

Terracotta, Inc.

The Definitive Guide to
Terracotta
Cluster the JVM™ for Spring,
Hibernate, and POJO Scalability

The Definitive Guide to Terracotta: Cluster the JVM™ for Spring, Hibernate, and POJO Scalability

Copyright © 2008 by Terracotta, Inc.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-986-0

ISBN-10 (pbk): 1-59059-986-1

ISBN-13 (electronic): 978-1-4302-0640-8

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in
the US and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was
written without endorsement from Sun Microsystems, Inc.

Lead Editor: Steve Anglin
Technical Reviewer: Jeff Genender
Development Editor: Matthew Moodie
Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell,

Jonathan Gennick, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Senior Project Manager: Tracy Brown Collins
Copy Editor: Heather Lang
Associate Production Director: Kari Brooks-Copony
Production Editors: Jill Ellis, Laura Cheu
Compositor: Gina Rexrode
Proofreader: Linda Seifert
Indexer: Toma Mulligan
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales—eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

Contents at a Glance

About Terracotta, Inc. xiii

About the Authors . xv

About the Technical Reviewer . xvii

Introduction. xix

�CHAPTER 1�� Theory and Foundation: Forming a Common Understanding 1

�CHAPTER 2�� History of Terracotta . 23

�CHAPTER 3�� Jumping Into Terracotta . 41

�CHAPTER 4�� POJO Clustering . 69

�CHAPTER 5�� Caching . 103

�CHAPTER 6�� Hibernate with Terracotta . 131

�CHAPTER 7�� Extending HTTP Sessions with Terracotta . 147

�CHAPTER 8�� Clustering Spring . 177

�CHAPTER 9�� Integration Modules . 203

�CHAPTER 10�� Thread Coordination . 221

�CHAPTER 11�� Grid Computing Using Terracotta . 243

�CHAPTER 12�� Visualizing Applications . 293

�INDEX �� . 323

iii

Contents

About Terracotta, Inc. xiii

About the Authors . xv

About the Technical Reviewer . xvii

Introduction. xix

�CHAPTER 1�� Theory and Foundation: Forming a Common
Understanding. 1

Definition of the Terracotta Framework. 2

Network Attached Storage Similarities to Terracotta. 3

Transparency of Memory Location . 6

Putting Transparency and Clustering Together 8

Honoring the Java Memory Model . 11

Being a Service Has Advantages . 12

Availability . 12

Scalability . 13

Avoiding Bottlenecks. 14

Use Cases . 17

Distributed Caching . 17

Database Offload . 18

Session Replication . 18

Workload Partitioning . 19

Summary. 20

�CHAPTER 2�� History of Terracotta . 23

Approaches to Scaling . 25

Scale the Database . 25

In-Memory Replication . 28

All Paths Lead to Partitioning. 30

Terracotta’s Origin in a Web Monster . 31

The Application Is a Giant Computer . 32

v

vi �CONTENTS��

Terracotta Makes L2 General Purpose . 33

Transparency Equals General Purpose . 35

Transparent Scalability with Availability . 36

Transparent Clustering Service Revisited . 37

Transparency Delivers Higher Scalability . 38

Clustered Application Servers and Clustered Caches 38

Summary. 39

�CHAPTER 3�� Jumping Into Terracotta . 41

Hello Clustered World . 41

Clustering HelloClusteredWorld. 43

Why HelloClusteredWorld Works. 46

Alternatives to Terracotta . 49

A Tour Through Terracotta. 50

Downloading and Installing Terracotta. 51

Terracotta Installation Layout . 51

Terracotta Scripts . 52

Step-by-Step Hello Clustered World in Unix . 53

Step-by-Step Hello Clustered World in Eclipse. 63

Implications for Every Developer . 65

Summary. 66

�CHAPTER 4�� POJO Clustering . 69

All About Objects and Roots . 69

Clustered Objects . 71

Virtual Heap and Memory Management . 71

Distributed Garbage Collection . 72

Managing Object Changes and Coordinating Threads 72

Locks . 73

Autolocks and Named Locks . 74

Lock Level . 75

Distributed wait() and notify(). 76

Transactions. 76

Distributed Method Invocation . 76

Transparency and Bytecode Instrumentation . 77

Portability . 78

Boot JAR Classes. 78

vii�CONTENTS��

Physically vs. Logically Managed Objects. 78

Nonportable and Logically Managed Classes . 79

Portability Contexts . 80

Field Change. 80

Logical Action . 80

Object Graph Traversal . 80

Transient Fields and On-Load Behavior. 80

Initializing Transient Fields on Load . 81

Clustered POJOs Step by Step . 82

What Do We Mean by POJO?. 83

What’s a Clustered POJO? . 83

Why Clustered POJOs? . 84

An Example of Clustered POJOs . 85

The Example Classes . 85

Clustering Requirements for the Example . 94

Configuration for the Example . 94

Running the Example . 95

What the Example Shows. 100

Summary. 102

�CHAPTER 5�� Caching . 103

The Pain of Caching . 103

The Pain of Large Data Sets . 103

The Pain of Staleness . 104

The Pain of Duplication. 104

How Terracotta Can Help . 105

A Simple Example of Caching . 107

Distributed Caching. 109

Transparent Distributed Caching . 109

Caching with Maps . 112

Unsorted Maps . 112

Sorted Maps . 112

Autolocked Collections . 113

Bulk Loading a Map. 115

Locking and Maps . 119

Maps of Maps. 119

A Deeper Look at Caching . 120

Eviction and Expiration . 120

Persistence . 121

Distributed Caching . 121

Partitioned Data . 121

Leveraging Terracotta . 122

Caching with Ehcache . 123

Rewriting the Cache Example . 123

Using Ehcache with Terracotta . 127

Summary. 129

�CHAPTER 6�� Hibernate with Terracotta . 131

Object-Relational Mapping . 131

How Does Hibernate Work?. 132

Typical Hibernate Invocation . 133

Using Terracotta to Improve Hibernate . 133

How Terracotta Improves Hibernate Performance. 133

Basic Steps for Improving Performance of a Hibernate
Application . 134

Baseline Performance . 134

Add Hibernate to Save Three DB Calls . 135

Enable the Second-Level Cache to Save Five SQL Calls. 136

Clustering the Session Objects . 137

Benchmarking the Enhancements . 139

Configuring Hibernate to Work with Terracotta . 139

Configuring a Second-Level Cache. 140

Configuring Terracotta for Use with Detached Instances 141

Debugging, Testing, and Tuning Concerns . 143

Verifying Ehcache Configuration Clustering 144

Tuning the Second-Level Cache . 144

Tuning Detached Instances . 145

Summary. 145

�CHAPTER 7�� Extending HTTP Sessions with Terracotta 147

What Are HTTP Sessions? . 147

Server-Side State Management . 148

Automatic Time-Out of Stale Data . 149

Manual Invalidation to Clear Out Data . 150

Events to Coordinate State Modification . 150

Session State Persistence . 151

�CONTENTS��viii

Distributed HTTP Sessions. 151

Motivation for Using HTTP Sessions . 152

Alternatives to HTTP Sessions . 154

Distributed HTTP Sessions with Terracotta. 155

How Terracotta Sessions Work . 155

Benefits . 157

Using Terracotta and HTTP Sessions . 160

Shared Session State . 160

HTTP Sessions with Structured Session Attributes 165

Understanding HTTP Sessions with Terracotta . 172

Supported Platforms . 173

Architecture Considerations. 173

Summary. 175

�CHAPTER 8�� Clustering Spring . 177

A Sample: Spring Beans Without a Database. 178

Running the Example on a Single JVM . 187

Running the Example Clustered with Terracotta . 190

A Note on DI and Terracotta . 193

Growing Spring Beans . 194

Clustering Spring Beans. 197

Running with Clustered Spring Beans . 200

Terracotta Session Clustering for Spring. 201

Summary. 201

�CHAPTER 9�� Integration Modules . 203

Clustering by Configuration . 203

Using TIMs . 203

Clustering a Synchronized Map. 203

Importing a TIM . 204

Module Repositories . 205

The Terracotta Forge. 206

Creating a TIM . 207

TIM Anatomy. 207

Creating a Simple TIM. 210

Creating TIMs with Maven . 211

Including Code in a TIM . 213

Summary . 220

�CONTENTS�� ix

�CHAPTER 10�� Thread Coordination . 221

Terracotta and Thread Coordination. 221

Clustering Threads . 222

Thread Coordination Using Concurrency Primitives. 222

Thread Coordination Using the java.util.concurrent Package 227

Thread Coordination and JMX Cluster Events. 230

Thread Coordination with Queues. 235

Summary. 241

�CHAPTER 11�� Grid Computing Using Terracotta . 243

What Are Grids?. 243
Compute Grids vs. Data Grids . 243
How Grids Handle Scalability . 244
How Grids Handle Failover and High Availability 244
Use Cases . 245

Introducing the Master/Worker Pattern . 245
Master/Worker in Java . 246

Using the Java Language’s Thread Coordination Primitives 246
Using the java.util.concurrent Abstractions. 247
Using the CommonJ Work Manager Specification. 248

Getting Started: Naïve Single Work Queue Implementation. 250
Implementing a Single-JVM Naïve Master/Worker Container 250
Clustering Our Master/Worker with Terracotta. 257

Handling Real-World Challenges . 258
Refactoring for Large Workloads, Routing, and Work Failover 259

Minimizing Contention and Maximizing Locality of Reference. . . . 259
Routing Strategies . 268
Dealing with Work Failure and Recovery . 270
Refactoring the Worker . 271
Update the Terracotta Configuration . 272
Using the Master/Worker System . 272
Running the Master/Worker System. 274

Refactoring Work Batching, Worker Failover, and
Dynamic Worker Management . 274

Work Batching . 274
Dynamic Worker Management . 275
Worker Failover . 279
How to Use and Run the Fault-Tolerant Master/Worker System. . 281

Building a Distributed Web Spider . 281

When Not to Use the Master/Worker Pattern . 290

Summary . 291

�CONTENTS��x

�CHAPTER 12�� Visualizing Applications . 293

Observing an Application . 293

Visualization Tools and Architecture . 294

The Sample Inventory Application . 295

Modifying to Generate Load . 297

Taking Performance Snapshots . 307

Potential Bottlenecks . 310

Recalling the Motherboard . 310

Inside the Terracotta Server. 314

Looking for Locality Issues. 316

Specific Bottlenecks in inventory.pounder . 316

Visualizing the Bottlenecks . 317

Managing Production Environments . 320

Summary. 321

�INDEX�� . 323

�CONTENTS�� xi

About Terracotta, Inc.

Founded in 2003, TERRACOTTA, INC., is a private firm headquartered in San Francisco, California.
Terracotta delivers runtime plug-in capacity and availability for Java applications. Terracotta
products simplify development, testing, deployment, and management of enterprise Java
applications by adding clustering and distributed computing services to the JVM, allowing
application development to focus on business features. Terracotta customers include leaders
in a number of industries such as the packaged software development, financial services,
telecommunications, travel, and online entertainment sectors.

xiii

About the Authors

�ARI ZILKA�� is the CTO of Terracotta, Inc. Ari spends most of his time on the product roadmap
and customer use cases, as well as speaking at conferences. Ari has worked as an architecture
lead for several large-scale systems, most notably as the chief architect at Walmart.com.

�GEERT BEVIN is a senior developer at Terracotta, Inc. Geert spends most of his time developing
and optimizing the JVM internal hooks and libraries that make Terracotta transparent, as well as
being an invited speaker at the largest developer conferences worldwide. Geert has worked as
creator and contributor on several popular open source development projects such as RIFE,
OpenLaszlo, and Gentoo Linux in addition to consulting with very large companies on imple-
menting and improving their Java-based web applications. His work on providing continuations
natively to Java contributed to him being elected as an official Sun Java Champion.

�JONAS BONÉR�� is a senior developer at Terracotta, Inc. Jonas spends most of his time develop-
ing large-scale financial systems and integrating Terracotta with various products and tools,
as well as lecturing and speaking at developer conferences worldwide. He has worked on the
Terracotta core and the JRockit JVM at BEA and is an active contributor to the open source
community; most notably, he created the AspectWerkz aspect-oriented programming frame-
work and has been part of the Eclipse AspectJ team.

�TAYLOR GAUTIER�� is a product manager at Terracotta, Inc. Taylor spends most of his time
designing and using Terracotta’s products. He is a converted, yet still devout, developer who
has helped write parts of systems-level servers and technology at companies like Scale8 and
Reactivity.

�ORION LETIZI�� is a cofounding engineer at Terracotta, Inc. Orion spends most of his time
designing and documenting clear use cases and guides for using Terracotta. He, of course,
helped write the first two versions of the product but has since transitioned to helping others
maximize their use of the technology. Orion has worked as a lead at several of the most popu-
lar e-commerce web sites and content portals on the Internet including Walmart.com.

�ALEX MILLER�� is a technical lead at Terracotta, Inc. Alex leads and manages the transparency
team at Terracotta. His focus is on transparently integrating cluster support into a user’s appli-
cation, the JDK, and third-party libraries. The transparency and server teams work together to
optimize scaling and minimize the costs of clustered applications. Alex previously served as
Chief Architect at MetaMatrix and worked on enterprise products at BEA. Alex speaks at con-
ferences and blogs at http://tech.puredanger.com.

xv

About the Technical Reviewer

�JEFF GENENDER�� is the CTO of Savoir Technologies, Inc., a Java enterprise software consultancy.
Jeff is an open source evangelist and Apache member who is an active committer on several
Apache projects and a committer for Terracotta. He is the author of three books and serves as
a member of the Java Community Process (JCP) expert group for JSR-316 (the Java Platform,
Enterprise Edition 6 specification).

Jeff has successfully brought open source development efforts, initiatives, and success
stories into a number of Global 2000 companies, saving these organizations millions in
licensing costs.

xvii

Introduction

Imagine being able to call wait() on a Java object in one JVM, and imagine that later a thread
in another JVM on another computer calls notify() on that same object and that notify() call
penetrates the impermeable process boundary between the two JVMs to wake your thread
from its slumber. Further imagine that all of the changes to that object made in the other JVM
while you were waiting are now visible to your thread. Imagine now that the code you wrote to
make this happen looked no different than code you would have written were this program to
run only on a single JVM—no concessions to special frameworks, no callouts to special APIs,
no stubs, no skeletons, no copies, no put-backs, and no magic beans.

What would it be like if you could automatically share Java heap between virtual
machines so that threads running in different JVMs could interact with each other exactly as if
they were running in the same JVM? Imagine what you could do with that kind of power—the
power to express a computing problem in the simplest possible terms that stay true to the
problem at hand yet be able to run that program on multiple computers at once while the
program thinks it’s running on one big computer. What would such a thing be? And wouldn’t
you really, really want it if you could have it?

Terracotta was born out of just such imaginings.
Terracotta is Java infrastructure software that allows you to scale your application to as

many computers as needed, without expensive custom code or databases. Throughout this
book, it is referred to as JVM-level clustering or network-attached memory. The question you
now face is how to understand and leverage this technology best.

The goal of this book is to help you answer that question. While a total of almost fifty
person-years of engineering have gone into the product, to date very little has been documented
about Terracotta. After years of underground lab work and hundreds of production deployments
under its belt, Terracotta’s team of authors have come together to write this definitive guide to
Terracotta. This book will help you learn the official definition and detailed architecture of the
technology. It will also walk you through the most popular applications of JVM-level clustering.
It will teach you how to tune and manage a production application running in a Terracotta
environment.

Use this guide as a gateway. Terracotta is infrastructure just like a database, a file server,
or even a networking switch. With it you can achieve many things and design many different
use cases. Any technology that claims it is well suited to all use cases should be viewed with
caution. We have put forth this work to help you both understand and trust Terracotta for cer-
tain use cases. While file servers and relational databases have been used with great success
over the past 30 years, they have also been abused with varying levels of success (for example,
we have seen a single relational database handle 1.5 billion inserts a day, filling it with data
that was retained for only 30 days, all achieved by disabling rollback). We realize that data-
bases succeed because a community of developers rallied around the concept and built a
shared toolset and understanding of where databases fit and where they do not.

xix

The Java community acts as a gateway to this understanding of database technology.
Together, the community members help each other design systems that are generally
accepted as successful. Terracotta has invented new nomenclature—calling itself network-
attached memory. As a result, the community needs a foothold with which to establish a
shared knowledge of this new thing, this network-attached memory. This book is your gateway
into the universe of network-attached memory and the power it represents. Use it to help
begin the conversation and thought process around what are good and bad use cases for a
JVM-level clustering approach.

I think an example is in order. (By the way, we communicate mostly by example in this
book. Hopefully, this style of teaching will be helpful to you.) Engineer A wants to use Terracotta
to act as a point-to-point communication protocol on the Internet to stream movies to web
browsers. Meanwhile, Engineer B wants to use Terracotta to maintain a centralized or shared
view of her application configuration data without having to maintain each JVM’s system prop-
erties or XML-based configuration separately. Engineer C wants to use Terracotta to replace his
web application’s current stateless architecture for a more natural stateful one. The product will
integrate to each engineer’s application with minimal initial effort, so how is engineer A, B, or C
to know what to expect? For engineer A, Terracotta will seem unstable, slow, and generally cum-
bersome, while for engineers B and C, Terracotta will seem almost ideal.

If you can tell the differences among these application patterns, consider yourself among
the few. If you are currently wrestling with an application running on Terracotta or are con-
templating where to use it and where to not use it, this guide represents the foremost thinking
on the subject.

Here, you will learn about several popular cases for using Terracotta. You will learn in
detail how to configure the system in each case, and you will learn the details of what makes
that case a potential success or sweet spot.

By the end of this book, you will see the patterns for yourself and be able to help your
friends understand the differences too. It’s an exciting time for those of us at Terracotta. The
concepts we are discussing and suggesting to you will not prove new or radical. The concepts
embodied within the product—centralized management, stateful development, stateless run-
time, and more—have never been brought together or assembled into a package like this. This
assembly of approaches and techniques is what makes Terracotta exciting. Communicating
the new capabilities this technology provides to the application development team is chal-
lenging yet rewarding. We hope you find the book as engaging to read as we found it to write.
With your help, this will be the first of several books on the topics of Terracotta, network-
attached memory, and JVM-level clustering.

How This Book Is Structured
This book is structured as follows:

• Chapter 1, Theory and Foundation: We start with a look at what Terracotta is and the
theory behind it.

• Chapter 2, History of Terracotta: This chapter provides a brief history of Terracotta to
give the rest of the book some context.

• Chapter 3, Jumping Into Terracotta: In this chapter, we get into the practicalities of
Terracotta, introducing the basic concepts of its configuration and showing a simple
example of Terracotta clustering.

�INTRODUCTION��xx

• Chapter 4, POJO Clustering: This practical chapter covers how to cluster an existinggg
POJO application.

• Chapter 5, Caching: This chapter explains how to use Terracotta to alleviate some of thegg
problems inherent in caching and how to bring the benefits of caching to distributed
systems.

• Chapter 6, Hibernate with Terracotta: In this chapter, we show you how to scale
Hibernate-enabled applications. We cover the concepts on which Hibernate is built
so that you gain a full understanding of clustering with Hibernate.

• Chapter 7, Extending HTTP Sessions with Terracotta: You’ll learn how to use Terracotta
to cluster HTTP sessions in your web application in this chapter.

• Chapter 8, Clustering Spring: This chapter takes you through the process of turning agg
non-Spring clustered application into a Spring-enabled clustered application. It shows
you how you can integrate Terracotta and Spring in a simple and effective fashion.

• Chapter 9, Integration Modules: We show you how to use Terracotta Integration Modules
to cluster an external library or framework or modularize the configuration of your own
application in this chapter.

• Chapter 10, Thread Coordination: In this chapter, we explain how to deal with threads
and concurrency in Terracotta. We take a cookbook approach to give you a number of
use case models that you can apply to your own applications.

• Chapter 11, Grid Computing Using Terracotta: This chapter showcases Terracotta’s
abilities to act as the platform for your own grid computing applications.

• Chapter 12, Visualizing Applications: The final chapter describes how to tune your
Terracotta applications using Terracotta’s visualization tools.

Prerequisites
To run the code in this book, you need to install the Java Software Development Kit 1.4 or
greater.

Contacting the Authors
For more information about Terracotta, visit the web site at http://www.terracotta.org.
There, you can find forums (http://forums.terracotta.org) and mailing lists dedicated
to Terracotta, where members of the author team monitor and respond to queries from
Terracotta users.

�INTRODUCTION�� xxi

Theory and Foundation
Forming a Common
Understanding

Terracotta is Java infrastructure software that allows you to scale your application for use onTT
as many computers as needed, without expensive custom code or databases. But Terracotta is
more than this twenty-six-word definition. If you have picked up this book, you are looking for
a deeper understanding of the technology and where to use it. To achieve that understanding,
we must first break down the jargon surrounding scaling, clustering, and application architec-
ture. In Chapter 1, we will spend some time defining terms and then explain the value
Terracotta provides to applications. This will help us to build a shared understanding of the
target audience of the technology.

Applications always have a developer and operator, although sometimes one individual
may serve in both roles. The application developer works to deliver business logic that func-
tions to specifications and is responsible for all the application code. The operator manages
the production application and works with the developer to make sure the application is scal-
able enough to handle its potential production workload. The two must work together if the
application is going to be successful, meaning that it is low cost to run and stable. Terracotta
was designed with both the developer and operator in mind.

Terracotta was designed to free the application developer from the constraints of enter-
prise development frameworks, like Hibernate, Spring, and Enterprise JavaBeans (EJB).
Whether or not applications use these frameworks, close reliance on the database leads to a
lack of freedom of design. While Hibernate and Spring strive to help the developer by greatly
simplifying application code, many applications fall short of the promise of freedom because
they are never truly decoupled from the database. Terracotta uniquely provides a complete
solution for decoupling from the database and scaling while simultaneously writing pure
plain old Java objects (POJOs).

Terracotta was also designed to deliver the most stable operating platform for production
Java applications, period. The system can be managed in a manner similar to databases—if
you can operate a database, you can operate Terracotta. And data that Terracotta is managing
on behalf of an application cannot be lost. Unlike the database however, Terracotta provides
solutions for developing linearly scalable applications.

1

C H A P T E R 1

While most clustering vendors focus on application scalability, Terracotta manages to
deliver scalability in conjunction with the highest levels of availability, and it does all this with-
out a database. The system also provides unprecedented visibility across the application stack
in a single vendor solution. Specifically, we can now monitor applications at the operating sys-
tem level, the JVM level, and the application level through a single graphical dashboard or via
Java Management Extensions (JMX). This means we can monitor not just application or appli-
cation server performance but also hardware performance from a central location.

The developer and operator need a simple way to scale production applications. To date,
that way has been the database, but it tends to work only because a database has a large array
of management tools for production operation and because its development model (SQL
queries, stored procedures, and object-relational mapping) is widely understood. The data-
base is not really what developers would ask for had we the choice however, and Terracotta’s
founders have seen another option. In fact, Terracotta’s dual focus on developmental and
operational needs did not come about by chance.

Terracotta was born in the fires of a large-scale production Java application. While the
business was growing by 100 percent year on year (which may not sound all that large until we
explain that revenue was in billions of dollars), the platform team held itself to a standard of
purchasing no new hardware after the first year of operation. The team came very close to
meeting that goal for four years in a row. Terracotta takes lessons learned at that top-ten
e-commerce website and significantly advances the state of the art of scalability by creating a
general purpose extension to Java that any application can use to reap the benefits of simple
development with simultaneously scalable and highly available production operation.

Clustering was once thought of as complex and highly unstable due to sensitivity to indi-
vidual server failure, but with the advent of Terracotta, clustering is an idea whose time has
finally come. Through the pages of this book, you will learn Terracotta’s unique definition of
clustering. The first four chapters focus on concepts and principles and the next few show
how to apply Terracotta to common use cases such as clustered caching with Hibernate, clus-
tering in Spring, HTTP session replication, and more.

Once these chapters have whet your appetite, this book will transition into covering both
detailed techniques for building powerful abstractions using Terracotta and how to tune for
any and all Terracotta usage. Now, let’s dive into a more detailed definition of the technology.

Definition of the Terracotta Framework
As we’ve already stated, instead of filling your head with jargon by defining Terracotta using
otherwise unclear terms, we will give a short definition and an explanation of the benefits of
the approach. We’ll break down each term in that definition into plain English, so that we have
a strong basis from which to proceed to use cases.

Terracotta is a transparent clustering service for Java applications. Terracotta can also be
referred to as JVM-level clustering. Terracotta’s JVM-level clustering technology aids applica-
tions by providing a simple, scalable, highly available world in which to run.

To understand this definition, we need to define “transparent clustering service,” as well
as the operational benefits, including “simplicity,” “scalability,” and “high availability.” We can
then discuss the applications for this technology.

CHAPTER 1 ■ THEORY AND FOUNDATION2

• Transparency: To users, transparency means that an application written to support
Terracotta will still function as implemented with zero changes when Terracotta is not
installed. This does not mean Terracotta works for everything or that Terracotta is invis-
ible and does not require any changes to application code. Transparency for the
Terracotta user denotes a freedom and purity of design that is valuable, because the
application stays yours, the way you wanted to build it in the first place.

• Clustering: Clustering has had many definitions, and as a result, Terracotta struggled forgg
some time with calling itself a clustering service. A clustering service is unique in that,
while clustering refers to servers talking to each other over a network, a clustering serv-
ice refers to technology that allows you to take an application written without any
clustering logic or libraries and spread it across servers by clustering in the JVM, below
the application. This moves clustering from an architecture concept to a service on
which applications can rely when running in a production environment.

• Simplicity: Complexity and its antithesis simplicity refer to the changes that developers
have to make along the road to building scalable applications. For example, to make an
application scalable, objects may have to implement the Serializable interface from
the Java language specifications in order to share those objects across servers.

• Scalability: Scalability can be confusing. This is a time when a background in statistics
helps, because developers often confuse many of our performance-measuring terms,
such as mean versus median and scalability versus performance. Scalability is impor-
tant if you want to save money by starting small and growing only when demand
requires. Scalability is the result of low latency and high throughput. An application can
be very quick to respond but might only handle one request at a time (low latency and
low throughput). Alternatively, an application can be very slow to respond but handle
thousands of concurrent requests (high latency and high throughput), and the data-
base is a great example of this latter type of application. Unlike the traditional relational
database, Terracotta helps optimize both latency and throughput to create a truly scala-
ble application.

• Availability: Availability means that every piece of shared data must get written to disk.
If the datacenter in which the application cluster is running on top of Terracotta loses
power, nothing will be lost when the power is restored. No individual process is critical,
and the application can pick up where it left off.

With this common terminology, we will next look at analogies to Terracotta that already
exist in the datacenter environment.

Network Attached Storage Similarities to Terracotta
Terracotta is a transparent clustering service, which can be used to deliver many different
things such as session replication, distributed caching, and partitioning (otherwise known
as grid computing). Transparency, as we have defined it, allows applications to depend on
Terracotta without embedding Terracotta. There are several transparent services on which
applications rely without embedding those services inside our application source code.

CHAPTER 1 ■ THEORY AND FOUNDATION 3

File storage is an example of a transparent service. Files can be stored locally on an indi-
vidual server. File storage devices can change from tape to CD to hard disk without changing
our application source code. What’s more, file system performance can be tuned without
changing our application. Files represent a popular mechanism for storing application data
because they provide transparency of storage location, storage format, and performance opti-
mization.

Terracotta brings the same capabilities to Java application memory. Thus, while net-
worked file storage services are not a perfect parallel to Terracotta, file I/O is worth exploring
a bit for these similarities. Their similarities should help you understand the value of transpar-
ent services before we jump into Terracotta and JVM-level clustering.

The file API can be summarized as having open(), seek(), read(), and write() methods.
Underneath these methods, many different behaviors can be bolted on, each with specific
strengths. A file can be stored on various types of file systems, allowing us to optimize per-
formance for certain applications completely outside of source code.

Some file systems in use today include variants of the Journaled File System (JFS) archi-
tecture, the High Performance File System (HPFS), the Berkeley Fast File System (FFS), the
MS-DOS File System, and Solaris’s Zettabyte File System (ZFS). Each of these technologies has
a specific performance character and sweet spot. For example, journaling is very good for pro-
duction systems, because changes to the disk can be rolled back to repair file corruption that
a bug in an application might have caused in the recent past. JFS is, therefore, well suited to
highly available data. The Berkeley FFS is very good for large-scale random access usage
underneath a multiuser server, where many tasks are writing to many files of different sizes for
varying reasons at random times. Here, explicit fragmentation leads to predictable latency and
throughput as a result of the random and even distribution of all data. Taking the opposite
approach to Berkeley’s file system, the DOS file system was tuned for sequential access under-
neath word processing applications in dedicated user scenarios. Microsoft’s original file
system approach worked well, because individual files were contiguous and in one place on
the hard disk.

A Layer of Abstraction
It is quite interesting to see that these file systems each handle certain use cases very well and
others not as well (we have all had to wait while the Microsoft Windows defragmenter
rearranged our hard drives overnight for faster access). Nonetheless, when Microsoft changed
its operating system architecture and adopted some of the HPFS or Berkeley techniques,
many applications were none the wiser. No programs had to be rewritten if they used only the
standard file APIs. Of course, any application that made assumptions about the performance
characteristics and capabilities of the DOS file system had to change when the underlying file
system changed.

Terracotta users find a similar abstraction with clustering that applications find with file
systems. Terracotta users do not make assumptions about how objects move across the net-
work, nor do the users write code explicitly to partition data among Java processes, as an
example. Just like the operating system can switch file systems in production without chang-
ing an application’s source code, Terracotta can run different optimizations (about which you
will learn in subsequent chapters) without requiring the application to change.

CHAPTER 1 ■ THEORY AND FOUNDATION4

Similarly, we can change the file system used by a production server to write to disk with-
out going back to development and rewriting the application, and we can move the task of
storing files outside any one server’s scope. If a file is on a remote file server, the application
does not care. Operations teams decide which file system to use. They may choose a file sys-
tem technology because it makes the application run faster or choose a remote file server
because it makes the application easier to manage or because the application can use the
Network File System (NFS) protocol as a central broker for sharing information across
processes.

Adding Networked File Storage
Exploring further, Network Appliance was founded in April 1992 to exploit the notion of network
file storage for building large application clusters. At the time, Sun was dominating the Unix
market as the premier platform on which to manually construct networked file servers using the
NFS protocol that shipped inside most Unix variants. Novell was dominant in the PC market,
providing similar networked file and logon services for MS-DOS and Windows users.

Network Appliance realized that setup, maintenance, and ongoing operation of net-
worked storage was too expensive and decided to produce a hardware device that honored the
NFS specification but required no setup other than plugging it in. The value of networked file
storage is that the storage can be managed independently of the application server. The stor-
age can be made highly available through well known backup and recovery techniques, such
as backing up to expensive centralized tape robots or replicating data on a regular schedule to
a disaster recovery site. The storage server can also be scaled to meet the I/O needs of the
application without simultaneously buying bigger CPUs and more expensive application
server hardware.

Parallels to Terracotta
Terracotta offers the operator benefits similar to networked file storage. Specifically, objects
are stored remotely in Terracotta even though the objects are cached inside the JVM for fast
application access. This means that the operator can focus on hardening the Terracotta server
to deliver high availability, just as in the file system analogy. Terracotta’s data can be repli-
cated, backed up, and otherwise managed just like a file server. Thus, the application
developer can use objects in Java just like simple file I/O, and Terracotta will move the objects
from the process to a central location where those objects can be managed safely and cost-
effectively.

The last parallel between files and Terracotta that we mentioned was that the two enable
clustering through simple, straightforward sharing of data and locking events. Applications
that write to files by locking the parts of the file they want to work on can safely be shared
across users in real time. Without NFS or similar networked file sharing technology, this sim-
ple approach will not work. The developer would have to push data among application
processes in the application layer using network sockets by hand far above the file system. As
a result, operators would lose the ability to manage these clustered applications by managing
only their storage.

Files are a good example of a transparent clustering service. Developers write inside a file
as they desire, while operators store that file as they desire. In short, transparent services, such
as NFS, help developers write applications as they would prefer, while allowing operators the
freedom to build scalable, highly available production environments for managed data.

CHAPTER 1 ■ THEORY AND FOUNDATION 5

At this point, you might be asking yourself, “What’s the difference between the NFS proto-
col and the database?” With databases, developers use SQL, whereas with NFS, developers use
the proprietary file layout. Also, with the database, the instance can run on any server we want
without changing the application, and the database can be tuned without changing the appli-
cation. The database certainly is a service. We are not asserting that NFS and files are better
than SQL and a database. We are merely looking for good parallels to Terracotta. In its operat-
ing character, a database is a good parallel. In its programming model, however, it is not.

A developer knows when writing to files is necessary and does so intentionally. In the
modern application, much of the use of the database is through an object-relational mapping
tool like Hibernate, and thus, a developer who would rather not write to a database is forced
to do so.

Terracotta works more like file I/O than a database, because Terracotta presents itself in
the manner the developer desires. Terracotta is consumed as memory inside the JVM. The
notion of migrating memory from the local server to a service somewhere on the network, as
can be done with files, is quite a leap of faith. Nonetheless, Terracotta is a new example of a
transparent service.

At its core, Terracotta’s goal is to allow several computers to communicate with each other
as if they were one big computer through memory and pure memory constructs, such as
threads and locks (mutex objects and the like). You might be tempted to think of Terracotta as
functioning just like NFS, because Terracotta takes a local resource and moves it to the net-
work. The similarities to NFS start an end there, however. Let us now explore the power in
having a transparent memory location in more detail and learn how it is unique and impor-
tant.

Transparency of Memory Location
Unlike when working with files, developers using Terracotta do not see an API. Recall that our
definition includes the notion of JVM-level clustering. This means that to the application, Terra-
cotta is the JVM, and to the JVM, Terracotta is the application. Figure 1-1 illustrates this concept.

Figure 1-1. Terracotta sits between the application and the JVM.

CHAPTER 1 ■ THEORY AND FOUNDATION6

Unlike file I/O, transparency of the memory location implies that Terracotta has to figure
out what to share and move on its own. Think back to the file analogy and focus for a moment
on the open() API call: open(<path_to_file>, mode). A developer decides where to write the
file relative to the application’s running directory. A developer who wants an application to
write to a file usually makes the file name and directory in which it resides a start-up option
for the user. Suppose our application wants to write to a data file named application.dat in
the directory path /path/to/my/application/data. The application merely needs to invoke
open("/path/to/my/application/data/application.dat"). An operator can then move our
application’s data using NFS. To use NFS, the production operations team needs to mount the
remote file system underneath the directory the application writes to when that application
calls open(). In our example, this would look something like the following:

mount //remoteserver/remotepath /path/to/my/application/data

Once the remote mount is established, our application will write its data to the remote
server.

With Terracotta, however, everything works at a memory level. The interface, in this case,
is the object orientation of the language itself. The parallel to mounting remote repositories
applies, because objects have structure just like files and directories. Developers build object
models, and the JVM maps those objects onto the heap at run time. Object models are the key
to interfacing with Terracotta, because they contain all the information the JVM needs to map
an object model to memory, and thus, all the information Terracotta needs at the same time.

To explore this idea further, consider that object models are made up of graphs of related
objects. A user has a first name, last name, and ID. These are its fields. A home address and
work address can be stored inline in a user object as fields, but they are usually broken out
into their own address class. Users can also have friends. This simple object model is illus-
trated in Figure 1-2.

Figure 1-2. A simple object domain model

CHAPTER 1 ■ THEORY AND FOUNDATION 7

If a developer points to the User object, the expectation would be that the object refer-
ences to Home address, Work address, and Friends would become shared automatically. In
Terracotta, the developer need only specify the User object as being shared. Terracotta learns
from the object definition itself what the fields of our shared object are (First name, Last
name, etc.) as well as what the object relationships (Addresses and Friends) are. Consider this
to be analogous to mounting a remote file system onto the local machine: the User object is
mounted into memory from Terracotta, and after that, the memory operations can be cached
locally but persisted remotely on the Terracotta service for sharing and later retrieval.

You will learn more about how this works in Chapter 3, but for now, know that Terracotta’s
ability to understand the intent of an application by analyzing the use of memory is what
makes Terracotta transparent to our source code.

Putting Transparency and Clustering Together
Terracotta’s transparent clustering service helps a developer share part of a Java process’s
memory across process boundaries and machines. This means that any object resident in
memory in one Java process can be seen by another Java process, whether that process is on
the same machine or somewhere else across the network. In the previous section, you learned
that sharing part of a JVM means that we are mounting objects that appear local but are, in
fact, stored in a central service. We should break this down in more detail.

First, let’s build a simple class, ClusteredClass:

class ClusteredClass {
int id;
String name;

ClusteredClass(int id, String name) {
this.id = id;
this.name = name;

}

final Integer getid() {
return new Integer(id);

}

final String getname() {
return name;

}

void setid(int id) {
this.id = id;

}

void setname(String s) {
this.name = s;

}

CHAPTER 1 ■ THEORY AND FOUNDATION8

public String toString() {
return ("Customer id=[" + id + "] name=[" + name + "]\n");

}
}

Now, imagine that there are two servers, and we want those two servers to act together as
one logical server. We have to be assured by the JVM that instances of ClusteredClass created
in one server are available to the other under the same object ID. Why? Simply put, if an object
created on one JVM were not the same object on all JVMs, the application would not reap any
value from transparent clustering. Think back to the NFS analogy. If two application instances
wanted to read from and write to the same file, they must mount the same remote file system
and open the same file by name. In Java, an object ID is like a file name. Terracotta uses the
object ID as the clusterwide path to a specific object in memory.

Without consistent object identifiers across JVMs, the application would find that any
object created on one server would be different and have to be re-created or reconnected to
object graphs when moving from one JVM to another. Somehow, all this fuss does not sound
transparent. Let’s, therefore, assume that objects created with a particular ID in one JVM will
have the same ID in any and all other JVMs.

It would also be nice if the second server could see an instance of ClusteredClass con-
structed on the first server. However, there are several challenges inherent to our sharing goal.
Objects created in one memory space will have different addresses in RAM, and thus different
identifiers, than in another space. Not only do memory addresses not align across processes,
but objects created in one memory space will eventually get modified, and those modifica-
tions have to make it from one server’s memory to the other’s. How can we make all this
happen? It is, after all, quite a leap to assume that Terracotta can find all of our User objects
(from the previous section) and share them on its own.

One way to think of this challenge is in terms of object scope. If an object o is not created
or referenced at an appropriate level of scope, such that it can be accessed across threads or
even by the same thread at some time later, the object is not shareable across servers. Method-
local scope refers to an object whose life cycle is that of the method in which it is created; the
object is created and destroyed within the method’s scope. Method-local objects tend to be
immediate garbage to the modern collector and are not, therefore, what we are after. This is
important: sharing every object between the two servers is not necessary. Sharing objects in col-
lections, singletons, statics, and global objects is more what we are after. Server two should
only be able to see object o that server one created if server one creates the object in a scope
that is accessible to more than one thread. So if we invoke a constructor in a method-local
context, we should not worry about clustering, but in the global context we should:

void printAClusteredClassInstance() { // method-level scope
ClusteredClass c1 = new ClusteredClass(1, "ari");
c1.toString();

}

ClusteredClass clone(ClusteredClass c) { // calling-level scope
ClusteredClass c2 = new ClusteredClass(c.getid(), c.getname());
return c2; // c2 escapes the method so it might be interesting…

}

CHAPTER 1 ■ THEORY AND FOUNDATION 9

static Map myMap = new HashMap();

void storeAClusteredClassInstance(ClusteredClass c3) { // Stored in a singleton…
myMap.put(new Integer(c3.getid()), c3);

}

In the preceding examples, c1 is not worth clustering; c2 might be worth clustering,
depending on what happens in the thread that calls clone(); and c3 should be clustered,
because it joins myMap, which would likely be clustered. Thinking about it further, consider that
if we are trying to get c1, c2, and c3 shared between servers one and two. c1 cannot, in fact, be
shared because if server one creates it, there is no way for server two to reach c1. Similarly,
there is no way for another thread in server one to reach c1 (unless we change the declaration
of c1 to make it a static variable). c2 might be clustered if the thread calling clone() actually
places c2 in a location in memory where multiple threads could reach it. c3 is definitely and
easily reachable by server two, however, when server two executes myMap.get() with the
appropriate key.

Now, we have to examine the constructor, because Terracotta usually has to do something
with constructor calls to get a handle on objects when those objects are first created (the con-
structor is sort of like the call to the mount command in the NFS analogy). Terracotta can
decide when to invoke the constructor sort of like an automatic file system mounter. Let’s now
walk through an example.

■Note■■ automount first shipped with the Solaris Operating System. It detects the need for a remote file
system and mounts that file system on demand.

In storeAClusteredClassInstance(), if we assume server one starts before server two, then
we want only the first JVM to construct myMap, just like the code fragment would behave in one
JVM. You are starting to see that Terracotta cannot only look for objects in memory but, in fact,
has to address a few special instructions such as object construction, which translates into new
memory allocation, as well as thread locking, which translates into mutex operations in the
underlying operating system. In Chapters 3 and 4, we will explain how this works in more detail.
For now, it is sufficient to know that there are only a handful of instructions that the JVM exe-
cutes when manipulating memory, and Terracotta can observe all of them.

To round out our initial understanding of sharing objects across Java processes to achieve
transparent clustering, threading and coordination must be considered. In the file analogy, an
application process must lock the part of the file it wishes to write so that other processes do
not corrupt it. For threads and locks, Terracotta can provide for cross-JVM locking just by
using Java synchronization. You need to understand a bit about the Java memory model
before you can fully understand this concept.

Threads are part of the clustering equation in that they manipulate objects and have to be
synchronized when accessing those objects. Let’s assume for a moment that Terracotta is
deployed and working such that we have c3 on servers one and two and that c3 is exactly the
same object in both JVMs. If one server wants to change myMap, it needs to lock myMap. Thus,
locking and threading semantics must spread across processes, just like objects spread across
Java processes.

CHAPTER 1 ■ THEORY AND FOUNDATION10

Honoring the Java Memory Model
You know just about all you need to know to get started—except we still need to consider the
memory model. We must synchronize our changes to myMap or c3 across Java processes just as
we would across Java threads; at least, we do if we want changes to either object to be sent
reliably between servers one and two. In a sense, the process boundaries have melted away.
But when do the servers communicate? And what do they send? The memory model provides
the answer.

The Java Memory Model is quite well documented elsewhere, but the key concept we
should focus on is “happens before,” as laid out in JSR 133. To the JVM, “happens before” is
defined as the logical time before a thread enters a synchronized block. The JVM assures that
the objects this thread will gain access to once inside the synchronized block will be up to
date.

■Note■■ The Terracotta authors relied on the graduate thesis of Bill Pugh at Carnegie Mellon University
dated June, 2004 in designing the software, as did we when writing this book.

The model asserts that any changes that happened before a thread is granted entry into a
synchronized block will be applied to main memory before the lock is granted. Terracotta uses
the memory model to ensure proper cross-process behavior and semantics. For example, if
object o has been changed by server one at some point in the recent past, server two will get
those changes before entering into a synchronized block that is protecting access to o. Server
one’s changes in this case happened before server two began working with o, so server two sees
server one’s changes. Since locks are exclusive and pessimistic, meaning only one thread is
allowed into a synchronized block at a time, the memory model proves sufficient for defining
ordering in an environment where threads are spread across Java processes. We will go into
more detail on this assertion in Chapter 4.

■Note■■ To the highly informed reader, Martin Fowler’s statement “remember the first law of distributed
computing: don’t distribute your objects” might seem to be questioned by Terracotta’s transparency. In fact,
it is. Fowler’s claim is too simple and ignores the fact that distributing objects is indeed ambiguous. Fowler
was focused on remote method invocation (RMI). RMI serializes an object, sends it to a remote JVM, deseri-
alizes that object, runs the specified method, serializes the object, and returns control back to the first JVM.
Terracotta does, in fact, distribute object data and coordinating events, but Terracotta never moves the pro-
cessing context from one JVM to another as RMI would. Just as we can remotely store the files underneath
an application without breaking that application, we can remotely store application objects without breaking
the application. Therefore, Terracotta is not bound by Fowler’s law as stated, because Terracotta never uses RMI,
serialization, or other frameworks—each of which is not transparent. In fact, such frameworks throw exceptions
that only the developer can address in source code, such as RemoteMethodInvocationException.

CHAPTER 1 ■ THEORY AND FOUNDATION 11

Being a Service Has Advantages
It has already been established that the technology offers a Java developer transparent cluster-
ing. Let’s now turn our attention to the “service” component of our definition of Terracotta.
Terracotta is made up of only a few components. It feels and smells like the services that oper-
ators are used to, meaning that Terracotta is not only some sort of agent or library running
inside existing Java processes but also itself is a Java process.

To restate, Terracotta is made up of libraries you install next to any JVM that is to join a
cluster, and Terracotta is a separate Java process unto itself, as shown in Figure 1-3.

Figure 1-3. Terracotta’s two components include libraries and a server process that communicate
over TCP/IP.

The Java process running the Terracotta server runs only Terracotta. This Java process is
the focal point of an operator’s effort in managing a cluster of Java processes running on top
of Terracotta. This means two things: scalability can be as easy as adding more JVMs, and high
availability works similarly to that of the database or a file server. While applications use
Terracotta to deliver availability and scalability, Terracotta itself delivers both scalability and
availability when the operator managing the process can make the Terracotta service highly
available. To simplify this concept, Terracotta makes an application highly available and
Terracotta is, itself, made highly available much like a relational database.

Availability
In subsequent chapters, you will learn how Terracotta stores a copy of our shared object data
outside our existing Java processes. This implies that if all our Java processes were to stop, we

■ THEORY AND FOUNDATION12

could, in fact, start the processes again and gain access to those objects as they existed in
memory before Java was terminated. When running on top of Terracotta’s transparent cluster-
ing service, an application does not stop running until the operator flushes the objects from
Terracotta’s memory and disk. This is how Terracotta delivers high availability as a runtime
service.

The Terracotta process is designed to be reliable and restartable. If it were killed or
stopped, Terracotta could restart where it left off, and the application processes would not see
any errors or exceptions while Terracotta restarts. The ability to restart is helpful for small
applications and in development environments. For production systems, a more nonstop
approach is preferable. Terracotta server processes can be configured to identify each other on
the network and to share the duties of object management for an application cluster. In
essence, Terracotta doesn’t just cluster your application but is also capable of being clustered
for availability using built-in features in the software.

Scalability
In subsequent chapters, you will also learn how to use Terracotta to tune and scale applica-
tions that are spread across Java process boundaries. Tuning applications can be achieved on
multiple levels, from limiting the scope of the clustering behavior purely in Terracotta configu-
ration files to sometimes making changes to source code. Source code changes can result in
the biggest bang for the buck in terms of getting more scalability from an application running
on Terracotta. We will study in detail how to configure Terracotta, as well as how to write code
that is best suited for the environment.

Once an application is perfectly configured, or is at least as good as it is going to get, there
is still more that can be done. If scaling is defined as adding more JVMs, and throughput is
defined as how many operations per second a single node can handle, Terracotta can help in
delivering more throughput per node as much as it can help in delivering better scaling to
apply against the business need.

To help a JVM perform, Terracotta provides built-in caching designed to allow applica-
tions to perform at nonclustered speeds even when clustered. To improve performance, an
application needs to optimize its use of Terracotta’s internal caches. Optimizing the use of
cache is a function of optimizing workload routing. One example of workload routing is sticky
load balancing for web applications. In sticky load balancing, the same user session gets
routed to the same JVM for every request. If some sort of stickiness can be applied, Terracotta
will keep objects in memory as long as it can. Load balancing is not always as simple as sticki-
ness and session replication, though. In general, developers and operators have to work
together to consistently route a workload to the same JVM over time.

■Note■■ Several members of the Java community refer to Terracotta as a distributed cache. As you can see
from the fact that Terracotta’s caches are internal, and external load balancing is required to optimize cache
efficiency, Terracotta is not a cache. It merely uses caching technology to ensure application performance
and scalability.

CHAPTER 1 ■ THEORY AND FOUNDATION 13

By routing requests to the same JVM over time, we ensure that all the information a
thread needs to process application requests is local to that JVM in memory. Without such
assurance, our application will need Terracotta’s server process to move the memory into con-
text underneath us just in time. The application will have to wait for the network in order to
complete an operation. This is commonly referred to as paging. Terracotta works at a byte
level and not at a page level, but it has adopted the paging terminology from virtual memory
inside operating systems because the notion is the same. In most operating systems, virtual
memory allows an application to spill 4-kilobyte pages of memory to disk. The ability to page
out unused memory frees the application to get more work done with less memory. When the
application needs a page back from disk, that application begins to perform very slowly, how-
ever.

Here’s another way to view the performance optimization Terracotta delivers through its
use of caching inside the application’s JVM: Terracotta will move as little data as possible given
the changing workload it sees. This improves performance by allowing applications to move at
the speed of memory instead of the speed of the network. Just like in the operating system and
virtual memory, moving this caching feature into the transparent clustering service provides
operators the configuration hooks to make runtime decisions about how large Terracotta’s
cache will be.

Terracotta can scale independently of the application above it. Much like a relational
database, the Terracotta server’s I/O and throughput are tuned using various IT strategies with
which operators are familiar. These include disk striping and data partitioning. In a future
release, Terracotta’s designers also intend to provide the ability to cluster Terracotta servers for
scale. Once the feature is implemented, Terracotta is able to stripe objects across Terracotta
instances on its own.

Going back to our example code, Terracotta’s core architecture can support storing myMap
on one Terracotta server while storing c3 on a second Terracotta server. When the application
runs myMap.get(id), Terracotta knows that the map is on one Terracotta instance, while c3 is
on another, and routes I/O based on Terracotta object identifier and corresponding routing
information. Terracotta honors object identity as well as the Java Memory Model so there are
no copies of objects, only real objects, which allows the system to store parts of objects on one
Terracotta instance and other parts on another. This architecture delivers the ability to scale
linearly, because any number of Terracotta instances will split the responsibility of storing and
manipulating objects evenly: two instances split the data in half, three instances in thirds, and
so on.

Avoiding Bottlenecks
The hardest part of tuning an application is in storing data on disk for availability yet simulta-
neously avoiding I/O bottlenecks. Figure 1-4 illustrates why tuning is hard. Essentially, the
database helps us deliver high availability but with high latency or low scalability compared to
purely in-memory applications. Simultaneously, caching and purely in-memory applications
provide low and sometimes zero availability, since nothing is written to disk.

CHAPTER 1 ■ THEORY AND FOUNDATION14

Figure 1-4. Consider the scalability versus availability trade-off to help avoid bottlenecks and
deliver reliability.

The database can be mostly transparent through Hibernate and object-relational mapping,
and it can support clustering if all application servers read and write to the same database
tables. So why is the database not a transparent clustering service? The database should not be
used for clustering, because it shifts the burden of scaling and clustering an application from
application source code to production operations through complex and expensive database
clustering technologies, such as Oracle Realtime Application Clusters (RAC). This is another way
of saying what some of us might already know—the database is a bottleneck.

Unlike the database, Terracotta does not merely shift the object-sharing burden from the
developer and source code to the operator. Terracotta’s architecture and implementation con-
tain several optimizations that provide an application with multiple lines of defense against
disk I/O bottlenecks, the sum of these techniques make the solution over ten times faster than
the database. Here are a few of these optimizations:

• Terracotta reads from in-memory caches when available.

• Terracotta reads only what it needs, and no more, from its server, and it can read in
near-constant time from disk.

• Terracotta writes only what changes, and it writes the changes in batches.

• Terracotta writes in an append-only fashion. Objects are never sorted, indexed, or
relocated/defragmented on the disk.

CHAPTER 1 ■ THEORY AND FOUNDATION 15

Let’s analyze each of the four optimizations further, starting with reading from cache.
First and foremost, the application has an in-memory cache of the data (see Figure 1-3) so
that when reading, there is no disk I/O. This cache is on the application’s side of the network
with respect to the Terracotta server, so unlike a database’s internal cache, Terracotta can
respond to some requests at in-memory speed. Caching inside the application in a transpar-
ent fashion is only possible because Terracotta is transparent. This also serves to significantly
lessen the workload on the Terracotta server process.

Second, Terracotta reads only what it needs. Terracotta stores an object’s fields separate
from each other on disk but near each other on the same disk block. Each field can be
retrieved separately. Since the data is formatted on disk much like a HashMap would be in
memory, Terracotta can take the identifier for a field to be retrieved as a key, hash that identi-
fier into a file location, move to the appropriate block within the file, and load the field
without loading any other disk blocks.

There is a further optimization here in that an object’s fields are created at the same point
in time that the constructor is called inside the application. Thus, the object’s fields are all
stored near each other on disk. Since Terracotta reads entire disk blocks at once, it usually
reads, in a single disk operation, many objects and fields that were created together. Those
objects and fields are often needed together, since they represent parts of the same object or
closely related objects.

Third, the server writes what changes, and it writes in batches. As we pointed out, the Ter-
racotta server writes to disk much like a hash map (HashMap) would write to memory. Each
field can change without updating any other data. When several objects change, their changes
are written together to the same block on disk so that they honor the block-level read opti-
mization we discussed previously.

Fourth, the server writes in append-only fashion. This means that we needn’t burden our-
selves with changes in field data, and we needn’t read blocks from disk in order to write blocks
back to disk. Normally, changing data on disk requires reading the block where the data is
located into memory, mutating the file buffers, and flushing the buffer back to disk. Terracotta
avoids this extra read I/O. What’s more, if the server running the Terracotta process has
enough memory, the file data can all be cached in memory inside the operating system’s file
buffers. If this caching can occur, all read traffic is served from memory buffers (an additional
line of defense), and the disk subsystem is only writing to the end of our data file. This implies
that a Terracotta server can be tuned to utilize the entire disk subsystem’s throughput, since it
never has to seek to random locations on disk.

■Note■■ If a Terracotta server needs to support more write traffic than a single disk can sustain, the operator
can stripe Terracotta across multiple disks so that write traffic spreads across those disks. For example, if a
single hard disk spinning at 10,000 rpm can sustain 100 megabytes per second of read or write traffic,
striping four disks together under Terracotta would deliver a total capacity of 400 megabytes per second of
highly available object I/O to Java processes running on top of Terracotta. 400 megabytes per second trans-
lates to over 4 gigabits of network throughput.

CHAPTER 1 ■ THEORY AND FOUNDATION16

These scaling and disk I/O recipes, while quite standard fare for database administrators,
were brought to the attention of Terracotta’s designers at the large e-commerce web site and
are now baked into Terracotta

So, while the database can append new records onto the end of a table like Terracotta
does, indexes must be adjusted and maintained as data changes. Databases must be prepared
for random I/O into sorted indexes, and this costs significant latency while the disk seeks the
point on the disk where an index must change. Terracotta, however, does not burden itself
with where on the disk an object is stored relative to other objects. It merely needs to be able
to retrieve individual objects by their IDs. Terracotta’s singular use of the disk, as compared
with the multiple uses a database has for the disk, means Terracotta can optimize itself,
whereas a database requires administrator intervention to tell the system which of many opti-
mizations to leverage for specific data.

Use Cases
Terracotta makes several servers work together like one logical server. It can be applied in
many ways and to many use cases, but it works in conjunction with the JVM to eliminate scal-
ability/availability trade offs that we otherwise deal with application after application.

The basic use cases of Terracotta fall under the following umbrella categories:

• Distributed cache

• Database offload

• Session replication

• Workload partitioning

Distributed Caching
When used to distribute application cache data, Terracotta shares Java collections across Java
processes. Under such architectures, typical cases require maps, lists, arrays, and vectors—in
both java.util and java.util.concurrent—to be shared across processes. There are several
Terracotta capabilities that will make this use case easier. The first is that object identity will
work. This means that hashCode() and == will work as expected, for example, in maps and lists
with respect to storing the same key more than once. This also means that the following code
example will return TRUE:

Object foo1, foo2;
foo1 = cache.get(key);
foo2 = cache.get(key);
return(foo1 == foo2);

Another benefit of transparent clustering services for distributed cache applications is
that the cache does not impinge on the domain model. The classic example here is that of
multiple indexes to a dataset. For example, a web site in the travel industry needs to be able to
display hotels by location, price, room amenities, and availability. The natural place to store
the hotel data is in a database where all these details amount to SQL queries against a data
table and indexes are specified at run time. However, most travel web sites are not issuing

CHAPTER 1 ■ THEORY AND FOUNDATION 17

queries against the database every time a user comes to the site and attempts to locate a hotel;
rather, they use a cache. And, it would be nice to be able to do in the cache what we can do in
the database, namely store the hotel once and only once but have alternate indexes with price
ranges, location names, and other data as different keys.

I can store the Westin St. Francis Hotel in downtown San Francisco under the keys “San
Francisco,” “US POSTAL CODE 94102,” and “Hotels between $300 and $1,000 per night”. But
the hotel is the same hotel no matter how it gets returned. This is all fine and good until we
want to update the hotel’s price to $259 on special; now, the hotel falls out of the price range
under which it was originally stored in cache, because it is now less than $300. If we model this
in the database, there’s no problem. If we model it in memory, spread across machines—prob-
lem. Chapter 5 will detail the distributed cache use case and how to work with changing data
over time.

Database Offload
The database is the bane of Java developers’ existence and, simultaneously, our best friend.
The key reasons for using a database are that the data gets written to disk and can be queried
and updated in a well-known format and that the database can be tuned without significant
impact to the business logic. The reasons not to use the database are that the object-relational
translation complicates code, transactional architectures are hard to scale, and the database is
a bottleneck.

Applications can use Terracotta to eliminate the database bottleneck. In such scenarios,
leave objects in memory, and cluster them via Terracotta. Since Terracotta is infrastructure
separate from any application process, objects in memory do not necessarily get lost (recall
that Terracotta stores objects on disk, so objects will not get lost). Therefore, when using Terra-
cotta, the database’s role is well contained; it is used primarily for query and reporting of
business data. It is used less as a central store for objects on disk and as a transactional control
point where synchronization suffices.

Session Replication
Session replication has long been a feature of the application server or container. Apache
Tomcat, BEA WebLogic, JBoss Application Server, IBM Websphere (CE), Jetty from Webtide,
and Sun GlassFish each has a session replication solution bundled within the container. But
transparent infrastructure for sharing objects across processes can provide unique value when
compared to these frameworks.

Terracotta’s transparency implies something new and different from all prior sessionTT
replication approaches. Specifically, session replication usually pushes a few programming
rules back up through the container to the application developer. Web application developers
know that all session attributes must implement java.io.Serializable. Developers also know
that those attributes must be small. And domain objects should not be referenced by the ses-
sion attributes, or you risk serializing too much or serializing dangerous data. Last, any
attribute that is accessed via getAttribute() must later be put back into session by calling
setAttribute().

These rules and more regarding the use of session replication are, in fact, direct results of
containers’ having used session serialization and replication when sharing objects in session.
If we follow the session, what we would find is that the session is retrieved from an internal
HashMap when the container receives a web request. That session is marked as clean when the

CHAPTER 1 ■ THEORY AND FOUNDATION18

container hands the session object to the servlet code. The session will get serialized and sent
across the wire to other instances of the application only if we call setAttribute() when
changing objects inside the session.

Transparent object sharing across Java processes is different. Transparent object sharing
implies that if we, the application developers, can share the session HashMap and all the ses-
sions and attributes inside that map, then we needn’t signal to the container what we change
and when. We no longer need to call setAttribute() when we change attributes. Nor do we
have to make sure objects implement the serializable interface, nor worry about their size. In
some cases, references to domain objects and singletons will even prove acceptable.

Workload Partitioning
Workload partitioning is currently referred to under more popular names like MapReduce,
data grid, and compute grid. The idea here is to divide and conquer. With Terracotta, divide-
and-conquer architecture is achieved either by using Java data structures for messaging along
with thread coordination or by using JMS or socket communications instead of threading for
coordination and using shared data structures for a different purpose.

Without going into too much detail now, Figure 1-5 illustrates the power of partitioning.
Essentially, an application can spread computational workload such as querying, updating of
large amounts of data, or similar use cases without the need for message queuing, a database,
or other infrastructure services. A Java application and some multithreaded logic will suffice.

Figure 1-5. Distributing workload to many computers using only memory, threads, and
Terracotta (see Chapters 10 and 11 for details)

CHAPTER 1 ■ THEORY AND FOUNDATION 19

Summary
Terracotta is a transparent clustering service with an object-oriented development model.
“Transparent” refers to the pure Java language and JVM memory interface with no explicit
programming model requirements, such as a requirement to use Spring or Hibernate. “Clus-
tering” refers to the ability to allow multiple machines and Java processes to work together on
the same data and to signal each other using pure objects and threading logic. And “service”
refers to the infrastructure nature of this technology. A look at distributed caching APIs helps
tighten this definition.

Distributed caches are not transparent clustering services. These libraries are designed to
push bytes among networked servers when the cache is updated through get() and put()
calls, and it’s important to note the following details about them:

• Transparency: Distributed caches cannot be transparent. They require the developer to
call get(), which copies data from the cache into objects when the API is called. Dis-
tributed caches also require the developer to call put() after objects are changed; this
copies data back to the cache. get() and put() imply that the application code and the
object model cannot support certain things. Methods in our source code cannot hold
on to references to objects across calls to get(), because we will not get the up-to-date
data from the cache from the last time a thread called put(). And object models cannot
include rich domains where objects, like our User and his Address and Friends from
earlier in this chapter, could actually be Java references. If our domain model is made
up of regular references, the entire object graph will get serialized on put(), which
means we will end up with different objects on get() than we initially created.

• Clustering: Distributed caches deliver Java developers a form of clustering. They do notgg
provide clustering as a service, as we defined “service” earlier, because they are not
transparent. An application cannot be written for a single machine and then operate
across a group of machines in production. Furthermore, since most clustered caching
libraries must be present at runtime for even threads on one machine to share objects,
they cannot be removed from the application without rewriting that application to
some degree.

• Simplicity: The relative complexity of distributed caches is quite high, not just because
they force changes to the application source but also because they require changes to
the production operating procedure. This is due to the fact that, in order to scale, dis-
tributed caches ask that we keep all objects in memory spread across many JVMs. For
example, if we want to manage a 100-gigabyte dataset, and our JVM is 32-bit, we will
need a minimum of 50 JVMs at 2 gigabytes of heap per JVM to store the entire data set.
If we want that data to be highly available, we need to store each object in two JVMs,
meaning we need a minimum of 100 JVMs. 100 JVMs are required just to manage 100
gigabytes of data, and this example ignores the application’s actual purpose and busi-
ness workload, which will surely drive even more servers.

CHAPTER 1 ■ THEORY AND FOUNDATION20

• Scalability: Distributed caches have historically scaled better than applications clus-
tered using only a database by putting objects at risk (recall Figure 1-4, where we trade
off scalability and availability) and keeping our object data only in memory. Having
JVMs hold our objects only in memory means that we cannot eliminate the database,
because a loss of power would otherwise imply a loss of data. Thus we end up in a
hybrid world with clustering plus databases and their associated scalability issues,
which is back where we started

By our definition, distributed caches are not transparent clustering services. Consider
now that distributed caches are rich networking libraries where developers do not see network
stacks and APIs, such as sockets. Because these caches hide the network transport, compared
to TCP or UDP, distributed caches are a higher form of networking. The higher form is valu-
able, but it is neither transparent nor a clustering service.

The definition of Terracotta as a transparent clustering service presented in this chapter is
something new and worth exploring in further detail: in Chapter 2, you will learn about the his-
tory of the concept, and in Chapter 3, we will dive into our first example—HelloClusteredWorld.

CHAPTER 1 ■ THEORY AND FOUNDATION 21

History of Terracotta

The galactic forces of Linux, Java, and the Internet have fundamentally changed applicationTT
architecture, and the Java community is still trying to catch up with the impacts of the changes.
Typical business applications in the past were rarely spread across servers; this has changed.
Databases used to see much more than the networked SQL workload; they contained a signifi-
cant portion of our business logic in the form of stored procedures or similar embedded
execution technology. Today, they see mostly object-relational mapping (ORM) queries. Linux
and the Internet have taken us down a different path than Oracle may have preferred.

With the Internet came the introduction of the n-tier architecture (see Figure 2-1). In their
simplest form, enterprise applications can be viewed as either two-tier or three-tier. The third
tier arose from the notion of the web server, which was first used to serve static HTML out of
HTTP servers produced by vendors such as Apache. Eventually, this became a formal architec-
ture paradigm involving presentation to users across the Internet behind a browser
interface—we call the third tier the presentation tier for this reason.

Figure 2-1. The n-tier architecture 23

C H A P T E R 2

The presentation tier quite rapidly changed from presenting static HTML to serving as
part of the application tier in delivering a dynamic application development platform. For
many reasons, the most important of which was the ubiquity of the web browser, three-tier
architecture began to spill from Internet to enterprise applications.

For enterprises, the application tier caused a new problem. Operationally, there were now
many requests coming in to the application tier from over the network (Internet, intranet, and
extranet inclusive), yet the application tier was not scaling well. The database was a serious
bottleneck. Also, application server stability and availability was at issue.

The database and application tiers are capable of finite capacity for any given design,
whereas inbound traffic to an application can be unbounded. Individual users and use cases
could exhaust application nodes or databases at any time. The data and application tiers
proved to be expensive to deploy and manage, because scalability was hard to predict and
ensure.

Architecture was shifting to a loosely coupled model wherein different components of the
application could be abstracted behind interfaces and other components could ignore the
implementation details. And loose coupling was accelerating the move toward n-tier architec-
ture in that one service could be hosted on a completely different server from another without
complicating the programming model.

In Chapter 1, we discussed the notion of files and file I/O as separate and apart from the
notion of the file server on which the file lies. The value is in the operational ability to scale
a service without changing the application. The trade-off for this flexibility is that many per-
formance bottlenecks do not show at smaller scales and on nonproduction configurations
and therefore are uncovered only in production, thus making capacity planning quite chal-
lenging.

In addition to the capacity-planning challenge inherent to loosely coupled application
architecture, controlling the ongoing cost of development is often first priority, and many
chose Java because of its flexibility and simultaneous simplicity. Java virtual machines (JVMs)
in the early days could not capitalize on the entire CPU without very careful tuning. It was
common to run two JVMs per CPU and two CPUs per node or four JVMs per node. The domi-
nant application server vendors themselves chose Java as well. Java-based application servers
were and remain very sensitive to workload. With all the JVMs came a hunger for memory, and
the cheapest way to get lots of memory was to deploy small machines with 500MB to 2GB of
RAM instead of buying expensive parallel processing machines with lots of RAM and CPU. The
preferred deployment model was what many referred to as scaling out an application across
many small machines, as opposed to scaling up an application inside one large multiproces-
sor server.

So while the Internet drove us to scale out, scaling out itself was simultaneously forced on
us, since we now had multiple JVMs on the brain. Multiple JVMs on multiple nodes was not a
difficult leap forward for IT departments. Perl scripts and the like helped to manage the
sprawl, and managing the sprawl was the most important capability that kept operations
teams from rejecting the scale-out model.

The last galactic force cemented the model of many JVMs on many servers. That force is
Linux. Without Linux and the associated open source approach, license fees and support fees
for expensive operating systems would have forced us to find ways to scale our applications
on fewer servers; the backs of our IT budgets would have otherwise been broken as we bought
more and more nodes across the enterprise.

CHAPTER 2 ■ HISTORY OF TERRACOTTA24

So it came to pass that most architects chose to scale out, as opposed to scale up. At the
time, neither scaling out nor scaling up mattered to database vendors like Oracle, because the
database was handling the workload of all but the largest Internet web sites. Very few saw the
impending rise of the database bottleneck. Instead, developers were busy choosing the easiest
path for building applications. In the Java 2 Standard Edition (J2SE) world, Tomcat and Struts
prevailed with stateless data access objects stored in the database. In the Java 2 Enterprise
Edition (J2EE) world, EJB prevailed, and the container helped the developer store objects in
the database. The database façade was destined to crack under the load of the new three-tier
architecture. If the database was an immovable object, scale was the opposing unstoppable
force. A tug-of-war began to play out regarding how to scale.

Let’s now discuss this tug-of-war between complex expensive clustering and simple
database-backed applications in more detail. This will help you come to the realization that
an application that is trying to scale can use the same techniques as a multiprocessor mother-
board architecture. Analysis of Terracotta’s origin and founding principles will help you
understand this analogy between the application and a modern motherboard. By the end of
Chapter 2, you will know how a motherboard-style approach makes scaling out transparent
and how transparency has helped elsewhere in application design.

Approaches to Scaling
At the start of the average development project, we must determine the business require-
ments. Architects, developers, and people who manage production applications (Terracotta
sometimes refers to this last group as application operators) can choose to start at the top and
work down or to work from the bottom up. An example of top-down architecture would be
deciding that the end user needs a graphical interface and wants to use a web browser, so we
will need an HTTP server, a web development framework, a container in which to run it all,
and a system in which to store business data. The inverse approach would be bottom-up
where we start with the preferred data storage engine—database, file server, or what have
you—and then look for the best, most scalable way to store data, working our way back to
development frameworks that support our data store and eventually dictating how the end
user can reach all this software. As a contrasting example to the top-down approach that
resulted in a web application, starting from the bottom could result in a spreadsheet that
users upload to a server for later processing.

Whether we’re talking top-down or bottom-up, only those of us who have built large-scale
applications before will include scalability frameworks and patterns early in our designs. The
fundamental challenge in scalability is that applications are scaled across server processes,
while business data is simultaneously accessed through each process. Concurrent access to
data is either managed in a stateful or stateless manner. Neither stateless nor stateful architec-
ture avoids the scalability bottleneck. Let’s validate that assertion now.

Scale the Database
One approach to building an application that can spread across Java processes is to ensure
that no process has information that other processes have at the same time. In the web appli-
cation space, we call such architecture stateless, but the generic concept is more powerful
than storing data in a database. The generic concept simply implies that no data can be stored
in a single process’s memory and that, ideally, no data should be stored in memory, period.

CHAPTER 2 ■ HISTORY OF TERRACOTTA 25

We can build a stateless application by writing all data to a database (or to flat files on a
shared file server). We might even use durable message queuing to write out objects as mes-
sages that we can later retrieve. Regardless of the storage mechanism, stateless applications
do not become a scalability challenge until those applications are spread across processes
(Java or otherwise). This is due to the fact that, with a single application instance, we can
perfectly cache the data coming from the database, thus reducing our dependency on that
database.

A perfect cache is one where the cache never misses where we would expect it to hit. If a
certain application workload pulls records from the database into memory as objects and
those objects are cached, a developer would expect the database to see no queries regarding
these objects until the cache is flushed. A scaled out application cannot exhibit perfect
caching behavior, because each Java process needs to cache data separately and redundantly.
Records pulled into memory in one JVM are not available to other JVMs.

When the application is scaled across processes, we need to distribute the cache in order
to get the same benefit of caching on an application that is not clustered. Figure 2-2 illustrates
the inefficiency associated with failing to distribute application caches.

Figure 2-2. Nondistributed caches leading to unnecessary cache misses

CHAPTER 2 ■ HISTORY OF TERRACOTTA26

If an application is designed to trust its own cache as consistent with the database at all
times, when spreading the application across processes, the cache must be either disabled, as
in the case of Hibernate second level caching, or distributed. Without a distributed cache, an
individual process could return stale data to the end user if that node does not know that the
data changed on another application instance. Imagine that one application server in Figure
2-2 changed item 1234 and did not tell the other that it had done so. Then both application
servers would have a different version of item 1234 in cache, and only one would be in sync
with the database.

Figure 2-2 illustrates that applications that don’t store some state in the application tier
are prone to bottlenecks, because they issue redundant SQL queries at the database. The
redundant SQL queries sent to a database from various application nodes eventually crush it.
The example also shows that, without distributing the cache, the application can become
inconsistent. So, while developers get persistence and consistency from databases and state-
less architecture, the application cannot scale without more work from the developer on
stateful caching and replication of that cache.

The seemingly most expedient choice for an operator to scale a mature stateless applica-
tion without demanding that the developer change the application is to scale the
storage—database or otherwise. There are several problems with the notion of clustered data-
bases. While database tuning is a topic for another book, suffice it to say that database latency
is managed through indexing, building query plans, caching disk blocks, and otherwise opti-
mizing queries. Meanwhile, database scalability is predicated on the concept of striping. Disk
striping helps a single database server handle more application workload by summing the
capacity of several hard drives together underneath a data table.

This idea can be extended to striping across database instances. If we take a customer
table and split the table across two database instances on separate servers, we get twice the
database capacity. However, we must now externally remember to check both instances for
the data. The problem with partitioning the database is that the stripes across disks are purely
up to database administrators and storage administrators, whereas striping data across data-
base servers usually requires application-level support. Figure 2-3 shows a database
partitioned across disks versus across servers and the resulting application changes required
to support partitioned database instances.

If the database attempts to do this split on its own as a black box, then we do not get quite
double the capacity because the instances have to route queries to each other on a miss. Thus,
scaling the database is a misnomer, because the operator eventually has to ask the developer
to make changes. Stateless architecture is not the silver bullet it appears to be on first blush.
Either state or partitioning leaks back into the application through caching as a result of scal-
ing out. Many Java developers have experienced this problem and choose to use in-memory
replication.

CHAPTER 2 ■ HISTORY OF TERRACOTTA 27

Figure 2-3. Striping disks under databases (left) versus striping databases under applications
(right)

In-Memory Replication
The alternate approach is—again in the web application world—sometimes referred to as
stateful. This model refers to keeping session data in memory. Application data kept in mem-
ory is made more highly available by replicating data to other application instances in case of
failure.

The goals of stateful application programming are to eliminate the dependency on the
database and improve application latency and scalability. In the Web world, where session
cookies exist, applications can leverage the notion of sticky load balancing where the same
user’s session is routed to the same application instance over and over again. This solves one
key problem with stateful programming: how should an application keep all its instances syn-
chronized in real time? If the workload will always be routed to the same instance, then we can
keep data in memory in only one or two nodes, and this will be fine. If work is sent around the
application instances randomly, all instances need to know everything that has happened
before in a particular context.

■Note■■ The use of “happened before” is meant to remind you of Chapter 1, where we talked about multi-
threaded programming and the Java Memory Model’s notion of “happens before.” You will see in Chapters 3
and 4 that Terracotta delivers multinode scale out using only multithreaded programming. We will also dis-
cuss how to abstract multiple threads from most of our code so as to avoid the complexity of threading and
concurrency in applications when appropriate.

CHAPTER 2 ■ HISTORY OF TERRACOTTA28

In-memory replication can crush an application instance in two ways. First, the pressure
to keep the application’s entire working data in memory can push on the JVM’s garbage collec-
tor to the point of exhaustion. Second, the pressure to replicate every change made on this
instance to all others can be too great at as few as two nodes, depending on workload. Rarely
can simple replication schemes scale past three or four nodes. It seems that in-memory repli-
cation and stateful programming models scale more poorly than stateless ones. There are
good qualities to stateful architecture, however.

One can partition an in-memory architecture in any case where a database could have been
partitioned. This means that if customer tables can be split in half, half of the in-memory cus-
tomer data can be stored on one server and half on another. Once data is in memory, latency to
access that data drops to nearly zero. Low latency is stateful architecture’s best quality.

The only unaddressable risk in stateful architecture is that of availability. If the power to one
process is lost, we may not lose anything with the help of replication, but if the power to all
application processes is lost, we will most certainly lose everything in memory.

In exchange for the availability risk, we would hope that we gain a simplicity benefit. If we
are working with objects in memory, can we not avoid the classic impedance mismatch
between the application and the database? Sadly, the answer is no. Whether developing using
EJB (remote or messaging beans), Java Messaging Service (JMS), HTTP session replication,
remote method invocation (RMI), or another approach, the same data flow occurs:

1. An object is created in one server.

2. The object is serialized and pushed to all other servers.

3. The object is later changed in that server.

4. The object now must get updated in all other servers (meaning, go to step 2).

Since the object in memory is, in fact, going to get serialized to be sent on the wire, two
servers would have different copies of an object. Serialization allows multiple threads to edit
objects at the same time without corrupting the objects. The preceding data flow can be aug-
mented as follows to prove the point:

5. The object is needed in one thread.

6. The object is deserialized from the cache or another JVM.

7. The object is changed in this server.

8. The object now must get updated in all other servers. If another server has edited this
object at the same time, throw an exception, and discard the changes in either this
server or the other.

This data flow implies that every thread that interacts with our objects must deal with a
copy of the object. In other words, not only does the thread creating objects in step 2 have to
serialize an object to send it to other JVMs but the thread consuming the object in step 5 must
deserialize it to gain access to the object. Why? The answer goes back to concurrency. In a
stateless model, it is clear that an object in memory is only a temporal representation of the
database row, meaning that the database is the true system of record. However, in memory, it
is not clear who maintains the system of record. In fact, all the JVMs together are the system of
record. Transactional capabilities of the database are approximated when using in-memory
replication by asking the application to work with object copies.

CHAPTER 2 ■ HISTORY OF TERRACOTTA 29

More to the point, the act of serializing object graphs to send them to the network and
deserializing those byte arrays received from the network forces an application developer to
live with a copy-on-read semantic. We will spend more time on object identity in Chapters 3
and 4. For now, let us assert that stateful programming is not simpler than stateless. And state-
less programming is not more scalable than stateful, which is due to the fact that striping can
work for both stateful and stateless paradigms.

All Paths Lead to Partitioning
So far in Chapter 2, all analysis has focused on replication versus partitioning. Partitioning,
sometimes referred to as sharding or dividing and conquering, is an architecture that splits
data across a cluster of servers. Partitioning can alleviate many typical bottlenecks in network
and database traffic by dividing the data and corresponding work on that data along consis-
tent lines. For example, a typical database application needs to support create, read, update,
and delete operations. If create operations were to split data across two database instances,
and read, update, and delete operations were to split data the same way, then two similarly
sized database servers would provide twice the capacity of one. Figure 2-4 illustrates the con-
cept of partitioning data between two servers by partitioning the business data into even and
odd keys.

Figure 2-4. Partitioning a CRUD application by splitting data into evens and odds

■Note■■ The nonpartitioned and the partitioned load balancers are different in Figure 2-4. The nonparti-
tioned version is simple and sends any traffic to either application server. The partitioned load balancer
should be aware of the partitioning logic and route work to various application servers based on data parti-
tioning rules.

CHAPTER 2 ■ HISTORY OF TERRACOTTA30

Partitioning might seem the only path toward scalability for many application teams,
because as applications grow, data replication or management turns into the number one bot-
tleneck. As we already discussed, an application goes faster by either caching and keeping
more data in memory or striping the data across multiple physical locations.

More accurately, availability is best achieved in a stateless architecture, whereas scaling
out forces us to push data into memory and replicate it. In fact, most real applications are
stateless and stateful simultaneously, and this is what Terracotta realized. Developers and
operators need a way to fundamentally get past the trade-offs of availability and scalability
(see Figure 1-4) without heading down the path of partitioning the application prematurely.

Terracotta’s Origin in a Web Monster
In building an e-commerce site that has grown to be among the top ten in the world—a
monster—some architectural decisions proved critical, while others were not as important as
initially assumed. The application was to be load balanced and stateful with all business data
and associated workflow managed via transactions in the database. Database transactions
seem, in retrospect, an obvious mistake, mostly because transactions in a three-tier system
imply spreading workflow between the database and the Java tier. The Java tier generates the
update task and asks the database to make changes that can be rejected for various reasons.
Now, this seems like having two conductors of an orchestra.

Discussing Terracotta’s origins might seem like a tangent to the discussion of scaling the
application tier. It is not: the architecture should have been predicated on workflow in the Java
tier. But there was a problem with workflow in the Java tier in the year 2000. That problem was
one of volatility of memory (or heap). If conversational state, otherwise known as workflow
state, were to be maintained in memory, then conversations could be lost. At the time, there
was no linearly scalable way to deliver high availability for in-memory replicated state. So the
business data was stored in the database and cached in the application tier, thrusting the site
into a stateful/stateless hybrid where database data was cached and replicated in memory to
avoid database bottlenecks. Think of the architecture as “read from memory,” because most
database data was cached, and “write to disk,” because all I/O was made in a durable fashion
by flushing those updates to the database directly.

One alternative at the time was distributed transactions. The underpinnings of sharing
state and coordinating updates across Java processes in a coherent fashion did not exist in the
JVM or as a scalable Java service, and building a distributed in-memory system with transac-
tional guarantees seemed hard. Another alternative was an eventually correct architecture.
While other sites such as Amazon.com took an eventually correct approach where each appli-
cation instance could complete transactions to local disk and eventually flush to the database,
Terracotta’s founders chose not to. The business was not prepared to discuss the ramifications
of an eventually correct architecture, where users might be told that a previously confirmed
purchase order could not be completed because of miscalculations in inventory long after
checkout completed.

CHAPTER 2 ■ HISTORY OF TERRACOTTA 31

■Note■■ By “eventually correct,” we refer to the CAP theorem, which refers to the trade-off between consis-
tency, availability, and partitioning. An eventually correct architecture is one that prioritizes partitioning over
consistency. For example, an e-commerce purchase transaction can be conducted on two separate nodes
and reconciled later by realizing that the same customer is buying the same products at the same time and
thus one order should be canceled before debiting the customer’s financial accounts.

The Application Is a Giant Computer
Within weeks of initial launch, the production application was failing to handle the user vol-
umes, and the database was the culprit. We immediately learned our first lesson: the n-tier
application should be viewed as if it were a giant multiprocessor computer. The modern Intel
architecture calls for several levels of caching between the processor, which is running very
fast, and the I/O subsystems, which cannot keep up with that processor. Multiprocessor com-
puters have registers on the chip, an L1 cache on the chip as well, and an L2 cache that is
external to the chip but can either be dedicated per chip or shared across processors.

The processor reads through these various caching layers of main memory. Data from
main memory gets cached in the L2 and again in the L1. If a thread moves across processors,
data in the thread’s stack must move from one chip’s cache to the other’s as part of the process
of context switching. The hardware deals with the coherence of each of these levels of cache
somewhat transparently.

The L2 cache is much larger than the L1 cache but significantly slower as it is not on-chip.
This implies a significant cost to go to L2, but modern servers have large L2 caches because
the cost of going to L2 is still much lower than going to main memory. Sharing L2 can drasti-
cally reduce or even eliminate the cost of a context switch.

In the analogy between motherboards and applications, we can think of the L1 as caching
inside the JVM, because the application pays almost no price for going to its own heap. In n-
tier applications, the application server spends several hundred milliseconds on average per
query waiting for the database. In the chip analogy, the CPU spends several thousand cycles
waiting for main memory or disk. The database is expensive, like main memory on the moth-
erboard.

Once we realized this, the presence of a cache in each Java process felt like an L1 cache on
the processor. It became reasonable and acceptable, if not obvious, to introduce an L2 cache
that could work as the superset cache of all L1 caches. This L2 service helped application
instances avoid waiting for the database as well as lessening the cost of context switching
tasks across those application server instances. If the L2 were to succeed for this web monster,
it had only one requirement—calling the L2 had to be lower cost than calling the underlying
database, ideally an order of magnitude faster.

Once delivered, this approach of L1 combined with an L2 caching service eliminated a
few big scalability bottlenecks. First, just like on the motherboard, there no longer was pres-
sure to fit all thread data into the L1 cache inside the application server. The entire dataset
could, instead, be cached in L2 regardless of how much or little memory the application
servers had as long as the shared L2 could spill to disk. This allowed application servers to stay

CHAPTER 2 ■ HISTORY OF TERRACOTTA32

very small. Second, the L1 could free memory when under high load simply by dropping parts
or all of its cache data. The L1 could arbitrarily and unilaterally evict items from cache without
causing downstream pressure on the database, since the L2 would protect the application
from the database and vice versa. This allowed the application servers to maintain predictable
throughput and simultaneously kept the database working at sustainable lower query vol-
umes, well below the actual query traffic the site was generating.

A third benefit of running an L2 cache outside the application servers and sharing that L2
across application server instances was that the L2 provided availability to the data in cache
even when the database was down. The L1 could use traditional caching techniques, such as
least-recently-used/least-frequently-used, to flush the cache. Even if the database were busy
or otherwise unavailable, the L2 was there to handle the requests. Getting the L2 to outper-
form the underlying database, therefore, provided not just scalability but high availability.

Because of the L2 concept, the web site could spread across machines to get easy scalabil-
ity and availability. With the L2 service, the database’s role in helping to scale the system was
greatly diminished. And with the L1 cache inside the application server instances, linear scale
was achievable.

■Note■■ With two machines, a well-designed application should be able to do twice as much work as one.
In fact, spreading application instances across separate hardware, otherwise known as scaling out, should
be superior to multiprocessing (scaled up) architectures, because everything is doubled; nothing is shared.
We get twice the memory, disk, network, bus, and processor. Three servers, four servers, and so on will give
us linear scale as long as the application can take advantage of all this hardware.

Terracotta’s architecture, like that of its web monster parent, has both L1 and L2 compo-
nents. The motherboard analogy maps to Terracotta, because Terracotta has libraries that
install into the application’s JVM and insert L1 object caches transparently, while Terracotta’s
server runs in its own process usually on a dedicated server, just like the L2.

Terracotta Makes L2 General Purpose
Running applications across servers seemed to be a good idea, especially considering the L2
solution. But Terracotta’s web application experience proved that the costs were shifting from
expensive database hardware to complicated application development. To inject L1 caches
into arbitrary Java applications, Terracotta had to make a general purpose server (L2 server)
that was smarter about what it was storing and when it was being invoked.

Original L2 Was Intrusive
The L2 cache, while critical, was not the entire solution. Terracotta leverages the power of the
L2 concept, but also provides a solution to the complexities surrounding distribution of
objects—replication and serialization. The L2 solution for the web monster was a simple net-
worked cache service that took keys and associated values, pushed the pair across the

CHAPTER 2 ■ HISTORY OF TERRACOTTA 33

network, and stored them on the L2 server instance. No objects ended up in the L2 that the
developer had not put there on purpose.

Maintenance of the monster web site suffered because of constant regressions in correct-
ness and performance. Sometimes, a developer would forget to serialize and replicate changes
to L2-based objects, causing the application to break when the load balancer sent the user to
other application servers because data was only in one JVM and coherence would be lost (as
shown in Figure 2-5).

Figure 2-5. Developer error where IncrementValue() operation does not update clustered cache

Application performance would also suffer when the developer replicated changes too
often or neglected in-memory caching and stored data straight to the database. The cost of
scaling out was very high.

In founding the company, Terracotta’s leaders sought to deliver the value of both stateless
and stateful paradigms. Namely, the goal was to deliver a stateless runtime for operators with
an L2 that persisted to disk and to simultaneously deliver a stateful programming model for
developers where the L2 was transparent to the application and challenges with coherence
and replication would not exist.

The reality of having hundreds of developers working in one code base led to misuse or
nonuse of by-hand replication tools. No by-hand tool solves every problem and is only appli-
cable if the use case for which it was designed happens to align with the developer’s needs.
These challenges are part and parcel of the issue with application programming interfaces
(APIs). APIs do what the developer who is integrating them into the application asks. Any
integration or application code changes required by an L2-type solution would risk negating
the benefits of that L2-type product. Terracotta chose to create a better model for clustering—
a transparent L2 server.

CHAPTER 2 ■ HISTORY OF TERRACOTTA34

We Needed More Transparency
The goal was to build an application server that scaled out across Java processes and ran
underneath a sticky load balancer, all without developers perceiving the existence of multiple
processes (L1 and L2). The reality fell short of the goal, however, in that developers were well
aware of the design of the cluster. The web site’s creators built a very efficient session replica-
tion technology and several custom caches. All objects had to implement the Java serializable
interface, and developers were constantly tuning session sizes so that the system could repli-
cate sessions with minimal impact to end-user traffic. These caching and replication services
suffered from the same marshal-across-the-network pratfalls that any other approach would.

The initial impact of developing a clustered web application seemed acceptable. How-
ever, many projects would stall not because they were hard to design but because they were
hard to scale. Many application features could take down the core web infrastructure if poorly
designed. And, most importantly, the application continually slowed down and presented
itself as an ever-increasing challenge to maintain. What’s more, the average project would go
through phases such as Key Business Project Phase One, Phase Two, and so on, and phases
usually encompassed refactoring existing code for performance, as opposed to introducing
new features. Over time, the business noticed that the burden of maintaining a scalable appli-
cation was slowing down new development.

Transparency Equals General Purpose
Decisions that seemed so critical to productivity, such as Struts versus Java Server Faces (JSF)
or Tomcat versus another container, proved less important than the core scalability and avail-
ability model.

If an application is stateless and uses an object-relational mapper to store objects in a
database, the team will likely work to lower database latency only to find that throughput is
too low. The team may end up tuning the SQL that Hibernate generates. The database admin-
istrator might make changes to the database schema, while the Java developer changes the
object model to compensate. The storage administrator may adjust storage array by striping
tables across disks.

Ultimately, however, caching will appear. The Terracotta team’s experience shows that this
is inevitable. Caching is essentially the process of shifting an application from a stateless
model to a stateful or hybrid model. As discussed earlier in this chapter, if the application is
stateful and we want to scale the application across Java processes, a coherent protocol for
editing objects across Java processes gets built as the application scales. In all cases, the
domain model is affected, and business feature development slows as developers spend time
tuning.

So the founders sought a transparent solution, one that works inside the JVM without
serialization, thus avoiding the pratfalls of replication. The components of scalable applica-
tion architecture are now in place. We need an L2 service for deflecting workload off the
database and coordinating application activities, and we need a transparent interface that
makes the notion of L2, L1, and application object all the same, just as in the motherboard
analogy.

CHAPTER 2 ■ HISTORY OF TERRACOTTA 35

Transparent Scalability with Availability
Scalability and availability are opposing forces. Anything we write to disk slows us down, and
anything we leave in memory is at risk of process or even power failure. Scalability comes
from performance, and performance comes from alleviating bottlenecks. Memory is the least
slow point of I/O on the motherboard. The disk is, of course, one of the slowest. Worse yet, the
network is closer in performance to the disk than to memory.

What makes transparently spreading out an application difficult is that the application
has to talk to the network, and the network is far slower than the CPU. Sun Microsystems
attempted to build a clustered JVM, as did IBM, in 2000. The efforts quickly revealed that the
network was painfully slow compared to the CPU and that most applications would have to be
rewritten to take advantage of being spread across slow networks. So, it was decided that the
CPU is too fast, clustering is too slow, and the developer would simply be handed tools to seri-
alize and ship objects across the network when needed (RMI, JMS, and even JDBC can be used
to share objects across Java processes).

This is what makes things hard today. Clustering in the name of scalability and availability
requires the developer to copy objects around the Java processes in the cluster, and it requires
the application to be aware that it is being deployed to many servers. In the past, developers
wrote applications, tuned algorithms, and introduced I/O optimizations such as caching so
that a process could fit in a small part of a large machine. As workload ramped, the process
could be optimized, but at some point, the server had to be replaced. At the end of the day,
very few tried to spread out an application on the network. It was too hard. And nothing has
changed about pushing objects around processes—it is still hard.

One thing has changed with Terracotta, however: we no longer pass objects around to a
group of application servers in a cluster. With the L2 that runs out of process introduced by
Terracotta, a Terracotta application only passes objects to Terracotta. The Terracotta server
(L2) can make an informed decision about which Java processes need what changes. And
since the solution was designed to be transparent, Terracotta sees fine-grained changes as
they occur, down to the byte level. This means that only a transparent solution with a central
clustering server can write to disk, thus providing us availability without the need for Oracle.
Why is that? The less we write to disk, the faster we go, remember? Terracotta writes only what
changes to disk. And, it can write those changes at the same time it is helping our application
processes share state.

Let’s review. Recall the ClusteredClass from Chapter 1. If we change the name field or the
id field, Terracotta can push only the changed information. If the id is an int (or Integer, it
really does not matter), Terracotta needs to ship 4 bytes across the wire to the L2 process, and
it needs to write the 4 bytes to disk. An instance of the class would otherwise be more like 30
bytes, so right there, we have a significant savings in I/O without writing custom code to make
this possible.

The Terracotta server is also a separate process, currently referred to as an L2 for our
application (we will stop using this nomenclature in Chapter 3). In Chapter 4 as well as in
Chapter 13, you will learn more about how the Terracotta server can safely decouple its inter-
nal disk storage from application memory changes without risking data loss. The fact that the
server is tuned to do disk I/O without making the application wait means that, for once, we
can have our scalability and availability too.

CHAPTER 2 ■ HISTORY OF TERRACOTTA36

Transparent Clustering Service Revisited
In Chapter 1, we defined Terracotta as a transparent clustering service that helps applications
spread to as many machines as necessary for scale. While applications used to be stuck navi-
gating a dark narrow tunnel of endless tuning through caching, replication, and partitioning, a
light now appears at the end of the tunnel. Where we used to scale by doing lots of by-hand
coding and marshalling objects across process boundaries, we now do nothing. The labor and
complexity of scaling out change for the better when we find a way to move interprocess and
interserver communication out of our own application code and down below somewhere in
the runtime environment (as shown in Figure 2-6).

Figure 2-6. Application clustering requires many different approaches; Terracotta does not.

In Chapter 1, we concluded that Terracotta could be thought of as a transparent clustering
service. Now, we have confirmed that the need for such a service exists.

CHAPTER 2 ■ HISTORY OF TERRACOTTA 37

Transparency Delivers Higher Scalability
We rely on transparency to help scale applications every day. The garbage collector is a trans-
parent memory management service. For the most part, it works. It also does a better job than
the developer not because its writers are smarter than the average developer (well, maybe
they are smarter than most of us) but because the runtime environment has perfect informa-
tion about usage patterns. It can make changes that the developer deems too complicated.
User objects might be collected using one algorithm at noon and another at midnight,
depending on how application workloads change.

Terracotta found that transparency and being a runtime service not only solves the com-
plexity challenge developers otherwise face but also provides for scalability and performance
beyond what the developer can build. One example of a runtime performance enhancement
is greedy locking. Terracotta can decide at run time whether a lock should be pessimistic, cen-
tralized and exclusive, or decentralized and optimistic. A developer must make assumptions
about exclusive access that protect for the worst case scenario only, and thus the JVM provides
mostly pessimistic, exclusive locking semantics without Terracotta.

Clustered Application Servers and Clustered
Caches
Terracotta is not just for caching data stored in the database. The data that has been entrusted
to Terracotta is always stored on disk, thus Terracotta can be used without a database in cer-
tain use cases, most of which will be covered in Chapters 5 through 12 of this book.

If Terracotta did not exist, we have covered how applications could otherwise scale using
a database. We also discussed in-memory replication and replicating state by hand across Java
processes. There are alternatives to replicating objects by hand, or so it would seem.

In practice, there are no alternatives. OK, that was way too strong a statement, but it gets
the point across that our analysis of stateless and stateful approaches does not change for
application server vendors or clustering vendors as long as they use the same tools that appli-
cation developers above the server or caching library use to replicate and cache state by hand
(see Figure 2-6).

Today, clustered application servers, clustered caches, and other clustering libraries are
measured on how they replicate data. Some use n-way replication, while others use a buddy
system. Some replicate data when objects change, while others require the developer to
directly inform the library of changes. And, of course, there are EJB, JPA, and Hibernate where
replication is not needed, because the application state is stored in the database in a stateless
manner.

We should not judge a framework on whether it is stateless or stateful or whether it is
buddy-replication or n-way. We should, instead, judge a framework on whether or not it is a
transparent service or a development tool.

A transparent service is one that is installed after the application has been written and
deployed and whose behavior is controlled by configuration. One example is the garbage
collector. The application makes assumptions about the presence of a garbage collector inside
the JVM and thus never attempts to call delete() at some point after calling new(), as we
would in C++. Counter examples to transparent services are Hibernate and Spring. While both
are mostly transparent, their behavior is controlled as much by source code integration as by

CHAPTER 2 ■ HISTORY OF TERRACOTTA38

configuration. If a Spring or Hibernate application were loaded without the Spring or Hiber-
nate libraries present, that application would cease to function.

Clustered caches and clustered application servers fail to realize that Hibernate and Spring
both represent a development model and methodology. Clustered application servers are not
supposed to represent a rigid development model. Spring, for example, provides a development
model that is not rigid or fixed. But clustering frameworks ruin elegance and simplicity for the
rest of the application. They are supposed to take any application that can be run inside the
container and cluster the application. Clustered application servers and clustered caches fail at
this goal and thus are a notoriously poor solution for scaling applications.

Summary
Since Terracotta provides transparent scalability and availability to Java applications, it allows
those applications to spread out and run on as many machines as is necessary. Transparency
allows the system to decide what to push among the JVMs and to the L2 server (otherwise
known as a Terracotta server), and this provides very high scalability. Transparency has an
additional benefit in that it does not enforce a programming model such as clustered caching,
or EJB, or even Hibernate or Spring. Terracotta can take an existing application and scale it to
many machines, whereas other approaches dictate a model that, if followed, can enable scal-
ing out.

Let’s now switch gears and work with actual Java program source code and Terracotta
configuration to learn more about how this works. Chapter 3 introduces Terracotta configura-
tion concepts.

CHAPTER 2 ■ HISTORY OF TERRACOTTA 39

Jumping Into Terracotta

Terracotta delivers a transparent scale-out model to Java programming. The lightweightTT
nature of the development model is inherent in the fact that the software plugs in to an off-
the-shelf JVM and allows developers to write applications without explicit in-memory
replication or mapping data to an underlying data store. Those applications then spread
across machines at run time. The point of such an approach is not just for scale but for high
availability. Based on knowledge gained from some of the largest scale applications in the
world, Terracotta helps you achieve scalability and availability with less effort. Let’s now take
a look at a system that illustrates ease, scale, and availability in a short, “hello world” style
program.

Hello Clustered World
We call this application “Hello Clustered World.” The relevant source code follows:

public class HelloClusteredWorld {
private static final String message = "Hello Clustered World!";
private static final int length = message.length();

private static char[] buffer = new char [length];
private static int loopCounter;

public static void main(String args[]) throws Exception {
while(true) {
synchronized(buffer) {
int messageIndex = loopCounter++ % length;
if(messageIndex == 0) java.util.Arrays.fill(buffer, '\u0000');

buffer[messageIndex] = message.charAt(messageIndex);
System.out.println(buffer);
Thread.sleep(100);

}
}

}
}

41

C H A P T E R 3

HelloClusteredWorld will do something very simple. If we focus on the main() method, we
notice right away that there is an infinite loop. In that loop, we are taking a static string named
message containing the sentence “Hello Clustered World!” and copying the message into a
buffer, one character at a time. The first time through the loop, the array named buffer will
contain the character “H”. The second time through the array will contain “H” and “e”. The
third time through it will contain “H” and “e” and “l”. And so on. There is one small detail we
have not covered. We test the loopCounter each time through the loop, and if the message has
been fully copied into buffer, we empty the buffer. A quick run of this program at the com-
mand line produces what we expect:

% java HelloClusteredWorld
H
He
Hel
Hell
Hello
Hello
Hello C
Hello Cl
Hello Clu
Hello Clus
Hello Clust
Hello Cluste
Hello Cluster
Hello Clustere
Hello Clustered
Hello Clustered
Hello Clustered W
Hello Clustered Wo
Hello Clustered Wor
Hello Clustered Worl
Hello Clustered World
Hello Clustered World!
H
He
Hel
Hell
Hello
...

Now, let’s cluster this application. What behavior should we expect? “Clustering” can be a
confusing word. In the first two chapters, we have mentioned that Terracotta helps applica-
tions spread across Java processes. If this application were to spread out across processes, we
would expect nothing actually. There is no multithreading in the application, and there is no
state that is worth sharing.

CHAPTER 3 ■ JUMPING INTO TERRACOTTA42

Clustering HelloClusteredWorld
In a web application, one might define clustering as session replication. In an enterprise
application, entity beans could be replicated or otherwise shared. Under both enterprise and
web application contexts, we have the notions of object scope and life cycle, which means the
container can do some clustering on behalf of the application. In HelloClusteredWorld, we
have just a Java main() method.

The very notion of clustering is not clear in the context of a Java main(). At least, it
appears unclear. In piecing together what it might mean to cluster this program, we should
acknowledge that the only thing this main() method could do if it were simultaneously run-
ning on two or more Java processes would be to run the while loop, producing identical
output to two different consoles simultaneously. After all, providing output is the only thing
the application does.

Perhaps it makes sense to have multiple processes inside the while loop collaborating on
copying the message into the buffer. If multiple Java processes are running inside the while
loop at the same time, sharing the variables inside the HelloClusteredWorld class would allow
the processes to somehow work together on this problem.

Working together in this case could imply that two processes each take half the copying
workload. For example, if process one puts “H” into the buffer, process two would then put “e”.
Process one would not have to put “e” in the buffer and should put “l” into the buffer next;
otherwise, something other than “Hello Clustered World!” would print to the screen.

■Note■■ The synchronization logic in the main() method seems out of place when not writing the applica-
tion with the intent of spreading main() across several processes. In the context of spreading out this
main() method, however, we chose to prepare for concurrent object access by guarding any object updates
with synchronization. In later chapters, we will discuss how to use Terracotta without explicit synchroniza-
tion; there are several options.

If two virtual machines are running together, the desired behavior is to have the first JVM
initialize the buffer and the loopCounter variables and set the buffer to “H”. That JVM should
then release the lock before sleeping for 100 milliseconds and trying to add another character
to the buffer. Assuming a second JVM is started and the two are coordinating their efforts
through Terracotta, while the first JVM is asleep, the second should acquire the lock on the
buffer, add another character, and increment the loop counter before going to sleep. Thus, two
JVMs working together will fill the buffer together in half the elapsed time, because each will
put exactly one half of the total characters into the buffer.

The way all this works in Terracotta is to point at the class in which objects reside. Terra-
cotta will take care of constructing shared objects and synchronizing the various JVMs where
objects reside. The question now is which objects to share and how to share them?

In the case of HelloClusteredWorld, the ability to share buffer across Java process bound-
aries enables the two while loops running in each of the JVMs to work together on one
instance of buffer. The loopCounter variable is the loop’s index into the message, driving
which character to copy into the buffer. Without sharing the loopCounter instance across
JVMs, the two JVMs would not copy the appropriate characters. A few counter examples will
help make this clear.

CHAPTER 3 ■ JUMPING INTO TERRACOTTA 43

If the application did not share the buffer object across Java processes, the application
would have to change. As written, the application copies only one character into the buffer.
Assume the application were not sharing objects and the loopCounter was instead changed to
increment by two instead of by one so that each of the two JVMs working together would not
copy data redundantly to the buffer. Further, assume that in one JVM, the loopCounter starts
at zero, while the other starts at one.

Two processes each doing only half the work in this manner would have corrupted the
buffer after just two iterations of the while loop. Table 3-1 contains a listing of the state of the
object named buffer in both JVMs at the end of each iteration through the while loop in
main().

Table 3-1. State of Memory at Key while Loop Iterations

Iteration JVM One Buffer State JVM Two Buffer State

Initial state null null

1 "H" "<empty character>e"

2 "H<empty char>l" "<empty char>e<empty char>l"

3 "H<empty char>l<empty char>o" "<empty char>e<empty char>l<empty
char><space>"

Table 3-1 illustrates the problem with unshared buffer objects. We would have to edit the
application to copy not just one character but all the characters from the message up to the
loopCounter point. So it makes sense to share the buffer object.

Using loopCounter as an index into the message without sharing it would not work with-
out making some changes to the application. We already discussed how it is possible to
hard-code our application to increment the loopCounter by two instead of one, starting with
an initial value of zero and one for each respective JVM. But what if we want three JVMs to
work together on building buffers? We would have to edit the application so that each JVM
incremented the loopCounter by three. It makes sense to share loopCounter as well as buffer.

By considering which objects need to be shared, we can conclude that the field names we
want to cluster are HelloClusteredWorld.buffer and HelloClusteredWorld.loopCounter. With
Terracotta, we can achieve this without altering the program. We write a Terracotta configura-
tion file (more on that later) and tell it to share the buffer and the loopCounter, and we are
almost done. A snippet of the configuration file follows:

<field-name>HelloClusteredWorld.buffer</field-name>
<field-name>HelloClusteredWorld.loopCounter</field-name>

■Note■■ In this section, only snippets and code fragments are shown. The next section will you walk through
repeating HelloClusteredWorld for yourself.

There is one more step: tell Terracotta to prepare the HelloClusteredWorld class for clus-
tering, including honoring any threading logic present in our application. The most basic form

CHAPTER 3 ■ JUMPING INTO TERRACOTTA44

of configuration is to tell Terracotta to prepare any and all classes for clustering using broad-
reaching regular expressions, like this:

<instrumented-classes>
<include>

<class-expression>*..*</class-expression>
</include>

</instrumented-classes>

<locks>
<autolock>

<method-expression>* *..*.*(..)</method-expression>
</autolock>

</locks>

For now, we will not worry about how to configure threads and locking, since the focus is
on how transparently sharing objects helps to cluster applications. Now, it is time to run the
application as a clustered version of HelloClusteredWorld.

To run this application in a clustered fashion using Terracotta, the command line will
have to change from java to dso-java.sh. The shell script is located in the directory named bin
in the directory where you unpacked the Terracotta download (we will address the structure of
the Terracotta kit in detail before the end of this chapter). The shell script adds the Terracotta
libraries to the classpath for Terracotta’s class loader to find. It also installs Terracotta’s class
loader as part of the boot class loader hierarchy and places itself in the boot classpath. Being
part of the boot class loader hierarchy allows the JVM to connect to the Terracotta cluster at
process start-up. As a boot class loader, Terracotta also has the privilege of helping to load
almost all classes into the JVM. The command-line arguments to Java that you otherwise run
will be passed undisturbed to the underlying JVM.

■Note■■ To learn more about boot class loaders, the boot classpath, and how Terracotta connects its
libraries and agent into the JVM at run time, visit http://java.sun.com/j2se/1.5.0/docs/tooldocs/
findingclasses.html.

When we run the application using dso-java.sh, we will find no change in output (these
results are not shown here). The change comes when there are two instances of the applica-
tion. The output of the second JVM when two processes are running follows:

% dso-java.sh HelloClusteredWorld

Hel
Hello
Hello C
Hello Clu
Hello Clust

CHAPTER 3 ■ JUMPING INTO TERRACOTTA 45

Note that the very first line of output from the application is “Hel” as opposed to “H,” as
the result would have been without Terracotta. What has happened to our application? The
two JVMs are moving through the infinite while loop together, which is quite interesting. Fig-
ure 3-1 shows a UML sequence diagram of this loop: each JVM has one thread whose starting
point is signified by the thicker arrow. The JVMs then take turns synchronizing on the lock,
adding a character, and sleeping. This continues in the infinite loop.

Figure 3-1. UML sequence diagram of HelloClusteredWorld running in two JVMs in parallel

Why HelloClusteredWorld Works
Hello Clustered World works with Terracotta, because Terracotta functions below the applica-
tion to cluster at the level of the JVM itself. Terracotta inserts itself between the application
logic and its memory, looking for calls to the heap. Those calls could be reads from memory
or writes to memory.

A memory read or write results from Java instructions running in the JVM. For a moment,
break down an object in your head into the class definition and the instance data. This is, in
fact, what Terracotta does. The class definition contains the methods that implement the busi-
ness rules and object model. The instance data contains only data in memory. So an instance
of a class writes to memory via the assignment operator (=). And an instance of a class reads
memory via the accessor operator (.).

CHAPTER 3 ■ JUMPING INTO TERRACOTTA46

class MyObject {
int i = 0;

// ...
int playWithMemory(int input) {

int j;
this.i = input;
j = this.i;
return j;

}
}

At run time, the few lines of arguably silly code in the method named playWithMemory()
would turn into instructions to the JVM. The first line turns into a stack variable allocation of 4
bytes where the variable j will be stored. The next line writes to heap memory. The address in
memory at which to write is the address where this is stored. The size of the type of field i dic-
tates an offset into this, where the application intends to write. In this case, i is an int, so the
offset would be four. The argument to the playWithMemory() method will get copied into our
instance, this, thus causing a 4-byte write to heap.

The next line of code turns into a read from heap memory. Again, the read operation
occurs at a 4-byte offset into our instance where i is stored. The value of i gets copied into the
stack variable named j. Heap access is actually occurring transparently, line by line inside the
JVM as our application logic runs. Some logic will cause reads from heap memory, while oth-
ers cause writes. Of course, the JVM can perform many operations other than reading and
writing to memory, but Terracotta is concerned mostly with these two byte code operations.
We will refer to these memory instructions by their proper names later, but for now, let’s focus
on the concepts only; the names of these instructions would be confusing when looking at
alternatives to Terracotta in the next section. Also, there are many more instructions inside the
JVM to which Terracotta attaches, including constructor special instructions, and threading
instructions such as locking and unlocking objects, but the core concept is represented suffi-
ciently by these two.

The core concept behind Terracotta is that of bytecode manipulation. When
playWithMemory() is invoked and a heap memory read occurs with Terracotta enabled, the
read will do more than just read from memory. Things will be clearest using pseudo code. We
can see in pseudo code that the application logic does not change while Terracotta hooks into
the object:

class MyObjectWithTerracottaPseudoCodeForm {
int i = 0;

// ...
int playWithMemory(int input) {
int j;
// Terracotta inserts itself here because a memory operation is occuring
if(Terracotta.isOutOfDate(this.i)) {

Terracotta.updateFromNetwork(this.i);
}
this.i = input;
// send deltas to the network since a shared object just changed

CHAPTER 3 ■ JUMPING INTO TERRACOTTA 47

Terracotta.sendDeltasToTheNetwork(this.i);
// Terracotta inserts itself here as well
if(Terracotta.isOutOfDate(this.i)) {
Terracotta.updateFromnetwork(this.i);

}
j = this.i;
// no delta is sent because the logic read memory as opposed to writing it.
return j;

}
}

In practice, the preceding pseudo code does not perform well when every operation on
heap memory causes a network call to Terracotta, checking for updates when reading and
sending back updates when writing. The real system is far more intelligent and is capable
of sending many updates in a single batch to the network.

What is still not clear is how Terracotta knows to hook itself into the application at these
particular places. The answer is bytecode. Bytecode turns arbitrary application logic into a
very well formed syntax, regardless of coding style, frameworks, or development practices.
That syntax can be thought of as HEAPREAD() and HEAPWRITE().

Terracotta does not insert itself into our Java source files; it inserts itself into our classes as
they load. Those classes come from class files, which the compiler wrote to disk (in most
cases). Terracotta does not understand Java syntax, because it does not have to. It only looks
for HEAPREAD() and HEAPWRITE() logic operations and wraps them, as in the previous pseudo
code example.

The Terracotta configuration file allows a developer to control where Terracotta inserts
itself, on a class-by-class basis. For example, MyObject can be examined and made clustered by
Terracotta, while MyOtherObject can be ignored.

Arguably, there are a couple of unanswered questions at this point:

• What is Terracotta’s ability to figure out relationships among objects across JVMs?

• Does Terracotta have the ability to batch?

These topics are more advanced and will be covered in Chapter 4. For now, the concept of
bytecode augmentation is the key. When reading memory, Terracotta inserts itself just before
the read occurs in the original application logic. Before memory is trusted, Terracotta ensures
all changes from other Java processes have been applied. Terracotta also inserts itself just after
writes occur in the original application logic. After memory is changed, Terracotta ensures all
changes are made available to any other Java process that may need them. In short, before
and after existing application logic runs, Terracotta can insert itself into the logic updating
local memory or informing the cluster of changes to local memory.

■Tip■■ If you are comfortable with what you have seen thus far, try guessing what will happen if you kill the
JVM running HelloClusteredWorld and start it up again. What will print next? Will “H” print out? No. Can
you explain why not? We’ll talk more about persistence and availability in Chapter 4.

CHAPTER 3 ■ JUMPING INTO TERRACOTTA48

Alternatives to Terracotta
Other approaches that you might use to build HelloClusteredWorld would actually require
integration some sort of API. Think of these alternatives to Terracotta as get() and put() inter-
faces. If the application calls put(key, value), it can later call get(key) to obtain a copy of
the value. The changed application would resemble the following pseudo code (differences
are in bold):

public class HelloClusteredWorldWithAnAPI {
private static final String message = "Hello Clustered World!";
private static final int length = message.length();

private static final char[] buffer = new char [length];
int loopCounter;

public static void main(String args[]) throws Exception{
while(true) {
// thread-level coordination no longer valuable
// synchronized(buffer) {

// get the up-to-date version from the cluster
// note: expect deserialization
buffer = cluster.get("HelloClusteredWorldBufferID");

// can't trust loopCounter because it is not a clustered object
// int messageIndex = loopCounter++ % length;
// drive the index from the current length instead
int messageIndex = buffer.length;

if(messageIndex == 0) java.util.Arrays.fill(buffer, '\u0000');

buffer[messageIndex] = message.charAt(messageIndex);
System.out.println(buffer);

// expect buffer to get serialized
Cluster.put("HelloClusteredWorldBufferID", buffer);

Thread.sleep(100);
catch(InterruptedException e) { e.printStackTrace(); }

}
}

}

These are key changes to the application: synchronization is no longer important; the
loopCounter is now derived from the current buffer length; and we serialize the buffer to the
network and deserialize it from the network, copying the entire buffer each time. Without worry-
ing about whether the get() and put() form of HelloClusteredWorld is better or worse than the
Terracotta version, the information to take away is that JDBC, JMS, RMI, or other clustering and

CHAPTER 3 ■ JUMPING INTO TERRACOTTA 49

sharing approaches could be substituted in place of get() and put(). Table 3-2 maps the specific
APIs to the logic concepts of get() and put() for each framework.

Table 3-2. JDBC, JMS, and RMI Equivalents to the map.get() and map.put() Interfaces

Framework get() Equivalent put() Equivalent

JDBC [prepared]statement.execute() [prepared]statement.execute()
SELECT UPDATE

INSERT
UPSERT

JMS MessageConsumer.receive() QueueSender.send()

RMI Portable.ObjectImpl._request() Portable.ObjectImpl._invoke()

Where the preceding pseudo code calls Cluster.get(), we could easily replace the logic
with a relational database with the appropriate schema plus a JDBC query looking up a row in
a one-row table. We might call that one-row table HelloClusteredWorld_TABLE. The table stores
the buffer on our application’s behalf so that any JVM can query the table for the buffer’s cur-
rent state and can update the table when changing the buffer. The database version of
HelloClusteredWorld might contain some code like this:

try {
String buffer;
stmt = con.createStatement();
rs = stmt.executeQuery("SELECT * FROM HelloClusteredWorld_TABLE");
buffer = rs.getString(1);
stmt.close();
con.close();

} catch(SQLException ex) {
System.err.println("SQLException: " + ex.getMessage());

}

In the preceding example, we are simply calling get() and put() in the context of a data-
base and JDBC connection. Terracotta does not need the developer to insert get() and put()
calls, because Terracotta inserts itself into the application byte code looking for the applica-
tion logic to read or write from the objects named buffer and loopCounter. The act of reading
the loopCounter in memory with Terracotta inserted, in effect, asks Terracotta if loopCounter is
up to date with respect to changes from other JVMs. If it is not up to date, Terracotta guaran-
tees that loopCounter will be updated before returning control flow back to the application
logic.

A Tour Through Terracotta
Now that you’ve seen HelloClusteredWorld at a high level, let’s go step by step through the
process of installing Terracotta, setting up a working version of HelloClusteredWorld, config-
uring it, and running it in a Terracotta cluster.

CHAPTER 3 ■ JUMPING INTO TERRACOTTA50

Downloading and Installing Terracotta
The first step is to download the software kit from http://www.terracotta.org/. Follow the
Download link, and choose the download kit for your platform. The Terracotta kit comes in
two flavors: one that comes with a Microsoft Windows installer and another that works on all
platforms but does not come with an installer. For the purposes of this chapter, we will focus
on the Windows kit, but other than the installer, there is little difference between the structure
and behavior of the two downloads.

Once you have downloaded Terracotta, install it. On Windows, run the installer program.
On other operating systems, use the tar program to unpack the archive. The Windows installer
will place Terracotta in C:\Program Files\Terracotta by default. It will also add convenience
items to your Start menu for running the administration console, the Terracotta Welcome
screen, and the like.

Once the Windows installer has finished, it will automatically launch the Terracotta Wel-
come screen. On other operating systems, the Welcome screen may be launched manually by
running the welcome.sh script in the top-level Terracotta installation directory. The Welcome
screen is a good jumping-off place for exploring the Terracotta sample applications as well as
starting the Terracotta administrator console, installing the Terracotta Eclipse plug-in, and
working through some Terracotta tutorials. We will come back to the administrator console
and the Eclipse plug-in later when we run through the Hello Clustered World example step
by step.

Terracotta Installation Layout
Now that you’ve installed Terracotta and seen the Welcome screen, let’s take a look at the con-
tents of the Terracotta installation. It is important to note that the Terracotta kit contains
everything needed for both the Terracotta client functions (the libraries that run inside your
JVM) and the Terracotta server functions. In a typical Terracotta deployment, each application
server machine running a Terracotta-enabled JVM would have an installation of the Terracotta
kit on it. Likewise, the machine that runs the Terracotta server will also have the Terracotta kit
installed. However, the application machines will use only the client parts of the Terracotta kit,
and the Terracotta server machine will use only the server parts.

You’ll find the following directories in the Terracotta kit:

bin: This contains all of the scripts needed to run the various Terracotta functions. Each
script will be covered in more detail later.

config-examples: This contains example configuration files for various types of Terracotta
deployments. You can use those scripts either as templates to start from or just as inform-
ative examples.

docs: This contains the small amount of documentation that comes with the Terracotta
kit. Most of the Terracotta product documentation is kept online at http://www.
terracotta.org/.

lib: This contains all of the JAR libraries on which Terracotta depends.

CHAPTER 3 ■ JUMPING INTO TERRACOTTA 51

modules: This contains any prepackaged Terracotta Integration Modules (TIMs) that come
with the Terracotta kit. Terracotta Integration Modules are JAR files that bundle Terracotta
configuration together with any necessary supporting code and other resources into a
single unit that may be included in your Terracotta configuration. You can think of them
as plug-ins that provide Terracotta support for third-party applications. You can also build
your own Terracotta Integration Modules to prepackage your own Terracotta-enabled
libraries. More information about Terracotta Integration Modules and existing Terracotta
integrations with third-party technologies can be found online at http://www.
terracotta.org/confluence/display/integrations/About.

samples: This contains a wealth of sample projects that demonstrate various usages of
Terracotta, including source code, Terracotta configuration, and start-up scripts.

schema: This contains the XML schema for the Terracotta configuration file.

tools: This contains tools for exploring Terracotta and to help configure Terracotta for
HTTP session clustering.

vendors: This contains resources for third-party applications that are used in the
Terracotta installation.

Terracotta Scripts
The important Terracotta scripts are in the bin directory. For each function, there is a Windows
batch script and a corresponding Unix-style shell script. We will arrive at a more detailed
description of the important scripts through our exploration of the Welcome screen later.

For a more detailed and up-to-date description of the Terracotta scripts and tools, see the
online documentation at http://www.terracotta.org/confluence/display/docs1/
Terracotta+Tools+Overview.

To get you started though, these are the main Terracotta scripts, in alphabetical order:

admin.[bat|sh]: This starts the Terracotta administration console. The administration
console is a Java program that connects to the Terracotta server via JMX and receives
telemetry data from a running Terracotta cluster.

archive-tool.[bat|sh]: This is used to package up all of the relevant data and configura-
tion files of a Terracotta deployment for diagnostic purposes.

boot-jar-path.[bat|sh]: This is a helper script that sets the environment variable for the
boot JAR location, creating the boot JAR if necessary. This is not intended for stand-alone
use. It is used by the other scripts to help set up the Terracotta environment.

dso-env.[bat|sh]: The dso-env.[bat|sh] script prints out the JVM arguments required to
launch a Terracotta-enabled JVM relative to the working directory from which the script is
invoked. You can use this script to determine the appropriate JVM arguments to pass to
your application’s start-up scripts. For example, if you are running a Terracotta-enabled
application within Tomcat, you might paste the output of the dso-env script into the
catalina.sh script as follows; as a side effect, this script will create the boot JAR if it
doesn’t already exist:

CHAPTER 3 ■ JUMPING INTO TERRACOTTA52

export \
JAVA_OPTS="-Xbootclasspath/p:/usr/local/terracotta/lib/dso-boot/my-boot-jar.jar \
-Dtc.install-root=/usr/local/terracotta -Dtc.config=localhost:9510"

dso-java.[bat|sh]: This is a convenience script that you may use to start your application
instead of using the java command. It will invoke the java command in your distribution
with the Terracotta environment set up as much as possible.

make-boot-jar.[bat|sh]: This will create the Terracotta boot JAR. You can optionally pass
in a configuration file that describes what additional classes to place in the boot JAR and a
nondefault boot-jar file name and location.

run-dgc.[bat|sh]: By default, the distributed garbage collector will run in the Terracotta
server at set intervals. This script will cause a Terracotta garbage collector cycle to start
immediately.

scan-boot-jar.[bat|sh]: This is a helper script used by other tools to determine the valid-
ity of the Terracotta boot JAR. It will verify the contents of the boot JAR file against an L1
configuration. It will list all of the classes declared in the <additional-boot-jar-classes/>
section of the Terracotta configuration file that are not included in the boot JAR, as well as
classes in the boot JAR that are not listed in the <additional-boot-jar-classes/> section.
It returns the exit code 1 if the boot JAR file is incomplete; otherwise, the exit code is 0.

start-tc-server.[bat|sh]: This will start the Terracotta server.

stop-tc-server.[bat|sh]: This will stop the Terracotta server.

version.[bat|sh]: This will print out the current Terracotta version.

Step-by-Step Hello Clustered World in Unix
At the beginning of this chapter, we introduced the standard “hello, world” program. For the
sake of clarity, we left out specific instructions on how to run it. Let’s return now to Hello Clus-
tered World and walk through it step by step, exploring the details of how to get it running. The
first pass through, we will use just a text editor and command-line tools. Then, we will explore
how to get it running in the Eclipse IDE with the Terracotta Eclipse plug-in.

Creating a Project Skeleton
The first step is to create a project directory skeleton that looks like this:

hello_clustered_world/build
hello_clustered_world/src
hello_clustered_world/src/HelloClusteredWorld.java
hello_clustered_world/tc-config.xml

CHAPTER 3 ■ JUMPING INTO TERRACOTTA 53

Make a top-level project directory called hello_clustered_world. Under that, create a
directory called build that we’ll use to put the compiled classes. Also under the top-level
directory, create a directory called src that we’ll use to put our Java source files. We will create
the tc-config.xml file in a moment.

Creating HelloClusteredWorld.java
Once the project skeleton is created, using your favorite text editor, create a file under the src
directory called HelloClusteredWorld.java. Type the following code into it:

public class HelloClusteredWorld {
private static final String message = "Hello Clustered World!";
private static final int length = message.length();

private static char[] buffer = new char [length];
private static int loopCounter;

public static void main(String args[]) throws Exception {
while(true) {
synchronized(buffer) {
int messageIndex = loopCounter++ % length;
if(messageIndex == 0) java.util.Arrays.fill(buffer, '\u0000');

buffer[messageIndex] = message.charAt(messageIndex);
System.out.println(buffer);
Thread.sleep(100);

}
}

}
}

Once you’ve saved the file, compile the program with the following command (make sure
your working directory is the top-level project directory):

%> javac -d build/ src/HelloClusteredWorld.java

You should now have a file called HelloClusteredWorld.class in the build directory. Now,
we can run it as a normal Java process as follows (again, make sure that your working directory
is the top-level project directory):

%> java -cp build HelloClusteredWorld
H
He
Hel
Hell
Hello
Hello
Hello C
Hello Cl

CHAPTER 3 ■ JUMPING INTO TERRACOTTA54

Hello Clu
Hello Clus
Hello Clust
Hello Cluste
Hello Cluster
Hello Clustere
Hello Clustered
Hello Clustered
Hello Clustered W
Hello Clustered Wo
Hello Clustered Wor
Hello Clustered Worl
Hello Clustered World
Hello Clustered World!
H
He
Hel
Hell
Hello

Creating the Terracotta Configuration
The next step is to create a Terracotta configuration file. In a text editor, create a file called
tc-config.xml in the top-level project directory. A good starting point is the POJO example
configuration file in the Terracotta kit: config-examples/tc-config-pojo.xml. Copy the text
of that configuration file into the tc-config.xml file currently open in your text editor. We
will need to make a few alterations to this template configuration to work with
HelloClusteredWorld.

■Note■■ You can get a complete reference guide to the Terracotta configuration online at http://
www.terracotta.org/confluence/display/docs1/Configuration+Guide+and+Reference.

Making the Terracotta Server Run in Persistent Mode
The configuration file is split up into two main sections, one for the server(s) and one for the
clients—from the perspective of Terracotta, the JVMs running your application are clients;
although, from the perspective of the application developer, those JVMs are known as applica-
tion servers. The first alteration will be to the server section of the configuration file.

The /tc:tc-config/servers section can contain multiple server entries, one of them
being the primary active server. If there is more than one server entry, the clients will try to
connect to them in order until the active server is reached. Should the active server become
unavailable, the clients will try each of the other servers described here until they connect to
the new active server. In this example, however, we will use only a single server.

CHAPTER 3 ■ JUMPING INTO TERRACOTTA 55

The existing server configuration stanza, /tc:tc-config/servers/server, already contains
some configuration information, namely the data and logs elements. The /tc:tc-
config/servers/server/data element determines where the Terracotta server will write the
Terracotta cluster data (clustered object data, connected client data, etc.). The /tc:tc-
config/servers/server/logs element determines what directory the Terracotta server ought
to write its logs to.

By default, the Terracotta server is not configured to persist the state of the cluster to per-
manent storage. This means that if the Terracotta server is restarted, it starts from scratch with
no clustered application state. This is the equivalent of restarting a single JVM: all of the mem-
ory from the previous instantiation is wiped clean.

For this example, however, we want to see the Terracotta durable heap in action, so we
want to configure the Terracotta server to run in persistent mode so that it may be safely
stopped and restarted without resetting the clustered heap state. To do that, we must set the
value of /tc:tc-config/servers/server/dso/persistence/mode to permanent-store by adding
the following XML snippet to the existing /tc:tc-config/servers/server stanza:

<dso>
<persistence>
<mode>permanent-store</mode>
</persistence>

</dso>

Configuring the Terracotta Client
Now that we have the server configured, let’s move on to the Terracotta client configuration.
The client configuration consists of the client and the application sections. The client section
describes general behaviors of the Terracotta client libraries.

The template configuration already has a clients stanza which, like the server stanza,
describes where to write the Terracotta client logs. Unlike the Terracotta server stanza,
though, the clients stanza does not contain configuration for specific Terracotta clients. The
cluster configuration remains agnostic about how many Terracotta clients may join the cluster
throughout the life of the cluster. We will leave the existing clients configuration stanza
untouched.

The application section describes application-specific configuration. In the application
section, we will be setting the clustered root fields, declaring which classes are eligible for Ter-
racotta instrumentation, and declaring which methods should be augmented with Terracotta
clustered locking and object change management.

Configuring Roots
In our previous discussion of HelloClusteredWorld, we determined that certain fields must be
declared as clustered roots, which are the tops of clustered object graphs. Every object reach-
able by reference from a root field (that is not also declared transient) itself becomes a
clustered object. Once instantiated the first time in the cluster, a root field becomes
immutable, regardless of the modifiers applied to it in the source code.

HelloClusteredWorld has two fields that we want to declare as roots, buffer and
loopCounter. To make those fields roots, we must add the following XML snippet to the
/tc:tc-config/applications/dso/ section:

CHAPTER 3 ■ JUMPING INTO TERRACOTTA56

<roots>
<root>

<field-name>HelloClusteredWorld.buffer</field-name>
</root>
<root>

<field-name>HelloClusteredWorld.loopCounter</field-name>
</root>

</roots>

Configuring Instrumentation
Terracotta’s transparency system augments Java byte code as it gets loaded into the JVM in
order to observe changes to objects and coordinate cross-JVM locking and object updates.
Our current configuration is set to instrument every class that gets loaded by the JVM. For our
purposes in this example, this will work just fine. However, in real-life use, it is much more
likely that you will want to restrict the set of classes that Terracotta instruments to just those
that are necessary to eliminate the overhead of Terracotta instrumentation from the parts of
your application (and third-party libraries that you are using) that do not interact with clus-
tered objects.

To narrow down the instrumentation of HelloClusteredWorld to just what is necessary,
let’s modify the current instrumented-classes section to look like this:

<instrumented-classes>
<include>

<class-expression>HelloClusteredWorld</class-expression>
</include>

</instrumented-classes>

This tells Terracotta to only instrument the HelloClusteredWorld class. Terracotta also
instruments a number of other classes by default, all of which are found in the boot JAR.

Configuring Locks
Like the instrumentation section, our template configuration sets up locking for every method
in every instrumented class. Again, this will work for our small example but is not generally
practical for real-world use. To narrow down the methods that are sensitive to Terracotta lock-
ing, let’s modify the locks section to look like this:

<locks>
<autolock>

<lock-level>write</lock-level>
<method-expression>void HelloClusteredWorld.main(..)</method-expression>

</autolock>
</locks>

This will tell Terracotta to put clustered locking only into the main method of
HelloClusteredWorld. The two dots in the parameters section of this expression mean that it
should match methods called main in HelloClusteredWorld with zero or more arguments of any
type. This is a shortcut, since we know there is only one main method in HelloClusteredWorld.

CHAPTER 3 ■ JUMPING INTO TERRACOTTA 57

Reviewing the Configuration
Our modifications to the template configuration are complete. Our tc-config.xml file should
now look like this:

<?xml version="1.0" encoding="UTF-8"?>
<!--

All content copyright (c) 2003-2007 Terracotta, Inc.,
except as may otherwise be noted in a separate copyright notice.
All rights reserved.

-->
<!--
This is a Terracotta configuration file that has been pre-configured
for use with DSO. All classes are included for instrumentation,
and all instrumented methods are write locked.

For more information, please see the product documentation.
-->
<tc:tc-config xmlns:tc="http://www.terracotta.org/config"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.terracotta.org/schema/terracotta-4.xsd">
<servers>

<!-- Tell DSO where the Terracotta server can be found. -->
<server host="localhost">
<data>%(user.home)/terracotta/server-data</data>
<logs>%(user.home)/terracotta/server-logs</logs>
<dso>
<persistence>

<mode>permanent-store</mode>
</persistence>

</dso>
</server>

</servers>

<!-- Tell DSO where to put the generated client logs -->
<clients>

<logs>%(user.home)/terracotta/client-logs</logs>
</clients>

<application>
<dso>
<roots>
<root>

<field-name>HelloClusteredWorld.buffer</field-name>
</root>

CHAPTER 3 ■ JUMPING INTO TERRACOTTA58

<root>
<field-name>HelloClusteredWorld.loopCounter</field-name>

</root>
</roots>

<!-- Start by including all classes for instrumentation.
It's more efficient to instrument only those classes that
hold shared roots or are part of a shared root's graph.

-->
<instrumented-classes>
<include>

<class-expression>HelloClusteredWorld</class-expression>
</include>

</instrumented-classes>

<!-- Apply write level autolocks for all instrumented methods.
It's more efficient to create finer-grain locks as dictated
by your application needs.

-->
<locks>
<autolock>

<lock-level>write</lock-level>
<method-expression>void HelloClusteredWorld.main(..)</method-expression>

</autolock>
</locks>

</dso>
</application>

</tc:tc-config>

Starting the Terracotta Server
The first step to running your application in a Terracotta cluster should be to start the Terra-
cotta server using the tc-start-server.[bat|sh] script from the command line. Pass the
location of our new tc-config.xml file to the start-tc-server script using the -f option.

Depending on where you installed Terracotta, you should see output that looks some-
thing like this (again, assuming you are executing the start-tc-server script from the
top-level project directory):

%> /usr/local/terracotta/bin/start-tc-server.sh -f tc-config.xml

2008-03-09 15:01:29,005 INFO - Terracotta 2.5.2, as of 20080218-120204 (Revision 703
1 by cruise@rh4mo0 from 2.5)
2008-03-09 15:01:29,635 INFO - Configuration loaded from the file at
'/Users/orion/hello_clustered_world/tc-config.xml'.
2008-03-09 15:01:29,791 INFO - Log file: '/Users/orion/terracotta/server-logs/terrac
otta-server.log'.

CHAPTER 3 ■ JUMPING INTO TERRACOTTA 59

2008-03-09 15:01:30,374 INFO - JMX Server started. Available at URL[service:jmx:jmxm
p://0.0.0.0:9520]
2008-03-09 15:01:31,154 INFO - Terracotta Server has started up as ACTIVE node on 0.
0.0.0:9510 successfully, and is now ready for work.

Starting Two Clustered Instances of HelloClusteredWorld
Once the Terracotta server has started, start HelloClusteredWorld with Terracotta enabled.
This is as simple as adding a few JVM arguments to the java command line, but an even easier
way is with the helper script dso-java.[sh|bat], which adds those arguments for you auto-
matically (it will also create the boot JAR if it hasn’t already been created):

%> /usr/local/terracotta/bin/dso-java.sh -cp build HelloClusteredWorld

Now that Terracotta is enabled, you should see output that looks something like this:

2008-03-09 20:45:27,901 INFO - Terracotta 2.5.2, as of 20080218-120204 (Revision 703
1 by cruise@rh4mo0 from 2.5)
2008-03-09 20:45:28,434 INFO - Configuration loaded from the file at '/Users/orion/h
ello_clustered_world/tc-config.xml'.
2008-03-09 20:45:30,719 INFO - Terracotta 2.5.2, as of 20080218-120204 (Revision 703
1 by cruise@rh4mo0 from 2.5)
2008-03-09 20:45:31,328 INFO - Configuration loaded from the file at '/Users/orion/h
ello_clustered_world/tc-config.xml'.
2008-03-09 20:45:31,520 INFO - Log file: '/Users/orion/terracotta/client-logs/terrac
otta-client.log'.

This is output from the Terracotta client libraries that have been transparently inserted
into your code path. After that, you should see the familiar output of HelloClusteredWorld.

Now, start another instance of HelloClusteredWorld in another terminal. The output
should be very similar, but, as you saw in our initial discussion of HelloClusteredWorld at the
beginning of this chapter, once the second instance joins the cluster, each instance will start
printing with the messageIndex moved forward two characters instead of one. Again, as we dis-
cussed earlier, this is because the loopCounter variable is being incremented each time by the
other instance between loop iterations—because the loopCounter is shared between them, the
count advances twice per loop rather than just once.

Viewing Runtime Data in the Terracotta Administration Console
Now that we have a cluster running, let’s use the Terracotta Administrator Console to
get picture of the runtime data moving around our cluster. You can launch the
Terracotta Administrator Console from the command line like this:

%> /usr/local/terracotta/bin/admin.sh

This will launch a Java Swing application that looks something like Figure 3-2.

CHAPTER 3 ■ JUMPING INTO TERRACOTTA60

Figure 3-2. Terracotta Administrator Console’s initial display

If you select or expand the Roots control, you will see a snapshot of the runtime state of
the clustered object graphs. It should look something like Figure 3-3.

Figure 3-3. Using the administrator console to examine shared objects

CHAPTER 3 ■ JUMPING INTO TERRACOTTA 61

As the program runs, you can click Refresh in the context menu for any point in the object
graph to have that segment of the graph updated with a current snapshot. Do that a few times
while HelloClusteredWorld is running, and you will see the contents of the character buffer fill
up, get cleared, and fill up again. Likewise, you can watch the value of the loopCounter field
increment.

The next item down from the Roots control displays the number of instances of each
class that has been added to the cluster. In this example, nothing is displayed because
HelloClusteredWorld doesn’t actually share any objects—only primitives: a character array
and an int.

The “Lock profiler” item allows you to turn on lock statistics gathering. If you enable lock
statistics and click the server, you can see the locks on the buffer character array (denoted by
“[C”) and the loopCounter int are requested by each client as it goes through the while loop
(there’s an implicit lock acquisition when a root is accessed—nonroot fields do not require
that implicit lock acquisition).

The Clients control displays information about currently connected client JVMs. If you
still have your two instances of HelloClusteredWorld running, you should see two entries.
Each entry can be expanded to display host and port information, as well as per-client graphs
of client-side cache flush and fault rates, and the per-client transaction rate. The same cache
and transaction rate statistics for the cluster as a whole can be viewed beneath the Clients
control.

The “Garbage collection” item shows the statistics on executions of the Terracotta distrib-
uted garbage collector.

High Availability
Now that we’ve got a cluster up and running, let’s see what happens when we start turning off
and restarting parts of the cluster. First, let’s try to kill the server while the two clients are run-
ning. You can do this by causing the server process to exit (for example, if you started it from a
Unix-style command line, you can type Ctrl+C in the terminal you ran the server in.

When the Terracotta server process exits, you should see the clients halt. This happens
because the thread that is in the while loop requests a clustered lock, but the server can’t
receive the lock request because it isn’t running. What you aren’t seeing in the standard output
(but you can see in the client logs) is that the clients are continually trying to reconnect to the
Terracotta server and being rebuffed because the server still isn’t running.

If we had configured redundant Terracotta servers, killing the active server would have
caused one of the passive secondary servers to automatically take over as the primary active
server. For simplicity, we have only configured one server, but we can simulate this failover
behavior by starting the server again the same way we started it the last time. Once the new
server instance starts up, the clients will automatically reconnect and resume where they left off.

Heap Durability
Next, try killing all of the HelloClusteredWorld instances. Without Terracotta, the next time
you start the program, it will start from the beginning. With Terracotta, however, when you kill
all of the HelloClusteredWorld instances and start a new one, instead of starting from the
beginning, the application will start where it left off in whatever state loopCounter and buffer
were in when you killed the last HelloClusteredWorld instance. This is because the state of the
clustered heap and, therefore, the state of loopCounter and buffer are maintained across JVM
invocations.

CHAPTER 3 ■ JUMPING INTO TERRACOTTA62

In fact, the heap is maintained even if you shut down all of the HelloClusteredWorld
instances and the Terracotta server, power down the machines they are running on (or, for
example, your laptop), take the machines apart, and store them for ten years. If, after ten
years, you reassemble the machines, plug them all back in, power them up, and start up the
cluster again, your Terracotta-enabled Java program will resume operation exactly where it left
off when you shut it down a decade ago.

Step-by-Step Hello Clustered World in Eclipse
Now that we’ve built up a simple Terracotta-enabled program and clustered it from scratch,
let’s see how the Terracotta Eclipse plug-in can make this process considerably easier. If you
don’t already have Eclipse, you can download it from http://www.eclipse.org/. Once you
have Eclipse installed and running, you can install the Terracotta Eclipse plug-in (not included
with the Terracotta download by default). Detailed installation instructions can be found
online at http://www.terracotta.org/confluence/display/howto/
Eclipse+Plugin+Quick+Start.

With the Terracotta Eclipse plug-in installed, create a new Terracotta project called
hello_clustered_world_eclipse in your workspace by selecting File ➤ New ➤ Project, as
shown in Figure 3-4.

Figure 3-4. Creating a new Eclipse project

When the Project dialog box appears, choose Terracotta DSO Project, as shown in Figure
3-5, and name it “hello_clustered_world_eclipse” (actually, you can give it whatever name you
want).

Figure 3-5. Eclipse project browser

CHAPTER 3 ■ JUMPING INTO TERRACOTTA 63

Once the project has been created, create a new class called HelloClusteredWorld in the
default package, and paste the source code from the last exercise into it. Now that we have the
code in place, the Eclipse plug-in makes configuring and launching very simple.

To configure the roots, right-click each root field and, in the Terracotta context menu,
declare it to be a shared root, as shown in Figure 3-6.

Figure 3-6. Marking objects as Terracotta roots with Eclipse

Once you’ve configured the root fields, you should see an adornment in the left gutter of
the editor that looks like a little object graph.

Next, configure the main method for locking by right-clicking the method name and
choosing Autolock from the Terracotta context menu, as shown in Figure 3-7.

Figure 3-7. Using Eclipse to mark methods and classes as locked in Terracotta

That’s it for the configuration. Now, let’s run it normally, without Terracotta, to make sure
things are working properly. Go to the Run menu, and choose Run. You should see the familiar
HelloClusteredWorld output.

When we’re sure everything is working properly, it’s time to run the Terracotta server.
Make sure no other Terracotta servers are running (for example, the one you started from the
command line in the previous exercise), and choose the localhost server in the Terracotta
menu, as shown in Figure 3-8.

Figure 3-8. Starting the Terracotta server inside Eclipse

With the server running, we can start some clients. To configure a run profile for a
Terracotta-enabled HelloClusteredWorld instance, choose Open Run Dialog from the Run
menu, and double-click Terracotta DSO Application, as shown in Figure 3-9.

CHAPTER 3 ■ JUMPING INTO TERRACOTTA64

Figure 3-9. Running the application with the Terracotta nature

When the run profile is created, click the Run button. Eclipse will launch a fully config-
ured, Terracotta-enabled instance of HelloClusteredWorld that will connect to the running
server. You should see the familiar HelloClusteredWorld output. If you choose Run again from
the Run menu, a second clustered instance of HelloClusteredWorld will start, and you will see
the output of each start to advance two letters each cycle instead of one.

Implications for Every Developer
HelloClusteredWorld helps make clear to you how Terracotta works, but the application also
does something else. It illustrates that the rules for clustering are changing. In Chapter 1, you
learned that the power of clustering infrastructure is that an application can be simultaneously
scalable, available, and simple. HelloClusteredWorld has shown two of these dimensions. The
first dimension is scalability. Two JVMs working together each do half the work of building the
buffer. The two together complete the message “Hello Clustered World!” in half the time too.
Three JVMs would each do a third of the work, and the buffer would be populated in one third
the time. In generic terms, the application throughput increases because it takes one-nth the
time for n servers to complete the task at hand versus a single JVM.

CHAPTER 3 ■ JUMPING INTO TERRACOTTA 65

The application also illustrates simplicity through transparency. The application might be
considered unclusterable or very much a silo with respect to the fact that it is not multi-
threaded and there is no upfront value in clustering such a simple application. At run time, it
was possible to express a value-added notion of scale out to HelloClusteredWorld, nonethe-
less.

Last, we left the exercise of attempting to stop and restart the application to you, but you
will learn in Chapter 4 that the buffer and the loopCounter variables persist across JVM
processes as well as across application invocations. In other words, if the loopCounter were to
reach 27 before we kill the Java process, the next time HelloClusteredWorld is invoked using
dso-java.sh, the application would start with loopCounter at 27, not 0. HelloClusteredWorld is
highly available and restartable as a result of running inside Terracotta’s clustering
infrastructure.

The power shown in Hello Clustered World can be extended into most Java applications
we write. Since Terracotta is capable of clustering any heap-level objects and thread coordina-
tion, most applications can leverage the technology service.

■Note■■ Terracotta is a pure Java solution and uses only Java inside the Terracotta server process as well
as the Java boot class loader and libraries used by the application’s JVM. Terracotta cannot cluster objects
that mutate system-level resources. System-level resources in Terracotta’s definition include sockets, files,
devices, and operating system constructs such as pipes or shared memory. Terracotta also cannot see inside
JNI libraries. An application can use any of these technologies in the presence of Terracotta. Terracotta
simply cannot see and thus is not able to hook into changes these technologies can apply to heap memory.

Summary
With Terracotta, simple, scalable, highly available object sharing is now available for enter-
prise applications running in a JEE container without the express need for object-relational
mappers or bean-style programming. The same is true for applications running in a JSE con-
tainer. The power can be delivered for frameworks downloaded from open source vendors and
creators. Terracotta can cluster Java applications purchased from third parties, even if the
original software vendor hasn’t thought about scale out. And, as in HelloClusteredWorld, we
can now cluster a simple Java main() run at the command line.

The ability to extract ourselves from scalability and availability concerns in an otherwise
unclustered application saves money and time too. Developers have traditionally lived with
clustering and scalability tightly coupled to business logic, as you have seen in this chapter.
This tight coupling puts a burden on developers, starting in design and continuing long after
application deployment. Specifically, without Terracotta, developers and architects have to
select JDBC, JMS, or similar technologies for serializing and moving bytes between processes.
During development, these technologies get integrated into the business logic. And during
QA, the application must be tested in a clustered manner. Testing is quite challenging,
because JVMs must be pushed hard to find bottlenecks in the replication logic, and workload
must spread across JVMs attempting to update the same objects before we can be sure there
are no race conditions or transactional issues with our application.

CHAPTER 3 ■ JUMPING INTO TERRACOTTA66

The Java runtime environment gained traction, in part, because of reasonably rapid
development cycles offered by the language. It also gained traction because it can deliver on
the promise of “write once, run anywhere.” Terracotta is taking this promise one step further
in asserting that spreading an application across JVMs should be a run-time decision. With
Terracotta, developers avoid hard-coded clustering techniques. As a result, an operations
team gets to decide if it wants an eight-CPU machine with 12 gigabytes of RAM or eight dual-
core machines each with 2 gigabytes of RAM.

Chapter 4 will take the concepts and terminology introduced in Chapter 3 to the next
level; by the end of that chapter, you will be able to cluster any POJO you write yourself. From
Chapter 5 on, we will use the core concepts behind POJO clustering to cluster the objects
inside popular frameworks such as Hibernate and Spring.

CHAPTER 3 ■ JUMPING INTO TERRACOTTA 67

POJO Clustering

In the last chapter, you got some hands-on experience with Terracotta by building and run-
ning HelloClusteredWorld. Now that you’ve gotten your feet wet, it’s time to introduce some
major concepts that we have only briefly mentioned so far.

There are three broad concepts we need to discuss to help you understand how Terracotta
works under the hood. The first is how Terracotta handles Java objects and the virtual heap.
The second is how Terracotta manages the coordination of threads between JVMs and the
changes threads make to objects on the virtual heap. The third major concept we’ll introduce
here is transparency and how Terracotta extends the existing semantics of your application to
introduce clustering behavior at run time.

Armed with these crucial Terracotta concepts, we’ll extend the hands-on experience you got
with HelloClusteredWorld and walk through a more complex example of how Terracotta can
transform a simple POJO application into a highly available, multi-JVM, scaled-out application.

All About Objects and Roots
In HelloClusteredWorld, we talked briefly about roots and how to configure them. You can
think of a root as the top-level object in a clustered object graph—all objects referenced by the
root object—on the virtual heap; in a sense, it’s where Terracotta starts. A root is any field in
any class that you declare in the Terracotta configuration as the beginning of a clustered
object graph.

The first time you assign a value to a field declared as a root, Terracotta goes through the
process of turning that object into a root. Terracotta traverses the object graph, transforming
each of those objects, including the root itself, into a clustered object (more on what a clus-
tered object is follows).

Roots are declared in the Terracotta configuration by name. You may create as many roots as
you want (although, there is seldom need for more than a few). Additionally, the same root may
be assigned to more than one field. When two different fields are assigned the same root, they
are made by Terracotta to refer to the same clustered object graph.

A <root> stanza in the Terracotta configuration looks like this:

<roots>
...
<root>

<field-name>my.package.MyClass.myRootField</field-name>
<root-name>my_root_name</root-name>

69

C H A P T E R 4

</root>
...

</roots>

The <root-name> element is optional. If you don’t specify a name, the field name is used
implicitly as the root name. Here is an example where the same logical root is assigned to two
separate fields:

<roots>
<root>

<field-name>demo.jtable.Main.model</field-name>
<root-name>jtable_model</root-name>

</root>
<root>

<field-name>demo.jtable.Roots.model</field-name>
<root-name>jtable_model</root-name>

</root>
</roots>

Fields that are declared as roots assume special behavior. This is the one area of Terra-
cotta that diverges significantly from regular Java semantics.

• The first time a root is assigned by a JVM (which assigns it for the lifetime of the clus-
ter), the root is created in the Terracotta cluster, and the object graph of the object
assigned to the root field becomes the object graph of that logical root.

• Once assigned, the value of a root field may never be changed. After the first assign-
ment, all subsequent assignments to fields declared to be that root are ignored. If a root
is a Terracotta literal (more on literals later), the value of the primitive may be changed,
but if the root is an object, the reference to that object may not be changed.

• The top-level object that represents the root object will never be collected by the Terra-
cotta distributed garbage collector.

Because roots are durable beyond the scope of a single JVM’s life cycle, they are sometimes
called superstatic (that’s just a name the creators of Terracotta made up). Static field references
have the same life cycle as the classes they are declared in. Roots, which are superstatic, have the
same life cycle as the virtual heap. This is true no matter what the scope modifier of the root field
is. If a static field is declared to be a root, that static field will assume a superstatic life cycle.
Likewise, if an instance field is declared to be a root, that instance field will assume the same
superstatic life cycle. This can have a significant effect on code written with respect to root
objects and can cause some astonishment if the behavior of Terracotta with respect to roots is
not well understood.

While the reference of the root field itself cannot be changed, the object graph of that root
object can. Typically, data structures like Map, List, and other Collection objects are chosen as
root objects—although any portable object can be declared a root (more on object portability
later). While the assignment of a Map, say, to a root field cannot be changed, the contents of
that Map may be changed.

CHAPTER 4 ■ POJO CLUSTERING70

Clustered Objects
As we just mentioned, when a root field is first assigned, the Java object assigned to that field
and all objects reachable by reference from that object become clustered objects. When an
object becomes clustered, all of its field data is collected and stored in the Terracotta virtual
heap. That object is also assigned a clusterwide unique object ID that is used to uniquely iden-
tify the object in the Terracotta virtual heap (and is, in fact, the key under which that object’s
data is stored in the disk-backed object store in the Terracotta server). At the appropriate time,
all of this object data is sent to the Terracotta server, and thereafter, it is managed by Terra-
cotta as a clustered object.

An object’s data is composed of the values of that object’s reference fields and its literal
fields. Reference fields are references to other Java objects. The value of reference fields is the
clusterwide object ID of the object that field refers to. Literal fields are those fields of an object
that aren’t reference fields—that is, fields whose type is not treated by Terracotta as an object.
A Terracotta literal is similar to (but not exactly the same as) a Java primitive. They include the
Java primitives as well as other types that are treated specially by Terracotta.

An object becomes clustered when it becomes referenced by any clustered object, unless
that reference is transient (more on transience later). In fact, just like when a root is created,
when an object becomes clustered, its entire object graph is traversed and all of its nontran-
sient references are transformed into clustered objects. In that sense, root creation is a special
case of clustered object creation. Once an object becomes clustered, it is always a clustered
object and survives on the virtual heap until it becomes garbage collected by the Terracotta
distributed garbage collector in the Terracotta server.

A NOTE ABOUT CLASSLOADERS

In Java, the identity of an object’s class is tied to its ClassLoader. A class loaded by one ClassLoader is
not the same as a bytecode-identical class loaded by a different ClassLoader. This means that an object
instantiated in one ClassLoader context is not actually an object of the same class as an object instanti-
ated in another ClassLoader. Even though their classes seem identical, they are actually objects of
different classes. There is guaranteed to be one and only one instance of a particular clustered object per
ClassLoader per JVM.

This has the side-effect that clustered objects are tied to the ClassLoader in which they were created
and cannot cross ClassLoader boundaries. For example, a clustered object created in the context of the
default ClassLoader in one JVM cannot be instantiated in the context of the ClassLoader of a web appli-
cation (in most containers, each web application has its own ClassLoader; this allows, among other
things, the dynamic reloading of JSP classes, for example). An attempt to instantiate Terracotta objects in a
ClassLoader context different from that in which they were created will result in a ClassCastException.

Virtual Heap and Memory Management
The content of the Terracotta virtual heap is the set of all shared objects extant in the cluster.
Because the virtual heap’s state (i.e., the current values of every clustered object’s fields) is

CHAPTER 4 ■ POJO CLUSTERING 71

managed by the Terracotta server, the Terracotta client libraries running in your application
JVMs are free to manipulate the physical heap in the client JVMs. This means that not every
object on the virtual heap needs to be instantiated in any JVM. Terracotta can load an object
from the server automatically as it is needed by your application. When you traverse a refer-
ence to a clustered object that isn’t currently instantiated on the local physical heap,
Terracotta will automatically request that object’s data from the Terracotta server, instantiate
it on the local heap, and wire up the reference you are traversing, and your application will be
none the wiser.

Likewise, Terracotta can artificially add null references to clustered objects as memory
pressure increases, which lets arbitrarily large clustered object graphs fit within a constrained
physical heap space. This ability to flush and fault objects to and from the Terracotta server is
the virtual part of the Terracotta virtual heap. Just like the virtual memory subsystem of a
modern operating system swaps the contents of physical memory back and forth between
disk and RAM, letting the programs on your computer behave as if they had unlimited physi-
cal memory, the Terracotta virtual memory subsystem lets your application behave like it has
an unlimited physical Java heap.

Distributed Garbage Collection
The Terracotta server has a distributed garbage collector that will remove clustered objects
that are no longer referenced. This happens so the virtual heap doesn’t fill up the disk under
the Terracotta server with object data that is no longer needed. In order for a clustered object
to be eligible for garbage collection, it must not be reachable from any root (i.e., must not be
part of a root’s object graph), and it must not be resident in the heap of any client JVM. When
the distributed garbage collector finds objects that are eligible for collection, it removes them
from the server and from the server’s persistent storage.

Managing Object Changes and Coordinating
Threads
Just like objects shared between threads in a single JVM, access to Terracotta clustered objects
by threads in different JVMs must be coordinated so that threads don’t unexpectedly overwrite
each other’s changes and so that changes are reliably applied where they need to be. To do
this, Terracotta takes further cues from the existing architecture of the JVM.

In the JVM, object data is protected from concurrent thread execution by synchronizing
access to certain critical areas of code through the use of mutexes. Before a thread may enter
such a critical code section—signified by a synchronized block—it must first acquire a mutual
exclusion lock that serializes access to that code section. No two threads may execute the code
in a synchronized block at the same time.

In addition to providing serialized access to critical code sections, the lock acquisition
and subsequent lock release of synchronized code blocks provide another crucial function for
the consistency of object data: they serve as transaction boundaries between which changes
made to objects by a thread are batched and ordered. When a thread acquires an object’s
lock—also known as its monitor—there are certain guarantees about the visibility of changes
made to objects by other threads (there is actually no relation between an object’s lock and the

CHAPTER 4 ■ POJO CLUSTERING72

changes that can be made under that lock; the fact that locks are associated with objects is
essentially syntactic sugar). The JVM ensures that the state of all objects visible to a thread that
has acquired a particular lock reflects all of the changes to those objects made under the
scope of that same lock by all other threads.

Another thread-related function connected to locking provided by the JVM is the wait()
and notify() facility. An object that holds a lock on an object may call the wait() method on
that object, which will cause that thread of execution to pause. That thread will remain paused
until either a specified time interval has passed or until another thread calls notify() or
notifyAll(). When a waiting thread is notified, it is placed back into contention for the lock
on the object in question. Thread coordination to perform all sorts of time- and sequence-
sensitive operations can be programmed using just the concurrency primitives, synchronized(),
wait(), and notify(). Over time, these concurrency concerns have been encapsulated into
standard Java libraries, most notably the java.util.concurrent package (which, incidentally,
can also be clustered by Terracotta).

Terracotta provides exactly the same access serialization, coordination, and visibility
guarantees to threads in different JVMs as the JVM itself provides to threads within the same
JVM. The facilities that Terracotta uses to provide these guarantees take the form of locks and
transactions.

Locks
Terracotta extends the built-in locking semantics of the JVM to have a clusterwide, cross-JVM
meaning. Clustered locking is injected into application code based on the <locks> section of
the Terracotta configuration file. Each lock configuration stanza uses a regular expression that
matches a set of methods. The locking that Terracotta injects into that set of methods is con-
trolled by further configuration options specified in the lock configuration stanza.

We did some lock configuration in the last chapter for HelloClusteredWorld. There, we
had a lock configuration stanza that looked like this:

<locks>
<autolock>

<lock-level>write</lock-level>
<method-expression>void HelloClusteredWorld.main(..)</method-expression>

</autolock>
</locks>

This configuration stanza tells Terracotta to look for methods in your code that match the
method expression. The method expression is expressed in a pattern selection language devel-
oped by AspectWerkz, a pioneering aspect-oriented programming (AOP) framework. This
pattern selection language allows you to specify particular sections of your code. In AOP parl-
ance, this is known as a join point. Using this expression language, you can precisely specify
how Terracotta should treat the locking in your code. For a complete reference to the
AspectWerkz pattern language, see http://www.terracotta.org/confluence/display/docs1/
AspectWerkz+Pattern+Language.

Let’s use the main() method in our familiar HelloClusteredWorld program to discuss the
effect of each lock configuration option. For convenience, we’ll reiterate it here:

CHAPTER 4 ■ POJO CLUSTERING 73

public static void main(String args[]) throws Exception {
while(true) {
synchronized(buffer) {
int messageIndex = loopCounter++ % length;
if(messageIndex == 0) java.util.Arrays.fill(buffer, '\u0000');

buffer[messageIndex] = message.charAt(messageIndex);
System.out.println(buffer);

}
Thread.sleep(100);

}
}

Autolocks and Named Locks
A lock stanza must be specified as either a named lock or an autolock. Methods that match
an autolock stanza are augmented by Terracotta to acquire a clusterwide lock on a clustered
object wherever there is synchronization on that object. You can think of autolocks as an
extension of a method’s existing Java synchronization to have a clusterwide meaning. The
configuration for HelloClusteredWorld uses an autolock that tells Terracotta to inspect the
main() method for synchronization. In this case, the synchronization on the buffer field is
augmented by Terracotta to have a clusterwide effect.

Unlike autolocks, named locks function only at method entry and exit. This means that,
for methods that match a named lock configuration stanza, a thread must first acquire the
lock of that name from the Terracotta server before being allowed to execute that method. As
a result, named locks are very coarse grained and should only be used when autolocks are not
possible. Had we chosen to use a named lock for HelloClusteredWorld, only one thread in the
entire cluster would have been allowed into the main() method at a time. The effect would be
to allow the first JVM to execute the main() method. Thereafter, any JVM that joins the cluster
would block at the entrance to the main() method attempting to acquire the named lock.
Since the main() method never exits, all except the first JVM would block indefinitely or until
the first JVM was terminated, at which point another JVM would be granted the lock and be
allowed into the main() method.

Autolocks can provide considerably more concurrency than named locks, but autolocks
only acquire a lock if the object being synchronized on is a clustered object. In automatically
locked methods, if the object being synchronized on is not a clustered object, then only the
local JVM lock is acquired. For example, if an object of type product is clustered, maintains a
reference to objects of type productprice, and you exclude the productprice object from
instrumentation, product will not be updated across a cluster of JVMs when methods in the
productprice class are invoked.

Autolocks applied to methods that have no synchronization in them will have no clus-
tered locking. Also, methods that match a lock stanza but do not belong to a class included in
the set of classes configured for instrumentation by Terracotta will have no clustered locking
behavior. Such methods are invisible to Terracotta (more on class instrumentation later).

CHAPTER 4 ■ POJO CLUSTERING74

Lock Level
Another configuration option in the lock configuration stanza is the lock level. Unlike Java,
Terracotta locks come in four levels:

• write

• synchronous-write

• read

• concurrent

Write locks are mutual exclusion locks that act like regular Java locks. They guarantee that
only one thread in the entire cluster can acquire that lock at any given time.

Synchronous write locks add the further guarantee that the thread holding the lock will
not release the lock until the changes made under the scope of that lock have been fully
applied and acknowledged by the server.

■Caution■■ While synchronous-write locking sounds like a good idea for guaranteed transactions, the
overhead is high. The JVM holding the lock will be blocked while the Terracotta server receives acknowl-
edgement from all other JVMs and while the server flushes the change to disk. Normally, Terracotta allows
threads to continue and asynchronously waits for acknowledgement, so the performance difference will be
large.

Read locks allow multiple reader threads to acquire the lock at a time, but those threads
are not allowed to make any changes to clustered objects while holding the read lock. No
thread may acquire a write lock if any thread holds a read lock. No thread may acquire a read
lock if any thread holds a write lock. If a thread attempts to make modifications while holding
a read lock, Terracotta will cause an exception to be thrown.

If, however, it crosses another lock acquisition boundary on the same lock (e.g., a syn-
chronization on the same object), but that new lock acquisition boundary is configured to be
a write lock, that thread will try to upgrade its lock from a read lock to a write lock and will not
be allowed to proceed until it acquires that upgraded write lock. Read locks offer a significant
performance advantage over write locks when multiple threads concurrently execute code
that does not modify any clustered objects.

Concurrent locks are always granted. They do not protect critical code sections and serve
only as transaction boundaries. Changes made within the scope of a concurrent lock are
applied automatically, but there is no guarantee about the order in which transactions created
in the scope of concurrent locks in different threads are applied. Nor is there a guarantee that
changes from other threads are not being received and applied to heap while inside the lock.
You should only use concurrent locks when you care about neither potential write-write con-
flicts between threads nor about dirty reads. Concurrent locks are best when every JVM is
guaranteed to work on different objects from any other JVM yet Terracotta is in use for things
like master/worker relationship (see Chapter 11).

CHAPTER 4 ■ POJO CLUSTERING 75

Distributed wait() and notify()
A thread that holds the clustered lock for a clustered object may call wait() on that object.
This will cause the thread to commit the current Terracotta transaction, release the clustered
lock, and pause execution. Any other thread in the cluster that holds the clustered lock on that
object may call notify() on that object. The Terracotta server will select a waiting thread (in
the case of a notify() call) or the set of all waiting threads (in the case of a notifyAll() call)
and ensure that the appropriate waiting threads throughout the Terracotta cluster are notified.
Any thread that is notified will contend for the clustered lock and resume execution when
granted that lock.

Transactions
Terracotta batches changes made to objects into sets called transactions. A Terracotta transac-
tion is bounded by the acquisition and later release of a lock. When a thread acquires a
clustered lock, a Terracotta transaction is started for that thread, and all changes to clustered
objects made by that thread within the scope of that lock are added to that transaction. When
the lock is released, the Terracotta transaction is committed, meaning that it is sent to the Ter-
racotta server. (It might not be sent immediately; Terracotta optimizes the conversation
between clients and the Terracotta server by batching transactions when possible.)

Transactions are applied in order to preserve the “happens before” relationship discussed
in Chapter 1. When a lock is acquired, Terracotta guarantees that all of the transactions made
under the scope of that lock in every JVM in the Terracotta cluster are applied locally on the
heap of the acquiring thread. This ensures that threads always see a consistent view of clus-
tered objects.

All changes to clustered objects must happen within the context of a Terracotta transac-
tion. This means that a thread must acquire a clustered lock prior to modifying the state of any
clustered objects. If a thread attempts to modify a clustered object outside the context of a
Terracotta transaction, a runtime exception will be thrown.

A special case of this is worth mentioning, because it is not obvious. If a thread synchro-
nizes on an object that is not yet clustered, that thread does not acquire a clustered lock and
does not start a Terracotta transaction. That thread may not make modifications to any shared
objects, even if the object the thread has synchronized becomes shared within the scope of
that synchronization.

Distributed Method Invocation
Terracotta provides a facility for causing methods on shared objects to be called wherever they
are resident in the cluster. This facility is called Distributed Method Invocation (DMI). An
invocation of a method declared as a distributed method on a clustered object will trigger that
same method invocation on all the instances of that object that happen to be currently instan-
tiated on the heap of any JVM in the cluster.

It is important to note that distributed methods work in the context of a shared instance
that defines that method. There are also no guarantees about when the distributed methods
will be executed. Likewise, there are no guarantees about which JVMs that method will be exe-
cuted on, since whether or not the method is executed is contingent on whether or not the
object in question in currently on the heap of a JVM.

CHAPTER 4 ■ POJO CLUSTERING76

DMI is a useful mechanism for implementing a distributed listener model. It is not, how-
ever, a good way to coordinate actions or share data between threads in different JVMs. For
those purposes, the java.util.concurrent package is a much better fit.

Transparency and Bytecode Instrumentation
So far, we have discussed how Terracotta augments your application code to give it cluster-
wide meaning, but we haven’t discussed exactly how this happens. The essential mechanism
behind Terracotta’s transparency is bytecode instrumentation. Java classes are compiled down
to bytecode instructions that must be loaded by the JVM before new instances of those classes
may be created. That process of loading the bytecode gives Terracotta an opportunity to
inspect and manipulate the bytecode of your classes prior to being used in your application.
These techniques were first developed to enable AOP and are currently in widespread use in
frameworks like Spring.

Terracotta can be configured to instrument all or just a subset of the classes loaded into
the JVM. You can elect to instrument all classes to make sure that Terracotta can see into
everything your business logic does to memory at runtime. For performance reasons, how-
ever, it is often beneficial to restrict the set of classes that Terracotta instruments to only those
that you know will interact with clustered objects. Just remember that if a class isn’t instru-
mented, it is essentially invisible to Terracotta. Any changes to clustered objects made by a
class that isn’t instrumented will not be reflected in the cluster.

It is also important to note that the code of a class may manipulate clustered objects even
if no instances of that class are themselves clustered. This means that the set of classes that
you must instrument is not just the set of classes whose objects may become clustered, but
rather, the set of classes that manipulate shared objects.

The set of classes instrumented is determined by the <instrumented-classes> section of
the Terracotta configuration. In HelloClusteredWorld, we configured Terracotta to instrument
every class. To narrow the set of instrumented classes, you can modify the class selection
expression in the <include> or <exclude> stanzas. Like the method expression you saw in the
previous section on locks, the class expression is part of the AspectWerkz join point, selection
pattern language.

The <include> and <exclude> stanzas are evaluated bottom up according to the order in
the Terracotta configuration file. The first pattern that matches will determine whether the
class will or will not be instrumented. If no patterns match, the class will not be instrumented.
Using a combination of <include> and <exclude> class expressions, you can pick out exactly
the set of classes that you want included for instrumentation.

<instrumented-classes>
<include>

<class-expression>com.mycompany.pkga.*</class-expression>
</include>

<exclude>com.mycompany.pkga.subpkg.*</exclude>

<include>
<class-expression>com.mycompany.pkgb.*</class-expression>

</include>
</instrumented-classes>

CHAPTER 4 ■ POJO CLUSTERING 77

In the preceding example, every class in the package com.mycompany.pkgb and in every
package under it will be instrumented. However, no class in com.mycompany.pkga.subpkg or in
any package under it will be instrumented. But, every class in the package com.mycompany.pkga
and in every package under it except com.mycompany.pkga.subpkg and below will be instru-
mented. You may also use class name patterns as well as package patterns to fine-tune the set
of included classes.

■Note■■ Some classes are automatically instrumented by Terracotta. These classes are placed automatically
in the Terracotta boot JAR when the boot JAR is created.

Portability
Terracotta can cluster most Java objects, but there are limits to what you can add to a Terra-
cotta cluster. An object that can be clustered by Terracotta is called portable. For any object to
be portable, its class must be instrumented.

Instances of most instrumented classes are portable, but there are a few constraints on
portability. Some objects are inherently nonportable, because they represent JVM-specific or
host-machine-specific resources that don’t make sense in a clustered context. Some file-
system-related classes such as java.io.FileDescriptor are examples of host-machine-
specific resources that are inherently nonportable. Instances of java.lang.Thread and
java.lang.Runtime are examples of JVM-specific resources that are inherently nonportable.

Other nonportable objects are instances of classes that extend inherently nonportable
classes, uninstrumented classes, or classes of logically managed objects (more on logically man-
aged objects later).

Boot JAR Classes
Most classes may be instrumented at class load time if you need them to be. Some classes,
however, are loaded too early in the life cycle of the JVM for Terracotta to hook into their load-
ing process. Such classes cannot be instrumented at load time but must instead be
preinstrumented and placed in a special JAR file that is then prepended to the boot classpath.

Some of the classes in the boot JAR are placed there automatically by Terracotta. Other
classes may be added to the boot JAR by augmenting the Terracotta configuration to include
them in the boot JAR section of the Terracotta configuration and then running the make-boot-
jar script in the bin directory of the Terracotta installation.

The location of the boot JAR must be passed in as a JVM argument to the java command
when you start your application. You can run the dso-env script in the bin directory of the
Terracotta installation to see how to add the boot JAR to your JVM arguments.

Physically vs. Logically Managed Objects
Most objects are managed by moving their field data around the Terracotta cluster. These classes
of objects are described as physically managed because Terracotta records and distributes

CHAPTER 4 ■ POJO CLUSTERING78

changes to the physical structure of the object. When a field of a physically managed object
changes, the new value of the field is sent to the Terracotta server and to other members of the
Terracotta cluster that currently have the changed object in memory.

Some classes of objects are not shared this way, however. Instead of moving the physical
structure of such objects around, we record the methods called on those objects along with
the arguments to those method calls and then replay those method calls on the other mem-
bers of the Terracotta cluster. These classes of objects are described as logically managed,
because Terracotta records and distributes the logical operations that were performed on
them rather than recording the changes to their internal structure.

Terracotta uses logical management either for performance reasons or because a class’s
internal structure is JVM specific. For example, classes that use hashed structures such as
java.util.Hashtable, java.util.HashMap, or java.util.HashSet are logically managed. The
hashcodes used to create the internal structure of these classes are JVM specific. If an object
that has a structure based on JVM-specific hashcodes were physically managed, its structure
on other JVMs in the Terracotta cluster would be incorrect and nonsensical, since the hash-
codes would be different on those other JVMs.

Other classes are logically managed, because changes to them can involve wholesale
shifts in their internal structure. While those shifts in memory happen with acceptable latency,
they would cause a flurry of clustered object changes in the cluster. This happens when, for
example, an array-backed List is rebalanced or reordered. Rather than mirroring the exact
internal structure of such objects, Terracotta keeps track of the methods that are called. The
object may be brought up to date by replaying the method call sequence, which updates the
internal data structures inside the object in memory.

Nonportable and Logically Managed Classes
You saw previously that classes with a nonportable class in their type hierarchy are not
portable. Subclasses of uninstrumented classes fall into this category, as do subclasses of
inherently nonportable classes like java.lang.Thread.

While logically managed classes are themselves portable, there are some restrictions on
the portability of classes that have logically managed classes in their type hierarchy. This
stems from the technical details of the Terracotta implementation of logically managed
classes.

If the subclass of a logically managed class has declared additional fields, that class is not
portable if

• It directly writes to a field declared in the logically managed superclass.

• It overrides a method declared in the logically managed superclass.

If you find that a class is nonportable because it inherits from a class that is nonportable
because it hasn’t been instrumented, you can modify the Terracotta configuration to include
all of the classes in the type hierarchy for instrumentation. However, if you find that a class is
not portable because of the other inheritance restrictions, you must refactor the class you
want to make portable so that it does not violate the inheritance restriction.

CHAPTER 4 ■ POJO CLUSTERING 79

Portability Contexts
There are a number of contexts in which objects become shared by Terracotta. In each of these
contexts, the portability of the objects that are about to be shared is checked. If there is a
portability error, Terracotta throws an exception.

Field Change
When a field of an object that is already shared changes, the object being newly assigned to
that field is checked for portability. If that object is not portable, Terracotta throws a portabil-
ity exception.

If the newly referenced object is itself portable, its object graph is traversed. If any object
reachable by the newly reference object is not portable, Terracotta throws a portability excep-
tion.

Logical Action
Methods called on logically managed objects that change the state of that object are termed
logical actions. When such a method is called, the arguments to that method are checked for
portability. If any of those objects are not portable, Terracotta throws a portability exception.

If the argument objects themselves are portable, their object graphs are traversed. If any
object reachable by the argument objects is not portable, Terracotta throws a portability
exception.

Object Graph Traversal
When an object becomes shared via any of the mechanisms just discussed, including joining
the graph of another shared object through field assignment or by becoming the argument to
a logically shared action, Terracotta traverses all of the objects reachable in that object’s graph.
During that traversal, if any nonportable object is encountered, Terracotta throws a portability
exception.

Transient Fields and On-Load Behavior
If the field of an object that you want to cluster is not portable, you have two options:

• Refactor the code so as to remove the nonportable field.

• Declare the field transient.

A transient field in Terracotta is similar to a transient field in Java: it is ignored during
object graph traversal when an object graph is being shared. You can declare a field as tran-
sient in the Terracotta configuration like so:

<transient-fields>
<field-name>com.mycompany.pkga.MyClassOne.fieldA</field-name>
<field-name>com.mycompany.pkgb.subpkg2.fieldB</field-name>

</transient-fields>

CHAPTER 4 ■ POJO CLUSTERING80

You can also declare a field transient by setting the <honor-transient> option in the class
instrumentation section of the Terracotta configuration. Any classes that match an <include>
stanza where <honor-transient> is specified will be inspected for the transient keyword in
the Java language. Any field marked as transient in source code will be honored as transient by
Terracotta.

<instrumented-classes>
<include>
<honor-transient>true</honor-transient>
<class-expression>com.mycompany.pkga.*</class-expression>
</include>

...
</instrumented-classes>

Initializing Transient Fields on Load
Since transient fields are ignored by Terracotta, you must take care to initialize them after they
have been instantiated on other JVMs. When an object is materialized on a JVM by Terracotta,
any transient reference fields will be null, and transient primitive fields will be their default
values.

Terracotta offers two facilities to initialize those fields to their proper values. In the Terra-
cotta configuration, you can specify a method to be called when an object is materialized on
the heap of a JVM. That method should contain the proper initialization code. Alternatively,
you can write BeanShell script directly into the configuration file that will be executed when
the object is loaded.

The following configuration snippet declares an initialization method. It instructs Terra-
cotta to invoke com.mycompany.pkga.MyClass.myMethod() whenever a clustered instance of
com.mycompany.pkga.MyClass is loaded in a JVM.

<instrumented-classes>
<include>

<class-expression>com.mycompany.pkga.MyClass</class-expression>
<on-load>
<method>myMethod</method>

</on-load>
</include>

...
</instrumented-classes>

The following configuration snippet declares some BeanShell script to be invoked when-
ever a clustered instance of com.mycompany.pkga.MyClass is loaded in a JVM:

<instrumented-classes>
<include>

<class-expression>com.mycompany.pkga.MyClass</class-expression>
<on-load>
<execute><![CDATA[self.myTransientField = new ArrayList();]]></execute>

</on-load>

CHAPTER 4 ■ POJO CLUSTERING 81

</include>
...
</instrumented-classes>

More information on BeanShell scripting may be found at http://www.beanshell.org/.

Clustered POJOs Step by Step
Now that you’ve been introduced to some of the major concepts of Terracotta, we are ready to
discuss POJO clustering in depth and what it means for your application. The definition of a
POJO is quite contentious. Rebecca Parsons originally defined POJO. Later, on the definition,
Fowler wrote:

“I’ve come to the conclusion that people forget about regular Java objects because they

haven’t got a fancy name—so while preparing for a talk Rebecca Parsons, Josh Macken-

zie, and I gave them one: POJO (Plain Old Java Object). A POJO domain model is easier

to put together, quick to build, can run and test outside of an EJB container, and isn’t

dependent on EJB (maybe that’s why EJB vendors don’t encourage you to use them).”

—Martin Fowler (http://www.martinfowler.com/isa/domainModel.html)

POJO is essentially a feeling more than a specification. What is certain is that a developer
knows when he is writing POJOs and when he is not.

Terracotta enables a POJO programming model when running applications in a cluster.
The model is represented by the ability to honor the Java Memory Model as well as the lan-
guage semantics. Specifically, POJO clustering implies that object identity is preserved across
JVMs. Clustered POJOs are, in a fundamental way, the same object in different JVMs, not
merely copies or clones that have the same data. A POJO should be able to simultaneously
reside in two separate object graphs without ending up cloned into one of them.

A Java developer should be able to synchronize access to a POJO using the synchronized
keyword. POJO clustering is the basis of Terracotta’s ability to cluster many frameworks. Com-
munity members have built prototypes for Scala, JRuby, Quercus, and Groovy clustering.
These technologies were not implemented with clustering in mind, but as long as the cluster-
ing honors the language specification and developer contract (preserving threading semantics
and object identity), these technologies needn’t think about clustering.

In Chapters 5 and on, you will see a number of use cases that demonstrate Terracotta
adapted for a particular technology. But, under the covers, Terracotta is a generic technology
that can be applied to any distributed computing task. The core Terracotta technology makes
POJOs available across JVM instances as if they all shared a massive distributed heap. In the
rest of this chapter, we will address how POJO clustering works and can be used under many
use cases. With this knowledge, you can better understand subsequent chapters, and you can
build your own prototypes or production applications using frameworks Terracotta has yet to
support.

CHAPTER 4 ■ POJO CLUSTERING82

What Do We Mean by POJO?
To understand what POJO clustering is, let’s first describe exactly what we mean by POJO. We
use the term “POJO” to mean a plain Java object that lives on the heap of your JVM and doesn’t
need any extra framework or component trussing to enable the functionality it is intended to
provide.

The essential feature of a POJO is that it actually lives on the heap of the JVM and that it
can be treated as a regular Java object without any surprising side effects. References to a
POJO should be plain references such that comparisons to them with the == operator evaluate
to true. You should be able to modify the fields of a POJO through the normal access (.) opera-
tor (e.g., foo.bar = baz) without having to later call some commit or put-back operation (e.g.,
session.setAttribute("foo", foo)). You should be able to put a POJO into a data structure
(like a Map) and get it out again without being handed back a copy of the object. You should
also be able to execute concurrency operations (e.g., synchronized, wait(), and notify()) on
a POJO and have them do what you expect.

Traditionally, POJOs are used until the data they represent needs to be externalized out-
side the boundaries of a single JVM’s heap. For example, if you want to store the data
represented by an object to a database, you might use EJBs or an object-relational framework
like Hibernate to manage the persistence for you. Or, if you want to send messages between
JVMs, you might use JMS or RMI. In all of these cases, a significant amount of framework
trussing supports the externalization of object data off the local heap, and the objects involved
can’t be called POJOs. Interactions with these externalized objects are framework dependent
and sometimes complicated, and they always need to be treated in special ways.

What’s a Clustered POJO?
Given this understanding of POJOs, what, then, is a clustered POJO? For Terracotta, a clustered
POJO is an object that has all of the qualities of a regular POJO plus the additional feature that
it lives on a virtual heap shared by all the JVMs in the cluster.

A clustered POJO, first and foremost, should be a first-class object with a unique identity
on the clustered heap. This means that references to it should be plain references such that
comparisons to them with the == operator evaluate to true. There should be no object cloning,
either explicitly through the Java object cloning mechanism or implicitly through data copy-
ing or object serialization. Therefore, you should be able to put a clustered POJO into a data
structure and get it out again without being handed back a copy of the object. All references to
a POJO, clustered or not, should point to exactly the same object on the heap.

If synchronized properly, object modifications should be visible across threads on multi-
ple JVMs sharing the same virtual heap exactly as those modifications are visible across
threads on the same JVM sharing the same physical heap.

You should also be able to execute concurrency operations (e.g., synchronized, wait(),
and notify()) on a clustered POJO and have them behave across threads on multiple JVMs
sharing the same virtual heap exactly as they do across threads in the same JVM sharing the
same physical heap.

Since the scope and life cycle of a clustered POJO are beyond those of any specific JVM,
the virtual heap on which clustered POJOs live should be persistent beyond the life cycle of
any particular JVM. That means that clustered POJOs are durable and, unlike nonclustered
POJOs, they don’t disappear when any number of JVMs shut down.

CHAPTER 4 ■ POJO CLUSTERING 83

Why Clustered POJOs?
Essentially, the motivation behind using a clustered heap is simplicity. Using a virtual heap
lets you focus on the logic of your application without the architectural and semantic distor-
tions inherent with explicit object externalization. Every other attempt to provide object
durability and/or inter-JVM communication presents object modification and cross-JVM
message passing as an explicit API that is inextricably embedded in your application code.

A great deal of effort has been put in to making Java applications enterprise class, mean-
ing that they have very high uptimes, handle data reliably, and scale properly to keep
perceived latency minimal regardless of user load. To provide enterprise-class functionality,
two features are required that are not provided by the JVM:

• Durability and portability of object data

• Cross-JVM thread communication

Durability and portability of object data is required for reliability and high availability.
Reliable data handling requires that application data be durable. Since the Java heap is not
durable, object data must be externalized to a durable store.

For an application to be highly available, it must either run on highly available hardware
or be deployable redundantly on commodity hardware. This latter path has traditionally been
chosen by Java enterprise architects to provide high availability for a number of reasons, not
the least of which is that it can be extended to yield scalability by elastically adding (or remov-
ing) commodity hardware to fit user demand, theoretically keeping latency stable. As
discussed earlier, this scale-out architecture requires that at least some of the running state of
an application instance be externalized so that, should one application instance fail or be
taken offline, another may seamlessly take its place, picking up from where it left off. Durabil-
ity and portability of object data are, therefore, required to maintain application state in a
scaled-out architecture.

Once an application is deployed in a scaled-out architecture, there inevitably arises the
need for inter-JVM communication and coordination for one reason or another. Typical
examples are cache flushing or expiration and administrative functionality. More advanced archi-
tectures, such as the master/worker form of workload distribution discussed in Chapter 11, are
explicitly designed to take advantage of multiple JVM deployment footprints and require robust
and flexible inter-JVM communication and coordination.

These twin features, durability and portability of object data and cross-JVM thread com-
munication, have been backfilled into the Java execution environment in a number of more or
less sophisticated ways since Java’s inception. The core of many such technologies is object
serialization, the most basic way to externalize object data. Once an object graph is serialized,
it may then be exported to a durable store such as a file or a database or across a network to
another JVM.

Based on this core feature, extra scaffolding has been built up to provide more sophisti-
cated persistence handling (e.g., EJBs or object-relational mapping engines like Hibernate), or
to provide inter-JVM communication (e.g., RMI or JMS) and data sharing.

In conceiving Terracotta, the creators noticed that most of the features provided by
explicit object durability and inter-JVM communication frameworks could be provided much
more simply if existing facilities already found in the JVM were extended to allow the partici-
pation of threads not in the same JVM. The JVM already has a notion of local and remote

CHAPTER 4 ■ POJO CLUSTERING84

objects: thread memory and main memory (heap). Likewise, it already has a notion of inter-
process communication and coordination: the thread-level concurrency primitives
synchronized, wait(), notify(), and join().

Adding a durable object store in the form of an extended, network-attached virtual heap
and extending the meaning of the concurrency primitives to apply to all threads in all partici-
pating JVMs provides the twin enterprise features of object durability and portability and
inter-JVM communication and coordination in a way that looks remarkably similar, if not
identical in all cases, to Java code written with only one JVM in mind.

By injecting distributed computing into the existing facilities provided by the JVM, we
have extracted much of the complexity of distributed computing from application-level code
where explicit enterprise frameworks have traditionally forced it to live. Instead, distributed
computing becomes an inherent feature of the JVM rather than an explicit problem to be
solved inside the application.

An Example of Clustered POJOs
To explore the simplicity of using clustered POJOs, let’s look at an in-depth example. This
example is a simplified version of a retail system with a catalog of products that can be added
to a shopping cart by a customer. At any time, an operator may view any or all of the active
shopping carts. The sample code is written using simple Java data structures. Some of the
problem domain is idealized for simplicity. For example, the business data encapsulated in
the product, catalog, customer, and order classes in a real system would likely be backed by a
relational database and perhaps be fronted by an object-relational system like Hibernate, as
described in Chapter 6. The transient shopping cart data, though, might very well be best
expressed purely as simple Java objects with no backing system of record.

The Example Classes
There are six important classes in this system:

• ProductImpl

• Catalog

• ShoppingCartImpl

• ActiveShoppingCarts

• Roots

• Main

The code is displayed in Listings 4-1 through 4-8, but it may also be retrieved from
http://www.apress.com.

The ProductImpl Class
The ProductImpl class, shown in Listing 4-1, contains data about a particular product: the
product name, the SKU, and the price. Products are kept in a Catalog that maps the SKU of the
product to a product object. It implements a simple Product interface.

CHAPTER 4 ■ POJO CLUSTERING 85

Listing 4-1. The ProductImpl Class

package example;

import java.text.NumberFormat;

public class ProductImpl implements Product {
private String name;
private String sku;
private double price;

public ProductImpl(String sku, String name, double price) {
this.sku = sku;
this.name = name;
this.price = price;

}

public String getName() {
return this.name;

}

public String getSKU() {
return this.sku;

}

public String toString() {
NumberFormat fmt = NumberFormat.getCurrencyInstance();
return "Price: " + fmt.format(price) + "; Name: " + this.name;

}

public synchronized void increasePrice(double rate) {
this.price += this.price * rate;

}
}

We also have a NullProduct class, shown in Listing 4-2, that represents an unknown
product.

Listing 4-2. The NullProduct Class

package example;

public class NullProduct implements Product {

public void decrementInventory(int count) {
return;

}

CHAPTER 4 ■ POJO CLUSTERING86

public String getName() {
return "NULL";

}

public String getSKU() {
return "NULL";

}

public void increasePrice(double hike) {
return;

}
}

The Catalog Class
The Catalog class, shown in Listing 4-3, can be used to display products and to look them up
by SKU, so they may be placed in a shopping cart.

Listing 4-3. The Catalog Class

package example;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;

public class Catalog {

private final Map<String, Product> catalog;

public Catalog() {
this.catalog = new HashMap<String, Product>();

}

public Product getProductBySKU(String sku) {
synchronized (this.catalog) {
Product product = this.catalog.get(sku);
if (product == null) {
product = new NullProduct();

}
return product;

}
}

public Iterator<Product> getProducts() {
synchronized (this.catalog) {

CHAPTER 4 ■ POJO CLUSTERING 87

return new ArrayList<Product>(this.catalog.values()).iterator();
}

}

public int getProductCount() {
synchronized (this.catalog) {
return this.catalog.size();

}
}

public void putProduct(Product product) {
synchronized (this.catalog) {
this.catalog.put(product.getSKU(), product);

}
}

}

The ShoppingCartImpl Class
The ShoppingCartImpl class, shown in Listing 4-4, contains a list of products that a shopper
has browsed and tentatively wants to purchase. The ShoppingCart interface is, again, very
simple with no surprises.

Listing 4-4. The ShoppingCartImpl Class

package example;

import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;

public class ShoppingCartImpl implements ShoppingCart {

private List<Product> products = new LinkedList<Product>();

public void addProduct(final Product product) {
synchronized (products) {

this.products.add(product);
}

}

public String toString() {
final StringBuffer buf = new StringBuffer();
synchronized (this.products) {

int count = 1;
for (Iterator<Product> i = this.products.iterator(); i.hasNext();) {
buf.append("\titem " + count + ": " + i.next() + "\n");

CHAPTER 4 ■ POJO CLUSTERING88

}
}
return buf.toString();

}

}

The ActiveShoppingCarts Class
The ActiveShoppingCarts class, shown in Listing 4-5, is a companion to the ShoppingCartImpl
class that does some bookkeeping about active shopping carts.

Listing 4-5. The ActiveShoppingCarts Class

package example;

import java.util.LinkedList;
import java.util.List;

public class ActiveShoppingCarts {

private final List<ShoppingCart> activeShoppingCarts =
new LinkedList<ShoppingCart>();

public void addShoppingCart(ShoppingCart cart) {
synchronized (activeShoppingCarts) {
this.activeShoppingCarts.add(cart);

}
}

public List getActiveShoppingCarts() {
synchronized (this.activeShoppingCarts) {
List<ShoppingCart> carts =
new LinkedList<ShoppingCart>(this.activeShoppingCarts);

return carts;
}

}
}

The Roots Class
The Roots class, shown in Listing 4-6, for purposes of encapsulation, holds references to the
roots of the clustered object graphs that are used by this application. It isn’t a requirement to
put the root fields in a special class, but it’s convenient for this example.

CHAPTER 4 ■ POJO CLUSTERING 89

Listing 4-6. The Roots Class

package example;

import java.util.concurrent.CyclicBarrier;

public class Roots {
private final CyclicBarrier barrier;
private final Catalog catalog;
private final ActiveShoppingCarts activeShoppingCarts;

public Roots(CyclicBarrier barrier, Catalog catalog, ActiveShoppingCarts
activeShoppingCarts) {

this.barrier = barrier;
this.catalog = catalog;
this.activeShoppingCarts = activeShoppingCarts;

}

public ActiveShoppingCarts getActiveShoppingCarts() {
return activeShoppingCarts;

}

public CyclicBarrier getBarrier() {
return barrier;

}

public Catalog getCatalog() {
return catalog;

}
}

The Main Class
The Main class, shown in Listing 4-7, illustrates how the classes in Listings 4-1 through 4-6
might be used in a multithreaded environment. It assumes two threads enter the run()
method, and at various points, they use a threading construct built in to the language to coor-
dinate with each other. This threading construct is called a CyclicBarrier—available in the
util.Concurrent library in the core JDK. It is a simple class that hides the threading logic
required to get any number of threads to wait for each other at the exact same point in a
method before continuing. A barrier can be thought of as a gate that all threads have to meet
in front of before the gate opens and all threads move through.

Listing 4-7. The Main Class

package example;

import java.util.Iterator;
import java.util.concurrent.CyclicBarrier;

CHAPTER 4 ■ POJO CLUSTERING90

public class Main implements Runnable {

private final CyclicBarrier barrier;
private final int participants;
private int arrival = -1;
private Catalog catalog;
private ShoppingCartFactory shoppingCartFactory;
private ActiveShoppingCarts activeCarts;

public Main(final int participants, final CyclicBarrier barrier,
final Catalog catalog,
final ActiveShoppingCarts activeCarts,
final ShoppingCartFactory shoppingCartFactory) {

this.barrier = barrier;
this.participants = participants;
this.catalog = catalog;
this.activeCarts = activeCarts;
this.shoppingCartFactory = shoppingCartFactory;

}

public void run() {
try {
display("Step 1: Waiting for everyone to arrive. I'm expecting " +

(participants - 1) + " other thread(s)...");
this.arrival = barrier.await();
display("We're all here!");

String skuToPurchase;
display();
display("Step 2: Set Up");
boolean firstThread = arrival == (participants - 1);

if (firstThread) {
display("I'm the first thread, so I'm going to populate the catalog...");
Product razor = new ProductImpl("123", "14 blade super razor", 12);
catalog.putProduct(razor);

Product shavingCream = new ProductImpl("456",
"Super-smooth shaving cream",
5);

catalog.putProduct(shavingCream);

skuToPurchase = "123";
} else {
skuToPurchase = "456";

}

CHAPTER 4 ■ POJO CLUSTERING 91

// wait for all threads.
barrier.await();

display();
display("Step 3: Let's do a little shopping...");
ShoppingCart cart = shoppingCartFactory.newShoppingCart();

Product product = catalog.getProductBySKU(skuToPurchase);
display("I'm adding \"" + product + "\" to my cart...");
cart.addProduct(product);
barrier.await();

display();
display("Step 4: Let's look at all shopping carts in all JVMs...");
displayShoppingCarts();

display();
if (firstThread) {
display("Step 5: Let's make a 10% price increase...");
for (Iterator<Product> i = catalog.getProducts(); i.hasNext();) {

Product p = i.next();
p.increasePrice(0.1d);

}
} else {
display("Step 5: Let's wait for the other JVM to make a price change...");

}
barrier.await();

display();
display("Step 6: Let's look at the shopping carts with the new prices...");
displayShoppingCarts();

} catch (Exception e) {
throw new RuntimeException(e);

}
}

private void displayShoppingCarts() {
StringBuffer buf = new StringBuffer();
for (Iterator<ShoppingCart> i = activeCarts.getActiveShoppingCarts().iterator();

i.hasNext();) {
ShoppingCart thisCart = i.next();
buf.append("==========================\n");
buf.append("Shopping Cart\n");
buf.append(thisCart);

}

CHAPTER 4 ■ POJO CLUSTERING92

display(buf);
}

private void display() {
display("");

}

private void display(Object o) {
System.err.println(o);

}

public static void main(String[] args) throws Exception {
int participants = 2;
if (args.length > 0) {
participants = Integer.parseInt(args[0]);

}

Roots roots = new Roots(new CyclicBarrier(participants), new Catalog(),
new ActiveShoppingCarts());

if (args.length > 1 && "run-locally".equals(args[1])) {
// Run 'participants' number of local threads. This is the non-clustered
// case.
for (int i = 0; i < participants; i++) {
new Thread(new Main(participants, roots.getBarrier(), roots.getCatalog(),

roots.getActiveShoppingCarts(),
new ShoppingCartFactory(roots.getActiveShoppingCarts()))).start();

}
} else {
// Run a single local thread. This is the clustered case. It is assumed
// that main() will be called participants - 1 times in other JVMs
new Main(participants, roots.getBarrier(), roots.getCatalog(),

roots.getActiveShoppingCarts(),
new ShoppingCartFactory(roots.getActiveShoppingCarts())).run();

}

}

}

The Main class uses the ShoppingCartFactory class, which is shown in Listing 4-8.

Listing 4-8. The ShoppingCartFactory Class

package example;

public class ShoppingCartFactory {

CHAPTER 4 ■ POJO CLUSTERING 93

private final ActiveShoppingCarts activeShoppingCarts;

public ShoppingCartFactory(final ActiveShoppingCarts activeCarts) {
this.activeShoppingCarts = activeCarts;

}

public ShoppingCart newShoppingCart() {
ShoppingCart shoppingCart = new ShoppingCartImpl();
activeShoppingCarts.addShoppingCart(shoppingCart);
return shoppingCart;

}
}

Clustering Requirements for the Example
Out of the box, this code works fine in the context of a single JVM. Multiple threads interact
with Catalog, Product, ShoppingCart, Customer, and Order objects as simple POJOs and can
coordinate with each other, if need be, using standard Java library java.util.concurrent
classes, namely CyclicBarrier.

If this were more than just a sample application, however, we would want to deploy it on
at least two physical servers for high availability with the option to add additional servers for
scalability as usage increases over time. Adding servers causes a number of requirements to
emerge that don’t exist in the single JVM deployment scenario:

• All active shopping carts should be available in all JVMs, so a browsing customer’s
requests can be sent to any of the servers without losing the items in that customer’s
shopping cart.

• A view on all the active carts will require access to all active carts in every JVM.

• Thread interaction expressed in the example code by using CyclicBarrier must be
extended to threads in multiple JVMs.

If the Catalog data becomes large enough, it might not fit comfortably in RAM. It could
be retrieved as needed from the product database, but the database will be a bottleneck. If
caching is used to alleviate the database bottleneck, each JVM will need access to that cache.
To avoid critical spikes in database usage, the cache should be loaded once from the database
and shared among the JVMs rather than loaded separately by each JVM.

All of the requirements introduced by deploying the application in a cluster can be met by
using Terracotta with a small amount of configuration and no code changes. Let’s take a quick
look at what the configuration looks like to make this happen.

Configuration for the Example
The first configuration step is to determine which objects in the application should be shared
by the cluster. These shared object graphs are specified by declaring specific variables to be
roots. Every object reachable by reference from a root object becomes a shared object avail-
able to all JVMs, clusterwide. In our example so far, we have three roots, all of them declared in

CHAPTER 4 ■ POJO CLUSTERING94

the Roots class. This is specified in the Terracotta configuration like so (again using the
config-examples/tc-config-pojo.xml file as a base):

<roots>
<root>

<field-name>example.Roots.barrier</field-name>
</root>
<root>
<field-name>example.Roots.catalog</field-name>

</root>
<root>

<field-name>example.Roots.activeShoppingCarts</field-name>
</root>

</roots>

The next configuration step is to determine which classes should have their bytecode
instrumented at load time. The class of any object that is to become part of a shared object
graph must have its bytecode instrumented by Terracotta when the class is loaded. This
instrumentation process is how the transparent clustering capabilities of Terracotta are
injected into the application. For this example, all we have to do is include everything in the
example.* package. The CyclicBarrier class is automatically included by Terracotta because
it is part of a core set of Java library classes that are required to be instrumented. The
<instrumented-classes> configuration section looks like this:

<instrumented-classes>
<include>

<!--include all classes in the example package for bytecode instrumentation-->
<class-expression>example..*</class-expression>

</include>
</instrumented-classes>

The final configuration step is to determine which methods should have cluster-aware
concurrency semantics injected into them. For the purposes of this example, we will use a reg-
ular expression that encompasses all methods in all included classes for automatic locking:

<locks>
<autolock>

<method-expression>void *..*(..)</method-expression>
<lock-level>write</lock-level>

</autolock>
</locks>

This configuration will instruct Terracotta to find all synchronized methods and blocks
and all calls to wait() and notify() in the methods of every class that is instrumented and
augment them to have a clusterwide meaning.

Running the Example
Once the configuration is complete, running the application in a cluster can be done from the
command line or from the Eclipse plug-in. If you are not using Eclipse, you must compile the

CHAPTER 4 ■ POJO CLUSTERING 95

project first, like so (assuming your current working directory is the top-level project
directory):

%> javac -d classes src/example/*.java

Once the project is compiled, start the Terracotta server. To start the server from the com-
mand line, use the start-tc-server script. You can specify the configuration file explicitly
using the -f flag. If you don’t specify the location of the configuration file, the server will look
for a file called tc-config.xml in the current working directory.

The command line to start the server with an explicit path to the Terracotta configuration
file looks something like this:

%> /usr/local/terracotta/bin/start-tc-server.sh –f /path/to/tc-config.xml

To start the server with an implicit path to the Terracotta configuration file, change direc-
tories to the top-level directory of the example project. The top-level project directory
contains the tc-config.xml file. You may then execute the following command:

%> /usr/local/terracotta/bin/start-tc-server.sh

In Eclipse, the server can be started from the Terracotta menu, using the Start Terracotta
Server command. Once the server is started, the instances of your application can be started.
For this example, we must run the Main class in two JVMs, so you will need to invoke Java
twice. Depending on your operating system and Terracotta installation directory, your com-
mand line will look something like this (again, assuming that you run the command from the
top-level project directory):

%> java -Xbootclasspath/p:/usr/local/terracotta/bin/../lib/dso-boot/dso-boot-
hotspot_osx_150_13.jar -Dtc.install-root=/usr/local/terracotta/bin/..
-Dtc.config=./tc-config.xml -cp classes example.Main

To determine the Terracotta-specific JVM arguments, you can use the output of the dso-
env script. Alternatively, you can invoke Java using the dso-java script instead of the java
command. The dso-java script will supply the proper JVM arguments and invoke the java
command for you:

%> /usr/local/terracotta/bin/dso-java.sh -cp classes example.Main

In Eclipse, you can start the Main program as a Terracotta-enabled application as shown in
Figure 4-1.

Figure 4-1. Running a Terracotta-enabled application in Eclipse

CHAPTER 4 ■ POJO CLUSTERING96

When the first application instance is started, you should see something like this in the
output console:

2007-01-18 15:49:42,204 INFO - Terracotta, version 2.6 as of 20080415-071248.
2007-01-18 15:49:42,811 INFO - Configuration loaded from the file at
'/Users/orion/Documents/workspace/TerracottaExample/tc-config.xml'.
2007-01-18 15:49:42,837 INFO - Log file:
'/Users/orion/Documents/workspace/TerracottaExample/terracotta/client-
logs/terracotta-client.log'.
Waiting for everyone to arrive. I'm expecting 1 other thread(s)...

This indicates that the main thread in the first instance is blocking at barrier.await().
The barrier field is an instance of java.util.concurrent.CyclicBarrier. It is designed to coor-
dinate the arrival of a specified number of threads at a certain point such that no thread is
allowed to proceed until all expected threads have arrived. Every thread that calls the method
java.util.concurrent.CyclicBarrier.await() will block until the specified number of
threads has arrived at the barrier point. Once the expected number of threads has called
await(), all the threads blocking on await() will be allowed to proceed through the await()
method. After the expected number of threads passes through the await() barrier, the barrier
is reset so that subsequent calls to await() will be blocked until the expected number of
threads calls await() again. This is why it’s called a cyclic barrier: once the barrier is released,
it recycles back to its initial state.

■Note■■ An in-depth discussion of inter-JVM thread coordination techniques using both basic concurrency
primitives and the java.util.concurrent library follows in Chapter 10.

Since the barrier is a shared object, the main thread will be blocked until another thread
in either this JVM or another JVM in this Terracotta cluster calls barrier.await(). Then, both
threads will be allowed to proceed. This will happen if we start up another application
instance. Once the second application instance is started, you should see something like the
following output in the consoles (you might see slightly different output depending on the
order in which the threads reach the various barrier points):

Step 1: Waiting for everyone to arrive. I'm expecting 1 other thread(s)...
We're all here!

Step 2: Set Up
I'm the first thread, so I'm going to populate the catalog...

Step 3: Let's do a little shopping...
I'm adding "Price: $12.00; Name: 14 blade super razor" to my cart...

CHAPTER 4 ■ POJO CLUSTERING 97

Step 4: Let's look at all shopping carts in all JVMs...
==========================
Shopping Cart
item 1: Price: $12.00; Name: 14 blade super razor

==========================
Shopping Cart
item 1: Price: $5.00; Name: Super-smooth shaving cream

Step 5: Let's make a 10% price increase...

Step 6: Let's look at the shopping carts with the new prices...
==========================
Shopping Cart
item 1: Price: $13.20; Name: 14 blade super razor

==========================
Shopping Cart
item 1: Price: $5.50; Name: Super-smooth shaving cream

In the console output of the other application instance, you should see something like
this:

Step 1: Waiting for everyone to arrive. I'm expecting 1 other thread(s)...
We're all here!

Step 2: Set Up

Step 3: Let's do a little shopping...
I'm adding "Price: $5.00; Name: Super-smooth shaving cream" to my cart...

Step 4: Let's look at all shopping carts in all JVMs...
==========================
Shopping Cart
item 1: Price: $12.00; Name: 14 blade super razor

==========================
Shopping Cart
item 1: Price: $5.00; Name: Super-smooth shaving cream

Step 5: Let's wait for the other JVM to make a price change...

Step 6: Let's look at the shopping carts with the new prices...
==========================
Shopping Cart
item 1: Price: $13.20; Name: 14 blade super razor

==========================

CHAPTER 4 ■ POJO CLUSTERING98

Shopping Cart
item 1: Price: $5.50; Name: Super-smooth shaving cream

What Just Happened
In step 1, the two threads in the different application instances were waiting for each other to
start and arrive at the same rendezvous point. In step 2, the first thread created Product
objects and added them to the clustered Catalog. In step 3, each thread pulled a Product
object out of the clustered Catalog by SKU—notice that the products added by the first thread
in one JVM are automatically available in the Catalog in the other JVM. In step 4, both threads
iterate over all of the active shopping carts in all JVMs and print the contents. In step 5, the
first thread made a ten percent price increase by iterating over all of the Product objects in the
Catalog while the second thread blocks. In step 6, both threads display all of the active shop-
ping carts—notice that the price increase was applied in one thread by manipulating the
Catalog, and the new prices were automatically reflected in all of the ShoppingCart objects in
both JVMs.

All of the clustered objects can be viewed in real time in the Terracotta administration
console. Each root can be viewed as a tree of primitives and references. Figure 4-2 is a view of
the Catalog.

Figure 4-2. A runtime view of a Product object in the Terracotta administration console

You can see the Product objects inside the catalog HashMap. In Figure 4-3, you can see
those same Product objects referenced by the ShoppingCart objects as well.

CHAPTER 4 ■ POJO CLUSTERING 99

Figure 4-3. A runtime view of the ActiveShoppingCarts object graph in the Terracotta administra-
tion console

This view shows the Product objects referenced by the LinkedList inside the
ShoppingCart.

If you run the example a second time, you will see the effect of a durable heap. The exam-
ple is designed to run in pairs of executions; by default, the CyclicBarrier defined in the Roots
class is set to block at await() until two threads arrive. After the second thread arrives, the
CyclicBarrier is reset so that the example can be run with two new invocations of
Main.main(). When you run the example a second time with a new pair of JVM invocations,
you will notice that the prices of the items maintain the ten percent price increase from the
last invocation.

What the Example Shows
This example exercises many of the strengths and features of Terracotta, the first being basic
object sharing. By declaring shared roots in the Roots class, Terracotta automatically makes all
objects referenceable from those root objects shared objects available to every connected
JVM.

The shared Catalog object is essentially a shared Map of SKUs mapped to Product objects.
Product objects can be added and removed from the Catalog simply by adding or removing
them from the shared Map. The ActiveShoppingCarts object is essentially a shared List of
ShoppingCart objects that provides a global view of all currently active shopping carts. Book-
keeping active shopping carts is as simple as modifying the list, and viewing the active
shopping carts is as simple as iterating over the list. The power of Terracotta here comes from
being able to express business policy in simple Java, while at the same time, that expression of
business policy is available clusterwide and persistent.

In step 5, a ten percent price increase was placed into effect across all products simply by
iterating over all of the Product objects and updating their prices. That change is automatically
visible to any JVM that has a reference to a Product object. This highlights two essential char-
acteristics of Terracotta: object identity and fine-grained change management.

CHAPTER 4 ■ POJO CLUSTERING100

■Caution■■ This example is meant to illustrate the transparency and simplicity of Terracotta clustering. It is
not performance-optimized. Iterating over a clustered collection will force all clustered objects into a single
thread in one JVM and, thus, does not perform well.

In an application running on a single JVM, coding a business rule like this in such a way is
rather obvious. All references to a Product object point to the same object on the heap (the
heap provides object identity); any modifications to that object are trivially made visible to
every thread with a reference to that object. But, because the JVMs in a multitier, scaled-out
architecture don’t share the same heap, object identity is broken, making changes to business
data by simple reference traversal impossible.

Typically, to make a price change visible across multiple machines in an enterprise Java
application, you would have to send messages around the cluster or flush a database cache
and force a reload or perform some similar behavior. And, at each JVM, you would have to
make sure that all of the appropriate Product objects were updated accordingly.

Without Terracotta, most enterprise Java frameworks force on you the notion of a man-
agement context from which objects are checked in and out. The manager gives application
threads copies of business entities so that multiple threads can work separately from each
other and any exceptions at runtime cannot corrupt the manager’s internal copy of objects
and data. Basically, heap can’t be trusted to be consistent across all instances of the applica-
tion, so copies and managers are used instead. Enterprise software developers are so used to
being abused by this problem that they don’t think twice about being forced to discard nice,
clear object-oriented code in favor of a complex data externalization framework to keep all
of the heaps in sync. When you can’t trust your objects, you can’t write simple code.

With Terracotta, you get all of that nice, clean object-oriented code back, because
Terracotta handles the data externalization and synchronization transparently. Terracotta
effectively provides a shared heap that all JVMs can trust. A perusal of the example code will
show that any given Product object may be referenced in a number of different places: in the
Catalog map as well as in users’ ShoppingCart objects. As you have seen from the price
increase operation, an update made to a Product object by traversing any of these references is
automatically visible across the entire cluster, just as it was made visible to all threads in the
same JVM. This is possible precisely because object identity is preserved.

Because object identity is preserved across JVMs, it’s safe again to make changes to busi-
ness data by simple reference traversal in an enterprise Java application, while achieving the
availability and scalability characteristics provided by a multi-JVM scale-out architecture.

Another important and related feature of Terracotta highlighted by the price increase
example is fine-grained change management. On a trusted heap, making a change to a prod-
uct object is as simple as updating the appropriate field. Unfortunately, the externalization
frameworks imposed by traditional enterprise Java programming usually rely on some form of
whole-object serialization or, in the worst case, whole-object-graph serialization, replication,
and synchronization. This means that a change to a single field of an object usually requires
much more than just that field to be moved around the network and patched on each JVM.

Terracotta, on the other hand, can make the same surgical field modification that nor-
mally happens in Java on a single JVM’s heap happen in a shared heap without resorting to
object or whole-graph serialization. And, because the Terracotta server knows which JVMs

CHAPTER 4 ■ POJO CLUSTERING 101

102 CHAPTER 4 ■ POJO CLUSTERING

have which portions of the shared heap, it can efficiently send only the necessary changes tai-
lored for each JVM. Terracotta’s fine-grained field-level change management is the most
efficient way to keep the shared heap synchronized.

Summary
We’ve covered a lot of ground in this chapter. First, we introduced the major concepts that
make Terracotta work. Then, we showed how those concepts are brought to bear in actual
code. By now, the power of Terracotta that you glimpsed in HelloClusteredWorld should be
taking shape in your mind. What it means to be able to write plain Java that works across
JVMs should be getting clearer.

Remember that how you use Terracotta, like Java itself, is limited only by your imagina-
tion. Terracotta was developed with the problems of scalability and high availability in mind,
and we will introduce you to many of the solutions to these problems that Terracotta provides.
But in all likelihood, many uses exist for a transparent and durable virtual JVM heap that
nobody has thought of yet.

Now that you are armed with the conceptual and practical understanding of what Terracotta
is and how it works, the following chapters will explore how Terracotta can be used in a number of
specific problem domains.

Caching

A cache provides temporary storage of data that can be accessed faster than it can be com-
puted or obtained from a more authoritative source. In the first case, values that are expensive
to compute are remembered to avoid performing the computation repeatedly. In the second
case, values are remembered to avoid obtaining them from a much slower or more expensive
source such as a database, a remote source, or a file system.

In this chapter, we will examine the many ways caching can help and hurt your applica-
tion. We will then examine how Terracotta can address some of the common problems with
caching and how to extend the benefits of caching to distributed systems. Finally, we will look
at examples of caching using basic Java data structures and also with sophisticated open
source caching libraries like Ehcache.

The Pain of Caching
While caching is an invaluable tool for reducing latency or relieving load from an overbur-
dened system of record, it does not provide its benefits without trade-offs, as anyone who has
ever managed a cache can attest. The trade-offs are generally various flavors of the following:

• Space for time: The cached data must be stored in an accessible location (e.g., RAM or
local disk) for some period of time. The cost of space in that accessible location must be
balanced against the cost of going to the source for the result.

• Freshness: Since the cache is not the authoritative source of the data, its usefulness is
relative to how fresh the data is, how important that freshness is, and how hard it is to
keep the cache fresh enough.

• Complexity: Managing the trade-offs of space and freshness introduces a degree of
complexity that can quickly become unbearable.

Let’s take a moment to walk through some of the most common ways that cache manage-
ment can make the life of a cache maintainer painful.

The Pain of Large Data Sets
If the important part of your data set (the part that you use often enough to warrant caching)
fits into available RAM and it changes slowly enough so that freshness is not an issue, caching
can be as simple as storing computed results in a map by some unique identifier, occasionally

103

C H A P T E R 5

invalidating cache entries as they grow stale. However, caches have a habit of outgrowing the
boundaries of available RAM. When that happens, you have a few choices:

• Buy more RAM. This works up to a point, but there’s a hard limit on how much RAM
you can install or is addressable by your operating system. In a JVM, very large heaps
can also present significant garbage collection tuning challenges. Suffice it to say that
buying more RAM isn’t always the best or even a viable option.

• Purge less important cache entries even though they are still valid to make room for the
more important entries. This can reduce the effectiveness of your cache to the point of
making the cache useless. If the miss rate is high enough, your cache may end up
thrashing—continually purging and reloading entries—so that the overhead of main-
taining the cache actually makes things worse.

• Spill the cache to disk or a networked cache server. This is more sophisticated, but your
cache implementation must support it. If you require this sophisticated functionality of
your cache and you are using a homegrown implementation that started out life as a
simple map, it’s probably time to swap it for an existing cache implementation that
does this kind of thing already. Unless you are in the business of writing a cache imple-
mentation, you shouldn’t extend your homegrown cache to provide these more
sophisticated features, or you will end up in the business of writing and, worse, main-
taining a cache implementation whether you like it or not.

The Pain of Staleness
Keeping a cache up to date is another common problem of cache maintenance. If you’re lucky,
you’ll be caching data that doesn’t change much. If not, you have to deal with keeping the
cache entries fresh enough. “Fresh enough” is highly data dependent. Sometimes, you can get
away with having some stale entries as long as they get updated eventually. In that case, you
might be able to get away with an algorithm-based invalidation policy.

Often, though, the cached data must agree with the system of record at all times. This is
common for financial and transaction data. The fresher the cache must be, the more con-
straints exist on the implementation. Maintaining both freshness and a hit rate high enough
to be worth using a cache at all may require extreme measures. How a cache is kept fresh is
ultimately an architectural and business decision.

The Pain of Duplication
The many pains of caching become even worse if the same data source is cached in multiple
locations, as is common in a scaled-out deployment where many instances of the same appli-
cation all keep their own copies of the same cached data. As each new instance of the cache
comes online, it must query the system of record to populate the cache with entries it doesn’t
have yet. As such, the protection provided by caching to the system of record is the reciprocal
of the number of copies of the cache. Terracotta calls this the 1/n effect (pronounced “one-
over-n”), where the effectiveness of a cache at protecting a precious data source is one over
the number of copies of the cache.

Figure 5-1 demonstrates the 1/n effect: if there are n application servers, each application
server must load the same data as it is requested, which causes n–1 unnecessary cache loads.

CHAPTER 5 � CACHING104

Ultimately, this means that the cache efficiency can be no more than 1/n of its possible
efficiency.

Figure 5-1. The 1/n effect

Keeping many copies of the same cached data up to date presents a similar problem,
especially if, for example, the cache deployment uses network messages to send updates or
invalidation messages. The number of update or invalidation messages is a multiple of the
number of copies of the cache. As the number of instances of a scale-out deployment grows,
the overhead of processing these cache messages can overwhelm the connecting network and
the infrastructure used to send such messages.

Last but not least, operating many caches can lead to an administrative and tuning night-
mare as the complexity of managing the state, freshness, and size of many caches mounts.

How Terracotta Can Help
The Terracotta virtual heap can help resolve the complexity and reduce the cost of caching
along every painful dimension we have so far discussed. When a cache lives on the virtual
heap, it is simultaneously available to every instance of the cache connected to the Terracotta
cluster. This minimizes the 1/n effect, because each cache entry needs to be loaded only once
for the entire cluster, not once per instance of the cache. And, because the Terracotta virtual
heap is persistent, it survives application server restarts, avoiding the hit to the system of
record such a restart would normally engender.

CHAPTER 5 � CACHING 105

This is shown in Figure 5-2, where a load of the cache in the first application server will
place the data in the Terracotta server. Subsequent reads in the other application servers of
the same data causes the data to be paged in transparently from the Terracotta server, and the
database does not need to be accessed.

Figure 5-2. Terracotta transparently pages Item1234 into cache only when the load balancer
sends traffic to other application server instances.

Similarly, the virtual heap removes the complexity of keeping a cache up to date across
many instances of the cache. A single update to the cache in one server is automatically visible
to every instance of the cache. Because such changes are ACID (see note), you can rely on the
cache being up to date everywhere, even if your data is very sensitive data and must be accu-
rate. And, because changes to the Terracotta virtual heap are already optimized to send only
fine-grained changes to only the nodes that have the changed data resident in memory, you
avoid sending the flurry of update messages that would otherwise occur.

CHAPTER 5 � CACHING106

�Note�� “ACID” is an acronym used to describe properties of a transaction; it stands for atomicity, consis-
tency, isolation, and durability. Atomicity means that a transaction is either committed or rolled back, never
partially committed. Consistency means that the integrity of the data store is maintained as invariant before,
during, and after the transaction. Isolation means that one transaction in progress does not see the in-
progress state of another transaction. Durability means that once a transactional commit has been
acknowledged, it is saved and cannot be lost. In reality, some of these properties may be relaxed at the
user’s discretion to improve performance. For example, databases often allow you to choose your level of
transaction isolation to improve concurrency and performance.

The problem of very large data sets is solved by Terracotta’s built-in memory management
capabilities, where the hottest data is kept in local heap but cooler cache entries are pushed
and pulled automatically to and from the Terracotta server. This means that the entire cache
can fit in the virtual heap, radically increasing the cache’s effectiveness on large data sets,
since you don’t have to prematurely purge cache entries. Because the virtual heap is disk
backed, your cache can grow to the size of available disk on the Terracotta server.

To see these pain-mitigating features in action, let’s look at some real-world examples of
caches and their Terracotta-enabled counterparts.

A Simple Example of Caching
A basic cache can be built just using a Map in Java. In this example, we use a simple HashMap to
cache information about a user. Listing 5-1 shows the use of a Map as a cache of users (repre-
sented by a String) by identifier (represented by an Integer).

Listing 5-1. Simple Map Example
package org.terracotta.book.caching.map;

import java.util.HashMap;
import java.util.Map;

public class UserCacheExample {
private Map<Integer, String> userCache = new HashMap<Integer, String>();

public String findUser(Integer id) {
String user = cacheGet(id);
if (user == null) {

user = fetch(id);
cachePut(id, user);
System.out.println("\t- MISS");

} else {
System.out.println("\t- HIT");

CHAPTER 5 � CACHING 107

}
return user;

}

private String cacheGet(Integer id) {
synchronized (userCache) {
return userCache.get(id);

}
}

private void cachePut(Integer id, String user) {
synchronized (userCache) {
userCache.put(id, user);

}
}

private String fetch(Integer id) {
switch (id.intValue()) {
case 0: return "Ari Zilka";
case 1: return "Alex Miller";
case 2: return "Geert Bevin";
case 3: return "Taylor Gautier";
case 4: return "Jonas Boner";
default:
throw new RuntimeException("Unknown id: " + id.intValue());

}
}

public static void main(String arg[]) throws InterruptedException {
UserCacheExample userCache = new UserCacheExample();
for (int i = 0; i < 10; i++) {
helpFind(i % 5, userCache);

}
}

public static void helpFind(int id, UserCacheExample userCache) {
System.out.print("Find " + id);
userCache.findUser(id);

}
}

In this program, the userCache attribute is a HashMap serving as a cache of users. The
findUser() method takes a user identifier and looks up the name in the cache. If the user is
not found, we must look up the real object (which we are mocking out with the fetchUser()
method) and use it to populate the cache. We return the user that we found either in the cache
or from the fetch and print to the console whether this find operation was a hit or a miss.

Since the Map in this program is not synchronized, we must protect access to the Map by
synchronizing on the same Map instance when reading or writing to the cache.

CHAPTER 5 � CACHING108

Running this program will loop through all the user identifiers twice. On the first call to
each, there will be a cache miss, and the cache will be populated. On the second time through
the identifiers, all requests will be a hit as the cache is now fully populated. The output follows:

Find 0 - MISS
Find 1 - MISS
Find 2 - MISS
Find 3 - MISS
Find 4 - MISS
Find 0 - HIT
Find 1 - HIT
Find 2 - HIT
Find 3 - HIT
Find 4 - HIT

Distributed Caching
Distributed caching addresses the question of what we do when we run our application and
share data across many nodes in a cluster. Further, suppose that we are not just storing these
User objects but occasionally modifying them. In this scenario, when a particular User object
is modified, the modified object needs to be replicated across the cluster. Depending on the
nature of the data, it may be very important that the same User object is not modified at the
same time in a different node.

There are a number of approaches taken to address these issues of replication and
coherency. Often, replication is performed by notifying other nodes in the cluster that data in
the cache has changed. This notification can happen over TCP, multicast, RMI, JMS, or other
means. Each local cache must then listen for and apply remote changes by invalidating the
local cache and/or reloading the value. A fully coherent cache is typically built using transac-
tions and commit protocols.

Looking at our code example and considering these issues, it should be clear that no sim-
ple modification will allow us to turn our Map into a distributed Map. The changes required
would be extensive, invasive, and substantially more complex than the existing code.

Transparent Distributed Caching
Fortunately, Terracotta provides transparent distributed shared objects and makes turning
this example into a distributed cache a simple exercise. Because Terracotta is transparent (to
the application), the code itself does not need to be modified. Instead, we create a Terracotta
configuration file that specifies how the objects in this application should be clustered and
locked. Then, when the application is run, the data can be accessed in every node of the clus-
ter with no additional changes. Updates to the data on one node are automatically (and safely)
made available on every node.

The complete configuration file is in Listing 5-2. We will examine each piece of the config-
uration in turn. A complete reference to the Terracotta configuration file may be found online
at http://www.terracotta.org/confluence/display/docs1/Configuration+Guide+and+Reference.

CHAPTER 5 � CACHING 109

Listing 5-2. CacheUserExample Distributed Configuration

<?xml version="1.0" encoding="UTF-8"?>
<con:tc-config xmlns:con="http://www.terracotta.org/config">
<servers>

<server host="%i" name="localhost">
<dso-port>9510</dso-port>
<jmx-port>9520</jmx-port>
<data>terracotta/server-data</data>
<logs>terracotta/server-logs</logs>

</server>
</servers>
<clients>

<logs>terracotta/client-logs</logs>
</clients>
<application>

<dso>
<instrumented-classes>
<include>

<class-expression>org.terracotta.book.caching.map.UserCacheExample
</class-expression>

</include>
</instrumented-classes>
<roots>
<root>

<field-name>org.terracotta.book.caching.map.UserCacheExample.userCache
</field-name>

</root>
</roots>
<locks>
<autolock>

<method-expression>
* org.terracotta.book.caching.map.UserCacheExample.cacheGet(..)

</method-expression>
<lock-level>read</lock-level>

</autolock>
<autolock>

<method-expression>
* org.terracotta.book.caching.map.UserCacheExample.cachePut(..)

</method-expression>
<lock-level>write</lock-level>

</autolock>
</locks>

</dso>
</application>

</con:tc-config>

CHAPTER 5 � CACHING110

First, the <servers> and <clients> blocks will specify the ports and log files to use for the
Terracotta server and clients.

Next, we must specify which classes need to be instrumented in our application. Instru-
mented classes will include any classes that are shared and any classes that hold clustered
root objects. In our example, we simply instrument our single class.

Next, we specify the root objects that will be clustered. Any object attached to an object
graph connected to the root will be clustered (several techniques exist for exclusion however).
In our case, the Map field userCache will be clustered, so we declare it as a root. Once we declare
the userCache as a root, all objects referred to by the userCache will become clustered objects.

Finally, we must specify the locking constraints around our clustered root. In our case, we
want to automatically lock the two methods that access the cache. We will lock the cacheGet()
method with a read lock (so multiple threads in the cluster can read simultaneously) and the
cachePut() method with a write lock as it modifies the Map.

We can then start the Terracotta server using start-tc-server.sh and run the application
again as a Terracotta Client application using dso-java.sh:

dso-java.sh –Dtc.config=tc-config.xml \
org.terracotta.book.caching.map.UserCacheExample

When we do this, we will see identical output to the simple caching example. But if we
run it again, we’ll see something different, which follows:

Find 0 - HIT
Find 1 - HIT
Find 2 - HIT
Find 3 - HIT
Find 4 - HIT
Find 0 - HIT
Find 1 - HIT
Find 2 - HIT
Find 3 - HIT
Find 4 - HIT

On the second run, we see that every user lookup is a cache hit. This happens because the
cache is now shared and persistent due to the configuration we added. When the second
client starts up, it has the ability to transparently load the cache objects from the Terracotta
shared virtual heap. These objects are loaded on demand, and thus expensive calls to com-
pute or retrieve the cache values are unnecessary.

You’ve seen in this example that it is quite easy to construct a single virtual machine
application using a Map as a cache and then cluster or distribute that application using Terra-
cotta by applying some external configuration. In many applications, this basic technique is
sufficient to build distributed shared data structures. In others, you’ll want a cache with more
sophisticated behavior, cache eviction policies, and so on, and in that case, you can use popu-
lar open source cache frameworks with Terracotta integrated.

CHAPTER 5 � CACHING 111

Caching with Maps
The JDK provides a range of map implementations that you can choose from when creating
your application. This section will explore the available choices and the various trade-offs in
both Java and Terracotta.

Unsorted Maps
In the JDK, your unsorted Map implementations include Hashtable, HashMap, LinkedHashMap,
and ConcurrentHashMap.

• Hashtable is a legacy data structure, provided in the initial JDK and predating the mod-
ern Java Collections API. It should be considered a deprecated part of the JDK and is not
recommended for use.

• HashMap is the most commonly used Map implementation. It is unsynchronized, so it
should be not be used in concurrent (or distributed) code without external synchro-
nization. HashMap stores its values in a single large table. When the internal table is
updated, it must be locked for all users. This global locking can often become a per-
formance bottleneck. Terracotta provides excellent support for HashMap but will face the
same bottleneck in locking across the cluster on updates.

• ConcurrentHashMap is generally the best choice when sharing maps with Terracotta. The
ConcurrentHashMap API is designed for concurrent use. The implementation uses inter-
nal locking, so calls to the map do not need external synchronization for safety.
Internally, data is split across many tables (also called segments), and each segment
can be locked individually. This generally yields far better performance under concur-
rent use than a normal HashMap, both in everyday Java and with Terracotta.

• LinkedHashMap is basically a HashMap, but one with an additional doubly linked list run-
ning through the entries. The linked list is usually used to track insertion order,
although it can also be used to track usage of entries in the Map. This additional capabil-
ity makes it easy to turn LinkedHashMap into a cache with LRU (least recently used)
cache eviction semantics. At the time of this writing, LinkedHashMap is not supported by
Terracotta.

The Collections.synchronizedMap() method can be used to wrap a synchronized thread-
safe wrapper around an unsynchronized Map such as HashMap or LinkedHashMap. By default,
Terracotta does not provide automatic locking on synchronized Map objects returned from this
method, which gives you more freedom in distributed lock granularity. You can add locking
support to the synchronized wrapper collections and legacy collections like Hashtable and
Vector by using the autolocked collections Terracotta Integration Module, which is discussed
later in this chapter.

Sorted Maps
The JDK also provides an interface for sorted maps (SortedMap), which is implemented by
TreeMap. Terracotta fully supports this implementation (which is backed by a tree data struc-
ture), but unsorted Map will get() and put() faster than a TreeMap. This is consistent with the
relative performance of get() and put() for TreeMap and Map in regular Java. Performance is

CHAPTER 5 � CACHING112

slower because the data is stored in a tree that must be balanced on put and remove actions
and traversed on a get action.

The Collections.synchronizedSortedMap() method can be used to wrap a synchronized
thread-safe wrapper around an unsynchronized SortedMap like TreeMap. By default, Terracotta
does not provide automatic locking on synchronized Map instances returned from this
method, which gives you more freedom in distributed lock granularity. Again, you can add
locking support by using the autolocked collections Terracotta Integration Module.

ConcurrentSkipListMap was added in Java 6 and provides a high-performance concurrent
sorted Map implementation. However, it is implemented using lock-free algorithms, and these
algorithms are much more difficult to efficiently port to distributed implementations. Terra-
cotta does not yet support ConcurrentSkipListMap.

Autolocked Collections
When using shared collections with Terracotta, one of the keys to getting excellent perform-
ance is to optimize locking. Terracotta provides multiple lock levels, and in cases where only
a read lock is required, using distributed read locks greatly improves performance.

By default, synchronized collections do not have Terracotta locking applied to them so
that your application is free to decide the best way to lock access to a synchronized collection.

If you wish to provide locking at the same granularity as a normal, synchronized collec-
tion, Terracotta provides a Terracotta Integration Module (TIM) for autolocked collections that
will do this.

The available autolocked collections follow:

• tim-vector: Automatically locks java.util.Vector

• tim-hashtable: Automatically locks java.util.Hashtable

• tim-synchronizedcollection: Automatically locks collections returned from
java.util.Collections.synchronizedCollection()

• tim-synchronizedmap: Automatically locks collections returned from
java.util.Collections.synchronizedMap()

• tim-synchronizedset: Automatically locks collections returned from
java.util.Collections.synchronizedSet()

• tim-synchronizedsortedmap: Automatically locks collections returned from
java.util.Collections.synchronizedSortedMap()

• tim-synchronizedsortedset: Automatically locks collections returned from
java.util.Collections.synchronizedSortedSet()

Each of these autolocked collection modules specifies read and write locking appropri-
ately on the synchronized collection. For example, getting an item from an autolocked
synchronized Map will obtain a clustered read lock, whereas a put() will obtain a clustered
write lock. This will yield better performance by requiring less exclusive locks for reads,
allowing multiple concurrent readers in the cluster.

CHAPTER 5 � CACHING 113

Downloading and Installing the Autolocked Collections TIM
To use the autolocked Collections TIM, you will first need to download and install it from the
Terracotta Forge at http://forge.terracotta.org.

�Note�� There are a variety of ways to install modules, depending on whether you want to install from
source or binary and whether you want to load the module into your Terracotta installation or your own local
repository. For this example, we’ll assume you’re going to download in the binary form and install it in your
Terracotta installation. For more information, see the Terracotta Forge web site or Chapter 9.

To download the binary distribution for tim-collections, version 2.0.1, issue this com-
mand:

$ curl -o tim-collections-2.0.1-bin.zip \
http://forge.terracotta.org/\
projects/tim-collections/downloads/tim-collections-2.0.1-bin.zip

This command will download a zip file containing several JARs, one per collection type.
To unzip and install these JARs to your Terracotta installation use these commands:

$ unzip tim-collections-2.0.1-bin.zip
$ cd tim-collections-2.0.1
$ cp *.jar ${TC_INSTALL_DIR}/modules

This completes the installation of the autolocked collections TIM. They can now be used
separately or together in any Terracotta installation.

Using Autolocked Collections
To install the autolocked collections TIM in your own project, add it to the modules section as
shown in Listing 5-3.

Listing 5-3. Loading Synchronized Collections in the Terracotta Configuration

<tc:tc-config xmlns:tc="http://www.terracotta.org/config">
<clients>

<modules>
<module name="tim-synchronizedcollection" version="2.0.1" />

</modules>
</clients>

</tc:tc-config>

While autolocked collections are an easy way to get proper clustered locking for access to
a synchronized collection, you may wish to provide your own locking at the application level

CHAPTER 5 � CACHING114

so that composite operations such as making multiple related calls to get() against a collec-
tion (synchronized or not) can be locked appropriately. In that case, you should not use the
autolocked collection modules and should instead specify the locking explicitly in your Terra-
cotta configuration.

Bulk Loading a Map
One special case for using shared maps is bulk loading, where a large number of items need to
be added to a map at once, for instance, when priming a cache. Normally, each put() method
to a Map would define an independent transaction, but generally, it is desirable to use a much
wider transaction scope when performing a bulk load. This makes better use of bandwidth
and minimizes locking.

To handle a scenario like this, it is advisable to wrap the Map implementation in your own
class and provide locking on that class at a coarser granularity. Generally, you will find that
using very fine-granularity loading (calling put() for every cache item) will yield poor per-
formance due to the large number of transactions. At the other end of the scale, doing a single
synchronized block around a single putAll() call is likely to give much better performance at
the risk of causing out of memory errors from having one very large transaction. Generally, the
optimal performance is seen when batching put() calls, giving a combination of coarser gran-
ularity with memory safety.

�Tip�� Terracotta can batch and change the order of transactions without violating the expected behavior of
the JVM. As a result, some applications will find that Terracotta is fast at managing fine-grained updates and
object changes without manually batching put() calls.

Another interesting aspect to consider is concurrency. Using putAll() or batching put()
calls will reduce overall I/O and improve performance but will also reduce concurrency by
using a coarser-grained lock scope. Understanding the best trade-off point will depend on
your application and should be determined based on experimentation.

Listing 5-4 shows a Cache class that wraps a Map and provides a method to bulk load in
batches (batch size can be specified). Note the synchronized block in this method that creates
a lock just around each batch of put operations. By varying the batch size, you can vary the
size and number of transactions that occur.

Listing 5-4. Loading a Map in Batches

package org.terracotta.book.caching.batch;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class Cache<K, V> {

CHAPTER 5 � CACHING 115

private final Map<K, V> data = new HashMap<K, V>();

// ... other methods like get and put

public void putAllBatched(Map<K, V> entries, int batchSize) {
List<Map.Entry<K, V>> entryList = new ArrayList<Map.Entry<K, V>>(

entries.entrySet());
int itemCount = entries.size();
int batchStart = 0; // first index of current batch
while (batchStart < itemCount) {
int batchEnd = batchStart + batchSize;
if (batchEnd > itemCount) {

batchEnd = itemCount;
}

synchronized (this) {
for (int i = batchStart; i < batchEnd; i++) {

Map.Entry<K, V> entry = entryList.get(i);
data.put(entry.getKey(), entry.getValue());

}
}

batchStart = batchEnd;
}

}
}

We can build a driver program for testing this batched load, as shown in Listing 5-5. This
program takes two arguments: the number of items to load into the cache and the number of
repetitions to run for each batch size. This test will then load a clustered cache starting with
a batch size of one and multiplying the batch size by ten for each subsequent test. For each
batch size, a number of repetitions are run, and the best time is output.

Listing 5-5. Test Program for Batching

package org.terracotta.book.caching.batch;

import java.util.HashMap;
import java.util.Map;

public class CacheMain {
public static void main(String arg[]) {

int itemCount = Integer.parseInt(arg[0]); // to bulk load
int reps = Integer.parseInt(arg[1]); // repetitions in test

CHAPTER 5 � CACHING116

for(int batchSize=1; batchSize<=itemCount; batchSize=batchSize*10) {
long bestElapsed = Long.MAX_VALUE;
CacheMain main = new CacheMain(itemCount, batchSize);
for(int rep=0; rep<reps; rep++) {
long start = System.currentTimeMillis();
main.primeCache();
long elapsed = System.currentTimeMillis() - start;
if(elapsed < bestElapsed) {

bestElapsed = elapsed;
}

}

System.out.println("Loaded " + itemCount +
" items with batch size = " + batchSize +
" best time = " + bestElapsed + " ms");

}
}

private final int batchSize;
private final Map<String,String> data;
private final Cache<String,String> cache = new Cache<String,String>(); // Root

public CacheMain(int itemCount, int batchSize) {
this.batchSize = batchSize;
data = generateData(itemCount);

}

private Map<String,String> generateData(int count) {
Map<String,String> data = new HashMap<String,String>();
for(int i=0; i<count; i++) {
String key = "key" + i;
String value = "value" + i;
data.put(key, value);

}
return data;

}

public void primeCache() {
cache.putAllBatched(data, batchSize);

}
}

We can configure Terracotta by specifying the necessary instrumentation, roots, and lock-
ing, as shown in Listing 5-6. This application has a single class to instrument, and the cache
itself as the single root. Additionally, there is one method that adds a batch to the cache that
must be write locked.

CHAPTER 5 � CACHING 117

Listing 5-6. Configuration for Batching Test

<?xml version="1.0" encoding="UTF-8"?>
<con:tc-config xmlns:con="http://www.terracotta.org/config">
<servers>

<server host="%i" name="localhost">
<dso-port>9510</dso-port>
<jmx-port>9520</jmx-port>
<data>terracotta/server-data</data>
<logs>terracotta/server-logs</logs>

</server>
</servers>
<clients>

<logs>terracotta/client-logs</logs>
</clients>
<application>

<dso>
<instrumented-classes>
<include>

<class-expression>org.terracotta.book.caching.batch.Cache
</class-expression>

</include>
</instrumented-classes>
<roots>
<root>

<field-name>org.terracotta.book.caching.batch.CacheMain.cache</field-name>
</root>

</roots>
<locks>
<autolock>

<method-expression>
void org.terracotta.book.caching.batch.Cache.putAllBatched(java.util.Map, int)

</method-expression>
<lock-level>write</lock-level>

</autolock>
</locks>

</dso>
</application>

</con:tc-config>

When this program is run with Terracotta, you will see output like the following:

dso-java.sh –Dtc.config=tc-config.xml -Xms512m -Xmx512m \
org.terracotta.book.caching.batch.CacheMain 100000 10

CHAPTER 5 � CACHING118

Loaded 100000 items with batch size = 1 best time = 1063 ms
Loaded 100000 items with batch size = 10 best time = 226 ms
Loaded 100000 items with batch size = 100 best time = 134 ms
Loaded 100000 items with batch size = 1000 best time = 130 ms
Loaded 100000 items with batch size = 10000 best time = 116 ms
Loaded 100000 items with batch size = 100000 best time = 125 ms

First, we see what happens in the most fine-grained case, where a batch has a size of just
one. In this case, the number of transactions will be equal to the size of the cache (100,000
items here). The fine-grained batching use case shows the worst time and indicates that the
I/O involved has a significant impact.

After that, the size of each batch multiplies by ten. The output indicates that increasing
the batch size improves performance to a point, but then performance starts to decrease,
probably as the memory overhead and garbage collection start to have an impact. As stated
before, using very coarse-grained transactions (such as a single transaction encompassing the
entire load) is more likely to yield an OutOfMemoryError scenario.

Terracotta is working to render this batching optimization unnecessary. In the future,
Terracotta will automatically adjust transaction boundaries and optimize I/O in the case of
a series of many fine-grained transactions.

Locking and Maps
Listing 5-4 and its associated configuration in Listing 5-6 showed how to wrap a Map into a
custom Cache class and specify locking at the Cache level using automatically clustered syn-
chronization. The Cache class in Listing 5-4 omits all other methods, but if it had read-
oriented methods like get(), we would recommend that the lock-level for that method be
specified as read, not write. This will allow multiple readers in the cluster to concurrently
access the HashMap. The write lock level will perform similarly to a synchronized block in Java.

As previously mentioned, the autolocked collection TIMs provide automatic locking for
methods in various synchronized collections and will properly specify read and write locks as
necessary.

Maps of Maps
One of the benefits of using Terracotta instrumented versions of the Map implementations is
that values in the Map can be flushed out of the JVM, since they are stored in the virtual heap.
Terracotta will automatically fault the object back into the JVM when it is needed, for example
on a get().

�Note�� The java.util.TreeMap implementation uses logical instrumentation to maintain the sorted
nature of the internal tree structure across the cluster. Logical instrumentation records calls against the
TreeMap and replays them on other JVMs in the cluster. Thus, each JVM maintains its own sorted tree struc-
ture. One side effect of this technique is that value objects are never faulted out of the TreeMap structure, in
contrast to HashMap and ConcurrentHashMap.

CHAPTER 5 � CACHING 119

However, the key values in a HashMap or ConcurrentHashMap are not faulted out of the JVM,
so all keys in a Map must fit in memory. In the case of a very large Map, the size of the key set
must not exceed the JVM heap size. If, for example, your key objects include a 100-byte String
field and two integer fields, the object would be approximately 108 bytes. If the Map contains
one million keys, the total memory taken by the set of keys is 108MB. Always make sure the set
of keys can fit in Java heap.

One strategy that can be used to address this problem is to create a Map of Maps. This will
allow the submap, which is a value of the top-level Map, to be faulted out entirely if not in use
by a particular node. If a partitioning strategy is used where each node handles a subset of the
data, the top-level Map should be keyed based on the same partitioning strategy (by ID space,
geography, or whatever other means is used). Terracotta will then naturally fault out submaps
that are not in use by the partition on a particular node.

A Deeper Look at Caching
Now that you’ve seen some examples of using simple Map implementations for caching, it’s
time to examine caching in greater depth and see how we can fully leverage the power of Ter-
racotta to handle a broader range of shared data use cases.

Eviction and Expiration
In the simple example at the beginning of this chapter, we checked our cache for the presence
of a user and, if necessary, loaded and cached that user. You may have noticed that no code
ever removed users from the cache. This means that, over time, the cache will grow without
bound and could ultimately contain all users if every user has been accessed.

In some limited cache applications, this may be acceptable. For example, if the maximum
number of items in the cache is fixed, the cache will not grow without bound. However, in
most use cases, we must consider how items will be evicted (removed) from the cache. Cache
eviction can be based on a number of factors such as size (evict when too many items exist),
time (periodically evict expired elements), or demand from some external event.

Element eviction generally follows a policy based on either usage or age. The most com-
mon usage eviction strategies follow:

• LRU (least recently used) will remove the item with the oldest last-accessed timestamp.

• LFU (least frequently used) will remove the item that has been used the fewest number
of times.

• FIFO (first in, first out) works like a queue to remove the oldest item, regardless of use.

Other strategies may also be applicable based on application-specific needs. For example,
sometimes, allowing items to expire based on a combination of absolute age and use is helpful.

The policy used in your application will typically depend on the application. If you are
using a Map-based application, you generally have full control over how and when to evict, and
any of the preceding strategies may be employed. If you are using a caching library, the library
will often provide one or more eviction algorithms or let you plug in your own.

As one example, we’ll discuss later how Terracotta supports eviction and expiration when
used with Ehcache.

CHAPTER 5 � CACHING120

Persistence
In many cases, it is faster to pull a cached item from disk than it is to retrieve it from the data-
base or other system of record. In those cases, building caches that use disk to grow past the
constraints of available JVM heap is worthwhile. Many cache systems provide the ability to
spill the cache to disk when it becomes too large. In general, Java-based cache frameworks rely
on serialization to persist to disk.

Persistence can also be used to avoid reloading the cache on startup by flushing the cache
to disk on shutdown (or periodically) and starting from that backup on restart. This can
greatly reduce the time to warm up the cache in a restarted process. The disk cache is usually
a risky architecture if cache eviction, cache sorting, and searching are requirements. The disk
is slow, and when these operations move from traversing RAM to disk, the application slows
down. All these concerns imply that spill to disk is good for managing data when the database
cannot respond as fast as the cache’s disk but spill to disk does not improve throughput or
latency unless the database is significantly slower than the local disk.

Distributed Caching
As you scale your application across multiple nodes, you will also want to scale your applica-
tion caches. For read-only caches, you can get away with having separate independent caches
in each application node. This is somewhat wasteful, as you are typically lazily fetching data
from the database on multiple nodes for any hot item but can still provide some benefit.

For read-write caches, it is not acceptable to use independent caches, as they will be out
of date, and users will experience inconsistent results when they hit a node that has out-of-
date data. The typical approach in this case is to coordinate the state of the cache among the
nodes. When one node modifies an item in the cache, it sends an invalidation event to all
other nodes in the cache. To maintain cache coherency across the cluster, this invalidation
broadcast must either wait for acknowledgement or implement some other complicated ver-
sioning scheme. Invalidation is also based on the assumption that there is some more
permanent backing store.

There are some major problems with broadcast and acknowledgement. The most obvious
problem is that broadcasting introduces a significant performance hit to the caching system,
which will necessarily reduce the efficiency of the cache. It is still likely to be faster than going
back to the database for the data, but it is adding significant network overhead. Additionally,
broadcast messaging introduces coupling between all the nodes in the system, so a bad node
can infect other nodes in the cluster as the other nodes wait for acknowledgments from the
bad node. In the worst case, a single bad node can actually bring down a cluster, which elimi-
nates the whole benefit of having a cluster in the first place.

Partitioned Data
One important strategy for distributed caching is the concept of data partitioning. Partitioning
involves breaking up the data set across nodes such that each node in a cluster handles a sub-
set of the data, and some component (such as a load balancer) directs traffic appropriately in
front of the cluster. Partitioning can be used to reduce the need for broadcast and cluster com-
munication. However, it also makes high availability more challenging, as the partitioned
cache state lives at only one place in the cluster.

CHAPTER 5 � CACHING 121

As we discussed in Chapter 2, you can divide the data in the database based on some key,
as Figure 5-3 demonstrates.

Figure 5-3. Partitioning with Terracotta (This figure is same as Figure 2-4.)

We will see in the following section how Terracotta is an excellent companion service to
partitioned data.

Leveraging Terracotta
Terracotta provides a scalable, highly available technology for building distributed shared data
stores. It addresses the critical issues with distributed caching: persistence, coherency, and
performance.

Terracotta provides a virtual, clustered, persistent Java heap and thus provides persist-
ence as an intrinsic part of its architecture. It is not necessary to implement or use a caching
technology that spills cache to disk and makes it persistent, because Terracotta can do this
automatically by using a persistent L2 server. Also, because that state is persistent, it is avail-
able on node start-up and will be faulted into the JVM as necessary without any additional
setup.

Terracotta also provides a truly coherent cache without trading off scalability or perform-
ance. Changes in the cache can occur at a fine-grained field level and are propagated to the
Terracotta server cluster, not directly to all other application nodes. As a cached data value is
needed, it will be dynamically faulted into each node that needs it. This avoids the depend-
ence on broadcast and the coupling between nodes in the application cluster.

Performance is a key concern in any distributed system, and Terracotta optimizes per-
formance through a number of techniques. One of the most important differentiators for
Terracotta is that Java serialization is not used when transmitting updates through the cluster.
Because changes are trapped at the field level, whole object graphs do not need to be trans-
mitted—just the particular changed value. Avoiding serialization alone accounts for a
significant performance improvement over many other clustered data solutions, virtually all
of which rely on some form of Java serialization. The performance improvement in this case
comes from the fact that the CPU and the heap are not burned on allocating and deallocating

CHAPTER 5 � CACHING122

byte arrays for serialized object data. Additionally, the need to send updates only to the Terra-
cotta server, instead of broadcasting them to the every node in the cluster, yields a significant
performance improvement. The biggest performance benefit comes from the fact that the
Terracotta server computes the patch updates that each JVM needs, and delivers a custom
update payload for each JVM’s memory. The JVM then patches its own memory.

Terracotta will automatically fault objects in and out of memory dynamically based on
use and is thus a perfect partner in a partitioning strategy. If your cache is distributed across
a cluster and access to your data is partitioned, each node will handle a specific subset of the
data. For example, each node might handle user names based on their starting letter. Terra-
cotta will naturally only fault the necessary data into the JVM at each node that is needed for
that partition. So, each node needs only a portion of the data in memory that perfectly
matches the data it is using. This strategy can be used to achieve high performance and
scalability.

However, Terracotta also addresses the high availability aspect of scaling out an applica-
tion across hardware nodes as every node has access to all of the distributed cache if
necessary. If a particular node goes down and a load balancer directs new traffic to another
node, that node can fault in objects for another partition in addition to its original partition.
All of this happens automatically as a consequence of Terracotta’s transparent shared virtual
heap without any explicit command from the application. See Chapter 11 for a discussion of
how to use Terracotta to detect JVM failure and automatically restart JVMs. The server sends
JMX events to members of the cluster about nodes coming and going using the capability
called cluster membership events.

Caching with Ehcache
In previous sections, we looked at how you can use the standard Java collection APIs to build
shared data structures with Terracotta. Using a shared Map is easy and takes care of the ability
to save and retrieve cached values but does not address the need to handle eviction and expi-
ration of elements within the cache. Building a custom solution around a Map is certainly
possible, but for many uses, you will find it simpler to use a cache framework that provides
support for eviction and expiration out of the box.

There are a number of open source caching frameworks available in the market, and
Terracotta integrates with several of the most popular. In this section, we’ll look at Terracotta
integration with Ehcache, an excellent and popular caching solution. Ehcache provides a rich
set of caching capabilities, including pluggable expiration and eviction policies, persistent
storage, delivery of change events to your own methods, and even support for distributed
caches. You can find more information about Ehcache at its web site http://ehcache.
sourceforge.net.

Rewriting the Cache Example
To get started with Ehcache, we’ll rework the simple example from Listing 5-1. Only a few
changes are necessary.

In Listing 5-7, we must import the Ehcache classes and declare a CacheManager. Each
CacheManager has its own configuration, which can be obtained in a variety of ways. For this
example, we will use the default method of finding an ehcache.xml file in the classpath. For
more information on the Ehcache API, see the Ehcache documentation on its web site.

CHAPTER 5 � CACHING 123

Additionally, the cacheGet() and cachePut() methods have been reimplemented to look
up the cache by name and use it appropriately.

Listing 5-7. Rewritten Cache Example Using Ehcache

package org.terracotta.book.caching.ehcache;

import net.sf.ehcache.Cache;
import net.sf.ehcache.CacheManager;
import net.sf.ehcache.Element;

public class UserEhcacheExample {

private CacheManager manager = new CacheManager();

public String findUser(Integer id) {
String user = cacheGet(id);
if (user == null) {
user = fetch(id);
cachePut(id, user);
System.out.println("\t- MISS");

} else {
System.out.println("\t- HIT");

}
return user;

}

private String cacheGet(Integer id) {
Cache userCache = manager.getCache("userCache");
Element element = userCache.get(id);
if (element != null) {
return (String) element.getObjectValue();

} else {
return null;

}
}

private void cachePut(Integer id, String user) {
Cache userCache = manager.getCache("userCache");
userCache.put(new Element(id, fetch(id)));

}

private String fetch(Integer id) {
switch (id.intValue()) {
case 0: return "Ari Zilka";
case 1: return "Alex Miller";
case 2: return "Geert Bevin";

CHAPTER 5 � CACHING124

case 3: return "Taylor Gautier";
case 4: return "Jonas Boner";
default:
throw new RuntimeException("Unknown id: " + id.intValue());

}
}

public static void main(String arg[]) throws InterruptedException {
UserEhcacheExample userCache = new UserEhcacheExample();
for (int i = 0; i < 10; i++) {
helpFind(i % 5, userCache);

}
}

public static void helpFind(int id, UserEhcacheExample userCache) {
System.out.print("Find " + id);
userCache.findUser(id);

}
}

The ehcache.xml configuration file (Listing 5-8) defines named cache configurations, in
this case, for a cache named userCache. This file is being loaded from the classpath for our
example.

Listing 5-8. ehcache.xml Configuration File

<ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="ehcache.xsd">

<cache name="userCache"
maxElementsInMemory="10000"
memoryStoreEvictionPolicy="LFU"
eternal="false"
timeToIdleSeconds="300"
timeToLiveSeconds="600"
overflowToDisk="false"
diskExpiryThreadIntervalSeconds="120"
/>

<defaultCache
maxElementsInMemory="10000"
memoryStoreEvictionPolicy="LRU"
eternal="false"
timeToIdleSeconds="120"
timeToLiveSeconds="120"
overflowToDisk="true"
diskSpoolBufferSizeMB="30"
maxElementsOnDisk="10000000"

CHAPTER 5 � CACHING 125

diskPersistent="false"
diskExpiryThreadIntervalSeconds="120"
/>

</ehcache>

Let’s look briefly at the ehcache.xml configuration file. This file contains two blocks. The
first defines the configuration for a cache named userCache (the one we used in our code).
The second block contains a default configuration for unnamed caches created dynamically
from the CacheManager. The defaultCache definition is required in the ehcache.xml file.

Let’s examine the attributes set on the named userCache in detail:

• maxElementsInMemory: This property sets the maximum size of the cache in memory.

• memoryStoreEvictionPolicy: Setting this property to LFU indicates a least frequently
used eviction policy when the memory store is too large.

• eternal: This property can be set to indicate that elements should live forever in the
cache, in which case, the later expiration settings have no effect.

• timeToIdleSeconds: This property sets the maximum time an item can live in the cache
without being used before it expires.

• timeToLiveSeconds: This property sets the maximum total time an item can live in the
cache regardless of use.

• overflowToDisk: This property determines whether caches larger than the in-memory
maximum should overflow to disk.

• diskExpiryThreadIntervalSeconds: This property sets the number of seconds between
runs of the background disk expiry thread, which will clean up expired elements on
disk.

We will reexamine some of these properties in the context of Terracotta integration in the
following section.

To run the Ehcache program, we will need the Ehcache JAR file and some dependencies.
You can obtain ehcache.jar from the Ehcache web site. You will also need to download the
Apache Commons Logging library from http://commons.apache.org/logging/.

You can then run the program with the following command line:

java –cp .:ehcache-1.3.0.jar:commons-logging-1.0.4.jar \
org.terracotta.book.caching.ehcache.UserEhcacheExample

The results we will see are identical to the output that we saw when running the Map-
based version. The major difference with the Ehcache version is that expiration and eviction
policies are enabled, so when the cache gets big or contains items that have been there for a
while, items will be automatically removed from it.

CHAPTER 5 � CACHING126

Using Ehcache with Terracotta
Ehcache has support for distributed caching in a number of configurations. Terracotta pro-
vides a drop-in solution that provides an alternate implementation of distributed caching that
yields significant performance and scalability benefits over the built-in Ehcache options.

Enhancements and Configuration
The Terracotta Ehcache integration provides a number of important enhancements for dis-
tributed caching, including fine-grained read/write locking, an optimized distributed eviction
policy, increased scalability, and clusterwide cache coherency.

When using Terracotta with Ehcache, the standard memory eviction policies (LRU, LFU,
and FIFO) are replaced by a new time-based eviction policy. The eviction is designed to mini-
mize the faulting of objects across the network by handling evictions close to the point of use.
If your application works on a set of nodes with access to data partitioned on a per-application
basis, Terracotta will perform eviction locally for each partition as much as possible. A global
evictor will also take care of evictions for cache entries no longer used in any node. When
eviction occurs, the entry is removed from the cache in every node in the cluster.

To configure the Terracotta eviction policy, the following Ehcache properties are used;
some have altered meanings:

• maxElementsInCache: This property is ignored by Terracotta integration. The number of
objects that can be stored in the distributed Terracotta cache is unbounded, and the
cache is managed instead by the distributed eviction policy.

• timeToIdleSeconds: This property has the same meaning as in normal memory evic-
tion.

• timeToLiveSeconds: This property has the same meaning as in normal memory evic-
tion.

• eternal: This property is ignored by Terracotta eviction policy. To simulate, you can set
the timeToIdleSeconds and timeToLiveSeconds to zero.

• diskExpiryThreadIntervalSeconds: This property has the same memory as in normal
disk eviction but applies instead to the Terracotta distributed eviction policy, specifying
the frequency with which expiration and eviction will occur.

Additionally, due to the nature of the Terracotta integration, some standard Ehcache fea-
tures are unsupported, specifically notifications (which are traditionally used for the built-in
distributed cache support and are not needed with Terracotta) and disk storage. Terracotta
persists the cache in shared virtual heap and to disk on the server if configured in that man-
ner, so there is no need for disk-based storage.

CHAPTER 5 � CACHING 127

Downloading and Installing Ehcache Integration
To use the Ehcache TIM, you will first need to download and install it from the Terracotta
Forge at http://forge.terracotta.org. To download the binary distribution for tim-ehcache,
version 1.0.2, issue this command:

$ curl \
-o tim-ehcache-1.0.2-bin.zip \
http://forge.terracotta.org/projects/tim-ehcache/downloads/tim-ehcache-1.0.2-bin.zip

This command will download a zip file containing several JARs. The Ehcache support is
actually broken into multiple TIMs: ehcache-commons, ehcache-1.2.4, and ehcache-1.3. To
unzip and install these JARs to your Terracotta installation, run these commands:

$ unzip tim-ehcache-1.0.2-bin.zip
$ cd tim-ehcache-1.0.2
$ cp *.jar ${TC_INSTALL_DIR}/modules

Now that we have installed the Ehcache TIMs, we can use this module from any applica-
tion using this Terracotta installation.

Using Ehcache with Terracotta
To enable support for distributed Ehcache, you will need to declare a dependency on the Terra-
cotta Ehcache integration module in the tc-config.xml configuration, as shown in Listing 5-9.
To include the Ehcache module, we add a module dependency in the <clients> block.

Listing 5-9. Terracotta Configuration tc-config.xml

<?xml version="1.0" encoding="UTF-8"?>
<tc:tc-config xmlns:tc="http://www.terracotta.org/config"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.terracotta.org/schema/terracotta-4.xsd">

<servers>
<server host="%i" name="book.ehcache-hostname"/>
<update-check>
<enabled>true</enabled>

</update-check>
</servers>

<system>
<configuration-model>development</configuration-model>

</system>

<clients>
<modules>

CHAPTER 5 � CACHING128

<module name="tim-ehcache-1.3" version="1.0.2"/>
</modules>
<logs>%(user.home)/terracotta/client-logs/book.ehcache/%D</logs>

</clients>

<application>
<dso>
<instrumented-classes>
<include>

<class-expression>
org.terracotta.book.caching.ehcache.UserEhcacheExample

</class-expression>
</include>

</instrumented-classes>
</dso>
</application>

</tc:tc-config>

Currently, the Ehcache TIM also provides integration for the JSR 107 JCache API to
Ehcache and thus requires the inclusion of the JSR 107 JAR from
http://sourceforge.net/projects/jsr107cache/.

Next, you will need to run your application as a Terracotta application using dso-java.sh:

dso-java.sh \
–cp .:ehcache-1.3.0.jar:commons-logging-1.0.4.jar:jsr107cache-1.0.jar \
–Dtc.config=tc-config.xml org.terracotta.book.caching.ehcache.UserEhcacheExample

When you do so, you will see results similar to running the Terracotta-enabled Map appli-
cation. The cache is clustered and all nodes will see changes made on any particular node.

Summary
Caching is a necessary part of almost any application architecture. It is common to start with a
simple caching system only to find later that it is insufficient for the real needs of your data
size, freshness, and scalability requirements. Scaling a system like this after the fact can be a
difficult undertaking.

With Terracotta, you can start simple but use Terracotta’s clustered, persistent virtual heap
to mitigate many of the pains related to scaling an application cache. And the best part is that
you can achieve this scale with your original simple code.

In this chapter, you saw how you can build simple but powerful distributed caches using
built-in JDK collections and how you can leverage existing open source caching libraries to get
more sophisticated features and behavior, while still leveraging the benefits of Terracotta.

In the next chapter, we take a look at caching at work inside Hibernate, a popular object-
relational mapping framework. We’ll explore in detail how Terracotta can scale
Hibernate-backed data access in your application to achieve scalability that’s orders of magni-
tude greater than using just Hibernate by itself.

CHAPTER 5 � CACHING 129

Hibernate with Terracotta
Using Terracotta to Offload the
Database

Hibernate provides a powerful tool to access databases. It is a mature technology, widely
used in many types of applications, including stand-alone Java, web, J2EE, and Spring-based
applications. By providing a simple model for translating data to and from a database, Hiber-
nate eases the burden of working with the database. Hibernate helps eliminate the need to
write SQL and perform the mundane chores of instantiating objects, filling them with data
from the database, and mapping objects in memory into tables in the database

While the focus of this book is not Hibernate, most Terracotta applications talk to a data-
base, and our treatment of clustering and scaling applications across machines would be
incomplete without addressing Hibernate. With Terracotta, we can improve the performance
of Hibernate in a clustered environment using many of the tools and techniques you have
already learned regarding POJO clustering.

When scaling out a cluster of Hibernate-enabled applications, the database commonly
becomes a bottleneck. In this chapter, we will see how Terracotta can be used to eliminate
these common Hibernate bottlenecks working with either Hibernate’s caching interface or
POJOs outside of Hibernate.

To understand how Terracotta works with Hibernate, we will cover the basic concepts
around which Hibernate is built first. The first is object-relational mapping (ORM).

Object-Relational Mapping
Object-relational mapping (ORM) simply means translating the data from the database’s
relational model to the Java heap’s object-oriented (OO) model. At its core, ORM means trans-
lating the tables, columns, and rows of a database into the object instances, fields, and
reference pointers of the Java heap, and vice versa.

While many techniques are employed to perform this job, all ORM tools, such as Hiber-
nate, iBatis, and TopLink, must solve fundamentally the same problem. Because this chapter
is about Hibernate, we will focus on how Hibernate performs the ORM job.

131

C H A P T E R 6

How Does Hibernate Work?
The Hibernate architecture presents a very good abstraction, on which the Hibernate technol-
ogy is built. At its core, Hibernate allows a Java developer to interact with objects and the
database to interact with data by providing a well defined set of translation points between the
two. Three pieces make up the core set of abstractions that comprise the Hibernate architec-
ture; let’s look at each in detail:

• First-level cache: Oftentimes thought of as the session, the first-level cache is a place to
store our objects in memory as POJOs. Because we deal with only objects in our code,
the first-level cache is largely invisible to us as users of Hibernate. One must be aware
of it, however, because objects copied outside of Hibernate—into the application heap
space—must typically be treated with care.

• Transaction boundaries: These are the beginning and ending edges of the unit of work.
Within a single unit of work, all data is read or written transactionally, meaning it has read-
isolation semantics and is committed atomically. Transaction boundaries are quite visible
to us as users of Hibernate, since they usually translate into beginTransaction() and
commit() API calls, although they may also be hidden inside frameworks or other
abstractions that obviate the need for making these calls by hand, such as inside of a
servlet filter.

• Second-level cache: This is a place to store a copy of our database data in memory as
raw data. Hibernate provides a pluggable model, so many implementations exist that
provide second-level caching. Except for configuration and performance considera-
tions, the second-level cache is largely invisible to us as users of Hibernate.

Figure 6-1 shows how these components work together.

Figure 6-1. Simplified CaptionHibernate architecture

CHAPTER 6 � HIBERNATE WITH TERRACOTTA132

Typical Hibernate Invocation
A typical interaction with Hibernate is illustrated by the following pseudo code:

session.beginTransaction();
Object foo = { Hibernate HQL }
foo.getSomething();
foo.setSomethingElse(somethingElse);
session.getTransaction().commit();

First, we tell Hibernate to begin a new transaction or, in other words, begin a new unit of
work. In the second line, we retrieve a POJO from the session (first-level cache). If the object
does not exist already in the session, Hibernate will perform a query against the database to
retrieve it and store it in the session. It’s important to note that all subsequent requests to
Hibernate that match this object will return the same physical object located in the session on
the Java heap.

In the third and fourth lines, we perform some operation(s) on the object, whether it is to
read some fields or update some fields. Finally, in the last line, we commit the transaction, or
the entire unit of work, which will flush all of the changes made to all of the objects held in the
session back to the database.

Using Terracotta to Improve Hibernate
There are two places where it makes sense to plug in Terracotta to the Hibernate model. Which
one you choose to use depends on your application’s requirements.

• The first place you can use Terracotta is to cluster the second-level cache used by
Hibernate. This option is the easiest option to choose, because it requires only a simple
configuration change. No changes will have to be made to your application to choose
this option. However, due to the design of the second-level cache, clustering the
second-level cache cannot take full advantage of all of the benefits that the Terracotta
solution can provide.

• The second place you can use Terracotta is to provide clustering of the session objects
(don’t get confused with HTTP sessions). This option, because it clusters Hibernate
POJOs, can take full advantage of the Terracotta solution, and thus can provide per-
formance improvements over the second-level cache option. However, unlike the
second-level cache option, this option may, depending on your application, require
some small changes to your application logic.

How Terracotta Improves Hibernate Performance
To help you understand where to integrate Terracotta with your Hibernate application, we’ll
look at the array of options already available to improve Hibernate performance without
Terracotta. After that, we’ll evaluate how Terracotta can be added to further improve the scala-
bility and availability of our solution.

CHAPTER 6 � HIBERNATE WITH TERRACOTTA 133

First, though, you need to understand the basic steps for improving performance with a
Hibernate enabled application.

Basic Steps for Improving Performance of a Hibernate Application
The following sections show the basic steps that any Hibernate developer must follow to
improve performance:

1. Determine your application’s baseline performance.

2. Add Hibernate.

3. Enable the second-level cache.

4. Cluster the session objects (the detached instances).

5. Benchmark the enhancements.

To provide a baseline, we start with a typical conversational application. This conversa-
tional application will make three requests to complete the conversation. Within each request,
the example will execute one read operation and two write operations. Of course, a real-world
application would vary much more, by varying the number of overall conversational requests
as well as the number of data operations per request; this example serves merely to provide a
clear understanding of the impact of each decision along the Hibernate performance curve.

Baseline Performance
As Figure 6-2 shows, a baseline JDBC application with no Hibernate framework calls will com-
municate directly with the database for each request. This results in three conversational
requests, each with three operations, for a total of nine operations.

This example can be implemented by simply programming directly to the JDBC API. Of
course, this approach is simple but fails to give us good performance, especially for applica-
tions that make many fine-grained changes during each conversational request. For complex
applications, managing JDBC by hand often is not as simple as this trivial example might oth-
erwise suggest.

Figure 6-2. The baseline JDBC application makes nine SQL calls.

CHAPTER 6 � HIBERNATE WITH TERRACOTTA134

Let’s sum up this approach: This application performs a total of nine operations. Its
advantage is simplicity, but it scales poorly. The trade-off for the simplicity of this application,
then, is in its performance. JDBC is easy to use, but we very quickly find out it does not scale,
both in terms of application complexity and performance.

There are no clustering concerns for this application. Multiple systems can use JDBC
directly with little to no consideration from the developer other than handling exceptions on
commit.

Also, Terracotta won’t really be of help in this baseline application (although, of course,
the objects could be cached directly using any of the POJO techniques already discussed in
other chapters of this book). This application is designed to use the database for high avail-
ability and scalability, but a scalable highly available database instance can cost millions of
dollars per year to run—so we need to look toward a better solution.

Add Hibernate to Save Three DB Calls
As shown in Figure 6-3, simply adding Hibernate reduces the overall number of database opera-
tions, because instead of making a database operation for each update, Hibernate stores those
updates in the first-level cache and pushes them all in a single unit of work when the transaction
commits. This savings takes our previous example down from nine operations to six.

Figure 6-3. The Hibernate application makes only six SQL calls.

Adding Hibernate to our previously trivial JDBC application eliminates the interim
updates to the database before each commit operation. Notice in Figure 6-3 that the updates
in the application go only to Hibernate without passing through to the underlying database.
Hibernate’s ability to skip updating the database until the developer calls commit() helps make
the application run faster. This performance advantage comes in addition to the fact that
Hibernate can abstract most of the database interface from your code base.

� HIBERNATE WITH TERRACOTTA 135

While straight JDBC is the more easily understood implementation, many would argue
that Hibernate simultaneously makes the application perform better and makes it easier to
maintain, due to the fact that it eliminates redundant SQL calls to the database and eliminates
the need to write custom SQL code. There is also nothing about this architecture that makes it
harder to cluster than its JDBC-based counterpart.

Interestingly enough, the fictitious application depicted in Figures 6-2 and 6-3 has yet to
be able take advantage of Terracotta in any significant fashion. Terracotta is designed to give
high availability and scalability to most applications, but this architecture, like the JDBC
example, already implicitly uses the database to do so. Again, to get true availability and scala-
bility, we must look at more expensive solutions to augment the basic database server such as
SAN storage for availability and database clustering for scalability.

Enable the Second-Level Cache to Save Five SQL Calls
As shown in Figure 6-4, once you enable second-level caching, the application remembers the
data that was queried during previous conversational requests, thus eliminating the redun-
dant queries to the database and delivering a reduction in the overall number of operations
from nine to six, and now down to four.

Figure 6-4. The second-level cache application makes only four SQL calls.

This time, there is a cache in place inside Hibernate. The cache makes sure that redun-
dant SELECT operations that would fetch already retrieved objects are eliminated. The cache
also provides a mechanism for batching UPDATE operations. The cache reduces the total SQL
operations in the example to four.

CHAPTER 6 � HIBERNATE WITH TERRACOTTA136

While Hibernate has managed to make the application go significantly faster with almost
no code changes thus far, risks are beginning to emerge. When second-level caching is
enabled, Hibernate no longer queries the database every time the application uses a database
entity. If two copies of the application are running at once, they cannot see the changes each
other is making to the database. The data in cache can easily become stale on either node,
depending on how application requests are routed or balanced between servers.

Unlike in the previous steps, the tradeoffs we have to make now are significantly more dif-
ficult. Previously, we concerned ourselves only with simplicity and implementation issues, but
any optimizations we made did not have an impact on the behavior or correctness of the
application. Now, we must consider the effects that adding the second-level cache will have
on our application. In particular, the second-level cache can now become out of sync with the
database. The generally accepted solution here is to set some explicit expiration time that will
force Hibernate to refresh the entry based on some sort of expiry time, or time to live (TTL).
In some cases, you may have already found a TTL is unacceptable, and you might have been
forced to turn off caching altogether.

�Note�� We have one more risk—if our application is the only consumer of the data, we can assume with
relative safety that the data will only ever be modified by us, and therefore, we do not have to worry about it
being modified out of our control. If, however, other applications update the database at the same time this
application does, second-level caching with or without Terracotta cannot be turned on. The only option here
is POJO caching and database triggers notifying the POJOs of changes made by other applications.

Without a clustering strategy, data written to the second-level cache in one JVM may not
be reflected in another JVM in the cluster. Even if our application is the only consumer of the
data, we now have to consider that our application is separated into many pieces, which must
be synchronized to provide a coherent view of the data. With data stored at the application
tier, we must now consider what happens when there is a cache miss: Do we want to load the
data from the database in every node, resulting in a clusterwide cache miss? Or can we cluster
the data, thereby eliminating the clusterwide miss?

Terracotta can be used to cluster the second-level cache, ensuring that the data written in
one node is consistent on all nodes, and eliminating the stale data problem. Simultaneously,
Terracotta eliminates the clusterwide cache misses. Finally, due to its virtual memory ability,
Terracotta can maintain a cache that is much larger than the physical memory available to any
one node. This is important if the hot data set for your application does not fit into the physi-
cal memory space of any one node. See Chapter 5 on distributed caching for more details.

Clustering the Session Objects
Clustering the session objects, or what Hibernate refers to as detached instances, is the fastest
mode of integration with Terracotta, as shown in Figure 6-5. Detaching POJO instances of
database-mapped objects from Hibernate eliminates all unnecessary database operations,
and stores everything in memory. Objects can be read at zero latency from RAM. Objects can
also be written at low in-memory latency as well. The database simply becomes the system of
record and gets updated only when you want it to be updated. The database is essentially

CHAPTER 6 � HIBERNATE WITH TERRACOTTA 137

divorced entirely from managing the intermediary state. This approach reduces the original
nine operations in our simple JDBC application down to just two—one load operation and
one store operation.

Figure 6-5. The detached instances application makes only two SQL calls.

The detached mode architecture proves to be the fastest performing option for integrat-
ing Terracotta and Hibernate. Not only is the database invoked only two times versus the
original JDBC application’s nine database calls, but the objects the application interacts with
are now pure POJOs in memory. While Hibernate second-level cache objects are, in fact, byte
arrays that need to be marshaled back and forth from POJO to cache entry, detached mode
entities are purely heap-based objects and thus can be accessed at literally zero latency.

You must make sure to store detached POJOs in Terracotta; otherwise, those POJOs will
be lost on system failure or workload failover across JVMs.

Terracotta can counteract the concerns with detached mode. The concerns are—as
stated—loss of JVM memory as well as side effects of serialization on POJOs when those
POJOs are clustered such as the violation of object identity discussed in Chapter 2. While most
clustering solutions cannot safely help cluster detached POJOs, Terracotta does not have seri-
alization and availability limitations.

In Chapters 1 and 2, you learned that Terracotta provides the same level of data integrity
and availability that a database can provide. When using Terracotta in conjunction with Hiber-
nate, we can leverage this availability guarantee to eliminate the risk of losing our

CHAPTER 6 � HIBERNATE WITH TERRACOTTA138

intermediary state while working with that state as detached (POJO) instances. Terracotta is
not limited to small serializable object graphs—it can be used with arbitrarily large object
graphs regardless of whether or not those objects implement certain interfaces.

Benchmarking the Enhancements
Table 6-1 shows results we get using a simple benchmarking program to measure the time it
takes to perform a fixed number of updates or reads, using Terracotta with the techniques
presented in the preceding sections.

Table 6-1. Relative Performance of Combinations of Hibernate and Terracotta

Operation Type Results

Update

Hibernate 1,000 operations / second

Hibernate with a second-level cache 1,800 operations / second

Hibernate with detached instances 7,000 operations / second
clustered with Terracotta

Read

Hibernate 1,000 operations / second

Hibernate with a second-level cache 1,800 operations / second

Hibernate with detached instances 500,000 operations / second
clustered with Terracotta

As you can see, we gain some benefit by opting to use a second-level cache, but we gain
the most by using detached instances. These findings are, of course, not too surprising,
because detached instances are really just POJOs, and Terracotta is designed as a plain Java,
or POJO, clustering solution.

�Note�� These results were obtained using a MacBook Pro and the HSQLDB database and are meant only
to enable direct comparison between using Hibernate with Terracotta and using Hibernate without it. Explicit
testing underneath a specific use case is recommended to measure the benefit for a particular application or
in a specific hardware environment.

Configuring Hibernate to Work with Terracotta
We’ve talked about the benefits you will get by using Hibernate and Terracotta together. This
section will give you practical information on how to configure Terracotta to work with your
Hibernate-based application.

First, as outlined previously, you must decide where you will integrate Terracotta: as a
second-level cache, for detached instances, or both.

CHAPTER 6 � HIBERNATE WITH TERRACOTTA 139

Configuring a Second-Level Cache
Configuring Hibernate to use Ehcache as a second-level cache with Terracotta consists of a
few simple steps:

1. Configure Ehcache.

2. Enable Ehcache second-level caching in Hibernate.

3. Configure Terracotta.

Configuring Ehcache
Note that the Ehcache configuration in this section is a suggested configuration and will likely
need to be adjusted to your particular environment. Typically, your Ehcache configuration will
live at the root of the classpath in a file named ehcache.xml. It would contain settings such as
these:

<ehcache>
<diskStore path="java.io.tmpdir"/>
<defaultCache

maxElementsInMemory="10000"
eternal="false"
overflowToDisk="false"
timeToIdleSeconds="300"
timeToLiveSeconds="300"
diskPersistent="false"
diskExpiryThreadIntervalSeconds="120"
memoryStoreEvictionPolicy="LRU"/>

<cache name="..." ... />
</ehcache>

Enabling Ehcache Second-Level Caching in Hibernate
You must enable Ehcache as your second-level cache in your Hibernate configuration as
follows:

<property name="hibernate.cache.use_second_level_cache">true</property>
<property name="hibernate.cache.use_query_cache">true</property>
<property name="cache.provider_class">
net.sf.ehcache.hibernate.EhCacheProvider

</property>

Configuring Terracotta
Also, you must tell Terracotta that you will be using both Hibernate and Ehcache. A few mod-
ules are required to get all of the proper configuration. Note that the versions of these modules
may change (please check http://www.terracotta.org for the latest information):

CHAPTER 6 � HIBERNATE WITH TERRACOTTA140

<clients>
<modules>

<module name="clustered-cglib-2.1.3" version="1.0.0" />
<module name="clustered-hibernate-3.1.2" version="1.0.0" />
<module name="clustered-ehcache-commons-1.0" version="1.0.0" />
<module name="clustered-ehcache-1.3" version="1.0.0" />
</modules>

</clients>

Configuring Terracotta for Use with Detached Instances
Configuring Terracotta with detached instances likewise requires a few simple steps:

1. Configure Terracotta to use the Hibernate integration module.

2. Store the detached instances.

3. Reattach the detached instances.

Refactoring Your Application
Now that we are using a detached instance strategy, we must change the strategy we use to get
objects for use by our business logic, and we must delay committing these objects until we are
completely finished with them. Hibernate calls this strategy an application transaction that
spans a long-running unit of work (see the Hibernate documentation for more information:
http://www.hibernate.org/hib_docs/reference/en/html/objectstate.html).

Depending on your application, you may need to refactor your use of the
session.beginTransaction() and session.getTransaction().commit() calls.

For example, some applications use a strategy that automatically calls the
session.beginTransaction() and session.getTransaction().commit() calls using a
servlet filter. By inserting the servlet filter in front of the regular servlet, you are freed from
the tedious task of having to remember to call session.beginTransaction() and
session.getTransaction().commit().

Configuring Terracotta to Use the Hibernate Integration Module
For all applications using clustered detached instances, the first step is to configure Terracotta
for use with Hibernate. To do so, place the following in tc-config.xml:

<clients>
<modules>

<module name="clustered-cglib-2.1.3" version="1.0.0" />
<module name="clustered-hibernate-3.1.2" version="1.0.0" />

</modules>
</clients>

CHAPTER 6 � HIBERNATE WITH TERRACOTTA 141

Storing the Detached Instances
To use detached instances in your application, you must store them somewhere and retrieve
them when your application needs them. How you do this is up to you and depends on the
requirements of your application, but application developers typically employ one of three
common strategies.

Store the Detached Instances in the HTTP Session Context

If you are working in a web application and have access to the HTTP session context, and the
Hibernate objects you are storing pertain to the current user, you might opt to store the POJOs
(detached instances) in the HTTP session context.

To store the detached instances in the HTTP session context, simply use the setAttrribute()
method in the HTTP session, just as you would with any other object you would like to be
cached in the session:

//~ retrieve the foo object
session.beginTransaction();
Object foo = { Hibernate HQL }
session.getTransaction().commit();
//~ store in the session
request.setAttribute("fooObject", foo);

Store the Detached Objects in a HashMap

In other contexts, where you do not have access to an HTTP session context or you have data
that pertains to more than one user, storing the detached instances in the HTTP session con-
text may not make sense. Another option is to store them in a HashMap.

To store the detached objects in a HashMap, simply use the get() and put() methods of the
HashMap, as shown in the following code snippet. The most appropriate key might be the pri-
mary key used to fetch the row from a table in the database. To ensure that the objects are
available in the Terracotta cluster, this HashMap must be marked as a clustered object using the
techniques outlined in Chapter 4 (it must be a part of a clustered graph of objects or marked
as a Terracotta root).

//~ retrieve the foo object
session.beginTransaction();
Object foo = { Hibernate HQL }
session.getTransaction().commit();
//~ store in the map
myClusteredeMap.put("fooObject", foo);

Store the Detached Objects in a Clustered Cache

Storing the detached instances in a clustered cache may work better than a HashMap for your
application. A clustered cache implementation often has more features, such expiry times for
items, and is a good choice when more sophisticated features are needed than the Map inter-
face has to offer.

CHAPTER 6 � HIBERNATE WITH TERRACOTTA142

To store the detached instances in a clustered cache, simply configure a clustered cache
using the techniques outlined in Chapter 5 and store the objects in the cache:

//~ retrieve the foo object
session.beginTransaction();
Object foo = { Hibernate HQL }
session.getTransaction.commit();
//~ store in the cache (ehcache)
myCache.put(new Element("fooObject", foo));

Reattaching the Detached Instances
At some point in your application business logic, you must write the detached instances back
to the database. This point in your application marks the end of the long-running unit of
work. These points vary from application to application, but typical examples are the business
logic that executes as the result of selecting the Buy option in a standard shopping cart appli-
cation or the finish stage of a multiscreen web flow. To reattach detached objects, simply use
the Hibernate saveOrUpdate() API:

//~ get the object from the HTTP session
Object foo = request.getAttribute("fooObject");
//~ flush the object to the database
session.saveOrUpdate(foo);
session.getTransaction().commit();
//~

Suggestions for Further Reading
For more information on working with detached instances, you should refer to the Hibernate
documentation, Section 10.6, located at http://www.hibernate.org/hib_docs/reference/
en/html/objectstate.html.

Debugging, Testing, and Tuning Concerns
In general, debugging and tuning Hibernate and Terracotta are separate exercises. You should
tune your Hibernate settings according to the best practices described in Chapter 19 of the
Hibernate documentation: http://www.hibernate.org/hib_docs/reference/en/html/
performance.html. Even when using detached mode, unit test on a single JVM first, and make
sure the application calls saveorUpdate() at the correct points. Confirm that data reaches
the database and that there are no race conditions. Then add Terracotta to the mix, both for
second-level clustered caching as well as clustering and making durable detached objects.

When using these two technologies together, there are some basic things you will want to
know. These considerations are covered in the following sections.

CHAPTER 6 � HIBERNATE WITH TERRACOTTA 143

Verifying Ehcache Configuration Clustering
You can identify if your Ehcache is clustered in one of three ways:

• Use the Terracotta administration console to inspect the data in the Ehcache store.
In the console, open the roots tab from the panel on the left, and look for a root named
net.sf.ehcache.CacheManager.singleton. This automatic root is created by the Terra-
cotta Ehcache TIM for the Ehcache singleton, and it holds all Ehcache CacheManager
instances. If you see this entry, your Terracotta configuration is configured correctly to
cluster Ehcache.

• Enable the Hibernate SQL debug property in your hibernate.xml, to ensure that cache
hits do not output SQL:

<!-- Echo all executed SQL to stdout -->
<property name="show_sql">true</property>

• Use the Statistics object in Hibernate to query, at run time, the hit and miss counts of
your second-level cache:

Statistics stats = HibernateUtil.getSessionFactory().getStatistics();
stats.setStatisticsEnabled(true);
QueryStatistics queryStats = stats.getQueryStatistics("from Event");
queryStats.getCacheHitCount();

Tuning the Second-Level Cache
In general, the tuning strategies you use should be the same as those outlined in Section 19.2
of the Hibernate documentation. When used with Terracotta, you should entertain a few spe-
cial considerations.

You should make sure that your cache entries are configured with an appropriate TTL to
prevent your cache from growing too large over time. With Terracotta Network Attached Mem-
ory, your application can use significantly more virtual space than can be allocated in the
local JVM. This can often be an advantageous and desired benefit, but you want to make sure
that you don’t abuse this feature and store more data than you intend in the second-level
cache. Ehcache can specify TTL settings when the CacheManager is constructed or can be con-
trolled using the Ehcache configuration file. Refer to the Ehcache documentation for more
details on the maximum idle time to live and maximum idle time settings.

All caches perform best when there is high locality of reference. For now, we will quickly
remind you of the motherboard analogy. The locality of reference is the state where the data
needed for a particular set of CPU instructions is available in that CPU’s data cache: no disk or
network I/O is required in order to access data. For more information on locality of reference
as it pertains to Terracotta and JVM-level clustering, see Chapter 12. If your application has
low locality of reference or is performing primarily writes instead of reads (i.e., is write heavy),
you should consider whether using a cache is helping the performance of your application or
if that cache is just wasting memory and CPU in unneeded garbage collection.

CHAPTER 6 � HIBERNATE WITH TERRACOTTA144

Tuning Detached Instances
Since detached instances are just POJOs, tuning these is no different than tuning POJO or
distributed cache instances with Terracotta. For more information, see Chapter 12 for general
tuning information or Chapter 5 for specific information about tuning distributed cache per-
formance.

Summary
This chapter has shown the challenges we face when moving a Hibernate application from
a single node to a clustered environment. Terracotta is able to not only alleviate these chal-
lenges but to boost overall application performance across the cluster.

Two main strategies exist for integrating Terracotta with a Hibernate enabled application:

• Using a clustered Ehcache implementation as a second-level cache

• Clustering Hibernate created POJOs outside of the session, also known as detached
instances

In Chapter 5, you learned about distributed caching, and now you have a better under-
standing of how caching paradigms and Terracotta can help Hibernate applications to detach
from the database. In Chapter 7, we will explore clustering for web applications using Terra-
cotta. We will learn how HTTP session information can be shared in a transparent, highly
available fashion. For Hibernate-based applications, the HTTP session proves to be one loca-
tion where we can store detached POJOs. Furthermore, HTTP session clustering that is
scalable and highly available can help us keep certain data around web conversations out of
the database altogether.

Clustered the HTTP sessions provide us another way to share state without resorting to
the database. Across these various integration points, we can start to see Terracotta providing
us much more than a distributed caching library—Terracotta provides us a general-purpose
solution that we can use when battling any and all challenges our existing applications pres-
ent in the process of scaling out across Java processes.

CHAPTER 6 � HIBERNATE WITH TERRACOTTA 145

Extending HTTP Sessions with
Terracotta

HTTP sessions are traditionally used for web applications where the state is stored on the
server side. While this approach is convenient on a single server, as soon as your application
grows and multiple servers are needed to fulfill the load, sessions can become both a perform-
ance bottleneck and a development burden.

In this chapter, we will explore how Terracotta makes working with HTTP sessions as con-
venient in a cluster as on a single machine. You’ll see how each shortcoming is addressed and
how extremely easily you can integrate Terracotta with standard Java web applications.

What Are HTTP Sessions?
Web sites have long since outgrown their initial static nature and are now highly interactive
and sometimes even full-fledged applications. For these applications to work, each user needs
to be able to have a state that is maintained during interaction with the web site. The HTTP
specification that made the World Wide Web so prevalent never evolved to provide a solution
for this state management. Some of its characteristics, like query string parameters and cook-
ies combined with hidden HTML form parameters, did allow for certain application state
management needs to be fulfilled. These were, however, quite limited, and when application
state became bigger and needed to be secured, technologies such as servlet containers came
up with a solution to store user data on the server. Figure 7-1 depicts the difference between
HTTP session state maintained on the application server and cookie state maintained by the
web browser.

147

C H A P T E R 7

148 CHAPTER 7 � EXTENDING HTTP SESSIONS WITH TERRACOTTA

Figure 7-1. HTTP session state managed by the application server on behalf of the web browser

Server-Side State Management
Each user that interacts with a web site is by definition anonymous until he has identified
himself. This is a fundamental difference with desktop applications, where the interacting
user is trusted as long as the operating system authenticates the user at login time and grants
him access to his documents. A web application relies on a server that is accessed by many
users, from many computers and devices, from anywhere. This makes it more difficult to know
who actually has access to which data. The HTTP specification doesn’t facilitate this, causing
people to resort to custom solutions for this problem. The solution that has historically gained
the most traction is to give users a cookie with a unique identifier as soon as they start using
the application. The web browser presents this unique identifier each time the user interacts
with the web application. The logic on the server is then able to look up the data that corre-
sponds to the ticket and use it to tailor the application’s functionalities for that particular user.

Through the Java EE servlet specification, the HTTP session interface provides developers
with a standard API that allows them to do exactly what has been described in the previous
paragraph. They don’t need to be bothered with the implementation details of how to give out
cookies and how to tie those to data. They can simply start a user session and easily store and
retrieve the data in an isolated fashion. All that data remains in memory on the server and,

149CHAPTER 7 � EXTENDING HTTP SESSIONS WITH TERRACOTTA

depending on the implementation of the API, can be stored in a variety of locations like on the
file system or in a database.

The API is very simple; to create a new session or retrieve an existing one, you simply call
the getSession() method on the HTTP request instance that is provided to your servlet by the
container. Optionally, an argument can be provided to explicitly create a new session or
retrieve one that already exists. Listing 7-1 shows the methods of the HttpServletRequest
interface that are relevant.

Listing 7-1. Methods of HttpServletRequest That Are Relevant to HTTP Sessions

public interface HttpServletRequest{
HttpSession getSession();
HttpSession getSession(boolean create);

}

Afterward, to store data into the session and retrieve data from the session, a simple
map-like API is provided by the HttpSession interface. Listing 7-2 shows the methods that are
relevant.

Listing 7-2. Methods of HttpSession to Work with Session Attributes

public interface HttpSession{
Object getAttribute(String name);
Enumeration getAttributeNames();
void removeAttribute(String name);
void setAttribute(String name, Object value);

}

There’s nothing complicated here. Details about the entire API can be found online at the
Java Servlet Technology web site (http://java.sun.com/products/servlet/), which can be a
useful resource for topics, like the general usage of HTTP sessions, that are outside the scope
of this book. We’re going to focus on the features that are the most important and how they tie
into a distributed usage of HTTP sessions through Terracotta.

Automatic Time-Out of Stale Data
Another fundamental difference between web and desktop applications is that web applica-
tions cannot tell that a user stopped using the application. On the desktop, the application is
quit, or the computer is turned off, causing all the live memory to be cleared. With a web
application, however, the user can stop using the application without ever notifying the server
by, for example, visiting another URL, quitting the browser, or just stepping away from a pub-
lic terminal. Since web servers are visited by many users, maintaining sessions for every user
that might return could quickly eat up all available memory.

To solve this, sessions have an automated expiration time that is measured from the
request in which they were last used. This expiration event is called eviction. If a session has
expired, it will automatically be invalidated, and all the associated data will be cleared. The
expiration time can be set up through a web application’s web.xml configuration file in the
<session-config> section or programmatically for each individual session instance.
Listing 7-3 shows the HttpSession interface methods that are relevant.

Listing 7-3. Methods of HttpSession That Are Related to the Expiration Time

public interface HttpSession{
long getLastAccessedTime();
int getMaxInactiveInterval();
void setMaxInactiveInterval(int interval);

}

The last accessed time is expressed in milliseconds since midnight January 1, 1970, GMT,
and the interval is expressed in seconds. All servlet containers have a default value for the
maximum inactive interval; on Tomcat, this is 30 minutes.

Manual Invalidation to Clear Out Data
Even though sessions are cleared automatically to preserve the server’s resources, there are
many situations where manual invalidation is also useful. The most logical way to use this is to
preserve even more server resources when users do explicitly log out of an application. This
prevents the session data from lingering around until it has expired, even though it will never
be used again.

Another useful technique is to invalidate a session when a user has finished performing a
long transactional process, and the temporary data is no longer needed. Invalidating sessions
at the end of a many-page business transaction or workflow ensures that no data lingers
longer than it needs to—problems can be created if critical session attributes aren’t cleared at
the right time. Invalidating the entire session ensures that a user starts with a clean slate, after,
for example, having placed an order. Starting fresh becomes even more important when sensi-
tive data is stored in a session, like credit card numbers.

The HttpSession interface provides a simple invalidation method for this, as shown in
Listing 7-4.

Listing 7-4. Method of HttpSession to Manually Invalidate a Session

public interface HttpSession{
void invalidate();

}

Events to Coordinate State Modification
Complex frameworks often associate data elements like global application state with a session
by setting them as session attributes. This can then be used by each component in the appli-
cation to quickly access global data and coordinate how all the components should interact.
Such state is usually tied into the entire life cycle of the application and needs to be notified
when users are or aren’t working with it. If you implement the HttpSessionBindingListener,
such notifications are sent automatically by the servlet container. Listing 7-5 documents the
methods of the interface.

CHAPTER 7 � EXTENDING HTTP SESSIONS WITH TERRACOTTA150

Listing 7-5. Complete HttpSessionBindingListener Interface

public interface HttpSessionBindingListerner {
void valueBound(HttpSessionBindingEvent event);
void valueUnbound(HttpSessionBindingEvent event);

}

There is no need to do anything special to enable these notifications. The servlet con-
tainer will simply detect if a session attribute value implements the
HttpSessionBindingListener interface. When the attribute is added to the session, the
valueBound method is called, and when this value is removed, the valueUnbound method is
called.

Note that we do not recommend relying on these events to clean up system resources,
like JDBC connections, in your applications. These resources should be managed independ-
ently by, for example, using an IoC framework like Spring. In general, it’s a good guideline to
keep sessions purely focused on data and not let resources bleed into them.

Session State Persistence
Web sites are generally expected to be available all the time. Users become quickly frustrated if
the information a site provided disappears for no obvious reason, and this frustration usually
translates into reduced repeat visits. This expectation translates to the requirement for high
stability and predictable latency of the underlying application, which, in turn, requires total
availability of its data. Sadly, the infrastructure that is used to run applications is rarely prob-
lem-free. Both software and hardware failure can happen unexpectedly. In failure situations,
important data should be protected and automatically become available again when a failed
server is brought back to life.

Session state persistence provides the ability to failover from one JVM to another, and
while it’s not part of the standard specification, most servlet containers provide a solution that
allows you to turn on this feature with a configuration parameter. Apache Tomcat even ships
with this feature enabled by default. Usually, these persistence implementations will serialize
all the session attributes to disk and deserialize from disk to reconstitute a session across
server restarts. Persisting the session’s state like this has shortcomings, though, such as a
higher demand for processing power, higher disk utilization, and the requirement for all value
classes containing session attributes to implement the Serializable interface. However, in
most cases, being able to persist a session is the basis for replicating sessions across different
servers. Terracotta takes a totally different approach for distributing HTTP sessions that avoids
most these pitfalls of session persistence.

Distributed HTTP Sessions
As the popularity of a web site increases, so does the load on their servers. The ability to
respond to this increasing demand for resources is called scalability. When servers go down,
the ability to migrate those users seamlessly to another server represents much of the avail-
ability challenge. As discussed in Chapters 1 and 2, Terracotta makes it easier to spread

CHAPTER 7 � EXTENDING HTTP SESSIONS WITH TERRACOTTA 151

applications across machines. For web applications, using Terracotta means that a load bal-
ancer, session distribution through DSO, and a web application server are sufficient for
scalability and availability. With Terracotta, servers running in a cluster will act like one huge
web application server, and users will not notice individual server performance or availability
issues. Using distributed HTTP sessions is an easy way to share the state of web applications
across such a Terracotta-enabled cluster.

Motivation for Using HTTP Sessions
When a cluster is created for a web application, users should not have to worry which server is
available when they’re connecting to the application. Users would become frustrated if they
had to check which machine is the least active and connect to that one—they should be able
to just connect to an application and let the back-end automatically select the most appropri-
ate server. Also, since users can take a long time when working with a web application,
selecting the right server should be possible at any moment and not only at the start of an
application. To be able to achieve this, the state of the web application must be transferable
from one server to another.

Accessing Sessions State from Other Nodes
Usually, when an arbitrary application is turned into a clustered one, developers are forced to
search for the classes that contain state that has to be shared across the different cluster
nodes. Web applications with sessions are easier to cluster than arbitrary applications, since
all the server-side application state is stored in those sessions. HTTP sessions can thus be
extended to become an API for transparently handling state across a web application cluster.
Developers then only need to be concerned with ensuring that all conditions are present for
sessions to become distributed. Since this is not standardized, each servlet container and
application server vendor has its own implementation of distributed HTTP sessions. We will
not cover these in detail.

Web containers tend to either store session data in a database or replicate sessions across
a network of application servers. Let’s focus on network replication as the containers that
scale best do not use the database for session storage. Network replication means that session
data is copied to the other servers in the cluster. This allows the data to be available in case a
user is redirected to any of the other servers. Some vendors provide optimizations here, for
example, to lazily pull in sessions on other servers instead of constantly pushing all the data
out. A common approach, though, is to serialize the entire session and transfer it to the other
nodes in the cluster each time the session changes, even for a single value. As you can imag-
ine, this process can create quite some network chatter and impose large CPU requirements
once replication is enabled in a cluster. Developers should also be careful to not add objects
that can’t be serialized by Java to a session; all the classes that participate in the application
state thus have to implement the Serializable interface. You’ll see how Terracotta addresses
all these issues in the next section.

Dynamic Horizontal Scale-Out to Handle Traffic Spikes
Apart from allowing a server infrastructure to grow over time by adding new nodes to a cluster
as the number of users of an application increases, distributed HTTP sessions are also very

CHAPTER 7 � EXTENDING HTTP SESSIONS WITH TERRACOTTA152

handy for reacting dynamically to traffic spikes. It’s not uncommon nowadays for web appli-
cations to become hugely popular in a short period of time as communities of users discover
them. This word-of-mouth popularity over the web can be scary, as can what’s commonly
referred to as the “Slashdot effect”—this refers to a sudden and dramatic increase of users on a
web site about which a news announcement is posted to the front page of a very popular web
site, such as Slashdot.org. Investing in hardware and cluster reconfiguration each time a news
announcement is about to be posted would not be financially viable. Worse even, since other
people can unexpectedly write such articles, web sites can be swarmed without any warning
and instantly become unresponsive.

Server virtualization solutions come to the rescue here. Services like Amazon’s Elastic
Compute Cloud (EC2) allow disk images of servers to be prepared beforehand (see
http://aws.amazon.com/ec2). A cluster can be set up to monitor the load of each participating
server. Whenever the load exceeds a certain amount, new virtual servers can be launched to
join the cluster in a matter of seconds, assuming a precreated standard disk image exists. Also,
when the monitoring software detects that servers in the cluster are often idle, nodes can be
shut down to reduce the cost of running the cluster. If distributed HTTP sessions are used for
shared state across a web application cluster, all state will be available on the new nodes and
transferred from the removed nodes. This is a typical example of where vertical scalability is
inappropriate, and horizontal scalability provides rapid dynamic adaptation to changing
usage patterns for an appropriate cost factor.

Terracotta batches shared state operations lazily from a central server, allowing dynamic
changes to the topology of a cluster to be highly optimized. Only the previously existing ses-
sions that are used in new nodes will have to be transferred. This is depicted in Figure 7-2.
Notice how only sessions d, e, and f from the second, failed application server instance
migrate to the newly added server.

Figure 7-2. Session failover with Terracotta where only impacted sessions migrate

CHAPTER 7 � EXTENDING HTTP SESSIONS WITH TERRACOTTA 153

In general, only a very small percentage of user sessions will be moving between applica-
tion servers. New users can easily be directed to the latest nodes that have joined the cluster,
as those servers should report to any Layer 7 load balancer, such as F5’s Big IP or Cisco’s
Content Director switch, as faster and less burdened than all other server nodes. What we are
implying is that existing users stay on the nodes they started working with, new users get the
newly added servers, and at any time, any server failure will result in a small number of user
sessions rebalanced evenly across the entire server cluster. Similarly, since the central server is
aware of the state of all the nodes, just shutting down some of them is also easy. If a user has to
gain access to a session on another node, that session will be provided by Terracotta on the fly.
See Chapters 3 and 4 if you want to understand more about how this works.

High Availability in Case of Server Failure
Software and hardware can and will fail sooner or later; you can be sure of that. If your appli-
cation must be highly available, you need to decide how to react to these failures. For many
years, people have been buying redundant power supplies, RAID discs, hot backup systems,
and other solutions for each server of an important application to prevent failure and to
reduce the downtime in case failure does happen. Recently, commodity hardware has become
good enough to be used in place of enterprise-class servers, even while lacking the expensive
systems’ stability guarantees, such as CPUs placed on daughter boards (so that individual
CPUs can fail without crashing the server) and dual redundant power supplies. A new and
popular trend is to simply expect that everything will fail and to plan for it. With application
servers and hardware, the plan tends to involve something like lots of simple, small servers
running Intel-type technology with a few gigabytes of RAM and small local disks with two net-
work cards in the machine. This approach makes an entire machine modular and low impact
when it crashes. Failure becomes a part of the design of your application, not an exception.

When the application state is stored in sessions that are distributed over the cluster, each
server node is disposable and can be replaced by any other machine that is able to handle the
same application logic. The state will be provided through the distributed session’s mecha-
nism, as long as the infrastructure responsible for dispatching the state is also designed to be
fault tolerant. Terracotta assumes that you will run the Terracotta server on roughly the same
class of machine as you run your application. Thus, the Terracotta server is designed to fail
over automatically on any issue. The central Terracotta server can be configured to have
another machine available on standby as a passive server. If the active server goes down, the
passive one will automatically take over to continue distributing the sessions. Chapter 4 gives
you more detail about how to configure this; other scenarios like multiple active servers are
also possible, if you want another machine to take over instantly without having to start up
first.

Alternatives to HTTP Sessions
HTTP sessions are not always an appropriate mechanism for maintaining application state.
Also, sometimes, applications have been created to externalize the state to another tier and
aim for statelessness in web servers. These approaches are largely driven by application
requirements, use cases, and design decisions. The two most important approaches that are
used instead of distributed HTTP sessions are distributed caches and central database stores.
Interestingly enough, applications that rely heavily on distributed caches or a central database
might rely less on those stores if the applications had a reliable and scalable clustered session

CHAPTER 7 � EXTENDING HTTP SESSIONS WITH TERRACOTTA154

implementation. Consider this as you read the rest of the chapter: is there state that you can
migrate from your database to the HTTP session now that a scalable replication service exists?
We’re not covering the alternatives in detail but will give you enough information to allow you
to decide when to use distributed HTTP sessions.

Distributed Caches
When the application state is not tied to individual users, distributed caches might be more
appropriate. They function in a similar fashion as sessions but are globally available from the
entire application, meaning caches can be easily accessed outside the scope of a request and
can safely store objects shared by more than one session. This global availability can also
make them useful when state is shared among different tiers, for example, a web server and a
desktop application. Terracotta integrates with many of the standard open source caching
solutions, and its support for regular JDK maps is advanced enough to consider them caches
also. More information about distributed caches can be found in Chapter 5.

A Database As a Central Store
If an application is not very interactive and mostly reads user-independent data, it could be
sufficient to make every web server stateless and to always go back to a central database
server. This makes every web server totally disposable, and running a cluster is as simple as
adding new machines without having to coordinate the state. Retrieving data from the data-
base at every request limits the performance of the cluster, however, to the capacity of the
database. Adding a local cache to each web server can easily solve this by allowing copies of
the most frequently accessed elements to be maintained locally, which dramatically reduces
the load on the database. Many LAMP (Linux, Apache, MySQL, Perl/PHP) and Ruby on Rails
applications are created in such a fashion.

In the Java world, the local cache in front of the database could be replaced with a distrib-
uted cache that uses Terracotta, which makes the central database approach even more useful
when data is regularly updated. The appropriate entries merely have to be removed from the
distributed cache when they are modified. Up-to-date entries will be faulted into the cache
when they are accessed later. This approach forms the basis of object-relational mapping
solutions where Terracotta plugs in as the second-level cache. You can read more about this in
Chapter 6.

Distributed HTTP Sessions with Terracotta
In the previous section, we talked about the general principles of distributed HTTP sessions
and briefly mentioned where Terracotta can improve on the usual replication-based
approach. In this section, we’ll delve deeper into the features that Terracotta provides, and
you’ll see how they are implemented behind the scenes.

How Terracotta Sessions Work
Distributed HTTP sessions with Terracotta are based entirely on the virtual heap principles that
we discussed in Chapters 2 through 4. A central data root, in this case, a session map inside a con-
tainer’s session manager, is distributed across the cluster and instrumented so that any session
operations are made available to the Terracotta server as well as the application cluster. When a

CHAPTER 7 � EXTENDING HTTP SESSIONS WITH TERRACOTTA 155

session is created, it is also sent to Terracotta. When a session is read or accessed, its contents
can be paged in from Terracotta just in time. When a session is updated or deleted, Terracotta is
made aware of the changes. Terracotta always keeps the sessions in sync across the application
cluster. From a developer’s point of view, nothing changes and the application is automatically
clustered.

Transparently Plugs into Web Containers
As you saw in the first section of this chapter, the HTTP session API is standardized by the
servlet specification. This allows Terracotta to create its own implementation that is highly
optimized for our distributed virtual heap. Even though Terracotta is able to take any regular
Java class and make it distributed, a lot of optimizations can be done to improve the perform-
ance in a cluster. By using its own session implementation, Terracotta is, for example, able to
avoid faulting attributes into nodes when the session eviction logic is running or to prevent
the transfer of all attributes when only a single one is used in a session.

The good news is that you don’t have to worry about the custom implementation at all.
When Terracotta is activated for a supported servlet container or application server, Terracotta
transparently instruments the supported product’s internals to work better in a Terracotta-
based world. The Terracotta-specific version of the servlet session hooks in underneath both
your application as well as the container without any specific configuration necessary. You
merely have to indicate the names of the web applications that should become clustered in
the Terracotta configuration file, and all the rest is automatically taken care of. The next sec-
tion will show you how this is done.

�Note�� The intrepid reader who skips ahead to Chapter 9 will notice that HTTP session clustering for web
applications does not follow the notion of Terracotta Integration Modules. Session distribution with Terracotta
predates Integration Modules. Terracotta may decide to move some or all container-specific session behavior
to modules. For now, session distribution with Terracotta is a special case in that Terracotta’s implementation
is exposed to the user and must be installed into the container before distribution will occur. More informa-
tion on various containers is available at http://www.terracotta.org/confluence/display/
integrations/Home.

Appropriate Lock Granularity and Isolation
Two aspects to locking have a profound impact on the performance and concurrency of a
cluster: granularity and isolation. In generic terms, lock granularity refers to the relationship
between the object being locked and the object being changed. Think of two objects in a
graph, a root object with five child objects underneath the root. Locking the root to edit the
child is a coarse-grained locking, while locking the child to edit itself is fine-grained. Update
isolation, following the example, exists or is maintained as long as two children of the root,
locking separately of each other, do not block each other, commingle field updates, or other-
wise corrupt each other’s state.

In the context of HTTP sessions, each session should be able to update its internals inde-
pendently from other sessions but still ensure that the data can’t be corrupted during
simultaneous access. This includes updating the timestamp when the session was last used.

CHAPTER 7 � EXTENDING HTTP SESSIONS WITH TERRACOTTA156

Similarly, when the eviction logic is executed to remove expired sessions, the entire cluster
shouldn’t need to wait for the operation to be finished.

Also, the retrieval of sessions should be executed in perfect concurrency. However, when
a session is stored, exclusive access to the session store should be ensured. The retrieval
should thus use read lock isolation, while the storage uses write lock isolation.

Concurrency can be optimized in many other ways. Terracotta’s session implementation
properly locks shared data elements across a cluster to strive for optimal performance.

Benefits
Earlier in this chapter, we touched on some of the benefits of using Terracotta for distributing
HTTP sessions. This section will cover some additional important features.

No Serialization
As we discussed in the section about session state persistence, serialization is usually used to
transfer the session state to another node in a cluster. Terracotta doesn’t rely on this. In Chapter 4,
you learned that Terracotta plugs in at the byte code level and is able to break down every Java
class into basic types that can be shared with other nodes without having to rely on serialization.
This makes the developer’s life a lot easier because it eliminates the worry of bringing a single-
server web application to a cluster. Often, in the early stages of an application’s life, a lot of
attention is brought to ensuring that it’s bug-free and works as intended. Testing often occurs on
a small or unit scale, and scalability testing is conducted near the end of the development effort
when the entire application can be assembled in one place. Terracotta’s HTTP session support
allows the clustering to simply be activated on either the developer’s workstation or when the
application is deployed in the performance lab or production environment, without having to
ensure that all the classes in the session implement the Serializable interface. Developers
using Terracotta for session replication can write units of application functionality, test them
with JUnit or whatever they like, and test them again on two JVMs running on the same desktop.

Ensuring that data structures are properly serialized and deserialized is also very error-
prone, particularly when data structures evolve over time and older persisted state needs to be
compatible with newer classes. Not having to worry about this reduces the development effort
and makes your application more resilient to changes over time.

Rolling Upgrades
Terracotta stores the shared state in a logical structure that is dissociated from the actual class
structure of the objects in your shared state. Each class field gets a dedicated logical key that is
associated with the field’s value. When the session state is retrieved by another node, these
logical keys are looked up when an object in the session is instantiated by Terracotta. If fields
have been added to a newer version the class, these will simply use their default values if no
appropriate logical keys can be found. Once these new fields are part of the session state, their
values will be stored in the same fashion as the other fields. If fields are removed, their logical
keys will simply not be looked up, and the values will not be applied. In other words, the class
object in each JVM drives which fields are accessible to your application code and which ver-
sion of each field to access. A class that changes over time does not break the instances stored
in the Terracotta server.

CHAPTER 7 � EXTENDING HTTP SESSIONS WITH TERRACOTTA 157

Figure 7-3 illustrates the behavior of a web application that changes over time. The first
change introduces a new field, and the second change removes a field. In the figure, versions 2
and 3 of the session logic can see the age object in session whereas version 1 cannot. Version 1
never requests the age object and thus everything works. Further, version 3 is the only version
that cannot see the order history object and will therefore not act on that object while the two
previous versions can still see the order history object even though servers with version 3 of
the application logic are present in the cluster.

Figure 7-3. Terracotta’s transparent object versioning works well when rolling web application
changes into production.

The approach illustrated in Figure 7-3 allows data classes to evolve over time without
backwards compatibility problems with existing state. You’re thus free to properly use rich
object-oriented data structures with class hierarchies that are appropriate for your application
logic.

Fine-Grained Changes
Chapter 4 explains how Terracotta’s virtual heap is able to detect the tiniest change to a large
object graph and to expose only that change to the cluster. For distributed HTTP sessions, the
same benefits exist. Instead of having to serialize the entire session state over and over again,
only the real changes to your state will be pulled in by other nodes that use modified sessions.

Simultaneous Linear Scalability and High Availability
Balancing scalability and availability is traditionally a hard problem. Linear scalability requires
throughput to remain constant as more resources are brought to bear to meet application
load; this scalability is typically achieved by sharing no information or objects across applica-
tion server instances. High availability requires that application state be available on every

order
history
order

history
d

history

CHAPTER 7 � EXTENDING HTTP SESSIONS WITH TERRACOTTA158

application server instance and conflicts with linear scalability as a result. Nevertheless, in the
web application world, you must find a way to add application servers as your web traffic
increases without introducing replication overhead while doing so. High availability demands
that you should also be able to serve any request from any application server, so the user
experience is uninterrupted in the event of one or more of the application servers being taken
offline.

Without Terracotta, scalability and availability are at odds. Because the Terracotta virtual
heap is optimized for fine-grained changes and pushes those changes only where needed in the
cluster, the throughput of an attached JVM can be made constant, regardless of how many
nodes are attached. At the same time, because the objects on the Terracotta virtual heap are
durable and can be faulted in as needed from any member of the cluster, user and application
state can be made highly available. Because the mechanism of the virtual heap is transparent,
this balance between linear scale and high availability comes without increasing the complexity
of your application code.

To achieve linear scale, you must deploy a load balancer capable of sticky session routing.
Load balancers such as F5’s Big IP or Cisco’s local, content, and global directors employ vari-
ous strategies for routing the same user to the same machine for processing all HTTP requests.
Some devices use the IP address of the end user’s browser. This is not a good strategy at scale,
because networks such as AOL use web proxies and caching for their end users; all AOL users
appear to come from one of only a handful of IP addresses.

Sticky load balancers that are aware of session cookies (JSESSIONID in many popular web
containers) will work very well with Terracotta underneath them. In such environments, the
user will remain sticky to a single application server instance, thus helping you to avoid the
cost of session replication altogether. Sessions will be stored on the server that needs them as
well as in Terracotta in case of application server instance failure. On failover, the end user
gets rerouted by the load balancer, because the balancer detects that the original application
server is down or slow. When the session access is attempted by the new application server
instance, the user’s session dynamically faults in through Terracotta to the new node. The user
will be none the wiser with regard to node failure, and your cluster will scale linearly at the
same time.

No Need to Set Attributes After Each Change
Since Terracotta ensures that object identity is preserved and all the fine-grained changes are
automatically propagated for shared object instances, actually storing attributes into a session
is not necessary for the clusterwide state to be updated.

Other distributed session implementations can’t detect changes to attribute values with-
out being notified through the setAttribute() method. In these situations, developers
actually have to change their code when they move an application from a single server to a
cluster. Some containers and application servers allow you to configure them so that every
session is automatically replicated on every HTTP request, even if no changes were made.
This takes away the development burden but imposes a very high and needless load on the
systems and network.

Terracotta again behaves exactly like what you’re familiar with when working on a single
node.

CHAPTER 7 � EXTENDING HTTP SESSIONS WITH TERRACOTTA 159

Easy to Set Up
We’ll be covering integration modules in detail in Chapter 9. They allow Terracotta configura-
tion and instrumentation to be packaged into self-contained JAR files that can be included
into your own tc-config.xml file with a single line of XML. Most of the supported servlet con-
tainers are shipped inside the core Terracotta download. To use them, you need to follow the
installation instructions available at http://www.terracotta.org/ for your specific application
server type. The installation includes making sure the Terracotta libraries are installed into the
JVM and that Terracotta is added as a boot class loader (as discussed in Chapters 3 and 4).
A few containers are supported via integration modules that simply need to be included in
your configuration file to be enabled. When other application servers or servlet containers are
supported later on, Terracotta will use integration modules to bundle them. In the next sec-
tion, we will demonstrate the changes required to a typical Tomcat instance when introducing
Terracotta.

Using Terracotta and HTTP Sessions
It’s time to leave the theory behind and look at some practical examples. We’ll look at several
ways of using HTTP sessions and how to distribute sessions with Terracotta.

Shared Session State
This first example is very simple and merely illustrates that session state can be distributed.
We maintain a simple counter that increases every time the Refresh button is clicked in the
web browser. When the counter reaches ten, the active session is invalidated, and the counter
starts over again. We implement this functionality using a Java servlet. The source code of the
example follows in Listing 7-6.

Listing 7-6. Source Code of SessionExample1.java Servlet

import java.io.PrintWriter;
import java.io.IOException;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;
public class SessionExample1 extends HttpServlet {
protected void service(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {
res.setContentType("text/html;charset=UTF-8");
PrintWriter out = res.getWriter();
HttpSession session = req.getSession();
Integer count = (Integer)session.getAttribute("count");
if (null == count) {
count = 0;

CHAPTER 7 � EXTENDING HTTP SESSIONS WITH TERRACOTTA160

}
count = count + 1;
session.setAttribute("count", count);
try {
out.println("<html>");
out.println("<head><title>Session Example 1</title></head>");
out.println("<body>");
out.println("<p>Current count "+count+"</p>");
out.println("</body>");
out.println("</html>");

} finally {
out.close();

}
if (count >= 10) {
session.invalidate();

}
}

}

The web.xml file for the example servlet is shown in Listing 7-7.

Listing 7-7. Source Code of the web.xml File to Deploy the Example Servlet

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app

PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
<servlet>

<servlet-name>SessionExample1</servlet-name>
<servlet-class>SessionExample1</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>SessionExample1</servlet-name>
<url-pattern>/sessionexample1</url-pattern>

</servlet-mapping>
</web-app>

Package and Configure the Web Application
To try out this example, you first have to create the directory structure for a Java web applica-
tion. Execute the following commands to create this structure and place the example files in it:

> cd %HOMEPATH%
> md example1\WEB-INF\classes
> move SessionExample1.java example1\WEB-INF\classes
> move web.xml example1\WEB-INF

CHAPTER 7 � EXTENDING HTTP SESSIONS WITH TERRACOTTA 161

Now, you need to compile the servlet to be able to run it:

> cd %HOMEPATH%\example1\WEB-INF\classes
> javac -cp <TC_HOME>\lib\servlet-api-2.4.jar SessionExample1.java

Finally, you should create a WAR file that can be deployed in a servlet container:

> cd %HOMEPATH%\example1
> jar cvf example1.war .

You will end up with an example1.war archive that is ready to be deployed.

Install and Run the Application with the Terracotta Sessions Configurator
Terracotta ships with a handy graphical user interface that allows you to configure web appli-
cations. It also allows you to deploy them into servlet containers with HTTP-enabled
distributed sessions. Launching this tool is easy:

> <TC_HOME>\tools\sessions\sessions-configurator.bat

After executing this command, you will see a window appear that looks similar to
Figure 7-4.

Figure 7-4. Terracotta Sessions Configurator startup window

CHAPTER 7 � EXTENDING HTTP SESSIONS WITH TERRACOTTA162

By default, the Sessions Configurator uses the Apache Tomcat version that is shipped with
Terracotta. Other servlet containers can also be used, and we’ll show you how in the last sec-
tion of this chapter. For now, let’s just settle on Tomcat and import your web application into
it. This is simply done by selecting “Import webapp” from the File menu, as shown in
Figure 7-5.

Figure 7-5. Sessions Configurator menu to import a new web application

You will be presented with a file selector, and you should select the example1.war archive
you just created. A dialog will tell you when the import task is complete. Afterward, a new item
will appear in the left pane of the Sessions Configurator, named example1. This is your web
application deployed to the servlet container.

Let’s run the example now by starting the two Tomcat instances that are set up by default
in the right pane. Go ahead and click the “Start all” button. The Tomcat servers first go into a
wait state while the Terracotta server starts; afterward, they’ll become ready, and the Sessions
Configurator will look like Figure 7-6.

Figure 7-6. Sessions Configurator after starting all the Tomcat instances

CHAPTER 7 � EXTENDING HTTP SESSIONS WITH TERRACOTTA 163

Trying the Example
Now, launch a web browser to visit the application that is running on the first web server on
port 9081. The full URL is http://localhost:9081/example1/sessionexample1. Reload the page
a few times to see the counter increase. You’ll see something similar to Figure 7-7.

Figure 7-7. Basic session example after reloading the browser a few times

Next, you should open a second browser window and visit the application that is running
on the second web server on port 9082; the full URL this time is http://localhost:9082/
example1/sessionexample1 (only the port number changed). You’ll notice that the counter
continued with the value that it had on the first server, and the value was increased on the
second server. This clearly shows that the state is shared among different servers, as shown
in Figure 7-8.

Figure 7-8. Basic session example after visiting the second Tomcat instance in the cluster

CHAPTER 7 � EXTENDING HTTP SESSIONS WITH TERRACOTTA164

Now, for more fun, try to open the same page in another browser or from a browser on
another machine (substitute localhost with the IP address of the machine that runs the
servers). You’ll see that the state is really stored on the server. Also, try reloading until the
counter reaches the value 10. Since the session will be invalidated, the next time you visit the
application, the counter will have the value 1.

Finally, notice that there are two red rectangles to the right of the Tomcat server instances.
Feel free to click these to stop the Tomcat servers. If you stop a server, you’ll see a green arrow
appear that allows you to start it up again. At the bottom of the right pane, the Terracotta
server continues to run, which means when you’ve restarted a Tomcat instance, the shared
session state will be provided so that everything can continue as if nothing happened.

�Caution�� The Terracotta server runs automatically inside the configurator. If you have other servers run-
ning from previous chapters’ experiments, kill them before running the configurator. Also note that the server
is not configured in persistent mode, which means stopping and restarting the Terracotta server will result in
lost sessions. We will discuss this issue more after the examples.

HTTP Sessions with Structured Session Attributes
In the first example, you couldn’t see much difference with how session clustering works with
Terracotta and how clustering would work with traditional HTTP session replication. In this
example, we’re going to create a shopping cart with very basic functionality that contains a set
of sorted items. At the top of the page, you see the current state of your cart. Below, you’re able
to add a name with the amount that you want to order. If you provide a new amount for an
item already present in the cart, the item is not replaced; the new amount is simply added to
the existing cart item. When you provide zero as the amount or press the remove button, the
corresponding item will be removed from the cart. We will go over the source code of this
example later in this section. Figure 7-9 shows what it all looks like.

Figure 7-9. Screenshot of second session example, a basic shopping cart

CHAPTER 7 � EXTENDING HTTP SESSIONS WITH TERRACOTTA 165

This example is a little bit larger than the previous one. It consists of a cart.jsp file that
handles HTTP requests (shown in Listing 7-8) and provides a user interface to inspect and
modify the shopping cart. This shopping cart is implemented in the example/Cart.java class.
The items in the cart are modeled through the example/Item.java class.

Listing 7-8. Source Code of cart.jsp for the Structured Session Attributes Example

<%@page import="java.util.Iterator,example.Item"%>
<html>

<jsp:useBean id="cart" scope="session" class="example.Cart"/>
<body><%

String operation = request.getParameter("operation");
String name = request.getParameter("name");
String amount = request.getParameter("amount");
if (operation != null && name != null) {

if (operation.equals("add")) {
cart.addItem(new Item(name, Integer.parseInt(amount)));

} else if (operation.equals("remove")) {
cart.removeItem(name);

}
}
if (null == name) name = "";
if (null == amount) amount = "";%>
<h2>You have the following items in your cart:</h2>
<table><%
for (Item i : cart.getItems()) {%>

<tr>
<td align="right"><%=i.getAmount()%></td>
<td>x</td>
<td><%=i.getName()%></td>

</tr><%
}%>
</table>
<form method="post" action="<%=request.getContextPath()%>/cart.jsp">

<h2>Item to add or remove:</h2>
<div>

<input type="text" name="amount" value="<%=amount%>"/> x
<input type="text" name="name" value="<%=name%>"/>

</div>
<div>(amount x name)</div>
<div>

<input type="submit" name="operation" value="add"/>
<input type="submit" name="operation" value="remove"/>

</div>
</form>

</body>
</html>

CHAPTER 7 � EXTENDING HTTP SESSIONS WITH TERRACOTTA166

Here, an HTML form is constructed at the bottom of the JSP file. This sets up two text
fields for the item name and amount and two submission buttons for the operation that has to
be performed. When the JSP is initialized, an instance of the cart is retrieved from the session.
If no cart is in the session yet, a new one will be created. Afterward, the parameters that were
sent through the HTML form are retrieved and evaluated. If the operation parameter is add, a
new item is added to the cart. Similarly, if the operation is remove, the submitted item name
will be removed. The middle section of the JSP obtains the items that are already in the cart
and iterates over them to display the item names and amounts in a table.

It’s worth noting that session-specific code only happens through the <jsp:useBean> tag.
As soon as the cart object has been retrieved from the session, all the operations on the cart
are done as regular Java method calls without storing anything back into the session. This is
one of the situations where using Terracotta provides a lot of benefit. Other distributed ses-
sions solutions will require you to set the cart object back as a session attribute when all the
operations on it have been performed. Terracotta doesn’t need this and continues to work in
a cluster according to the same rules that you already know from a nonclustered application.

Listing 7-9 shows the Cart.java file used as the shopping cart.

Listing 7-9. Source Code of Cart.java for the Structured Session Attributes Example

package example;

import java.util.Collection;
import java.util.Collections;
import java.util.Iterator;
import java.util.TreeSet;
public class Cart {
private Collection<Item> items = new TreeSet<Item>();

public Collection<Item> getItems() {
return Collections.unmodifiableCollection(items);

}

public void addItem(Item item) {
Iterator<Item> it = items.iterator();
while (it.hasNext()) {
Item i = it.next();
if (i.equals(item)) {
if (item.getAmount() <= 0) {

it.remove();
} else {

i.setAmount(item.getAmount());
}
return;

}
}
if (item.getAmount() > 0) {
items.add(item);

}

CHAPTER 7 � EXTENDING HTTP SESSIONS WITH TERRACOTTA 167

}

public void removeItem(String name) {
addItem(new Item(name, 0));

}
}

The addItem() method provides the core of the cart functionality. It looks for an existing
cart item, and if the item is found, it is removed or updated with the new amount. This is
another operation where Terracotta will show its usefulness. When the item amount is
updated, only that value is propagated to the other nodes in the cluster. You will learn later
in this section how you can see that this is actually happening.

Listing 7-10 shows the Item.java class.

Listing 7-10. Source Code of Item.java for the Structured Session Attributes Example

package example;

public class Item implements Comparable {
private String name;
private int amount;

public Item(String name, int amount) {
setName(name);
setAmount(amount);

}

public String getName() {
return name;

}

public void setName(String name) {
if (null == name) throw new IllegalArgumentException();
this.name = name;

}

public int getAmount() {
return amount;

}

public void setAmount(int amount) {
this.amount = amount;

}

@Override
public boolean equals(Object o) {

return name.equalsIgnoreCase(((Item)o).name);
}

CHAPTER 7 � EXTENDING HTTP SESSIONS WITH TERRACOTTA168

@Override
public int hashCode() {

return name.toLowerCase().hashCode();
}

public int compareTo(Object o) {
return name.compareToIgnoreCase(((Item)o).name);

}
}

The Item class is a regular Java bean where the equals(), hashCode(), and compareTo()
methods have been implemented to disregard the amount as a significant data element for
the item. This means that items with the same name will be considered equal, even when the
name differs in case.

Note that neither the Cart class nor the Item class implements the Serializable interface.
However, when you try out the example with several Tomcat instances, as explained in the
next section, you’ll see that the session state is properly shared.

Listing 7-11 shows the web.xml file for the application.

Listing 7-11. Source Code of web.xml for the Structured Session Attributes Example

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app

PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
</web-app>

This web.xml file is empty, because nothing has to be set up in the servlet container. The
cart.jsp file will be deployed automatically by the servlet container, and you can access it
directly.

Packaging and Configuring the Web Application
To try out this example, you have to create the directory structure for a Java web application.
Execute the following commands (in Microsoft Windows format) to create this structure and
place the example files in it:

> cd %HOMEPATH
> md example2\WEB-INF\classes\example
> move Cart.java Item.java example2\WEB-INF\classes\example
> move cart.jsp example2
> move web.xml example2\WEB-INF

Now, you need to compile the back-end classes:

> cd %HOMEPATH%\example2\WEB-INF\classes
> javac example*.java

CHAPTER 7 � EXTENDING HTTP SESSIONS WITH TERRACOTTA 169

Finally, you should create a WAR file that can be deployed in a servlet container:

> cd %HOMEPATH%\example2
> jar cvf example2.war .

You will end up with an example2.war archive that is ready to be deployed. Deploy it now.

Manually Configuring and Installing the Example into Tomcat
As you learned in Chapter 3, Terracotta has a configuration file that is used by the server
and the clients to perform the application clustering. Listing 7-12 shows the minimal
tc-config.xml file that you need to set up a Terracotta server and a Tomcat server without
the Sessions Configurator.

Listing 7-12. The tc-config.xml File for the Structured Session Attributes Example

<?xml version="1.0" encoding="UTF-8"?>
<tc:tc-config xmlns:tc="http://www.terracotta.org/config">
<servers>

<server host="%i" name="sample">
<data>data/server-data</data>
<logs>logs/server-logs</logs>

</server>
</servers>
<clients>

<logs>logs/client-logs/%(webserver.log.name)</logs>
</clients>
<application>

<dso>
<instrumented-classes>
<include>

<class-expression>example.Cart</class-expression>
</include>
<include>

<class-expression>example.Item</class-expression>
</include>

</instrumented-classes>
<web-applications>
<web-application>example2</web-application>

</web-applications>
</dso>

</application>
</tc:tc-config>

You’ve already seen why classes need to be included in the <instrumented-classes> sec-
tion. For this example, we included the two back-end classes. We don’t need to do anythingWW
special for instrumenting session-related classes. This is done automatically through the
<web-applications> section of the configuration file. You just have to list all the web applica-
tion names that should use distributed HTTP sessions. In this example, that’s the example2
web application.

CHAPTER 7 � EXTENDING HTTP SESSIONS WITH TERRACOTTA170

Now, locate the root directory of your Tomcat installation; we’ll refer to it from now on as
<TOMCAT_HOME>. You should replace every occurrence of <TOMCAT_HOME> with the appropriate
directory on your file system. To make things easier later on, let’s move the tc-config.xml file
to the Tomcat home directory as follows:

> move tc-config.xml <TOMCAT_HOME>

You now have to make Tomcat aware of Terracotta by adding a file to the bin directory
that will properly configure the environment. This file is called setenv.bat, and it should
contain what you see in Listing 7-13. Make sure to put it in the <TOMCAT_HOME>/bin directory;
otherwise, it will not be picked up when Tomcat is started. Also, don’t forget to properly
replace <TC_HOME> with the root directory of your Terracotta installation.

Listing 7-13. Contents of the Tomcat bin/setenv.bat File

set TC_INSTALL_DIR=<TC_HOME>
set TC_CONFIG_PATH="localhost:9510"
call %TC_INSTALL_DIR%\bin\dso-env.bat -q
set JAVA_OPTS=%TC_JAVA_OPTS% %JAVA_OPTS%

Go ahead and see if the example application is working as expected. Start up the Terra-
cotta server with your tc-config.xml file:

> <TC_HOME>\bin\start-tc-server.bat -f <TOMCAT_HOME>\tc-config.xml

You can now start Tomcat in another terminal with its standard script:

> cd <TOMCAT_HOME>
> bin\startup.bat

The example application is available at the URL http://localhost:8080/example2/cart.jsp;
visit it in your web browser to see that it works.

Also, feel free to install a second Tomcat instance elsewhere on your hard disk. If you
modify its conf/server.xml configuration file to change the TCP/IP ports, you can run it
alongside the first Tomcat instance. You need to start the Terracotta server only once, so don’t
do that again. However, don’t forget to put the setenv.bat file in the bin directory of your sec-
ond Tomcat server; otherwise, that server will not use Terracotta. After you start up your
second Tomcat instance and access it in your web browser, you should see that the sessions
are automatically shared between the instances. You can even try to install Tomcat on another
machine and change the TC_CONFIG_PATH variable in the setenv.bat file so that it points to the
IP address of the machine where the Terracotta server runs.

Verifying Fine-Grain Change Detection
It’s one thing to take our word for the fact that Terracotta supports fine-grained changes, but
nothing beats seeing it working with your own eyes. Terracotta supports a whole collection of
debug settings, and two of them come in handy for demonstrating fine-grained changes.
Open the tc-config.xml file of this example; locate the <clients> section; and add the con-
tents of Listing 7-14 before the terminating tag.

CHAPTER 7 � EXTENDING HTTP SESSIONS WITH TERRACOTTA 171

Listing 7-14. Debug Settings for tc-config.xml to See Fine-Grained Changes

<dso>
<debugging>
<runtime-logging>

<field-change-debug>true</field-change-debug>
<new-object-debug>true</new-object-debug>

</runtime-logging>
</debugging>

</dso>

Make sure you shut down the Terracotta server and your Tomcat instances, and start them
all again. Visit the example URL at http://localhost:8080/example2/cart.jsp, and create a
couple of items in the cart. Then, modify the amount of an existing item by entering another
number in the first form field and the name of an existing item in the second form field. Sub-
mit the form, and open the file <TOMCAT_HOME>/logs/client-logs/terracotta-client.log.
You’ll see something similar to Listing 7-15 at the end of the file.

Listing 7-15. Excerpt of terracotta-client.log with Debug Statements That Show Fine-Grained
Changes

<<snip>> com.terracottatech.dso.runtime - New DSO Object instance created
instance: example.Item@2ade54
object ID: ObjectID=[1009]

<<snip>> com.terracottatech.dso.runtime - DSO object field changed
class: com.terracotta.session.SessionData,
field: com.terracotta.session.SessionData.lastAccessedTime
newValue type: java.lang.Long, identityHashCode: 0xb5b633

<<snip>> com.terracottatech.dso.runtime - DSO object field changed
class: example.Item,
field: example.Item.amount
newValue type: java.lang.Integer, identityHashCode: 0xd40b9d

<<snip>> com.terracottatech.dso.runtime - DSO object field changed
class: com.terracotta.session.SessionData,
field: com.terracotta.session.SessionData.lastAccessedTime
newValue type: java.lang.Long, identityHashCode: 0xe9ee3f

You can clearly see that a new item was created when it was first added to the session;
afterward, the amount field of that entry was changed when a new value was submitted. Also,
each time the session is used, the lastAccessedTime field of the session data is updated.

Understanding HTTP Sessions with Terracotta
Now that you’ve learned about the theory and the practice behind HTTP session clustering,
we’re going to cover some areas that are specific to Terracotta.

CHAPTER 7 � EXTENDING HTTP SESSIONS WITH TERRACOTTA172

Supported Platforms
We explained in the beginning of this chapter that Terracotta provides its own implementation
of HTTP sessions that is optimized for clustered usage. To make this implementation as easy
to use as possible, it’s integrated with various application servers, servlet containers, and
frameworks, so you can add just the appropriate parameters and integration modules to the
configuration file and be able to use clustered HTTP sessions without any additional effort.

Terracotta has worked closely with the development teams of a number of web applica-
tion technologies to provide seamless integration. At the time of this writing, Terracotta
version 2.6 currently supports the following products:

• Apache Tomcat

• BEA WebLogic

• IBM WebSphere Application Server and Community Edition

• Jetty

• Apache Geronimo

• JBoss

• Apache Struts 1.1

• RIFE

• Wicket

Support for containers and frameworks continually evolves, so be sure to check
http://www.terracotta.org/ for a complete and up-to-date list.

Architecture Considerations
Terracotta does its best to keep data where it’s used. If a session is used on a particular server,
Terracotta will keep it instantiated on the heap, assuming there isn’t too much data to fit in
RAM. The typical scale-out architecture for web applications includes an array of application
servers fronted by a load balancer. The user agent connects to the load balancer, which then
decides how to route the requests to the application servers. If a user’s request traffic should
be routed to a different server by the load balancer, Terracotta will automatically fault that ses-
sion into heap on the new server. That being said, there are some deployment architecture
decisions that you can make to greatly improve the performance of your cluster.

The Effects of a Round-Robin Load Balancer
How the load balancer decides to route requests is of great importance to achieving scalability
with Terracotta. A naive load balancing approach is to cycle through the application servers,
irrespective of the properties of the incoming request—this approach is typically referred to as
a round-robin load distribution mechanism. It evenly distributes the request load across the
available application servers, but it will have a negative impact on Terracotta scalability.

CHAPTER 7 � EXTENDING HTTP SESSIONS WITH TERRACOTTA 173

In the event that all of the session data will fit on the physical heap of the application
servers, a round-robin load balancer will tend to pin all of the active session data into the local
heap of all of the application servers. This happens because requests for any given session will
tend to be evenly distributed across the active servers. During the processing of those
requests, the session data will be automatically faulted into whichever server is handling the
request until, eventually, every server will have served a request for every session. Therefore,
every session will reside on each server’s heap, which will cause every change to every session
to be propagated to every application server. The amount of network traffic, processing, and
overhead to keep session state in sync across the cluster multiplies with the number of appli-
cation servers. Because this architecture doesn’t scale linearly, at some point, adding new
servers to meet increasing demand will result in diminishing returns and a hard limit on the
scalability of the application.

This situation gets remarkably worse when not all of the active session data will fit into
available physical heap on the application servers. In this case, not only is there the extra over-
head of keeping all of the session data in sync, but the Terracotta object cache in each
application server will start to thrash. This happens because, as the amount of heap taken up
by session data increases beyond what will fit into the Terracotta object cache, the Terracotta
client will take steps to evict objects from the cache. However, since a round-robin load bal-
ancer distributes all sessions to all application servers evenly, there will be no active sessions
that are used less than others; to conserve memory, the Terracotta virtual memory subsystem
will be evicting active session data, which will soon need to be faulted in again.

This cache churn will seriously affect the performance of the Terracotta virtual heap, fur-
ther degrading scalability. You may have experienced a situation very much like this on your
own computer if your active memory usage has ever exceeded the available physical RAM. As
the programs on your computer compete for access to memory that doesn’t all fit into RAM,
your memory I/O degrades from RAM speed to disk speed causing your computer to become
sluggish and unusable.

Using a Sticky Load Balancer
Given the negative impact of a round-robin load balancer on Terracotta scalability, we
strongly caution against using one. Instead, a much friendlier load-balancing scheme is one
that maintains session affinity between users and the servers hosting their session. This kind
of sticky load balancer tends to keep data for a particular session on only one application
server, greatly increasing locality of reference. Since data for any given session is only in the
physical heap of one server, changes to it need not be propagated to any other application
server, eliminating much of the network and processing overhead of maintaining the virtual
heap.

Also, since data for any given session is only in the physical heap of one server, it doesn’t
take up heap space on any other application server, reducing the overall amount of physical
heap required and minimizing cache churn. Accurately provisioning your cluster is also easier,
since you know how many active sessions will fit into the physical heap of an application
server. When the number of active sessions grows beyond what will fit in physical heap, you
can provision more application servers, keeping the number of sessions per server constant
and ensuring that all of the active objects will fit in the local Terracotta cache. As an example,
assume your application session objects take 1KB each, and you have 1MB of memory per
server. A server can therefore handle 1000 sessions. If your web site will be visited by 10,000

CHAPTER 7 � EXTENDING HTTP SESSIONS WITH TERRACOTTA174

users at any one time—sometimes referred to as concurrent users—you would need approxi-
mately ten servers to handle all the session objects without experiencing Terracotta cache
eviction.

Running a Terracotta Cluster
As we cautioned earlier, stopping the Terracotta server implies freezing the application cluster.
Specifically, any session that needs to be created or updated will need the Terracotta server to
complete the session operations. Conversely, any session resident in an application server
node’s memory that is only being read from does not need the Terracotta server. Since it is
impossible to predict when end users will read or write their session data and when specific
application nodes will go down or otherwise invoke a session failover in the load balancer,
Terracotta must always be up and running to ensure no delays or pauses for end users.

To achieve 100 percent uptime, a Terracotta-based application cluster includes built-in
high-availability replication services. You can run Terracotta in a highly available manner in
two ways. The first is called networked active passive (NAP) mode. This mode needs only
TCP/IP support and a second instance of Terracotta to ensure consistent service to the appli-
cation cluster. In the second mode, Terracotta works with shared disk storage (SAN is
preferred) to make its data available to multiple Terracotta server instances. NAP is preferred
because it is easy to set up and requires no additional hardware to operate.

Summary
Scale-out architectures have made simple HTTP session usage difficult. As a result, the use of
HTTP sessions for storing user state has been largely discouraged in favor of stateless architec-
tures where that data is kept off-server. However, from the application developer’s point of
view, using the session for user state is often the best answer. In fact, some popular web appli-
cation frameworks make heavy use of the HTTP session. Using the Terracotta virtual heap to
store session data in conjunction with a sticky load balancer that yields high locality of refer-
ence can transparently provide very high scalability with high availability to your web
application.

In Chapters 1 and 2, you were first introduced to the idea of stateful programming with
a stateless runtime environment. For HTTP session replication—where Terracotta was first
applied—the push toward stateless programming has complicated the container and the
architecture. Terracotta has simplified or removed most of the trade-offs of session replication
by not replicating session at all and instead distributing the session objects efficiently in the
application cluster.

A real application must have both domain objects stored in the database and conversa-
tional state stored in the session. Let’s move on to Chapter 8, where we’ll discuss Terracotta for
Spring. We’ll cluster a combination of domain objects and session objects, and introduce you
to dependency injection in a Terracotta-based application.

CHAPTER 7 � EXTENDING HTTP SESSIONS WITH TERRACOTTA 175

Clustering Spring

The Spring framework has recently become one of the primary choices for POJO-based webTT
and enterprise development. Spring is, among other things, a dependency injection container
that allows the developer to write business logic in POJOs and declaratively configure and
inject dependencies, infrastructure services that are needed, and so on.

Spring’s main goal has been to bring back simplicity to Java enterprise development by
returning to POJOs that can be tested and deployed without a specific execution environment.
Spring effectively helps you separate the enterprise qualities from the functional parts of your
application: You write your application using an object model that best expresses its meaning.
Spring then injects into your applications the gory enterprise details of how data is accessed,
how the life cycles of objects are managed, and other such aspects of enterprise applications.
This way, you can write code that is about your application, not about talking to a database,
participating in transactions, or preparing messages to be shipped to other JVMs as messages.

Handily, Terracotta shares Spring’s philosophy, making Terracotta and Spring a well-
matched pair. Terracotta was designed specifically to let you write code about your
application, avoiding manual development of code that makes your application highly avail-
able or scalable. As such, Terracotta’s dedicated support for the Spring Framework allows
developers to create regular nonclustered Spring applications, test them as usual, and when
needed, declaratively define which Spring beans (in which application contexts) they want to
have clustered. Terracotta will then ensure that these Spring beans are clustered as effectively
as possible while retaining exactly the same semantics across the cluster as on the single node.

You can think of Terracotta as allowing you to cluster a Spring application context across
multiple JVMs as if they were all on the same JVM. The singleton beans, session scoped beans,
and custom scoped beans in a particular application context that have been declared as clus-
tered in Terracotta will be shared among all instances of that application context in every JVM
attached to the Terracotta cluster. Additionally, application events for that application context
can be configured to be automatically sent to all listeners of that application’s events in all
JVMs.

In this chapter, we will take a tour through the process of turning a non-Spring clustered
application into a Spring-enabled clustered application, showing you how you can integrate
Terracotta and Spring in a simple, effective, and natural fashion.

177

C H A P T E R 8

A Sample: Spring Beans Without a Database
The application we’ll be working with is similar in spirit to the inventory sample that comes
with the Terracotta kit and that you’ll see elsewhere in this book (we will performance-tune
and visualize the inventory application in Chapter 12). However, it has been rewritten to
adhere more closely to the DI paradigm.

The application represents a simple retail store with an inventory of products that can be
viewed and modified. The store entities are modeled with five components:

• Product: A Product object contains the SKU, name, price, and inventory level of a par-
ticular product in the store.

• Department: Department objects group products into like sets. For example, there might
be a Shoes department with all of the shoes products in it. The same product might be a
member of more than one department.

• Departments: This controls access to all Department objects.

• Inventory: This represents all of the products in the entire store, irrespective of their
departments. It provides a view onto all of the products in the store.

• Store: The Store is the main component that contains all of the other components.
Access to products, departments, and inventory is controlled through the Store.

In addition to the entity components, a number of other supporting classes implement
application and display logic. These include a class called CLI that contains the application
loop and user-input functions for the command-line interface.

■Note■■ The code for the sample project can be retrieved from http://www.apress.com.

A first look at the store component, shown in Listing 8-1, reveals that all of the other com-
ponents that the Store object itself interacts with are passed to it via the Store() constructor.
This is the essence of DI. The store component is responsible for exactly one thing—providing
access to the components of the store. It constructs none of its state by itself; therefore, the
actual implementation of the other system components it interacts with is completely inde-
pendent of the implementation of the store. The store’s dependencies are injected into it
through constructor arguments.

■Note■■ There are many styles of DI beyond passing in constructor arguments; we won’t discuss all of
them. There is also much more to Spring than just DI. To explore Spring, DI, and inversion of control more
deeply, visit the Spring Framework web site at http://www.springframework.org/.

CHAPTER 8 ■ CLUSTERING SPRING178

The Store class contains references to a Departments object and an Inventory object. The
Departments object is responsible for the life cycle of the various departments in the store.

Listing 8-1. The Store Class

package org.terracotta.book.inventory.entity;

import org.terracotta.book.inventory.display.DepartmentDisplay;
import org.terracotta.book.inventory.display.InventoryDisplay;

public class Store {

private final Departments departments;
private final Inventory inventory;

public Store(final Departments departments, final Inventory inventory) {
this.departments = departments;
this.inventory = inventory;

}

public int getDepartmentCount() {
return this.departments.getDepartmentCount();

}

public Department newDepartment(final String name) {
return departments.newDepartment(name);

}

public void displayInventory(InventoryDisplay inventoryDisplay) {
inventory.display(inventoryDisplay);

}

public void displayDepartments(DepartmentDisplay departmentDisplay) {
departments.displayDepartments(departmentDisplay);

}

public Product getProductBySKU(String sku) {
return inventory.getProductBySKU(sku);

}
}

Our simple implementation of the Departments class uses a Set to contain all of the
Department objects. You can imagine, however, a more sophisticated Departments class that
persists the Department data to a permanent store. Because the Store doesn’t create the
Departments class itself, the actual implementation of the Departments class is completely
decoupled. Changing which Departments implementation is used in our Store is as simple
as passing a different object into the Store’s constructor.

CHAPTER 8 ■ CLUSTERING SPRING 179

With that said, let’s take a look at the Departments class, shown in Listing 8-2.

Listing 8-2. The Departments Class

package org.terracotta.book.inventory.entity;

import java.util.Set;
import java.util.TreeSet;

import org.terracotta.book.inventory.display.DepartmentDisplay;
import org.terracotta.book.inventory.util.DepartmentByNameComparator;

public class Departments {
private final Set<Department> departments;
private final DepartmentFactory departmentFactory;

public Departments(final DepartmentByNameComparator comparator,
final DepartmentFactory departmentFactory) {

this.departmentFactory = departmentFactory;
departments = new TreeSet<Department>(comparator);

}

public Department newDepartment(final String name) {
Department department = departmentFactory.newDepartment(name);
synchronized (departments) {
departments.add(department);

}
return department;

}

public void displayDepartments(final DepartmentDisplay departmentDisplay) {
synchronized (departments) {
for (Department department : departments) {
department.display(departmentDisplay);

}
}

}

public int getDepartmentCount() {
synchronized (departments) {
return departments.size();

}
}

}

The Departments class is responsible for controlling the life cycle of Department objects. Its
only state is a Set containing all of the extant Department objects and a reference to a factory

CHAPTER 8 ■ CLUSTERING SPRING180

object that creates new Department objects. It contains methods that display departments, but
all of the actual display logic is delegated to display policy classes.

The Department class, shown in Listing 8-3, has a reference to a set that contains all of the
Product objects in that department. It also has a field for the department name and a reference
to the Inventory object. When a Product object is added to a Department, it is also passed to the
Inventory object, so the Inventory object will be made aware of the new Product addition.

Listing 8-3. The Department Class

package org.terracotta.book.inventory.entity;

import java.util.Set;
import java.util.TreeSet;

import org.terracotta.book.inventory.display.DepartmentDisplay;
import org.terracotta.book.inventory.util.ProductByNameComparator;

public class Department {

private final String name;
private final Set<Product> productsByName;
private final Inventory inventory;

public Department(final ProductByNameComparator comparator,
final Inventory inventory, final String name) {

this.inventory = inventory;
this.name = name;
productsByName = new TreeSet<Product>(comparator);

}

public String getName() {
return this.name;

}

public void addProduct(Product product) {
synchronized (productsByName) {
productsByName.add(product);

}
inventory.addProduct(product);

}

public void display(final DepartmentDisplay departmentDisplay) {
departmentDisplay.displayDepartment(this);
synchronized (productsByName) {
departmentDisplay.displayProducts(productsByName);

}
}

}

CHAPTER 8 ■ CLUSTERING SPRING 181

The Product class, shown in Listing 8-4, is simply a structure that contains data about a
particular product. It provides methods for accessing the fields of the product and for modify-
ing the mutable fields.

Listing 8-4. The Product Class

package org.terracotta.book.inventory.entity;

public class Product {
private final String sku;
private final String name;
private double price;
private int inventoryLevel;

public Product(final String sku, final String name, final double price,
final int inventoryLevel) {

this.sku = sku;
this.name = name;
this.price = price;
this.inventoryLevel = inventoryLevel;

}

public String getSku() {
return sku;

}

public String getName() {
return name;

}

public synchronized double getPrice() {
return price;

}

public synchronized int getInventoryLevel() {
return inventoryLevel;

}

public int addInventory(int count) {
return modInventory(count);

}

public int subtractInventory(int count) {
return modInventory(count * -1);

}

private synchronized int modInventory(int count) {
inventoryLevel += count;

CHAPTER 8 ■ CLUSTERING SPRING182

return inventoryLevel;
}

public synchronized void setPrice(double newPrice) {
price = newPrice;

}
}

The CLI class, shown in Listing 8-5, contains the application logic of the command-line
interface for this example. The run() method contains the application loop that requests user
input to display and modify the catalog.

Listing 8-5. The CLI Class

package org.terracotta.book.inventory.cli;

import org.terracotta.book.inventory.display.DepartmentDisplay;
import org.terracotta.book.inventory.display.InventoryDisplay;
import org.terracotta.book.inventory.display.ProductDisplay;
import org.terracotta.book.inventory.entity.Department;
import org.terracotta.book.inventory.entity.Product;
import org.terracotta.book.inventory.entity.Store;

public class CLI implements Runnable {
private final Store store;
private final String[] initMenu = { "Use default items", "Enter items by hand" };
private final String[] viewMenu = { "Exit", "View departments", "View inventory",

"Modify product" };
private final String[] modifyProductMenu =

{ "Escape", "Change price", "Change inventory" };

private final DepartmentDisplay departmentDisplay;
private final InventoryDisplay inventoryDisplay;
private final CLIHelper helper;
private final ProductDisplay productDisplay;

public CLI(final CLIHelper helper, final DepartmentDisplay departmentDisplay,
final ProductDisplay productDisplay, final InventoryDisplay inventoryDisplay,
final Store store) {

this.helper = helper;
this.departmentDisplay = departmentDisplay;
this.productDisplay = productDisplay;
this.inventoryDisplay = inventoryDisplay;
this.store = store;

}

public void run() {
helper.println("Welcome to the Terracotta inventory demo.");

CHAPTER 8 ■ CLUSTERING SPRING 183

if (store.getDepartmentCount() == 0) {
helper.println("The store is currently empty. Let's add some departments ➥

and products...");
int choice = helper.askMenu(initMenu);
switch (choice) {
case (0):
helper.println("Adding default products");
Department dept = store.newDepartment("Shoes");
dept.addProduct(new Product("SAND", "Sandals", 15.96, 29));
dept.addProduct(new Product("LOAF", "Loafers", 59.99, 45));

dept = store.newDepartment("Sports");
dept.addProduct(new Product("BBAL", "Basketball", 12.95, 30));
dept.addProduct(new Product("SK8Z", "Ice Skates", 61.99, 5));
break;

case (1):
addDepartments();
break;

}
}
while (true) {
// brain-dead application loop
helper.println("");
helper.printSeparator();
helper.println("Main Menu");
helper.printSeparator();
int choice = helper.askMenu(viewMenu);
switch (choice) {
case 0:
helper.println("Goodbye.");
return;

case 1:
displayDepartments();
break;

case 2:
displayInventory();
break;

case 3:
modifyProduct();
break;

}
}

}

private void displayInventory() {
helper.printSeparator();
helper.println("Inventory Display");

CHAPTER 8 ■ CLUSTERING SPRING184

helper.printSeparator();
store.displayInventory(inventoryDisplay);

}

private void displayDepartments() {
helper.printSeparator();
helper.println("Department Display");
helper.printSeparator();
store.displayDepartments(departmentDisplay);

}

private void addDepartments() {
String addMore = "y";
while (!"n".equals(addMore)) {
addDepartment();
addMore = helper.ask("Add more departments? [y|n]");

}
}

private void addDepartment() {
helper.println("Add department.");
String name = helper.ask("Enter department name: ");
Department department = store.newDepartment(name);
String addMore = "y";
while (!"n".equals(addMore)) {
addProduct(department);
addMore = helper.ask("Add more products in this department? [y|n]");

}
}

private void addProduct(Department department) {
helper.printSeparator();
helper.println("Add product.");
String sku = helper.ask("Enter product SKU: ");
String name = helper.ask("Enter product name: ");
Double price = (Double) helper.ask("Enter product price: ", Double.class);
Integer inventoryLevel =
(Integer) helper.ask("Enter product inventory level: ", Integer.class);

Product product =
new Product(sku, name, price.doubleValue(), inventoryLevel.intValue());

department.addProduct(product);
}

private void modifyProduct() {
helper.printSeparator();
helper.println("Modify Product");
helper.printSeparator();

CHAPTER 8 ■ CLUSTERING SPRING 185

Product product = null;
while (product == null) {
String sku = helper.ask("Enter sku:");
product = store.getProductBySKU(sku);
if (product == null) {
helper.println("No product found by that sku.");

}
}
productDisplay.display(product);
int choice = helper.askMenu(modifyProductMenu);
switch (choice) {
case 0:
return;

case 1:
double newPrice = (Double) helper.ask("Enter new price: ", Double.class);
product.setPrice(newPrice);
break;

case 2:
int delta =
(Integer) helper.ask("Increment/decrement inventory by: ", Integer.class);

product.addInventory(delta);
break;

}
helper.printSeparator();
helper.println("Modified Product");
helper.printSeparator();
productDisplay.display(product);

}
}

The Main class, shown in Listing 8-6, wires up all of the components and starts the
command-line interface (CLI) application. This demonstrates one way of implementing DI
without using a framework like Spring. Later, we will look at how you can use Spring to declare
the relationships among the components in a configuration file and have Spring magically do
the wiring that you see here in the Main class. The IOImpl class is not covered here but is
included in the example code available online if you want to compile and run these samples.
IOImpl simply sets System.in and System.out as the input and output streams.

Listing 8-6. The Main Class

package org.terracotta.book.inventory.cli;

import org.terracotta.book.inventory.display.DepartmentDisplay;
import org.terracotta.book.inventory.display.InventoryDisplay;
import org.terracotta.book.inventory.display.ProductDisplay;
import org.terracotta.book.inventory.entity.DepartmentFactory;
import org.terracotta.book.inventory.entity.Departments;
import org.terracotta.book.inventory.entity.Inventory;

CHAPTER 8 ■ CLUSTERING SPRING186

import org.terracotta.book.inventory.entity.Store;
import org.terracotta.book.inventory.util.CurrencyFormatFactory;
import org.terracotta.book.inventory.util.DepartmentByNameComparator;
import org.terracotta.book.inventory.util.ProductByNameComparator;
import org.terracotta.book.inventory.util.StringUtil;

public class Main {

public static void main(String[] args) {
IO io = new IOImpl();
StringUtil util = new StringUtil();
CurrencyFormatFactory currencyFormatFactory = new CurrencyFormatFactory();
int skuWidth = 8;
int nameWidth = 30;
int priceWidth = 10;
int inventoryLevelWidth = 10;
ProductDisplay productDisplay =
new ProductDisplay(io, util, currencyFormatFactory,

skuWidth, nameWidth, priceWidth, inventoryLevelWidth);
DepartmentDisplay departmentDisplay = new DepartmentDisplay(io, productDisplay);
InventoryDisplay inventoryDisplay = new InventoryDisplay(io, productDisplay);
ProductByNameComparator productByNameComparator = new

ProductByNameComparator();
Inventory inventory = new Inventory(productByNameComparator);
Departments departments = new Departments(new DepartmentByNameComparator(),

new DepartmentFactory(productByNameComparator, inventory));
Store store = new Store(departments, inventory);
new CLI(new CLIHelper(io), departmentDisplay, productDisplay, inventoryDisplay,

store).run();
}

}

Running the Example on a Single JVM
Now that you’ve seen the code of the important classes, let’s run the example as a stand-alone
application without Spring or Terracotta to see how it works.

Once you have acquired the example source code, open a terminal, and change directories
to the top-level project directory. From now on, the instructions will assume that you are execut-
ing the commands (shown on Linux) from this top-level directory.

The first step is to compile the code like so:

%> javac -d bin -sourcepath src/main/java \
src/main/java/org/terracotta/book/inventory/cli/Main.java

The -d flag tells Java to place the compiled classes in the bin directory (this is for compati-
bility with the Eclipse, which compiles code into the bin directory by default). We need to tell
javac to compile only the Main class, because all of the dependencies can be reached from it.

CHAPTER 8 ■ CLUSTERING SPRING 187

Next, run the Main class, making sure to add the bin directory to the classpath:

%> java -cp bin org.terracotta.book.inventory.cli.Main

You should see this in your console:

Welcome to the Terracotta inventory demo.
The store is currently empty. Let's add some departments and products...
Choose an action by number:
[0] Use default items
[1] Enter items by hand

==>

When the application first starts, the store is empty, so you are prompted to add items to
the store. You can either let the application fill the store with default items by typing 0, or you
can add items by hand. You should now be taken to the main menu:

Welcome to the Terracotta inventory demo.
The store is currently empty. Let's add some departments and products...
Choose an action by number:
[0] Use default items
[1] Enter items by hand

==> 0
Adding default products

===
Main Menu
===
Choose an action by number:
[0] Exit
[1] View departments
[2] View inventory
[3] Modify product

==>

To see the contents of the store that were just added, you can choose to look at them
grouped by department or just view the entire inventory in alphabetical order. Let’s choose
“View departments”. You will see output like this:

Choose an action by number:
[0] Exit
[1] View departments
[2] View inventory

CHAPTER 8 ■ CLUSTERING SPRING188

[3] Modify product

==> 1
===
Department Display
===

Department Shoes
SKU | Product Name | Price | Inventory

LOAF | Loafers | $59.99 | 45
SAND | Sandals | $15.96 | 29

Department Sports
SKU | Product Name | Price | Inventory

BBAL | Basketball | $12.95 | 30
SK8Z | Ice Skates | $61.99 | 5

===
Main Menu
===
Choose an action by number:
[0] Exit
[1] View departments
[2] View inventory
[3] Modify product

==>

Now that you’ve seen all of the products, let’s modify one of the them:

===
Main Menu
===
Choose an action by number:
[0] Exit
[1] View departments
[2] View inventory
[3] Modify product

==> 3
===
Modify Product
===

CHAPTER 8 ■ CLUSTERING SPRING 189

Enter sku:
==>

Enter the SKU for the sandals, and you will be given a choice to modify either the price or
the inventory level. Let’s put the sandals on sale and lower the price to $12.99. The application
will print the modified product, so you can see the new price reflected. It will then take you
back to the main menu:

===
Modify Product
===
Enter sku:
==> SAND
SAND | Sandals | $15.96 | 29
Choose an action by number:
[0] Escape
[1] Change price
[2] Change inventory

==> 1
Enter new price:
==> 12.99
===
Modified Product
===
SAND | Sandals | $12.99 | 29

===
Main Menu
===
Choose an action by number:
[0] Exit
[1] View departments
[2] View inventory
[3] Modify product

==>

Feel free to experiment by changing the prices or inventory levels of other products.

Running the Example Clustered with Terracotta
Now that you’ve seen the application run on a single JVM, let’s use Terracotta to cluster the
store, so the application can run on multiple JVMs.

CHAPTER 8 ■ CLUSTERING SPRING190

The example project comes with two Terracotta configuration files. The one we will use
now is designed to work with a non-Spring application and is shown in Listing 8-7. It explicitly
declares roots and includes classes for instrumentation.

Listing 8-7. tc-config-no-spring.xml

<?xml version="1.0" encoding="UTF-8"?>
<con:tc-config xmlns:con="http://www.terracotta.org/config">
<servers>

<server host="%i" name="localhost">
<dso-port>9510</dso-port>
<jmx-port>9520</jmx-port>
<data>terracotta/server-data</data>
<logs>terracotta/server-logs</logs>

</server>
</servers>
<clients>

<logs>terracotta/client-logs</logs>
</clients>
<application>

<dso>
<instrumented-classes>
<include>

<class-expression>
org.terracotta.book.inventory.entity..*

</class-expression>
</include>
<include>

<class-expression>
org.terracotta.book.inventory.cli.CLI

</class-expression>
</include>
<include>

<class-expression>
org.terracotta.book.inventory.util.DepartmentByNameComparator

</class-expression>
</include>
<include>

<class-expression>
org.terracotta.book.inventory.util.ProductByNameComparator

</class-expression>
</include>

</instrumented-classes>
<locks>
<autolock>

<method-expression>
* org.terracotta.book.inventory.entity..*(..)

</method-expression>

CHAPTER 8 ■ CLUSTERING SPRING 191

<lock-level>write</lock-level>
</autolock>

</locks>
<roots>
<root>

<field-name>org.terracotta.book.inventory.cli.CLI.store</field-name>
</root>

</roots>
</dso>

</application>
</con:tc-config>

All of the objects in the org.terracotta.book.inventory.entity package will be clustered,
so we use a class expression to include all classes in that package for instrumentation. The two
comparator objects in the util package will be clustered also, so we add include expressions
for them.

The store reference in the CLI class is declared as a root field. The CLI object never
becomes a shared object. However, it manipulates shared objects directly, so it must also be
instrumented.

The only methods that modify clustered objects are in the entity classes, so we use a
method expression to declare all methods in the entity package to be automatically locked.

To run the example clustered with Terracotta, first start the Terracotta server in a separate
terminal window. Make sure you specify the correct Terracotta configuration file and remem-
ber to replace <$TC_HOME> with the directory where you unzipped the Terracotta download:

%> <$TC_HOME>/bin/start-tc-server.sh -f tc-config-no-spring.xml

Back in your application terminal, use the dso-env script to determine the JVM arguments
that need to be added to the java command. You will see output that looks like this, with slight
variations depending on the version of Terracotta you are using and where you installed it:

<$TC_HOME>/bin/dso-env.sh localhost:9510

2008-03-24 14:33:28,124 INFO - Terracotta 26, as of 20080218-120204 (Revision
7031 by cruise@rh4mo0 from 2.6)
2008-03-24 14:33:28,669 INFO - Configuration loaded from the server at
'localhost:9510'.
-Xbootclasspath/p:<$TC_HOME>/lib/dso-boot/dso-boot-
hotspot_osx_150_13.jar -Dtc.install-root=<$TC_HOME>/bin/..
-Dtc.config=localhost:9510

■Note■■ Passing localhost:9510 as an argument to dso-env tells Terracotta that the client JVMs should
receive their configuration from the Terracotta server. This is a good practice that will ensure that all of the
Terracotta client JVMs operate with the same configuration.

CHAPTER 8 ■ CLUSTERING SPRING192

Now that you know what the Terracotta JVM arguments are, you can run Java with Terra-
cotta enabled (the actual values of the Terracotta arguments you pass to Java will probably be
slightly different than those shown here):

%> java \
-Xbootclasspath/p<$TC_HOME>/bin/../lib/dso-boot/dso-boot-

hotspot_osx_150_13.jar \
-Dtc.install-root=<$TC_HOME>/bin/.. \
-Dtc.config=localhost:9510 \
-cp bin \
org.terracotta.book.inventory.cli.Main

The application will operate exactly the same as it did before. The store, however, will be
clustered. If you look at the runtime clustered object graph in the Terracotta administration
console, you will see the Store, Inventory, Departments, Department, and Product objects on
the Terracotta virtual heap.

To see the effect of clustering, go through the steps of adding items to the store and modi-
fying a product or two. Next, start the application again in a different JVM in a new terminal
window. Now, instead of prompting you to fill an empty store, the application instance run-
ning in the new JVM will find that there are already items in the store and skip straight to the
main menu. When you view the inventory or departments lists, you will see all of the modifi-
cations to the store that you made in the first JVM reflected automatically in the new JVM.

You can continue to make modifications to the store in either JVM and view those modifi-
cations in the other JVM. Of course, you can shut down both application JVMs and start new
ones to prove that the store data is durable.

A Note on DI and Terracotta
Before we move on to use Spring with this example, a few observations should be reiterated.
The most important thing to notice is that the DI coding style has encouraged the code to
have a very good separation of concerns. It is no accident that all of the clustered objects live
in the same package. Lots of other classes help perform various display activities, and the CLI
object contains all of the application logic, but none of those objects ever join the cluster.

The fact that only entity objects ever need to be clustered reinforces the second important
point about Terracotta and the separation of concerns. Terracotta was never intended to clus-
ter the entire Java heap. It is designed to cluster just those parts of the heap that ought to be
shared across all instances of your application.

The Terracotta team occasionally receives feedback that the framework is not “perfectly
drop-in.” This is done on purpose. Clustering every byte of a Java heap would be not only
wildly inefficient, but in many cases nonsensical. What would you do, for instance, with a
clustered AWT Graphics context? By giving you declarative control of what parts of the Java
heap ought to be clustered (in the form of what you pick as your roots and what objects join
clustered object graphs), Terracotta lets you keep important application state data clustered,
while leaving data that doesn’t need to be clustered alone.

In your experiments with Terracotta, if you find that you need to make a lot of things tran-
sient because objects with no business being in the cluster are being sucked into clustered
object graphs, your code may be commingling concerns that ought to be separated. Coding in a
DI style reinforces the separation of concerns that will make Terracotta integration very natural.

CHAPTER 8 ■ CLUSTERING SPRING 193

Growing Spring Beans
So far, you have seen the example running as a stand-alone application and as a Terracotta
clustered application. Now, let’s look at how it might work as a Spring application and as a
clustered Spring application.

Luckily, the example was coded with inversion of control in mind, so adapting it for
Spring is trivial. We need only two new things to get the application to function with Spring.
The first is the Spring application context configuration file, shown in Listing 8-8. In this
Spring configuration, we tell Spring about Spring beans. Spring beans are components that
Spring knows are part of an application and that need to be wired together in a particular way.

Listing 8-8. The Spring Application Context Configuration File (applicationContext.xml)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">

<beans default-lazy-init="false">
<bean id="stringUtil" class="org.terracotta.book.inventory.util.StringUtil"

singleton="true"/>

<bean id="productByNameComparator"
class="org.terracotta.book.inventory.util.ProductByNameComparator"
singleton="true"/>

<bean id="departmentByNameComparator"
class="org.terracotta.book.inventory.util.DepartmentByNameComparator"
singleton="true"/>

<bean id="inventory" class="org.terracotta.book.inventory.entity.Inventory"
singleton="true">

<constructor-arg><ref bean="productByNameComparator"/></constructor-arg>
</bean>

<bean id="departmentFactory"
class="org.terracotta.book.inventory.entity.DepartmentFactory"
singleton="true">

<constructor-arg><ref bean="productByNameComparator"/></constructor-arg>
<constructor-arg><ref bean="inventory"/></constructor-arg>

</bean>

<bean id="departments" class="org.terracotta.book.inventory.entity.Departments"
singleton="true">

<constructor-arg><ref bean="departmentByNameComparator"/></constructor-arg>
<constructor-arg><ref bean="departmentFactory"/></constructor-arg>

</bean>

CHAPTER 8 ■ CLUSTERING SPRING194

<bean id="store" class="org.terracotta.book.inventory.entity.Store"
singleton="true">

<constructor-arg><ref bean="departments"/></constructor-arg>
<constructor-arg><ref bean="inventory"/></constructor-arg>

</bean>

<bean id="io" class="org.terracotta.book.inventory.cli.IOImpl"
singleton="true"/>

<bean id="currencyFormatFactory"
class="org.terracotta.book.inventory.util.CurrencyFormatFactory"
singleton="true"/>

<bean id="productDisplay"
class="org.terracotta.book.inventory.display.ProductDisplay"
singleton="true">

<constructor-arg><ref bean="io"/></constructor-arg>
<constructor-arg><ref bean="stringUtil"/></constructor-arg>
<constructor-arg><ref bean="currencyFormatFactory"/></constructor-arg>
<!-- SKU width -->
<constructor-arg type="int"><value>8</value></constructor-arg>
<!-- name width -->
<constructor-arg type="int"><value>30</value></constructor-arg>
<!-- price width -->
<constructor-arg type="int"><value>10</value></constructor-arg>
<!-- inventory level width -->
<constructor-arg type="int"><value>10</value></constructor-arg>

</bean>

<bean id="departmentDisplay"
class="org.terracotta.book.inventory.display.DepartmentDisplay"
singleton="true">

<constructor-arg><ref bean="io"/></constructor-arg>
<constructor-arg><ref bean="productDisplay"/></constructor-arg>

</bean>

<bean id="inventoryDisplay"
class="org.terracotta.book.inventory.display.InventoryDisplay"
singleton="true">

<constructor-arg><ref bean="io"/></constructor-arg>
<constructor-arg><ref bean="productDisplay"/></constructor-arg>

</bean>

<bean id="cliHelper" class="org.terracotta.book.inventory.cli.CLIHelper"
singleton="true">

<constructor-arg><ref bean="io"/></constructor-arg>
</bean>

CHAPTER 8 ■ CLUSTERING SPRING 195

<bean id="cli" class="org.terracotta.book.inventory.cli.CLI" singleton="true">
<constructor-arg><ref bean="cliHelper"/></constructor-arg>
<constructor-arg><ref bean="departmentDisplay"/></constructor-arg>
<constructor-arg><ref bean="productDisplay"/></constructor-arg>
<constructor-arg><ref bean="inventoryDisplay"/></constructor-arg>
<constructor-arg><ref bean="store"/></constructor-arg>

</bean>

</beans>

In our application context configuration, we have configured a number of beans, each
corresponding to the components of our application, culminating in the declaration of the cli
bean. Spring will use this configuration to construct instances of these beans and wire them
together. If you look carefully, you will notice that this configuration file looks very similar to
the Main class earlier in the chapter, except that the relationships among the components are
declared in XML instead of Java.

Every bean in this example is declared as a singleton, which means that there will be only
one instance of each bean per application context.

The final step to converting this application to make use of Spring is to add a main()
method that sets in motion the creation of the application context, wires the beans, and starts
the run() loop in the CLI object. For that, we create an analog to the Main class from earlier
that we’ll call SpringMain; it’s shown in Listing 8-9.

Listing 8-9. The SpringMain Class

package org.terracotta.book.inventory.cli;

import org.springframework.beans.factory.BeanFactory;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class SpringMain {
public static void main(String[] args) {
BeanFactory factory = new ClassPathXmlApplicationContext(new String[] {

"applicationContext.xml" });
CLI cli = (CLI) factory.getBean("cli");
cli.run();

}
}

SpringMain creates a new BeanFactory (an application context) based on the
applicationContext.xml configuration. Spring does all of the rest of the work of instantiating
the beans and passing to them all of the right arguments based on what the bean relationships
are declared to be in the configuration file. Once the application context is created, we get the
cli bean out of the application context and start the application loop in the run() method.

Before we can run the Spring-enabled application, we need to compile SpringMain like so:

%> javac -cp lib/spring-2.0.8.jar -d bin -sourcepath src/main/java \
src/main/java/org/terracotta/book/inventory/cli/SpringMain.java

CHAPTER 8 ■ CLUSTERING SPRING196

Now, to run the Spring-enabled application, we need to add the Spring libraries and
dependencies to the command line and tell Java to start the SpringMain class:

%> java -cp .:bin:lib/spring-2.0.8.jar:lib/commons-logging.jar \
org.terracotta.book.inventory.cli.SpringMain

Now, you should see output that looks something like this:

Mar 24, 2008 4:32:34 PM org.springframework.context.support.
AbstractApplicationContext prepareRefresh
INFO: Refreshing org.springframework.context.support.
ClassPathXmlApplicationContext@34a7d8: display name ➥

[org.springframework.context.support.ClassPathXmlApplicationContext@34a7d8];
startup date [Mon Mar 24 16:32:34 PDT 2008]; root of context hierarchy
Mar 24, 2008 4:32:34 PM ➥

org.springframework.beans.factory.xml.XmlBeanDefinitionReader ➥

loadBeanDefinitions
INFO: Loading XML bean definitions from class path resource [applicationContext.xml]
Mar 24, 2008 4:32:34 PM org.springframework.context.support.
AbstractApplicationContext obtainFreshBeanFactory
INFO: Bean factory for application context [org.springframework.context.support.
ClassPathXmlApplicationContext@34a7d8]:
org.springframework.beans.factory.support.DefaultListableBeanFactory@45f939
Mar 24, 2008 4:32:34 PM org.springframework.beans.factory.support.
DefaultListableBeanFactory preInstantiateSingletons
INFO: Pre-instantiating singletons in org.springframework.beans.factory.support.
DefaultListableBeanFactory@45f939: defining beans [stringUtil,
productByNameComparator,departmentByNameComparator,inventory,departmentFactory,
departments,store,io,currencyFormatFactory,productDisplay,departmentDisplay,
inventoryDisplay,cliHelper,cli]; root of factory hierarchy
Welcome to the Terracotta inventory demo.
The store is currently empty. Let's add some departments and products...
Choose an action by number:
[0] Use default items
[1] Enter items by hand

==>

The application should work exactly the same as the non-Spring version. The only differ-
ence is in how the objects are wired together. As you can see, since the code was written with DI
in mind, we have made no changes to our existing code to convert it to a Spring application.

Clustering Spring Beans
Nearly everything is in place to use Terracotta to cluster the Spring beans we have configured.
The only thing we need now is a Terracotta configuration that is Spring-aware. Since Terracotta

CHAPTER 8 ■ CLUSTERING SPRING 197

has explicit support for Spring, the configuration will be even simpler for this Spring-enabled
version of our example application than it was for the plain Java version.

Terracotta provides a Spring-specific set of configuration tags in the configuration file;
these tags help to raise the abstraction level from working with fields, classes, and methods to
working with services (beans). This means that Spring users do not have to leave their domain
to configure the distribution of their beans; instead, they can refer to their beans using the
same names as in the Spring configuration file. Listing 8-10 shows our example file.

Listing 8-10. The Terracotta Spring Configuration File (tc-config-spring.xml)

<con:tc-config xmlns:con="http://www.terracotta.org/config">
<servers>

<server host="%i" name="localhost">
<dso-port>9510</dso-port>
<jmx-port>9520</jmx-port>
<data>terracotta/server-data</data>
<logs>terracotta/server-logs</logs>

</server>
</servers>
<clients>

<logs>terracotta/client-logs</logs>
</clients>
<application>

<spring>
<jee-application name="*">
<application-contexts>

<application-context>
<paths>
<path>applicationContext.xml</path>

</paths>
<beans>
<bean name="store" />

</beans>
</application-context>

</application-contexts>
<instrumented-classes>

<include>
<class-expression>
org.terracotta.book.inventory.util.DepartmentByNameComparator

</class-expression>
</include>
<include>
<class-expression>
org.terracotta.book.inventory.util.ProductByNameComparator

</class-expression>
</include>

</instrumented-classes>
</jee-application>

CHAPTER 8 ■ CLUSTERING SPRING198

</spring>
</application>

</con:tc-config>

Notice that not all beans are declared as clustered. In fact, the only bean we declared as
clustered is the store bean. This is because Terracotta analyzes the dependency graph of clus-
tered Spring beans and determines the appropriate configuration for them. From that
dependency graph, Terracotta is able to determine which classes need to be instrumented and
which methods must be automatically locked.

Apart from defining which beans should be clustered, we need to define three more
things:

• We have to define the path to the Spring bean definition file. In this example, it is
applicationContext.xml.

• There are two classes that aren’t recognized by Terracotta in the store bean dependency
graph, DepartmentByNameComparator and ProductByNameComparator, so we must explic-
itly configure them for instrumentation.

• We have to define the name of the JEE application associated with this application con-
text. If the Spring application is deployed as a web application, the JEE application
name is usually the name of the WAR file the web application is deployed in. This
means that the configuration is local to this specific web application. Because this
example is a stand-alone Spring application, we use the wildcard character (*) as the
application name.

NONDISTRIBUTED BEAN FIELDS

By default, all of a clustered bean's references (fields) are also clustered (i.e., the whole object graph that is
referenced from the clustered bean is clustered). But you are allowed to define certain fields as nondistrib-
utable, which means that they will not be clustered and will maintain a local value. This ability allows you to
effectively limit the graph. Avoiding DSO-based replication is very important in certain cases since the bean
might have references to objects that are holding on to operating-system–specific resources, such as files
and sockets, that are by nature not clusterable. The fields are referred to by their names in the Java code.
Here is an example:

<beans>
<bean name="beanName">
<non-distributed-field>myFieldOne</non-distributed-field>
<non-distributed-field>myFieldTwo</non-distributed-field>

</bean>
</beans>

CHAPTER 8 ■ CLUSTERING SPRING 199

Running with Clustered Spring Beans
Now, all of the pieces are in place to run the application with clustered Spring beans. This
time, start the Terracotta server with the tc-config-spring.xml as the configuration file
argument:

%> <$TC_HOME>/bin/start-tc-server.sh -f tc-config-spring.xml

Once the server starts, run one instance of the application in a terminal window like so:

%> java \
-Xbootclasspath/p:\

<$TC_HOME>/bin/../lib/dso-boot/dso-boot-hotspot_osx_150_13.jar \
-Dtc.install-root=<$TC_HOME>/bin/.. \
-Dtc.config=localhost:9510 \
-cp .:bin:lib/spring-2.0.8.jar:lib/commons-logging.jar \
org.terracotta.book.inventory.cli.SpringMain

Go through the same process of adding products to the store and modifying them; then,
start another instance. Not surprisingly, the clustered Spring application works just like the
clustered application without Spring.

There is one difference between the two application versions, however. In the clustered
application without Spring, we declared the store field of CLI to be a Terracotta root field.
Since Terracotta clusters Spring beans for you, you don’t have to specify a root. If you start the
Terracotta administration console, you will see that Terracotta has created a root for you that
contains the clustered beans in the Spring context (see Figure 8-1).

Figure 8-1. Automatically created root for Spring application contexts

CHAPTER 8 ■ CLUSTERING SPRING200

Terracotta Session Clustering for Spring
Terracotta has support for clustering of Spring Web Flow and session scoped beans. To turn on
this feature, you have to set session-support to true.

<!-- Under c:config/application/spring/jee-application -->
<session-support>true</session-support>

This also turns on regular HTTP session clustering for the web application defined in the
enclosing <jee-application> element.

Summary
In this chapter, we have gone through the process of creating a plain Java application, cluster-
ing it, and augmenting it to work as a Spring application and, finally, as a clustered Spring
application.

As you’ve seen, an application that is designed using the inversion of control pattern,
which Spring reinforces, works very well with Terracotta, even if you aren’t using it with Spring.
The separation of concerns that DI promotes tends to make very clear what objects belong on
the virtual heap when you cluster your application. Furthermore, the Spring integration that
Terracotta provides makes configuring your Spring application to work with Terracotta easy.
But, what about applications that work with other technologies? Is there a way to provide tight
integration between Terracotta and third-party technologies other than Spring?

In the next chapter, we explore how to use and build Terracotta Integration Modules
(TIMs). TIMs provide a convenient and portable way to encapsulate all of the configuration
and supporting code required to work with a particular library or application. Terracotta pro-
vides a number of TIMs that make using Terracotta with other existing technologies as easy as
with Spring. And you can build and publish your own TIMs to work with your own code or
libraries or with technologies that don’t already have explicit Terracotta support.

CHAPTER 8 ■ CLUSTERING SPRING 201

Integration Modules

This chapter discusses the Terracotta Integration Module (TIM) framework, which allows youTT
to specify sets of clustering configurations as components, and include those components in
your own configuration. We will investigate how to use TIMs and how to build them from
scratch, which you might do to cluster an external library or framework where you need clus-
tering or when modularizing the clustering configuration of your own application.

Clustering by Configuration
Terracotta’s approach to clustering is founded on the idea of transparency. The best abstrac-
tion to use when writing scalable distributed software is the same abstraction you use when
writing scalable concurrent single-JVM software. Thus, clustering occurs via external configu-
ration rather than by the use of an API and new libraries in your code.

A key consequence of this approach is that external configuration can be applied to exist-
ing libraries even when they were not originally designed for that purpose.
Configuration-driven clustering allows you to take advantage of the many great open source
libraries available today in your distributed system.

Terracotta supports the concept of external configuration for a library or component with
the Terracotta Integration Module (TIM). A TIM consists of configuration information and
occasionally code that specifies how the component should be clustered and instrumented,
how locking is performed, and so on.

A TIM itself is contained in a JAR file. The TIM has within it a manifest, some Terracotta
configuration defined in an XML file, and possibly some code that can be applied to modify
the original library if necessary.

Using TIMs
We will begin our exploration of TIMs by looking at an example of when they are useful and at
how you can use modules created by Terracotta or someone else.

Clustering a Synchronized Map
By default, most collection classes are unsynchronized. A class like HashMap has no synchro-
nization and can only be used safely in a single thread at a time. However, the Java Collections

203

C H A P T E R 9

API contains a utility class named Collections with a synchronizedMap() method that will
wrap any Map passed to it with another class that synchronizes on the Map for every method
call (similar to Hashtable).

If you then cluster that synchronized Map, you will need to specify clustered locks for
access to every method on the Map object. Typically, you will need to specify write-level
autolocks on all methods that modify the state of the Map and read-level autolocks on all other
methods. You would do this in your tc-config.xml file by adding a <locks> section as shown in
Listing 9-1.

Listing 9-1. The Locks Stanza in tc-config.xml

<locks>
<autolock>

<method-expression>
void java.util.Collections$SynchronizedMap.clear()

</method-expression>
<lock-level>write</lock-level>

</autolock>
<autolock>

<method-expression>
Object java.util.Collections$SynchronizedMap.clone()

</method-expression>
<lock-level>read</lock-level>

</autolock>

...for every method in Set...

</locks>

This locking code will work fine, but you will need to use this in every application that
uses a synchronized Map. An alternative is to bundle up this lock configuration into a TIM,
which can then be included in any application that needs it.

Importing a TIM
As it turns out, Terracotta provides the synchronized Map autolock configuration in the
Autolocked Collections Terracotta Integration Module called tim-synchronizedmap.

To include a TIM, you simply include it in the <clients> section of your Terracotta config-
uration. Listing 9-2 shows an example fragment of how to include the tim-synchronizedmap
module in your configuration’s <clients> section of your application’s Terracotta configura-
tion file (usually tc-config.xml).

Listing 9-2. Requiring a Module in tc-config.xml

<clients>
<modules>

<module name="tim-synchronizedmap" version="2.0.0" />
</modules>

</clients>

CHAPTER 9 � INTEGRATION MODULES204

Each module declaration consists of three attributes:

• name: The module name, which is required.

• version: The module version, which is required.

• group-id: The module group identifier, which is optional. If not specified, it is assumed
to be org.terracotta.modules.

At run time, Terracotta will read your configuration and the included modules and include
the configuration from each module in your application’s configuration. An integration module’s
configuration may itself include other configuration modules, which will be included as well.
This allows you to, in effect, create modules that are bundles of other modules.

In this example, the previous autolock configuration no longer needs to be included, as
the module will pull it in as a chunk of additional configuration.

Module Repositories
The next question is how does your application know where to find the JAR files that define
the modules included in your application? Terracotta looks for modules in a module reposi-
tory, which is nothing but a directory that serves as a collection of JAR files.

Modules do not need to be in a single repository; multiple repositories may be specified
and will be searched in order. Terracotta always first searches an implicit repository defined as
follows:

file://<terracotta-install-dir>/modules

The module repository structure is compatible with the Maven repository structure,
although it requires only the actual JAR files to be present.

�Note�� See http://maven.apache.org/guides/introduction/introduction-to-

repositories.html for more information on Maven repositories.

The directory path is based on the group-id and TIM name. The JAR file in that directory is
named based on the TIM name and version. For example, the module specified in Listing 9-2
translates to the following repository path:

org/terracotta/modules/tim-synchronizedmap/2.0.0/tim-synchronizedmap-2.0.0.jar

You can specify additional repository locations in the <clients> configuration element
using the <repository> element. For example, Listing 9-3 shows multiple repositories that will
be searched. The Terracotta installation modules subdirectory will be searched first, so there is
no need to specify it. Further, the <repository> elements will be searched in the order speci-
fied, so as Listing 9-3 illustrates, you can use shared repositories on file servers on the network
yet override shared ones by searching a local repository first. Currently, only repositories
defined via a file:// URL are supported.

CHAPTER 9 � INTEGRATION MODULES 205

Listing 9-3. Specifying Repositories in tc-config.xml

<clients>
<modules>

<repository>file:///usr/local/share/terracotta/modules</repository>
<repository>file://share/mygroup/terracotta/modules</repository>
<repository>file://othershare/mycompany/terracotta/modules</repository>
<module name="tim-synchronizedmap" version="2.0.0 " />

</modules>
</clients>

Generally, you will want to list the repositories in order from the most volatile directories
on your local machine, such as those where you are currently developing modules, to the most
stable or frozen modules shared on your network. In Listing 9-3, the Terracotta installation
directory is searched first, then the user’s local repository, followed by the user’s group reposi-
tory, and finally the company repository.

You can obtain TIMs in several places: from the Terracotta download kit, from the Terra-
cotta Forge, or by making one yourself. The Terracotta kit contains a modules subdirectory, as
previously discussed, that can serve as a module repository.

The Terracotta Forge
The Terracotta Forge provides an open repository for the development of code and projects
related to Terracotta. Most importantly, the Forge provides a place where both Terracotta and
community members can develop and share TIMs. The Forge can be accessed at
http://forge.terracotta.org and has an associated module repository.

Each project hosted on the Terracotta Forge has access to the following resources:

• Subversion source code repository

• Wiki space

• Web forum

• Project-specific web site generation and hosting

• Automated build

• Automated testing

• Automated project artifact creation and deployment

The Forge also provides a set of resources shared among all projects:

• Mailing lists

• A Maven 2 artifact repository

• Issue tracking with JIRA

• Maven Archetypes for creating typical project types

CHAPTER 9 � INTEGRATION MODULES206

Many of these capabilities are based on Maven, which will be discussed in detail later in
this chapter. The automated build, test, artifact deployment, and web site generation are done
through Maven using a continuous integration server.

Terracotta provides many TIMs on the Terracotta Forge. Over time, it is expected that all
TIMs will be available on the Forge and that the preferred mechanism for obtaining TIMs will
be from the Forge artifact repository.

To host your own project on the Forge, visit the web site, and follow the instructions there
to register and propose a project.

Creating a TIM
In this section, you will learn how you can make your own TIM, either for an external library or
for a component within your own application.

TIM Anatomy
The three major parts of a TIM JAR file are the manifest, the Terracotta configuration frag-
ment, and optionally, code that will be discussed later.

The Terracotta module system is based on the OSGi (the Open Services Gateway initia-
tive) platform, a popular standard for modular plug-in–based Java systems. For example, the
Eclipse ecosystem is also based on OSGi and assembly via plug-ins.

�Note�� The OSGi Alliance is a board of participating members and directors who work together and vote on
specifications regarding, essentially, dynamic dependency resolution and library loading capabilities for Java
applications. The specification is available at http://www.osgi.org/Specifications/HomePage.

Creating a Manifest
In OSGi, code is distributed in the form of plug-ins, which may be contained in JAR files
called bundles. A bundle is nothing more than a JAR file with special properties defined
in the JAR file manifest. The JAR specification defines the manifest as existing at the location
META-INF/MANIFEST.MF. This file is simply a text file with a well-defined format for specifying
properties, line wrapping, and so on.

Listing 9-4 shows an example of a TIM manifest following the JAR manifest and OSGi con-
ventions. In this case, this is the manifest for the automatically locked synchronized Map seen
in prior sections and available on the Terracotta Forge.

Listing 9-4. Manifest from the Synchronized Map Integration Module

Manifest-Version: 1.0
Bundle-Name: Terracotta Synchronized Map
Bundle-Description: Terracotta Autolock SynchronizedMap Configuration
Import-Package: org.terracotta.modules.configuration

CHAPTER 9 � INTEGRATION MODULES 207

Bundle-RequiredExecutionEnvironment: J2SE-1.5
Bundle-Vendor: Terracotta, Inc.
Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.terracotta.modules.tim-synchronizedmap
Require-Bundle: org.terracotta.modules.modules-common;bundle-version:=
2.5.0
Bundle-Category: Terracotta Integration Module
Bundle-Version: 2.0.0
Bundle-Copyright: Copyright (c) 2007 Terracotta, Inc.

Many of the properties in this manifest will be automatically inserted for you when using
popular tools to create JARs such as Ant or Maven. For example, the manifest in this listing
was built using Maven in the Terracotta Forge. For more information on the most common
and important bundle properties, see Table 9-1. Because a TIM is an OSGi bundle, it is actually
possible to use any valid OSGi bundle manifest property.

Table 9-1. Manifest Properties Supported by OSGi and Terracotta

Manifest Property Description Importance

Manifest-Version The JAR manifest version; should Recommended
always be 1.0.

Archiver-Version The purely informational software Optional
building the JAR.

Created-By The purely informational company Optional
or software creating the JAR.

Built-By The purely informational name of Optional
the user building the JAR.

Bundle-Name Descriptive name for this bundle. Recommended

Bundle-Description The bundle’s description. Recommended

Import-Package Import packages needed for Optional
use from dependencies.

Export-Package Export packages needed by Optional
modules using this one.

Bundle-RequiredExecutionEnvironment The required minimum execution Recommended
environment. The most likely
constants you will need are
J2SE-1.4, J2SE-1.5, and
JavaSE-1.6.

Bundle-Vendor The vendor name providing Optional
the bundle.

Bundle-ManifestVersion The OSGI bundle manifest version. Recommended

Bundle-SymbolicName The symbol name of the bundle, Required
which is important for declaring
dependencies from other bundles.

CHAPTER 9 � INTEGRATION MODULES208

Require-Bundle The bundles required by this Optional
bundle (a comma-separated list),
sorted by symbolic name and
optionally by version in the form
<bundle-symbolicname>;
bundle-version:=<bundle-version>.1

Bundle-Category The purely informational Recommended
bundle category.

Bundle-Version The bundle version, which is Recommended
used for dependency checking.

Bundle-Copyright Copyright for bundle. Optional

Bundle-Activator Specifies the class within the Optional
JAR that starts up with the bundle.
Use this only if you need to
contribute code with your bundle.

Bundle-DocURL A URL for documentation on Optional
this bundle.

1. OSGi supports a number of dependency versioning styles, but Terracotta only supports exact versions.

Terracotta Configuration
After the manifest, the Terracotta configuration fragment is the next most important file in the
TIM. It specifies a fragment of configuration XML that will be logically inserted into the Terra-
cotta configuration referencing this TIM.

�Tip�� If a user includes your TIM, which includes another TIM, the logical runtime configuration will be the
combination of the configuration defined in the user’s project and both TIMs. This is a useful feature that
allows you to modularize your own TIM or even your own application by hiding common configuration in
another TIM.

The configuration fragment is an XML fragment that honors the logical structure of the
XML within a full Terracotta configuration file yet eliminates certain stanzas. Listing 9-5 shows
how you would go about embedding the autolock configuration from Listing 9-1. You should
notice that there are no <clients>, <servers>, <dso>, or <application> stanzas. These stanzas
should not be present in a TIM fragment.

The fragment must be contained in a file named terracotta.xml. That file is treated as a
subtree of the application/dso element in a Terracotta configuration file, meaning that you
should view the fragment as logically inserted in a configuration file at a point in the file start-
ing with the dso element. The entire contents of a valid dso configuration section are wrapped
in the terracotta.xml file via an XML tag called <xml-fragment>, which is just a container.

CHAPTER 9 � INTEGRATION MODULES 209

Manifest Property Description Importance

Listing 9-5. Autolocks Stanza from Listing 9-1 Represented in an Integration Module

<xml-fragment>
<locks>

<autolock>
<method-expression>
void java.util.Collections$SynchronizedMap.clear()

</method-expression>
<lock-level>write</lock-level>

</autolock>
<autolock>
<method-expression>
Object java.util.Collections$SynchronizedMap.clone()

</method-expression>
<lock-level>read</lock-level>

</autolock>

...for every method in Set...

</locks>
</xml-fragment>

The example in Listing 9-5 has only a <locks> section, but you can also include any child
of the <dso> configuration element, such as <instrumented-classes>, <roots>, and so on.

Creating a Simple TIM
Creating a TIM that requires no code is easy. Follow these steps:

1. At your project root, create a subdirectory called META-INF.

2. In the META-INF directory, create a MANIFEST.MF text file using the information in the
prior section.

3. Create a terracotta.xml text file at the root using the information in the prior section.

4. Issue the following command to build the module:

jar cvfm tim-bar-1.0.jar META-INF/MANIFEST.MF terracotta.xml

You can then follow these steps to use this TIM in another project:YY

1. Place the module in a module repository at the appropriate location. The Bundle-
SymbolicName should map to a path in the repository with the . character replaced with
the correct path separator. For example, if the Bundle-SymbolicName was com.foo.
tim-bar; the module repository path would be com/foo; and the JAR should be named
tim-bar-1.0.jar.

2. In a new project, create a tc-config.xml that contains the following module:

<module name="tim-bar" version="1.0" group-id="com.foo"/>

CHAPTER 9 � INTEGRATION MODULES210

3. If necessary, include the module repository containing your module JAR in the
tc-config.xml:

<repository>file:///usr/local/share/terracotta/modules</repository>

That’s all there is to it. Bundling external configuration into a TIM is an easy way to let
others cluster a library or application just like you do.

Creating TIMs with Maven
The prior section provided instructions on creating your own TIM. Terracotta also provides
full Maven integration if you wish to manage your TIM project with Maven and build the TIM
through the Terracotta Maven plug-in, which makes it even easier.

�Note�� This section assumes that you have downloaded and installed Maven by adding it to your path.
See the Maven documentation located at http://maven.apache.org/download.html for instructions on
downloading and installing it.

Maven provides a standardized project object model, build life cycle, and a broad set of
built-in goals for performing common tasks. One concept in Maven is that of an archetype
that can be used to create a new project that is typical for some particular context. Maven pro-
vides built-in archetypes for common project types. Terracotta provides several archetypes
specific to Terracotta.

To create your own TIM Maven project, you can use the tim-archetype provided by
Terracotta with the following command:

mvn org.apache.maven.plugins:maven-archetype-plugin:1.0-alpha-7:create \
-DarchetypeGroupId=org.terracotta.maven.archetypes \
-DarchetypeArtifactId=tim-archetype \
-DarchetypeVersion=1.0.5 \
-DgroupId=org.myfavoriteframework \
-DartifactId=tim-mymodulename \
-Dversion=1.0.0 \
-DremoteRepositories=http://www.terracotta.org/download/reflector/maven2

�Caution�� The names, versions, and URLs in this command are subject to change. Check the Terracotta
Forge web site for current details.

This command first specifies the identification information for the archetype plug-in
itself and specifies the groupId, artifactId, and version for the TIM project you wish to create.

CHAPTER 9 � INTEGRATION MODULES 211

When executed, this command will retrieve the TIM archetype from the Terracotta reposi-
tory and create a new project for you in a subdirectory named after the artifactId (in this
case, tim-mymodulename).

You will see the package structure in your newly created Maven project area in Figure 9-1.

Figure 9-1. Integration module project area created through a Maven archetype

At the root of the project, you will find a pom.xml file and two subdirectories—sample and
src. pom.xml is the Maven configuration file (POM stands for project object model). It will be
preconfigured with reasonable defaults. It also references a parent project (tim-parent) that
defines important configuration details that are inherited. You should edit and update the
Maven file based on the instructions in the file.

The src directory is where code and resources for the project will live. Most simple TIMs
do not have code, and thus the only file created in the src directory will be the terracotta.xml
file in src/main/resources. You will need to edit this file to specify the configuration for your
TIM.

CHAPTER 9 � INTEGRATION MODULES212

The src/site directory contains default files used to build a web site pertaining to this
project. These files will likely be useful to you only if you plan to publish a site around this
project or host this project on the Terracotta Forge.

The sample directory contains a sample application that demonstrates how to use the TIM
produced by this project in another application. Most likely, the item of most interest will be
the Terracotta configuration file at sample/src/main/resources/tc-config.xml. This file will
contain a reference to the module you created.

To actually build your project and produce a TIM, go to the project root and type the
following:

mvn install

This command will create a new subdirectory called target and produce a JAR file in the
target directory (along with some other files) called tim-bar-1.0.0.jar in this case. This JAR
file is the TIM module. You’ll notice that there was no need to define the bundle manifest;
Maven created it automatically as a result of the default pom.xml and the parent POM configu-
ration.

The Maven install command also installs the TIM into your local Maven repository,
which can serve as a Terracotta module repository. You can then refer to it in your application’s
Terracotta configuration and load it from there, if you wish.

Module Versioning
The examples given in this chapter show version numbers in the context of both OSGi bundles
and Maven projects. The versioning schemes in these two contexts are similar but not identical.

Often when working with an unreleased version of a project in Maven, you will call the
release a snapshot release. These are typically done nightly or even more frequently with a
continuous integration system and are not expected to be stable.

There is an important difference between the snapshot version identifiers used in Maven
versus those used in the OSGi bundle manifest. In Maven, SNAPSHOT versions use a hyphen as
in 2.5.0-SNAPSHOT. In OSGi, that would be an invalid version, and we must instead use a
period, as in 2.5.0.SNAPSHOT. In the module section of your tc-config.xml file, either form
can be used; the Terracotta module resolver will find the module, but the hyphenated
-SNAPSHOT Maven form is preferred.

In the Maven POM, dependencies are supplied with a version, and in this case, Maven is
resolving the dependency, so the Maven form (-SNAPSHOT) must be used. Similarly, in the
Maven project version, the -SNAPSHOT form must be used.

For a TIM project built by Maven, the Terracotta manifest plug-in included with the Terra-
cotta Maven plug-in will automatically build bundles with the proper .SNAPSHOT form from a
Maven -SNAPSHOT version.

In summary, you should use the -SNAPSHOT form in all Maven files and Terracotta configu-
ration files. The only place you must use the .SNAPSHOT form is in a bundle manifest if you are
building the TIM without Maven.

Including Code in a TIM
Earlier in this chapter, we mentioned that it was possible to include not just configuration but
code in a TIM. Let’s now consider why you might do this and how you can do it. Terracotta’s

CHAPTER 9 � INTEGRATION MODULES 213

philosophy is to transparently distribute an application’s or library’s state by applying external
configuration. In the majority of cases, properly concurrent and even many nonconcurrent
applications can be configured externally to work in a clustered environment.

You can include code in a TIM that achieves the equivalent of anything and everything
that can be done in the terracotta.xml file fragment. It’s unlikely that coding your configura-
tion like this is useful unless you need to reflectively or dynamically instrument a large
number of classes, locks, and so on, where it may be more efficient or maintainable to instru-
ment in code.

You can also include code that will actually modify an existing library or application at
run time by replacing or modifying classes provided by someone else. If you need to do this,
including or contributing code to the application through a TIM is the only solution, as this
cannot be done in XML configuration.

The remainder of this chapter will examine in detail how to contribute code with both of
these goals and create bundles that use it.

Defining a Bundle Activator
To provide any code in a TIM, you need to specify the Bundle-Activator property in the bun-
dle manifest with the fully qualified name of a class that implements
org.osgi.framework.BundleActivator. Terracotta provides a base class with many helpful
methods that implements this interface, and we highly recommend that you subclass your
activator from org.terracotta.modules.configuration.TerracottaConfiguratorModule. You
can then override or use the many methods provided by that class.

So the shell of your class will look like Listing 9-6 and should be referenced in your bundle
manifest with Bundle-Activator=org.myfavoriteframework.MyConfiguratorModule.

Listing 9-6. The Structure of a Bundle Activator Class Used in Contributed Code

package org.myfavoriteframework;

import org.terracotta.modules.configuration.TerracottaConfiguratorModule;

public class MyConfiguratorModule extends TerracottaConfiguratorModule {

}

To compile this class, you will need to include the following JARs in your classpath:TT

• terracotta-api.jar: This public subset of Terracotta code forms the API for the TIM
code, available in $TC_HOME/lib.

• osgi_r4_core-1.0.jar: This core OSGi bundle API is available, among other locations,
at http://mirrors.ibiblio.org/.

The sections following this one provide more detail on how to fill in your activator code to
perform code-based configuration or class replacement.

CHAPTER 9 � INTEGRATION MODULES214

Configuration with Code
To contribute configuration with code instead of in a terracotta.xml file, you should override
the following protected method:

TerracottaConfiguratorModule.addInstrumentation(BundleContext context)

The addInstrumentation() method is called when the bundle is started and can be used
to apply all typical Terracotta configuration, as specified in the Terracotta configuration file.
The TerracottaConfiguratorModule will instantiate a protected field of type
com.tc.object.config.StandardDSOClientConfigHelper. See Table 9-2 for a list of methods
provided by StandardDSOClientConfigHelper for modifying the configuration.

Table 9-2. Helper Methods for Configuring Terracotta Via Code

StandardDSOClientConfigHelper Method Description

addIncludePattern(String classPattern) Add instrumented classes based on a
pattern.

addIncludePattern(String classPattern, Add instrumented classes based on a
boolean honorTransient) pattern, and specify whether to honor

the transient keyword (by not
clustering those fields).

addExcludePattern(String classPattern) Exclude specified classes from
instrumentation.

addPermanentExcludePattern(String classPattern) Specify classes that can never be
instrumented.

addRoot(String rootName, String rootFieldName) Add a root field to the configuration.

addWriteAutoLock(String methodPattern) Add a write autolock to a specified
method pattern.

addReadAutoLock(String methodPattern) Add a read autolock to a specified
method pattern.

addAutoLock(String methodPattern, Add an autolock to a method pattern
ConfigLockLevel lockType) of a specified type.

addAutoLockExcludePattern(String methodPattern) Exclude a set of methods from auto-
matic locking.

These methods allow your bundle activator class to modify the instrumented classes,
roots, and locks as in the Terracotta configuration file. Many TIM bundle activators available
on the Terracotta Forge consist primarily of calls to these methods to define configuration.

Class Replacement and Modification
So far, we have talked about writing code to duplicate things we can do with a terracotta.xml
file in the bundle. Now, we will examine some things that can’t be done any other way. The two
primary capabilities we will discuss are class replacement and class modification.

Sometimes, classes in a library cannot efficiently be clustered. One example of this is a
cache evictor. A cache evictor is usually implemented via a thread that iterates across the
cache looking for objects that have timed out in some way. Eviction in a clustered environ-
ment cannot be implemented via a simple iterator, because every object in the cache will be

CHAPTER 9 � INTEGRATION MODULES 215

forced into the JVM doing the work of iterating through the collection underlying the cache.
The evictor in the example would significantly impact application performance while run-
ning. Another example might be clustering a class that is not thread-safe.

In such cases, it may be necessary to entirely replace one or more classes with alternate
versions that provide data structures and synchronization that can more readily be clustered.
Due to the maintenance issues this creates regarding adhering to the library’s own interfaces
and internal structure, this technique should be considered carefully.

The methods involved in class replacement and modification are defined in Tables 9-3
(methods on the StandardDSOClientConfigHelper class) and 9-4 (helper methods on the
TerracottaConfiguratorModule class itself).

Table 9-3. Available Methods on the StandardDSOClientConfigHelper Class

StandardDSOClientConfigHelper Method Description

getOrCreateSpec(String className) : This method gets the Terracotta specification
TransparencyClassSpec for a particular class. This specification defines

whether the class can be instrumented,
whether it is portable (clustered), whether it is
physically or logically instrumented, and so on.
It also provides hooks for additional bytecode
instrumentation.

getOrCreateSpec(String className, This method is similar to the previous one,
String applicatorName) : but it adds a change applicator to the class
TransparencyClassSpec specification, which will modify the bytecode

of the class.

addCustomAdapter(String className, Add a custom class adapter (an ASM bytecode
ClassAdapterFactory adapterFactory) manipulation adapter) to a particular class

with this method.

Table 9-4. Available Helper Methods on the TerracottaConfiguratorModule Class

TerracottaConfiguratorModule Method Description

getExportedBundle(BundleContext context, This helper method finds the bundle with the
String targetBundleName) : Bundle given name.

addClassReplacement(Bundle bundle, For the given bundle, replace a class with
String originalClassName, another alternate class.
String newClassName)

getOrCreateSpec(String className, This helper method retrieves the
boolean markAsPreInstrumented) : TransparencyClassSpec and optionally marks
TransparencyClassSpec the class as preinstrumented (modified in the

boot JAR).

getOrCreateSpec(String className) : This helper method retrieves the
TransparencyClassSpec TransparencyClassSpec and marks the class

as preinstrumented (modified in the boot
JAR).

addExportedTcJarClass(String className) Export a class that normally lives in the tc.jar
to all classloaders in the system, making it
available to any calling class or method.

CHAPTER 9 � INTEGRATION MODULES216

addExportedBundleClass(Bundle bundle, Load the class in the specified bundle, and
String className) add it to the classpath of all classloaders in the

system, making it available to classes
regardless of classloader context.

registerModuleSpec(BundleContext context) This abstract method is intended to be over-
ridden by bundle activators that need to
register a custom service that can dynamically
produce class adapters.

To replace a library class with your own version, you can implement your bundle activator
class as shown in Listing 9-7.

Listing 9-7. Replacing a Class with Your Own Implementation Using TIMs

package org.myfavoriteframework;

import org.osgi.framework.Bundle;
import org.osgi.framework.BundleContext;
import org.terracotta.modules.configuration.TerracottaConfiguratorModule;

public class MyConfiguratorModule extends TerracottaConfiguratorModule {
protected void addInstrumentation(BundleContext context) {

super.addInstrumentation(context);
Bundle bundle = getExportedBundle(

context,
"org.myfavoriteframework.tim-myfavoriteframework");

addClassReplacement(bundle, "org.myfavoriteframework.Impl",
"org.myfavoriteframework.ClusteredImpl");

}
}

This example overrides the addInstrumentation() method in the bundle activator. First, it
calls super.addInstrumentation() to add any standard instrumentation (at the moment, there
is none). Next, you obtain your own bundle instance using the getExportedBundle() method,
and finally, you replace the original org.myfavoriteframework.Impl with an alternate imple-
mentation.

There is more than one way to do class modification, but the easiest way to do so is add a
custom class adapter for a particular class. For example, you could add the lines in Listing 9-8
to install a class adapter for a particular class in the addInstrumentation() method.

Listing 9-8. Adding Your Own Class Adapter

ClassAdapterFactory adapterFactory = new ImplAdapterFactory();
configHelper.addCustomAdapter("org.myfavoriteframework.Impl", adapterFactory);

The key here is, of course, how to create a com.tc.object.bytecode.ClassAdapterFactory.
This class comes from ASM, the bytecode manipulation framework. ASM works by reading

CHAPTER 9 � INTEGRATION MODULES 217

TerracottaConfiguratorModule Method Description

class files through a visitor, pumping them through your custom visitor(s), and writing them
back out through another visitor. The ClassAdapterFactory has only one method that knows
how to create a ClassAdapter, which is the visitor that will be used by ASM when the class is
loaded in the JVM.

It is typical to create one class that implements the ClassAdapterFactory to return an
instance of itself, which should also extend ClassAdapter. Writing class adapters is outside the
scope of this book, and for further information, you should see either the ASM documentation
located at http://asm.objectweb.org or examples of these classes in the TIM source code. Take a
look at the Ehcache TIM or the Lucene TIM in the Terracotta Forge, as both use ASM and create
custom visitors. The possibilities are effectively unlimited—class adapters can add, remove, and
modify fields, methods, bytecode within methods, access modifiers, and so on.

Using Maven to Create TIMs with Code
The prior documentation on creating TIMs with contributed code focused on how to do so by
modifying the manifest to specify a bundle activator and rebuilding the JAR with the compiled
code.

You can also create a TIM with Maven using contributed code by making a few modifica-
tions to the Maven pom.xml in your TIM project.

Listing 9-9 outlines the major changes.

Listing 9-9. Modifying Maven pom.xml for Creating TIMs

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">

<dependencies>
<dependency>
<groupId>org.terracotta</groupId>
<artifactId>terracotta-api</artifactId>
<version>2.6.0</version>

</dependency>
</dependencies>

<build>
<plugins>
<plugin>
<groupId>org.terracotta.maven.plugins</groupId>
<artifactId>tc-maven-plugin</artifactId>
<version>1.0.0</version>
<configuration>

<bundleActivator>
org.myfavoriteframework.MyConfiguratorModule

</bundleActivator>
<importPackage>

org.terracotta.modules.configuration

CHAPTER 9 � INTEGRATION MODULES218

</importPackage>
</configuration>

</plugin>
</plugins>

</build>
</project>

First, it is important that the POM declare a dependency on the terracotta-api Maven
module. Doing so will bring in all dependencies needed to compile the TIM. You may need to
specify a SNAPSHOT version in this section if you are developing against an unreleased version
of Terracotta.

Second, you must specify the bundle activator for the JAR manifest using the
BundleActivator element under configuration. Also, you must import packages you are using
in your code from the terracotta-api module. Similarly, the <exportPackage> element can be
used to export portions of your module for use by other modules. For a full list of the properties
that can be set in the <configuration> element for the Terracotta Maven plug-in, see Table 9-5.

Once these items are in place, you can then run Maven commands as normal, such as
compile, package, and install. During the build life cycle defined by Maven, the manifest will
be generated automatically and included in the JAR created in the target directory along with
other artifacts of the Maven build.

Table 9-5. Exportable Properties and Options for Maven-Based Builds

Configuration Element Description Default

bundleActivator OSGi Bundle-Activator manifest attribute

bundleCategory OSGi Bundle-Category manifest attribute

bundleCopyright OSGi Bundle-Copyright manifest attribute

bundleDescription OSGi Bundle-Description manifest attribute ${project.description}

bundleName OSGi Bundle-Name manifest attribute

bundleRequired OSGi Bundle-RequiredExecutionEnvironment
ExecutionEnvironment manifest attribute

bundleSymbolicName OSGi Bundle-SymbolicName manifest attribute ${project.groupId}.
with invalid character replacement ${project.artifactId}

bundleVendor OSGi Bundle-Vendor manifest attribute ${project.organization.
name}

bundleVersion OSGi Bundle-Version manifest attribute ${project.version}
with invalid character
replacement

exportPackage OSGi Export-Package manifest attribute

importPackage OSGi Import-Package manifest attribute

manifestFile Location for the generated manifest file ${project.build.
directory}/MANIFEST.MF

remoteRepositories List of remote repositories Remote repositories
declared in the POM

CHAPTER 9 � INTEGRATION MODULES 219

dContinued

requireBundle OSGi Require-Bundle manifest attribute Generated from the
dependencies listed
in the POM, exclud-
ing dependencies
with test and
runtime scopes

Summary
Terracotta Integration Modules (TIMs) provide a powerful mechanism for using Terracotta in
an abstracted form. By “abstracted,” we mean that users of libraries that you build and frame-
works that you cluster do not need to manually integrate the required Terracotta directives
into their application’s tc-config.xml. Your users can, instead, use your library in a clustered
environment with simpler <module> directives, just as you can with TIMs such as Hibernate
and Ehcache, or for synchronized Java collections.

With Terracotta, it is possible to include XML configuration directives, much like the con-
cept of #include in the C programming language. It is also possible to ship new code that can
be added to or otherwise change classes and code in a package or library that is not well
suited to clustering out of the box.

In fact, the very notion of integration modules was first created to make it easy to bundle
Terracotta support in various open source projects. You too should use this bundling capabil-
ity to make your own projects and products more stable and easier to understand.

In Chapter 10, you will learn how to build a master/worker, or grid, computing framework
using Terracotta. All the classes and interfaces in the framework are available on Terracotta’s
Forge as a library for use in projects. The library consists only of POJO collections, multi-
threaded execution logic, and appropriate locking to make everything thread-safe. You
implement the notions of work and routing of work in the grid.

As you will learn in the next chapter, all of the configuration for the master/worker frame-
work is abstracted through a TIM. Knowing how TIMs are constructed helps you understand
frameworks like master/worker, and that knowledge also enables you to build your own
frameworks and libraries that other developers can use without manual inclusion or integra-
tion. If you find yourself keeping recipes of configuration fragments and associated source
code for inclusion across various projects, consider implementing those fragments and
recipes in a module. Let’s look at the master/worker framework now, keeping in mind that
you can use that framework through TIMs.

CHAPTER 9 � INTEGRATION MODULES220

Table 9-5. Continued

Configuration Element Description Default

Thread Coordination

In a computer, just like the rest of the world, more work can get done if there are more work-
ers working at the same time. In a computer, these workers take the form of multiple
concurrently executing processes and, inside of a single process, multiple concurrent threads
of execution. In the real world, if more than one worker is working on the same thing or if
workers need to perform their work in a certain order relative to each other, they must have
some form of communication and coordination between them. Just as in the physical world, if
more than one thread is working on the same object or if those threads need to mutate objects
in a certain order relative to each other, they must have some way to coordinate with each
other.

With Terracotta, thread coordination constructs that exist in the Java language will transpar-
ently work across JVM process boundaries. One thread in one JVM can call wait() on an object
and another thread in another JVM on another machine can call notify() to wake up the wait-
ing thread. The challenge is that not all Java developers have experience with thread
coordination and concurrency. Treat this chapter as a cookbook for concurrency with Terracotta.
It works as a cookbook, because it is designed to steer you toward use cases and coordination
models that will be easy to code and debug and will simultaneously scale very well in a Terra-
cotta world. Let’s dive in to the concurrency recipes now.

Terracotta and Thread Coordination
Thread coordination comes in two flavors:

• Coordination of access to data: For example, if thread A is sorting a list and thread B is
iterating over the elements in list, thread A needs to finish sorting the list before thread
B starts iterating.

• Coordination of activities: For example, assume thread A and thread B need to leave an
apartment together, and thread A needs to turn out the lights, and thread B needs to
close the door. In that case, threads A and B need to wait until thread A has turned off
the light; likewise, thread B must wait until the light is off and both threads have walked
over the threshold before closing the door.

The JVM has simple and elegant built-in mechanisms for coordinating threads: the byte-
code instructions MONITORENTER and MONITOREXIT (also known as the synchronized method or

221

C H A P T E R 1 0

222 CHAPTER 10 � THREAD COORDINATION

synchronized block) and the various signatures of the Object methods wait(), notify(), and
join(). As of Terracotta 2.6, join() is not supported as a clustered thread interaction. Since
Java 1.5, higher level concurrency constructs have been added to the Java library to provide
canonical implementations of commonly used coordination techniques. These higher-level
thread coordination tools can be found in the java.util.concurrent package. Figure 10-1
depicts the way in which Terracotta instruments Java synchronized blocks.

Figure 10-1. Terracotta hooks into the MONITORENTER and MONITOREXIT bytecodes.

Terracotta’s virtual heap extends the utility of Java’s built-in thread coordination to allow
threads on multiple JVMs to coordinate with each other using exactly the same techniques as
threads on the same JVM. This means that the number of workers that can be brought to bear
to execute your program is no longer limited to the number of threads and processors available
to a single JVM; Terracotta lets your program, which was written to run on a single JVM, run on
many JVMs as if they were all one big JVM. The power of Terracotta’s virtual heap lies in this abil-
ity to write software for a single JVM but run it on as many JVMs as you want—without the
complexity and intrusiveness of a special inter-JVM signaling and data-sharing framework.

Clustering Threads
To see Terracotta inter-JVM thread coordination in action, let’s look at a few thread clustering
examples.

Thread Coordination Using Concurrency Primitives
The first example shows how to coordinate the actions of threads using just the concurrency
primitives available in JDK 1.4.2 and above. The code for this example is available on this
book’s page at http://www.apress.com.

This example contains a configuration file and a single Java class with a main() method
and some coordination code. The Java class is displayed in Listing 10-1.

223CHAPTER 10 � THREAD COORDINATION

Listing 10-1. WaitNotify.java

package org.terracotta.book.coordination.jdk14;
/**
* This sample shows the use of wait and notify to coordinate 2 or more processes
* as if they were threads.
* It also demonstrates how one might share a clustered configuration
* across processes in the same way that it is shared across threads.
*
* In this case the passed in number of nodes (2 by default) will startup
* and wait for the number to join (like a cyclic barrier).
*
*
*/
public class WaitNotify {
private static final int MINIMUM_EXPECTED_PARTICIPANTS = 2;
private Configuration config;
private int nodesJoined;

public WaitNotify(Configuration aConfig) {
this.config = aConfig;
synchronized (this.config) {
config.setMyNodeID(++nodesJoined);
System.out.println("Nodes Joined:" + nodesJoined);
this.config.notifyAll();

}
}

public void run() throws Exception {
synchronized (config) {

while (nodesJoined < config.getTotalNodeCount()) {
System.out.println("Node " + config.getMyNodeID()

+ " is waiting for more nodes to join.");
config.wait();

}
System.out.println("All " + config.getTotalNodeCount()

+ " nodes joined! I'm node:" + config.getMyNodeID());
}

}

public static void main(String[] args) throws Exception {
int expectedParticipants = MINIMUM_EXPECTED_PARTICIPANTS;
if (args.length == 0) {
System.out.println("Node count NOT specified. Setting count to "

+ MINIMUM_EXPECTED_PARTICIPANTS);
} else {
try {

expectedParticipants = Integer.parseInt(args[0]);
if (expectedParticipants < 1) {

throw new Exception("Invalid node count");
}

} catch (Exception e) {
System.out.println("Invalid node count:" + args[0]);
System.exit(1);

}
}

Configuration c = new Configuration(expectedParticipants);
new WaitNotify(c).run();

}

private static class Configuration {
private int totalNodeCount;
private transient int myNodeID;

public Configuration(int totalNodeCount) {
this.totalNodeCount = totalNodeCount;

}

public int getMyNodeID() {
return myNodeID;

}

public void setMyNodeID(int myNodeID) {
this.myNodeID = myNodeID;

}

public int getTotalNodeCount() {
return totalNodeCount;

}
}

}

The main() method checks the command line arguments for the number of participating
threads, which, in the normal execution case, will equal the number of participating JVMs. It
then creates an instance of the WaitNotify class and calls its run() method. The constructor
of WaitNotify synchronizes on a shared Configuration object, increments the shared integer
nodesJoined, and notifies all threads in the cluster waiting on the shared Configuration object.

In the run() method, each participating thread synchronizes on the shared Configuration
object and enters a while loop that will cause the thread in the run() method to continually
wait on the shared Configuration object until the shared nodesJoined integer is incremented
to the value of the expected number of participants.

The configuration file is displayed in Listing 10-2.

CHAPTER 10 � THREAD COORDINATION224

Listing 10-2. tc-config.xml for Concurrency Primitives

<?xml version="1.0" encoding="UTF-8"?>
<con:tc-config xmlns:con="http://www.terracotta.org/config">
<servers>

<server host="%i" name="localhost">
<dso-port>9510</dso-port>
<jmx-port>9520</jmx-port>
<data>terracotta/server-data</data>
<logs>terracotta/server-logs</logs>

</server>
</servers>
<clients>

<logs>terracotta/client-logs</logs>
</clients>
<application>

<dso>
<instrumented-classes>
<include>

<class-expression>
org.terracotta.book.coordination.jdk14.WaitNotify$Configuration

</class-expression>
</include>
<include>

<class-expression>
org.terracotta.book.coordination.jdk14.WaitNotify

</class-expression>
</include>

</instrumented-classes>
<roots>
<root>

<field-name>
org.terracotta.book.coordination.jdk14.WaitNotify.config

</field-name>
</root>
<root>

<field-name>
org.terracotta.book.coordination.jdk14.WaitNotify.nodesJoined

</field-name>
</root>

</roots>
<transient-fields>
<field-name>

org.terracotta.book.coordination.jdk14.WaitNotify$Configuration.myNodeID
</field-name>

</transient-fields>
<locks>
<autolock>

<method-expression>
void org.terracotta.book.coordination.jdk14.WaitNotify.run()

CHAPTER 10 � THREAD COORDINATION 225

</method-expression>
<lock-level>write</lock-level>

</autolock>
<autolock>

<method-expression>
void org.terracotta.book.coordination.jdk14.WaitNotify.__INIT__ �

(org.terracotta.book.coordination.jdk14.WaitNotify$Configuration)
</method-expression>
<lock-level>write</lock-level>

</autolock>
</locks>

</dso>
</application>

</con:tc-config>

The Terracotta configuration has four important sections in this example:
<instrumented-classes>, <roots>, <transient-fields>, and <locks>. Instrumented classes
include the WaitNotify class as well as the inner class Configuration. Including them for
instrumentation makes them sensitive to Terracotta augmented behavior. The <roots> section
declares which object graphs ought to be part of the virtual heap and thus shared across JVMs.

This example has two roots, WaitNotify.config and WaitNotify.nodesJoined. The field
Configuration.myNodeID is relevant only for the local JVM and is, therefore, declared transient,
which means that its value is not part of the virtual heap. When the Configuration object is
materialized on the local heap of another JVM, the myNodeID field is null and must be explicitly
initialized with the local value.

The <locks> section of tc-config.xml describes which methods ought to be sensitive to
Terracotta locking. In this case, two methods need to be configured: the run() method and the
constructor (specified as __INIT__). Any lock operations (synchronized(), wait(), and
notify()) on shared objects in these methods are augmented to include the equivalent lock
operations in the Terracotta server for that object in addition to the lock operations that occur
on the local heap for that object. Lock operations on objects that aren’t stored in Terracotta are
not sensitive to clusterwide Terracotta lock augmentation. This is likewise true of all lock oper-
ations in methods not specified in the <locks> section.

If you run this example in Terracotta, the first execution will increment the nodesJoined
counter from zero to one, and enter the while loop in the run() method, because the value of
nodesJoined is less than the default participants count of two. Upon entering the while loop,
this first instance of the program will request and acquire the clustered lock on the shared
Configuration object and wait on that object, pausing the execution of the main thread in the
first execution instance.

When you run a second execution instance, its main thread, upon executing the con-
structor of WaitNotify, will increment the shared nodesJoined integer from one to two and
then call notifyAll() on the shared Configuration object. This method call will cause the
main thread in the first execution instance to attempt to acquire the lock on the shared
Configuration object. When the first execution instance’s main thread is granted that lock,
that instance will resume execution and retest the while clause. At this point, since the second
execution instance has already incremented the nodesJoined integer value to the expected
value of two, the first execution instance will exit the while loop, print out the message that
all participating nodes have joined, and exit.

CHAPTER 10 � THREAD COORDINATION226

Subsequently, the main thread of the second execution instance will then enter the run()
method and, upon testing the condition of the while loop, find that the value of nodesJoined is
already at the expected value. The second execution instance will therefore bypass the while
loop and proceed to print out the message that all participating nodes have joined. Then, it
too will exit.

As this example shows, using the built-in concurrency primitives synchronized(), wait(),
and notify(), Terracotta lets you write simple Java code that can be used to coordinate the
activities of threads both in the same and in different JVMs.

Thread Coordination Using the java.util.concurrent Package
The java.util.concurrent package was introduced in Java 1.5 to provide higher order abstrac-
tions for performing common concurrency operations. This example uses a member of that
package, CyclicBarrier, to perform the same coordination task found in WaitNotify but does
so without using explicit synchronization, wait(), or notify(). Those low-level thread opera-
tions are performed inside the CyclicBarrier class.

Like the previous example, this one contains a single Java class and a Terracotta configu-
ration file. The code for this example is available on the Apress web site.

The Java class is displayed in Listing 10-3.

Listing 10-3. CoordinatedStages.java

package org.terracotta.book.coordination.jdk15;

import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;

public class CoordinatedStages {

private CyclicBarrier enterBarrier;
private CyclicBarrier exitBarrier;

private static int MINIMUM_EXPECTED_PARTICIPANTS = 2;

/**
* Create an instance, setting the number of VMs expected to participate in
* the demo.
*
* @param expectedParticipants
* Description of Parameter
*/
public CoordinatedStages(int expectedParticipants) {

assert (expectedParticipants > 1);
System.out.println("Expected Participants: " + expectedParticipants);
this.enterBarrier = new CyclicBarrier(expectedParticipants);
this.exitBarrier = new CyclicBarrier(expectedParticipants);

}

CHAPTER 10 � THREAD COORDINATION 227

public void run() {
try {
// wait for all participants before performing tasks
System.out.println(
"Stage 1: Arriving at enterBarrier. I'll pause here until all " +
enterBarrier.getParties() + " threads have arrived...");

enterBarrier.await();
System.out.println(
"Stage 2: Passed through enterBarrier because all threads arrived.");

System.out.println("Arriving at exitBarrier...");
exitBarrier.await();
System.out.println(
"Stage 3: Passed through exitBarrier. All done. Goodbye.");

} catch (BrokenBarrierException ie) {
ie.printStackTrace();

} catch (InterruptedException ie) {
ie.printStackTrace();

}
}

public static final void main(String[] args) throws Exception {
int expectedParticipants = MINIMUM_EXPECTED_PARTICIPANTS;
if (args.length == 0) {
System.out.println("Node count NOT specified. Setting count to "

+ MINIMUM_EXPECTED_PARTICIPANTS);
} else {
try {
expectedParticipants = Integer.parseInt(args[0]);
if (expectedParticipants < 1) {

throw new Exception("Invalid node count");
}

} catch (Exception e) {
System.out.println("Invalid node count:" + args[0]);
System.exit(1);

}
}
(new CoordinatedStages(expectedParticipants)).run();

}

}

The second example uses CyclicBarrier objects to coordinate the arrival and departure
of a particular number of threads. As you saw in Chapter 4, a barrier provides a point past
which no thread may continue until all expected threads arrive. A CyclicBarrier cycles back
to its initial state after all threads have arrived. Using Terracotta, a CyclicBarrier may be used
across JVMs to coordinate the efforts of multiple computers.

CHAPTER 10 � THREAD COORDINATION228

This example has two CyclicBarrier instances, enterBarrier and exitBarrier, each of
which, by default, is configured to block until two threads arrive at each barrier. The Terracotta
configuration file is much simpler in this example, because CyclicBarrier is automatically
supported by Terracotta and doesn’t need to be declared in the configuration—no configura-
tion is needed for any Terracotta-supported class in the java.util.concurrent package. The
only thing that needs to happen in the configuration is that the shared barriers must be
declared as DSO root objects, as you can see in the <roots> section of tc-config.xml, which
is displayed in Listing 10-4.

Listing 10-4. tc-config.xml for the java.util.concurrent Package

<?xml version="1.0" encoding="UTF-8"?>
<con:tc-config xmlns:con="http://www.terracotta.org/config">
<servers>

<server host="%i" name="localhost">
<dso-port>9510</dso-port>
<jmx-port>9520</jmx-port>
<data>terracotta/server-data</data>
<logs>terracotta/server-logs</logs>

</server>
</servers>
<clients>

<logs>terracotta/client-logs</logs>
</clients>
<application>

<dso>
<instrumented-classes/>
<roots>
<root>

<field-name>
org.terracotta.book.coordination.jdk15.CoordinatedStages.enterBarrier

</field-name>
</root>
<root>

<field-name>
org.terracotta.book.coordination.jdk15.CoordinatedStages.exitBarrier

</field-name>
</root>

</roots>
</dso>

</application>
</con:tc-config>

When running this example, you’ll see the first execution instance arrive at the
enterBarrier and exclaim the following:

CHAPTER 10 � THREAD COORDINATION 229

Node count NOT specified. Setting count to 2
Expected Participants: 2
Step 1: Arriving at enterBarrier. I'll pause here until all 2 threads
have arrived...

When you run a second execution instance and it arrives at the enterBarrier, both
threads will be allowed through. The same thing will happen at the exitBarrier. Since two
threads—albeit in different JVMs—are participating, when they both arrive at the exitBarrier,
they will be allowed through. You should see the following text printed out:

Step 2: Passed through enterBarrier because all threads arrived. Arriving at
exitBarrier...
Step 3: Passed through exitBarrier. All done. Goodbye.

As you can see, there is very little functional difference between the two examples. The
main difference is that the policy of blocking all threads until the expected number of
threads has arrived at an execution point has been abstracted into a generic library class,
CyclicBarrier. The power of Terracotta comes into play once again by automatically support-
ing the CyclicBarrier class so that you may take advantage of its policy behavior for threads
across multiple JVMs.

Thread Coordination and JMX Cluster Events
The next example is the same as the previous one with the addition of Terracotta cluster
events. Cluster events are JMX events that get fired in a client JVM when JVMs join or leave the
cluster. In order to receive the Terracotta cluster events, the example class has to be aug-
mented to implement four methods:

• nodeConnected(Object nodeID): Called when another JVM joins the cluster

• nodeDisconnected(Object nodeID): Called when another JVM leaves the cluster

• thisNodeConnected(Object nodeID): Called when this JVM joins the cluster

• thisNodeDisconnected(Object nodeID): Called when this JVM leaves the cluster

Cluster events in Terracotta will eventually grow to include all logical stages a cluster or
JVM can experience. A more robust solution for event handling must include methods such as
these:

• nodeInit(Object nodeID): Called when this node starts.

• nodeConnecting(Object nodeID): Called when this node invokes the socket connect()
method to the Terracotta server.

• nodeConnected(Object nodeID): Called when a TCP handshake is complete and a node
has joined the cluster.

• nodeReconnecting(Object nodeID): Called when the network hiccups and a node is
reconnecting.

CHAPTER 10 � THREAD COORDINATION230

• nodeOrphaned(Object nodeID): Called when a cluster no longer waits for a node and the
node will never reconnect without exiting first. Note that the orphaned node will never
find out it has been orphaned; the server and other nodes can find out.

• nodeReconnected(Object nodeID): A node successfully rejoined a cluster (the same as
the nodeConnected() event but documented here for clarity’s sake).

• nodeDisconnecting(Object nodeID): A node exiting normally.

• nodeDisconnected(Object nodeID): A node exited normally.

As you can see from the previous list of ideal cluster events, Terracotta plans significant
updates to this subsystem. The current functionality, while sufficient, will change, and thus we
ask that you refer to the web site for more information. A full description of how the Terracotta
cluster events work can be found in the Terracotta documentation:
http://www.terracotta.org/confluence/display/docs1/JMX+Guide.

This example class extends the adapter class org.terracotta.util.jmx.SimpleListener
(available on the Terracotta Forge) in order to be notified of the cluster events. The code for
this example is available on the Apress web site.

The Java class is displayed in Listing 10-5.

Listing 10-5. CoordinatedStagesWithClusterEvents.java

package org.terracotta.book.coordination.jmx;

import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;

import org.terracotta.util.jmx.ClusterEvents;
import org.terracotta.util.jmx.SimpleListener;

/**
* This sample shows the use of Cyclic barrier to coordinate two or more JVM
* processes as if they were threads running in the same JVM.
* It also shows how you can integrate cluster events to tell your code
* when nodes join and leave the cluster.
*
* If you pass in a number at startup, it will be used as the number
* of participants to wait for. If no number is passed in then it defaults to three.
*
* By extending the abstract class org.terracotta.util.jmx.SimpleListener,
* instances of this class receive notification when this JVM or other JVMs join
* or leave the Terracotta cluster.
*/
public class CoordinatedStagesWithClusterEvents extends SimpleListener {

private CyclicBarrier enterBarrier;
private CyclicBarrier exitBarrier;

private static int MINIMUM_EXPECTED_PARTICIPANTS = 3;

CHAPTER 10 � THREAD COORDINATION 231

/**
* Create an instance, setting the number of VMs expected to participate in
* the demo.
*
* @param expectedParticipants
* Description of Parameter
*/
public CoordinatedStagesWithClusterEvents(int expectedParticipants) {

ClusterEvents.registerListener(this);
assert (expectedParticipants > 1);
System.out.println("Expected Participants: " + expectedParticipants);
this.enterBarrier = new CyclicBarrier(expectedParticipants);
this.exitBarrier = new CyclicBarrier(expectedParticipants);

}

public void run() {
try {
// wait for all participants before performing tasks
System.out.println("Stage 1: Arriving at enterBarrier. I'll pause here until "

+ "all " + enterBarrier.getParties() + " threads have arrived...");
enterBarrier.await();
System.out.println("Stage 2: Passed through enterBarrier because all threads "
+ " arrived. Arriving at exitBarrier...");

exitBarrier.await();
System.out.println("Stage 3: Passed through exitBarrier. All done. "

+ "Goodbye.");
} catch (BrokenBarrierException ie) {
ie.printStackTrace();

} catch (InterruptedException ie) {
ie.printStackTrace();

}
}

/**
* This method, defined in the org.terracotta.util.jmx.SimpleListener class,
* is called when another JVM joins the cluster
*/
public void nodeConnected(Object nodeID) {

System.out.println("Another JVM has just connected to the Terracotta cluster: "
+ "node id " + nodeID);

}

/**
* This method, defined in the org.terracotta.util.jmx.SimpleListener class,
* is called when another JVM leaves the cluster
*/

CHAPTER 10 � THREAD COORDINATION232

public void nodeDisconnected(Object nodeID) {
System.out.println("Another JVM has just disconnected from the cluster: "
+ "node id " + nodeID);

}

/**
* This method, defined in the org.terracotta.util.jmx.SimpleListener class,
* is called when this JVM joins the cluster
*/
public void thisNodeConnected(Object nodeID) {

System.out.println("I just connected to the Terracotta cluster: node id "
+ nodeID);

}

/**
* This method, defined in the org.terracotta.util.jmx.SimpleListener class,
* is called when this JVM leaves the cluster
*/
public void thisNodeDisconnected(Object nodeID) {

System.out.println("I just disconnected from the Terracotta cluster: node id "
+ nodeID);

}

public static final void main(String[] args) throws Exception {
int expectedParticipants = MINIMUM_EXPECTED_PARTICIPANTS;
if (args.length == 0) {
System.out.println("Node count NOT specified. Setting count to "
+ MINIMUM_EXPECTED_PARTICIPANTS);

} else {
try {
expectedParticipants = Integer.parseInt(args[0]);
if (expectedParticipants < 1) {

throw new Exception("Invalid node count");
}

} catch (Exception e) {
System.out.println("Invalid node count:" + args[0]);
System.exit(1);

}
}
CoordinatedStagesWithClusterEvents demo =

new CoordinatedStagesWithClusterEvents(expectedParticipants);
demo.run();

}
}

The example class, CoordinatedStagesWithClusterEvents, has the same two barriers as
those in Listing 10-3, but the default expected participants has been set to three so you can see
the cluster event messages as they occur.

CHAPTER 10 � THREAD COORDINATION 233

The configuration file is displayed in Listing 10-6.

Listing 10-6. tc-config.xml for JMX Cluster Events

<?xml version="1.0" encoding="UTF-8"?>
<con:tc-config xmlns:con="http://www.terracotta.org/config">
<servers>

<server host="%i" name="localhost">
<dso-port>9510</dso-port>
<jmx-port>9520</jmx-port>
<data>terracotta/server-data</data>
<logs>terracotta/server-logs</logs>

</server>
</servers>
<clients>

<logs>terracotta/client-logs</logs>
</clients>
<application>

<dso>
<instrumented-classes/>
<roots>
<root>

<field-name>
org.terracotta.book.coordination.jmx.CoordinatedStagesWith �

ClusterEvents.enterBarrier
</field-name>

</root>
<root>

<field-name>
org.terracotta.book.coordination.jmx.CoordinatedStagesWith �

ClusterEvents.exitBarrier
</field-name>

</root>
</roots>

</dso>
</application>

</con:tc-config>

The configuration file is nearly identical to the one from the previous example, except the
name of the example class is different.

To run this example, start the first execution instance. It will reach the enterBarrier, and
the example’s running thread will block, waiting for two other threads to arrive at that barrier.
You should see output that looks like this:

Node count NOT specified. Setting count to 3
Expected Participants: 3
Stage 1: Arriving at enterBarrier. I'll pause here until all 3 threads have
arrived...

CHAPTER 10 � THREAD COORDINATION234

When you start a second execution instance, it will arrive at the enterBarrier and its
thread of execution will block also, waiting for the final of the three expected threads to arrive.
Additionally, the nodeConnected() method gets called on the first execution instance when the
second execution instance joins the cluster. The output of the first execution instance should
then print a new line:

Another JVM has just connected to the Terracotta cluster: node id 1

When you start the third execution instance, all three instances will pass through both the
enterBarrier and the exitBarrier. The output of the first execution instance will look like
this:

Node count NOT specified. Setting count to 3
Expected Participants: 3
Stage 1: Arriving at enterBarrier. I'll pause here until all 3 threads have
arrived...
Another JVM has just connected to the Terracotta cluster: node id 1
Another JVM has just connected to the Terracotta cluster: node id 2
Stage 2: Passed through enterBarrier because all threads arrived. Arriving at
exitBarrier...
Stage 3: Passed through exitBarrier. All done. Goodbye.

If you experiment with starting and stopping different combinations of execution
instances before they all fall through the barriers, you will see the other cluster events fired.
You will also see the effects of having JVM participants join and leave during the execution of
an application, especially with respect to the naïve expectation that every execution instance
will always execute all of the code from start to finish. Keep in mind that thread execution may
be interrupted. When using Terracotta, especially keep in mind that threads participating in
the application in different JVMs will stop participating in the execution of the application if
their JVM is removed from the cluster.

Thread Coordination with Queues
The next example illustrates the use of queues to send messages from one JVM to another. The
shared data structure is a list of queues, each of which is associated with the color red, orange,
yellow, green, blue, indigo, and violet. The first JVM to join the cluster will spawn one thread
for each queue in the list. The threads will block on taking messages from the queue. When a
thread is unblocked and takes a message off of a queue, this first JVM will simply print to con-
sole the message sent to it on that particular queue and repeat the process. Each subsequent
JVM that joins the cluster is assigned one of the seven colors and proceeds to place messages
into its designated color queue. Figure 10-2 presents a picture of the interaction between the
different JVMs.

CHAPTER 10 � THREAD COORDINATION 235

Figure 10-2. Depicting thread coordination with queues graphically

You can get the code on the Apress web site. The example class is presented in Listing 10-7.

Listing 10-7. CoordinationWithQueues.java

package org.terracotta.book.coordination.queues;

import java.util.Date;
import java.util.HashMap;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Random;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.atomic.AtomicInteger;

public class CoordinationWithQueues {

private static final String[] MOODS = { "sleepy", "grouchy", "happy", "worried",

CHAPTER 10 � THREAD COORDINATION236

"sad", "like partying" };
private static final String[] COLOR_NAMES = { "Red", "Orange", "Yellow", "Green",

"Blue", "Indigo", "Violet" };
private static List<NamedQueue> QUEUES;
private static final AtomicInteger sharedCounter = new AtomicInteger();

private final String myColor;
private final NamedQueue myQueue;
private final Random random;

public CoordinationWithQueues(final String color, final NamedQueue queue) {
myColor = color;
myQueue = queue;
random = new Random();

}

private void run() {
while (true) {
try {
String mood = MOODS[random.nextInt(MOODS.length)];
myQueue.add(myColor + " says, \"I'm feeling " + mood + ".\"");
Thread.sleep(1000);

} catch (InterruptedException e) {
// A real application would do something with this exception
e.printStackTrace();

}
}

}

private static final class NamedQueue {
private final String myName;
private final LinkedBlockingQueue<Object> myQueue;

public NamedQueue(final String name, final LinkedBlockingQueue<Object> queue) {
this.myName = name;
this.myQueue = queue;

}

public String getName() {
return myName;

}

public void add(Object o) {
myQueue.add(o);

}

public Object take() throws InterruptedException {

CHAPTER 10 � THREAD COORDINATION 237

return myQueue.take();
}

}

private static final class QueueReader implements Runnable {
private final NamedQueue myQueue;

public QueueReader(NamedQueue queue) {
this.myQueue = queue;

}

public void run() {
while (true) {
try {

System.out.println(new Date() + ": message from the " + myQueue.getName()
+ " queue: " + myQueue.take());

} catch (InterruptedException e) {
// A real application would do something interesting with this
// exception.
e.printStackTrace();

}
}

}
}

public static void main(final String[] args) {
final int counterValue = sharedCounter.getAndIncrement();
if (counterValue == 0) {
// I'm the first JVM to join the cluster, so I'll initialized the queues
// and start the queue reader threads...
QUEUES = new LinkedList<NamedQueue>();
synchronized (QUEUES) {
if (QUEUES.size() == 0) {

for (int i = 0; i < COLOR_NAMES.length; i++) {
QUEUES.add(
new NamedQueue(COLOR_NAMES[i], new LinkedBlockingQueue<Object>())

);
}

}

for (Iterator<NamedQueue> i = QUEUES.iterator(); i.hasNext();) {
new Thread(new QueueReader(i.next())).start();

}
}
final String color = COLOR_NAMES[counterValue % COLOR_NAMES.length] + " "

+ (counterValue / COLOR_NAMES.length);
System.out.println("I'm the queue reader JVM.");

CHAPTER 10 � THREAD COORDINATION238

}

if (counterValue > 0) {
// I'm not the queue reader JVM, so create and run the example...
String color = (counterValue % COLOR_NAMES.length) + " "

+ (counterValue / COLOR_NAMES.length);
System.out.println("I'm the " + color + " JVM.");
NamedQueue queue;
synchronized (QUEUES) {
queue = QUEUES.get(counterValue % COLOR_NAMES.length);

}
(new CoordinationWithQueues(color, queue)).run();

}
}

}

The main() method uses a shared AtomicInteger as a counter of the number of JVMs that
have joined. If the counter value is zero, this is the first JVM to join the cluster and is, therefore,
assigned the queue reader/printer function. The first JVM performs the initialization task of
instantiating the shared queues and adding them to the shared queue list. For each queue, it
spawns a reader thread and creates an associated QueueReader object. The QueueReader is a
Runnable, so when its thread is started, the QueueReader.run() method will get called. The
QueueReader.run() method simply enters into a while loop, taking from the queue and print-
ing the result to System.out.

Subsequent invocations of the example will be assigned one of the seven colors, again
based on the value of the AtomicInteger counter. The main() method will choose the appro-
priate message queue for its color and invoke the run() method on an instance of the example
class. This run() method simply enters a while loop, wherein it picks a mood at random from
the available MOODS array, reports its mood by adding a message object to the queue, and
sleeps for one second. Adding a message object to the shared queue will cause the thread in
the first JVM, which is blocked trying to take from that queue, to remove the message object
from the queue, print the message, and return to the queue to block on take() until another
message arrives on that queue.

Listing 10-8. tc-config.xml for CoordinationWithQueues

<?xml version="1.0" encoding="UTF-8"?>
<con:tc-config xmlns:con="http://www.terracotta.org/config">
<servers>
<server host="%i" name="localhost">

<dso-port>9510</dso-port>
<jmx-port>9520</jmx-port>
<data>terracotta/server-data</data>
<logs>terracotta/server-logs</logs>

</server>
</servers>
<clients>
<logs>terracotta/client-logs</logs>

CHAPTER 10 � THREAD COORDINATION 239

</clients>
<application>

<dso>
<instrumented-classes>
<include>

<class-expression>
org.terracotta.book.coordination.queues.CoordinationWithQueues

</class-expression>
</include>
<include>

<class-expression>
org.terracotta.book.coordination.queues.CoordinationWithQueues$ �

NamedQueue
</class-expression>

</include>
</instrumented-classes>
<roots>
<root>

<field-name>
org.terracotta.book.coordination.queues.CoordinationWithQueues.QUEUES

</field-name>
</root>
<root>

<field-name>
org.terracotta.book.coordination.queues.CoordinationWithQueues. �

sharedCounter
</field-name>

</root>
</roots>
<locks>
<autolock>

<method-expression>
void org.terracotta.book.coordination.queues.CoordinationWith �

Queues.main(java.lang.String[])
</method-expression>
<lock-level>write</lock-level>

</autolock>
</locks>

</dso>
</application>

</con:tc-config>

The configuration for this example specifies that the CoordinationWithQueues example
class must be instrumented and so must its inner class NamedQueue. Two roots are specified:
the list of queues, QUEUES, and the shared counter, sharedCounter. The main() method is
added to the <locks> section to make it sensitive to Terracotta locking, but, since
LinkedBlockingQueue is implicitly configured by Terracotta, configuring locking for the queue’s
operations isn’t necessary.

CHAPTER 10 � THREAD COORDINATION240

This fairly straightforward example illustrates the power Terracotta provides to simple
Java programs by allowing them to send messages to each other using stock Java library
classes, effectively providing an IPC/RPC mechanism that looks just like interthread commu-
nication.

Summary
The examples presented in this chapter illustrate how the simple concurrency utilities built
into the JVM can be harnessed using Terracotta to provide an extremely powerful mechanism
of inter-JVM coordination. Using simple Java constructs makes this approach easy to develop
and, perhaps more importantly, testable at a unit level, because your application can be exe-
cuted in a single JVM without Terracotta. Terracotta provides its power transparently, enabling
it to stay out of the way of your code and allowing you to express your intent in the clearest
possible manner.

The examples in this chapter are highly idealized for clarity, but with a little imagination,
you can see how their principles may be applied to many different situations, including multi-
step coordination, IPC/RPC, work partitioning or grid computing (see Chapter 11), policy
enforcement, JVM or application configuration, application monitoring, workload load bal-
ancing, and more. And, because the state of the virtual heap is durable and highly available,
should a particular member of the cluster go offline, another can be provisioned to seamlessly
take its place. As such, you can easily add redundancy and failover systems to your implemen-
tation, so you can use these simple mechanisms in mission-critical environments.

CHAPTER 10 � THREAD COORDINATION 241

GridComputing Using Terracotta

The Master/Worker pattern is one of the most well-known and common patterns for paral-TT
lelizing work, and it is also one of the core patterns in grid computing to such an extent that
most grid-enabling technologies can be seen more or less as industrial implementations of
this pattern. In this chapter, we will explain the characteristics of the pattern, walk through
some possible implementation strategies, and consider what’s really behind all the buzz. We
will briefly discuss what grids are really all about and how they use the Master/Worker pattern
to solve very challenging real-world problems. We’ll also show you, step by step, how you can
implement a very scalable and high performing grid-style data processing and workload man-
agement framework with Terracotta. By the end of this chapter, you will have implemented
your own grid running on Terracotta. The use case will walk you through building a distrib-
uted web crawler by hand. The resulting system will be able to run on as many JVMs as you
want, crawl any web site as deeply as you want (following four levels of HREF links, for exam-
ple), and store all the web pages on that site into your Terracotta grid.

What Are Grids?
A grid is a set of servers that together create a mainframe-class processing service where time-
sensitive operations can be configured to adhere to business service-level agreements (SLAs)
at an operating system level. In mainframes, tasks can be started, stopped, paused, and
migrated across the hardware. In grids, data and operations can move seamlessly across the
grid in order to optimize the performance and scalability of the computing tasks at hand.
A grid scales through use of locality of reference and is highly available through effective use
of data duplication. It combines data management with data processing.

Compute Grids vs. Data Grids
There are two main categories of grids: compute grids and data grids. The differences between
these two are easier to understand in the context of a framework of load-balancing and parti-
tioning. Grids are not like web applications, in that you don’t need a load balancing switch
and HTTP doesn’t have to be the mode of communication. Grids are all about manually or
programmatically partitioning work to a large number of low-cost servers. With partitioning in
mind, now think of data grids as clusters of computers where the data has been spread out in
memory across application nodes in order to avoid the roundtrips and latencies in retrieving
the data from a database. Ten low-cost servers would each store and manage one-tenth of the
data.

243

C H A P T E R 1 1

Compute grids split workload across application nodes; they only make sense for state-
less workloads (e.g., only computational work tasks) or on top of data grids where the data has
been partitioned. If a compute grid does not work in conjunction with the data grid, meaning
that data and workload could be partitioned on different criteria, network bottlenecks could
result when compute tasks running on server one of ten is accessing data on server seven.

From now on, our discussion will mainly relate to data grids, which provide both scalabil-
ity and high availability. Data grids arguably provide the most interesting service for enterprise
applications with their focus on fault tolerance and failover of stateful application-specific
data as well as scalability in terms of access to this data.

How Grids Handle Scalability
One of the main reasons grids can scale so well is that grid engines can make intelligent
choices between either moving data to its processing context or moving the processing con-
text (the operations) to the data. Effectively moving the processing context to the data means
that the processor can make use of locality of reference; therefore, data that is being processed
on a specific node stays local to that node and will, in the ideal case, never have to leave that
node. Instead, all operations working on this specific data set will always be routed to this spe-
cific node. The immediate benefits are that this approach minimizes the latency and can give
close to unlimited and linear scalability. How well it scales is naturally use-case specific, and
achieving scalability can take both effort and skill in partitioning the data and grouping the
work items, as well as tuning potential routing algorithms.

The ultimate (and simplest) situation is when all work items are what we call embarrass-
ingly parallel, which means that the work items have no shared state. All work items are
self-contained and can execute their tasks in complete isolation, independently of all the
other work items, which means that we do not need to worry about data partitioning or rout-
ing schemes. The most typical example of embarrassingly parallel work is an arithmetic
calculation. Invoking some sort of add(), subtract(), multiply(), or divide() routine with
two integer arguments requires no external context. All the data needed to execute work is
available in the arguments to the worker. And the return results are well defined and need no
further processing to be valuable: add(2, 2) should return 4. However, even though embar-
rassingly parallel work sets are fairly common, we are sometimes faced with more
complicated situations that require both intelligent data partitioning and routing algorithms
in order to scale well, something that we will take a look at later on in this chapter.

How Grids Handle Failover and High Availability
Grids are resilient to failure and down time by effectively copying all data across nodes two or
three times. Grids can be seen as an organic system of nodes that is designed to handle failure
of individual nodes outside the business logic. This is very different from traditional design of
distributed systems in which each node is seen as an always-on unit, leaving the developer to
deal with the possibility of node failure in source code. Failure in a grid system—meaning fail-
ure of a node, a work task, the network, and so on—is not a problem, since the infrastructure
will address the problem accordingly. For example, pending work item(s) can be rescheduled
to another node; the node can be restarted, and so forth.

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA244

245CHAPTER 11 � GRID COMPUTING USING TERRACOTTA

Use Cases
Applications that could benefit from being run on a grid are usually applications that need to
work on large data sets and/or have a need to parallelize processing of the data to achieve bet-
ter throughput and performance. Examples of compute grids are financial risk analysis and
other simulations, searching and aggregation on large datasets as well as sales order pipeline
processing. Examples of data grids are giant distributed Internet indexes such as Google’s or
Yahoo’s.

Introducing the Master/Worker Pattern
The Master/Worker pattern is the key enabler in grid computing and one of the most well-
known and common patterns for parallelizing work. In this chapter, we will explain the
characteristics of the pattern and walk through some possible implementation strategies.

The Master/Worker pattern consists of three logical entities: a master, a shared work-
space, and one or more instances of a worker. The master initiates the computation by
creating a set of work tasks, puts them in the shared workspace, and waits for the work tasks
to be picked up and completed by the worker(s). The shared workspace is usually some sort
of queue, but it can also be implemented as a tuple space (for example, in Linda programming
environments, such as JavaSpaces, where the pattern is used extensively).

�Note�� Linda programming was invented at Yale University by a team led by David Gelernter. The system
is made up of shared memory spaces for multiple processes to post and take objects. The shared memory is
augmented with the concept of mutual exclusion, where a thread must take what it needs out of the shared
space before operating on the object. By taking objects from shared memory while working on them, a
thread can safely assume no other operations can occur, and thus no concurrency or transactions are
required.

One of the advantages of using the Master/Worker pattern is that the algorithm automati-
cally balances the load. This balancing is possible because the workspace is shared, and the
workers continue to pull work tasks from the workspace as soon as those workers are able to
do work until there are no more pending tasks. The algorithm usually exhibits good scalability
as long as the number of tasks by far exceeds the number of workers and if the tasks take a
fairly similar amount of time to complete. See Figure 11-1 for an overview of the algorithm.

Figure 11-1. The flow of work through the Master/Worker design pattern

Master/Worker in Java
Let’s now look at the different alternatives we have for implementing the Master/Worker pat-
tern in Java. There might be more ways of doing it, but we will focus the discussion on three
different alternatives, each one with a higher abstraction level.

Using the Java Language’s Thread Coordination Primitives
The most hard-core approach is to use the concurrency and threading primitives that we have
in the Java language itself as defined in the Java Language Specification (JLS), for example, the
wait() and notify() methods and the synchronized and volatile keywords. The benefit of
using this approach is that everything is really at your fingertips, meaning that you could

� GRID COMPUTING USING TERRACOTTA246

customize the solution without limitations (well, you will still be constrained by the Java
language abstractions and semantics). However, this is also its main problem, since imple-
menting Master/Worker this way is both very hard and tedious to implement yourself and
will most likely be even worse to maintain. These low-level abstractions are seldom something
that you want to work with on a day-to-day basis. What we need to do is to raise the abstrac-
tion level above the core primitives in the JLS, and that is exactly what the data structure
abstractions in the java.util.concurrent library, introduced by JDK 1.5, does for us.

Using the java.util.concurrent Abstractions
Given that using the low-level abstractions in the JLS is both tedious and difficult, the concur-
rency abstractions in JDK 1.5 are a very welcome and natural addition to the Java libraries.
This very rich API provides everything from locks, semaphores, and barriers to implementa-
tions of the Java collections interfaces highly tuned for concurrent access.

It also provides an ExecutorService, which is mainly a thread pool that provides direct sup-
port for the Master/Worker pattern. This service is very powerful, since you’re implementing the
Master/Worker pattern using a single abstraction and framework, as shown in Figure 11-2.

Even though this approach would be sufficient in many situations and use cases, it has
some problems. First, it does not separate the master from the worker, since they are both part
of the same abstraction. In practice, this means that you cannot control and manage the mas-
ter independently of the workers, which will prove to be a serious limitation when we cluster
the implementation with Terracotta to scale it out onto not only multiple threads but multiple
JVMs. The problem here is that clustering the ExecutorService as it is, even though possible
and sometimes even sufficient, will not allow us to scale out the master independently of the
workers but force us to run them all on every JVM.

Figure 11-2. The ExecutorService has limitions; it does not allow us to maintain a many-to-many
relationship (instead of one-to-many) where masters and workers are more loosely coupled
and we are able to communicate using shared queues (instead of thread pools and threading
primitives).

The second, and perhaps even more important, limitation is that ExecutorService is lack-
ing a layer of reliability and control. Since the ExecutorService is implemented as a black box,
we have no way of knowing if a specific work task has been started, completed, or rejected due

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA 247

to some error. Consequently, we have no way to detect if a work item has failed and retry the
work item, on the same node or on another node. We need a way to deal with these things in
a simple and, if possible, standardized way.

�Note�� The Oswego util.concurrent library provides most of the abstractions found in the Java 5
concurrency library but works with JDK 1.2 and above. The library can be downloaded at
http://g.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html

Using the CommonJ Work Manager Specification
Spawning and coordinating threads inside an EJB container is something that has been prohib-
ited by the EJB specification. However, enterprise applications very often have a need to
coordinate tasks both in a synchronous and asynchronous manner. This is something that
was partly solved in a fairly verbose way with Message-Driven Beans (MDB) and was the main
motivation for IBM and BEA to create a joint specification that solves this problem by providing
a standardized and well defined way of executing concurrent tasks in a JEE environment. The
specification is called CommonJ and has support for the Master/Worker pattern in its Work
Manager API. BEA provides a good article on getting started with the CommonJ interface at
http://dev2dev.bea.com/wlplatform/commonj/.

Interestingly, the specification not only defines an API for submitting work and getting
the result back but also provides functionality for tracking work status, in that it allows you to
register listeners that will receive callback events whenever the state of the work has changed.
This functionality for tracking work status makes it possible to not only detect work failure but
also to acquire a handle to the work that failed, including the reason why it failed, which gives
us enough information to deal with the failure in a sensible way.

Each of the three approaches we have looked at so far has been built on the previous one
and has gradually raised the abstraction level, and even more importantly, minimized and
simplified the code that we as users have to write and maintain.

The most natural choice is to base our implementation on the CommonJ Work Manager
specification. It is a simple and minimalist specification and seems to provide most of the
functionality that we need to build a reliable master/worker container.

Let’s take a look at the interfaces in the specification. First, we have the Work interface;
this is the only interface that will be implemented not by the framework but by the user of the
master/worker implementation—this should be expected because the actual work to be exe-
cuted is always use-case specific. The Interface extends the java.lang.Runnable interface with
its run() method, the method that the user should use to implement the actual work task:

public interface Work extends Runnable { }

The second interface is the WorkManager, which provides the main API for our master. It
defines two methods for scheduling work; both return an instance of WorkItem (which is dis-
cussed next), wrapping and giving us a handle to the Work instance. The difference between
the two methods is that one allows us to pass in an optional WorkListener so we can listen to
changes to the state of the Work. Two more methods give us different ways to wait for work to
be completed. The waitForAll() method blocks and waits until all Work has been completed

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA248

or the method has timed out, while the waitForAny() method returns immediately with a
collection of all the completed Work so far:

public interface WorkManager {
WorkItem schedule(Work work);
WorkItem schedule(Work work, WorkListener listener);
boolean waitForAll(Collection workItems, long timeout);
Collection waitForAny(Collection workItems, long timeout);

}

The WorkItem interface, which acts as a wrapper around the pending Work instance adds
a method returning status information about the Work being wrapped. This simple addition
allows us to build a layer of reliability for our master/worker implementation.

public interface WorkItem {
Work getResult();
int getStatus();

}

The WorkListener is an optional abstraction that provides a set of callback methods that
will be invoked whenever state for a Work item has changed:

public interface WorkListener {
void workAccepted(WorkEvent we);
void workRejected(WorkEvent we);
void workStarted(WorkEvent we);
void workCompleted(WorkEvent we);

}

Finally, the WorkEvent interface encapsulates the event that is sent to the WorkListener
whenever the state for a Work has changed. In the case of a failure (e.g., the status flag is set to
WORK_REJECTED), we will be able to use the WorkEvent interface to retrieve the WorkException,
which holds additional information about the cause of the failure:

public interface WorkEvent {
int WORK_ACCEPTED = 1;
int WORK_REJECTED = 2;
int WORK_STARTED = 3;
int WORK_COMPLETED = 4;
public int getType();
public WorkItem getWorkItem();
public WorkException getException();

}

Our goal is to take all these interfaces and methods and create implementations of these
things using only the JLS. When we implement this POJO implementation of CommonJ—one
that does not depend on BEA or IBM application server internal libraries—we can use
tc-config directives to cluster our CommonJ implementation in any context or container.
Let’s now implement CommonJ by hand, as this will serve as the basis for our master/worker
engine.

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA 249

Getting Started: Naïve Single Work Queue
Implementation
We have looked at three different approaches to implement the Master/Worker pattern in
Java, each one with a slightly higher abstraction level than its predecessor. Let’s now make use
of this knowledge by bringing it all together to create a master/worker implementation—let’s
call it container—that will implement CommonJ WorkManager interfaces. We’ll build our con-
tainer using java.util.concurrent abstractions, so we will get a standard API with rich
enough abstractions to give us the level of reliability that we need, while utilizing the full per-
formance, stability, and correctness of the standard Java concurrency libraries.

We will implement three different versions of the master/worker container. The first one
will be trivial—actually not even trivial but naïve. We will then use it to bring together the
concepts and set the stage for our journey toward a real-world implementation. After each
implementation, we will take some time to look at how we can utilize Terracotta and its
Network-Attached Memory to scale it out onto multiple nodes.

Sound like a good plan? Let’s put it into action.

Implementing a Single-JVM Naïve Master/Worker Container
Our first, naïve implementation simply consists of a single work queue, one master, and an
arbitrary number of workers (we will soon learn what makes this naïve).

The first thing that we need to do is build our single work queue, which will simply be a
wrapper around an instance of the java.util.concurrent.LinkedBlockingQueue class. The
semantics of this class are sufficient for our crossthread or cross-JVM communication
needs. We will wrap it, however, simply to add a basic fault-handling strategy—if we catch an
InterruptedException when trying to add a new work item to the queue, we set the status of
the work item to WORK_REJECTED, passing along the offending exception before rethrowing the
exception to the caller. Listing 11-1 shows our single work queue. Here, the DefaultWorkItem is
our implementation of the WorkItem interface

Listing 11-1. SimpleQueue CommonJ Implementation

package org.terracotta.book.masterworker.naive;

import commonj.work.WorkException;

import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;

import org.terracotta.book.masterworker.DefaultWorkItem;

/**
* Implements a single work queue which wraps a linked blocking queue.
*/
public class SimpleQueue {

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA250

// Terracotta Shared Root
private final BlockingQueue<DefaultWorkItem> m_workQueue =

new LinkedBlockingQueue<DefaultWorkItem>();

public void put(final DefaultWorkItem workItem) throws InterruptedException {
m_workQueue.put(workItem); // blocks if queue is full

}

public DefaultWorkItem peek() {
return m_workQueue.peek(); // returns null if queue is empty

}

public DefaultWorkItem take() throws WorkException {
try {
return m_workQueue.take(); // blocks if queue is empty

} catch (InterruptedException e) {
Thread.currentThread().interrupt();
throw new WorkException(e);

}
}

}

The second artifact that we need to write is the Worker, which holds on to a reference to
our SimpleQueue instance. It is shown in Listing 11-2. When the Worker starts up, it uses a
thread pool to spawn a number of worker threads that continuously grab and execute work
items from our SimpleQueue instance. Recall our issue with the ExecutorService and its inabil-
ity to factor the master away from the workers by itself. Now, you can see that the queue is
separating the master and his thread pool from the workers and their pools. The thread pool is
an instance of the ExecutorService, exactly the same class from util.concurrent that we dis-
cussed in detail earlier in this chapter. During the execution of the work, work status is
maintained by managing a flag in the wrapping WorkItem—the flag can have one of the
following states: WORK_ACCEPTED, WORK_STARTED, WORK_COMPLETED, or WORK_REJECTED.

Listing 11-2. Naïve CommonJ Worker Implementation

package org.terracotta.book.masterworker.naive;

import commonj.work.Work;
import commonj.work.WorkEvent;
import commonj.work.WorkException;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

import org.terracotta.book.masterworker.DefaultWorkItem;
import org.terracotta.book.masterworker.worker.Worker;

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA 251

/**
* Worker bean, receives a work item from the same single work queue. It grabs the
* next pending work and executes it.
*/
public class SimpleWorker implements Worker {

protected final ExecutorService m_threadPool = Executors.newCachedThreadPool();

protected final SimpleQueue m_queue;

protected volatile boolean m_isRunning = true;

public SimpleWorker(final SimpleQueue queue) {
m_queue = queue;

}

public void start() throws WorkException {
while (m_isRunning) {
final DefaultWorkItem workItem = m_queue.take();
final Work work = workItem.getResult();
m_threadPool.execute(new Runnable() {
public void run() {

try {
workItem.setStatus(WorkEvent.WORK_STARTED, null);
work.run();
workItem.setStatus(WorkEvent.WORK_COMPLETED, null);

} catch (Throwable e) {
workItem.setStatus(WorkEvent.WORK_REJECTED, new WorkException(e));

}
}

});
}

}

public void stop() {
m_threadPool.shutdown();
m_isRunning = false;

}
}

Finally, we need to implement our Master, or in the context of CommonJ, our
WorkManager, as shown in Listing 11-3. Here, we had to implement the four different methods
in the WorkManager interface. The first two methods are for scheduling the work. They’re both
called schedule(), and the difference between them is that one of them takes an optional
WorkListener instance in order to get callback notifications when work items change state.
Apart from that, both methods work the same; they take the work, wrap it in a WorkItem
instance, and add it to the queue. They also return the newly created WorkItem instance,
which gives the caller a reference to the pending Work for tracking or management.

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA252

The other two methods are waitForAll() and waitForAny(), whose contracts have been
discussed in the previous section. At this stage, it is fine to go for the simplest thing that could
possibly work: a busy wait loop. But, as you might guess, you can implement these methods
more efficiently using wait() and notify(), which we will take a look at later on in this chap-
ter. This is, after all, a simple and naïve implementation.

Listing 11-3. Naïve CommonJ WorkManager Implementation

package org.terracotta.book.masterworker.naive;

import org.terracotta.book.masterworker.DefaultWorkItem;

import commonj.work.Work;
import commonj.work.WorkEvent;
import commonj.work.WorkException;
import commonj.work.WorkItem;
import commonj.work.WorkListener;
import commonj.work.WorkManager;

/**
* Implementation of the WorkManager abstraction that is scheduling all work to
* the same work single queue.
*/
public class SimpleWorkManager implements WorkManager {

private final SimpleQueue m_queue;

public SimpleWorkManager(final SimpleQueue queue) {
m_queue = queue;

}

public WorkItem schedule(final Work work) {
return schedule(work, null);

}

public WorkItem schedule(final Work work, final WorkListener listener) {
DefaultWorkItem workItem = new DefaultWorkItem(work, null);
try {

m_queue.put(workItem);
} catch (InterruptedException e) {

workItem.setStatus(WorkEvent.WORK_REJECTED, new WorkException(e));
Thread.currentThread().interrupt();

}
return workItem;

}

public boolean waitForAll(Collection workItems, long timeout)
throws InterruptedException {

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA 253

long start = System.currentTimeMillis();
do {
synchronized (this) {
boolean isAllCompleted = true;
for (Iterator<WorkItem> it = workItems.iterator();

it.hasNext() && isAllCompleted;) {
int status = it.next().getStatus();
isAllCompleted = status ==

WorkEvent.WORK_COMPLETED || status == WorkEvent.WORK_REJECTED;
}
if (isAllCompleted) {

return true;
}
if (timeout == IMMEDIATE) {

return false;
}
if (timeout == INDEFINITE) {

continue;
}

}
} while ((System.currentTimeMillis() - start) < timeout);
return false;

}

public Collection waitForAny(Collection workItems, long timeout)
throws InterruptedException {

long start = System.currentTimeMillis();
do {

synchronized (this) {
Collection<WorkItem> completed = new ArrayList<WorkItem>();
for (Iterator<WorkItem> it = workItems.iterator(); it.hasNext();) {

WorkItem workItem = it.next();
if (workItem.getStatus() == WorkEvent.WORK_COMPLETED ||

workItem.getStatus() == WorkEvent.WORK_REJECTED) {
completed.add(workItem);

}
}
if (!completed.isEmpty()) {

return completed;
}

}
if (timeout == IMMEDIATE) {
return Collections.EMPTY_LIST;

}
if (timeout == INDEFINITE) {
continue;

}

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA254

} while ((System.currentTimeMillis() - start) < timeout);
return Collections.EMPTY_LIST;

}
}

What About My Work?
Now, we have the three main artifacts in place; the Master, the Worker, and the SimpleQueue.
But what about the Work abstraction, and what role does the WorkItem play?

Let’s start with the Work, which is an interface in the CommonJ Work Manager specifica-
tion. We cannot implement this interface generically in our master/worker container. Instead,
the user of the framework should implement it, since the implementation of the actual work
that is supposed to be done is by its nature use case specific.

Let’s look at the DefaultWorkItem, which as we’ve noted previously, is our implementation
of the WorkItem interface; see Listing 11-4. Again, its purpose is simply to wrap a Work instance
and provide additional information, such as status, and an optional WorkListener. If such a
listener is available, it will instantiate a WorkEvent defining the work’s state transition and pass
it on to the listener.

Listing 11-4. Default WorkItem Wrapper for Your Work

package org.terracotta.book.masterworker;

import commonj.work.Work;

import commonj.work.WorkEvent;
import commonj.work.WorkException;
import commonj.work.WorkItem;
import commonj.work.WorkListener;

/**
* The work item holds the work to be executed, status of the progress and the
* future result.
*/
public class DefaultWorkItem implements WorkItem {

protected volatile int m_status;

protected final Work m_work;

protected final WorkListener m_workListener;

public DefaultWorkItem(final Work work, final WorkListener workListener) {
m_work = work;
m_status = WorkEvent.WORK_ACCEPTED;
m_workListener = workListener;

}

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA 255

public Work getResult() {
return m_work;

}

public synchronized void setStatus(
final int status, final WorkException exception) {

m_status = status;
if (m_workListener != null) {
switch (status) {
case WorkEvent.WORK_ACCEPTED:
m_workListener.workAccepted(

new DefaultWorkEvent(WorkEvent.WORK_ACCEPTED, this, exception));
break;

case WorkEvent.WORK_REJECTED:
m_workListener.workRejected(

new DefaultWorkEvent(WorkEvent.WORK_REJECTED, this, exception));
break;

case WorkEvent.WORK_STARTED:
m_workListener.workStarted(

new DefaultWorkEvent(WorkEvent.WORK_STARTED, this, exception));
break;

case WorkEvent.WORK_COMPLETED:
m_workListener.workCompleted(

new DefaultWorkEvent(WorkEvent.WORK_COMPLETED, this, exception));
break;

}
}

}

public synchronized int getStatus() {
return m_status;

}

public WorkException newWorkException(final Throwable e) {
e.printStackTrace();
WorkException we = new WorkException(e.getMessage());
setStatus(WorkEvent.WORK_REJECTED, we);
Thread.currentThread().interrupt();
return we;

}

public int compareTo(Object compareTo) {
// check if Work is implementing Comparable
Work work = ((WorkItem) compareTo).getResult();
if (m_work instanceof Comparable) {
Comparable<Comparable<?>> comparableWork1 =

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA256

(Comparable<Comparable<?>>) m_work;
if (work instanceof Comparable) {
Comparable<?> comparableWork2 = (Comparable<?>) work;
return comparableWork1.compareTo(comparableWork2);

}
}
return 0; // ordering is not specified

}

public String toString() {
String status;
switch (m_status) {
case WorkEvent.WORK_ACCEPTED:
status = "WORK_ACCEPTED";
break;

case WorkEvent.WORK_COMPLETED:
status = "WORK_COMPLETED";
break;

case WorkEvent.WORK_REJECTED:
status = "WORK_REJECTED";
break;

case WorkEvent.WORK_STARTED:
status = "WORK_STARTED";
break;

default:
throw new IllegalStateException("illegal (unknown) status " + m_status);

}
return m_work.toString() + ":" + status;

}
}

We now have a single-JVM, multithreaded, master/worker container based on the
CommonJ Work Manager specification and the java.util.concurrent abstractions. This appli-
cation is potentially useful as it stands, but to fully scale it out, we need to be able not only to
schedule work onto multiple threads but also to divide the threads across machines in an easy
way. Let’s bring in Terracotta.

Clustering Our Master/Worker with Terracotta
To cluster our current WorkManager implementation with Terracotta, all we have to do is create
a Terracotta configuration file in which we define three things: roots, includes, and locks.

Let’s start with roots. First, we have to define the state that we want to share across the
cluster. In our case, we want to share the work queue, which means the instance of the
LinkedBlockingQueue in the SimpleQueue instance. Let’s add this as a root now:

<roots>
<root>

<field-name>

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA 257

org.terracotta.book.masterworker.naive.SimpleQueue.m_workQueue
</field-name>

</root>
</roots>

We also need to define the set of classes that we want to include for instrumentation. This
set should include all the classes that have instances that will join a shared object graph. In
our case, those that can be referenced from our previously defined root collection must be
instrumented:

<instrumented-classes>
<include>

<class-expression>
org.terracotta.book.masterworker..*

</class-expression>
</include>

</instrumented-classes>

Finally, we have to define the potential lock/transaction boundaries. Here, we are using
an auto-lock. We’ll define a match-all pattern for the locking, since the impact of matching all
synchronization is countered by the fact that we only instrumented classes in our own pack-
age. Normally, we wouldn’t use such broadly scoped automatic locking configuration.

<locks>
<autolock>

<method-expression>* *..*.*(..)</method-expression>
<lock-level>write</lock-level>

</autolock>
</locks>

Now, we could try to run the application, but to make it a bit more interesting, we will
wait until we have refactored our naïve implementation to prepare it a bit better to meet the
real (evil and scary) world.

Handling Real-World Challenges
So far, we have built a distributed master/worker container ready for use, but we haven’t run
it, because it is a very naïve implementation. Even though it implements a clustered
Master/Worker pattern, it will not scale very well. Sending too much work to our current
implementation will essentially bottleneck on our work queue. Bottlenecks in a framework
designed to deliver linear scale block us from achieving our goals. The current implementa-
tion also doesn’t handle failure and resubmission of work.

Now, we will refactor and extend our implementation a bit to address some of these
challenges that are likely to arise if we were to use SimpleQueue in the real world solving real-
world problems.

We will look at the following challenges:

• Very high volumes of data

• Routing

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA258

• Work failure and failover

• Worker failure and failover

• Dynamic cluster management (workers can attach and detach from the grid at run
time)

Refactoring for Large Workloads, Routing, and
Work Failover
The first challenge to tackle is scaling workload throughput linearly. What makes the Simple-
Queue naïve is that it uses one queue for all masters and works to communicate through. Using
one queue is like putting every employee of every company in the city of San Francisco on a
bus together, driving each one to work, one at a time, while all the others wait for their turn to
be dropped off at the office. Instead, we will minimize contention through queue striping
techniques.

Minimizing Contention and Maximizing Locality of Reference
One of the main problems with our current implementation is that one queue is shared by all
the masters and workers. This might give acceptable performance and scalability when used
under a small to moderate work load. However, if we need to deal with very high volumes of
data, the single queue will be a bottleneck.

One solution is to stripe queues by creating one queue per worker and have the master
do some more intelligent load balancing of work onto discrete work queues, one per worker.
Partitioning data will enable the following:

• Maximized use of locality of reference: If all work operating on the same data set is
routed to the same queue with the same worker working on it, no workers will share
objects across JVMs, and thus no object updates will result in cluster traffic to other
nodes. This is a good start toward linear scale where each node must avoid conversa-
tions with other nodes.

• Minimized contention: Since there will be only one reader and one writer per queue—
the master on one end and the worker on the other—workers will not have to wait
behind other workers to receive or respond to workload requests.

To reduce the contention even more, we can split up each work queue into two queues,
one for pending work requests from the master and the other one for completed work
responses from the worker. This refactoring calls for a new abstraction that wraps up both
queues as a single unit—let’s call this abstraction a pipe. We should go ahead and build some
sort of pipe manager that holds on to and manages the different pipes. Each one of these
pipes will be assigned a unique ID. Work will be routed to different queues according to prede-
fined routing algorithms and failover schemes (something that we will talk more about later in
this chapter).

First, let’s introduce two new classes: RoutableWorkItem and Pipe. We’ll start with
RoutableWorkItem in Listing 11-5, which extends our DefaultWorkItem class by adding a rout-
ing ID. The purpose of this ID is to decide on which pipe the master should send work. The

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA 259

routing ID also gives the master the ability to change the ID to reroute the work onto another
pipe if necessary, normally due to worker failure, which we will take a look at later in this
chapter.

Listing 11-5. A New RoutableWorkItem to Intelligently Balance Load Across Our Worker Grid

package org.terracotta.book.masterworker.routing;

import org.terracotta.book.masterworker.DefaultWorkEvent;
import org.terracotta.book.masterworker.MutableWorkItem;
import org.terracotta.book.masterworker.routing.Routable;
import org.terracotta.book.masterworker.routing.RoutableWorkItem;

import commonj.work.Work;
import commonj.work.WorkEvent;
import commonj.work.WorkException;
import commonj.work.WorkItem;
import commonj.work.WorkListener;

public class RoutableWorkItem<ID> implements Routable<ID>, MutableWorkItem {

public static int CANCEL_WORK_STATUS_TRACKING = 1 << WorkEvent.WORK_STARTED;

protected final int m_flags;

protected final Work m_work;

protected transient final WorkListener m_workListener;

protected int m_status;

protected boolean m_dirty;

protected WorkException m_exception;

protected ID m_routingID;

public RoutableWorkItem(Work work, WorkListener workListener, ID routingID) {
this(0, work, workListener, routingID);

}

public RoutableWorkItem(int flags, Work work, WorkListener workListener,
ID routingID) {

m_flags = flags;
m_work = work;
m_status = -1;
m_dirty = false;
m_workListener = workListener;

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA260

m_routingID = routingID;
}

public Work getResult() {
return m_work;

}

public int getFlags() {
return m_flags;

}

public synchronized int getStatus() {
return m_status;

}

public synchronized void setStatus(final int status,
final WorkException exception) {
m_status = status;
m_exception = exception;
m_dirty = true;

}

public synchronized ID getRoutingID() {
return m_routingID;

}

public synchronized void setRoutingID(final ID routingID) {
m_routingID = routingID;

}

public WorkListener getWorkListener() {
return m_workListener;

}

public void fireListener() {
if (m_workListener == null) {
return;

}

int status;
WorkException exception;
synchronized (this) {
if (!m_dirty) {
return;

}
status = getStatus();
exception = m_exception;

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA 261

m_dirty = false;
}

switch (status) {
case WorkEvent.WORK_ACCEPTED:
m_workListener.workAccepted(

new DefaultWorkEvent(WorkEvent.WORK_ACCEPTED, this, exception));
break;

case WorkEvent.WORK_REJECTED:
m_workListener.workRejected(

new DefaultWorkEvent(WorkEvent.WORK_REJECTED, this, exception));
break;

case WorkEvent.WORK_STARTED:
m_workListener.workStarted(

new DefaultWorkEvent(WorkEvent.WORK_STARTED, this, exception));
break;

case WorkEvent.WORK_COMPLETED:
m_workListener.workCompleted(

new DefaultWorkEvent(WorkEvent.WORK_COMPLETED, this, exception));
break;

}
}

}

public WorkException newWorkException(final Throwable e) {
e.printStackTrace();
WorkException we = new WorkException(e.getMessage());
setStatus(WorkEvent.WORK_REJECTED, we);
Thread.currentThread().interrupt();
return we;

}

public int compareTo(Object compareTo) {
// check if Work is implementing Comparable
Work work = ((WorkItem) compareTo).getResult();
if (m_work instanceof Comparable) {
Comparable<Comparable<?>> comparableWork1

= (Comparable<Comparable<?>>) m_work;
if (work instanceof Comparable) {
Comparable<?> comparableWork2 = (Comparable<?>) work;
return comparableWork1.compareTo(comparableWork2);

}
}
return 0; // ordering is not specified

}

public static class Factory<ID> {

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA262

private final int flags;

public Factory() {
this(0);

}

public Factory(final int flags) {
this.flags = flags;

}

public RoutableWorkItem<ID> create(
Work work, WorkListener listener, ID routingID) {

return new RoutableWorkItem<ID>(flags, work, listener, routingID);
}

}
}

The Pipe class, shown in Listing 11-6, is fairly simple. It wraps two queues, one holding
the pending work and the other the completed work.

Listing 11-6. The Pipe Class

package org.terracotta.book.masterworker.pipe;

import java.util.Set;

import org.terracotta.book.masterworker.queue.Queue;
import org.terracotta.book.masterworker.queue.QueueListener;

/**
* A pipe is a two way queue for work management.
* <p>
* It is wrapping one queue for pending work and one for completed work as well as
* two listeners that are receiving call backs whenever an item has been added to
* one of its corresponding queues.
*
* @param <T>
*/
public interface Pipe<T, ID> {

Queue<T> getPendingWorkQueue();

Queue<T> getCompletedWorkQueue();

QueueListener<T, ID> getQueueListener();

void startQueueListener(Set<T> allCompletedWork);

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA 263

void clear();

public static interface Factory<T, ID> {
Pipe<T, ID> create(ID routingID);

}
}

As you can see, the Pipe is using an abstraction called Queue, which is a simple generic inter-
face for a queue abstraction. In this example’s implementation in the SVN repository, you can
find three different implementations of this interface: ListBasedQueue (wrapping a
java.util.ArrayList), DmiBasedQueue (based on Terracotta’s Distributed Method Invocation fea-
ture) and BlockingQueueBasedQueue (wrapping a java.util.concurrent.LinkedBlockingQueue).
Among these three, the third is the one that gives best throughput and scale (each of these Queue
implementations also has a Factory that creates the queue in question). The Queue class is
shown in Listing 11-7.

Listing 11-7. The Queue Class

package org.terracotta.book.masterworker.queue;

import java.util.Iterator;
import java.util.concurrent.TimeUnit;

/**
* Represents a one-way communication channel. Abstract notion of putting
* objects and receiving them (take or poll)
*
* @param <T>
*/

public interface Queue<T> {

public static interface Factory<T> {
public Queue<T> create();

}

T poll(long timeout, TimeUnit unit) throws InterruptedException;

T put(T item) throws InterruptedException;

T take() throws InterruptedException;

int size();

void clear();

Iterator<T> iterator();
}

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA264

If we take a look at the current code, we discover that we need to refactor the SimpleQueue
class—we need to rename it PipeManager and swap the single LinkedBlockingQueue to a
ConcurrentHashMap with entries containing a routing ID mapped to our new Pipe abstraction.

In practice this means going from this

public class SimpleQueue {
BlockingQueue<WorkItem> m_workQueue = new LinkedBlockingQueue<WorkItem>();
...

}

to this

public class PipeManager<ID> {
private final Map<ID, Pipe<RoutableWorkItem<ID>, ID>> m_pipes =

new ConcurrentHashMap<ID, Pipe<RoutableWorkItem<ID>, ID>>();
...

}

Finally, we need to change the Master implementation to start making use of the multiple
pipes and their routing IDs by adding a Router abstraction that is responsible for putting the
work on its dedicated pipe according to some predefined routing algorithm (more of which
we’ll see in the next section). In order to do that, we will have to slightly rewrite the schedule()
methods to hand the work to a Router and not put it directly into the queue. This would mean
changing the WorkManager from this

public class SimpleWorkManager implements WorkManager {
...
public WorkItem schedule(Work work WorkListener listener) {

WorkItem workItem = new DefaultWorkItem(work, listener);
m_queue.put(workItem);
return workItem;

}
...

}

to this

public class StaticWorkManager<ID> implements WorkManager {

private final Router<ID> m_router;
...

public WorkItem schedule(final Work work, final WorkListener listener) {
return m_router.route(work, listener);

}
...

}

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA 265

�Note�� The reason for naming the class StaticWorkManager is that this implementation reflects a static
configuration with all the routing ids predefined and passed into the WorkManager at startup. This limitation
is removed in the next refactoring session, in which we introduce a DynamicWorkManager that can handle
workers joining and leaving the cluster on the fly.

While we are refactoring the WorkManager, we can take the time to get rid of the busy wait
in our waitForAll() and waitForAny() methods (which we implemented in the previous sec-
tion). Their functionality is implemented in terms of a new utility method also called
waitForAny() (which is useful enough to actually expose in our public API even though it is
not part of the CommonJ specification). You’ll see the refactored original waitForAny()
method at the end of the section.

This method waits until at least one WorkItem has been completed and returns only that
WorkItem. Instead of relying on a busy wait, we use wait() and notify(). As you can see in the
next code snippet, if we have a completed WorkItem in our set all completed work items would
just return, but if the set is empty and the timeout is set to INDEFINITE, we will invoke wait()
on the set, which will block until someone else calls notify() on the set (see the line in bold
close to the end in the next code listing).

To get this method to work, we need to make sure that each time a WorkItem is added to
the set with all the completed WorkItem objects, we call the notify method, which will then
notify the thread blocked at the wait() in the waitForAny() method.

Using this utility method, refactoring the waitForAll() and waitForAny() becomes close
to trivial. Here is the full source listing of the StaticWorkManager class:

/**
* A routing aware WorkerManager that uses an implementation of the Router
* interface to do the route work to different work queues.
*/
public class StaticWorkManager<ID> implements WorkManager {

private final Router<ID> m_router;

private final Set<RoutableWorkItem<ID>> m_completedWork;

private int m_nrOfScheduledWork = 0;

public StaticWorkManager(Router<ID> router) {
m_router = router;
m_completedWork = router.getAllCompletedWork();

}

public WorkItem schedule(final Work work, final WorkListener listener) {
System.out.println("scheduled work #: " + m_nrOfScheduledWork++);
return m_router.route(work, listener);

}

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA266

public Set<RoutableWorkItem<ID>> getCompletedWork() {
return m_completedWork;

}

public WorkItem schedule(final Work work) {
return schedule(work, null);

}

public boolean waitForAll(Collection workItems, long timeout)
throws InterruptedException {

final int nrOfPendingWorkItems = workItems.size();
int nrOfCompletedWorkItems = 0;
while (true) {
WorkItem workItem = waitForAny(timeout);
if (workItem == null) {
return false;

}
nrOfCompletedWorkItems++;
if (nrOfPendingWorkItems == nrOfCompletedWorkItems) {
break;

}
}
return true;

}

public Collection waitForAny(final Collection workItems, final long timeout)
throws InterruptedException {

final Collection<WorkItem> completedWorkItems = new ArrayList<WorkItem>();

WorkItem workItem = waitForAny(timeout);
if (workItem == null) {
return Collections.EMPTY_LIST;

}
completedWorkItems.add(workItem);
return completedWorkItems;

}

public WorkItem waitForAny(long timeout) throws InterruptedException {
synchronized (m_completedWork) {
while (true) {
for (WorkItem workItem : m_completedWork) {

if (workItem.getStatus() == WorkEvent.WORK_COMPLETED ||
workItem.getStatus() == WorkEvent.WORK_REJECTED) {

m_completedWork.remove(workItem);
return workItem;

}
}

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA 267

if (timeout == IMMEDIATE) {
return null;

}
if (timeout == INDEFINITE) {

int size = m_completedWork.size();
while (m_completedWork.size() == size) {
try {
m_completedWork.wait();

} catch (InterruptedException ie) {
ie.printStackTrace();
Thread.currentThread().interrupt();
throw ie;

}
}

}
}

}
}

}

Routing Strategies
By splitting up the single work queue into multiple pipes, each with a unique routing ID, we
are allowing for the possibility of providing different, pluggable routing schemes that can be
customized to address specific use cases.

In the previous section, we introduced a new abstraction called Router. Here is the inter-
face that we will use for it:

import commonj.work.Work;
import commonj.work.WorkItem;
import commonj.work.WorkListener;

public interface Router<ID> {
RoutableWorkItem<ID> route(Work work);
RoutableWorkItem<ID> route(Work work, WorkListener listener);
RoutableWorkItem<ID> route(RoutableWorkItem<ID> WorkItem);

}

This interface can be used to implement various data partitioning and load-balancing
algorithms, such as these:

• Round-robin balancing: The gg Router loops through all queues one by one. This is proba-
bly the least useful strategy; it’s only useful if the work items have no state to share
(i.e., they are embarrassingly parallel).

• Workload-sensitive balancing: Thegg Router looks at queue depth and always sends the
next pending work item to the shortest queue.

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA268

• Data affinity: Using sticky routing, meaning that the Router sends all pending work of a
specific type to a specific queue, is useful for different data partitioning strategies, and
is use case specific.

• Roll your own: To maximize locality of reference for your use-case-specific require-
ments, you can create your own balancing solution.

Here is an example of the load-balancing router implementation that takes an array of the
routing IDs that are registered and always sends the next pending work to the shortest queue:

public class LoadBalancingRouter<ID> implements Router<ID> {

private final PipeManager<ID> m_pipeManager;
private final RoutableWorkItem.Factory<ID> m_workItemFactory =

new RoutableWorkItem.Factory<ID>();

public LoadBalancingRouter(PipeManager<ID> pipeManager, ID[] routingIDs) {
m_pipeManager = pipeManager;

// create all queues upfront
for (int i = 0; i < routingIDs.length; i++) {
m_pipeManager.getOrCreatePipeFor(routingIDs[i]);

}
}

public RoutableWorkItem<ID> route(Work work) {
return route(work, null);

}

public RoutableWorkItem<ID> route(final Work work, final WorkListener listener) {
LoadBalancingRouter.PipeInfo<ID> shortestPipeInfo = getShortestPipe();
RoutableWorkItem<ID> workItem = m_workItemFactory.create(

work, listener, shortestPipeInfo.routingID);
return scheduleWorkItem(shortestPipeInfo, workItem);

}

public RoutableWorkItem<ID> route(final RoutableWorkItem<ID> workItem) {
LoadBalancingRouter.PipeInfo<ID> shortestPipeInfo = getShortestPipe();
synchronized (workItem) {
workItem.setRoutingID(shortestPipeInfo.routingID);

}
return scheduleWorkItem(shortestPipeInfo, workItem);

}

private RoutableWorkItem<ID> scheduleWorkItem(
LoadBalancingRouter.PipeInfo<ID> shortestQueue,
RoutableWorkItem<ID> workItem) {

try {
shortestQueue.pipe.getPendingWorkQueue().put(workItem);

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA 269

} catch (InterruptedException e) {
workItem.setStatus(WorkEvent.WORK_REJECTED, new WorkException(e));
Thread.currentThread().interrupt();

}
return workItem;

}

private LoadBalancingRouter.PipeInfo<ID> getShortestPipe() {
... // return the shortest pipe by looking at the number of items in each pipe's

//pending queue
}

private static class PipeInfo<ID> {
public ID routingID;
public Pipe<RoutableWorkItem<ID>, ID> pipe;
public int queueLength = Integer.MAX_VALUE;

}
}

Dealing with Work Failure and Recovery
You might remember that we briefly mentioned that the CommonJ Work Manager specifica-
tion provides APIs for event-based failure reporting and tracking of work status. Each Work
instance is wrapped in a WorkItem instance, which contains status information about the
work. It also gives us the possibility of defining an optional WorkListener, through which we
can get callback events whenever the status of the work has been changed.

Let’s recap what the WorkListener interface looks like (in case you have forgotten it):

public interface WorkListener {
void workAccepted(WorkEvent we);
void workRejected(WorkEvent we);
void workStarted(WorkEvent we);
void workCompleted(WorkEvent we);

}

As you can see, we can implement callback methods that subscribe to events triggered by
work being accepted, rejected, started, and completed. In this particular case, we are mainly
interested in doing something when receiving the rejected event. To do so, we need to create
an implementation of the WorkListener interface and add some code in the workRejected()
method:

import commonj.work.Work;
import commonj.work.WorkEvent;
import commonj.work.WorkItem;
import commonj.work.WorkListener;

public class RetryingWorkListener implements WorkListener {

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA270

public void workRejected(WorkEvent we) {
Exception cause = we.getException();
WorkItem wi = we.getWorkItem();
Work work = wi.getResult(); // the rejected work

... // reroute the work onto pipe with id X
}

public void workAccepted(WorkEvent event) {}
public void workCompleted(WorkEvent event) {}
public void workStarted(WorkEvent event) {}

}

Through the event passed to us in the callback method, we have access to the exception
holding the cause of the failure and the work that was rejected. With this information, we can
act accordingly, perhaps trying again (e.g., schedule the work on the same pipe), rerouting the
work to another pipe, or if we can’t recover, simply logging the error.

Refactoring the Worker
In the previous sections, we introduced the concept of a routing ID, which maps to a specific
queue. Normally, we want each Worker to get its own queue to minimize contention and maxi-
mize data locality. In other words, we don’t want the master or any other workers touching
queues or pipes they do not need to access, as touching objects causes them to implicitly fault
in to the heap. We can simply assign each worker an ID and use the worker’s ID as the routing
ID. To do so, we need to refactor our Worker a little bit to be able to define a routing ID and
retrieve the work queue (called Pipe in our latest implementation). Let’s do that now.

First, we add some member variables representing a pipe, pipe manager, and the routing ID:

protected Pipe<RoutableWorkItem<ID>, ID> m_pipe;
protected PipeManager<ID> m_pipeManager;
protected ID m_routingID;

Next, we refactor the constructor to be able to take a pipe manager and a routing ID as
parameters, initialize them, and—most importantly—retrieve the pipe for the specific routing
ID that is given:

public StaticWorker(PipeManager<ID> pipeManager, ID routingID) {
m_routingID = routingID;
m_pipe = pipeManager.getOrCreatePipeFor(m_routingID);
m_pipeManager = pipeManager;
System.out.println("Starting worker with routing ID: " + routingID);

}

We also need to change the run() method a little bit to have work with the queues for
pending and completed work (wrapped up by the WorkerTask class, whose job is to put the
completed WorkItem onto the queue with completed work and manage its status):

public void run() throws WorkException {
while (m_isRunning) {

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA 271

final RoutableWorkItem<ID> workItem;
try {
workItem = m_pipe.getPendingWorkQueue().take();

} catch (InterruptedException e) {
Thread.currentThread().interrupt();
throw new WorkException(e);

}
if (workItem != null) {
m_threadPool.execute(new WorkerTask<RoutableWorkItem<ID>>(
workItem, m_pipe.getCompletedWorkQueue()));

}
}

}

Finally, we need to add a statement to remove the pipe that the worker has used when it
shuts down (this is not the best solution and will be addressed properly in the next refactoring
session using Terracotta cluster events):

public void stop() {
m_isRunning = false;
m_threadPool.shutdown();
m_pipeManager.removePipeFor(m_routingID);

}

Update the Terracotta Configuration
You might remember that, to make the first naïve implementation scalable, we had to change
the SimpleQueue class with its single LinkedBlockingQueue to a PipeManager class with a
java.util.concurrent.ConcurrentHashMap with multiple queues. When we did that, we
changed both the name of the field holding our shared queue(s) and the name of the enclos-
ing class. This is something that needs to be reflected in the Terracotta configuration file:

<roots>
<root>
<field-name>

org.terracotta.book.masterworker.pipe.PipeManager.m_pipes
</field-name>

</root>
</roots>

Using the Master/Worker System
Let’s define a completely useless work class that simply prints out a counter that counts the
number of executed work instances:

public class MyWork implements Work {
private int m_i = 0;

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA272

public MyWork(int i) {
m_i = i;

}

public void run() {
System.out.println("work nr: " + m_i);

}

public boolean isDaemon() {
return false;

}

public void release() {}
}

Next, let’s take a look the worker. They both need to get a hold of the same PipeManager’s
factory; passing that factory to the master and worker using dependency injection (DI) might
be more elegant, but for simplicity, we simply define it as a public final constant in the Master:

PipeManager<String> pipeManager = new PipeManager<String>(Master.PIPE_FACTORY);
Worker worker = new StaticWorker(pipeManager);
worker.run();

Finally, let’s create a Master that creates the WorkManager, its Router, and an instance of
PipeFactory. The master then schedules 100 instances of MyWork to be executed and waits until
all of them have been completed:

Factory<RoutableWorkItem<String>, String> PIPE_FACTORY =
new DefaultPipe.Factory<RoutableWorkItem<String>, String>(

new BlockingQueueBasedQueue.Factory<RoutableWorkItem<String>>(1000));

PipeManager<String> pipeManager = new PipeManager<String>(PIPE_FACTORY);

// predefine the routing ids (e.g. pipes) to be used
String[] routingIDs = new String[] {…};

Router<String> m_router = new LoadBalancingRouter<String>(pipeManager, routingIDs);

WorkManager workManager = new StaticWorkManager(router);

List<WorkItem> workList = new ArrayList<WorkItem>();
for (int i = 0; i < 100; i++) {
workList.add(workManager.schedule(new MyWork(i)));

}

try {
workManager.waitForAll(workList, Long.MAX_VALUE);

} catch (Exception e) {

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA 273

// handle the exception
}

pipeManager.shutdown();
System.out.println("All work completed successfully");

Running the Master/Worker System
Now, let’s run it. But before we spawn the master and the workers, we must first start the
Terracotta server. Invoke the start-tc-server script in the bin directory in the Terracotta
distribution.

When you have done that, you can start up the master and the workers (in any order you
like). Since this implementation is static in terms of routing IDs, we have to feed the master
all the routing IDs that will be used by the workers and start up each worker with its unique
routing ID.

Refactoring Work Batching, Worker Failover, and
Dynamic Worker Management
In the previous refactoring section, we tried to minimize the contention on the work queue
by adding concepts, such as a pipe with incoming and outgoing queues, routing IDs for each
worker to subscribe, and some helper classes to help us manage routing and pipes. However,
the current implementation still has some problems.

First, the communication between the masters and the workers is too chatty: every pend-
ing work item or completed work item is immediately put on the corresponding queue. Since
each put (or get) on the queue has to be locked, it can easily lead to high lock contention.

Second, the current worker management implementation is too static. All routing IDs
have to be known in advance, and new workers are not allowed to join the cluster after the
computation has begun. But perhaps most importantly, we do not have a failover mechanism
for workers. This means that if a worker crashes, we have no way of detecting it and rerouting
all the pending work that the worker has in its queue. This shortcoming can be worked around
by, for example, letting two workers subscribe to each pipe in order to get failover behavior,
but this is far from an ultimate solution.

In this section, we will address both of these issues. The first one will be addressed by
using the oldest trick in the book, batching, while the solution for the other one is based on
Terracotta cluster events.

Work Batching
Earlier in this chapter, we discussed two of the most important things to think about when
you are developing with Terracotta: locality of reference and lock contention. Minimizing lock
contention means trying to minimize the wait time for the different threads to further utilize
the CPU (i.e., improving the throughput). However, another thing closely tied to lock con-
tention is worth considering—the granularity of locking. In multithreaded programming,
making the lock granularity (i.e., the scope of the critical section) as small as possible is gener-
ally best. But it is important to understand is that this is not always true with Terracotta. As we

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA274

discussed in the first chapters, Terracotta treats critical sections of code (i.e., synchronized
blocks and methods) as a single transaction and collects all changes made within this transac-
tion into one atomic change set that is flushed to the server when the transaction commits
(which happens just before the lock is released).

If you stop and think about this for a moment, collecting all the changes is fairly cheap,
while flushing them to the server, which requires sending data over the network, is relatively
expensive. Implicit network chatter underneath fine-grained locking means that aiming for
the most fine-grained locking you can get is not always best. The optimal lock granularity is
typically use case specific, but in some cases, you’ll see improved throughput by using coarse-
grained locks.

Making the locking (and thus the transactions) more coarse-grained in
master/worker–based use cases can sometimes improve throughput immensely. The good
news is that, in the master/worker container, the problem can be solved in a generic fashion
using batching. The actual implementation is out of the scope of this book (see the accompa-
nying code for details) but can be solved fairly straightforwardly. Instead of adding each
WorkItem to its specific Pipe’s pending work queue immediately after it has been created, col-
lect them in a work set, and define a batching threshold; whenever the threshold is reached,
put all the work items in the queue in one single Terracotta transaction. The workers can use
the same strategy when adding completed work items to the work queue of completed work
items.

Dynamic Worker Management
The master/worker container we have implemented so far has a rather static configuration.
It requires knowledge about all pipes that will ever be needed and used for work scheduling,
since their routing ids have to be fed to the master at startup time. This setup naturally poses
very limiting and sometimes unacceptable constraints in the management and operation of
the master/worker cluster, especially in regard to worker failure and failover, which is some-
thing we will discuss in the next section.

Terracotta provides a high-level event subscription system where nodes can subscribe to
events triggered by other nodes as they either leave or join the cluster. These events are regular
JMX events and can therefore be consumed and used by any JMX-compliant library or tool. In
order to make things simpler for the developer, Terracotta has provided a utility library that
makes it very easy and straightforward to start making use of these events. The library is called
jmx-util and is replicated in the SVN repository for this chapter for simplicity. A walkthrough
of this library is out of scope for this chapter (see Chapter 4 for more information), but we will
show you how to make use of the library to simply and efficiently implement dynamic worker
management and worker failover. We will now refactor the code from previous sessions to
make use of Terracotta cluster events to enable transparent worker management, meaning
being able to add and remove workers on the fly.

The first thing we need to do is to let our master (now renamed org.terracotta.book.
masterworker.dynamic.DynamicWorkManager) implement the org.terracotta.util.jmx.
ClusterEvents.Listener interface. This interface has a set of callback methods that we can
use to bind application logic to certain node life cycle events. Let’s take a look at this interface.

public static interface Listener {
public void thisNodeId(Object nodeId);
public void initialClusterMembers(Object[] nodeId);

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA 275

public void nodeConnected(Object nodeId);
public void nodeDisconnected(Object nodeId);
public void thisNodeConnected(Object nodeId);
public void thisNodeDisconnected(Object nodeId);

}

First, we add a node ID to the DynamicWorkManager and a callback registering the
DynamicWorkManager in the Terracotta cluster events subsystem.

private Object m_nodeId;

public DynamicWorkManager(final Router<String> router) {
m_router = router;
m_completedWork = router.getAllCompletedWork();
ClusterEvents.registerListener(this);

}

Then, we can start implementing the Listener interface. We start with the
thisNodeId(Object nodeId) method; this method, is called by Terracotta when the node is
joining the cluster and is passing in the node ID for the specific node (in this case the
DynamicWorkManager).

Next, we add the nodeConnected(Object nodeId) and nodeDisconnected(Object nodeId)
methods. Here, this example starts getting interesting. These two methods are callbacks from
Terracotta, signaling that another node (e.g., Worker) has joined or left the cluster. This means
that we can use these callbacks to register and unregister the Worker from the Router.

Let’s take a look at the code for these three callback methods:

public synchronized void thisNodeId(final Object nodeId) {
System.out.println("work manager node id: " + nodeId);
m_nodeId = nodeId;
notify();

}

public void nodeConnected(Object nodeId) {
if (isMasterNode(nodeId)) {
return; // this is the master node

}
System.out.println("registering worker node with ID: " + nodeId);
m_router.register(nodeId.toString());

}
private boolean isMasterNode(Object nodeId) {
return nodeId.equals((String)m_nodeId);

}

public void nodeDisconnected(Object nodeId) {
System.out.println("unregistering worker node with ID: " + nodeId);
m_router.unregister(nodeId.toString());

}

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA276

// these two callbacks are not needed
public void thisNodeConnected(Object arg0) { }
public void thisNodeDisconnected(Object arg0) { }

Finally, we need to implement the initialClusterMembers(Object[] nodeIds) method.
This method is passed the IDs for all the nodes that are currently connected to the cluster.
It is always called by Terracotta on start-up and gives us a way to register all the workers that
might have joined the cluster before the master (DynamicWorkManager):

public void initialClusterMembers(Object[] nodeIds) {
// first time around for work manager - clean up potential previous state
m_router.reset();

for (Object nodeId : nodeIds) {
if (isMasterNode(nodeId)) {
return; // this is the master node – do nothing

}
System.out.println("registering worker node with ID: " + nodeId);
m_router.register(nodeId.toString()); // register worker

}
}

The only part of this code that might not be self-explanatory is the first statement, in
which we reset the state for the Router. This is necessary once at master start-up in case the
master crashes while pending or completed but uncollected work may still be in the pipes.
On recovery, resetting the system and clearing all the pipes before continuing is important.
The framework would otherwise drop work on the floor, so to speak.

This takes care of the master, but we also need to make the worker aware of cluster events.
Now, we create a new worker called DynamicWorker that is implementing the org.terracotta.
util.jmx.ClusterEvents.Listener interface. Like we did for the DynamicWorkManager class, we
first need to add a field holding the node ID as well as a callback to register itself in the Terracotta
cluster events subsystem. But we only need to implement a single callback method from the
ClusterEvents.Listener interface: thisNodeId(Object nodeId). This method creates a Pipe for
the specific node and its nodeId (the rest of the methods can have no-op implementations).
As you might recall, this method is called when the node (in this case the worker) joins the
Terracotta cluster and therefore provides a natural place to put initialization code like this.

public synchronized void thisNodeId(final Object nodeId) {
System.out.println("worker node id: " + nodeId);
m_routingID = nodeId.toString();
m_pipe = m_pipeManager.getOrCreatePipeFor(m_routingID);
notifyAll(); // worker is registered - notify the worker

}

But before we can call it a day, we will have to take care of a couple of other things. For
example, we need to modify the different routers slightly in order to take the new dynamicity
into account. Now, the worker registration is initiated when the worker is started up but
executed asynchronously using Terracotta cluster events. This means that we now need to use
wait()/notify() to block the usage of the Router until the worker has been fully initialized.

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA 277

Here is the new DynamicWorker implementation:

package org.terracotta.book.masterworker.dynamic;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

import org.terracotta.util.jmx.ClusterEvents;
import org.terracotta.book.masterworker.pipe.Pipe;
import org.terracotta.book.masterworker.pipe.PipeManager;
import org.terracotta.book.masterworker.routing.RoutableWorkItem;
import org.terracotta.book.masterworker.worker.Worker;
import org.terracotta.book.masterworker.worker.WorkerTask;

import commonj.work.WorkException;

/**
* Worker that is aware of routing. Each instance of the
* RoutingAwareWorker class gets a routing ID from the Terracotta server and
* gets a unique work queue mapped to this routing ID.
*/
public class DynamicWorker implements Worker, ClusterEvents.Listener {

private Pipe<RoutableWorkItem<String>, String> m_pipe;
private final ExecutorService m_threadPool = Executors.newCachedThreadPool();
private PipeManager<String> m_pipeManager;
private volatile boolean m_isRunning = true;
private String m_routingID;

public static final int WORKER_TIMEOUT_IN_SECONDS = 60;

public DynamicWorker(final PipeManager<String> pipeManager) {
m_pipeManager = pipeManager;
ClusterEvents.registerListener(this);

}

public void start() throws WorkException {
while (m_isRunning) {
waitForRegistration();
RoutableWorkItem<String> workItem;
try {
workItem = m_pipe.getPendingWorkQueue().take();

} catch (InterruptedException e) {
Thread.currentThread().interrupt();
throw new WorkException(e);

}

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA278

if (workItem != null) {
m_threadPool.execute(

new WorkerTask<RoutableWorkItem<String>>(
workItem, m_pipe.getCompletedWorkQueue()));

}
}

}

public void stop() {
m_isRunning = false;
m_threadPool.shutdown();
m_pipeManager.removePipeFor(m_routingID);

}

public synchronized void thisNodeId(final Object nodeId) {
System.out.println("worker node id: " + nodeId);
m_routingID = (String) nodeId;
m_pipe = m_pipeManager.getOrCreatePipeFor(m_routingID);
notifyAll(); // worker is registered - notify the worker

}

private synchronized void waitForRegistration() {
try {
while (m_pipe == null) {
System.out.println("waiting for registration");
wait();

}
} catch (InterruptedException e) {
Thread.currentThread().interrupt();

}
}

public void initialClusterMembers(Object[] arg0) {}
public void nodeConnected(Object arg0) {}
public void nodeDisconnected(Object arg0) {}
public void thisNodeConnected(Object arg0) {}
public void thisNodeDisconnected(Object arg0) {}

}

Worker Failover
In a world clustered without Terracotta where you would use sockets or JMS to send messages
among cluster nodes, you will find that detecting death of workers is quite difficult. With
Terracotta, however, cluster membership events are all we need. The networking library in-
side Terracotta sends periodic heartbeat messages to and from JVMs in the grid. There are
several timeouts that can be set at a networking level to detect deadlocked, hung, or otherwise

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA 279

crashed workers (and masters). The only case you should address in code, then, is long-
running work for which the JVM and the node and network remain healthy yet the work still
takes too long to complete. If you want to eject a worker and send its work to another node,
simply augment the master/worker framework using JDK 1.5 util.concurrent locking and
wait()/notify() API options that include a timeout. Terracotta will honor those timeouts on
attempts to wait for or lock objects (using wait()or synchronized().

In all of the strategies, we need to take proper action when worker failure has been
detected. In the context of master/worker, among other things, this need means we must
reroute all pending, uncompleted work to another pipe to be consumed by its specific worker.
Using cluster membership events is by far the simplest, most straightforward, and most stable
way of integrating our code for handling failures.

What we have to do is to add a bit of logic to the nodeDisconnected(Object nodeId)
method from the previous section. As you know, this method will be invoked whenever a node
leaves the cluster, either unexpectedly due to a failure or by a clean shutdown.

So what kind of failover logic do we need to write? Well, if we base the implementation on
the event notifications that we implemented previously for the dynamic worker management,
the logic turns out to be quite simple. Since we are getting a callback event each time a Worker
disconnects, we will know exactly when a Worker has died and can take proper action to
failover all pending work to some other Worker.

If we map these ideas to code then we end up with a nodeDisconnected(Object nodeId)
method looking like this:

public void nodeDisconnected(Object nodeId) {
System.out.println("unregistering worker node with ID: " + nodeId);

Pipe<RoutableWorkItem<String>, String> pipe =
m_router.getPipeFor(nodeId.toString());

// add all completed items to the completed work set
Queue<RoutableWorkItem<String>> compWorkQueue = pipe.getCompletedWorkQueue();

for (Iterator<RoutableWorkItem<String>> it = compWorkQueue.iterator();
it.hasNext();) {

m_completedWork.add(it.next());
}

// copy all pending work (needed since we will have to remove the pipe
// before the rerouting)
List<RoutableWorkItem<String>> pending =

new ArrayList<RoutableWorkItem<String>>();

Queue<RoutableWorkItem<String>> pendWorkQueue = pipe.getPendingWorkQueue();

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA280

for (Iterator<RoutableWorkItem<String>> it = pendWorkQueue.iterator();
it.hasNext();) {

pending.add(it.next());
}

// unregister the worker which also clears and removes the pipe
// remove pipe for disconnected worker before fail-over
m_router.unregister(nodeId.toString());

// reroute the pending work
for (RoutableWorkItem<String> workItem : pending) {

m_router.route(workItem);
}

}

How to Use and Run the Fault-Tolerant Master/Worker System
There is very little difference in how we run this master/worker container and the one from
the previous section. The only difference is that we have renamed some classes and do not
need to pass in an array with all the routing IDs to the master, since that is taken care of by
the Terracotta cluster events. In the next section, we will show you how you can use this
implementation to build a real-world application.

Building a Distributed Web Spider
In the previous section, we discussed how we can implement a framework based on Terra-
cotta, the Master/Worker pattern, and the CommonJ Work Manager specification, which is
suitable for managing very large workloads in a scalable and efficient manner. What we didn’t
cover in much detail is how to use our framework (and similar techniques) to solve real-world
problems. Therefore, we will now show you how you can make use of Terracotta and our mas-
ter/worker container by implementing distributed Web search (á la Google). We will do that
by developing a distributed web spider that can crawl the Internet and index the pages it finds
using the Lucene search framework. Here is the basic algorithm defining the workflow:

1. Fetch the page from a starting URL.

2. Parse the page, and collect all outgoing URLs.

3. Index the page.

4. For each outgoing URL, go to step 1.

This is a classic recursive algorithm working on a tree structure. No work task shares state
with any other task, which means that they are all embarrassingly parallel (i.e., the data is by
nature perfectly partitioned). This algorithm is very well suited for a divide-and-conquer

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA 281

strategy such as the Master/Worker pattern. The three main artifacts that we have to
implement are:

• SpiderMaster: Implements the core algorithm and manages the WorkManager

• SpiderWork: Implements the page parsing, indexing, and link aggregation

• Worker: Spawns the threads that are doing the actual computation (We’ll reuse the one
from the previous section.)

Let’s start with the SpiderWork class. It has four variables: the URL for the page to fetch
and parse, the maximum depth that the spider should crawl, a flag that decides if the spider
should follow external links outside its initial domain, and finally a list with all the outgoing
links (represented as a list of PageLink instances, which simply wraps the current depth in the
search tree and the URL). Here’s the class:

package org.terracotta.book.masterworker.spider;

import java.io.IOException;
import java.net.URL;
import java.util.ArrayList;
import java.util.List;

import commonj.work.Work;

import au.id.jericho.lib.html.Source;
import au.id.jericho.lib.html.StartTag;

/**
* The implementation of the work to do on each worker node.
* <p>
* Each <code>SpiderPageWork</code> processes an input page and returns a list
* of {@link PageLink} objects that contain the depth of the page (relative to
* the visited graph, i.e. one more than the current page) and a url, one
* <code>PageLink</code> per page reference.
*/
public class SpiderWork implements Work {

private final String m_url;
private final int m_depth;
private final boolean m_followExternalLinks;
private final List<PageLink> m_links = new ArrayList<PageLink>();

public SpiderWork(String url, int depth, boolean followExternalLinks) {
m_url = url;
m_depth = depth;
m_followExternalLinks = followExternalLinks;

}

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA282

public List<PageLink> getLinks() {
return m_links;

}

public void run() {
try {
URL resource = new URL(m_url);
Source source = retrievePage(resource);

List<StartTag> tags = source.findAllStartTags();
System.out.println(m_url + " has " + tags.size() + " tags to process.");

for (StartTag tag : tags) {
if (tag.getName().equals("a")) {

addLink(m_links, resource, tag.getAttributeValue("href"));
continue;

}
if (tag.getName().equals("frame")) {

addLink(m_links, resource, tag.getAttributeValue("src"));
continue;

}
}

} catch (IOException e) {
throw new PageNotFoundException(

"Skipping page; couldn't parse URL: " + m_url);
}
System.out.println("Returning " + m_links.size() + " links.");

}

private static Source retrievePage(URL resource) throws IOException {
Source source = null; // cache.getPage(resource.toString());
if (source != null) {
System.out.println("Processing " + resource);

} else {
System.out.println("Retrieving " + resource);
// get the url into the parse structure
source = new Source(resource);
source.fullSequentialParse();

source = SpiderMaster.cachePage(resource.toString(), source);
}
return source;

}

private synchronized void addLink(
List<PageLink> links, URL url, String relativeLink) {

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA 283

// don't follow anchor links
if (relativeLink == null ||

relativeLink.length() == 0 ||
relativeLink.contains("#")) {

return;
}
// relative links will not have a ':' in them, otherwise, they are external
if (relativeLink.indexOf(":") < 0) {
try {
relativeLink = new URL(url, relativeLink).toString();

} catch (Exception e) {
// one url failure should not stop the parsing process
e.printStackTrace();
return;

}
} else {
// leave if we don't support external links
if (!m_followExternalLinks) {
return;

}
}
links.add(new PageLink(m_depth + 1, relativeLink));

}
…

}

The retrievePage() method is not really interesting for our current discussion; in our
implementation, we are using a third-party JAR (au.id.jericho.lib.html) to grab a page, and
its implementation is, however simple, out of scope for the current discussion. More interest-
ing is the addLink() method which parses HTML tags, looks for <a> and <frame> tags to extract
their outgoing URLs (found in the href and src attributes), and for each one of these, it filters
out all local anchor links before it creates a PageLink for the URL at the current search depth.

The second thing that we need to implement is the SpiderMaster class, which is responsi-
ble for creating a PipeFactory, PipeManager, Router, WorkManager, and WorkListener and
holding a cache of the URLs to all the pages that have been visited. The arguments needed to
initialize the master are a starting URL, maximum search depth, and a flag deciding if we
should follow outgoing links (links that are external and leads outside our initial domain).
Here’s the SpiderMaster class:

package org.terracotta.book.masterworker.spider;

import java.util.Collection;
import java.util.HashSet;
import java.util.List;
import java.util.Set;

import org.terracotta.book.masterworker.pipe.DefaultPipe;
import org.terracotta.book.masterworker.pipe.PipeManager;
import org.terracotta.book.masterworker.pipe.DefaultPipe.Factory;

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA284

import org.terracotta.book.masterworker.queue.BlockingQueueBasedQueue;
import org.terracotta.book.masterworker.routing.RoutableWorkItem;
import org.terracotta.book.masterworker.routing.Router;
import org.terracotta.book.masterworker.statik.LoadBalancingRouter;
import org.terracotta.book.masterworker.statik.SingleQueueRouter;
import org.terracotta.book.masterworker.statik.StaticWorkManager;

import au.id.jericho.lib.html.Source;

import commonj.work.Work;
import commonj.work.WorkEvent;
import commonj.work.WorkException;
import commonj.work.WorkItem;
import commonj.work.WorkListener;
import commonj.work.WorkManager;

public class SpiderMaster implements Runnable {

public final static int QUEUE_SIZE = 100;
public final static int BATCH_SIZE = 100;

// public static so I can reuse the same factory in the RetryWorkListener
public static final Factory<RoutableWorkItem<String>, String> PIPE_FACTORY =

new DefaultPipe.Factory<RoutableWorkItem<String>, String>(
new BlockingQueueBasedQueue.Factory<RoutableWorkItem<String>>(QUEUE_SIZE));

private final static PageCache s_pageCache = new SimplePageCache();

// the work queue manager
private final PipeManager<String> m_pipeManager;

// the router
private final Router<String> m_router;

// the work manager
private final StaticWorkManager<String> m_workManager;

// the work listener
private final WorkListener m_workListener;

private final Set<String> m_visitedPages = new HashSet<String>();
private final String m_startURL;
private final int m_maxDepth;
private final boolean m_followExternalLinks;
private int m_nrOfCompletedWork = 0;

public SpiderMaster(String startURL,

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA 285

int maxDepth,
boolean followExternalLinks,
String[] routingIDs,
String routingIdForFailOverNode) {

m_startURL = startURL;
m_maxDepth = maxDepth;
m_followExternalLinks = followExternalLinks;

m_pipeManager = new PipeManager<String>(
PIPE_FACTORY, PipeManager.Initiator.MASTER);

m_router = new LoadBalancingRouter<String>(m_pipeManager, routingIDs);
m_workListener = RetryWorkListener(routingIdForFailOverNode);
m_workManager = new StaticWorkManager<String>(m_router);

}

public static Source cachePage(String link, Source page) {
return s_pageCache.setPage(link, page);

}

public void run() {
WorkItem firstWorkItem;
try {
// schedule first work
// IN: start URL
// OUT: first pending work item
firstWorkItem = scheduleWork(m_startURL);

} catch (WorkException e) {
System.err.println("WorkException: " + e.getMessage());
return;

}

// keep track of all pending work
final Set<WorkItem> pendingWork = new HashSet<WorkItem>();
pendingWork.add(firstWorkItem);

// loop while there still is pending work to wait for
while (!pendingWork.isEmpty()) {

// wait for any work that is completed
Collection completedWork;
try {
completedWork = m_workManager.waitForAny(

pendingWork, WorkManager.INDEFINITE);
} catch (InterruptedException e) {
throw new RuntimeException(e); // bail out

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA286

}

// loop over all completed work
for (Object o : completedWork) {
WorkItem workItem = (WorkItem) o;

// check work status (completed or rejected)
switch (workItem.getStatus()) {
case WorkEvent.WORK_COMPLETED:

List<PageLink> linksToProcess = null;
// if completed - grab the result
SpiderWork work = ((SpiderWork) workItem.getResult());

// grab the new links
linksToProcess = work.getLinks();
m_nrOfCompletedWork++;

// remove work from the pending list
pendingWork.remove(workItem);

// process all the new links
processLinks(linksToProcess, pendingWork);
break;

case WorkEvent.WORK_REJECTED:
// work rejected - just remove the work
pendingWork.remove(workItem);
break;

default:
// status is either WORK_ACCEPTED or WORK_STARTED - should never
// happen
throw new IllegalStateException(

"WorkItem is in unexpected state: " + workItem);
}

}
}
System.out.println("Completed successfully - processed " +

m_nrOfCompletedWork + " pages.");
}

private void processLinks(
List<PageLink> linksToProcess, Set<WorkItem> pendingWork) {
System.out.println("Processing " + linksToProcess.size() + " link results.");
for (PageLink link : linksToProcess) {

// loop over all new links

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA 287

if (followLink(link)) {
try {

// schedule work for each link that is found
WorkItem newWorkItem = scheduleWork(link.getUrl(), link.getDepth());

// add the new work item to pending work list
pendingWork.add(newWorkItem);

} catch (WorkException e) {
System.err.println("WorkException: " + e.getMessage());
continue;

}
}

}
}

private boolean followLink(PageLink link) {
if (m_visitedPages.contains(link.getUrl())) {
return false;

} else if (link.getDepth() >= m_maxDepth) {
return false;

} else if (link.getUrl().endsWith(".pdf") || link.getUrl().endsWith(".gz") ||
link.getUrl().endsWith(".tgz") || link.getUrl().endsWith(".zip") ||
link.getUrl().endsWith(".doc") || link.getUrl().endsWith(".ppt")) {

// don't follow binary content links
return false;

} else if (!link.getUrl().startsWith("http") &&
!link.getUrl().startsWith("file")) {

// we're only going to support http and file for now
return false;

} else {
return true;

}
}

private WorkItem scheduleWork(String url, int depth)
throws WorkException {
System.out.println("Submitting URL: " + url);
m_visitedPages.add(url);

// create new work for the link
Work work = new SpiderWork(url, depth, m_followExternalLinks);

// schedule the work in the work manager
return m_workManager.schedule(work, m_workListener);

}

private WorkItem scheduleWork(String url) throws WorkException {

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA288

return scheduleWork(url, 1);
}

}

The most interesting part of the master is the run() method, which implements the algo-
rithm that we recently discussed. For those who have forgotten it, here is a refresher.

1. Fetch the page from a starting URL.

2. Parse the page, and collect all outgoing URLs.

3. Index the page.

4. For each outgoing URL, go to step 1.

As you can see in our web crawler examples, in this recursive algorithm, which we imple-
ment as a regular loop, we start by trying to fetch the page for our initial URL by passing it into
the scheduleWork() method. In return, we get our first pending WorkItem, which serves as a
handle to the ongoing work. We keep track of this and all future WorkItem objects by adding
them to a Set of all pending work. Now that we have at least one WorkItem in our Set, we can
start a loop that will continuously iterate over all items in this Set (until the set is empty). The
first thing we do in this loop is to check if there are any completed WorkItem objects by con-
sulting the waitForAny() method in our WorkManager. This method will return a Collection
with least one completed WorkItem; we can iterate over the collection, check the status for
each completed WorkItem, and filter out all successfully completed ones. Filtering is necessary,
since the WorkItem can be “completed” due to failure and will then have its status flags set to
WORK_REJECTED instead of the successful WORK_COMPLETED. Now, we will pass each successfully
completed WorkItem into the processLinks() method, which will, for each of its outgoing links,
create a new SpiderWork object that it passes into the scheduleWork() method. This SpiderWork
item will give us a handle to a new pending WorkItem, and we can continue with another
round in the loop.

Finally, we have to implement two wrapper classes who can start up the master and the
worker, StartWorker and StartMaster:

public class StartMaster {
public static void main(String[] args) throws Exception {

... // parse command line options

new SpiderMaster(startURL, maxDepth, followExternalLinks).run();
}

}

public class StartWorker {
public static void main(String[] args) throws Exception {

PipeManager<String> pipeManager = new PipeManager<String>(
SpiderMaster.PIPE_FACTORY, PipeManager.Initiator.WORKER);

new DynamicWorker (pipeManager).run();
}

}

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA 289

That’s it. Now, let’s try to run it as a distributed spider that can scale out by distributing
out the page processing and data aggregation onto multiple nodes. We can reuse the
tc-config.xml from the previous sections, but we have to add a couple of include statements
to add a couple of include statements to tell Terracotta to include our spider classes for instru-
mentation as well as a third-party JAR (for Jericho) that we have used to parse the pages. When
we ran the spider, we also realized that we have to add the commonj.work.WorkException for
instrumentation to allow the spider’s state to be managed by Terracotta (in case of a Work fail-
ure); for example, its state can be sent over the wire, from the worker to the master.

<instrumented-classes>
<include>

<class-expression>
org.terracotta.book.masterworker..*

</class-expression
<honor-transient>true</honor-transient>

</include>
<include>

<class-expression>au.id.jericho..*</class-expression>
</include>
<include>

<class-expression>commonj.work.WorkException</class-expression>
</include>

</instrumented-classes>

When we run the master and the worker, we have to feed this XML configuration to
Terracotta with a call to dso-java. You would normally start up many workers and have
each one of them up and running for a long period of time serving multiple master initiated
sessions. For example purposes, here is how to start a single worker and a single master
instance:

dso-java -Dtc.config=tc-config.xml -cp ... \
org.terracotta.book.masterworker.spider.StartWorker

dso-java -Dtc.config=tc-config.xml -cp ... \
org.terracotta.book.masterworker.spider.StartMaster

When Not to Use the Master/Worker Pattern
In working with large-scale use cases in financial services and telecommunications industries,
we have developed best practices around where Terracotta is most effective and, additionally,
where the Terracotta Master/Worker approach should not be used. The two biggest cautions
for developers are around rogue clients and WAN load balancing. Because Terracotta is an
extension of your application memory, the Master/Worker pattern is focused on somewhat
uniform large grids of servers in reasonably close proximity to each other.

Rogue clients were first a demonstrable problem when a Terracotta developer built a
distributed cache where some nodes in the cluster were servers in a data center while others
were end users’ laptops. When the laptops were shut down for the day, the cluster would stop

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA290

running. We commonly refer to these laptops as rogue clients. A similar problem arises in slow
consumption off the queue. If some servers in your grid are eight core and have16 gigabytes of
RAM while others are two core and have 2 gigabytes of RAM, the two classes of machine will
work at different speeds. The slower consumer will throttle Terracotta’s entire grid to its speed
unless perfectly partitioned in its work.

The Master/Worker pattern seems like a perfect way to sandbox or otherwise fence off
these rogue clients and slow consumers, and it does work in many cases. But be cautioned
that as soon as rogue and slow consuming clients, acting as workers, begin to share data with
any node other than a master, these slower nodes will slow down their peers in the grid.

As for WAN, the Master/Worker pattern is simply insufficient. In fact, WAN-based replica-
tion should be done with messaging services. Interestingly, if you take the Master/Worker
pattern and customize it as we have shown, you can create what we call a “worker on the
edge.” Imagine building a cluster with POJO/Terracotta-based workers who communicate
using a linked blocking queue and simultaneously act as a bridge on the WAN. These bridge
workers would take messages off of the local grid and relay them to another grid across the
WAN. Thus the nomenclature: these special bridging-workers are on the edge of your local
datacenter’s grid.

Summary
In this chapter, you learned how to extend your skills from Chapters 5 through 10 to use
Terracotta for scaling out POJO-based applications and a host of popular frameworks. Now,
you should also be able to use Terracotta for multithreaded, multi-JVM, scaled out custom
processing.

Data grids and compute grids built on Terracotta are highly flexible, because every aspect
of the framework is open and in your control. You decide what the unit of work is. You decide
the batching levels. You decide on the routing capabilities, and you edit the interfaces as you
see fit.

You learned how to scale your grid using only one Terracotta server by simply tuning the
locality and granularity of your grid operations. While Terracotta requires more custom code
when used in grid use cases than when with other enterprise use cases, the resulting applica-
tions and frameworks remain flexible and easy to understand and maintain.

In Chapter 12, you will learn the one remaining technique you will need for tuning and
scaling applications: visualization techniques and tools are important to understanding what
a cluster is doing and why it is going fast or slow. Visualization is especially valuable for grids
where the application is never contained on any one node but is, in fact, a loosely coupled
grid of nodes working together as one big server. Visualization is the only way to understand
what a grid is doing. Let’s take a look at visualization and general tuning techniques now.

CHAPTER 11 � GRID COMPUTING USING TERRACOTTA 291

Visualizing Applications

Tuning applications that run in a cluster is hard. What makes tuning difficult is that the
application is a logical entity running across processes and machines, while the available tools
work almost exclusively at the process or machine level.

For example, you know from Chapter 5 that Terracotta helps distribute application cache
data. We also know an application that accesses the cache in a random way will not scale,
because the objects have to move around the cluster through the Terracotta server. But none
of the tools that exist for performance tuning (including CPU and memory monitoring tools,
JVM heap monitoring tools, and Java application profilers) would show that a distributed
cache is slow, because random JVMs in a cluster keep updating the cache contents in a man-
ner requiring notification to all other JVMs in the cluster.

This lack of tools for tuning and optimizing clustered applications led to the creation of
clusterwide visualization tools at Terracotta. The idea is to stack all the relevant metrics and
measurements a developer should be observing for every JVM in a single dashboard view
along with the activities of the Terracotta server. Through visualization, we can study an
application quite literally as it runs, without building custom tools to do so.

In this chapter, we will work with a derivative of the inventory application from Chapter 8.
This demonstration will be altered so that it can generate lots of changes to objects and so that
those changes can be either random or highly focused on specific objects. You will learn how
to use Terracotta’s tools to help visualize and point out what is causing slowness in various
scenarios. By the end of the chapter, you should be comfortable with the concept of cluster
visualization and, further, be able to apply the tools to solving real problems.

Observing an Application
In the practice of medicine, the concept underlying observing the electrical patterns transmit-
ted by the body is that doctors can attach to key points on the body and visualize key
information that helps determine what the heart and brain are doing. With applications, we
can do the same. Specifically, it is possible to connect to key data points in the application
stack and, by taking repeated measurements over time, learn what the application is doing.
Making this data-driven approach successful depends on providing a centralized view of all
this information as well as on showing the appropriate information.

The information that must be observed can be thought of as a stack of data streams. This
stack is depicted in Figure 12-1 and is composed of the operating system information at the
bottom to information about application objects at the top.

293

C H A P T E R 1 2

Figure 12-1. Measurement points for application tuning

In a cluster, one node could be slowing down the others. In that cluster, observing an
individual node will show us only that it is slow, and not why. Terracotta concluded that the
stack of information is less helpful when viewed on a JVM-by-JVM basis. The visualization tool
and administration console are designed to help us correlate performance across processes.
The visualization tool shows us all the JVMs in the cluster at once, allowing us to drill into any
metric across JVMs or any JVM across metrics as the need arises.

Visualization Tools and Architecture
Terracotta provides the tools and internal architecture for gathering and managing perform-
ance data emanating from application JVMs as well as from the Terracotta server. The system
is designed to gather the clusterwide data depicted in Figure 12-1 in a single database. This
strategy is useful when performance tuning applications before deploying into a production
environment. The system provides not just visualization tools but also tools for taking snap-
shots of the cluster’s performance for offline analysis of production performance issues.
Figure 12-2 depicts the architecture of the system.

CHAPTER 12 � VISUALIZ ING APPLICATIONS294

Figure 12-2. Terracotta cluster visualization database architecture

When using the system, you have the choice to view real-time data in the visualization
client or to ask the system to only gather data into the cluster database inside the Terracotta
server. In either mode, the system records all the data in its central database and can export
the records in a comma-delimited format for transfer to other developers or even to Terracotta
engineers during offline analysis.

The data that the Terracotta server gathers is also streamed via JMX to any tool of your
choice. Just as Terracotta’s server and visualization client can manage and display perform-
ance data, so too can your existing monitoring and management tools.

�Tip�� In fact, in order to gather statistics at the operating system level, Terracotta uses a plug-in from
Hyperic (http://www.hyperic.com/). Hyperic offers an excellent example of a monitoring framework
through which Terracotta can be managed.

Now that you understand the system architecture, let’s build an application that exhibits
performance problems and discover its problems together, using the visualization tools in the kit.

The Sample Inventory Application
The application we will use to learn about visualization is included in the Terracotta kit. The
inventory application is located in the following directory on Unix:

$TC_HOME/samples/pojo/inventory

CHAPTER 12 � VISUALIZ ING APPLICATIONS 295

or this one on Windows

<drive>:\$TC_HOME\samples\pojo\inventory

The application was initially designed to illustrate anemic domain modeling in a clus-
tered environment. Anemic domain models are those where the tools and frameworks restrict
freedom of expression of the Java language. The restriction usually is embedded in the mar-
shalling of POJOs to and from clustering, messaging, or database infrastructure. Terracotta
users do not suffer the pitfalls of anemic domain modeling, because the service is transparent.

The inventory application illustrates freedom in modeling by representing the data inside
a store in a manner that is well suited to supporting two different use cases. The first use of the
inventory application’s data is in selling products to consumers. An inventory system must
track the quantity on hand for every item the store sells. The second usage of the data is in
merchandizing products that are related in one way or another. The domain model is cap-
tured in Figure 12-3.

Figure 12-3. Inventory application schema

The domain model enables the application to efficiently update items by ID, named Stock
Keeping Unit (SKU) numbers in retail terminology. When the retailer buys more basketballs,
for example, the warehouse must receive the goods against the SKU. In this domain model,
the warehouse worker needs to enter the SKU of the basketballs, and then the system can look
up the SKU as a key in the inventory Map. The worker can then ask the system to update the
quantity available for sale to reflect the new stock received into the warehouse. Storing the

CHAPTER 12 � VISUALIZ ING APPLICATIONS296

inventory in a map makes sense, because there are many uses where the product will be
accessed by its SKU.

Simultaneously, the e-commerce web site that fronts this example needs to convince web
users to buy products. This task, referred to as merchandizing, might have the business decid-
ing to sell basketballs as toys and sporting goods simultaneously. Thus, the basketballs need to
be represented in a navigational tree or hierarchy of some sort. Ideally, the basketball items
could be stored in the map and simultaneously in the tree so that, when the price changes,
the application uses the SKU to update the price on the web site automatically.

The inventory application is focused on illustrating the freedom of domain modeling
inherent to the Terracotta approach to scale out. As a result, the application can do only two
things. We can change the price of products in the map, and we can also ask the system to
display the merchandizing hierarchy under which this fictitious store is selling its products.
The application runs at the command line, which is ideal for the purpose of tuning and visual-
ization. We can make a few changes to the application and end up with a system for changing
different objects across JVMs or changing the same objects. We can make these decisions at
run time and, thus, will have the flexibility to test the various scenarios under which Terracotta
performs well or not so well.

Modifying to Generate Load
What makes this application interesting is that we can easily extend it to generate interesting
workload for the Terracotta server. The best way to do this is provide a way to have many JVMs
mutating the same object at the same time, versus different objects at the same time. Our
hope is to end up with a system where changing different objects delivers linear scale, while
changing the same object causes bottlenecks. If the tools work, we will be able to visualize
good or poor parallelism, depending how we run the system.

Before we change the application, let’s first review the structure of the application on disk.
As with all Terracotta samples, the samples/pojo/inventory directory comes with the tools to
run the sample as well as recompile it when we want to make changes.

You can use ant and the file named build.xml in this directory to compile the application
once we make changes. The script named run.sh (or run.bat on Windows) is used to start and
stop the application. The file named tc-config.xml contains the root and lock definitions
needed to run the inventory application inside Terracotta. The directory named classes con-
tains the compiled application, and the directory named src contains the Java files we will
now modify.

The package name is demo.inventory, so there are two directories nested inside src.
Table 12-1 explains each of the Java files inside demo.inventory.

Table 12-1.TT The Source Files in the demo.inventory Directoryrr

File Purpose

Product.java Contains the definition of a product object

Department.java Contains the tree where products get stored for web display

Store.java Wrapper class to products, inventory, and departments that contains
our map and tree

Main.java The command line interface driver that instantiates an instance of
Store and preloads a database into the map and tree

CHAPTER 12 � VISUALIZ ING APPLICATIONS 297

The changes we will make are documented in Table 12-2.

Table 12-2. Changes to the Source Files

Step Description Goal

Copy Copy the entire demonstration Leave the original sample in place for
to a new location. future reference.

Pounder The core load-generating logic. Insert methods that change product
prices in a loop. Products are clustered in
Terracotta.

Lock tuning Ensure that the demonstration Make the lock more coarse gained for
locks properly. visualization.

Separate roots Add a second root to the Store Allow us to test with two JVMs pounding
object. one root or separate roots in order to

measure scalability.

Update the CLI Change the command line Provide a way to make the whole test
interface so that we can call the work.
pounder we insert.

Update Terracotta Update tc-config.xml to support Make sure the locks and objects are
configuration our changes. properly clustered.

Copying the Sample
Change directories to the inventory sample in the Terracotta distribution. Note that we will
refer to the directory where you unpacked Terracotta as $TC_HOME. If, for example, you
decompress Terracotta into /Users/ari/terracotta-2.6 (something like c:\Documents and
Settings\ari\terracotta-2.6 under Windows), you want to issue the following command.

> cd /Users/ari/terracotta-2.6/samples/pojo (c:\Documents and Settings\ari\
terracotta-2.6)

Next, copy the inventory sample. On Unix, the command would look something like this:

> cp –R inventory inventory.pounder (xcopy inventory inventory.pounder)

�Note�� You can avoid making all the manual changes to the inventory application by downloading the
inventory.pounder application from http://www.apress.com.

Pounder Methods
A pounder is a test that continually calls some routine, effectively pounding or exercising an
aspect of a system to create load or attempt to fatigue or break the system at a key stress point.
We will now introduce a pounder that takes one SKU from inventory and changes its price to
random values a certain number of times. First, change directories as follows:

CHAPTER 12 � VISUALIZ ING APPLICATIONS298

> cd inventory.pounder/src/demo/inventory
% cd inventory.pounder\src\demo\inventory (in Windows)

Now, edit Main.java with your favorite editor, and add the following method:

private void poundRandomProducts() {
ArrayList productArray = new ArrayList(4);

productArray.add(store.getInventory().get("1GFR"));
productArray.add(store.getInventory().get("TRPD"));
productArray.add(store.getInventory().get("WRPC"));
productArray.add(store.getInventory().get("USBM"));

for(int i = 0; i < max; i++) {
synchronized(productArray.get(i % 4)) {
((Product) productArray.get(i % 4)).setPrice(i);

}
}

}

The first part of this new method initializes an array of Product objects to four discrete
values. The second section takes the productArray and loops through, changing one of the
four products to some monotonically increasing price, i. We will use this method to run a
clustered pounding routine that updates any of the objects in the array so that all JVMs
in the cluster are making changes that the others will hear about. The call to
synchronized(productArray.get(i%4)) may or may not cause a problem that we
will visualize later.

Let’s now add another pounder that does something different:

private void poundOneProduct() {
Product p = null;
// if we run separate_roots, this returns one of 2 Inventory copies
Map inventory = store.getInventory();
assert(inventory != null);
printInventory();

boolean failedToLoad = true;
do {

out.println("\nEnter SKU of product to update:");
out.print("> ");
out.flush();
String s = getInput().toUpperCase();
p = (Product) inventory.get(s);
if (p != null) failedToLoad = false;
else out.print("[ERR] No such product with SKU '" + s + "'\n");

} while(failedToLoad == true);

double newPrice;
assert(p != null);
newPrice = p.getPrice();

CHAPTER 12 � VISUALIZ ING APPLICATIONS 299

for(int i = 0; i < max; i++) {
synchronized(p){
p.setPrice(newPrice);

}
newPrice = 1234.34;

}
}

Whereas the poundRandomProducts() method changes any and all products in the array,
poundOneProduct() can be made to change just one. This new pounder is naïve in nature,
because it allows the user to specify one product to incessantly change. If the user were to set
up two instances of the modified inventory application to pound on one product, those two
JVMs would have to yield to each other all the time, just like HelloClusteredWorld from
Chapter 3. But, if each inventory instance pounds on a different product, perhaps two JVMs
needn’t yield to each other at all and can run in parallel. Hopefully, visualization will help us
validate the performance differences among all three options: pounding the same product in
each of two JVMs, pounding separate products in each JVM, and pounding random products
in all JVMs.

Before we finish with Main.java, we have to wire up the ability to accept a command line
argument regarding the use of separate roots. We will explain separate roots soon. For now,
you should change the main() method to check for a command line argument named
separate_roots. If that argument is present, pass a Boolean to the Store constructor; we will
edit the Store constructor shortly. First, let’s add a couple of fields to the Main class:

public class Main {
/**
* Description of the Field
*/

public Store store;
private PrintWriter out = new PrintWriter(System.out, true);
Map serverCount = new HashMap();
private static Boolean separateRoots = false;
private static int max = 50000;

Making the Boolean a member field of the class allows the main() method to configure the
test and for the pounder methods to react when invoked later. The integer max field will be
used to enable the pounder methods to execute dynamic loop iterations. You will learn later in
this chapter why separate roots are faster or slower than shared roots across JVMs (one of the
two types of roots is so much faster than the other that we need to increase the number of iter-
ations to compensate for testing in that particular mode; otherwise, the test duration will be
too short for you to run the visualization tools). Next, let’s change the main() method to set
these two new fields:

public static void main(String[] args) {
if((args.length > 0) && args[0].equals("separate_roots")) {
System.out.println("[INFO] Running With 2 roots.");
separateRoots = true;
max = 200000;

CHAPTER 12 � VISUALIZ ING APPLICATIONS300

}

try {
new Main().run();

}
catch (Exception e) {

e.printStackTrace();
System.out.flush();

}
}

Also, we should change the run method to pass the Boolean for separate roots to the Store
constructor:

private void run() {
store = new Store(separateRoots);
menu_main();

}

Tuning the Locks
The two pounder methods we just added include synchronization. Inside the synchronized
blocks of code, both methods call Product.setPrice(), which is also synchronized. Given the
way synchronization works with regard to the Java Memory Model (recall JSR 133 discussed in
Chapter 1), Terracotta must push data whenever a lock is released. Figure 12-3 demonstrates a
scenario when one thread can hold a lock on object B, then acquire a lock on object A and
mutate A, while, at some later point in time, a second thread can acquire a lock on A before B
has been unlocked.

Figure 12-4. Lock batching

Thread two must see the changes to A made by thread one. If we look at the Product class
in the file named Product.java, we will find that the setPrice(double p) method synchronizes
internally.

CHAPTER 12 � VISUALIZ ING APPLICATIONS 301

public void setPrice(double p) {
synchronized (this) {

price = p;
}

}

By leaving this synchronization in place, we will end up with an application that is bottle-
necked somewhere we don’t really want, because the pounder methods change the price of
Product objects as rapidly as possible. Given the requirement to flush the changes at each lock
release, every time setPrice() is called, network I/O will occur. If both the pounder method
and setPrice() lock the object, we will flush changes twice each time through the loop.
So we have to either comment out the synchronization in the setPrice() method or change
tc-config.xml to avoid automatically locking this method. Without synchronization on
setPrice(), the synchronization in the two pounder methods will take effect.

�Note�� With synchronization on setPrice(), the synchronization in the two pounder methods will have
no data to flush, since setPrice() will cause the flush on its own. You should try to observe this locking
behavior yourself using the visualization tools we are about to launch. Leave the synchronization in place in
the setPrice() method first, then remove it, and compare the performance.

We will not bother to show you how to comment out the synchronization, but if you are
interested in changing the configuration file, the following example illustrates what to change
in the tc-config.xml file located in the inventory demonstration’s root directory. Change the
<locks> stanza:

<locks>
<autolock>

<method-expression>* *..*.*(..)</method-expression>
</autolock>

</locks>

to the following

<locks>
<autolock>

<method-expression>* Demo.inventory.Department.*(..)</method-expression>
</autolock>
<autolock>

<method-expression>* Demo.inventory.Store.*(..)</method-expression>
</autolock>
<autolock>

<method-expression>* Demo.inventory.Main.*(..)</method-expression>
</autolock>

</locks>

CHAPTER 12 � VISUALIZ ING APPLICATIONS302

Now the application is almost ready to run. The last change to the domain model is to
introduce separate roots

Using Separate Roots
Separate roots are going to prove helpful when we start looking for bottlenecks. “Separate
roots” means that one instance of the inventory application will be able to connect to its own
copy of the shared object data, and no other JVM will see or share objects with this JVM. With
separate roots, you baseline the application’s performance with Terracotta integrated as well
as with more than one instance of the application running at once, which will help isolate any
bottlenecks in our own application logic, versus bottlenecks that may exist in the Terracotta
server.

Do not assume that Terracotta is slow or that Terracotta causes high overhead to your
application based solely on initial observations after getting Terracotta up and running.
Instead, use a methodical approach such the one as we are about to undertake together. The
approach as outlined thus far includes pounding on random products in an array as well as
pounding on a single product. In fact, the tests will be run several times, both to get valid sam-
ple data and to run various scenarios. poundOneProduct will be run where two JVMs each
pound on the same product as well as on different products. poundRandomProducts will be run
only once.

With the addition of separate roots, all tests will be run again. The second set of tests will
be with JVMs started such that, instead of sharing a root, each JVM gets its own root, yet all
roots will be stored in the same Terracotta server. poundRandomProducts() running on two
JVMs will therefore be pounding on two separate arrays. And poundOneProduct() can pound
the same product ID on each JVM yet be mutating different objects in Terracotta. This sepa-
rate roots mode may seem like extra work, but it allows us to confirm for ourselves that no
objects in one JVM are required by the other JVM in the test. Let’s make the appropriate
changes now.

Open the file named Store.java. Change the member fields at the top of the class named
Store as follows:

import java.util.concurrent.atomic.AtomicInteger;

public class Store {
public List departments = new ArrayList();
public Map inventory, inventory2; // add inventory2

// This reference will point to inventory or inventory2
// The reference will be determined at constructor time
private Map _inventoryReference;

// Add an AtomicInteger which will be used to keep track
// of how many JVMs are in the cluster
// every odd JVM we start (1, 3, 5, ...) will reference inventory2
// every even JVM we start (2, 4, 6, ...) will reference inventory
private AtomicInteger sequence = new AtomicInteger();

CHAPTER 12 � VISUALIZ ING APPLICATIONS 303

Much of the rest of the class changes to accommodate the introduction of the new
capability of dynamically mapping to one of two root objects.

public Store(boolean sep) {
boolean separateRoots = sep;

Product warandpeace = new Product("War and Peace", 7.99, "WRPC");
Product tripod = new Product("Camera Tripod", 78.99, "TRPD");
Product usbmouse = new Product("USB Mouse", 19.99, "USBM");
Product flashram = new Product("1GB FlashRAM card", 47.99, "1GFR");

Department housewares =
new Department("B", "Books", new Product[]{warandpeace});

Department photography =
new Department("P", "Photography", new Product[]{tripod, flashram});

Department computers =
new Department("C", "Computers", new Product[]{usbmouse, flashram,});

synchronized(departments) {
departments.add(housewares);
departments.add(photography);
departments.add(computers);

}

if(separateRoots == false) {
inventory = new HashMap();
_inventoryReference = inventory;

}
else {
if(sequence.getAndIncrement() % 2 == 0) {

inventory2 = new HashMap();
_inventoryReference = inventory2;

}
else {

inventory = new HashMap();
_inventoryReference = inventory;

}
}

synchronized(_inventoryReference) {
_inventoryReference.put(warandpeace.getSKU(), warandpeace);
_inventoryReference.put(tripod.getSKU(), tripod);
_inventoryReference.put(usbmouse.getSKU(), usbmouse);
_inventoryReference.put(flashram.getSKU(), flashram);

}

}

CHAPTER 12 � VISUALIZ ING APPLICATIONS304

Map getInventory() {
return(_inventoryReference);

}
}

Now that you have changed Store, make sure to change Main.java so that it passes a
Boolean to the Store constructor.

Figure 12-5 illustrates the change to the object model. Notice that each JVM connects to
either inventory or inventory2 by examining the AtomicInteger sequence value.

Figure 12-5. Using separate roots means there are two copies of inventory for isolating JVMs.

Updating the CLI
We need to add a command line mechanism for invoking the newly inserted pounder meth-
ods. Find the method named menu_main() in Main.java. Edit the switch() block by appending
two more cases:

case 'O':
poundOneProduct();
continue;

case 'R':
poundRandomProducts();
continue;

CHAPTER 12 � VISUALIZ ING APPLICATIONS 305

Updating the Terracotta Configuration
You should have already updated the <locks> section of tc-config.xml or commented out
the synchronization logic in the setPrice() method at your discretion. It is not necessary,
however, to add the productArray from the pounder methods to the <roots> section of the
configuration file. Just to remind you of the power of object identity and the flexibility of
domain modeling in a Terracotta world, the objects stored in the array are already stored in
other collections that are defined as roots. As a result of the objects having been shared
through another object, there is no need to cluster the new data structures created in these
new methods.

Make sure to add the second inventory2 object as a new root. While Terracotta is power-
ful, it is not magical, and this new root will not be found without a configuration directive:

<root>
<field-name>demo.inventory.Store.inventory2</field-name >

</root>

One last change is needed since the pounder will run twice or more times on the same
physical computer. As depicted in Figure 12-2, each JVM has its own database of statistical
data. The default file name for this database is based on the host IP address of the client where
Java is running. Let’s change this now to store data in a file named based on the time when the
client was started. This way, each client we start will write to its own database, assuming the
clients are not started at the same millisecond.

Change the <clients> block in the tc-config.xml file by adding a subdirective specifying
where to write stats data:

<statistics>%(user.home)/terracotta/client-logs/pojo/inventory/statistics-%D �

</statistics>

In the preceding example, %(user.home) expands to your home directory, and %D expands
at run time to the start time of the Java process. More information on runtime variable expan-
sion in tc-config.xml is available at http://www.terracotta.org. If you do not get this correct,
the client will disable gathering of statistics and warn you:

The statistics buffer couldn't be opened at
'/Users/ari/Desktop/terracotta/samples/pojo/inventory.pounder/
statistics-192.168.1.94'.
The CVT system will not be active for this node.

A common reason for this is that you're launching several Terracotta L1
clients on the same machine. The default directory for the statistics buffer
uses the IP address of the machine that it runs on as the identifier.
When several clients are being executed on the same machine, a typical solution
to properly separate these directories is by using a JVM property at startup
that is unique for each client.

For example:
dso-java.sh -Dtc.node-name=node1 your.main.Class

CHAPTER 12 � VISUALIZ ING APPLICATIONS306

You can then adapt the tc-config.xml file so that this JVM property is picked
up when the statistics directory is configured by using %(tc.node-name) in the
statistics path.

Compile and Run the Application
First, edit build.xml and run.sh by globally replacing inventory with inventory.pounder
Compile the application by issuing the following commands (on Unix).

> cd $TC_HOME/samples/pojo/inventory.pounder
> ant clean; ant

You should see something similar to the following output.

Buildfile: build.xml

init:
[mkdir] Created dir: /Users/ari/terracotta-2.6.0/samples/pojo/inventory.pounder/

classes

build:
[javac] Compiling 4 source files to /Users/ari/terracotta-2.6.0/samples/pojo/

inventory.pounder/classes

BUILD SUCCESSFUL
Total time: 2 seconds

We are now ready to visualize the application. Start a new Terracotta server. To be safe,
you should stop any running Terracotta server by issuing the command $TC_HOME/bin/
stop-tc-server.sh. Then, run $TC_HOME/bin/start-tc-server.sh. Next, run the newly
compiled demonstration by executing ./run.sh in two separate windows.

�Tip�� Watch closely to make sure both clients start without errors.

Confirm you are running in a clustered environment by starting the administration con-
sole. With the console running, display products and change prices using the command line
interface. If you have trouble confirming that your application is running inside Terracotta,
refer to Chapters 3 and 4 for more details on how to properly start applications in a Terracotta
environment.

Taking Performance Snapshots
Now, let’s start the snapshot tools. Figure 12-6 shows the location of this feature using
Terracotta 2.6.

CHAPTER 12 � VISUALIZ ING APPLICATIONS 307

Figure 12-6. Snapshot feature inside the administration console

Click “Statistics recorder” in the tree control illustrated in Figure 12-6 to reveal the snap-
shot tool. Figure 12-7 shows the snapshot tool. You can start recording data by clicking the
button labeled “Start recording”, highlighted in the figure, and stop recording by clicking
“Stop recording”. You can also manage multiple recording sessions in the section of the tool
highlighted at the bottom of Figure 12-7.

Figure 12-7. The snapshot tool

Now, it is time to start the snapshot tool and run the pounders. First, make sure both
inventory clients are running. Then click “Start recording” in the snapshot tool. Now, return

CHAPTER 12 � VISUALIZ ING APPLICATIONS308

to the command line window where an inventory application is running, and follow these
steps at the prompt:

1. Type I to get inventory faulted in to both JVMs.

2. Type r<enter> in each JVM.

Let the process run until completion. Once both JVMs finish, run the other pounder
method twice. The first time, hit the same object in both JVMs:

1. Type o<enter> in each JVM.

2. Type 1GFR<enter> in each JVM.

Now, run the pounder hitting different objects.

1. Type o<enter> in each JVM.

2. Type 1GFR<enter> in the first JVM.

3. Type USBM<enter> in the second JVM.

Once this completes, stop both inventory.pounder instances by pressing either Q or
Ctrl+C (on Unix). Rerun the entire set of tests, this time with separate roots. To run the
application in this fashion, issue the command that follows:

./run.sh separate_roots

Once you have invoked poundRandomProducts() and poundOneProduct() with separate
roots, return to the administration console, and select “Stop recording” in the snapshot tool.
There is now data to analyze.

Download the visualization tool from Terracotta’s web site simply by starting the adminis-
tration console and clicking “view” on the Statistics Recorder pane. Clicking the view button
will invoke your default web browser and take you to the correct URL. You will need your
Terracotta.org username and password to download the visualization tool.

Now click Retrieve in the user interface. Note that Import is used for exported test data
sent to you from another user or system (the import and export features will be explained at
the end of this chapter). Retrieve the test data from the Terracotta server by providing its
address in the dialog box as shown in Figure 12-8.

Figure 12-8. Retrieving performance data for graphical analysis

The retrieval tool will download all sessions available on this Terracotta server, regardless
of which session you pick. By picking a specific recording session, however, you are guiding

CHAPTER 12 � VISUALIZ ING APPLICATIONS 309

the tool to do analysis of only a specific subset of the data in this Terracotta server. Pick the
snapshot session that corresponds to the run you just made. There should be only one if you
are following along for the first time. But every time you start a snapshot session, you will
automatically create another session.

�Tip�� The Terracotta administration console provides tools for managing performance recording sessions
and snapshots. You can delete any and all sessions using that tool.

Now, generate the graphs for every application JVM as well as for the Terracotta server. To
do so, you must click the “Generate graphs” button in the user interface (see Figure 12-9). Any
time you change the snapshot session or the JVMs for which you want data, you must click
“Generate graphs” again.

Figure 12-9. Generating graphs for all performance data

So far we have built a set of pounder methods to exercise the Terracotta infrastructure. We
have also run those methods while recording performance snapshot data on every JVM as well
as on the Terracotta server. And we have generated graphs to view. Before we view these
graphs and make sense of them, you should understand what to look for.

Potential Bottlenecks
Before jumping in to analysis of the output of the test runs, you should understand what the
various graphs display. Any of these graphs can represent a bottleneck in a specific applica-
tion. Understanding the statistic underlying any graph tells us what the bottleneck in a
specific application is.

Recalling the Motherboard
Recall from Chapter 2 that we view Terracotta as enabling applications to scale out as if the
application were running on one large computer. We refer to Terracotta’s libraries as L1 clients
and the Terracotta server as an L2 instance—as in the motherboard and CPU cache analogy.
Figure 12-10 demonstrates the concept.

CHAPTER 12 � VISUALIZ ING APPLICATIONS310

Figure 12-10. Terracotta is analagous to the SMP motherboard.

Each graph in the visualization tool corresponds to a check box option in the administra-
tion console, as Figure 12-11 shows. The visualization tool allows graphing of specific stats for
specific Java machines in the cluster. Each statistical graph can be enabled or disabled. Nodes
can also be entirely ignored.

Figure 12-11. Administration console snapshot options

CHAPTER 12 � VISUALIZ ING APPLICATIONS 311

We’ll define every metric that the snapshot tool offers, as these are key Terracotta compo-
nents that can cause trouble:

• Cache objects evict request: This statistic tracks the number of times objects need to get
evicted from the Terracotta server to disk.

• L1 L2 flush: The L1 is a nickname in Terracotta for one of your application JVMs. The L2
is a nickname for the Terracotta server. “Flush,” just as in the motherboard analogy,
refers to point in time when the L1 runs out of memory or garbage collects objects and
flushes some objects to the L2 to free heap space.

• L2 changes per broadcast: The L2 updates each field of each changing object discretely
on disk. If a broadcast occurs, one or many changes in the L2 can occur as a result. This
statistic tracks the ratio of L2 changes that result from each broadcast.

• L2 pending transactions: The L2 holds on to transactions for a while before applying the
deltas to its disks. Those pending transactions take memory while in flight. Further-
more, any object that is part of a pending transaction cannot be updated again until the
transaction is completed. The system holds transactions in the pending state so that
redundant changes to objects can be folded together, or compressed out of updates
when possible. Transactions remain pending while being compressed and folded into
the fewest number of disk updates possible. So this statistic represents the situation
where lots of updates occur redundantly to objects, and those objects are, therefore,
temporarily locked by the system while being updated.

• Message monitor: This statistic tracks the network message count flowing over TCP from
clients to server.

• Thread dump: This data is a marker that decorates all the performance graphs with a
milestone mark that notes when the thread dump happened. In the visualization tools,
these marks are clickable and will display the thread dump as recorded when requested
during performance testing and recorded into the snapshot. While we never clicked the
“Take thread dump” button in the administration console, feel free to experiment with
this feature.

• Cache objects evicted: This statistic is directly related to evict requests. While evict
requests tracks the number of times eviction should happen, this statistic tracks how
many objects actually are evicted from memory.

• L2 broadcast count: The L2 will broadcast any deltas to objects that are resident in more
than one L1 JVM. “Broadcast” is a misnomer, because the L2 determines which L1
needs certain updates and never actually sends updates to JVMs that won’t end up
needing the changes. The system keeps track of each broadcast that occurs, meaning
this statistic provides visibility into every time an object changes in one JVM and that
object is resident in another JVM and needs to be updated.

• L2 faults from disk: When the L2 has too little memory to maintain all objects in RAM
on the Java heap, it spills objects to disk. This statistic represents how many times the
L2 has to load objects from disk to serve L1 object demand.

CHAPTER 12 � VISUALIZ ING APPLICATIONS312

• L2 transaction count: In Terracotta, a transaction is defined as a group of changes to
objects marked by synchronization boundaries. When an object is unlocked in the JVM,
all the changes made in a particular thread will be flushed. A Terracotta transaction is
neither a single object field change nor a single object change. A transaction is an appli-
cation-specific number of field changes bundled together using a Java lock. As an
example, one application might change one object field inside a setter method within
a lock. Another might change one thousand objects in a for loop before releasing an
object lock. A single transaction for application one equals one field change. A single
transaction in the other application equals 1,000 field changes. Whatever the applica-
tion’s definition of a transaction, this metric counts them.

• Stage queue depth: The L2 is asynchronous in nature meaning, like a modern operating
system, it uses a fixed set of resources and splits its time among all pending work doing
a little bit of each task at a time. As an example, when one JVM needs objects from Ter-
racotta, the task of retrieving those objects is broken into stages, and each stage can
have many JVM requests waiting for work at that point. Stage queue depth tracking
allows visibility into all the L2 stages and shows how much work of each type is pending
in the server. Use this metric to determine if your application is causing a specific type
of bottleneck inside Terracotta. This lets you know what is slow or bottlenecked in
detail, all in hopes that you can change your application to avoid potential slowdowns.

• JVM garbage collector: This statistic tracks the garbage collector’s behavior on any and
all JVMs.

• Distributed gc: This Terracotta-specific concept is better thought of as a collector of
distributed garbage rather than a distributed garbage collector. This tool never crawls
memory across all JVMs in order to locate clustered garbage. It instead runs only inside
the L2. At critical points during distributed garbage collection, however, the L2 pauses
all other types of work, making sure that no object being actively referenced gets
flagged as garbage. Just like Java garbage collection, this L2 collection can cause bottle-
necks while pausing the system.

• L2 broadcast per transaction: This statistic represents the ratio of broadcasts to transac-
tions. If your application updates objects 1,000 times per second, and each update
causes a broadcast, the ratio would be one-to-one. A ratio of one-to-one means all
transactions are causing broadcasts, which implies poor locality of reference and most
likely limited scalability. A broadcast ratio of zero implies that no objects are simultane-
ously resident in more than one JVM at a time. Such a configuration should be linearly
scalable.

• L2 L1 fault: This statistic tracks the opposite of a flush. A fault occurs when a JVM needs
an object it doesn’t have in the local heap. The L1 must wait for the L2 to send the
object and thus is blocked by the L2 from making forward progress. Good locality com-
bined with the appropriate number of JVMs implies that a JVM should always have
enough memory to keep all the objects it uses in the local heap. Less faulting implies
better scalability.

• Memory: This statistic tracks the heap usage over time. This data is available stand-
alone through JConsole for JDK 1.5 or newer, but Terracotta puts the data in the same
place as all other statistics for easy correlation.

CHAPTER 12 � VISUALIZ ING APPLICATIONS 313

• System properties: This is not a statistic at all but a snapshot of all the Java properties
passed in and set at startup time for each JVM. This helps determine if one JVM is con-
figured differently from others. It also helps determine what the settings for a particular
snapshot of data were.

Inside the Terracotta Server
Now would be a good time to explain why the L2 is not automatically a bottleneck. The
notions of broadcasting, flushing/faulting, and lock bottlenecks are a direct result of the
internal implementation details of the L2. Understanding these concepts fully requires
understanding the internals of the Terracotta server.

SEDA
Since its first release, Terracotta has been designed on an asynchronous workflow under the
principles of staged event driven architecture (SEDA). SEDA is a concept where any task gets
broken into its component parts and then gets managed through its execution life cycle via
an external workflow execution engine. In Chapter 11, you learned about master/worker rela-
tionships, which can be used to spread work across a cluster of JVMs. The concept behind
SEDA is just like master/worker, but SEDA is used to spread work across threads in a single
JVM, in a manner where each work stage is unaware of those that come before or after.

SEDA is made up of building blocks. Specifically, queues, drains, and faucets make up the
interface. A queue represents a bucket of work. A drain represents an outgoing connection
from one bucket to another, and a faucet represents an input to a bucket. Picture water flow-
ing through a series of buckets and hoses. Now, imagine taking a servlet container and
breaking up its various internal stages of processing an HTTP request using this paradigm.

The SEDA-based servlet container can provide all the capabilities of a multithreaded
servlet container. The main difference is that the SEDA-based containers do not take a system
resource per user request, whereas the Tomcat 5.x container, for example, does. On the other
hand, Tomcat’s core developers can easily provide for security and context management while
processing an HTTP request using thread local variables. A SEDA-based container would have
an object scoping problem if it used only thread local objects, since one thread would do only
part of the work and must, therefore, bundle up the objects it created for other threads to be
able to reach.

While SEDA may or may not be for you because of the burden of decoupled, asynchro-
nous programming it places, it is definitely good for the Terracotta server. The server does not
cause unnecessary thread contention in the JVM. It also doesn’t increase in size and resource
utilization as the number of transactions flowing through the system increases. SEDA makes
the latency and throughput of a Terracotta server very efficient and predictable.

The advantage of breaking up a seemingly singular task into parts and then spreading
those parts across threads does not have the same value as the master/worker model. SEDA is
meant to help an architect break up a task in a logical manner so that the stages of work that
can be serialized are separated from those that can go parallel while at all times, work moves
through parallel and serial stages in a consistent manner. While in master/worker scenarios
we get parallelism, SEDA can provide for both parallelism and serial execution at various
stages in a system. Understanding the SEDA workflow inside the Terracotta server will help

CHAPTER 12 � VISUALIZ ING APPLICATIONS314

you understand why some operations that a clustered application executes will run faster
than others.

Terracotta’s SEDA Pipeline
The SEDA pipeline that runs inside the Terracotta server is made available to Terracotta users
through the visualization tools. It is, therefore, important to understand the pipeline and what
the tools might be indicating. Figure 12-12 represents the internal structures inside the Terra-
cotta server. These structures have to communicate among themselves in order to complete
any work.

Figure 12-12. The SEDA stages inside the Terracotta server

The stages inside the L2 can be grouped into four segments. The first is transaction pro-
cessing and is depicted in the figure as the cluster on the far left. The second is broadcast
management represented by the broadcast transaction and transaction acknowledgement
stages (“broadcast txn stage” and “txn ack stage” in Figure 12-12). The last two sections are the
ones you would expect, namely object request/response and lock request/response. Since
these segments are separate SEDA stages, locks can be acquired, objects faulted and flushed,
and transactions committed in parallel. In fact, an L1 is allowed to continue as soon as it
flushes a transaction to the server. The server must ensure that all other L1s acknowledge this
transaction when necessary. So while most of the time, the system is asynchronous, broad-
casts put the server into synchronous mode, having to manage all the acknowledgements and
guarantee delivery.

Using the visualization tools, we can tell how much work the server is doing in each of the
four groups. And using the tools, we can tell if the server is keeping up with the workload the
application is generating. Before confirming in the tools what we expect, let’s review our
expectations.

CHAPTER 12 � VISUALIZ ING APPLICATIONS 315

Looking for Locality Issues
The Terracotta server will become a bottleneck when more and more of its internal SEDA
stages must be involved in an object update. For example, if an update to an object requires a
broadcast to several JVMs and a flush to disk and that update is to the same objects that were
updated in a recent transaction, the server must order all the operations and make pending
several stages of processing while waiting for others to complete. The less object updates over-
lap across JVMs, the faster the system will go. The concept of keeping objects out of JVMs that
don’t need them and keeping objects resident in memory as close to the processor as possible
is referred to as locality of reference.

One of the secrets to successfully tuning an application is to try to maintain locality of ref-
erence. “Reference” refers to object references and “locality” to keeping object references as
close to L1 and L2 as possible. L1 will not be able to maintain locality if the data Terracotta is
managing takes more space than available memory, and it will then spill to the L2 anything it
doesn’t need or cannot retain. L2 will not be able to maintain locality if the data Terracotta is
managing must spill to disk.

Any and all I/O—be it disk, network, or even memory—can result in application bottle-
necks. The data gathered by the snapshot and visualization tools provides a targeted view of
each of the points at which the system can execute I/O and end up waiting for that I/O.

Use the tool to confirm for yourself that your application exhibits good locality, meaning
that object faults from L2 to L1 and from disk to L2 are not required much of the time. Recall
that we executed inventory.pounder application in different ways. The pounder worked on
random elements in the productArray, meaning both JVMs were making changes to the same
objects all the time. poundOneProduct() instead updated the same product, namely the 1 giga-
byte flash card in a loop, explicitly breaking locality of reference and forcing the object
changes to be pushed and acknowledged between both JVMs. The last model worked on two
different objects, one in each JVM.

Think of locality of reference as akin to linear scalability. As long as our application runs
without sharing objects across JVMs, no communication other than to L2 needs occur. This is
the fastest way to run, because the L2 will not block transaction flow from any one L1, waiting
for other L1s to acknowledge updates. Let’s confirm for ourselves that the inventory.pounder
application running in a highly localized mode runs much faster than when updating random
objects in all JVMs.

Specific Bottlenecks in inventory.pounder
The pounder we created at the beginning of this chapter was run in essentially two different
modes. The modes were carefully designed to illustrate the key bottlenecks that a real-world
application will experience when running in a Terracotta environment. Given your new
understanding of the Terracotta server’s internals, let’s review the three tests.

Broadcasting Changes
One issue that occurs whenever the same object is touched by more than one JVM is that all
changes in one context must be sent to all JVMs where the object lies resident. The specific
broadcast rate (broadcasts per transaction as measured by the tools) in each of our pounder

CHAPTER 12 � VISUALIZ ING APPLICATIONS316

tests is different. This will directly lead to different performance characteristics. We will vali-
date this assertion by examining the transaction throughput for two JVMs pounding on the
same product versus on different products in the same map and on different maps (inventory
versus inventory2 when running with separate roots).

Lock Acquisition
Now let’s consider the cost of acquiring a lock. Acquiring a lock over the network can be
expensive for two reasons. The first problem is that JVMs can lock and unlock much faster if
they do not have to traverse the network to L2 to request the lock in the first place. The second
problem is that Java locking is exclusive, meaning only one thread at a time is allowed inside a
lock.

Throughout this book, we have mentioned the greedy lock optimization. We can confirm
this optimization is present simply by viewing the locking statistics recorded during the vari-
ous pounder test runs. Consider running the pounder again on just one JVM. In such a
modified test, the JVM would keep all locks local to itself and will not make any lock requests
to L2. So such a modification should produce a significant increase in transactions per second
or a corresponding decrease in elapsed time to complete the scenario.

In the tests you ran, poundRandomProducts() randomly updated objects and exhibits less
greediness than a test where the same product, 1GFR, is updated in a loop. In the second sce-
nario, the Terracotta server will grant the lock greedily, and L1 will keep the lock for several
iterations before yielding to its peer. In the first scenario, the system cannot tell that such an
optimization where L1 is granted the locks for an extended period of time would be beneficial,
because L1 grabs a different lock every time through the loop.

Since the objects that L1 works with change over time, the greedy lock optimization works
less efficiently when working with random objects, and thus lock acquisition is an interesting
bottleneck. We will study lock greediness in the test results.

Visualizing the Bottlenecks
Now that you have a deep understanding of the various layers in the stack, visualizing the sub-
tle interplay across layers will be illuminating. First, start the Terracotta visualization tool
again.

> cd $TC_HOME/lib; java -cp tc.jar com.tc.admin.cvt.ClusterVisualizerFrame

Use the retrieval feature to grab the data from the three pounder runs. Leave all check
boxes selected, and click Generate Graphs. Figure 12-9 demonstrates how to do this.

Scroll through the various graphs in the right pane. Note the different transaction rates for
each client and the Terracotta server. Remember that transactions can be committed in
batches, and locks can be awarded greedily. So the L1s instances and the L2 CPU should have
a different perspective on the number of times these events occur inside the system.

Let’s focus in on two graphs: the transaction rate according to L2, represented in Figure 12-13,
and the SEDA stages inside the L2, represented in Figure 12-14, for the same time period.

CHAPTER 12 � VISUALIZ ING APPLICATIONS 317

Figure 12-13. Visualizing the differences in throughput between test runs

Figure 12-14. The SEDA queue depths inside the Terracotta server during all tests

Figure 12-13 shows transaction rates for each scenario. First, we observe that the highest
transaction rates occur with separate roots. This makes sense, because the two JVMs share no
information with each other and thus never have to wait for Terracotta to grant them locks or
apply updates to memory. Terracotta detects that no objects in JVM one and two are shared
and, therefore, never makes either JVM wait while L2 commits changes. All object updates

CHAPTER 12 � VISUALIZ ING APPLICATIONS318

become asynchronous. In other words, with perfect locality, a JVM always trusts its own heap
and is never made to wait while writing data to heap. The JVMs in such a scenario will move at
local CPU speeds.

The next fastest scenario is when roots are not separate yet the object that the test pounds
is different in each JVM. When one JVM pounds on the price of the camera tripod, while the
other pounds on the USB mouse, the cluster delivers about 10,000 updates per second as
opposed to about 12,000 in the previous scenario. So we can conclude that locality was auto-
matically in play under this scenario just as in the first, simply by keeping the JVMs from
touching the same objects. This conclusion is also important. It is not necessary to separate
JVMs at a root level. Just make sure the JVMs do not lock on and update the same objects, and
as this exercise proves, the system will automatically make parallel updates and localize the
objects as appropriate.

The remaining two scenarios (which we ran first) are slowest by far. Pounding on the
same product produces about 800 transactions per second, and pounding on random prod-
ucts produces about 500 transactions per second. As we have stated, when we pound on one
product in both JVMs, Terracotta invokes special greedy algorithms that allow each JVM to
keep the lock for a long time. When accessing all objects randomly, no optimization is in play,
and thus, all updates are broadcast between the two JVMs.

Now, go back to your test environment, and restart the inventory.pounder application
with shared roots:

> ./run.sh

In the administration console, select “Lock profiler” (see Figure 12-15), and run the two
pounders.

Figure 12-15. Select the Lock profiler

Run poundRandomProducts() and poundOneProduct(). Use a single product when running
poundOneProduct(), such as 1GFR. In the lock profiler screen, while the tests are running, keep
clicking the Refresh button and switching between the Clients and Server views. The Clients
view shows how many times the JVMs lock and unlock your objects with or without talking to
Terracotta. The Server view shows how many times the server was involved in a lock request. As in
Figure 12-16, the administration console shows us that locking inside poundRandomProducts()
leads to almost as many hops as lock requests. For a lock to hop, it has to be reclaimed from

CHAPTER 12 � VISUALIZ ING APPLICATIONS 319

one JVM to hop over to another. This means the network and the Terracotta server are slowing
down the application, because each JVM blocks on operations in the other.

Figure 12-16. Illustrating the lock hopping problem for poundRandomProducts()

When running poundOneProduct(), we can see that the lock hops far fewer times than it
was requested. In Figure 12-17, the system is granting locks approximately four times before
reclaiming the lock to hand to the other JVM.

Figure 12-17. Illustrating greedy locks underneath poundOneProduct() for 1GFR

You have just seen everything needed to understand what makes each inventory.pounder
scenario fast or slow. The visualization tool can be used not just to see transactions per second
and SEDA queue depths but broadcast rates, disk I/O, and more. The power of seeing all the
data in a single place comes from the fact that a slowdown in one metric might be correlated
to a high count of updates in another metric. For example, you should be able to use these
tools to prove to yourself that bad garbage collection tuning leads to clusterwide slowdowns
when one JVM pauses inside garbage collection when it was supposed to be acknowledging
object broadcasts.

Managing Production Environments
The visualization tools and administration console are all designed with production applica-
tion monitoring in mind. No tuning has been done, however, to make this safe. Terracotta has,

CHAPTER 12 � VISUALIZ ING APPLICATIONS320

instead, made every monitoring point an option. You can decide to monitor locking or not.
You can decide to monitor transaction rates, garbage collection, or what have you. You can
decide on the sample rate as well.

The safest way to set up the system for a production environment is to turn off all moni-
toring, run load at your application, and observe the transaction rate as reported by the
Terracotta server in the administration console. Next, start turning on snapshot details and
lock profiling details, and observe how much throughput is lost. Tune the sample rates and the
data that is gathered until you strike an acceptable balance of loss in throughput versus
increased visibility.

Note that all metrics gathering can be started and stopped through JMX events. This
means that you can choose to gather no data at all and monitor only the default data such as
the transaction rate. When the transaction rate dips or increases beyond expected thresholds,
you can use a monitoring framework (like Hyperic) to issue a JMX event to Terracotta to
instantaneously start recording more data.

You should do lots of testing with metrics on, off, and at increased and decreased rates,
all under load. Observing a running system can, in fact, exacerbate performance problems,
so the more you automate, the more you should validate that automation is safe.

All these graphical tools can be run on the developer’s desktop. Run statistics snapshots.
Then export them to zip files on the Terracotta server, and secure copy (SCP) or otherwise
transfer the files to your desktop computer. After that, import the data into the visualization
tools instead of retrieving the data from the running, production L2 as we did in this chapter
thus far. As for the administration console, it is a Swing tool and can be run from your desktop,
connecting over TCP to the Terracotta server. For most people, this option works fine, but
when you have a slow network from your desktop to a production environment where the Ter-
racotta server is running, consider running a virtual network computing (VNC) or remote
desktop tool of some sort near your production Terracotta server. The administration console
then runs over the local network, and only the graphical display data traverses the slow net-
work back to your desktop.

Summary
Visualization is a powerful concept that has been leveraged for years inside profiling tools.
When brought to bear against the problem of tuning and managing a clustered application
that is spread across processes and machines, visualization might be the only way forward.

Terracotta provides transparent clustering, which means that much of your performance
tuning work can be delivered at a unit level using traditional profilers. At some point, however,
seeing and understanding what Terracotta is doing behind the scenes becomes important. To
that end, we developed the inventory.pounder application in this chapter. However, the
inventory.pounder application you built, ran, and analyzed in this chapter was not meant to
dictate a rigid way for seeing what Terracotta is doing. Rather, it was meant merely to illustrate
the concept of pounding your application in a test environment with Terracotta’s monitoring
tools turned on and gathering data.

Not only did you learn how to pound on an application and observe and measure the
Terracotta inner workings, you learned about some of the internal details and how bottlenecks
can occur. If we were to establish any rules of thumb in this chapter, those rules would include
the need to profile locks. Never assume greedy locks are or are not working. Confirm, using

CHAPTER 12 � VISUALIZ ING APPLICATIONS 321

the administration console, that lock acquisition does not require the network. Study transac-
tion rates and broadcast rates. Also study system-level resources such as disk I/O, CPU
utilization, heap utilization, and garbage collection activity.

Try to observe all these metrics in a single dashboard view, since sometimes, bottlenecks
in one JVM can slow down throughput in another. The goal of this chapter was to explain the
power of visualization, as opposed to simply providing one or two tricks. Hopefully, you can
use the tools explained in this chapter to tune your application on your own using these pow-
erful concepts and tools.

CHAPTER 12 � VISUALIZ ING APPLICATIONS322

A
accessor operator (.), 46
ACID, definition of, 107
active server

killing, 62
setting, 55

ActiveShoppingCarts class, code example, 89
addInstrumentation(), 215, 217
addItem(), 168
<additional-boot-jar-classes/>, 53
addLink(), 284
admin script, 52
Administrator Console

Clients control, 62
description of, 52
initial display, 60
launching from the command line, 60
Lock profiler, 62
Roots control, 61
visualization tools, 310

advantages of Terracotta, 1–2
alternatives to Terracotta, 49
Amazon.com, Elastic Compute Cloud (EC2),

153
anemic domain modeling, 296
AOL, use of web proxies and caching, 159
Apache Commons Logging library, download

location, 126
Apache Tomcat, 25, 35, 151
application developer’s role vis-a-vis

operator, 1
application programming interfaces (APIs),

34
application state

global, 150
HTTP and, 147

application tier, 24
applicationContext.xml, 196, 199
applications

decoupling from the database, 1
monitoring, 2
scalability of, 1, 12–13
stability of, 1
tuning, 13–14

archetypes, 211
architecture

eventually correct architecture, 31
scaling a mature stateless application, 27
top-down versus bottom-up, 25

artifactId, 212
ASM, 217
aspect-oriented programming (AOP)

AspectWerkz pattern language, 73
join point, 73

assignment operator (=), 46
AtomicInteger, 239
atomicity, definition of, 107
autolocked collections, 204

Terracotta Integration Module (TIM),
112–114

tim-hashtable, 113
tim-synchronizedcollection, 113
tim-synchronizedmap, 113
tim-synchronizedset, 113
tim-synchronizedsortedmap, 113
tim-synchronizedsortedset, 113
tim-vector, 113

autolocks, 64
compared to named locks, 74
concurrency, 74

automount, 10
availability

balancing with linear scalability, 158
definition of, 3
stateful applications and, 29
Terracotta and, 12

await(), 97

B
BeanFactory, 196
BeanShell scripts

obtaining information on, 82
writing, 81

beginTransaction(), 132
Berkeley Fast File System (FFS), 4
Big IP (F5), 154, 159
BlockingQueueBasedQueue interface, 264
boot class loaders, 45
boot classpath, 45
boot JAR classes, 78
bottlenecks

acquiring a lock over a network, 317
avoiding I/O bottlenecks, 14
capacity planning and, 24
database and, 15, 25
examining the broadcast rate, 316
greedy locks, 317, 320
inventory.pounder application and, 316

Index

323

L2 and, 314
locality of reference, 316
lock hopping, 319
scalability versus availability trade-off, 15
techniques for optimizing against, 15
Terracotta server and, 316
visualizing, 317
See also snapshot tool; visualization tools

bottom-up architecture, 25
bridging-workers, 291
broadcast rate, 316
buddy-replication, 38
build.xml, 297, 307
building blocks, 314
bulk loading a map, 115
Bundle-Activator property, 214, 219
bundles

definition of, 207
JAR file manifest, 207

bytecode instrumentation and transparency,
77

bytecode operations
HEAPREAD(), 48
HEAPWRITE(), 48
playWithMemory(), 47

C
cache objects evict request statistic, 312
cache objects evicted statistic, 312
cacheGet(), 111, 124
cachePut(), 111, 124
caching

automatic locking, 112
available RAM and, 103
broadcasting and acknowledging an

invalidation event, 121
building a basic cache, Map example, 107
Cache class, 115
cache eviction, 120, 215
cache expiration, 120
coherent cache, 122
combining the L1 and L2 caches, 32
data replication, 109
definition of, 35, 103
distributed, 13, 17, 20, 26, 109, 121, 123
duplicating caches, 104
Ehcache’s capabilities, 123
Ehcache’s enhancements for distributed

caching, 127
element eviction, 120
freshness of data sets, 103
global locking, 112
HashMap, 107
Hibernate second level caching, 27
independent caches, 121
internal locking, 112
keeping cache entries fresh, 104

load balancer and server caching, 106
LRU, LFU, and FIFO eviction strategies,

120
1/n effect, definition of, 104
open source caching frameworks, 123
optimizing Terracotta’s internal caches, 13
overhead of processing cache messages,

105
perfect cache, definition of, 26
persistence, 121–122
purging less important cache entries, 104
read-only caches, 121
read-write caches, 121
returning stale data, 27
sorted maps and, 112
spilling a cache to disk, 104, 121
stale cache entries, invalidating, 104
Terracotta configuration file, code

example, 109
thrashing, definition of, 104
trade-offs in using, 103
transparent distributed caching, 109
transparent paging, 106
unsorted maps and, 112
userCache, 108
virtual heap, advantages of, 105
See also distributed caching; L2 cache;

second-level cache
CAP theorem, 32
Cart.java

addItem(), 168
code example, 167
compareTo(), 169
equals(), 169
hashCode(), 169
packaging and configuring, 169
tc-config.xml, code example, 170
web.xml, 169

cart.jsp
code example, 166
<jsp:useBean>, 167

catalina.sh script, 52
Catalog class, code example, 87
central database stores, 155
ClassAdapterFactory, 217
ClassCastException, 71
classes

boot JAR, 78
fine-tuning the set of included classes, 78
instrumented, 77, 111
preinstrumented, 78

ClassLoader, 71
cli bean, 196
CLI class, code example, 183
<clients> configuration section, 204–205
Clients control, 62
clone(), 10

�INDEX��324

Cluster.get(), 50
clustered locking, 57, 114
clustered objects

adding null references to, 72
ClassCastException, 71
ClassLoader, 71
definition of, 71
garbage collector and, 72
literal fields, 71
object ID, 71
reference fields, 71
virtual heap and, 71

clustered POJOs
characteristics of, 83
cross-JVM thread communication, 84
defining a POJO, 82–83
definition of, 83
durability and portability of object data,

84
executing concurrency operations, 83
Fowler, Martin, 82
maintaining application state in a scaled-

out architecture, 84
Parsons, Rebecca, 82
preserving object identity across JVMs, 82
retail shopping application, structure of,

85
clustered root fields

buffer, 56
declaring, 56
loopCounter, 56

ClusteredClass, 8, 36
ClusterEvents.Listener interface, 275, 277
clustering

abstraction layer and, 4
applying external configuration to existing

libraries, 203
cluster events, definition of, 230
clustering frameworks, 38
clustering service, definition of, 3, 20
combining transparency with, 8
configuration-driven clustering, 203
CoordinatedStagesWithClusterEvents.java,

code example, 231–234
copying objects around Java processes, 36
database and, 15
defining in a Java main() context, 43
distributed caches and, 20
Hello Clustered World application, 43
JVM-level clustering, 2
nodeConnected(), 230, 235
nodeConnecting(), 230
nodeDisconnected(), 230–231
nodeDisconnecting(), 231
nodeInit(), 230
nodeOrphaned(), 231
nodeReconnected(), 231

nodeReconnecting(), 230
preparing the HelloClusteredWorld class

for clustering, 44
tc-config.xml for JMX cluster events, 234
Terracotta as a transparent clustering

service, 37
thisNodeConnected(), 230
thisNodeDisconnected(), 230
threads and, 10
See also threads

Collections class, synchronizedMap(), 204
command line, changing from java to dso-

java.sh, 45
commit(), 132, 135
CommonJ Work Manager specification

java.lang.Runnable, 248
POJO implementation of, 249
tracking work status, 248
using with the Master/Worker pattern, 248
waitForAll(), 248
waitForAny(), 249
Work interface, 248
Work Manager interface, 248, 250
WorkEvent interface, 249, 255
WorkException, 249
WorkItem interface, 249, 251
WorkListener interface, 248–249, 252, 255
WORK_REJECTED, 249
See also Master/Worker pattern

compareTo(), 169
compute grids, 19

definition of, 244
examples of, 245
stateless workloads, 244

concurrency, 74
optimizing, 157
thread concurrency, 221

concurrent locks, avoiding write-write
conflicts, 75

ConcurrentHashMap, 119, 265
definition of, 112
segments, 112

ConcurrentSkipListMap, definition of, 113
configuration file (Terracotta)

<additional-boot-jar-classes/>, 53
code example, 109
configuring for persistent mode, 56
configuring the application section, 56
configuring the client section, 55–56
configuring the instrumented-classes

section, 57
configuring the locks section, 57
configuring the server section, 55
controlling where Terracotta inserts itself,

48
creating, 55
data element, 56

�INDEX�� 325

finished source code, 58
instrumented classes, 111
logs element, 56
root objects, 111
sharing the buffer and loopCounter, 44
tc-config.xml, creating, 55
tc-config-pojo.xml, 55

configuration fragment (Terracotta)
definition of, 209
terracotta.xml, 209–210
<xml-fragment> configuration section,

209
consistency, definition of, 107
constructor, invoking in a method-local

context, 9
Content Director (Cisco), 154, 159
context switching, 32
conversational state, 31
cookies

cookie state, 147
JSESSIONID, 159

CoordinatedStages.java, code example, 227
CoordinatedStagesWithClusterEvents.java

code example, 231
output from, 234

coordination
CoordinatedStages.java, code example,

227
tc-config.xml for concurrency primitives,

224
Terracotta inter-JVM thread coordination,

222
thread coordination using concurrency

primitives, 222
thread coordination with queues, 235
thread coordination, types of, 221
WaitNotify.java, code example, 222
WaitNotify.java, explanation of, 224

CoordinationWithQueues.java
code example, 236
tc-config.xml, 239

CyclicBarrier, 90, 94, 97
coordinating multiple computers across

JVMs, 228
enterBarrier, 229, 234–235
exitBarrier, 229–230, 235
Terracotta configuration and, 229

D
data duplication, 243
data grids, 19

advantages of, 244
definition of, 243
examples of, 245

data partitioning, 14

database
clustering and, 15
database tier, 24
disk striping and, 27
partitioning across disks and servers, 27

defaultCache and Ehcache, 126
DefaultWorkItem, 250, 255
definition of Terracotta, 2
demo.inventory directory

table of source file changes, 298
table of source files, 297

Departments class, 178–180
dependency injection (DI), 177–178, 186

benefits of coding in a DI style, 193
Terracotta and the separation of concerns,

193
detached instances

configuring Terracotta for use with, 141
reattaching, 143
storing in a clustered cache, 142
storing in a HashMap, 142
storing in an HTTP session context, 142
strategies for storing, 142–143
tuning, 145

distributed caching
data partitioning and, 121, 123
data replication, 109
uses for, 155
See also caching; L2 cache; second-level

cache
distributed gc statistic, 313
Distributed Method Invocation (DMI), 76
distributed transactions, 31
distributed web spider

addLink(), 284
building, 281
including the spider classes for

instrumentation, 290
Lucene search framework, 281
processLinks(), 289
retrievePage(), 284
run(), 289
running, 290
scheduleWork(), 289
SpiderMaster class, code example, 284
SpiderWork class, code example, 282
starting a single worker and single master

instance, 290
StartMaster class, 289
StartWorker class, 289
tc-config.xml, 290
workflow algorithm, 281, 289
WORK_COMPLETED, 289
WORK_REJECTED, 289

DmiBasedQueue interface, 264

�INDEX��326

domain modeling, 296
downloading Terracotta, 51
drain, definition of, 314
dso-env script, 96, 192
dso-java script, 53, 60, 96
dso-java.sh, 45, 111, 129
durability, definition of, 107
durable message queuing, 26
DynamicWorker class, 278
DynamicWorkManager class, 266, 276

E
Eclipse plug-in

Autolock, 64
downloading and installing, 63
hello_clustered_world_eclipse project, 63
marking methods and classes as locked,

64
marking objects as Terracotta roots, 64
starting the Terracotta server, 64
Welcome screen, 51

Ehcache
Apache Commons Logging library,

downloading, 126
cacheGet(), 124
cachePut(), 124
capabilities of, 123
command to run the program, 126
configuring, 140
configuring the Terracotta eviction policy,

127
declaring a CacheManager, 123
defaultCache, 126
downloading and installing the Ehcache

TIM, 128
ehcache.xml configuration file, 125–126,

140
enabling as a second-level cache in

Hibernate, 140
enhancements for distributed caching,

127
expiration and eviction policies, 126
inspecting the data in the Ehcache store,

144
JSR 107 JCache API, 129
obtaining documentation on, 123
obtaining ehcache.jar, 126
rewritten cache example using Ehcache,

123
setting the proper Terracotta

configuration, 140
tc-config.xml configuration file, code

example, 128
time-based eviction policy, 127
userCache, 125–126
verifying configuration clustering, 144

EJB, 25, 29, 38
embarrassingly parallel work sets, 244
enterBarrier, 229, 234–235
Enterprise JavaBeans (EJB), 1
entity package, 192
equals(), 169
eventually correct architecture, 31
eviction, 149
example1.war, 162
example2.war, 170
<exclude> stanza, 77
ExecutorService

clustering, 247
limitations of, 247, 251

exitBarrier, 229–230, 235

F
faucet, definition of, 314
fetchUser(), 108
field changes, 313
file API

open(), 4, 7
read(), 4
seek(), 4
write(), 4

file systems
mounting remote repositories, 7
reading and writing disk blocks, 16
transparent services and, 4

findUser(), 108
first-level cache, 132
Fowler, Martin, 11, 82
freshness of data sets, 103

G
garbage collector, 29, 38, 62

removing unreferenced clustered objects,
72

root objects and, 70
Gelernter, David, 245
get(), 49
getAttribute(), 18
getExportedBundle(), 217
getSession(), 149
global locking, 112

greedy locks, 38, 317, 320
grids

compute grids, definition of, 244
data duplication, 243
data grids, definition of, 243
embarrassingly parallel work sets, 244
handling failover, 244
locality of reference, 243–244
moving the processing context to the data,

244

�INDEX�� 327

scalability, 244
service-level agreements (SLAs), 243

Groovy, 82
group-id attribute, 205

H
hardware failure, preparing for, 154
hashCode(), 17, 169
HashMap, 16, 18–19, 107, 119, 203

definition of, 112
storing detached instances in, 142

Hashtable, definition of, 112
heap

calls to, in Terracotta, 46
durability across JVM invocations, 62

HEAPREAD(), 48
HEAPWRITE(), 48
Hello Clustered World application

availability and restartability of, 66
buffer array, 42
clustering, 43
creating a project skeleton, 53
database version of, 50
HelloClusteredWorld class, 43–44, 54
main(), 42
narrowing down the instrumentation of,

57
output of the second JVM, 45
preparing the HelloClusteredWorld class

for clustering, 44
running across two JVMs, 43
running in Unix, 53
running using the Eclipse plug-in, 63
scalability of, 65
sharing both loopCounter and buffer, 44
sharing the buffer object across Java

processes, 43
simplicity through transparency, 66
source code, 41
starting with Terracotta enabled, 60
UML sequence diagram of the while loop,

46
unshared buffer objects, 44
writing a Terracotta configuration file, 44

hello_clustered_world_eclipse project, 63
Hibernate, 1, 6, 15, 35, 38

architecture of, 132
beginTransaction(), 132
benchmarking with Terracotta, 139
benefits of, 131
clustering session objects, 133, 137
clustering the second-level cache, 133
commit(), 132, 135
configuring tc-config.xml, 141
configuring Terracotta with detached

instances, 141
configuring to work with Terracotta, 139

copying objects outside of Hibernate, 132
debugging, testing, and tuning, 143–145
detaching POJO instances of database-

mapped objects, 137
disadvantages of managing JDBC by hand,

134
eliminating redundant SQL calls, 136
enabling Ehcache as a second-level cache,

140
enabling the SQL debug property in

hibernate.xml, 144
example of a typical interaction, 133
first-level cache, 132
handling a clusterwide cache miss, 137
having high/low locality of reference, 144
improving Hibernate application

performance, 134
inspecting the data in the Ehcache store,

144
ORM, definition of, 131
plugging Terracotta into the Hibernate

model, 133
reattaching detached instances, 143
reducing database operations, 135
saveOrUpdate(), 143
second-level cache, 132, 136
session.beginTransaction(), 141
session.getTransaction().commit(), 141
setting the proper Terracotta

configuration, 140
storing detached instances, 142–143
storing detached POJOs in Terracotta, 138
transaction boundaries, 132
tuning the second-level cache, 144
using setAttrribute() in an HTTP session,

142
using the Statistics object, 144
verifying Ehcache configuration

clustering, 144
High Performance File System (HPFS), 4
<honor-transient> option, setting, 81
HTTP sessions

accessing a session on another node, 154
alternatives to, 154
Apache Tomcat, 151
application state management and HTTP,

147
automated expiration time for sessions,

149
Big IP (F5), 154
central database stores, 155
cleaning up system resources, 151
clearing critical session attributes at the

right time, 150
Content Director (Cisco), 154
cookie state, 147
disposable server nodes, 154

�INDEX��328

distributed caches, uses for, 155
distributed sessions, 151
Elastic Compute Cloud (EC2), 153
eviction, 149
getSession(), 149
global application state, 150
handling state across a web application

cluster, 152
HttpServletRequest, 149–150
HttpSessionBindingListener, 150
invalidating an entire session, 150
IoC framework, 151
Java EE servlet API, 148
maintaining high availability, 154
making a web server stateless, 155
manual invalidation, 150
maximum inactive interval on Tomcat,

150
multiple servers and performance

bottlenecks, 147
network replication, definition of, 152
preparing disk images of servers

beforehand, 153
preparing for hardware failure, 154
reacting dynamically to traffic spikes, 153
scalability, definition of, 151
scalability, vertical versus horizontal, 153
Serializable interface, implementing,

151–152
server-side state management, 148
session failover, 153
session state persistence, 151
sharing state among different tiers, 155
starting a user session, 148
Tomcat, 151
web.xml, <session-config>, 149

HttpServletRequest
methods for expiration time, 149
methods for invalidating a session, 150
methods for session attributes, 149
methods for the interface, 149

HttpSessionBindingListener
methods for the interface, 150
valueBound(), 151
valueUnbound(), 151

Hyperic, 295, 321

I
iBatis, 131
IBM, 36
<include> stanza, 77, 81
in-memory replication

advantages and disadvantages of, 28
working with object copies, 29

independent caches, 121
initialClusterMembers(), 277
installing Terracotta, 51

instrumented classes, 111
<instrumented-classes> configuration

section, 77, 170, 226
portable objects and, 78

integration modules, 160
Intel, 32
internal locking, 112
InterruptedException, 250
inventory application

adding a main() method, 196
adding items to the store, 188
adding the second inventory2 object as a

new root, 306
Administrator Console, 310
anemic domain modeling, 296
applicationContext.xml, 196, 199
BeanFactory, 196
build.xml, 297, 307
cli bean, 196
CLI class, code example, 183
compiling and running the application,

307
compiling the code, 187
configuring the Spring beans, 194
copying the inventory sample, 298
defining the JEE application name, 199
demo.inventory directory, table of source

file changes, 298
demo.inventory directory, table of source

files, 297
Departments class, 178–180
domain modeling, 296
dso-env script, 192
editing main(), 300
editing Main.java, 299–300
entity components, 178
entity package, 192
generating graphs for test data, 310
Inventory class, 178–179
inventory.pounder application, 298
IOImpl class, 186
JVMs and storing statistical data, 306
localhost:9510, 192
lock batching, 301
Main class, code example, 186
modifying a product, 189
modifying the application, 297
nondistributed bean fields, 199
output console, 192
performance metrics, list of, 312
pounder methods and synchronization,

301
pounder, definition of, 298
poundOneProduct(), 300, 303, 309, 316,

319
poundRandomProducts(), 300, 303, 309,

317, 319

�INDEX�� 329

Product class, 178, 182
retrieving test data for graphical analysis,

309
run(), 183, 196
run.sh script, 297, 307
running a clustered pounding routine, 299
running as a clustered Spring application,

194
running clustered with Terracotta, 192
running Java with Terracotta enabled, 193
running on a single JVM, 187
running on multiple JVMs, 190
running the pounders with the snapshot

tool, 308
running with clustered Spring beans, 200
separate roots, using, 303–305
Spring application context configuration

file, 194
Spring-enabled application, output

console, 197
SpringMain class, 196
start-tc-server.sh script, 307
starting and stopping the snapshot tool,

307
Statistics Recorder pane, 309
stop-tc-server.sh script, 307
store bean, 199
Store class, 178–179
Subversion, 298
synchronization and setPrice(), 301–302
tc-config.xml, 297, 302, 306
tc-config-no-spring.xml, 191
tc-config-spring.xml, 198, 200
<$TC_HOME>, 192
$TC_HOME directory, 298
Terracotta configuration files, 191
Terracotta session clustering for Spring,

201
Terracotta Spring configuration file, 198
understanding the statistics underlying

performance graphs, 310
updating the command line interface, 305
use cases supported, 296
using Terracotta to cluster the Spring

beans, 197
validating the performance differences of

pounder methods, 300
viewing the effects of clustering, 193
viewing the store’s inventory, 188

Inventory class, 178–179
inventory.pounder application, 298

bottlenecks within, 316
IoC framework, 151
IOImpl class, 186

isolation
definition of, 107
read lock and write lock, 157
update, 156

Item.java, 166, 168

J
Java

accessor operator (.), 46
assignment operator (=), 46

Java 2 Enterprise Edition (J2EE), EJB and the
database, 25

Java 2 Standard Edition (J2SE)
Struts and the database, 25
Tomcat and the database, 25

Java Collections API, Collections class, 204
Java EE servlet API

HTTP sessions, 148
Java Servlet Technology web site, 149

Java Language Specification (JLS), 246, 249
Java Management Extensions (JMX), 2, 52

JMX events, 295, 321
jmx-util library, 275

Java Memory Model, 82, 301
“happens before”, 11, 28
ensuring proper cross-process behavior,

11
JSR 133, 11

Java Messaging Service (JMS), 29
Java Server Faces (JSF), 35
Java virtual machines (JVMs)

benefits of Linux, 24
cluster events, definition of, 230
coordinating threads on multiple JVMs,

222
garbage collector, 29, 38
how Terracotta instruments Java

synchronized blocks, 222
java.util.concurrent, 222
join(), 222
JVM garbage collector statistic, 313
JVM-level clustering, 2, 6
managing multiple JVMs on multiple

nodes, 24
MONITORENTER, 221
MONITOREXIT, 221
mutexes, 72
notify(), 222
scaling out applications versus scaling up,

24–25, 33
Terracotta and calls to the heap, 46
thread coordination with queues, 235
using object identifiers across JVMs, 9
wait(), 222

java.io.FileDescriptor, 78
java.io.Serializable, 18
java.lang.Runnable, 248

�INDEX��330

java.lang.Runtime, 78
java.lang.Thread, 78
java.util, 17
java.util.concurrent, 17, 73, 77, 90, 94, 222

CyclicBarrier, 227–228
ExecutorService, 247, 251
performing common concurrency

operations, 227
tc-config.xml, 229
Terracotta configuration and, 229
using with the Master/Worker pattern,

247, 250–251
java.util.Hashtable, 113
java.util.TreeMap, 119
java.util.Vector, 113
JavaSpaces, 245
JDBC, 49–50
JMX events, 295, 321
jmx-util library, 275
JNI libraries and Terracotta, 66
join point, 73
join(), 222
Journaled File System (JFS), 4
JPA, 38
JRuby, 82
JSESSIONID, 159
<jsp:useBean>, 167
JSR 107 JCache API, 129
JSR 133, 11
JUnit, 157
JVM garbage collector statistic, 313
JVM-level clustering, 2, 6

K
keywords

synchronized, 82, 246
transient, 81
volatile, 246

L
L1 cache, 32
L1 L2 flush statistic, 312
L2 broadcast count statistic, 312
L2 broadcast per transaction statistic, 313
L2 cache

creating a general purpose L2 server, 33
deflecting workload off the database, 35
serializing and replicating objects, 34
Terracotta server as a separate process, 36
using as a superset cache of L1 caches, 32
See also caching; distributed caching;

second-level cache
L2 changes per broadcast statistic, 312
L2 faults from disk statistic, 312
L2 L1 fault statistic, 313
L2 pending transactions statistic, 312
L2 transaction count statistic, 313

latency, optimizing, 3
life cycle, 43
Linda programming, definition of, 245
LinkedBlockingQueue, 240, 250, 257
LinkedHashMap

definition of, 112
lack of Terracotta support for, 112

Linux, using many JVMs on many servers, 24
ListBasedQueue interface, 264
literals

root objects and, 70
Terracotta and Java primitives, 71

load balancers
Big IP (F5), 154, 159
Content Director (Cisco), 154, 159
nonpartitioned and partitioned, 30
round-robin load distribution, 173
server caching and, 106
stickiness and session replication, 13, 28
using a sticky load balancer, 174

localhost:9510, 192
locality of reference, 243–244

application tuning and L1, L2, 316
compared to linear scalability, 316
definition of, 144, 316

locks and locking
acquiring over a network, 317
autolocks, 74, 113
automatic, 112
clustered, 57, 114
concurrent, 75
cross-JVM, 10
global, 112
granularity, coarse-grained and fine-

grained, 156
greedy, 38, 317, 320
internal, 112
java.util.concurrent, 73, 77
lock batching, 301
lock hopping, 319
lock levels, 75
Lock profiler, 62
<locks> configuration section, 73, 204, 226
maps and, 119
monitor, definition of, 72
mutexes, 72
named, 74
notify(), 73, 76
notifyAll(), 73, 76
optimal lock granularity and Terracotta,

274
optimizing, 113
read, 75
synchronized collections and, 113
synchronized(), 73
synchronous write, 75
update isolation, definition of, 156

�INDEX�� 331

wait(), 73, 76
write, 75

logical actions, 80
logical instrumentation, 119
logically managed objects

classes that use hashed structures, 79
portability of, 79

loosely coupled applications, 24
Lucene search framework, 281

M
Main class

code example, 90, 186
CyclicBarrier, 90, 94, 97
run(), 90
running, 188

main(), 196, 300
Main.java

checking for the separate_roots command
line argument, 300

editing, 299
make-boot-jar script, 53, 78
manifest

creating, 207
Synchronized Map Integration Module,

207
MANIFEST.MF, 210
manual invalidation, 150
MapReduce, 19
maps

automatic locking, 112
batching put() calls, 115
building a basic cache, 107
bulk loading in batches, code example,

115
caching with, 112
ConcurrentHashMap, definition of, 112
ConcurrentSkipListMap, definition of, 113
creating a Map of Maps, 120
faulting out submaps, 120
global locking, 112
HashMap, definition of, 112
Hashtable, definition of, 112
heap size and key set size, 120
internal locking, 112
LinkedHashMap, definition of, 112
locking and, 119
relating batch size to performance, 119
sorted implementations, 112
SortedMap, 112
synchronized block, 115
synchronizedMap(), 112
synchronizedSortedMap(), 113
synchronizing, 108
test program for batching, 116–117
TreeMap, 112
unsorted implementations, 112

userCache, 108
using fine-granularity loading, 115
wrapping a Map into a custom Cache

class, 115, 119
master, 245
Master/Worker pattern

adding a Router abstraction, 265
automatic load balancing, 245
BlockingQueueBasedQueue interface, 264
bridging-workers, 291
building a distributed web spider, 281
building a single work queue, 250
ClusterEvents.Listener interface, 275, 277
clustering the WorkManager

implementation with Terracotta, 257
CommonJ Work Manager specification,

248
ConcurrentHashMap, 265
counting executed work instances, code

example, 272
creating a Master, code example, 273
creating a new RoutableWorkItem class,

code example, 260
DefaultWorkItem, 250, 255
defining potential lock/transaction

boundaries, 258
detecting worker failover, 279
DmiBasedQueue interface, 264
DynamicWorker class, 278
DynamicWorkManager class, 266, 276
ejecting a worker, 280
enabling dynamic worker management,

274–275
ExecutorService, 247, 251
explanation of, 245
handling scale bottlenecks, 258
handling slow consuming clients, 291
handling work failure and recovery, 270
having a failover mechanism for workers,

274
implementing a single-JVM naïve

master/worker container, 250
implementing callback methods, 270
implementing distributed Web search, 281
implementing in Java, 246
initialClusterMembers(), 277
InterruptedException, 250
invoking the start-tc-server script, 274
JavaSpaces, 245
jmx-util library, 275
Linda programming, definition of, 245
LinkedBlockingQueue, 250, 257
ListBasedQueue interface, 264
making the worker aware of cluster events,

277
master, 245

�INDEX��332

minimizing contention through queue
striping, 259

minimizing lock contention, 274
naïve CommonJ Worker implementation,

251
naïve CommonJ WorkManager

implementation, 253
nodeConnected(), 276
nodeDisconnected(), 276, 280
notify(), 246, 253, 266
optimal lock granularity and Terracotta,

274
partitioning data, advantages of, 259
Pipe class, 263
PipeManager class, 265, 273
pipes, managing, 259
Queue class, code example, 264
refactoring for large workloads, 259
refactoring the Worker, 271
refactoring work batching, 274
rerouting pending, noncompleted work,

280
rogue clients, 290
Router, 268, 277
routing IDs and pipes, 260
run(), 271
schedule(), 252, 265
shared workspace, 245
SimpleQueue class, 265
SimpleQueue CommonJ implementation,

code example, 250
SimpleQueue instance, 251, 257
splitting each work queue into two

queues, 259
StaticWorkManager class, code example,

266
thisNodeId(), 276
tracking work status, 248
updating the Terracotta configuration file,

272
using Java’s concurrency and threading

primitives, 246
using the java.util.concurrent

abstractions, 247, 250–251
wait(), 246, 253, 266
waitForAll(), 253, 266
waitForAny(), 253, 266, 289
WAN load balancing, 290
when not to use, 290
Work Manager interface, 248, 250
worker(s), 245
WorkerTask class, 271
WorkListener interface, 270
workRejected(), 270
WORK_REJECTED, 250

writing the Worker artifact, 251
See also CommonJ Work Manager

specification
Maven

archetypes, 211
artifactId, 212
creating a TIM with, 211, 218
install command, 213
Maven 2 artifact repository, 206
module repositories, 205
module versioning, 213
pom.xml, 212–213, 218
SNAPSHOT versions, 213, 219
Terracotta Maven plug-in, exportable

properties, 219
terracotta-api module, 219
tim-archetype, 211
tim-parent, 212

memory
memory location, transparency of, 6
memory management and virtual heap,

71
migrating to a network service, 6
Terracotta and memory reads/writes, 48

memory statistic, 313
message monitor statistic, 312
Message-Driven Beans (MDB), 248
method-local scope, definition of, 9
module repositories

defining an implicit repository, 205
Maven repositories, 205
setting the directory path for, 205
specifying multiple repositories, 205
Terracotta Forge, 206

monitor, definition of, 72
MONITORENTER, 221
MONITOREXIT, 221
MS-DOS File System, 4
multithreaded programming, 28
mutexes, 72

N
n-tier architecture

application tier, 24
database tier, 24
loosely coupled applications, 24
presentation tier, development of, 23
three-tier architecture, 24

n-way replication, 38
naïve CommonJ Worker implementation, 251
naïve CommonJ WorkManager

implementation, 253
name attribute, 205
named locks, compared to autolocks, 74
NamedQueue, 240
Network Appliance, 5

�INDEX�� 333

Network File System (NFS), compared to a
database, 6

network replication, definition of, 152
networked active passive (NAP) mode, 175
networked file storage, adding, 5
nodeConnected(), 230, 235, 276
nodeConnecting(), 230
nodeDisconnected(), 230–231, 276, 280
nodeDisconnecting(), 231
nodeInit(), 230
nodeOrphaned(), 231
nodeReconnected(), 231
nodeReconnecting(), 230
nonportable objects

java.io.FileDescriptor, 78
java.lang.Runtime, 78
java.lang.Thread, 78
See also objects; portable objects

notify(), 73, 76, 221–222, 227, 246, 253, 266
notifyAll(), 73, 76, 226
null references, adding to clustered objects,

72
NullProduct class, code example, 86

O
object graphs, 69, 80
object ID, 71
object models

mounting objects into memory, 8
Terracotta and, 7
using object identifiers across JVMs, 9

object scope, 43
method-local scope, definition of, 9
sharing objects across servers, 9

object-relational mapping (ORM), 23, 131
objects

constructing shared objects, 43
logically managed, 78
physically managed, 78
See also nonportable objects; portable

objects
1/n effect

definition of, 104
minimizing, 105

Open Run Dialog, 64
open(), 4, 7
operator, role vis-a-vis application developer,

1
optimization, avoiding I/O bottlenecks, 15
Oracle, 36
org.terracotta.modules, 205
OSGi (Open Services Gateway initiative)

manifest properties supported by OSGi
and Terracotta, 208

module versioning, 213

osgi_r4_core-1.0.jar, 214
SNAPSHOT versions, 213, 219

OutOfMemoryError, 119

P
paging, definition of, 14
Parsons, Rebecca, 82
partitioning

database, 27
definition of, 30
partitioning data into even and odd keys,

30
persistence and disk caching, 121
physically managed objects, 78
Pipe class, 263
PipeManager class, 265, 273
pipes

adding a Router abstraction, 265
managing, 259
routing IDs and, 260

playWithMemory()
application logic in pseudo code, 47
bytecode operations, 47
code example, 46

POJO clustering. See clustered POJOs
pom.xml, 212–213, 218
portability contexts

field changes, 80
handling nonportable fields, 80
logical actions, 80
object graph traversal, 80

portable objects
inherently nonportable objects, 78
instrumented classes and, 78
root objects and, 70
See also nonportable objects; objects

pounder
definition of, 298
running a clustered pounding routine, 299
synchronization and pounder methods,

301
validating the performance differences of

pounder methods, 300
poundOneProduct(), 300, 303, 309, 316, 319
poundRandomProducts(), 300, 303, 309, 317,

319
preinstrumented classes, 78
presentation tier, development of, 23
processLinks(), 289
Product class, 178, 182
ProductImpl class, code example, 85
Project dialog box, 63
Pugh, Bill, 11
put(), 49

�INDEX��334

Q
Quercus, 82
Queue class, code example, 264
QueueReader, 239
queues

AtomicInteger, 239
CoordinationWithQueues.java, code

example, 236
definition of, 314
LinkedBlockingQueue, 240
NamedQueue, 240
QueueReader, 239
sending inter-JVM messages, 235, 241
take(), 239
tc-config.xml for coordinating queues, 239
thread coordination with, 235

R
read locks, 75
read(), 4
read-only caches, 121
read-write caches, 121
Realtime Application Clusters (RAC), 15
reference fields, 71
remote method invocation (RMI), 11, 29
<repository> configuration section, 205
restartability of Terracotta, 13
retail shopping application

ActiveShoppingCarts class, code example,
89

await(), 97
Catalog class, code example, 87
compiling, 95
console output, analysis of each step, 99
console output, first application instance,

97
console output, second application

instance, 97
CyclicBarrier, 90, 94, 97
determining the bytecode-instrumented

classes, 95
determining the shared object graphs, 94
determining the Terracotta-specific JVM

arguments, 96
dso-env script, 96
dso-java script, 96
example classes, 85
finding all synchronized methods and

blocks, 95
having a shared heap that all JVMs trust,

101
<instrumented-classes> configuration

section, 95
java.util.concurrent, 90, 94
Main class, code example, 90
NullProduct class, code example, 86

preserving object identity, 100
ProductImpl class, code example, 85
providing fine-grained change

management, 100
reviewing the application’s features,

100–101
Roots class, code example, 89
run(), 90
running the application in a cluster, 95
scalability and server deployment, 94
ShoppingCartFactory class, code example,

93
ShoppingCartImpl class, code example, 88
specifying the Terracotta configuration, 94
starting the Terracotta server, 96
tc-config.xml, 96
using the Eclipse plug-in, 95
using the start-tc-server script, 96
viewing all clustered objects in real time,

99
viewing the effect of a durable heap, 100

retrievePage(), 284
rogue clients, 290
root objects, 111

assigning roots to fields, 69
behavior of fields declared as roots, 70
changing the object graph of, 70
changing the value of root fields, 70
data structure types, 70
declaring, 69
definition of, 69
garbage collector and, 70
life cycle durability of, 70
literals and, 70
object graphs, 69
portable objects, 70
<root> stanza, 69
<root-name> element, 70
superstatic life cycle, definition of, 70

Roots class, code example, 89
Roots control, 61
<roots> configuration section, 226
round-robin load distribution, 173
RoutableWorkItem class, code example, 260
Router, 277

data affinity using sticky routing, 269
load-balancing router implementation,

code example, 269
round-robin balancing, 268
workload-sensitive balancing, 268

Run menu, 64
run(), 90, 183, 196, 271, 289
run-dgc script, 53
run.sh script, 297, 307

�INDEX�� 335

S
saveOrUpdate(), 143
Scala, 82
scalability

applications and, 1, 12–13
challenges in, 25
comparing CPU and network speeds, 36
comparing stateful and stateless

applications, 25, 30
databases and disk striping, 27
definition of, 3, 151
distributed caches and, 21
linear, 158
scaling a mature stateless application, 27
scaling linearly, 14
top-down versus bottom-up architecture,

25
vertical versus horizontal, 153

scan-boot-jar script, 53
schedule(), 252, 265
scheduleWork(), 289
scripts

admin, 52
dso-java, 53, 60
make-boot-jar, 53
online documentation for, 52
run-dgc, 53
scan-boot-jar, 53
start-tc-server, 53
stop-tc-server, 53
tc-start-server, 59
version, 53

second-level cache, 132
clustering, using Terracotta, 133
configuring, using Ehcache, 140
enabling, 136
enabling Ehcache as a second-level cache

in Hibernate, 140
handling a clusterwide cache miss, 137
querying the hit and miss counts, 144
risks and tradeoffs in using, 137
tuning, 144
See also caching; distributed caching; L2

cache
secure copy (SCP), 321
seek(), 4
segments, 112
separate roots

dynamic mapping of, code example, 304
explanation of, 303

Serializable interface, 3, 157, 169
implementing, 151–152

serialization, 29
objects and, 84
performance and, 122
persisting to disk, 121

server nodes, disposable, 154
server-side state and HTTP, 148
server.xml, 171
service-level agreements (SLAs), 243
session failover, 153
session objects, clustering, 137
session replication, 18
session.beginTransaction(), 141
session.getTransaction().commit(), 141
SessionExample1.java servlet

code example, 160
installing, 162
packaging and configuring, 161
running, 164

setAttribute(), 18, 142, 159
setenv.bat, 171
setPrice() and synchronization, 301–302
sharding. See partitioning
shared disk storage mode, 175
shared workspace, 245
shopping cart example, 165
ShoppingCartFactory class, code example, 93
ShoppingCartImpl class, code example, 88
SimpleQueue class, 265
SimpleQueue CommonJ implementation,

code example, 250
SimpleQueue instance, 251, 257
simplicity

definition of, 3
distributed caches and, 20

SMP motherboard, 310
snapshot tool

cache objects evict request statistic, 312
cache objects evicted statistic, 312
distributed gc statistic, 313
JVM garbage collector statistic, 313
L1 L2 flush statistic, 312
L2 broadcast count statistic, 312
L2 broadcast per transaction statistic, 313
L2 changes per broadcast statistic, 312
L2 faults from disk statistic, 312
L2 L1 fault statistic, 313
L2 pending transactions statistic, 312
L2 transaction count statistic, 313
managing multiple recording sessions,

308
memory statistic, 313
message monitor statistic, 312
performance metrics, list of, 312
running the pounders with, 308
stage queue depth statistic, 313
starting and stopping recording, 307
system properties snapshot, 314
thread dump statistic, 312
See also bottlenecks; visualization tools

SNAPSHOT versions, 213, 219
Solaris, automount, 10

�INDEX��336

SortedMap, 112
SpiderMaster class, code example, 284
SpiderWork class, code example, 282
spilling a cache to disk, 104, 121
Spring, 1, 38

applicationContext.xml, 194, 196, 199
BeanFactory, 196
cli bean, 196
configuring the Spring beans, 194
creating a Spring-enabled clustered

application, 177
defining the JEE application name, 199
definition of, 177
dependency injection (DI), 177–178, 186
nondistributed bean fields, 199
POJOs and, 177
running with clustered Spring beans, 200
store bean, 199
Store(), 178
tc-config-spring.xml, 198, 200
Terracotta session clustering for Spring,

201
Terracotta Spring configuration file, 198
Terracotta’s support for, 177
using Terracotta to cluster the Spring

beans, 197
web site of, 178

SpringMain class, 196
stage queue depth statistic, 313
staged event driven architecture (SEDA)

building blocks, 314
drain, definition of, 314
faucet, definition of, 314
providing for parallel and serial execution,

314
queue, definition of, 314
Terracotta server and, 314–315

StandardDSOClientConfigHelper class
table of available methods, 216

start-tc-server script, 53, 96, 274
start-tc-server.sh script, 111, 307
StartMaster class, 289
StartWorker class, 289
stateful applications, 25

availability risk, 29
in-memory replication, 28
low latency and, 29
programming goals of, 28, 34

stateless applications, 25, 27
StaticWorkManager class, code example, 266
Statistics Recorder pane, 309
stop-tc-server script, 53
stop-tc-server.sh script, 307
store bean, 199
Store class, 178–179
Store(), 178
storeAClusteredClassInstance(), 10

striping, 14
database and, 27
striping Terracotta across multiple disks,

16
Struts, 25, 35
Subversion, 298
Sun Microsystems, 36
superstatic life cycle, definition of, 70
synchronization, 43, 301
synchronized block, 115
synchronized collections and locking, 113
synchronized keyword, 82, 246
synchronized(), 73, 227
synchronizedCollection(), 113
synchronizedMap(), 112–113, 204
synchronizedSet(), 113
synchronizedSortedMap(), 113
synchronizedSortedSet(), 113
synchronous write locks, 75
system properties snapshot, 314

T
take(), 239
tc-config.xml

bundling modules within other modules,
205

<clients> configuration section, 204–205
code example, 128, 170
concurrency primitives, code example,

224
configuring, 55–57
configuring to use the Hibernate

Integration Module, 141
CoordinationWithQueues.java, 239
creating, 55
data element, 56
debug settings, 171
finished source code, 58
group-id attribute, 205
<instrumented-classes> configuration

section, 57, 170, 226
java.util.concurrent, 229
JMX cluster events, 234
<locks> configuration section, 204, 226
logs element, 56
name attribute, 205
notifyAll(), 226
online reference guide to, 55
org.terracotta.modules, 205
<repository> configuration section, 205
<roots> configuration section, 226
setenv.bat, 171
tim-synchronizedmap, 204
<TOMCAT_HOME> root directory, 171
<transient-fields> configuration section,

226
version attribute, 205

�INDEX�� 337

WaitNotify.config, 226
WaitNotify.nodesJoined, 226
<web-applications> configuration section,

170
tc-config-no-spring.xml, 191
tc-config-pojo.xml, 55
tc-config-spring.xml, 198, 200
<$TC_HOME>, 192
$TC_HOME directory, 298
tc-start-server script, 59
Terracotta client, configuring, 56
Terracotta Forge

developing and sharing TIMs, 206
hosting projects on, 206
web location of, 114

Terracotta HTTP sessions
achieving 100 percent uptime, 175
balancing linear scalability and high

availability, 158
benefits of, 157
Big IP (F5), 159
cart.jsp, code example, 166
configuration and instrumentation, 160
Content Director (Cisco), 159
deployment architecture considerations,

173
evolving data classes over time, 158
example1.war, 162
example2.war, 170
integration modules, 160
list of supported platforms, 173
lock granularity, definition of, 156
networked active passive (NAP) mode, 175
no serialization, 157
operational features of, 155
optimizing concurrency, 157
optimizing for a distributed virtual heap,

156
optimizing for fine-grained changes, 158
plugging transparently into web

containers, 156
preserving object identity, 159
round-robin load distribution, 173
running Terracotta in a highly available

manner, 175
Serializable interface and, 157
session counter example, 160
session distribution, 156
SessionExample1.java servlet, 160–164
setAttribute(), 159
shared disk storage mode, 175
shopping cart example, 165
sticky load balancers, 159
storing attributes, 159
tc-config.xml, code example, 170

Terracotta Sessions Configurator,
launching, 162

terracotta-client.log with debug
statements, 172

transparent object versioning, 157
update isolation, definition of, 156
using a sticky load balancer, 174
web.xml, 161

Terracotta Integration Module (TIM)
adding a custom class adapter, 217
adding to a project’s modules section, 114
addInstrumentation(), 215, 217
applying external configuration to existing

libraries, 203
ASM, 217
attributes of, 205
Autolocked Collections, 204
bundles, definition of, 207
bundling modules within other modules,

205
cache eviction, 215
class modification and replacement, 215
ClassAdapterFactory, 217
clustering a synchronized Map, 203
components of, 203, 207
creating, 210–211
defining an implicit repository, 205
definition of, 52
downloading and installing, 114
getExportedBundle(), 217
group-id attribute, 205
helper methods for configuring Terracotta

via code, 215
importing, 204
including code in a TIM, 213
JAR files, 203, 205
<locks> configuration section, 204
manifest from the Synchronized Map

Integration Module, 207
manifest properties supported by OSGi

and Terracotta, 208
manifest, creating, 207
MANIFEST.MF, 210
Maven repositories, 205
modularizing, 209
module repositories, 205
name attribute, 205
obtaining, 206
org.terracotta.modules, 205
OSGi (Open Services Gateway initiative),

207
osgi_r4_core-1.0.jar, 214
pom.xml, 212–213, 218
replacing a library class with your own

version, 217
SNAPSHOT versions, 213, 219

�INDEX��338

specifying a Bundle-Activator property,
214, 219

StandardDSOClientConfigHelper class,
available methods, 216

tc-config.xml, 210
Terracotta configuration fragment,

definition of, 209
Terracotta Maven plug-in, exportable

properties, 219
terracotta.xml, 209–210, 212
terracotta-api Maven module, 219
terracotta-api.jar, 214
TerracottaConfiguratorModule class,

available helper methods, 216
tim-archetype, 211
tim-parent, 212
tim-synchronizedmap, 204
using a TIM in another project, 210
using Maven to create TIMs with code, 218
version attribute, 205
<xml-fragment> configuration section,

209
Terracotta kit

components of, 51
online documentation for, 51

Terracotta Network Attached Memory, 144,
250

Terracotta server
advantages of, 36
configuring for persistent mode, 56
disk I/O and, 36
internal structures, 315
killing the active server, 62
locality of reference, 316
restarting parts of the cluster, 62
SEDA stages, 315
starting in Eclipse, 64
starting using the tc-start-server script, 59
understanding SEDA, 314
See also L2 cache

Terracotta Sessions Configurator
importing a new web application, 163
launching, 162
starting all Tomcat instances, 163

Terracotta Spring configuration file, 198
Terracotta web site

early development of, 31
handling design, scaling and maintenance

problems, 35
terracotta.xml, 209–210, 212
terracotta-api module, 219
terracotta-api.jar, 214
terracotta-client.log, debug statements, 172
TerracottaConfiguratorModule class, table of

helper methods, 216
thisNodeConnected(), 230
thisNodeDisconnected(), 230

thisNodeId(), 276
thrashing, definition of, 104
thread dump statistic, 312
threads

AtomicInteger, 239
clustering and, 10
concurrency of, 221
CoordinatedStages.java, code example,

227
coordinating access to data, 221
coordinating and applying changes, 72
coordinating threads on multiple JVMs,

222
CoordinationWithQueues.java, code

example, 236
CyclicBarrier, 227–228
how Terracotta instruments Java

synchronized blocks, 222
java.util.concurrent, 73, 77, 222
join(), 222
LinkedBlockingQueue, 240
MONITORENTER, 221
MONITOREXIT, 221
mutexes, 72
NamedQueue, 240
nodeConnected(), 230, 235
nodeConnecting(), 230
nodeDisconnected(), 230–231
nodeDisconnecting(), 231
nodeInit(), 230
nodeOrphaned(), 231
nodeReconnected(), 231
nodeReconnecting(), 230
notify(), 73, 76, 221–222, 227
notifyAll(), 73, 76
QueueReader, 239
synchronized(), 73, 227
take(), 239
tc-config.xml for concurrency primitives,

224
tc-config.xml for coordinating queues, 239
Terracotta inter-JVM thread coordination,

222
thisNodeConnected(), 230
thisNodeDisconnected(), 230
thread coordination and JMX cluster

events, 230
thread coordination using concurrency

primitives, 222
thread coordination with queues, 235
thread coordination, types of, 221
transactions and, 76
wait(), 73, 76, 221–222, 227
WaitNotify.java, code example, 222
WaitNotify.java, explanation of, 224
See also clustering

�INDEX�� 339

three-tier architecture, 24
throughput, optimizing, 3
tim-archetype, creating a TIM Maven project,

211
tim-hashtable, 113
tim-parent, 212
tim-synchronizedcollection, 113
tim-synchronizedmap, 113, 204
tim-synchronizedset, 113
tim-synchronizedsortedmap, 113
tim-synchronizedsortedset, 113
tim-vector, 113
Tomcat, 25, 35, 151
<TOMCAT_HOME> root directory, 171
top-down architecture, 25
TopLink, 131
transaction boundaries, 132
transactions

batching, 76
definition of, 76
definition of, in Terracotta, 313
field changes and, 313
runtime exceptions and, 76
threads and, 76

transient fields
declaring, 80
initializing on load, 81
setting the <honor-transient> option, 81
<transient-fields> configuration section,

226
transient keyword, 81
transparency

achieving transparent scalability with
availability, 36

bytecode instrumentation, 77
combining clustering with, 8
definition of, 3
distributed caches and, 20
file storage and, 4
runtime performance enhancement, 38
transparent services, advantages of, 5
transparent services, definition of, 38

transparent distributed caching, 109
transparent paging, 106
TreeMap, 112
tuning clustered applications, 293

U
update isolation, definition of, 156
use cases

database offload, 18
distributed caching, 17
session replication, 18
workload partitioning, 19

userCache, 108
declaring as a root object, 111
Ehcache and, 125–126

V
valueBound(), 151
valueUnbound(), 151
version attribute, 205
version script, 53
virtual heap

advantages of using a clustered heap, 84
caching and, 105
clustered objects and, 71
flushing and faulting objects, 72
large data sets and, 107
memory management and, 71
minimizing the 1/n effect, 105
object ID, 71
transparent paging, 106

virtual network computing (VNC), 321
visualization tools

acquiring a lock over a network, 317
Administrator Console, 310
analogy of Terracotta to SMP

motherboard, 310
checking that applications exhibit good

locality, 316
correlating performance across processes,

294
downloading from Terracotta.org, 309
examining the broadcast rate, 316
gathering data into the cluster database,

295
generating graphs for test data, 310
greedy locks, 317, 320
Hyperic, 295, 321
lock hopping, 319
observing key data points in an

application stack, 293
performance metrics, list of, 312
production application monitoring, 320
retrieving test data for graphical analysis,

309
running the pounders with the snapshot

tool, 308
starting and stopping the snapshot tool,

307
Statistics Recorder pane, 309
system architecture for gathering and

managing performance data, 294
tuning clustered applications, 293
understanding the statistics underlying

performance graphs, 310
visualizing bottlenecks, 317
See also bottlenecks; snapshot tool

volatile keyword, 246

�INDEX��340

W
wait(), 73, 76, 221–222, 227, 246, 253, 266
waitForAll(), 248, 253, 266
waitForAny(), 249, 253, 266, 289
WaitNotify.java

code example, 222
explanation of, 224
notifyAll(), 226
WaitNotify.config, 226
WaitNotify.nodesJoined, 226

WAN load balancing, 290
<web-applications> configuration section,

170
web.xml, 161, 169

<session-config>, 149
Welcome screen

Administrator Console, 51
Eclipse plug-in, installing, 51

welcome.sh script, 51
Work interface, 248
Work Manager interface, 248, 250

worker(s), 245
WorkerTask class, 271
WorkEvent interface, 249, 255
WorkException, 249
workflow state, 31
WorkItem interface, 249, 251
WorkListener interface, 248–249, 252, 255,

270
workload partitioning, 19
workload routing, 13
workRejected(), 270
WORK_COMPLETED, 289
WORK_REJECTED, 249–250, 289
write locks, 75
write(), 4

X
<xml-fragment> configuration section, 209

Z
Zettabyte File System (ZFS), 4

�INDEX�� 341

	Theory and Foundation Forming a Common Understanding
	History of Terracotta
	Jumping Into Terracotta
	Pojo Clustering
	Caching
	Hibernate with Terracotta Using Terracotta to Offload the Database
	Extending HTTP Sessions with Terracotta
	Clustering Spring
	Integration Modules
	Thread Coordination
	Grid Computing Using Terracotta
	Visualizing Applications

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

