the diagonal functor � is final

is equivalent to the statement

D is connected and the diagonal functor � is final.

2.15 Theorem A small category D is sifted iff it is nonempty, and the diagonal
functor �: D → D × D is final.

Proof We are going to prove thatD is sifted iff it is connected and the diagonal
functor � is final. More precisely, we are going to prove that

1. D is connected iff the canonical map δ (see 2.2) is an isomorphism when
J is the empty set

2. � is final iff the canonical map δ is an isomorphism when J is the two-
element set (i.e., is, binary products in Set commute with colimits over D).

1. When J is the empty set, the codomain of δ is 1, whereas its domain is 1 iff
D is connected (see 2.11).

2. Let J be the two-element set. Given diagrams D,D′: D → Set, consider
the functor

D × D′: D × D → Set, (d, d ′) 
→ Dd × D′d ′ .

Since for every set X, the functor X × −: Set → Set preserves colimits (see
0.11), the colimit of the diagram D × D′ is

colim
D×D

(Dd × D′d ′) 	 colim
d∈D

(colim
d ′∈D

(Dd × D′d ′)) 	 colim
d∈D

Dd × colim
d ′∈D

D′d ′.
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Consider now the following commutative diagram of canonical maps:

colim
D

(Dd × D′d) δ
��

=
��

(colim
D

Dd) × (colim
D

D′d)

colim
D

((D × D′) · �)
β

�� colim
D×D

(D × D′)

	
��

If � is final, then β is an isomorphism, and therefore δ is also an isomorphism.
Conversely, assume that δ is an isomorphism. Given two objects d and d ′

in D, the representable functor (D × D)((d, d ′),−) is nothing but D × D′:
D × D → Set, with D = D(d,−) and D′ = D(d ′,−). If δ is an isomorphism,
the previous diagram shows that � satisfies the finality condition with respect
to all representable functors. Following 2.13, � is final. �

2.16 Example Every small category with finite coproducts is sifted. In fact,
it contains an initial object, and the slice category (A,B) ↓ � is connected
because it has an initial object (the coproduct of A and B).

2.17 Example Consider the category D given by the morphisms

A

f
��

g

�� B

(identity morphisms are not depicted). D is not sifted. In fact, the slice category
(A,B) ↓ � is the discrete category with objects (f, idB) and (g, idB).

2.18 Remark Filtered colimits are closely related to sifted colimits. In fact,
Definition 2.1 stresses this fact. The more usual definition of filtered category
D is to say that every finitely generated subcategory of D has a cocone in D
(this includes the condition that D is nonempty), and a well-known result states
that this implies the property of Definition 2.1.2. The converse is also true, as
follows.

2.19 Theorem For a small categoryD, the following conditions are equivalent:

1. D is filtered.
2. Every finitely generated subcategory of D has a cocone.
3. D is nonempty and fulfills the following:

a. For every pair of object A,B, there exists a cospan A → X ← B.
b. For every parallel pair of morphisms u, v: A ⇒ B, there exists a mor-

phism f : B → C merging u and v: f · u = f · v.
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Proof The proof of the implications 3 ⇔ 2 ⇒ 1 is standard; the reader can
find it, for example, in Borceux (1994), volume 1, theorem 2.13.4. The proof
of the implication 1 ⇒ 3 is easy: for point a, argue as in 2.15; for point b use,
analogously, the equalizer of D(u,−),D(v,−): D(B,−) ⇒ D(A,−), which
is the diagram D of all morphisms merging u and v: since colim D = 1, the
diagram is nonempty. �

With the next proposition, we establish a further analogy to 2.15.

2.20 Proposition A small category D is filtered iff for any finitely generated
category J , see 0.5, the diagonal functor �: D → DJ is final.

Proof 1. Let all such functors � be final. We are to show that every finitely
generated subcategory J of D has a cocone in D. The inclusion functor d:
J → D is an object of the functor category DJ . Following 2.13.3, the slice
category d ↓ � is connected and thus nonempty. Since d ↓ � is precisely the
category of cocones of J in D, we obtain the desired cocone.

2. Conversely, let D be filtered. We are to verify that for every object d of
DJ , where J is finitely generated, the slice category d ↓ � is connected.

2a. If J is a subcategory of D and d: J → D is the inclusion functor, then
the category d ↓ � of all cocones is nonempty. To prove that it is in fact
connected, consider two cocones C1 and C2. Since J is finitely generated (say,
by a finite set M of morphisms), it has finitely many objects; thus C1 and C2 are
finite sets of morphisms. Put M = M ∪ C1 ∪ C2 and let J be the subcategory
of D generated by M. Then J has a cocone in D, and this cocone defines an
obvious cocone of J with cocone morphisms to C1 and C2. Thus we obtain a
zigzag of length 2.

2b. Let d: J → D be arbitrary and let M be a finite set of morphisms
generating J . Then the set

d(M) ∪ {idd(x) ; x ∈ objJ }

is finite and generates a subcategory J0 of D. The slice category d ↓ � is
clearly equivalent to the category of cocones of J0 in D, which is connected
by point 2a. �

2.21 Remark Every colimit can be expressed as a filtered colimit of finite
colimits; that is, given a diagram D: D → A with A cocomplete, colim D can
be constructed as the filtered colimit of the diagram of all colim D′, where
D′: D′ → A ranges over all domain restrictions of D to finitely generated
subcategories D′ of D.
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2.22 Remark In Chapter 7, we study functors preserving filtered and
sifted colimits. In case of endofunctors of Set, these two properties coincide
(see 6.30), but in general, the latter one is stronger (see 2.26). We use the
following terminology.

2.23 Definition A functor is called finitary if it preserves filtered colimits.

2.24 Example Here we mention some endofunctors of Set that are finitary.

1. The functor

Hn: Set → Set HnX = Xn

is finitary for every natural number n since finite products commute in Set
with filtered colimits.

2. A coproduct of finitary functors is finitary.
3. Let � be a signature (1.9). We define the corresponding polynomial functor

H�: Set → Set

as the coproduct of the functors Har(σ ) for σ ∈ �. Explicitly,

H�X =
∐
n∈N

�n × Xn,

where �n is the set of all symbols of arity n (n = 0, 1, 2, . . .). This is a
finitary functor.

2.25 Example Let H: Set → Set be a functor. An H -algebra is a pair (A, a)
where A is a set and a: HA → A is a function. A homomorphism from (A, a)
to (B, b) is a function f : A → B such that the square

HA
Hf

��

a

��

HB

b

��
A

f

�� B

commutes. The resulting category is denoted H -Alg.

1. In 13.23, we will see that if H is finitary, then the category H -Alg is
algebraic.

2. The special case of a polynomial endofunctor H� leads to �-algebras.
Indeed, for every one-sorted signature �, the category �-Alg is pre-
cisely the category H�-Alg: if (A, a) is a H�-algebra, then the operations
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σA: An → A are the domain restrictions of a to the summand An corre-
sponding to σ ∈ �n. This case will be treated in Chapter 13.

2.26 Example An example of a finitary functor not preserving sifted colimits
is the forgetful functor U: Pos → Set, where Pos is the category of posets
and order-preserving maps. Consider the reflexive pair u, v: 1 + 2 ⇒ 2 from
the coproduct of the terminal poset 1 and the two-element chain, where both
morphisms are identity on the second summand, and they map the first one to
the top and bottom of 2, respectively. Whereas the coequalizer in Pos is given
by the terminal poset, the coequalizer of Uu and Uv in Set has two elements.

Historical remarks

Filtered colimits are a natural generalization of directed colimits known from
algebra and topology since the beginning of the twentieth century. The gen-
eral concept can already be found in Bourbaki (1956), including the fact that
directed colimits commute with finite products in Set. Both Artin et al. (1972)
and Gabriel and Ulmer (1971) contain the general definition of filtered col-
imits and the fact that they are precisely those colimits that commute with
finite limits in Set. Gabriel and Ulmer (1971) even speculated about the gen-
eral commutation of colimits with limits in Set (see chapter 15) and charac-
terized colimits commuting with finite products in Set; this is the source of
Theorem 2.15. This was later rediscovered by Lair (1996), who called these
colimits tamisantes. The term sifted was suggested by Peter Johnstone.

The concept of a final functor and the characterization Lemma 2.13 is a
standard result of category theory, which can be found in Mac Lane (1998).

The fact that sifted colimits play an analogous role for algebraic categories as
filtered colimits play for the locally finitely presentable categories was presented
in Adámek and Rosický (2001).
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Reflexive coequalizers

An important case of sifted colimits are reflexive coequalizers. We will see in
Chapter 7 that in algebraic categories, sifted colimits are just a combination of
filtered colimits and reflexive coequalizers. A special case of reflexive coequal-
izers are coequalizers of equivalence relations that correspond to the classical
concept of congruence. It turns out that the step from those classical coequal-
izers to all reflexive coequalizers makes the theory clearer from a categorical
perspective.

3.1 Definition Reflexive coequalizers are coequalizers of reflexive pairs, that
is, parallel pairs of split epimorphisms having a common splitting.

3.2 Remark In other words, reflexive coequalizers are colimits of diagrams
over the category M given by the morphisms

A

a1
��

a2

�� Bd��

(identity morphisms are not depicted) composed freely modulo a1 · d = idB =
a2 · d. This category is sifted: it is an easy exercise to check that the categories
(A,A) ↓ �, (A,B) ↓ � and (B,B) ↓ � are connected.

Another method of verifying that M is a sifted category is to prove directly
that reflexive coequalizers commute in Set with binary products. In fact, suppose
that

A
a2

��
a1

��
B

c
�� C and A′

a′
2

��
a′

1
��
B ′

c′
�� C ′

30
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are reflexive coequalizers in Set. We can assume, without loss of generality, that
c is the canonical function of the quotient C = B/ ∼ modulo the equivalence
relation described as follows: two elements x, y ∈ B are equivalent iff there
exists a zigzag

A: z1

ai1

����
��
��
� ai2

		�
��

��
��

z2

ai3

����
��
��
� ai4

		�
��

��
�� ······

zk

ai2k−1

����
��
��
� ai2k

���
��

��
��

B: x
···

y

where i1, i2, . . . , i2k are 1 or 2. For reflexive pairs a1, a2, the zigzags can always
be chosen to have the form

A: z1

a1

����
��
��
� a2

		�
��

��
��

z2

a2

����
��
��
� a1

		�
��

��
�� ······

z2k

a2

����
��
��
� a1

�
��

��
��

B: x
···

y

(3.1)

(here, for the elements z2i of A, we use a1, a2, and for the elements z2i+1, we
use a2, a1). In fact, let d: B → A be a joint splitting of a1, a2. Given a zigzag,
say,

z

a2

����
��
��
�� a1

���
��

��
��

x y

we can modify it as follows:

dx
a1

����
��
��
�� a2

�
��

��
��

�
z

a2

����
��
��
�� a1

		�
��

��
��

x x y

and analogously for the general case. Moreover, the length 2k of the zigzag
(3.1) can be prolonged to 2k + 2 or 2k + 4 etc. by using d. Analogously, we
can assume C ′ = B ′/ ∼′, where ∼′ is the equivalence relation given by zigzags
of a′

1 and a′
2 of the preceding form (3.1). Now we form the parallel pair

A × A′
a1×a′

1
��

a2×a′
2

�� B × B ′
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and obtain its coequalizer by the zigzag equivalence ≈ on B × B ′. Given
(x, x ′) ≈ (y, y ′) in B × B ′, we obviously have zigzags both for x ∼ y and for
x ′ ∼′ y ′ (use projections of the given zig-zag), but also the other way around:
whenever x ∼ y and x ′ ∼′ y ′, we choose the two zigzags so that they both have
the preceding type (3.1) and the same lengths. They create an obvious zig-zag
for (x, x ′) ≈ (y, y ′). From this it follows that the map

A × A′
a1×a′

1
��

a2×a′
2

�� B × B ′
c×c′

�� (B/ ∼) × (B ′/ ∼′)

is a coequalizer, as required.

3.3 Corollary For every algebraic theory T , the category Alg T is closed
in Set T under reflexive coequalizers.

In fact, this follows from 2.5 and Remark 3.2.

3.4 Example In a category with kernel pairs, every regular epimorphism is a
reflexive coequalizer. In fact, if r1, r2 is a kernel pair of a regular epimorphism
e: A → B,

A

id

��

d

�� id

��

R

r1����
��
��
�

r2 ���
��

��
��

A

e ���
��

��
��

A

e����
��
��
�

B

then e is a coequalizer of r1, r2. And since e · id = e · id, there exists a unique
d with r1 · d = id = r2 · d.

3.5 Corollary For every algebraic theory T , the category Alg T is closed in
Set T under regular epimorphisms. Therefore regular epimorphisms in Alg T
are precisely the homomorphisms that are componentwise epimorphisms (i.e.,
surjective functions) in Set.

In fact, the first part of the statement follows from 2.5 and Example 3.4. The
second statement is clear since the property holds in Set T .
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3.6 Remark In particular, every algebraic category is co-wellpowered with
respect to regular epimorphisms. This means that for a fixed object A, the
regular quotients of A constitute a set (not a proper class). In fact, this is true
in Set and therefore, by Corollary 3.5, in every algebraic category.

More is true: algebraic categories are co-wellpowered with respect to all
epimorphisms. We do not present a proof of this fact here because we do
not need it. The interested reader can consult Adámek and Rosický (1994),
sections 1.52 and 1.58.

In classical algebra, the homomorphism theorem states that every homo-
morphism can be factorized as a surjective homomorphism followed by the
inclusion of a subalgebra. This holds in general algebraic categories; as follows.

3.7 Corollary Every algebraic category has regular factorizations, that is,
every morphism is a composite of a regular epimorphism followed by a
monomorphism.

Proof The category Set T has regular factorizations: given a morphism f :
A → B, form a kernel pair r1, r2: R ⇒ A and its coequalizer e: A → C. The
factorizing morphism m,

R

r1
��

r2

�� A
f

��

e

��

B

C

m

���������

is a monomorphism. This follows from the fact that kernel pairs and coequaliz-
ers are formed objectwise (in Set). Since Alg T is closed in Set T under kernel
pairs (1.23) and their coequalizers (3.3), it inherits the regular factorizations
from Set T . �

3.8 Example In Ab we know that

1. coproducts are not formed at the level of sets; in fact, A + B = A × B for
all abelian groups A,B, and

2. reflexive coequalizers are formed at the level of sets, but general coequal-
izers are not; consider, for example, the pair x 
→ 2x and x 
→ 0 of endo-
morphisms of Z whose coequalizer in Ab is finite and in Set is infinite.

3.9 Remark We provided a simple characterization of monomorphisms (1.23)
and regular epimorphisms (3.5) in algebraic categories. There does not seem
to be a simple characterization of the dual concepts (epimorphisms and regular
monomorphisms). In fact, there exist algebraic categories with nonsurjective
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epimorphisms and with nonregular monomorphisms, as we show in the follow-
ing example.

3.10 Example: Monoids These are algebras with one associative binary
operation and one constant that is a neutral element. The category Mon of
monoids and homomorphisms is algebraic (see Example 13.14).

An example of an epimorphism that is not regular is the embedding

i: Z → Q

of the multiplicative monoid of integers into that of rational numbers. In fact,
consider monoid homomorphisms h, k: Q → A such that h · i = k · i; that
is, h(n) = k(n) for every integer n. To prove h = k, it is sufficient to verify
h(1/m) = k(1/m) for all integers m �= 0: this follows from h(m) · h(1/m) =
k(m) · k(1/m) = 1 (since h(1) = k(1) = 1). Consequently, i is not a regular
epimorphism. Observe that i is also a monomorphism but not a regular one.

3.11 Remark Recall that in a finitely complete category A, relations on an
object A are the subobjects of A × A. A relation can be represented by a
monomorphism r: R → A × A or by a parallel pair r1, r2: R ⇒ A of mor-
phisms that are jointly monic. The following definitions generalize the corre-
sponding concepts for relations in Set.

3.12 Definition A relation r1, r2: R ⇒ A in a category A is called

1. reflexive if the pair r1, r2 is reflexive (r1 · d = id = r2 · d for some d: A →
R)

2. symmetric if there exists s: R → R with r1 = r2 · s and r2 = r1 · s

3. transitive, provided that for a pullback R of r1 and r2, there exists a
morphism t: R → R such that the diagram

R

r1

��

r2

��

R

t

��

r1

����
��
��
� r2

���
��

��
��

R

r1����
��
��
�

r2 ���
��

��
��

R

r1����
��
��
�

r2 ���
��

��
��

A A A

commutes.

An equivalence relation is a relation that is reflexive, symmetric, and transitive.
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3.13 Remark

1. If r1, r2: R ⇒ A is an equivalence relation, then the morphisms d, s and t

of Definition 3.12 are necessarily unique.
2. An equivalence relation in Set is precisely an equivalence relation in the

usual sense.
3. Given a relation r1, r2: R ⇒ A and an object X, we can define a relation

∼R on the hom-set A(X,A) as follows: f ∼R g if there exists a morphism
h: X → R such that r1 · h = f and r2 · h = g. It is easy to check that
r1, r2: R ⇒ A is an equivalence relation in A iff ∼R is an equivalence
relation in Set for all X in A.

4. Kernel pairs are equivalence relations.
5. In the category of �-algebras (see 1.9), an equivalence relation on an algebra

A is precisely a subobject of A × A, which, as a relation on the underlying
set of A, is an equivalence relation in Set. These relations are usually called
congruences on A. We refer to them as equivalence relations in �-Alg
because the concept of congruence is reserved (with the exceptions only of
11.31–11.33) for congruences of algebraic theories (see Chapter 10).

3.14 Definition A category is said to have effective equivalence relations
provided that every equivalence relation is a kernel pair.

3.15 Example 1. All algebraic categories have effective equivalence relations,
see Corollary 3.18.

2. The category of posets does not have this property: take an arbitrary poset
B and an equivalence relation R on the underlying set of B equipped with the
discrete ordering; the two projections R ⇒ B form an equivalence relation that
is seldom a kernel pair.

3.16 Definition A category is called exact if it has

1. finite limits
2. coequalizers of kernel pairs
3. effective equivalence relations and
4. regular epimorphisms stable under pullback; that is, in every pullback

A
e′

��

f

��

B

g

��
C

e

�� D

if e is a regular epimorphism, then so is e′.
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3.17 Example Set is an exact category. In fact,
1. if r1, r2: R ⇒ A is an equivalence relation, its coequalizer is

q: A → A/ ∼R

where ∼R is as in Remark 3.13 (with X = 1) and q is the canonical morphism.
Clearly r1, r2: R ⇒ A is a kernel pair of q.

2. Given a pullback as in Definition 3.16 and an element x ∈ B, we choose
z ∈ C with g(x) = e(z) using the fact that e is an epimorphism. Then (x, z) is
an element of the pullback A and e′(x, z) = x. This proves that e′ is surjective.

3.18 Corollary Every algebraic category is exact.

In fact, since Set is exact, so is Set T . Since equivalence relations are reflexive
pairs, the exactness of Alg T follows using 1.23 and Corollary 3.3.

3.19 Definition We say that colimits in a category A distribute over products
if given diagrams Di: Di → A (i ∈ I ), and forming the diagram

D:
∏
i∈I

Di → A, Ddi =
∏
i∈I

Didi,

the canonical morphism

colim D →
∏
i∈I

colim Di

is an isomorphism.
If all Di are of a certain type, we say that colimits of that type distribute over

products. The concept of distributing over finite products is defined analogously
but I is required to be finite.

3.20 Example In the category Set, it is easy to verify that

1. filtered colimits distribute over products
2. all colimits distribute over finite products

However, reflexive coequalizers do not distribute over infinite products. In fact,
consider the coequalizers

n + n

fn

��

gn

�� n + 1
cn

�� 1,

where the left-hand components of fn and gn are the inclusion maps n →
n + 1 and the right-hand ones are i 
→ i and i 
→ i + 1, respectively. Then∏

n∈N fn,
∏

n∈N gn have a coequalizer with infinite codomain and thus the
coequalizer is distinct from

∏
n∈N cn.
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3.21 Corollary In every algebraic category,

1. regular epimorphisms are stable under products: given regular epimor-
phisms ei: Ai → Bi (i ∈ I ),∏

i∈I

ei:
∏
i∈I

Ai →
∏
i∈I

Bi

is a regular epimorphism
2. filtered colimits distribute over products
3. sifted colimits distribute over finite products

In fact, since each of the three statements holds in Set, they hold in Set T ,

where limits and colimits are formed objectwise. Following Propositions 1.21
and 2.5, and Corollary 3.5, the statements hold in Alg T for every algebraic
theory T .

3.22 Remark

1. In the preceding corollary, we implicitly assume the existence of colimits
in an algebraic category. This is not a restriction because every algebraic
category is cocomplete, as we prove in the next chapter.

2. Although in Set, all colimits distribute over finite products, this is not
true in algebraic categories in general: consider the empty diagram in the
category of unitary rings. For I = {1, 2} in Definition 3.19 and D1 = ∅ =
D2, we get colim D = Z and colim D1 × colim D2 = Z × Z.

Historical remarks

Reflexive coequalizers were probably first applied by Linton (1969a). That
they commute with finite products in Set (in fact, in every Cartesian closed
category) is contained in the unpublished thesis of Johnstone written in the
early 1970s. The importance of reflexive coequalizers for algebraic categories
was first understood by Diers (1976), but his paper remained unnoticed. It was
later rediscovered by Pedicchio and Wood (2000). A decisive step was taken
in Adámek et al. (2001a, 2003), where reflexive coequalizers were used for
establishing the algebraic duality (see Chapter 9) and for the study of abstract
operations, different from limits and filtered colimits, performed in algebraic
categories.

Effective equivalence relations were introduced by Artin et al. (1972) and
exact categories by Barr et al. (1971). The fact that filtered colimits distribute
with all products in Set goes back to Artin et al. (1972).
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Algebraic categories as free completions

In this chapter, we prove that every algebraic category has colimits. Moreover,
the category Alg T is a free completion of T op under sifted colimits. This shows
that algebraic categories can be characterized by their universal property: they
are precisely the free sifted-colimit completions of small categories with finite
coproducts. This is analogous to the classical result of Gabriel and Ulmer
characterizing locally finitely presentable categories as precisely the categories
Ind C, where C is a small category with finite colimits and Ind is the free
completion under filtered colimits (see Example 4.12).

4.1 Remark For the existence of colimits, since we already know that Alg T
has sifted colimits and, in particular, reflexive coequalizers (see 2.5 and 3.3),
all we need to establish is the existence of finite coproducts. Indeed, coproducts
then exist because they are filtered colimits of finite coproducts. And coproducts
and reflexive coequalizers construct all colimits (see 0.7). The first step toward
the existence of finite coproducts has already been done in Lemma 1.13: finite
coproducts of representable algebras, including an initial object, exist in Alg T .

In the next lemma, we use the category of elements El A of a functor A: T →
Set introduced in 0.14.

4.2 Lemma Given an algebraic theory T , for every functor A in Set T , the
following conditions are equivalent:

1. A is an algebra.
2. El A is a sifted category.
3. A is a sifted colimit of representable algebras.

38
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Proof 2 ⇒ 3: This follows from 0.14.
3 ⇒ 1: Representable functors are objects of Alg T (1.12), and Alg T is closed
in Set T under sifted colimits (2.5).

1 ⇒ 2: Following 2.16, it suffices to prove that (El A)op has finite products.
This is obvious: for example, the product of (X, x) and (Z, z) is (X × Z,

(x, z)) – recall that (x, z) ∈ AX × AZ = A(X × Z). �

4.3 Remark An analogous result (with a completely analogous proof) holds
for small categories T with finite limits: a functor A: T → Set preserves finite
limits iff El A is a filtered category iff A is a filtered colimit of representable
functors.

4.4 Lemma

1. If two functors F : D → C and G: B → A are final, then the product functor
F × G: D × B → C × A is final.

2. A product of two sifted categories is sifted.

Proof
1. This follows from 2.13.3 because for any object (c, a) in C × A, the slice cat-
egory (c, a) ↓ F × G is nothing but the product category (c ↓ F ) × (a ↓ G),
and the product of two connected categories is connected.

2. It is obvious from the preceding and 2.15. �

4.5 Theorem Every algebraic category is cocomplete.

Proof As explained at the beginning of this chapter, we only need to establish
finite coproducts A + B in Alg T . Express A as a sifted colimit of representable
algebras (Lemma 4.2)

A = colim (YT · �A)

and analogously for B. The category

D = El A × El B

is sifted by Lemma 4.4, and for the projections P1, P2 of D, we have two
colimits in Alg T over D:

A = colim YT · �A · P1 and B = colim YT · �B · P2.

The diagram D: D → Alg T assigning to every pair (X, x) and (Z, z) a coprod-
uct of the representable algebras (see 1.13)

D((X, x), (Z, z)) = YT · �A(x) + YT · �B(z) (in Alg T )
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is sifted, thus it has a colimit in Alg T . Since colimits over D commute with
finite coproducts, we get

colim D = colim
(x,z)

YT · �A(x) + colim
(x,z)

YT · �B(z) = A + B.

�

4.6 Example: Coproducts

1. In the category Ab of abelian groups, finite coproducts are finite products:
the abelian group A × B together with the homomorphisms

〈idA, 0〉: A → A × B and 〈0, idB〉: B → A × B

is a coproduct of A and B.

2. Infinite coproducts
∐

i∈I Ai are directed colimits of finite subcoproducts∐
j∈J Aj = ∏

j∈J Aj (for J ⊆ I finite).
3. In the category of sequential automata (1.25), the product A × B of two

automata is the machine working simultaneously in A and B on the given
(joint) input streams, whereas the coproduct A + B is the machine working,
on a given input stream, completely in A or completely in B.

4. A coproduct of graphs in Graph is given by the disjoint union of vertices
and the disjoint union of edges.

4.7 Example: Coequalizers

1. In Ab, a coequalizer of homomorphisms f, g: A ⇒ B is the quotient c:
B → B/B0 modulo the subgroup B0 ⊆ B of the elements f (a) − g(a) for
all a ∈ A.

2. A coequalizer of a parallel pair f, g: A ⇒ B in Graph is given by forming
the coequalizers in Set of (1) the two vertex functions and (2) the two edge
functions.

4.8 Remark Before characterizing algebraic categories as free completions
under sifted colimits, let us recall the general concept of a free completion of
a category C: this is, roughly speaking, a cocomplete category A in which C is
a full subcategory such that every functor from C to a cocomplete category has
an essentially unique extension (i.e., unique up to natural isomorphism) to a
colimit-preserving functor with domain A. In the following definition, we say
this more precisely. Also, for a given class D of small categories, we define
a free completion under D-colimits, meaning that all colimits considered are
colimits of diagrams with domains that are elements of D.

4.9 Definition Let D be a class of small categories. By a free completion of a
category C under D-colimits is meant a functor ED: C → D(C) such that
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1. D(C) is a category with D-colimits
2. for every functor F : C → B, where B is a category with D-colimits, there

exists an essentially unique functor F ∗: D(C) → B preserving D-colimits
with F naturally isomorphic to F ∗ · ED:

C
ED

��

F 		�
��

��
��

D(C)

F ∗��		
		
		
		

B

If D consists of all small categories, then ED: C → D(C) is called a free com-
pletion of C under colimits.

4.10 Theorem For every small category C, the Yoneda embedding

YCop: C → Set C
op

is a free completion of C under colimits.

Proof The category Set C
op

is of course cocomplete. Let F : C → B be a
functor, where B has colimits. Since F ∗: Set C

op → B should extend F and
preserve colimits, we are forced to define it on objects A: Cop → Set (using the
notation of 0.14 applied to T = Cop) by

F ∗A = colim
El A

(F · �A).

The definition on morphisms (i.e., natural transformations) h: A1 → A2 is also
obvious: h induces a functor El h: El A1 → El A2, which to every element
(X, x) of A1 assigns the corresponding element (X, hX(x)) of A2. By the
universal property of colimits, El h induces a morphism

h′: colim (F · �A1 ) → colim (F · �A2 ),

and we are forced to define F ∗h = h′.
The rule A 
→ colim (F · �A) above defines a functor F ∗: Set C

op → B,
which fulfills F ∗ · YCop 	 F because for A = YCop (X) = C(−, X), a colimit
of F · �A = B(−, FX) is FX. It remains to prove that F ∗ preserves colimits:
for this we prove that F ∗ has the following right adjoint:

R: B → SetC
op
, RB = B(F−, B).

We prove the adjunction F ∗ � R by verifying that there is a bijection

B(F ∗A,B) 	 SetC
op

(A,RB)
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natural in A: Cop → Set and B ∈ B. In fact, the definition of F ∗ makes it clear
that the left-hand side consists of precisely all cocones of the diagram F · �A

with codomain B in B:

B(F ∗A,B) = B(colim (F · �A), B) 	 limB(F (�A(X, x)), B).

The same is true about the right-hand side: recall that A = colim (YCop · �A)
(0.14), thus a natural transformation from A to RB is a cocone of the diagram
YCop · �A with codomain RB:

Set C
op

(A,RB) = Set C
op

(colim (YCop · �A), RB)

	 lim Set C
op

(YCop (�A(X, x)), RB).

The Yoneda lemma tells us that morphisms from the objects YCop (X) of that
diagram to RB = B(F−, B) are precisely the members of the set B(FX,B):

SetC
op

(YCop (X), RB) 	 B(FX,B).

In this sense, morphisms from A to RB in SetC
op

encode precisely the cocones
of F · �A with codomain B. �

4.11 Remark

1. Although the triangle in Definition 4.9 commutes up to natural isomorphism
only, in Theorem 4.10 it is actually always possible to choose F ∗ so that
the (strict) equality

F = F ∗ · YC

holds. This is easily seen from the preceding proof since if the algebra A

has the form A = YCop (X), a colimit of F · �A can be chosen to be FX.

2. Let Colim(SetC
op
,B) be the full subcategory of BSetC

op

of all functors pre-
serving colimits. Then composition with YCop defines a functor

− · YCop: Colim(SetC
op
,B) → B C .

The preceding universal property tells us that this functor is an equivalence.
(It is, however, not an isomorphism of categories, even assuming the choice
of F∗ in point 1.)

4.12 Example

1. A famous classical example is the free completion under filtered colimits
denoted by

EInd : C → Ind C.
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For a small category C, Ind C can be described as the category of all filtered
colimits of representable functors in Set C

op
, and the functor EInd is the

codomain restriction of the Yoneda embedding.
2. One can proceed analogously with sifted colimits: we denote the free com-

pletion under sifted colimits by

ESind : C → Sind C.

For a small category C, Sind C can be described as the category of all sifted
colimits of representable functors in Set C

op
, and ESind is the codomain

restriction of the Yoneda embedding. We are not going to prove these results
in full generality here, the interested reader can find them in Adámek and
Rosický (2001). We only prove point 2 under the assumption that C has
finite coproducts, and we sketch the proof of point 1 under the assumption
that C has finite colimits.

4.13 Theorem For every algebraic theory T , the Yoneda embedding

YT : T op → Alg T

is a free completion of T op under sifted colimits. In other words,

Alg T = Sind (T op).

Analogously to Remark 4.11, we have, for every functor F : T op → B, where B
has sifted colimits, a choice of a sifted colimit preserving functor F ∗: Alg T →
B satisfying F = F ∗ · YT .

Proof This is analogous to the proof of Theorem 4.10 with T = Cop. Given
a functor F : T op → B where B has sifted colimits, we prove that there exists
an essentially unique functor

F ∗: Alg T → B

preserving sifted colimits such that F = F ∗ · YT . By 0.14, we are forced to
define F ∗ on objects A = colim (YT · �A) by

F ∗A = colim
El A

(F · �A).

This definition makes sense because by Lemma 4.2, El A is sifted. As in
Theorem 4.10, all that needs to be proved is that the resulting functor F ∗

preserves sifted colimits. In the present situation, F ∗ does not have a right
adjoint. Nevertheless, since the inclusion I: Alg T → Set T preserves sifted
colimits (2.5), we still have, for RB = B(F−, B), a bijection

B(F ∗A,B) 	 Set T (IA,RB)
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natural in A: Cop → Set and B ∈ B. The argument is analogous to
Theorem 4.10: both sides represent cocones of the (sifted) diagram F · �A

with codomain B. From the preceding natural bijection, one deduces that F ∗

preserves sifted colimits: for every fixed object B, the functor A 
→ B(F ∗A,B)
preserves sifted colimits and we now use 0.12. �

4.14 Corollary A category A is algebraic iff it is a free completion of a small
category with finite coproducts under sifted colimits.

4.15 Remark Let T be an algebraic theory. If B is cocomplete and the functor
F : T op → B preserves finite coproducts, then its extension

F ∗: Alg T → B

preserving sifted colimits has a right adjoint. In fact, since F preserves finite
coproducts, the functor B 
→ B(F−, B) factorizes through Alg T , and the
resulting functor

R: B → Alg T , B 
→ B(F−, B)

is a right adjoint to F ∗.

4.16 Remark Let T be a finitely complete small category, and Lex T denote
the full subcategory of SetT of finite limits preserving functors.

1. YT : T op → Lex T preserves finite colimits.
2. The embedding Lex T → SetT preserves limits and filtered colimits.
3. Lex T is cocomplete.

The proofs of points 1 and 2 are easy modifications of 1.13, 1.21, and 2.5.
Using Remark 4.3, the proof of point 3 is analogous to that of Theorem 4.5.

4.17 Theorem For every finitely complete small category T , the Yoneda
embedding

YT : T op → Lex T

is a free completion of T op under filtered colimits. In other words,

Lex T = Ind (T op).

Proof A functor A: T → Set preserves finite limits iff El A is filtered (Remark
4.3). Moreover, the embedding Lex T → SetT preserves filtered colimits
(Remark 4.16). The rest of the proof is a trivial modification of the proof
of Theorem 4.13: just replace sifted with filtered everywhere. �
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4.18 Remark Let T be a finitely complete small category. Analogously to
Remark 4.15, if B is cocomplete and the functor F : T op → B preserves finite
colimits, then its extension F ∗: Lex T → B preserving filtered colimits has a
right adjoint.

Historical remarks

Free colimit completions (see Theorem 4.10) were probably first described by
Ulmer (1968); see also Gabriel and Ulmer (1971). The completion Ind was
introduced by Artin et al. (1972), but it is also contained in Gabriel and Ulmer
(1971). The completion Sind was introduced in Adámek and Rosický (2001),
together with its relation to algebraic categories. But a general completion
under a class of colimits is already treated in Gabriel and Ulmer (1971). Later,
these completions were studied by a number of authors; see, for example, the
results and the references in Adámek et al. (2002) and Kelly (1982).
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Properties of algebras

In classical algebra, a number of abstract properties of algebras play a cen-
tral role, for example, finite presentability: this means that the algebra can be
presented (up to isomorphism) by finitely many generators and equations. How-
ever, this is a definite categorical property because it is satisfied by precisely
those algebras whose hom-functor preserves filtered colimits (see Chapter 11).
Another important concept is that of regular projective algebra (see the next
definition). The combination of the preceding two properties is called perfect
presentability, and we prove that perfectly presentable algebras are precisely
those algebras whose hom-functor preserves sifted colimits.

5.1 Definition An object A of a category A is called regular projective if its
hom-functor A(A,−): A → Set preserves regular epimorphisms; that is, for
every regular epimorphism e: X → Z and every morphism f : A → Z, there
exists a commutative triangle

A

����
��
��
� f

���
��

��
��

X
e

�� Z

5.2 Example

1. In Set, all objects are regular projective.
2. We will see in 11.26 that every free algebra is regular projective.
3. Every regular projective abelian group is free: express A as a regular quotient

e: X → A of a free abelian group X and apply the previous definition to f =
idA. This shows that A is isomorphic to a subgroup of a free abelian group,
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and therefore it is free. The same argument holds for regular projective
groups and for regular projective Lie algebras.

4. Every finite boolean algebra (not only the free ones) is regular projective,
being a retract of a free boolean algebra, see Lemma 5.9.

5. A graph G is regular projective in Graph (see 1.11) iff its edges are pairwise
disjoint; that is, G is a coproduct of vertices and edges.

5.3 Definition Let A be a category. An object A of A is

1. finitely presentable if the hom-functor A(A,−): A → Set preserves filtered
colimits

2. perfectly presentable if the hom-functorA(A,−): A → Set preserves sifted
colimits.

5.4 Remark Any perfectly presentable object is finitely presentable (because
filtered colimits are sifted) and, assuming the existence of kernel pairs, regular
projective (because regular epimorphisms are, by Example 3.4, coequalizers of
reflexive pairs). We will show in Corollary 5.16 that in an algebraic category,
also the converse implication holds: perfectly presentable objects are precisely
the finitely presentable regular projectives. In fact, the converse implication
holds in any cocomplete exact category (see 18.3).

5.5 Example Let T be a small category.

1. In SetT , the representable functors are perfectly presentable, in fact, they
have a stronger property: their hom-functors preserve all colimits. This
follows from the Yoneda lemma and the fact that in SetT , colimits are
formed objectwise.

2. If T is an algebraic theory, representable functors are perfectly presentable
objects in Alg T . This follows from point 1 and the fact that Alg T is closed
in SetT under sifted colimits (see 2.5).

3. Analogously, if T has finite limits, then representable functors are finitely
presentable objects in Lex T . This follows from point 1 and the fact that
Lex T is closed in SetT under filtered colimits (see 4.16).

5.6 Example

1. Every finite set is perfectly presentable in Set.
2. An abelian group A is finitely presentable in the preceding sense in the

category Ab iff it is finitely presentable in the usual algebraic sense; that
is, A can be presented by finitely many generators and finitely many equa-
tions. This is easily seen from the fact that every abelian group is a filtered
colimit of abelian groups that are finitely presentable (in the algebraic
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sense). An abelian group is perfectly presentable iff it is free on finitely
many generators.

3. In a poset considered as a category, the finitely (or perfectly) presentable
objects are precisely the compact elements x, that is, such that for every
directed join y = ∨

i∈I yi, from x ≤ y it follows that x ≤ yi for some i ∈ I.

4. A graph is finitely presentable in Graph iff it has finitely many vertices
and finitely many edges. In fact, it is easy to see that for each such a graph
G, the hom-functor Graph(G,−) preserves filtered colimits. Conversely,
if G is finitely presentable, use the fact that G is a filtered colimit of all
its subgraphs on finitely many vertices and finitely many edges. A graph
is perfectly presentable iff it has finitely many vertices and finitely many
pairwise disjoint edges.

5.7 Remark We will see in Chapter 11 that the situation described for Ab in
the preceding example is a special case of the general fact that

1. finite presentability has in algebraic categories the usual algebraic meaning
(finitely presentable objects are precisely those which can be, in the classical
sense, presented by finitely many generators and finitely many equations)

2. every free algebra is regular projective
3. perfectly presentable algebras are just the retracts of the free algebras on

finitely many generators

5.8 Remark As pointed out in Example 5.5, in categories Set C , the repre-
sentable objects have the property that their hom-functors preserve all colimits.
We call such objects absolutely presentable. In algebraic categories, absolutely
presentable objects are typically rare. For example, no abelian group A is abso-
lutely presentable: for the initial object 1, the object Ab(A, 1) is never initial in
Set. However, the categories Set C are an exception: every object is a colimit of
absolutely presentable objects.

5.9 Lemma If an object is regular projective (or finitely presentable or per-
fectly presentable), then every retract has that property too.

Proof If f : B → A and g: A → B are such that g · f = idB, then for F =
A(A,−) and G = A(B,−) the natural transformations

α = A(g,−): G → F and β = A(f,−): F → G
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fulfill β · α = G. Therefore

F
F

��
α·β

��
F

β
�� G

is a coequalizer. By interchange of colimits, G preserves every colimit preserved
by F. �

5.10 Remark Absolutely presentable objects in Set C are precisely the retracts
of the representable functors.

5.11 Lemma

1. Perfectly presentable objects are closed under finite coproducts.
2. Finitely presentable objects are closed under finite colimits.

Proof Let us prove the first statement (the proof of the second one is sim-
ilar). Consider a finite family (Ai)i∈I of perfectly presentable objects. Since
A(

∐
I Ai,−) 	 ∏

I A(Ai,−), the claim follows from the obvious fact that a
finite product of functors A → Set preserving sifted colimits also preserves
them. �

5.12 Corollary Every object of an algebraic category is

1. a sifted colimit of perfectly presentable algebras
2. a filtered colimit of finitely presentable algebras

In fact, point 1 follows from 4.2 and 5.5.2, and point 2 follows from 4.2, 2.21,
and 5.11.

5.13 Lemma Regular projective objects are closed under coproducts.

Proof Let (Ai)i∈I be a family of regular projective objects and let e: X → Z

be a regular epimorphism. The claim follows from the formula A(
∐

I Ai, e) 	∏
I A(Ai, e) and the fact that in Set, regular epimorphisms are stable under

products (3.21). �

5.14 Corollary In every category Alg T ,

1. the perfectly presentable objects are precisely the retracts of representable
algebras

2. the regular projective objects are precisely the retracts of coproducts of
representable algebras
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Proof
1. Following Example 5.5 and Lemma 5.9, a retract of a representable algebra
is perfectly presentable. Conversely, due to Lemma 4.2, we can express every
perfectly presentable algebra A as a sifted colimit of representable algebras.
Since Alg T (A,−) preserves this colimit, it follows that idA factorizes through
some of the colimit morphism e: YT (t) → A. Thus e is a split epimorphism,
and A is a retract of YT (t).

2. Following Example 5.5, Example 5.9, and Lemma 5.13, a retract of a
coproduct of representable algebras is regular projective. Conversely, due to
4.2, we can express every algebra A as a colimit of representable algebras.
Since Alg T is cocomplete, this implies, by 0.7, that A is a regular quotient of
a coproduct of representable algebras

e:
∐
i∈I

T (ti ,−) → A . (5.1)

Therefore, if A is regular projective, it is a retract of
∐

i∈I T (ti ,−). �

5.15 Corollary Every algebraic category has enough regular projective
objects; that is, every algebra is a regular quotient of a regular projective
algebra.

In fact, the morphism e from the preceding proof is a regular epimorphism and,
following Example 5.5 and Lemma 5.13,

∐
i∈I T (ti ,−) is a regular projective

object.

5.16 Corollary In an algebraic category, an algebra is perfectly presentable
iff it is finitely presentable and regular projective.

Proof One implication holds in any category (see Remark 5.4). Conversely, if
P is a regular projective object in Alg T , due to Corollary 5.14.2, P is a retract
of a coproduct of representable algebras. Since every coproduct is a filtered
colimit of its finite subcoproducts (2.21), if P is also finitely presentable,
then it is a retract of a finite coproduct of representable algebras. Following
Example 5.5, Lemma 5.9, and Lemma 5.11.1, P is perfectly presentable. �

5.17 Proposition In every algebraic category, the finitely presentable algebras
are precisely the coequalizers of reflexive pairs of homomorphisms between
representable algebras.

Proof One implication is obvious: representable algebras are finitely pre-
sentable (Example 5.5), and finitely presentable objects are closed under finite
colimits (Lemma 5.11).
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Conversely, let A be a finitely presentable algebra. Following 4.2, A is a (sifted)
colimit of representable algebras. Thus A is a filtered colimit of finite colimits
of representable algebras (see 2.21). From 1.13 and 0.7, we deduce that every
finite colimit of representable algebras is a reflexive coequalizer of a parallel
pair between two representable algebras. Since A is finitely presentable, it is a
retract of one of the preceding coequalizers:

YT (t1)
k

��
h

��
YT (t2)

e
�� Q

s
��
A.

u

��

Here e is a coequalizer of h and k, and s · u = idA . Since YT (t2) is regular
projective (see Remark 5.4 and Example 5.5) and e is a regular epimorphism,
there exists a homomorphism g: YT (t2) → YT (t2) such that e · g = u · s · e.

Let us observe that the morphism s · e is a joint coequalizer of h, k, and g · h:

YT (t1)

h
��

k ��

g·h
�� YT (t2)

s·e
�� A.

In fact, s · e · k = s · e · h = s · u · s · e · h = s · e · g · h. Assume that a mor-
phism f : YT (t2) → X coequalizes h, k, and g · h. Then there exists a
unique homomorphism v: Q → X with v · e = f. Hence f · h = f · g · h =
v · e · g · h = v · u · s · e · h. Since h is an epimorphism (because the pair h, k

is reflexive), we get f = v · u · s · e. Now, from 0.7, we conclude that A is a
reflexive coequalizer of a pair of homomorphisms between finite coproducts of
representable algebras. By 1.13, we get the claim. �

5.18 Remark Beside finite presentability, an important concept in general
algebra is finite generation: an algebra A is finitely generated if it has a finite
subset not contained in any proper subalgebra. (Or, equivalently, A is a regular
quotient of a free algebra on finitely many generators.) This concept also has a
categorical formulation. For this we need to introduce the following.

5.19 Definition A directed union is a filtered colimit of subobjects; that
is, given a filtered diagram D: D → A where D maps every morphism to a
monomorphism, colim D is called the directed union.

5.20 Remark In Set, directed unions have colimit cocones formed by
monomorphisms. Thus the same holds in SetT . Since Alg T is closed under
filtered colimits in SetT , this is also true in Alg T .

5.21 Definition Let A be a category. An object A of A is finitely generated if
the hom-functor A(A,−): A → Set preserves directed unions.
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5.22 Proposition In every algebraic category, the finitely generated algebras
are precisely the regular quotients of representable algebras.

Proof
1. Let A be finitely generated. Recall from 4.2 that A is the sifted colimit of

El A
�A

�� T op
YT

�� Alg T .

Let (X, x) be an object of El A, and consider the regular factorization of the
colimit morphism x̂:

YT (X)
x̂

��

qx ��















A

Ix

mx

����������

These objects Ix and the connecting monomorphisms between them one gets
from the morphisms of El A (via diagonal fill-in; see 0.16) form a filtered
diagram of monomorphisms. Indeed, given two elements (X, x) and (Z, z) of
A, for the element (X × Z, (x, z)), we see that mx and mz both factorize through
m(x,z). It is clear that A = colim Ix, and since A is finitely generated, A(A,−)
preserves this colimit. Thus there exists (X, x) ∈ El A and f : A → Ix such that
idA = mx · f. Therefore mx, being a monomorphism and a split epimorphism,
is an isomorphism. This implies that x̂: YT (X) → A is a regular epimorphism.

2. For every regular epimorphism e: YT (X) → A in Alg T , we prove that
A is finitely generated. Given a filtered diagram D: D → Alg T of subobjects
with colimit cocone cd: Dd → C (d ∈ objD), since each cd is a monomor-
phism (Remark 5.20), it is sufficient to prove that every morphism f : A → C

factorizes through some cd . In fact, since YT (X) is finitely presentable, the
morphism f · e: YT (X) → C factorizes through some cd – and then we just
use the diagonal fill-in:

YT (X)
e

��

��

A

��
f

��
Cd

cd

�� C

�

5.23 Example In the category N/Set of sets with countably many constants,
the finitely generated objects are those that have, beside the constants, only
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finitely many elements, whereas the finitely presentable objects have, moreover,
the property that only finitely many pairs of distinct natural numbers label
the same constant. (Thus, e.g., the terminal object is finitely generated but
not finitely presentable.) Finally, the absolutely presentable objects are those
finitely generated objects where the constants are pairwise distinct.

Historical remarks

The lecture notes by Gabriel and Ulmer (1971) are the source of the concept
of a finitely presentable object. In Adámek and Rosický (2001), perfectly pre-
sentable objects were introduced under the name of strongly finitely presentable
objects. In algebraic categories, they coincide with objects “projectif-de-type-
fini” of Diers (1976) and with the finitely presentable effective projectives of
Pedicchio and Wood (2000).

The term perfectly presentable was suggested by Joyal (see A. Joyal 2008);
his motivation comes from perfect complexes, as explained in 6.11.
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A characterization of algebraic categories

We have already characterized algebraic categories as free completions (see
4.14). The aim of this chapter is to characterize them as those cocomplete cat-
egories that have a strong generator formed by perfectly presentable objects.
From that we derive several stability results about algebraic categories: if
A is algebraic, then all slice categories A ↓ A and all functor categories
AD are algebraic, and so are the reflective subcategories closed under sifted
colimits.

6.1 Definition

1. A set of objects G in a category A is called a generator if two morphisms
x, y: A ⇒ B are equal whenever x · g = y · g for every morphisms g: G →
A with domain G in G.

2. A generator G is called strong if a monomorphism m: A → B is an isomor-
phism whenever every morphism g: G → B with domain G in G factorizes
through m.

6.2 Remark Here is an equivalent way to express the notions of generator
and strong generator. Consider the functor

A → Set G, A 
→ 〈A(G,A)〉G∈G.

1. G is a generator iff the preceding functor is faithful.
2. G is a strong generator iff the preceding functor is faithful and conservative

(see 0.2).

The following proposition suggests that a “strong” generator should more
properly be called “extremal”; the present terminology simply has historical
roots.

54
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6.3 Proposition In a category A with coproducts, a set of objects G is

1. a generator iff every object of A is a quotient of a coproduct of objects from
G

2. a strong generator iff every object ofA is an extremal quotient of a coproduct
of objects from G.

Explicitly, G is a (strong) generator iff for every object A in A, an (extremal)
epimorphism

e:
∐
i∈I

Gi → A

exists with all Gi in G. We will see in the proof that this is equivalent to saying
that the canonical morphism

eA:
∐

(G,g)∈G↓A

G → A,

whose (G, g) component is g, is an (extremal) epimorphism.

Proof
1. If G is a generator, then the canonical morphism eA is obviously an epimor-
phism. Conversely, if e:

∐
i∈I Gi → A is an epimorphism, then given distinct

morphisms x, y: A ⇒ B, some component ei: Gi → A fulfils x · ei �= y · ei .

2. Let G be a strong generator. If eA factorizes through a monomorphism
m, then all of its components g: G → A factorize through m. Since G is
a strong generator, this implies that m is an isomorphism. Conversely, let
e:

∐
i∈I Gi → A be an extremal epimorphism, and consider a monomorphism

m: B → A. If every morphism g: G → A (with G varying in G) factorizes
through m, then e factorizes through m so that m is an isomorphism. �

6.4 Corollary If A has colimits and every object of A is a colimit of objects
from a set G, then G is a strong generator.

In fact, this follows from 0.7 and Proposition 6.3 because any regular epimor-
phism is extremal.

6.5 Example

1. Every nonempty set forms a (singleton) strong generator in Set.
2. The group of integers forms a strong generator in Ab.

3. In the category of posets and order-preserving functions, the terminal (one-
element) poset forms a generator – but this generator is not strong. In
contrast, the two-element chain is a strong generator.



56 Chapter 6

6.6 Example

1. Let C be a small category. Then Set C has a strong generator formed by all
representable functors. This follows from 0.14 and 6.4.

2. Analogously, for an algebraic theory T , the category Alg T has a strong
generator formed by all representable algebras (see 6.4 and 4.2).

6.7 Lemma Let A be a cocomplete category with a set of perfectly presentable
objects such that every object of A is a sifted colimit of objects of that set. Then
A has, up to isomorphism, only a set of perfectly presentable objects.

Proof Express an object A of A as a sifted colimit of objects from the
given set G. If A is perfectly presentable, then it is a retract of an object from
G. Clearly each retract of an object B gives rise to an idempotent morphism
e: B → B, e · e = e. Moreover, if two retracts give rise to the same idempotent,
then they are isomorphic. Since each object from A has only a set of retracts,
see 0.1, our claim is proved. �

6.8 Remark A result analogous to Lemma 6.7 holds for finitely presentable
objects and filtered colimits. The proof is the same.

6.9 Theorem: Characterization of algebraic categories The following con-
ditions on a category A are equivalent:

1. A is algebraic.
2. A is cocomplete and has a set G of perfectly presentable objects such that

every object of A is a sifted colimit of objects of G.
3. A is cocomplete and has a strong generator consisting of perfectly pre-

sentable objects.

Moreover, if the strong generator G in point 3 is closed under finite coproducts,
then the dual of G (seen as a full subcategory) is an algebraic theory of A.

Proof For the implication 1 ⇒ 2, let T be an algebraic theory. Then Alg T
is cocomplete (4.5), the representable algebras form a set of perfectly pre-
sentable objects (5.5), and every algebra is a sifted colimit of representable
algebras (4.2).

For the implication 2 ⇒ 3, consider the family App of all perfectly pre-
sentable objects of A. By Lemma 6.7, App is essentially a set. By Lemma 4.2
and Corollary 6.4, it is a strong generator.

For the implication 3 ⇒ 1, let G be a strong generator consisting of perfectly
presentable objects. Since perfectly presentable objects are closed under finite
coproducts (5.11), we can assume without loss of generality that G is closed



A characterization of algebraic categories 57

under finite coproducts (if this is not the case, we can replace G by its closure
in A under finite coproducts, which still is a strong generator). We are going to
prove that A is equivalent to Alg (Gop), where G is seen as a full subcategory
of A.

1. We prove first thatG is dense; that is, for every object K ofA, the canonical
diagram of all morphisms from G,

DK: G ↓ K → A, (g: G → K) 
→ G,

has K as colimit, with (g: G → K) as colimit cocone. To prove this, form a
colimit cocone of DK :

(cg: G → K∗) for all g: G → K in G ↓ K.

We have to prove that the unique factorizing morphism λ: K∗ → K with
λ · cg = g for all g in G ↓ K is an isomorphism. Consider the coproduct

∐
(G,g)∈G↓K

G

with coproduct injections ρg: G → ∐
(G,g)∈G↓K G. We have a commutative

triangle

∐
(G,g)∈G↓K G

v

�����
���

���
� eK

����
��

��
��

��

K∗
λ

�� K

where eK is the canonical morphism (Proposition 6.3) and v is defined by
v · ρg = cg for all (G, g) ∈ G ↓ K. Since eK is an extremal epimorphism (see
Proposition 6.3), then λ is an extremal epimorphism. It remains to be proven
that λ is a monomorphism. Consider two morphisms x, x ′: X ⇒ K∗ such that
λ · x = λ · x ′, and let us prove that x = x ′. While G is a (strong) generator,
we can assume without loss of generality that X is in G. Since G ↓ K is sifted
(in fact, it has finite coproducts because G has; see 2.16) and X is perfectly
presentable, both x and x ′ factorize through some colimit morphism; that is,
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for some (G, g) and (G′, g′) in G ↓ K , we have a commutative diagram

X

y

��

x








X

y ′

��

x ′

����
��
��
��

G
cg

��

g 






K∗

λ

��

G′
cg′

��

g′����
��
��
��

K

Since, by naturality of cg, cλ·x = cg · y = x and, analogously, cλ·x ′ = x ′, we
get x = cλ·x = cλ·x ′ = x ′.

2. It follows from point 1 that the functor

E: A → Alg (Gop), K 
→ A(−,K)

is full and faithful. Indeed, given a homomorphism α: A(−,K) → A(−, L),
for every g: G → K in G ↓ K we have a morphism αG(g): G → L. Those
morphisms form a cocone on G ↓ K so that there exists a unique morphism
α̂: K → L such that α̂ · g = αG(g) for all g in G ↓ K. It is easy to check that
Eα̂ = α and that Êf = f for all f : K → L in A. It remains to prove that E

is essentially surjective on objects.
3. Let us prove first that E preserves sifted colimits. Consider a sifted diagram

D: D → A with colimit (hd: Dd → H ). For every object G in G, a colimit of
A(G,−) · D in Set isA(G,H ) with the colimit coconeA(G,Dd) → A(G,H )
given by composition with hd (because G is formed by perfectly presentable
objects). This implies that (Ehd: E(Dd) → EH ) is a colimit of E · D in
Alg (Gop) (sifted colimits are computed objectwise in Alg (Gop); see 2.5).

4. It follows from point 3 that E is essentially surjective on objects. In fact,
we have the following diagram, commutative up to natural isomorphism:

Alg (Gop)
I ∗

�� A
E

�� Alg (Gop)

G
YGop

����������������
I

��

YGop

����������������

where I is the inclusion and I ∗ is its extension preserving sifted colimit (4.13).
Since E · I ∗ · YGop 	 YGop and E · I ∗ preserves sifted colimits, it follows from
4.13 that E · I ∗ is naturally isomorphic to the identity functor. Thus E is
essentially surjective on objects. �
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6.10 Example

1. The category Pos of posets and order-preserving maps is not algebraic:
only the discrete posets are perfectly presentable, and there exists no strong
generator formed by discrete posets.

2. In the category Bool of Boolean algebras, consider the free algebras PPn

on n generators (where PX is the algebra of all subsets of a set X). The
dual of the category formed by all PPn (n ∈ N) is an algebraic theory for
Bool. In fact, PPn are perfectly presentable and form a strong generator
closed under finite coproducts.

6.11 Example Let R be a unitary ring. We denote by Ch(R) the category of
chain complexes of left R-modules. Its objects are collections X = (Xn)n∈Z

of left R-modules equipped with a differential, that is, a collection of module
homomorphisms

d = (dn: Xn → Xn−1)n∈Z,

where dn−1 · dn = 0 for each n. Morphisms f : X → Y are chain maps, that is,
collections (fn: Xn → Yn)n∈Z of module homomorphisms such that dn · fn =
fn−1 · dn for all n.

A complex X is bounded if there are only finitely many n ∈ N with Xn �=
0. Since every complex is a filtered colimit of its truncations, each finitely
presentable complex is bounded. Perfectly presentable objects in Ch(R) are
precisely the bounded complexes of perfectly presentable left R-modules. Since
they form a strong generator of Ch(R), the category Ch(R) is algebraic.

6.12 Notation We denote by App a full subcategory of A representing all
perfectly presentable objects of A up to isomorphism.

6.13 Corollary For every algebraic categoryA, the dual ofApp is an algebraic
theory of A: we have an equivalence functor

E: A → Alg (Aop
pp), A 
→ A(−, A) .

In fact, App is a strong generator closed under finite coproducts.

6.14 Corollary Two algebraic categories A and B are equivalent iff the cate-
gories App and Bpp are equivalent.

Proof This follows immediately from Corollary 6.13 and the fact that equiv-
alence functors preserve perfectly presentable objects. �



60 Chapter 6

From 1.5 we know that the slice category Set ↓ S, equivalent to the category
Set S of S-sorted sets, is algebraic. This is a particular case of a more general
fact:

6.15 Proposition Every slice category A ↓ A of an algebraic category A is
algebraic.

Proof The category A ↓ A is cocomplete: consider a small category D and a
functor

F : D → A ↓ A, FD = (FD, fD: FD → A).

A colimit of F is given by (C, c), where (C, σD: FD → C) is a colimit of �A · F

(here �A: A ↓ A → A is the forgetful functor and c · σD = fD for every object
D in D). This immediately implies that an object (G, g) is perfectly presentable
in A ↓ A as soon as G is perfectly presentable in A. Let G now be a strong
generator of A. Then the set of objects G ↓ A = {(G, g) | G ∈ G} is a strong
generator of A ↓ A. This is so because a morphism f : (X, x) → (Z, z) in
A ↓ A is a strong epimorphism iff f : X → Z is a strong epimorphism in A.

Following Theorem 6.9, A ↓ A is algebraic. �

6.16 Lemma Let the functor I: A → B have a left adjoint R.

1. If I is faithful and conservative and G is a strong generator of B, then R(G)
is a strong generator of A.

2. If I preserves sifted colimits and X is perfectly presentable in B, then RX

is perfectly presentable in A.

Proof
1. R(G) is a generator because I is a faithful right adjoint. Next, consider a
monomorphism a: A → A′ inA such that every morphism RG → A′ with G ∈
G factorizes through a. This implies, by adjunction, that every morphism G →
IA′ factorizes through the monomorphism Ia. Since G is a strong generator,
Ia is an isomorphism, and since I is conservative, a is an isomorphism.

2. Since A(RX,−) 	 B(X, I−) = B(X,−) · I, we see that A(RX,−) is
the composite of two functors preserving sifted colimits. �

6.17 Proposition Let T be an algebraic theory. Then Alg T is a reflective
subcategory of Set T closed under sifted colimits.

Proof This is a special case of the adjunction F ∗ � R for RB = B(F−, B)
obtained in the proof of 4.10. Indeed, by the Yoneda lemma, the right adjoint
Alg T (YT −,−) is naturally isomorphic to the full inclusion Alg T → Set T .

�
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6.18 Theorem A category is algebraic iff it is equivalent to a full reflective
subcategory of Set C closed under sifted colimits for some small category C.

Proof For necessity see 6.17.
Conversely, let C be a small category. By 1.14, Set C is an algebraic category

so that it fulfills the conditions of Theorem 6.9.3. Following Lemma 6.16, those
conditions are inherited by any full reflective subcategory closed under sifted
colimits of Set C . �

6.19 Corollary For any small category D, the functor category AD of an
algebraic category A is algebraic.

Proof Following Theorem 6.18, there exist a small category C and a full
reflection

A
I

�� Set C
R

��

with the right adjoint I preserving sifted colimits. This induces another full
reflection

AD
I ·−

��
(
Set C

)DR·−
��

with I · − preserving sifted colimits because by 2.5 they are formed objectwise.
Since

(
Set C

)D 	 Set C×D, by Theorem 6.18 AD is algebraic. �

6.20 Remark Our characterization Theorem 6.9 shows a strong parallel
between algebraic categories and the following more general concept of Gabriel
and Ulmer (1971).

6.21 Definition A category is called locally finitely presentable if it is cocom-
plete and has a set G of finitely presentable objects such that every object of A
is a filtered colimit of objects of G.

6.22 Example

1. Following Theorem 6.9, all algebraic categories are locally finitely pre-
sentable.

2. If T is a small category with finite limits, then Lex T (see 4.16) is a locally
finitely presentable category. In fact, Lex T is cocomplete (4.16), the repre-
sentable functors form a set of finitely presentable objects (5.5), and every
object is a filtered colimit of representable functors (4.3).
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3. The category Pos of posets (which is not algebraic; see Example 6.10)
is locally finitely presentable: the two-element chain that forms a strong
generator is finitely presentable. Thus we can apply the following.

6.23 Theorem: Characterization of locally finitely presentable categories.
The following conditions on a category A are equivalent:

1. A is locally finitely presentable.
2. A is equivalent to Lex T for a small category T with finite limits.
3. A is cocomplete and has a strong generator formed by finitely presentable

objects.

Moreover, if the strong generator G in point 3 is closed under finite colimits,
then A is equivalent to Lex (Gop).

Proof This proof is quite analogous to that of Theorem 6.9: just change
Alg T to Lex T for T = Gop; work with finitely presentable objects instead of
perfectly presentable ones; and in the proof of 3 ⇒ 2, use the closure under
finite colimits. �

6.24 Corollary A category A is locally finitely presentable iff it is a free
completion of a small, finitely cocomplete category under filtered colimits.

In fact, this follows from 4.17 and Theorem 6.23.

6.25 Notation We denote by Afp a full subcategory of A representing all
finitely presentable objects of A up to isomorphism.

6.26 Corollary Every locally finitely presentable category A is equivalent
to Lex T for some small, finitely complete category T . In fact, we have the
equivalence functor

E: A → Lex (Aop
fp), A 
→ A(−, A) .

This follows from Theorem 6.23 applied to G = Afp.

6.27 Proposition Let T be a small, finitely complete category. Then Lex T is
a reflective subcategory of Set T closed under filtered colimits.

Proof This is a special case of the adjunction F ∗ � R for RB = B(F−, B)
obtained in the proof of 4.10. Indeed, by the Yoneda lemma, the right adjoint
Lex T (YT −,−) is naturally isomorphic to the full inclusion Lex T → Set T .

�



A characterization of algebraic categories 63

6.28 Theorem A category is locally finitely presentable iff it is equivalent to a
full reflective subcategory of Set C closed under filtered colimits for some small
category C.

6.29 Corollary Let T be a small, finitely complete category. Then Lex T is a
full reflective subcategory of Alg T closed under filtered colimits.

Proof Consider the full inclusions

Lex T
I1

��

I2 ���
��

��
��

��
Set T

Alg T
I3

����������

By Proposition 6.27, I1 has a left adjoint, say, R. Since I3 is full and faithful,
R · I3 is left adjoint to I2. Finally, I2 preserves filtered colimits because I1

preserves them by Proposition 6.27 and I3 reflects them. �

In 12.12, we will need the following fact.

6.30 Corollary Let A be an algebraic category and B a category with sifted
colimits. If in A every finitely presentable object is regular projective, then a
functor F : A → B preserving filtered colimits preserves also sifted colimits.

Proof Following Corollaries 6.13 and 6.26,

Alg (Aop
pp) 	 A 	 Lex (Aop

fp) .

If, moreover, finitely presentable objects in A are regular projective, then
App = Afp (5.16). The result now follows from the universal properties stated
in 4.13 and 4.17. �

6.31 Example Set (and more generally Set S) and the category of vector
spaces over a field are examples of algebraic categories where every (finitely
presentable) object is regular projective. More generally, in the category of left
modules over a semisimple ring, every object is regular projective.

Let us finish this chapter by quoting from Bunge (1966) another characteriza-
tion theorem similar to Theorem 6.9. Recall that SetC is the free completion of
Cop under colimits (4.10); recall also the concept of the absolutely presentable
object of 5.8.
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6.32 Theorem A category is equivalent to a functor category Set C for some
small category C iff it is cocomplete and has a strong generator consisting of
absolutely presentable objects.

Historical remarks

The concept of the locally finitely presentable category, due to Gabriel and
Ulmer (1971), was an attempt toward a categorical approach to categories of
finitary structures generalizing Lawvere’s algebraic theories. This is the source
of Theorem 6.23. See Adámek and Rosický (1994) and Makkai and Paré
(1989) for more recent monographs on locally presentable categories and their
generalizations. In Adámek and Rosický (2001), the analogy between locally
finitely presentable categories and algebraic categories was made explicit.

A characterization of categories of algebras for one-sorted algebraic theories
is contained in the thesis of Lawvere (1963). The characterization Theorem 6.9
is taken from Adámek and Rosický (2001), but the equivalence of points 1 and
3 was already proved by Diers (1976). A first characterization of categories
of Set-valued functors is in the thesis of Bunge (1966) (the first proof was
published by Linton, 1969b). There is a general result covering Theorems 6.9,
6.23, and 6.32, see Centazzo et al. (2004).
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From filtered to sifted

The aim of this chapter is to demonstrate that the “equation”

sifted colimits = filtered colimits + reflexive coequalizers

is almost valid – but not quite. What we have in mind are three facts:

1. A category C has sifted colimits iff it has filtered colimits and reflexive
coequalizers. This holds whenever C has finite coproducts – and in general,
it is false.

2. A functor preserves sifted colimits iff it preserves filtered colimits and
reflexive coequalizers. This holds whenever the domain category is finitely
cocomplete – and in general, it is false.

3. The free completion Sind C of a small category C under sifted colimits is
obtained from the free completion Rec C under reflexive coequalizers by
completing it under filtered colimits:

Sind C = Ind (Rec C).

This holds whenever C has finite coproducts – and in general, it is false.

We begin by describing Rec C in a manner analogous to the description of
Sind C and Ind C (see 4.13 and 4.17). A quite different approach to Rec C is
treated in Chapter 17.

As a special case of Definition 4.9, we get the following.

7.1 Definition By a free completion of a category C under reflexive coequal-
izers is meant a functor ERec : C → Rec C such that

1. Rec C is a category with coequalizers of reflexive pairs

65
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2. for every functor F : C → B, where B is a category with reflexive coequal-
izers, there exists an essentially unique functor F ∗: Rec C → B preserving
reflexive coequalizers with F naturally isomorphic to F ∗ · ERec.

Recall that for a category A, we denote by Afp the full subcategory of finitely
presentable objects.

7.2 Lemma Let T be an algebraic theory. The inclusion I: (Alg T )fp → SetT

preserves reflexive coequalizers.

Proof This follows from the fact that (Alg T )fp is closed in Alg T under finite
colimits (5.11) and that Alg T is closed in SetT under sifted colimits (2.5); see
also 3.2. �

7.3 Theorem For every algebraic theory T , the restricted Yoneda embedding

YT : T op → (Alg T )fp

is a free completion of T op under reflexive coequalizers. In other words,

(Alg T )fp = Rec (T op).

Proof Recall from 3.2 the category M

P

f1
��

f2

�� Qd�� modulo f1 · d = idQ = f2 · d.

We will prove that given a finitely presentable algebra A: T → Set, there exists
a final functor (see Definition 2.12)

M: M → El A.

The rest of the proof is analogous to the proof of Theorem 4.10: given a functor
F : T op → B where B has reflexive coequalizers, we prove that there exists an
essentially unique functor

F ∗: (Alg T )fp → B

preserving reflexive coequalizers and such that F 	 F ∗ · YT . In fact, using
the notation of 0.14 for the final functor M above, we see that the reflexive
coequalizer of F · �A · M(fi) (i = 1, 2) in B is just the colimit of F · �A; thus
the latter colimit exists, and we are forced to define

F ∗A = colim
El A

(F · �A)
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on objects. This extends uniquely to morphisms (as in the proof of 4.10) and
yields a functor F ∗: (Alg T )fp → B. Since the inclusion I: (Alg T )fp → SetT

preserves reflexive coequalizers (Lemma 7.2), we have for RB = B(F−, B) a
bijection

B(F ∗A,B) 	 Set T (IA,RB)

natural in A and B, from which one deduces that F ∗ preserves reflexive
coequalizers.

To prove the existence of the final functor M, recall from 5.17 that there
exists a reflexive pair

P

f1
��

f2

�� Qd��

in T such that A is a coequalizer of YT (fi):

YT (P )
YT (f1)

��

YT (f2)

�� YT (Q)
c

�� A.

Put c = c · YT (fi) and define objects of El A as follows:

MP = (P , cP (idP )) MQ = (Q, cQ(idQ)).

Since clearly fi: MP → MQ and d: MQ → MP are morphisms of El A,

we obtain a functor M = (−): M → El A. Let us prove its finality, applying
2.13.3:

1. Every object (X, x) of El A has a morphism into MQ. In fact,

cX: T (Q,X) → AX

is an epimorphism; thus for x ∈ AX there exists f : Q → X with cX(f ) =
x, which implies that f : (X, x) → MQ is a morphism of El A.

2. Given two morphisms of El A from (X, x) to MP or MQ, they are con-
nected by a zigzag in the slice category (X, x) ↓ M. In fact, we can restrict
ourselves to the codomain MQ: the general case is then solved by compos-
ing morphisms with codomain MP by Mf1.

Given morphisms

h, k: (X, x) → MQ,
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we have

A(h) · cQ(idQ) = x = A(k) · cQ(idQ),

which, because of the naturality of c, yields

cX(h) = cX(k).

Now use the description of coequalizers in Set (see 0.6): since cX is the
coequalizer of YT (f1) and YT (f2), there is a zigzag of this pair connecting
h and k. For example, a zigzag of length 2 is:

v

YT (f1)

����
��
��
� YT (f2)

���
��

��
��

�

h k

for some v: P → X. This means h = v · f1 and k = v · f2 and yields the
following zigzag in (X, x) ↓ M:

(X, x)
h

����
��
��
��

v

��

k

���
��

��
��

�

MQ MP
Mf1

��
Mf2

�� MQ

and analogously for longer zigzags. �

7.4 Corollary For a small category C with finite coproducts, we have

Sind C = Ind (Rec C).

More precisely, the composition

C
ERec

�� Rec C
EInd

�� Ind (Rec C)

is a free completion of C under sifted colimits.

In fact, for T = Cop, the preceding theorem yields Rec C = (Alg T )fp, from
which 6.26 and 4.17 prove Ind (Rec C) = Alg T . Now apply 4.13.

7.5 Remark In the proof of Theorem 7.3, if B has finite colimits and F

preserves finite coproducts, then the extension F ∗ preserves finite colimits.
This follows from the fact that B(F−, B) lies now in Alg T and that (Alg T )fp

is closed in Alg T under finite colimits (5.11) so that we have a bijection

B(F ∗A,B) 	 Alg T (A,B(F−, B))

natural in A ∈ (Alg T )fp and B ∈ B.
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7.6 Remark In the introduction to this chapter, we claimed that a functor
defined on a finitely cocomplete category preserves sifted colimits iff it pre-
serves filtered colimits and reflexive coequalizers. The proof of this result can
be found in Adámek et al. (2010); here we present a (simpler) proof based on
Corollary 7.4 that requires cocompleteness of both categories (in fact, sifted
colimits are enough as far as the codomain category is concerned).

7.7 Theorem A functor between cocomplete categories preserves sifted col-
imits iff it preserves filtered colimits and reflexive coequalizers.

Proof Necessity is clear. To prove sufficiency, let F : E → A preserve filtered
colimits and reflexive coequalizers, where E and A are cocomplete. For every
sifted diagram D: D → E , choose a small full subcategory U: C ↪→ E con-
taining the image of D and closed in E under finite coproducts. Consider the
following diagram:

Sind C

U∗

���
��

��
��

��
��

��
��

��
��

��
��

��
�

(F ·U )∗
�� A

Rec C

EInd

��

U ′

����
���

���
���

���

C

ESind

������������������������� ERec

�����������

U

�� E

F

��

where U ∗ and (F · U )∗ are the extensions of U and F · U, respectively, preserv-
ing sifted colimits, and U ′ is the extension of U preserving reflexive coequal-
izers. Since by Corollary 7.4 we have ESind = EInd · ERec , it follows that

(F · U )∗ · EInd · ERec 	 (F · U )∗ · ESind 	 F · U 	 F · U ′ · ERec .

The functor EInd preserves reflexive coequalizers by 4.16 and 4.17, and so do
the functors F,U ′ and (F · U )∗. Thus the universal property of ERec yields

(F · U )∗ · EInd 	 F · U ′.

Since

U ∗ · EInd · ERec 	 U ∗ · ESind 	 U 	 U ′ · ERec
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and, once again, the functors U ∗, EInd , and U ′ preserve reflexive coequalizers,
we have

U ∗ · EInd 	 U ′.

Finally, since

F · U ∗ · EInd 	 F · U ′ 	 (F · U )∗ · EInd

and the functors F, U ∗ and (F · U )∗ preserve filtered colimits, we have

F · U ∗ 	 (F · U )∗. (7.1)

We are ready to prove F (colim D) 	 colim (F · D). Let

D′: D → C with D = U · D′

be the codomain restriction of D. Then

F · D = F · U · D′ 	 (F · U )∗ · ESind · D′

implies, since (F · U )∗ preserves the sifted colimit of ESind · D′, that

colim (F · D) 	 (F · U∗)(colim (ESind · D′)).

From (7.1) above and the fact that U ∗ also preserves the sifted colimit of
ESind · D′, we derive

colim (F · D) 	 F (colim (U∗ · ESind · D′)) 	 F (colim D).

�

7.8 Remark We thus established proofs of the affirmative statements 2 and 3 of
the introduction of this chapter. The statement 1 is easy: if C has filtered colimits,
reflexive coequalizers, and finite coproducts, then it has all colimits (4.1). With
the following examples, we demonstrate the negative parts of statements 1–3.

7.9 Example Here we give an example of a category not having sifted colimits,
although it has (1) filtered colimits and (2) reflexive coequalizers. We start with
the following category D given by the gluing of two reflexive pairs at their
codomains; that is, D is given by the graph

A

a1
��

a2

�� Bd�� d ′ �� A′

a′
2

��

a′
1

��

and the equations making both parallel pairs reflexive:

ai · d = idB = a′
i · d ′ for i = 1, 2.
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The proof that D is sifted is completely analogous to the proof of 3.2: we verify
that colimits over D in Set commute with finite products. Assume that the
preceding graph depicts sets A,B and A′ and functions between them. Then a
colimit can be described as the canonical function c: B → C = B/ ∼, where
two elements x, y ∈ B are equivalent iff they are connected by a zigzag formed
by a1, a2, a

′
1, and a′

2. Since the two pairs are reflexive, the length of the zigzag
can be arbitrarily prolonged, and the type can be chosen to be

z1
a1

����
��

a2

		�
��

��
z2

a2

����
��
� a1

		�
��

��
z3

a′
1

����
��
� a′

2

		�
��

��
z4

a′
2

����
��
� a′

1

		�
��

��
......

z4k
a′

1






x y

(here, for the elements z4i+1, we use a1, a2; for z4i+2, we use a2, a1; for z4i+3,
we use a′

1, a
′
2; and for z4i , we use a′

2, a
′
1). From that it is easy to derive that D

is sifted.
We now add to D the coequalizers c1 of a1, a2 and c′ of a′

1, a
′
2: let E be the

category given by the graph

A

a1
��

a2

�� Bd��

c′����
��
��
�

c ���
��

��
��

d ′ �� A′

a′
2

��

a′
1

��

C ′ C

with the previous equations plus the following ones:

c · a1 = c · a2 and c′ · a′
1 = c′ · a′

2.

The sifted diagram D → E , which is the inclusion, does not have a colimit.
However, E has reflexive coequalizers because its only nontrivial reflexive pairs
are a1, a2 (with coequalizer c) and a′

1, a
′
2 (with coequalizer c′). Moreover, E

has filtered colimits: since the category E is clearly finite, it does not have any
nontrivial filtered diagram, except those obtained by iterating an idempotent
endomorphism e (see 2.3). Thus it is sufficient to verify that E has coequalizers
of all pairs e, idX, where e is an idempotent endomorhism of X. In fact, the
only idempotents of E are d · ai and d ′ · a′

i . The coequalizer of d · a1 and
idA is clearly a1 (because a morphism f with f = f · d · a1 fulfills f �= a2

and then uniquely factorizes through a1), and analogously for the other three
idempotents. Thus the preceding coequalizers demonstrate that E has filtered
colimits.
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7.10 Remark For the category D of Example 7.9, we have

SindD �= Ind (RecD).

Observe first that

RecD = E

is obtained from D by freely adding the coequalizers c and c′. The category
Ind E does not have a terminal object. In fact, the full subcategory of all objects
X in Ind E having a morphism from at most one of the objects C or C ′ into X

is clearly closed under filtered colimits – thus every object X has that property.
In contrast, SindD has the terminal object colimD.

7.11 Example Here we give an example of a functor not preserving sifted col-
imits, although it preserves (1) filtered colimits and (2) reflexive coequalizers.
Let ET be the category E above with a terminal object T added. The sifted
diagram D: D → ET , which is the inclusion, has colimit

T = colim D

in ET . Let A be the category ET with a new terminal object S added. The
functor

F : ET → A with FT = S and FX = X for all X �= T ,

which is the identity map on morphisms of E , does not preserve sifted colimits
because

F (colim D) = S and colim F · D = T .

However, F clearly preserves filtered colimits and reflexive coequalizers: the
only nontrivial colimits of these types in ET lie in E and are described in
Example 7.9. The same description applies to A.

7.12 Example Since N is a theory of Set (see 1.4), we have

Set = Ind RecN .

Let us observe that in the opposite direction, we do not obtain an equality: the
canonical morphism from Rec IndN to Set is not an equivalence. In fact, it is
easy to see that IndN can be represented as Set. And the free completion Rec Set
of Set under reflexive coequalizers is not an equivalence. To demonstrate this,
it is sufficient to present an arbitrary functor with domain Set that does not
preserve reflexive coequalizers.
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One such example is Set (N,−). In fact, consider the parallel pair

N + N

u
��

v

�� N

having the left-hand components idN and the right-hand ones idN and s, the
successor function, respectively. Because of the left-hand components, this is
a reflexive pair; because of the right-hand components, their coequalizer has
then terminal codomain 1. However, the coequalizer of uN, vN does not merge
the elements (0, 0, 0, . . .) and (0, 1, 2, . . .) of NN; therefore its codomain is not
1N 	 1.

Historical remarks

The open problem of Adámek and Rosický (2001), whether preservation of
filtered colimits and reflexive coequalizers implies preservation of sifted col-
imits, was answered by Joyal; his proof even works for quasicategories (see
Joyal 2008). Another proof was given by Lack (see Lack and Rosický, 2010).
The present proof is taken from Adámek et al. (2010), where also the stronger
statements stated at the beginning of this chapter are proved. The formula in
Corollary 7.4 stems from Adámek and Rosický (2001).
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Canonical theories

Every algebraic category has a number of algebraic theories that are often
nonequivalent; we will study this in more detail in Chapter 15. In the present
chapter, we prove that there is always an essentially unique algebraic theory
with split idempotents. We call it a canonical theory. This is the idempotent com-
pletion (also known as Cauchy completion) of any algebraic theory of the given
category. We first discuss splitting of idempotents and idempotent completions.

8.1 Definition

1. Given an idempotent morphism

f : X → X, f · f = f

in a category C, by a splitting of f is meant a factorization f = m · e such
that e · m is the identity morphism:

X
f

��

e ���
��

��
��

X

Z

m

���������

Z
idZ

��

m ���
��

��
��

Z

X

e

���������

2. A category C is called idempotent complete provided that every idempotent
in C has a splitting.

8.2 Remark

1. A splitting of an idempotent f is unique up to isomorphism:
a. For every isomorphism i: Z → Z̄, the morphisms ē = i · e and m̄ =

m · i−1 form a splitting of f .

74
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b. For every splitting f = m̄ · ē, ē · m̄ = id, there exists a unique iso-
morphism i such that i · e = ē and m · i−1 = m̄ (just put i = ē · m and
i−1 = e · m̄).

2. To be idempotent complete is a self-dual notion: C is idempotent complete
iff Cop is so.

8.3 Example

1. Every category that has equalizers is idempotent complete. In fact, consider
an equalizer m of the idempotent f : X → X and id: X → X:

Z
m

�� X
id

��
f

��
X.

Since f · f = id ·f, the morphism f factorizes as f = m · e for some
e: X → Z. Now m · e · m = f · m = m, and m is a monomorphism
so that e · m = id. Conversely, if an idempotent f : X → X splits as
f = m · e, then m is an equalizer of f and idX.

2. Every category with coequalizers is also idempotent complete. Conversely,
if an idempotent f : X → X splits as f = m · e, then e is a coequalizer of
f and idX. This is the dualization of 1.

3. A full subcategory of an idempotent-complete category C is idempotent-
complete iff it is closed in C under retracts.

8.4 Definition By an idempotent completion of a category C is meant a functor

EIc : C → Ic C

such that

1. Ic C is idempotent complete
2. for every functor F : C → B, where B is an idempotent-complete category,

there exists an essentially unique functor F ∗: Ic C → B, with F naturally
isomorphic to F ∗ · EIc .

8.5 Remark

1. A category C is idempotent complete iff the functor EIc : C → Ic C is an
equivalence.

2. Clearly Ic (Cop) 	 (Ic C)op.

We give now an elementary description of Ic C.

8.6 Definition For every category C, we denote by Ic C the category of
idempotents: its objects are the idempotent morphisms of C. Its morphisms
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from f : X → X to g: Z → Z are the morphisms a: X → Z in C such that
a = g · a · f or, equivalently, such that the diagram

X
a

��

a

���
��

��
��

f

��

Z

g

��
X

a

�� Z

commutes. The identity of the object f : X → X is f itself, and composition is
as in C. We have a full and faithful functor EIc : C → Ic C defined by EIc (X) =
idX and EIc (a) = a.

8.7 Proposition The functor EIc : C → Ic C defined in 8.6 is an idempotent
completion of C.

Proof
1. Ic C is idempotent complete: let a be an idempotent endomorphism of (f :
X → X) in Ic C. A splitting of a is given by

(f : X → X)
a

�� (a: X → X)
a

�� (f : X → X).

2. Consider a functor F : C → B with B idempotent complete. Every object (f :
X → X) of Ic C is obtained by splitting the idempotent f : EIc (X) → EIc (X).
Thus we are forced to define F ∗ on objects f : X → X as the (essentially
unique) splitting of Ff : FX → FX in B.

To define F ∗ on morphisms a: (f : X → X) → (g: Z → Z) in Ic C, observe
that a is the unique morphism making the diagram

EIc (X)
EIc (f )

��

EIc (a)

��

f

���
��

��
��

�
EIc (X)

EIc (a)

��

(f )

a

��

f
����������

(g)
g

���
��

��
��

��

EIc (Z)

g
�����������

EIc (g)

�� EIc (Z)
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commutative in Ic C. Thus we are forced to define F ∗(a) as the unique morphism
making the diagram

FX
Ff

��

Fa

��

F ∗f

���
��

��
��

�
FX

Fa

��

F ∗(f )

F ∗a
��

F ∗f
����������

F ∗(g)
F ∗g

���
��

��
��

�

FZ

F ∗g ����������

Fg

�� FZ

commutative in B. Explicitly;

F ∗a : F ∗(f )
F ∗f

�� FX
Fa

�� FZ
F ∗g

�� F ∗(g).

It is easy to verify that this yields a well-defined functor F ∗ with F ∗ · I 	 F.

�

8.8 Proposition For every small category C, an idempotent completion of Cop

is the codomain restriction of the Yoneda embedding YC: Cop → SetC to the full
subcategory of all absolutely presentable objects of SetC .

Proof Recall from 5.10 that a functor C → Set is absolutely presentable iff it
is a retract of a representable functor. To prove that the full subcategory of all
absolutely presentable objects of SetC is equivalent to the category Ic (Cop) of
Definition 8.6, consider two retracts,

R
m

�� YC(X),
e

��
e · m = idR and S

n

�� YC(Z),
f

��
f · n = idS,

and a morphism g: R → S in SetC . By the Yoneda lemma, we get two idempo-
tents ê = m · e(idX) and f̂ = n · f (idZ) in C and a morphism ĝ = n · g · e(idX)
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forming a commutative diagram

Z

f̂

��

ĝ
��

ĝ

����
���

���
���

���
X

ê

��
Z

ĝ

�� X

This is a morphism in the category Ic (Cop). The rest of the proof is straightfor-
ward. �

8.9 Corollary For every algebraic theory T , the Yoneda embedding

YT : T op → (Alg T )pp

is an idempotent completion of T op. In other words, (Alg T )pp 	 Ic (T op).

In fact, by 5.10 and Proposition 8.8, Ic (T op) is formed by retracts of
representables in SetT , that is, by perfectly presentable objects in Alg T
(see 5.14).

8.10 Corollary For two small categories C and D, the corresponding functor
categories Set C and Set D are equivalent iff C andD have a common idempotent
completion:

Set C 	 Set D iff Ic C 	 IcD.

Proof The universal property of EIc : C → Ic C clearly implies Set C 	
Set IcC . Conversely, if Set C 	 Set D, then the subcategories of absolutely pre-
sentable objects are equivalent. By 5.10 and 8.8, this means that Ic (Cop) 	
Ic (Dop). Now use duality, or Remark 8.5.2. �

8.11 Definition Let A be an algebraic category. An algebraic theory for A is
called canonical if it is idempotent complete.

8.12 Proposition Every algebraic category A has a canonical theory unique
up to equivalence. The dual of App (see 6.12) is a canonical theory for A.

Proof Following 6.13, A 	 Alg (Aop
pp). By 5.14 and 8.3, App is idempotent-

complete, and then Aop
pp is also idempotent complete (see Remark 8.2). Let

us verify the uniqueness. If A 	 Alg T for some algebraic theory T , then
App 	 (Alg T )pp 	 Ic (T op) by 6.14 and Corollary 8.9. Finally, Aop

pp 	 Ic T
by Remark 8.5. �
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8.13 Example

1. The canonical theory of the category Set is the theory N of natural numbers
(see 1.4): it is clear that N is idempotent complete.

2. The canonical theory of the category Ab is the theory Tab described in 1.20.
In fact, we saw in 5.6 that Tab is dual to Abpp.

3. In the category Bool of boolean algebras, we have the algebras PX of
all subsets of a set X. The free algebras on n generators PPn form,
for n ∈ N, a strong generator. As noted in 6.10, the dual of this full subcate-
gory of Bool is a theory for Bool. However, this is not the canonical theory.
In fact, the canonical theory is the dual of the full subcategory of all algebras
Pn for n ∈ N \ {0}, or equivalently, the category of finite nonempty sets
and functions. Since each n > 0 is injective in the category of finite sets, it
is a retract of 2n. Thus Pn is a retract of PPn.

Historical remarks

The idempotent completion can already be found in Mitchell’s (1965) mono-
graph. Bunge (1966) presented it as well and used it for proving Corollary 8.10.
She called it idempotent splitting closure; other names were used as well, for
example, Cauchy completion or Karoubi envelope. Corollary 8.10 was later
proved by Elkins and Zilber (1976). Proposition 8.12 is from Dukarm (1988).
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Algebraic functors

We have studied algebraic categories as individual categories so far. It turns
out that there is a natural concept of morphism between algebraic categories,
which we call an algebraic functor, so that we obtain a 2-category of algebraic
categories. We then prove a duality result: this 2-category is biequivalent to the
2-category of canonical algebraic theories. We first need to introduce a concept
of morphism between algebraic theories – this is quite obvious:

9.1 Definition Let T1 and T2 be algebraic theories. A functor M: T1 → T2 is
called a morphism of algebraic theories if it preserves finite products.

9.2 Notation For a morphism of theories M: T1 → T2, we denote by

Alg M: Alg T2 → Alg T1

the functor defined on objects A: T2 → Set by A 
→ A · M.

9.3 Proposition Let M: T1 → T2 be a morphism of algebraic theories.

1. Alg M: Alg T2 → Alg T1 preserves limits and sifted colimits.
2. Alg M has a left adjoint M∗: Alg T1 → Alg T2, which is the essentially

unique functor that preserves sifted colimits and makes the square

T op
1

YT1
��

Mop

��

Alg T1

M∗

��
T op

2
YT2

�� Alg T2

commutative up to natural isomorphism.
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Proof The essentially unique functor M∗ follows from Theorem 4.13. Since
YT2 · Mop preserves finite coproducts (see Lemma 1.13), to get the adjunction
M∗ � Alg M , it suffices to apply 4.15: the right adjoint Alg M is given by

B 
→ Alg T2(YT2 (M−), B).

By the Yoneda lemma, this is nothing but composition with M. This immedi-
ately implies that Alg M preserves sifted colimits because they are calculated
objectwise in Alg T1 and Alg T2 (see 2.5). �

9.4 Definition A functor between two algebraic categories is called algebraic
provided that it preserves limits and sifted colimits.

9.5 Example

1. Every functor Alg M, for a theory morphism M, is algebraic.
2. The forgetful functor Ab → Set is algebraic.
3. Given an algebra A in an algebraic category A, the hom-functor A(A,−):

A → Set is algebraic iff A is perfectly presentable.
4. A constant functor with value A between algebraic categories is algebraic

iff A is a terminal object.
5. For every algebraic theory T , the embedding I: Alg T → Set T is an alge-

braic functor (see 1.21 and 2.5).

9.6 Remark We know from Proposition 9.3 that every morphism of theories
induces an algebraic functor between the corresponding algebraic categories. If,
moreover, the algebraic theories are canonical (8.11), then the algebraic functors
are essentially just those induced by morphisms of theories (see Theorem 9.15).
This will motivate us to define “morphisms of algebraic categories” as the
algebraic functors. We are now going to prove that every algebraic functor has
a left adjoint. For this we will use Freyd’s adjoint functor theorem (see 0.8).

9.7 Theorem A functor between algebraic categories is algebraic iff it has a
left adjoint and preserves sifted colimits.

Proof Let G: B → A be an algebraic functor. We are to prove that G has a
left adjoint; that is, for every object A of A, we are to prove that the functor

A(A,G−): B → Set

is representable.
1. Assume first that A is perfectly presentable. Since G preserves limits, it

remains to be proven that A(A,G−) satisfies the solution set condition of 0.8.
Every object B of B is a sifted colimit of objects from Bpp (see 6.9). Let us

write (σX: X → B) for the colimit cocone. Since G preserves sifted colimits,
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(GσX: GX → GB) is also a colimit cocone. As A(A,−) preserves sifted
colimits, every morphism b: A → GB factorizes as follows:

GX

GσX

��
A

x
����������

b

�� GB

2. If A is an arbitrary object of A, we express it as a sifted colimit of perfectly
presentable objects (see 6.9), say, A = colim Ai. From point 1 we know that
A(Ai,G−) is representable, say, A(Ai,G−) 	 B(Bi,−). The Yoneda lemma
now allows us to define an (obvious) sifted diagram whose objects are the Bi.

Therefore A(A,G−) is representable by colim Bi since

A(A,G−) = A(colim Ai,G−) 	 limA(Ai,G−)

	 limB(Bi,−) 	 B(colim Bi,−).

�

9.8 Remark The previous theorem can be refined, as we demonstrate in
Chapter 18: a functor between algebraic categories is algebraic iff it preserves
limits, filtered colimits, and regular epimorphisms. One implication follows
from the fact that (1) filtered implies sifted and (2) every regular epimorphism
is a reflexive coequalizer (of its kernel pair). The converse implication is a
particular case of 18.2.

9.9 Remark We are going to prove a duality between algebraic categories
and canonical algebraic theories. This does not really mean a contravariant
equivalence of categories. Indeed, a more subtle formulation is needed: just
look at the simplest algebraic category, Set, and the simplest endomorphism,
the identity functor IdSet . It is easy to find a proper class of functors naturally
isomorphic to IdSet – and each of them is algebraic. However, in the category of
all theories, no such phenomenon occurs. We thus need to work with morphisms
of algebraic categories “up to natural isomorphism.” For this reason, we have to
move from categories to 2-categories. The reader does not need to know much
about 2-categories. Here we summerize the needed facts.

9.10 A primer on 2-categories

1. Let us recall that a 2-category A has a class obj A of objects, and instead
of hom-sets A(A,B), it has hom-categories A(A,B) for every pair A,B

of objects. The objects of A(A,B) are called 1-cells and the morphisms
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2-cells. Composition is represented by functors

cA,B,C: A(A,B) × A(B,C) → A(A,C),

which are associative in the expected sense: the two canonical functors

cA,B,D · (A(A,B) × cB,C,D) and cA,C,D · (cA,B,C × A(C,D))

from A(A,B) × A(B,C) × A(C,D) into A(A,D) are required to be equal.
The identity morphisms are represented by functors

iA: I → A(A,A)

(where I is the 1-morphism category) which fulfill the usual requirements:
both the composites

cA,A,B · (iA × A(A,B)): I × A(A,B) → A(A,B)

cA,B,B · (A(A,B) × iB): A(A,B) × I → A(A,B)

are the canonical isomorphisms.
2. A prototype of a 2-category is the 2-category Cat of all small categories (as

objects). Given small categories A,B, then 1-cells are functors from A to
B and 2-cells are natural transformations. In our book, we essentially work
just with this 2-category and its sub-2-categories (see point 4).

3. Let us recall the concept of a 2-functor F : A → B between 2-categories A

and B: it assigns objects FA of B to objects A of A; for every pair A,A′ of
objects of A, it defines a functor

FA,A′: A(A,A′) → B(FA,FA′).

Preservation of composition is expressed by the requirement that the two
canonical functors

FA,C · cA,B,C and cFA,FB,FC · (FA,B × FB,C)

from A(A,B) × A(B,C) into B(FA,FC) are equal. Preservation of iden-
tity morphisms is expressed by

FA,A · iA = iFA: I → B(FA,FA).

4. A sub-2-category A of a 2-category B is given by a choice of a class of
objects obj A ⊆ obj B and, for every pair A,A′ ∈ obj A, of a subcategory
A(A,A′) ⊆ B(A,A′) such that composition and identity functors of B can
be restricted to A. The inclusion I: A → B is a 2-functor. The sub-2-
category is full if A(A,A′) = B(A,A′).
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5. Two objects A,B of a 2-category A are called equivalent if there exist
1-cells f : A → B and f : B → A such that f · f is isomorphic to idA in
A(A,A) and f · f is isomorphic to idB in A(B,B).

6. A 2-functor F : A → B is called a biequivalence if all the functors FA,A′ are
equivalence functors, and every object of B is equivalent to FA for some
object A of A.

7. In contrast with equivalences of categories (see 0.2 and 0.3), if F : A →
B is a biequivalence, then the quasi-inverses F ′: B → A are no longer 2-
functors but just homomorphisms of 2-categories as defined by Bénabou
(1967). This means that the canonical requirements about compositions and
identities are fulfilled by F ′ only up to invertible 2-cells.

8. For every 2-category A, we denote by Aop the dual 2-category: it has the
same objects, and the direction of 1-cells is reversed (while the direction of
2-cells remains nonreversed): Aop(A,A′) = A(A′, A).

9.11 Definition

1. The 2-category Th of theories has
objects: algebraic theories
1-cells: morphisms of algebraic theories
2-cells: natural transformations

This is a sub-2-category of Cat; that is, the composition of 1-cells and
2-cells are defined in Th as the usual composition of functors and natural
transformations, respectively.

2. The 2-category Th c of canonical theories is the full sub-2-category of Th
on all theories that are canonical, that is, idempotent complete.

3. The 2-category ALG of algebraic categories has
objects: algebraic categories
1-cells: algebraic functors
2-cells: natural transformations

Once again, composition is the usual composition of functors or natural
transformations.

9.12 Remark We need to be a little careful about foundations here: there is,
as remarked earlier, a proper class of 1-cells in ALG (Set, Set), for example.
However, if we consider the 1-cells up to natural isomorphism, all problems
disappear: this is one consequence of the duality theorem 9.15. Ignoring the
foundational considerations, we consider ALG as a sub-2-category of the 2-
category of all categories. (The duality we prove subsequently tells us that ALG
is essentially just the dual of Th c.)
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9.13 Definition We denote by

Alg : Th op → ALG

the 2-functor assigning to every algebraic theory T the category Alg T , to
every 1-cell M: T1 → T2 the functor Alg M = (−) · M , and to every 2-cell α:
M → N the natural transformation Alg α: Alg M → Alg N whose component
at a T2-algebra A is A · α: A · M → A · N.

9.14 Remark The 2-functor Alg is well defined because of 9.3: for every
morphism of theories M, the functor Alg M is algebraic. The fact that for
every natural transformation α we get a natural transformation Alg α is easy to
verify.

9.15 Theorem: Duality of algebraic categories and theories The 2-category
ALG of algebraic categories is biequivalent to the dual of the 2-category Th c

of canonical algebraic theories.

In fact, the domain restriction of the 2-functor Alg to canonical algebraic
theories

Alg : Th op
c → ALG

is a biequivalence.

Proof
1. Following 8.12, every algebraic category A is equivalent to Alg T for the
canonical algebraic theory T = Aop

pp.

2. We will prove that for two canonical algebraic theories T1 and T2, the
functor

Alg T1,T2: Th c(T1, T2) → ALG (Alg T2, Alg T1)

is an equivalence of categories, see 0.3.
2a. Alg T1,T2 is full and faithful: given morphisms M,N: T1 ⇒ T2 and a

natural transformation λ: Alg M → Alg N , there exists a unique natural trans-
formation α: M → N such that Alg α = λ. The proof follows the lines of
the proof of the Yoneda lemma. Let us indicate how to construct α. Con-
sider an object X in T1. Since T2(MX,−) ∈ Alg T2, we have the component
λT2(MX,−)(X): T2(MX,MX) → T2(MX,NX), and we put

αX = λT2(MX,−)(X)(idMX): MX → NX.

The family (αX)X∈T1 is the required natural transformation α: M → N.
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2b. The functor Alg T1,T2 is essentially surjective. In fact, consider an alge-
braic functor G: Alg T2 → Alg T1, and let L be its left adjoint (see Theorem
9.7). We are going to prove that L can be restricted to a functor F that preserves
finite coproducts and makes the square

T op
1

YT1
��

F

��

Alg T1

L

��
T op

2
YT2

�� Alg T2

commutative up to natural isomorphism. For every object X in T1, we have by
adjunction a natural isomorphism

Alg T2(L(YT1 (X)),−) 	 Alg T1(YT1 (X),G−).

Since YT1 (X) is perfectly presentable (see 5.5) and G preserves sifted colimits,
the natural isomorphism above implies that L(YT1 (X)) is perfectly presentable.
By 5.14, L(YT1 (X)) is a retract of a representable algebra, and since T2 is
idempotent complete, L(YT1 (X)) is itself a representable algebra (see 8.3.3).
This means that there exists an essentially unique object FX in T2 such that
L(YT1 (X)) 	 YT2 (FX). In this way, we get a map on objects, F : obj T1 →
obj T2, that, by the Yoneda lemma, extends to a functor F : T op

1 → T op
2 , making

the preceding square commutative up to natural isomorphism. F preserves finite
coproducts because YT1 preserves them by 1.13, YT2 reflects finite coproducts,
and L preserves them. It remains to be proven that G 	 Alg M, where M =
F op: T1 → T2, or equivalently, that L 	 M∗ in the notation of Proposition
9.3. But this follows from the essential commutativity of the preceding square
and the last part of Proposition 9.3. This proves that Alg T1,T2 is essentially
surjective. �

9.16 Corollary A functor between algebraic categories

G: A2 → A1

is algebraic iff it is induced by a morphism of theories; that is, there exists a
morphism of the corresponding canonical algebraic theories M: T1 → T2 and
two equivalence functors E1: Alg T1 → A1 and E2: Alg T2 → A2 such that
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the square

Alg T2

E2

��

Alg M
�� Alg T1

E1

��
A2

G

�� A1

commutes up to natural isomorphism.

In fact, given G, the proof of Theorem 9.15 yields G 	 Alg M , with the
desired property. The converse implication is clear.

9.17 Remark The category Set is a kind of dualizing object for the biequiva-
lence Alg : Th op

c → ALG :
1. Forgetting size considerations (an algebraic theory is by definition a small

category), we have Alg T = Th (T , Set) for every algebraic theory T .

2. For every algebraic category A, there is an equivalence of categories

Aop
pp 	 ALG (A, Set).

Indeed, if A ∈ Aop
pp, then G = A(A,−): A → Set preserves limits and sifted

colimits. Conversely, let G: A → Set be an algebraic functor and let L be a
left adjoint of G (see Theorem 9.7). Then G 	 A(L1,−) (with 1 denoting a
one-element set), and L1 is perfectly presentable because G preserves sifted
colimits.

9.18 Remark We conclude this chapter by mentioning the analogous Gabriel–
Ulmer duality for locally finitely presentable categories. The proof is similar
to that of Theorem 9.15. Whereas the morphisms of algebraic categories are
the functors preserving limits and sifted colimits, the morphisms of locally
finitely presentable categories are the functors preserving limits and filtered
colimits. These are the 1-cells of the 2-category LFP , and the 2-cells are natural
transformations. We also denote by LEX the 2-category of small categories with
finite limits, functors preserving finite limits, and natural transformations. The
2-functor

Lex : LEX op → LFP

assigns to every small category T with finite limits the category Lex T (4.16),
and it acts on 1-cells and 2-cells in an analogous way to Alg : Th op → ALG.
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9.19 Theorem The 2-categories LFP and LEX are dually biequivalent. In
fact, Lex : LEX op → LFP is a biequivalence. The converse construction asso-
ciates with a locally finitely presentable category A the small, finitely complete
category Aop

fp (6.26).

Historical remarks

Morphisms of algebraic theories and the resulting algebraic functors were (in
the one-sorted case) introduced by Lawvere (1963) and belong to the main
contribution of his work. The characterization 9.7 of algebraic functors and the
duality theorem 9.15 are contained in Adámek et al. (2003). This is analogous
to the Gabriel–Ulmer duality of 9.19 for locally finitely presentable categories
(see Gabriel & Ulmer, 1971). A general result can be found in Centazzo and
Vitale (2002). 2-categories have been introduced by Ehresmann (1963).
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Birkhoff’s variety theorem

So far we have not treated one of the central concepts of algebra: equations.
In the present chapter, we prove the famous characterization of varieties of
algebras, due to G. Birkhoff: varieties are precisely the full subcategories of
Alg T closed under

products
subalgebras
regular quotients
directed unions

The last item was not included in Birkhoff’s formulation. The reason is that
Birkhoff only considered one-sorted algebras, and for them, directed unions
follow from the other three items (see 11.34). For general algebraic categories,
directed unions cannot be omitted (see Example 10.23).

Classically, an equation is an expression u = v where u and v are terms (say,
in n variables). We will see in 13.9 that such terms are morphisms from n to 1 in
the theory of �-algebras. We can also consider k-tuples of classical equations
as pairs of morphisms from n to k. The following concept generalizes this idea.

10.1 Definition If T is an algebraic theory, an equation in T is a parallel
pair u, v: s ⇒ t of morphisms in T . (Following algebraic tradition, we write
u = v in place of (u, v).) An algebra A: T → Set satisfies the equation u = v

if A(u) = A(v).

10.2 Example

1. In the theory Tab of abelian groups (1.6), recall that endomorphisms of 1
have the form [n] and correspond to the operations on abelian groups given

89



90 Chapter 10

by x 
→ n · x. Thus the equation

[2] = [0]

is satisfied by precisely the groups with

x + x = 0

for all elements x.

2. Graphs whose only edges are loops are given, considering the theory in
1.11, by the equation

τ = σ.

10.3 Remark Observe that if an algebra A satisfies the equation u = v, then
it also satisfies all the equations of the form u · x = v · x and y · u = y · v for
x: s ′ → s and y: t → t ′ in T . Moreover, if the equations ui = vi, i = 1, . . . , n,

are satisfied by A for ui, vi: s → ti , then A also satisfies 〈ui〉 = 〈vi〉, where

〈ui〉, 〈vi〉: s → t1 × . . . × tn

are the corresponding morphisms. For this reason, we will state the definition
of variety using congruences as well as equations.

10.4 Definition Let T be an algebraic theory. A congruence on T is a
collection ∼ of equivalence relations ∼s,t on hom-sets T (s, t), where (s, t)
ranges over pairs of objecs, which is stable under composition and finite prod-
ucts in the following sense:

1. If u ∼s,t v and x ∼r,s y, then u · x ∼r,t v · y:

r
x

��

y

�� s
u

��

v

�� t.

2. If ui ∼s,ti vi for i = 1, . . . , n, then 〈u1, . . . , un〉 ∼s,t 〈v1, . . . , vn〉, where
t = t1 × . . . × tn:

s

ui

��

vi

��

〈v1,...,vn〉

��

〈u1,...,un〉

��

ti

t1 × . . . × tn

����������������������
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10.5 Example Consider the theory Tmon of monoids (3.10) whose morphisms
from n to k are all k-tuples of words over n = {0, 1, . . . , n − 1}, see 11.23.
The commutative law corresponds to the congruence ∼ with ∼n,1 defined for
words v and w by

w ∼n,1 v iff v can be obtained from w by a permutation of its letters.

The general equivalence ∼n,k is defined by coordinates of the k-tuples of words.

10.6 Example Let T be an algebraic theory and let M: T → B be a finite
product-preserving functor. The kernel congruence of M is denoted by ≈M ;
that is, for all u, v ∈ T (s, t), we put

u ≈M v iff Mu = Mv.

This is obviously a congruence on T . In particular, for every T -algebra A, we
have a congruence ≈A.

10.7 Remark

1. Congruences on a given algebraic theory T are ordered in a canonical way:
we write ∼ ⊆ ∼′ in the case that for every pair s, t of objects of T , we
have

u ∼s,t v implies u ∼′
s,t v.

2. It is easy to see that every (set theoretical) intersection of congruences is
a congruence. Consequently, for every set E of equations, there exists the
smallest congruence ∼E on T containing E. We say that the congruence
∼E is generated by the equations of E.

10.8 Definition A full subcategory A of Alg T is called a variety if there exists
a set of equations such that a T -algebra lies in A iff it satisfies all equations in
that set.

10.9 Remark

1. Varieties are also sometimes called equational classes of algebras or equa-
tional categories. But we reserve this name for the special case of varieties
of �-algebras treated in Chapters 13 (for one-sorted signatures) and 14 (for
S-sorted ones).

2. We will use the name variety also in the loser sense of a category equivalent
to a full subcategory of Alg T specified by equations. Every time we use the
word variety, it will be clear whether the preceding definition or the loser
version is meant.
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10.10 Example

1. The abelian groups satisfying x + x = 0 form a variety in Ab.

2. All graphs whose edges are just loops form a variety in Graph.

3. Let us consider the category Set × Set of two-sorted sets with sorts called,
say, s and t. This has an algebraic theory TC of all words over {s, t} (see
1.5). Consider the full subcategory A of Set × Set of all pairs A = (As,At )
with either As = ∅ or At having at most one element. This can be specified
by the equation given by the parallel pair of projections

s t t
�� �� t.

10.11 Remark Every variety is also specified by a congruence. More precisely,
given a variety A of Alg T , let ∼ be the congruence generated by the given set
E of equations. A T -algebra A lies in A iff it satisfies all equations in ∼, that
is, iff it fulfills

u ∼ v implies Au = Av.

In fact, if A satisfies all equations in E, then E ⊆ ≈A and therefore ∼ ⊆ ≈A.

10.12 Notation For every congruence ∼ on an algebraic theory T , we
denote by

T / ∼

the algebraic theory on the same objects and with morphisms given by the
congruence classes of morphisms of T :

(T / ∼)(s, t) = T (s, t)/ ∼s,t

Composition and identity morphisms are inherited from T ; more precisely,
they are determined by the fact that we have a functor

Q: T → T / ∼

which is the identity map on objects and which assigns to every morphism its
congruence class.

10.13 Remark

1. It is easy to verify that T / ∼ has finite products determined by those of T ;
thus T / ∼ is an algebraic theory and Q is a theory morphism. Moreover,
the functor Q is full and surjective on objects.
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2. A morphism of theories M: T → T ′ factorizes through Q up to natural
isomorphism

T
Q

��

M ���
��

��
��

�

	

T / ∼

M ′����
��
��
��

T ′

iff the congruence ∼ is contained in the kernel congruence ≈M . When
this is the case, the factorization M ′ is essentially unique and is a theory
morphism. In fact, it is clear that if M ′ · Q 	 M, then ∼ ⊆ ≈M . For the
converse, define M ′ to be equal to M on objects, and put M ′[f ] = Mf

on morphisms. Clearly M ′ · Q = M. From the fact that M preserves finite
products and Q reflects them, the desired properties of M ′ easily follow.

3. If in point 2 we take ∼ to be equal to the congruence ≈M, then the factor-
ization M ′,

T
Q

��

M ���
��

��
��

�
T / ≈M

M ′����
��
��
��
�

T ′

is faithful. Therefore M is full and essentially surjective iff M ′ is an equiv-
alence of categories.

10.14 Proposition Let ∼ be a congruence on an algebraic theory T , and let
Q: T → T / ∼ be the corresponding quotient. The functor

Alg Q: Alg (T / ∼) → Alg T

is full and faithful and injective on objects.

Proof

1. Clearly Alg Q is faithful because Q is surjective.
2. Consider objects A,B ∈ Alg T / ∼ and a morphism β: A · Q → B · Q,

that is, a collection βt: At → Bt of homomorphisms natural in t ranging
through T . Then the same collection is natural in t ranging through T / ∼
and thus β: A → B is a morphism of Alg (T / ∼). Clearly Alg Q takes this
morphism to the original one. �
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10.15 Corollary Every variety is an algebraic category.

In more detail, let ∼ be a congruence on an algebraic theory T , and let A be
the full subcategory of Alg T specified by ∼. There exists an isomorphism of
categories

E: Alg (T / ∼) → A

such that the triangle

A � �

  ��
���

���
���

���
���

Alg (T / ∼)

E

��

Alg Q

�� Alg T

commutes.

In fact, for every (T / ∼)-algebra B, given u ∼ v, we have B(Qu) = B[u] =
B[v] = B(Qv). This implies that Alg Q factorizes through the inclusion of
A in Alg T . Moreover, if A lies in A, then A = (Alg Q)(B), where B is
the (T / ∼ )-algebra defined by B[u] = Au. This shows that the factorization
E: Alg (T / ∼) → A is bijective on objects. Since Alg Q is full and faithful (see
Proposition 10.14), E is an isomorphism.

10.16 Proposition Every variety A of T -algebras is closed in Alg T under

1. products: given a product B = ∏
i∈I Ai in Alg T with all Ai in A, B also

lies in A
2. subalgebras: given a monomorphism m: B → A in Alg T with A in A, B

also lies in A
3. regular quotients: given a regular epimorphism e: A → B in Alg T with A

in A, B also lies in A
4. sifted colimits: given a sifted colimit B = colim Ai in Alg T with all Ai in

A, B also lies in A

Proof Following Corollary 10.15, the inclusion functor A → Alg T is natu-
rally isomorphic to Alg Q, which preserves limits and sifted colimits by 9.3.
This proves points 1 and 4.

Let m: B → A be a monomorphism with A in A. We prove that B is in A by
verifying that every equation u1, u2: s ⇒ t that A satisfies is also satisfied by B.

We know from 1.23.2 that the component mt: Bt → At is a monomorphism.
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From A(u1) = A(u2) and the commutativity of the squares,

Bs
Bui

��

ms

��

Bt

mt

��
As

Aui

�� At

we conclude that Bu1 = Bu2.

Let e: A → B be a regular epimorphism with A in A. To prove that B lies
in A, observe that a kernel pair k1, k2: N (e) ⇒ A of e yields a subobject of
A × A ∈ A, and thus N (e) lies in A by points 1 and 2. And since the pair k1, k2

is reflexive and e is its coequalizer, B is a sifted colimit (3.2) of a diagram in
A, and thus B ∈ A. �

10.17 Corollary Every variety A of T -algebras is closed in Alg T under limits
and sifted colimits.

10.18 Example Not every full subcategory of an algebraic category Alg T
closed under limits and sifted colimits is a variety. Consider the free completion
T ′ of T under finite products (1.14) and the finite product–preserving extension
M: T ′ → T of the identity functor on T . The induced functor Alg M is nat-
urally isomorphic to the full inclusion Alg T → Alg T ′ 	 SetT , but Alg T is
usually not closed in SetT under subalgebras (in contrast to Proposition 10.16).
As a concrete example, let T be the category of finite sets and functions. The
functor

A: T → Set, AX = X × X × X

is clearly an algebra for T , but its subfunctor A′ given by all triples in X ×
X × X in which at least two different coordinates have the same value is not
an algebra for T .

10.19 Remark Following Remark 10.13.3 and Proposition 10.14, the alge-
braic functor induced by a full and essentially surjective morphism of theories
is full and faithful. The morphism M: T ′ → T in Example 10.18 also demon-
strates that the converse implication does not hold: Alg M: Alg T → SetT is
full and faithful, but M is not full.

10.20 Definition A full reflective subcategory A of a category B (see 0.9)
is called regular epireflective if all reflections rB: B → RB are regular
epimorphisms.



96 Chapter 10

10.21 Corollary Every variety of T -algebras is a regular epireflective subcat-
egory of Alg T closed under regular quotients and directed unions.

Proof We already know that the variety A is closed in Alg T under regular
quotients and sifted colimits (Proposition 10.16) and therefore under directed
unions, which are a special case of sifted colimits (2.9). Moreover, following
10.15, the inclusion functor A → Alg T is naturally isomorphic to Alg Q,

which has a left adjoint (9.3). It remains to prove that for every T -algebra B,
the reflection rB: B → RB is a regular epimorphism. Let rB = m · e

A
m



�
��

��
��

�

B

e
���������

rB

�� RB

ē

!!��������

be a regular factorization of rB (see 3.7). By Proposition 10.16.2, A ∈ A,

and thus there is a unique ē: RB → A such that e = ē · rB. Since e is an
epimorphism, we see that ē · m = idA . Also m · ē = idRB due to the universal
property of rB. Thus m is an isomorphism and rB a regular epimorphism. �

10.22 Birkhoff’s variety theorem Let T be an algebraic theory. A full sub-
category A of Alg T is a variety iff it is closed in Alg T under

1. products
2. subalgebras
3. regular quotients and
4. directed unions

Proof Every variety is closed under points 1–4 (see Proposition 10.16).
Conversely, let A be closed under points 1–4.

1. We first prove that A is a regular epireflective subcategory. Let B be
a T -algebra. By 3.6, there exists a set of regular epimorphisms e: B → Ae

(e ∈ X) representing all regular quotients of B with codomains in A. Denote
by b: B → ∏

e∈X Ae the induced morphism, and let

B
b

��

rB 







∏
e∈X Ae

RB

mB

�����������
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be the regular factorization of b (see 3.7). The algebra RB lies in A (because
it is a subalgebra of a product of algebras in A), and rB is the reflection of B

in A. Indeed, for every morphism f : B → A with A in A, we have a regular
factorization

f = m · e for some e ∈ X,

and since e factorizes through b, so does f.

2. We will prove that A is specified by the congruence ∼ which is the
intersection of the kernel congruences of all algebras in A:

u1 ∼s,t u2 iff Au1 = Au2 for all A ∈ A.

This is indeed a congruence (see Example 10.6 and Remark 10.7.2). It is our
task to prove that every T -algebra B such that ∼ is contained in ≈B (see
Remark 10.7), lies in A.

2a. Assume first that B is a regular quotient of a representable algebra
YT (t). We thus have a regular epimorphism e: YT (t) → B. We know that the
reflection morphism rt: YT (t) → R(YT (t)) is a regular epimorphism, and thus
it is a coequalizer:

N

u
��

v

�� YT (t)
rt

�� R(YT (t)).

By 4.2, we can express N as a sifted colimit of representable algebras and
denote the colimit cocone by cs: YT (s) → N. Using the Yoneda lemma, we
see that for every s, there exist morphisms us, vs: t ⇒ s representing u · cs and
v · cs, respectively:

YT (s)

cs

��

YT (vs )   ��
���

���
���

��� YT (us )

  ��
���

���
���

���
B

YT (t)

e

""����������������� rt

��

h
  ��

���
���

���
���

���
R(YT (t))

f

��

��
N

v

""���������������

u
""���������������

A

Moreover, we have us ∼t,s vs because every morphism h: YT (t) → A with
A ∈ A factorizes through rt so that YT (us) · h = YT (vs) · h, and it follows that
Aus = Avs. By assumption on B, this implies Bus = Bvs, and then e · u · cs =
e · v · cs. The cocone cs is jointly epimorphic, and thus we have e · u = e · v.

Since rt is the coequalizer of u and v, there exists f : R(YT (t)) → B such that
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f · rt = e. Finally, f is a regular epimorphism because e is, so that B, being a
regular quotient of R(YT (t)), lies in A.

2b. Let B be arbitrary. Express B as a sifted colimit of representable algebras
(4.2), and for each of the colimit morphisms σs: YT (s) → B, denote by Bs the
image of σs , which, by 3.7, is a subalgebra of B. Since T has finite products,
the collection of these subalgebras of B is directed. Since A is closed under
directed unions, we only need to prove that every Bs lies in A. This follows
from 2a: we know that Bs is a regular quotient of a representable algebra, and
Bs has the desired property: given u1 ∼s,t u2, we have B(u1) = B(u2), and this
implies Bsu1 = Bsu2 since Bs is a subalgebra of B. �

10.23 Example The assumption of closure under directed unions cannot be
omitted: consider the category Set N of N-sorted sets, and let A be the full
subcategory of all A = (An)n∈N such that either some component An is empty
or all components have precisely one element. This subcategory is clearly
closed under products, subalgebras, and regular quotients – we omit the easy
verification. However, it is not a variety, not being closed under directed unions.
In fact, every N-sorted set A = (An)n∈N is a directed union of objects Ak of A:
put Ak = (A0, . . . , Ak,∅,∅, . . .).

10.24 Corollary Let A be a full subcategory of Alg T . Then A is a variety
iff it is a regular epireflective subcategory closed under regular quotients and
directed unions.

In fact, following Corollary 10.21 and Theorem 10.22, we only need to observe
that every regular epireflective subcategory A is closed in Alg T under products
(and this is obvious) and subalgebras: consider the diagram

B
m

��

rB

��

A

rA

��
RB

Rm

�� RA

where m is a monomorphism and A lies in A. Then rA is an isomorphism, and
rB is a monomorphism. But rB is also a regular epimorphism so that it is an
isomorphism and B lies in A.

10.25 Example The category Abtf of torsion-free abelian groups is a regular
epireflective subcategory of Ab closed under filtered colimits. But this is not a
variety in Ab because it is not closed under quotients. Indeed, Abtf is locally
finitely presentable but not algebraic (it is not exact).



Birkhoff’s variety theorem 99

Historical remarks

The classical characterization of varieties of one-sorted algebras as HSP classes
is from Birkhoff (1935). We present this version in 11.34.

For many-sorted algebras, the concept of equation in Definition 10.1 corre-
sponds to the formulas

∀ x1 . . . ∀ xn (t = s),

where t and s are terms of the same sort in (sorted) variables x1, . . . , xn.

Example 10.23 demonstrates that with respect to the equations above, we need
to add the closure under directed unions. Another approach is to admit infinitely
many variables in the equations – that is, to work in the logic Lω∞ (admitting
quantification over infinite sets) rather than in the finitary logic Lωω. With this
logic, directed unions can be omitted in Birkhoff’s variety theorem. This is
illustrated by Example 14.21 (see also J. Adámek et al., 2010).

Dropping in Corollary 10.24 the assumption of closure under regular quo-
tients, one gets the so-called quasivarieties. Theories of quasivarieties were
studied by Adámek and Porst (1998). A survey on quasivarieties based on free
completions is presented by Pedicchio and Vitale (2000).





PART II

Concrete algebraic categories

The most elegant treatment of clones is given by F. W. Lawvere and
J. Bénabou using categories.

– G. Grätzer (2008), Universal Algebra, Springer: 46
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One-sorted algebraic categories

Classical algebraic categories, such as groups, modules, and boolean algebras,
are not only abstract categories: their objects are sets with a structure, and
their morphisms are functions preserving the structure. Thus they are concrete
categories over Set (see 0.18), which means that a “forgetful” functor into Set
is given. Also, these classical algebraic categories have theories generated by
a single object X in the sense that all objects of the theory are finite powers
Xn of X. (Consider the free group on one generator X: in the theory of groups,
which is the dual of the category of finitely generated free groups, every object
is a power of X.) To formalize this idea, we study in this chapter one-sorted
algebraic categories. In Chapter 14, we will deal with the more general notion
of S-sorted algebraic categories, for which the forgetful functor into a power
of Set is considered rather than into Set.

11.1 Example The theory

N

of sets (see 1.4), which is the full subcategory of Setop on natural numbers
n = {0, . . . , n − 1}, is a “prototype” one-sorted theory: every object n is the
product of n copies of 1. Moreover, the n injections in Set,

πn
i : 1 → n, 0 
→ i (i = 0, . . . , n − 1),

yield a canonical choice of projections πn
i : n → 1 in N that present n as 1n.

11.2 Remark

1. If an algebraic theory T has all objects given by finite powers of an object X,

we obtain a theory morphism T : N → T as follows: for every n, choose an

103
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nth power of X with projections pn
i : Xn → X for i = 0, . . . , n − 1. Then

T is uniquely determined by

T n = Xn and T πn
i = pn

i for all i < n in N.

2. Conversely, every theory morphism T : N → T represents an object and a
choice of projections of all its finite powers: put X = T 1 and pn

i = T πn
i :

Xn → X for all i < n.

This leads us to the following

11.3 Definition

1. A one-sorted algebraic theory is a pair (T , T ) in which T is an algebraic
theory whose objects are the natural numbers, and T : N → T is a theory
morphism that is the identity map on objects.

2. A morphism of one-sorted algebraic theories M: (T1, T1) → (T2, T2) is a
functor M: T1 → T2 such that M · T1 = T2:

N
T1

����
��
��
� T2

���
��

��
��

�

T1
M

�� T

11.4 Remark

1. We have not requested that morphisms of one-sorted theories preserve
finite products. In fact, this simply follows from the equation M · T1 = T2.

Observe that because of that equation M is the identity map on objects.
Since, moreover, M takes the projections T1π

n
i to the projections T2π

n
i , it

clearly preserves finite powers and thus finite products.
2. The reason why one-sorted theories are requested to be equipped with

a theory morphism from N is that in this way, the category of one-sorted
theories and the category of finitary monads on Set are equivalent, as proven
in Theorem A.37 (see Appendix A). (And by the way, this is the original
definition by Lawvere from 1963.)

3. There is an obvious nonstrict version of morphism of one-sorted theories,
where the equality M · T1 = T2 is weakened to a natural isomorphism
between M · T1 and T2. See Appendix C for this approach.

11.5 Example Recall the theory Tab of abelian groups whose objects are
natural numbers and morphisms are matrices (see 1.6). It can be canonically
considered as a one-sorted theory if we define Tab: N → Tab as the identity
map on objects and assign to πn

i : n → 1 the one-row matrix with ith entry 1
and all other entries 0.



One-sorted algebraic categories 105

11.6 Remark Given a one-sorted theory (T , T ), the functor T does not
influence the concept of algebra: the category Alg T thus consists, again, of all
functors A: T → Set preserving finite products. However, the presence of T

makes the category of algebras concrete over Set (see 0.18). Assuming that we
identify Set and AlgN , the forgetful functor is simply

Alg T: Alg T → Set

(see 9.2), which is faithful by Proposition 11.8. More precisely, this forgetful
functor takes an algebra A: T → Set to the set A1 and a homomorphism
h: A → B to the component h1: A1 → B1.

11.7 Example For the one-sorted theory (Tab, Tab) of abelian groups, the
category Alg Tab is equivalent to Ab. (But it is not isomorphic to Ab: this is
caused by the fact that algebras for Tab are not required to preserve products
strictly. Consequently, there exist many algebras that are naturally isomorphic
to algebras of the form Ĝ (see 1.6) but are not equal to any of those.) The
forgetful functor assigns to Ĝ, for every group G, the underlying set of G.

Observe that unlike in Ab, the category Alg Tab has the property that there
exist isomorphisms f : A → B in Alg Tab for which A1 = B1 and f1 = id but
still A �= B. In fact, given a group G, we usually have many algebras B �= Ĝ

naturally isomorphic to Ĝ such that the component of the natural isomorphism
at 1 is the identity. In other words, Alg Tab is not amnestic (see 13.16).

11.8 Proposition Let (T , T ) be a one-sorted algebraic theory. The forgetful
functor Alg T : Alg T → Set is algebraic, faithful, and conservative.

Proof Alg T is algebraic by 9.3. Let f : A → B be a homomorphism of T -
algebras. Because of the naturality of f, the following square commutes:

An

	
��

fn

�� Bn

	
��

(A1)n
(f1)n

�� (B1)n

It is now obvious that Alg T is faithful and conservative. �

11.9 Corollary Let (T , T ) be a one-sorted algebraic theory. The forgetful func-
tor preserves and reflects limits, sifted colimits, monomorphisms, and regular
epimorphisms.

11.10 Remark For every T -algebra A and every subset X of its underlying
set A1, there exists the least subalgebra X of A such that X1 contains X (X is
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called the subalgebra generated by X). In fact, consider the intersection of all
subalgebras of A containing X.

11.11 Remark The concept of algebraic category in Chapter 1 used equiv-
alences of categories. For one-sorted algebraic theories, we need more: the
equivalence functor must be concrete. This is, in fact, not enough because the
quasi-inverse (0.2.4) of a concrete functor is, in general, not concrete. We are
going to require that the equivalence functor admits a quasi-inverse that is
concrete:

11.12 Definition Given concrete categories U: A → K and V : B → K over
K, by a concrete equivalence between them we mean a pair of concrete functors

A
E

��

U ���
��

��
��

B

V

��

E′
�� A

U����
��
��
�

K
such that both E · E′ and E′ · E are naturally isomorphic to the identity func-
tors. We then say that (A, U ) and (B, V ) are concretely equivalent.

11.13 Definition A one-sorted algebraic category is a concrete category
over Set that is concretely equivalent to Alg T : Alg T → Set for a one-sorted
algebraic theory (T , T ).

11.14 Remark A nonstrict version of one-sorted algebraic categories is treated
in Appendix C.

11.15 Example The category Ab, with its canonical forgetful functor, is a one-
sorted algebraic category. In fact, it is concretely equivalent to the category of
algebras for (Tab, Tab): the functor

Ab
E

��

U �
��

��
��

�
Alg Tab

Alg Tab����
��
��
��

Set

which to every group G assigns the algebra Ĝ: Tab → Set of Example 1.6, is
concrete. And we have the concrete functor

Alg Tab

E′
��

Alg Tab ���
��

��
��

�
Ab

U����
��
��
��

Set
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which to every algebra A: Tab → Set assigns the group G with A 	 Ĝ from
1.6. It is easy to verify that both E · E′ and E′ · E are naturally isomorphic to
the identity functors.

11.16 Remark Given a concrete category (A, U ), all subcategories of A are
considered to be concrete using the domain restriction of U.

11.17 Proposition Every variety of T -algebras for a one-sorted theory (T , T )
is a one-sorted algebraic category.

Proof Let ∼ be a congruence on T and let Q: T → T / ∼ be the corre-
sponding quotient functor. Since Q preserves finite products, (T / ∼,Q · T ) is
a one-sorted theory. Consider the full subcategory A of Alg T specified by ∼.

The equivalence

E: Alg (T / ∼) → A

constructed in 10.15 is a concrete functor (because Alg Q is concrete). More-
over, E is an isomorphism (not just an equivalence) because it is bijective on
objects. Thus the inverse functor E−1: A → Alg (T / ∼) is concrete. �

11.18 Example The category Graph of graphs is algebraic but not one-sorted
algebraic. In fact, a terminal object in Graph is the graph with one vertex and
one edge, and it has a proper subobject given by the graph G with one vertex
and no edge. Observe that G is neither terminal nor initial in Graph. Now use
the following

11.19 Lemma In a one-sorted algebraic category, a terminal object A has
no nontrivial subobjects: for every subobject m: B → A, B is either an initial
object or a terminal one.

Proof Given a one-sorted algebraic theory (T , T ), denote by A a terminal
object of Alg T and by I the initial object. Since Alg T : Alg T → Set preserves
limits (Corollary 11.9), B(1) is a subobject of A1 = 1. If B1 	 1, then m1 is
an isomorphism and thus m is an isomorphism (since Alg T is conservative). If
B1 = ∅, consider the unique monomorphism a: I → B and the induced map
a1: I1 → B1 = ∅. Such a map is necessarily an isomorphism, and thus so is
a. It is easy to see that concrete equivalences preserve the preceding property
of terminal objects. �

11.20 Example Even though the category of graphs is not a one-sorted alge-
braic category, the category RGraph of reflexive graphs is. Here the objects are
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directed graphs

Ge

τ
��

σ

�� Gv

together with a map d: Gv → Ge such that τ · d = idGv
= σ · d. A morphism

from (Ge,Gv, τ, σ, d) to (G′
e,G

′
v, τ

′, σ ′, d ′) is a graph homomorphism,

(he: Ge → G′
e, hv: Gv → G′

v),

such that he · d = d ′ · hv. We consider this category as concrete over Set by
U (Ge,Gv, τ, σ, d) = Ge.

In fact, the category RGraph is concretely equivalent to the following one-
sorted algebraic category A: an object of A is a set Ge equipped with two
maps,

Ge

t
��

s

�� Ge

such that s · t = t and t · s = s. A morphism from (Ge, t, s) to (G′
e, t

′, s ′) is a
map he: Ge → G′

e such that he · t = t ′ · he and he · s = s ′ · he.

1. Define E: RGraph → A by assigning to a reflexive graph (Ge,Gv, τ, σ, d)
the object (Ge, t, s) of A with t = d · τ and s = d · σ. This is a concrete
functor.

2. Define E′: A → RGraph by assigning to an object (Ge, t, s) in A the
reflexive graph (Ge,Gv, τ, σ, d) by taking as d: Gv → Ge a joint equalizer of

Ge

t
��

id ��

s

�� Ge

This yields the canonical factorizations τ: Ge → Gv of t through d and
σ: Ge → Gv of s through d (such factorizations exist because t = s · t =
t · s · t = t · t , and analogously for s). The rest of the definition of E′ is straight-
forward. Again, E′ is a concrete functor.

3. The verification that E · E′ and E′ · E are naturally isomorphic to the
identity functors is easy.

11.21 Remark Let (T , T ) be a one-sorted theory.

1. The forgetful functor Alg T : Alg T → Set has a left adjoint. In fact, due to
4.11 being applied to YN : N op → Set, we can choose a left adjoint

FT : Set → Alg T
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in such a way that the square

N op
T op

��

YN

��

T op

YT
��

Set
FT

�� Alg T

commutes. Thus, for every natural number n,

a. FT (n) = T (n,−)
b. FT (πn

i ) = − · T πn
i for all i = 0, . . . , n − 1

2. The naturality square for η: Id → Alg T · FT applied to πn
i yields the com-

mutativity of

1
η1

��

πn
i

��

T (1, 1)

−·T πn
i

��
n

ηn

�� T (n, 1)

that is,

ηn(i) = T πn
i for all i = 0, . . . , n − 1

(recall that πn
i is the inclusion of i).

3. Since FT preserves coproducts, FT X = ∐
X YT (1) for every set X.

4. T -algebras of the form FT X, for X a set, are called free algebras. If X is
finite, they are called finitely generated free algebras.

11.22 Corollary Let (T , T ) be a one-sorted theory. T op is equivalent to the
full subcategory of Alg T of finitely generated free algebras.

Indeed, by the Yoneda lemma, T (n, k) 	 Alg T (YT (k), YT (n)) = Alg T (FT (k),
FT (n)).

11.23 Remark 1. Since homomorphisms from FT 1, the free T -algebra on one
generator, into an algebra form essentially the underlying set of that algebra,
we obtain an algebraic theory T whose morphisms in T (k, 1) are precisely the
elements of the free T -algebra FT k. Thus general hom-sets are given by

T (k, n) = (UFT k)n = UFT k × · · · × UFT k

For example in case of abelian groups we have FT k = Zk and the elements
of this free group can be represented by columns of k integers. The hom-set
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T (k, n) consists of n-tuples of such columns, in other words, of k × n matrices
of integers. Thus T = Tab, see 1.6.

In the concrete category of monoids we have the free monoid

FT k = k∗

of all words over the set k = {0, 1, . . . , k − 1}. (The concatenation of words is
the monoid operation, and the empty word is the neutral element.) Thus, the
theory T has the hom-sets

T (k, n) = k∗ × · · · × k∗

consisting of n-tuples of words over k.
2. Every object of a category with finite coproducts defines an algebraic

theory T (A) for which we need to fix coproduct injections:

pn
i : A → nA = A + . . . + A (n summands).

The objects of T (A) are natural numbers, and morphisms from n to k are
the morphisms of A from kA = A + . . . + A to nA. Then T : N → T (A) is
defined by T πn

i = pn
i . Observe that T (A) is equivalent to the full subcategory

of Aop on all finite copowers of A under the equivalence functor n 
→ nA. The
corresponding category of T (A)-algebras can be equivalent to A, as we have
seen in the example A = Ab and A = Z.

11.24 Remark Extending Remark 11.21, for every one-sorted algebraic cate-
gory (A, U ) with a left adjoint F � U , a one-sorted theory can be constructed
from the full subcategory of Aop on the objects F {x0, . . . , xn−1}. Here a set of
standard variables x0, x1, x2, . . . is assumed. In fact, the n injections

{x0} → {x0, . . . , xn−1}, x0 
→ xi

define n morphisms pn
i : F {x0, . . . , xn−1} → F {x0} in Aop. Let T be the cate-

gory whose objects are the natural numbers and whose morphisms are

T (n, k) = A(F {x0, . . . , xk−1}, F {x0, . . . , xn−1}).
The composition in T is inherited from Aop, and so are the identity morphisms.
The functor T : N → T is determined by the preceding choice of morphisms
pn

i for all i ≤ n.

11.25 Example For the one-sorted theory (Tab, Tab) (Example 11.5), the
induced adjunction FTab � Alg Tab is, up to concrete equivalence, the usual
adjunction given by free abelian groups.
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Using free algebras, we can restate some facts from Chapter 5:

11.26 Proposition Let (T , T ) be a one-sorted algebraic theory:

1. Free algebras are precisely the coproducts of representable algebras.
2. Every algebra is a regular quotient of a free algebra.
3. Regular projectives are precisely the retracts of free algebras.

Proof
1. Following Remark 11.21, every free algebra is a coproduct of representable
algebras. Conversely, every representable algebra is free by 11.21. Thus every
coproduct of representable algebras is free because FT preserves coproducts.

2. Following 4.2, every algebra is a regular quotient of a coproduct of repre-
sentable algebras and then, by 1, a regular quotient of a free algebra.

3. This follows from point 1 and 5.14.2. �

11.27 Remark We have used the term finitely generated in two different
situations: for objects of a category (see 5.21), and as a denotation of FT X with
X finite. The following proposition demonstrates that there is no conflict. Note,
however, that a finitely generated free algebra can, in principle, coincide with
a nonfinitely generated one. In fact, in the variety of algebras satisfying, for a
pair x, y of distinct variables, the equation x = y, all algebras are isomorphic.

11.28 Proposition Let (T , T ) be a one-sorted algebraic theory:

1. Finitely generated free algebras are precisely the representable algebras.
These are precisely the free algebras that are finitely generated objects (in
the sense of Definition 5.21).

2. Perfectly presentable algebras are precisely the retracts of finitely generated
free algebras.

3. Finitely presentable algebras are precisely the coequalizers of (reflexive)
pairs of morphisms between finitely generated free algebras.

Proof
Point 1 follows from 11.21 and the observation that whenever the object FT X

is finitely generated, it is isomorphic to FT X′ for some finite set X′. In fact, the
set X is the directed union of its nonempty finite subsets X′. Since FT is a left
adjoint and directed unions are directed colimits in Set, we see that FT X is a
directed colimit with the colimit cocone formed by all Fi, where i: X′ → X

are the inclusion maps. Moreover, since each i is a split monomorphism in
Set, FT X is the directed union of the finitely generated free algebras FT X′.
Since FT X is finitely generated, there exists a finite nonempty subset i: X′ ↪→
X and a homomorphism f : FT X → FT X′ such that FT i · f = idFT X. Thus
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FT i: FT X′ → FT X, being a monomorphism and a split epimorphism, is an
isomorphism.

Point 2 follows from point 1 and 5.14.1, and point 3 follows from point 1
and 5.17. �

11.29 Remark Let (T , T ) be a one-sorted algebraic theory and X a subset
of the underlying set A1 of a T -algebra A. The subalgebra of A generated by
X (see Corollary 11.9) is a regular quotient of the free algebra FT X. Indeed,
consider the homomorphisms iX: FT X → A corresponding to the inclusion
iX: X → A1. Then iX(FT X) is a subalgebra of A because the forgetful functor
preserves regular factorizations. This is obviously the least subalgebra of A

containing X (use a diagonal fill-in; see 0.16), and the codomain restriction of
iX is a regular quotient.

11.30 Proposition Let (T , T ) be a one-sorted algebraic theory and A a T -
algebra. The following conditions are equivalent:

1. A is finitely generated (see 5.21).
2. A is a regular quotient of a finitely generated free algebra.
3. There exists a finite subset X of A1 not contained in any proper subalgebra

of A.

Proof The equivalence between points 1 and 2 follows from 5.21 and 11.18.1.
For implication 1 ⇒ 3 let A be a finitely generated object of Alg T . Form a
diagram in Alg T indexed by the poset of all finite subsets of A1 by assigning to
every such X ⊆ A1 the subalgebra X of A generated by X (see 11.10). Given
finite subsets X and Y with X ⊆ Y ⊆ A1, the connecting map X → Y is the
inclusion map. Then the inclusion homomorphisms iX: X → A form a colimit
cocone of this directed diagram. Since the functor Alg T (A,−) preserves this
colimit, for idA ∈ Alg T (A,A) there exists a finite set X such that idA lies in
the image of iX – but this proves X = A.

For implication 3 ⇒ 2 if A = X for a finite subset X of A1, then by 11.19,
A is a regular quotient of the finitely generated free algebra FT X. �

11.31 Remark

1. Recall the notion of an equivalence relation on an object A in a category
from 3.12. If the category is Alg T , we speak (as usual in general algebra)
about congruence on the algebra A (instead of equivalence). This is a slight
abuse of terminology since congruences were previously used for the theory
T itself.
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2. Similarly to Remark 11.10, for every T -algebra A and every subset X

of A1 × A1, there exists the least congruence on A whose underlying set
contains X. Such a congruence is called the congruence generated by X.

3. The finitely generated congruences are those generated by finite subsets of
A1 × A1.

11.32 Lemma Let (T , T ) be a one-sorted algebraic theory. Given homomor-
phisms

FT X
u

��
v

�� B

in Alg T , the congruence on B generated by the image of 〈u, v〉 coincides with
that generated by the image of 〈u1 · ηX, v1 · ηX〉, where ηX: X → (FT X)(1) is
the unit of the adjunction FT � Alg T .

Proof Let R be the congruence generated by the image of 〈u, v〉 and S the
congruence generated by the image of 〈u1 · ηX, v1 · ηX〉. To check the inclusion
R ⊆ S, use the universal property of ηX and the diagonal fill-in (cf. 0.16). The
other inclusion is obvious. �

11.33 Corollary Let (T , T ) be a one-sorted algebraic theory. A T -algebra A

is finitely presentable iff there exists a coequalizer of the form

R

r1
��

r2

�� FT Y
c

�� A

with Y a finite set and R a finitely generated congruence on FT Y .

In fact, this follows from Proposition 11.28 and Lemma 11.32 by taking B =
FT Y with X and Y finite sets.

As announced at the beginning of Chapter 10, we are going to prove that
closure under directed unions in Birkhoff’s variety theorem 10.22 can be
avoided when the theory is one-sorted:

11.34 Proposition Let (T , T ) be a one-sorted algebraic theory. If a full subcat-
egory A of Alg T is closed under products, subalgebras, and regular quotients,
then it is a variety.

Proof By 10.22, all we need is to prove thatA is closed under directed unions.
Let A = ∪i∈IAi be a directed union of algebras inA. Since the forgetful functor
Alg T preserves directed unions, A1 = ∪i∈I (Ai1).
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1. If A1 = ∅, then A is a subalgebra of any T -algebra. Since A is nonempty
(being closed in Alg T under products), this proves that A is in A.

2. If A1 �= ∅, we can choose i0 ∈ I such that Ai0 1 �= ∅. The product
∏

i≥i0
Ai

lies in A. It assigns to n ∈ N the set of all tuples (xi)i≥i0 with xi ∈ Ain; we
call the tuple stable if there exists j ≥ i0 such that xi = xj for all i ≥ j (this
makes sense because if j ≤ i, then Ajn ⊆ Ain), and we call xj the stabilizer
of the tuple. The stabilizer of a stable tuple is unique because I is directed.
Define a subfunctor B of

∏
i≥i0

Ai by assigning to every n the set of all stable
tuples in

∏
i≥i0

Ain. It is clear that since each Ai preserves finite products, so
does B. Thus B is a subalgebra of the product, which proves that B lies in A.

We have a natural transformation f : B → A assigning to every stable tuple
(xi)i≥i0 its stabilizer. Our choice of i0 is such that f1 is surjective: for a given
x ∈ A1, choose i1 ∈ I such that x ∈ Ai1 1; since I is directed, there exists j ∈ I

with i0, i1 ≤ j , and we can construct a stable tuple with stabilizer x. Following
Corollary 11.9, f is a regular epimorphism. This proves that A lies in A. �

Recall the algebraic duality of Chapter 9: if we restrict algebraic theories
to the canonical ones, we obtain a contravariant biequivalence between the
2-category of algebraic categories and the 2-category of algebraic theories. In
the one-sorted case, a better result is obtained since we do not have to restrict
the theories at all.

11.35 Definition

1. The 2-category Th 1 of one-sorted theories has
objects: one-sorted algebraic theories
1-cells: morphisms of one-sorted algebraic theories
2-cells: natural transformations

2. The 2-category ALG 1 of one-sorted algebraic categories has
objects: one-sorted algebraic categories
1-cells: concrete functors
2-cells: natural transformations

11.36 Remark Every 1-cell in ALG 1 is a faithful and conservative algebraic
functor.

11.37 Definition We denote by

Alg 1: (Th 1)op → ALG 1

the 2-functor assigning to every one-sorted theory (T , T ) the concrete category
Alg 1(T , T ) = (Alg T : Alg T → Set), to every 1-cell M: (T1, T1) → (T2, T2)
the concrete functor Alg 1M = (−) · M, and to every 2-cell α: M → N the
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natural transformation Alg 1α: Alg 1M → Alg 1N whose component at a T2-
algebra A is A · α: A · M → A · N.

11.38 Theorem: One-sorted algebraic duality The 2-category ALG 1 of one-
sorted algebraic categories is biequivalent to the dual of the 2-category Th 1 of
one-sorted algebraic theories. In fact, the 2-functor

Alg 1: (Th 1)op → ALG 1

is a biequivalence.

Proof
1. Alg 1 is well defined and essentially surjective (in the sense of the 2-category
ALG 1, which means surjectivity up to concrete equivalence) by definition of
one-sorted algebraic category.

2. We will prove that for two one-sorted algebraic theories (T1, T1) and
(T2, T2), the functor

Th 1((T1, T1), (T2, T2))
Alg 1

(T1 ,T1),(T2 ,T2)

�� ALG 1((Alg T2, Alg T2), (Alg T1, Alg T1))

is an equivalence of categories. The proof that Alg 1
(T1,T1),(T2,T2) is full and faithful

is the same as in Theorem 9.15. It remains to be proven that Alg 1
(T1,T1),(T2,T2) is

essentially surjective: consider a concrete functor

Alg T1

Alg T1 ��














Alg T2.

G
��

Alg T2����
��
��
��

Set

It is our task to find a theory morphism M: (T1, T1) → (T2, T2) with G 	
Alg 1M. We have the left adjoint FT of Remark 11.21, and we denote by
F : Alg T1 → Alg T2 a left adjoint of G. The commutativity of the preceding
triangle yields a natural isomorphism

ψ: FT2 → F · FT1 .

We are going to prove that F · YT1 factorizes (up to natural isomorphism)
through YT2 :

T op
1

YT1
��

Mop

��
	

Alg T1

F

��
T op

2
YT2

�� Alg T2

(11.1)
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We define M: T1 → T2 to be the identity on objects, and for a morphism
f : t → s in T1 we define Mf as follows. Since YT2 is full and faithful, there
exists a unique morphism Mf : Mt → Ms such that the following diagram
commutes:

YT2M(s) = YT2T2(s) = FT2 (s)
ψs

��

YT2 M(f )

��

FFT1 (s) = FYT1T1(s) = FYT1 (s)

FYT1 (f )

��
YT2M(t) = YT2T2(t) = FT2 (t)

ψt

�� FFT1 (t) = FYT1T1(t) = FYT1 (t)

(11.2)

The equalities FTi
· YN = YTi

· T
op
i (i = 1, 2) for the embedding YN : N op →

Set come from Remark 11.21. The functoriality of

M: T1 → T2

follows from the uniqueness of Mf. Moreover, since the isomorphism ψ is
natural, if f = T1g for some g: t → s in N , then Mf = T2g. Diagram (11.2)
gives also the natural isomorphism needed in Diagram (11.1). This finishes the
proof: F 	 M∗ by 9.3, and then G 	 Alg M. �

11.39 Remark One can modify this duality by restricting to uniquely trans-
portable algebraic categories (13.16). One gets a dual equivalence (rather than
a biequivalence). This new duality excludes the categories Alg T as such but
replaces them with equivalent categories consisting of algebras for equational
theories. This result, established in Appendix C, gives an alternative approach
to the classical duality between finitary monads and finitary monadic categories
over Set presented in Appendix A.

Historical remarks

In his dissertation Lawvere (1963) introduced the name algebraic category
for one equivalent to the category Alg T of algebras of a one-sorted algebraic
theory. Our decision to use concrete equivalence is motivated by the precise
analogy one gets to finitary monadic categories over Set (see Appendix A).

Another variant, based on pseudoconcrete functors in place of concrete ones,
is to take all categories pseudoconcretely equivalent to the categories Alg T
given earlier. This is briefly mentioned in Appendix C.
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Algebras for an endofunctor

The aim of this chapter is to show how limits and colimits are constructed in
categories of algebras for a finitary endofunctor of Set and, in particular, in the
category of �-algebras. These results are actually true for finitary endofunctors
of all locally finitely presentable categories, and the proofs are the same. In the
special case of Set, we also characterize the finitary endofunctors as precisely
the quotients of the polynomial endofunctors H�. We will prove in 13.23
that the category of algebras for a finitary endofunctor of Set is a one-sorted
algebraic category.

12.1 Remark

1. The concept of H -algebra in 2.25 can be formulated for the endofunctor H

of an arbitrary category K: it is a pair (A, a) consisting of an object A and
a morphism a: HA → A. The category

H -Alg

has as objects H -algebras and as morphisms from (A, a) to (B, b) those
morphisms f : A → B for which f · a = b · Hf.

2. We denote by

UH : H -Alg → K

the canonical forgetful functor (A, a) 
→ A.

3. In this chapter, we restrict ourselves to finitary endofunctors H of Set. See
also Remark 12.17.

12.2 Remark We want to show how colimits of H -algebras are obtained. We
begin with the simplest case: the initial H -algebra. We will prove that it can be
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obtained by iterating the unique morphism u: ∅ → H∅. More precisely, let us
form the ω-chain

∅
u

�� H∅
Hu

�� H 2∅
H 2u

�� H 3∅ �� . . . .

We call it the initial chain of H. Its colimit

I = colim n∈NHn∅
carries the structure of an H -algebra. Indeed, since H preserve colimits of
ω-chains,

HI 	 colim n∈NH (Hn∅) 	 colim n∈NHn∅ = I.

We denote by i: HI → I the canonical isomorphism. In more detail, denote
by

vn: Hn∅ → I (n ∈ N)

a colimit cocone for I. Then i: HI → I is defined by

i · Hvn−1 = vn for all n ≥ 1.

12.3 Lemma The H -algebra i: HI → I is initial.

Proof For every algebra a: HA → A, define a cocone fn: Hn∅ → A of the
initial chain as follows: f0: ∅ → A is unique and

fn+1 = a · Hfn: HHn∅ → A.

The unique morphism f : I → A with f · vn = fn (n ∈ N) is a homomor-
phism: since the cocone (Hvn) is a colimit cocone, and thus collectively epi-
morphic, this follows from the commutative diagram

HI
i

��

Hf

��

I

f

��

Hn∅

Hvn−1
##







 vn

��								

Hfn
����
��
��
��

HA
a

�� A

Conversely, if f : I → A is a homomorphism, the preceding diagram proves
that for every n ≥ 1, the previous morphism fn is equal to f · vn. This shows
the uniqueness. �
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12.5 Remark. Free H-algebras Let H be a finitary endofunctor of Set. We
now describe free H -algebras, that is, a left adjoint of the forgetful functor UH .

For every set X, the endofunctor

H (−) + X

is also finitary. Therefore, following Lemma 12.3, it has an initial algebra.

12.6 Proposition The free H -algebra on X is the initial algebra for the endo-
functor H (−) + X.

Explicitly, if H ∗X is the initial algebra for H (−) + X with structure

iX: HH ∗X + X → H ∗X,

then the components

ϕX: HH ∗X → H ∗X and ηX: X → H ∗X

of iX form the algebra structure and the universal morphism, respectively.

Proof This follows easily from the observation that to specify an algebra
for H (−) + X on a set A means to specify an algebra HA → A for H and a
function X → A. �

12.7 Corollary The free H -algebra on X is the colimit of the ω-chain

∅ → H∅ + X → H (H∅ + X) + X → . . . .

12.8 Notation FH : Set → H -Alg denotes the left adjoint of UH . In case
H = H� , we use F� instead of FH�

.

12.9 Example We describe the free H�-algebra on a set X. Observe that

H�(−) + X = H�

for the signature � obtained from � by adding nullary operation symbols
from X. Thus the description of initial algebra in 12.4 immediately yields a
description of the free H�-algebra F�X on X as the algebra of all finite �-
trees on X, that is, finite labeled trees with leaves labeled in X + �0, and nodes
with n > 0 children labeled in �n. The operations of F�X are given by tree
tupling. The universal morphism assigns to a variable x ∈ X the singleton tree
labeled by x.

12.10 Example For the signature � of a single binary operation ∗, we have a
description of F�X for X = {p1, p2, p3} as all binary trees with leaves labeled
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by p1, p2, p3. Examples follow:

��������∗
��
�� 



��������pi ��������pi 	
�����pj

��������∗
���
�� ���

��

��������∗
��
�� ��

��
	
�����pk

��������pi 	
�����pj

��������∗
			
		 



��������pi ��������∗
��
�� ��

��

	
�����pj 	
�����pk

12.11 Example A commutative binary operation can be expressed by the
functor H assigning to every set X the set HX of all unordered pairs in X and
to every function f the function Hf acting as f component-wise.

An H -algebra is a set with a commutative binary operation. The free algebra
on X is the colimit of the chain

∅ → H∅ + X = X → HX + X → H (HX + X) + X → . . . .

We can represent the elements of HZ as binary nonordered trees with both
subtree elements of Z, and we see that the nth set in the preceding chain consists
of precisely all binary nonordered trees of depth less than n with leaves labeled
in X. Consequently, the initial algebra is

IX = all unordered binary trees over X.

12.12 Proposition For every finitary endofunctor H on Set, the category
H -Alg has limits and sifted colimits preserved by the forgetful functor.

We know from 6.30 that H preserves sifted colimits. We can generalize the
statement about sifted colimits to say: for every type of colimits preserved by
H , the category H -Alg has colimits of that type preserved by UH .

Proof We prove the more general formulation about colimits; the proof of
limits is analogous. Let D: D → H -Alg be a diagram with objects Dd =
(Ad, ad ), and let A = colim Ad be the colimit of UH · D in Set with the
colimit cocone cd: Ad → A. If H preserves this colimit, there exists a unique
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H -algebra structure a: HA → A turning each cd into a homomorphism. In
fact, the commutative squares

HAd

Hcd

��

ad

��

HA

a

��
Ad

cd

�� A

define a unique a since (1) cd · ad is a cocone of UH · D and (2) Hcd is the
colimit cocone of H · UH · D. It is easy to see that the algebra (A, a) is a
colimit of D in H -Alg with the cocone cd . �

12.13 Theorem For every finitary endofunctor H on Set, the category H -Alg
is cocomplete. It also has regular factorizations of morphisms preserved by the
forgetful functor.

Proof
1. We start with the latter statement. Observe that regular epimorphisms split
in Set, and therefore H preserves them. Given a homomorphism h: (A, a) →
(B, b) in H -Alg and a factorization h = m · e with

e: A → C a regular epimorphism and m: C → B a monomorphism

in Set, use the diagonal fill-in to obtain an H -algebra structure c: HC → C,
turning e and m into homomorphisms:

HA
He

��

a

��

HC

c

$$

Hm

��
A

e

��

HB

b

��
C

m

�� B

Since UH is faithful, m is a monomorphism in H -Alg , and e is a regular
epimorphism in H -Alg because given a pair u, v: X ⇒ A with coequalizer
e in Set, the corresponding homomorphisms u, v: FHX → A from the free
H -algebra have the coequalizer e in H -Alg .
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2. Arguing as in 4.1, to prove that H -Alg is cocomplete, it is sufficient
to prove that it has finite coproducts. Since by 12.3, H -Alg has an initial
object, it remains to consider binary coproducts. Thus we are to prove that the
diagonal functor �: H -Alg → H -Alg × H -Alg has a left adjoint (see 0.11).
Since by Proposition 12.12, the category H -Alg is complete, it is sufficient
(using the adjoint functor theorem 0.8) to find a solution set for every pair
(A1, a1), (A2, a2) of H -algebras; that is, we need a set of cospans

(A1, a1)
f1

�� (C, c) (A2, a2)
f2

��

in H -Alg through which all cospans factorize. Consider the coproduct

A1

c1
�� A1 + A2 A2

c2
��

in Set, denote by f : A1 + A2 → C the morphism induced by the cospan
(f1, f2), and let f : FH (A1 + A2) → (C, c) be the homomorphism correspond-
ing to f by adjunction. We claim that a solution set is provided by those cospans
(f1, f2) such that f is a regular quotient of FH (A1 + A2). This is indeed a set
because f is a regular epimorphism also in Set. For any cospan

(A1, a1)
g1

�� (D, d) (A2, a2),
g2

��

consider the regular factorization in H -Alg:

FH (A1 + A2)
g

��

e ��  
   

   
  

(D, d)

(C, c)

m

��!!!!!!!!!

We get a new cospan in Set by defining

fi: Ai

ci

�� A1 + A2

ηA1+A2
�� FH (A1 + A2)

e
�� C (i = 1, 2)

(where η is the unit of the adjunction FH � UH ). The cospan (g1, g2) factorizes
through (f1, f2) because gi = m · fi. Moreover, (f1, f2) is a cospan in H -Alg:
this follows easily from the fact that gi and m are homomorphisms of H -
algebras and m is a monomorphism in Set. Finally, (f1, f2) has the desired
property because f = e. �
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12.14 Remark So far, we have mentioned, besides the polynomial functors
H�, only one finitary functor that is not polynomial (see Example 12.11), and
that functor is an obvious quotient of the polynomial functor H�X = X × X.

In general, a quotient of a functor H is represented by a natural transfor-
mation α: H → H with epimorphic components. We now prove that finitary
endofunctors of Set are indeed precisely the quotients of the polynomial ones.

12.15 Theorem For an endofunctor H on Set, the following conditions are
equivalent:

1. H is finitary.
2. H is a quotient of a polynomial functor.
3. Every element of HX lies in the image of Hi for the inclusion i: Y → X of

a finite subset Y.

Proof For 3 ⇒ 1; Let

D: D → Set

be a filtered diagram with a colimit cocone

cd: Dd → C (d ∈ objD).

We prove that the diagram D · H has the colimit

Hcd: HDd → HC

in Set. For that, by 0.6, it is sufficient to verify that

a. every element x of HC lies in the image of Hcd for some d

b. given elements y1, y2 ∈ HDd merged by Hcd, there exists a connecting
morphism f : d → d ′ of D with Hf also merging y1 and y2

For point a, choose a finite subset i: Y → X with x lying in the image of Hi.

Since C = colim Dd is a filtered colimit in Set, there exists a factorization

i = cd · j for some d ∈ objD and j: Y → Dd.

Thus x lies in the image of Hcd.

For point b, choose a finite subset i: Z → Dd such that y1, y2 lie in the image
of Hi. Since C = colim Dd is a filtered colimit, there exists a connecting
morphism f : d → d ′ such that the domain restriction of cd ′ to the image
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i ′: Z′ → Dd ′ of f · i is a monomorphism. We obtain a commutative diagram

Z
e

��

i

��

Z′

i ′

��
Dd

Df
��

cd �
��

��
��

�
Dd ′

cd′����
��
��
��

C

for some morphism e such that cd ′ · i ′ is a monomorphism. Without loss of
generality, Z′ �= ∅ provided C �= ∅. Then cd ′ · i ′ is a split monomorphism.
Then H (cd ′ · i ′) also is a split monomorphism, and we conclude that HDf

merges y1, y2.

Implication 1 ⇒ 3 is obvious from the description of filtered colimits in Set
(see 0.6).

Implication 1 ⇒ 2 follows from the Yoneda lemma. Define the signature
� by using, for every n ∈ N, the elements of Hn as the operation symbols
σ of arity n ∈ N. In short, Hn = �n. Then we have a natural transformation
α: H� → H which, given an operation symbol σ ∈ �n (i.e., σ ∈ Hn), assigns
to the corresponding n-tuple f : n → Z the value

αZ(σ (f )) = Hf (σ ).

In other words, the component of αZ restricted to the functor Set(n,−) cor-
responding to σ ∈ �n is the Yoneda transformation of σ. Condition 3 tells us
precisely that αZ is a surjective map for every set Z.

For implication 2 ⇒ 3; every polynomial functor satisfies condition 3.
Indeed, to choose an element x ∈ H�X means to fix a symbol σ ∈ �n so that
x = (x1, . . . , xn) ∈ X × . . . × X. Therefore, as Y , we can take {x1, . . . , xn}.

Let now α: H� → H be a quotient, and fix an element x ∈ HX. Since
αX: H�X → HX is surjective, there exists y ∈ H� such that αX(y) = x. Find a
finite subset i: Y → X such that y = (H�i)(y) for some y ∈ H�. By naturality
of α, we have

x = αX(H�i)(y) = (Hi)αY (y). �

12.16 Remark In 13.23, we will see that for every presentation of a functor
H as a quotient functor of H�, the category of H -algebras can be viewed as
an equational category of �-algebras.
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12.17 Remark Most of the results in this chapter have an obvious gener-
alization to endofunctors H of cocomplete categories K that preserve sifted
colimits.

1. The initial chain of Remark 12.2 is defined by denoting by ∅ an initial
object ofK and using the unique morphism u: ∅ → H∅. The corresponding
H -algebra is initial.

2. The free H -algebra on an object X of K is the intial algebra for the endo-
functor H (−) + X.

3. The category H -Alg is complete and cocomplete, and the forgetful functor
into K preserves limits and sifted colimits.

Historical remarks

Algebras for an endofunctor were introduced by Lambek (1968). The initial
algebra construction of Remark 12.2 and its free-algebra variation of Corollary
12.7 stem from Adámek (1974). Factorizations and colimits in categories H -
Alg were studied by Adámek (1977). The fact that finitary endofunctors on Set
yield one-sorted algebraic categories follows from the work of Barr (1970) on
free monads (see Appendix A).
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Equational categories of �-algebras

This chapter shows the precise relationship of the classical one-sorted general
algebra and algebraic theories: we prove that every equational category of �-
algebras is a one-sorted algebraic category (in the sense of Definition 11.13),
and conversely, every one-sorted algebraic category can be presented by equa-
tions of �-algebras for some (one-sorted) signature. (The case of S-sorted
signatures is treated in Chapter 14.)

We have introduced varieties in algebraic categories in Chapter 10. The clas-
sical equational categories, that is, full subcategories of �-algebras presented
by equations, are a special case. In fact, we demonstrate that equations in the
sense of pairs of terms over � canonically correspond to equations in the sense
of Definition 10.1. We also prove that the categorical concepts of finitely pre-
sentable or finitely generated objects have in categories of �-algebras their
classical meaning.

13.1 Remark We described a left adjoint

F�: Set → �-Alg

of the forgetful functor U�: �-Alg → Set in 12.9 (recall from 2.25 that
H�-Alg = �-Alg). The more standard description is that F�X is the fol-
lowing �-term-algebra: the underlying set is the smallest set such that every
element x ∈ X is a �-term and for every σ ∈ � of arity n and for every
n-tuple of �-terms p1, . . . , pn, we have a �-term σ (p1, . . . , pn). The �-
algebra structure on F�X is given by the formation of terms σ (p1, . . . , pn).
This defines a functor F�: Set → �-Alg on objects. To define it on mor-
phisms f : X → Z, let F�f be the function which in every term p of
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F�X substitutes for every variable x ∈ X the variable f (x). More explic-
itly; if x ∈ X, then F�f (x) = f (x); if p1, . . . , pn ∈ F�X and σ ∈ �n, then
F�f (σ (p1, . . . , pn)) = σ (F�f (p1), . . . , F�f (pn)). It is easy to verify that F�

is a well-defined functor that is naturally isomorphic to the �-tree functor of
12.9. Thus we have F� � U�. The unit of the adjunction is the inclusion of
variables into the set of �-terms: ηX: X → F�X.

13.2 Notation Suppose that a set of standard variables x0, x1, x2, . . . is given.
Then the free �-algebras

F�{x0, . . . , xn−1}

yield, by 11.24, a one-sorted theory for �-Alg . We denote this theory by

(T�, T�).

Thus morphisms from n to 1 in T� are the �-terms in variables x0, . . . , xn−1.

General hom-sets are given by k-tuples of these terms:

T�(n, k) = (F�n)k,

and T�: N → T� assigns to every function g: k → n in Set, that is, g ∈
N (n, k), the k-tuple of terms

xg(0), . . . , xg(k−1).

13.3 Lemma The category �-Alg is concretely equivalent to the category of
algebras of (T�, T�).

Proof Define E: �-Alg → Alg T� on objects as follows. For a �-algebra
(A, a), the corresponding functor from T� to Set is given on objects by n 
→ An

and on morphisms t: n → 1 by the function An → A of evaluation of the term
t in the given algebra. This function takes a map f : n → A to f (t) ∈ A, where
f : F�{x0, . . . , xn−1} → (A, a) is the unique homomorphism extending f.

Conversely, if B is a T�-algebra, we get a �-algebra structure on the set
B1 as follows: if σ ∈ �n, then σ (x0, . . . , xn−1) ∈ F�n = T�(n, 1), and this
yields an n-ary operation on B1 by applying B to that morphism (recall that
Bn is isomorphic to the nth power of B1). This gives a concrete equivalence
E: �-Alg → Alg T�. �

13.4 Definition Given signatures � and �′, a morphism of signatures is
a function f : � → �′ preserving the arities. This leads to the category of
signatures Sign – this is just the slice category Set ↓ N.
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13.5 Definition For every one-sorted algebraic theory (T , T ), we define the
signature

C(T , T )

whose n-ary symbols are precisely the morphisms from n to 1 in T :

(C(T , T ))n = T (n, 1).

This construction can be easily extended to morphisms of one-sorted theories.

13.6 Example The signature C(T�, T�) has all �-terms in variables
x0, . . . , xn−1 as n-ary operation symbols. Therefore there is a canonical mor-
phism of signatures

η�: � −→ C(T�, T�)

given by η�(σ ) = σ (x0, . . . , xn−1) ∈ F�n for any σ of arity n.

13.7 Proposition: A free one-sorted theory on a signature For every sig-
nature �, the theory (T�, T�) is free on �; that is, given a one-sorted the-
ory (T , T ), for every morphism G: � → C(T , T ) of signatures there exists
a unique morphism G: (T�, T�) → (T , T ) of one-sorted theories such that
C(G) · η� = G:

�
η�

��

G ���
��

��
��

��
C(T�, T�)

C(G)��"""
"""

"""
"

C(T , T )

Proof
1. We define a functor G: T� → T on objects by n 
→ n and on morphisms
p ∈ T�(k, 1), that is, �-terms on {x0, . . . , xk−1}, by structural induction:

i. For variables xi ∈ T�(k, 1), put Gxi = T πk
i , the chosen projection in

T (k, 1).
ii. Given p = σ (p1, . . . , pn) where σ ∈ �n, pi ∈ T�(k, 1) (i = 1, . . . , n) and

Gpi are defined already, put

Gp: k
<Gp1,...,Gpn>

�� n
Gσ

�� 1.

It is clear that G · T� = T and C(G) · η� = G.
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2. Uniqueness: Let M: (T�, T�) → (T , T ) be a morphism of one-sorted
theories with C(M) · η� = G. Since M preserves finite products, all we have
to prove is that it is determined when precomposed by η�. This is the case,
indeed:

i. For variables xi ∈ T�(k, 1), use M · T� = T so that M(η�(xi)) is the ith
projection πk

i .

ii. Consider p = σ (p1, . . . , pn) with σ ∈ �n and pi ∈ T�(k, 1) (i =
1, . . . , n). Since σ (p1, . . . , pn) = σ (x1, . . . , xn)· < p1, . . . , pn > in T�, we
have that Mp = M(η�(σ )) · 〈Mp1, . . . ,Mpm〉. �

13.8 Remark Let (T , T ) be a one-sorted theory. If we apply the construction
described in the first part of the proof of 13.7 to the identity morphism on
C(T , T ), we get a morphism

ε(T ,T ): TC(T ,T ) −→ (T , T )

of one-sorted theories. It is clearly full, and then, by 10.13, the unique functor
ε′ making commutative the following diagram of morphisms of one-sorted
theories is an isomorphism:

TC(T ,T )

Q
��

ε(T ,T ) ��















TC(T ,T )/ ∼

ε′
%%���

��
��
��
�

T

Therefore

1. (T , T ) is a quotient of the free one-sorted theory TC(T ,T ).

2. Alg T is a variety of C(T , T )-algebras.

To improve the previous result, we need the notion of equational category of
�-algebras. We start comparing the classical notion of equation with the one
introduced in Chapter 10.

13.9 Remark

1. Classically, equations are expressions

t = t ′,

where t and t ′ are terms in variables x0, . . . , xn−1 for some n. This is
a special case of 10.1: here we have a parallel pair t, t ′: n ⇒ 1 in the
theory T�. Also, a �-algebra (A, a) satisfies this equation in the classical
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sense (i.e., for every interpretation f : {x0, . . . , xn−1} → A, we have f (t) =
f (t ′)) iff the corresponding T�-algebra satisfies this equation in the sense
of 10.1.

2. In fact, for the theory T� , equations in the sense of 10.1 are equivalent to
the classical equations: given a parallel pair

t, t ′: n ⇒ k in T�

and given the k projections pk
i : k → 1 (i = 0, . . . , k − 1) specified by the

functor T�: N → T�, we get a k-tuple of equations

pk
i · t = pk

i · t ′

in the classical sense. It is clear that a �-algebra satisfies each of these k

equations iff the corresponding T�-algebra satisfies t = t ′ in the sense of
10.1.

13.10 Definition

1. By an equational category of �-algebras is meant a full subcategory of
�-Alg formed by all algebras satisfying a set E of equations. We denote
such a category by

(�,E)-Alg.

The pair (�,E) is called an equational theory.
2. Equational categories are concrete categories over Set that are, for some

signature �, equational categories of �-algebras.

13.11 Theorem One-sorted algebraic categories are precisely the equational
categories. In more detail, a concrete category over Set is one-sorted algebraic
iff it is concretely equivalent to an equational category.

Proof
1. Every equational category of �-algebras is a one-sorted algebraic category.
In fact, following Remark 13.9, the concrete equivalence �-Alg 	 Alg T�

of Lemma 13.3 is restricted to a concrete equivalence between (�,E)-Alg
and Alg (T�/ ∼E), where ∼E is the congruence on T� generated by E

(see 10.7).
2. Conversely, every one-sorted algebraic category is concretely equivalent to

an equational category of �-algebras. In fact, Alg T is equivalent to Alg (T�/ ∼)
for some congruence ∼ on T� (Remark 13.8) and therefore to (�,E)-Alg,
where E is the set of all equations u = v, where u and v are congruent
terms. �
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13.12 Example Recall that a semigroup is an algebra on one associative
binary operation. This means that we consider the �-algebras with � = {∗}
that satisfy the equation

(x ∗ y) ∗ z = x ∗ (y ∗ z).

Thus the theory of semigroups is the quotient theory T�/ ∼, where ∼ is the
congruence generated by the preceding equation.

13.13 Example Beside the algebraic theory Tab of abelian groups of 1.6, we
now have a different theory, based on the usual equational presentation: let
� = {+,−, 0} with + being binary, − being unary, and 0 being nullary. Then
a theory of abelian groups is the quotient T�/ ∼ modulo the congruence on T�

generated by the four equations

(x + y) + z = x + (y + z),
x + y = y + x,

x + 0 = x,

x + (−x) = 0.

13.14 Example Recall that a monoid is a semigroup (M, ∗) with a unit. We
can consider the category of all monoids as the category (�,E)-Alg , where �

has a binary symbol ∗ and a nullary symbol e and E contains the associativity
of ∗ and the equations

x = x ∗ e

x = e ∗ x

(equivalently, as the category Alg (T�/ ∼), where ∼ is the congruence generated
by the associativity of ∗ and the preceding equations).

13.15 Example For every monoid M (3.10), an M-set is a pair (X,α) consist-
ing of a set X and a monoid action α: M × X → X (the usual notation is mx in
place of α(m, x)) such that every element x ∈ X satisfies m(m′x) = (m ∗ m′)x
for all m,m′ ∈ M, and ex = x. The homomorphisms f : (X,α) → (Z, β) of
M-sets are the functions f : X → Z with f (mx) = mf (x) for all m ∈ M and
x ∈ X. We can describe this category as (�,E)-Alg , where � = M with all
arities equal to 1 and E consists of the equations

x = e x

(m ∗ m′) x = m (m′ x)

for all m,m′ ∈ M.

13.16 Definition A concrete category U: A → K is called
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1. amnestic provided that for every isomorphism i: A → A′ in A with Ui =
idUA we have A = A′ (this implies i = idA because U is faithful)

2. transportable provided that for every object A in A and every isomorphism
i: UA → X in K, there exists an isomorphism j: A → B in A with UB =
X and Uj = i

3. uniquely transportable if in condition 2 the isomorphism j is unique.

13.17 Example

1. For every one-sorted algebraic theory (T , T ), the concrete category

Alg T : Alg T → Set

is transportable, but almost never uniquely transportable (see 11.7). In fact,
given a T -algebra A and a bijection i: A1 → X, let B: T → Set be defined
on objects by Bn = Xn and on morphisms f : n → k in the unique way that
makes the powers of i natural:

(A1)n 	 An
Af

��

in

��

Ak = (A1)k

ik

��

Xn = Bn
Bf

�� Bk = Xk

Then these powers form a natural isomorphism j: A → B with j1 = i.

2. For every signature �, the concrete category

U�: �-Alg → Set, U�(A, σA) = A

is uniquely transportable. In fact, given a bijection i: A → X, there is a
unique way of defining, for an n-ary symbol σ ∈ �, the operation σX so
that the square

An
σA

��

in

��

A

i

��
Xn

σX

�� X

commutes. The same is true for the equational categories of �-algebras.
For example, the category of abelian groups is uniquely transportable.
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3. For every endofunctor H of a category K, the concrete category

UH : H -Alg → K, (A, a) 
→ A

of 12.1 is uniquely transportable. In fact, given an algebra a: HA → A and
an isomorphism i: A → X in K, the unique algebra x: HX → X for which
i becomes a homomorphism is given by x = i · a · Hi−1.

13.18 Remark

1. For every concrete category, we have

transportable + amnestic ⇔ uniquely transportable.

In fact, if (A, U ) is transportable and amnestic, and if in Definition 13.16.2
we have another isomorphism j ′: A → B ′ with Uj ′ = i, use amnesticity
on the isomorphism j ′ · j−1: B → B ′ to conclude B = B ′. Then j = j ′

since U is faithful. Conversely, if (A, U ) is uniquely transportable, then by
applying 13.16.3 to i = idUA, we deduce that it is amnestic.

2. Transportability is not invariant under concrete equivalence and thus not
all one-sorted algebraic categories are transportable. For example, let E:
Set ′ → Set be the full subcategory of Set consisting of all cardinal numbers.
Then (Set ′, E) is one-sorted algebraic because it is concretely equivalent to
(Set, Id), but it obviously fails to be transportable.

3. We will see in Corollary 13.21 a converse of Example 13.17.2: every
uniquely transportable one-sorted algebraic category is (up to concrete
isomorphism) an equational category.

13.19 Definition Given concrete categories U: A → K and V : B → K, by a
concrete isomorphism between them we mean a concrete functor

A
E

��

U ���
��

��
��

B

V����
��
��
�

K

for which there exists a functor E′: B → A such that both E · E′ and E′ · E

are equal to the identity functors. (Note that such a functor E′ is necessarily
concrete.) We then say that (A, U ) and (B, V ) are concretely isomorphic.

13.20 Lemma A concrete equivalence between uniquely transportable con-
crete categories is a concrete isomorphism.



Equational categories of �-algebras 135

Proof Given a concrete equivalence

A
E

��

U ���
��

��
��

B

V����
��
��
�

K

between uniquely transportable categories, we prove that E is bijective on
objects – thus it is a (concrete) isomorphism.

1. If A and A′ are objects of A with EA = EA′, then for the identity
morphism of EA, there exists, since E is full, a morphism f : A → A′ with
Ef = id. And f is of course an isomorphism in A. Since Uf = V (Ef ) = id,

amnesticity of U implies A = A′.
2. For every object B of B, there exists an isomorphism i: EA → B in B

yielding an isomorphism V i: UA → V B in K. Let j: A → A′ be the unique
isomorphism in A with Uj = V i. The isomorphism Ej · i−1: B → EA′ fulfils
V (Ej · i−1) = Uj · V i−1 = id, and thus by amnesticity of V , we have B =
EA′. �

13.21 Corollary Uniquely transportable one-sorted algebraic categories are,
up to concrete isomorphism, precisely the equational categories.

In fact, this follows from Theorem 13.11, Example 13.17, and Lemma 13.20.

Birkhoff’s variety theorem (10.22) can be restated in the context of �-algebras:

13.22 Theorem Let � be a signature. A full subcategory A of �-Alg is
equational iff it is closed in �-Alg under

1. products
2. subalgebras and
3. regular quotients

In fact, this follows from 10.22, 11.34, and 13.11.

13.23 Proposition Let � be a one-sorted signature and H: Set → Set a quo-
tient of the polynomial functor H�. The concrete category H -Alg is concretely
isomorphic to an equational category of �-algebras.

Proof Let α: H� → H be a natural transformation with epimorphic compo-
nents. We get a full and faithful functor

I: H -Alg → H�-Alg defined by I (A, a) = (A, a · αA).
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Moreover, I is concrete since the diagram

H -Alg
I

��

UH ���
��

��
��

�
H�-Alg

U���!!!
!!
!!
!!

Set

= �-Alg

clearly commutes.
Since I is injective on objects, H -Alg is concretely isomorphic to the full

subcategory I (H -Alg) of �-Alg. We are to prove that I (H -Alg) satisfies the
conditions of Theorem 13.22.

1. Consider the commutative diagram above. Since products are both pre-
served by UH and reflected by U� , they are also preserved by I. In particular,
I (H -Alg ) is closed in �-Alg under products.

2. Let f : (A, x) → I (B, b) be a monomorphism in �-Alg (and then in Set).
Since αA is a strong epimorphism in Set, we get an H -algebra structure on A

by diagonal fill-in:

H�A
H�f

��

αA

���
��

��
��

�

x

��

H�B

αB

��
HA

Hf
��

a��

HB

b

��
A

f

�� B

This shows that (A, x) = I (A, a).
3. First observe that in point 2 if f : I (A, a) → (B, y) is an isomorphism in

�-Alg, then (B, y) ∈ I (H -Alg). Indeed f : (A, a) → (B, b) is an isomorphism
in H -Alg, where b = f · a · Hf −1 and I (B, b) = (B, y). (In other words,
(H -Alg, I ) is transportable; see Definition 13.16.)

Now consider a regular epimorphism e: I (A, a) → (B, y) in �-Alg. Its ker-
nel pair, being a subobject of I (A, a) × I (A, a), lies in the image of I , and
we can take its coequalizer (Q, q) in H -Alg . This coequalizer is preserved
by I (because by 3.4 it is reflexive, and I preserves sifted colimits: this is so
because sifted colimits are both preserved by UH and reflected by U�). Thus
I (Q, q) 	 (B, y). �

13.24 Remark In general algebra, the concepts of finitely generated and
finitely presentable �-algebra are defined as follows: a �-algebra (A, a) is
called
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1. finitely generated if it is generated by a finite set (see 11.10); that is, (A, a)
is isomorphic to

F�{x1, . . . , xn}/ ∼
for some congruence ∼ on F�{x1, . . . , xn}

2. finitely presentable if it is such a quotient modulo a finitely generated
congruence; that is, (A, a) is isomorphic to F�{x1, . . . , xn}/ ∼ for some
congruence ∼ generated by finitely many equations

It turns out that these concepts coincide with the categorical concepts of 5.21
and 5.3, respectively. Let us first observe the following:

1. Every subalgebra generated by a set X (see 11.10) is a regular quotient
of the free algebra F�X. In fact, let B be the subalgebra of A generated
by X, and let f : F�X → A be the unique homomorphism extending the
inclusion map. Then the image f (F�X) is a subalgebra of A because
the forgetful functor preserves regular factorizations (see 11.9); this is,
obviously, the least subalgebra containing X, and the codomain restriction
of f is a regular epimorphism.

2. Conversely, every regular quotient q: F�X → A of a free algebra gener-
ated by X is “generated by X” – more precisely, the image of the map

X
η�

�� U�(F�X)
U�q

�� U�A

generates A.

13.25 Proposition A �-algebra is a finitely generated object of �-Alg iff it is
a regular quotient of a finitely generated free algebra.

Proof
1. Let (A, a) be a finitely generated object of �-Alg. Form a diagram in �-
Alg indexed by the poset of all finite subsets of A by assigning to every such
X ⊆ A the subalgebra X of A generated by X (see 11.10). Given finite subsets
X and Z with X ⊆ Z ⊆ A, the connecting map X → Z is the inclusion map.
Then the inclusion homomorphisms iX: X → A form a colimit cocone of this
directed diagram. Since the functor �-Alg (A,−) preserves this colimit, for
idA ∈ �-Alg (A,A) there exists a finite set X such that idA lies in the image of
iX – but this proves X = A.

2. Let us prove that every quotient A = F {x1, . . . , xn}/ ∼ is finitely gener-
ated in the sense of 11.10. Given a directed diagram of subobjects Bi (i ∈ I )
with a colimit B = colim Bi, it is our task to prove that �-Alg (A,−) preserves
this colimit; that is, every homomorphism h: A → B factorizes through one
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of the colimit homomorphisms bi: Bi → B. For the finite set {h(ηX(xk))}nk=1,
there exists i ∈ I such that this set lies in the image of bi. From that it eas-
ily follows that the image of h is contained in the image of bi. Since bi is a
monomorphism, it follows that there exists a homomorphism g: A → Bi with
h = bi · g, as requested. �

13.26 Proposition A �-algebra is a finitely presentable object of �-Alg iff
it is a regular quotient of a finitely generated free algebra modulo a finitely
generated congruence.

Proof
1. Let (A, a) be a finitely presentable object. By 11.28, there exists a coequalizer

F�X
u

��

v

�� F�Z
c

�� (A, a)

with X and Z finite. Let ∼ be the congruence generated by the finitely many
equations u(η�(x)) = v(η�(x)) where x ∈ X; then (A, a) is clearly isomorphic
to F�Z/∼: the canonical morphism q: F�Z → F�Z/ ∼ is, namely, also a
coequalizer of u and v.

2. Conversely, let Z be a finite set and ∼ a congruence on F�Z generated
by equations t1 = s1, . . . , tk = sk. For X = {1, . . . , k}, define homomorphisms
u, v: F�X ⇒ F�Z by

u(i) = ti and v(i) = si for i = 1, . . . , k.

Then the canonical map q: F�Z → F�Z/ ∼ is a coequalizer of u and v.

Therefore F�Z/ ∼ is finitely presentable by 11.28. �

Historical remarks

The material of this chapter is closely related to the classical work of
Birkhoff (1935); for a modern exposition of general algebra, see, for example,
Cohn (1965) or Grätzer (2008). The concepts of (uniquely) transportable and
amnestic functors are taken from Adámek et al. (2009); some authors use
transportability requesting uniqueness as a part of the definition.
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S-sorted algebraic categories

In previous chapters, we have considered one-sorted algebraic categories, which
are categories equipped with a forgetful functor into Set, such as groups, abelian
groups, and lattices. In computer science, one often considers S-sorted algebras,
where S is a given nonempty set (of sorts), and algebras are not sets with
operations but rather S-indexed families of sets with operations of given sort.
This means that the forgetful functor is into Set S rather than into Set. In this
chapter, we revisit one-sorted algebraic categories generalizing definitions and
several results to the S-sorted case.

Analogously to the one-sorted case, where the theory has objects Xn (which
we represented by n alone) and projections πn

i : Xn → X are specified, in the
case of S-sorted theories, we have objects Xs for s ∈ S that generate the whole
theory in the sense that every object of T is a product

Xs0 × . . . × Xsn−1

for some word w = s0 . . . sn−1 over S. We again suppose that projections

πw
i : Xs0 × . . . × Xsn−1 → Xsi

(i = 0, . . . , n − 1)

are chosen, and again, instead of working with the preceding product, we work
with the word s0 . . . sn−1 alone. In other words, the theory N that plays a central
role for one-sorted theories is generalized to the following.

14.1 Notation Recall from 1.5 that we denote by

S∗

the category whose objects are the finite words over S and whose morphisms
from s0 . . . sn−1 to t0 . . . tk−1 are all functions f : k → n with sf (i) = ti for all

139
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i = 0, . . . , k − 1. In particular, for every word w = s0 . . . sn−1, we have the
projections

πw
i : s0 . . . sn−1 → si (i = 0, . . . , n − 1)

given by the ith injection 1 
→ n in Set.

14.2 Example N = {s}∗ provided that we identify every natural number n

with the word ss . . . s of length n.

14.3 Remark We know from 1.5 that S∗ is an algebraic theory for Set S, and
every word w is a product of one-letter words with the projections πw

0 , . . . , πw
n−1

given earlier. We are going to identify Set S with Alg S∗. The full embedding

YS∗: (S∗)op → Set S

assigns to a word w = s0 . . . sn−1 the S-sorted set

YS∗ (w)s = {i = 0, . . . , n − 1 ; si = s}.
14.4 Definition Let S be a nonempty set.

1. An S-sorted algebraic theory is a pair (T , T ) where T is an algebraic theory
whose objects are the words over S, and T : S∗ → T is a theory morphism
that is the identity map on objects.

2. A morphism of S-sorted algebraic theories M: (T1, T1) → (T2, T2) is a func-
tor M: T1 → T2 such that M · T1 = T2:

S∗
T1

����
��
��
�� T2

�
��

��
��

�

T1
M

�� T2

14.5 Remark Analogously to 11.3, we have not requested that morphisms of
one sorted theories preserve finite products since this simply follows from the
equation M · T1 = T2. Observe that this equation implies that M is the identity
map on objects.

14.6 Example

1. For the category Graph of graphs, see 1.11, we have an S-sorted theory
with S = {v, e}, and T : S∗ → Tgraph is determined by T v = v and T e = e

(the theory Tgraph is described in 1.16).
2. Let C be a small category, put S = obj C, and let ETh : C → TC denote the

free completion of C under finite products (1.14); recall from 1.15 that
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the objects of TC can be viewed as words over S. Therefore we have a
unique theory morphism TC: S∗ → TC that is the identity map on objects.
We obtain an S-sorted theory

(TC, TC).

14.7 Remark Precisely as in the one-sorted case, the functor T does not
influence the concept of algebra: the category Alg T thus consists, again, of
all functors A: T → Set preserving finite products. However, the presence of
T makes the category of algebras concrete over Set S: the forgetful functor is
simply

Alg T : Alg T → Set S

(see Definition 14.4). More precisely, this forgetful functor takes an algebra
A: T → Set to the S-sorted set 〈As〉s∈S and a homomorphism h: A → B to the
S-sorted function with components hs: As → Bs.

14.8 Proposition Let (T , T ) be an S-sorted algebraic theory. The forgetful
functor

Alg T : Alg T → Set S

is faithful, algebraic, and conservative. It thus preserves and reflects limits,
sifted colimits, monomorphisms, and regular epimorphisms.

The proof is analogous to that of 11.8.

14.9 Remark The concept of one-sorted algebraic category of Chapter 11 used
concrete equivalences of categories over Set. For S-sorted algebraic theories,
we need, analogously, concrete equivalences over Set S (see 11.12).

14.10 Definition An S-sorted algebraic category is a concrete category over
Set S that is concretely equivalent to Alg T : Alg T → Set S for an S-sorted alge-
braic theory (T , T ).

14.11 Proposition Every variety of T -algebras for an S-sorted theory (T , T )
is an S-sorted algebraic category.

The proof is analogous to that of 11.17.

14.12 Remark Let (T , T ) be an S-sorted theory.

1. The forgetful functor Alg T : Alg T → Set S has a left adjoint. In fact, due
to 4.11 being applied to YS∗: (S∗)op → Set S , we can choose a left adjoint

FT : Set S → Alg T
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in such a way that the square

(S∗)op
T op

��

YS∗
��

T op

YT
��

Set S

FT

�� Alg T

commutes.
2. T -algebras of the form FT (X), for X an S-sorted set, are called free alge-

bras. If X is finite (1.18), they are called finitely generated free algebras.

14.13 Corollary Let (T , T ) be an S-sorted theory. T op is equivalent to the full
subcategory of Alg T of finitely generated free algebras.

14.14 Remark Results about finitely presentable and perfectly presentable
algebras and regular projectives generalize easily from the one-sorted case (see
11.26–11.33), to the S-sorted case; we leave this for the reader. Let us just
stress that when working with variables in the S-sorted case, a sort is assigned
to every variable; that is, the corresponding object of variables also lives in
Set S.

14.15 Theorem: S-sorted algebraic duality The 2-category ALG S of S-sorted
algebraic categories, concrete functors, and natural transformations is biequiv-
alent to the dual of the 2-category Th S of S-sorted algebraic theories, mor-
phisms of S-sorted theories, and natural transformations.

The proof is completely analogous to that of 11.38.

14.16 Definition Let � be an S-sorted signature, see Example 11.10.

1. A �-algebra is a pair (A, a) consisting of an S-sorted set A = 〈As〉s∈S and
a function a assigning to every element σ: s0 . . . sn−1 → s of � a mapping

σA: As0 × . . . × Asn−1 → As.

(In case n = 0, we have a constant σA ∈ As.)
2. �-homomorphisms from (A, a) to (B, b) are S-sorted functions

f = 〈fs〉 with fs: As → Bs (s ∈ S)
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such that for every operation σ: s0 . . . sn−1 → s of �, the square

As0 × . . . × Asn−1

σA

��

fs0 ×...×fsn−1

��

As

fs

��
Bs0 × . . . × Bsn−1

σB

�� Bs

commutes. This yields a concrete category

�-Alg

of �-algebras with the forgetful functor

U�: �-Alg → Set S, U�(A, a) = A.

14.17 Example

1. The category of graphs has the form �-Alg for S = {v, e} and � consisting
of two operations of arity e → v (called τ and σ in 1.11).

2. For � = ∅, we have �-Alg = Set S.

3. For sequential automata (see 1.25), put S = {s, i, o} and � = {δ, γ, ϕ} with
arities δ: si → s, γ : s → o and ϕ: s.

4. For the example of stacks 1.24, put S = {s, n} and � = {succ, push, pop,
top, 0, e} with the arities given in 1.24.

14.18 Remark

1. The description of a left adjoint

F�: Set S → �-Alg

of U� is completely analogous to 13.1. Given an S-sorted set X of variables,
we form the smallest S-sorted set F�X (of terms) such that every element
x ∈ Xs is a term of sort s, and for every σ ∈ � of arity s0 . . . sn−1 → s and
for every n-tuple of terms p0, . . . , pn−1 of sorts s0, . . . , sn−1, respectively,
we have a term σ (p0, . . . , pn−1) of sort s. The �-algebra structure on F�X

is given by the formation of terms σ (p0, . . . , pn−1).
This defines a functor F�: Set S → �-Alg on objects. To define it on

morphisms, proceed as in 13.1.
2. We obtain, assuming a countable set of “standard variables xs

i of sort s” for
every s ∈ S, an S-sorted theory

(T�, T�)
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analogous to the one described in 13.2: the words s0 . . . sn−1 represent the
free �-algebra F�{xs0

0 , . . . , x
sn−1
n−1}. The categories �-Alg and Alg T� are

concretely equivalent over Set S ; this is analogous to 13.3.
3. Equations in the sense of 10.1 can be substituted by expressions

t = t ′,

where t and t ′ are two elements of F�X of the same sort (for some finite
S-sorted set X of standard variables). This is analogous to 13.9, except
that in the S-sorted case, the quantification of variables must be made
explicit. If � is a one-sorted signature and t, t ′ are terms in F�X, then
in place of X, we can take the set Z ⊆ X of all variables that appear in t

or t ′. An algebra satisfies t = t ′ independently of whether we work with
F�Z or F�X. This is not so in S-sorted signatures, as we demonstrate in
14.20.1. We therefore need the following.

14.19 Definition Given an S-sorted signature �, by an equation is meant an
expression

∀x0 ∀x1 . . . ∀xn−1 (t = t ′),

where xi is a variable of sort si (i = 0, . . . , n − 1) and t, t ′ are elements
of F�{x0, . . . , xn−1} of the same sort s. A �-algebra (A, a) satisfies the
equation provided that for every S-sorted function f : {x0, . . . , xn−1} → A,
the unique homomorphism f : F�{x0, . . . , xn−1} → (A, a) extending f fulfils
f s(t) = f s(t

′). In case n = 0, we write ∀∅ (t = t ′).

14.20 Example

1. In the signature of graphs (see 14.17), consider variables x, x ′ of sort v and
a variable y of sort e. The equation

∀x ∀x ′ (x = x ′)

describes graphs on at most one vertex, whereas

∀x ∀x ′ ∀y (x = x ′)

describes all graphs that either have no edge or have just one vertex.
2. In the signature of stacks, (see 14.17) there are several equations one expects

to be required. For example, if a natural number x is inserted into a stack y

and then deleted, the stack does not change:

∀x ∀y (pop(push(x, y)) = y).
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Other such equations are

∀x ∀y (top(push(x, y)) = x)

and (from our definition of top)

top(e) = 0.

14.21 Example Let us return to Example 10.23, explaining that Birkhoff’s
variety theorem requires, in general, the use of directed unions. The example
worked with Set N, which is �-Alg for the empty N-sorted signature. Let xn

and yn be variables of sort n ∈ N, and consider the equation quantifying yn and
all x0, x1, x2, . . . :

∀yn ∀x0 ∀x1 ∀x2 . . . (xn = yn).

Then algebras, that is, N-sorted sets, satisfy these equations iff they lie in the
category A. However, infinite quantification brings us out of the finitary logic
(and out of the realm of Definition 10.1).

14.22 Definition

1. Let � be an S-sorted signature. By an S-sorted equational category of
�-algebras is meant a full subcategory of �-Alg formed by all algebras
satisfying a set E of equations (in the sense of 10.1 or, equivalently, Remark
14.18).

2. S-sorted equational categories are concrete categories over Set S that are,
for some signature �, S-sorted equational categories of �-algebras.

14.23 Remark Birkhoff’s variety theorem for S-sorted algebras states that
S-sorted equational categories are precisely the full subcategories of �-Alg
closed under

products
subalgebras
regular quotients
directed unions

If S is a finite set, the last item can be left out. The proof is completely analogous
to that of 11.34: we choose i0 in such a way that given s ∈ S for which the sort
of A is nonempty, the sort of Ai0 is also nonempty.

14.24 Example All one-sorted theories form a many-sorted equational cat-
egory. In more detail, the category Th1 of one-sorted theories and their mor-
phisms is an equational category of �-algebras for the following signature using
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N × N as a set of sorts: � consists of the binary operations “composition,”

cijk: (i, j )(j, k) → (i, k) (for all i, j, k ∈ N);

the constants expressing identity morphisms,

en: (n, n) (for all n ∈ N);

and the projections (provided by T : N → T ),

pn,k: (n, k) (for all k < n).

In fact, with every one-sorted theory (T , T ), associate the �-algebra (T , T )
whose underlying sets are the hom-sets of T ,

(T , T )(i,j ) = T (i, j ),

and where cijk and en have the obvious meaning, and the interpretation of pn,k

is T πn
k . Every morphism F : (T , T ) → (T ′, T ′) of one-sorted theories defines

a homomorphism of �-algebras F : (T , T ) → (T ′, T ′) whose underlying func-
tion of sort (i, j ) is the action of F at T (i, j ). Then

(−): Th1 → �-Alg

is a full and faithful functor. The image of this full embedding is the equational
category described by the equations expressing the fact that en is the identity
morphism

cijj (f, ej ) = f and ciij (ei, g) = g

and the associativity of composition

cikn(cijk(f, g), h) = cijn(f, cjkn(g, h)).

14.25 Remark

1. Another way of expressing Th1 as an equational category of many-sorted
algebras uses only N as the set of sorts: the underlying sets of the algebra
for (T , T ) are then T (n, 1) for n ∈ N. Here, however, the corresponding
operations need to take into account the tupling g(f1, . . . , fn) of an n-ary
operation symbol g ∈ T (n, 1) with n symbols fi ∈ T (ki, 1): put

k = k1 + . . . + kn;

then our signature must contain “tupling” operation symbols

tk1...kn
: k1 . . . kn → k

(for all n-tuples k1, . . . , kn in N). The equations describing Th1 as an equa-
tional category of N-sorted algebras are then somewhat more involved.
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2. The presentation of one-sorted theories as an equational category of N-
sorted algebras above is closely related to the concept of clone: given a
�-algebra A on a set X, the clone of A is the smallest set of functions
of many variables f : Xn → X (n ∈ N) containing all projections and all
operations σA for σ ∈ � and closed under the tupling g(f1, . . . , fn). One
then introduces a partial operation of (simultaneous) composition on the
clone.

14.26 Example All S-sorted theories form a many-sorted equational catgeory.
This is completely analogous to the previous one-sorted case. A trivial presen-
tation of Th S uses sorts S∗ × S∗ (interpreted as the hom-sets of the theory).
A more “clonelike” presentation uses sorts S∗ × S since the hom-sets T (w, s)
for w ∈ S∗ and s ∈ S are sufficient.

14.27 Example: Modules over variable rings Here we consider pairs (R,M)
where M is a right R-module as objects. Morphisms from (R,M) to (R′,M ′)
are pairs of functions (h, f ), where h: R → R′ is a ring homomorphism and
f : M → M ′ is a homomorphism of abelian groups satisfying

f (λx) = h(λ)f (x) for all λ ∈ R, x ∈ M.

This is an equational category of two-sorted algebras of sorts r and m with ring
operations

+: rr → r ,
−: r → r ,
×: rr → r ,
0, 1: r ,

and module operations

⊕: mm → m,
�: m → m,
�: m,
∗: rm → m,

satisfying the equations (1) of the presentation of rings; (2) of abelian groups
for ⊕, �, and �; and (3) the distributive laws.

14.28 Proposition

1. S-sorted algebraic categories are precisely the S-sorted equational cate-
gories. In more detail, a concrete category over Set S is S-sorted algebraic iff
it is concretely equivalent to an S-sorted equational category of �-algebras
for some signature �.
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2. Uniquely transportable S-sorted algebraic categories are, up to concrete
isomorphism, precisely the S-sorted equational categories.

The proofs are completely analogous to those of 13.11 and 13.21.

14.29 Remark Every S-sorted equational category is, of course, complete
and cocomplete. In particular, initial algebras exist in all S-sorted equational
categories. In theoretical computer science, these algebras are used as a for-
malization of “abstract data types”: these are given by operations and equations
and consist of elements generated by the given operations (no extra variables
are used), and they satisfy only the equations that are consequences of the
given ones. An abstract data type is thus, precisely as initial objects should
be, determined only up to isomorphism. We illustrate this with a couple of
examples.

14.30 Example

1. Natural numbers form a one-sorted abstract data type given by a constant 0
and a unary operation s (successor). This corresponds to the initial algebra
of the one-sorted signature � = {s, 0} with arity 1 and 0, respectively. In
fact, every initial �-algebra is a representation of natural numbers.

2. For stacks of natural numbers, we need the two-sorted signature � of
Example 14.17.4. Its initial algebra does not resemble stacks because we
will have formal terms such as top(e), top(top(e)), and so on. However, the
equational category given by the three equations of Example 14.20.2 has
an initial algebra I = 〈In, Is〉, where In is the abstract data type of natural
numbers (no equation involves the operation succ) and Is consists of stacks

e = [ ], [x], [x, y], [x, y, z], . . .

of elements x, y, z, . . . of In.

14.31 Remark For one-sorted signatures, we have �-Alg concretely equiva-
lent to H�-Alg, where H�A = ∐

σ∈� An (for n = arity of σ ), (see 2.25).
Analogously for S-sorted signatures �; define

H�: Set S → Set S

on objects A = 〈As〉s∈S by setting the sort s of H�A as follows: we denote by
�s ⊆ � the set of all symbols of output sort s and put

(H�A)s =
∐
σ∈�s

As0 × . . . × Asn−1
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for the arity s0 . . . sn−1 → s of σ. Then there is a concrete equivalence

�-Alg
E

��

U� ���
��

��
��

�
H�-Alg

UH������
��
��
��

Set S

assigning to every �-algebra (A, a) the H�-algebra (A, a) where the coproduct
components of

as:
∐
σ∈�s

As0 × . . . × Asn−1 → As

are the given operations σA.

14.32 Proposition Every finitary endofunctor H of Set S is a quotient of a
polynomial functor H� for some S-sorted signature �. Moreover, the concrete
category H -Alg is concretely isomorphic to an equational category of �-
algebras.

Proof For the first statement, the argument in 12.15 using the Yoneda lemma
generalizes without a problem: define an S-sorted signature � whose operations
σ of (an arbitrary) arity s0 . . . sn−1 → s are precisely the elements of sort s in
HX, where the S-sorted set X is given by

Xt = {i = 0, . . . , n − 1; si = t} for all t ∈ S.

Then define α: H� → H by taking such an operation symbol σ and putting

αZ(σ (f )) = (Hf )s(σ )

for all S-sorted functions f : X → Z.
For the second statement, the only difference to the proof of 13.23 is

that in the S-sorted case, we must also check that I (H -Alg ) is closed in
�-Alg under directed unions. This follows from the commutativity of the
diagram

H -Alg
I

��

UH ���
��

��
��

�
H�-Alg

U������
��
��
��

Set S

= �-Alg

since UH preserves sifted colimits and U� reflects them (see 12.17.3). �
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14.33 Remark

1. The converse implication of Theorem 12.15 does not generalize to the S-
sorted case: a quotient of a polynomial functor on Set S need not be finitary.

A simple example can be presented in Set N: start with the constant
functor of value 2 = 1 + 1 (the S-sorted set having two elements in every
sort). This functor is clearly polynomial. Let H be the quotient with HX = 1
whenever all sorts of X are nonempty, else HX = 2. This functor does not
preserve the filtered colimit of all finitely presentable subobjects of 1.

2. For finite sets S of sorts, Theorem 12.15 fully generalizes; finitary endo-
fuctors of Set S are precisely the quotients of polynomial functors. In fact,
the proof of 12.15 is easily modified: in part (b) of the implication 3 ⇒ 1,
choose the S-sorted set Z′ in such a way that for every sort s, we have
Z′

s �= ∅ iff Cs �= ∅; since D is filtered and S is finite, this choice is clearly
possible. Then, again, c′

d · i ′ is a split monomorphism.

Historical remarks

Historical comments on S-sorted algebras are mentioned at the end of
Chapter 1. For a short introduction to applications of S-sorted algebras, see
Wechler (1992).



PART III

Special topics

Modern algebra also enables one to reinterpret the results of classical
algebra, giving them far greater unity and generality.

– G. Birkhoff and S. Mac Lane, A Survey of Modern Algebra,
Macmillan, New York, 1965: v





15

Morita equivalence

In this chapter, we study the problem of the presentation of an algebraic category
by different algebraic theories. This is inspired by the classical work of Kiiti
Morita, who, in the 1950s, studied this problem for the categories R-Mod
of left modules over a ring R. He completely characterized pairs of rings R

and S such that R-Mod and S-Mod are equivalent categories; such rings are
nowadays said to be Morita equivalent. We will recall the results of Morita
subsequently, and we will show in which way they generalize from R-Mod to
Alg T , where T is an algebraic theory. We begin with a particularly simple
example.

15.1 Example In 1.4, we described a one-sorted algebraic theory N of Set:
N is the full subcategory of Setop whose objects are the natural numbers. Here
is another one-sorted theory of Set: T2 is the full subcategory of Setop whose
objects are the even natural numbers 0, 2, 4, 6, . . . . T2 obviously has finite
products. Observe that T2 is not idempotent complete (consider the constant
functions 2 → 2) and that N is an idempotent completion of T2: for every nat-
ural number n, we can find an idempotent function f : 2n → 2n with precisely
n fixed points. Then n is obtained by splitting f. Following 6.14 and 8.12,
Alg T2 	 AlgN 	 Set.

In fact, we can repeat the previous argument for every natural number k > 0.

In this way, we get a family Tk, k = 1, 2, . . . of one-sorted algebraic theories
of Set (with T1 = N ). We will prove later that up to equivalence, there is no
other one-sorted algebraic theory of Set.

Clearly, if T and T ′ are algebraic theories and if there is an equivalence
T 	 T ′, then Alg T and Alg T ′ are equivalent categories. The previous example
shows that the converse is not true.

153
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15.2 Definition Two algebraic theories T and T ′ are called Morita equivalent
if the corresponding categories Alg T and Alg T ′ are equivalent.

From 6.14 and 8.12, we already know a simple characterization of Morita-
equivalent algebraic theories: two theories are Morita equivalent iff they have
equivalent idempotent completions. In the case of S-sorted algebraic categories,
a much sharper result can be proved. Before doing so, let us recall the classical
result of Morita.

15.3 Example Let R be a unitary ring (not necessarily commutative) and
denote by R-Mod the category of left R-modules. There are two basic con-
structions:

1. Matrix ring R[k]. This is the ring of all k × k matrices over R with the usual
addition, multiplication, and unit matrix. This ring R[k] is Morita equivalent
to R for every k > 0; that is, the category R[k]-Mod is equivalent to R-Mod.

2. Idempotent modification uRu. Let u be an idempotent element of R,
uu = u, and let uRu be the ring of all elements x ∈ R with ux = x = xu

with the binary operation inherited from R and the neutral element u. This
ring is Morita equivalent to R whenever u is pseudoinvertible; that is,
eum = 1 for some elements e and m of R.

Morita’s original result is that the two preceding operations are sufficient: if
a ring S is Morita equivalent to R, that is, R-Mod and S-Mod are equivalent
categories, then S is isomorphic to the ring uR[k]u for some pseudoinvertible
idempotent k × k matrix u.

We now generalize Morita constructions to one-sorted algebraic theories and
mention the S-sorted case later.

15.4 Definition Let (T , T ) be a one-sorted algebraic theory.

1. The matrix theory (T [k], T [k]) for k = 1, 2, 3, . . . is the one-sorted algebraic
theory whose morphisms f : p → q are precisely the morphisms f : kp →
kq of T ; composition and identity morphisms are defined as in T , and
T [k]: N → T [k] takes the projection πn

i to the morphism of T (kn, k), which
is the ith chosen projection of kn = k × . . . × k in T .

2. Let u: 1 → 1 be an idempotent morphism of T (u · u = u). We call
u pseudoinvertible provided that there exist morphisms m: 1 → k and
e: k → 1 such that

e · uk · m = id1.
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The idempotent modification of (T , T ) is the theory (uT u, uT u) whose
morphisms f : p → q are precisely the morphisms of T satisfying f · up =
f = uq · f. The composition is defined as in T , and the identity morphism
on p is up. The functor uT u: N → uT u is the codomain restriction of T .

15.5 Remark

1. Both T [k] and uT u are well defined. In fact, T [k] has finite products
with p = 1 × . . . × 1: the ith projection is obtained from the ith pro-
jection in T of kp = k × . . . × k. Also, uT u has finite products with
p = 1 × . . . × 1: the i-projection πi: p → 1 of T yields a morphism
u · πi: p → 1 of uT u (i = 1, . . . , k), and these morphisms form a product
p = 1 × . . . × 1 in uT u.

2. Observe that in the definition of Morita equivalence, the categories Alg T
are treated as abstract categories: the forgetful functor does not play a role
here.

15.6 Theorem Let (T , T ) be a one-sorted algebraic theory.

1. The matrix theories T [k] are Morita equivalent to T for all k > 0
2. The idempotent modifications uT u are Morita equivalent to T for all

pseudoinvertible idempotents u.

Proof
1. Matrix theory T [k]. We have a full and faithful functor T [k] → T defined on
objects by n 
→ nk and on morphisms as the identity mapping. Every object of
T is a retract of an object coming from T [k]: in fact, for every n, consider the
diagonal morphism �: n → nk = n × . . . × n. Consequently, T and T [k] have
the same idempotent completion. Thus, by 8.12, they are Morita equivalent.

2. For the idempotent modification uT u, we consider T as a full subcategory
of (Alg T )op via the Yoneda embedding (1.12)

YT : T → (Alg T )op.

Following 8.3, the idempotent YT (u): YT (1) → YT (1) has a splitting in
(Alg T )op, say,

YT (1)
YT (u)

��

ε ��#
##

##
##

#
YT (1)

A

η

����������

A
idA

��

η ��#
##

##
##

# A

YT (1)

ε

����������
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Consider also the subcategory TA of (Alg T )op of all powers An, n ∈ N.

Together with the obvious functor TA: N → TA, this is a one-sorted alge-
braic theory, and it is Morita equivalent to T . In fact, every object of T is
a retract of one in TA and vice versa – this clearly implies that T and TA

have a joint idempotent completion (obtained by splitting their idempotents
in (Alg T )op). Indeed, since A is a retract of YT (1), Ap is a retract of YT (p).
Conversely, consider m: 1 → n and e: n → 1 in T such that e · un · m = id1,
as in 15.4.2. Then YT (1) is a retract of An via εn · YT (m): YT (1) → An and
YT (e) · ηn: An → YT (1), and YT (p) is a retract of Anp.

To complete the proof, we construct an equivalence functor Ȳ : uT u → TA.

On objects, it is defined by Ȳ (p) = Ap and on morphisms f : p → q by

Ap
Ȳf

��

ηp

��

Aq

YT (p)
YT (f )

�� YT (q)

εq

��

in (Alg T )op. Observe that Ȳ (idp) = idAp because ε · η = idA. Now we check
the equation

YT (f ) = ηq · Ȳ (f ) · εp. (15.1)

Indeed,

YT (f ) = YT (u)q · YT (f ) · YT (u)p = ηq · εq · YT (f ) · ηp · εp = ηq · Ȳ (f ) · εp.

From Equation (15.1), since εp is a (split) epimorphism and ηq is is a (split)
monomorphism, we deduce that Ȳ preserves composition (because YT does)
and that Ȳ is faithful (because YT is). Since Ȳ is surjective on objects, it
remains to show that it is full: considering h: Ap → Aq in (Alg T )op, we
define k = ηq · h · εp: YT (p) → YT (q). Since YT is full, there is a morphism
f : p → q in T such that YT (f ) = k. Now

Ȳ (f ) = εq · YT (f ) · ηp = εq · ηq · h · εp · ηp = h.

It remains to check that f is in uT u:

YT (f ) · YT (up) = ηq · h · εp · ηp · εp = ηq · h · εp = k = YT (f ),

and then f · up = f because YT is faithful; analogously, uq · f = f. �

15.7 Theorem For two one-sorted algebraic theories (T , T ) and (S, S), the
following conditions are equivalent:
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1. S is Morita equivalent to T
2. S is, as a category, equivalent to an idempotent modification uT [k]u of a

matrix theory of T for some pseudoinvertible idempotent u of T [k]

Proof Consider an equivalence functor

E: AlgS → Alg T

and the Yoneda embeddings YS: Sop → AlgS, YT : T op → Alg T (recall, from
1.13, that YS and YT preserve finite coproducts). Since YS (1) is perfectly
presentable in AlgS (see 5.5), we conclude that A = E(YS (1)) is perfectly
presentable in Alg T and therefore, due to 5.14, it is a retract of YT (n) for some
n in N:

A
idA

��

η ��#
##

##
##

# A

YT (n)

ε

����������

There exists a unique u: n → n in T such that YT (u) = η · ε, and such a u is
an idempotent. We consider u as an idempotent on 1 in T [n] and prove that u

is pseudoinvertible there. For this, choose an S-algebra Ā and an isomorphism
i: YT (n) → EĀ. Since E is an equivalence functor, Ā is perfectly presentable,
and thus it is a retract of YS (k) for some k ∈ N:

Ā

idĀ

��

η̄ 

�
��

��
��

� Ā

YS (k)

ε̄

��								

Consider now the composites

YT (n)
i

�� EĀ

Eη̄
�� EYS (k) 	 kA

kη
�� kYT (n) 	 YT (nk)

YT (nk) 	 kYT (n)
kε

�� kA 	 EYS (k)
Eε̄

�� EĀ
i−1

�� YT (n)

Since YT is full, there exist unique morphisms e: nk → n and m: n → nk in
T that YT maps on the preceding composites. One immediately checks that
YT (e · uk · m) = id; that is, e · uk · m = id. Thus u is pseudoinvertible in T [n].

To complete the proof, we construct an equivalence functor Ē: S → uT [n]u.

It is the identity map on objects. If f : p → q is a morphism in S, Ēf is the
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unique morphism np → nq in T such that

qYT (n) 	 YT (nq)
YT (Ēf )

��

qε

��

YT (np) 	 pYT (n)

qA 	 E(YS(q))
E(YS (f ))

�� E(YS (p)) 	 pA

pη

��

commutes. Using, once again, YT (u) = η · ε and the faithfulness of YT , one
can easily check that up · Ēf · uq = Ēf so that Ēf is a morphism p → q in
uT [n]u. The proof that Ē is a well-defined, full, and faithful functor is analogous
to the proof in Theorem 15.6 and is left to the reader. �

15.8 Example All one-sorted theories of Set are, up to equivalence of cate-
gories, precisely the theories Tk of 15.1. More precisely, for every k, consider
the matrix theory (N [k], Id[k]) (which, as a category, is clearly equivalent to Tk

of 15.1). Given an idempotent u: 1 → 1 of N [k], the function u: k → k in Set
is pseudoinvertible iff it is invertible; thus u = id . Consequently, there are no
other one-sorted theories of Set.

15.9 Example Let R be a ring with unit. Following 11.22, we can describe
a one-sorted theory (TR, TR) of R-Mod: TR is essentially the full subcategory
of R-Modop of the finitely generated free R-modules Rn (n ∈ N); that is, the
morphisms in TR(n, 1) are the homomorphisms from R to Rn, and TR assigns
to πn

i the ith injection of R + . . . + R. Every one-sorted algebraic theory of
R-Mod is equivalent to TS for some ring S that is Morita equivalent to R.

Indeed, the two constructions of Example 15.3 fully correspond to the two
constructions of Definition 15.4:

1. T(R[k]) is equivalent to (TR)[k]

2. given an idempotent element u ∈ R, the corresponding module homo-
morphism ū: R → R with ū(x) = ux is such that uRu is equivalent to
ū(TR)ū

15.10 Example For every monoid M, consider the category M-Set (cf. 13.15).
Two monoids M and M are called Morita equivalent if M-Set and M-Set are
equivalent categories. Here we need just one operation on monoids: if M is
Morita equivalent to M, then M is isomorphic to an idempotent modification
uMu for some pseudoinvertible idempotent u of M.

In contrast with the situation of Example 15.9, M-Set has, in general, many
one-sorted theories not connected to any Morita-equivalent monoid. (This is
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true even for M = {∗} since M-Set = Set has infinitely many theories that are
not equivalent as categories; see Example 15.1.) However, all unary theories of
M-Set have a form that corresponds to Morita-equivalent monoids. By a unary
theory, we mean a one-sorted theory (T , T ) for which the category T is a free
finite product completion (see 1.14) of the endomorphism monoid T (1, 1).
The category of M-sets has an obvious unary theory with T (1, 1) = M. Its
morphisms from n to 1 are the homomorphisms from M to the free M-set M +
M + . . . + M on n generators (so that the category T is, essentially, the full
subcategory of (M-Set)op on the M-sets M + M + . . . + M). Consequently,
for every Morita-equivalent monoid M , we have a unary theory T[M] for the
category M-Set, and these are, up to categorical equivalence, all the unary
theories. In fact, let T be a unary theory with Alg T equivalent to M-Set.
For the monoid M = T (T , T ), there is an obvious categorical equivalence
between Alg T and M-Set: every M-set A: M → Set has an essentially unique
extension to a T -algebra A′: T → Set, and (−)′ is the desired equivalence
functor. Therefore M is Morita equivalent to M, and T is equivalent to T[M].

15.11 Remark

1. The preceding examples demonstrate that Theorems 15.6 and 15.7 yield
a much more practical characterization than just stating that two theories
have the same idempotent completion.

2. For S-sorted theories (T , T ), the result is quite analogous. Given a collection

u = (us)s∈S

with us: s → s idempotent, let us call u pseudoinvertible provided that for
each s ∈ S, there exists a word t1 . . . tk and morphisms

ms: s → t1 . . . tk es: t1 . . . tk → s

in T with

es · (ut1 × . . . × utk ) · ms = ids .

Then (uT u, uT u) is the S-sorted theory whose morphisms f : s1 . . . sn →
r are those morphisms of T with f · (us1 × . . . × usn

) = f = ur · f , and
the functor uT u is a codomain restriction of T .

For two S-sorted theories (T , T ) and (T ′, T ′), we have that T ′ is Morita
equivalent to T iff it is (as a category) equivalent to uT u for some pseu-
doinvertible collection u = (us)s∈S. The proof is analogous to those of
Theorems 15.6 and 15.7; the reader can find it in Adámek et al. (2006).
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15.12 Remark Another approach to classical Morita theory for rings is
based on the following result, due to Eilenberg and Watts (see Bass, 1968,
Theorem 2.3): Let R, S be unitary rings, and let M be an R-S-bimodule. The
formation of tensor products M ⊗S X for S-modules X defines a functor

M ⊗S (−): S-Mod → R-Mod

that preserves colimits (because it is a left adjoint). In fact, the assignement

M 
→ M ⊗S (−)

induces a bijection between isomorphism classes of R-S-bimodules and iso-
morphism classes of colimit-preserving functors.

Using the Eilenberg–Watts theorem, one can prove that R and S are Morita
equivalent iff there exist bimodules M,N and bimodule isomorphisms

M ⊗S N 	 R N ⊗R M 	 S.

These facts are easy to generalize to (abstract) algebraic theories. The general-
ization of the Eilenberg–Watts theorem in 15.17 uses the following lemma.

15.13 Lemma Let T be an algebraic theory. The functor

YT : T op → Alg T

is a free colimit completion ofT op conservative with respect to finite coproducts.
This means that

1. Alg T is cocomplete and YT preserves finite coproducts
2. for every functor F : T op → B preserving finite coproducts, where B

is a cocomplete category, there exists an essentially unique functor F ∗:
Alg T → B preserving colimits with F naturally isomorphic to F ∗ · YT

Proof This follows from 1.13 and 4.15. �

15.14 Definition Let T ,S be algebraic theories. A bimodule

M: T ⇒ S

is a functor M: T op → AlgS preserving finite coproducts.

15.15 Remark

1. The functor YT : T op → Alg T is a bimoduleT ⇒ T . More generally, every
morphism of theories T → S induces a bimodule T ⇒ S by composition
with YS .
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2. Every bimodule M has, by Lemma 15.13, an extension M∗: Alg T →
AlgS preserving colimits. These are, up to natural isomorphism, the only
colimit-preserving functors between algebraic categories.

3. Given bimodules M: T ⇒ S and N: S ⇒ R, we define N ◦ M: T ⇒ R by
N∗ · M. This composition is associative up to isomorphism and YS ◦ M 	
M 	 M ◦ YT . (In other words, the 2-category T hbim we now define is in
fact a bicategory in the sense of Bénabou (1967).)

15.16 Definition

1. The 2-category T hbim has
objects: algebraic theories
1-cells: bimodules
2-cells: natural transformations

2. The 2-category ALG colim has
objects: algebraic categories
1-cells: colimit-preserving functors
2-cells: natural transformations

15.17 Corollary

1. The 2-categories T hbim and ALG colim are biequivalent. In fact, the assign-
ment

M: T ⇒ S 
→ M∗: Alg T → AlgS

of Remark 15.15 extends to a biequivalence T hbim 	 ALG colim.

2. Two algebraic theories T and S are Morita equivalent iff there exist bimod-
ules M: T ⇒ S and N: S ⇒ T such that N ◦ M 	 YT and M ◦ N 	 YS .

In fact, T hbim → ALG colim is an equivalence on hom-categories by Lemma
15.13. The rest of the proof is obvious.

Historical remarks

The classical results concerning equivalences for categories of modules were
proved by Morita (1958). Thirty years later, Dukarm (1988) proved a general-
ization to one-sorted algebraic theories.

For one-sorted theories, an approach to Morita equivalence via bimodules
is due to Borceux and Vitale (1994). The many-sorted version of Morita
equivalence in 15.11 is due to Adámek et al. (2006). Example 15.10 is due
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to Banaschewski (1972). For more on Morita equivalences of one-sorted
theories see McKenzie (1996) and Porst (2000).

The Eilenberg–Watts theorem quoted in Remark 15.12 was independently
proved by Eilenberg (1961) and Watts (1960). An exhaustive treatment of
Morita theory for rings in terms of bimodules appears in the monograph of
Bass (1968).
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Free exact categories

We know that every algebraic category is an exact category having enough
regular projective objects (see 3.18 and 5.15). In this chapter, we study free exact
completions and prove that every algebraic category is a free exact completion
of its full subcategory of all regular projectives. This will be used in the next
chapter to characterize algebraic categories among exact categories and to
describe all finitary localizations of algebraic categories.

The trouble with regular projective objects in an algebraic category is that
they are not closed under finite limits. Luckily, they have weak finite limits.
Recall that weak limits are defined as limits, except that the uniqueness of the
factorization is not requested (see 16.7). The main point is that the universal
property of a free exact completion is based on left-covering functors. These are
functors that play, for categories with weak finite limits, the role that functor-
preserving finite limits play for finitely complete categories.

We will be concerned with regular epimorphisms (3.4) in an exact cat-
egory (3.16). For the comfort of the reader, we start by listing some of their
(easy but) important properties. In diagrams, regular epimorphisms are denoted
by �� �� .

16.1 Lemma Let A be an exact category.

1. Any morphism factorizes as a regular epimorphism followed by a monomor-
phism.

2. Consider a morphism f : X → Z. The following conditions are equivalent:
a. f is a regular epimorphism
b. f is a strong epimorphism
c. f is an extremal epimorphism

163
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Proof
1. Consider a morphism f : X → Z and its factorization through the coequalizer
of its kernel pair

N (f )
f2

��
f1

��
X

f
��

e ��
��

Z

I

m

����������

We have to prove that m is a monomorphism. For this, consider the following
diagram, where each square is a pullback:

N (f ) �� ��

��
��

q

��
��
��

�� X

e
��
��

�� ��

��

N (m)
m1

��

m2

��

I

m

��
X

e

�� �� I
m

�� Z

Since in A, regular epimorphisms are pullback stable, the diagonal q is an
epimorphism. Now m1 · q = e · f1 = e · f2 = m2 · q so that m1 = m2. This
means that m is a monomorphism.

2. For the implication a ⇒ b; let u, v, and m be morphisms such that
v · f = m · u. If f is the coequalizer of a pair (x, y) and m a monomorphism,
then u also coequalizes x and y.

For b ⇒ c; if f = m · u with m being a monomorphism, we can write
v · f = m · u with v = id. By condition b, m is a split epimorphism, but a
monomorphism that is also a split epimorphism is an isomorphism.

For c ⇒ a; just take a regular epi-mono factorization f = m · e (which
exists by condition 1); if condition 16.1.c holds, then m is an isomorphism, and
therefore f is a regular epimorphism. �

16.2 Corollary Let A be an exact category.

1. The factorization stated in Lemma 16.1.1 is essentially unique.
2. The composite of two regular epimorphisms is a regular epimorphism.
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3. If the triangle

X
f

�� ��

g ���
��

��
��

Z

A

h

���������

commutes and f is a regular epimorphism, then h is a regular epimorphism.
4. If a morphism is a regular epimorphism and a monomorphism, then it is an

isomorphism.

In fact, everything follows easily from 16.1.2.

16.3 Lemma Every exact category has the following properties:

1. The product of two regular epimorphisms is a regular epimorphism.
2. Consider the diagram

A0

a1
��

a2

��

f0 ��
��

A1

f1

��
B0

b1
��

b2

�� B1

with f1 · ai = bi · f0 for i = 1, 2. If f0 is a regular epimorphism and f1 is
a monomorphism, then the unique extension to the equalizers is a regular
epimorphism.

3. Consider the following commutative diagram:

A0

a1
��

f0 ��
��

A

f

��

A1

a2
��

f1��
��

B0
b1

�� B B1
b2

��

If f0 and f1 are regular epimorphisms and f is a monomorphism, then the
extension of f from the pullback of a1 and a2 to the pullback of b1 and b2

is a regular epimorphism.
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Proof
1. Observe that f × id is the pullback of f along the suitable projection and
that the same holds for id ×g. Now f × g = (f × id) · (id ×g).

2. Since f1 is a monomorphism, the pullback of the equalizer of (b1, b2)
along f0 is the equalizer of (a1, a2).

3. This follows from points 1 and 2, using the usual construction of pullbacks
via products and equalizers. �

For the sake of generality, let us point out that in 16.1, 16.2, and 16.3, we do
not need that in A equivalence relations are effective.

16.4 Remark In 16.3.2, if f1 is any morphism (not necessarily a monomor-
phism), it is no longer true that the pullback of an equalizer e: E → B0 of
(b1, b2) along f0 is an equalizer of (a1, a2). What remains true (in any category
with finite limits) is the following fact: let e′: E′ → A0 be a pullback of e along
f0, let k1, k2: N (f1) ⇒ A1 be a kernel pair of f1, and let n: E′ → N (f1) be the
unique morphism such that ki · n = ai · e′ (i = 1, 2). Then the following is a
limit diagram:

E′

e′

����
��
��
�� n

��















A0

a1

��

a2

  ��
���

���
���

���
���

N (f1)
k1

&&���
���

���
���

���
�

k2

��
A1 A1

We will use this fact in the proof of Theorem 16.24.

From Propositions 3.18 and 5.15, we know that an algebraic category is an
exact category having enough regular projective objects. In fact, each algebra
is a regular quotient of a regular projective algebra. In the following, we study
categories having enough regular projectives, and we introduce the concept of
a regular projective cover for a subcategory of regular projectives in case there
are “enough of them.”

16.5 Definition Let A be a category. A regular projective cover of A is a full
and faithful functor I: P → A such that
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1. for every object P of P , the object IP is regular projective in A
2. for every object A of A, there exists an object P in P and a regular

epimorphism P → A (we write P instead of IP , and we call P → A a
P-cover of A)

16.6 Definition A functor is exact if it preserves finite limits and regular
epimorphisms.

This chapter is devoted to the study of exact functors defined on an exact
category A having a regular projective cover P → A. First of all, observe that
regular projective objects are not closed under finite limits so that we cannot
hope that P inherits finite limits from A. Nevertheless, a trace of finite limits
remains in P: In fact, P has weak finite limits.

16.7 Definition A weak limit of a diagram D: D → A is a cone pX: W →
DX (X ∈ objD) such that for every other cone aX: A → DX, there exists a
morphism a: A → W such that pX · a = aX for all X.

Observe that unlike limits, weak limits are very much nonunique. For exam-
ple, any nonempty set is a weak terminal object in the category Set.

16.8 Lemma If P → A is a regular projective cover of a finitely complete
category A, then P has weak finite limits.

Proof Consider a finite diagram D: D → P. If

〈 πX: L → DX 〉X∈D

is a limit of D in A, then we choose a P-cover l: P → L. The resulting cone

〈 πX · l: P → DX 〉X∈D

is a weak limit of D in P. �

In the situation of the previous lemma, apply an exact functor G: A → B.

Since G preserves finite limits, the factorization of the cone

〈 G(πX · l): GP → G(DX) 〉X∈D

through the limit in B is Gl: GP → GL, which is a regular epimorphism
because G is exact. We can formalize this property in the following definition.

16.9 Definition Let B be an exact category and let P be a category with weak
finite limits. A functor F : P → B is left covering if, for any finite diagram
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D: D → P with weak limit W, the canonical comparison morphism FW →
lim F · D is a regular epimorphism.

16.10 Remark To avoid any ambiguity in the previous definition, let us point
out that if the comparison w: FW → lim F · D is a regular epimorphism for
a certain weak limit W of D, then the comparison w′: FW ′ → lim F · D is
a regular epimorphism for any other weak limit W ′ of D. This follows from
Corollary 16.2 because w factorizes through w′.

16.11 Example

1. If a finite diagram D: D → A has a limit L, then the weak limits of D are
precisely the objects W such that L is a retract of W. Therefore any functor
preserving finite limits is left covering.

2. If P → A is a regular projective cover of an exact category A, then it is a
left-covering functor.

3. The composition of a left-covering functor with an exact functor is a left-
covering functor.

16.12 Example Let P be a category with weak finite limits, and consider
the (possibly illegitimate) functor category [Pop, Set]. The canonical Yoneda
embedding YPop: P → [Pop, Set] is a left covering functor.

Proof Consider a finite diagram D: D → P in P, a weak limit W of D, and
a limit L of YPop · D. The canonical comparison τ: YPop (W ) → L is a regular
epimorphism whenever, for all Z ∈ P, τZ: YPop (W )(Z) → LZ is surjective.
Since the limit L is computed pointwise in Set, an element of LZ is a cone
from Z to L so that the surjectivity of τZ is just the weak universal property
of W. �

16.13 Remark In the main result of this chapter (16.24), we show that an
exact category with enough regular projective objects is a free exact com-
pletion of any of its regular projective covers. This is one of the results that
requests working with the left-covering property (instead of the seemingly
more natural condition of preservation of weak finite limits). In fact, the basic
example 16.11.2 would not be true otherwise. This can be illustrated by the
category of rings: the inclusion of the full subcategory P of all regular pro-
jective rings does not preserve weak finite limits. For example, the ring Z of
integers is a weak terminal object in P, but it is not a weak terminal object in
A because the unique morphism from Z to the one-element ring does not have
a section.
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A remarkable fact about left-covering functors is that they classify exact
functors. Before stating this in a precise way (see 16.24), we need some facts
about left-covering functors and pseudoequivalences. A pseudoequivalence is
defined almost as an equivalence relation but (1) using a weak pullback instead
of a pullback to express the transitivity and (2) without the assumption that the
graph be jointly monic.

16.14 Definition Let P be a category with weak pullbacks. A pseudoequiva-
lence is a parallel pair

X′
x1

��

x2

�� X

which is

1. reflexive, that is, there exists r: X → X′ such that x1 · r = idX = x2 · r

2. symmetric, that is, there exists s: X′ → X′ such that x1 · s = x2 and x2 · s =
x1

3. transitive, that is, in an arbitrary weak pullback,

P

x ′
1

��

x ′
2

��

X′

x2

��
X′

x1

�� X

there exists t: P → X′ such that x1 · t = x1 · x ′
1 and x2 · t = x2 · x ′

2. The
morphism t is called a transitivity morphism of x1 and x2.

16.15 Remark

1. Observe that the existence of a transitivity morphism of x1 and x2 does not
depend on the choice of a weak pullback of x1 and x2.

2. Recall that a regular factorization of a morphism is a factorization as a
regular epimorphism followed by a monomorphism. In a category with
binary products, we speak about regular factorization of a parallel pair
p, q: A ⇒ B. What we mean is a factorization of (p, q) as in the follow-
ing diagram, where e is a regular epimorphism and (p′, q ′) is a jointly
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monomorphic parallel pair,

A

p
��

q

��

e �� ����
���

���
���

���
B

I

p′

��

q ′

��

obtained by a regular factorization of 〈p, q〉: A → B × B. Since jointly
monomorphic parallel pairs are also called relations, we call (p′, q ′) the
relation induced by (p, q).

3. If P has finite limits, then equivalence relations are precisely those parallel
pairs that are, at the same time, relations and pseudoequivalences. The
next result, which is the main link between pseudoequivalences and left-
covering functors, shows that any pseudoequivalence in an exact category is
a composition of an equivalence relation with a regular epimorphism. (The
converse is not true: if we compose an equivalence relation with a regular
epimorphism, in general, we do not obtain a pseudoequivalence. Consider
the category of rings, the unique equivalence relation on the one-element
ring 0, and the unique morphism Z → 0. The parallel pair Z ⇒ 0 is not
reflexive because there are no morphisms from 0 to Z.)

16.16 Lemma Let F : P → B be a left-covering functor. For every pseudoe-
quivalence x1, x2: X′ ⇒ X in P, the relation in B induced by (Fx1, Fx2) is an
equivalence relation.

Proof Consider a regular factorization in B:

FX′
Fx1

��

Fx2

��

p
�� ����

���
���

���
���

� FX

I

i1

��

i2

��

Since the reflexivity and transitivity are obvious, we only check the transitivity
of (i1, i2). The pullback of i1 · p and i2 · p factorizes through the pullback of
i1 and i2, and the factorization, v, is a regular epimorphism (because p is a
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regular epimorphism and B is an exact category):

W
j1

��

v



 

�
��

��
��

�

j2

��

FX′

p
��
��

Q
i ′1

��

i ′2
��

I

i2

��
FX′

p

�� �� I
i1

�� FX

Consider also a transitivity morphism t: P → X′ of (x1, x2), as in Definition
16.14. Since F : P → B is left covering, the factorization q: FP → W such
that j1 · q = Fx ′

1 and j2 · q = Fx ′
2 is a regular epimorphism. Finally, we have

the following commutative diagram:

FP
v·q

�� ��

p·F t

��

Q

〈i1·i ′1,i2·i ′2〉
��

τ

&&
I

〈i1,i2〉
�� FX × FX

Since v · q is a regular epimorphism and 〈i1, i2〉 is a monomorphism, there
exists τ: Q → I such that 〈i1, i2〉 · τ = 〈i1 · i ′1, i2 · i ′2〉. This implies that (i1, i2)
is transitive. �

16.17 Remark Generalizing the fact that functors preserve finite limits iff
they preserve finite products and equalizers, we are going to prove the same for
left covering functors. We use the phrase “left covering with respect to weak
finite products” for the restriction of 16.9 to discrete categories D. Observe that
this is equivalent to being left covering with respect to weak binary products
and weak terminal objects. Analogously, we use “left covering with respect to
weak equalizers.”

16.18 Lemma A functor F : P → B, where P has weak finite limits and B is
exact, is left covering iff it is left covering with respect to weak finite products
and weak equalizers.

Proof
1. Using Lemma 16.3 and working by induction, one extends the left covering
character of F to joint equalizers of parallel n-tuples and then to multiple
pullbacks.
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2. Consider a finite diagram D: D → P. We can construct a weak limit
of D using a weak product �X∈DDX, weak equalizers Ed, one for each
morphism d: X → X′ inD, and a weak multiple pullback E, as in the following
diagram:

Ed

ed

��$
$$

$$
$$

$$

...

DX′

...E

e′
d

����������

e′
c ���

��
��

��
�

�X∈DDX

Dd·πX

''��������� πX′

''���������

Dc·πY

���
��

��
��

��

πY ′ ���
��

��
��

��

Ec

ec

''����������
DY ′

Perform the same constructions in B to get limits, as in the following
diagrams:

Ld

ld

����
��

��
��

��

...

FDX′

...L

l′d
����������

l′c ���
��

��
��

�
�X∈DFDX

FDd·π̃X

((%%%%%%%%%% π̃X′

((%%%%%%%%%%

FDc·π̃Y

))  
   

   
  

π̃Y ′ ))  
   

   
  

Lc

lc

''����������
FDY ′

Sd

sd

)��
���

���
���

...

FDX′

...S

s ′
d

����������

s ′
c ���

��
��

��
�

F (�X∈DDX)

FDd·FπX

**&&&&&&&&&& FπX′

**&&&&&&&&&&

FDc·FπY

��''
'''

'''
''

FπY ′ ��''
'''

'''
''

Sc

sc

((�����������
FDY ′

By assumption, the canonical factorization qd: FEd → Sd is a regular epimor-
phism. By Lemma 16.3, this gives rise to a regular epimorphism q: Q → S,

where Q is the multiple pullback of the Fed. By part 1, the canoni-
cal factorization t: FE → Q is a regular epimorphism. Finally, a diagram
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chase shows that the pullback of ld · l′d along the canonical factorization
p: F (�X∈DDX) → �X∈DFDX is sd · s ′

d . By part 1, p is a regular epimor-
phism so that we get a regular epimorphism p′: S → L. The regular epimor-
phism p′ · q · t: FE → Q → S → L shows that F is left covering. �

16.19 Lemma A left-covering functor F : P → B preserves finite jointly mono-
morphic sources.

Proof A family of morphisms (fi: A → Ai)i∈I is jointly monomorphic iff
the span formed by idA, idA is a limit of the corresponding diagram.

A
id

��

id

��

A

fi

��
fj

++(
((
((
((
((
((
((
((
(

A
fi

��

fj ��))
)))

)))
)))

)))
)) Ai

. . .

Aj

L
x

��

y

��

FA

Ffi

��
Ffj

,,*
**
**
**
**
**
**
**
**

FA
Ffi

��

Ffj   ��
���

���
���

���
���

FAi
. . .

FAj

Now apply F and consider the canonical factorization q: FA → L, where L is
a limit in B of the corresponding diagram with the limit cone x, y: L → FA.
By assumption, q is a regular epimorphism. It is also a monomorphism because
x · q = id, and so it is an isomorphism. This implies that idFA, idFA is a limit,
thus the family (Ffi: FA → FAi)i∈I is jointly monomorphic. �

16.20 Lemma Consider a functor F : P → B. Assume that P has finite limits
and B is exact. Then F is left covering iff it preserves finite limits.

Proof One implication is clear (see 16.11.1). Thus let us assume that F is left
covering, and consider a finite nonempty diagram D: D → P . Let (πX: L →
DX)X∈D be a limit of D and (π̃X: L̃ → FDX)X∈D a limit of F · D. Since
the family (πX)X∈D is jointly monomorphic, by Lemma 16.19 the family
(FπX)X∈D is also monomorphic. This implies that the canonical factoriza-
tion p: FL → L̃ is a monomorphism. But it is a regular epimorphism by
assumption, so that it is an isomorphism.

The argument for the terminal object T is different. In P, the product of T

with itself is T , with the identity morphisms as projections. Then the canonical
factorization FT → FT × FT is a (regular) epimorphism. This implies that
the two projections π1, π2: FT × FT ⇒ FT are equal. But the pair (π1, π2)
is the kernel pair of the unique morphism q to the terminal object of B so that
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q is a monomorphism. Since F is left covering, q is a regular epimorphism and
thus an isomorphism. �

Let us point out that in 16.16 and 16.18, we do not need to assume that
equivalence relations are effective in B. Moreover, if in Definition 16.9 we
replace regular epimorphism by strong epimorphism, then 16.19 and 16.20
hold for all categories B with finite limits.

16.21 Definition Let P be a category with weak finite limits. A free exact
completion of P is an exact category Pex with a left-covering functor

�: P → Pex

such that for every exact category B and for every left-covering functor F :
P → B, there exists an essentially unique exact functor F̂ : Pex → B with
F̂ · � naturally isomorphic to F.

Note that since a free exact completion is defined via a universal property, it
is determined uniquely up to equivalence.

16.22 Remark Since the composition of the left-covering functor �: P → Pex

with an exact functorPex → B clearly gives a left covering functorP → B, the
previous universal property can be restated in the following way: composition
with � induces an equivalence functor

− · �: Ex[Pex,B] → Lco[P,B],

where Ex[Pex,B] is the category of exact functors from Pex to B and natural
transformations, and Lco[P,B] is the category of left-covering functors from
P to B and natural transformations.

16.23 Remark To prepare the proof of Theorem 16.24, let us explain how
an exact category with enough regular projective objects can be reconstructed
using any of its regular projective covers. Let P → A be a regular projective
cover of an exact category A. Fix an object A in A and consider a P-cover
a: X → A, its kernel pair a1, a2: N (a) ⇒ X, and, again, a P-cover x: X′ →
N (a). In the resulting diagram,

X′
a1·x

��

a2·x
�� X

a
�� �� A,
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the left-hand part is a pseudoequivalence in P (not in A !), and A is its coequal-
izer. Consider a morphism ϕ: A → B in A and the following diagram:

X′
f ′

��

g′
��

a2·x

��

a1·x

��

Z′

b2·z

��

b1·z

��
X

f
��

g

��

�

--

a

��
��

Z

b

��
��

A
ϕ

�� B

Using the regular projectivity of X and X′ and the universal property of the
kernel pair of b, we get a pair (f ′, f ) such that ϕ · a = b · f and f · ai · x =
bi · z · f ′ for i = 1, 2. Conversely, a pair (f ′, f ) such that f · ai · x = bi · z · f ′

for i = 1, 2 induces a unique extension to the quotient. Moreover, two such pairs
(f ′, f ) and (g′, g) have the same extension iff there is a morphism �: X → Z′

such that b1 · z · � = f and b2 · z · � = g.

16.24 Theorem Let I: P → A be a regular projective cover of an exact cate-
gory A. Then A is a free exact completion of P.

Proof
1. For extension of a left-covering functor F : P → B to a functor F̂ : A → B,
define F̂ on objects A ∈ A by constructing the coequalizer:

X′
x1=a1·x

��

x2=a2·x
�� X

a
�� �� A

as in 16.23. By 16.16, the relation (i1, i2) induced by Fx1, Fx2: FX′ ⇒ FX

in B is an equivalence relation. Since B is exact, we can define F̂A to be a
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coequalizer of (i1, i2):

FX′
Fx1

��

Fx2

��

p �� ��))
)))

)))
)))

)))
) FX

α
�� ��

F̂A

R

i1

��

i2

��

Let now ϕ: A → B be a morphism in A. We can construct a pair f : X → Z,

f ′: X′ → Z′ as in 16.23 and define F̂ ϕ to be the unique extension to the
quotients as in the following diagram:

FX′
Ff ′

��

Fx1

��
Fx2

��

FZ′

Fz1

��
Fz2

��
FX

Ff

��

α ��
��

FZ

β��
��

F̂A
F̂ϕ

��
F̂B

The discussion in 16.23 shows that this definition does not depend on the choice
of the pair f, f ′. The preservation of composition and identity morphisms by
F̂ comes from the uniqueness of the extension to the quotients. It is clear that
F̂ · I is naturally isomorphic to F and that a different choice of P-covers X

and X′ for a given object A ∈ A produces a functor naturally isomorphic to F̂ .

2. F̂ is the essentially unique exact functor such that F̂ · I is naturally
isomorphic to F. Indeed, using once again the notations of 16.23, (F̂ a1, F̂ a2)
is the kernel pair of F̂ a, and F̂ x and F̂ a are regular epimorphisms:

FX′ 	 F̂X′
F̂ x

�� �� F̂N (a)
F̂ a1

��

F̂ a2

�� F̂X 	 FX
F̂a

�� �� F̂A.

This implies that F̂A is necessarily a coequalizer of (Fx1, Fx2). In a similar
way, one shows that F̂ is uniquely determined on morphisms.

3. The extension F̂ : A → B preserves finite limits. In fact, it is sufficient to
show that F̂ is left covering with respect to the terminal object, binary products,
and equalizers of pairs (see Lemmas 16.18 and 16.20).
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3a. For products; let A and B be objects in A. Working as in 16.23, we get
coequalizers

X′
x1

��

x2

�� X
a
�� �� A Z′

z1
��

z2

�� Z
b
�� �� B.

Consider the following diagram, where both horizontal lines are products in A
and c: R → X × Z is a P-cover:

R

c��
��

X

a ��
��

X × Z
πX

��
πZ

��

a×b��
��

Z

b��
��

A A × B
πA

��
πB

�� B

By 16.3.1, a × b is a regular epimorphism so that (a × b) · c: R → A × B is a
P-cover. Moreover, by 16.8, (R,πX · c, πZ · c) is a weak product of X and Z

in P. Applying F̂ , we have the following diagram in B:

FX

α ��
��

FR
F (πX ·c)

��
F (πZ ·c)

��

γ ��
��

FZ

β��
��

F̂A F̂ (A × B)
F̂ πA

��
F̂ πB

��
F̂B

from which we get the following commutative square:

FR
〈F (πX ·c),F (πZ ·c)〉

�� ��

γ

��

FX × FZ

α×β��
��

F̂ (A × B)
〈F̂ πA,F̂πB 〉

�� F̂A × F̂B

The top morphism is a regular epimorphism because F is left covering, and
the right-hand morphism is a regular epimorphism by 16.3.3 so that the bottom
morphism also is a regular epimorphism, as requested.
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3b. For equalizers; let

E
e

�� A
ψ

��
ϕ

��
B

be an equalizer in A. The idea is once again to construct a P-cover
of E using P-covers of A and B. For that, consider the following
diagram:

R

c ��
��

Z′

z��
��

E′′

n′
""�����������������

z′
��
��

N (b)

b1

��
b2

��
E′

n

""����������������

e′
��

a′
��
��

X
g

��
f

��

a ��
��

Z

b��
��

E
e

�� A
ψ

��
ϕ

��
B

where a: X → A and b: Z → B are P-covers, E′ is a pullback of a and e,

the equations b · f = ϕ · a and b · g = ψ · a hold, N (b) is a kernel pair of b,

n is the unique morphism such that b1 · n = f · e′ and b2 · n = g · e′, E′′ is a
pullback of z and n, and z: Z′ → N (b) and c: R → E′′ are P-covers. From
16.4, we know that the following is a limit diagram in A:

E′

e′

����
��
��
�� n



#
##

##
##

#

X

f

��

g

  ��
���

���
���

���
���

N (b)
b1

&&���
���

���
���

���
�

b2

��
Z Z
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Clearly it remains a limit diagram if we paste it with the pullback E′′, and by
16.8, we get a weak limit in P by covering it with c: R → E′′:

R

e′ ·z′ ·c

����
��
��
� n′ ·c

�
��

��
��

X

f

��

g

��))
)))

)))
)))

)))
)) Z′

b1·z

..+++
+++

+++
+++

+++
+

b2·z
��

Z Z

Consider the following diagram in B:

FZ′

q��
��

V ′′

m′
""�����������������

q ′
��
��

N (β)

β1

��
β2

��
FR

γ ��
��

k
��

V ′

m

""�����������������

v′
��

α′
��
��

FX
Fg

��
Ff

��

α ��
��

FZ

β��
��

F̂E
h

��

F̂ e

//V
v

��
F̂A

F̂ψ

��
F̂ ϕ

��
F̂B

where V is an equalizer of F̂ ϕ and F̂ψ ; α: FX → F̂A, β: FZ → F̂B, and
γ : FR → F̂E are the coequalizers defining F̂A, F̂B, and F̂E (as explained in
the first part of the proof), V ′ is a pullback of α and v, N (β) is a kernel pair of β,
m is the unique morphism such that β1 · m = Ff · v′ and β2 · m = Fg · v′, q

is the unique morphism such that βi · q = F (bi · z) (i = 1, 2), V ′′ is a pullback
of q and m; and h: F̂E → V is the unique morphism such that v · h = F̂ e.

We have to prove that h is a regular epimorphism. By 16.4, the following is a
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limit diagram:

V ′′
v′ ·q ′

��		
		
		
		 m′



#
##

##
##

#

FX

Ff

��

Fg

  ��
���

���
���

���
���

FZ′
F (b1·z)

&&���
���

���
���

���
�

F (b2·z)

��
FZ FZ

Since F is left covering, the unique morphism k: FR → V ′′ such that m′ · k =
F (n′ · c) and v′ · q ′ · k = F (e′ · z′ · c) is a regular epimorphism. As B is exact
and F is left covering, by 16.16, (β1, β2) is the equivalence relation induced
by (z1, z2), so that q is a regular epimorphism, and then q ′ also is a regular
epimorphism. Since α′ also is a regular epimorphism, it remains to check that
α′ · q ′ · k = h · γ. By composing with the monomorphism v, this is an easy
diagram chasing.

3c. For a terminal object; let 1A and 1B be terminal objects of A and B and
T → 1A a P-cover. Applying F̂ , we get a commutative diagram

FT ��

��

F̂1A

����
��
��
��

1B

Since T is weak terminal in P and F is left covering, FT → 1B is a regular
epimorphism. Therefore F̂1A → 1B also is a regular epimorphism.

4. The extension F̂ : A → B preserves regular epimorphisms. This is obvi-
ous: if ϕ: A → B is a regular epimorphism in A and a: X → A is a P-cover,
we can choose as a P-cover of B the morphism ϕ · a: X → B. Applying F̂ ,
we get a commutative diagram

FX

α ��
��

id
�� FX

β��
��

F̂A
F̂ϕ

�� F̂B

which shows that F̂ ϕ is a regular epimorphism. �
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16.25 Corollary

1. Let A and B be exact categories and I: P → A a regular projective cover.
Given exact functors G,G′: A ⇒ B with G · I 	 G′ · I, then G 	 G′.

2. Let A and A′ be exact categories, P → A a regular projective cover
of A, and P ′ → A′ one of A′. Any equivalence P 	 P ′ extends to an
equivalence A 	 A′.

16.26 Remark For later use, let us point out a simple consequence of the pre-
vious theorem. Consider the free exact completion I: P → A, as in 16.24, and
a functor K: A → B, with B exact. If K preserves coequalizers of equivalence
relations and K · I is left covering, then K is exact.

16.27 Corollary Let A be an algebraic category and P its full subcategory of
regular projective objects. The inclusion I: P → A is a free exact completion
of P.

In fact, this follows from Theorem 16.24 because A is exact (see 3.18) and P
is a projective cover of A (see 5.15).

Historical remarks

Following a suggestion of A. Joyal, the exact completion of a category with
finite limits was presented by Carboni and Celia Magno (1982). The more
general approach working with categories with weak finite limits is from
Carboni and Vitale (1998). The connection between the exact completion and
the homotopy category of topological spaces (see 17.4) was established by
Gran and Vitale (1998).



17

Exact completion and
reflexive-coequalizer completion

This chapter is devoted to elementary constructions of two free completions
described in Chapters 16 and 7, respectively, in a different manner: a free
exact completion (of categories with weak finite limits) and a free reflexive-
coequalizer completion (of categories with finite coproducts). The reader may
decide to skip this chapter without losing the connection to Chapter 18.

In Chapter 16, we have seen that if I: P → A is a regular projective cover
of an exact category A, then P has weak finite limits, and I is a free exact
completion of P. We complete here the study of the exact completion by
showing that for any categoryP with weak finite limits, it is possible to construct
a free exact completion �: P → Pex. Moreover, � is a regular projective cover
of Pex.

The following construction of Pex is suggested by 16.23.

17.1 Definition Given a category P with weak finite limits, we define the
category Pex as follows:

1. Objects of Pex are pseudoequivalences x1, x2: X′ ⇒ X in P (we sometimes
denote such an object by X/X′).

2. A premorphism in Pex is a pair of morphisms (f ′, f ) as in the diagram

X′
f ′

��

x2

��
x1

��

Z′

z2

��
z1

��
X

f

�� Z

such that f · x1 = z1 · f ′ and f · x2 = z2 · f ′.

182
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3. A morphism in Pex is an equivalence class [f ′, f ]: X/X′ → Z/Z′ of
premorphisms, where two parallel premorphisms (f ′, f ) and (g′, g) are
equivalent if there exists a morphism �: X → Z′ such that z1 · � = f and
z2 · � = g.

4. Composition and identities are obvious.

17.2 Notation We denote by �: P →Pex the embedding of P into Pex, assign-
ing to a morphism f : X → Z the following morphism:

X
f

��

id
��

id
��

Z

id
��

id
��

X
f

�� Z

17.3 Remark

1. The fact that the preceding relation among premorphisms is an equivalence
relation can be proved (step by step) using the assumption that the codomain
z1, z2: Z′ ⇒ Z is a pseudoequivalence. Observe also that the class of (f ′, f )
depends on f only (compose f with a reflexivity morphism of (z1, z2) to
show that (f ′, f ) and (f ′′, f ) are equivalent); for this reason, we often write
[f ] instead of [f ′, f ].

2. The fact that composition is well defined is obvious.
3. � is a full and faithful functor. This is easy to verify.
4. Observe that if P is small (or locally small), then Pex also is small (or

locally small, respectively).

17.4 Remark The preceding equivalence relation among premorphisms in
Pex can be thought of as a kind of homotopy relation. And in fact, this is
the case in a particular example: let X be a topological space and X[0,1] the
space of continuous maps from the interval [0, 1] to X; the evaluation maps
ev0, ev1: X[0,1] ⇒ X constitute a pseudoequivalence. This gives rise to a functor
E: Top → Topex. Now two continuous maps f, g: X → Z are homotopic in
the usual sense precisely when E(f ) and E(g) are equivalent in the sense of
Definition 17.1. More precisely, E factorizes through the homotopy category,
and the factorization E ′: HTop → Topex is full and faithful (and left covering).

We are going to prove that the preceding category Pex is exact and the
functor �: P → Pex is a regular projective cover. For this, it is useful to have
an equivalent description of Pex as a full subcategory of the functor category
[Pop, Set].
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17.5 Lemma Let P be a category with weak finite limits, and let

YPop: P → [Pop, Set]

be the Yoneda embedding. The following properties of a functor A: Pop → Set
are equivalent:

1. A is a regular quotient of a representable object modulo a pseudoequiva-
lence in P; that is, there exists a pseudoequivalence x1, x2: X′ ⇒ X in P
and a coequalizer

YPop (X′)
x1

��

x2

�� YPop (X) �� �� A

in [Pop, Set]
2. A is a regular quotient of a representable object modulo a regular epimor-

phism a: YPop (X) → A such that N (a), the domain of a kernel pair of a, is
also a regular quotient of a representable object:

YPop (X′)
x

�� �� N (a)
a1

��

a2

�� YPop (X)
a

�� �� A (for some X′ in P)

Proof Consider the morphisms of point 2. Since a is the coequalizer of
(a1 · x, a2 · x), we have to prove that (a1 · x, a2 · x) is a pseudoequivalence in
P. Let us check the transitivity: consider the following diagram:

YPop (W )
x ′

1

00,,,,
,,,,,

,,,,,
,,,,,

,,,,,
,,,,,

,,

x ′
2

11(
((
((
((
((
((
((
((
((
((
((
((
((
(

v

)--
---

---
---

P ′
u1

��

u2

��

u

��$
$$

$$
$$

$$
$$

YPop (X′)

x��
��

P

a′
1

��

a′
2

��

N (a)

a2

��
YPop (X′)

x

�� �� N (a)
a1

�� YPop (X)

where P and P ′ are pullbacks and W is a weak pullback. Since YPop (W ) is
regular projective and x is a regular epimorphism, the transitivity morphism
t: P → N (a) of (a1, a2) extends to a morphism t ′: YPop (W ) → YPop (X′) such
that t · u · v = x · t ′. This morphism t ′ is a transitivity morphism for (a1 · x,

a2 · x). The converse implication follows from Lemma 16.16 since YPop: P →
[Pop, Set] is left covering (see 16.12).
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Note that (x1, x2) is a pseudoequivalence in P does not mean that
(YPop (x1), YPop (x2)) is a pseudoequivalence in [Pop, Set] because YPop does
not preserve weak pullbacks. �

17.6 Remark The full subcategory of [Pop, Set] of all objects satisfying 1 or
2 of 17.5 is denoted by P ′

ex. In the next lemma, the codomain restriction of the
Yoneda embedding YPop: P → [Pop, Set] to P ′

ex is again denoted by YPop , and
� is the functor from 17.2.

17.7 Lemma There exists an equivalence of categories E: Pex → P ′
ex such that

E · � = YPop .

Proof Consider the functor E: Pex → P ′
ex sending a morphism [f ]:

X/X′ → Z/Z′ to the corresponding morphism ϕ between the coequalizers,
as in the following diagram:

YPop (X′)
f ′

��

x1

��
x2

��

YPop (Z′)

z1

��
z2

��
YPop (X)

f

��

a ��
��

YPop (Z)

b��
��

A
ϕ

�� B

The functor E is well defined because a is an epimorphism and b coequal-
izes y0 and y1. Moreover, E is essentially surjective by definition of P ′

ex. Let
us prove that E is faithful: if E[f ] = E[g], then the pair (f, g) factorizes
through the kernel pair N (b) of b, which is a regular factorization of (y0, y1).
Since YPop (X) is regular projective, this factorization extends to a morphism
YPop (X) → YPop (Z′), which shows that [f ] = [g].

The functor E is full: given ϕ: A → B, we get f : YPop (X) → YPop (Z) by reg-
ular projectivity of YPop (X). Since b · f · x1 = b · f · x2, we get f : YPop (X′) →
N (b). Since N (b) is the regular factorization of (z1, z2) and YPop (X′) is regular
projective, f extends to f ′: YPop (X′) → YPop (Z′). Clearly E[f ′, f ] = ϕ. �

17.8 Proposition For every category P with weak finite limits, the functor

�: P → Pex

of 17.2 is a left-covering functor into an exact category. Moreover, this is a
regular projective cover of Pex.
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Proof
1. Pex has finite limits. Since the construction of the other basic types of finite
limits is completely analogous, we explain in detail the case of equalizers,
mentioning construction for binary products and terminal objects just briefly.

1a. For equalizers; consider a parallel pair in Pex together with what we want
to be their equalizer:

E′
e′

��

e1

��
e2

��

X′
f ′

��

g′
��

x1

��
x2

��

Z′

z1

��
z2

��
E

e

�� X
g

��
f

��
Z

This means that we need the following equations: x1 · e′ = e · e1 and x2 · e′ =
e · e2. Moreover, we request f · e and g · e to be equivalent; that is, we need a
morphism ϕ: E → Z′ such that z1 · ϕ = f · e and z2 · ϕ = g · e. Let us take E

and E′ to be the following weak limits:

E

e

����
��
��
� ϕ

�
��

��
��

X

f

��

g

��))
)))

)))
)))

)))
)) Z′

z1

..+++
+++

+++
+++

+++
+

z2

��
Z Z

E

e

��

E′
e1

��
e2

��

e′

��

E

e

��
X X′

x1

��
x2

�� X

i. It is straightforward to check that (e1, e2) is a pseudoequivalence in P (just
use the fact that (x1, x2) is a pseudoequivalence).
ii. To show that [e] equalizes [f ] and [g], use the morphism ϕ: E → Z′.
iii. The morphism [e] is a monomorphism: in fact, consider two morphisms

in Pex,

A′
h′

��

k′
��

a2

��
a1

��

E′

e2

��
e1

��
A

h
��

k

�� E
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such that [e] · [h] = [e] · [k]. This means that there is a morphism �: A → X′

such that x1 · � = e · h and x2 · � = e · k. By the weak universal property of
E′, we have a morphism �′: A → E′ such that e1 · �′ = h and e2 · �′ = k.

This means that [h] = [k].
iv. We prove that every morphism

A′
h′

��

a2

��
a1

��

X′

x2

��
x1

��
A

h

�� X

in Pex such that [f ] · [h] = [g] · [h] factorizes through [e]. We know that there
is �: A → Z′ such that z1 · � = f · h and z2 · � = g · h. The weak universal
property of E yields, then, a morphism k: A → E such that e · k = h and
� · k = ϕ. Now x1 · h′ = e · k · a1 and x2 · h′ = e · k · a2. The weak universal
property of E′ yields a morphism k′: A′ → E′ such that e1 · k′ = k · a1 and
e2 · k′ = k · a2. Finally, the needed factorization is [k′, k]: A/A′ → E/E′.

1b. For products; consider two objects x1, x2: X′ ⇒ X and z1, z2: Z′ ⇒ Z

in Pex. Their product is given by

X′

x2

��
x1

��

P ′

p2

��
p1

��

x ′
��

z′
�� Z′

z2

��
z1

��
X P

x

��
z

�� Z

where

X P
x

��
z

�� Z

is a weak product of X and Z in P , and P ′ is the following weak limit:

P ′

x ′

..���
���

���
���

���

p1����
��
��
��

p2 �
��

��
��

�
z′

����
���

���
���

���
�

X′

x1

��
x2

�
��

��
��

�
P

x

����
��
��
��

z

����
���

���
���

���
�� Px

..���
���

���
���

���
�

z

�
��

��
��

�
Z′

z1
����
��
��
�

z2

��
X X Z Z
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1c. For terminal objects; consider an object T of P, the projections from a
weak product π1, π2: T × T ⇒ T form a pseudoequivalence. If T is a weak
terminal object in P, then (π1, π2) is a terminal object in Pex.

2. Pex is closed under finite limits in [Pop, Set]. In fact, by Lemma 17.7, we
can identify Pex with P ′

ex. We prove that the full inclusion of Pex into [Pop, Set]
preserves finite limits. Because of Lemma 16.20, it is enough to prove that
the inclusion is left covering. We give the argument for equalizers since that
for products and terminal objects is similar (and easier). With the notations of
part 1, consider the following diagram, where ε, α, and β are extensions to the
coequalizers, the triangle on the right is a regular factorization, and the triangle
at the bottom is the factorization through the equalizer:

YPop (E′)

�� ��

e′
�� YPop (X′)

f ′
��

g′
��

�� ��

YPop (Z′)

�� ��

z

�� ��$
$$

$$
$$

$$

YPop (E)
e

��

c ��
��

YPop (X)
f

��

g

��

a ��
��

YPop (Z)

b��
��

N (b)
b1

��

b2

��

C
ε

��

ε′

��

A

α
��

β

�� B

L

l

//...................

We have to prove that ε ′ is a regular epimorphism. Using ϕ: E → Z′, we check
that α · a · e = β · a · e so that there is p: YPop (E) → L such that l · p = a · e,

and then p = ε′ · c. So it is enough to prove that p is a regular epimorphism;
that is, the components p(P ): YPop (E)(P ) → L(P ) are surjective. This means
that given a morphism u: YPop (P ) → A such that α · u = β · u, we need a
morphism û: P → E with l · p · û = u. First of all, observe that since a is a
regular epimorphism and YPop (P ) is regular projective, there is u′: P → X such
that a · u′ = u. Now b · f · u′ = b · g · u′ so that there is u′′: YPop (P ) → N (b)
such that b1 · u′′ = f · u′ and b2 · u′′ = g · u′. Moreover, since z is a regular
epimorphism and YPop (P ) is regular projective, there is ũ: P → Z′ with z · ũ =
u′′. Finally, z1 · ũ = f · u′ and z2 · ũ = g · u′ so that there is û: P → E such
that ϕ · û = ũ and e · û = u′. This last equation implies that l · p · û = u.

3. Pex is closed in [Pop, Set] under coequalizers of equivalence relations. In
fact, consider an equivalence relation in Pex, with its coequalizer in [Pop, Set]:

B
β

��
α

��
A

c
�� �� C.
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We have to prove that C lies in Pex. For this, consider the following diagram:

K ��

��

B ′′ ��

��

YPop (X)

a��
��

B ′ ��

��

B
α

��

β

��

A

c��
��

YPop (X)
a

�� �� A
c

�� �� C

with each square, except possibly the right-hand bottom one, being a pullback.
The remaining square is, then, also a pullback because [Pop, Set] is exact,
X ∈ P , and a is a regular epimorphism. Since A,B and YPop (X) are in Pex,

which is closed in [Pop, Set] under finite limits (see part 2), K lies in Pex too. So
K is a regular quotient of a representable object. But K is also the kernel pair
of the regular epimorphism c · a: YPop (X) → C. By Lemma 17.5, this means
that C is in Pex. �

17.9 Corollary For every category P with weak finite limits, the functor

�: P → Pex

of 17.2 is a free exact completion of P.

In fact, this follows from 16.24 and 17.8.

17.10 Remark Let A be an algebraic category. From Chapter 7, we know that
there are equivalences

A 	 Ind (Afp) and Afp 	 Rec (App),

where App and Afp are the full subcategories of A of perfectly presentable
objects and of finitely presentable objects, respectively. Recall from 17.11 that
Rec is the free completion under finite colimits conservative with respect to
finite coproducts. An analogous situation holds with the exact completion. In
fact, there are equivalences

A 	 (Arp)ex 	 (FCSum (App))ex and Arp 	 Ic (FCSum (App)),

where Arp is the full subcategory of regular projective objects and FCSum
is the free completion under coproducts conservative with respect to finite
coproducts.
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The second part of this chapter is devoted to an elementary description of
the free completion under reflexive coequalizers

ERec : C → Rec C

of a category C with finite coproducts, already studied in Chapter 7. Let us start
by observing that 7.3 can be restated as follows.

17.11 Proposition Let T be an algebraic theory. The functor

YT : T op → (Alg T )fp

is a free completion of T under finite colimits, conservative with respect to
finite coproducts. This means that

1. (Alg T )fp is finitely cocomplete and YT preserves finite coproducts
2. for every functor F : T op → B preserving finite coproducts, where B is

a finitely cocomplete category, there exists an essentially unique functor
F ∗: Alg T → B preserving finite colimits with F naturally isomorphic to
F ∗ · YT

We pass now to an elementary description of Rec C.

17.12 Definition Given a category C with finite coproducts, we define the
category Rec C as follows:

1. Objects of Rec C are reflexive pairs x1, x2: X1 ⇒ X0 in C (i.e., parallel pairs
for which there exists d: X0 → X1 such that x1 · d = idX0 = x2 · d, see
3.12).

2. Consider the following diagram in C,

Z1

z1

��
z2

��
V

f
��

g

�� Z0

with z1, z2, being a reflexive pair. We write

h: f 
→ g

if there exists a morphism h: V → Z1 such that z1 · h = f and z2 · h = g.

This is a reflexive relation in the hom-set C(V,Z0). We write f ∼ g if f

and g are in the equivalence relation generated by this reflexive relation.
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3. A premorphism in Rec C from (x1, x2) to (z1, z2) is a morphism f in C as
in the diagram

X1

x1

��
x2

��

Z1

z1

��
z2

��
X0

f

�� Z0

such that f · x1 ∼ f · x2.

4. A morphism in Rec C from (x1, x2) to (z1, z2) is an equivalence class [f ] of
premorphisms with respect to the equivalence ∼ of 2.

5. Composition and identities in Rec C are the obvious ones.
6. The functor ERec : C → Rec C is defined by

X

id

��
id

��

Z

id

��
id

��
ERec (X

f
�� Z) = X

[f ]

�� Z

17.13 Remark

1. Consider

Z1

z1

��
z2

��
V

f
��

g

�� Z0

as in 17.12. Explicitly, f ∼ g means that there exists a zigzag

f1�
h1

����
��
��
� �

h2

���
��

��
��

fn�
hn

����
��
��
��
� 	

hn+1

22/
//

//
//

/

f f2 . . . . . . fn−1 g

2. Using the explicit description of f ∼ g, it is straightforward to prove that
Rec C is a category and ERec : C → Rec C is a full and faithful functor.

3. The preceding description of ERec : C → Rec C does not depend on the
existence of finite coproducts in C.



192 Chapter 17

17.14 Lemma Let C be a category with finite coproducts. The category Rec C
of 17.12 has finite colimits, and ERec : C → Rec C preserves finite coproducts.

Proof
1. Finite coproducts in Rec C are computed componentwise; that is, if x1, x2:
X1 ⇒ X0 and z1, z2: Z1 ⇒ Z0 are objects of Rec C, their coproduct is

X1

x1

��
x2

��

X1 + Z1

x1+z1

��
x2+z2

��

Z1

z1

��
z2

��
X0

[iX0 ]

�� X0 + Z0 Z0
[iZ0 ]

��

2. Reflexive coequalizers in Rec C are depicted in the following diagram:

X1

x1

��
x2

��

Z1

z1

��
z2

��

X0 + Z1

〈f,z1〉
��

〈g,z2〉
��

X0

[f ]
��

[g]

�� Z0
[id]

�� Z0

�

17.15 Lemma Consider the diagram

Z1

z1

��
z2

��
V

f
��

g

�� Z0

as in 17.12. If a morphism w: Z0 → W is such that w · z1 = w · z2 and f ∼ g,

then w · f = w · g.

Proof Clearly, if h: f 
→ g, then w · f = w · g. The claim now follows from
the fact that to be coequalized by w is an equivalence relation in C(V,Z0). �

17.16 Remark For every reflexive pair x1, x2: X1 ⇒ X0 in C, the diagram

ERec X1

ERec x1
��

ERec x2

�� ERec X0

[idX0 ]
�� (X1

x1
��

x2

�� X0)
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is a reflexive coequalizer in Rec C. Therefore, if two functors F,G: Rec C → B
preserve reflexive coequalizers and F · ERec 	 G · ERec , then F 	 G.

17.17 Proposition Let C be a category with finite coproducts. The functor

ERec : C → Rec C

of 17.12 is a free completion of C under finite colimits, conservative with respect
to finite coproducts. This means that

1. Rec C has finite colimits and ERec preserves finite coproducts
2. for every functor F : C → B preserving finite coproducts, where B is a

finitely cocomplete category, there exists an essentially unique functor F ∗:
Rec C → B preserving finite colimits with F naturally isomorphic to F ∗ ·
ERec :

C
ERec

��

F ���
��

��
��

	

Rec C

F ∗����
��
��
��

B

Proof Given F : C → B, as before, we define F ∗: Rec C → B on objects by
the following coequalizer in B :

FX1

Fx1
��

Fx2

�� FX0
�� F ∗(x1, x2).

Lemma 17.15 makes it clear how to define F ∗ on morphisms. The argument
for the essential uniqueness of F ∗ is stated in 17.16. The rest of the proof is
straightforward. �

The previous universal property allows us to give a different proof of the
equation Sind C 	 Ind (Rec C) already established in 7.4.

17.18 Corollary Let C be a small category with finite coproducts. There exists
an equivalence of categories

Ind (Rec C) 	 Sind C.

We have proved this fact in 7.4. Here we obtain a different proof based on
17.17: Let B be a cocomplete category. By 4.18, the functors Ind (Rec C) → B
preserving colimits correspond to the functors Rec C → B preserving finite col-
imits and then, by 17.17, to the functors C → B preserving finite coproducts.
On the other hand, the functors C → B preserving finite coproducts correspond,
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by 15.13, to the functors Sind C → B preserving colimits. Since both
Ind (Rec C) and Sind C are cocomplete (4.16 and 4.5), we can conclude that
Ind (Rec C) and Sind C are equivalent categories. �

Historical remarks

The reflexive coequalizer completion of a category with finite coproducts is
due to A. M. Pitts (unpublished notes, 1996). It appeared in press in Bunge and
Carboni (1995). The connection between the exact completion and the reflexive
coequalizer completion was established by Pedicchio and Rosický (1999); see
also Rosický and Vitale (2001) for the connection with homological functors.
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Finitary localizations of algebraic categories

We know from Chapter 6 that algebraic categories are precisely the cocom-
plete categories having a strong generator formed by perfectly presentable
objects. We prove now that among exact categories, the algebraic categories
are precisely the cocomplete categories having a strong generator formed by
finitely presentable regular projectives. As a consequence, we fully character-
ize all finitary localizations of algebraic categories as the exact, locally finitely
presentable categories.

18.1 Theorem Let E be an exact category with sifted colimits, A a category
with finite limits and sifted colimits, and F : E → A a functor preserving finite
limits and filtered colimits. Then F preserves reflexive coequalizers iff it pre-
serves regular epimorphisms.

Proof Necessity is evident because by 3.4 every regular epimorphism is a
reflexive coequalizer of its kernel pair. For sufficiency, let F preserve finite
limits, filtered colimits, and regular epimorphisms.

1. Since every equivalence relation in E is a kernel pair of its coequalizer and
since every regular epimorphism is a coequalizer of its kernel pair, F preserves
coequalizers of equivalence relations. Since every pseudoequivalence in E can
be decomposed as a regular epimorphism followed by an equivalence relation
(cf. 16.16), F preserves coequalizers of pseudoequivalences.

2. Consider a reflexive and symmetric pair r = (r1, r2: X′ ⇒ X) of mor-
phisms in E . We construct a pseudoequivalence r containing r (the transitive
hull of r) as a (filtered) colimit of the chain of compositions:

r ◦ r ◦ . . . ◦ r n-times;

195
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the composition r ◦ r is depicted in the following diagram, where the square is
a pullback:

r ◦ r
r ′

1

����
��
��
�� r ′

2

��#
##

##
##

#

X′
r1

����
��
��
�� r2



#
##

##
##

#
X′

r1

����
��
��
�� r2

�
��

��
��

�

X X X

Since F preserves filtered colimits and finite limits, we have Fr = Fr. The
pseudoequivalence r has a coequalizer, which is preserved by F. But a coequal-
izer of r is also a coequalizer of r, and so F preserves coequalizers of reflexive
and symmetric pairs of morphisms.

3. If r = (r1, r2) is just a reflexive pair, then a reflexive and symmetric pair
containing r is given by r ◦ r−1; that is,

r ◦ r−1

s1

����
��
��
�� s2

���
��

��
��

�

X′
r1

����
��
��
�� r2

���
��

��
��

��
X′

r2

����
��
��
��
� r1

�
��

��
��

�

X X X

Once again, a coequalizer of r ◦ r−1 is also a coequalizer of r so that F preserves
reflexive coequalizers. �

18.2 Corollary Let E be a cocomplete exact category, A a category with finite
limits and sifted colimits, and F : E → A a functor preserving finite limits.
Then F preserves sifted colimits iff it preserves filtered colimits and regular
epimorphisms.

In fact, this follows from 7.7 and 18.1.

We can now generalize 5.16.

18.3 Corollary In a cocomplete exact category, perfectly presentable objects
are precisely finitely presentable regular projectives.

Proof One implication is established in 5.4. For the converse implication,
apply 18.2 to the hom-functor hom(G,−) of a finitely presentable regular
projective object G. �
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18.4 Corollary A category is algebraic iff it is cocomplete, exact, and has a
strong generator consisting of finitely presentable regular projectives.

Proof Necessity follows from 3.18 and 6.9. Sufficiency follows from 18.3
and 6.9. �

In the previous corollary, the assumption of cocompleteness can be reduced
to asking for the existence of coequalizers of kernel pairs, which is part of the
exactness of the category, and the existence of coproducts of objects from the
generator. In fact, we have the following result (recall that a category is well
powered if, for a fixed object A, the subobjects of A constitute a set, not a
proper class).

18.5 Lemma Let A be a well-powered exact category with a regular projective
cover P → A. If P has coproducts, then A is cocomplete.

Proof
1. The functor P → A preserves coproducts. Indeed, consider a coproduct

si: Pi →
∐
I

Pi

in P and a family of morphisms 〈xi: Pi → X〉I in A. Let q: Q → X be a
regular epimorphism with Q ∈ P. For each i ∈ I, consider a morphism yi:
Pi → Q such that q · yi = xi. Since Q is in P, there is y:

∐
I Pi → Q such

that y · si = yi, and then q · y · si = xi, for all i ∈ I.

As far as the uniqueness of the factorization is concerned, consider a pair
of morphisms f, g:

∐
I Pi ⇒ X such that si · f = si · g for all i. Consider

also f ′, g′:
∐

I Pi ⇒ Q such that q · f ′ = f and q · g′ = g. Since q · f ′ · si =
q · g′ · si, there is ti: Pi → N (q) such that q1 · ti = f ′ · si and q2 · ti = g′ · si,

where q1, q2 · N (q) ⇒ Q is a kernel pair of q. From the first part of the proof,
we obtain a morphism t:

∐
I Pi → N (q) such that t · si = ti for all i. Moreover,

q1 · t · si = f ′ · si for all i so that q1 · t = f ′ because Q is in P. Analogously,
q2 · t = g′. Finally, f = q · f ′ = q · q1 · t = q · q2 · t = q · g′ = g.

2. Denote by SubA(A) the poset of subobjects of A. For every categoryA, we
denote by θ (A) its ordered reflection, that is, the ordered class obtained from
the preorder on the objects of A given by A ≤ B iff A(A,B) is nonempty.
We are going to prove that for any object A of A, SubA(A) and θ (P/A)
are isomorphic ordered classes. In fact, given a monomorphism m: X → A,

we consider a P-cover q: Q → X, and we get an element in θ (P/A) from
the composition m · q. Conversely, given an object f : Q → A in P/A, the
monomorphic part of its regular factorization gives an element in SubA(A).
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3. A has coequalizers. Consider a parallel pair (a, b) in A and its regular
factorization:

B
b

��
a

��

r � ����
���

���
���

���
A

R

i2

��

i1

��

Consider now the equivalence relation a1, a2: A′ ⇒ A generated by (i1, i2),
that is, the intersection of all the equivalence relations on A containing (i1, i2).
Such an intersection exists: by part 2, SubA(A) is isomorphic to θ (P/A),
which is cocomplete because P has coproducts. Since, by assumption, A is
well powered, SubA(A) is a set, and a cocomplete ordered set is also complete.
Since A is exact, (a1, a2) has a coequalizer, which is also a coequalizer of
(i1, i2) and then of (a, b).

4. A has coproducts. Consider a family of objects (Ai)I in A. Each object A

can be seen as a coequalizer of a pseudoequivalence in P , as in the following
diagram, where the first and second columns are coproducts in P (and then in
A; see part 1 above), x0 and x1 are the extensions to the coproducts, the bottom
row is a coequalizer (which exists by part 3), and σi is the extension to the
coequalizer:

P ′
i

xi
2

��
xi

1
��

s ′
i

��

Pi

ai

�� ��

si

��

Ai

σi

��∐
I P ′

i
x2

��
x1

�� ∐
I Pi

q

�� �� Q

Since coproducts commute with coequalizers, the third column is a coproduct
of the family (Ai)I . �

18.6 Corollary A category is algebraic iff it is exact and has a strong generator
G consisting of finitely presentable regular projectives such that coproducts of
objects of G exist.

Proof Let A be an exact category and G a strong generator consisting of
regular projectives. Since a coproduct of regular projectives is regular projec-
tive, the full subcategory P consisting of coproducts of objects from G is a
regular projective cover of A. Following 18.5, it remains to prove that A is
well-powered. Consider an object A and the map

F: �(G ↓ A) → SubA(A)
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assigning to a subset M of G ↓ A the subobject of A represented by the
monomorphism sM: SM → A, where

eM:
∐

(G,g)∈M
G → A

is the canonical morphism whose (G, g)-component is g, and

∐
(G,g)∈M G

qM
�� SM

sM
�� A

is the regular factorization of eM. We are to prove that F is surjective so that
SubA(A) is a set. For this, consider a monomorphism m: S → A, and let M(s)
be the set of those (G, g) ∈ G ↓ A such that g factorizes through s:

G
g

��

h ���
��

��
��

A

S

s

���������

We get the commutative diagram

∐
(G,h)∈G↓S G

ŝ
��

eS

��))
)))

)))
)))

)))

∐
(G,g)∈M(s) G

qM(s)
��

σ

��

SM(s)

sM(s)

��d
��

S
s

�� A

where the (G,h)-components of eS and ŝ are h and g, respectively, and the
(G, g)-component of σ is h. By diagonal fill-in, there exists d: SM(s) → S

such that d · qM(s) = σ and s · d = sM(s). Such a d is an isomorphism: it is a
monomorphism because sM(s) is, and it is an extremal epimorphism because
eS is. Thus F(M(s)) = s and the proof is complete. �

From Propositions 3.18 and 6.22, we know that an algebraic category is exact
and locally finitely presentable. The converse is not true because of the lack of
projectivity of the generator. In the remaining part of this chapter, we want to
state in a precise way the relationship between algebraic categories and exact,
locally finitely presentable categories.

18.7 Definition Given a category B, by a localization of B is meant a full
reflective subcategory A whose reflector preserves finite limits. A is called a
finitary localization if, moreover, it is closed in B under filtered colimits.
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18.8 Remark More loosely, we speak about localizations of B as categories
equivalent to full subcategories having the preceding property. We use the
notation

A
I

�� B;
R

��

that is, R is left adjoint to I and I is full and faithful. Let us start with a general
lemma.

18.9 Lemma Consider a full reflection

A
I

�� B.

R
��

1. If I preserves filtered colimits and an object P ∈ B is finitely presentable,
then R(P ) is finitely presentable.

2. If the reflection is a localization and B is exact, then A is exact.

Proof
1. Use the same argument as in the proof of 6.16.1.

2. Let r1, r2: A′ ⇒ A be an equivalence relation in A. Its image in B is an
equivalence relation so that it has a coequalizer Q and it is the kernel pair of
its coequalizer (because B is exact):

IA′
Ir1

��

Ir2

�� IA
q

�� �� Q.

If we apply the functor R to this diagram, we obtain a coequalizer (because R

is a left adjoint) and a kernel pair (because R preserves finite limits),

RIA′ 	 A′
r1

��

r2

�� A 	 RIA
Rq

�� �� RQ,

and this means that (r1, r2) is effective. It remains to prove that regular epimor-
phisms are stable under pullbacks. For this, consider a pullback

P
f ′

��

g′

��

C

g

��
A

f

�� B



Finitary localizations of algebraic categories 201

in A, with f a regular epimorphism. Consider also its image in B, computed
as a two-step pullback of Ig along the regular factorization m · e of If ,

IP
e′

��

Ig′

��

Q

h

��

m′
�� IC

Ig

��
IA

e

�� E
m

�� IB

so that e′ is a regular epimorphism. If we apply the functor R to the second
diagram, we come back to the original pullback, computed now as a two-step
pullback (because R preserves finite limits):

P 	 RIP

g′

��

Re′
�� RQ

Rh

��

Rm′
�� RIC 	 C

g

��
A 	 RIA

Re

�� RE
Rm

�� RIB 	 B

Now observe that Rm is a monomorphism (because R preserves finite lim-
its) and also a regular epimorphism (because f is a regular epimorphism and
Rm · Re = f ) so that it is an isomorphism. It follows that Rm′ is an isomor-
phism. Moreover, Re′ is a regular epimorphism (because R, being a left adjoint,
preserves regular epimorphisms). Finally, f ′ is a regular epimorphism because
f ′ = Rm′ · Re′. �

18.10 Theorem Finitary localizations of algebraic categories are precisely
the exact, locally finitely presentable categories.

Proof Since an algebraic category is exact and locally finitely presentable,
necessity follows from 6.16.1 and 18.9. For the sufficiency, let A be an exact
and locally finitely presentable category. Following 6.26, A is equivalent to
Lex T , where T 	 Aop

fp, and Lex T is a full reflective subcategory of Alg T
closed under filtered colimits (see 6.29). Consider the full subcategory P of
Alg T , consisting of regular projective objects. Such an object P is a retract of a
coproduct of representable algebras (5.14.2). Since every coproduct is a filtered
colimit of its finite subcoproducts, and a finite coproduct of representable alge-
bras is representable (1.13), P is a retract of a filtered colimit of representable
algebras. Following 4.3, we have that P is contained in Lex T . Moreover, P is
a regular projective cover of Alg T (5.15). Since, by 16.27, the full inclusion
of P into Alg T is a free exact completion of P and, by assumption, Lex T is
exact, it remains just to prove that the inclusion P → Lex T is left covering.
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Once this is done, we can apply 16.26 to the following situation:

P ��



#
##

##
##

##
Alg T

R��!!!
!!
!!
!!

Lex T

where R is the reflector, and we conclude that R is an exact functor. But the
inclusionP → Alg T 	 Pex is left covering, and Lex T is closed in Alg T under
limits so that also the inclusion P → Lex T is left covering. �

18.11 Remark To finish this chapter, we observe that Corollary 18.2 can
be used to prove the characterization of varieties established in 10.24 without
using Birkhoff’s variety theorem (10.22). We sketch the argument. Let T be an
algebraic theory and

I: A → Alg T , R � I

a regular epireflective subcategory closed under regular quotients and directed
unions. From the closedness under regular quotients, it immediately follows
that I preserves regular epimorphisms and that in A, equivalence relations are
effective, so that A is exact. To prove that I preserves filtered colimits, consider
a functor F : D → A with D filtered, and let 〈σd: Fd → B〉d∈D be its colimit
cocone in Alg T . Let

Fd
ed

�� Gd
md

�� B

be the regular factorization of σd. For any morphism f : d → d ′ in D, there
exists a unique Gf : Gd → Gd ′ such that md ′ · Gf = md (use a diagonal fill-
in; cf. 0.16). This defines a new functor G: D → A (indeed Gd ∈ A because
it is a regular quotient of Fd ∈ A), and B is the directed union of the Gds so
that B ∈ A. Following 18.2, I preserves sifted colimits, and then by 6.18, A is
algebraic. Moreover, an algebraic theory TA of A can be described as follows
(cf. 6.16):

T op
A = {R(T (X,−)) | X ∈ T }.

The functor

T → TA, X 
→ R(T (X,−))

preserves finite products (by 1.13) and is surjective on objects. It remains to
prove that it is also full: let η be the unit of the adjunction R � I , and consider
f : R(T (X,−)) → R(T (Z,−)). Since ηT (Z,−) is a regular epimorphism and
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T (X,−) is regular projective, there exists g: T (X,−) → T (Z,−) such that
f · ηT (X,−) = ηT (Z,−) · g. Since η is natural and ηT (X,−) is an epimorphism, it
follows that Rg = f. By 10.13, TA is a quotient of T . Finally,

A 	 Alg TA 	 Alg (T / ∼)

so that A is a variety of T -algebras.

Historical remarks

The first systematic study of localizations is from Gabriel (1962), who also,
together with Popesco, characterized Grothendieck categories (see Popesco
and Gabriel, 1964). This is an ancestor of Theorem 18.10.

Arbitrary (i.e., nonnecessarily finitary) localizations of one-sorted algebraic
categories and, more generally, of monadic categories over Set are characterized
in Vitale (1996) and Vitale (1998). Essential localizations are studied in Adámek
et al. (2001b), which generalizes the original result for module categories due
to Roos (1965).

One of the results of Lawvere’s (1963) thesis is a characterization of one-
sorted algebraic categories (cf. Corollary 18.6). The only difference is that
in Lawvere’s original result, the generator is required to be abstractly finite,
a notion that without the other conditions of the characterization theorem is
weaker than finitely presentable.
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In this postscript, we intend to explain somewhat the position our book has in
the literature on algebra and category theory, and we want to mention some of
the important topics that we decided not to deal with in our book.

One-sorted algebraic theories provide a very convenient formalization, based
on the concept of finite product, of the classical concept of “the collection of
all algebraic operations” present in a given kind of algebras, for example, in
groups or boolean algebras. These theories lead to concrete categories A of
algebras, that is, to categories equipped with a faithful functor U: A → Set.
They can also be used to find an algebraic information present in a given
concrete category A: we can form the algebraic theory whose n-ary operations
are precisely the natural transformations Un → U. In the case of groups (and in
any one-sorted algebraic category), these “implicit” operations are explicit; that
is, they correspond to operations of the theory of groups. But on finite algebras
(e.g., finite semigroups), there exist implicit operations that are not explicit,
and they are important in the theory of automata (see Almeida, 1994). The
passages from one-sorted algebraic theories to one-sorted algebraic categories
and back form a duality that is a biequivalence in general. And, as we will see in
Appendix C, this passage is an equivalence if we restrict one-sorted algebraic
categories to uniquely transportable ones. The latter limitation is caused by
a small disadvantage of the formalization based on finite products: a finite
product of sets is only isomorphic to the Cartesian product, and thus a finite
product preserving functor from a one-sorted algebraic theory to the category
of sets is, in general, only isomorphic to a “real” algebra.

General algebraic theories formalize many-sorted algebras. Moreover, the
sorting is also variable: whereas classical theories, such as groups and boolean
algebras, are one-sorted, we have seen important many-sorted theories for
the same algebraic categories. For example the so-called canonical theory of

204



Postscript 205

boolean algebras has infinitely many sorts. This canonical theory, which is a
foundation of the duality between algebraic categories and algebraic theories, is
obtained from any algebraic theory by splitting of idempotents. Its objects do not
correspond to finitely generated free algebras but to finitely presentable regular
projective algebras. This does not play any role for groups because regular
projective groups are free, but it is crucial for boolean algebras and R-modules.
Thus the approach of the general algebraic theories goes beyond the traditional
algebraic boundaries, for example, it touches homological algebra, in which
(regular) projective resolutions are more important than the free ones. The case
of chain complexes of R-modules is even more illuminating because finitely
presentable regular projective algebras coincide with perfect chain complexes.
Forgetting sorts means that we have to consider algebraic categories just as
abstract categories and not equipped with a faithful functor to the category of
(many)-sorted sets. But there is a way of finding algebraic information present
in a given abstract category that takes the dual of the full subcategory of finitely
presentable regular projectives. This results in the duality between canonical
algebraic theories and algebraic categories.

Algebraic theories immediately lead to sifted colimits, that is, colimits that
commute with finite products in sets. In the practice of general algebra, these
colimits are mostly reduced to filtered colimits and quotients modulo con-
gruences, and it has taken quite a long time to understand the importance of
reflexive coequalizers. Algebraic categories are the free completions of small
categories under sifted colimits, which puts them between locally finitely pre-
sentable categories and presheaf categories. The fact that algebras are set-valued
functors links general algebra with fields like algebraic geometry, where set-
valued functors play an important role as sheaves (especially under the influence
of Grothendieck; e.g., Artin et al., 1972). Grothendieck toposes, which are the
categories of sheaves, can be characterized as the localizations of presheaf cate-
gories. In the additive case, one precisely gets Grothendieck categories that are
the localizations of categories of modules. Analogously, we have presented a
characterization of finitary localizations of algebraic categories. Both the char-
acterization of algebraic categories and their localizations are a combination of
exactness properties and a smallness condition (the existence of a suitable gen-
erator). Categories satisfying all exactness properties of algebraic categories but
no smallness condition form the “equational hull” of varieties where “operations
and equations” are not set-like but category-like. For instance, taking a reflex-
ive coequalizer is an operation whose arity is a category, in fact, the reflexive
pair. In contrast, the classical construction of forming quotients modulo all
congruences cannot be considered as such an operation (which illustrates the
importance of reflexive coequalizers in general algebra). The equational hull of
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varieties was found in Adámek et al. (2001a), which solved the open problem
from Lawvere (1969).

One-sorted algebraic theories are closely linked to monads over sets; in
fact, they precisely correspond to finitary monads. In the same way, S-
sorted algebraic theories correspond to finitary monads over S-sorted sets. See
Appendix A. Power (1999) extended this correspondence to certain symmetric
monoidal closed categories V by introducing enriched Lawvere theories and
showing that they correspond to finitary V-monads on V . His approach covers
some nonalgebraic cases as well, for example, torsion-free Abelian groups that
are presented by a finitary monad on Abelian groups. This is caused by the fact
that on Abelian groups, contrary to sets (and S-sorted sets), there exist finitary
monads that do not preserve sifted colimits. Power’s approach can be modified
to V-monads preserving sifted colimits (see Lack and Rosický, 2010) on sym-
metric monoidal closed categories somewhat more restricted. But to deal with
monads on symmetric monoidal categories in general, one has to move from
Lawvere theories to operads, that is, from finite products to the tensor product
(see Boardman and Vogt, 1973; Mac Lane, 1963). This leads to “general alge-
bra over V” (see Loday, 2008; Voronov, 2005). Each operad induces a monad
on V , and these operadic monads preserve sifted colimits (see Rezk, 1996).

Given a one-sorted algebraic theory, one can consider its algebras in any
category K having finite products. For instance, for the theory of groups, the
algebras in the category of topological spaces are the topological groups, or
algebras in the category of smooth manifolds are the Lie groups. But our charac-
terization of algebraic categories strongly depends on the exactness properties
of sets and is not applicable in general. Surprisingly, this can be transformed to
the homotopy setting, where it reflects the exactness properties of the homotopy
category SSet of simplicial sets (which is equivalent to the classical homotopy
category of topological spaces). One considers homotopy algebras of T : they
are functors A: T → SSet, preserving finite products up to homotopy, which
means that the canonical maps

A(t1 × · · · × tn) → A(t1) × · · · × A(tn)

are not isomorphisms but weak equivalences. An analogy of sifted colimits
emerges, but reflexive coequalizers are replaced by the homotopy colimits of
simplicial objects (a reflexive pair is the 2-truncation of a simplicial object).
The resulting characterization of homotopy varieties can be found in Rosický
(2007); independently, it was presented by Lurie (2009) using the language of
quasicategories of Joyal (2008).



Appendix A

Monads

An important aspect of algebraic categories that has not yet been treated in this
book are monads. The aim of this appendix is to give a short introduction to
monads on a category K and then to explain how finitary monads for K = Set
precisely yield one-sorted algebraic theories, and for K = Set S , the S-sorted
ones.

The word monad stems from monoid: recall that a monoid in a category
K is an object M together with a morphism m: M × M → M , which (1) is
associative, that is, the square

M × M × M
m×idM

��

idM ×m

��

M × M

m

��
M × M

m

�� M

commutes, and (2) has a unit, that is, a morphism e: 1 → M such that the
triangles

M

M = 1 × M
e×idM

��

idM

//00000000000000000
M × M

m

��

M × 1 = M
idM ×e

��

idM

3311111111111111111

commute.
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A.1 Definition

1. A monad M on a category K consists of an endofunctor M on K and
natural transformations (1) µ: MM → M (monad multiplication) and
(2) η: IdK → M (monad unit) such that the diagrams

MMM
Mµ

��

µM

��

MM

µ

��
MM

µ

�� M

(A.1)

and

M

M

M

��+++++++++++++++

ηM

�� MM

µ

��

M
Mη

��

M

��)))))))))))))))

(A.2)

commute.
2. The monad is called finitary if M is a finitary functor.

A.2 Example

1. The functor M: Set → Set given by

MX = X + 1

carries the obvious structure of a monad: the unit is the coproduct injection
ηX: X → X + 1, and the multiplication µX: X + 1 + 1 → X + 1 merges
the two copies of 1 to a single copy.

2. The word monad on Set assigns to every set X the set

MX = X∗

of all words on it, that is, the (underlying set of the) free monoid on X.

This yields an endofunctor on Set together with natural transformations ηX:
X → X∗, the formation of one-letter words, and µX: (X∗)∗ → X∗ given
by concatenation of words.

In the notation of 12.6, we have two natural transformations

η: Id → UHFH = H ∗

ϕ: HH ∗ → H ∗,
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yielding a natural transformation

ψ = ϕ · Hη: H → H ∗.

We will see in Corollary A.27 that it has the universal property explaining
the name free monad.

A.3 Example The basic example of a monad is that induced by any adjoint
situation

A
U

�� K
F

��

where F � U . Let η: IdK → UF and ε: FU → IdA denote the unit and counit
of the adjunction. Recall the equalities

U = Uε · ηU and F = εF · Fη (A.3)

characterizing adjoint situations. Then, for the endofunctor

M = UF : K → K,

we have the natural transformation

µ = UεF : MM = UFUF → UF = M, (A.4)

which, together with the unit η: IdK → M, forms a monad on K. In fact, the
commutativity of the two triangles (A.2) follows from Equations (A.3), and the
commutativity of square (A.1) follows from the naturality of ε:

ε · FUε = ε · εFU, (A.5)

yielding

µ · Mµ = U (ε · FUε)F = U (ε · εFU )F = µ · µM.

Observe that whenever U is a finitary functor, this monad is finitary because
F, being a left adjoint, always preserves filtered colimits.

A.4 Example

1. Every one-sorted algebraic category U: A → Set defines a monad on Set
assigning to every set X the free algebra generated by it. In other words,
this is the monad induced by the adjunction F � U , as in A.3, where F

is the free-algebra functor of 11.21. Since U preserves filtered colimits by
11.8, all these monads are finitary.

2. Analogously, every S-sorted algebraic category defines a finitary monad on
Set S.
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3. Recall that for every finitary endofunctor H of Set, free H -algebras exist,
giving a left adjoint FH : Set → H -Alg (see 12.7). The corresponding
monad H ∗ on Set is called the free monad on H : it assigns to every set
X the free H -algebra on X. For example, if H is the polynomial functor of
a signature �, the free monad is the monad of �-terms, see 13.1.

A.5 Remark Recall from 12.1 the category M-Alg of M-algebras for the
endofunctor M of K. If M is the monad induced by an adjoint situation F � U ,
as in A.3, then every object A of A yields a canonical M-algebra on X = UA:
put

x = UεA: MX = UFUA → UA = X.

This algebra has the property that the triangle

X

ηX

��

idX



�
��

��
��

�

MX
x

�� X

(A.6)

commutes; see Equations (A.3). Also, the square

MMX
µX

��

Mx

��

MX

x

��
MX

x

�� X

(A.7)

commutes; see Equation (A.5). This leads to the following

A.6 Definition An Eilenberg–Moore algebra for a monad M = (M,µ, η)
on K is an algebra (X, x) for M such that the diagrams (A.6) and (A.7) com-
mute. The full subcategory of M-Alg formed by all Eilenberg–Moore algebras
is denoted by

KM .

A.7 Remark The Eilenberg–Moore category KM is considered a concrete
category on K via the faithful functor

UM: KM → K, (X, x) 
→ X.

It is easy to verify that this concrete category is uniquely transportable (same
argument as in 13.17.3).
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A.8 Example

1. For every category K, we have the trivial monad Id = (IdK, id, id). The
only Eilenberg–Moore algebras are idX: X → X. Thus K I 	 K.

2. For the monad MX = X + 1 of A.2.1, an Eilenberg–Moore algebra is a
pointed set: given x: X + 1 → X for which Triangle (A.6) commutes, the
left-hand component of x is idX, and thus x just chooses an element 1 →
X. Here Square (A.7) always commutes. Homomorphisms are functions
preserving the choice of element. In short, Set M is the category of pointed
sets.

3. For the word monad A.2.2, the category Set M is essentially the category
of monoids. In fact, given an Eilenberg–Moore algebra x: X∗ → X, Trian-
gle (A.6) states that the response to one-letter words is trivial; x(a) = a,
and Square (A.7) states that for words of length larger than 2, the response
is given by the binary operation

a1 ∗ a2 = x(a1a2) .

In fact, for example, with length 3, we get

x(a1a2a3) = x(a1(a2a3)) = a1 ∗ (a2 ∗ a3)

as well as

x(a1a2a3) = x((a1a2)a3) = (a1 ∗ a2) ∗ a3.

Thus ∗ is an associative operation. Square (A.7) also states that the response
of x to the empty word is a unit for x.

Conversely; every monoid defines an Eilenberg–Moore algebra, see
Remark A.5. The monoid homomorphisms are easily seen to be precisely
the homomorphisms in Set M. Thus Set M is isomorphic to the category of
monoids.

A.9 Example: Free Eilenberg–Moore algebras For every monad M, the
M-algebra

(MX,µX: MMX → MX)

is an Eilenberg–Moore algebra: the commutativity of the diagrams (A.6) and
(A.7) follow from the definition of monad. This algebra is free with respect
to ηX: X → MX. In fact, given an Eilenberg–Moore algebra (Z, z) and a
morphism f : X → Z in K, the unique homomorphism extending f is f =
z · Mf :
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1. f = z · Mf is a homomorphism: the diagram

MMX
µX

��

MMf

��

MX

Mf

��
MMZ

µY

��

Mz

��

MZ

z

��
MZ

z

�� Z

commutes due to Equation (A.5) and the naturality of µ.

2. Conversely, if f : (MX,µX) → (Z, z) is a homomorphism, then f =
f · ηX implies that f = z · Mf :

MMX
µX

��

Mf

��

MX

f

��

MX

MηX

44$$$$$$$$$

id
����������

Mf�����
��
��
��

MZ
z

�� Z

A.10 Corollary Every monad is induced by some adjoint situation.

In fact, given a monad M on a category K, we have the preceding adjoint
situation

KM

UM

�� K,

FM

��

where FM is the free-algebra functor

FMX = (MX,µX) .

It is defined on morphisms by FMf = Mf. Thus the monad induced by the
adjunction FM � UM has the underlying endofunctor UM · FM = M and the
unit η (recall the universal morphisms ηX from A.9). We need to verify that for
the counit ε of the adjoint situation, we have

µ = UM ε FM .
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In fact, the component of ε at an Eilenberg–Moore algebra (X, x) is the unique
homomorphism

ε(X,x): (MX,µX) → (X, x)

with UMε(X,x) · ηX = idX. But because of the diagrams (A.6) and (A.7), the
morphism x carries such a homomorphism. Therefore UMε(X,x) = x for all
algebras (X, x). In particular,

(UM ε FM)X = UMε(MX,µX) = µX.

A.11 Definition For every adjoint situation

A
U

�� K
F

�� with F � U,

let M be the monad of A.3. The comparison functor is the functor

K: A → KM

that assigns to every object A the Eilenberg–Moore algebra

KA = (UA,UεA)

of A.5. The definition of K on morphisms f : A → B uses the naturality of ε,
which shows that Kf = Uf is a homomorphism:

MUA
UεA

��

MUf

��

UA

Uf

��
MUB

UεB

�� UB

A.12 Remark The comparison functor K: A → KM of A.11 is the unique
functor such that UM · K = U and K · F = FM.

A.13 Example

1. For the concrete category of monoids U: Mon → Set, the comparison func-
tor K: Mon → Set M is an isomorphism. The inverse K−1 was described in
A.8.2 on objects and acts trivially on morphisms: K−1f = f.

2. The concrete category U: Pos → Set of partially ordered sets yields the
trivial monad Id = (IdSet, id, id) of A.8: recall that the left adjoint of U
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assigns to every set X the discrete order on the same set. For this monad,
we have an isomorphism between Set and Set M, and the comparison functor
is then simply the forgetful functor U.

3. For the free monad H ∗ on H (see A.4.3), the Eilenberg–Moore category
is concretely isomorphic to H -Alg. Indeed, the functor J : SetH ∗ → H -
Alg taking an Eilenberg–Moore algebra x: H ∗X → X to the H -algebra
obtained by composing with ψX (see A.4.3) is easily seen to be a concrete
isomorphism.

A.14 Definition A concrete category (A, U ) on K is monadic if U has a left
adjoint F and the comparison functor K: A → KM is an isomorphism for the
monad M induced by F � U .

A.15 Remark

1. The fact that (A, U ) is monadic does not depend on the choice of the left
adjoint of U. Indeed, if F ′ is another left adjoint, then the canonical natural
isomorphism F 	 F ′ induces an isomorphism of monads M 	 M′ (see
A.24 for the notion of monad morphism), where M′ is the monad induced
by the adjunction U � F ′. As we will see in A.25, this implies that KM and
KM′

are concretely isomorphic.
2. In other words, monadic concrete categories are precisely those that, up to

concrete isomorphism, have the form KM. It is not surprising, then, that
monoids are an example of a monadic concrete category and posets are not.

A.16 Definition A coequalizer in a category K is called absolute if every
functor with domain K preserves it.

A.17 Example For every Eilenberg–Moore algebra (X, x), we have an abso-
lute coequalizer

MMX

Mx
��

µX

�� MX
x

�� X

in K. In fact, x merges the parallel pair by Square (A.7), and moreover, the
morphisms ηX and ηMX are easily seen to fulfill the following equations:
µX · ηMX = idMX, ηX · x = idX, and Mx · ηMX = ηX · x. It is easy to derive
from these equations that x is a coequalizer of Mx and µX. Since every
functor G: K → L preserves the preceding equations, it follows that Gx is a
coequalizer of GMx and GµX.
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A.18 Beck’s theorem: Characterization of monadic categories A concrete
category (A, U ), with U a right adjoint, is monadic iff (1) it is uniquely
transportable and (2) A has coequalizers of all reflexive pairs f, g such that
Uf,Ug have an absolute coequalizer; and U preserves these coequalizers.

A proof of A.18 can be found in Mac Lane (1998, chap. 6, sec. 7). The reader
has just to observe that the parallel pairs of morphisms used in that proof are
reflexive, and U creates the coequalizers involved in condition (2) because it is
amnestic and conservative.

A.19 Proposition Every equational category (13.10.2) is monadic.

Proof Condition 1 of A.18 follows from 13.17 and condition 2 from 13.11
and 11.8: the forgetful functor is algebraic and thus it preserves reflexive
coequalizers. �

A.20 Example

1. Pointed sets, monoids, groups, abelian groups, and so on with their forgetful
functors, are monadic.

2. For a one-sorted algebraic theory (T , T ), the concrete category (Alg T ,

Alg T ) in general is not monadic, as Example 11.7 shows: Alg Tab is not
amnestic, whereas UM always is. What remains true is that (Alg T , Alg T )
is pseudomonadic, as we will see in Proposition C.4 (see Appendix C).

A.21 Theorem Equational categories are up to concrete isomorphism pre-
cisely the categories Set M of Eilenberg–Moore algebras for finitary monads M

on Set.

Proof In fact, every equational category is, by A.19, concretely isomorphic
to Set M, where M is the monad of its free algebras. Conversely, given a
finitary monad M = (M,µ, η) on Set, we know from 13.23 that M-Alg is
concretely isomorphic to an equational category. Therefore it is sufficient to
prove that Set M is closed in M-Alg under products, subobjects, and regu-
lar quotients. Then the result follows from Birkhoff’s variety theorem in the
form 13.22.

1. For products; let (X, x) = ∏
i∈I (Xi, xi), where each (Xi, xi) is an

Eilenberg–Moore algebra. For the algebra (X, x) Triangle (A.6) commutes
because the projections (πi)i∈I are a limit cone, thus collectively monomorphic,
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and the diagram

X

πi

����
��
��
��
� idX



�
��

��
��

�

Xi

ηXi

��

MX
x

��

Mπi����
��
��
��

X

πi

���
��

��
��

�

MXi
xi

�� Xi

commutes for every i. Thus xi · ηXi
= id implies x · ηX = id . For the algebra

(X, x) Square (A.7) commutes for similar reasons:

MMXi

µXi

��

Mxi

��

MXi

xi

��

MMX

MMπi
55��������

µX

��

Mx

��

MX

Mπi
���������

x

��
MX

x

��

Mπi�����
��
��
�

X

πi ���
��

��
��

�

MXi
xi

�� Xi

2. For subalgebras m: (X, x) → (Z, z) of Eilenberg–Moore algebras (Z, z), in
the diagram

Z

ηZ

66

idZ

7

X
ηX

��		
		
		
	 idX

���
��

��
��

m

��

MX
x

��

Mm����
��
��
�

X

m ���
��

��
�

MZ
z

�� Z

the outward triangle commutes, and all parts, except the middle triangle, also
commute. Thus so does the middle triangle since m is a monomorphism.
Therefore Triangle (A.6) commutes for (X, x). The proof of Square (A.7) is
analogous.
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3. For regular quotients e: (Z, z) → (X, x) of Eilenberg–Moore algebras
(Z, z), in the diagram

Z

ηZ

66

idZ

77

e
��

X
ηX

����
��
�� idX

�
��

��
�

MX
x

�� X

MZ
z

��
Me

��������
Z

e

��������

again, all parts, except the middle triangle, commute. Since e is an epimorphism,
so does the middle triangle. Therefore Triangle (A.6) commutes. For Square
(A.7), use the analogous argument plus the fact that M preserves epimorphisms
(because they split in Set). �

A.22 Corollary One-sorted algebraic categories are up to concrete equiva-
lence precisely the categories Set M of Eilenberg–Moore algebras for finitary
monads M on Set.

In fact, this follows from A.21 and 13.11.

A.23 Corollary For every finitary monad M on Set, the category Set M

is cocomplete, and the forgetful functor UM: Set M → Set preserves sifted
colimits.

In fact, the category Set M is equational by A.21 and then one-sorted algebraic
by 13.11. Use now 4.5 and 11.9.

A.24 Definition Let M = (M,µ, η) and M′ = (M ′, µ′, η′) be monads on a
category K. A monad morphism from M to M′ is a natural transformation
ρ: M → M ′ such that the diagrams

IdK
η

����
��
��
�� η′



�
��

��
��

�

M
ρ

�� M ′
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and

MM
Mρ

��

µ

��

MM ′
ρM ′

�� M ′M ′

µ′

��
M

ρ

�� M ′

commute.

A.25 Proposition Every monad morphism ρ: M → M′ induces a concrete
functor

Hρ: KM′ → KM,

assigning to every Eilenberg–Moore algebra (X, x) for M′ the algebra
(X, x · ρX) for M. Conversely, given a concrete functor

KM′ H
��

UM′ 

�
��

��
��

�
KM

UM����
��
��
��

K

there exists a unique monad morphism ρ: M → M′ with H = Hρ.

In fact, for a free Eilenberg–Moore algebra (M ′A,µ′
A), the algebra

H (M ′A,µ′
A) has the form (M ′A, σA: MM ′A → M ′A). We get a monad

morphism

ρ: M → M′, ρA: MA

Mη′
A

�� MM ′A
σA

�� M ′A.

A full proof can be found in Borceux (1994, vol. 2, proposition 4.5.9).

A.26 Corollary The category of finitary monads on Set and monad morphisms
is dually equivalent to the category of finitary monadic categories on Set and
concrete functors.

In fact, this follows from A.25.

A.27 Corollary The free monad H ∗ on a finitary endofunctor H (see A.4.3) is
indeed free on H : for every finitary monad M = (M,µ, η) and every natural
transformation α: H → M , there exists a unique monad morphism α∗: H ∗ →
M with α = α∗ · ψ.
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In fact, recall from A.13.3 that H -Alg is concretely isomorphic to SetH ∗
, and

use, in place of α∗, the concrete functor from Set M to H -Alg, assigning to every
Eilenberg–Moore algebra x: MX → X the algebra x · αX: HX → X.

A.28 Remark We observed in A.10 that every monad M is induced by an
adjoint situation using the Eilenberg–Moore algebras. There is another way to
induce M: the construction of the Kleisli category of M. This is, as we note
later, just the full subcategory of KM on all free algebras.

A.29 Definition The Kleisli category of a monad M is the category

KM

with the same objects as K and with morphisms from X to Z given by mor-
phisms f : X → MZ in K:

KM(X,Z) = K(X,MZ).

The identity morphisms are ηX, and the composition of two morphisms
f ∈ KM(X,Z) and g ∈ KM(Z,W ) is given by the following composition
in K:

X
f

�� MZ
Mg

�� MMW
µW

�� MW.

A.30 Example For the monad MX = X + 1 of A.2.1, the Kleisli category is
the category of sets and partial functions. A partial function from X to Z is
represented as a (total) function from X to Z + 1.

A.31 Notation For every monad M, we denote (1) by KM: KM → KM the
functor that assigns to X ∈ KM the free Eilenberg–Moore algebra (MX,µX)

and to f ∈ KM(X,Z) the morphism MX
Mf

�� MMZ
µZ

�� MZ, and

(2) by JM: K → KM the functor that is the identity map on objects and that to
every morphism u: X → Z of K assigns

X
u

�� Z
ηZ

�� MZ.

A.32 Lemma The functor JM is a left adjoint of

KM

KM

�� KM
UM

�� K,
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and M is the monad induced by the adjunction JM � UM · KM. The functor
KM is the corresponding comparison functor; it is full and faithful.

Proof JM is a left adjoint of UM · KM with unit

ηX: X → MX = UMKMJMX

and counit given by the morphism in KM(JMUMKMX,X), which is ε = idMX

in K. The two axioms

εJM · JMη = JM and UMKMε · ηUMKM = UMKM

are easy to check. �

A.33 Theorem Given monads M and M′ on a category K, there is a bijec-
tive correspondence between monad morphisms ρ: M → M′ and functors
G: KM → KM for which the triangle

K
JM

����
��
��
�� JM′



�
��

��
��

�

KM
G

�� KM′

commutes.

We will see in the proof that the bijective correspondence assigns to every
monad morphism ρ: M → M′ the functor ρ̂: KM → KM′ , which is the identity
map on objects, and assigns to p: X → MZ in KM(X,Z) the value

X
p

�� MZ
ρZ

�� M ′Z.

Proof

1. The functor ρ̂ is well defined: preservation of identity morphisms follows
from ρX · ηX = η′

X. Preservation of composition follows from the commuta-
tivity of the following diagram, where p: X → MW and q: W → MZ are
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arbitrary morphisms:

MMZ

ρMZ

��

µZ

�� MZ
ρZ

��2
22

22
22

22

X
p

�� MW

Mq
//000000000000000000

ρW ���
��

��
��

�
M ′Z

M ′W

M ′q ��2
22

22
22

22

M ′MZ
M ′ρZ

�� M ′M ′Z

µ′
Z

833333333333333333

2. The equality ρ̂ · JM = JM′ follows from ρ · η = η′.
3. If ρ, σ are different monad morphisms, then ρ̂ �= σ̂ due to the fact that

the component ρX is obtained from ρ̂ by ρ̂(idMX) = ρX.

4. Let G: KM → KM′ be a functor such that G · JM = JM′ . Observe that
this condition tells us that G is the identity map on objects. The identity
morphism idMX: MX → MX can be seen as a morphism εX: MX → X inKM.

Applying G, we get a morphism GεX: MX → X in KM′ , that is, a morphism
MX → M ′X in K that we denote by ρX. We claim that ρX is the component
at X of a monad morphism ρ: M → M′ with ρ̂ = G.

The fact that G is a functor means that

(1) GηX = η′
X

(preservation of identity morphisms); given p: X → MW and q: W → MZ

in K, we have

G(X
p

�� MW
Mq

�� MMZ
µZ

�� MZ)
(2)

= (X
Gp

�� M ′W
M ′Gq

�� M ′M ′Z
µ′

Z

�� M ′Z)

(preservation of composition); and for every u: X → W in K, we have

(3) G(X
u

�� W
ηW

�� MW ) = (X
u

�� W

η′
W

�� M ′W )

(due to G · JM = JM′). This implies for all u: X → W in K the equation

(4) GMu = Gu · ρX
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since we apply (2) to p = idMX and q = ηW · u (thus the previous objects
X, W , and Z are now MX,X, and W, respectively, and Gq = η′

W · u by (3))
and use (A.2) for M and M ′. Also, for every q: W → MZ, we have

(5) G(q · u) = Gq · u

by applying (2) and (3) to p = ηW · u. From this, we derive the naturality of ρ:

(6) ρW · Mv = M ′v · ρX for all v: X → W ,

since (5) yields for q = idMW and u = Mv

ρW · Mv = GMv,

and then we apply (4). We are ready to prove that ρ is a monad morphism.
The equality ρ · η = η′ follows from (5) by u = ηW and q = idMW, and the
equality ρ · µ = µ′ · ρM ′ · Mρ follows from (2) by p = idMMX and q = idMX;
this proves that the right-hand side is equal to GµX, whereas the left-hand side
is GµX by (5) applied to q = µX and u = idMMX. Thus

ρ: M → M′

is a monad morphism. Finally, we need to prove ρ̂ = G; that is, for every
p0: X → MW , we have that

Gp0 = GεX · p0,

and for this, apply (5) to u = p0 and q = idMW . �

A.34 Remark Let M be a finitary monad on Set. Then the functor M is
essentially determined by its domain restriction to N op (the full subcategory of
natural numbers) since Set is a free completion Ind N op of N op under sifted
colimits, see 4.13. Also, the natural transformations η and µ are uniquely
determined by their components ηn and µn for natural numbers n.

This leads us to the following restriction of the Kleisli category.

A.35 Notation For every finitary monad M on Set, we denote by

SetfM

the full subcategory of the Kleisli category KM on all natural numbers and by

J
f

M: N op → SetfM

the domain-codomain restriction of JM.

A.36 Corollary Given finitary monads M and M′ on Set, there is a bijective
correspondence between monad morphisms ρ: M → M′ and those functors
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G: SetfM → SetfM′ , for which the triangle

N op

J
f

M

����
��
��
�� J

f

M′

��















SetfM
G

�� SetfM′

commutes. It assigns to ρ the functor

ρ̂f : (n
p

�� Mk) 
→ (n
p

�� Mk
ρk

�� M ′k).

The proof is completely analogous to that of A.33. All we need to notice is
that a monad morphism ρ: M → M′ is uniquely determined by its components
ρn, n ∈ N op. This follows once again from 4.13 applied to YN : N op → Set.

In 11.35, we defined the 2-category Th 1 of one-sorted algebraic theories.
In the following theorem, we consider it as a category; that is, we forget the
2-cells.

A.37 Theorem The category Th 1 of one-sorted algebraic theories is equivalent
to the category of finitary monads on Set.

Proof Denote by FMon the category of finitary monads and monad mor-
phisms. Every object M defines a one-sorted theory by dualizing J

f

M of A.35:

(J f

M)op: N → (SetfM)op.

In fact, since JM: Set → Set M is a left adjoint, it preserves coproducts. In other
words, coproducts are the same in Set and in Set M. The same, then, holds
for finite coproducts in the full subcategories N op and SetfM, respectively.
Therefore the identity-on-objects functor (J f

M)op preserves finite products, and
we obtain a one-sorted theory

E(M) =
(

(SetfM)op, (J f

M)op
)

.

This yields a functor

E: FMon → Th 1,

which, to every monad morphism ρ: M → M′ between finitary monads, assigns

E(ρ) = (ρ̂f )op .
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The commutative triangle of A.36 tells us that this is a morphism of one-sorted
theories. It is easy to verify that E is a well-defined functor.

Next, E is full and faithful because of the bijection in A.36. Finally, E

is essentially surjective. Recall from 11.21 that for every one-sorted theory
(T , T ), we have a left adjoint FT to the forgetful functor Alg T (of evaluation
at 1) such that

FT (n) = T (n,−) and FT (πn
i ) = − · T πn

i .

Moreover, the naturality square for η: Id → Alg T · FT applied to πn
i yields

ηn(i) = T πn
i for all i = 0, . . . , n − 1.

Let M be the monad corresponding to this adjoint situation. We know that M

is finitary and that the values at n ∈ N are

Mn = T (n, 1).

The theory (SetfM)op thus has as morphisms from n to k precisely all functions

p: k → T (n, 1).

This k-tuple of morphisms defines a unique morphism

Ip ∈ T (n, k)

characterized by

T πk
i · Ip = p(i) (i = 0, . . . , k − 1) .

We obtain an isomorphism of categories

I: (SetfM)op → T ,

and it remains to prove that the triangle

N
(J f

M)op

����
��
��
��
�

T

���
��

��
��

�

(SetfM)op

I

�� T

commutes. Given a morphism u ∈ T (n, k), we know that T u is the unique
morphism with

T πk
i · T u = T πn

u(i)
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for all i, and we have

T πn
i · (I · (J f

M)op(u)) = T (πk
i )I (ηn · u) = ηn · u(i) = πn

u(i) .

�

A.38 Remark Explicitly, the functor assigning to every one-sorted algebraic
theory (T , T ) its monad of free T -algebras is an equivalence functor from Th 1

to FMon. In fact, this functor is a quasi-inverse (0.2) of the equivalence functor
E of the preceding proof.

A.39 Remark The situation with S-sorted theories and S-sorted algebraic
categories is entirely analogous: all the preceding results translate without
problems from Set to Set S ; only Theorem A.21 needs some work.

A.40 Theorem S-sorted equational categories are up to concrete isomorphism
precisely the categories (Set S)M of Eilenberg–Moore algebras for finitary mon-
ads M on Set S.

Proof The only difference with respect to the proof of A.21 is that in the
S-sorted case, we have to check also that (Set S)M is closed in M-Alg under
directed unions. Let ki: (Xi, xi) → (X, x) (i ∈ I ) be a colimit cocone of a
filtered colimit in M-Alg , where each (Xi, xi) is an Eilenberg–Moore algebra.
Then Triangle (A.6) commutes for (X, x) because the cocone (ki) is collectively
epimorphic:

Xi

ηXi

66

idXi

99

ki

��
X

ηX

����
��
��
�� idX







MX
x

�� X

MXi
xi

��
Mki

����������
Xi

ki

::�������
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and Square (A.7) also commutes because the cocone (MMki) is collectively
epimorphic, being a colimit cocone (since MM preserves filtered colimits):

MMXi

µXi

��

MMki

���
��

��
��

��

Mxi

��

MXi

xi

��

Mki

����
��
��
��

MMX
µX

��

Mx

��

MX

x

��
MX

x

�� X

MXi

Mki

''���������

xi

�� Xi

ki

##���������

�

A.41 Theorem The category Th S of S-sorted algebraic theories is equivalent
to the category of finitary monads on Set S.

The proof is completely analogous to the proof in the one-sorted case. We
just observe that the functor J : Set S → (Set S)M can, in case of M finitary, be
restricted to J f : (S∗)op → (Set S)fM analogously to A.35.
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Abelian categories

Another important topic not treated in our book is abelian categories. In this
appendix, we restrict ourselves to introducing the basic concepts and proving
that the only one-sorted algebraic categories that are abelian are the categories
R-Mod of left modules over rings R. We also prove the many-sorted general-
ization of this result.

B.1 Remark In the following, we use the standard terminology of the theory
of abelian categories:

1. A zero object is an object 0 that is initial as well terminal. For two objects
A,B, the composite A → 0 → B is denoted by 0: A → B.

2. A biproduct of objects A and B is a product A × B with the property that
the morphisms

〈idA, 0〉: A → A × B and 〈0, idB〉: B → A × B

form a coproduct of A and B.

3. A category is called preadditive if it is enriched over the category Ab of
abelian groups, that is, if every hom-set carries the structure of an abelian
group such that composition is a group homomorphism.

4. In a preadditive category, an object is a zero object iff it is terminal, and
a product of two objects is a biproduct. A preadditive category with finite
products is called additive.

5. A functor F : A → A′ between preadditive categories is called additive
if it is enriched over Ab, that is, the derived functions A(A,B) →
A′(FA,FB) are group homomorphisms. In case of additive categories,
this is equivalent to F preserving finite products.

6. Finally, a category is called abelian if it is exact and additive.

227
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B.2 Example Just as one-object categories are precisely the monoids, one-
object preadditive categories are precisely the unitary rings R. Every left R-
module M defines an additive functor M: R → Ab with M(∗) = M and Mr =
r · −: M → M for r ∈ R. Conversely, every additive functor F : R → Ab is
naturally isomorphic to M for M = F (∗).

For a small, preadditive category C, we denote by Add [C, Ab] the abelian
category of all additive functors into Ab (and all natural transformations). The
previous example implies that R-Mod is equivalent to Add [R, Ab].

B.3 Theorem Abelian algebraic categories are precisely those equivalent to

Add [C, Ab]

for a small additive category C.

Proof: Sufficiency. For every small additive category C, we prove that the
category Add [C, Ab] is equivalent to Alg C. We denote by hom(C,−): C →
Set and Hom(C,−): C → Ab the hom-functors. Consider the forgetful functor
U: Ab → Set. Since U preserves finite products, it induces a functor

Û = U · − : Add [C, Ab] → Alg C.

Let us prove that Û is an equivalence functor.
1. Û is faithful. This is obvious because U is faithful.
2. Û is full. In fact, we first observe that Û preserves sifted colimits. This

follows from the fact that sifted colimits commute in Ab (as in any algebraic
category; see 2.7) with finite products, and the functor U = hom(Z,−) pre-
serves sifted colimits. Next we verify that Û is full for morphisms (natural
transformations)

α: Û (Hom(C,−)) → ÛG,

where C ∈ obj C and G: C → Ab is additive. By the Yoneda lemma, for all
X ∈ C and for all x: C → X, we have αX(x) = Gx(a), where a = αC(idC);
thus αX is a group homomorphism. Consequently, α lies in the image of Û .

The general case of a morphism β: ÛF → ÛG, where F : C → Ab is addi-
tive, reduces to the previous case by using the fact that F is a sifted colimit
of enriched representables and that Û preserves sifted colimits. To prove that
F is a sifted colimit of representables, observe that, following 4.2, ÛF is one.
Now

ÛF = colim hom(Ci,−) = colim (U · Hom(Ci,−))

= colim Û (Hom(Ci,−)) = Û (colim Hom(Ci,−)).
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This implies that F = colim Hom(Ci,−) because Û reflects sifted colimits
(since it preserves sifted colimits and reflects isomorphisms).

3. Û is essentially surjective. We first take the representable functors
hom(C,−) for C ∈ obj C, which are objects of Alg C. Since C is preaddi-
tive, for every object C ′, the hom-set hom(C,C ′) is an abelian group, and
hom(C,−) factorizes as

C
Hom(C,−)

�� Ab
U

�� Set,

with Hom(C,−): C → Ab being additive. Therefore Û (Hom(C,−)) 	
hom(C,−). Once again, the general case follows from the previous case by
using the fact that any C-algebra is a sifted colimit of representable C-algebras
and that Û preserves sifted colimits.

Necessity. Let T be an algebraic theory, and assume that Alg T is abelian.
Since T op embeds into Alg T , T is preadditive (with finite products), and then
it is a small additive category. Following the first part of the proof, Alg T is
equivalent to Add [T , Ab]. �

B.4 Corollary Abelian algebraic categories are precisely the additive cocom-
plete categories with a strong generator consisting of perfectly presentable
objects.

In fact, this follows from 6.9 and B.3.

B.5 Remark In B.3, the condition that C is additive can be weakened: pread-
ditivity is enough. In fact, let C be a small preadditive category. We can
construct the small and preadditive category Mat (C) of matrices over C as
follows:

Objects are finite (possibly empty) families (Xi)i∈I of objects of C.
Morphisms from (Xi)i∈I to (Zj )j∈J are matrices M = (mi,j )(i,j )∈I×J of mor-

phisms mi,j: Xi → Zj in C.
The matrix multiplication, the identity matrices, and matrix addition, as

well known from linear algebra, define the composition, the identity mor-
phisms, and the preadditive structure, respectively.

This new category Mat (C) is additive. Indeed, it has a zero object given by
the empty family and biproducts ⊕ given by disjoint unions. Let us check
that the obvious embedding C → Mat (C) induces an equivalence between
Add [Mat (C), Ab] and Add [C, Ab]. Indeed, given F ∈ Add [C, Ab], we get an
extension F ′ ∈ Add [Mat (C), Ab] in the following way: F ′(M) is the unique
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morphism such that the square

⊕
I F (Xi)

F ′(M)
�� ⊕

J F (Zj )

��
F (Xi)

��

F (mi,j )

�� F (Zj )

commutes for all (i, j ) ∈ I × J, where the vertical morphisms are injections
in the coproduct and projections from the product, respectively. It is easy
to verify that the functor F 
→ F ′ is an equivalence from Add [C, Ab] to
Add [Mat (C), Ab].

B.6 Remark Observe that an object G of an additive, cocomplete category
A is perfectly presentable iff its enriched hom-functor Hom(G,−): A → Ab
preserves colimits. (Compare with the absolutely presentable objects of 5.8.)
In fact, if G is perfectly presentable, then Hom(G,−) preserves finite coprod-
ucts (because they are finite products) and reflexive coequalizers (because
U: Ab → Set reflects them). This implies that Hom(G,−) preserves finite
colimits. Indeed, given a parallel pair a, b: X ⇒ Z in A, its coequalizer is
precisely the coequalizer of the reflexive pair (a, idZ), (b, idZ): X + Z ⇒ Z.
Finally, Hom(G,−) preserves arbitrary colimits because they are filtered col-
imits of finite colimits.

B.7 Example The group Z is perfectly presentable in Ab. Indeed,

Hom(Z,−): Ab → Ab

is naturally isomorphic to the identity functor. Observe that Z is, of course, not
absolutely presentable.

B.8 Corollary One-sorted abelian algebraic categories are precisely the cat-
egories equivalent to R-Mod for a unitary ring R.

Proof Following B.3, a one-sorted abelian algebraic category A is of the
form Add [T , Ab] for T a one-sorted additive algebraic theory with objects
T n (n ∈ N). Any F ∈ Add [T , Ab] can be restricted to an additive functor
T (T , T ) → Ab, where the ring T (T , T ) is seen as a preadditive category with
a single object. Moreover, F is uniquely determined by such a restriction
because each object of T is a finite product of T . Finally, Add [T (T , T ), Ab]
is equivalent to T (T , T )-Mod. �
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B.9 Corollary Finitary localizations of abelian algebraic categories are pre-
cisely the abelian locally finitely presentable categories.

Proof Let A be an abelian, locally finitely presentable category. Following
the proof of 18.10, we have that A = Lex T is a finitary localization of Alg T ,

with T an additive algebraic theory. Because of B.3, Alg T is equivalent to
Add [T , Ab]. �
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More about dualities for one-sorted
algebraic categories

Throughout the book, we took the “strict view” of what a theory morphism or
concrete functor or monadic functor should be; that is, the condition put on the
functor in question was formulated as an equality between two functors. There
is a completely natural nonstrict view wherein the conditions are formulated
as natural isomorphisms between functors. This has a number of advantages.
For example, we can present a characterization of one-sorted algebraic cate-
gories (see Theorem C.6) for which we know no analogous result in the strict
variant. Also, the duality between one-sorted algebraic theories and uniquely
transportable one-sorted algebraic categories can be directly derived from the
nonstrict version of the biduality 11.38 without using monads. In this appendix,
we briefly mention the nonstrict variants of some concepts in the book.

C.1 Definition

1. Given concrete categories U: A → K and V : B → K by a pseudoconcrete
functor between them, we mean a functor F : A → B such that V · F is
naturally isomorphic to U.

2. Given concrete categories U: A → K and V : B → K by a pseudoconcrete
equivalence between them, we mean a functor F : A → B, which is at
the same time an equivalence and pseudoconcrete. (Note that any quasi-
inverse of F is necessarily pseudoconcrete.) We then say that (A, U ) and
(B, V ) are pseudoconcretely equivalent.

C.2 Definition A concrete category (A, U ) on K is pseudomonadic if there
exists a monad M on K and a pseudoconcrete equivalence A → KM.

C.3 Beck’s theorem: Characterization of pseudomonadic categories A
concrete category (A, U ), with U a right adjoint, is pseudomonadic iff (1) U is

232
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conservative, and (2) A has coequalizers of all reflexive pairs f, g such that
Uf,Ug have an absolute coequalizer; and U preserves these coequalizers.

A proof of C.3 can be found in Borceux (1994, chapt. 4, sect. 4). The reader
just needs to observe that the parallel pairs of morphisms used in that proof are
reflexive.

C.4 Proposition For every one-sorted algebraic theory (T , T ), the concrete
category (Alg T , Alg T ) is pseudomonadic.

Proof The functor Alg T is algebraic and conservative (11.8), and algebraic
functors are right adjoints and preserve reflexive coequalizers. Following C.3,
(Alg T , Alg T ) is pseudomonadic. �

C.5 Definition A pseudo-one-sorted algebraic category is a concrete category
over Set that is pseudoconcretely equivalent to Alg T : Alg T → Set for a one-
sorted algebraic theory (T , T ).

C.6 Theorem: Characterization of pseudo-one-sorted algebraic categories
The following conditions on a concrete category (A, U ) over Set are equivalent:

1. (A, U ) is pseudo-one-sorted algebraic.
2. A is cocomplete, and U is a conservative right adjoint preserving sifted

colimits.

In more detail, let A be a cocomplete category. Given a faithful functor

U: A → Set

with A cocomplete, there exists a one-sorted algebraic theory (T , T ) and an
equivalence functor

A
E

��

U 







	

Alg T

Alg T����
��
��
��

Set

making the preceding triangle commutative up to natural isomorphism iff U is
a conservative right adjoint preserving sifted colimits.

Proof The conditions are necessary by 11.8. Let us prove that they are suf-
ficient: let U: A → Set be as in item 2, with F a left adjoint of U. The set
F = {Fn : n ∈ N} is closed in A under finite coproducts, and by 6.16, it is a
strong generator formed by perfectly presentable objects. Following the proof
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of 6.9 (implication 3 ⇒ 1), the functor

E: A → Alg (Fop), K 
→ A(−,K): Fop → Set

is an equivalence. Moreover, the codomain restriction T : N → Fop of the
functor F op · YN : N → Aop is a morphism of theories. Let us check that there
exists a natural isomorphism Alg T · E 	 U : for every A ∈ A and n ∈ N,
the functor Alg T · E(A) assigns to n ∈ N the set A(T n,A), and since
T n = F (YN (n)), the adjunction F � U clearly yields a natural isomorphism
A(T n,A) 	 UA(n).

Factorize T as a functor T ′: N → T , which is the identity on objects and
equal to T on morphisms, followed by a functor T ′′: T → Fop, which is
the identity on morphisms and equals to T on objects. Therefore T ′′ is an
equivalence (because T is surjective on objects), and (T , T ′) is a one-sorted
theory. The following diagram concludes the proof:

A
E

��

U ���
��

��
��

��
� Alg (Fop)

Alg T

��

Alg T ′′
�� Alg T

Alg T ′�����
���

���
�

	

Set
�

C.7 Corollary Pseudo-one-sorted algebraic categories are up to pseudocon-
crete equivalence precisely the categories Set M of Eilenberg–Moore algebras
for finitary monads M on Set.

In fact, this follows from C.4, C.6, and A.23.
It is easy to extend the biequivalence of Theorem 11.38 to pseudo-one-sorted

algebraic categories.

C.8 Definition Given one-sorted algebraic theories (T1, T1) and (T2, T2), a
pseudomorphism

M: (T1, T1) → (T2, T2)

is a functor M: T1 → T2, with M · T1 naturally isomorphic to T2.

C.9 Remark Pseudomorphisms preserve finite products.

C.10 Theorem: Nonstrict one-sorted algebraic duality The 2-category of

objects; one-sorted algebraic theories,
1-cells: pseudomorphisms
2-cells: natural transformations

is dually biequivalent to the 2-category of
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objects: pseudo-one-sorted algebraic categories
1-cells: pseudoconcrete functors
2-cells: natural transformations

Proof The proof is analogous to the proof of 11.38; just observe that from a
pseudoconcrete functor

(G,ϕ): (Alg T2, Alg T2) → (Alg T1, Alg T1),

we get a natural isomorphism ψ: FT1 → F · FT2 between the left adjoints. The
rest of the proof of 11.38 can now be repeated with no other changes. �

C.11 Remark In Appendix A, we obtained the duality between the category
of one-sorted algebraic theories and the category of uniquely transportable
one-sorted algebraic categories, using finitary monads. We are going to derive
such a duality from the biequivalence of Theorem C.10. To perform this, we
need several preliminary steps. We start with an observation explaining why,
when we restrict our attention to uniquely transportable one-sorted algebraic
categories, we do not need a nonstrict version.

C.12 Lemma Let (A1, U1), (A2, U2) be concrete categories over K.

1. If (A2, U2) is transportable, then for every pseudoconcrete functor

G: (A1, U1) → (A2, U2),

there exists a concrete functor H: (A1, U1) → (A2, U2) naturally isomor-
phic to G.

2. If (A1, U1) and (A2, U2) are transportable, then they are pseudoconcretely
equivalent iff they are concretely equivalent.

Proof

1. Let ϕ: U1 → U2 · G be a natural isomorphism. For every object A ∈ A1,

consider the isomorphism

ϕA: U1A → U2GA.

Since (A2, U2) is transportable, there exists an object HA in A2 and an iso-
morphism

ψA: HA → GA

such that U2ψA = ϕA. This gives a map on objects H: A1 → A2. For f : A →
B in A1, put Hf = ψ−1

B · Gf · ψA. In this way, H is a functor such that
U2 · H = U1, and ψ: H → G is a natural isomorphism.

2. This follows immediately from 1. �
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C.13 Corollary Every transportable pseudo-one-sorted algebraic category is
one-sorted algebraic.

Recall from 11.35 the 2-categories Th 1 of one-sorted algebraic theories and
ALG 1 of one-sorted algebraic categories. In the remaining part of this appendix,
we consider Th 1 and ALG 1 as categories; that is, we forget the 2-cells:

C.14 Definition

1. The category Th 1 of one-sorted theories has
objects: one-sorted algebraic theories
morphisms: morphisms of one-sorted algebraic theories

2. The category ALG 1 of one-sorted algebraic categories has
objects: one-sorted algebraic categories
morphisms: concrete functors

3. The category ALG 1
u is the full subcategory of ALG 1 of all uniquely trans-

portable one-sorted algebraic categories.

C.15 Lemma The category Th 1 (seen as a 2-category with only identity 2-
cells) is biequivalent to the 2-category PsTh 1 having

objects: one-sorted algebraic theories (T , T )
1-cells from (T1, T1) to (T2, T2): pairs (M,µ) where M: T1 → T2 is a pseu-

domorphism of one-sorted theories and µ: M · T1 → T2 is a natural iso-
morphism

2-cells from (M,µ) to (N, ν): natural transformations α: M → N that are
coherent, that is, such that ν · αT1 = µ

Proof

1. Let us start by observing that the coherence condition ν · αT1 = µ on a
2-cell α of PsTh 1 immediately implies that α is invertible and that between
two parallel 1-cells of PsTh 1 there is at most one 2-cell.

2. The inclusion Th 1 → PsTh 1 is a biequivalence: since Th 1 and PsTh 1

have the same objects, we have to prove that the induced functor

Th 1((T1, T1), (T2, T2)) → PsTh 1((T1, T1), (T2, T2))

is full and essentially surjective (it is certainly faithful because Th 1 has only
identity 2-cells).

2a. Full: let M,N: (T1, T1) → (T2, T2) be 1-cells in Th 1 and α: (M,=) →
(N,=) be a 2-cell in PsTh 1. The coherence condition gives αn = id for every
n ∈ N , and then M = N by naturality of α.
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2b. Essentially surjective: consider a 1-cell (M,µ): (T1, T1) → (T2, T2) in
PsTh 1. We define a functor

N: T1 → T2, N(f : x → y) = µy · Mf · µ−1
x : x → y.

It is easy to check that N · T1 = T2 and that µ: (M,µ) → (N,=) is a 2-cell in
PsTh 1. �

C.16 Lemma The category ALG 1
u (seen as a 2-category with only identity

2-cells) is biequivalent to the 2-category PsALG 1 having

objects: pseudo-one-sorted algebraic categories (A, U )
1-cells from (A1, U1) to (A2, U2): pairs (G,ϕ) where G: A1 → A2 is a

functor and ϕ: U1 → U2 · G is a natural isomorphism
2-cells from (G,ϕ) to (H,ψ): natural transformations α: G → H that are

coherent, that is, such that U2α · ϕ = ψ

Proof

1. Let us start by observing that since U2 is conservative, the coherence condi-
tion U2α · ϕ = ψ implies that α is invertible, and since U2 is faithful, it implies
that between two parallel 1-cells of PsALG 1, there is at most one 2-cell.

2. The inclusion ALG 1
u → PsALG 1 is essentially surjective (in the sense of

the 2-category PsALG 1): let (A, U ) be an object in PsALG 1. We are going to
construct the diagram

A
E1

��

U 






A1

E2
��

U1

��

A2

U2����
��
��
��

Set

where E1 and E2 are pseudoconcrete equivalences, (A1, U1) is transportable,
and (A2, U2) is uniquely transportable. Therefore (A2, U2) is a uniquely trans-
portable pseudo-one-sorted algebraic category. By Corollary C.13, we conclude
that (A2, U2) is an object of ALG 1

u.

2a. Objects in A1 are triples (A,πA,X: UA → X,X), with A ∈ A, X

being a set and πA,X an isomorphism. A morphism from (A,πA,X,X)
to (A′, πA′,X′ , X′) is a pair of morphisms a: A → A′, x: X → X′ such that
x · πA,X = πA′,X′ · Ua. Clearly the forgetful functor

U1: A1 → Set, U1(A,πA,X,X) = X
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is transportable. Moreover, we have an equivalence

E1: A → A1, E1A = (A, idUA,UA),

with the quasi-inverse given by forgetful functor

E′
1: A1 → A, E′

1(A,πA,X,X) = A.

Note that E1 is a concrete functor, whereas E′
1 is pseudoconcrete: a natural

isomorphism π: U · E′
1 → U1 is given by

π(A,πA,X,X) = πA,X.

2b. Consider any concrete category U1: A1 → Set. We define a category A2

whose objects are equivalence classes of objects ofA1, with X being equivalent
to X′ if there exists a U1-identity i: X → X′, that is, an isomorphism i such
that U1i = idU1X. We denote by [X] the equivalence classe of X. The hom-set
A2([X][Z]) is the quotient of the disjoint union of the A1(X′, Z′) for X′ ∈
[X], Z′ ∈ [Z], with f : X → Z being equivalent to f ′: X′ → Z′ if there exist
U1-identites i: X → X′ and j: Z → Z′ and U1f = U1f

′. The composition of
[f ]: [X] → [Z] and [g]: [Z] → [W ] is [gjf ]: [X] → [W ], where j: Z → Z′

is any U1-identity. The functors E2 and U2 are defined by

E2: A1 → A2, E2(f : X → Z) = [f ]: [X] → [Z],

U2: A2 → Set, U2([f ]: [X] → [Z]) = Ff : FX → FZ.

Clearly U2 · E2 = U1 and E2 is full and surjective on objects, so that it is
an equivalence (because U1 is faithful). Finally, it is easy to check that U2 is
amnestic if U1 is conservative and that U2 is transportable if U1 is transportable.

3. The induced functor

ALG 1
u((A1, U1), (A2, U2)) → PsALG 1((A1, U1), (A2, U2))

is an equivalence.
3a. Full: let G,H: (A1, U1) → (A2, U2) be 1-cells in ALG 1

u and α:
(G,=) → (H,=) a 2-cell in PsALG 1. The coherence condition gives U2(αA) =
id for every A ∈ A. Since U2 is amnestic, αA is the identity.

3b. Faithful: this is obvious because ALG 1 has only identity 2-cells.
3c. Essentially surjective: let (A1, U1), (A2, U2) be objects in ALG 1

u and
(G,ϕ): (A1, U1) → (A2, U2) a 1-cell in PsALG 1. As in the proof of C.12,
we get a concrete functor H: (A1, U1) → (A2, U2) and a natural isomorphism
ψ: H → G. To end the proof, observe that ψ: (H,=) → (G,ϕ) is a 2-cell
in PsALG 1. Indeed the condition U2(ψA) = ϕA is precisely the coherence
condition on ψ. �
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Recall the 2-fucntor Alg 1: (Th 1)op → ALG 1 from 11.37. There is an obvious
version of this 2-functor in the present context: all we need to observe is that
given a coherent natural transformation α in PsTh 1, it follows that Alg α is also
coherent. By a slight abuse of notation, we denote this 2-functor by Alg 1 again:

C.17 Notation We denote by

Alg 1: (PsTh 1)op → PsALG 1

the 2-functor assigning to every one-sorted theory (T , T ) the one-sorted alge-
braic category (Alg T , Alg T ), to every 1-cell (M,µ): (T1, T1) → (T2, T2) the
1-cell (Alg M, Alg µ−1), and to every 2-cell α: (M,µ) → (N, ν) the 2-cell
Alg α whose component at a T2-algebra A is A · α: A · M → A · N.

C.18 Theorem: One-sorted algebraic duality The category ALG 1
u of uniquely

transportable one-sorted algebraic categories is equivalent to the dual of the
category Th 1 of one-sorted algebraic theories. In fact, the 2-functor

Alg 1: (PsTh 1)op → PsALG 1

is a biequivalence.

Proof
1. The 2-functor Alg 1 is well defined by 11.8.

2. Alg 1 is essentially surjective (in the sense of the 2-category PsALG 1): fol-
lowing C.6, for every object (A, U ) of PsALG 1, there exists a pseudoconcrete
equivalence E: A → Alg T with natural isomorphism

ϕ: Alg T · E → U.

Recall from 0.3 that it is possible to choose a quasi-inverse E′: Alg T → A and
natural isomorphisms

η: IdAlgT → E · E′ and ε: E′ · E → IdA

such that

Eε · ηE = E and εE′ · E′η = E′.

We get a natural isomorphism

ψ = ϕ−1E′ · Alg T η: Alg T → U · E′.

It follows that

η: (IdAlgT ,=) → (E · E′, ϕE′ · ψ) and ε: (E′ · E,ψE · ϕ) → (IdA,=)
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are 2-cells in PsALG 1. Indeed, the coherence condition on η is just the definition
of ψ, and the coherence condition on ε follows from the equation Eε · ηE = E:

Uε · ψE · ϕ = Uε · ϕ−1E′E · Alg T ηE · ϕ

= ϕ−1 · Alg T Eε · Alg T ηE · ϕ = ϕ−1 · ϕ = U.

We conclude that (A, U ) and (Alg T , Alg T ) are equivalent objects in PsALG 1.

3. We will prove that for two one-sorted algebraic theories (T1, T1)
and (T2, T2), the functor Alg 1

(T1,T1),(T2,T2) from PsTh 1((T1, T1), (T2, T2)) to
PsALG 1((Alg T2, Alg T2), (Alg T1, Alg T1)) is an equivalence of categories.

3a. Full and faithful: the proof is as in Theorem 9.15; indeed, α: M → N is
coherent iff Alg α: Alg M → Alg N is coherent.

3b. Essentially surjective: we follow the proof of 11.38. Let

(G,ϕ): (Alg T2, Alg T2) → (Alg T1, Alg T1)

be a 1-cell in PsALG 1 and ψ: FT2 → F · FT1 the induced natural isomorphism
on the adjoint functors. As in 11.38, we get a 1-cell

(M,=): (T1, T1) → (T2, T2)

in PsTh 1, and we have to construct a 2-cell

α: (Alg M,=) → (G,ϕ)

in PsALG 1. Since Alg T1 · Alg M = Alg T2, there exists a natural isomorphism
i: FT2 → M∗ · FT1 . Let

ψ|: YT2 · Mop → F · YT1 , i|: YT2 · Mop → M∗ · YT1

be the restrictions of ψ and i to T1. By 9.3, there exists a natural isomorphism
α∗: M∗ → F. Moreover, α∗ is unique with the condition α∗YT1 · i| = ψ| (apply
4.11 to YT1 ). Since FT2 and F · FT1 preserve colimits, the previous equation
gives α∗FT1 · i = ψ (apply 4.11 to YN ). Passing to the right adjoints, we get a
natural isomorphism α: Alg M → G such that (Alg T1)α = ϕ, as required. �
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Adámek, J., and H.-E. Porst (1998). Algebraic theories of quasivarieties. J. Algebra

208: 379–398.
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Gabriel, P. (1962). Des catégories abéliennes. Bull. Sci. Math. France 90: 323–448.
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concretely isomorphic categories, 134
congruence on a theory, 90
congruence on an algebra, 112
connected category, 24
conservative functor, 4
cospan, 25
counit of an adjunction, 6

dense, 57
diagonal functor, 7
diagram, 4
directed colimit, 22
directed graph, 14
directed union, 23, 51

effective equivalence relation, 35
Eilenberg–Moore algebra, 210
Eilenberg–Moore category, 210
enough regular projective objects, 50
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regular projective algebra, 46
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regular projective object, 46
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representable algebra, 15
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solution set, 6
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strong generator, 54
subalgebra generated by a set, 106
subobject, 9
symmetric relation, 34

term for a signature, 127
transitive relation, 34
transportable concrete category, 133
tree, 119

unary theory, 159
uniquely transportable concrete category, 133
unit of an adjunction, 6

variety, 91

weak limit, 167
well-powered category, 197
word, 16

Yoneda embedding, 4
Yoneda lemma, 4

zero object, 227
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